Part of the five-volume . &
ﬁ Qj Microsoft® Win32°® Developer’s Reference Library ’cm

The essential reference to Win32®
technologies and APIs

David Iseminger
Series Editor

v fs@minger con

Wﬁdwg

Base Services

BASED ON

msdn |ibrary

Microsoft

The essential reference to Win32°
technologies and APIs

David Iseminger
Series Editor

‘Windows

Base Services oo
msdn |ibrary

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-
Microsoft Win32 Developer’s Reference Library / David Iseminger.
p. cm.
ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) I. Title.
QA76.76.063 174 1999
005.26'8--dc21 99-045609
CIP

Printed and bound in the United States of America.

123456789 WCWC 432109

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. BackOffice, FrontPage, Microsoft, Microsoft
Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual J++,
Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002306

Acknowledgements

Acknowledgements are often tricky things; generally, the day after books are printed you think of
someone who absolutely should have been recognized, whom you now have rudely omitted. You’d
think authors would keep an ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about the series idea, and for
keeping up with the myriad of issues that cropped up, and for managing the business details
associated with publishing this series. Thanks also to Steve Guty at Microsoft Press for seeing certain
publishing issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft Press, and orchestrated
things in the way only project editors can endure. John Pierce was also instrumental in seeing the
publishing process through completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman—thanks for the excellent work; I'm a firm believer that artwork and
packaging are integral to the success of a project. Marketing acknowledgements go out to Jocelyn
Paul, for her coordination efforts with MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the editor at Microsoft
Press, and thereby routing this series to the right place. Throughout the process, Julie Solon provided
lots of Win32 feedback and helped gather feedback from others, all of which was quite helpful in
compiling the right collection of technologies...thanks to Julie for the help on that. Guy Smith
pointed me to the information I needed for Volumes 4 and 5, and was always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh Vaidyanathan for their
help and openness, respectively, with letting me provide the common coding errors found in Chapter
5 of each of these volumes. Thanks on my behalf, and on behalf of anyone who finds that information
useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my functional “circled i”” logo
into a 3D piece of art, as well as for his work on the Iseminger.com site. You can see more of his
artwork through links found at www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things great agents do best.

Contents

Chapter 1: Introduction 1
How the Win32 Library Is Structured...........cceceevevenciiniieiinenenenenecieieienene 1
How the Win32 Library Is Designedcccocoereriniiiiienicninnieneceenneeecenen 3

Chapter 2: What's in This Volume? 5
Processes and TRIeadscocoeereeeeiiniecieenienieeneteeeeeseeet e 5
MEINIOTY ..ottt ettt et e re et e sae e b e e s te e b e st see s ee s st e aeesasassseeseeneesnses 6
Interprocess COMMUNICALIONS........c.coevuiuierermiieireenretiinieteeeeeresnessessessesessesnens 7
File OPETations.........cceevereerirenrieeeiieniessessessenessessessessssessssssessessesssessessensessesses 8
DEDUZZING ...cvvenviiiriiieeiteteieieeite ettt ettt et sae st ae s st csnesnesseenis 9
URICOAE ...ttt ettt ettt st st e st e e be e e saeeeeneeenaee 9

Chapter 3: Using Microsoft Reference Resources 11

The Microsoft Developer Network (MSDN)cceeveieierinenenienieneeneneeneenennenns 12
Comparing MSDN and MSDN Online........cccccevceeverneereerreenseeneeeseenseeesenseenne 12
MSDN SUbDSCIIPHONSecuiiniiiiiriiiiiiicnicsieniiererer e 13

MSDN Library SubSCIPtiOn.cccceveiiriicuirereieeiiiieceneesesseeeessesnensnens 15
MSDN Professional SUbSCIPLION.......cccceveerierieriiereneereententeeteeseeeseeennes 15
MSDN Universal SUDSCIPONccuccververeririnieecrenreieeieeese e sreeseenns 16
Purchasing an MSDN SubSCriptionccceeceevuersiereenieerieeneeniuessieesseeseennes 16
USING MSDN ..ottt sttt sbesae st saeseesaessesaeesessressessaessesenns 17
EXPIOring MSDN......ccuiimiiiiirencneeiretetecnteteeese et seee et aeas e e enenes 18
QUICK TIPS ettt ettt sve e st e e e s e 21
Using MSDN OnLne.......coceeievuerriensiereeneeneenieeieseessesresseesressessseesseesseesseenne 21
Exploring MSDN Online........cccceevveevienieneesienienieneneereesieenseeseessvesssesnnes 23
MSDN Online FEAtUrEsccuevverereenerienieienienienieeeeeseessessesseessesseessessenne 24
MSDN Online Registered Users..........ccceoveruennene e 28

The Windows Programming Reference Series.........ccccceceviiveriiiiiicinennccnncnnnennne. 29

Chapter 4: Finding the Developer Resources You Need 31

DEVEIOPET SUPPOLLveenveeiieeiieiieieetentenitesteesteentesstesstestessesstesatesatesseessaenseensesssens 31

ONliNg RESOUICESc.vevviuieririieiirieniiniintesiestesieneestest ettt re st seesseseesbeeseennens 33

Learning ProdUuCtscoceevieevieiieriienieniescerecetee et steeeeeee s e see st esaeesseesseeenes 34

CONLEIEIICEScvvieuvenreieiieeeeeeeteiesttett et e ste e testesbesseeat et e e sesbesne et e sesueensessesneensens 36

OthEr RESOUICTES ...oeivveieieieiecctiieceieeeceteeeeeaeeeesbe e e ceaeeessaseessbeeeessssessessseseessseesens 37

vi

Contents

Chapter 5: Getting the Most Out of Win32 Technologies: Part 1........c.ccocouensnreaens 39
OVEIVIBW ...enteiteriieiteneeeteeteeite st esseessessesitesstessessee st ssesstesaesmsessesasesseesaesasesseenses 39
Volume 2: User INterface...........cevvevveeierienenieiiniiieeneeceeeesecneeseeeeennes 39
Volume 3: GDIcoiiiiiiiiiiiiiiiiiiiecteretsc e 40
Volume 4: Common CONtIOIS........cocueevierienieneereenreereenenieeseeeseeeeesseeseesseennes 40
Volume 5: The Windows Shell..........cooevierieiiiiniiiniiineneneseeecreeeeeeenne 40
Solution SUMMATLYcccoiiuiiiiiiiiiiiie e 40
Chapter 6: Processes, Threads, and DLLs 45
Processes and Threads..........cooeevveeeerieeiinicinieneeeeret ettt 45
About Processes and Threadscocueevvererrienernenieeneenceneeneeseeeeeresreenees 45
MUHEASKINEZ ... ettt s eee 45
SCHEAUINGveenveeeerteeiienteeete ettt sttt be e s e eees 48
Multiple THIrEadsccevereeirieenieieneerienieieteierenene e nenes 54

Child PrOCESSES.....ueecveeeeeeiereeieetereeeieeeeereerestesitesee s s svesnes s esaaeeseessesane 61
Process WOrking Set.........cocceieeerieiirnienieniiieieeetenienieseeeessessessessesesseenens 69
Thread POOIINGcooveriiriiriiieeiecteeteereeeitcre ettt eene e 70

JOD ODJECLS ..ottt et s e sees 71
FADETS ...ttt ettt ettt ee s be e e enee 73
Process and Thread Referencec.ceeeevierienenieeicncinienieceeceeeeseccreeeeeeenne 74
Process and Thread FUNCHONSceoveeevenieneeneinniniinieneneceercrerencseseeeenns 74
Process and Thread StruCtures.......c.eeeeveeererercnininieneneneeeeeeeeeeens 184
Process and Thread Macroscocevveervereerienneeresneenieeseesenseeseesseesaeenes 207
Dynamic Link Librariesc.coccovevereriiniieneeneniniiciieieceienesccnienssesaeeenene 208
About Dynamic Link Librariescccceeerererueneeneneneneneeneneseeeneeeeeenees 208
Advantages of Dynamic Linking.........cccceceveviiiininenenncnincninienieeneennens 209
Dynamic Link Library Creationc.cccceeceveiivieiincnieneinienininiiiiesneneens 210
Dynamic Link Library Entry-Point Functionc..ccecevinininiinnneennens 211
Load-Time Dynamic LinKing........cccoceeveimiiininiinenininieininieiiieenenas 213
Run-Time Dynamic LinkKingcccceeceeveeverreeveencinenrennenneeeeseeseeeeenes 214
Dynamic Link Library Dataccceccevervienieierrenieneeeeeeeeeeeseesresseeenees 215
Dynamic Link Library Redirectionccocceeveeveriienreernennenneeneesenneenne 216
Dynamic Link Library Updates..........ccccovvniiinininininniiniiniicn, 216
Dynamic Link Library Reference..........cccocooeviviiiiniiinininieniiiiniiccnnenns 217
Dynamic Link Library FUNCHONScccoveevuerieniininieerenrceecieseeneeenen 217
SYNCRIONIZAION. ...c..cuvieeveieieienierieeeeet ettt 234
Getting More Information About Synchronization............ccccecceveviiiiiiinnnns 235
ADbout SYNChIONIZALIONc.eeveiereieiieeiieeeeeceenet ettt 235

Wit FUNCHONS.vvvevieiiieeeiieeee ettt eceesirae e e e s e esssaaseeeseessaraeeeeeas 235

Contents vii

Synchronization ObJECtS........ccuecverierieriienieneenieieiesiee e sie e eaeenees 237
Interprocess Synchronization...........c..ccceccvveeivenincniicneninicnnenecencnnens 243
Synchronization Object Security and Access Rights.........cccccceveeveneennee. 244
Synchronization and Overlapped Input and Output............ccoccvvevuevennnene 246
Asynchronous Procedure Calls.........cc.cceoeevernenseniinneecnee e 247
Critical SECtion ODJECLS......ccevverierirrerieniereeieeereeniseseeisesseseesessessessessns 248
Interlocked Variable ACCESScccoceevuevuineririeneeniieeieeesreneeeeeeseeeeeeneen 249
Chapter 7: Memory Management 251
About Memory Managementcecerveereerersieriiersiesieereenessseesseesesssaessessssense 251
Virtual Address SPACE.........coveuevueceeereetienietiirieteteeeree et st 251
Virtual Address Space and Physical Storage...........cocceevveenernveenieenersnennne 252

Page State ...cccoevmiieieirerencte et 252
Scope of Allocated MEMOTYccccvervirerreriirieesieriereneeieseseeseeseesesseeneens 253
Virtual Memory FUNCHONS.........cccevieriiiiieiienieniterteiesieereesiesie e eveesseeeees 253
Allocating Virtual MEMOLYcccecvevververienerieeneeninenessiessessesssensessessesnees 254
Freeing Virtual MEIMOTYccccoverieeieneenerniensieeeentenienseeeseeseesseesseesseenne 255
Working With Pages........cccoevvevieineiicneneinereenenceeeeeceeseeesee e 255

Heap FUNCHONSocveeviriiriiiieietiieteteieiesiesresieseeseisressesseensessesssessessessesnes 256
Access Validation FUNCHONS.......c..ccceveeririeceeinetienercneeeteenenneeetsneenenen 257
Address Windowing EXIENSIONScccecververienererienrieninreniensseneesesessseseensennes 258
AWE FUNCHONS ...covievieiieieeeieieieienieneeee ettt st saeaesresseeaennes 259
Global and Local FUNCHIONScceeverreriereeieierierenenieesie st ae e 260
Standard C Library FUNCHONSccccecvirvierienieneiienrienteeteeeesiesieseeseesneens 261
Memory Management Reference............c.coeveveeviincniencnncnenenicecncnecencnens 261
Memory Management StTUCTUIEScc.eevveeuereenreeneenieseeneeesreesreeseeseesseenes 328
Chapter 8: Interprocess Communications 337
Interprocess COMMUNICALIONSueeueerreeeereenrernrerntereeseereessessreeseeseesseesseesssenne 337
About Interprocess COMMUNICAIONSccerrerririererrerriseresieeseeseeeeneesseesennes 337
Choosing an IPC MechaniSm...........coeeeeeereeermereneieeercsnenteesesennessenieessenes 338
Using the Clipboard for IPCc.ccccoevirviininincininiiciecienieciecieeneeene 338

Using COM fOr IPC.......ccooiiiieirineieenreieenreteeereenese et ssesneneen 339

Using DDE fOr IPC........ccoivirinieniinienieteietesiesiessitesee e sseeseesseessessessesnes 339

Using a File Mapping for IPCccccoocinvnivniniiiiinnincicniininen 340

Using a MailSIot for IPC.........cccueviieiiriineieeeteneeereeee e seesee e 340

Using Pipes for IPCc..coivieiiiiieieieenenetetenieee e 341
USINg RPC fOr IPCcoviiiiiiieirteteieeesiese sttt 341
Using Windows Sockets for IPCcccooveviriievieninsnnienieneeeenienienne 342

Using WM_COPYDATA for IPC........cccccovinnininrincnniincniinineneeinn 342

viii Contents

Interprocess Communications Reference...........cooocoveviiiniiiiiiiiinininnnnens 343
Interprocess Communications StIUCIULESc.eveeueeeceereerenresseeneeeeens 343
Interprocess Communications MeSSAZESeevveuveeeruereereeruenenerreereenseneens 343

ALOINIS ..ttt ettt ettt r et e e s e e s e sre bt e bt b e b s b e e st st e s bae e 345

About AtOm Tables.....c.ccccvueuieirienieirieeeirerecree ettt 345
Global Atom TabIes........cccveevirviirieniieiieieniesteeeeeetere et eseesee e eneerees 345
Local Atom Tablescceoceeeieeriirienieiieenieneeeeeeeee e e 345
ALOM TYPES ..ottt 346

ALOM REfEIENCE ..ottt 346
ALOM FUNCHONScovevveiiiiieiieieeeeeteteseeste st sesie et stessesiesseeseesesnessessenns 346
ALOTN MACTOS ...ttt sttt et snesaesre st ese et entsntens 356

CLPDOAIE......eeieeereiieierereeeererteetet ettt ettt a et se st bbb e eaeane 356

About the CHPDOArd.........cc.ccceciviiviiiniiininiiiiiieseenen 357
ClLipboard FOImMALScccererererirereeteieseenreseeteseeneesreeseesteneeseensesueneens 357

Clipboard Referencecceevverviirirnernienieneeiensee et s 363
Clipboard FUNCHONS ...c..eeoveerieriirierrieieieneeseeneeceesieesie e et 363
Clipboard SIIUCTULESeeeveereerririeereenreerrenreeseeeeeseesneesreesneesreseesneennessees 378
Clipboard MESSAZES......cecererrerriririeniirtetiresesressestetesensesaessessesssssesaesns 380

Handles and ODJECLS........cc.eevieruerriieierieieeeenertereeee e resee e e e eesbe e 393

About Handles and ObJECLScveiveciiiiiiiiniiiniiiineiciinsseieens 393
ODbJECt MANAZETeeveeneieiirierieeeereeeceeeeree et rterr e sbe s eanean 394
Object INtErfacecceeveeeevieriiriniirecectcteec s 394
Handle Limitationsccceceeveeeeeerennierienenenineeeenesiesesneseeeeseseeeennens 395
Handle INheritance..........ccoeevverrieeierieesenieneeneeneeseeseeres e seesreeee s 395

