
Part of the five-volume
Microsoft' Wln32«> Developer's Reference Ubrary

~MIS

The essential reference to Win32®
technologies .a·nd APls

David Iseminger
Series Editor

www·/seminger.com

, t®

Indows
Base Services

The essential reference to Win32®
technologies and APls

David Iseminger
Series Editor

Indows
Base Services

library

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Microsoft Win32 Developer's Reference Library I David Iseminger.
p. cm.

ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) I. Title.

QA76.76.063 174 1999
005.26'8--dc21 99-045609

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 4 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. BackOffice, FrontPage, Microsoft, Microsoft
Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual J++,
Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade­
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002306

Acknowledgements
Acknowledgements are often tricky things; generally, the day after books are printed you think of
someone who absolutely should have been recognized, whom you now have rudely omitted. You'd
think authors would keep an ongoing list. Oh well, here goes:
First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about the series idea, and for
keeping up with the myriad of issues that cropped up, and for managing the business details
associated with publishing this series. Thanks also to Steve Guty at Microsoft Press for seeing certain
publishing issues through the wringer.
Wendy Zucker kept in step with the difficult and tight schedule at Microsoft Press, and orchestrated
things in the way only project editors can endure. John Pierce was also instrumental in seeing the
publishing process through completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman----thanks for the excellent work; I'm a firm believer that artwork and
packaging are integral to the success of a project. Marketing acknowledgements go out to Jocelyn
Paul, for her coordination efforts with MSDN and her other unsung victories.
On the SDK side of things, thanks to Morgan Seeley for introducing me to the editor at Microsoft
Press, and thereby routing this series to the right place. Throughout the process, Julie Solon provided
lots of Win32 feedback and helped gather feedback from others, all of which was quite helpful in
compiling the right collection oftechnologies ... thanks to Julie for the help on that. Guy Smith
pointed me to the information I needed for Volumes 4 and 5, and was always very responsive.
On the developer side of things, thanks go out to Lars Opstad and Paramesh Vaidyanathan for their
help and openness, respectively, with letting me provide the common coding errors found in Chapter
5 of each of these volumes. Thanks on my behalf, and on behalf of anyone who finds that information
useful (I'm sure that includes a bunch of people!).
Thanks are also in order for artist-guru David Deyo for transforming my functional "circled i" logo
into a 3D piece of art, as well as for his work on the Iseminger.com site. You can see more of his
artwork through links found at www.iseminger.com.
Last, but certainly not least, thanks to Margot Hutchison for doing all the things great agents do best.

v

Contents

Chapter 1: Introduction .. 1
How the Win32 Library Is Structured .. 1
How the Win32 Library Is Designed ... 3

Chapter 2: What's in This Volume? ... 5
Processes and Threads ... 5

Memory .. 6
Interprocess Communications ... '" 7

File Operations ... 8
Debugging .. 9
Unicode .. 9

Chapter 3: Using Microsoft Reference Resources .. 11
The Microsoft Developer Network (MSDN) .. 12

Comparing MSDN and MSDN Online .. 12
MSDN Subscriptions ... 13

MSDN Library Subscription ... 15

MSDN Professional Subscription ... 15
MSDN Universal Subscription ... 16
Purchasing an MSDN Subscription .. 16

Using MSDN ... 17
Exploring MSDN .. 18

Quick Tips .. 21
Using MSDN Online .. 21

Exploring MSDN Online .. 23
MSDN Online Features .. 24
MSDN Online Registered Users ~ 28

The Windows Programming Reference Series .. 29

Chapter 4: Finding the Developer Resources You Need ... 31

Developer Support .. 31
Online Resources .. 33
Learning Products ... 34

Conferences ... 36
Other Resources .. 37

vi Contents

Chapter 5: Getting the Most Out of Win32 Technologies: Part 1 39

Overview ... 39
Volume 2: User Interface ... 39
Volume 3: GDI .. 40

Volume 4: Common Controls .. 40
Volume 5: The Windows Shell .. 40

Solution Summary ... 40

Chapter 6: Processes, Threads, and DLLs .. 45

Processes and Threads ... 45

About Processes and Threads .. 45
Multitasking .. 45
Scheduling .. 48

Multiple Threads .. 54
Child Processes ... 61
Process Working Set. .. 69
Thread Pooling ... 70
Job Objects ... 71

Fibers .. 73
Process and Thread Reference .. 74

Process and Thread Functions ... 74
Process and Thread Structures .. 184

Process and Thread Macros .. 207
Dynamic Link: Libraries .. 208

About Dynamic Link Libraries .. 208

Advantages of Dynamic Linking .. 209
Dynamic Link: Library Creation ... 210
Dynamic Link: Library Entry-Point Function ... 211
Load-Time Dynamic Linking ... 213
Run-Time Dynamic Linking .. 214

Dynamic Link Library Data ... 215
Dynamic Link: Library Redirection .. 216

Dynamic Link: Library Updates .. 216
Dynamic Link: Library Reference .. 217

Dynamic Link Library Functions ... 217
Synchronization ... 234

Getting More Information About Synchronization .. 235

About Synchronization .. 235
Wait Functions .. 235

Contents vii

Synchronization Objects ... 237
Interprocess Synchronization .. 243
Synchronization Object Security and Access Rights 244

Synchronization and Overlapped Input and Output.. 246
Asynchronous Procedure Calls ... 247

Critical Section Objects .. 248
Interlocked Variable Access ... 249

Chapter 7: Memory Management .. 251

About Memory Management .. 251
Virtual Address Space .. 251

Virtual Address Space and Physical Storage .. 252
Page State ... 252
Scope of Allocated Memory ... 253

Virtual Memory Functions ... 253
Allocating Virtual Memory .. 254

Freeing Virtual Memory ... 255
Working with Pages .. 255

Heap Functions .. 256
Access Validation Functions .. 257

Address Windowing Extensions .. 258
AWE Functions .. 259

Global and Local Functions ... 260
Standard C Library Functions .. 261

Memory Management Reference .. 261
Memory Management Structures ... 328

Chapter 8: Interprocess Communications ... 337

Interprocess Communications ... 337
About Interprocess Communications ... 337
Choosing an IPC Mechanism ... 338

Using the Clipboard for IPC ... 338
Using COM for IPC .. 339
Using DDE for IPC ... 339

Using a File Mapping for IPC .. ~ 340
Using a Mailslot for IPC ... 340

Using Pipes for IPC .. 341
Using RPC for IPC ... 341

Using Windows Sockets for IPC .. 342
Using WM_COPYDATA for IPC .. 342

viii Contents

Interprocess Communications Reference ... 343
Interprocess Communications Structures ... 343
Interprocess Communications Messages .. 343

Atoms .. 345
About Atom Tables .. 345

Global Atom Tables .. 345
Local Atom Tables ... 345
Atom Types .. 346

Atom Reference ... 346
Atom Functions .. 346

Atom Macros .. 356
Clipboard ... 356

About the Clipboard ... 357
Clipboard Formats .. 357

Clipboard Reference .. 363
Clipboard Functions ... 363
Clipboard Structures ... 378

Clipboard Messages .. 380
Handles and Objects .. 393

About Handles and Objects ... 393
Object Manager .. 394

Object Interface .. 394
Handle Limitations ... 395
Handle Inheritance .. 395

Object Categories ... 396
User Objects ... 397
GDI Objects .. 399
Kernel Objects .. 400

Handle and Object Reference .. 404

Handle and Object Functions ... 404
Hooks .. 415

About Hooks .. 415
Hook Chains ... 415

Hook Procedures .. 416
Hook Types .. 416

Hook Reference ... 420

Hook Functions .. 420
HOQk Structures .. 456

Hook Messages ... 465

Contents ix

Chapter 9: File 1/0 ... 469

About File I/O ... 469
File System Organization ... 469
Accessing Files .. 469

File Name Conventions .. 470
Long File Names .. 471
MS-DOS Device Names ... 471

File Operations ... 471
Creating and Opening Files with the CreateFile Function 471
Creating Temporary Files ... 472
Copying and Moving Files ... 472
Reading from and Writing to a File .. 473

Locking and Unlocking Files .. 474
Searching for Files .. 474
Monitoring Directories ... 474
Closing and Deleting Files .. 475

Directory Operations .. 475

Asynchronous Input and Output .. 476
I/O Completion Ports ... 476
Getting Information About Files '" 477

File Attributes ... 477

File Type ... 479
File Date and Time ... 479
File Code Page .. 479
Volume Information ... 479

File and Directory Security .. 480

File I/O .Reference ... '" 481
File I/O Functions .. 481
File I/O Structures .. 606
File I/O Enumeration Types ... 617

Chapter 10: File Systems ... 621

About File Systems ... 621
Shared File System Features ... 621

Opportunistic Locks ... 621
Alternatives to Opportunistic Lock Operations .. 622

Local Caching ... 622

Data Coherency ~ ... 623
Typical Use ... 624

x Contents

Server Response to Open Requests on Locked Files 624
Types of Opportunistic Locks .. 625
Breaking Opportunistic Locks .. 627
Opportunistic Lock Examples .. 628
Opportunistic Lock Operations ... 631

NTFS File System ... 632
File System Recovery .. 632
File Compression ... 633

Compression Attribute .. 633
Compression State .. 633

Obtaining the Size of a Compressed File ... 634
File Encryption .. 634

Handling Encrypted Files and Directories .. 634
Encrypted Files and User Keys ... 635

Disk Quotas .. 635
Disk Quota Limits .. 635
Disk Quota States ... 636
Administering Disk Quotas .. 636

Sparse Files .. 636
Sparse File Operations .. 637

Obtaining the Size of a Sparse File ... 638
Sparse Files and Disk Quota ... 638

Distributed Link Tracking .. 638
Link Tracking Features ... 638

Link Tracking Components .. 639
Link Tracking Limitations .. 640

Reparse Points .. 640
Reparse Point Tags ... 641
Reparse Point Operations ... 642
Reparse Points and File Operations .. 643

Reparse Point Restrictions .. 643
Volume Mount Points and Mounting Volumes ... 643

Unique Volume Names .. 645
Path Lengths ... 645

Mounting a Volume ... : 646
Enumerating Volumes .. 646

Scanning Volume Mount Points on a Volume ... 646
Checking Directories for Volume Mount Points 647
Persistent Assignment of Drive Letters .. 648

Contents xi

Volume Mount Point Reference ... 648

NTFS Change Journal .. 649
Using the Change Journal Identifier ... 651
Creating, Modifying, and Deleting a Change Journal 652

Obtaining a Volume Handle for Change Journal Operations 653
Walking a Buffer of Change Journal Records .. 653

Change Journal Operations ... 654
Change Journal Structures .. 654

FAT File System ... 654

Protected-Mode FAT File System ... 655
File System Reference ... 655

File System Functions .. 655
File System Control Codes '" 682
File System Interfaces .. 683

File System Structures ... 731
File System Macros .. 736
Disk Quota Interface Error Codes .. 738

Chapter 11: Structured Exception and Error Handling ... 741

Structured Exception Handling ... 741
About Structured Exception Handling ... 741

Exception Handling .. 742
Frame-Based Exception Handling .. 744
Termination Handling ... 746

Handler Syntax ... 746
Structured Exception Handling Reference ... 750

Structured Exception Handling Structures ... 759
Error Handling .. 762

About Error Handling .. 762

Process Error Mode .. 763
Last-Error Code .. 763
Notifying the User .. 763
Message Tables ... 763
Fatal Application Exit ... 764

Error Message Guidelines ... 764
Error Handling Reference .. 767

Error Handling Functions ... 767
Error Handling Structures ... 783

xii Contents

Chapter 12: Unicode .. 785

About Unicode and Character Sets ... 785
Character Sets .. 785

Single-Byte Character Sets ... 785
Double-Byte Character Sets ... 786

Unicode ... 786
Surrogates ... 787

Unicode in the Win32 API. .. 789

Win32 Data Types .. 789
Win32 Function Prototypes .. 790
Message Translation ... 791
String Functions .. 792
Standard C Functions .. 793
Character Sets Used in Filenames .. 794

Translation Between String Types .. 794
Command-Line Arguments .. 795

Unicode and Character Set Reference ... 795

Unicode .and Character Set Functions .. 795
Unicode and Character Set Structures ... 810
Unicode and Character Set Macros .. 812
Unicode and Character Set Constants .. 813

ANSI Code-Page Identifiers ... 813
OEM Code-Page Identifiers ... 813
Code-Page Identifiers ... 814
Code-Page Bitfields .. 816
Unicode Subset Bitfields .. 817

Appendix A ... 821

Appendix B ... 829

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer's Reference Library, your comprehensive
reference guide to the Win32 development environment. This pack, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming-without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you-the time-pressed and information-overloaded applications
developer-to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard­
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN subscription. Don't have an
MSDN subscription, or don't know why you should? I've included information about that
too, including the differences between the three levels of MSDN subscription, what each
level offers, and why you'd want a subscription when MSDN Online is available over the
Internet.

Microsoft is fairly well known for its programming, so doesn't it make sense to share
some of that knowledge? I thought it made sense, so that's why this-the Windows
Programming Reference Series-is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don't get lost in all the information provided in the Win32 Library,
each volume's appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you're looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

How the Win32 Library Is Structured
The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided are the following:

2 Volume 1 Microsoft Windows Base Services

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphical Device Interface)

Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library-and, therefore, dividing Win32-into these functional
categories enables a software developer who's focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,OOO-page Win32 tome),
and without having to shuffle among multiple less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer-friendly
manner, and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview

Part 2: Reference

Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN, and MSDN Online, including a collection of
insider tips and tricks. Just as each volume's Reference section (Part 2) contains
different reference material, each volume's Part 1 contains different tips and tricks. To
ensure that you don't miss out on some of them, make sure you take a look at Part 1 in
each Win32 Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanation
material for each programming area.

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

Chapter 1 Introduction 3

How the Win32 Library Is Designed
The Win32 Library, and all packs in the Windows Programming Reference Series, are
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look and feel that is consistent with their electronic means of
disseminating Microsoft reference information. In other words, the way that a given
function reference appears on the pages of this book has been designed specifically to
emulate the way that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you-the
developer of Windows applications-to use the tools and get the ongoing information
you need to create quality programs. By providing a "common interface" among
reference resources, your familiarity with the Win32 Library reference material can be
immediately applied to MSDN or MSDN Online, and vice-versa. In a word, it means
consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in­
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and-in the absence of
keyboards, e-mail, and upright chairs-get your programming reading and research
done. Of course, each of the Win32 Library books fits nicely right next to your mouse
pad as well, even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

CHAPTER 2

What's in This Volume?

Each volume in the Microsoft Win32 Developer's Reference Library contains reference
material that pertains to a certain area of the Win32 programming environment. This
volume, Volume 1: Base Services, contains the bulk of reference and overview material
(not to mention the insider tips and tricks) that developers need to establish the
programmatic foundation for their applications. But, what does that mean, really?

It means that this volume provides developers with access to the operating system, and
to computer resources, that are the building blocks on which the rest of the application
can run. Operations such as memory access and management, processes and thread
manipulation, synchronization, file operations, Unicode issues, and interprocess
communications all fall under the base services umbrella. To put these concepts into a
format that's a little easier to pick through, here are the sections covered in this volume:

Processes and Threads

Memory

Inter process Communications

File Operations

Debugging

Unicode

Registry

Putting this information into nice, neat categories such as these doesn't make it well
explained. In an effort to get you up to speed with the overall meaning behind such
logical grouping, let's look at each of these categories in a little more depth, so you can
get familiar with them quickly, in case you don't have decades of Windows programming
experience.

Processes and Threads

5

Regardless of the type of application you're developing, you'll be dealing with processes
and threads. Every Windows program consists of at least one process (and every
process has at least one thread, the first of which is generally called the primary thread).
A process is essentially an executing program, while a thread is a unit of execution
within a process; each thread is allocated processing time individually of other threads in
a given process. Another concept introduced with Windows 2000 is the job object, which
allows multiple processes to be managed as a unit.

6 Volume 1 Microsoft Windows Base Services

Processes and threads determine how your code is executed and how code within your
application receives processor time. For projects that contain multiple processes, the Job
object enables such multiple processes to be managed as a unit.

Within the Processes and Threads category, there are a number of associated base
areas that are covered. The following list outlines the base programming areas
associated with the Processes and Threads section:

Processes and Threads

Dynamic-Link Libraries

Synchronization

Processes and Threads have already been explained, so more discussion on them
isn't necessary.

Dynamic-Link Libraries are commonly called DLLs, and provide a means by which
functions and/or data can be developed and packaged in a modular format. Windows
itself makes heavy use of DLLs, and provides most of its application programming
interfaces to developers in the form of DLLs.

Synchronization enables multiple threads of execution within a given process to
coordinate efforts, data, or most importantly, resource access. Synchronization makes
use of objects to enable the synchronization among and between threads, including
event, mutex, semaphore, process, and thread objects.

Memory
Every program that operates on the Windows platform must deal with memory, and
generally speaking, the better an application handles its memory usage and memory
management, the better off the application is. On the Windows 2000 platform, every
application (that is, every process) is provided with its own virtual address space of 4
GB; the direct result of a 32-bit operating system, which has a 32-bit pointer
(OxOOOOOOOO through OxFFFFFFFF = 4 GB of possible values).

The logistics of mapping actual memory (that is, physical memory) to the virtual memory
available to each process (the 4 GB worth of addressable memory) is left up to the
operating system. Also, the memory space of any given process is protected by the
operating system, enabling a process to be assured of its memory's privacy (protection
from corruption) from other well-behaving processes. However, the logistics involved
with managing an application's own memory is the responsibility of each application. The
Memory section provides the programmatic functions and guidance to enable developers
to program such memory issues, and includes the following sections:

Memory Management

File Mapping

Chapter 2 What's In This Volume? 7

Memory Management enables developers to supervise and administer the virtual
address space available to their application. Memory management includes such tasks
as allocating and freeing memory, and working with pages and heaps.

File Mapping is the process of associating a given file's contents with a particular area
of a process's virtual memory, using a file-mapping object to maintain the association.

Interprocess Communications
In order to enable one application to communicate with another application, or with any
other process running on the system, Windows provides programmatic elements that
facilitate communication among different processes. This process of communication
between any given process and another process is called interprocess communications,
commonly referred to as IPC.

There are many different forms of IPC; some differentiate between client and server,
others maintain a specialized division of labor between specialized processes. In the
clienVserver form of IPC, clients generally request services from another process, while
the server provides such services. However, any given application can be, and often is,
both a client and a server, depending on the request or the service required.

Many different mechanisms are available for communicating between processes. In the
interprocess communications section of this volume of the Win32 Library, you'll find the
following sections:

Atoms

Clipboard

Handles and Objects

Hooks

Mailslots

Pipes

Atoms are 16-bit integers that enable an application to access a string that has been
placed in an atom table. Atom tables, which are defined by the system, store strings and
their corresponding identifiers. Atom tables are commonly used on Dynamic Data
Exchange (DOE) applications.

The Clipboard is the same common clipboard that users of Windows operating systems
are accustomed to using-programmatically speaking, the clipboard section in this
volume is a set of functions and structures that enable applications to transfer data. The
clipboard is an easy way to transfer data between (or within) applications, because all
applications have access to the clipboard, but is only appropriate for one-time data
exchange (such as a copy and paste procedure). For an ongoing exchange of
information between processes, Dynamic Data Exchange Management Library (DDEML)
is a better choice.

8 Volume 1 Microsoft Windows Base Services

Handles and Objects represent the functional programmatic pair that enables
resources (objects) to be examined or modified (handles). Applications are not allowed
to directly access system data or resources (objects), so handles them to do so.

Hooks are used by applications to install subroutines that monitor a system's message
traffic, thereby enabling the application to process certain types of messages before they
reach the target window procedure. Hooks are not good for performance, as they
introduce additional processing burden on the system, and should be used sparingly in
production-based applications.

Mailslots are a form of interprocess communication that provides one-way, somewhat
unreliable, means of sending data to one or more processes. As the name implies,
mailslots are similar to sending a letter; there's a good chance that the message will get
to its intended location (in this case, either a server sitting on the network or a group of
computers), but there is no delivery guarantee. The lack of guaranteed transmission is
attributable to mails lots' use of datagrams, which by definition are not guaranteed to
reach their destination. For two-way or non-datagram transmission of messages, use
pipes.

Pipes are a means of enabling an interprocess communication that, like mailslots, use a
section of shared memory to exchange data. Unlike mailslots, however, pipes use
packets (as opposed to datagrams) to transmit data across the network, and also enable
two-way communication. The process or application that creates a pipe is called the pipe
server, while a process or processes that connect to that pipe are called pipe clients.

Collectively, these IPC-enabling technologies provide the tools that application
developers need in order to enable communication between applications. Any given
application may implement one of these IPC mechanisms rather than the other, or one of
these IPC mechanisms in addition to another. For example, an application almost
certainly will use handles and objects, but might not use mailslots.

File Operations
Most applications work with files of some sort, and at one time or another throughout the
course of their operation, generally to store or retrieve information from some sort of
storage resource (such as a hard drive, network server, or other such devices). File
Operations consist of the following categories:

File Input and Output

File Systems

File Input and Output provides the necessary operations that applications or services
might perform on files, such as creating, deleting, reading, writing, locking, searching,
monitoring, and other such file-related operations. Since files are the basic unit of
storage for Windows applications, there are lots of functions, structures, and
enumerations associated with File 110.

File Systems that are supported by the various Windows operating systems differ with
each operating system. For example, Windows 98 does not natively support NT File

Chapter 2 What's In This Volume? 9

System (NTFS}-although Windows 98 clients can read from NTFS volumes shared by
Windows NT or Windows 2000 computers-while Windows NT versions 4.0 and earlier
do not support FAT32. The various programmatic issues surrounding the use, access,
and protection of files and resources on the various Windows file systems are explained
in the File Systems section.

Debugging
The goal behind debugging an application is to monitor, find, and fix errors in
programming code. The Win32 environment provides debugging capabilities to enable
application developers to find such application bugs throughout the course of testing and
development, as well as a group of supplementary programming capabilities to augment
the debugging process. The following lists the set of supplementary debugging
capabilities:

Structured Exception Handling

Errors

Structured Exception Handling enables developers of applications to handle software
exceptions (exceptions initiated by an application or the operating system) and hardware
exceptions (exceptions initiated by the CPU, such as a divide-by-zero exception). With
structured exception handling, developers gain control over how such hardware and
software exceptions are handled, enabling and facilitating the debugging process.

Errors are fairly self-explanatory; Win32 provides functions and structures that enable
developers to have their application receive or display errors, perhaps initiating a
particular section of code to handle such errors (such as those explained in structured
exception handling).

Unicode
Application developers from around the world, including North America, are realizing that
the global economy means that opportunities exist for software programs throughout the
world. As such, enabling your application to be localized-that is, modified in such a way
that it becomes a viable product for various local languages throughout the world-is
becoming more of a priority for many projects. Windows provides many features and
capabilities to make your Win32 application, from its inception, as international-friendly
as possible.

At the heart of the internationalization of Windows applications is Unicode. Unicode is
an extension of the traditional 8-bit ASCII character set, and was created specifically in
an effort to facititate a common international character set. In basic terms, Unicode uses
16 bits for character encoding rather than the commonly used 8-bit character set in
ASCII, enabling a complete (single) character set that includes international computing·
characters. By making your applications Unicode-ready, you take long strides in making
your application localization-friendly, and thereby ready for the international market.
Windows NT and Windows 2000 were built from the ground up with Unicode support.

CHAPTER 3

Using Microsoft Reference
Resources

11

These days, it isn't the availability of information that's the problem, it's the availability of
information. You read that right ... but I'll clarify.

Not long ago, getting the information you needed was a challenge, because there wasn't
enough of it; to find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn't at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

Today, information surrounds us and sometimes stifles us; we're overloaded with too
much information, and if we don't take measures to filter out what we don't need to meet
our goals, soon we become inundated and unable to discern what's "junk information"
and what's information that we need to stay current and, therefore, competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft's own reference material too; not because there is
information that isn't needed, but because there is so much information that finding what
you need can be as challenging as figuring out what to do with it once you have it.
Developers need a way to cut through the information that isn't pertinent to them, and to
get what they're looking for. One way to ensure you can get to the information you need
is to know the tools you use. Carpenters know how to use nail guns, and it makes them
more efficient. Bankers know how to use ten-key machines, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers----reference books from the
Windows Programming Reference Series-can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the Microsoft
Win32 Developer's Reference Library, provide reference material that focuses on a given
area of Windows programming. MSDN and MSDN Online, in comparison, contain all of the
reference material that all Microsoft programming technologies has amassed over the past
few years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around, finding
what you need (even though it's in there, somewhere) can be frustrating, time consuming,
and an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

12 Volume 1 Microsoft Windows Base Services

you'll know where to go for the Microsoft reference information you need (and how to get
there quickly and efficiently).

The Microsoft Developer Network (MSDN)
MSDN stands for Microsoft Developer Network, and its intent is to provide developers with
a network of information to enable the development of Windows applications. Many
people either have worked with MSDN or heard of it, and quite a few have one of the
three available subscription levels to MSDN, but there are many, many more who don't
have subscriptions and could use some concise direction on what MSDN can do for a
developer or development group. If you fall into any of these categories, this section is
for you.

There is some clarification to be done with MSDN and its offerings: if you've heard of
MSDN, or had experience with MSDN Online, you might have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What are the differences between the three levels of MSDN subscriptions?

• What happened to Site Builder Network ... or, What is this Web Library?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren't getting the most out of
MSDN. Or, maybe, you're wondering whether you're paying too much for too little, or not
enough to get the resources you need. Regardless, you want to be in the know, not in
the dark. By the end of this chapter, you will know the answers to all these questions and
more, along with some tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which one has the features you need. Confounding this differentiation is the
fact that both have some content in common, yet each offers content unavailable with
the other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content andthe latest Microsoft product software, all
shipped to its subscribers on CD (or, in some cases, on DVD).

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Chapter 3 Using Microsoft Reference Resources 13

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best presentation of material, as possible. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online, because it gets to its subscribers
in the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn't subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content over the Internet, as soon as it becomes available, without them having
to wait for the update CD to come in the mail. The interface with which MSDN displays
its material-which looks a whole lot like a specialized browser window-is linked also to
the Internet as a browser-like window. To coordinate further MSDN with the immediacy
of the Internet, MSDN Online has dedicated a section of the site to MSDN subscribers
that enable subscription material to be updated (on their local machines) as soon as it's
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and tailored (not surprisingly) to the issues and challenges faced by developers
of Windows applications or Windows-based Web sites. MSDN Online also has a
customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn't come
with Microsoft product software or reside on your local machine.

Since it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

One feature you will notice that is shared between MSDN and MSDN Online is the
interface-the interfaces are very similar. That's almost certainly a result of attempting to
ensure that developers' user experience with MSDN is easily associated with the
experience had on MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So, it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you probably will continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but not quite
sure what the differences between its subscription levels are, you aren't alone. This

14 Volume 1 Microsoft Windows Base Services

section aims to provide a quick guide to the differences in subscription levels, and it even
chances giving you an approximation on what each subscription level will set you back.

. ," ::. "." ':

:I\IIS;D:N

'MIcrOsoft ~n.~
,/ OJl~ng~i:nil '
./' BackOffiee Produet$
'/DeVelCipirTOOIs : .
./ ,Beta Releases . . "
.r 'Complete: s~ arid ODKs,
.r, AltCorm,nt()flCP .

Real-11m:. Up~" , ,
PriOrity Support Incidents '
MSi)NOnline lEXcIualve$
MSDNM.-zine

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's

Chapter 3 Using Microsoft Reference Resources 15

features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers might
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation (updated
quarterly)

• Lots of sample code, which you can cut and paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Visual Studio, Office, and others

• Complete (and, in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft, chock full of development-related information

• A subscription to MSDN News, a bimonthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation

• Windows SDKs and DDKs, in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

16 Volume 1 Microsoft Windows Base Services

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

• Additional development tools, such as Office Developer, Front Page, and Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all of the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does it
escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're a current customer renewing your subscription, you again
get a break in the box, this time in the nature of a $200 rebate. You get that break also if
you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999; if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

As is often the case, there are both academic and volume discounts available from
various resellers, including Microsoft, so those who are in school or in the corporate
environment can use their status (as learner or learned) to get a better deal-and, in
most cases, the deal is much better. Also, if your organization is using lots of Microsoft
products, whether MSDN is a part of that group or not, whoever's in charge of
purchasing should look into the Microsoft Open License program; the Open License
program gives purchasing breaks for customers who buy lots of products. Check out
www.microsoft.com/licensing for more details. Who knows? If your organization qualifies,
you could end up getting an engraved pen from your purchasing department, or, if you're
really lucky, maybe even a plaque of some sort, for saving your company thousands of
dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information such as www.iseminger.com (shameless
self-promotion, I know), or your favorite online software site. Note that not all software

Chapter 3 Using Microsoft Reference Resources 17

resellers carry MSDN subscriptions; you might have to hunt around to find one. Of
course, if you have a local software reseller that you frequent, you can check out
whether the reseller carries MSDN subscriptions, too.

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software, such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick but
useful guidance on getting the most out of the interface to present and move through the
seemingly endless supply of reference material provided with any MSDN subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar: it's
the navigational front end to MSDN reference material.

Figure 3-2: The MSDN interface.

MSDN Library
April 1999 release

Welcome to the April 1999
release of the MSDN Library. To
begin your e"ploration of what's
new in this release, click any of
the links on the right.

The MSDN Library is the
essential reference for
developers, with more than a
gigabyte of technical
programming information J

including sample code,
documentation) technical
articles, the Microsoft
Developer Knowledge Base, and
anything else you might need
to develop solutions that
implement Microsoft
technology.

Dr. GUI's Espresso Stand
Dr. GUI introduces the April
1999 release of the MSDN
Library.

What's New go the Librarv
click here for a
comprehensive hotlinked list
of ne content In this release.

MSDN Faaturas
Chack out these packillgas of
artldes about our latest
technologies.

MSDN Online
Find out what's: new for MSDN
Online members and read
selected columns from our
Web site.

18 Volume 1 Microsoft Windows Base Services

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and exploration tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective exploration, however, you can
increase its effectiveness dramatically.

Exploring MSDN
One of the primary features of MSDN-and, to many people, its primary drawback-is
the sheer volume of information it contains, over 1.1 GB and growing. The creators of
MSDN likely realized this, however, and have taken steps to assuage the problem. Most
of those steps relate to enabling developers to selectively move through MSDN's
content.

Basic exploration through MSDN is simple, and a lot like moving through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics. Expand a book by clicking the + box to its left, and display its
contents with its nested books or reference pages, as shown in Figure 3-3. If you don't
see the left pane in your MSDN viewer, go to the View menu and choose Navigation
Tabs, and they'll appear.

IE • Welcome to the MSDN Library
i±l • Visual Studio 6.0 Documentation
ffi • Office: Developer Documen~tion
I±l • Windows CE Documentation
EI tI2I Platform SDK

It1 • What', New?
It1 • BackOffice
8 (lJI Base Services

IB • Microsoft Ousteri'lg Service
ttl • Debugging and ErrOl Handfing
!.tJ • DLLs. Processes, and Threads
ttl. Fie, and 110
EI tI2I Memory

EI tI2I Memory Management
EI tI2I About Memory Management

IE : Virtual Address Space
~ Virtual Memory Functions

[!J Heep Functions
[!J F@;;;ii',,;-

It1 • VelY Large Memory (VLM)
[!J Global and Local Functions
[!l Standard C Ubrary Functions

!±l • Using the Virtual Memory Functions
• Memory Management Refelence

ttl File Mapping

Access Validation Functions
The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses. The following
access validation functions are available.

. ~",::~::r'A'Jj"'~~·:·:?'~S·;:f;,:.~f'::.;;"
IsBadCodeptr Determines whether the calling

process has read I!Iccess to the
memory at the specified address.

IsBadReadptr Determines whether the calling
process has read access to the
memory at a specified range of
addresses.

lsBadStrinaPtr Determines whether the calling
process has read access to the
memory pointed to by a null­
terminated string pointer. The
function validates access for a
specified number of characters or
until it encounters the string's
terminating null character.

IsBadWriteptr Determines whether the calling
process has write access to the
memory at a specified range of
addresses.

Figure 3-3: Basic exploration of MSDN.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of moving through MSDN content. These four tabs,

Chapter 3 Using Microsoft Reference Resources 19

in coordination with the Active Subset drop-down box above the four tabs, are the tools
you use to search through MSDN content. When used to their full extent, these
coordinated exploration tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information with which you're interested in working from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab and in the index presented in the Index tab
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, enabling you thereby to find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are dimmed (but still selectable). In the
Search tab, they aren't displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Books and Periodicals

MSDN, Content on Disk 2 only

MSDN, Content on Disk 3 only

MSDN, Knowledge Base

MSDN, Office Development

MSDN, Technical Articles and
Backgrounders

Platform SDK, BackOffice

Platform SDK, Base Services

Platform SDK, Component
Services

Platform SDK, Data Access
Services

Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management
Services

Platform SDK, Messaging and
Collaboration Services

Platform SDK, Networking
Services

Platform SDK, Security

Platform SDK, Tools and
Languages

Platform SDK, User Interface
Services

Platform SDK, Web Services

Platform SDK, What's New?

Platform SDK, Win32 API

Repository 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK, and
Enterprise Docs

Visual C++, Platform SDK and
WinCE Docs

Visual FoxPro Documentation

Visual InterDev Documentation

Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product
Documentation

20 Volume 1 Microsoft Windows Base Services

As you can see, this bunch of filtering options essentially mirrors the structure of
information delivery used by MSDN. But, what if you are interested in viewing the
information in a handful of these subsets? For example, what if you want to search on a
certain keyword through the Platform SDK's Security, Networking Services, and
Management Services subsets, as well as a little section that's nested way into the Base
Services subset? Simple-you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subset
menu item. You're presented with the window shown in Figure 3-4.

Interprocess Communic~tion: I
Performance Monitoring: Platt(
Removable Storage Manager:
Terminal Services: Platform

Figure 3-4: The Define Subset window.

Services
Memory: Platform SDK

Management Services
Networking Services
Security

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

Chapter 3 Using Microsoft Reference Resources 21

You also can delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the Delete button nearby.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four Navigation Tabs, just like the pre­
defined subsets do.

Quick Tips
Now that you know how to explore MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but, regardless, it can be
bothersome to have a reference page displayed in the right pane (perhaps jumped to
from a search) without the Contents tab in the left pane being synchronized in terms of
the reference page's location in the information tree. Even if you know the general
technology in which your reference page resides, it's nice to find out where it is in the
content structure. This is easy to fix: simply click the Locate button in the navigation
toolbar, and all references will be synchronized.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, instead of going
through the process of doing another search.

Define your own subsets and use them. Like I said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get your work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, I
think). Underscores come before letters in alphabetical order; so, if you use an
underscore on all of your defined subsets, you get them placed at the front of the listing.
of available subsets in the Active Subset drop-down box. Also, by using an underscore,
you can see immediately which subsets you've defined, and which ones come with
MSDN-it saves a few seconds at most, but those seconds can add up.

Using MSDN Online
MSDN Online shares a lot of similarities with MSDN, and that probably isn't by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right-and it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

22 Volume 1 Microsoft Windows Base Services

If you've used Microsoft's home page before (www.msn.comorhome.microsoft.com).
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news and weather, stock
quotes, and other collections of information or news that suit your tastes or interests.
You even can insert a few Web links, and have them readily accessible when you visit
the site. The MSDN Online home page can be customized in a similar way, but its
collection of headlines, information, and news sources are all about development. The
information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page: you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

SQIQctor ciurthQ

checkboHeSabollQto
turn the categoriQs on
oroff,To change the

order in which thQ
categories.appearon
tn@nomQpage,dicka

category name, and
thQnciicktheupor

down arrow ::g.tothe

right

customize Roaming

Customize the information that appears on your MSDN Online home page. Select your preferences
from the sections below, then return here and choose Save, (Yes, we know it's a lot of choices.
There's a lot of information on this site.) You can update your choices at any time by visiting this
Customize page,

,.;;;;".1 •. 1,,4'
You can customize the headlines you see on the MSDN Online home page by selecting from the list of
technologies below} or you can choose a template we've preselected just for Web developers, Either
way, your selections will customize what you see under Developer News! Libraries! and Support,

("'. Web Development (.'- None (clears all)
We'll soon offer more preselected technology templates for other developer specialties; write us and
let us know what you'd prefer,

If you select Allow Duplicate Headlines below! your home page will show multiple instances of some
headlines! each tagged for a different technology:

r Allow Duplicate Headlines

Figure 3-5: The MSDN Online customization page.

As you can see from Figure 3-5, there are lots of technologies from which to choose. If
you're interested in Web development, you can choose the Web Development option
button near the top of the Technologies section, and a pre-defined subset of Web­
oriented technologies is selected. For more Win32 Library-oriented technologies, you
can go through and choose the appropriate technologies. If you want to choose all the

Chapter 3 Using Microsoft Reference Resources 23

technologies in a given technology group, check the Include All box in the technology's
shaded title area.

You also can choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News

Voices

Member Community

Events & Training

Support

Personal Links

Search

Libraries

Once you've defined your profile-that is, customized the MSDN Online content you want
to see-MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online's home page, with the categories you've chosen included
in the order you specify. Note that clearing a given check box-such as Libraries-clears
that category from the body of your MSDN Online home page (and excludes headlines
for that category), but does not remove that category from the MSDN Online site
navigation toolbar. In other words, if you clear the category, it won't be part of your
customized MSDN Online page's headlines, but it will still be available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer
you're using, you can direct MSDN Online to create a roaming profile. Creating a
roaming profile for MSDN Online results in your profile being stored on MSDN Online's
server, much like roaming profiles in Windows 2000, and thereby makes your profile
available to you regardless of the computer you're using. The option of creating a
roaming profile is available when you customize your MSDN Online home page (and can
be done any time thereafter). The creation of a roaming profile, however, requires that
you become a registered member of MSDN Online. More information about becoming a
registered MSDN Online user is provided in the section titled MSDN Online Registered
Users.

Exploring MSDN Online
Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, exploring MSDN Online is really easy. A banner that sits just
below the MSDN Online logo functions as a navigation toolbar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

The available menu categories-which group the available sites and features within
MSDN Online-include:

Home

Libraries

Downloads

Search MSDN

Voices

Community

Site Guide

24 Volume 1 Microsoft Windows Base Services

The navigation toolbar is available regardless of where you are in MSDN Online, so the
capability to explore the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Photo Credits: PhotoDisc

online resource for developers. Here's some information to guide you through the site:

a chronological list all the latest information posted to the MSDN Online site.

See About MSDN to learn about the MSDN subscription program, the MSDN ISV program,
newsletter, and more.

decode the latest term or acronym that has you stumped.

I us how we can make the site easier to use and what kinds of information you'd like to see

Did you find this mat.erial useful? Gripes? Complirrlf::nts? Suggestions for other articles? Write us.!

© 1999 Microsoft Corporation, All rights reser ... ed. Terms of use.

Figure 3-6: The MSDN Online navigation toolbar with its drop-down menus.

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that contain the
features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation toolbar takes you to the
MSDN Online home page that you've customized (perhaps), showing you all the latest
headlines for technologies that you've indicated you're interested in reading about.

Voices is a collection of columns and articles that make up MSDN Online's magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

Each "voice" in the Voices site adds its own particular twist to the issues that developers
face. Both application and Web developers can get their fill of magazine-like articles from
the sizable list of different articles available (and frequently refreshed) in the Voices site.

Code Comer ... '

Geek Speak.
Office Talk.

Dup C++.
Ask Jane.
Dr. Gut.

Q

fill Voices Archive

Chapter 3 Using Microsoft Reference Resources 25

Updated JlJn~ 211 1999

Parsing and Sharing
XML is all about sharing. Columnist Charlie Heinemann talks about the Microsoft XML
parser~ and how XML can make your data available.

Incorporating Digital Media Acquisition into Site Design
Nadja Vol Ochs details how to implement digital rights management on Web sites.

Handling Exceptions in C and C++, Part 3
In his third inmllment on exception handling~ columnist Robert Schmidt addresses
the syntax and semantics of Standard c++ exception handling,

by Nildjil
VolOeh:;

by Robert
Schmidt

Figure 3-7: The Voices home page.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can explore in traditional MSDN fashion, and
gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to explore the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

26 Volume 1 Microsoft Windows Base Services

ESSENTIALS ..

Component Development oil<

Content a. Component Deliv@ry ..

Data A,ces$ a. Databases ..

Design.

DHTML, HTML & CBS ..

Languages: e, Dellelopment Tools ..

Messaging & Collaboration ..

Networ.king, Protocols ..
8. Data Formats

Reusing Browser Technology ..

Security & Cryptography ..

Serlier Technologies ..

Streaming 8. Interactive Media 1&

Web Content Management '"

XML (Extensible Mark'Jp Language) ..

ESSENTIALS

This section contains core
information and references,
including information on
authoring for different
browsers and platforms, end­
to-end examples of working
Web sites, slides from
conferences, specs, and
comprehensive links to
references and standards,

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies, including
reference material and in­
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's r~ew page
for updates.

The MSDN Online team

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

Figure 3-8: The Web Workshop home page, with its bulleted list of exploration
start points.

Join '"
'(OUf Membership ..

OSIGs ..

Member Gatette ..

Case Studies ..

Downloads ..

Members Helping ..
Member::>

Offers ..

Training ..

MSDN Stores '"

Welcome to the MSDN Online Member Community
Updated June 4, 1999

With an MSDN Online membership, developers can easily access technical
information, tools, and a community of developers ready to help solve the
toughest challenges. and take advantage of member benefits.