ODJECt CALEZOTIES ...cueeuverrererreenieeeieteeetestesre st st stenesresresresseestesenensennensens 396
USET ODBJECLS ...evverueereeiieieeieereeieenrtesre e seesee st st e e b s e ssnesbeesaesaes 397
GDI ODBJECLS....cuviiueereierieneesreriiereeeeieestessessessessessseneessessessesseessessessessensensens 399
Kernel ODJECEScuvvvvvimiiiriiitiiiierctc et 400

Handle and Object REferencecoeeueverevuenenenenieeneneeeeneneceeeeeenenens 404
Handle and Object FUNCLONScccceviiiniiiiininiiiiinciiiicniciccenns 404

HOOKS ..ttt 415

ADOUL HOOKS ..ottt sttt ene s 415
HOOK Chainsc.cccoveeininiiiniiiiiiiiircnis s 415
HOOK ProCeduresccocevvieriineniienienienieesieeeresreeteeeeseeeseeesseeeessesanens 416
HOOK TYPES ...ttt 416

HOOK REFEIENCEveeeveirinieiieiirieeireeeee ettt sttt steste b e eaesaeseenenees 420
HOOK FUNCHONScuveveieriieieieieteeeieneee ettt eennens 420
HOOK STUCLULESc.oeoveeeiiiniiniiiiiiiiiiicctrc s 456

HOOK MESSAZES.......cvcvrvererererererssasersesesesesessssssssssssssssssesesesessssssssssssssesesnssens 465

Contents ix

Chapter 9: File I/0 469
ADOUL FIIE /O ..ottt ettt ettt 469
File System Organization...........c.cccoevueniiviiniininiiiinicnciinicneeeeese e 469
ACCESSING FAIES ...ttt 469
File Name CONVENtiOnS........c.ccoeruiriirerieieienenentetcenrenecesressessesseeeessessesnes 470
Long File NAmEScccocevueeerieieiiieieieiesieeee ettt see vt e e saeneeas 471
MS-DOS Device NAmMES......cceeereririeieierenneetenineniesieestenaensceneeseeseennens 471

File OPErations........ccccevuerierierierenienientnteteteste e sreereieseessesseeeesresnesnsesseseesans 471
Creating and Opening Files with the CreateFile Function........................ 471
Creating Temporary FIles..........ccccoviireeiieniienieniiniciieneceeeeee e 472
Copying and Moving Filescococirvieiriiiiiiiiiiininenccicicicsceeeens 472
Reading from and Writing to a File........c.cooevveeninincinniinieieneeneeene, 473
Locking and Unlocking Files.........cccceoeeeoiriininiiinncneeceiiinenicecceenns 474
Searching for Files........coocivereirenieiieiecncrceccresecceeeeerere et 474
Monitoring DITECIOTIESccceevuiriiriirierieniicereeeee et e 474
Closing and Deleting Files.......c..ccceeuierenueinenrenneneneeeeneeenenneneeeseennens 475
Directory OPErations.........ccceververrirriieeieiiienieneniiteenresresstesessessesseessessesses 475
Asynchronous Input and OULPULcocevrererenieirerinenineerene e 476
I/O Completion POTtSccooiiieieieeiieieciceicce ettt et 476
Getting Information About Fles.........cccceeeererneeienienineneenieneeeeecreneecenen 477
File AUTTDULES «....oovenieieenieicicceieetetetetei ettt esees e sae e s 477

FILE TYPE..eenteiieieeteietecteteriere ettt et s et e e s te s e sas st e sba st a e sanseneas 479

File Date and Timeccccecevereeieiinieeieneneseeeneseesee s eeeseessesseeseeseesnes 479

File Code Page......cc.cocueeiinieieeieeiinteeeieeteetesterteie et ettt e 479
Volume INformationceceeeeveeiiiirieieeneneneeerieniese et 479

File and Directory SECULILYcoecveerirueruerirerenreieecicnteeeeeseseeseeneseesesaenees 480
File I/O REfErenCecucoceuiriiieiiieieicteeei ettt ettt 481
File I/O FUNCHONSeoueevireiinieiriineenieieieteiceeeteeeseacteesee s et seseeenens 481
File /O SHIUCLUIESeocverirerireeteterieetententeeeesie ettt es s s s vt eee e 606
File I/O Enumeration TYPES......ccccceerueireerueuerrenineeeniererenrenseneeneseenesseneeseenens 617
Chapter 10: File Systems 621
ADOUL File SYSIEINSooviieiiniriiieenicieitce ettt eenenens 621
Shared File System FEaturescccceccoueerereeenienieenenieecneseenteeeeesesreseeeesene 621
OpportuniStic LOCKS......civuiirieeiiriieiieiieieet ettt eve e 621
Alternatives to Opportunistic Lock Operationscoeceeeveeeveeeveerseeneenne. 622

L0Cal CaChing......ccovieuieeieiieieeteetere ettt et et see et e s sae s e e 622

Data CORETENCYcvevuiruiiniiiiiiiiiicncrecececreceece et 623

TYPICAL USE....veviriruieniiiieienieienitrteie et sreere e se st sne s e e nnes 624

X

Contents

Server Response to Open Requests on Locked Files...........cccceeveevernnnenne 624
Types of Opportunistic LOCKSc.ccvvieriiecinieininrcirenieneneeneeeceee 625
Breaking Opportunistic LOCKSccoecevrinierininieiniieceseecee s 627
Opportunistic Lock EXamplesccceceverinenneniennieniencnieneenenieneeennenns 628
Opportunistic Lock OPerations.............cccevevvereererrereesenieresrerseresreseesesereenes 631
INTES FIle SYSEIM ...c.ecueiiiiiiieiieeteieteteetetee ettt ebe et sb et e see e 632
File System RECOVELYc.ccevivirueuiririeiininieiieiienretteeene et seseesenes 632
File COMPIESSIONeuveruirrieieieieteiiieniesteseesteseesteetestesssestessessessessessessassensens 633
Compression AtIDULE.......c.ccvveiriireinrientiiiinticerecere et sesseseeneene 633
COMPLESSION SLALE ...c.eerverreererrierereeierteereneetetetestesesresteesresreeresssessensens 633
Obtaining the Size of a Compressed Filecc.ccccvevninennennicnnncnennnne, 634
File ENCTYPLION ..ottt sttt ettt se e ae e snastns 634
Handling Encrypted Files and Directories..........coceovevereereeneneeneneesiencneenenne 634
Encrypted Files and User Keys........ccceceerinieninineininieneeneeesieneseeeeens 635
DiSK QUOLAS.....uvitireieriieiieietiteteitestes e st es e eteste e tes e s e s seessessessessessensessensens 635
Disk QUOta LIMILS ...c.veeveveirieeriereneerienienieneeeesessessesanssesessssessessssssesssssens 635
DisK QUOLA STALEScuvieuieeeieciieiiecreeeieeceeereeteereereee e eereerneebereesseenreernensees 636
Administering Disk QUOtasc.cocceuevererennreneniinetrcenee e 636
SPATSE FAIESuiveieieiieieieete ettt sttt b et enas 636
Sparse File Operations..........cceceeeeveeeerienieeienerseensensenenesiesesassesesssessenes 637
Obtaining the Size of a Sparse File.........c.ccoceeveeevicniiiieneeieieeceeeeienens 638
Sparse Files and Disk QUOLA.........c.ccceruerierireenienienieninenene e eeeseenns 638
Distributed Link Tracking.........cccceceevuerienieneriernennienieseneniesseresessessesssessensens 638
Link Tracking Features..........ccceveeverieriririenieienenieinienteesensereseeessessessenens 638
Link Tracking COMPONENLScoveeueueruinrenirereerierenieneeeesentsseseesessesseneenens 639
Link Tracking Limitations........cccccevereniercreerienneerineneennnesiseneenesesseneens 640
Reparse POINLS.......c.cccoeevueriererineienieeeteeste ettt st ebe s n 640
Reparse Point Tagscccceveeririerienieniinineeeneeeeie et sve e sieeeeneens 641
Reparse Point Operationscoceecevereereencrieneeenenteensenseeeseeesseseneenens 642
Reparse Points and File Operations...........coccecvevvevienierenenenenceneeceeneennens 643
Reparse Point RESIIICHONScc.eeeeieiiiiieeeinieeeeesenenenee st seeeenens 643
Volume Mount Points and Mounting VOIumesccocovverceerenrenerrensvennennan 643
Unique Volume NamEScccceeeverieininienininierinisieneeesresteeesieeseesiessenens 645
Path Lengthscccooeeieirineninieeeiesiceeeete et se st s ste s neneens 645
Mounting @ VOIUINE........ccceeeuetruinuenteireinieincneeeetestest e ssetseesee e stee e 646
Enumerating VOIUINEScoeeveeeereeniierenenceieneesienieseniesreseessessessessaensens 646
Scanning Volume Mount Points on a Volumecccceceeevenecerennencnnnn 646
Checking Directories for Volume Mount Pointscoceeverrcinreernnenns 647

Persistent Assignment of Drive Letterscceveveeveevierenenenienenenienvenienns 648

Contents Xi

Volume Mount Point Referencec..ccccecviiiiiiinccniininiiinincninninnninnns 648

NTFS Change Journal...........c.ccovevenininininieeeieniesetesee st eitesvesve s saenees 649
Using the Change Journal Identifier...........ccoccevevincencnniiinininiininnnennas 651
Creating, Modifying, and Deleting a Change Journalcccceuenneeee. 652
Obtaining a Volume Handle for Change Journal Operations 653
Walking a Buffer of Change Journal Records...........ccc.coveviiiiiiiniinnnnnns 653
Change Journal Operations...........cceeevveeverreereeeriernieneessseeseeseessesseeseenes 654
Change Journal StruCIUTESccverueereriierrerieeieeresce et 654

FAT FIlE SYSLEIM ...eevteiieiieiieiieeestenieeeeeiesitessee e stesseestesseeseesre s e snesmeesmnennee 654
Protected-Mode FAT File SyStem.......c.ccceeeereiriiiiiniiciiiiiiiinicniiiecseienees 655
File System Reference.........c.covvevuieniiieiiiieiieceeeceee et 655
File System FUNCHONS........c.cceeirerenieeeieeeeeeetestesieaieste e stessesvessesssesaenees 655
File System Control COdescouevueeruerruereerernierireneerercereesreeneeee e 682
File System INterfaces.........cocuevveeeeeiereenieriieneereereeiereereese e reeeens 683
File SyStem StIUCLULEScceeverieeiieienienienerenicetetesi et sses e essenas 731
File SYStem MACIOS.....cccveeuiiriieieeieeieniieseestestesteeeeesrebeesseesseesseeseeseessesnnens 736
Disk Quota Interface Error Codes..........couevuerreenieerennuinieeriieneenreneenreeneeeeens 738
Chapter 11: Structured Exception and Error Handling 741
Structured Exception Handlingccceeveeveeviininniininnnncniiiinieniniccenne, 741
About Structured Exception Handling...........cccceeeveveencenennenennnncinicnenenne. 741
Exception Handlingc..coeveeeeuenieneenineencencene et 742
Frame-Based Exception Handling............cocceevueeveenennenncnncnneneniceeenne 744
Termination Handling.......c.ccceeeeeeieiiiiiiniinniinniinieicncecccnecnrceeceenene 746
Handler SYNtaxcccocceveeveriiiniiiiciciniccc s 746
Structured Exception Handling Reference............cccoovciciiiiiiiinniinininnnns 750
Structured Exception Handling Structuresccceecevveeneenenveneennennne. 759

Error HAndlingcoceveeeiinieniiieeeeceeeeeenee ettt 762
About Error Handlingcccoeeeveeieriinienienieneeeeeeieeeeseeseeseecneeeeenees 762
Process Error MOdEc.eceeerenineninieeeieiereeeeseeseer e 763
LaSt-EIrOr COdEeerieriiiiiienreeierieeeeeeeeresresecse e ae s 763
Notifying the USETcccooiiiiiiiiiiiiiiiiicineeecee e 763
MeSSaZE TaADIES.......covieeerieeniereeeeeteeee ettt 763

Fatal Application EXit.........cccceevieeiiririiniiieneeenene et 764

Error Message GUIdelines..........ccevvruerveenieenersenieenenieenieneeeseeeeneeseeenes 764

Error Handling Reference...........coooeeiiiiiiiiniiniiiciiiiicneccicccnicieccieeee, 767
Error Handling Functionsccccovevininininininiicicicccceciccnnn 767

Error Handling Structures...........cccoovvvvevueveninininiiicccicniccececiciccecne 783

xii

Contents

Chapter 12: Unicode 785
About Unicode and Character SEtSccceeveererruenirereeneeriesieesreesseevessesseesses 785
CRATACIET SELS ..eecuvieeiieeiieerireiiteeereeeite et e e seeereressteesstnessesesssessseassssannssasssaeannn 785
Single-Byte Character Sets..........coccovecirerrererereecrcrneicneeeeeseneeenseeenennes 785
Double-Byte Character Setsccccceveeveerierieeienieenenreeneeneesresisesseennees 786
UDICOAE.....ccuveicireeeiieeeieeiteeeireeereesrreeseaeesteeesaesseeessesesessssessseessssenssessnsennes 786
SUITOZALES ...eeevvveiireeriienieerreestee it eeseesseesseessseesaseasssesssessssessssesssaasssaessses 787
Unicode in the Win32 APL.......ccoiooiiiiciiiieceeteeteeres e estee e re e eaeeseeas 789
WiN32 Data TYPES ...cevvevereerieneenienireeienitentesreeseeesreeeeseeenesseesaeessesseesanes 789
Win32 Function Prototypescc.eevveevueeierienieniiensenieeneeeieseeseesesseesnnes 790
Message Translationceveeeecrerieeriienieneeneeiuesreeeeseessesseeseessesseessees 791

String FUNCHIONS.coeitieieiieieeteeiectecter ettt see e saneas 792
Standard C FUNCLIONS.ccceeivierieriieeeireeeceeesteessreesresseeessesessessssesssnesnens 793
Character Sets Used in Filenamesccccoeevveeeiveecieeevereneeeeeeeceeseseeenns 794
Translation Between String TYPes.......ccovvvevverevieeiieeenieenneesieeereeeseeeseeens 794
Command-Line ATZUMENLScc.ccveererverermenrererennenineeeensesneseeseseeeenens 795
Unicode and Character Set Reference..........ccccevvvevieviieceiccenvienicieceeeeseeseeene 795
Unicode and Character Set FUNCLIONS.........ccveeiveeiieieiieeeireenieeieeereeeveesnenns 795
Unicode and Character Set StrUCLUIESccccevverveereeerreerieninirenrenieeseesseesnenns 810
Unicode and Character Set MACTOS.........cceecuvieiieeeiiernreeeeressreeseeesinesesessasenns 812
Unicode and Character Set CONStants.........cccceeeeerveeeresceerereeseeseesesressnenens 813
ANSI Code-Page Identifiersceeeeveereineeniiensieneeneereneeneeseeesee e 813

OEM Code-Page Identifierscccceevevverereneririnrecnienenieseeseseseseeeens 813
Code-Page Identifierscooeevveriereeneenieeienieteeeteereeeereeee e 814
Code-Page Bitfields.......ccccoeeeeererieieiinienenieenieeeteeeee e seenens 816
Unicode Subset Bitfieldsccccoveeciieeiiieciiirieccieeeieeseees e eeeeeeeveessneenns 817
Appendix A 821
Appendix B .. 829

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer’s Reference Library, your comprehensive
reference guide to the Win32 development environment. This pack, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming—without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you—the time-pressed and information-overloaded applications
developer—to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard-
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN subscription. Don’t have an
MSDN subscription, or don’t know why you should? I've included information about that
too, including the differences between the three levels of MSDN subscription, what each
level offers, and why you’d want a subscription when MSDN Online is available over the
Internet.

Microsoft is fairly well known for its programming, so doesn’t it make sense to share
some of that knowledge? | thought it made sense, so that's why this—the Windows
Programming Reference Series—is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don’t get lost in all the information provided in the Win32 Library,
each volume’s appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you’re looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

How the Win32 Library Is Structured

The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided are the following:

2

Volume 1 Microsoft Windows Base Services

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphical Device Interface)
Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library—and, therefore, dividing Win32—into these functional
categories enables a software developer who’s focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,000-page Win32 tome),
and without having to shuffle among multiple less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer-friendly
manner, and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview
Part 2: Reference
Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN, and MSDN Online, including a collection of
insider tips and tricks. Just as each volume’s Reference section (Part 2) contains
different reference material, each volume’s Part 1 contains different tips and tricks. To
ensure that you don’t miss out on some of them, make sure you take a look at Part 1 in
each Win32 Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanation
material for each programming area.

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

Chapter 1 Introduction 3

How the Win32 Library Is Designed

The Win32 Library, and all packs in the Windows Programming Reference Series, are
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look and feel that is consistent with their electronic means of
disseminating Microsoft reference information. In other words, the way that a given
function reference appears on the pages of this book has been designed specifically to
emulate the way that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you—the
developer of Windows applications—to use the tools and get the ongoing information
you need to create quality programs. By providing a “common interface” among
reference resources, your familiarity with the Win32 Library reference material can be
immediately applied to MSDN or MSDN Oniline, and vice-versa. In a word, it means
consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in-
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and—in the absence of
keyboards, e-mail, and upright chairs—get your programming reading and research
done. Of course, each of the Win32 Library books fits nicely right next to your mouse
pad as well, even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

CHAPTER 2

What’s in This Volume?

Each volume in the Microsoft Win32 Developer’s Reference Library contains reference
material that pertains to a certain area of the Win32 programming environment. This
volume, Volume 1: Base Services, contains the bulk of reference and overview material
(not to mention the insider tips and tricks) that developers need to establish the
programmatic foundation for their applications. But, what does that mean, really?

It means that this volume provides developers with access to the operating system, and
to computer resources, that are the building blocks on which the rest of the application
can run. Operations such as memory access and management, processes and thread
manipulation, synchronization, file operations, Unicode issues, and interprocess
communications all fall under the base services umbrella. To put these concepts into a
format that’s a little easier to pick through, here are the sections covered in this volume:

Processes and Threads
Memory ,
Interprocess Communications
File Operations

Debugging

Unicode

Registry

Putting this information into nice, neat categories such as these doesn’t make it well
explained. In an effort to get you up to speed with the overall meaning behind such
logical grouping, let’s look at each of these categories in a little more depth, so you can
get familiar with them quickly, in case you don’t have decades of Windows programming
experience.

Processes and Threads

Regardless of the type of application you're developing, you'll be dealing with processes
and threads. Every Windows program consists of at least one process (and every
process has at least one thread, the first of which is generally called the primary thread).
A process is essentially an executing program, while a thread is a unit of execution
within a process; each thread is allocated processing time individually of other threads in
a given process. Another concept introduced with Windows 2000 is the job object, which
allows multiple processes to be managed as a unit.

6

Volume 1 Microsoft Windows Base Services

Processes and threads determine how your code is executed and how code within your
application receives processor time. For projects that contain multiple processes, the Job
object enables such multiple processes to be managed as a unit.

Within the Processes and Threads category, there are a number of associated base
areas that are covered. The following list outlines the base programming areas
associated with the Processes and Threads section:

Processes and Threads
Dynamic-Link Libraries
Synchronization

Processes and Threads have already been explained, so more discussion on them
isn’t necessary.

Dynamic-Link Libraries are commonly called DLLs, and provide a means by which
functions and/or data can be developed and packaged in a modular format. Windows
itself makes heavy use of DLLs, and provides most of its application programming
interfaces to developers in the form of DLLs.

Synchronization enables multiple threads of execution within a given process to
coordinate efforts, data, or most importantly, resource access. Synchronization makes
use of objects to enable the synchronization among and between threads, including
event, mutex, semaphore, process, and thread objects.

Memory

Every program that operates on the Windows platform must deal with memory, and
generally speaking, the better an application handles its memory usage and memory
management, the better off the application is. On the Windows 2000 platform, every
application (that is, every process) is provided with its own virtual address space of 4
GB; the direct result of a 32-bit operating system, which has a 32-bit pointer
(0x00000000 through OXFFFFFFFF = 4 GB of possible values).

The logistics of mapping actual memory (that is, physical memory) to the virtual memory
available to each process (the 4 GB worth of addressable memory) is left up to the
operating system. Also, the memory space of any given process is protected by the
operating system, enabling a process to be assured of its memory’s privacy (protection
from corruption) from other well-behaving processes. However, the logistics involved
with managing an application’s own memory is the responsibility of each application. The
Memory section provides the programmatic functions and guidance to enable developers
to program such memory issues, and includes the following sections:

Memory Management
File Mapping

Chapter 2 What's In This Volume? 7

Memory Management enables developers to supervise and administer the virtual
address space available to their application. Memory management includes such tasks
as allocating and freeing memory, and working with pages and heaps.

File Mapping is the process of associating a given file’s contents with a particular area
of a process’s virtual memory, using a file-mapping object to maintain the association.

Interprocess Communications

In order to enable one application to communicate with another application, or with any
other process running on the system, Windows provides programmatic elements that
facilitate communication among different processes. This process of communication
between any given process and another process is called interprocess communications,
commonly referred to as IPC.

There are many different forms of IPC; some differentiate between client and server,
others maintain a specialized division of labor between specialized processes. In the
client/server form of IPC, clients generally request services from another process, while
the server provides such services. However, any given application can be, and often is,
both a client and a server, depending on the request or the service required.

Many different mechanisms are available for communicating between processes. In the
interprocess communications section of this volume of the Win32 Library, you'll find the
following sections:

Atoms

Clipboard

Handles and Objects
Hooks

Mailslots

Pipes

Atoms are 16-bit integers that enable an application to access a string that has been
placed in an atom table. Atom tables, which are defined by the system, store strings and
their corresponding identifiers. Atom tables are commonly used on Dynamic Data
Exchange (DDE) applications.

The Clipboard is the same common clipboard that users of Windows operating systems
are accustomed to using—programmatically speaking, the clipboard section in this
volume is a set of functions and structures that enable applications to transfer data. The
clipboard is an easy way to transfer data between (or within) applications, because all
applications have access to the clipboard, but is only appropriate for one-time data
exchange (such as a copy and paste procedure). For an ongoing exchange of
information between processes, Dynamic Data Exchange Management Library (DDEML)
is a better choice.

8

Volume 1 Microsoft Windows Base Services

Handles and Objects represent the functional programmatic pair that enables
resources (objects) to be examined or modified (handles). Applications are not allowed
to directly access system data or resources (objects), so handles them to do so.

Hooks are used by applications to install subroutines that monitor a system’s message
traffic, thereby enabling the application to process certain types of messages before they
reach the target window procedure. Hooks are not good for performance, as they
introduce additional processing burden on the system, and should be used sparingly in
production-based applications.

Mailslots are a form of interprocess communication that provides one-way, somewhat
unreliable, means of sending data to one or more processes. As the name implies,
mailslots are similar to sending a letter; there’s a good chance that the message will get
to its intended location (in this case, either a server sitting on the network or a group of
computers), but there is no delivery guarantee. The lack of guaranteed transmission is
attributable to mailslots’ use of datagrams, which by definition are not guaranteed to
reach their destination. For two-way or non-datagram transmission of messages, use

pipes.

Pipes are a means of enabling an interprocess communication that, like mailslots, use a
section of shared memory to exchange data. Unlike mailslots, however, pipes use
packets (as opposed to datagrams) to transmit data across the network, and also enable
two-way communication. The process or application that creates a pipe is called the pipe
server, while a process or processes that connect to that pipe are called pipe clients.

Collectively, these IPC-enabling technologies provide the tools that application
developers need in order to enable communication between applications. Any given
application may implement one of these IPC mechanisms rather than the other, or one of
these IPC mechanisms in addition to another. For example, an application almost
certainly will use handles and objects, but might not use mailslots.

File Operations

Most applications work with files of some sort, and at one time or another throughout the
course of their operation, generally to store or retrieve information from some sort of
storage resource (such as a hard drive, network server, or other such devices). File
Operations consist of the following categories:

File Input and Output
File Systems

File Input and Output provides the necessary operations that applications or services
might perform on files, such as creating, deleting, reading, writing, locking, searching,
monitoring, and other such file-related operations. Since files are the basic unit of
storage for Windows applications, there are lots of functions, structures, and
enumerations associated with File I/O.

File Systems that are supported by the various Windows operating systems differ with
each operating system. For example, Windows 98 does not natively support NT File

Chapter 2 What'’s In This Volume? 9

System (NTFS)—although Windows 98 clients can read from NTFS volumes shared by
Windows NT or Windows 2000 computers—while Windows NT versions 4.0 and earlier
do not support FAT32. The various programmatic issues surrounding the use, access,
and protection of files and resources on the various Windows file systems are explained
in the File Systems section.

Debugging
The goal behind debugging an application is to monitor, find, and fix errors in
programming code. The Win32 environment provides debugging capabilities to enable
application developers to find such application bugs throughout the course of testing and
development, as well as a group of supplementary programming capabilities to augment
the debugging process. The following lists the set of supplementary debugging
capabilities:

Structured Exception Handling
Errors

Structured Exception Handling enables developers of applications to handle software
exceptions (exceptions initiated by an application or the operating system) and hardware
exceptions (exceptions initiated by the CPU, such as a divide-by-zero exception). With
structured exception handling, developers gain control over how such hardware and
software exceptions are handled, enabling and facilitating the debugging process.

Errors are fairly self-explanatory; Win32 provides functions and structures that enable
developers to have their application receive or display errors, perhaps initiating a
particular section of code to handle such errors (such as those explained in structured
exception handling).

Unicode

Application developers from around the world, including North America, are realizing that
the global economy means that opportunities exist for software programs throughout the
world. As such, enabling your application to be localized—that is, modified in such a way
that it becomes a viable product for various local languages throughout the world—is
becoming more of a priority for many projects. Windows provides many features and
capabilities to make your Win32 application, from its inception, as international-friendly
as possible.

At the heart of the internationalization of Windows applications is Unicode. Unicode is
an extension of the traditional 8-bit ASCII character set, and was created specifically in
an effort to facititate a common international character set. In basic terms, Unicode uses
16 bits for character encoding rather than the commonly used 8-bit character set in
ASCII, enabling a complete (single) character set that includes international computing -
characters. By making your applications Unicode-ready, you take long strides in making
your application localization-friendly, and thereby ready for the international market.
Windows NT and Windows 2000 were built from the ground up with Unicode support.

1

CHAPTER 3

Using Microsoft Reference
Resources

These days, it isn’t the availability of information that’s the problem, it’s the availability of
information. You read that right ... but I'll clarify.

Not long ago, getting the information you needed was a challenge, because there wasn’t
enough of it; to find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn’t at your fingertips or on some globally available backbone, and such searching
took time. In shont, the availability of information was limited.

Today, information surrounds us and sometimes stifles us; we’re overloaded with too
much information, and if we don’t take measures to filter out what we don’t need to meet
our goals, soon we become inundated and unable to discern what’s “junk information”
and what’s information that we need to stay current and, therefore, competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft’s own reference material too; not because there is
information that isn’'t needed, but because there is so much information that finding what
you need can be as challenging as figuring out what to do with it once you have it.
Developers need a way to cut through the information that isn’t pertinent to them, and to
get what they’re looking for. One way to ensure you can get to the information you need
is to know the tools you use. Carpenters know how to use nail guns, and it makes them
more efficient. Bankers know how to use ten-key machines, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers—reference books from the
Windows Programming Reference Series—can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the Microsoft
Win32 Developer’s Reference Library, provide reference material that focuses on a given
area of Windows programming. MSDN and MSDN Online, in comparison, contain all of the
reference material that all Microsoft programming technologies has amassed over the past
few years, and create one large repository of information. Regardless of how well such
information is organized, there’s a lot of it, and if you don’t know your way around, finding
what you need (even though it’s in there, somewhere) can be frustrating, time consuming,
and an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

12 Volume 1 Microsoft Windows Base Services

you’ll know where to go for the Microsoft reference information you need (and how to get
there quickly and efficiently).

The Microsoft Developer Network (MSDN)

MSDN stands for Microsoft Developer Network, and its intent is to provide developers with
a network of information to enable the development of Windows applications. Many
people either have worked with MSDN or heard of it, and quite a few have one of the
three available subscription levels to MSDN, but there are many, many more who don’t
have subscriptions and could use some concise direction on what MSDN can do for a
developer or development group. If you fall into any of these categories, this section is

for you.

There is some clarification to be done with MSDN and its offerings: if you’ve heard of
MSDN, or had experience with MSDN Online, you might have asked yourself one of
these questions during the process of getting up to speed with either resource:

¢ Why do | need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

¢ What are the differences between the three levels of MSDN subscriptions?
¢ What happened to Site Builder Network ... or, What is this Web Library?

¢ |s there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren’t getting the most out of
MSDN. Or, maybe, you're wondering whether you’re paying too much for too little, or not
enough to get the resources you need. Regardless, you want to be in the know, not in
the dark. By the end of this chapter, you will know the answers to all these questions and
more, along with some tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online

Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which one has the features you need. Confounding this differentiation is the
fact that both have some content in common, yet each offers content unavailable with
the other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

¢ MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or, in some cases, on DVD).

¢ MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Chapter 3 Using Microsoft Reference Resources 13

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its “customers” with the best presentation of material, as possible. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less “immediate” than MSDN Online, because it gets to its subscribers
in the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn’t subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content over the Internet, as soon as it becomes available, without them having
to wait for the update CD to come in the mail. The interface with which MSDN displays
its material—which looks a whole lot like a specialized browser window—is linked also to
the Internet as a browser-like window. To coordinate further MSDN with the immediacy
of the Internet, MSDN Online has dedicated a section of the site to MSDN subscribers
that enable subscription material to be updated (on their local machines) as soon as it's
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and tailored (not surprisingly) to the issues and challenges faced by developers
of Windows applications or Windows-based Web sites. MSDN Online also has a
customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn’t come
with Microsoft product software or reside on your local machine.

Since it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences—and similarities—between MSDN and MSDN Online
into a quickly identifiable format.

One feature you will notice that is shared between MSDN and MSDN Online is the
interface—the interfaces are very similar. That's almost certainly a result of attempting to
ensure that developers’ user experience with MSDN is easily associated with the
experience had on MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So, it isn’t an “either/or” question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you probably will continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions

If you're wondering whether you might benefit from a subscription to MSDN, but not quite
sure what the differences between its subscription levels are, you aren’t alone. This

14 Volume 1 Microsoft Windows Base Services

section aims to provide a quick guide to the differences in subscription levels, and it even
chances giving you an approximation on what each subscription level will set you back.