Online Special-Interest Groups

Access the information you need, when you need it, with
(OSIGs). Web-based access to relevant newsgroups, sorted by product,

make it easy for you to get information you need to do your job. Take advantage
of special offers, find useful links, and stay up to date with the latest product and
technology news,

Members Helping Members

Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the
developer community. Get answers quickly by searching the MHM database for
people who can answer your technical questions, Or, register as a volunteer and
help other developers when they need it. Sign up now!

MSDN Online Certified Membership

Micros i 1 benefits with their MSDN Online .

Figure 3-9: The Community home page.

"""""""'"

Exdlange/UYtlook

Internet
InmlTnaticn

SQi..Servel"

VisUal Basic

Visual C++

Chapter 3 Using Microsoft Reference Resources 27

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated to the latest and
greatest releases over the Internet, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn. microsoft. comldownloads. The Downloads home page is shown in Figure 3-10.

Tools.

Samples •
Images _

Sounds _

Subscriber •
Do nloads

Welcome to the M5DN Online Downloads Area

Tool.
Want to tryout some great new products? Check out our tools area, where MSDN Online members and
Quests can download o er 40 trial, beta and full versions of the li!!Itest developer products,

Sample.
In this section, you will find a great variety of samples which demonstrate ways to use the latest and
oreatest Microsoft technologies to make your applications the best they c.!IIn be. All so/!Imples have code
that can be downloaded, most can be browsed online, and many h.ellve live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology,
Entries prefixed with i: Bre for users registered with Visual studio only -- to get access to these,
register your product todBY.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understBnd
end-to-end application architecture and design,

Images
Download Web-ready images forfree from our Images Downloads area, Currently, we have ell great
collection created by Little Men's Studio, Inc, Little Men's Studio provides original clip art collections,
icons, and free quotes on affordable custom graphics, Our image categories include rules, clip art,
buttons, bullets, photographs, and more. We will be updating this collection with more images so be
sure to check back frequently,

Figure 3-10: The Downloads home page.

The Site Guide is just what its name suggests: a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online, such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. comlsiteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either of the libraries (Library or Web
Workshop), as well as other finely tuned search capabilities. The Search MSDN home
page can be linked to directly at msdn.microsoft.comlsearch. The Search MSDN home
page is shown in Figure 3-11.

28 Volume 1 Microsoft Windows Base Services

1. Enter your search word(s) or phrase, or select a saved phrase from the drop-down list:

[E~t.~r. .. P..~.r,~.~,~...n j I ~~.~ .. ~ .. ~ ~.~.~r.~~ ... I;!~r.a5!:'.~ .. iiI _
2. Select your search criteria:

3. Specify your search scope:

t;" All sections of MSDN Library

C Selected sections of MSDN Library

Il: Visual studio Documentation

R: Visual Basic Documentation

(;J: Visual c++ Documentation

Rl Visual Fox Pro Documentation

p Visual InterDev Documentation

r;;! Visual J++ Documentation

Pl Visual Source Safe Documentation

Pi Tools & Technologies (including Win CE)

R: Other SDK Documentation

R: DDK Documentation

R'i Windows Resource Kits

R! Specifications

PI Technicollil Articles

P: Backgrounders

~ Books and Partiollil Books

P' Periodicals

Figure 3-11: The Search MSDN home page.

MSDN Online Registered Users
You might have noticed that some features of MSDN Online-such as the capability to
create a roaming profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough of a reason to register; rather than attempting to call your
developer buddy for an answer to a question (only to find out that she's on vacation for
two days, and your deadline is in a few hours), you can go to MSDN Online's Community
site and ferret through your OSIG to find the answer in a handful of clicks. Who knows?
Maybe your developer buddy will begin calling you with questions-you don't have to tell
her where you're getting all your answers.

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox-if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs-again, only if

Chapter 3 Using Microsoft Reference Resources 29

you want to. It's easy for me to suggest that you become a registered user for MSDN
Online-I'm a registered user, and it's a great resource.

The Windows Programming Reference Series
The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling them to get their work done as efficiently
as possible. In addition to providing reference material for Microsoft technologies, each
Pack in the Windows Programming Reference Series also includes material that helps
developers get the most out of its technologies, and provides insights that might
otherwise be difficult to find.

The Windows Programming Reference Series currently includes the following Packs:

Win32 Library

Directory Services Library

Networking Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for prospective
Windows Programming Reference Series Packs that cover the following material:

COM/DCOM 2.0 Library

Web Reference Library

Web Technologies Library

What else might you find in the future? Planned topics, such as a Security Pack,
Language Reference Pack, MFC Pack, BackOffice Pack, or other pertinent topics that
developers using Microsoft products need in order to get the most out of their
development efforts, are prime subjects for future membership in the Windows
Programming Reference Series. If you have feedback you want to provide on such
packs, or on the Windows Programming Reference Series in general, you can send e­
mail to the following address:

winprs@microsoft.com

If you're sending e-mail about a particular pack, make sure you put the name of the pack
in the subject line. For example, an e-mail about the Win32 Library would have a subject
line that reads "Win32 Library." There aren't any guarantees that you'll get a reply, but I'll
read all of the e-mail and do what I can to ensure your comments, concerns, or
(especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

31

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a lot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.com/supportlcustomer/develop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft's support services.

32 Volume 1 Microsoft Windows Base Services

Microsoft offers a wide variety of support for Developers. The ~
Developer Network (MSDN) is packed with news. resources and technical

f"'-"'-"-"=""-"''''--'r,J;lI1 ~:~!~~~~~~a:~~ ~h::~o~I~:~rs~:~~~~:r~n~i~i:~~pnplliloa:~;.~~: :~~~~:gpef~!

: It! Business Solutions
· m Partners It Resellers

Developet'!ll
Homa UlIIOer

Education

our regular e-mail news watch.

Microsoft: offers developers with Premiar SUpport for Dayeloper. Pay-per­
Incident Support, Priority Annual Support and spac:ial consulting sarvicas. If
you need more than occasional dey eloper support, one of these options is:
sura to be right for you,

DO you need help now?

Go to the Microsoft Deyeloper Network (MSDN) Support SerlliceD6Isk.

Support Options

prl!!!ooier Sypport for Deyelopers
priority Annual Sypport
P -P'r-Indd"'ot support
Consult Line

For additional Information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 641<)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out more
information about Microsoft's Premier Support, get in contact with them at 1-800-936-
2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 33

As a developer, the best support option for you is the Priority Developer Support. To get
more information about Priority Developer Support, you can reach Microsoft at 1-800-
936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there's
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can't be broken down into sub-issues or sub-problems (that
is, it can't be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support.microsoft.comlsupportlwebresponse.asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.comlsupportlnews.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer's Reference Library, and they are the following:

microsoft. public. win32.programmer. *

microsoft. public. vc. *

microsoff.public. vb. *

microsoft.public.platformsdk. *

microsoft.public.cert. *

microsoft.public.certification. *

34 Volume 1 Microsoft Windows Base Services

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products
Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as Visual
C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a particular
product (such as Sal Server or Commerce Server) is to go through and read the
preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do---there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don't have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn't know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are "tracks"
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 35

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0 (70-
016)

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft Sal Server 7.0 and
Microsoft Decision Support Services 1.0

• Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

• Implementing OLE in Microsoft Foundation Class Library 4.0 Applications

• Implementing a Database Design on Microsoft Sal Server 6.5

• Designing and Implementing Databases with Microsoft Sal Server 7.0

• Designing and Implementing Web Sites with Microsoft FrontPage 98

• Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

• Microsoft Access for Windows 95 and the Microsoft Access Developer's Toolkit

• Designing and Implementing Solutions with Microsoft Office 2000 and Microsoft
Visual Basic for Applications

36 Volume 1 Microsoft Windows Base Services

• Designing and Implementing Database Applications with Microsoft Access 2000

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

• Designing and Implementing Web Solutions with Microsoft VisuallnterDev 6.0

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

• Developing Applications with Microsoft Visual Basic 5.0

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn't that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you-regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams-and don't be fooled by believing that if the book is bigger it must be better,
because that certainly isn't always the case-and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.comltrain_cert/dev.

Conferences
As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year-occurring throughout the country and around the
world-on various topics. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site

Chapter 4 Finding the Developer Resources You Need 37

for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events. microsoft. com.

Other Resources
There are other resources available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The listing of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need: it's geared toward getting you 100 percent of the
way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSDN Online or MeSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and-who
knows?-maybe someone else will benefit from your knowledge:

winprs@microsoft.com

If you're sending e-mail about a particularly useful resource, type "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the e­
mail and do what I can to ensure your resource idea gets considered.

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 1

It's impossible to cover everything that a developer might run into when creating a
Windows application, but there are common problems that crop up during the
development process that can be addressed. This chapter-Chapter 5-presents a
series of simple but common programming errors for which developers of Windows
applications should look out during the development process.

39

Each Chapter 5 in this pack contains different information. With the tips provided by each
volume's Chapter 5 contribution, I hope you'll find the error-avoidance information
collectively covered to be fairly useful. The information provided in this collection of five
chapters is broken down in the following form:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

Overview
In order to provide an idea of what you can expect in the next four volumes' Chapter 5
content, the following list outlines the contents of each volume's particular area of
common programming errors. It's a bit like a table of contents, with the intention of
pointing you to the information you might be interested in on a given error-prone
programming day (that's probably a Monday morning, or late Friday afternoon).

Volume 2: User Interface
Avoiding Invalid Validations

Handle-Based Objects

Correlated Parameters

Limits of Exception Handling

Alternate Code Paths

Trusted Data Sources

40 Volume 1 Microsoft Windows Base Services

Volume 3: GOI
RPC Errors and Kernel·Mode Specifiers

RPC Errors

Kernel-Mode Specifiers

Volume 4: Common Controls
Buffer Overflows and Miscellaneous Errors

Buffer Overflows

Miscellaneous Errors

Volume 5: The Windows Shell
Memory Abuse and Miscalculations

Memory Abuse

Miscalculations

Solution Summary
Since you have this book in your hand, you might want to know the short answers to
these problems. In order to satisfy that request, this section provides the short-answer
listings from each of the summary sections in the other volumes. If you find that these
short answers don't provide the specifics you need, grab the volume in which the long
answers are provided. Just so you don't have to do too much book juggling, each
volume's Chapter 5 also includes the short answers from this list associated with the
errors its content covers.

Volume 2: Avoiding Invalid Validations

1. Working with handle-based objects: Validate all objects referenced by generic
handles.

2. Verify correlated parameters: Don't assume correlation between parameters-verify
all supposedly correlated data.

3. Limits of exception handling: Exception handling is not always the answer. Check
return values and error codes whenever possible.

4. Alternate code paths: Include parameter validation in alternate (private) interfaces, or
reject calls from untrusted sources.

5. Trusted data sources: Treat all data as suspect.

Chapter 5: Getting the Most Out of Win32 Technologies: Part 1 41

Volume 3: RPe Errors and Kernel-Mode Specifiers

RPC Errors

1. pointecdefault(unique) and embedded pointers: Check unique pOinters for NULL
before dereferencing.

2. A valid switch_is value in an RPC-capable structure doesn't ensure a non-NULL
pointer: When using a switch_is construct that has a default clause:

• Verify that the value switching on is within expected range.

• Verify that pointers within the switched object are not null before dereferencing
them.

3. A NULL DACL affords no protection: Don't use NULL DACLs-they don't protect
anything.

4. Call RpclmpersonateClient() before any security relevant operation: Impersonate
before acting on behalf of the caller, and check the result.

5. Starting and stopping impersonation: Stop impersonating when finished acting on
behalf of the caller, and check the result.

6. Strings are only zero-terminated when declared with string in the .idl: Don't expect
strings to be zero-terminated unless string is specified in the .idl file.

7. Don't copy arbitrary length data into independently sized buffers: This one's self­
answering!

8. size_is may result in a zero-length structure; it is not safe to dereference this without
first checking its length: Check the length of size_is-specified data before
de referencing corresponding pOinters.

9. Calculations in a size_is or length_is specification are susceptible to overflow: Be
aware that calculations in MIDL definitions using size_is and length_is can overflow,
and that it can be impossible for the server to detect this.

10. Strict context handles: Use strict context handles.

Kernel-Mode Specifiers

1. Don't access user-provided memory without probing: Probe any user-provided
pOinters within a try-except before reading or writing.

2. Don't do multiple user-mode reads without captures: Read user-mode memory only
once; capture it for subsequent uses.

3. Never trust the TEB: Don't trust any user-mode contents.

4. Avoid race conditions when modifying kernel data on user request: Use locks to
protect objects that can be changed by multiple threads.

5. Dealing with common interfaces for user mode and kernel mode: Never call kernel
routines without access checking objects passed to them.

6. Validating buffered I/O in device drivers: Validate buffer sizes for buffered I/O.

7. METHOD_NEITHER requires full probe and capture: Validate parameters on
METHOD_NEITHER.

42 Volume 1 Microsoft Windows Base Services

Volume 4: Buffer Overflows and Miscellaneous Errors

Buffer Overflows

1. Simple buffer overflow: Always check actual buffer size when accessing a buffer,
instead of some known maximum.

2. Size overflow or underflow: When using an offset address, ensure that the location is
not beyond either end of the buffer.

3. Abuse of enumerated types: On complex size calculations, ensure that total size is
greater than the fixed header.

4. Using internal lengths for comparisons to external input: Beware of strings without
NULL termination. If there is a size, use it!

Miscellaneous Errors

1. Dangers of typecasting: Be careful when casting input data to another type.

2. Operator precedence: Double-check precedence order in complex expressions.

3. Conditional termination confusion: Ensure that all clauses of a compound conditional
are equivalent (each result should execute the same code), or are special-cased,
where appropriate.

4. Misuse of OPTIONAL parameters: Check all pOinter parameters for NULL (especially
optional parameters)

5. Return value confusion and inconsistencies: Don't hard-code strings in code (for
example, "Administrators").

6. Don't rely on volatile objects: Beware of multiple checks of volatile data.

7. Avoid spinlock order problems: Always acquire locks in a consistent order.

8. Determining membership in Administrators group: Beware of (and, preferably,
eliminate or reduce) inconsistencies with common interfaces (for example,
GetLastError and functions returning handles).

Volume 5: Memory Abuse and Miscalculations

Memory Abuse

1. Allocation failures: Always check for allocation failure.

2. Uninitialized memory: Always initialize data.

3. Leaks: Release (free/delete) any allocation after it is no longer needed.

4. Using freed resources: After memory is released, don't access it again! (Suggestion:
Set the pointer to NULL on free.)

5. Resource attacks: Have quotas for how much a client can allocate (and ensure client
specific data is protected).

Chapter 5: Getting the Most Out of Win32 Technologies: Part 1 43

Miscalculations

1. Division by zero: Be sure to check for zero for any division.

2. Signed versus unsigned variables: Any signed value can be negative. Furthermore,
be wary of the following:

• Implicit signed values. The values int and enum are signed; char is signed on x86,
but not on Alpha.

• Use unsigned values where signed values don't make sense. Counts and lengths
are not negative.

• For range checks, check both upper and lower bounds (or specify unsigned).

3. Floating-point variables: All floating-point operations should be surrounded by try­
except protection.

45

CHAPTER 6

Processes, Threads, and DLLs

Processes and Threads
A Win32-based application consists of one or more processes. A process, in the
simplest terms, is an executing program. One or more threads run in the context of the
process. A thread is the basic unit to which the operating system allocates processor
time. A thread can execute any part of the process code, including parts currently being
executed by another thread. A fiber is a unit of execution that must be manually
scheduled by the application. Fibers run in the context of the threads that schedule
them.

A job object allows groups of processes to be managed as a unit. Job objects are
namable, securable, sharable objects that control attributes of the processes associated
with them. Operations performed on the job object affect all processes associated with
the job object.

About Processes and Threads
Each process provides the resources needed to execute a program. A process has a
virtual address space, executable code, data, object handles, environment variables, a
base priority, and minimum and maximum working set sizes. Each process is started
with a single thread, often called the primary thread, but can create additional threads
from any of its threads.

All threads of a process share its virtual address space and system resources. In
addition, each thread maintains exception handlers, a scheduling priority, and a set of
structures the system will use to save the thread context until it is scheduled. The thread
context includes the thread's set of machine registers, the kernel stack, a thread
environment block, and a user stack in the address space of the thread's process.

Windows NT/2000 and Windows 95/98 support preemptive multitasking, which creates
the effect of simultaneous execution of multiple threads from multiple processes. On a
multiprocessor computer, Windows NT/2000 can simultaneously execute as many
threads as there are processors on the computer.

Multitasking
A multitasking operating system divides the available processor time among the
processes or threads that need it. The system is designed for preemptive multitasking; it
allocates a processor time slice to each thread it executes. The currently executing
thread is suspended when its time slice elapses, allowing another thread to run. When

46 Volume 1 Microsoft Windows Base Services

the system switches from one thread to another, it saves the context of the preempted
thread and restores the saved context of the next thread in the queue.

The length of the time slice depends on the operating system and the processor.
Because each time slice is small (approximately 20 milliseconds), multiple threads
appear to be executing at the same time. This is actually the case on multiprocessor
systems, where the executable threads are distributed among the available processors.
However, you must use caution when using multiple threads in an application, because
system performance can decrease if there are too many threads.

Advantages of Multitasking
To the user, the advantage of multitasking is the ability to have several applications open
and working at the same time. For example, a user can edit a file with one application
while another application is recalculating a spreadsheet.

To the application developer, the advantage of multitasking is the ability to create
applications that use more than one process and to create processes that use more than
one thread of execution. For example, a process can have a user interface thread that
manages interactions with the user (keyboard and mouse input), and worker threads that
perform other tasks while the user interface thread waits for user input. If you give the
user interface thread a higher priority, the application will be more responsive to the
user, while the worker threads use the processor efficiently during the times when there
is no user input.

When to Use Multitasking
There are two ways to implement multitasking: as a single process with multiple threads
or as multiple processes, each with one or more threads. An application can put each
thread that requires a private address space and private resources into its own process,
to protect it from the activities of other process threads.

A multithreaded process can manage mutually exclusive tasks with threads, such as
providing a user interface and performing background calculations. Creating a
multithreaded process can also be a convenient way to structure a program that
performs several similar or identical tasks concurrently. For example, a named pipe
server can create a thread for each client process that attaches to the pipe. This thread
manages the communication between the server and the client. Your process could use
multiple threads to accomplish the following tasks:

• Manage input for multiple windows.

• Manage input from several communications devices.

• Distinguish tasks of varying priority. For example, a high-priority thread manages
time-critical tasks, and a low-priority thread performs other tasks.

• Allow the user interface to remain responsive, while allocating time to background
tasks.

Chapter 6 Processes, Threads, and DLLs 47

It is typically more efficient for an application to implement multitasking by creating a
single, multithreaded process, rather than creating multiple processes, for the following
reasons:

• The system can perform a context switch more quickly for threads than processes,
because a process has more overhead than a thread does (the process context is
larger than the thread context).

• All threads of a process share the same address space and can access the global
variables of the process, which can simplify communication between threads.

• All threads of a process can share open handles to resources, such as files and
pipes.

The Win32 API also provides alternative methods that can be used in the place of
multithreading. The most significant of these methods are asynchronous input and
output (I/O), I/O completion ports, asynchronous procedure calls (APe), and the ability to
wait for multiple events.

A single thread can initiate multiple time-consuming I/O requests that can run
concurrently using asynchronous I/O. Asynchronous I/O can be performed on files,
pipes, and serial communication devices. For more information, see Synchronization and
Overlapped Input and Output.

A single thread can block its own execution while waiting for anyone or all of several
events to occur. This is more efficient than using multiple threads, each waiting for a
single event, and more efficient than using a single thread that consumes processor time
by continually checking for events to occur. For more information, see Wait Functions.

Multitasking Considerations
The recommended guideline is to use as few threads as pOSSible, thereby minimizing the
use of system resources. This improves performance. Multitasking has resource
requirements and potential conflicts to be considered when designing your application.
The resource requirements are as follows:

• The system consumes memory for the context information required by both processes
and threads. Therefore, the number of processes and threads that can be created is
limited by available memory.

• Keeping track of a large number of threads consumes significant processor time. If
there are too many threads, most of them will not be able to make significant
progress. If most of the current threads are in one process, threads in other processes
are scheduled less frequently.

Providing shared access to resources can create conflicts. To avoid them, you must
synchronize access to shared resources. This is true for system resources (such as
communications ports), resources shared by multiple processes (such as file handles),
or the resources of a single process (such as global variables) accessed by multiple
threads. Failure to synchronize access properly (in the same or in different processes)
can lead to problems such as deadlock and race conditions. The Win32 API provides a

48 Volume 1 Microsoft Windows Base Services

set of synchronization objects and functions you can use to coordinate resource sharing
among multiple threads. For more information about synchronization, see Synchronizing
Execution of Multiple Threads. Reducing the number of threads makes it easier and
more effective to synchronize resources.

A good design for a multithreaded application is the pipeline server. In this design, you
create one thread per processor and build queues of requests for which the application
maintains the context information. A thread would process all requests in a queue before
processing requests in the next queue.

Scheduling
The system scheduler controls multitasking by determining which of the competing
threads receives the next processor time slice. The scheduler determines which thread
runs next using its scheduling priority.

Scheduling Priorities
Each thread is assigned a scheduling priority. The priority levels range from zero (lowest
priority) to 31 (highest priority). Only the zero-page thread can have a priority of zero.
The zero-page thread is a system thread.

The priority of each thread is determined by the following criteria:

• The priority class of its process

• The priority level of the thread within the priority class of its process

The priority class and priority level are combined to form the base priority of a thread.

Priority Class

Each process belongs to one of the following priority classes:

IDLE_PRIORITY _CLASS
BELOW_NORMAL_PRIORITY _CLASS
NORMAL_PRIORITY _CLASS
ABOVE_NORMAL_PRIORITY _CLASS
HIGH_PRIORITY _CLASS
REAL TIME_PRIORITY _CLASS

Windows 2000: Note that BELOW_NORMAL_PRIORITY _CLASS and
ABOVE_NORMAL_PRIORITY _CLASS are new for Windows 2000.

By default, the priority class of a process is NORMAL_PRIORITY _CLASS. Use the
CreateProcess function to specify the priority class of a child process when you create
it. If the calling process is IDLE_PRIORITY _CLASS or
BELOW_NORMAL_PRIORITY _CLASS, the new process will inherit this class. Use the
GetPriorityClass function to determine the current priority class of a process and the
SetPriorityClass function to change the priority class of a process.

Chapter 6 Processes, Threads, and DLLs 49

Processes that monitor the system, such as screen savers or applications that
periodically update a display, should use IDLE_PRIORITY _CLASS. This prevents the
threads of this process, which do not have high priority, from interfering with higher
priority threads.

Use HIGH_PRIORITY _CLASS with care. If a thread runs at the highest priority level for
extended periods, other threads in the system will not get processor time. If several
threads are set at high priority at the same time, the threads lose their effectiveness. The
high-priority class should be reserved for threads that must respond to time-critical
events. If your application performs one task that requires the high-priority class while
the rest of its tasks are normal priority, use SetPriorityClass to raise the priority class of
the application temporarily; then reduce it after the time-critical task has been completed.
Another strategy is to create a high-priority process that has all of its threads blocked
most of the time, awakening threads only when critical tasks are needed. The important
point is that a high-priority thread should execute for a brief time, and only when it has
time-critical work to perform.

You should almost never use REAL TIME_PRIORITY _CLASS, because this interrupts
system threads that manage mouse input, keyboard input, and background disk flushing.
This class can be appropriate for applications that "talk" directly to hardware or that
perform brief tasks that should have limited interruptions.

Priority Level

The following are priority levels within each priority class:

THREAD_PRIORITY _IDLE
THREAD_PRIORITY _LOWEST
THREAD_PRIORITY _BELOW_NORMAL
THREAD_PRIORITY _NORMAL
THREAD_PRIORITY _ABOVE_NORMAL
THREAD_PRIORITY _HIGHEST
THREAD_PRIORITY _TIME_CRITICAL

All threads are created using THREAD_PRIORITY _NORMAL. This means that the
thread priority is the same as the process priority class. After you create a thread, use
the SetThreadPriority function to adjust its priority relative to other threads in the
process.

A typical strategy is to use THREAD_PRIORITY _ABOVE_NORMAL or
THREAD_PRIORITY _HIGHEST for the process's input thread, to ensure that the
application is responsive to the user. Background threads, particularly those that are
processor intensive, can be set to THREAD_PRIORITY _BELOW_NORMAL or
THREAD_PRIORITY _LOWEST, to ensure that they can be preempted when necessary.
However, if you have a thread waiting for another thread with a lower priority to complete
some task, be sure to block the execution of the waiting high-priority thread. To do this,
use a wait function, critical section, or the Sleep function, SleepEx, or SwitchToThread
function. This is preferable to having the thread execute a loop. Otherwise, the process
may become deadlocked, because the thread with lower priority is never scheduled.

50 Volume 1 Microsoft Windows Base Services

1
1

1
1

1
2

3
4

4

5

5

5

6

6

6

7

7

7

8

8

8

8

9

9

9

10

10

To determine the current priority level of a thread, use the GetThreadPriority function.

Base Priority

The priority level of a thread is determined by both the priority class of its process and its
priority level. The priority class and priority level are combined to form the base priority of
each thread.

The following table shows the base priority levels for combinations of priority class and
priority value.

Process Priority Class Thread Priority Level

IDLE_PRIORITY _CLASS THREAD_PRIORITY _IDLE

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _IDLE

NORMAL_PRIORITY _CLASS THREAD_PRIORITY _IDLE

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _IDLE

HIGH_PRIORITY _CLASS THREAD_PRIORITY _IDLE

IDLE_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

IDLE_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

IDLE_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

IDLE_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

Background NORMAL_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

IDLE_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

Background NORMAL_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

Background NORMAL_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

Foreground NORMAL_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

NORMAL_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

Foreground NORMAL_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

NORMAL_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

Foreground NORMAL_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

Foreground NORMAL_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

11
11
11
12
12
13
14
15
15
15
15
15
15
16
22
23
24
25
26
31

Chapter 6 Processes, Threads, and DLLs 51

Foreground NORMAL_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

HIGH_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

HIGH_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

HIGH_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

HIGH_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

HIGH_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

HIGH_PRIORITY _CLASS THREAD_PRIORITY _TIME_CRITICAL

IDLE_PRIORITY _CLASS THREAD_PRIORITY _TIME_CRITICAL

BELOW_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _TIME_CRITICAL

NORMAL_PRIORITY _CLASS THREAD_PRIORITY _TIME_CRITICAL

ABOVE_NORMAL_PRIORITY _CLASS THREAD_PRIORITY _TIME_CRITICAL

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _IDLE

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _LOWEST

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _BELOW_NORMAL

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _NORMAL

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _ABOVE_NORMAL

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _HIGHEST

REAL TIME_PRIORITY _CLASS THREAD_PRIORITY _TIME_CRITICAL

Context Switches
The scheduler maintains a queue of executable threads for each priority level. These are
known as ready threads. When a processor becomes available, the system performs a
context switch. The steps in a context switch are:

1. Save the context of the thread that just finished executing.

2. Place the thread that just finished executing at the end of the queue for its priority.

3. Find the highest priority queue that contains ready threads.

4. Remove the thread at the head of the queue, load its context, and execute it.

The following classes of threads are not ready threads.

• Threads created with the CREATE_SUSPENDED flag

• Threads halted during execution with the SuspendThread or SwitchToThread
function

• Threads waiting for a synchronization object or input.

Until threads that are suspended or blocked become ready to run, the scheduler does
not allocate any processor time to them, regardless of their priority.

52 Volume 1 Microsoft Windows Base Services

The most common reasons for a context switch are:

• The time slice has elapsed.

• A thread with a higher priority has become ready to run.

• A running thread needs to wait.

When a running thread needs to wait, it relinquishes the remainder of its time slice.

Priority Boosts
Each thread has a dynamic priority. This is the priority the scheduler uses to determine
which thread to execute. Initially, a thread's dynamic priority is the same as its base
priority. The system can boost and lower the dynamic priority, to ensure that it is
responsive and that no threads are starved for processor time. The system does not
boost the priority of threads with a base priority level between 16 and 31. Only threads
with a base priority between 0 and 15 receive dynamic priority boosts.

The system boosts the dynamic priority of a thread to enhance its responsiveness as
follows:

• When a process that uses NORMAL_PRIORITY _CLASS is brought to the foreground,
the scheduler boosts the priority class of the process associated with the foreground
window, so that it is greater than or equal to the priority class of any background
processes. The priority class returns to its original setting when the process is no
longer in the foreground.

Windows NT/2000: The user can control the boosting of processes that use
NORMAL_PRIORITY _CLASS through the System control panel application ..

• When a window receives input, such as timer messages, mouse messages, or
keyboard input, the scheduler boosts the priority of the thread that owns the window.

• When the wait conditions for a blocked thread are satisfied, the scheduler boosts the
priority of the thread. For example, when a wait operation associated with disk or
keyboard 110 finishes, the thread receives a priority boost.

Windows NT/2000: You can disable the priority-boosting feature by calling the
SetProcessPriorityBoost or SetThreadPriorityBoo$t function. To determine
whether this feature has been disabled, call the GetProcessPriorityBoost or
GetThreadPriorityBoost function.

After raising a thread's dynamic priority, the scheduler reduces that priority by one level
each time the thread completes a time slice, until the thread drops back to its base
priority. A thread's dynamic priority is never less than its base priority.

Priority Inversion
Priority inversion occurs when two or more threads with different priorities are in
contention to be scheduled. Consider a simple case with three threads: thread 1, thread
2, and thread 3. Thread 1 is high priority and becomes ready to be scheduled. Thread 2,
a low-priority thread, is executing code in a critical section. Thread 1, the high-priority
thread, begins waiting for a shared resource from thread 2. Thread 3 has medium

Chapter 6 Processes, Threads, and DLLs 53

priority. Thread 3 receives all the processor time, because the high-priority thread
(thread 1) is waiting for shared resources from the low-priority thread (thread 2). Thread
2 won't leave the critical section, because does not have the highest priority and won't
be scheduled.

• Windows NT/2000: The scheduler solves this problem by randomly boosting the
priority of the ready threads (in this case, the low-priority lock-holders). The low­
priority threads run long enough to exit the critical section, and the high-priority thread
can enter the critical section. If the low-priority thread doesn't get enough CPU time to
exit the critical section the first time, it will get another chance during the next round of
scheduling.

• Windows 95: If a high-priority thread is dependent on a low-priority thread that will
not be allowed to run because a medium priority thread is getting all of the CPU time,
the system recognizes that the high-priority thread is dependent on the low-priority
thread. It will boost the low-priority thread's priority up to the priority of the high-priority
thread. This will allow the thread that formerly had the lowest priority to run and
release the high-priority thread that was waiting for it.

Multiple Processors
Windows NT uses a symmetric multiprocessing (SMP) model to schedule threads on
multiple processors. With this model, any thread can be assigned to any processor.
Therefore, scheduling threads on a computer with multiple processors is similar to
scheduling threads on a computer with a single processor. However, the scheduler has a
pool of processors, so that it can schedule threads to run concurrently. Scheduling is still
determined by thread priority. However, on a multiprocessor computer, you can also
affect scheduling by setting thread affinity and thread ideal processor, as discussed
here.

Thread Affinity
Thread affinity forces a thread to run on a specific subset of processors. Use the
SetProcessAffinityMask function to specify thread affinity for all threads of the process.
To set the thread affinity for a single thread, use the SetThreadAffinityMask function.
The thread affinity must be a subset of the process affinity. You can obtain the current
process affinity by calling the GetProcessAffinityMask function.

Setting thread affinity should generally be avoided, because it can interfere with the
scheduler's ability to schedule threads effectively across processors. This can decrease
the performance gains produced by parallel processing. An appropriate use of thread
affinity is testing each processor.

Thread Ideal Processor
When you specify a thread ideal processor, the scheduler runs the thread on the
specified processor when possible. Use the SetThreadldealProcessor function to
specify a preferred processor for a thread. This does not guarantee that the ideal
processor will be chosen, but provides a useful hint to the scheduler.

54 Volume 1 Microsoft Windows Base Services

Multiple Threads
Each process is started with a single thread, but can create additional threads from any
of its threads.

Creating Threads
The CreateThread function creates a new thread for a process. The creating thread
must specify the starting address of the code that the new thread is to execute. Typically,
the starting address is the name of a function defined in the program code. This function
takes a single parameter and returns a DWORD value. A process can have multiple
threads simultaneously executing the same function.

The following example demonstrates how to create a new thread that executes the
locally defined function, ThreadFunc.

For simplicity, this example passes a pOinter to a DWORD value as an argument to the
thread function. This could be a pointer to any type of data or structure, or it could be

Chapter 6 Processes, Threads, and DLLs 55

omitted altogether by passing a NULL pointer and deleting the references to the
parameter in ThreadFunc.

It is risky to pass the address of a local variable if the creating thread exits before the
new thread, because the pointer becomes invalid. Instead, either pass a pointer to
dynamically allocated memory or make the creating thread wait for the new thread to
terminate. Data can also be passed from the creating thread to the new thread using
global variables. With global variables, it is usually necessary to synchronize access by
multiple threads. For more information about synchronization, see Synchronizing
Execution of Multiple Threads.

In processes where a thread might create multiple threads to execute the same code, it
is inconvenient to use global variables. For example, a process that enables the user to
open several files at the same time can create a new thread for each file, with each of
the threads executing the same thread function. The creating thread can pass the
unique information (such as the file name) required by each instance of the thread
function as an argument. You cannot use a single global variable for this purpose, but
you could use a dynamically allocated string buffer.

The creating thread can use the arguments to CreateThread to specify the following:

• The security attributes for the handle to the new thread. These security attributes
include an inheritance flag that determines whether the handle can be inherited by
child processes. The security attributes also include a security descriptor, which the
system uses to perform access checks on all subsequent uses of the thread's handle
before access is granted.

• The initial stack size of the new thread. The thread's stack is allocated automatically
in the memory space of the process; the system increases the stack as needed and
frees it when the thread terminates.

• A creation flag that enables you to create the thread in a suspended state. When
suspended, the thread does not run until the ResumeThread function is called.

You can also create a thread by calling the CreateRemoteThread function. This function
is used by debugger processes to create a thread that runs in the address space of the
process being debugged.

Thread Stack Size
Each new thread receives its own stack space, consisting of both committed and
reserved memory. By default, each thread uses 1 MB of reserved memory, and one
page of committed memory. The system will commit one page blocks from the reserved
stack memory as needed, until the stack cannot grow any father. To specify a different
default stack size, use the STACKSIZE statement in the module definition (.DEF) file.
Your linker may also support a command-line option for setting the stack size. For more
. information, see the documentation included with your linker.

To increase the amount of stack space which is to be initially committed for a thread,
specify the value in the dwStackSize parameter of the CreateThread function. This
value is rounded to the nearest page and used to set the initial size of the committed

56 Volume 1 Microsoft Windows Base Services

memory. The call to CreateThread will fail if there is not enough memory to commit the
number of bytes you request. If the dwStackSize value is smaller than the default size,
the new thread uses the same size as the thread that created it.

The stack is freed when the thread terminates.

Thread Handles and Identifiers
When a new thread is created by the CreateThread or CreateRemoteThread function,
a handle to the thread is returned. By default, this handle has full access rights, and­
subject to security access checking-can be used in any of the functions that accept a
thread handle. This handle can be inherited by child processes, depending on the
inheritance flag specified when it is created. The handle can be duplicated by
DuplicateHandle, which enables you to create a thread handle with a subset of the
access rights. The handle is valid until closed, even after the thread it represents has
been terminated.

The CreateThread and CreateRemoteThread functions also return an identifier that
uniquely identifies the thread throughout the system. A thread can use the
GetCurrentThreadld function to get its own thread identifier. The identifiers are valid
from the time the thread is created until the thread has been terminated.

Windows 2000: If you have a thread identifier, you can get the thread handle by calling
the OpenThread function. OpenThread enables you to specify the handle's access
rights and whether it can be inherited.

Windows NT 4.0 and earlier, Windows 95/98: The Win32 API does not provide a way
to get the thread handle from the thread identifier. If the handles were made available
this way, the owning process could fail because another process unexpectedly
performed an operation on one of its threads, such as suspending it, resuming it,
adjusting its priority, or terminating it. Instead, you must request the handle from the
thread creator or the thread itself.

A thread can use the GetCurrentThread function to retrieve a pseudo handle to its own
thread object. This pseudo handle is valid only for the calling process; it cannot be
inherited or duplicated for use by other processes. To get the real handle to the thread,
given a pseudo handle, use the DuplicateHandle function.

Suspending Thread Execution
A thread can suspend and resume the execution of another thread using the
SuspendThread and ResumeThread functions. While a thread is suspended, it is not
scheduled for time on the processor.

The SuspendThread function is not particularly useful for synchronization because it
does not control the point in the code at which the thread's execution is suspended.
However, you might want to suspend a thread in a situation where you are waiting for
user input that could cancel the work the thread is performing. If the user input cancels
the work, have the thread exit; otherwise, call ResumeThread.

Chapter 6 Processes, Threads, and DLLs 57

If a thread is created in a suspended state (with the CREATE_SUSPENDED flag), it
does not begin to execute until another thread calls ResumeThread with a handle to the
suspended thread. This can be useful for initializing the thread's state before it begins to
execute. See Using a Multithreaded Multiple Document Interface Application for an
example that uses this method to modify the thread's priority before it can run.
Suspending a thread at creation can be useful for one-time synchronization, because
this ensures that the suspended thread will execute the starting point of its code when
you call ResumeThread.

A thread can temporarily yield its execution for a specified interval by calling the Sleep or
SleepEx functions. This is useful particularly in cases where the thread responds to user
interaction, because it can delay execution long enough to allow users to observe the
results of their actions. During the sleep interval, the thread is not scheduled for time on
the processor.

The SwitchToThread function is similar to Sleep and SleepEx, except that you cannot
specify the interval. SwitchToThread allows the thread to give up its time slice.

Synchronizing Execution of Multiple Threads
To avoid race conditions and deadlocks, it is necessary to synchronize access by
multiple threads to shared resources. Synchronization is also necessary to ensure that
interdependent code is executed in the proper sequence.

The Win32 API provides a number of objects whose handles can be used to synchronize
multiple threads. These objects include:

• Console input buffers

• Events

• Mutexes

• Processes

• Semaphores

• Threads
• Timers

The state of each of these objects is either signaled or not signaled. When you specify a
handle to any of these objects in a call to one of the wait functions, the execution of the
calling thread is blocked until the state of the specified object becomes signaled.

Some of these objects are useful in blocking a thread until some event occurs. For
example, a console input buffer handle is signaled when there is unread input, such as a
keystroke or mouse button click. Process and thread handles are signaled when the
process or thread terminates. This allows a process, for example, to create a child
process and then block its own execution until the new process has terminated.

Other objects are useful in protecting shared resources from simultaneous access. For
example, multiple threads can each have a handle to a mutex object. Before accessing a
shared resource, the threads must call one of the wait functions to wait for the state of

58 Volume 1 Microsoft Windows Base Services

the mutex to be signaled. When the mutex becomes signaled, only one waiting thread is
released to access the resource. The state of the mutex is immediately reset to not
signaled so any other waiting threads remain blocked. When the thread is finished with
the resource, it must set the state of the mutex to signaled to allow other threads to
access the resource.

For the threads of a single process, critical-section objects provide a more efficient
means of synchronization than mutexes. A critical section is used like a mutex to enable
one thread at a time to use the protected resource. A thread can use the
EnterCriticalSection function to request ownership of a critical section. If it is already
owned by another thread, the requesting thread is blocked. A thread can use the
TryEnterCriticalSection function to request ownership of a critical section, without
blocking upon failure to obtain the critical section. After it receives ownership, the thread
is free to use the protected resource. The execution of the other threads of the process
is not affected unless they attempt to enter the same critical section.

The WaitForlnputldle function makes a thread wait until a specified process is initialized
and waiting for user input with no input pending. Calling WaitForlnputldle can be useful
for synchronizing parent and child processes, because CreateProcess returns without
waiting for the child process to complete its initialization.

For more information, see Synchronization.

Multiple Threads and GOI Objects
To enhance performance, access to graphical device interface (GOI) objects (such as
palettes, device contexts, regions, and the like) is not serialized. This creates a potential
danger for processes that have multiple threads sharing these objects. For example, if
one thread deletes a GOI object while another thread is using it, the results are
unpredictable. This danger can be avoided simply by not sharing GOI objects. If sharing
is unavoidable (or desirable), the application must provide its own mechanisms for
synchronizing access. For more information about synchronizing access, see
Synchronizing Execution of Multiple Threads.

Thread Local Storage
All threads of a process share the virtual address space and the global variables of that
process. The local variables of a thread function are local to each thread that runs the
function. However, the static or global variables used by that function have the same
value for all threads. With thread local storage (TLS), you can create a unique copy of a
variable for each thread. Using TLS, one thread allocates an index that can be used by
any thread of the process to retrieve its unique copy.

Use the following steps to implement TLS:

1. Use the TlsAlioc function during process or dynamic-link library (OLL) initialization to
allocate a TLS index.

2. For each thread that needs to use the TLS index, allocate dynamic storage, then use
the TlsSetValue function to associate the index with a pOinter to the dynamic storage.

Chapter 6 Processes, Threads, and DLLs 59

3. When you need a thread to access its storage, specify the TLS index in a call to the
TlsGetValue function to retrieve the pointer.

4. When each thread no longer needs the dynamic storage that it has associated with a
TLS index, it must free the index. When all threads have finished using a TLS index,
use the TlsFree function to free the index.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes
available in each process. This minimum is guaranteed to be at least 64 for all systems.

Windows 2000: There is a limit of 1088 TLS indexes per process.