Microsoft Software:
¥ Operating Systems

v BackOffice Products

v DeveloperTools ~ *

v Beta Releases .

v Complete SDKs and DDKs

v .. Alt Contenton CD
Real-Time Updates ,
Priority Support Incidents
MSDN Online Exclusives
MSDN Magazine

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's

Chapter 3 Using Microsoft Reference Resources 15

features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription

The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn’t come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers might
find necessary in their development effort. With the Library subscription, you get the
following:

® The Microsoft reference library, including SDK and DDK documentation (updated
quarterly)

Lots of sample code, which you can cut and paste into your projects, royalty free

The complete Microsoft Knowledge Base—the collection of bugs and workarounds
Technology specifications for Microsoft technologies

The complete set of product documentation, such as Visual Studio, Office, and others

Complete (and, in some cases, partial) electronic copies of selected books and
magazines

e Conference and seminar papers—if you weren’t there, you can use MSDN’s notes

[]

In addition to these items, you get:

¢ Archives of MSDN Online columns

e Periodic e-mails from Microsoft, chock full of development-related information
e A subscription to MSDN News, a bimonthly newspaper from the MSDN folks
® Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription

The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

e Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation

¢ Windows SDKs and DDKs, in their entirety

® [nternational versions of Windows operating systems (as chosen)

¢ Priority technical support for two incidents in a development and test environment

16

Volume 1 Microsoft Windows Base Services

MSDN Universal Subscription

The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

¢ The latest version of Visual Studio, Enterprise Edition

¢ The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

¢ Additional development tools, such as Office Developer, Front Page, and Project

o Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription

Of course, all of the features that you get with MSDN subscriptions aren’t free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does it
escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you’re a current customer renewing your subscription, you again
get a break in the box, this time in the nature of a $200 rebate. You get that break also if
you’re an existing Library subscriber who'’s upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999; if you're
upgrading from the Library subscription level, there’s an in-the-box rebate for $200.

As is often the case, there are both academic and volume discounts available from
various resellers, including Microsoft, so those who are in school or in the corporate
environment can use their status (as learner or learned) to get a better deal—and, in
most cases, the deal is much better. Also, if your organization is using lots of Microsoft
products, whether MSDN is a part of that group or not, whoever’s in charge of
purchasing should look into the Microsoft Open License program; the Open License
program gives purchasing breaks for customers who buy lots of products. Check out
www.microsoft.com/licensing for more details. Who knows? If your organization qualifies,
you could end up getting an engraved pen from your purchasing department, or, if you're
really lucky, maybe even a plaque of some sort, for saving your company thousands of
dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information such as www.iseminger.com (shameless
self-promotion, 1 know), or your favorite online software site. Note that not all software

Chapter 3 Using Microsoft Reference Resources 17

resellers carry MSDN subscriptions; you might have to hunt around to find one. Of
course, if you have a local software reseller that you frequent, you can check out
whether the reseller carries MSDN subscriptions, too.

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN

MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software, such as
Windows platform versions and BackOffice applications. There’s no need to tell you how
to use Microsoft product software, but there’s a lot to be said for providing some quick but
useful guidance on getting the most out of the interface to present and move through the
seemingly endless supply of reference material provided with any MSDN subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar: it's
the navigational front end to MSDN reference material.

DN L |bmly ﬂ.\plvi‘”g‘

ntire Collection)

H Dr. GUI's Espresso Stand
MSD" leraw Dr. GUI introduces the April

April 1999 release | [733 elese of the Mson

@ Office Developer Documentation
H ‘windows CE Documentation

i Platform SDK

5 @ 5SDK Documentation

@ DDK Documentation

24 Windows Resource Kits
[E:]
2]

welcome to the April 1999 What's New on the Library
release of the MSDN Library. To | Click here fora

begi | ti f what" comprehensive hotlinked list
egin your exploration of WNat's | of new content in this release,

Todls and Technalogies new in this release, click any of

Knowledge Base the links on the right. MSDN Festures
3} g Technical Articles Check out these packages of
g P4 g:’:tg::‘;::zs The MSDN Library is the :;*;;':;:;’.2? our latest

essential reference for

& B°°!<s developers, with more than a MSDN Online
& Pa'.“aIB'mks gigabyte of technical Find out what's new for MSDN
Periodicals programming information, Or;li:te ;ner;'\bers ind read
15 @ Conference Papers including sample code, Web aite, e Hrom eur

= @ Samples documentation, technical

articles, the Microsoft
Developer Knowledge Base, and k
anything else you might need
to develop solutions that
implement Microsoft
technology.

Figure 3-2: The MSDN interface.

18 Volume 1 Microsoft Windows Base Services

The interface is familiar and straightforward enough, but if you don’t have a grasp on its
features and exploration tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective exploration, however, you can

increase its effectiveness dramatically.

Exploring MSDN

One of the primary features of MSDN—and, to many people, its primary drawback—is
the sheer volume of information it contains, over 1.1GB and growing. The creators of
MSDN likely realized this, however, and have taken steps to assuage the problem. Most
of those steps relate to enabling developers to selectively move through MSDN’s
content.

Basic exploration through MSDN is simple, and a lot like moving through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics. Expand a book by clicking the + box to its left, and display its
contents with its nested books or reference pages, as shown in Figure 3-3. If you don’t
see the left pane in your MSDN viewer, go to the View menu and choose Navigation
Tabs, and they’ll appear.

B £ MSDN Library - Aprl 1999

Entire Collection)
Access Yalidation Functions

The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses, The following
access validation functions are available.

=1) MSDN Library - April 1999
Welcome to the MSDN Library
o] Visual Studio 6.0 Documentation
Q Office Developer Documentation
& Q Windows CE Documentation

“Banction: ¢ o] Description e

= [f) Platform SDK. IsBadCodePir

& @ What's New?
1 @ BackOffice

Determines whether the calling
process has read access to the
rnemory at the specified address.

& ([Base Services IsBadReadPty
i1 Q Microsoft Clustering Service

3] Q Debugging and Error Handling

Determines whether the calling
process has read access to the
memory at a specified range of
addresses.

i) g DLLs, Processes, and Threads
:23 Files and 1/0
2] QZ Memory
= @ Memory Management
=] [E‘] About Memory Management
i & Virtual Address Space
e Q Wirtual Memory Functions

1sBadStringPtr

Determines whether the calling
process has read access to the
memory pointed to by a null-
terminated string pointer. The
function validates access for &
specified number of characters or
until it encounters the string's
terminating null character.

IsBadWritePtr

[£] Global and Local Functions

Determines whether the calling
process has write access to the
memory at a specified range of
addresses.

{:5] Standard C Library Functions
& Q Using the Virtual Memory Functions
Q emory Management Reference

= @ File Mapping Windnws. that

Figure 3-3: Basic exploration of MSDN.

The IsBadHuaeReadPir and
are also available for compatibility with 16-bit versions of

mAmary Allncafinn;—ﬁ
ik . ", ok i

nnuished. hetwern nnrmal

IsBadHuneWritgPtr functions

The four tabs in the left pane of MSDN—increasingly referred to as property sheets
these days—are the primary means of moving through MSDN content. These four tabs,

Chapter 3 Using Microsoft Reference Resources 19

in coordination with the Active Subset drop-down box above the four tabs, are the tools
you use to search through MSDN content. When used to their full extent, these
coordinated exploration tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information with which you're interested in working from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab and in the index presented in the Index tab
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, enabling you thereby to find the
information you’re really looking for. In the Index tab, results that might match your
inquiry but aren’tin the subset you have chosen are dimmed (but still selectable). In the

Search tab, they aren’t displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection
MSDN, Books and Periodicals

MSDN, Content on Disk 2 only
MSDN, Content on Disk 3 only
MSDN, Knowledge Base
MSDN, Office Development
MSDN, Technical Articles and
Backgrounders

Platform SDK, BackOffice

Platform SDK, Base Services

Platform SDK, Component
Services

Platform SDK, Data Access
Services

Platform SDK, Graphics and
Multimedia Services
Platform SDK, Management
Services

Platform SDK, Messaging and
Collaboration Services
Platform SDK, Networking
Services

Platform SDK, Security

Platform SDK, Tools and
Languages

Platform SDK, User Interface
Services

Platform SDK, Web Services
Platform SDK, What's New?
Platform SDK, Win32 API
Repository 2.0 Documentation
Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK, and
Enterprise Docs

Visual C++, Platform SDK and
WinCE Docs

Visual FoxPro Documentation
Visual InterDev Documentation
Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product
Documentation

20

Volume 1 Microsoft Windows Base Services

As you can see, this bunch of filtering options essentially mirrors the structure of
information delivery used by MSDN. But, what if you are interested in viewing the
information in a handful of these subsets? For example, what if you want to search on a
certain keyword through the Platform SDK’s Security, Networking Services, and
Management Services subsets, as well as a little section that's nested way into the Base
Services subset? Simple—you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subset
menu item. You're presented with the window shown in Figure 3-4.

~\& BackOffice ASDM Librans - Spril 1553

—Q;}] Base Services . L {2 Piatform SDK.

-\ Clustering Service: Flatform SI Base Services

—@ Debugging and Error Handling Lm Memory: Platform SDK
A\l DLLs, Processes, and Thread: Q Management Services
—® Files and 1/0: Platform SDK. Q Networking Services

waare: Flatform SO, Security
"Qzl Indexing Service: Platform SD
L] International Features: Platforr
—A\L] Interprocess Communication: |
. Performance Monitaring: Platfc
A Removable Storage Manager:
—L] Terminal Services: Platform S0

My Very Own Sbseﬂ

Figure 3-4: The Define Subset window.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you’re creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

Chapter 3 Using Microsoft Reference Resources 21

You also can delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the Delete button nearby.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four Navigation Tabs, just like the pre-
defined subsets do.

Quick Tips
Now that you know how to explore MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but, regardless, it can be
bothersome to have a reference page displayed in the right pane (perhaps jumped to
from a search) without the Contents tab in the left pane being synchronized in terms of
the reference page’s location in the information tree. Even if you know the general
technology in which your reference page resides, it's nice to find out where it is in the
content structure. This is easy to fix: simply click the Locate button in the navigation
toolbar, and all references will be synchronized.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser’s Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, instead of going
through the process of doing another search.

Define your own subsets and use them. Like | said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get your work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, |
think). Underscores come before letters in alphabetical order; so, if you use an
underscore on all of your defined subsets, you get them placed at the front of the listing
of available subsets in the Active Subset drop-down box. Also, by using an underscore,
you can see immediately which subsets you've defined, and which ones come with
MSDN—it saves a few seconds at most, but those seconds can add up.

Usmg MSDN Online

MSDN Online shares a lot of similarities with MSDN, and that probably isn’t by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right—and it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

22

Volume 1 Microsoft Windows Base Services

If you've used Microsoft’'s home page before (www.msn.com or home.microsoft.com),
you’re familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news and weather, stock
quotes, and other collections of information or news that suit your tastes or interests.

You even can insert a few Web links, and have them readily accessible when you visit
the site. The MSDN Online home page can be customized in a similar way, but its
collection of headlines, information, and news sources are all about development. The
information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page: you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

dnonine

rasources for developers

S @ customize . 5864 Roaming
Customize the information that appears on your MSDN Online home page, Select your preferences j
from the sections below, then return here and choose Save. (Yes, we know it's a lot of choices. }
There's a lot of information on this site.) You can update your choices at any time by visiting this
Customize page.

TECHNOLOGIES E—— |

e

R
5 EM You can customize the headlines you see on the MSDN Online home page by selecting from the list of
technologies below, or you can choose a template we've preselected just for Web developers. Either
way, your selections will customize what you see under Developer News, Libraries, and Support.
turn the categories on " web Development & None {clears all))]
or off. To change the we'll soon offer more preselected technology templates for other developer specialties; write us and
order in which the let us know what you'd prefer.

tegori . . . L
categories AFP“'. on If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
the home page, click a

category name, and headlines, each tagged for a different technology:
then click the up or [Allow Duplicate Headlines

Select or clear the
check boxes above to

down arrow ;:{to the

, right

s,

Figure 3-5: The MSDN Online customization page.

As you can see from Figure 3-5, there are lots of technologies from which to choose. If
you’re interested in Web development, you can choose the Web Development option
button near the top of the Technologies section , and a pre-defined subset of Web-
oriented technologies is selected. For more Win32 Library-oriented technologies, you
can go through and choose the appropriate technologies. If you want to choose all the

Chapter 3 Using Microsoft Reference Resources 23

technologies in a given technology group, check the Include All box in the technology’s
shaded title area.

You also can choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News Support
Voices Personal Links
Member Community Search

Events & Training Libraries

Once you’ve defined your profile—that is, customized the MSDN Online content you want
to see—MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online’s home page, with the categories you’ve chosen included
in the order you specify. Note that clearing a given check box—such as Libraries—clears
that category from the body of your MSDN Online home page (and excludes headlines
for that category), but does not remove that category from the MSDN Online site
navigation toolbar. In other words, if you clear the category, it won’t be part of your
customized MSDN Online page’s headlines, but it will still be available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer
you’re using, you can direct MSDN Online to create a roaming profile. Creating a
roaming profile for MSDN Online results in your profile being stored on MSDN Online’s
server, much like roaming profiles in Windows 2000, and thereby makes your profile
available to you regardless of the computer you're using. The option of creating a
roaming profile is available when you customize your MSDN Online home page (and can
be done any time thereafter). The creation of a roaming profile, however, requires that
you become a registered member of MSDN Online. More information about becoming a
registered MSDN Online user is provided in the section titted MSDN Online Registered
Users.

Exploring MSDN Online

Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, exploring MSDN Online is really easy. A banner that sits just
below the MSDN Online logo functions as a navigation toolbar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

The available menu categories—which group the available sites and features within
MSDN Online—include:

Home Voices
Libraries Community
Downloads Site Guide

Search MSDN

24 Volume 1 Microsoft Windows Base Services

The navigation toolbar is available regardless of where you are in MSDN Online, so the
capability to explore the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online’s feature offerings.

online resource for developers. Here's some information to guide you through the site:

ns a chronological list all the latest information posted to the MSDN Online site.
Site Map can give you the view from above.
s for navigating the site.

ite, See About MSDN to learn about the MSDN subscription program, the MSDN 1SV program, k
ash newsletter, and more. p

you decode the latest term or acronym that has you stumped.
ell us how we can make the site easier to use and what kinds of information you'd like to see

Photo Credits: PhotoDisc

i Did you find this material useful? Gripes? Compliments? Suggestions for other articles? Write us! §

© 1999 Microsoft Corporation, All rights reserved. Terms of use.

Figure 3-6: The MSDN Online navigation toolbar with its drop-down menus.

MSDN Online Features

Each of MSDN Online’s seven feature categories contains various sites that contain the
features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation toolbar takes you to the
MSDN Online home page that you’ve customized (perhaps), showing you all the latest
headlines for technologies that you’ve indicated you're interested in reading about.

Voices is a collection of columns and articles that make up MSDN Online’s magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

Each “voice” in the Voices site adds its own particular twist to the issues that developers
face. Both application and Web developers can get their fill of magazine-like articles from
the sizabile list of different articles available (and frequently refreshed) in the Voices site.