Windows NT 4.0 and earlier: There is a limit of 64 TLS indexes per process.

It is ideal to use TLS in a DLL. Perform the initial TLS operations in the DIiMain function
in the context of the process or thread attaching to the DLL. When a new process
attaches to the DLL, call TlsAlioc in the entry-point function to allocate a TLS index for
that process. Then store the TLS index in a global variable that is private to each
attached process. When a new thread attaches to the DLL, allocate dynamic memory for
that thread in the entry-point function, and use TlsSetValue with the TLS index from
TlsAlioc to save private data to the index. Then you can use the TLS index in a call to
TlsGetValue to access the private data for the calling thread from within any function in
the DLL. When a process detaches from the DLL, call TlsFree.

For an example illustrating the use of thread local storage, see Using Thread Local
Storage.

Creating Windows in Threads
Any thread can create a window. The thread that creates the window owns the window
and its associated message queue. Therefore, the thread must provide a message loop
to process the messages in its message queue. In addition, you must use
MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx in that thread, rather
than the other wait functions, so that it can process messages. Otherwise, the system
can become deadlocked when the thread is sent a message while it is waiting.

The AttachThreadlnput function can be used to allow a set of threads to share the
same input state. By sharing input state, the threads share their concept of the active
window. By dOing this, one thread can always activate another thread's window. This
function is also useful for sharing focus state, mouse capture state, keyboard state, and
window Z-order state among windows created by different threads whose input state is
shared.

Terminating a Thread
A thread executes until one of the following events occurs:

• The thread calls the ExitThread function.

• Any thread of the process calls the ExitProcess function.

• The thread function returns.

• Any thread calls the TerminateThread function with a handle to the thread.

60 Volume 1 Microsoft Windows Base Services

• Any thread calls theTerminateProcess function with a handle to the process.

The GetExitCodeThread function returns the termination status of a thread. While a
thread is executing, its termination status is STILL_ACTIVE. When a thread terminates,
its termination status changes from STILL_ACTIVE to the exit code of the thread. The
exit code is either the value specified in the call to ExitThread, ExitProcess,
TerminateThread, or TerminateProcess, or the value returned by the thread function.

When a thread terminates, the state of the thread object changes to Signaled, releasing
any other threads that had been waiting for the thread to terminate. For more about
synchronization, see Synchronizing Execution of Multiple Threads.

If a thread is terminated by ExitThread, the system calls the entry-point function of each
attached DLL with a value indicating that the thread is detaching from the DLL (unless
you call the DisableThreadLibraryCalls function). If a thread is terminated by
ExitProcess, the DLL entry-point functions are invoked once, to indicate that the
process is detaching. DLLs are not notified when a thread is terminated by
TerminateThread or TerminateProcess. For more information about DLLs, see
Dynamic Link Libraries.

Warning The TerminateThread and TerminateProcess functions should be used only
in extreme circumstances, since they do not allow threads to clean up, do not notify
attached DLLs, and do not free the initial stack.

The following steps provide a better solution:

• Create an event object using the CreateEvent function.

• Create the threads.

• Each thread monitors the event state by calling the WaitForSingleObject function.
Use a wait time-out interval of zero.

• Each thread terminates its own execution when the event is set to the Signaled state
(WaitForSingleObject returns WAIT_OBJECT _0).

Thread Times
The GetThreadTimes function obtains timing information for a thread. It returns the
thread creation time, how much time the thread has been executing in kernel mode, and
how much time the thread has been executing in user mode. These times do not include
time spent executing system threads or waiting in a suspended or blocked state. If the
thread has exited, GetThreadTimes returns the thread exit time.

Thread Security and Access Rights
Windows NTlWindows 2000 security enables you to control access to thread objects.
For more information about security, see Access-Control Model.

You can specify a security descriptor for a thread when you call the CreateProcess,
CreateProcessAsUser, CreateProcessWithLogonW, CreateThread, or

Chapter 6 Processes, Threads, and Dlls 61

CreateRemoteThread function. To retrieve a thread's security descriptor, call the
GetSecuritylnfo function. To change a thread's security descriptor, call the
SetSecuritylnfo function.

The handle returned by the CreateThread function has THREAD_ALL_
ACCESS access to the thread object. When you call the GetCurrentThread function,
the system returns a pseudohandle with the maximum access that the thread's security
descriptor allows the caller.

The valid access rights for thread objects include the DELETE, READ_CONTROL,
SYNCHRONIZE, WRITE_DAC, and WRITE_OWNER standard access rights, in addition
to the following thread-specific access rights.

Value Meaning

SYNCHRONIZE A standard right required to wait for the
thread to exit.

THREAD_ALL_ACCESS Specifies all possible access rights for a
thread object.

THREAD_DIRECT_IMPERSONATION Required for a server thread that
impersonates a client.

THREAD_GET _CONTEXT Required to read the context of a thread
using GetThreadContext.

THREAD_IMPERSONATE Required to use a thread's security
information directly without calling it by using
a communication mechanism that provides
impersonation services.

THREAD_QUERY _INFORMATION Required to read certain information from
the thread object.

THREAD_SET _CONTEXT Required to write the context of a thread.

THREAD_SET _INFORMATION Required to set certain information in the
thread object.

THREAD_SET _ THREAD_TOKEN Required to set the impersonation token for
a thread.

THREAD_SUSPEND_RESUME Required to suspend or resume a thread.

THREAD_TERMINATE Required to terminate a thread.

You can request the ACCESS_SYSTEM_SECURITY access right to a thread object if
you want to read or write the object's SACL. For more information, see Access-Control
Lists (ACLs) and SACL Access Right.

Child Processes
A child process is a process that is created by another process, called the parent
process.

62 Volume 1 Microsoft Windows Base Services

Creating Processes
The CreateProcess function creates a new process, which runs independently of the
creating process. However, for simplicity, the relationship is referred to as a parent-child
relationship.

The following code fragment demonstrates how to create a process.

If Create Process succeeds, it returns a PROCESS_INFORMATION structure
containing handles and identifiers for the new process and its primary thread. The thread
and process handles are created with full access rights, although access can be
restricted if you specify security descriptors. When you no longer need these handles,
close them by using the CloseHandle function.

Chapter 6 Processes, Threads, and Dlls 63

You can also create a process using the CreateProcessAsUser function. This function
allows you to specify the security context of the user account in which the process will
execute.

Setting Window Properties Using STARTUPINFO
A parent process can specify properties associated with the main window of its child
process. The Create Process function takes a pOinter to a STARTUPINFO structure as
one of its parameters. Use the members of this structure to specify characteristics of the
child process's main window. The dwFlags member contains a bit field that determines
which other members of the structure are used. This allows you to specify values for any
subset of the window properties. The system uses default values for the properties you
do not specify. The dwFlags member can also force a feedback cursor to be displayed
during the initialization of the new process.

For GUI processes, the STARTUPINFO structure specifies the default values to be used
the first time the new process calls the CreateWindow and ShowWindow functions to
create and display an overlapped window. The following default values can be specified:

• The width and height, in pixels, of the window created by CreateWindow

• The location, in screen coordinates of the window created by CreateWindow

• The nCmdShow parameter of ShowWindow

For console processes, use the STARTUPINFO structure to specify window properties
only when creating a new console (either using CreateProcess with
CREATE_NEW_CONSOLE or with the AliocConsole function). The STARTUPINFO
structure can be used to specify the following console window properties:

• The size of the new console window, in character cells

• The location of the new console window, in screen coordinates

• The size, in character cells, of the new console's screen buffer

• The text and background color attributes of the new console's screen buffer

• The title of the new console's window

Process Handles and Identifiers
When a new process is created by the CreateProcess function, handles of the new
process and its primary thread are returned. These handles are created with full access
rights, and-subject to security access checking-can be used in any of the functions
that accept thread or process handles. These handles can be inherited by child
processes, depending on the inheritance flag specified when they are created. The
handles are valid until closed, even after the process or thread they represent has been
terminated.

The CreateProcess function also returns an identifier that uniquely identifies the
process throughout the system. A process can use the GetCurrentProcessld function
to get its own process identifier. The identifier is valid from the time the process is
created until the process has been terminated.

64 Volume 1 Microsoft Windows Base Services

If you have a process identifier, you can get the process handle by calling the
OpenProcess function. OpenProcess enables you to specify the handle's access rights
and whether it can be inherited.

A process can use the GetCurrentProcess function to retrieve a pseudo handle to its
own process object. This pseudo handle is valid only for the calling process; it cannot be
inherited or duplicated for use by other processes. To get the real handle to the process,
call the DuplicateHandle function.

Obtaining Additional Process Information
The Win32 API provides functions for obtaining information about processes. Some of
these functions can be used only for the calling process, because they do not take a
process handle as a parameter. You can use functions that take a process handle to
obtain information about other processes.

• To obtain the command-line string for the current process, use the
GetCommandLine function.

• To parse a Unicode command-line string obtained from the Unicode version of
GetCommandLine, use the CommandLineToArgvW function.

• To retrieve the STARTUPINFO structure specified when the current process was
created, use the GetStartuplnfo function.

• To obtain the version information from the executable header, use the
GetProcessVersion function.

• To obtain the full path and file name for the executable file containing the process
code, use the GetModuleFileName function.

• To obtain the count of handles to graphical user interface (GUI) objects in use, use
the GetGuiResources function.

• To determine whether a process is being debugged, use the IsDebuggerPresent
function.

• To retrieve accounting information for all I/O operations performed by the process,
use the GetProcessloCounters function.

Inheritance
A child process can inherit several properties and resources from its parent process. You
can also prevent a child process from inheriting properties from its parent process. The
following can be inherited:

• Open handles returned by the CreateFile function. This includes handles to files,
console input buffers, console screen buffers, named pipes, serial communication
devices, and mailslots.

• Open handles to process, thread, mutex, event, semaphore, named-pipe,
anonymous-pipe, and file-mapping objects.

• Environment variables.

• The current directory.

Chapter 6 Processes, Threads, and DLLs 65

• The console, unless the process is detached or a new console is created. A child
console process also inherits the parent's standard handles, as well as access to the
input buffer and the active screen buffer.

The child process does not inherit the following:

• Priority class.

• Handles returned by LocalAlloc, GlobalAlloc, HeapCreate, and HeapAlioc.

• Pseudo handles, as in the handles returned by the GetCurrentProcess or
GetCurrentThread function. These handles are valid only for the calling process.

• DLL module handles returned by the LoadLibrary function.

• GDI or USER handles, such as HBITMAP or HMENU.

Inheriting Handles

To cause a handle to be inherited, you must do two things:

• Specify that the handle is to be inherited when you create, open, or duplicate the
handle.

• Specify that inheritable handles are to be inherited when you call the CreateProcess
function.

This allows a child process to inherit some of its parent's handles, but not inherit others.
For example, creation functions such as CreateProcess and CreateFile take a security
attributes argument that determines whether the handle can be inherited. Open functions
such as OpenMutex and Open Event take a handle inheritance flag that determines
whether the handle can be inherited. The DuplicateHandle function takes a handle
inheritance flag that determines whether the handle can be inherited.

When a child process is created, the flnheritHand/es parameter of Create Process
determines whether the inheritable handles of the parent process are inherited by the
child process. An inherited handle refers to the same object in the child process as it
does in the parent process. It also has the same value and access privileges. Therefore,
when one process changes the state of the object, the change affects both processes.
To use a handle, the child process must retrieve the handle value and "know" the object
to which it refers. Usually, the parent process communicates this information to the child
process through its command line, environment block, or some form of interprocess
communication.

The DuplicateHandle function is useful if a process has an inheritable open handle that
you do not want to be inherited by the child process. In this case, use DuplicateHandle
to open a duplicate of the handle that cannot be inherited, then use the CloseHandle
function to close the inheritable handle. You can also use the DuplicateHandle function
to open an inheritable duplicate of a handle that cannot be inherited.

66 Volume 1 Microsoft Windows Base Services

Inheriting Environment Variables

A child process inherits the environment variables of its parent process by default.
However, Create Process enables the parent process to specify a different block of
environment variables. For more information, see Environment Variables.

Inheriting the Current Directory

The GetCurrentDirectory function retrieves the current directory of the calling process.
A child process inherits the current directory of its parent process by default. However,
CreateProcess enables the parent process to specify a different current directory for the
child process. To change the current directory of the calling process, use the
SetCurrentDirectory function.

Environment Variables
Every process has an environment block that contains a set of environment variables
and their values. The command processor provides the set command to display its
environment block or to create new environment variables. Programs started by the
command processor inherit the command processor's environment variables.

By default, a child process inherits the environment variables of its parent process.
However, you can specify a different environment for the child process by creating a new
environment block and passing a pOinter to it as a parameter to the CreateProcess
function.

The GetEnvironmentStrings function returns a pointer to the environment block of the
calling process. This should be treated as a read-only block; do not modify it directly.
Instead, use the SetEnvironmentVariable function to change an environment variable.
When you are finished with the environment block obtained from
GetEnvironmentStrings, call the FreeEnvironmentStrings function to free the block.

The GetEnvironmentVariable function determines whether a specified variable is
defined in the environment of the calling process, and, if so, what its value is.

For more information, see the examples in Changing Environment Variables.

Terminating a Process
A process executes until one of the following events occurs:

• Any thread of the process calls the ExitProcess function. This terminates all threads
of the process.

• The primary thread of the process returns. The primary thread can avoid terminating
other threads by explicitly calling ExitThread before it returns. One of the remaining
threads can still call ExitProcess to ensure that all threads are terminated.

• The last thread of the process terminates.

• Any thread calls the TerminateProcess function with a handle to the process. This
terminates all threads of the process, without allowing them to clean up or save data.

Chapter 6 Processes, Threads, and DLLs 67

• For console processes, the default handler function calls ExitProcess when the
console receives a CTRL+C or CTRL+BREAK signal. All console processes attached
to the console receive these signals. Detached processes and GUI processes are not
affected by CTRL+C or CTRL+BREAK Signals. For more information, see
SetConsoleCtrlHandler.

• The user shuts down the system or logs off. Use the
SetProcessShutdownParameters function to specify shutdown parameters, such as
when a process should terminate relative to the other processes in the system. The
GetProcessShutdownParameters function retrieves the current shutdown priority of
the process and other shutdown flags.

When a process is terminated, all threads of the process are terminated immediately
with no chance to run additional code. This means that the process does not execute
code in termination handler blocks. For more information, see Structured Exception
Handling.

The GetExitCodeProcess function returns the termination status of a process. While a
process is executing, its termination status is STILL_ACTIVE. When a process
terminates, its termination status changes from STILL_ACTIVE to the exit code of the
process. The exit code is either the value specified in the call to ExitProcess or
TerminateProcess, or the value returned by the main or WinMain function of the
process. If a process is terminated due to a fatal exception, the exit code is the value of
the exception that caused the termination. In addition, this value is used as the exit code
for all the threads that were executing when the exception occurred.

When a process terminates, the state of the process object becomes signaled, releasing
any threads that had been waiting for the process to terminate. For more about
synchronization, see Synchronizing Execution of Multiple Threads.

Open handles to files or other resources are closed automatically when a process
terminates. However, the objects themselves exist until all open handles to them are
closed. This means that an object remains valid after a process closes, if another
process has a handle to it.

If a process is terminated by ExitProcess, the system calls the entry-point function of
each attached DLL with a value indicating that the process is detaching from the DLL.
DLLs are not notified when a process is terminated by TerminateProcess. For more
information about DLLs, see Dynamic Link Libraries.

Warning The TerminateProcess function should be used only in extreme
circumstances, since it does not allow threads to clean up or save data and does not
notify attached DLLs.

If you need to have one process terminate another process, the following steps provide
a better solution:

68 Volume 1 Microsoft Windows Base Services

• Have both processes call the RegisterWindowMessage function to create a private
message.

• One process can terminate the other process by broadcasting the private message
using the BroadcastSystemMessage function as follows:

• The process receiving the private message calls ExitProcess to terminate its
execution.

Note When the system is terminating a process, it does not terminate any child
processes that the process has created.

Process Times
The GetProcessTimes function obtains timing information for a process. It returns the
process creation time, how much time the process has been executing in kernel mode,
and how much time the process has been executing in user mode. These times do not
include time spent executing system threads or waiting in a suspended or blocked state.
If the process has exited, GetProcessTimes returns the process exit time.

Process Security and Access Rights
Windows NTlWindows 2000 security enables you to control access to process objects.
For more information about security, see Access-Control Model.

You can specify a security descriptor for a process when you call the CreateProcess,
CreateProcessAsUser, or CreateProcessWithLogonW function. To retrieve a
process's security descriptor, call the GetSecuritylnfo function. To change a process's
security descriptor, call the SetSecuritylnfo function.

The handle returned by the CreateProcess function has PROCESS_
ALL_ACCESS access to the process object. When you call the OpenProcess function,
the system checks the requested access rights against the DACL in the process's
security descriptor. When you call the GetCurrentProcess function, Windows NT
returns a pseudohandle with the maximum access that the DACL allows to the caller.

The valid access rights for process objects include the DELETE, READ_CONTROL,
SYNCHRONIZE, WRITE_DAC, and WRITE_OWNER standard access rights, in addition
to the following process-specific access rights.

Value

PROCESS_CREATE_PROCESS

PROCESS_CREATE_THREAD

PROCESS_DUP_HANDLE

PROCESS_QUERY _INFORMATION

Value

PROCESS_SET_QUOTA

PROCESS_SET _'NFORMAT'ON

PROCESS_TERMINATE

PROCESS_ VM_OPERATION

PROCESS_ VM_READ

PROCESS_ VM_WRITE

SYNCHRONIZE

Chapter 6 Processes, Threads, and Dlls 69

Meaning

Specifies all possible access rights for a
process object.

Required to create a process.

Required to create a thread.

Required to duplicate a handle.

Required to retrieve certain information about
a process, such as its priority class.

Meaning

Required to set memory limits.

Required to set certain information about a
process, such as its priority class.

Required to terminate a process.

Required to perform an operation on the
address space of a process.

Required to read memory in a process.

Required to write to memory in a process.

A standard right required to wait for the
process to terminate.

You can request the ACCESS_SYSTEM_SECURITY access right to a process object if
you want to read or write the object's SACL. For more information, see Access-Control
Lists (ACLs) and SACL Access Right.

Process Working Set
The working set of a program is a collection of those pages in its virtual address space
that have been recently referenced. It includes both shared and private data. The shared
data includes pages that contain all instructions your application executes, including
those in your DLLs and the system DLLs. As the working set size increases, memory
demand increases.

A process has an associated minimum working set size and maximum working set size.
Each time you call CreateProcess, it reserves the minimum working set size for the
process. The virtual memory manager attempts to keep enough memory for the
minimum working set resident when the process is active, but keeps no more than the
maximum size.

To get the requested minimum and maximum sizes of the working set for your
application, call the GetProcessWorkingSetSize function.

The system sets the default working set sizes. You can also modify the working set sizes
using the SetProcessWorkingSetSize function. Setting these values is not a guarantee

70 Volume 1 Microsoft Windows Base Services

that the memory will be reserved or resident. Be careful about requesting too large a
minimum or maximum working set size, because doing so can degrade system
performance.

Thread Pooling
There are many applications that create threads that spend a great deal of time in the
sleeping state waiting for an event to occur. Other threads may enter a sleeping state
only to be awakened periodically to poll for a change or update status information.
Thread pooling enables you to use threads more efficiently by providing your application
with a pool of worker threads that are managed by the system. One thread monitors the
status of all wait operations queued to the thread pool. When a wait operation has
completed, a worker thread from the thread pool executes the corresponding callback
function.

You can also queue work items that are not related to a wait operation to the thread
pool. To request that a work item be handled by a thread in the thread pool, call the
QueueUserWorkltem function. This function takes a parameter to the function that will
be called by the thread selected from the thread pool. There is no way to cancel a work
item after it has been queued.

Timer-queue timers and registered wait operations also use the thread pool. Their
callback functions are queued to the thread pool. You can also use the
BindloCompletionCaliback function to quey~ a callback function to a worker thread.

The thread pool is created the first time you call QueueUserWorkltem or
BindloCompletionCaliback, or when a timer-queue timer or registered wait operation
queues a callback function. The number of threads that can be created in the thread
pool is limited only by available memory. Each thread uses the default stack size and
runs at the default priority. Each thread can handle up to 63 wait operations.

There are two types of worker threads in the thread pool: I/O and non-I/O. An I/O worker
thread is a thread that waits in an alertable wait state. Work items are queued to I/O
worker threads as asynchronous procedure calls (APC). You should queue a work item
to an I/O worker thread if it should be executed in a thread that does not exit if there are
pending asynchronous I/O requests or in a thread that waits in an alertable state. These
threads can be used by work items that initiate asynchronous I/O completion requests.

A non-I/O worker thread waits on I/O completion ports. Using non-I/O worker threads is
more efficient than using I/O worker threads. Therefore, you should use non-I/O worker
threads whenever possible.

To use thread pooling, the work items and all the functions they call must be thread pool
safe. A safe function does not assume that thread executing it is a dedicated or
persistent thread. In general, you should avoid thread local storage and queing
asynchronous calls that require a persistent thread, such as the
RegNotifyChangeKeyValue function. However, such functions can be queued to a
persistent worker thread using QueueUserWorkltem with the
WT _EXECUTEINPERSISTENTIOTHREAD option.

Chapter 6 Processes, Threads, and DLLs 71

Job Objects
A job object allows groups of processes to be managed as a unit. Job objects are
namable, securable, sharable objects that control attributes of the processes associated
with them. Operations performed on the job object affect all processes associated with
the job object.

To create a job object, use the CreateJobObject function. When the job is created,
there are no associated processes. To associate a process with a job, use the
AssignProcessToJobObject function. After you associate a process with a job, the
association cannot be broken. By default, processes created by a process associated
with a job (child processes) are associated with the job. If the job has the extended limit
JOB_OBJECT_LlMIT_BREAKAWAY_OK and the process was created with the
CREATE_BREAKAWAY _FROM_JOB flag, its child processes are not associated with
the job. If the job has the extended limit
JOB_OBJECT _LIMIT _SILENT _BREAKAWAY _OK, no child processes are associated
with the job.

A job can enforce limits on each associated process, such as the working set size,
process priority, end-of-job time limit, and so on. To set limits for a job object, use the
SetlnformationJobObject function. If a process associated with a job attempts to
increase its working set size or process priority, the function calls are silently ignored.

The job object also records basic accounting information for all its associated processes,
including those that have terminated. To retrieve this accounting information, use the
QuerylnformationJobObject function.

To terminate all processes currently associated with a job object, use the
TerminateJobObject function.

To close a job object handle, use the CloseHandle function. The job object is destroyed
when its last handle has been closed. If there are running processes still associated with
the job when it is destroyed, they will continue to run even after the job is destroyed.

If a tool is to manage a process tree that uses job objects, both the tool and the
members of the process tree must cooperate. Use one of the following options:

• The tool could use the JOB_OBJECT _LIMIT _SILENT _BREAKAWAY _OK limit. If the
tool uses this limit, it cannot monitor an entire process tree. The tool can monitor only
the processes it adds to the job. If these processes create child processes, they are
not associated with the job. In this option, child processes can be associated with
other job objects.

• The tool could use the JOB_OBJECT _LIMIT _BREAKAWAY _OK limit. If the tool uses
this limit, it can monitor the entire process tree, except for those processes that any
member of the tree explicitly breaks away from the tree. A member of the tree can
create a child process in a new job object by calling the Create Process function with
the CREATE_BREAKAWAY_FROM_JOB flag, then calling the
AssignProcessToJobObject function. Otherwise, the member must handle cases in
which AssignProcessToJobObject fails.

72 Volume 1 Microsoft Windows Base Services

The CREATE_BREAKAWAY _FROM_JOB flag has no effect if the tree is not being
monitored by the tool. Therefore, this is the preferred option, but it requires advance
knowledge of the processes being monitored.

• The tool could prevent breakaways of any kind. In this option, the tool can monitor the
entire process tree. However, if a process associated with the job tries to call
AssignProcessToJobObject, the call will fail. If the process was not designed to be
associated with a job, this failure may be unexpected.

Job Object Security and Access Rights
Windows NTlWindows 2000 security enables you to control access to job objects. For
more information about security, see Access-Control Model.

You can specify a security descriptor for a job object when you call the
CreateJobObject function. To get or set the security descriptor for a job object, call the
GetNamedSecuritylnfo, SetNamedSecuritylnfo, GetSecuritylnfo, or SetSecuritylnfo
function.

The handle returned by CreateJobObject has JOB_OBJECT _ALL_ACCESS access to
the job object. When you call the OpenJobObject function, the system checks the
requested access rights against the object's security descriptor.

The valid access rights for job objects include the DELETE, READ_CONTROL,
SYNCHRONIZE, WRITE_DAC, and WRITE_OWNER standard access rights, in addition
to the following job-specific access rights.

Value Meaning

JOB_OBJECT _ASSIGN_PROCESS Required to call the
AssignProcessToJobObject function to
assign processes to the job object.

JOB_OBJECT_SET_ATTRIBUTES Required to call the
SetlnformationJobObject function to set the
attributes of the job object.

JOB_aBJECT_QUERY Required to call the
QuerylnformationJobObject function to
query job object attributes and accounting
information.

JOB_aBJECT_TERMINATE Required to call the TerminateJobObject
function to terminate all processes in the job
object.

JOB_OBJECT _SET _SECURITY _ATTRIBUTES Required to call the
SetlnformationJobObject function with the
JobObjectSecurityLimitlnformation
information class to set security limitations on
the processes associated with the job object.

JOB_OBJECT _ALL_ACCESS Combines all valid job object access rights.

Chapter 6 Processes, Threads, and DLLs 73

You can request the ACCESS_SYSTEM_SECURITY access right to a job object if you
want to read or write the object's SACL. For more information, see Access-Control Lists
(ACLs) and SACL Access Right.

Fibers
A fiber is a unit of execution that must be manually scheduled by the application. Fibers
run in the context of the threads that schedule them. Each thread can schedule multiple
fibers. In general, fibers do not provide advantages over a well-designed multithreaded
application. However, using fibers can make it easier to port applications that were
designed to schedule their own threads.

From a system standpoint, a fiber assumes the identity of the thread that created it. For
example, if a fiber accesses thread local storage (TLS), it is accessing the thread local
storage of the thread that created it. In addition, if a fiber calls the ExitThread function,
the thread that created it exits. However, a fiber does not have all the same state
information associated with it as that associated with a thread. The only state information
maintained for a fiber is its stack, a subset of its registers, and the fiber data provided
during fiber creation. The saved registers are the set of registers typically preserved
across a function call.

Fibers are not preemptively scheduled. You schedule a fiber by switching to it from
another fiber. The system still schedules threads to run. When a thread running fibers is
preempted, its currently running fiber is preempted. The fiber runs when its thread runs.

Before scheduling the first fiber, call the ConvertThreadToFiber function to create an
area in which to save fiber state information. The calling thread is now the currently
executing fiber. The stored state information for this fiber includes the fiber data passed
as an argument to ConvertThreadToFiber.

The CreateFiber function is used to create a new fiber from an existing fiber; the call
requires the stack size, the starting address, and the fiber data. The starting address is
typically a user-supplied function, called the fiber function, that takes one parameter (the
fiber data) and does not return a value. If your fiber function returns, the thread running
the fiber exits. To execute any fiber created with CreateFiber, call the SwitchToFiber
function. You can call SwitchToFiber with the address of a fiber created by a different
thread. To do this, you must have the address returned to the other thread when it called
CreateFiber and you must use proper synchronization.

A fiber can retrieve the fiber data by calling the GetFiberData macro. A fiber can retrieve
the fiber address at any time by calling the GetCurrentFiber macro.

To clean up the data associated with a fiber, call the DeleteFiber function. You must
take care when calling DeleteFiber. If you call DeleteFiber for a fiber created by another
thread, you can cause the other thread to terminate abnormally. If DeleteFiber is called
from the currently running fiber, its thread calls ExitThread.

74 Volume 1 Microsoft Windows Base Services

Process and Thread Reference

Process and Thread Functions

AssignProcessToJobObject
The AssignProcessToJobObject function associates a process with an existing job
object.

Parameters
hJob

[in] Handle to the job object to which the process will be associated. The
CreateJobObject or OpenJobObject function returns this handle. The handle must
have the JOB_OBJECT _ASSIGN_PROCESS access right associated with it. For
more information, see Job Object Security and Access Rights.

hProcess
[in] Handle to the process to associate with the job object. The process must not
already be assigned to a job. The handle must have PROCESS_SET _QUOTA and
PROCESS_TERMINATE access to the process. For more information, see Process
Security and Access Rights.

Terminal Services: A" processes within a job must run within the same session.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
After you associate a process with a job object using AssignProcessToJobObject, the
process is subject to the limits set for the job. To set limits for a job, use the
SetlnformationJobObject function.

If the job has a user-mode time limit, and the time limit has been exhausted,
AssignProcessToJobObject fails and the specified process is terminated. If the time
limit would be exceeded by associating the process, AssignProcessToJobObject still
succeeds. However, the time limit violation wi" be reported. If the job has an active

Chapter 6 Processes, Threads, and DLLs 75

process limit, and the limit would be exceeded by associating this process,
AssignProcessToJobObject fails, and the specified process is terminated.

Memory operations performed by a process associated with a job that has a memory
limit are subject to the memory limit. Memory operations performed by the process
before it was associated with the job are not examined by AssignProcessToJobObject.

If the process is already running and the job has security limitations,
AssignProcessToJobObject may fail. For example, if the primary token of the process
contains the local administrators group, but the job object has the security limitation
JOB_OBJECT _SECURITY _NO_ADMIN, the function fails. If the job has the security
limitation JOB_aBJECT_SECURITY _ONLY_TOKEN, the process must be created
suspended. To create a suspended process, call the CreateProcess function with the
CREATE_SUSPENDED flag.

A process can be associated only with a single job. A process inherits limits from the job
it is associated with and adds its accounting information to the job. If a process is
associated with a job, all processes it creates are associated with that job by default. To
create a process that is not part of the same job, call the CreateProcess function with
the CREATE_BREAKAWAY_FROM_JOB flag.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, Processes and
Threads Overview, CreateJobObject, CreateProcess, OpenJobObject,
SetlnformationJobObject

AttachThreadlnput
The AttachThreadlnput function attaches the input processing mechanism of one
thread to that of another thread.

76 Volume 1 Microsoft Windows Base Services

Parameters
idAttach

[in] Specifies the identifier of the thread to be attached to another thread. The thread
to be attached cannot be a system thread.

idAttachTo
[in] Specifies the identifier of the thread to be attached to. This thread cannot be a
system thread.

A thread cannot attach to itself. Therefore, idAttachTo cannot equal idAttach.

fAttach
[in] Specifies whether to attach or detach the threads. If this parameter is TRUE, the
two threads are attached. If the parameter is FALSE, the threads are detached.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. There is no extended error information; do
not call GetLastError.

Remarks
Windows created in different threads typically process input independently of each other.
That is, they have their own input states (focus, active, capture windows, key state,
queue status, and so on), and they are not synchronized with the input processing of
other threads. By using the AttachThreadlnput function, a thread can attach its input
processing to another thread. This also allows threads to share their input states, so they
can call the SetFocus function to set the keyboard focus to a window of a different
thread. This also allows threads to get key-state information. These capabilities are not
generally possible.

The AttachThreadlnput function fails if either of the specified threads does not have a
message queue. The system creates a thread's message queue when the thread makes
its first call to one of the Win32 USER or GDI functions. The AttachThreadlnput
function also fails if a journal record hook is installed. Journal record hooks attach all
input queues together.

Note that key state, which can be ascertained by calls to the GetKeyState or
GetKeyboardState function, is reset after a call to AttachThreadlnput.

Windows NT/2000: You cannot attach a thread to a thread in another desktop.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Chapter 6 Processes, Threads, and DLLs 77

Processes and Threads Overview, Process and Thread Functions,
GetCurrentThreadld, GetKeyState, GetKeyboardState,
GetWindowThreadProcessld, SetFocus

BindloCompletionCallback
The BindloCompletionCaliback function queues a callback function to a non-I/O
worker thread from the thread pool.

Parameters
FileHandle

[in] Handle to a file opened for overlapped I/O completion. This handle is returned by
the CreateFile function, with FILE_FLAG_OVERLAPPED flag.

Function
[in] Pointer to the function to be executed in a non-I/O worker thread when the I/O
operation is complete. For more information about the completion routine, see
FilelOCompletionRoutine.

Flags
Reserved; must be zero.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Be sure that the thread that initiates the request does not terminate before the request is
completed. Also, if a function in a DLL is queued to a worker thread, be sure that the
function has completed execution before the DLL is unloaded. Otherwise, the request is
canceled.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

78 Volume 1 Microsoft Windows Base Services

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
FilelOCompletionRoutine

CommandLineToArgvW
The CommandLineToArgvW function parses a Unicode command-line string. It returns
a pOinter to a set of Unicode argument strings and a count of arguments, similar to the
standard C run-time argv and argc values. The function provides a way to obtain a
Unicode set of argv and argc values from a Unicode command-line string.

Parameters
/pCmdLine

[in] Pointer to a null-terminated Unicode command-line string. An application will
usually directly pass on the value returned by a call to the GetCommandLineW
function.

If this parameter is the empty string, "", the function returns the path to the current
executable file.

pNumArgs
[out] Pointer to an integer variable that receives the count of arguments parsed.

Return Values
If the function succeeds, the return value is a non-NULL pOinter to the constructed
argument list, which is an array of Unicode strings.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
It is the caller's responsibility to free the memory used by the argument list when it is no
longer needed. To free the memory, use a single call to the GlobalFree function.

Chapter 6 Processes, Threads, and DLLs 79

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in shellapLh; include windows.h.
Library: Use sheIl32.lib.
Unicode: Declared only as Unicode.

Processes and Threads Overview, Process and Thread Functions, GetCommandLine,
GlobalFree

ConvertThreadToFiber
The ConvertTheadToFiber function converts the current thread into a fiber. You must
convert a thread into a fiber before you can schedule other fibers.

Parameters
IpParameter

[in] Specifies a single variable that is passed to the fiber. The fiber can retrieve this
value by using the GetFiberData macro.

Return Values
If the function succeeds, the return value is the address of the fiber.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
Only fibers can execute other fibers. If a thread needs to execute a fiber, it must call
ConvertThreadToFiber to create an area in which to save fiber state information. The
thread is now the current fiber. The state information for this fiber includes the fiber data
specified by IpParameter.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

80 Volume 1 Microsoft Windows Base Services

Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, GetFiberData

CreateFiber
The CreateFiber function allocates a fiber object, assigns it a stack, and sets up
execution to begin at the specified start address, typically the fiber function. This function
does not schedule the fiber.

Parameters
dwStackSize

[in] Specifies the size, in bytes, of the stack for the new fiber. If zero is specified, the
stack size defaults to the same size as that of the main thread. The function fails if it
cannot commit dwStackSize bytes. Note that the system increases the stack size
dynamically, if necessary. For more information, see Thread Stack Size.

IpStartAddress
[in] Pointer to the application-defined function of type LPFIBER_START _ROUTINE to
be executed by the fiber and represents the starting address of the fiber. Execution of
the newly created fiber does not begin until another fiber calls the SwitchToFiber
function with this address. For more information of the fiber callback function, see
FiberProc.

IpParameter
[in] Specifies a single argument that is passed to the fiber. This value can be retrieved
by the fiber using the GetFiberData macro.

Return Values
If the function succeeds, the return value is the address of the fiber.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
Before a thread can schedule a fiber using the SwitchToFiber function, it must call the
ConvertThreadToFiber function so there is a fiber associated with the thread.

Chapter 6 Processes, Threads, and DLLs 81

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions,
ConvertThreadToFiber, FiberProc, GetFiberData, SwitchToFiber

CreateJobObject
The CreateJobObject function creates or opens a job object.

Parameters
IpJobAttributes

[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies the security
descriptor for the job object and determines whether child processes can inherit the
returned handle. If IpJobAttributes is NULL, the job object gets a default security
descriptor and the handle cannot be inherited.

IpName
[in] Pointer to a null-terminated string specifying the name of the job. The name is
limited to MAX_PATH characters. Name comparison is case-sensitive.

If IpName is NULL, the job is created without a name.

If IpName matches the name of an existing event, semaphore, mutex, waitable timer,
or file-mapping object, the function fails and the GetLastError function returns
ERROR_INVALlD_HANDLE. This occurs because these objects share the same
name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly
create the object in the global or session name space. The remainder of the name
can contain any character except the backslash character (\). For more information,
see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the
"Global\" and "Local\" prefixes are ignored. The remainder of the name can contain
any character except the backslash character.

82 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is a handle to the job object. The handle has
JOB_OBJECT _ALL_ACCESS access to the job object. If the object existed before the
function call, the function returns a handle to the existing job object and GetLastError
returns ERROR_ALREADY _EXISTS.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
When a job is created, its accounting information is initialized to zero, all limits are
inactive, and there are no associated processes. To associate a process with a job, use
the AssignProcessToJobObject function. To set limits for a job, use the
SetlnformationJobObject function. To query accounting information, use the
QuerylnformationJobObject function.

To close a job object handle, use the CloseHandle function. The job is destroyed when
its last handle has been closed. If there are running processes still associated with the
job when it is destroyed, they will continue to run even after the job is destroyed.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions,
AssignProcessToJobObject, CloseHandle, QuerylnformationJobObject,
SECURITY_ATTRIBUTES, SetlnformationJobObject

CreateProcess
The CreateProcess function creates a new process and its primary thread. The new
process runs the specified executable file.

To create a process that runs in a different security context, use the
CreateProcessAsUser or CreateProcessWithLogonW function.

Chapter 6 Processes, Threads, and DLLs 83

.I::.F!SECIJRITYJTTRUUTES 7pProce~sAt.tr1 butes •. /ISO
LP'SECURI!¥ .. ATl''R'LSlrtEs IpThre.,dAt·trfbutes • . II SO, , '.' '.';' .. ' ". "' ..

Parameters
IpApplicationName

. ".~ -:,' {

[in] Pointer to a null-terminated string that specifies the module to execute.

The string can specify the full path and file name of the module to execute or it can
specify a partial name. In the case of a partial name, the function uses the current
drive and current directory to complete the specification. The function will not use the
search path.

The IpApplicationName parameter can be NULL. In that case, the module name must
be the first white-space-delimited token in the IpCommandLine string. If you are using
a long file name that contains a space, use quoted strings to indicate where the file
name ends and the arguments begin; otherwise, the file name is ambiguous. For
example, consider the string "c:\program files\sub dir\program name". This string can
be interpreted in a number of ways. The system tries to interpret the possibilities in
the following order:

c:\program.exe files\sub dir\program name
c:\program files\sub.exe dir\program name
c:\program files\sub dir\program.exe name
c:\program files\sub dir\program name.exe

The specified module can be a Win32-based application. It can be some other type of
module (for example, MS-DOS or OS/2) if the appropriate subsystem is available on
the local computer.

Windows NT/2000: If the executable module is a 16-bit application,
IpApplicationName should be NULL, and the string pOinted to by IpCommandLine
should specify the executable module as well as its arguments. A 16-bit application is
one that executes as a VDM or WOW process.

IpCommandLine
[in] Pointer to a null-terminated string that specifies the command line to execute. The
system adds a null character to the command line, trimming the string if necessary, to
indicate which file was actually used.

Windows NT/2000: The Unicode version of this function, CreateProcessW, will fail if
this parameter is a const string.

The IpCommandLine parameter can be NULL. In that case, the function uses the
string pOinted to by IpApplicationName as the command line.

84 Volume 1 Microsoft Windows Base Services

If both IpApplicationName and IpCommandLine are non-NULL, *lpApplicationName
specifies the module to execute, and *lpCommandLine specifies the command line.
The new process can use GetCommandLine to retrieve the entire command line. C
runtime processes can use the argc and argv arguments. Note that it is a common
practice to repeat the module name as the first token in the command line.

If IpApplicationName is NULL, the first white-space-delimited token of the command
line specifies the module name. If you are using a long file name that contains a
space, use quoted strings to indicate where the file name ends and the arguments
begin (see the explanation for the IpApplicationName parameter). If the file name
does not contain an extension, .exe is appended. If the file name ends in a period (.)
with no extension, or if the file name contains a path, .exe is not appended. If the file
name does not contain a directory path, the system searches for the executable file in
the following sequence:

1. The directory from which the application loaded.

2. The current directory for the parent process.

3. Windows 95/98: The Windows system directory. Use the GetSystemDirectory
function to get the path of this directory.

Windows NT/2000: The 32-bit Windows system directory. Use the
GetSystemDirectory function to get the path of this directory. The name of this
directory is System32.

4. Windows NT/2000: The 16-bit Windows system directory. There is no Win32
function that obtains the path of this directory, but it is searched. The name of this
directory is System.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

IpProcessAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the
returned handle can be inherited by child processes. If IpProcessAttributes is NULL,
the handle cannot be inherited.

Windows NT/2000: The IpSecurityDescriptor member of the structure specifies a
security descriptor for the new process. If IpProcessAttributes is NULL, the process
gets a default security descriptor.

Ip ThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the
returned handle can be inherited by child processes. If IpThreadAttributes is NULL,
the handle cannot be inherited.

Windows NT/2000: The IpSecurityDescriptor member of the structure specifies a
security descriptor for the main thread. If IpThreadAttributes is NULL, the thread gets
a default security descriptor.

Chapter 6 Processes, Threads, and DLLs 85

blnheritHandles
[in] Indicates whether the new process inherits handles from the calling process. If
TRUE, each inheritable open handle in the calling process is inherited by the new
process. Inherited handles have the same value and access privileges as the original
handles.

dwCreationFlags
[in] Specifies additional flags that control the priority class and the creation of the
process. The following creation flags can be specified in any combination, except as
noted.

Value Meaning

CREATE_BREAKAWAY _FROM_JOB Windows 2000: The child processes of a process
associated with a job are not associated with the job.

If the calling process is not associated with a job, this
flag has no effect. If the calling process is associated
with a job, the job must set the
JOB_OBJECT _LIMIT _BREAKAWAY _OK limit or
CreateProcess will fail.

CREATE_DEFAULT _ERROR_MODE The new process does not inherit the error mode of the
calling process. Instead, Create Process gives the new
process the current default error mode. An application
sets the current default error mode by calling
SetErrorMode.

This flag is particularly useful for multi-threaded shell
applications that run with hard errors disabled.

The default behavior for Create Process is for the new
process to inherit the error mode of the caller. Setting
this flag changes that default behavior.

Windows NT/2000: This flag is valid only when starting
a 16-bit bound application. If set, the system will force
the application to run as an MS-DOS-based application
rather than as an OS/2-based application.

The new process has a new console, instead of
inheriting the parent's console. This flag cannot be used
with the DETACHED_PROCESS flag.

86 Volume 1 Microsoft Windows Base Services

CREATE_NEW_PROCESS_GROUP The new process is the root process of a new process
group. The process group includes all processes that
are descendants of this root process. The process
identifier of the new process group is the same as the
process identifier, which is returned in the
IpProcesslnformation parameter. Process groups are
used by the GenerateConsoleCtrlEvent function to
enable sending a CTRL+C or CTRL+BREAK signal to a
group of console processes.

CREATE_NO_WINDOW Windows NT/2000: This flag is valid only when starting
a console application. If set, the console application is
run without a console window.

CREATE_SEPARATE_WOW_VDM Windows NT/2000: This flag is valid only when starting
a 16-bit Windows-based application. If set, the new
process runs in a private Virtual DOS Machine (VDM).
By default, all 16-bit Windows-based applications run as
threads in a single, shared VDM. The advantage of
running separately is that a crash only terminates the
single VDM; any other programs running in distinct
VDMs continue to function normally. Also, 16-bit
Windows-based applications that are run in separate
VDMs have separate input queues. That means that if
one application stops responding momentarily,
applications in separate VDMs continue to receive input.
The disadvantage of running separately is that it takes
significantly more memory to do so. You should use this
flag only if the user requests that 16-bit applications
should run in them own VDM.

CREATE_SHARED_WOW_ VDM Windows NT/2000: The flag is valid only when starting
a 16-bit Windows-based application. If the
DefaultSeparateVDM switch in the Windows section of
WIN.INI is TRUE, this flag causes the CreateProcess
function to override the switch and run the new process
in the shared Virtual DOS Machine.

CREATE_SUSPENDED The primary thread of the new process is created in a
suspended state, and does not run until the
ResumeThread function is called.

CREATE_UNICODE_ENVIRONMENT Indicates the format of the IpEnvironment parameter. If
this flag is set, the environment block pointed to by
IpEnvironment uses Unicode characters. Otherwise, the
environment block uses ANSI characters.

Chapter 6 Processes, Threads, and DLLs 87

If this flag is set, the calling process is treated as a
debugger, and the new process is debugged. The
system notifies the debugger of all debug events that
occur in the process being debugged.

If you create a process with this flag set, only the calling
thread (the thread that called CreateProcess) can call
the WaitForDebugEvent function.

Windows 95/98: This flag is not valid if the new process
is a 16-bit application.

If this flag is not set and the calling process is being
debugged, the new process becomes another process
being debugged by the calling process's debugger. If the
calling process is not a process being debugged, no
debugging-related actions occur.

For console processes, the new process does not have
access to the console of the parent process. The new
process can call the AliocConsole function at a later
time to create a new console. This flag cannot be used

. with the CREATE_NEW_CONSOLE flag.

The dwCreationFlags parameter also controls the new process's priority class, which
is used to determine the scheduling priorities of the process's threads. If none of the
following priority class flags is specified, the priority class defaults to
NORMAL_PRIORITY _CLASS unless the priority class of the creating process is
IDLE_PRIORITY _CLASS or BELOW_NORMAL_PRIORITY _CLASS. In this case, the
child process receives the default priority class of the calling process. You can specify
one of the following values:

Priority Meaning

ABOVE_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
higher than NORMAL_PRIORITY _CLASS but lower
than HIGH_PRIORITY _CLASS.

BELOW_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
higher than IDLE_PRIORITY _CLASS but lower than
NORMAL_PRIORITY _CLASS.

HIGH_PRIORITY _CLASS Indicates a process that performs time-critical tasks.
The threads of a high-priority class process preempt
the threads of normal-priority or idle-priority class
processes. An example is the Task List, which must
respond quickly when called by the user, regardless of
the load on the system. Use extreme care when using
the high-priority class, because a CPU-bound
application with a high-priority class can use nearly all
available cycles.

88 Volume 1 Microsoft Windows Base Services

IpEnvironment

Indicates a process whose threads run only when the
system is idle and are preempted by the threads of any
process running in a higher priority class. An example
is a screen saver. The idle priority class is inherited by
child processes.

Indicates a normal process with no special scheduling
needs.

Indicates a process that has the highest possible
priority. The threads of a real-time priority class
process preempt the threads of all other processes,
including operating system processes performing
important tasks. For example, a real-time process that
executes for more than a very brief interval can cause
disk caches not to flush or cause the mouse to be
unresponsive.

[in] Pointer to an environment block for the new process. If this parameter is NULL,
the new process uses the environment of the calling process.

An environment block consists of a null-terminated block of null-terminated strings.
Each string is in the form:

Because the equal sign is used as a separator, it must not be used in the name of an
environment variable.

If an application provides an environment block, rather than passing NULL for this
parameter, the current directory information of the system drives is not automatically
propagated to the new process. For a discussion of this situation and how to handle it,
see the following Remarks section.

An environment block can contain either Unicode or ANSI characters. If the
environment block pointed to by IpEnvironment contains Unicode characters, set the
dwCreationFlags field's CREATE_UNICODE_ENVIRONMENT flag. Otherwise, do not
set this flag.

Note that an ANSI environment block is terminated by two zero bytes: one for the last
string, one more to terminate the block. A Unicode environment block is terminated by
four zero bytes: two for the last string, two more to terminate the block.

IpCurrentDirectory
[in] Pointer to a null-terminated string that specifies the current drive and directory for
the child process. The string must be a full path and file name that includes a drive
letter. If this parameter is NULL, the new process will have the same current drive and
directory as the calling process. This option is provided primarily for shells that need
to start an application and specify its initial drive and working directory.

Chapter 6 Processes, Threads, and DLLs 89

IpStartuplnfo
[in] Pointer to a STARTUPINFO structure that specifies how the main window for the
new process should appear.

IpProcesslnformation
[out] Pointer to a PROCESS_INFORMATION structure that receives identification
information about the new process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The CreateProcess function is used to run a new program. The WinExec and
LoadModule functions are still available, but they are implemented as calls to
CreateProcess.

In addition to creating a process, CreateProcess also creates a thread object. The thread
is created with an initial stack whose size is described in the image header of the specified
program's executable file. The thread begins execution at the image's entry point.

When created, the new process and the new thread handles receive full access rights.
For either handle, if a security descriptor is not provided, the handle can be used in any
function that requires an object handle to that type. When a security descriptor is
provided, an access check is performed on all subsequent uses of the handle before
access is granted. If access is denied, the requesting process cannot use the handle to
gain access to the thread.

The process is assigned a process identifier. The identifier is valid until the process
terminates. It can be used to identify the process, or specified in the Open Process
function to open a handle to the process. The initial thread in the process is also
assigned a thread identifier. The identifier is valid until the thread terminates and can be
used to uniquely identify the thread within the system. These identifiers are returned in
the PROCESS_INFORMATION structure.

When specifying an application name in the IpApplicationName or IpCommandLine
strings, it doesn't matter whether the application name includes the file name extension,
with one exception: an MS-OOS-based or Windows-based application whose file name
extension is .com must include the .com extension.

The calling thread can use the WaitForlnputldle function to wait until the new process
has finished its initialization and is waiting for user input with no input pending. This can
be useful for synchronization between parent and child processes, because
CreateProcess returns without waiting for the new process to finish its initialization. For
example, the creating process would use WaitForlnputldle before trying to find a
window associated with the new process.

90 Volume 1 Microsoft Windows Base Services

The preferred way to shut down a process is by using the ExitProcess function,
because this function sends notification of approaching termination to all DLLs attached
to the process. Other means of shutting down a process do not notify the attached DLLs.
Note that when a thread calls ExitProcess, other threads of the process are terminated
without an opportunity to execute any additional code (including the thread termination
code of attached DLLs).

ExitProcess, ExitTh read , CreateThread, CreateRemoteThread, and a process that is
starting (as the result of a call by CreateProcess) are serialized between each other
within a process. Only one of these events at a time can happen in an address space,
and the following restrictions apply.

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is finished for the process.

• Only one thread at a time can be in a DLL initialization or detach routine.

• The ExitProcess function does not return until there are no threads are in their DLL
initialization or detach routines.

The created process remains in the system until all threads within the process have
terminated and all handles to the process and any of its threads have been closed
through calls to CloseHandle. The handles for both the process and the main thread
must be closed through calls to CloseHandle. If these handles are not needed, it is best
to close them immediately after the process is created.

When the last thread in a process terminates, the following events occur:

• All objects opened by the process are implicitly closed.

• The process's termination status (which is returned by GetExitCodeProcess)
changes from its initial value of STILL_ACTIVE to the termination status of the last
thread to terminate.

• The thread object of the main thread is set to the signaled state, satisfying any
threads that were waiting on the object.

• The process object is set to the signaled state, satisfying any threads that were
waiting on the object.

If the current directory on drive C is \MSVC\MFC, there is an environment variable called
=C: whose value is C:\MSVC\MFC. As noted in the previous description of
IpEnvironment, such current directory information for a system's drives does not
automatically propagate to a new process when the Create Process function's
IpEnvironment parameter is non-NULL. An application must manually pass the current
directory information to the new process. To do so, the application must explicitly create
the =X environment variable strings, get them into alphabetical order (because the
system uses a sorted environment), and then put them into the environment block
specified by IpEnvironment. Typically, they will go at the front of the environment block,
due to the previously mentioned environment block sorting.

Chapter 6 Processes, Threads, and DLLs 91

One way to obtain the current directory variable for a drive X is to call
GetFuIiPathName("X:", ..). That avoids an application having to scan the environment
block. If the full path returned is X:\, there is no need to pass that value on as
environment data, since the root directory is the default current directory for drive X of a
new process.

The handle returned by the CreateProcess function has PROCESS_All_ACCESS
access to the process object.

The current directory specified by the IpcurrentDirectory parameter is the current
directory for the child process. The current directory specified in item 2 under the
IpCommandLine parameter is the current directory for the parent process.

Note The command line that the operating system provides to a process is not
necessarily identical to the command line that the calling process gives to the
CreateProcess function.

Windows NT/2000: When a process is created with
CREATE_NEW_PROCESS_GROUP specified, an implicit call to
SetConsoleCtrIHandler(NULL,TRUE} is made on behalf of the new process; this
means that the new process has CTRL+C disabled. This lets good shells handle
CTRL+C themselves, and selectively pass that signal on to sub-processes.
CTRL+BREAK is not disabled, and may be used to interrupt the process/process group.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions, AliocConsole,
CloseHandle, CreateProcessAsUser, CreateProcessWithLogonW,
CreateRemoteThread, CreateThread, ExitProcess, ExitThread,
GenerateConsoleCtrlEvent, GetCommandLine, GetEnvironmentStrings,
GetExitCodeProcess, GetFuliPathName, GetStartuplnfo,GetSystemDirectory,
GetWindowsDirectory, LoadModule, Open Process, PROCESS_INFORMATION,
ResumeThread, SECURITY_ATTRIBUTES, SetConsoleCtrlHandler, SetErrorMode,
STARTUPINFO, TerminateProcess, WaitForlnputldle, WaitForDebugEvent,
WinExec

92 Volume 1 Microsoft Windows Base Services

CreateProcessAsUser
The CreateProcessAsUser function creates a new process and its primary thread. The
new process then runs a specified executable file. The CreateProcessAsUser function
is similar to the Create Process function, except that the new process runs in the
security context of the user represented by the hToken parameter. By default, the new
process is noninteractive, that is, it runs on a desktop that is not visible and cannot
receive user input. Also, by default, the new process inherits the environment of the
calling process, rather than the environment associated with the specified user.

The CreateProcessWithLogonW function is similar to CreateProcessAsUser, except
that the caller does not need to call the LogonUser function to authenticate the user and
get a token.

This function is also similar to the SHCreateProcessAsUser function.

Parameters
hToken

[in] Handle to a primary token that represents a user. The handle must have
TOKEN_QUERY, TOKEN_DUPLICATE, and TOKEN_ASSIGN_PRIMARY access.
For more information, see Access Rights for Access-Token Objects. The user
represented by the token must have read and execute access to the application
specified by the IpApplicationName or the IpCommandLine parameter.

If your process has the SE_ TCB_NAME privilege, it can call the LogonUser function
to get a primary token that represents a specified user.

Alternatively, you can call the DuplicateTokenEx function to convert an
impersonation token into a primary token. This allows a server application that is
impersonating a client to create a process that has the security context of the client.

Terminal Services: The process is run in the session specified in this token.

IpApplicationName
[in] Pointer to a null-terminated string that specifies the module to execute.

Chapter 6 Processes, Threads, and DLLs 93

The string can specify the full path and file name of the module to execute or it can
specify a partial name. In the case of a partial name, the function uses the current
drive and current directory to complete the specification. The function will not use the
search path.

This parameter can be NULL. In that case, the module name must be the first white­
space-delimited token in the IpCommandLine string. If you are using a long file name
that contains a space, use quoted strings to indicate where the file name ends and the
arguments begin; otherwise, the file name is ambiguous. For example, consider the
string "c:\program files\sub dir\program name". This string can be interpreted in a
number of ways. The system tries to interpret the possibilities in the following order:

c:\program.exe files\sub dir\program name
c:\program files\sub.exe dir\program name
c:\program files\sub dir\program.exe name
c:\program files\sub dir\program name.exe

The specified module can be a Win32-based application. It can be some other type of
module (for example, MS-DOS or OS/2) if the appropriate subsystem is available on
the local computer. If the executable module is a 16-bit application,
IpApplicationName should be NULL, and the string pointed to by IpCommandLine
should specify the executable module as well as its arguments. By default, all 16-bit
Windows-based applications created by CreateProcessAsUser are run in a separate
VDM (equivalent to CREATE_SEPARATE_WOW_VDM in CreateProcess).

IpCommandLine
[in] Pointer to a null-terminated string that specifies the command line to execute. The
system adds a null character to the command line, trimming the string if necessary, to
indicate which file was actually used.

The IpCommandLine parameter can be NULL. In that case, the function uses the
string pOinted to by IpApplicationName as the command line.

If both IpApplicationName and IpCommandLine are non-NULL, *lpApplicationName
specifies the module to execute, and *lpCommandLine specifies the command line.
The new process can use GetCommandLine to retrieve the entire command line. C
runtime processes can use the argc and argv arguments. Note that it is a common
practice to repeat the module name as the first token in the command line.

If IpApplicationName is NULL, the first white-space-delimited token of the command
line specifies the module name. If you are using a long file name that contains a
space, use quoted strings to indicate where the file name ends and the arguments
begin (see the explanation for the IpApplicationName parameter). If the file name
does not contain an extension, .exe is appended. If the file name ends in a period (.)
with no extension, or if the file name contains a path, .exe is not appended. If the file
name does not contain a directory path, the system searches for the executable file in
the following sequence:

1. The directory from which the application loaded.

2. The current directory.

94 Volume 1 Microsoft Windows Base Services

3. The 32-bit Windows system directory. Use the GetSystemDirectory function to get
the path of this directory. The name of this directory is System32.

4. The 16-bit Windows system directory. There is no Win32 function that obtains the
path of this directory, but it is searched. The name of this directory is System.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

IpProcessAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security
descriptor for the new process and determines whether child processes can inherit
the returned handle. If IpProcessAttributes is NULL, the process gets a default
security descriptor and the handle cannot be inherited.

Ip ThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security
descriptor for the new process and determines whether child processes can inherit
the returned handle. If IpThreadAttributes is NULL, the thread gets a default security
descriptor and the handle cannot be inherited.

blnheritHandles
[in] Indicates whether the new process inherits handles from the calling process. If
TRUE, each inheritable open handle in the calling process is inherited by the new
process. Inherited handles have the same value and access privileges as the original
handles.

dwCreationFlags
[in] Specifies additional flags that control the priority class and the creation of the
process. The following creation flags can be specified in any combination, except as
noted.

Value Meaning

CREATE_BREAKAWAY _FROM_JOB Windows 2000: The child processes of a process
associated with a job are not associated with the job.

If the calling process is not associated with a job, this
flag has no effect. If the calling process is associated
with a job, the job must set the
JOB_OBJECT _LIMIT _BREAKAWAY _OK limit or
Create Process will fail.

Chapter 6 Processes, Threads, and DLLs 95

CREATE_DEFAULT _ERROR_MODE The new process does not inherit the error mode of the
calling process. Instead, CreateProcessAsUser gives
the new process the current default error mode. An
application sets the current default error mode by calling
SetErrorMode.

This flag is particularly useful for multi-threaded shell
applications that run with hard errors disabled.

The default behavior for CreateProcessAsUser is for
the new process to inherit the error mode of the caller.
Setting this flag changes that default behavior.

CREATE_NEW_CONSOLE The new process has a new console, instead of
inheriting the parent's console. This flag cannot be used
with the DETACHED_PROCESS flag.

CREATE_NEW_PROCESS_GROUP The new process is the root process of a new process
group. The process group includes all processes that
are descendants of this root process. The process
identifier of the new process group is the same as the
process identifier, which is returned in the
IpProcesslnformation parameter. Process groups are
used by the GenerateConsoleCtrlEvent function to
enable sending a CTRL+C or CTRL+BREAK signal to a
group of console processes.

CREATE_SUSPENDED The primary thread of the new process is created in a
suspended state, and does not run until the
ResumeThread function is called.

CREATE_UNICODE_ENVIRONMENT Indicates the format of the IpEnvironment parameter. If
this flag is set, the environment block pointed to by
IpEnvironment uses Unicode characters. Otherwise, the
environment block uses ANSI characters.

DEBUG_ONLY _THIS_PROCESS If this flag is not set and the calling process is being
debugged, the new process becomes another process
being debugged by the calling process's debugger. If the
calling process is not a process being debugged, no
debugging-related actions occur.

DEBUG_PROCESS If this flag is set, the calling process is treated as a
debugger, and the new process is debugged. The
system notifies the debugger of all debug events that
occur in the process being debugged.

DETACHED_PROCESS For console processes, the new process does not have
access to the console of the parent process. The new
process can call the AliocConsole function later to
create a new console. This flag cannot be used with the
CREATE_NEW_CONSOLE flag.

96 Volume 1 Microsoft Windows Base Services

Priority

The dwCreationFlags parameter also controls the new process's priority class, which
is used to determine the scheduling priorities of the process's threads. If none of the
following priority class flags is specified, the priority class is
NORMAL_PRIORITY _CLASS by default unless the priority class of the creating
process is IDLE_PRIORITY _CLASS or BELOW_NORMAL_PRIORITY _CLASS. In
this case, the child process receives the default priority class of the calling process.
One of the following flags can be specified.

IpEnvironment

Meaning

Windows 2000: Indicates a process that has priority
higher than NORMAL_PRIORITY _CLASS but lower
than HIGH_PRIORITY _CLASS.

Windows 2000: Indicates a process that has priority
higher than IDLE_PRIORITY _CLASS but lower than
NORMAL_PRIORITY _CLASS.

Indicates a process that performs time-critical tasks.
The threads of a high-priority class process preempt
the threads of normal-priority or idle-priority class
processes. An example is the Task List, which must
respond quickly when called by the user, regardless
of the load on the operating system. Use extreme
care when using the high-priority class, because a
CPU-bound application with a high-priority class can
use nearly all available cycles.

Indicates a process whose threads run only when the
system is idle and are preempted by the threads of
any process running in a higher priority class. An
example is a screen saver. The idle priority class is
inherited by child processes.

Indicates a normal process with no special scheduling
needs.

Indicates a process that has the highest possible
priority. The threads of a real-time priority class
process preempt the threads of all other processes,
including operating system processes performing
important tasks. For example, a real-time process that
executes for more than a very brief interval can cause
disk caches not to flush or cause the mouse to be
unresponsive.

[in] Pointer to an environment block for the new process. If this parameter is NULL,
the new process uses the environment of the calling process.

Chapter 6 Processes, Threads, and DLLs 97

If an application provides an environment block, rather than passing NULL for this
parameter, the current directory information of the system drives is not automatically
propagated to the new process. For a discussion of this situation and how to handle it,
see the following Remarks section.

An environment block can contain either Unicode or ANSI characters. If the
environment block pointed to by IpEnvironmentcontains Unicode characters, set the
dwCreationFlags field's CREATE_UNICODE_ENVIRONMENT flag. Otherwise, do not
set this flag.

Note that an ANSI environment block is terminated by two zero bytes: one for the last
string, one more to terminate the block. A Unicode environment block is terminated by
four zero bytes: two for the last string, two more to terminate the block.

To retrieve a copy of the environment block for a given user, use the
CreateEnvironmentBlock function.

IpCurrentDirectory
[in] Pointer to a null-terminated string that specifies the current drive and directory for
the new process. The string must be a full path and file name that includes a drive
letter. If this parameter is NULL, the new process will have the same current drive and
directory as the calling process. This option is provided primarily for shells that need
to start an application and specify its initial drive and working directory.

IpStartuplnfo
[in] Pointer to a STARTUPINFO structure that specifies how the main window for the
new process should appear.

IpProcesslnformation
[out] Pointer to a PROCESS_INFORMATION structure that receives identification
information about the new process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Typica"y, the process that calls the CreateProcessAsUser function must have the
SE_ASSIGNPRIMARYTOKEN_NAME and SE_INCREASE_QUOTA_NAME privileges.
However, if hToken is a restricted version of the caller's primary token, the
SE_ASSIGNPRIMARYTOKEN_NAME privilege is not required. If the necessary
privileges are not already enabled, CreateProcessAsUser enables them for the
duration of the call.

CreateProcessAsUser must be able to open the primary token of the calling process for
TOKEN_DUPLICATE and TOKEN_IMPERSONATE access.

By default, CreateProcessAsUser creates the new process on a noninteractive window
station with a desktop that is not visible and cannot receive user input. To enable user

98 Volume 1 Microsoft Windows Base Services

interaction with the new process, you must specify the name of the default interactive
window station and desktop, "winstaO\default", in the IpDesktop member of the
STARTUPINFO structure. In addition, before calling CreateProcessAsUser, you must
change the discretionary access control list (DACL) of both the default interactive
window station and the default desktop. The DACLs for the window station and desktop
must grant access to the user or the logon session represented by the hToken
parameter.

CreateProcessAsUser does not load the specified user's profile into the HKEY _USERS
registry key. This means that access to information in the HKEY _CURRENT_USER
registry key may not produce results consistent with a normal interactive logon. It is your
responsibility to load the user's registry hive into HKEY _USERS with the
LoadUserProfile function before calling CreateProcessAsUser.

If the IpEnvironment parameter is NULL, the new process inherits the environment of the
calling process. CreateProcessAsUser does not automatically modify the environment
block to include environment variables specific to the user represented by hToken. For
example, the USERNAME and USERDOMAIN variables are inherited from the calling
process if IpEnvironment is NULL. It is your responsibility to prepare the environment
block for the new process and specify it in IpEnvironment.

CreateProcessAsUser allows you to access the specified directory and executable
image in the security context of the caller or the target user. By default,
CreateProcessAsUser accesses the directory and executable image in the security
context of the caller. In this case, if the caller does not have access to the directory and
executable image, the function fails. To access the directory and executable image using
the security context of the target user, specify hToken in a call to the
ImpersonateLoggedOnUser function before calling CreateProcessAsUser.

When created, the new process and the new thread handles receive full access rights
(PROCESS_ALL_ACCESS and THREAD_ALL_ACCESS). For either handle, if a
security descriptor is not provided, the handle can be used in any function that requires
an object handle of that type. When a security descriptor is provided, an access check is
performed on a" subsequent uses of the handle before access is granted. If access is
denied, the requesting process is not able to use the handle to gain access to the
process or thread.

If the IpProcessAttributes parameter is NULL, the default security descriptor for the user
referenced in the hToken parameter will be used. This security descriptor may not allow
access for the caller, in which case the process may not be opened again once it is run.
The handle returned in the PROCESS_INFORMATION structure is valid and will
continue to have full access rights. This is also true for thread attributes.

Handles in PROCESS_INFORMATION must be closed with CloseHandle when they
are no longer needed.

The process is assigned a process identifier. The identifier is valid until the process
terminates. It can be used to identify the process, or specified in the Open Process
function to open a handle to the process. The initial thread in the process is also

Chapter 6 Processes, Threads, and DLLs 99

assigned a thread identifier. The identifier is valid until the thread terminates and can be
used to uniquely identify the thread within the system. These identifiers are returned in
the PROCESS_INFORMATION structure.

When specifying an application name in the IpApplicationName or IpCommandLine
strings, it doesn't matter whether the application name includes the file name extension,
with one exception: an MS-DOS-based or Windows-based application whose file name
extension is .com must include the .com extension.

The calling thread can use the WaitForlnputldle function to wait until the new process
has finished its initialization and is waiting for user input with no input pending. This can
be useful for synchronization between parent and child processes, because
CreateProcessAsUser returns without waiting for the new process to finish its
initialization. For example, the creating process would use WaitForlnputldle before
trying to find a window associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function,
because this function sends notification of approaching termination to all DLLs attached
to the process. Other means of shutting down a process do not notify the attached DLLs.
Note that when a thread calls ExitProcess, other threads of the process are terminated
without an opportunity to execute any additional code (including the thread termination
code of attached DLLs).

ExitProcess, ExitThread, CreateThread, CreateRemoteThread, and a process that is
starting (as the result of a call by CreateProcessAsUser) are serialized between each
other within a process. Only one of these events can happen at a time, and the following
restrictions apply:

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is finished for the process.

• Only one thread at a time can be in a DLL initialization or detach routine.

• The ExitProcess function does not return until there are no threads executing DLL
initialization or detach routines.

." ~'.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use advapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
CreateEnvironmentBlock, CreateProcess, CreateProcessWithLogonW,
CreateRemoteThread, CreateThread, ExitProcess, ExitThread,

100 Volume 1 Microsoft Windows Base Services

GetEnvironmentStrings, GetExitCodeProcess, GetStartuplnfo,
ImpersonateLoggedOnUser, PROCESS_INFORMATION, SECURITY_ATTRIBUTES,
SetErrorMode, SHCreateProcessAsUser, STARTUPINFO, WaitForlnputldle

Create Process With LogonW
The CreateProcessWithLogonW function creates a new process and its primary
thread. The new process then runs the specified executable file in the security context of
the specified credentials (user, domain, and password). It can optionally load the user
profile of the specified user.

The CreateProcessWithLogonW function is similar to the CreateProcessAsUser
function, except that the caller does not need to call the LogonUser function to
authenticate the user and get a token.

Parameters
IpUsername

[in] Pointer to a null-terminated string that specifies the name of the user. This is the
name of the user account to log on to. If you use the format
user@ DNS_domain_name, the IpDomain parameter should be NULL.

The user account must have Log On Locally permission on the local computer. This
permission is granted to all users on workstations and servers, but only to
administrators on domain controllers. .

IpDomain
[in] Pointer to a null-terminated string that specifies the name of the domain or server
whose account database contains the IpUsername account.

If this parameter is NULL, CreateProcessWithLogonW attempts to validate the
account using the local account database. If CreateProcessWithLogonW cannot find
the account in the local account database, its trusted domains search their account
databases until a match is found. Note that this parameter cannot be NULL unless
you specify the user name in UPN format.

Chapter 6 Processes, Threads, and DLLs 101

IpPassword
[in] Pointer to a null-terminated string that specifies the clear-text password for the
IpUsername account.

dwLogonFlags
[in] Specifies the logon option. This parameter can be one of the following values.

Value Meaning

LOGON_WITH_PROFILE Log on with profile.

LOGON_NETCREDENTIALS_ONL Y Log on with only network credentials.

IpApplicationName
[in] Pointer to a null-terminated string that specifies the module to execute.

The string can specify the full path and file name of the module to execute or it can
specify a partial name. In the case of a partial name, the function uses the current
drive and current directory to complete the specification. The function will not use the
search path.

This parameter can be NULL. In that case, the module name must be the first white­
space-delimited token in the IpCommandLine string. If you are using a long file name
that contains a space, use quoted strings to indicate where the file name ends and the
arguments begin; otherwise, the file name is ambiguous. For example, consider the
string "c:\program files\sub dir\program name". This string can be interpreted in a
number of ways. The system tries to interpret the possibilities in the following order:

c:\program.exe files\sub dir\program name
c:\program files\sub.exe dir\program name
c:\program files\sub dir\program.exe name
c:\program files\sub dir\program name.exe

The specified module can be a Win32-based application. It can be some other type of
module (for example, MS-DOS or OS/2) if the appropriate subsystem is available on
the local computer. If the executable module is a 16-bit application,
IpApplicationName should be NULL, and the string pOinted to by IpCommandLine
should specify the executable module as well as its arguments. A 16-bit application is
one that executes as a VDM or WOW process.

IpCommandLine
[in] Pointer to a null-terminated string that specifies the command line to execute. The
system adds a null character to the command line, trimming the string if necessary, to
indicate which file was actually used.

The IpCommandLine parameter can be NULL. In that case, the function uses the
string pointed to by IpApplicationName as the command line.

If both IpApplicationName and IpCommandLine are non-NULL, * IpApplicationName
specifies the module to execute, and *lpCommandLine specifies the command line.
The new process can use GetCommandLine to retrieve the entire command line. C
runtime processes can use the argc and argv arguments. Note that it is a common
practice to repeat the module name as the first token in the command line.

102 Volume 1 Microsoft Windows Base Services

If IpApplicationName is NULL, the first white-space-delimited token of the command
line specifies the module name. If you are using a long file name that contains a
space, use quoted strings to indicate where the file name ends and the arguments
begin (see the explanation for the IpApplicationName parameter). If the file name
does not contain an extension, .exe is appended. If the file name ends in a period (.)
with no extension, or if the file name contains a path, .exe is not appended. If the file
name does not contain a directory path, the system searches for the executable file in
the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. The 32-bit Windows system directory. Use the GetSystemDirectory function to get
the path of this directory. The name of this directory is System32.

4. The 16-bit Windows system directory. There is no Win32 function that obtains the
path of this directory, but it is searched. The name of this directory is System.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

dwCreationFlags
[in] Specifies how the process is created. The CREATE_DEFAULT_ERROR_MODE,
CREATE_NEW_CONSOLE, and CREATE_NEW_PROCESS_GROUP flags are
enabled by default. You can specify additional flags as noted.

Value Meaning

CREATE_DEFAULT _ERROR_MODE The new process does not inherit the error mode of the
calling process. Instead, CreateProcessWithLogonW
gives the new process the current default error mode.
An application sets the current default error mode by
calling SetErrorMode.

This flag is enabled by default.

CREATE_NEW_CONSOLE The new process has a new console, instead of
inheriting the parent's console. This flag cannot be used
with the DETACHED_PROCESS flag.

This flag is enabled by default.

Chapter 6 Processes, Threads, and Dlls 103

CREATE_NEW_PROCESS_GROUP The new process is the root process of a new process
group. The process group includes all processes that
are descendants of this root process. The process
identifier of the new process group is the same as the
process identifier, which is returned in the IpProcesslnfo
parameter. Process groups are used by the
GenerateConsoleCtrlEvent function to enable sending
a CTRL+C or CTRL+BREAK signal to a group of
console processes.

This flag is enabled by default.

CREATE_SEPARATE_WOW_VDM This flag is only valid starting a 16-bit Windows-based
application. If set, the new process runs in a private
Virtual DOS Machine (VDM). By default, all 16-bit
Windows-based applications run in a single, shared
VDM. The advantage of running separately is that a
crash only terminates the single VDM; any other
programs running in distinct VDMs continue to function
normally. Also, 16-bit Windows-based applications that
run in separate VDMs have separate input queues. That
means that if one application stops responding
momentarily, applications in separate VDMs continue to
receive input.

CREATE_SUSPENDED The primary thread of the new process is created in a
suspended state, and does not run until the
ResumeThread function is called.

CREATE_UNICODE_ENVIRONMENT Indicates the format of the IpEnvironment parameter. If
this flag is set, the environment block pointed to by
IpEnvironment uses Unicode characters. Otherwise, the
environment block uses ANSI characters.

CREATE_WITH_USERPROFILE If this flag is set, the system loads the user's profile after
the logon succeeds. Loading the profile can be time­
consuming, so it is best to use this flag only if you must
access the user's profile information.

The dwCreationFlags parameter also controls the new process's priority class, which
is used to determine the scheduling priorities of the process's threads. If none of the
following priority class flags is specified, the priority class is
NORMAL_PRIORITY _CLASS by default unless the priority class of the creating
process is IDLE_PRIORITY _CLASS or BELOW_NORMAL_PRIORITY _CLASS. In
this case, the child process receives the default priority class of the calling process.
One of the following flags can be specified:

104 Volume 1 Microsoft Windows Base Services

Priority Meaning

ABOVE_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
higher than NORMAL_PRIORITY _CLASS but lower
than HIGH_PRIORITY _CLASS.

BELOW_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
higher than IDLE_PRIORITY _CLASS but lower than
NORMAL_PRIORITY _CLASS.

HIGH_PRIORITY _CLASS Indicates a process that performs time-critical tasks.
The threads of a high-priority class process preempt
the threads of normal-priority or idle-priority class
processes. An example is the Task List, which must
respond quickly when called by the user, regardless of
the load on the operating system. Use extreme care
when using the high-priority class, because a CPU­
bound application with a high-priority class can use
nearly all available cycles.

IDLE_PRIORITY _CLASS Indicates a process whose threads run only when the
system is idle and are preempted by the threads of any
process running in a higher priority class. An example
is a screen saver. The idle priority class is inherited by
child processes.

NORMAL_PRIORITY _CLASS Indicates a normal process with no special scheduling
needs.

REAL TIME_PRIORITY _CLASS Indicates a process that has the highest possible
priority. The threads of a real-time priority class
process preempt the threads of all other processes,
including operating system processes performing
important tasks. For example, a real-time process that
executes for more than a very brief interval can cause
disk caches not to flush or cause the mouse to be
unresponsive.

IpEnvironment
[in] Pointer to an environment block for the new process. If this parameter is NULL,
the new process uses the environment of the calling process.

An environment block consists of a null-terminated block of null-terminated strings.
Each string is in the form:

Because the equal sign is used as a separator, it must not be used in the name of an
environment variable.

If an application provides an environment block, rather than passing NULL for this
parameter, the current directory information of the system drives is not automatically

Chapter 6 Processes, Threads, and DLLs 105

propagated to the new process. For a discussion of this situation and how to handle it,
see the following Remarks section.

An environment block can contain Unicode or ANSI characters. If the environment
block pOinted to by IpEnvironment contains Unicode characters, set the
dwCreationFlags parameter's CREATE_UNICODE_ENVIRONMENT flag. Otherwise,
do not set this flag.

Note that an ANSI environment block is terminated by two zero bytes: one for the last
string, one more to terminate the block. A Unicode environment block is terminated by
four zero bytes: two for the last string, two more to terminate the block.

To retrieve a copy of the environment block for a given user, use the
CreateEnvironmentBlock function.

IpCurrentDirectory
[in] Pointer to a null-terminated string that specifies the current drive and directory for
the new process. The string must be a full path and file name that includes a drive
letter. If this parameter is NULL, the new process has the same current drive as the
system service that creates the process. (This option is provided primarily for shells
that need to start an application and specify its initial drive and working directory.)

IpStartuplnfo
[in] Pointer to a STARTUPINFO structure that specifies how the main window for the
new process should appear.

IpProcesslnfo
[out] Pointer to a PROCESS_INFORMATION structure that receives identification
information about the new process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
By default, CreateProcessWithLogonW creates the new process on a non interactive
window station with a desktop that is not visible and cannot receive user input. To
enable user interaction with the new process, you must specify the name of the default
interactive window station and desktop, "winstaO\default", in the IpDesktop member of
the STARTUPINFO structure. In addition, before calling CreateProcessWithLogonW,
you must change the discretionary access control list (DACL) of both the default
interactive window station and the default desktop. The DACLs for the window station
and desktop must grant access to the user represented by the IpUsername parameter.

CreateProcessWithLogonW does not load the specified user's profile into the
HKEY _USERS registry key. This means that access to information in the
HKEY_CURRENT_USER registry key may not produce results consistent with a normal
interactive logon. It is your responsibility to load the user's registry hive into

106 Volume 1 Microsoft Windows Base Services

HKEV _USERS, using the LoadUserProfile function, before calling
CreateProcessWithLogonW.

If the IpEnvironment parameter is NULL, the new process inherits the environment of the
calling process. CreateProcessWithLogonW does not automatically modify the
environment block to include environment variables specific to the user. For example,
the USERNAME and USERDOMAIN variables are inherited from the calling process if
IpEnvironment is NULL. It is your responsibility to prepare the environment block for the
new process and specify it in IpEnvironment.

When created, the new process and the new thread handles receive full access rights
(PROCESS_ALL_ACCESS and THREAD_ALL_ACCESS). For either handle, if a security
descriptor is not provided, the handle can be used in any function that requires an object
handle of that type. When a security descriptor is provided, an access check is performed
on all subsequent uses of the handle before access is granted. If access is denied, the
requesting process cannot use the handle to gain access to the process or thread.

If the IpProcessAttributes parameter is NULL, the function uses the default security
descriptor for the user. This security descriptor may not allow access for the caller, in
which case the process may not be opened again after it is run. The handle returned in
the PROCESS_'NFORMAT'ON structure is valid and will continue to have complete
access. This is also true for thread attributes.

Handles in PROCESS_'NFORMAT'ON must be closed with CloseHandle when they
are no longer needed.

The process is assigned a process identifier. The identifier is valid until the process
terminates. It can be used to identify the process, or specified in the Open Process
function to open a handle to the process. The initial thread in the process is also
assigned a thread identifier. It can be specified in the OpenThread function to open a
handle to the thread. The identifier is valid until the thread terminates and can be used to
uniquely identify the thread within the system. These identifiers are returned in the
PROCESS_'NFORMAT'ON structure.

When specifying an application name in the IpApplicationName or IpCommandUne
strings, it doesn't matter whether the application name includes the file name extension,
with one exception: an MS-DOS-based or Windows-based application whose file name
extension is .com must include the .com extension.

The calling thread can use the WaitForlnputldle function to wait until the new process
has finished its initialization and is waiting for user input with no input pending. This can
be useful for synchronization between parent and child processes, because
CreateProcessWithLogonW returns without waiting for the new process to finish its
initialization. For example, the creating process would use WaitForlnputldle before
trying to find a window associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function,
because this function sends notification of approaching termination to all DLLs attached
to the process. Other means of shutting down a process do not notify the attached DLLs.
Note that when a thread calls ExitProcess, other threads of the process are terminated

Chapter 6 Processes, Threads, and DLLs 107

without an opportunity to execute any additional code (including the thread termination
code of attached DLLs).

The ExitProcess, ExitThread, C reateTh read , and CreateRemoteThread functions,
and processes that are starting (as the result of a call by CreateProcessWithLogonW)
are serialized within a process. Only one of these events can happen at a time, and the
following restrictions apply:

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is finished for the process.

• Only one thread at a time can be in a DLL initialization or detach routine.

• The ExitProcess function does not return until there are no threads executing DLL
initialization or detach routines.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use advapi32.lib.
Unicode: Declared only as Unicode.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
CreateEnvironmentBlock, CreateProcessAsUser, CreateRemoteThread,
CreateThread, ExitProcess, ExitThread, GetExitCodeProcess, Open Process ,
OpenThread, PROCESS_INFORMATION, SetErrorMode, STARTUPINFO,
WaitForlnputldle

CreateRemoteThread
The CreateRemoteThread function creates a thread that runs in the virtual address
space of another process.

108 Volume 1 Microsoft Windows Base Services

Parameters
hProcess

[in] Handle to the process in which the thread is to be created. The handle must have
the PROCESS_CREATE_THREAD, PROCESS_VM_OPERATION,
PROCESS_VM_WRITE, and PROCESS_VM_READ access rights. For more
information, see Process Security and Access Rights.

Ip ThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security
descriptor for the new thread and determines whether child processes can inherit the
returned handle. If IpThreadAttributes is NULL, the thread gets a default security
descriptor and the handle cannot be inherited.

dwStackSize
[in] Specifies the initial commit size of the stack, in bytes. The system rounds this
value to the nearest page. If this value is zero, or is smaller than the default commit
size, the default is to use the same size as the calling thread. For more information,
see Thread Stack Size.

IpStartAddress
[in] Pointer to the application-defined function of type LPTHREAD_START _ROUTINE
to be executed by the thread and represents the starting address of the thread in the
remote process. The function must exist in the remote process. For more information
on the thread function, see ThreadProc.

IpParameter
[in] Specifies a single value passed to the thread function.

dwCreationFlags
[in] Specifies additional flags that control the creation of the thread. If the
CREATE_SUSPENDED flag is specified, the thread is created in a suspended state
and wi" not run until the ResumeThread function is called. If this value is zero, the
thread runs immediately after creation.