Chapter 3 Using Microsoft Reference Resources 25

A MSDN Online Ve

New from MSDN Onling

Duwamish &] _ o i
columnists and feature writers Updated June 21, 195%

Design

Letters to/ o
The Newspapér Parsing and Sharing
Scripting Chinl XML is all about sharing. Columnist Charlie Heinemann talks about the Microsoft XML
Extreme XML parser, and how XML can make your data available.

£
® by Charlie
More or Hess ¥4 Heinemann

Stone's Way ..
Servin' It Up ¥ - DESIGN DISCUSSION
Code Corner s
Geek Speak » Incorporating Digital Media Acquisition into Site Desig
Office Talk « Nadja Vol Ochs details how to implement digital rights management on Web sites.

Deep C++» '
Ask J i
sk -ane ® by Nadja
Dr. GUI « Vol Ochs

Qs e

DEEP C++

Handling Exceptions in C and C++, Part 3
In his third installment on exception handling, columnist Robert Schmidt addresses

8 voices Archive the syntax and semantics of Standard C++ exception handling.

by Robert
Schmidt

Figure 3-7: The Voices home page.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can explore in traditional MSDN fashion, and
gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to explore the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

26

Volume 1 Microsoft Windows Base Services

ESSENTIALS o

Component Development »
Content & Component Delivary «
Data Access & Databases ¢

Design *

DHTML, HTML & C3S o

Languages & Davelopment Taols »
Messaging & Collaboration o

Networking, Protocols «
& Data Formats

Reusing Browser Technology o
Security & Cryptagraphy
Server Technologies o
Streaming & Interactive Media ¢
Web Content Management =

KML (Extensible Markup Language) «

med,

2§ MSDN Online Web Workshop - Microsoft Internet Explorer

ESSENTIALS

This section contains core
information and references,
including information on
authoring for different
browsers and platforms, end-
to-end examples of working
Web sites, slides from
conferences, specs, and
comprehensive links to
references and standards.

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies, including
reference material and in-
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's New page
for updates.

The MSDN Online team

© 1999 Microsoft Corp

All rights d. Terms of use,

Figure 3-8: The Web Workshop home page, with its bulleted list of exploration
start points.

3MSDN Onllné Community H‘mne - Microsoft Intemet Exploter g

/msdn.microsoft. com/community/default. asp

Community

Figure 3-9: The Community home page.

Oy
Welcome to the MSDN Online Member Community
i d2in e ypdated June 4, 1999 Commerce
: “(our Membership
- " . . . Embedded
05165 » With an MSDN Online membership, developers can easily access technical Pevelopment
Member Gazette « INfOrmation, tools, and a community of developers ready to help solve the
o X toughest challenges. Joir now and take advantage of member benefits, Exchangs/Outiook
ase Studies »
Intermet
Download . 7
SUNOEEC Online Special-Interest Groups Information
Members Helping s X Berver
Mernbers Access the information you need, when you need it, with Gnfine Spacial-Intersst
Offers « Groups (OSIGs). Web-based access to relevant newsgroups, sorted by product, MSDH Subscription
Training » make it easy for you to get information you need to do your job. Take advantage ufﬂca’m"eulupm-
MSDN Storas o of special offers, find useful links, and stay up to date with the latest product and :
;] technalogy news. QL Server
Visual Basic
Members Helping Members
) R R Wisual C++
Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the Wisual FoxPro k
developer community, Get answers. quickly t?y searchmg.the MHM database for visual InterDew §
people who can answer your technical questions. Or, register as a volunteer and 4
help other developers when they need it. Sign up riow! Wisual 34+ k
Windows 2008 (

Chapter 3 Using Microsoft Reference Resources 27

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated to the latest and
greatest releases over the Internet, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-10.

emet Explorer

Toals

.

Welcome to the MSDN Online Downloads Area

Samples

Images + oo

Want to try out some great new products? Check out our tools area, where MSDN Online members and
guests can download over 40 trial, beta and full versions of the latest developer products.

Sounds e

Subscriber «
Downloads

Samples
In this section, you will find a great variety of samples which demonstrate ways to use the latest and

greatest Microsoft technologies to make your applications the best they can be. all samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with & are for users registered with Visual Studio only -- to get access to these,
register your product today.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
d-t d lication archit: e and design.

Images

Download Web-ready images for free from our Images Downloads area. Currently, we have a great
collection created by Little Men's Studio, Inc. Little Men's Studio provides original clip art collections,
icons, and free quotes on affordable custom graphics. Our image categories include rules, clip art,
buttons, bullets, photographs, and more. We will be updating this collection with more images so be
sure to check back frequently.

Figure 3-10: The Downloads home page.

The Site Guide is just what its name suggests: a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online, such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn.microsoft.com/siteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either of the libraries (Library or Web
Workshop), as well as other finely tuned search capabilities. The Search MSDN home
page can be linked to directly at msdn.microsoft.com/search. The Search MSDN home
page is shown in Figure 3-11.

28 Volume 1 Microsoft Windows Base Services

: 3 MSDHN Online cr;:h - Hicms‘o‘ﬁ‘ ir;‘lernel Explorer

é:] http://search. microsoft.com/us/dev/ o

1. Enter your search word{s) or phrase, or select a saved phrase from the drop-down list: Search Tips:

Quick
Advanced

[Enterphrase ' [saved search phrases ¥l
2. Select your search criteria:
[exactphrase ¥

3. Specify your search scope:

{* Selected sections of MSDN Library

¥ Visual Studio Documnentation ¥ Other SDK Documentation
¥ Visual Basic Documentation ¥ DDK Documentation

¥ Visual C++ Documnentation ¥ windows Resource Kits
¥ Visual Fox Pro Documentation ¥ Specifications

¥ Visual InterDev Documentation ¥ Technical Articles

¥ visual J++ Documentation ¥ Backgrounders

¥ Visual SourceSafe Documentation IV, Books and Partial Books

¥ Tools & Technologies (including Win CE)

¥ Periodicals

Figure 3-11: The Search MSDN home page.

MSDN Online Registered Users

You might have noticed that some features of MSDN Online—such as the capability to
create a roaming profile of the entry ticket to some community features—require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough of a reason to register; rather than attempting to call your
developer buddy for an answer to a question (only to find out that she’s on vacation for
two days, and your deadline is in a few hours), you can go to MSDN Online’s Community
site and ferret through your OSIG to find the answer in a handful of clicks. Who knows?
Maybe your developer buddy will begin calling you with questions—you don’t have to tell
her where you're getting all your answers.

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox—if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs—again, only if

Chapter 3 Using Microsoft Reference Resources 29

you want to. It's easy for me to suggest that you become a registered user for MSDN
Online—I'm a registered user, and it's a great resource.

The Windows Programming Reference Series

The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling them to get their work done as efficiently
as possible. In addition to providing reference material for Microsoft technologies, each
Pack in the Windows Programming Reference Series also includes material that helps
developers get the most out of its technologies, and provides insights that might
otherwise be difficult to find.

The Windows Programming Reference Series currently includes the following Packs:

Win32 Library
Directory Services Library
Networking Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for prospective
Windows Programming Reference Series Packs that cover the following material:

COM/DCOM 2.0 Library
Web Reference Library
Web Technologies Library

What else might you find in the future? Planned topics, such as a Security Pack,
Language Reference Pack, MFC Pack, BackOffice Pack, or other pertinent topics that
developers using Microsoft products need in order to get the most out of their
development efforts, are prime subjects for future membership in the Windows
Programming Reference Series. If you have feedback you want to provide on such
packs, or on the Windows Programming Reference Series in general, you can send e-
mail to the following address:

winprs @ microsoft.com

If you’re sending e-mail about a particular pack, make sure you put the name of the pack
in the subject line. For example, an e-mail about the Win32 Library would have a subject
line that reads “Win32 Library.” There aren’t any guarantees that you’ll get a reply, but I'll
read all of the e-mail and do what | can to ensure your comments, concerns, or
(especially) compliments get to the right place.

31

CHAPTER 4

Finding the Developer Resources
You Need

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a /ot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft’s resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn’t go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support

Microsoft’s support sites cover a wide variety of support issues and approaches,
including all of Microsoft’s products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.com/support/customer/develop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft’s support services.

32 Volume 1 Microsoft Windows Base Services

3 Microsoft Produ pport Services: Developers - Microsoft Internet Explérer

pot/customer/develophtm

evelopers

] Need Help Now?
Microsoft offers a wide variety of support for Developers. The Microsaft

Developer Network (MSDN) is packed with news, resources and technical
services created especially for developers' unique needs, Take advantage of
newsgroups and chat rooms, search the online support archive or sign up for
our regular e-mail news watch,

Go to 3 Support site

& Business Solutions Microsoft offers developers with Premier Support for Developer, Pay-per-

i & Partners & Resellers Incident Support, Priority Annual Support and special consulting services. If
Developers you need more than occasional developer support, one of these options is
Home User sure to be right for you,

Education

Do you need help now?

Go to the Microsoft Developer Network (MSDN) Support ServiceDesk.

Support Options

Premier Support for Davelopers
Prioyi rt
Pay-Per-Incident Support

Consult Line

For additional information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 63K)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

® Premier Support for Enterprises

¢ Premier Support for Developers

¢ Premier Support for Microsoft Certified Solution Providers

* Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out more
information about Microsoft's Premier Support, get in contact with them at 1-800-936-
2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

® Priority Comprehensive Support

® Priority Developer Support

e Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 33

As a developer, the best support option for you is the Priority Developer Support. To get
more information about Priority Developer Support, you can reach Microsoft at 1-800-
936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there’s
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can’t be broken down into sub-issues or sub-problems (that
is, it can’t be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you’re on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support.microsoft.com/support/webresponse.asp.

Online Resources

Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online’s Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online’s Community site, go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft’s corporate site. You can search the Knowledge
Base online at support.microsoft.com/support/search.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.com/support/news.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer’s Reference Library, and they are the following:

microsoft.public.win32.programmer.*

microsoft.public.ve.”

microsoft.public.vb.*

microsoft.public.platformsdk.*

microsoft.public.cert.”

microsoft.public.certification. *

34

Volume 1 Microsoft Windows Base Services

Of course, Microsoft isn’'t the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups—too many to
list—that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products

Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as Visual
C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a particular
product (such as SQL Server or Commerce Server) is to go through and read the
preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do—there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don’t have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn’t know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are “tracks”
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 35

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

® Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0 (70-
016)

¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

e Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

¢ Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:
¢ Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

¢ Any Desktop or Distributed exam not used as a core requirement

¢ Designing and Implementing Data Warehouses with Microsoft SQL Server 7.0 and
Microsoft Decision Support Services 1.0

¢ Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

¢ [mplementing OLE in Microsoft Foundation Class Library 4.0 Applications
¢ |Implementing a Database Design on Microsoft SQL Server 6.5

¢ Designing and Implementing Databases with Microsoft SQL Server 7.0

¢ Designing and Implementing Web Sites with Microsoft FrontPage 98

¢ Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

® Microsoft Access for Windows 95 and the Microsoft Access Developer’s Toolkit

¢ Designing and Implementing Solutions with Microsoft Office 2000 and Microsoft
Visual Basic for Applications

36

Volume 1 Microsoft Windows Base Services

¢ Designing and Implementing Database Applications with Microsoft Access 2000

¢ Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

¢ Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

¢ Developing Applications with Microsoft Visual Basic 5.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
e Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn’t that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you—regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams—and don’t be fooled by believing that if the book is bigger it must be better,
because that certainly isn’t always the case—and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.com/train_cert/dev.

Conferences

As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year—occurring throughout the country and around the
world—on various topics. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one—the Professional Developers Conference (PDC).
Regardless of which conference you’re looking for, Microsoft has provided a central site

Chapter 4 Finding the Developer Resources You Need 37

for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events.microsoft.com.

Other Resources

There are other resources available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The listing of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need: it's geared toward getting you 100 percent of the
way, but there are always exceptions.

Perhaps you’re just getting started, and you want to get more hands-on instruction than
MSDN Online or MCSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and—who
knows?—maybe someone else will benefit from your knowledge:

winprs @ microsoft.com
If you're sending e-mail about a particularly useful resource, type “Resources” in the

subject line. There aren’t any guarantees that you’ll get a reply, but P'll read all of the e-
mail and do what | can to ensure your resource idea gets considered.

39

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 1

It's impossible to cover everything that a developer might run into when creating a
Windows application, but there are common problems that crop up during the
development process that can be addressed. This chapter—Chapter 5—presents a
series of simple but common programming errors for which developers of Windows
applications should look out during the development process.

Each Chapter 5 in this pack contains different information. With the tips provided by each
volume’s Chapter 5 contribution, | hope you'll find the error-avoidance information
collectively covered to be fairly useful. The information provided in this collection of five
chapters is broken down in the following form:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

Overview

In order to provide an idea of what you can expect in the next four volumes’ Chapter 5
content, the following list outlines the contents of each volume’s particular area of
common programming errors. It's a bit like a table of contents, with the intention of
pointing you to the information you might be interested in on a given error-prone
programming day (that's probably a Monday morning, or late Friday afternoon).

Volume 2: User Interface

Avoiding Invalid Validations
Handle-Based Objects
Correlated Parameters
Limits of Exception Handling
Alternate Code Paths
Trusted Data Sources

40 Volume 1 Microsoft Windows Base Services

Volume 3: GDI

RPC Errors and Kernel-Mode Specifiers
RPC Errors
Kernel-Mode Specifiers

Volume 4: Common Controls

Buffer Overflows and Miscellaneous Errors

Buffer Overflows
Miscellaneous Errors

Volume 5: The Windows Shell

Memory Abuse and Miscalculations

Memory Abuse
Miscalculations

Solution Summary

Since you have this book in your hand, you might want to know the short answers to
these problems. In order to satisfy that request, this section provides the short-answer
listings from each of the summary sections in the other volumes. If you find that these
short answers don’t provide the specifics you need, grab the volume in which the long
answers are provided. Just so you don’t have to do too much book juggling, each
volume’s Chapter 5 also includes the short answers from this list associated with the
errors its content covers.

Volume 2: Avoiding Invalid Validations

1. Working with handle-based objects: Validate all objects referenced by generic
handles.

2. Verify correlated parameters: Don’t assume correlation between parameters—verify
all supposedly correlated data.

3. Limits of exception handling: Exception handling is not always the answer. Check
return values and error codes whenever possible.

4. Alternate code paths: Include parameter validation in alternate (private) interfaces, or
reject calls from untrusted sources.

5. Trusted data sources: Treat all data as suspect.

Chapter 5: Getting the Most Out of Win32 Technologies: Part 1 4

Volume 3: RPC Errors and Kernel-Mode Specifiers
RPC Errors

1.

2.

10.

pointer_default(unique) and embedded pointers: Check unique pointers for NULL
before dereferencing.

A valid switch_is value in an RPC-capable structure doesn’t ensure a non-NULL
pointer: When using a switch_is construct that has a default clause:

® Verify that the value switching on is within expected range.

¢ Verify that pointers within the switched object are not null before dereferencing
them.

. ANULL DACL affords no protection: Don’t use NULL DACLs—they don’t protect

anything.

. Call RpclmpersonateClient() before any security relevant operation: Impersonate

before acting on behalf of the caller, and check the result.