IpThreadld
[out] Pointer to a variable that receives the thread identifier.

If this parameter is NULL, the thread identifier is not returned.

Return Values
If the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Note that CreateRemoteThread may succeed even if IpStartAddress pOints to data,
code, or is not accessible. If the start address is invalid when the thread runs, an
exception occurs, and the thread terminates. Thread termination due to a invalid start
address is handled as an error exit for the thread's process. This behavior is similar to
the asynchronous nature of CreateProcess, where the process is created even if it
refers to invalid or missing dynamic-link libraries (DLLs).

Chapter 6 Processes, Threads, and DLLs 109

Remarks
The CreateRemoteThread function causes a new thread of execution to begin in the
address space of the specified process. The thread has access to all objects opened by
the process.

The new thread handle is created with full access to the new thread. If a security
descriptor is not provided, the handle may be used in any function that requires a thread
object handle. When a security descriptor is provided, an access check is performed on
all subsequent uses of the handle before access is granted. If the access check denies
access, the requesting process cannot use the handle to gain access to the thread.

The thread is created with a thread priority of THREAD_PRIORITY _NORMAL. Use the
GetThreadPriority and SetThreadPriority functions to get and set the priority value of a
thread.

When a thread terminates, the thread object attains a signaled state, satisfying any
threads that were waiting for the object.

The thread object remains in the system until the thread has terminated and all handles
to it have been closed through a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a
process that is starting (as the result of a CreateProcess call) are serialized between
each other within a process. Only one of these events can happen in an address space
at a time. This means the following restrictions hold:

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is done for the process.

• Only one thread in a process can be in a DLL initialization or detach routine at a time.

• ExitProcess does not return until no threads are in their DLL initialization or detach
routines.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
CreateProcess, CreateThread, ExitProcess, ExitThread, GetThreadPriority,
ResumeThread, SECURITY_ATTRIBUTES, SetThreadPriority, ThreadProc

110 Volume 1 Microsoft Windows Base Services

CreateTh read
The CreateThread function creates a thread to execute within the virtual address space
of the calling process.

To create a thread that runs in the virtual address space of another process, use the
CreateRemoteThread function.

Parameters
Ip ThreadAttributes

[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the
returned handle can be inherited by child processes. If IpThreadAttributes is NULL,
the handle cannot be inherited.

Windows NT/2000: The IpSecurityDescriptor member of the structure specifies a
security descriptor for the new thread. If IpThreadAttributes is NULL, the thread gets a
default security descriptor.

dwStackSize
[in] Specifies the initial commit size of the stack, in bytes. The system rounds this
value to the nearest page. If this value is zero, or is smaller than the default commit
size, the default is to use the same size as the calling thread. For more information,
see Thread Stack Size.

IpStartAddress
[in] Pointer to the application-defined function of type LPTHREAD_START_ROUTINE
to be executed by the thread and represents the starting address of the thread. For
more information on the thread function, see ThreadProc.

IpParameter
[in] Specifies a single parameter value passed to the thread.

dwCreationFlags
[in] Specifies additional flags that control the creation of the thread. If the
CREATE_SUSPENDED flag is specified, the thread is created in a suspended state,
and will not run until the ResumeThread function is called. If this value is zero, the
thread runs immediately after creation. At this time, no other values are supported.

IpThreadld
[out] Pointer to a variable that receives the thread identifier.

Windows NT/2000: If this parameter is NULL, the thread identifier is not returned.

Chapter 6 Processes, Threads, and Dlls 111

Windows 95/98: This parameter may not be NULL.

Return Values
If the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Note that CreateThread may succeed even if IpStartAddress pOints to data, code, or is
not accessible. If the start address is invalid when the thread runs, an exception occurs,
and the thread terminates. Thread termination due to a invalid start address is handled
as an error exit for the thread's process. This behavior is similar to the asynchronous
nature of CreateProcess, where the process is created even if it refers to invalid or
missing dynamic-link libraries (DLLs).

Windows 95/98: CreateThread succeeds only when it is called in the context of a 32-bit
program. A 32-bit DLL cannot create an additional thread when that DLL is being called
by a 16-bit program.

Remarks
The number of threads a process can create is limited by the available virtual memory. By
default, every thread has one megabyte of stack space. Therefore, you can create at most
2028 threads. If you reduce the default stack size, you can create more threads. However,
your application will have better performance if you create one thread per processor and
build queues of requests for which the application maintains the context information. A
thread would process all requests in a queue before processing requests in the next queue.

The new thread handle is created with THREAD_ALL_ACCESS to the new thread. If a
security descriptor is not provided, the handle can be used in any function that requires a
thread object handle. When a security descriptor is provided, an access check is
performed on all subsequent uses of the handle before access is granted. If the access
check denies access, the requesting process cannot use the handle to gain access to
the thread. If the thread impersonates a client, then calls CreateThread with a NULL
security descriptor, the thread object created has a default security descriptor which
allows access only to the impersonation token's TokenDefaultDaci owner or members.
For more information, see Thread Security and Access Rights.

The thread execution begins at the function specified by the IpStartAddress parameter. If
this function returns, the DWORD return value is used to terminate the thread in an
implicit call to the ExitThread function. Use the GetExitCodeThread function to get the
thread's return value.

The thread is created with a thread priority of THREAD_PRIORITY _NORMAL. Use the
GetThreadPriority and SetThreadPriority functions to get and set the priority value of a
thread.

When a thread terminates, the thread object attains a signaled state, satisfying any
threads that were waiting on the object.

112 Volume 1 Microsoft Windows Base Services

The thread object remains in the system until the thread has terminated and all handles
to it have been closed through a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a
process that is starting (as the result of a call by CreateProcess) are serialized between
each other within a process. Only one of these events can happen in an address space
at a time. This means that the following restrictions hold:

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is done for the process.

• Only one thread in a process can be in a DLL initialization or detach routine at a time.

• ExitProcess does not return until no threads are in their DLL initialization or detach
routines.

A thread that uses functions from the C run-time libraries should use the beginthread
and endthread C run-time functions for thread management rather than CreateThread
and ExitThread. Failure to do so results in small memory leaks when ExitThread is
called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.01 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
CreateProcess, CreateRemoteThread, ExitProcess, ExitTh read ,
GetExitCodeThread, GetThreadPriority, ResumeThread, SetThreadPriority,
SECURITY_ATTRIBUTES, ThreadProc

DeleteFiber
The DeleteFiber function deletes an existing fiber.

Parameters
IpFiber

[in] Specifies the address of the fiber to delete.

Chapter 6 Processes, Threads, and DLLs 113

Return Values
This function does not return a value.

Remarks
The DeleteFiber function deletes all data associated with the fiber. This data includes
the stack, a subset of the registers, and the fiber data. If the currently running fiber calls
DeleteFiber, the ExitThread function is called and the thread terminates. If the currently
running fiber is deleted by another thread, the thread associated with the fiber is likely to
terminate abnormally because the fiber stack has been freed.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, ExitThread

ExitProcess
The ExitProcess function ends a process and all its threads.

Parameters
uExitCode

[in] Specifies the exit code for the process, and for all threads that are terminated as a
result of this call. Use the GetExitCodeProcess function to retrieve the process's exit
value. Use the GetExitCodeThread function to retrieve a thread's exit value.

Return Values
This function does not return a value.

Remarks
ExitProcess is the preferred method of ending a process. This function provides a clean
process shutdown. This includes calling the entry-point function of all attached dynamic­
link libraries (DLLs) with a value indicating that the process is detaching from the DLL. If

114 Volume 1 Microsoft Windows Base Services

a process terminates by calling TerminateProcess, the DLLs that the process is
attached to are not notified of the process termination.

After all attached DLLs have executed any process termination value, this function
terminates the current process.

Terminating a process causes the following:

1. All of the object handles opened by the process are closed.

2. All of the threads in the process terminate their execution.

3. The state of the process object becomes signaled, satisfying any threads that had
been waiting for the process to terminate.

4. The states of all threads of the process become Signaled, satisfying any threads that
had been waiting for the threads to terminate.

5. The termination status of the process changes from STILL_ACTIVE to the exit value
of the process.

Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the
operating system. A process object is deleted when the last handle to the process is
closed.

The ExitProcess, Ex itTh read , CreateThread, CreateRemoteThread functions, and a
process that is starting (as the result of a call by CreateProcess) are serialized between
each other within a process. Only one of these events can happen in an address space
at a time. This means the following restrictions hold:

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is done for the process.

• Only one thread in a process can be in a DLL initialization or detach routine at a time.

• ExitProcess does not return until no threads are in their DLL initialization or detach
routines.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CreateProcess,
CreateRemoteThread, CreateThread, ExitThread, GetExitCodeProcess,
GetExitCodeThread, Open Process, TerminateProcess

ExitThread
The ExitThread function ends a thread.

Parameters
dwExitCode

Chapter 6 Processes, Threads, and DLLs 115

[in] Specifies the exit code for the calling thread. Use the GetExitCodeThread
function to retrieve a thread's exit code.

Return Values
This function does not return a value.

Remarks
ExitThread is the preferred method of exiting a thread. When this function is called
(either explicitly or by returning from a thread procedure), the current thread's stack is
deallocated and the thread terminates. The entry-point function of all attached dynamic­
link libraries (DLLs) is invoked with a value indicating that the thread is detaching from
the DLL.

If the thread is the last thread in the process when this function is called, the thread's
process is also terminated.

The state of the thread object becomes signaled, releasing any other threads that had
been waiting for the thread to terminate. The thread's termination status changes from
STILL_ACTIVE to the value of the dwExitCode parameter.

Terminating a thread does not necessarily remove the thread object from the operating
system. A thread object is deleted when the last handle to the thread is closed.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a
process that is starting (as the result of a CreateProcess call) are serialized between
each other within a process. Only one of these events can happen in an address space
at a time. This means the following restrictions hold:

• During process startup and DLL initialization routines, new threads can be created,
but they do not begin execution until DLL initialization is done for the process.

• Only one thread in a process can be in a DLL initialization or detach routine at a time.

• ExitProcess does not return until no threads are in their DLL initialization or detach
routines.

A thread that uses functions from the C run-time libraries should use the _beginthread
and _endthread C run-time functions for thread management rather than CreateThread
and ExitThread. Failure to do so results in small memory leaks when ExitThread is
called.

11v Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CreateProcess,
CreateRemoteThread, CreateThread, ExitProcess, FreeLibraryAndExitThread,
GetExitCodeThread, Open Thread, TerminateThread

FiberProc
The FiberProc function is an application-defined function used with the CreateFiber
function. It serves as the starting address for a fiber. The LPFIBER_START_ROUTINE
type defines a pointer to this callback function. FiberProc is a placeholder for the
application-defined function name.

Parameters
IpParameter

[in] Receives the fiber data passed to the function using the IpParameter parameter of
the CreateFiber function.

Return Values
This function does not return a value.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Processes and Threads Overview, Process and Thread Functions, CreateFiber

Chapter 6 Processes, Threads, and DLLs 117

FreeEnvironmentStrings
The FreeEnvironmentStrings function frees a block of environment strings.

BOOLFreeEnvironmentStrfl'lgs(
LPTST~ Jp$4fnvi1'onm~nt8fock

, .. ,,,,, """,'- '" ,>, ,~,' "', ' ,- "," "," ',,,, .. , " ' " ' , ,

):.

Parameters
IpszEnvironmentBlock

[in] Pointer to a block of environment strings. The pOinter to the block must be
obtained by calling the GetEnvironmentStrings function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero To get extended error information, call
GetLastError.

Remarks
When GetEnvironmentStrings is called, it allocates memory for a block of environment
strings. When the block is no longer needed, it should be freed by calling
FreeEnvironmentStrings.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions,
GetEnvironmentStrings

GetCommandLine
The GetCommandLine function returns a pOinter to the command-line string for the
current process.

118 Volume 1 Microsoft Windows Base Services

Parameters
This function has no parameters.

Return Values
The return value is a pointer to the command-line string for the current process.

Remarks
ANSI console processes written in C can use the argc and argvarguments of the main
function to access the command-line arguments. ANSI GUI applications can use the
IpCmdLine parameter of the WinMain function to access the command-line string,
excluding the program name. The reason that main and WinMain cannot return Unicode
strings is that argc, argv, and IpCmdLine use the LPSTR data type for parameters, not
the LPTSTR data type. The GetCommandLine function can be used to access Unicode
strings, because it uses the LPTSTR data type.

To convert the command line to an argv style array of strings, call the
CommandLineToArgvW function.

Note The command line that the operating system provides to a process is not
necessarily identical to the COMMAND line that the calling process gives to the
Create Process function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows and Windows
NT/2000.

Processes and Threads Overview, Process and Thread Functions,
CommandLineToArgvW, CreateProcess, WinMain

GetCurrentProcess
The GetCurrentProcess function returns a pseudo handle for the current process.

Chapter 6 Processes, Threads, and DLLs 119

Parameters
This function has no parameters.

Return Values
The return value is a pseudo handle to the current process.

Remarks
A pseudo handle is a special constant that is interpreted as the current process handle.
The calling process can use this handle to specify its own process whenever a process
handle is required. Pseudo handles are not inherited by child processes.

This handle has the maximum possible access to the process object. For systems that
support security descriptors, this is the maximum access allowed by the security
descriptor for the calling process. For systems that do not support security descriptors,
this is PROCESS_ALL_ACCESS. For more information, see Process Security and
Access Rights.

A process can create a "real" handle to itself that is valid in the context of other
processes, or that can be inherited by other processes, by specifying the pseudo handle
as the source handle in a call to the DuplicateHandle function. A process can also use
the Open Process function to open a real handle to itself.

The pseudo handle need not be closed when it is no longer needed. Calling the
CloseHandle function with a pseudo handle has no effect. If the pseudo handle is
duplicated by DuplicateHandle, the duplicate handle must be closed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
DuplicateHandle, GetCurrentProcessld, GetCurrentThread, Open Process

GetCurrentProcessld
The GetCurrentProcessld function returns the process identifier of the calling process.

/Mpi~~j~~~~~$iI~illl,~'lJt"{\:i$,L'.;D;·':';;:i·";'~:\ii,¥'~~~\':!i,:ij\}·~(;' .• ;:;~,i;;;',ttL:~:':/t,,;~.,t,~J;~it i:(i!::;E25~;f:;t:ig;

120 Volume 1 Microsoft Windows Base Services

Parameters
This function has no parameters.

Return Values
The return value is the process identifier of the calling process.

Remarks
Until the process terminates, the process identifier uniquely identifies the process
throughout the system.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, GetCurrentProcess,
Open Process

GetCurrentThread
The GetCurrentThread function returns a pseudo handle for the current thread.

Parameters
This function has no parameters.

Return Values
The return value is a pseudo handle for the current thread.

Remarks
A pseudo handle is a special constant that is interpreted as the current thread handle.
The calling thread can use this handle to specify itself whenever a thread handle is
required. Pseudo handles are not inherited by child processes.

This handle has the maximum possible access to the thread object. For systems that
support security descriptors, this is the maximum access allowed by the security

Chapter 6 Processes, Threads, and DLLs 121

descriptor for the calling process. For systems that do not support security descriptors,
this is THREAD_ALL_ACCESS.

The function cannot be used by one thread to create a handle that can be used by other
threads to refer to the first thread. The handle is always interpreted as referring to the
thread that is using it. A thread can create a "real" handle to itself that can be used by
other threads, or inherited by other processes, by specifying the pseudo handle as the
source handle in a call to the DuplicateHandle function.

The pseudo handle need not be closed when it is no longer needed. Calling the
CloseHandle function with this handle has no effect. If the pseudo handle is duplicated
by DuplicateHandle, the duplicate handle must be closed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
DuplicateHandle, GetCurrentProcess, GetCurrentThreadld, OpenThread

GetCurrentThreadld
The GetCurrentThreadld function returns the thread identifier of the calling thread.

Parameters
This function has no parameters.

Return Values
The return value is the thread identifier of the calling thread.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout
the system.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

122 Volume 1 Microsoft Windows Base Services

Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, GetCurrentThread,
OpenThread

GetEnvironmentStrings
The GetEnvironmentStrings function returns the address of the environment block for
the current process. This function replaces the GetDOSEnvironment function.

Parameters
This function has no parameters.

Return Values
The return value is a pointer to an environment block for the current process.

Remarks
Do not use the return value of GetEnvironmentStrings to get or set environment
variables. Instead, use the GetEnvironmentVariable and SetEnvironmentVariable
functions to access the environment variables within this block. When the block is no
longer needed, it should be freed by calling FreeEnvironmentStrings.

A process can use this function's return value to specify the environment address used
by the Create Process function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions, Create Process,
GetEnvironmentVariable, SetEnvironmentVariable, FreeEnvironmentStrings

Chapter 6 Processes, Threads, and DLLs 123

GetEnvironmentVariable
The GetEnvironmentVariable function retrieves the value of the specified variable from
the environment block of the calling process. The value is in the form of a null-terminated
string of characters.

Parameters
IpName

[in] Pointer to a null-terminated string that specifies the environment variable.

IpBuffer
[out] Pointer to a buffer to receive the value of the specified environment variable.

nSize
[in] Specifies the size, in characters, of the buffer pOinted to by the IpBuffer parameter.

Return Values
If the function succeeds, the return value is the number of characters stored into the
buffer pOinted to by IpBuffer, not including the terminating null character.

If the specified environment variable name was not found in the environment block for
the current process, the return value is zero.

If the buffer pointed to by IpBuffer is not large enough, the return value is the buffer size,
in characters, required to hold the value string and its terminating null character.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions,
GetEnvironmentStrings, SetEnvironmentVariable

124 Volume 1 Microsoft Windows Base Services

GetExitCodeProcess
The GetExitCodeProcess function retrieves the termination status of the specified
process.

Parameters
hProcess

[in] Handle to the process.

Windows NT/2000: The handle must have PROCESS_QUERY_INFORMATION
access. For more information, see Process Security and Access Rights.

IpExitCode
[out] Pointer to a variable to receive the process termination status.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If the specified process has not terminated, the termination status returned is
STILL_ACTIVE. If the process has terminated, the termination status returned may be
one of the following:

• The exit value specified in the ExitProcess or TerminateProcess function.

• The return value from the main or WinMain function of the process.

• The exception value for an unhand led exception that caused the process to terminate.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, ExitProcess,
ExitThread, TerminateProcess, WinMain

Chapter 6 Processes, Threads, and Dlls 125

GetExitCodeThread
The GetExitCodeThread function retrieves the termination status of the specified
thread.

Parameters
hThread

[in] Handle to the thread.

Windows NT/2000: The handle must have THREAD_QUERY_INFORMATION
access. For more information, see Thread Security and Access Rights.

/pExitCode
[out] Pointer to a variable to receive the thread termination status.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If the specified thread has not terminated, the termination status returned is
STILL_ACTIVE. If the thread has terminated, the termination status returned may be one
of the following:

• The exit value specified in the ExitThread or TerminateThread function.

• The return value from the thread function.

• The exit value of the thread's process.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, Ex itTh read ,
GetExitCodeProcess, OpenThread, TerminateThread

126 Volume 1 Microsoft Windows Base Services

GetGuiResources
The GetGuiResources function returns the count of handles to graphical user interface
(GUI) objects in use by the specified process.

Parameters
hProcess

[in] Handle to the process. The handle must have the
PROCESS_QUERY _INFORMATION access right. For more information, see Process
Security and Access Rights.

uiFlags
[in] Specifies the GUI object type. This parameter can be one of the following values.

Value

GR_GDIOBJECTS

GR_USEROBJECTS

Return Values

Meaning

Return the count of GDI objects.

Return the count of USER objects.

If the function succeeds, the return value is the count of handles to GUI objects in use by
the process. If no GUI objects are in use, the return value is zero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
A process without a graphical user interface does not use GUI resources, therefore,
GetGuiResources will return zero.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Processes and Threads Overview, Process and Thread Functions, CreateProcess,
GetCurrentProcess, OpenProcess

Chapter 6 Processes, Threads, and DLLs 127

GetPriorityClass
The GetPriorityClass function returns the priority class for the specified process. This
value, together with the priority value of each thread of the process, determines each
thread's base priority level.

Parameters
hProcess

[in] Handle to the process.

Windows NT/2000: The handle must have PROCESS_QUERY _INFORMATION
access. For more information, see Process Security and Access Rights.

Return Values
If the function succeeds, the return value is the priority class of the specified process.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

The process's priority class is one of the following values.

Priority Meaning

ABOVE_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
above NORMAL_PRIORITY _CLASS but below
HIGH_PRIORITY _CLASS.

BELOW_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
above IDLE_PRIORITY _CLASS but below
NORMAL_PRIORITY _CLASS.

HIGH_PRIORITY _CLASS Indicates a process that performs time-critical tasks
that must be executed immediately for it to run
correctly. The threads of a high-priority class process
preempt the threads of normal or idle priority class
processes. An example is the Task List, which must
respond quickly when called by the user, regardless of
the load on the operating system. Use extreme care
when using the high-priority class, because a high­
priority class CPU-bound application can use nearly all
available cycles.

128 Volume 1 Microsoft Windows Base Services

Remarks

Indicates a process whose threads run only when the
system is idle and are preempted by the threads of any
process running in a higher priority class. An example
is a screen saver. The idle priority class is inherited by
child processes.

Indicates a normal process with no special scheduling
needs.

Indicates a process that has the highest possible
priority. The threads of a real-time priority class process
preempt the threads of all other processes, including
operating system processes performing important
tasks. For example, a real-time process that executes
for more than a very brief interval can cause disk
caches not to flush or cause the mouse to be
unresponsive.

Every thread has a base priority level determined by the thread's priority value and the
priority class of its process. The operating system uses the base priority level of all
executable threads to determine which thread gets the next slice of CPU time. Threads
are scheduled in a round-robin fashion at each priority level, and only when there are no
executable threads at a higher level will scheduling of threads at a lower level take
place.

For a table that shows the base priority levels for each combination of priority class and
thread priority value, see the SetPriorityClass function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, GetThreadPriority,
SetPriorityClass, SetThreadPriority

GetProcessAffinityMask
The GetProcessAffinityMask function obtains a process affinity mask for the specified
process and the system affinity mask for the system.

Chapter 6 Processes, Threads, and DLLs 129

A process affinity mask is a bit vector in which each bit represents the processors that a
process is allowed to run on. A system affinity mask is a bit vector in which each bit
represents the processors that are configured into a system.

A process affinity mask is a proper subset of a system affinity mask. A process is only
allowed to run on the processors configured into a system.

Parameters
hProcess

[in] Handle to the process whose affinity mask is desired.

Windows NT/2000: This handle must have PROCESS_QUERY _INFORMATION
access. For more information, see Process Security and Access Rights.

JpProcessAffinityMask
[out] Pointer to a variable that receives the affinity mask for the specified process.

JpSystemAffinityMask
[out] Pointer to a variable that receives the affinity mask for the system.

Return Values
If the function succeeds, the return value is nonzero.

Windows NT/2000: Upon success, the function sets the DWORD variables pointed to
by JpProcessAffinityMask and JpSystemAffinityMask to the appropriate affinity masks.

Windows 95/98: Upon success, the function sets the DWORD variables pOinted to by
JpProcessAffinityMask and JpSystemAffinityMask to the value one.

If the function fails, the return value is zero, and the values of the DWORD variables
pOinted to by JpProcessAffinityMask and JpSystemAffinityMask are undefined. To get
extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
SetProcessAffinityMask, SetThreadAffinityMask

130 Volume 1 Microsoft Windows Base Services

GetProcessloCounters
The GetProcessloCounters function retrieves accounting information for all I/O
operations performed by the specified process.

Parameters
hProcess

[in] Handle to the process. The handle must have the PROCESS_QUERY access
right.

IploCounters
[out] Pointer to an IO_COUNTERS structure that receives the I/O accounting
information for the process.

Return Value
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, IO_COUNTERS

GetProcessPriorityBoost
The GetProcessPriorityBoost function returns the priority boost control state of the
specified process.

Parameters
hProcess

Chapter 6 Processes, Threads, and DLLs 131

[in] Handle to the process. This handle must have the
PROCESS_QUERY _INFORMATION access right. For more information, see Process
Security and Access Rights.

pDisablePriorityBoost
[out] Pointer to a variable that receives the priority boost control state. A value of
TRUE indicates that dynamic boosting is disabled. A value of FALSE indicates normal
behavior.

Return Values
If the function succeeds, the return value is nonzero. In that case, the variable pointed to
by the pDisablePriorityBoost parameter receives the priority boost control state.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
SetProcessPriorityBoost

GetProcessShutdownParameters
The GetProcessShutdownParameters function retrieves shutdown parameters for the
currently calling process.

Parameters
IpdwLevel

[out] Pointer to a variable that receives the shutdown priority level. Higher levels shut
down first. System level shutdown orders are reserved for system components.
Higher numbers shut down first. Following are the level conventions:

132 Volume 1 Microsoft Windows Base Services

Value

OOO-OFF

100-1FF

200-2FF

300-3FF

400-4FF

Meaning

System reserved last shutdown range.

Application reserved last shutdown range.

Application reserved "in between" shutdown range.

Application reserved first shutdown range.

System reserved first shutdown range.

All processes start at shutdown level Ox280.

IpdwFlags
[out] Pointer to a variable that receives the shutdown flags. This parameter can be the
following value.

Value

SHUTDOWN_NORETRY

Return Values

Meaning

If this process takes longer than the specified timeout to
shut down, do not display a retry dialog box for the
user. Instead, just cause the process to directly exit.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
SetProcessShutdownParameters

GetProcessTimes
The GetProcessTimes function obtains timing information about a specified process.

Parameters
hProcess

Chapter 6 Processes, Threads, and DLLs 133

[in] Handle to the process whose timing information is sought. This handle must be
created with PROCESS_QUERY _INFORMATION access. For more information, see
Process Security and Access Rights.

IpCreation Time
[out] Pointer to a FILETIME structure that receives the creation time of the process.

IpExitTime
[out] Pointer to a FILETIME structure that receives the exit time of the process. If the
process has not exited, the content of this structure is undefined.

IpKernelTime
[out] Pointer to a FILETIME structure that receives the amount of time that the
process has executed in kernel mode. The time that each of the threads of the
process has executed in kernel mode is determined, and then all of those times are
summed together to obtain this value.

IpUserTime
[out] Pointer to a FILETIME structure that receives the amount of time that the
process has executed in user mode. The time that each of the threads of the process
has executed in user mode is determined, and then all of those times are summed
together to obtain this value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
All times are expressed using FILETIME data structures. Such a structure contains two
32-bit values that combine to form a 64-bit count of 100-nanosecond time units.

Process creation and exit times are points in time expressed as the amount of time that
has elapsed since midnight on January 1, 1601 at Greenwich, England. The Win32 API
provides several functions that an application can use to convert such values to more
generally useful forms.

Process kernel mode and user mode times are amounts of time. For example, if a
process has spent one second in kernel mode, this function will fill the FILETIME
structure specified by IpKernelTime with a 64-bit value of ten million. That is the number
of 100-nanosecond units in one second.

134 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95198: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, FILETIME,
FileTimeToDosDateTime, FileTimeToLocalFlleTime, FileTimeToSystemTime

GetProcess Version
The GetProcessVersion function obtains the major and minor version numbers of the
system on which a specified process expects to run.

Parameters
Processld

[in] Process identifier that specifies the process of interest. A value of zero specifies
the calling process.

Return Values
If the function succeeds, the return value is the version of the system on which the
process expects to run. The high word of the return value contains the major version
number. The low word of the return value contains the minor version number.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. The function fails if Processld is an invalid value.

Remarks
The GetProcessVersion function performs less quickly when Processld is nonzero,
specifying a process other than the calling process.

The version number returned by this function is the version number stamped in the
image header of the .exe file the process is running. Linker programs set this value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.

Chapter 6 Processes, Threads, and DLLs 135

Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions

GetProcessWorkingSetSize
The GetProcessWorkingSetSize function obtains the minimum and maximum working
set sizes of a specified process.

The "working set" of a process is the set of memory pages currently visible to the
process in physical RAM memory. These pages are resident and available for an
application to use without triggering a page fault. The size of a process' working set is
specified in bytes. The minimum and maximum working set sizes affect the virtual
memory paging behavior of a process.

Parameters
hProcess

[in] Handle to the process whose working set sizes will be obtained. The handle must
have the PROCESS_QUERY _INFORMATION access right. For more information,
see Process Security and Access Rights.

IpMinimumWorkingSetSize
[out] Pointer to a variable that receives the minimum working set size of the specified
process. The virtual memory manager attempts to keep at least this much memory
resident in the process whenever the process is active.

IpMaximumWorkingSetSize
[out] Pointer to a variable that receives the maximum working set size of the specified
process. The virtual memory manager attempts to keep no more than this much
memory resident in the process whenever the process is active when memory is in
short supply.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

136 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
SetProcessWorkingSetSize

GetStartu pi nfo
The GetStartuplnfo function retrieves the contents of the STARTUPINFO structure that
was specified when the calling process was created.

Parameters
IpStartuplnfo

[out] Pointer to a STARTUPINFO structure that receives the startup information.

Return Values
This function does not return a value.

Remarks
The STARTUPINFO structure was specified by the process that created the calling
process. It can be used to specify properties associated with the main window of the
calling process.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 6 Processes, Threads, and DLLs 137

Processes and Threads Overview, Process and Thread Functions, CreateProcess,
STARTUPINFO

GetTh read Priority
The GetThreadPriority function returns the priority value for the specified thread. This
value, together with the priority class of the thread's process, determines the thread's
base-priority level.

Parameters
hThread

[in] Handle to the thread.

Windows NT/2000: The handle must have THREAD_QUERY_INFORMATION
access. For more information, see Thread Security and Access Rights.

Return Values
If the function succeeds, the return value is the thread's priority level.

If the function fails, the return value is THREAD_PRIORITY _ERROR_RETURN. To get
extended error information, call GetLastError.

The thread's priority level is one of the following values:

Priority Meaning

THREAD_PRIORITY _ABOVE_NORMAL Indicates 1 point above normal priority for the priority
class.

THREAD_PRIORITY _BELOW_NORMAL Indicates 1 point below normal priority for the priority
class.

THREAD_PRIORITY _HIGHEST Indicates 2 pOints above normal priority for the priority
class.

THREAD_PRIORITY _IDLE Indicates a base-priority level of 1 for
IDLE_PRIORITY _CLASS,
BELOW _NORMAL_PRIORITY _CLASS,
NORMAL_PRIORITY _CLASS,
ABOVE_NORMAL_PRIORITY _CLASS, or
HIGH_PRIORITY _CLASS processes, and a base­
priority level of 16 for REAL TIME_PRIORITY _CLASS
processes.

(continued)

138 Volume 1 Microsoft Windows Base Services

(continued)

Priority

THREAD_PRIORITY _NORMAL

THREAD_PRIORITY _TIME_CRITICAL

Remarks

Meaning

Indicates 2 pOints below normal priority for the priority
class.

Indicates normal priority for the priority class.

Indicates a base-priority level of 15 for
IDLE_PRIORITY _CLASS,
BELOW_NORMAL_PRIORITY _CLASS,
NORMAL_PRIORITY _CLASS,
ABOVE_NORMAL_PRIORITY _CLASS, or
HIGH_PRIORITY _CLASS processes, and a base­
priority level of 31 for REAL TIME_PRIORITY _CLASS
processes.

Every thread has a base-priority level determined by the thread's priority value and the
priority class of its process. The operating system uses the base-priority level of all
executable threads to determine which thread gets the next slice of CPU time. Threads
are scheduled in a round-robin fashion at each priority level, and only when there are no
executable threads at a higher level will scheduling of threads at a lower level take
place.

For a table that shows the base-priority levels for each combination of priority class and
thread priority value, refer to the SetPriorityClass function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, GetPriorityClass,
OpenThread, SetPriorityClass, SetThreadPriority

GetThreadPriorityBoost
The GetThreadPriorityBoost function returns the priority boost control state of the
specified thread.

Parameters
hThread

Chapter 6 Processes, Threads, and DLLs 139

[in] Handle to the thread. This thread must have THREAD_QUERY _INFORMATION
access. For more information, see Thread Security and Access Rights.

pDisablePriorityBoost
[out] Pointer to a variable that receives the priority boost control state. A value of
TRUE indicates that dynamic boosting is disabled. A value of FALSE indicates normal
behavior.

Return Values
If the function succeeds, the return value is nonzero. In that case, the variable pOinted to
by the pDisablePriorityBoost parameter receives the priority boost control state.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, OpenThread,
SetThreadPriorityBoost

GetThreadTimes
The GetThreadTimes function obtains timing information about a specified thread.

140 Volume 1 Microsoft Windows Base Services

Parameters
hThread

[in] Handle to the thread whose timing information is sought. This handle must be
created with THREAD_QUERY _INFORMATION access. For more information, see
Thread Security and Access Rights.

IpCreation Time
[out] Pointer to a FILETIME structure that receives the creation time of the thread.

IpExitTime
[out] Pointer to a FILETIME structure that receives the exit time of the thread. If the
thread has not exited, the content of this structure is undefined.

IpKernelTime
[out] Pointer to a FILETIME structure that receives the amount of time that the thread
has executed in kernel mode.

IpUserTime
[out] Pointer to a FILETIME structure that receives the amount of time that the thread
has executed in user mode.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
All times are expressed using FILETIME data structures. Such a structure contains two
32-bit values that combine to form a 64-bit count of 100-nanosecond time units.

Thread creation and exit times are paints in time expressed as the amount of time that
has elapsed since midnight on January 1, 1601 at Greenwich, England. The Win32 API
provides several functions that an application can use to convert such values to more
generally useful forms; see Time Functions, particularly those noted in the following See
Also section.

Thread kernel mode and user mode times are amounts of time. For example, if a thread
has spent one second in kernel mode, this function will fill the FILETIME structure
specified by IpKernelTime with a 64-bit value of ten million. That is the number of 100-
nanosecond units in one second.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 6 Processes, Threads, and DLLs 141

Processes and Threads Overview, Process and Thread Functions, FILETIME,
FileTimeToDosDateTime, FileTimeToLocalFileTime, FileTimeToSystemTime,
OpenThread

OpenJobObject
The OpenJobObject function opens an existing job object.

Parameters
dwDesiredAccess

[in] Specifies the desired access mode to the job object. This parameter can be one or
more of the following values.

Value Meaning

MAXIMUM_ALLOWED Specifies maximum access rights to the job
object that are valid for the caller.

JOB_OBJECT _ASSIGN_PROCESS Specifies the assign process access right to
the object. Allows processes to be assigned to
the job.

JOB_OBJECT_SET_ATTRIBUTES Specifies the set attribute access right to the
object. Allows job object attributes to be set.

JOB_aBJECT_QUERY Specifies the query access right to the object.
Allows job object attributes and accounting
information to be queried.

JOB_aBJECT_TERMINATE Specifies the terminate access right to the
. object. Allows termination of all processes in
the job object.

JOB_OBJECT _SET _SECURITY _ATTRIBUTES Specifies the security attributes access right to
the object. Allows security limitations on all
processes in the job object to be set.

JOB_OBJECT _ALL_ACCESS Specifies the full access right to the job object.

blnheritHandles
[in] Specifies whether the returned handle is inherited when a new process is created.
If this parameter is TRUE, the new process inherits the handle.

142 Volume 1 Microsoft Windows Base Services

IpName
[in] Pointer to a null-terminated string specifying the name of the job to be opened.
Name comparisons are case sensitive.

Return Values
If the function succeeds, the return value is a handle to the job. The handle provides the
requested access to the job.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
To associate a process with a job, use the AsslgnProcessToJobObject function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions,
AssignProcessToJobObject

Open Process
The Open Process function returns a handle to an existing process object.

Parameters
dwDesiredAccess

[in] Specifies the access to the process object. For operating systems that support
security checking, this access is checked against any security descriptor for the target
process. This parameter can be STANDARD_RIGHTS_REQUIRED or one or more of
the following values:

Chapter 6 Processes, Threads, and DLLs 143

Value Description

PROCESS_ALL_ACCESS Specifies all possible access flags for the
process object.

PROCESS_CREATE_PROCESS Used internally.

PROCESS_CREATE_ THREAD Enables using the process handle in the
CreateRemoteThread function to create a
thread in the process.

PROCESS_DUP _HANDLE Enables using the process handle as either
the source or target process in the
DuplicateHandle function to duplicate a
handle.

PROCESS_QUERY _INFORMATION Enables using the process handle in the
GetExitCodeProcess and
GetPriorityClass functions to read
information from the process object.

PROCESS_SET_QUOTA Enables using the process handle in the
AssignProcessToJobObject and
SetProcessWorkingSetSize functions to
set memory limits.

PROCESS_SET_INFORMATION Enables using the process handle in the
SetPriorityClass function to set the priority
class of the process.

PROCESS_TERMINATE Enables using the process handle in the
TerminateProcess function to terminate the
process.

PROCESS_VM_OPERATION Enables using the process handle in the
VirtualProtectEx and
Write Process Memory functions to modify
the virtual memory of the process.

PROCESS_ VM_READ Enables using the process handle in the
ReadProcessMemory function to read from
the virtual memory of the process.

PROCESS_ VM_WRITE Enables using the process handle in the
WriteProcessMemory function to write to
the virtual memory of the process.

SYNCHRONIZE Windows NT/2000: Enables using the
process handle in any of the wait functions
to wait for the process to terminate.

blnheritHandle
[in] Specifies whether the returned handle can be inherited by a new process created
by the current process. If TRUE, the handle is inheritable.

144 Volume 1 Microsoft Windows Base Services

dwProcessld
[in] Specifies the identifier of the process to open.

Return Values
If the function succeeds, the return value is an open handle to the specified process.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The handle returned by the Open Process function can be used in any function that
requires a handle to a process, such as the wait functions, provided the appropriate
access rights were requested.

When you are finished with the handle, be sure to close it using the CloseHandle
function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
AssignProcessToJobObject, CloseHandle, CreateProcess, CreateRemoteThread,
DuplicateHandle, GetCurrentProcess, GetCurrentProcessld, GetExitCodeProcess,
GetPriorityClass, ReadProcessMemory, SetPriorityClass,
SetProcessWorkingSetSize, TerminateProcess, VirtualProtectEx,
WriteProcessMemory

OpenThread
The OpenThread function returns a handle to an existing thread object.

Parameters
dwDesiredAccess

Chapter 6 Processes, Threads, and DLLs 145

[in] Specifies the desired access to the thread object. For operating systems that support
security checking, this access level is checked against any security descriptor for the
target thread. This parameter can be STANDARD_RIGHTS_REQUIRED or any
combination of the following values.

Value Description

SYNCHRONIZE Enables the use of the thread handle in any of
the wait functions.

THREAD_ALL_ACCESS Specifies all possible access flags for the
thread object.

THREAD_GET _CONTEXT Enables the use of the thread handle in the
GetThreadContext function.

THREAD_QUERY _INFORMATION Enables the use of the thread handle to read
certain information from the thread object,
such as the exit code (see
GetExitCodeThread).

THREAD_SET_CONTEXT Enables the use of the thread handle in the
SetThreadContext function.

THREAD_SET_INFORMATION Enables the use of the thread handle to set
certain information for the thread object.

THREAD_SET _ THREAD_TOKEN Enables the use of the thread handle in the
SetTokenlnformation function to set the
thread token.

THREAD_SUSPEND_RESUME Enables the use of the thread handle in the
SuspendThread or ResumeThread function
to suspend and resume the thread.

THREAD_TERMINATE Enables the use of the thread handle in the
TerminateThread function to terminate the
thread.

blnheritHandle
[in] Indicates whether the returned handle is to be inherited by a new process created
by the current process. If this parameter is TRUE, the new process will inherit the
handle.

dwThreadld
[in] Specifies the identifier of the thread to open.

Return Values
If the function succeeds, the return value is an open handle to the specified process.

146 Volume 1 Microsoft Windows Base Services

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The handle returned by OpenThread can be used in any function that requires a handle
to a thread, such as the wait functions, provided you requested the appropriate access
rights. The handle is granted access to the thread object only to the extent it was
specified in the dwDesiredAccess parameter.

When you are finished with the handle, be sure to close it by using the CloseHandle
function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CloseHandle,
GetExitCodeTh read , GetThreadContext, ResumeThread, SetThreadContext,
SetTokenlnformation, SuspendThread, TerminateThread

QuerylnformationJobObject
The QuerylnformationJobObject function obtains limit and job state information from
the job object.

Parameters
hJob

[in] Handle to the job whose information is being queried. The CreateJobObject or
OpenJobObject function returns this handle. The handle must have the
JOB_OBJECT _QUERY access right associated with it. For more information, see Job
Object Security and Access Rights.

Chapter 6 Processes, Threads, and DLLs 147

If this value is NULL and the calling process is associated with a job, the job
associated with the calling process is used.

JobObjectinfoClass
[in] Specifies the information class for limits to be queried. This parameter can be one
of the following values.

Value Meaning

JobObjectBasicAccountinglnformation The IpJobObjectinfo parameter is a pointer to a
JOBOBJECT _BASIC_ACCOUNTING_
INFORMATION structure.

JobObjectBasicAndloAccountinglnformation The IpJobObjectinfo parameter is a pOinter to a
JOBOBJECT _BASIC_AND_IO_ACCOUNTING_
INFORMATION structure.

JobObjectBasicLimitlnformation The IpJobObjectlnfo parameter is a pOinter to a
JOBOBJECT _BASIC_LIMIT _INFORMATION
structure.

JobObjectBasicProcessldList The IpJobObjectlnfo parameter is a pOinter to a
JOBOBJECT _BASIC_PROCESS_ID_L1ST
structure.

JobObjectBasicUIRestrictions The IpJobObjectinfo parameter is a pointer to a
JOBOBJECT _BASIC_UI_RESTRICTIONS
structure.

JobObjectExtendedLimitlnformation The IpJobObjectinfo parameter is a pOinter to a
JOBOBJECT _EXTENDED_L1MIT_
INFORMATION structure.

JobObjectSecurityLimitlnformation The IpJobObjectlnfo parameter is a pOinter to a
JOBOBJECT _SECURITY _LIMIT_INFORMATION
structure.

IpJobObjectlnfo
[out] Receives the limit information. The format of this data depends on the value of
the JobObjectlnfoClass parameter.

cbJobObjectinfoLength
[in] Specifies the count, in bytes, of the job information being queried.

IpReturnLength
[out] Pointer to a variable that receives the length of data written to the structure
pointed to by the IpJobObjectinfo parameter. If you do not want to receive this
information, specify NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

148 Volume 1 Microsoft Windows Base Services

Remarks
You can use QuerylnformationJobObject to obtain the current limits, modify them,
then use the SetlnformationJobObject function to set new limits.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
JOBOBJECT _BASIC_ACCOUNTING_INFORMATION,
JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION,
JOBOBJECT _BASIC_LIMIT _INFORMATION,
JOBOBJECT _BASIC_PROCESS_ID_LIST,
JOBOBJECT _BASIC_ULRESTRICTIONS,
JOBOBJECT _EXTENDED_LIMIT _INFORMATION,
JOBOBJECT _SECURITY _LIMIT_INFORMATION, SetlnformationJobObject

QueueUserWorkltem
The QueueUserWorkltem function queues a work item to a worker thread in the thread
pool.

Parameters
Function

[in] Pointer to the application-defined function of type LPTHREAD_START_ROUTINE
to be executed by the thread in the thread pool. This value represents the starting
address of the thread. For more information, see ThreadProc.

Context
[in] Specifies a single parameter value that will be passed to the thread function.

Flags
[in] This parameter can be one or more of the following values:

Value

WT_EXECUTEDEFAULT

WT _EXECUTEINIOTHREAD

Chapter 6 Processes, Threads, and DLLs 149

Meaning

By default, the callback function is queued to a
non-I/O worker thread.

The callback function is queued to an I/O worker
thread. This flag should be used if the function
should be executed in a thread that handles
pending asynchronous I/O requests before exiting.

The callback function is queued as an APC. Be
sure to address reentrancy issues if the function
performs an alertable wait operation.

WT _EXECUTEINPERSISTENTIOTHREAD The callback function is queued to a thread that
never terminates.

WT _EXECUTELONGFUNCTION

Return Values

Note that currently no worker thread is truly
persistent, although I/O worker threads do not
terminate if there are any pending I/O requests.

Specifies that the callback function can perform a
long wait. This flags helps the system to decide if it
should create a new thread. This flag can be used
only with the WT_EXECUTEINIOTHREAD flag.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If a function in a DLL is queued to a worker thread, be sure that the function has
completed execution before the DLL is unloaded.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, ThreadProc

150 Volume 1 Microsoft Windows Base Services

ResumeThread
The ResumeThread function decrements a thread's suspend count. When the suspend
count is decremented to zero, the execution of the thread is resumed.

Parameters
hThread

[in] Handle to the thread to be restarted.

Windows NT/2000: The handle must have THREAD_SUSPEND_RESUME access
to the thread. For more information, see Thread Security and Access Rights.

Return Values
If the function succeeds, the return value is the thread's previous suspend count.

If the function fails, the return value is -1. To get extended error information, call
GetLastError.

Remarks
The ResumeThread function checks the suspend count of the subject thread. If the.
suspend count is 0, the thread is not currently suspended. Otherwise, the subject
thread's suspend count is decremented. If the resulting value is 0, then the execution of
the subject thread is resumed.

If the return value is 0, the specified thread was not suspended. If the return value is 1,
the specified thread was suspended but was restarted. If the return value is greater than
1 , the specified thread is still suspended.

Note that while reporting debug events, all threads within the reporting process are
frozen. Debuggers are expected to use the SuspendThread and ResumeThread
functions to limit the set of threads that can execute within a process. By suspending all
threads in a process except for the one reporting a debug event, it is possible to "single
step" a single thread. The other threads are not released by a continue operation if they
are suspended.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 6 Processes, Threads, and DLLs 151

Processes and Threads Overview, Process and Thread Functions, OpenTh read ,
SuspendThread

SetEnvironmentVariable
The SetEnvironmentVariable function sets the value of an environment variable for the
current process.

Parameters
IpName

[in] Pointer to a null-terminated string that specifies the environment variable whose
value is being set. The operating system creates the environment variable if it does
not exist and IpValue is not NULL.

IpValue
[in] Pointer to a null-terminated string containing the new value of the specified
environment variable. If this parameter is NULL, the variable is deleted from the
current process's environment.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Processes and Threads Overview, Process and Thread Functions,
GetEnvironmentVariable

152 Volume 1 Microsoft Windows Base Services

SetlnformationJobObject
The SetlnformationJobObject function is used to set limits for a job object.

Parameters
hJob

[in] Handle to the job whose limits are being set. The CreateJobObject or
OpenJobObject function returns this handle. The handle must have the
JOB_OBJECT_SET_ATTRIBUTES access right associated with it. For more
information, see Job Object Security and Access Rights.

JobObjectlnfoClass
[in] Specifies the information class for limits to be set. This parameter can be one of
the following values.

Value Meaning

JobObjectAssociateCompletionPortlnformation The IpJobObjectlnfo parameter is a pointer to a
JOBOBJECT _ASSOCIATE_COMPLETION_P
ORT structure.

JobObjectBasicLimitlnformation

JobObjectBasicU I Restrictions

JobObjectEndOfJobTimelnformation

JobObjectExtendedLimitlnformation

JobObjectSecurityLimitlnformation

The IpJobObjectlnfo parameter is a pointer to a
JOBOBJECT _BASIC_LIMIT _INFORMATION
structure.

The IpJobObjectlnfo parameter is a pOinter to a
JOBOBJECT _BASIC_UI_RESTRICTIONS
structure.

The IpJobObjectlnfo parameter is a pointer to a
JOBOBJECT _END_OF _JOB_ TIME_
INFORMATION structure.

The IpJobObjectlnfo parameter is a pOinter to a
JOBOBJECT _EXTENDED_LlMIT_
INFORMATION structure.

The IpJobObjectlnfo parameter is a pOinter to a
JOBOBJECT _SECURITY_LIM IT_
INFORMATION structure. The hJob handle
must have the
JOB_OBJECT _SET _SECURITY_ATTRIBUTES
access right associated with it.

Chapter 6 Processes, Threads, and DLLs 153

IpJobObjectlnfo
[in] Specifies the limits to be set for the job. The format of this data depends on the
value of JobObjectlnfoClass.

cbJobObjectlnfoLength
[in] Specifies the count, in bytes, of the job information being set.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
You can use the SetlnformationJobObject function to set several limits in a single call.
If you want to establish the limits one at a time or change a subset of the limits, call the
QuerylnformationJobObject function to obtain the current limits, modify these limits,
and then call SetlnformationJobObject.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
JOBOBJECT _ASSOCIATE_COMPLETION_PORT,
JOBOBJECT _BASIC_LIMIT _INFORMATION,
JOBOBJECT _BASIC_UI_RESTRICTIONS,
JOBOBJECT _END_OF _JOB_ TIME_INFORMATION,
JOBOBJECT _EXTENDED_LIMIT _INFORMATION,
JOBOBJECT _SECURITY _LIMIT_INFORMATION, QuerylnformationJobObject

SetPriorityClass
The SetPriorityClass function sets the priority class for the specified process. This
value together with the priority value of each thread of the process determines each
thread's base priority level.

154 Volume 1 Microsoft Windows Base Services

Parameters
hProcess

[in] Handle to the process.

Windows NT/2000: The handle must have the PROCESS_SET _INFORMATION
access right. For more information, see Process Security and Access Rights.

dwPriorityClass
[in] Specifies the priority class for the process. This parameter can be one of the
following values.

Priority Meaning

ABOVE_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
above NORMAL_PRIORITY _CLASS but below
HIGH_PRIORITY _CLASS.

BELOW_NORMAL_PRIORITY _CLASS Windows 2000: Indicates a process that has priority
above IDLE_PRIORITY _CLASS but below
NORMAL_PRIORITY _CLASS.

HIGH_PRIORITY _CLASS Specify this class for a process that performs time­
critical tasks that must be executed immediately. The
threads of the process preempt the threads of normal
or idle priority class processes. An example is the Task
List, which must respond quickly when called by the
user, regardless of the load on the operating system.
Use extreme care when using the high-priority class,
because a high-priority class application can use nearly
all available CPU time.

IDLE_PRIORITY _CLASS Specify this class for a process whose threads run only
when the system is idle. The threads of the process are
preempted by the threads of any process running in a
higher priority class. An example is a screen saver.
The idle-priority class is inherited by child processes.

NORMAL_PRIORITY _CLASS Specify this class for a process with no special
scheduling needs.

REAL TIME_PRIORITY _CLASS Specify this class for a process that has the highest
possible priority. The threads of the process preempt
the threads of all other processes, including operating
system processes performing important tasks. For
example, a real-time process that executes for more
than a very brief interval can cause disk caches not to
flush or cause the mouse to be unresponsive.

Return Values
If the function succeeds, the return value is nonzero.

Chapter 6 Processes, Threads, and DLLs 155

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Every thread has a base priority level determined by the thread's priority value and the
priority class of its process. The system uses the base priority level of all executable
threads to determine which thread gets the next slice of CPU time. The
SetThreadPriority function enables setting the base priority level of a thread relative to
the priority class of its process. For more information, see Scheduling Priorities.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, CreateProcess,
CreateThread, GetPriorityClass, GetThreadPriority, SetThreadPriority

SetProcessAffinityMask
The SetProcessAffinityMask function sets a processor affinity mask for the threads of a
specified process.

A process affinity mask is a bit vector in which each bit represents the processor on
which the threads of the process are allowed to run.

The value of the process affinity mask must be a proper subset of the mask values
obtained by the GetProcessAffinityMask function.

Parameters
hProcess

[in] Handle to the process whose affinity mask is to be set. This handle must have the
PROCESS_SET_INFORMATION access right. For more information, see Process
Security and Access Rights.

156 Volume 1 Microsoft Windows Base Services

dwProcessAffinityMask
[in] Specifies an affinity mask for the threads of the process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Process affinity is inherited by any process that you start with the CreateProcess
function.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CreateProcess,
GetProcessAffinityMask

SetProcessPriorityBoost
The SetProcessPriorityBoost function disables the ability of the system to temporarily
boost the priority of the threads of the specified process.

Parameters
hProcess

[in] Handle to the process. This handle must have the
PROCESS_SET_INFORMATION access right. For more information, see Process
Security and Access Rights.

DisablePriorityBoost
[in] Specifies the priority boost control state. A value of TRUE indicates that dynamic
boosting is to be disabled. A value of FALSE restores normal behavior.

Chapter 6 Processes, Threads, and DLLs 157

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
When a thread is running in one of the dynamic priority classes, the system temporarily
boosts the thread's priority when it is taken out of a wait state. If
SetProcessPriorityBoost is called with the DisablePriorityBoost parameter set to
TRUE, its threads' priorities are not boosted. This setting affects all existing threads and
any threads subsequently created by the process. To restore normal behavior, call
SetProcessPriorityBoost with DisablePriorityBoost set to FALSE.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
GetProcessPriorityBoost

SetProcessShutdownParameters
The SetProcessShutdownParameters function sets shutdown parameters for the
currently calling process. This function sets a shutdown order for a process relative to
the other processes in the system.

Parameters
dwLevel

[in] Specifies the shutdown priority for a process relative to other processes in the
system. The system shuts down processes from high dwLeve/values to low. The
highest and lowest shutdown priorities are reserved for system components. This
parameter must be in the following range of values:

158 Volume 1 Microsoft Windows Base Services

Value

OOO-OFF

100-1FF

200-2FF

300-3FF

400-4FF

Meaning

System reserved last shutdown range.

Application reserved last shutdown range.

Application reserved "in between" shutdown range.

Application reserved first shutdown range.

System reserved first shutdown range.

All processes start at shutdown level Ox280.

dwFlags
[in] This parameter can be the following value.

Value

SHUTDOWN_NORETRY

Return Values

Meaning

Specifies whether to retry the shutdown if the specified
time-out period expires. If this flag is specified, the
system terminates the process without displaying a
retry dialog box for the user.

If the function is succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Applications running in the system security context do not get shut down by the
operating system. They get notified of shutdown or logoff through the callback function
installable via SetConsoleCtrlHandler. They also get notified in the order specified by
the dwLevel parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
GetProcessShutdownParameters, SetConsoleCtrlHandler

Chapter 6 Processes, Threads, and DLLs 159

SetProcessWorkingSetSize
The SetProcessWorkingSetSize function sets the minimum and maximum working set
sizes for a specified process.

The working set of a process is the set of memory pages currently visible to the process
in physical RAM memory. These pages are resident and available for an application to
use without triggering a page fault. The size of the working set of a process is specified
in bytes. The minimum and maximum working set sizes affect the virtual memory paging
behavior of a process.

Parameters
hProcess

[in] Handle to the process whose working set sizes is to be set.

Windows NT/2000: The handle must have PROCESS_SET _QUOTA access rights.
For more information, see Process Security and Access Rights.

dwMinimumWorkingSetSize
[in] Specifies a minimum working set size for the process. The virtual memory
manager attempts to keep at least this much memory resident in the process
whenever the process is active.

If both dwMinimumWorkingSetSize and dwMaximumWorkingSetSize have the value -
1, the function temporarily trims the working set of the specified process to zero. This
essentially swaps the process out of physical RAM memory.

dwMaximumWorkingSetSize
[in] Specifies a maximum working set size for the process. The virtual memory
manager attempts to keep no more than this much memory resident in the process
whenever the process is active and memory is in short supply.

If both dwMinimumWorkingSetSize and dwMaximumWorkingSetSize have the value -
1, the function temporarily trims the working set of the specified process to zero. This
essentially swaps the process out of physical RAM memory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. Call GetLastError to obtain extended error
information.

160 Volume 1 Microsoft Windows Base Services

Remarks
The workihg set of the specified process can be emptied by specifying the value -1 for
both the minimum and maximum working set sizes.

If the values of either dwMinimumWorkingSetSize or dwMaximumWorkingSetSize are
greater than the process' current working set sizes, the specified process must have the
SE_INC_BASE_PRIORITY _NAME privilege. Users in the Administrators and Power
Users groups generally have this privilege. For more information about security
privileges, see Privileges.

The operating system allocates working set sizes on a first-come, first-served basis. For
example, if an application successfully sets 40 megabytes as its minimum working set
size on a 64-megabyte system, and a second application requests a 40-megabyte
working set size, the operating system denies the second application's request.

Using the SetProcessWorkingSetSize function to set an application's minimum and
maximum working set sizes does not guarantee that the requested memory will be
reserved, or that it will remain resident at all times. When the application is idle, or a low­
memory situation causes a demand for memory, the operating system can reduce the
application's working set. An application can use the Virtual Lock function to lock ranges
of the application's virtual address space in memory; however, that can potentially
degrade the performance of the system.

When you increase the working set size of an application, you are taking away physical
memory from the rest of the system. This can degrade the performance of other
applications and the system as a whole. It can also lead to failures of operations that
require phYSical memory to be present; for example, creating processes, threads, and
kernel pool. Thus, you must use the SetProcessWorkingSetSize function carefully. You
must always consider the performance of the whole system when you are designing an
application.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
GetProcessWorkingSetSize, Virtual Lock

Chapter 6 Processes, Threads, and DLLs 161

SetThreadAffinityMask
The SetThreadAffinityMask function sets a processor affinity mask for a specified
thread.

A thread affinity mask is a bit vector in which each bit represents the processors that a
thread is allowed to run on.

A thread affinity mask must be a proper subset of the process affinity mask for the
containing process of a thread. A thread is only allowed to run on the processors its
process is allowed to run on.

Parameters
hThread

[in] Handle to the thread whose affinity mask is to be set.

Windows NT/2000: This handle must have the THREAD_SET _INFORMATION
access right associated with it. For more information, see Thread Security and Access
Rights.

dwThreadAffinityMask
Windows NT/2000: [in] Specifies an affinity mask for the thread.

Windows 95/98: [in] This value must be 1.

Return Values
If the function succeeds, the return value is nonzero.

Windows NT/2000: The return value is the thread's previous affinity mask.

Windows 95/98: The return value is 1. To succeed, hThread must be valid and
dwThreadAffinityMask must be 1.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

162 Volume 1 Microsoft Windows Base Services

Processes and Threads Overview, Process and Thread Functions,
GetProcessAffinityMask, OpenThread, SetThreadldealProcessor

SetThreadldeal Processor
The SetThreadldealProcessor function is used to specify a preferred processor for a
thread. The system schedules threads on their preferred processors whenever possible.

Parameters
hThread

[in] Handle to the thread whose preferred processor is to be set. The handle must
have the THREAD_SET_INFORMATION access right associated with it. For more
information, see Thread Security and Access Rights.

dwldealProcessor
[in] Specifies the number of the preferred processor for the thread. A value of
MAXIMUM_PROCESSORS tells the system that the thread has no preferred
processor.

Return Values
If the function succeeds, the return value is the previous preferred processor or
MAXIMUM_PROCESSORS if the thread does not have a preferred processor.

If the function fails, the return value is -1. To get extended error information, call
GetLastError.

Remarks
You can use the GetSystemlnfo function to determine the number of processors on the
computer. You can also use the GetProcessAffinityMask function to check the
processors on which the thread is allowed to run. Note that GetProcessAffinityMask
returns a bit mask whereas SetThreadldealProcessor uses an integer value to
represent the processor.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

Chapter 6 Processes, Threads, and DLLs 163

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
GetProcessAffinityMask, GetSystemlnfo, OpenThread, SetThreadAffinityMask

SetThreadPriority
The SetThreadPriority function sets the priority value for the specified thread. This
value, together with the priority class of the thread's process, determines the thread's
base priority level.

Parameters
hThread

[in] Handle to the thread whose priority value is to be set.

Windows NT/2000: The handle must have the THREAD_SET _INFORMATION
access right associated with it. For more information, see Thread Security and Access
Rights.

nPriority
[in] Specifies the priority value for the thread. This parameter can be one of the
following values:

Priority Meaning

THREAD_PRIORITY _ABOVE_NORMAL Indicates 1 point above normal priority for the priority
class.

THREAD_PRIORITY _BELOW_NORMAL Indicates 1 point below normal priority for the priority
class.

THREAD_PRIORITY _HIGHEST Indicates 2 pOints above normal priority for the priority
class.

THREAD_PRIORITY _IDLE Indicates a base priority level of 1 for
IDLE_PRIORITY _CLASS,
BELOW_NORMAL_PRIORITY _CLASS,
NORMAL_PRIORITY _CLASS,
ABOVE_NORMAL_PRIORITY _CLASS, or
HIGH_PRIORITY _CLASS processes, and a base
priority level of 16 for REAL TIME_PRIORITY _CLASS
processes ..

(continued)

164 Volume 1 Microsoft Windows Base Services

(continued)

Priority

THREAD_PRIORITY _NORMAL

THREAD_PRIORITY _TIME_CRITICAL

Return Values

Meaning

Indicates 2 pOints below normal priority for the priority
class.

Indicates normal priority for the priority class.

Indicates a base priority level of 15 for
IDLE_PRIORITY _CLASS,
BELOW_NORMAL_PRIORITY _CLASS,
NORMAL_PRIORITY _CLASS,
ABOVE_NORMAL_PRIORITY _CLASS, or
HIGH_PRIORITY _CLASS processes, and a base
priority level of 31 for REAL TIME_PRIORITY _CLASS
processes.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Every thread has a base priority level determined by the thread's priority value and the
priority class of its process. The system uses the base priority level of all executable
threads to determine which thread gets the next slice of CPU time. Threads are scheduled
in a round-robin fashion at each priority level, and only when there are no executable
threads at a higher level does scheduling of threads at a lower level take place.

The SetThreadPriority function enables setting the base priority level of a thread
relative to the priority class of its process. For example, specifying
THREAD_PRIORITY _HIGHEST in a call to SetThreadPriority for a thread of an
IDLE_PRIORITY _CLASS process sets the thread's base priority level to 6. For a table
that shows the base priority levels for each combination of priority class and thread
priority value, see Scheduling Priorities.

For IDLE_PRIORITY _CLASS; BELOW_NORMAL_PRIORITY _CLASS,
NORMAL_PRIORITY _CLASS, ABOVE_NORMAL_PRIORITY _CLASS, and
HIGH_PRIORITY _CLASS processes, the system dynamically boosts a thread's base
priority level when events occur that are important to the thread.
REAL TIME_PRIORITY _CLASS processes do not receive dynamic boosts.

All threads initially start at THREAD_PRIORITY _NORMAL. Use the GetPriorityClass
and SetPriorityClass functions to get and set the priority class of a process. Use the
GetThreadPriority function to get the priority value of a thread.

Use the priority class of a process to differentiate between applications that are time
critical and those that have normal or below normal scheduling requirements. Use thread
priority values to differentiate the relative priorities of the tasks of a process. For

Chapter 6 Processes, Threads, and DLLs 165

example, a thread that handles input for a window could have a higher priority level than
a thread that performs intensive calculations for the CPU.

When manipulating priorities, be very careful to ensure that a high-priority thread does
not consume all of the available CPU time. A thread with a base priority level above 11
interferes with the normal operation of the operating system. Using
REAL TIME_PRIORITY _CLASS may cause disk caches to not flush, hang the mouse,
and so on.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95198: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, GetPriorityClass,
GetTh read Priority, SetPriorityClass

SetThreadPriorityBoost
The SetThreadPriorityBoost function disables the ability of the system to temporarily
boost the priority of a thread.

Parameters
hThread

[in] Handle to the thread whose priority is to be boosted. This thread must have the
THREAD_SET_INFORMATION access right associated with it. For more information,
see Thread Security and Access Rights.

DisablePriorityBoost
[in] Specifies the priority boost control state. A value of TRUE indicates that dynamic
boosting is to be disabled. A value of FALSE restores normal behavior.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

166 Volume 1 Microsoft Windows Base Services

Sleep

Remarks
When a thread is running in one of the dynamic priority classes, the system temporarily
boosts the thread's priority when it is taken out of a wait state. If
SetThreadPriorityBoost is called with the DisablePriorityBoost parameter set to TRUE,
the thread's priority is not boosted. To restore normal behavior, call
SetThreadPriorityBoost with DisablePriorityBoost set to FALSE.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, OpenThread,
GetThreadPriorityBoost

The Sleep function suspends the execution of the current thread for a specified interval.

To enter an alertable wait state, use the SleepEx function.

Parameters
dwMiIIiseconds

[in] Specifies the time, in milliseconds, for which to suspend execution. A value of zero
causes the thread to relinquish the remainder of its time slice to any other thread of
equal priority that is ready to run. If there are no other threads of equal priority ready
to run, the function returns immediately, and the thread continues execution. A value
of INFINITE causes an infinite delay.

Return Values
This function does not return a value.

Remarks
A thread can relinquish the remainder of its time slice by calling this function with a sleep
time of zero milliseconds.

Chapter 6 Processes, Threads, and DLLs 167

You have to be careful when using Sleep and code that directly or indirectly creates
windows. If a thread creates any windows, it must process messages. Message
broadcasts are sent to all windows in the system. If you have a thread that uses Sleep
with infinite delay, the system will deadlock. Two examples of code that indirectly creates
windows are DDE and COM Colnitialize. Therefore, if you have a thread that creates
windows, use MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather
than Sleep.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, SleepEx

SleepEx
The SleepEx function causes the current thread to enter a wait state until one of the
following occurs:

• An I/O completion callback function is called

• An asynchronous procedure call (APC) is queued to the thread.

• The time-out interval elapses

Parameters
dwMilliseconds

[in] Specifies the time, in milliseconds, that the delay is to occur. A value of zero
causes the thread to relinquish the remainder of its time slice to any other thread of
equal priority that is ready to run. If there are no other threads of equal priority ready
to run, the function returns immediately, and the thread continues execution. A value
of INFINITE causes an infinite delay.

168 Volume 1 Microsoft Windows Base Services

bAlertable
[in] Specifies whether the function may terminate early due to an 1/0 completion
callback function or an APC. If bAlertable is FALSE, the function does not return until
the time-out period has elapsed. If an 1/0 completion callback occurs, the function
does not return and the 1/0 completion function is not executed. If an APC is queued
to the thread, the function does not return and the APC function is not executed.

If bAlertable is TRUE and the thread that called this function is the same thread that
called the extended 1/0 function (ReadFileEx or WriteFileEx), the function returns
when either the time-out period has elapsed or when an 1/0 completion callback
function occurs. If an 1/0 completion callback occurs, the 1/0 completion function is
called. If an APC is queued to the thread (QueueUserAPC), the function returns
when either the timer-out period has elapsed or when the APC function is called.

Return Values
The return value is zero if the specified time interval expired.

The return value is WAIT _IO_COMPLETION if the function returned due to one or more
1/0 completion callback functions. This can happen only if bAlertable is TRUE, and if the
thread that called the SleepEx function is the same thread that called the extended 1/0
function.

Remarks
This function can be used with the ReadFileEx or WriteFileEx functions to suspend a
thread until an 1/0 operation has been completed. These functions specify a completion
routine that is to be executed when the 1/0 operation has been completed. For the
completion routine to be executed, the thread that called the 1/0 function must be in an
alertable wait state when the completion callback function occurs. A thread goes into an
alertable wait state by calling either SleepEx, MsgWaitForMultipleObjectsEx,
WaitForSingleObjectEx, or WaitForMultipleObjectsEx, with the function's bAlertable
parameter set to TRUE.

A thread can relinquish the remainder of its time slice by calling this function with a sleep
time of zero milliseconds.

You have to be careful when using SleepEx and code that directly or indirectly creates
windows. If a thread creates any windows, it must process messages. Message
broadcasts are sent to a" windows in the system. If you have a thread that uses
SleepEx with infinite delay, the system will deadlock. Two examples of code that
indirectly creates windows are DDE and COM Colnitialize. Therefore, if you have a
thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than SleepEx.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Chapter 6 Processes, Threads, and Dlls 169

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions,
MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, QueueUserAPC,
ReadFileEx, Sleep, WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFileEx

SuspendThread
The SuspendThread function suspends the specified thread.

Parameters
hThread

[in] Handle to the thread that is to be suspended.

Windows NT/2000: The handle must have THREAD_SUSPEND_RESUME access.
For more information, see Thread Security and Access Rights.

Return Values
If the function succeeds, the return value is the thread's previous suspend count;
otherwise, it is -1. To get extended error information, use the GetLastError function.

Remarks
If the function succeeds, execution of the specified thread is suspended and the thread's
suspend count is incremented.

Suspending a thread causes the thread to stop executing user-mode (application) code.

Each thread has a suspend count (with a maximum value of
MAXIMUM_SUSPEND_COUNT). If the suspend count is greater than zero, the thread is
suspended; otherwise, the thread is not suspended and is eligible for execution. Calling
SuspendThread causes the target thread's suspend count to be incremented.
Attempting to increment past the maximum suspend count causes an error without
incrementing the count.

The ResumeThread function decrements the suspend count of a suspended thread.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

170 Volume 1 Microsoft Windows Base Services

Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, OpenThread,
ResumeThread

SwitchToFiber
The SwitchToFiber function schedules a fiber. The caller of must be a fiber.

Parameters
IpFiber

[in] Specifies the address of the fiber to schedule.

Return Values
This function does not return a value.

Remarks
You create fibers with CreateFiber. Before you can schedule fibers associated with a
thread, you must call ConvertThreadToFiber to set up an area in which to save the
fiber state information. The thread is now the currently executing fiber.

The SwitchToFiber function saves the state information of the current fiber and restores
the state of the specified fiber. You can call SwitchToFiber with the address of a fiber
created by a different thread. To do this, you must have the address returned to the
other thread when it called CreateFiber and you must use proper synchronization.

Warning Avoid making the following call:

This call may cause unpredictable problems.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Chapter 6 Processes, Threads, and DLLs 171

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, CreateFiber,
ConvertThreadToFiber

SwitchToThread
The SwitchToThread function causes the calling thread to yield execution to another
thread that is ready to run on the current processor. The operating system selects the
thread to yield to.

Parameters
This function has no parameters.

Return Values
If calling the SwitchToThread function causes the operating system to switch execution
to another thread, the return value is nonzero.

If there are no other threads ready to execute, the operating system does not switch
execution to another thread, and the return value is zero.

Remarks
The yield of execution is in effect for up to one thread-scheduling time slice. After that,
the operating system reschedules execution for the yielding thread. The rescheduling is
determined by the priority of the yielding thread and the status of other threads that are
available to run.

Note The yield of execution is limited to the processor of the calling thread. The
operating system will not switch execution to another processor, even if that processor is
idle or is running a thread of lower priority.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

172 Volume 1 Microsoft Windows Base Services

Processes and Threads Overview, Process and Thread Functions, SuspendThread

TerminateJobObject
The TerminateJobObject function terminates all processes currently associated with
the job.

Parameters
hJob

[in] Handle to the job whose processes will be terminated. The CreateJobObject or
OpenJobObject function returns this handle. This handle must have the
JOB_OBJECT _TERMINATE access right. For more information, see Job Object
Security and Access Rights.

uExitCode
[in] Specifies the exit code for the processes and threads terminated as a result of this
call.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
It is not possible for any of the processes associated with the job to postpone or handle
the termination. It is as if TerminateProcess were called for each process associated
with the job.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 6 Processes, Threads, and DLLs 173

Processes and Threads Overview, Process and Thread Functions, CreateJobObject,
OpenJobObject, TerminateProcess

TerminateProcess
The TerminateProcess function terminates the specified process and all of its threads.

Parameters
hProcess

[in] Handle to the process to terminate.

Windows NT/2000: The handle must have PROCESS_TERMINATE access. For
more information, see Process Security and Access Rights.

uExitCode
[in] Specifies the exit code for the process and for all threads terminated as a result of
this call. Use the GetExitCodeProcess function to retrieve the process's exit value.
Use the GetExitCodeThread function to retrieve a thread's exit value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The TerminateProcess function is used to unconditionally cause a process to exit. Use
it only in extreme circumstances. The state of global data maintained by dynamic-link
libraries (OLLs) may be compromised if TerminateProcess is used rather than
ExitProcess.

TerminateProcess causes all threads within a process to terminate, and causes a
process to exit, but OLLs attached to the process are not notified that the process is
terminating.

Terminating a process causes the following:

1. All of the object handles opened by the process are closed.

2. All of the threads in the process terminate their execution.

3. The state of the process object becomes signaled, satisfying any threads that had
been waiting for the process to terminate.

174 Volume 1 Microsoft Windows Base Services

4. The states of all threads of the process become signaled, satisfying any threads that
had been waiting for the threads to terminate.

5. The termination status of the process changes from STILL_ACTIVE to the exit value
of the process.

Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the system.
A process object is deleted when the last handle to the process is closed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Processes and Threads Overview, Process and Thread Functions, ExitProcess,
OpenProcess, GetExitCodeProcess, GetExitCodeThread

TerminateThread
The TerminateThread function terminates a thread.

Parameters
hThread

[in/out] Handle to the thread to terminate.

Windows NT/2000: The handle must have THREAD_TERMINATE access. For more
information, see Thread Security and Access Rights.

dwExitCode
[in] Specifies the exit code for the thread. Use the GetExitCodeThread function to
retrieve a thread's exit value.

Return Values
If the function succeeds, the return value is nonzero.

Chapter 6 Processes, Threads, and DLLs 175

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
TerminateThread is used to cause a thread to exit. When this occurs, the target thread
has no chance to execute any user-mode code and its initial stack is not deallocated.
DLLs attached to the thread are not notified that the thread is terminating.

TerminateThread is a dangerous function that should only be used in the most extreme
cases. You should call TerminateThread only if you know exactly what the target thread
is doing, and you control all of the code that the target thread could possibly be running
at the time of the termination. For example, TerminateThread can result in the following
problems:

• If the target thread owns a critical section, the critical section will not be released.

• If the target thread is executing certain kernel32 calls when it is terminated, the
kernel32 state for the thread's process could be inconsistent.

• If the target thread is manipulating the global state of a shared DLL, the state of the
DLL could be destroyed, affecting other users of the DLL.

A thread cannot protect itself against TerminateThread, other than by controlling access
to its handles. The thread handle returned by the CreateThread and CreateProcess
functions has THREAD_TERMINATE access, so any caller holding one of these handles
can terminate your thread.

If the target thread is the last thread of a process when this function is called, the
thread's process is also terminated.

The state of the thread object becomes Signaled, releasing any other threads that had
been waiting for the thread to terminate. The thread's termination status changes from
STILL_ACTIVE to the value of the dwExitCode parameter.

Terminating a thread does not necessarily remove the thread object from the system. A
thread object is deleted when the last thread handle is closed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, Create Process,
CreateThread, ExitThread, GetExitCodeThread, OpenThread

176 Volume 1 Microsoft Windows Base Services

ThreadProc
The ThreadProc function is an application-defined function that serves as the starting
address for a thread. Specify this address when calling the CreateThread or
CreateRemoteThread function. The LPTHREAD_START_ROUTINE type defines a
pOinter to this callback function. ThreadProc is a placeholder for the application-defined
function name.

Parameters
IpParameter

[in] Receives the thread data passed to the function using the IpParameter parameter
of the CreateThread or CreateRemoteThread function.

Return Values
The function should return a value that indicates its success or failure.

Remarks
A process can obtain the return value of the ThreadProc of a thread it created with
CreateThread by calling the GetExitCodeThread function. A process cannot obtain the
return value from the ThreadProc of a thread it created with CreateRemoteThread.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Processes and Threads Overview, Process and Thread Functions, CreateThread,
CreateRemoteThread, GetExitCodeThread

TlsAlloc
The TlsAlioc function allocates a thread local storage (TLS) index. Any thread of the
process can subsequently use this index to store and retrieve values that are local to the
thread.

Chapter 6 Processes, Threads, and DLLs 177

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a TLS index.

If the function fails, the return value is -1. To get extended error information, call
GetLastError.

Remarks
The threads of the process can use the TLS index in subsequent calls to the TlsFree,
TlsSetValue, or TlsGetValue functions.

TLS indexes are typically allocated during process or dynamic-link library (DLL)
initialization. Once allocated, each thread of the process can use a TLS index to access
its own TLS storage slot. To store a value in its slot, a thread specifies the index in a call
to TlsSetValue. The thread specifies the same index in a subsequent call to
TlsGetValue, to retrieve the stored value.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes
available in each process. This minimum is guaranteed to be at least 64 for all systems.

Windows 2000: There is a limit of 1088 TLS indexes per process.

Windows NT 4.0 and earlier: There is a limit of 64 TLS indexes per process.

TLS indexes are not valid across process boundaries. A DLL cannot assume that an
index assigned in one process is valid in another process.

A DLL might use TlsA"oc, TlsSetValue, TlsGetValue, and TlsFree as follows:

• When a DLL attaches to a process, the DLL uses TlsA"oc to allocate a TLS index.
The DLL then allocates some dynamic storage and uses the TLS index in a call to
TlsSetValue to store the address in the TLS slot. This concludes the per-thread
initialization for the initial thread of the process. The TLS index is stored in a global or
static variable of the DLL.

• Each time the DLL attaches to a new thread of the process, the DLL allocates some
dynamic storage for the new thread and uses the TLS index in a call to TlsSetValue
to store the address in the TLS slot. This concludes the per-thread initialization for the
new thread.

• Each time an initialized thread makes a DLL call requiring the data in its dynamic
storage, the DLL uses the TLS index in a call to TlsGetValue to retrieve the address
of the dynamic storage for that thread.

For additional information on thread local storage, see Thread Local Storage.

178 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, TlsFree,
TlsGetValue, TlsSetValue

TlsFree
The Tis Free function releases a thread local storage (TLS) index, making it available for
reuse.

Parameters
dwTlslndex

[in] Specifies a TLS index that was allocated by the TlsAlioc function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If the threads of the process have allocated dynamic storage and used the TLS index to
store pOinters to this storage, they should free the storage before calling TlsFree. The
Tis Free function does not free any dynamic storage that has been associated with the
TLS index. It is expected that DLLs call this function (if at all) only during their process
detach routine.

For a brief discussion of typical uses of the TLS functions, see the Remarks section of
the TlsAlioc function.

, .' ".> .:'
".·v:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Chapter 6 Processes, Threads, and DLLs 179

Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, TlsAlloc,
TlsGetValue, TlsSetValue

TlsGetValue
The TlsGetValue function retrieves the value in the calling thread's thread local storage
(TLS) slot for a specified TLS index. Each thread of a process has its own slot for each
TLS index.

Parameters
dwTlslndex

[in] Specifies a TLS index that was allocated by the TlsAlioc function.

Return Values
If the function succeeds, the return value is the value stored in the calling thread's TLS
slot associated with the specified index.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Note The data stored in a TLS slot can have a value of zero. In this case, the return
value is zero and GetLastError returns NO_ERROR.

Remarks
TLS indexes are typically allocated by the TlsAlioc function during process or DLL
initialization. Once allocated, each thread of the process can use a TLS index to access
its own TLS storage slot for that index. The storage slot for each thread is initialized to
NULL. A thread specifies a TLS index in a call to TlsSetValue, to store a value in its slot.
The thread specifies the same index in a subsequent call to TlsGetValue, to retrieve the
stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goa/. These
functions perform minimal parameter validation and error checking. In particular, this

180 Volume 1 Microsoft Windows Base Services

function succeeds if dwTlslndex is in the range 0 through (TLS_MINIMUM_AVAILABLE-
1). It is up to the programmer to ensure that the index is valid.

Win32 functions that return indications of failure call SetLastError when they fail. They
generally do not call SetLastError when they succeed. The TlsGetValue function is an
exception to this general rule. The TlsGetValue function calls SetLastError to clear a
thread's last error when it succeeds. That allows checking for the error-free retrieval of
NULL values.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, GetLastError,
SetLastError, TlsAlloc, TlsFree, TlsSetValue

TlsSetValue
The TlsSetValue function stores a value in the calling thread's thread local storage
(TLS) slot for a specified TLS index. Each thread of a process has its own slot for each
TLS index.

Parameters
dwTlslndex

[in] Specifies a TLS index that was allocated by the TlsAlioc function.

IpTlsValue
[in] Specifies the value to be stored in the calling thread's TLS slot specified by
dwTlslndex.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 6 Processes, Threads, and DLLs 181

Remarks
TLS indexes are typically allocated by the TlsAlioc function during process or DLL
initialization. Once allocated, each thread of the process can use a TLS index to access
its own TLS storage slot for that index. The storage slot for each thread is initialized to
NULL. A thread specifies a TLS index in a call to TlsSetValue, to store a value in its slot.
The thread specifies the same index in a subsequent call to TlsGetValue, to retrieve the
stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this
function succeeds if dwTlslndexis in the range 0 through (TLS_MINIMUM_AVAILABLE-
1). It is up to the programmer to ensure that the index is valid.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Processes and Threads Overview, Process and Thread Functions, TlsAlloc, TlsFree,
TlsGetValue

UserHandleGrantAccess
The UserHandleGrantAccess function grants or denies access to a handle to a User
object to a job that has a user-interface restriction. When access is granted, all
processes associated with the job can subsequently recognize and use the handle.
When access is denied, the processes can no longer use the handle. For more
information see User Objects.

Parameters
hUserHandle

[in] Handle to a User object.

182 Volume 1 Microsoft Windows Base Services

hJob
[in] Handle to the job to be granted access to the User handle. The CreateJobObject
or OpenJobObject function returns this handle.

bGrant
[in] Specifies whether access is to be denied or granted to hUserHandle. If bGrant is
TRUE, all processes associated with the job can recognize and use the handle. If
bGrant is FALSE, the processes can no longer use the handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The UserHandleGrantAccess function can be called only from a process not
associated with the job specified by the hJob parameter. The User handle must not be
owned by a process or thread associated with the job.

To create user-interface restrictions, call the SetlnformationJobObject function with the
JobObjectBasicU I Restrictions job information class.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Processes and Threads OveNiew, Process and Thread Functions, CreateJobObject,
OpenJobObject, SetlnformationJobObject

WaitForlnputldle
The WaitForlnputldle function waits until the specified process is waiting for user input
with no input pending, or until the time-out interval has elapsed.

Parameters
hProcess

Chapter 6 Processes, Threads, and DLLs 183

[in] Handle to the process. If this process is a console application or does not have a
message queue, WaitForlnputldle returns immediately.

dwMilliseconds
[in] Specifies the time-out interval, in milliseconds. If dwMilliseconds is INFINITE, the
function does not return until the process is idle.

Return Values
The following table shows the possible return values:

Value

o
WAIT_TIMEOUT

-1

Remarks

Meaning

The wait was satisfied successfully.

The wait was terminated because the time-out interval elapsed.

An error occurred. To get extended error information, use the
GetLastError function.

The WaitForlnputldle function enables a thread to suspend its execution until a
specified process has finished its initialization and is waiting for user input with no input
pending. This can be useful for synchronizing a parent process and a newly created
child process. When a parent process creates a child process, the Create Process
function returns without waiting for the child process to finish its initialization. Before
trying to communicate with the child process, the parent process can use
WaitForlnputldle to determine when the child's initialization has been completed. For
example, the parent process should use WaitForlnputldle before trying to find a window
associated with the child process.

The WaitForlnputldle function can be used at any time, not just during application
startup.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

Processes and Threads Overview, Process and Thread Functions, CreateProcess

184 Volume 1 Microsoft Windows Base Services

Process and Thread Structures

The IO_COUNTERS structure contains 1/0 accounting information for a process or a job
object. For a job object, the counters include all operations performed by all processes
that have ever been associated with the job, in addition to all processes currently
associated with the job.