. Starting and stopping impersonation: Stop impersonating when finished acting on

behalf of the caller, and check the result.

. Strings are only zero-terminated when declared with string in the .idl: Don’t expect

strings to be zero-terminated unless string is specified in the .idl file.

. Don’t copy arbitrary length data into independently sized buffers: This one’s self-
answering!
. size_is may result in a zero-length structure; it is not safe to dereference this without

first checking its length: Check the length of size_is—specified data before
dereferencing corresponding pointers.

. Calculations in a size_is or length_is specification are susceptible to overflow: Be

aware that calculations in MIDL definitions using size_is and length_is can overflow,
and that it can be impossible for the server to detect this.

Strict context handles: Use strict context handles.

Kernel-Mode Specifiers

1.

Don’t access user-provided memory without probing: Probe any user-provided
pointers within a try-except before reading or writing.

. Don’t do multiple user-mode reads without captures: Read user-mode memory only

once; capture it for subsequent uses.

. Never trust the TEB: Don’t trust any user-mode contents.
. Avoid race conditions when modifying kernel data on user request: Use locks to

protect objects that can be changed by multiple threads.

. Dealing with common interfaces for user mode and kernel mode: Never call kernel

routines without access checking objects passed to them.

. Validating buffered I/O in device drivers: Validate buffer sizes for buffered 1/O.
. METHOD_NEITHER requires full probe and capture: Validate parameters on

METHOD_NEITHER.

42

Volume 1 Microsoft Windows Base Services

Volume 4: Buffer Overflows and Miscellaneous Errors
Buffer Overflows

1.

Simple buffer overflow: Always check actual buffer size when accessing a buffer,
instead of some known maximum.

. Size overflow or underflow: When using an offset address, ensure that the location is

not beyond either end of the buffer.

. Abuse of enumerated types: On complex size calculations, ensure that total size is

greater than the fixed header.

. Using internal lengths for comparisons to external input: Beware of strings without

NULL termination. If there is a size, use it!

Miscellaneous Errors

. Dangers of typecasting: Be careful when casting input data to another type.
. Operator precedence: Double-check precedence order in complex expressions.
. Conditional termination confusion: Ensure that all clauses of a compound conditional

are equivalent (each result should execute the same code), or are special-cased,
where appropriate.

. Misuse of OPTIONAL parameters: Check all pointer parameters for NULL (especially

optional parameters)

. Return value confusion and inconsistencies: Don’t hard-code strings in code (for

example, “Administrators”).

. Don’t rely on volatile objects: Beware of multiple checks of volatile data.
. Avoid spinlock order problems: Always acquire locks in a consistent order.
. Determining membership in Administrators group: Beware of (and, preferably,

eliminate or reduce) inconsistencies with common interfaces (for example,
GetLastError and functions returning handles).

Volume 5: Memory Abuse and Miscalculations
Memory Abuse

1.

Allocation failures: Always check for allocation failure.

2. Uninitialized memory: Always initialize data.
3.
4. Using freed resources: After memory is released, don’t access it again! (Suggestion:

Leaks: Release (free/delete) any allocation after it is no longer needed.

Set the pointer to NULL on free.)

. Resource attacks: Have quotas for how much a client can allocate (and ensure client

specific data is protected).

Chapter 5: Getting the Most Out of Win32 Technologies: Part 1 43

Miscalculations

1. Division by zero: Be sure to check for zero for any division.
2. Signed versus unsigned variables: Any signed value can be negative. Furthermore,
be wary of the following:
¢ |mplicit signed values. The values int and enum are signed; char is signed on x86,
but not on Alpha.
¢ Use unsigned values where signed values don’t make sense. Counts and lengths
are not negative.
e For range checks, check both upper and lower bounds (or specify unsigned).
3. Floating-point variables: All floating-point operations should be surrounded by try-
except protection.

45

CHAPTER 6

Processes, Threads, and DLLs

Processes and Threads

A Win32-based application consists of one or more processes. A process, in the
simplest terms, is an executing program. One or more threads run in the context of the
process. A thread is the basic unit to which the operating system allocates processor
time. A thread can execute any part of the process code, including parts currently being
executed by another thread. A fiber is a unit of execution that must be manually
scheduled by the application. Fibers run in the context of the threads that schedule
them.

A job object allows groups of processes to be managed as a unit. Job objects are
namable, securable, sharable objects that control attributes of the processes associated
with them. Operations performed on the job object affect all processes associated with
the job object.

About Processes and Threads

Each process provides the resources needed to execute a program. A process has a
virtual address space, executable code, data, object handles, environment variables, a
base priority, and minimum and maximum working set sizes. Each process is started
with a single thread, often called the primary thread, but can create additional threads
from any of its threads.

All threads of a process share its virtual address space and system resources. In
addition, each thread maintains exception handlers, a scheduling priority, and a set of
structures the system will use to save the thread context until it is scheduled. The thread
context includes the thread’s set of machine registers, the kernel stack, a thread
environment block, and a user stack in the address space of the thread’s process.

Windows NT/2000 and Windows 95/98 support preemptive multitasking, which creates
the effect of simultaneous execution of multiple threads from multiple processes. On a
multiprocessor computer, Windows NT/2000 can simultaneously execute as many
threads as there are processors on the computer.

Multitasking

A multitasking operating system divides the available processor time among the
processes or threads that need it. The system is designed for preemptive multitasking; it
allocates a processor time slice to each thread it executes. The currently executing
thread is suspended when its time slice elapses, allowing another thread to run. When

46 Volume 1 Microsoft Windows Base Services

the system switches from one thread to another, it saves the context of the preempted
thread and restores the saved context of the next thread in the queue.

The length of the time slice depends on the operating system and the processor.
Because each time slice is small (approximately 20 milliseconds), multiple threads
appear to be executing at the same time. This is actually the case on multiprocessor
systems, where the executable threads are distributed among the available processors.
However, you must use caution when using multiple threads in an application, because
system performance can decrease if there are too many threads.

Advantages of Multitasking

To the user, the advantage of multitasking is the ability to have several applications open
and working at the same time. For example, a user can edit a file with one application
while another application is recalculating a spreadsheet.

To the application developer, the advantage of multitasking is the ability to create
applications that use more than one process and to create processes that use more than
one thread of execution. For example, a process can have a user interface thread that
manages interactions with the user (keyboard and mouse input), and worker threads that
perform other tasks while the user interface thread waits for user input. If you give the
user interface thread a higher priority, the application will be more responsive to the
user, while the worker threads use the processor efficiently during the times when there
is no user input.

When to Use Multitasking

There are two ways to implement multitasking: as a single process with multiple threads
or as multiple processes, each with one or more threads. An application can put each
thread that requires a private address space and private resources into its own process,
to protect it from the activities of other process threads.

A multithreaded process can manage mutually exclusive tasks with threads, such as
providing a user interface and performing background calculations. Creating a
multithreaded process can also be a convenient way to structure a program that
performs several similar or identical tasks concurrently. For example, a named pipe
server can create a thread for each client process that attaches to the pipe. This thread
manages the communication between the server and the client. Your process could use
multiple threads to accomplish the following tasks:

e Manage input for multiple windows.

¢ Manage input from several communications devices.

* Distinguish tasks of varying priority. For example, a high-priority thread manages
time-critical tasks, and a low-priority thread performs other tasks.

¢ Allow the user interface to remain responsive, while allocating time to background
tasks.

Chapter 6 Processes, Threads, and DLLs 47

It is typically more efficient for an application to implement multitasking by creating a
single, multithreaded process, rather than creating multiple processes, for the following
reasons:

e The system can perform a context switch more quickly for threads than processes,
because a process has more overhead than a thread does (the process context is
larger than the thread context).

¢ All threads of a process share the same address space and can access the global
variables of the process, which can simplify communication between threads.

¢ All threads of a process can share open handles to resources, such as files and
pipes.

The Win32 API also provides alternative methods that can be used in the place of
multithreading. The most significant of these methods are asynchronous input and
output (I/0), I/O completion ports, asynchronous procedure calls (APC), and the ability to
wait for multiple events.

A single thread can initiate multiple time-consuming 1/O requests that can run
concurrently using asynchronous I/0O. Asynchronous 1/O can be performed on files,
pipes, and serial communication devices. For more information, see Synchronization and
Overlapped Input and Output.

A single thread can block its own execution while waiting for any one or all of several
events to occur. This is more efficient than using multiple threads, each waiting for a
single event, and more efficient than using a single thread that consumes processor time
by continually checking for events to occur. For more information, see Wait Functions.

Multitasking Considerations

The recommended guideline is to use as few threads as possible, thereby minimizing the
use of system resources. This improves performance. Multitasking has resource
requirements and potential conflicts to be considered when designing your application.
The resource requirements are as follows:

* The system consumes memory for the context information required by both processes
and threads. Therefore, the number of processes and threads that can be created is
limited by available memory.

e Keeping track of a large number of threads consumes significant processor time. If
there are too many threads, most of them will not be able to make significant
progress. If most of the current threads are in one process, threads in other processes
are scheduled less frequently.

Providing shared access to resources can create conflicts. To avoid them, you must
synchronize access to shared resources. This is true for system resources (such as
communications ports), resources shared by multiple processes (such as file handles),
or the resources of a single process (such as global variables) accessed by multiple
threads. Failure to synchronize access properly (in the same or in different processes)
can lead to problems such as deadlock and race conditions. The Win32 API provides a

48

Volume 1 Microsoft Windows Base Services

set of synchronization objects and functions you can use to coordinate resource sharing
among multiple threads. For more information about synchronization, see Synchronizing
Execution of Multiple Threads. Reducing the number of threads makes it easier and
more effective to synchronize resources.

A good design for a multithreaded application is the pipeline server. In this design, you
create one thread per processor and build queues of requests for which the application
maintains the context information. A thread would process all requests in a queue before
processing requests in the next queue.

Scheduling

The system scheduler controls multitasking by determining which of the competing
threads receives the next processor time slice. The scheduler determines which thread
runs next using its scheduling priority.

Scheduling Priorities

Each thread is assigned a scheduling priority. The priority levels range from zero (lowest
priority) to 31 (highest priority). Only the zero-page thread can have a priority of zero.
The zero-page thread is a system thread.

The priority of each thread is determined by the following criteria:

¢ The priority class of its process
* The priority level of the thread within the priority class of its process

The priority class and priority level are combined to form the base priority of a thread.

Priority Class
Each process belongs to one of the following priority classes:

IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS

Windows 2000: Note that BELOW_NORMAL_PRIORITY_CLASS and
ABOVE_NORMAL_PRIORITY_CLASS are new for Windows 2000.

By default, the priority class of a process is NORMAL_PRIORITY_CLASS. Use the
CreateProcess function to specify the priority class of a child process when you create
it. If the calling process is IDLE_PRIORITY_CLASS or
BELOW_NORMAL_PRIORITY_CLASS, the new process will inherit this class. Use the
GetPriorityClass function to determine the current priority class of a process and the
SetPriorityClass function to change the priority class of a process.

Chapter 6 Processes, Threads, and DLLs 49

Processes that monitor the system, such as screen savers or applications that
periodically update a display, should use IDLE_PRIORITY_CLASS. This prevents the
threads of this process, which do not have high priority, from interfering with higher
priority threads.

Use HIGH_PRIORITY_CLASS with care. If a thread runs at the highest priority level for
extended periods, other threads in the system will not get processor time. If several
threads are set at high priority at the same time, the threads lose their effectiveness. The
high-priority class should be reserved for threads that must respond to time-critical
events. If your application performs one task that requires the high-priority class while
the rest of its tasks are normal priority, use SetPriorityClass to raise the priority class of
the application temporarily; then reduce it after the time-critical task has been completed.
Another strategy is to create a high-priority process that has all of its threads blocked
most of the time, awakening threads only when critical tasks are needed. The important
point is that a high-priority thread should execute for a brief time, and only when it has
time-critical work to perform.

You should almost never use REALTIME_PRIORITY_CLASS, because this interrupts
system threads that manage mouse input, keyboard input, and background disk flushing.
This class can be appropriate for applications that “talk” directly to hardware or that
perform brief tasks that should have limited interruptions.

Priority Level
The following are priority levels within each priority class:

THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_TIME_CRITICAL

All threads are created using THREAD_PRIORITY_NORMAL. This means that the
thread priority is the same as the process priority class. After you create a thread, use
the SetThreadPriority function to adjust its priority relative to other threads in the
process.

A typical strategy is to use THREAD_PRIORITY_ABOVE_NORMAL or
THREAD_PRIORITY_HIGHEST for the process’s input thread, to ensure that the
application is responsive to the user. Background threads, particularly those that are
processor intensive, can be set to THREAD_PRIORITY_BELOW_NORMAL or
THREAD_PRIORITY_LOWEST, to ensure that they can be preempted when necessary.
However, if you have a thread waiting for another thread with a lower priority to complete
some task, be sure to block the execution of the waiting high-priority thread. To do this,
use a wait function, critical section, or the Sleep function, SleepEx, or SwitchToThread
function. This is preferable to having the thread execute a loop. Otherwise, the process
may become deadlocked, because the thread with lower priority is never scheduled.

50 Volume 1 Microsoft Windows Base Services

To determine the current priority level of a thread, use the GetThreadPriority function.

Base Priority

The priority level of a thread is determined by both the priority class of its process and its
priority level. The priority class and priority level are combined to form the base priority of
each thread.

The following table shows the base priority levels for combinations of priority class and

priority value.

Process Priority Class

Thread Priority Level

- © © © 00 00 0 0O N NNO”OOL”EOO OGO DD ON-L = 4 a4

IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
Background NORMAL_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
Background NORMAL_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
Background NORMAL_PRIORITY_CLASS
Foreground NORMAL_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS

Foreground NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS

Foreground NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
Foreground NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_IDLE
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_NORMAL

Chapter 6 Processes, Threads, and DLLs

11
11
11
12
12
13
14
15
15
15
15
15
15
16
22
23
24
25
26
31

Foreground NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS

Context Switches

The scheduler maintains a queue of executable threads for each priority level. These are

THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_TIME_CRITICAL
THREAD_PRIORITY_TIME_CRITICAL
THREAD_PRIORITY_TIME_CRITICAL
THREAD_PRIORITY_TIME_CRITICAL
THREAD_PRIORITY_TIME_CRITICAL
THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_TIME_CRITICAL

known as ready threads. When a processor becomes available, the system performs a
context switch. The steps in a context switch are:

1. Save the context of the thread that just finished executing.

2. Place the thread that just finished executing at the end of the queue for its priority.
3. Find the highest priority queue that contains ready threads.

4. Remove the thread at the head of the queue, load its context, and execute it.

The following classes of threads are not ready threads.

e Threads created with the CREATE_SUSPENDED flag
e Threads halted during execution with the SuspendThread or SwitchToThread

function

¢ Threads waiting for a synchronization object or input.

Until threads that are suspended or blocked become ready to run, the scheduler does
not allocate any processor time to them, regardless of their priority.

52

Volume 1 Microsoft Windows Base Services

The most common reasons for a context switch are:

* The time slice has elapsed.
¢ A thread with a higher priority has become ready to run.
¢ A running thread needs to wait.

When a running thread needs to wait, it relinquishes the remainder of its time slice.

Priority Boosts

Each thread has a dynamic priority. This is the priority the scheduler uses to determine
which thread to execute. Initially, a thread’s dynamic priority is the same as its base
priority. The system can boost and lower the dynamic priority, to ensure that it is
responsive and that no threads are starved for processor time. The system does not
boost the priority of threads with a base priority level between 16 and 31. Only threads
with a base priority between 0 and 15 receive dynamic priority boosts.

The system boosts the dynamic priority of a thread to enhance its responsiveness as
follows:

* When a process that uses NORMAL_PRIORITY_CLASS is brought to the foreground,
the scheduler boosts the priority class of the process associated with the foreground
window, so that it is greater than or equal to the priority class of any background
processes. The priority class returns to its original setting when the process is no
longer in the foreground.

Windows NT/2000: The user can control the boosting of processes that use
NORMAL_PRIORITY_CLASS through the System control panel application. -

¢ When a window receives input, such as timer messages, mouse messages, or
keyboard input, the scheduler boosts the priority of the thread that owns the window.

¢ When the wait conditions for a blocked thread are satisfied, the scheduler boosts the
priority of the thread. For example, when a wait operation associated with disk or
keyboard I/O finishes, the thread receives a priority boost.

Windows NT/2000: You can disable the priority-boosting feature by calling the
SetProcessPriorityBoost or SetThreadPriorityBoost function. To determine
whether this feature has been disabled, call the GetProcessPriorityBoost or
GetThreadPriorityBoost function.

After raising a thread’s dynamic priority, the scheduler reduces that priority by one level
each time the thread completes a time slice, until the thread drops back to its base
priority. A thread’s dynamic priority is never less than its base priority.

Priority Inversion

Priority inversion occurs when two or more threads with different priorities are in
contention to be scheduled. Consider a simple case with three threads: thread 1, thread
2, and thread 3. Thread 1 is high priority and becomes ready to be scheduled. Thread 2,
a low-priority thread, is executing code in a critical section. Thread 1, the high-priority
thread, begins waiting for a shared resource from thread 2. Thread 3 has medium

Chapter 6 Processes, Threads, and DLLs 53

priority. Thread 3 receives all the processor time, because the high-priority thread
(thread 1) is waiting for shared resources from the low-priority thread (thread 2). Thread
2 won't leave the critical section, because does not have the highest priority and won’t
be scheduled.

¢ Windows NT/2000: The scheduler solves this problem by randomly boosting the
priority of the ready threads (in this case, the low-priority lock-holders). The low-
priority threads run long enough to exit the critical section, and the high-priority thread
can enter the critical section. If the low-priority thread doesn’t get enough CPU time to
exit the critical section the first time, it will get another chance during the next round of
scheduling.

e Windows 95: If a high-priority thread is dependent on a low-priority thread that will
not be allowed to run because a medium priority thread is getting all of the CPU time,
the system recognizes that the high-priority thread is dependent on the low-priority
thread. It will boost the low-priority thread’s priority up to the priority of the high-priority
thread. This will allow the thread that formerly had the lowest priority to run and
release the high-priority thread that was waiting for it.

Multiple Processors

Windows NT uses a symmetric multiprocessing (SMP) model to schedule threads on
multiple processors. With this model, any thread can be assigned to any processor.
Therefore, scheduling threads on a computer with multiple processors is similar to
scheduling threads on a computer with a single processor. However, the scheduler has a
pool of processors, so that it can schedule threads to run concurrently. Scheduling is still
determined by thread priority. However, on a multiprocessor computer, you can also
affect scheduling by setting thread affinity and thread ideal processor, as discussed

here.

Thread Affinity

Thread affinity forces a thread to run on a specific subset of processors. Use the
SetProcessAffinityMask function to specify thread affinity for all threads of the process.
To set the thread affinity for a single thread, use the SetThreadAffinityMask function.
The thread affinity must be a subset of the process affinity. You can obtain the current
process affinity by calling the GetProcessAffinityMask function.

Setting thread affinity should generally be avoided, because it can interfere with the
scheduler’s ability to schedule threads effectively across processors. This can decrease
the performance gains produced by parallel processing. An appropriate use of thread
affinity is testing each processor.

Thread Ideal Processor

When you specify a thread ideal processor, the scheduler runs the thread on the
specified processor when possible. Use the SetThreadldealProcessor function to
specify a preferred processor for a thread. This does not guarantee that the ideal
processor will be chosen, but provides a useful hint to the scheduler.

54 Volume 1 Microsoft Windows Base Services

Multiple Threads
Each process is started with a single thread, but can create additional threads from any
of its threads.

Creating Threads

The CreateThread function creates a new thread for a process. The creating thread
must specify the starting address of the code that the new thread is to execute. Typically,
the starting address is the name of a function defined in the program code. This function
takes a single parameter and returns a DWORD value. A process can have multiple
threads simultaneously executing the same function.

The following example demonstrates how to create a new thread that executes the
locally defined function, ThreadFunc.

Ty

A

For simplicity, this example passes a pointer to a DWORD value as an argument to the
thread function. This could be a pointer to any type of data or structure, or it could be

Chapter 6 Processes, Threads, and DLLs 55

omitted altogether by passing a NULL pointer and deleting the references to the
parameter in ThreadFunc.

It is risky to pass the address of a local variable if the creating thread exits before the
new thread, because the pointer becomes invalid. Instead, either pass a pointer to
dynamically allocated memory or make the creating thread wait for the new thread to
terminate. Data can also be passed from the creating thread to the new thread using
global variables. With global variables, it is usually necessary to synchronize access by
multiple threads. For more information about synchronization, see Synchronizing
Execution of Multiple Threads.

In processes where a thread might create multiple threads to execute the same code, it
is inconvenient to use global variables. For example, a process that enables the user to
open several files at the same time can create a new thread for each file, with each of
the threads executing the same thread function. The creating thread can pass the
unique information (such as the file name) required by each instance of the thread
function as an argument. You cannot use a single global variable for this purpose, but
you could use a dynamically allocated string buffer.

The creating thread can use the arguments to CreateThread to specify the following:

* The security attributes for the handle to the new thread. These security attributes
include an inheritance flag that determines whether the handle can be inherited by
child processes. The security attributes also include a security descriptor, which the
system uses to perform access checks on all subsequent uses of the thread’s handle
before access is granted.

e The initial stack size of the new thread. The thread’s stack is allocated automatically
in the memory space of the process; the system increases the stack as needed and
frees it when the thread terminates.

e A creation flag that enables you to create the thread in a suspended state. When
suspended, the thread does not run until the ResumeThread function is called.

You can also create a thread by calling the CreateRemoteThread function. This function
is used by debugger processes to create a thread that runs in the address space of the
process being debugged.

Thread Stack Size

Each new thread receives its own stack space, consisting of both committed and
reserved memory. By default, each thread uses 1 MB of reserved memory, and one
page of committed memory. The system will commit one page blocks from the reserved
stack memory as needed, until the stack cannot grow any father. To specify a different
default stack size, use the STACKSIZE statement in the module definition (.DEF) file.
Your linker may also support a command-line option for setting the stack size. For more
Jinformation, see the documentation included with your linker.

To increase the amount of stack space which is to be initially committed for a thread,
specify the value in the dwStackSize parameter of the CreateThread function. This
value is rounded to the nearest page and used to set the initial size of the committed

56

Volume 1 Microsoft Windows Base Services

memory. The call to CreateThread will fail if there is not enough memory to commit the
number of bytes you request. If the dwStackSize value is smaller than the default size,
the new thread uses the same size as the thread that created it.

The stack is freed when the thread terminates.

Thread Handles and Identifiers

When a new thread is created by the CreateThread or CreateRemoteThread function,
a handle to the thread is returned. By default, this handle has full access rights, and—
subject to security access checking—can be used in any of the functions that accept a
thread handle. This handle can be inherited by child processes, depending on the
inheritance flag specified when it is created. The handle can be duplicated by
DuplicateHandle, which enables you to create a thread handle with a subset of the
access rights. The handle is valid until closed, even after the thread it represents has
been terminated.

The CreateThread and CreateRemoteThread functions also return an identifier that
uniquely identifies the thread throughout the system. A thread can use the
GetCurrentThreadld function to get its own thread identifier. The identifiers are valid
from the time the thread is created until the thread has been terminated.

Windows 2000: If you have a thread identifier, you can get the thread handle by calling
the OpenThread function. OpenThread enables you to specify the handle’s access
rights and whether it can be inherited.

Windows NT 4.0 and earlier, Windows 95/98: The Win32 API does not provide a way
to get the thread handle from the thread identifier. If the handies were made available
this way, the owning process could fail because another process unexpectedly
performed an operation on one of its threads, such as suspending it, resuming it,
adjusting its priority, or terminating it. Instead, you must request the handle from the
thread creator or the thread itself.

A thread can use the GetCurrentThread function to retrieve a pseudo handle to its own
thread object. This pseudo handle is valid only for the calling process; it cannot be
inherited or duplicated for use by other processes. To get the real handle to the thread,
given a pseudo handle, use the DuplicateHandle function.

Suspending Thread Execution

A thread can suspend and resume the execution of another thread using the
SuspendThread and ResumeThread functions. While a thread is suspended, it is not
scheduled for time on the processor.

The SuspendThread function is not particularly useful for synchronization because it
does not control the point in the code at which the thread’s execution is suspended.
However, you might want to suspend a thread in a situation where you are waiting for
user input that could cancel the work the thread is performing. If the user input cancels
the work, have the thread exit; otherwise, call ResumeThread.

Chapter 6 Processes, Threads, and DLLs 57

If a thread is created in a suspended state (with the CREATE_SUSPENDED flag), it
does not begin to execute until another thread calls ResumeThread with a handle to the
suspended thread. This can be useful for initializing the thread’s state before it begins to
execute. See Using a Multithreaded Multiple Document Interface Application for an
example that uses this method to modify the thread’s priority before it can run.
Suspending a thread at creation can be useful for one-time synchronization, because
this ensures that the suspended thread will execute the starting point of its code when
you call ResumeThread.

A thread can temporarily yield its execution for a specified interval by calling the Sleep or
SleepEx functions. This is useful particularly in cases where the thread responds to user
interaction, because it can delay execution long enough to allow users to observe the
results of their actions. During the sleep interval, the thread is not scheduled for time on
the processor.

The SwitchToThread function is similar to Sleep and SleepEXx, except that you cannot
specify the interval. SwitchToThread allows the thread to give up its time slice.

Synchronizing Execution of Multiple Threads

To avoid race conditions and deadlocks, it is necessary to synchronize access by
multiple threads to shared resources. Synchronization is also necessary to ensure that
interdependent code is executed in the proper sequence.

The Win32 API provides a number of objects whose handles can be used to synchronize
multiple threads. These objects include:

e Console input buffers

e Events

e Mutexes

® Processes

e Semaphores

e Threads

e Timers

The state of each of these objects is either signaled or not signaled. When you specify a
handle to any of these objects in a call to one of the wait functions, the execution of the
calling thread is blocked until the state of the specified object becomes signaled.

Some of these objects are useful in blocking a thread until some event occurs. For
example, a console input buffer handle is signaled when there is unread input, such as a
keystroke or mouse button click. Process and thread handles are signaled when the
process or thread terminates. This allows a process, for example, to create a child
process and then block its own execution until the new process has terminated.

Other objects are useful in protecting shared resources from simultaneous access. For
example, multiple threads can each have a handle to a mutex object. Before accessing a
shared resource, the threads must call one of the wait functions to wait for the state of

58

Volume 1 Microsoft Windows Base Services

the mutex to be signaled. When the mutex becomes signaled, only one waiting thread is
released to access the resource. The state of the mutex is immediately reset to not
signaled so any other waiting threads remain blocked. When the thread is finished with
the resource, it must set the state of the mutex to signaled to allow other threads to
access the resource.

For the threads of a single process, critical-section objects provide a more efficient
means of synchronization than mutexes. A critical section is used like a mutex to enable
one thread at a time to use the protected resource. A thread can use the
EnterCriticalSection function to request ownership of a critical section. If it is already
owned by another thread, the requesting thread is blocked. A thread can use the
TryEnterCriticalSection function to request ownership of a critical section, without
blocking upon failure to obtain the critical section. After it receives ownership, the thread
is free to use the protected resource. The execution of the other threads of the process
is not affected unless they attempt to enter the same critical section.

The WaitForInputldle function makes a thread wait until a specified process is initialized
and waiting for user input with no input pending. Calling WaitForinputidle can be useful
for synchronizing parent and child processes, because CreateProcess returns without
waiting for the child process to complete its initialization.

For more information, see Synchronization.

Multiple Threads and GDI Objects

To enhance performance, access to graphical device interface (GDI) objects (such as
palettes, device contexts, regions, and the like) is not serialized. This creates a potential
danger for processes that have multiple threads sharing these objects. For example, if
one thread deletes a GDI object while another thread is using it, the results are
unpredictable. This danger can be avoided simply by not sharing GDI objects. If sharing
is unavoidable (or desirable), the application must provide its own mechanisms for
synchronizing access. For more information about synchronizing access, see
Synchronizing Execution of Multiple Threads.

Thread Local Storage

All threads of a process share the virtual address space and the global variables of that
process. The local variables of a thread function are local to each thread that runs the
function. However, the static or global variables used by that function have the same
value for all threads. With thread local storage (TLS), you can create a unique copy of a
variable for each thread. Using TLS, one thread allocates an index that can be used by
any thread of the process to retrieve its unique copy.

Use the following steps to implement TLS:

1. Use the TlsAlloc function during process or dynamic-link library (DLL) initialization to
allocate a TLS index.

2. For each thread that needs to use the TLS index, allocate dynamic storage, then use
the TisSetValue function to associate the index with a pointer to the dynamic storage.

Chapter 6 Processes, Threads, and DLLs 59

3. When you need a thread to access its storage, specify the TLS index in a call to the
TisGetValue function to retrieve the pointer.

4. When each thread no longer needs the dynamic storage that it has associated with a
TLS index, it must free the index. When all threads have finished using a TLS index,
use the TlIsFree function to free the index.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes
available in each process. This minimum is guaranteed to be at least 64 for all systems.

Windows 2000: There is a limit of 1088 TLS indexes per process.
Windows NT 4.0 and earlier: There is a limit of 64 TLS indexes per process.

It is ideal to use TLS in a DLL. Perform the initial TLS operations in the DIIMain function
in the context of the process or thread attaching to the DLL. When a new process
attaches to the DLL, call TisAlloc in the entry-point function to allocate a TLS index for
that process. Then store the TLS index in a global variable that is private to each
attached process. When a new thread attaches to the DLL, allocate dynamic memory for
that thread in the entry-point function, and use TisSetValue with the TLS index from
TisAlloc to save private data to the index. Then you can use the TLS index in a call to
TisGetValue to access the private data for the calling thread from within any function in
the DLL. When a process detaches from the DLL, call TIsFree.

For an example illustrating the use of thread local storage, see Using Thread Local
Storage.

Creating Windows in Threads

Any thread can create a window. The thread that creates the window owns the window
and its associated message queue. Therefore, the thread must provide a message loop
to process the messages in its message queue. In addition, you must use
MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx in that thread, rather
than the other wait functions, so that it can process messages. Otherwise, the system
can become deadlocked when the thread is sent a message while it is waiting.