Members
ReadOperationCount

Specifies the number of read operations performed.

WriteOperationCount
Specifies the number of write operations performed.

OtherOperationCount
Specifies the number of 1/0 operations performed, other than read and write
operations.

ReadTransferCount
Specifies the number of bytes read.

WriteTransferCount
Specifies the number of bytes written.

OtherTransferCount
Specifies the number of bytes transferred during operations other than read and write
operations.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Chapter 6 Processes, Threads, and Dlls 185

Processes and Threads Overview, Process and Thread Structures,
GetProcessloCounters,
JOBOBJECT _BASIC_AND_IO_ACCOUNTING_INFORMATION

JOBOBJECT _ASSOCIATE_COMPLETION_PORT
The JOBOBJECT _ASSOCIATE_COMPLETION_PORT structure contains information
used to associate a completion port with a job. You can associate one completion port
with a job. There is no way to terminate the association and no way to associate a
different port with the job.

Members
Completion Key

Specifies the value to use in the dwCompletionKey parameter of
PostQueuedCompletionStatus when messages are sent on behalf of the job.

Completion Port
Specifies the completion port to use in the Completion Port parameter of the
PostQueuedCompletionStatus function when messages are sent on behalf of
the job.

Remarks
The job sends messages to the completion port when certain events occur. All
messages are sent directly from the job as if the job had called the
PostQueuedCompletionStatus function. A thread monitoring the completion port using
the GetQueuedCompletionStatus function must pick up the messages. The thread
receives information in the GetQueuedCompletionStatus parameters shown in the
following table.

Parameter

IpCompletionKey

IpOveriapped

Information Received

The value specified in Completion Key during the
completion-port association. If a completion port is
associated with multiple jobs, CompletionKey should
help the caller determine which completion port is
sending a message.

Message-specific value. For more information, see
the following table of message identifiers.

186 Volume 1 Microsoft Windows Base Services

LpNumberOfBytesTransfered The message identifier that indicates which job­
related event occurred. For more information, see the
following table of message identifiers.

The following messages can be sent to the completion port.

Message Identifier Description

Indicates that the JOB_OBJECT_
POST _AT _END_OF _JOB option is in
effect and the end-of-job time limit has
been reached. Upon posting this
message, the time limit is canceled and
the job's processes can continue to run.

The value of JpOverJapped is NULL.

Indicates that a process has exceeded a
per-process time limit. The system sends
this message after the process
termination has been requested.

The value of JpOverJapped is the identifier
of the process that exceeded its limit.

Indicates that the active process limit has
been exceeded.

The value of JpOverJapped is NULL.

Indicates that the active process count
has been decremented to o. For
example, if the job currently has two
active processes, the system sends this
message after they both terminate.

The value of JpOverJapped is NULL.

Indicates that a process has been added
to the job. Processes added to a job at
the time a completion port is associated
are also reported.

The value of JpOverJapped is the identifier
of the process added to the job.

Indicates that a process associated with
the job has exited.

The value of IpOveriapped is the identifier
of the exiting process.

Chapter 6 Processes, Threads, and DLLs 187

JOB_OBJECT _MSG_ABNORMAL_EXIT _PROCESS Indicates that a process associated with
the job exited with an exit code that
indicates an abnormal exit (see the list
following this table).

Message Identifier

The value of IpOverlapped is the identifier
of the exiting process.

Indicates that a process associated with
the job has exceeded its memory limit (if
one is in effect).

The value of IpOverlapped is the identifier
of the process that has exceeded its limit.
The system does not send this message
if the process has not yet reported its
process identifier.

Description

Indicates that a process associated with
the job caused the job to exceed the job­
wide memory limit (if one is in effect).

The value of IpOver/apped specifies the
identifier of the process that has
attempted to exceed the limit. The system
does not send this message if the
process has not yet reported its process
identifier.

The following exit codes indicate an abnormal exit:

ST ATUS_ACCESS_ VIOLATION
STATUS_ARRAY_BOUNDS_EXCEEDED
STATUS_BREAKPOINT
ST ATUS_CONTROL_C_EXIT
STATUS_DATATYPE_MISALIGNMENT
STATUS_FLOAT _DENORMAL_ OPERAND
STATUS_FLOAT _DIVIDE_BY _ZERO
STATUS_FLOAT _INEXACT_RESULT
STATUS_FLOAT_INVALlD_OPERATION
STATUS_FLOAT _MUL TIPLE_FAUL TS
STATUS_FLOAT _MUL TIPLE_ TRAPS
STATUS_FLOAT_OVERFLOW
STATUS_FLOAT_STACK_CHECK
STATUS_FLOAT _UNDERFLOW
STATUS_GUARD_PAGE_VIOLATION
STATUS_I LLEGAL_INSTRUCTION

188 Volume 1 Microsoft Windows Base Services

STATUS_ILLEGAL_ VLM_REFERENCE
STATUS_IN_PAGE_ERROR
STATUS_INVALlD_DISPOSITION
STATUS_INTEGER_DIVIDE_BY _ZERO
STATUS_INTEGER_OVERFLOW
STATUS_NONCONTINUABLE_EXCEPTION
STATUS_PRIVILEGED _INSTRUCTION
STATUS_REG_NAT _CONSUMPTION
STATUS_SINGLE_STEP
STATUS_STACK_OVERFLOW

You must be cautious when using the JOB_OBJECT _MSG_NEW_PROCESS and
JOB_OBJECT _MSG_EXIT _PROCESS messages, as race conditions may occur. For
instance, if processes are actively starting and exiting within a job, and you are in the
process of assigning a completion port to the job, you may miss messages for processes
whose states change during the association of the completion port. For this reason, it is
best to associate a completion port with a job when the job is inactive.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
PostQueuedCompletionStatus, QuerylnformationJobObject,
SetlnformationJobObject

JOBOBJECT _BASIC_ACCOUNTING_INFORMATION
The JOBOBJECT_BASIC_ACCOUNTING_INFORMATION structure contains basic
accounting information for a job object.

Chapter 6 Processes, Threads, and DLLs 189

} JOBOBJ ECT_$ASI C.:;.ACcOUN'tlN~;. .. lNj::'P'R.MATION.
* PJ080BJECT ",,~A'S Ic:.,;.AccoUnING:..l NFORMAn ON:

Members
TotalUserTime

Specifies the total amount of user-mode execution time, in 100-nanosecond ticks, for
all active processes associated with the job, as well as all terminated processes no
longer associated with the job.

TotalKernelTime
Specifies the total amount of kernel-mode execution time, in 100-nanosecond ticks,
for all active processes associated with the job, as well as all terminated processes no
longer associated with the job.

ThisPeriodTotalUserTime
Specifies the total amount of user-mode execution time, in 1 OO-nanosecond ticks, for
all active processes associated with the job (as well as all terminated processes no
longer associated with the job) since the last call that set a per-job user-mode time
limit.

This member is set to a on creation of the job, and each time a per-job user-mode
time limit is established.

ThisPeriodTotalKernelTime
Specifies the total amount of kernel-mode execution time, in 100-nanosecond ticks,
for all active processes associated with the job (as well as all terminated processes no
longer associated with the job) since the last call that set a per-job kernel-mode time
limit.

This member is set to a on creation of the job, and each time a per-job kernel-mode
time limit is established.

TotalPageFaultCount
Specifies the total number of page faults encountered by all active processes
associated with the job, as well as all terminated processes no longer associated with
the job.

Total Processes
Specifies the total number of processes associated with the job during its lifetime,
including those that have terminated. For example, when a process is associated with
a job, but the association fails because of a limit violation, this value is incremented.

ActiveProcesses
Specifies the total number of processes currently associated with the job. When a
process is associated with a job, but the association fails because of a limit violation,
this value is temporarily incremented. When the terminated process exits and all
references to the process are released, this value is decremented.

TotalTerminatedProcesses
Specifies the total number of processes terminated because of a limit violation.

190 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
QuerylnformationJobObject, SetlnformationJobObject

JOBOBJECT _BASIC _AND _10 _ACCOUNTING
_INFORMATION

The JOBOBJECT_BAS'C_AND_'O_ACCOUNT'NG_'NFORMAT'ON structure contains
basic accounting and 1/0 accounting information for a job object.

Members
Basiclnfo

A JOBOBJECT_BAS'C_ACCOUNT'NG_'NFORMAT'ON structure that specifies the
basic accounting information for the job.

lolnfo
An IO_COUNTERS structure that specifies the 1/0 accounting information for the job.
The structure includes information for all processes that have ever been associated
with the job, in addition to the information for all processes currently associated with
the job.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures, IO_COUNTERS,
JOBOBJECT _BAS'C_ACCOUNT'NG_'NFORMAT'ON, QuerylnformationJobObject

Value

Chapter 6 Processes, Threads, and DLLs 191

The JOBOBJECT_BASIC_LIMIT_INFORMATION structure contains basic limit
information for a job object.

typedef .struct _JOBOB~tCT _BASIC_LIMIT_I NFJ)RMATIO.N
LARGE_JNTEGERPerProcessUserTi met1m1 t: ..'
LARGE_INTE.GER··.perJQDUserTimet1.mitF '

c ~ f ~ ~ c ' , c,,' ~ , ".' f "J ;

DYI'()RO·,lt~t~.~lag:$~~:".;'·.<;.:,:o /.~ ~':"i ,. 0

ScI lE,-: T . MitidmumWt>r'k:l:ngSet~i:z:e\k ..
SIZ4T.MII:dWJ.lmlitA'l'ik1ngSeJ$i!e,(r;
.OWP.RO ·iCt\f?~e:·P~()~e~s;t:'nr:ft ;(;~.l : '.'
'U1.:6Nl4PTR·A f fi~1t> ~(. .. ,

•. !.... ,.;,. <'."., . ;: J{r . . c.' •

. : DWORl) Pr'it>:ri:1;;YG'las;s;'"
• ·.,DW{)RD $cfiWu1higCl ass;; .' "
} .JQBOBJ ECT"'AS!C_LrMlt.::r:w f1_nPN i *'P~()B{~B~'1ECT';'SA.S:l!~;;.;t;;IM

Members
PerProcessUserTimeLimit

Ignored unless LimitFlags specifies JOB_aBJECT_LIMIT _PROCESS_TIME.
Specifies the per-process user-mode execution time limit, in 100-nanosecond ticks.

The system periodically checks to determine whether each process associated with
the job has accumulated more user-mode time than the set limit. If it has, the process
is terminated.

PerJobUserTimeLimit
Ignored unless LimitFlags specifies JOB_aBJECT_LIMIT _JOB_TIME. Specifies the
per-job user-mode execution time limit, in 100-nanosecond ticks. The system adds
the current time of the processes associated with the job to this limit. For example, if
you set this limit to 1 minute, and the job has a process that has accumulated 5
minutes of user-mode time, the limit actually enforced is 6 minutes.
The system periodically checks to determine whether the sum of the user-mode
execution time for all processes is greater than this end-of-job limit. If it is, the action
specified in the EndOfJobTimeAction member of the
JOBOBJECT_END_OF _JOB_TIME_INFORMATION structure is carried out. By
default, all processes are terminated and the status code is set to
ERROR_NOT _ENOUGH_QUOTA.

LimitFlags
Specifies the limit flags that are in effect. This member is a bit field that determines
whether other structure members are used. Any combination of the following values
can be specified.

Meaning

Establishes a maximum number of
simultaneously active processes
associated with the job.

(continued)

192 Volume 1 Microsoft Windows Base Services

(continued)

Value Meaning

Causes all processes associated
with the job to use the same
processor affinity.

If any process associated with the
job creates a child process using the
CREATE_BREAKAWAY _
FROM_JOB flag while this limit is in
effect, the child process is not
associated with the job.
This limit requires use of a
JOBOBJECT_EXTENDED
_LIMIT_INFORMATION structure.
The BasicLimitlnformation
member is a
JOBOBJECT _BASIC_LIMIT
_INFORMATION structure.

JOB_OBJECT _LIMIT _DIE_ON_UNHANDLED_EXCEPTION Forces a call to the SetErrorMode
function with the
SEM_NOGPFAULTERRORBOX
flag for each process associated with
the job.

If an exception occurs and the
system calls the
UnhandledExceptionFilter
function, the debugger will be given
a chance to act. If there is no
debugger, the functions returns
EXCEPTION_EXECUTE
_HANDLER. Normally, this will
cause termination of the process
with the exception code as the exit
status.

Causes all processes associated
with the job to limit the job-wide sum
of their committed memory. When a
process attempts to commit memory
that would exceed the job-wide limit,
it fails. If the job object is associated
with a completion port, a
JOB_OBJECT _MSG_JOB
_MEMORY_LIMIT message is sent
to the completion port.

Value

Chapter 6 Processes, Threads, and DLLs 193

Meaning

Establishes a user-mode execution
time limit for the job. This flag cannot
be used with JOB_OBJECT _LIMIT

PRESERVE_JOB_ TIME.

Causes all processes associated
with the job to use the same priority
class. For more information, see
Scheduling Priorities.

Preserves any job time limits you
previously set. As long as this flag is
set, you can establish a per-job time
limit once, then alter other limits in
subsequent calls. This flag cannot
be used with JOB_OBJECT_
LIMIT _JOB_TIME.

Causes all processes associated
with the job to limit their committed
memory. When a process attempts
to commit memory that would
exceed the per-process limit, it fails.
If the job object is associated with a
completion port, a
JOB_OBJECT_MSG_PROCESS_M
EMORY_LIMIT message is sent to
the completion port.

Establishes a user-mode execution
time limit for each currently active
process and for all future processes
associated with the job.

Causes all processes in the job to
use the same scheduling class.

Causes all processes associated
with the job to use the same
minimum and maximum working set
sizes.

Allows any process associated with
the job to create child processes that
are not associated with the job.

(continued)

194 Volume 1 Microsoft Windows Base Services

(continued)

Value· Meaning

This limit requires use of a
JOBOBJECT_EXTENDED
_LIMIT_INFORMATION structure.
The BasicLimitlnformation member
is a JOBOBJECT _BASIC_LIMIT
_INFORMATION structure.

MinimumWorkingSetSize
Ignored unless the LimitFlags member specifies
JOB_OBJECT_LlMIT_WORKINGSET. Specifies the minimum working set size for all
processes associated with the job.

MaximumWorkingSetSize
Ignored unless LimitFlags specifies JOB_aBJECT_LIMIT _WORKINGSET. Specifies
the maximum working set size for all processes associated with the job.

ActiveProcessLimit
Ignored unless LimitFlags specifies JOB_OBJECT _LIMIT _ACTIVE_PROCESS.
Specifies the active process limit for the job. If you try to associate a process with a
job, and this causes the active process count to exceed this limit, the process is
terminated and the association fails.

Affinity
Ignored unless LimitFlags specifies JOB_OBJECT _LIMIT _AFFINITY. Specifies the
processor affinity for all processes associated with the job. The affinity must be a
proper subset of the system affinity mask obtained by calling the
GetProcessAffinityMask function. The affinity of each thread is set to this value, but
threads are free to subsequently set their affinity, as long as it is a subset of the
specified affinity mask. Processes cannot set their own affinity mask.

PriorityClass
Ignored unless LimitFlags specifies JOB_OBJECT _LIMIT _PRIORITY_CLASS.
Specifies the priority class for all processes associated with the job. Processes and
threads cannot modify their priority class. The calling process must enable the
SE_INC_BASE_PRIORITY _NAME privilege.

SchedulingClass
Ignored unless LimitFlags specifies JOB_OBJECT _LIMIT _SCHEDULING_CLASS.
Specifies the scheduling class for all processes associated with the job.

The valid values are 0 to 9. Use 0 for the least favorable scheduling class relative to
other threads, and 9 for the most favorable scheduling class relative to other threads.
By default, this value is 5. To use a scheduling class greater than 5, the calling
process must enable the SE_INC_BASE_PRIORITY _NAME privilege.

Remarks
Processes can still empty their working sets using the SetProcessWorkingSetSize
function, even when JOB_aBJECT_LIMIT _WORKINGSET is used. However, you

Chapter 6 Processes, Threads, and DLLs 195

cannot use SetProcessWorkingSetSize to change the minimum or maximum working
set size.

The system increments the active process count when you attempt to associate a
process with a job. If the limit is exceeded, the system decrements the active process
count only when the process terminates and all handles to the process are closed.
Therefore, if you have an open handle to a process that has been terminated in such a
manner, you cannot associate any new processes until the handle is closed and the
active process count is below the limit.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
GetProcessAffinityMask, JOBOBJECT _END_OF _JOB_ TIME_INFORMATION,
JOBOBJECT _EXTENDED _LIMIT_INFORMATION QuerylnformationJobObject,
SetlnformationJobObject, SetProcessWorkingSetSize

The JOBOBJECT_BASIC_PROCESS_ID_LIST structure contains the process identifier
list for a job object.

Members
NumberOfAssignedProcesses

Specifies the number of process identifiers to be stored in ProcessldList.

NumberOfProcessldslnList
Specifies the number of process identifiers returned in the ProcessldList buffer. If
this number is less than NumberOfAssignedProcesses, increase the size of the
buffer to accommodate the complete list.

ProcessldList
Specifies the variable-length array of process identifiers returned by this call. Array
elements 0 through NumberOfProcessldslnList-1 contain valid process identifiers.

196 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
QuerylnformationJobObject, SetlnformationJobObject

JOBOBJECT _BASIC _ UI_RESTRICTIONS

Value

The JOBOBJECT _BASIC_UI_RESTRICTIONS structure contains basic user-interface
restrictions for a job object.

Members
UIRestrictionsClass

Specifies the restriction class for the user interface. This member can be one or more
of the following values:

Meaning

Prevents processes associated with the job
from creating desktops and switching
desktops using the CreateDesktop and
SwitchDesktop functions.

Prevents processes associated with the job
from calling the ChangeDisplaySettings
function.

Prevents processes associated with the job
from calling the ExitWindows or
ExitWindowsEx function.

Prevents processes associated with the job
from accessing global atoms. When this flag
is used, each job has its own atom table.

Prevents processes associated with the job
from using USER handles owned by
processes not associated with the same job.

Chapter 6 Processes, Threads, and Dlls 197

JOB_OBJECT _UILIMIT _READCLIPBOARD Prevents processes associated with the job
from reading data from the clipboard.

JOB_OBJECT _UILIMIT _SYSTEM PARAMETERS Prevents processes associated with the job
from changing system parameters by using
the SystemParameterslnfo function.

JOB_OBJECT _UILIMIT _WRITECLIPBOARD Prevents processes associated with the job
from writing data to the clipboard.

Remarks
If you specify the JOB_OBJECT _UILIMIT _HANDLES flag, when a process associated
with the job broadcasts messages, they are only sent to top-level windows owned by
processes associated with the same job. In addition, hooks can be installed only on
threads belonging to processes associated with the job.

To grant access to a User handle to a job that has a user-interface restriction, use the
UserHandleGrantAccess function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures, ExitWindows,
ExitWindowsEx QuerylnformationJobObject, SetlnformationJobObject,
SystemParameterslnfo, UserHandleGrantAccess

The JOBOBJECT_END_OF _JOB_TIME_INFORMATION structure specifies the action
the system will perform when an end-of-job time limit is exceeded.

t,I@~dM stiru£j: ¢"J £lS{JIlJEtT~E~~QSq~ri~~l:l~~~f;9R,~~ Ii 9~,}:\:>':<,~, c; ':« i:/.;~.tS;"l;~:;
.~9~~EndOrJ9,bZl1lJ,eAl;U~tl;~<, ;;{sf' 'i:,' ,:;:C •. '\;i./.:" ;"'·":'.l';"ii"iL\;}i':'

},. J.OBOSJEn:";'iJ>j [Lo t";' • .l{}B~·rJM E-;f I(F1}Rl-fAJI QN.. 'P3Ql!llBJEC:;; .,,;ND,...;ffF;-.Jos;';'lrMEi.fflI0~W~Ti3(}ll'::li

Members
EndOfJobTimeAction

Specifies the action that the system will perform when the end-of-job time limit has
been exceeded. This member can be one of the following values:

198 Volume 1 Microsoft Windows Base Services

Value Meaning

JOB_OBJECT _TERMINATE_AT _END_OF _JOB Terminates all processes and sets the exit
status to ERROR_NOT_ENOUGH_QUOTA.
The processes cannot prevent or delay their
own termination. The job object is set to the
signaled state and remains signaled until this
limit is reset. No additional processes can be
assigned to the job until the limit is reset.

Remarks

This is the default termination action.

Posts a completion packet to the completion
port using the PostQueuedCompletionStatus
function. After the completion packet is posted,
the system clears the end-of-job time limit, and
processes in the job can continue their
execution.

If no completion port is associated with the job
when the time limit has been exceeded, the
action taken is the same as for
JOB_OBJECT_TERMINATE_AT_END_
OF_JOB.

The end-of-job time limit is specified in the PerJobUserTimeLimit member of the
JOBOBJECT _BASIC_LIMIT _INFORMATION structure.

To associate a completion port with a job, use the
JOBOBJECT _ASSOCIATE_COMPLETION_PORT structure.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
JOBOBJECT _ASSOCIATE_COMPLETION_PORT,
JOBOBJECT _BASIC_LIMIT _INFORMATION, PostQueuedCompletionStatus,
QuerylnformationJobObject, SetlnformationJobObject

Chapter 6 Processes, Threads, and DLLs 199

JOBOBJECT _EXTENDED _LIMIT_INFORMATION
The JOBOBJECT_EXTENDED_LIMIT_INFORMATION structure contains basic and
extended limit information for a job object.

~ype~fs~'r~b~~~qBOiJEcf":E~n,tU>to~L~!1ITl.INFOf31ATlO~ {U' .. '. "

Members
BasicLimitlnformation

Pointer to a JOBOBJECT_BASIC_LIMIT_INFORMATION structure that contains
basic limit information.

lolnfo
Reserved.

ProcessMemoryLimit
Ignored unless the LimitFlags member of the
JOBOBJECT_BASIC_LIMIT_INFORMATION structure specifies the
JOB_OBJECT _LIMIT _PROCESS_MEMORY value. Specifies the per-process
memory limit.

JobMemoryLimit
Ignored unless the LimitFlags member of the
JOBOBJECT _BASIC_LIMIT _INFORMATION structure specifies the
JOB_OBJECT _LIMIT _JOB_MEMORY value. Specifies the per-job memory limit.

PeakProcessMemoryUsed
Specifies the most process memory used by any process ever associated with
the job.

PeakJobMemoryUsed
Specifies the peak memory usage of all processes associated with the job.

Remarks
The system tracks the value of PeakProcessMemoryUsed and PeakJobMemoryUsed
constantly. This allows you know the peak memory usage of each job. You can use this
information to establish a memory limit using the
JOB_OBJECT _LIMIT _PROCESS_MEMORY or JOB_OBJECT _LIMIT _JOB_MEMORY
value.

Note that the job memory and process memory limits are very similar in operation, but
they are independent. You could set a job-wide limit of 100 MB with a per-process limit

200 Volume 1 Microsoft Windows Base Services

of 10MB. In this scenario, no single process could commit more than 10MB, and the set
of processes associated with a job could never exceed 100 MB.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
JOBOBJECT _BASIC_LIMIT_INFORMATION, QuerylnformationJobObject,
SetlnformationJobObject

The JOBOBJECT_SECURITY_L1MIT_INFORMATION structure contains the security
limitations for a job object.

Members
SecurityLimitFlags

Specifies the security limitations for the job. This member can be one or more of the
following values.

Value Meaning

JOB_OBJECT _SECURITY _NO_ADMIN Prevents any process in the job from using
a token that specifies the local
administrators group.

JOB_aBJECT_SECURITY _RESTRICTED_TOKEN Prevents any process in the job from using
a token that was not created with the
CreateRestrictedToken function.

JOB_aBJECT_SECURITY _ONLY_TOKEN Forces processes in the job to run under a
specific token. Requires a token handle in
the JobToken member.

Chapter 6 Processes, Threads, and Dlls 201

JobToken

Applies a filter to the token when a process
impersonates a client. Requires at least
one of the following members to be set:
SidsToDisable, PrivilegesToDelete, or
RestrictedSids.

Handle to a primary token that represents a user. The handle must have
TOKEN_ASSIGN_PRIMARYaccess.

If the token was created with CreateRestrictedToken, all processes in the job are
limited to that token or a further restricted token. Otherwise, the caller must have the
SE_ASSIGNPRIMARYTOKEN_NAME privilege.

SidsToDisable
Pointer to a TOKEN_GROUPS structure that specifies the SIDs to disable for access
checking, if SecurityLimitFlags is JOB_OBJECT _SECURITY _FIL TER_ TOKENS.

This member can be NULL if you do not want to disable any SIDs.

PrivilegesToDelete
Pointer to a TOKEN_PRIVILEGES structure that specifies the privileges to delete
from the token, if SecurityLimitFlags is
JOB_OBJECT _SECURITY _FIL TER_ TOKENS.

This member can be NULL if you do not want to delete any privileges.

RestrictedSids
Pointer to a TOKEN_GROUPS structure that specifies the deny-only SIDs that will be
added to the access token, if SecurityLimitFlags is
JOB_OBJECT _SECURITY _FIL TER_ TOKENS.

This member can be NULL if you do not want to specify any deny-only SIDs.

Remarks
After security limitations are placed on processes in a job, they cannot be revoked.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures,
CreateRestrictedToken, QuerylnformationJobObject, SetlnformationJobObject,
TOKEN_GROUPS, TOKEN_PRIVILEGES

202 Volume 1 Microsoft Windows Base Services

PROCESS_INFORMATION
The PROCESS_INFORMATION structure is filled in by the CreateProcess function with
information about a newly created process and its primary thread.

Members
hProcess

Returns a handle to the newly created process. The handle is used to specify the
process in all functions that perform operations on the process object.

hThread
Returns a handle to the primary thread of the newly created process. The handle is
used to specify the thread in all functions that perform operations on the thread object.

dwProcessld
Returns a global process identifier that can be used to identify a process. The value is
valid from the time the process is created until the time the process is terminated.

dwThreadld
Returns a global thread identifiers that can be used to identify a thread. The value is
valid from the time the thread is created until the time the thread is terminated.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.

Processes and Threads Overview, Process and Thread Structures, Create Process

STARTUPINFO
The STARTUPINFO structure is used with the Create Process function to specify main
window properties if a new window is created for the new process. For graphical user
interface (GUI) processes, this information affects the first window created by the
CreateWindow function and shown by the ShowWindow function. For console
processes, this information affects the console window if a new console is created for the

Chapter 6 Processes, Threads, and DLLs 203

process. A process can use the GetStartuplnfo function to retrieve the ST ARTUPINFO
structure specified when the process was created.

Members
cb

Specifies the size, in bytes, of the structure.

IpReserved
Reserved. Set this member to NULL before passing the structure to CreateProcess.

IpDesktop
Windows NT/2000: Pointer to a null-terminated string that specifies either the name
of the desktop only or the name of both the desktop and window station for this
process. A backslash in the string pointed to by IpDesktop indicates that the string
includes both desktop and window station names. If IpDesktop is NULL, the new
process inherits the desktop and window station of its parent process. If IpDesktop is
an empty string, the process does not inherit the desktop and window station of its
parent process; instead, the system determines if a new desktop and window station
need to be created. If the impersonated user already has a desktop, the system will
use the existing desktop.

IpTitle
For console processes, this is the title displayed in the title bar if a new console
window is created. If NULL, the name of the executable file is used as the window title
instead. This parameter must be NULL for GUI or console processes that do not
create a new console window.

204 Volume 1 Microsoft Windows Base Services

dwX
Ignored unless dwFlags specifies STARTF _USEPOSITION. Specifies the x offset, in
pixels, of the upper left corner of a window if a new window is created. The offset is
from the upper left corner of the screen. For GUI processes, the specified position is
used the first time the new process calls Create Window to create an overlapped
window if the x parameter of CreateWindow is CW _USEDEFAUL T.

dwY
Ignored unless dwFlags specifies STARTF _USEPOSITION. Specifies the y offset, in
pixels, of the upper left corner of a window if a new window is created. The offset is
from the upper left corner of the screen. For GUI processes, the specified position is
used the first time the new process calls CreateWindow to create an overlapped
window if the y parameter of CreateWindow is CW _USEDEFAUL T.

dwXSize
Ignored unless dwFlags specifiesSTARTF _USESIZE. Specifies the width, in pixels,
of the window if a new window is created. For GUI processes, this is used only the
first time the new process calls CreateWindow to create an overlapped window if the
nWidth parameter of CreateWindow is CW_USEDEFAULT.

dwYSize
Ignored unless dwFlags specifies STARTF _USESIZE. Specifies the height, in pixels,
of the window if a new window is created. For GUI processes, this is used only the
first time the new process calls Create Window to create an overlapped window if the
nHeight parameter of CreateWindow is CW_USEDEFAULT.

dwXCountChars
Ignored unless dwFlags specifies STARTF _USECOUNTCHARS. For console
processes, if a new console window is created, dwXCountChars specifies the screen
buffer width in character columns. This value is ignored in a GUI process.

dwYCountChars
Ignored unless dwFlags specifies STARTF _USECOUNTCHARS. For console
processes, if a new console window is created, dwYCountChars specifies the screen
buffer height in character rows. This value is ignored in a GUI process.

dwFiliAttribute
Ignored unless dwFlags specifies STARTF _USEFILLATTRIBUTE. Specifies the
initial text and background colors if a new console window is created in a console
application. These values are ignored in GUI applications. This value can be any
combination of the following values: FOREGROUND_BLUE,
FOREGROUND_GREEN, FOREGROUND_RED, FOREGROUND_INTENSITY,
BACKGROUND_BLUE, BACKGROUND_GREEN, BACKGROUND_RED, and
BACKGROUND_INTENSITY. For example, the following combination of values
produces red text on a white background:

Chapter 6 Processes, Threads, and DLLs 205

dwFlags
This is a bit field that determines whether certain STARTUPINFO members are used
when the process creates a window. Any combination of the following values can be
specified:

Value

STARTF_FORCEONFEEDBACK

STARTF_FORCEOFFFEEDBACK

STARTF_RUNFULLSCREEN

STARTF_USECOUNTCHARS

STARTF _USEFILLA TTRIBUTE

STARTF _USEPOSITION

STARTF _USESHOWWINDOW

STARTF_USESTDHANDLES

Meaning

Indicates that the cursor is in feedback mode for two
seconds after Create Process is called. If during those two
seconds the process makes the first GUI call, the system
gives five more seconds to the process. If during those five
seconds the process shows a window, the system gives
five more seconds to the process to finish drawing the
window.

The system turns the feedback cursor off after the first call
to GetMessage, regardless of whether the process is
drawing.

Indicates that the feedback cursor is forced off while the
process is starting. The normal cursor is displayed.

Indicates that the process should be run in full-screen
mode, rather than in windowed mode.

This flag is only valid for console applications running on an
x86 computer.

If this value is not specified, the dwXCountChars and
dwVCountChars members are ignored.

If this value is not specified, the dwFiliAttribute member is
ignored.

If this value is not specified, the dwX and dwV members
are ignored.

If this value is not specified, the wShowWindow member is
ignored.

If this value is not specified, the dwXSize and dwVSize
members are ignored.

Sets the standard input, standard output, and standard
error handles for the process to the handles specified in the
hStdlnput, hStdOutput, and hStdError members of the
ST ARTUPINFO structure. The Create Process function's
flnheritHandles parameter must be set to TRUE for this to
work properly.

If this value is not specified, the hStdlnput, hStdOutput,
and hStdError members of the STARTUPINFO structure
are ignored.

206 Volume 1 Microsoft Windows Base Services

wShowWindow
Ignored unless dwFlags specifies STARTF _USESHOWWINDOW. The
wShowWindow member can be any of the SW_ constants defined in WINUSER.H.
For GUI processes, wShowWindow specifies the default value the first time
ShowWindow is called. The nCmdShow parameter of ShowWindow is ignored. In
subsequent calls to ShowWindow, the wShowWindow member is used if the
nCmdShow parameter of ShowWindow is set to SW_SHOWDEFAUL T.

cbReserved2
Reserved; must be zero.

IpReserved2
Reserved; must be NULL.

hStdlnput
Ignored unless dwFlags specifies STARTF _USESTDHANDLES. Specifies a handle
that will be used as the standard input handle to the process if
STARTF _USESTDHANDLES is specified.

hStdOutput
Ignored unless dwFlags specifies STARTF _USESTDHANDLES. Specifies a handle
that will be used as the standard output handle to the process if
STARTF _USESTDHANDLES is specified.

hStdError
Ignored unless dwFlags specifies STARTF _USESTDHANDLES. Specifies a handle
that will be used as the standard error handle to the process if
STARTF _USESTDHANDLES is specified.

Remarks
If a GUI process is being started and neither STARTF _FORCEONFEEDBACK or
STARTF _FORCEOFFFEEDBACK is specified, the process feedback cursor is used. A
GUI process is one whose subsystem is specified as "windows."

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Unicode: Declared as Unicode and ANSI structures.

Processes and Threads Overview, Process and Thread Structures, CreateProcess,
CreateProcessAsUser, CreateWindow, GetMessage, GetStartuplnfo,
PeekMessage, ShowWindow, WinMain

Chapter 6 Processes, Threads, and DLLs 207

Process and Thread Macros

GetCurrentFiber
The GetCurrentFiber macro returns the address of the current fiber.

PVO'II}Sf!:~C(jtlttntrrf~r (,VOI()Y:·

Parameters
This macro has no parameters.

Return Values
The return value is the address of the currently running fiber.

Remarks
The CreateFiber and ConvertThreadToFiber functions return the fiber address when
the fiber is created. The GetCurrentFiber macro allows you to retrieve the address at
any other time.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Macros, CreateFiber,
ConvertThreadToFiber

GetFiberData
The GetFiberData macro returns the fiber data associated with the current fiber.

t~q~il··~·~·~F~··p~t'Qa~B:(V91·Q,}~:1)

Parameters
This macro has no parameters.

Return Values
The return value is the fiber data for the currently running fiber.

208 Volume 1 Microsoft Windows Base Services

Remarks
The fiber data is the value passed to the Create Fiber or ConvertThreadToFiber
functions in the IpParameter parameter. This value is also received as the parameter to
the fiber function. It is stored as part of the fiber state information.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Processes and Threads Overview, Process and Thread Macros, CreateFiber,
ConvertThreadToFiber

Dynamic Link Libraries
Dynamic link libraries (DLL) are modules that contain functions and data. A DLL is
loaded at run time by its calling modules (.exe or .dll). When a DLL is loaded, it is
mapped into the address space of the calling process.

DLLs can define two kinds of functions: exported and internal. The exported functions
can be called by other modules. Internal functions can only be called from within the DLL
where they are defined. Although DLLs can export data, its data is usually only used by
its functions.

DLLs provide a way to modularize applications so that functionality can be updated and
reused more easily. They also help reduce memory overhead when several applications
use the same functionality at the same time, because although each application gets its
own copy of the data, they can share the code.

The Microsoft Win32 application programming interface (API) is implemented as a set of
dynamic link libraries, so any process that uses the Win32 API uses dynamic linking.

About Dynamic Link Libraries
Dynamic linking allows a module to include only the information the system needs at
load time or run time to locate the code for an exported DLL function. Dynamic linking
differs from the more familiar static linking, in which the linker: copies a library function's
code into each module that calls it.

Types of Dynamic Linking
There are two methods for calling a function in a DLL:

• In load-time dynamic linking, a module makes explicit calls to exported DLL functions.
This requires you to link the module with the import library for the DLL. An import

Chapter 6 Processes, Threads, and OLLs 209

library supplies the system with the information needed to load the DLL and locate the
exported DLL functions when the application is loaded. For more information, see
Load-Time Dynamic Linking.

• In run-time dynamic linking, a module uses the LoadLibrary or LoadLibraryEx
function to load the DLL at run time. After the DLL is loaded, the module calls the
GetProcAddress function to get the addresses of the exported DLL functions. The
module calls the exported DLL functions using the function painters returned by
GetProcAddress. This eliminates the need for an import library. For more
information, see Using Run-Time Dynamic Linking.

DLLs and Memory Management
Every process that loads the DLL maps it into its virtual address space. After the process
loads the DLL into its virtual address, it can call the exported DLL functions.

The system maintains a reference count for each DLL. When a thread loads the DLL, its
reference count is incremented by one. When the process terminates, or when the
reference count goes to 0 (run-time dynamic linking only), the DLL is unloaded from the
virtual address space.

Like any other function, an exported DLL function runs in the context of the thread that
calls it. Therefore, the following conditions apply:

• The threads of the process that called the DLL can use handles opened by a DLL
function. Similarly, handles opened by any thread of the calling process can be used
in the DLL function.

• The DLL uses the stack of the calling thread and the virtual address space of the
calling process.

• The DLL allocates memory from the virtual address space of the calling process.

Advantages of Dynamic Linking
Dynamic linking has the following advantages over static linking:

• Processes that load a DLL at the same base address can use a single DLL
simultaneously, sharing a single copy of the DLL code in physical memory. Doing this
saves memory and reduces swapping.

• When the functions in a DLL change, the applications that use them do not need to be
recompiled or rei inked as long as the function arguments, calling conventions, and
return values do not change. In contrast, statically linked object code requires that the
application be relinked when the functions change.

• A DLL can provide after-market support. For example, a display driver DLL can be
modified to support a display that was not available when the application was initially
shipped.

• Programs written in different programming languages can call the same DLL function
as long as the programs follow the same calling convention that the function uses.
The calling convention (such as C, Pascal, or standard call) controls the order in

210 Volume 1 Microsoft Windows Base Services

which the calling function must push the arguments onto the stack, whether the
function or the calling function is responsible for cleaning up the stack, and whether
any arguments are passed in registers. For more information, see the documentation
included with your compiler.

A potential disadvantage to using DLLs is that the application is not self-contained; it
depends on the existence of a separate DLL module. The system terminates processes
using load-time dynamic linking if they require a DLL that is not found at process startup
and gives an error message to the user. The system does not terminate a process using
run-time dynamic linking in this situation, but functions exported by the DLL are not
available to the program.

Dynamic Link Library Creation
To create a DLL, you must create one or more source code files, and possibly a linker
file for exporting the functions. If you plan to allow applications that use your DLL to use
load-time dynamic linking, you must also create an import library.

Creating Source Files

The source files contain exported functions, internal functions, and an optional entry­
point function for the DLL. You may use any development tools that support the creation
of Win32-based DLLs.

If your DLL may be used by a multithreaded application, you should make your DLL
"thread-safe" by linking only with libraries that have support for multiple threads. Also, be
sure to synchronize access to your global data.

Exporting Functions

How you specify exported functions depends on the tools that you are using for
development. Some compilers allow you to export a function directly in the source code
by using a modifier in the function declaration. Other times, you must specify exports in a
file that you pass to the linker.

For example, using Microsoft Visual C++, there are two possible ways to export DLL
functions: with _declspec modifier or with a .DEF file. If you use the _declspec modifier,
it is not necessary to use a .DEF file.

For more information about exporting functions, see the documentation included with
your development tools.

Creating an Import Library

The import library (.LlB) file contains information the linker needs to resolve external
references to exported DLL functions, so the system can locate the specified DLL and
exported DLL functions at run time. For example, to call the CreateWindow function,
you must link your code with the import library USER32.LlB. The reason is that
CreateWindow resides in a system DLL. The file USER32.LlB is the import library used
to resolve the call to CreateWindow in your code.

Chapter 6 Processes, Threads, and DLLs 211

For information about creating import libraries, see the documentation included with your
development tools.

Dynamic Link Library Entry-Point Function
Every DLL must have an entry point, just as an application does. The system calls the
entry-point function whenever processes and threads load or unload the DLL. If you are
linking your DLL with a library, such as the C run-time library, it may provide an entry­
point function for you, and allow you to provide a separate initialization function. Check
the documentation for your run-time library for more information.

If you are providing your own entry-point, see the DIiMain function. The name DIiMain is
a placeholder for a user-defined function. Earlier versions of the SDK documentation
used DIlEntryPoint as the entry-point function name. You must specify the actual name
you use when you build your DLL. For more information, see the documentation
included with your development tools.

Calling the Entry-Point Function

The system calls the entry-point function whenever anyone of the following events
occurs:

• A process loads the DLL. For processes using load-time dynamic linking, the DLL is
loaded during process initialization. For processes using run-time linking, the DLL is
loaded before LoadLibrary or LoadLibraryEx returns.

• A process unloads the DLL. The DLL is unloaded when the process terminates or
calls the FreeLibrary function and the reference count becomes zero. If the process
terminates as a result of the TerminateProcess or TerminateThread function, the
system does not call the DLL entry-point function.

• A new thread is created in a process that has loaded the DLL. You can use the
DisableThreadLibraryCalis function to disable notification when threads are created.

• A thread of a process that has loaded the DLL terminates normally, not using
TerminateThread or TerminateProcess. When a process unloads the DLL, the
entry-point function is called only once for the entire process, rather than once for
each existing thread of the process. You can use DisableThreadLibraryCalis to
disable notification when threads are terminated.

Only one thread at a time can call the entry-point function.

The system calls the entry-point function in the context of the process or thread that
caused the function to be called. This allows a DLL to use its entry-point function for
allocating memory in the virtual address space of the calling process or to open handles
accessible to the process. The entry-point function can also allocate memory that is
private to a new thread by using thread local storage (TLS). For more information about
thread local storage, see Thread Local Storage.

212 Volume 1 Microsoft Windows Base Services

Entry-Point Function Definition

The DLL entry-point function must be declared with the standard-call calling convention.