The AttachThreadlnput function can be used to allow a set of threads to share the
same input state. By sharing input state, the threads share their concept of the active
window. By doing this, one thread can always activate another thread’s window. This
function is also useful for sharing focus state, mouse capture state, keyboard state, and
window Z-order state among windows created by different threads whose input state is
shared.

Terminating a Thread
A thread executes until one of the following events occurs:

e The thread calls the ExitThread function.

¢ Any thread of the process calls the ExitProcess function.

¢ The thread function returns.

e Any thread calls the TerminateThread function with a handle to the thread.

60

Volume 1 Microsoft Windows Base Services

¢ Any thread calls the TerminateProcess function with a handle to the process.

The GetExitCodeThread function returns the termination status of a thread. While a
thread is executing, its termination status is STILL_ACTIVE. When a thread terminates,
its termination status changes from STILL_ACTIVE to the exit code of the thread. The
exit code is either the value specified in the call to ExitThread, ExitProcess,
TerminateThread, or TerminateProcess, or the value returned by the thread function.

When a thread terminates, the state of the thread object changes to signaled, releasing
any other threads that had been waiting for the thread to terminate. For-more about
synchronization, see Synchronizing Execution of Multiple Threads.

If a thread is terminated by ExitThread, the system calls the entry-point function of each
attached DLL with a value indicating that the thread is detaching from the DLL (unless
you call the DisableThreadLibraryCalls function). If a thread is terminated by
ExitProcess, the DLL entry-point functions are invoked once, to indicate that the
process is detaching. DLLs are not notified when a thread is terminated by
TerminateThread or TerminateProcess. For more information about DLLs, see
Dynamic Link Libraries.

Warning The TerminateThread and TerminateProcess functions should be used only
in extreme circumstances, since they do not allow threads to clean up, do not notify
attached DLLs, and do not free the initial stack.

The following steps provide a better solution:

¢ Create an event object using the CreateEvent function.

e Create the threads.

¢ Each thread monitors the event state by calling the WaitForSingleObject function.
Use a wait time-out interval of zero.

e Each thread terminates its own execution when the event is set to the signaled state
(WaitForSingleObject returns WAIT_OBJECT_O0).

Thread Times

The GetThreadTimes function obtains timing information for a thread. It returns the
thread creation time, how much time the thread has been executing in kernel mode, and
how much time the thread has been executing in user mode. These times do not include
time spent executing system threads or waiting in a suspended or blocked state. If the
thread has exited, GetThreadTimes returns the thread exit time.

Thread Security and Access Rights
Windows NT/Windows 2000 security enables you to control access to thread objects.
For more information about security, see Access-Control Model.

You can specify a security descriptor for a thread when you call the CreateProcess,
CreateProcessAsUser, CreateProcessWithLogonW, CreateThread, or

Chapter 6 Processes, Threads, and DLLs 61

CreateRemoteThread function. To retrieve a thread’s security descriptor, call the
GetSecuritylnfo function. To change a thread’s security descriptor, call the
SetSecuritylnfo function.

The handle returned by the CreateThread function has THREAD_ALL _

ACCESS access to the thread object. When you call the GetCurrentThread function,
the system returns a pseudohandle with the maximum access that the thread’s security
descriptor allows the caller.

The valid access rights for thread objects include the DELETE, READ_CONTROL,
SYNCHRONIZE, WRITE_DAC, and WRITE_OWNER standard access rights, in addition
to the following thread-specific access rights.

Value Meaning

SYNCHRONIZE A standard right required to wait for the
thread to exit.

THREAD_ALL_ACCESS Specifies all possible access rights for a

thread object.

THREAD_DIRECT_IMPERSONATION Required for a server thread that
impersonates a client.

THREAD_GET_CONTEXT Required to read the context of a thread
using GetThreadContext.
THREAD_IMPERSONATE Required to use a thread’s security

information directly without calling it by using
a communication mechanism that provides
impersonation services.

THREAD_QUERY_INFORMATION Required to read certain information from
the thread object.

THREAD_SET_CONTEXT Required to write the context of a thread.

THREAD_SET_INFORMATION Required to set certain information in the
thread object.

THREAD_SET_THREAD_TOKEN Required to set the impersonation token for
a thread.

THREAD_SUSPEND_RESUME Required to suspend or resume a thread.

THREAD_TERMINATE Required to terminate a thread.

You can request the ACCESS_SYSTEM_SECURITY access right to a thread object if
you want to read or write the object's SACL. For more information, see Access-Control
Lists (ACLs) and SACL Access Right.

Child Processes

A child process is a process that is created by another process, called the parent
process.

62 Volume 1 Microsoft Windows Base Services

Creating Processes

The CreateProcess function creates a new process, which runs independently of the
creating process. However, for simplicity, the relationship is referred to as a parent-child
relationship.

The following code fragment demonstrates how to create a process.

7o 5 o wer 25 " 2, oy e

containing handles and identifiers for the new process and its primary thread. The thread
and process handles are created with full access rights, although access can be
restricted if you specify security descriptors. When you no longer need these handles,
close them by using the CloseHandle function.

Chapter 6 Processes, Threads, and DLLs 63

You can also create a process using the CreateProcessAsUser function. This function
allows you to specify the security context of the user account in which the process will
execute.

Setting Window Properties Using STARTUPINFO

A parent process can specify properties associated with the main window of its child
process. The CreateProcess function takes a pointer to a STARTUPINFO structure as
one of its parameters. Use the members of this structure to specify characteristics of the
child process’s main window. The dwFlags member contains a bit field that determines
which other members of the structure are used. This allows you to specify values for any
subset of the window properties. The system uses default values for the properties you
do not specify. The dwFlags member can also force a feedback cursor to be displayed
during the initialization of the new process.

For GUI processes, the STARTUPINFO structure specifies the default values to be used
the first time the new process calls the CreateWindow and ShowWindow functions to
create and display an overlapped window. The following default values can be specified:
¢ The width and height, in pixels, of the window created by CreateWindow

e The location, in screen coordinates of the window created by CreateWindow

e The nCmdShow parameter of ShowWindow

For console processes, use the STARTUPINFO structure to specify window properties
only when creating a new console (either using CreateProcess with
CREATE_NEW_CONSOLE or with the AllocConsole function). The STARTUPINFO
structure can be used to specify the following console window properties:

e The size of the new console window, in character cells

The location of the new console window, in screen coordinates

The size, in character cells, of the new console’s screen buffer

The text and background color attributes of the new console’s screen buffer

The title of the new console’s window

Process Handles and Identifiers

When a new process is created by the CreateProcess function, handles of the new
process and its primary thread are returned. These handles are created with full access
rights, and—subject to security access checking—can be used in any of the functions
that accept thread or process handles. These handles can be inherited by child
processes, depending on the inheritance flag specified when they are created. The
handles are valid until closed, even after the process or thread they represent has been
terminated.

The CreateProcess function also returns an identifier that uniquely identifies the
process throughout the system. A process can use the GetCurrentProcesslid function
to get its own process identifier. The identifier is valid from the time the process is
created until the process has been terminated.

64

Volume 1 Microsoft Windows Base Services

If you have a process identifier, you can get the process handle by calling the
OpenProcess function. OpenProcess enables you to specify the handle’s access rights
and whether it can be inherited.

A process can use the GetCurrentProcess function to retrieve a pseudo handle to its
own process object. This pseudo handle is valid only for the calling process; it cannot be
inherited or duplicated for use by other processes. To get the real handle to the process,
call the DuplicateHandle function.

Obtaining Additional Process Information

The Win32 API provides functions for obtaining information about processes. Some of
these functions can be used only for the calling process, because they do not take a
process handle as a parameter. You can use functions that take a process handle to
obtain information about other processes.

® To obtain the command-line string for the current process, use the
GetCommandLine function.

e To parse a Unicode command-line string obtained from the Unicode version of
GetCommandLine, use the CommandLineToArgvW function.

* To retrieve the STARTUPINFO structure specified when the current process was
created, use the GetStartuplnfo function.

e To obtain the version information from the executable header, use the
GetProcessVersion function.

¢ To obtain the full path and file name for the executable file containing the process
code, use the GetModuleFileName function.

¢ To obtain the count of handles to graphical user interface (GUI) objects in use, use
the GetGuiResources function.

® To determine whether a process is being debugged, use the IsDebuggerPresent
function.

¢ To retrieve accounting information for all /O operations performed by the process,
use the GetProcessloCounters function.

Inheritance

A child process can inherit several properties and resources from its parent process. You
can also prevent a child process from inheriting properties from its parent process. The
following can be inherited:

¢ Open handles returned by the CreateFile function. This includes handles to files,
console input buffers, console screen buffers, named pipes, serial communication
devices, and mailslots.

* Open handles to process, thread, mutex, event, semaphore, named-pipe,
anonymous-pipe, and file-mapping objects.

e Environment variables.

¢ The current directory.

Chapter 6 Processes, Threads, and DLLs 65

® The console, unless the process is detached or a new console is created. A child
console process also inherits the parent’s standard handles, as well as access to the
input buffer and the active screen buffer.

The child process does not inherit the following:

® Priority class.
¢ Handles returned by LocalAlloc, GlobalAlloc, HeapCreate, and HeapAlloc.

e Pseudo handles, as in the handles returned by the GetCurrentProcess or
GetCurrentThread function. These handles are valid only for the calling process.

¢ DLL module handles returned by the LoadLibrary function.
e GDI or USER handles, such as HBITMAP or HMENU.

Inheriting Handles
To cause a handle to be inherited, you must do two things:

o Specify that the handle is to be inherited when you create, open, or duplicate the
handle.

¢ Specify that inheritable handles are to be inherited when you call the CreateProcess
function.

This allows a child process to inherit some of its parent’s handles, but not inherit others.
For example, creation functions such as CreateProcess and CreateFile take a security
attributes argument that determines whether the handle can be inherited. Open functions
such as OpenMutex and OpenEvent take a handle inheritance flag that determines
whether the handle can be inherited. The DuplicateHandle function takes a handle
inheritance flag that determines whether the handle can be inherited.

When a child process is created, the flnheritHandles parameter of CreateProcess
determines whether the inheritable handles of the parent process are inherited by the
child process. An inherited handle refers to the same object in the child process as it
does in the parent process. It also has the same value and access privileges. Therefore,
when one process changes the state of the object, the change affects both processes.
To use a handle, the child process must retrieve the handle value and “know” the object
to which it refers. Usually, the parent process communicates this information to the child
process through its command line, environment block, or some form of interprocess
communication.

The DuplicateHandle function is useful if a process has an inheritable open handle that
you do not want to be inherited by the child process. In this case, use DuplicateHandle
to open a duplicate of the handle that cannot be inherited, then use the CloseHandle
function to close the inheritable handle. You can also use the DuplicateHandle function
to open an inheritable duplicate of a handle that cannot be inherited.

66

Volume 1 Microsoft Windows Base Services

Inheriting Environment Variables

A child process inherits the environment variables of its parent process by default.
However, CreateProcess enables the parent process to specify a different block of
environment variables. For more information, see Environment Variables.

Inheriting the Current Directory

The GetCurrentDirectory function retrieves the current directory of the calling process.
A child process inherits the current directory of its parent process by default. However,
CreateProcess enables the parent process to specify a different current directory for the
child process. To change the current directory of the calling process, use the
SetCurrentDirectory function.

Environment Variables

Every process has an environment block that contains a set of environment variables
and their values. The command processor provides the set command to display its
environment block or to create new environment variables. Programs started by the
command processor inherit the command processor’s environment variables.

By default, a child process inherits the environment variables of its parent process.
However, you can specify a different environment for the child process by creating a new
environment block and passing a pointer to it as a parameter to the CreateProcess
function.

The GetEnvironmentStrings function returns a pointer to the environment block of the
calling process. This should be treated as a read-only block; do not modify it directly.
Instead, use the SetEnvironmentVariable function to change an environment variable.
When you are finished with the environment block obtained from
GetEnvironmentStrings, call the FreeEnvironmentStrings function to free the block.

The GetEnvironmentVariable function determines whether a specified variable is
defined in the environment of the calling process, and, if so, what its value is.

For more information, see the examples in Changing Environment Variables.

Terminating a Process

A process executes until one of the following events occurs:

e Any thread of the process calls the ExitProcess function. This terminates all threads
of the process.

¢ The primary thread of the process returns. The primary thread can avoid terminating
other threads by explicitly calling ExitThread before it returns. One of the remaining
threads can still call ExitProcess to ensure that all threads are terminated.

¢ The last thread of the process terminates.

¢ Any thread calls the TerminateProcess function with a handle to the process. This
terminates all threads of the process, without allowing them to clean up or save data.

Chapter 6 Processes, Threads, and DLLs 67

e For console processes, the default handler function calls ExitProcess when the
console receives a CTRL+C or CTRL+BREAK signal. All console processes attached
to the console receive these signals. Detached processes and GUI processes are not
affected by CTRL+C or CTRL+BREAK signals. For more information, see
SetConsoleCtrlHandler.

® The user shuts down the system or logs off. Use the
SetProcessShutdownParameters function to specify shutdown parameters, such as
when a process should terminate relative to the other processes in the system. The
GetProcessShutdownParameters function retrieves the current shutdown priority of
the process and other shutdown flags.

When a process is terminated, all threads of the process are terminated immediately
with no chance to run additional code. This means that the process does not execute
code in termination handler blocks. For more information, see Structured Exception
Handling.

The GetExitCodeProcess function returns the termination status of a process. While a
process is executing, its termination status is STILL_ACTIVE. When a process
terminates, its termination status changes from STILL_ACTIVE to the exit code of the
process. The exit code is either the value specified in the call to ExitProcess or
TerminateProcess, or the value returned by the main or WinMain function of the
process. If a process is terminated due to a fatal exception, the exit code is the value of
the exception that caused the termination. In addition, this value is used as the exit code
for all the threads that were executing when the exception occurred.

When a process terminates, the state of the process object becomes signaled, releasing
any threads that had been waiting for the process to terminate. For more about
synchronization, see Synchronizing Execution of Multiple Threads.

Open handles to files or other resources are closed automatically when a process
terminates. However, the objects themselves exist until all open handles to them are
closed. This means that an object remains valid after a process closes, if another
process has a handle to it.

If a process is terminated by ExitProcess, the system calls the entry-point function of
each attached DLL with a value indicating that the process is detaching from the DLL.
DLLs are not notified when a process is terminated by TerminateProcess. For more
information about DLLs, see Dynamic Link Libraries.

Warning The TerminateProcess function should be used only in extreme
circumstances, since it does not allow threads to clean up or save data and does not
notify attached DLLs.

If you need to have one process terminate another process, the following steps provide
a better solution:

68 Volume 1 Microsoft Windows Base Services

¢ Have both processes call the RegisterWindowMessage function to create a private
message.

¢ One process can terminate the other process by broadcasting the private message
using the BroadcastSystemMessage function as follows:

® The process receiving the private message calls ExitProcess to terminate its
execution.

Note When the system is terminating a process, it does not terminate any child
processes that the process has created.

Process Times

The GetProcessTimes function obtains timing information for a process. It returns the
process creation time, how much time the process has been executing in kernel mode,
and how much time the process has been executing in user mode. These times do not
include time spent executing system threads or waiting in a suspended or blocked state.
If the process has exited, GetProcessTimes returns the process exit time.

Process Security and Access Rights

Windows NT/Windows 2000 security enables you to control access to process objects.
For more information about security,