Windows NT/2000: If the DLL entry point is not declared correctly, the DLL is not
loaded, and the system displays a message indicating that the DLL entry point must
be declared with WINAPI.

Windows 95: If the DLL entry point is not declared correctly, the DLL is not loaded
and the system displays a message titled "Error starting program," which instructs the
user to check the file to determine the problem.

In the body of the function, you may handle any combination of the following scenarios in
which the DLL entry point has been called:

• A process loads the DLL (DLL_PROCESS_ATTACH).

• The current process creates a new thread (DLL_ THREAD_ATTACH).

• A thread exits normally (DLL_THREAD_DETACH).

• A process unloads the DLL (DLL_PROCESS_DETACH).

Your function should perform only simple initialization tasks, such as setting up thread
local storage (TLS), creating synchronization objects, and opening files. It must not call
the LoadLibrary function, because this may create dependency loops in the DLL load
order. This can result in a DLL being used before the system has executed its
initialization code. Similarly, you must not call the FreeLibrary function in the entry-point
function, because this can result in a DLL being used after the system has executed its
termination code.

Calling Win32 functions other than TLS, synchronization, and file functions may also
result in problems that are difficult to diagnose. For example, calling User, Shell, and
COM functions can cause access violation errors, because some functions in their DLLs
call LoadLibrary to load other system components.

The following example demonstrates how to structure the DLL entry-point function.

Chapter 6 Processes, Threads, and DLLs 213

1/ Do .thread-sp:ec1f1c '1n1t1
break:, .

Entry-Paint Function Return Value

When a DLL entry-point function is called because a process is loading, the function
returns TRUE to indicate success. For processes using load-time linking, a return value
of FALSE causes the process initialization to fail and the process terminates. For
processes using run-time linking, a return value of FALSE causes the LoadLibrary or
LoadLibraryEx function to return NULL, indicating failure. (The system immediately
calls your entry-point function with DLL_PROCESS_DETACH and unloads the DLL.)
The return value of the entry-point function is disregarded when the function is called for
any other reason.

Load· Time Dynamic Linking
When the system starts a program that uses load-time dynamic linking, it uses the
information in the file to locate the names of the required DLL(s). The system then
searches for the DLLs in the following locations, in sequence:

1. The directory from which the application loaded.

2. The current directory.

3. Windows 95/98: The Windows system directory. Use the GetSystemDirectory
function to get the path of this directory.

Windows NT/2000: The 32-bit Windows system directory. Use the
GetSystemDirectory function to obtain the path of this directory.

4. Windows NT/2000: The 16-bit Windows system directory. There is no function that
obtains the path of this directory, but it is searched.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

If the system cannot locate a specified DLL, it terminates the process and displays a
dialog box that reports the error. Otherwise, the system maps the DLL modules into the
virtual address space of the process and increments the DLL reference count.

214 Volume 1 Microsoft Windows Base Services

The system calls the entry-point function. The function receives a code indicating that
the process is loading the DLL. If the entry-point function does not return TRUE, the
system terminates the process and reports the error. For more information about the
entry-point function, see Dynamic Link Library Entry-Point Function.

Finally, the system modifies the code of the process to provide starting addresses for the
referenced DLL functions.

The DLL is mapped into the virtual address space of the process during its initialization
and is loaded into physical memory only when needed.

Run-Time Dynamic Linking
When the application calls the LoadLibrary or LoadLibraryEx functions, the system
attempts to locate the DLL using the same search sequence used in load-time dynamic
linking (see Load-Time Dynamic Linking). If the search succeeds, the system maps the
DLL module into the virtual address space of the process and increments the reference
count. If the call to LoadLibrary or LoadLibraryEx specifies a DLL whose code is
already mapped into the virtual address space of the calling process, the function simply
returns a handle to the DLL and increments the DLL reference count. Note that two
DLLs that have the same base file name and extension but are found in different
directories are not considered to be the same DLL.

The system calls the entry-point function in the context of the thread that called
LoadLibrary or LoadLibraryEx. The entry-point function is not called if the DLL was
already loaded by the process through a call to LoadLibrary or LoadLibraryEx with no
corresponding call to the FreeLibrary function.

If the system cannot find the DLL or if the entry-point function returns FALSE,
LoadLibrary or LoadLibraryEx returns NULL. If LoadLibrary or LoadLibraryEx
succeeds, it returns a handle to the DLL module. The process can use this handle to
identify the DLL in a call to the GetProcAddress, FreeLibrary, or
FreeLibraryAndExitThread function.

The GetModuleHandle function returns a handle used in GetProcAddress,
FreeLibrary, or FreeLibraryAndExitThread. The GetModuleHandle function succeeds
only if the DLL module is already mapped into the address space of the process by load­
time linking or by a previous call to LoadLibrary or LoadLibraryEx. Unlike LoadLibrary
or LoadLibraryEx, GetModuleHandle does not increment the module reference count.
The GetModuleFileName function retrieves the full path of the module associated with a
handle returned by GetModuleHandle, LoadLibrary, or LoadLibraryEx.

The process can use GetProcAddress to get the address of an exported function in the
DLL using a DLL module handle returned by either LoadLibrary, LoadLibraryEx, or
GetModuleHandle.

When the DLL module is no longer needed, the process can call FreeLibrary or
FreeLibraryAndExitThread. These functions decrement the module reference count
and unmap the DLL code from the virtual address space of the process if the reference
count is zero.

Chapter 6 Processes, Threads, and DLLs 215

Run-time dynamic linking enables the process to continue running even if a DLL is not
available. The process can then use an alternate method to accomplish its objective. For
example, if a process is unable to locate one DLL, it can try to use another, or it can
notify the user of an error. If the user can provide the full path of the missing DLL, the
process can use this information to load the DLL even though it is not in the normal
search path. This situation contrasts with load-time linking, in which the system simply
terminates the process if it cannot find the DLL.

Run-time dynamic linking can cause problems if the DLL uses the DIiMain function to
perform initialization for each thread of a process, because the entry-point is not called
for threads that existed before LoadLibrary or LoadLibraryEx is called. For an example
showing how to deal with this problem, see Using Thread Local Storage in a Dynamic
Link Library.

Dynamic Link Library Data
Win32-based DLLs can contain global data or local data.

Variable Scope

The default scope of DLL variables is the same as that of variables declared in the
application. Global variables in a DLL source code file are global to each process using the
DLL. Static variables have scope limited to the block in which they are declared. As a
result, each process has its own instance of the DLL global and static variables by default.

Your development tools may allow you to override the default scope of global and static
variables. For more information, see the documentation included with your development
tools.

Dynamic Memory Allocation

When a DLL allocates memory using any of the memory allocation functions (GlobaIAlloc,
LocalAlloc, HeapAlloc, and VirtuaIAlloc), the memory is allocated in the virtual address
space of the calling process and is accessible only to the threads of that process.

A DLL can use file mapping to allocate memory that can be shared among processes.
For a general discussion of how to use file mapping to create named shared memory,
see File Mapping. For an example that uses the DIiMain function to set up shared
memory using file mapping, see Using Shared Memory in a Dynamic Link Library.

Thread Local Storage

The thread local storage (TLS) functions enable a DLL to allocate an index for storing
and retrieving a different value for each thread of a multithreaded process. For example,
a spreadsheet application can create a new instance of the same thread each time the
user opens a new spreadsheet. A DLL providing the functions for various spreadsheet
operations can use TLS to save information about the current state of each spreadsheet
(row, column, and so on). For a general discussion of thread local storage, see Thread
Local Storage. For an example that uses the DIiMain function to set up thread local
storage, see Using Thread Local Storage in a Dynamic Link Library.

216 Volume 1 Microsoft Windows Base Services

Warning The Visual C++ compiler supports a syntax that enables you to declare
thread-local variables: _declspec(thread). If you use this syntax in a DLL, you will not
be able to load the DLL explicitly using LoadLibrary or LoadLibraryEx. If your DLL will
be loaded explicitly, you must use the thread local storage functions instead of
_declspec(thread).

Dynamic Link Library Redirection
Problems can occur when an application loads a version of a DLL other than the one
with which it shipped. Starting with Windows 2000, you can ensure that your application
uses the correct version of a DLL by creating a redirection file. The contents of a
redirection file are ignored, but its presence forces all DLLs in the application's directory
to be loaded from that directory.

The redirection file must be named as follows:

For example, if the application's name is editor.exe, the redirection file is named
editor.exe.local. You must install editor.exe.local in the same directory that contains
editor.exe. You must also install the DLLs in the same directory.

The LoadLibrary and LoadLibraryEx functions change their search sequence if a
redirection file is present. If a path is specified and there is a redirection file for the
application, these functions search for the DLL in the application's directory. If the DLL
exists in the application's directory, these functions ignore the specified path and load
the DLL from the application's directory. If the module is not in the application's directory,
these functions load the DLL from the specified directory.

For example, an application c: \myapp\myapp. exe calls LoadLibrary using the following
path:

If c: \myapp\myapp. exe. local and c: \myapp\mydll . dll exist, LoadLibrary will load
c:\myapp\mydll.dll. Otherwise, LoadLibrarywiliload c:\program files\common
files\system\mydll.dll.

Note It is good practice to install your application's DLLs in the same directory that
contains the application, even if you are not using redirection. It ensures that installing
your application will not overwrite other copies of the DLL and cause other applications
to fail. In addition, other applications will not overwrite your copy of the DLL and cause
your application to fail.

Dynamic Link Library Updates
It is sometimes necessary to replace a DLL with a newer version. Before replacing a
DLL, perform a version check to ensure that you are replacing an older version with a

Chapter 6 Processes, Threads, and DLLs 217

newer version. It is possible to replace a DLL that is in use. The method you use to
replace DLLs that are in use depends on the operating system you are using.

On Windows NTIWindows 2000, it is not necessary to restart the computer if you
perform the following steps:

1. Use the MoveFileEx function to rename the DLL being replaced. Do not specify
MOVEFILE_COPY _ALLOWED, and make sure the renamed file is on the same
volume that contains the original file. You could also simply rename the file in the
same directory by giving it a different extension.

2. Copy the new DLL to the directory that contains the renamed DLL. All applications
will now use the new DLL.

3. Use MoveFileEx with MOVEFILE_DELA Y _UNTIL_REBOOT to delete the
renamed DLL.

Before you make this replacement, applications will use the original DLL until it is
unloaded. After you make the replacement, applications will use the new DLL. When you
write a DLL, you must be careful to ensure that it is prepared for this situation, especially
if the DLL maintains global state information or communicates with other services. If the
DLL is not prepared for a change in global state information or communication protocols,
updating the DLL will require you to restart the computer to ensure that all applications
are using the same version of the DLL.

On Windows 95/98, it is necessary to restart the computer. For more information, see
the Remarks section of MoveFileEx.

Dynamic Link Library Reference
Dynamic Link Library Functions

DisableThreadLibraryCalis
The DisableThreadLibraryCalis function disables the DLL_THREAD_ATTACH and
DLL_ THREAD_DETACH notifications for the dynamic-link library (DLL) specified by
hLibModule. This can reduce the size of the working code set for some applications.

218 Volume 1 Microsoft Windows Base Services

Parameters
hLibModule

[in] Handle to the DLL module for which the DLL_THREAD_ATTACH and
DLL_ THREAD_DETACH notifications are to be disabled. The LoadLibrary or
GetModuleHandle function returns this handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The DisableThreadLibraryCalis function
fails if the DLL specified by hLibModule has active static thread local storage, or if
hLibModule is an invalid module handle. To get extended error information, call
GetLastError.

Remarks
The DisableThreadLibraryCalis function lets a DLL disable the
DLL_THREAD_ATTACH and DLL_THREAD_DETACH notification calls. This can be a
useful optimization for multithreaded applications that have many DLLs, frequently
create and delete threads, and whose DLLs do not need these thread-level notifications
of attachmenVdetachment. A remote procedure call (RPC) server application is an
example of such an application. In these sorts of applications, DLL initialization routines
often remain in memory to service DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notifications. By disabling the notifications, the DLL
initialization code is not paged in because a thread is created or deleted, thus reducing
the size of the application's working code set. To implement the optimization, modify a
DLL's DLL_PROCESS_ATTACH code to call DisableThreadLibraryCalis.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Dynamic Link Libraries Overview, Dynamic Link Library Functions,
FreeLibraryAndExitThread

Chapter 6 Processes, Threads, and DLLs 219

DIiMain
The DIiMain function is an optional method of entry into a dynamic-link library (DLL). If
the function is used, it is called by the system when processes and threads are initialized
and terminated, or upon calls to the LoadLibrary and FreeLibrary functions.

DIiMain is a placeholder for the library-defined function name. Earlier versions of the
SDK documentation used DIlEntryPoint as the entry-point function name. You must
specify the actual name you use when you build your DLL. For more information, see the
documentation included with your development tools.

Parameters
hinstDLL

[in] Handle to the DLL module. The value is the base address of the DLL. The
HINST ANCE of a DLL is the same as the HMODULE of the DLL, so hinstDLL can be
used in calls to functions that require a module handle.

fdwReason
[in] Specifies a flag indicating why the DLL entry-point function is being called. This
parameter can be one of the following values.

Value Meaning

DLL_PROCESS_ATTACH Indicates that the DLL is being loaded into the virtual address
space of the current process as a result of the process starting up
or as a result of a call to LoadLibrary. DLLs can use this
opportunity to initialize any instance data or to use the TlsAlioc

. function to allocate a thread local storage (TLS) index.

D LL_TH READ_ATTACH Indicates that the current process is creating a new thread. When
this occurs, the system calls the entry-point function of all DLLs
currently attached to the process. The call is made in the context
of the new thread. DLLs can use this opportunity to initialize a TLS
slot for the thread. A thread calling the DLL entry-point function
with DLL_PROCESS_ATTACH does not call the DLL entry-point
function with DLL_THREAD_ATTACH.

Note that a DLL's entry-point function is called with this value only
by threads created after the DLL is loaded by the process. When a
DLL is loaded using LoadLibrary, existing threads do not call the
entry-point function of the newly loaded DLL.

(continued)

220 Volume 1 Microsoft Windows Base Services

(continued)

Value Meaning

DLL_THREAD_DETACH Indicates that a thread is exiting cleanly. If the DLL has stored a
pointer to allocated memory in a TLS slot, it uses this opportunity
to free the memory. The system calls the entry-point function of all
currently loaded DLLs with this value. The call is made in the
context of the exiting thread.

DLL_PROCESS_DET ACH Indicates that the DLL is being unloaded from the virtual address
space of the calling process as a result of unsuccessfully loading
the DLL, termination of the process, or a call to FreeLibrary. The
DLL can use this opportunity to call the TlsFree function to free
any TLS indices allocated by using TlsAlioc and to free any
thread local data.

IpvReserved
[in] Specifies further aspects of DLL initialization and cleanup.

If fdwReason is DLL_PROCESS_ATTACH, IpvReservedis NULL for dynamic loads
and non-NULL for static loads.

If fdwReason is DLL_PROCESS_DET ACH, IpvReserved is NULL if DIiMain has been
called by using FreeLibrary and non-NULL if DIiMain has been called during process
termination.

Return Values
When the system calls the DIiMain function with the DLL_PROCESS_ATTACH value,
the function returns TRUE if it succeeds or FALSE if initialization fails. If the return value
is FALSE when DIiMain is called because the process uses the LoadLibrary function,
LoadLibrary returns NULL. (The system immediately calls your entry-point function with
DLL_PROCESS_DETACH and unloads the DLL.) If the return value is FALSE when
DIiMain is called during process initialization, the process terminates with an error. To
get extended error information, call GetLastError.

When the system calls the DIiMain function With any value other than
DLL_PROCESS_ATTACH, the return value is ignored.

Remarks
During initial process startup or after a call to LoadLibrary, the system scans the list of
loaded DLLs for the process. For each DLL that has not already been called with the
DLL_PROCESS_ATTACH value, the system calls the DLL's entry-point function. This call
is made in the context of the thread that caused the process address space to change,
such as the primary thread of the process or the thread that called LoadLibrary. Access to
the entry pOint is serialized by the system on a process-wide basis.

There are cases in which the entry-point function is called for a terminating thread even if
the DLL never attached to the thread-for example, the entry-point function was never

Chapter 6 Processes, Threads, and DLLs 221

called with the DLL_ THREAD_ATTACH value in the context of the thread in either of
these two situations:

• The thread was the initial thread in the process, so the system called the entry-point
function with the DLL_PROCESS_ATTACH value.

• The thread was already running when a call to the LoadLibrary function was made,
so the system never called the entry-point function for it.

When a DLL is unloaded from a process as a result of an unsuccessful load of the DLL,
termination of the process, or a call to FreeLibrary, the system does not call the DLL's
entry-point function with the DLL_ THREAD_DETACH value for the individual threads of
the process. The DLL is only sent a DLL_PROCESS_DETACH notification. DLLs can
take this opportunity to clean up all resources for all threads known to the DLL.

Warning On attach, the body of your DLL entry-point function should perform only
simple initialization tasks, such as setting up thread local storage (TLS), creating objects,
and opening files. You must not call LoadLibrary in the entry-point function, because
you may create dependency loops in the DLL load order. This can result in a DLL being
used before the system has executed its initialization code. Similarly, you must not call
the FreeLibrary function in the entry-point function on detach, because this can result in
a DLL being used after the system has executed its termination code.

Calling Win32 functions other than TLS, object-creation, and file functions may result in
problems that are difficult to diagnose. For example, calling User, Shell, COM, RPC, and
Windows Sockets functions (or any functions that call these functions) can cause access
violation errors, because their DLLs call LoadLibrary to load other system components.
While it is acceptable to create synchronization objects in OIIMain, you should not
perform synchronization in 011 Main (or a function called by OIIMain) because all calls to
OIIMain are serialized. Waiting on synchronization objects in OIIMain can cause a
deadlock.

To provide more complex initialization, create an initialization routine for the DLL. You
can require applications to call the initialization routine before calling any other routines
in the DLL. Otherwise, you can have the initialization routine create a named mutex, and
have each routine in the DLL call the initialization routine if the mutex does not exist.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Dynamic Link Libraries Overview, Dynamic Link Library Functions, Dynamic Link Library
Entry-Point Function, FreeLibrary, GetModuleFileName, LoadLibrary, TlsAlloc,
TlsFree

222 Volume 1 Microsoft Windows Base Services

FreeLibrary
The FreeLibrary function decrements the reference count of the loaded dynamic-link
library (DLL) module. When the reference count reaches zero, the module is unmapped
from the address space of the calling process and the handle is no longer valid.

Parameters
hLibModule

[in/out] Handle to the loaded DLL module. The LoadLibrary or GetModuleHandle
function returns this handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Each process maintains a reference count for each loaded library module. This
reference count is incremented each time LoadLibrary is called and is decremented
each time FreeLibrary is called. A DLL module loaded at process initialization due to
load-time dynamic linking has a reference count of one. This count is incremented if the
same module is loaded by a call to LoadLibrary.

Before un mapping a library module, the system enables the DLL to detach from the
process by calling the DLL's DliMain function, if it has one, with the
DLL_PROCESS_DETACH value. Doing so gives the DLL an opportunity to clean up
resources allocated on behalf of the current process. After the entry-point function
returns, the library module is removed from the address space of the current process.

It is not safe to call FreeLibrary from DliMain. For more information, see the Remarks
section in DliMain.

Calling FreeLibrary does not affect other processes using the same library module.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Chapter 6 Processes, Threads, and DLLs 223

;iU,SeiAlso
Dynamic Link Libraries Overview, Dynamic Link Library Functions, DIiMain,
FreeLibraryAndExitThread, GetModuleHandle, LoadLibrary

FreeLi brary And ExitTh read
The FreeLibraryAndExitThread function decrements the reference count of a loaded
dynamic link library (DLL) by one, and then calls ExitThread to terminate the calling
thread. The function does not return.

The FreeLibraryAndExitThread function gives threads that are created and executed
within a dynamic link library an opportunity to safely unload the DLL and terminate
themselves.

Parameters
hLibModule

[in] Handle to the DLL module whose reference count the function decrements. The
LoadLibrary or GetModuleHandle function returns this handle.

dwExitCode
[in] Specifies the exit code for the calling thread.

Return Values
The function has no return value. The function does not return. Invalid hLibModule
handles are ignored.

Remarks
The FreeLibraryAndExitThread function is implemented as:

Refer to the reference pages for FreeLibrary and ExitThread for further information on
those functions.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

224 Volume 1 Microsoft Windows Base Services

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Dynamic Link Libraries Overview, Dynamic Link Library Functions, FreeLibrary,
ExitThread, DisableThreadLibraryCalis

GetModuleFileName
The GetModuleFileName function retrieves the full path and file name for the file
containing the specified module.

Windows 95/98: The GetModuleFilename function will return long file names when an
application's version number is greater than or equal to 4.00 and the long file name is
available. Otherwise, it returns only 8.3 format file names.

Parameters
hModule

[in] Handle to the module whose file name is being requested. If this parameter is
NULL, GetModuleFileName returns the path for the file containing the current
process.

IpFilename
[out] Pointer to a buffer that receives the path and file name of the specified module.

nSize
[in] Specifies the length, in characters, of the IpFilename buffer. If the length of the
path and file name exceeds this limit, the string is truncated.

Return Values
If the function succeeds, the return value is the length, in characters, of the string copied
to the buffer.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If a DLL is loaded in two processes, its file name in one process may differ in case from
its file name in the other process.

Chapter 6 Processes, Threads, and DLLs 225

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Dynamic Link Libraries Overview, Dynamic Link Library Functions, GetModuleHandle,
LoadLibrary

GetModuleHandle
The GetModuleHandle function returns a module handle for the specified module if the
file has been mapped into the address space of the calling process.

Parameters
IpModuleName

[in] Pointer to a null-terminated string that contains the name of the module (either a
.dll or .exe file). If the file name extension is omitted, the default library extension .dll is
appended. The file name string can include a trailing point character (.) to indicate that
the module name has no extension. The string does not have to specify a path. When
specifying a path, be sure to use backslashes (\), not forward slashes (I). The name is
compared (case independently) to the names of modules currently mapped into the
address space of the calling process.

If this parameter is NULL, GetModuleHandle returns a handle to the file used to
create the calling process.

Return Values
If the function succeeds, the return value is a handle to the specified module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The returned handle is not global, inheritable, or duplicative, and it cannot be used by
another process.

226 Volume 1 Microsoft Windows Base Services

The handles returned by GetModuleHandle and LoadLibrary can be used in the same
functions-for example, GetProcAddress, FreeLibrary, or LoadResource. The
difference between the two functions involves the reference count. LoadLibrary maps
the module into the address space of the calling process, if necessary, and increments
the module's reference count, if it is already mapped. GetModuleHandle, however,
returns the handle to a mapped module without incrementing its reference count.

Note that the reference count is used in FreeLibrary to determine whether to unmap the
function from the address space of the process. For this reason, use care when using a
handle returned by GetModuleHandle in a call to FreeLibrary because doing so can
cause a dynamic-link library (DLL) module to be unmapped prematurely.

This function must also be used carefully in a multithreaded application. There is no
guarantee that the module handle remains valid between the time this function returns
the handle and the time it is used by another function. For example, a thread might
retrieve a module handle by calling GetModuleHandle. Before the thread uses the
handle in another function, a second thread could free the module and the system could
load another module, giving it the same handle as the module that was recently freed.
The first thread would then be left with a module handle that refers to a module different
than the one intended.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Dynamic Link Libraries Overview, Dynamic Link Library Functions, FreeLibrary,
GetModuleFileName, GetProcAddress, LoadLibrary, LoadResource

GetProcAddress

Parameters
hModule

Chapter 6 Processes, Threads, and DLLs 227

[in] Handle to the DLL module that contains the function. The LoadLibrary or
GetModuleHandle function returns this handle.

IpProcName
[in] Pointer to a null-terminated string containing the function name, or specifies the
function's ordinal value. If this parameter is an ordinal value, it must be in the low­
order word; the high-order word must be zero.

Return Values
If the function succeeds, the return value is the address of the DLL's exported function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The GetProcAddress function is used to retrieve addresses of exported functions
in DLLs.

The spelling and case of the function name pointed to by IpProcName must be identical
to that in the EXPORTS statement of the source DLL's module-definition (.DEF) file. The
exported names of Win32 API functions may differ from the names you use when calling
these functions in your code. This difference is hidden by macros used in the SDK
header files. For more information, see Win32 Function Prototypes.

The IpProcName parameter can identify the DLL function by specifying an ordinal value
associated with the function in the EXPORTS statement. GetProcAddress verifies that
the specified ordinal is in the range 1 through the highest ordinal value exported in the
.DEF file. The function then uses the ordinal as an index to read the function's address
from a function table. If the .DEF file does not number the functions consecutively from 1
to N (where N is the number of exported functions), an error can occur where
GetProcAddress returns an invalid, non-NULL address, even though there is no
function with the specified ordinal.

In cases where the function may not exist, the function should be specified by name
rather than by ordinal value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

228 Volume 1 Microsoft Windows Base Services

Dynamic Link Libraries Overview, Dynamic Link Library Functions, FreeLibrary,
GetModuleHandle, LoadLibrary

LoadLibrary
The LoadLibrary function maps the specified executable module into the address space
of the calling process.

For additional load options, use the LoadLibraryEx function.

Parameters
IpLibFileName

[in] Pointer to a null-terminated string that names the executable module (either a .dll
or .exe file). The name specified is the file name of the module and is not related to
the name stored in the library module itself, as specified by the LIBRARY keyword in
the module-definition (.def) file.

If the string specifies a path but the file does not exist in the specified directory, the
function fails. When specifying a path, be sure to use backslashes (\), not forward
slashes (/).

If the string does not specify a path, the function uses a standard search strategy to
find the file. See the Remarks for more information.

Return Values
If the function succeeds, the return value is a handle to the module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Windows 95: If you are using LoadLibrary to load a module that contains a resource
whose numeric identifier is greater than Ox7FFF, LoadLibrary fails. If you are attempting
to load a 16-bit DLL directly from 32-bit code, LoadLibrary fails. If you are attempting to
load a DLL whose subsystem version is greater than 4.0, LoadLibrary fails. If your
DIIMain function tries to call the Unicode version of a Win32 function, LoadLibrary fails.

Remarks
LoadLibrary can be used to map a DLL module and return a handle that can be used in
GetProcAddress to get the address of a DLL function. LoadLibrary can also be used to
map other executable modules. For example, the function can specify an .exe file to get

Chapter 6 Processes, Threads, and DLLs 229

a handle that can be used in FindResource or LoadResource. However, do not use
LoadLibrary to run an .exe file, use the Create Process function.

If the module is a DLL not already mapped for the calling process, the system calls the
DLL's DIlMain function with the DLL_PROCESS_A TT ACH value. If the DLL's entry-point
function does not return TRUE, LoadLibrary fails and returns NULL. (The system
immediately calls your entry-point function with DLL_PROCESS_DET ACH and unloads
the DLL.)

It is not safe to call LoadLibrary from DIlMain. For more information, see the Remarks
section in DIlMain.

Module handles are not global or inheritable. A call to LoadLibrary by one process does
not produce a handle that another process can use-for example, in calling
GetProcAddress. The other process must make its own call to LoadLibrary for the
module before calling GetProcAddress.

If no file name extension is specified in the IpLibFileName parameter, the default library
extension .dll is appended. However, the file name string can include a trailing point
character (.) to indicate that the module name has no extension. When no path is
specified, the function searches for loaded modules whose base name matches the
base name of the module to be loaded. If the name matches, the load succeeds.
Otherwise, the function searches for the file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. Windows 95/98: The Windows system directory. Use the GetSystemDirectory
function to get the path of this directory.

Windows NT/2000: The 32-bit Windows system directory. Use the
GetSystemDirectory function to get the path of this directory. The name of this
directory is SYSTEM32.

4. Windows NT/2000: The 16-bit Windows system directory. There is no function that
obtains the path of this directory, but it is searched. The name of this directory is
SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

The first directory searched is the one directory containing the image file used to create
the calling process (for more information, see the CreateProcess function). Doing this
allows private dynamic link library (DLL) files associated with a process to be found
without adding the process's installed directory to the PATH environment variable.

Windows 2000: If a path is specified and there is a redirection file for the application, the
function searches for the module in the application's directory. If the module exists in the
application's directory, the LoadLibrary function ignores the specified path and loads

230 Volume 1 Microsoft Windows Base Services

the module from the application's directory. If the module does not exist in the
application's directory, LoadLibrary loads the module from the specified directory.

The Visual C++ compiler supports a syntax that enables you to declare thread-local
variables: _declspec(thread). If you use this syntax in a DLL, you will not be able to
load the DLL explicitly using LoadLibrary or LoadLibraryEx. If your DLL will be loaded
explicitly, you must use the thread local storage functions instead of _declspec(thread).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Dynamic Link Libraries Overview, Dynamic Link Library Functions, DIiMain,
FindResource, FreeLibrary, GetProcAddress, GetSystem Di rectory,
GetWindowsDirectory, LoadLibraryEx, LoadResource

LoadLibraryEx
The LoadLibraryEx function maps a specified executable module into the address
space of the calling process. The executable module can be a .dll or an .exe file. The
specified module may cause other modules to be mapped into the address space.

Parameters
IpLibFileName

[in] Pointer to a null-terminated string that names the executable module (either a .dll
or an .exe file). The name specified is the file name of the executable module. This
name is not related to the name stored in a library module itself, as specified by the
LIBRARY keyword in the module-definition (.DEF) file.

If the string specifies a path, but the file does not exist in the specified directory, the
function fails. When specifying a path, be sure to use backslashes (\), not forward
slashes (/).

Flag

Chapter 6 Processes, Threads, and DLLs 231

If the string does not specify a path, and the file name extension is omitted, the
function appends the default library extension .dll to the file name. However, the file
name string can include a trailing point character (.) to indicate that the module name
has no extension.

If the string does not specify a path, the function uses a standard search strategy to
find the file. See the Remarks for more information.

If mapping the specified module into the address space causes the system to map in
other, associated executable modules, the function can use either the standard
search strategy or an alternate search strategy to find those modules. See the
Remarks for more information.

hFile
This parameter is reserved for future use. It must be NULL.

dwFlags
[in] Specifies the action to take when loading the module. If no flags are specified, the
behavior of this function is identical to that of the LoadLibrary function. This
parameter can be one of the following values.

Meaning

Windows NT/2000: If this value is used, and the
executable module is a DLL, the system does
not call 011 Main for process and thread
initialization and termination. Also, the system
does not load additional executable modules that
are referenced by the specified module.

If this value is not used, and the executable
module is a DLL, the system calls 011 Main for
process and thread initialization and termination.
The system loads additional executable modules
that are referenced by the specified module.

If this value is used, the system maps the file
into the calling process's virtual address space
as if it were a data file. Nothing is done to
execute or prepare to execute the mapped file.
Use this flag when you want to load a DLL only
to extract messages or resources from it.

Windows NT/2000: You can use the resulting
module handle with any Win32 functions that
operate on resources.

Windows 95/98: You can use the resulting
module handle only with resource management
functions such as EnumResourceLanguages,
EnumResourceNames, EnumResourceTypes,
FindResource, FindResourceEx,

(continued)

232 Volume 1 Microsoft Windows Base Services

(continued)

Flag

Return Values

Meaning

LoadResource, and SizeofResource.
You cannot use this handle with specialized
resource management functions such as
LoadBitmap, LoadCursor, Loadlcon,
Loadlmage, and LoadMenu.
If this value is used, and IpLibFileName specifies
a path, the system uses the alternate file search
strategy discussed in the Remarks section to
find associated executable modules that the
specified module causes to be loaded.
If this value is not used, or if IpLibFileName does
not specify a path, the system uses the standard
search strategy discussed in the Remarks
section to find associated executable modules
that the specified module causes to be loaded.

If the function succeeds, the return value is a handle to the mapped executable module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Windows 95: If you are using LoadLibraryEx to load a module that contains a resource
whose numeric identifier is greater than Ox7FFF, LoadLibraryEx fails. If you are
attempting to load a 16-bit DLL directly from 32-bit code, LoadLibraryEx fails. If you are
attempting to load a DLL whose subsystem version is greater than 4.0, LoadLibraryEx
fails. If your DIiMain function tries to call the Unicode version of a Win32 function,
LoadLibraryEx fails.

Remarks
The calling process can use the handle returned by this function to identify the module in
calls to the GetProcAddress, FindResource, and LoadResource functions.

The LoadLibraryEx function is very similar to the LoadLibrary function. The differences
consist of a set of optional behaviors that LoadLibraryEx provides. First, LoadLibraryEx
can map a DLL module without calling the DIiMain function of the DLL. Second,
LoadLibraryEx can use either of two file search strategies to find executable modules that
are associated with the specified module. Third, LoadLibraryEx can load a module in a
way that is optimized for the case where the module will never be executed, loading the
module as if it were a data file. You select these optional behaviors by setting the dwFlags
parameter; if dwFlags is zero, LoadLibraryEx behaves identically to LoadLibrary.

It is not safe to call LoadLibraryEx from DIiMain. For more information, see the
Remarks section in DIiMain.

Chapter 6 Processes, Threads, and DLLs 233

If no path is specified in the IpLibFileName parameter, and the base file name does not
match the base file name of a loaded module, the LoadLibraryEx function uses the
same standard file search strategy that LoadLibrary, Search Path, and Open File use to
find the executable module and any associated executable modules that it causes to be
loaded. This standard strategy searches for a file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. Windows 95/98: The Windows system directory. Use the GetSystemDirectory
function to get the path of this directory.

Windows NT/2000: The 32-bit Windows system directory. Use the
GetSystemDirectory function to get the path of this directory. The name of this
directory is SYSTEM32.

4. Windows NT/2000: The 16-bit Windows system directory. There is no function that
obtains the path of this directory, but it is searched. The name of this directory is
SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

If a path is specified, and the dwFlags parameter is set to
LOAD_WITH_AL TERED_SEARCH_PATH, the LoadLibraryEx function uses an
alternate file search strategy to find any executable modules that the specified module
causes to be loaded. This alternate strategy searches for a file in the following
sequence:

1. The directory specified by the IpLibFileName path. In other words, the directory that
the specified executable module is in.

2. The current directory.

3. Windows 95/98: The Windows system directory. Use the GetSystemDirectory
function to get the path of this directory.

Windows NT/2000: The 32-bit Windows system directory. Use the
GetSystemDirectory function to get the path of this directory. The name of this
directory is SYSTEM32.

4. Windows NT/2000: The 16-bit Windows system directory. There is no function that
obtains the path of this directory, but it is searched. The name of this directory is
SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

234 Volume 1 Microsoft Windows Base Services

Note The standard file search strategy and the alternate search strategy differ in just
one way: the standard strategy starts its search in the calling application's directory, and
the alternate strategy starts its search in the directory of the executable module that
LoadLibraryEx is loading.

If you specify the alternate search strategy, its behavior continues until all associated
executable modules have been located. After the system starts processing DLL
initialization routines, the system reverts to the standard search strategy.

Windows 2000: If a path is specified and there is a redirection file associated with the
application, the LoadLibraryEx function searches for the module in the application
directory. If the module exists in the application directory, LoadLibraryEx ignores the
path specification and loads the module from the application directory. If the module
does not exist in the application directory, the function loads the module from the
specified directory.

Visual C++: The Visual C++ compiler supports a syntax that enables you to declare
thread-local variables: _declspec(thread). If you use this syntax in a DLL, you will not
be able to load the DLL explicitly using LoadLibrary or LoadLibraryEx. If your DLL will
be loaded explicitly, you must use the thread local storage functions instead of
_declspec(thread).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Dynamic Link Libraries Overview, Dynamic Link Library Functions, DIiMain,
FindResource, FreeLibrary, GetProcAddress, GetSystemDirectory,
GetWindowsDirectory, LoadLibrary, LoadResource, Open File, Search Path

Synchronization
The Microsoft Win32 API provides a variety of ways to coordinate multiple threads of
execution. Such coordination is between multiple threads is considered synchronization.

The rest of this chapter provides overview information, and is geared toward getting you
familiar with the issues surrounding synchronization. While this overview is complete,
and should get you far in preparing to deal with synchronization issues in your Windows
application, the actual programmatic elements were too numerous (page consuming,

Chapter 6 Processes, Threads, and DLLs 235

that is) to fit within the publishing constraints associated with volumes in the Windows
Programming Reference Series-which are governed by the mission to provide concise,
compact, and portable reference books. Rather than choosing selected functions (and
thereby, almost certainly leaving out the one you really needed), I've done something
better: provided them for you on DVD.

Getting More Information About Synchronization
The companion DVD that's bundled inside this volume of the Microsoft Win32
Developer's Reference Library has the complete set of reference information for
Synchronization, with complete programming element reference and overview
information. If you haven't already, install the companion DVD, and all window
programming information (plus a bunch more) will be at your fingertips.

About Synchronization
To synchronize access to a resource, use one of the synchronization objects in one of
the wait functions. The state of a synchronization object is either signaled or
nonsignaled. The wait functions allow a thread to block its own execution until a
specified nonsignaled object is set to the signaled state.

The following are other synchronization mechanisms:

• overlapped input and output

• asynchronous procedure calls

• critical section objects

• interlocked variable access

Wait Functions
The Win32 API provides a set of wait functions to allow a thread to block its own
execution. The wait functions do not return until the specified criteria have been met. The
type of wait function determines the set of criteria used. When a wait function is called, it
checks whether the wait criteria have been met. If the criteria have not been met, the
calling thread enters an efficient wait state, consuming very little processor time while
waiting for the criteria to be met.

There are four types of wait functions:

• single-object

• multiple-object

• alertable

• registered

236 Volume 1 Microsoft Windows Base Services

Single-Object Wait Functions
The SignalObjectAndWait, WaitForSingleObject, and WaitForSingleObjectEx
functions require a handle to one synchronization object. These functions return when
one of the following occurs:

• The specified object is in the signaled state.

• The time-out interval elapses. The time-out interval can be set to INFINITE to specify
that the wait will not time out.

The SignalObjectAndWait function enables the calling thread to atomically set the state
of an object to signaled and wait for the state of another object to be set to signaled.

Multiple-Object Wait Functions
The WaitForMultipleObjects, WaitForMultipleObjectsEx,
MsgWaitForMultipleObjects, and MsgWaitForMultipleObjectsEx functions enable the
calling thread to specify an array containing one or more synchronization object handles.
These functions return when one of the following occurs:

• The state of anyone of the specified objects is set to signaled or the states of all
objects have been set to signaled. You control whether one or all of the states will be
used in the function call.

• The time-out interval elapses. The time-out interval can be set to INFINITE to specify
that the wait will not time out.

The MsgWaitForMultipleObjects and MsgWaitForMultipleObjectsEx function allow
you to specify input event objects in the object handle array. This is done when you
specify the type of input to wait for in the thread's input queue.

For example, a thread could use MsgWaitForMultipleObjects to block its execution
until the state of a specified object has been set to signaled and there is mouse input
available in the thread's input queue. The thread can use the Get Message or
PeekMessage function to retrieve the input.

When waiting for the states of all objects to be set to signaled, these multiple-object
functions do not modify the states of the specified objects until the states of all objects
have been set signaled. For example, the state of a mutex object can be signaled, but
the calling thread does not get ownership until the states of the other objects specified in
the array have also been set to signaled. In the meantime, some other thread may get
ownership of the mutex object, thereby setting its state to nonsignaled.

Alertable Wait Functions
The MsgWaitForMultipleObjectsEx, SignalObjectAndWait,
WaitForMultipleObjectsEx, and WaitForSingleObjectEx functions differ from the other
wait functions in that they can optionally perform an alertable wait operation. In an
alertable wait operation, the function can return when the specified conditions are met,
but it can also return if the system queues an I/O completion routine or an APe for
execution by the waiting thread. For more information about alertable wait operations

Chapter 6 Processes, Threads, and DLLs 237

and I/O completion routines, see Synchronization and Overlapped Input and Output. For
more information about APCs, see Asynchronous Procedure Calls.

Registered Wait Functions
The RegisterWaitForSingleObject function differs from the other wait functions in
that the wait operation is performed by a thread from the thread pool. When the specified
conditions are met, the callback function is executed by a worker thread from the thread
pool.

By default, a registered wait operation is a multiple-wait operation. The system resets the
timer every time the event is signaled (or the time-out interval elapses) until you call the
UnregisterWaitEx function to cancel the operation. To specify that a wait operation
should be executed only once, set the dwFlags parameter of
RegisterWaitForSingleObject to WT _EXECUTEONL YONCE.

Wait Functions and Synchronization Objects
Before returning, a wait function can modify the states of some types of synchronization
objects. Modification occurs only for the object or objects whose signaled state caused
the function to return. A wait function can modify the states of synchronization objects as
follows:

• The count of a semaphore object decreases by one, and the state of the semaphore
is set to nonsignaled if its count is zero.

• The states of mutex, auto-reset event, and change-notification objects are set to
nonsignaled.

• The state of a synchronization timer is set to nonsignaled.

• The states of manual-reset event, manual-reset timer, process, thread, and console
input objects are not affected by a wait function.

Wait Functions and Creating Windows
You have to be careful when using the wait functions and code that directly or indirectly
creates windows. If a thread creates any windows, it must process messages. Message
broadcasts are sent to all windows in the system. If you have a thread that uses a wait
function with no time-out interval, the system will deadlock. Two examples of code that
indirectly creates windows are DDE and COM Colnitialize. Therefore, if you have a
thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than the other wait functions.

Synchronization Objects
A synchronization object is an object whose handle can be specified in one of the wait
functions to coordinate the execution of multiple threads. More than one process can
have a handle to the same synchronization object, making interprocess synchronization
possible.

The following object types are provided exclusively for synchronization:

238 Volume 1 Microsoft Windows Base Services

Type

Event

Mutex

Semaphore

Waitable timer

Description

Notifies one or more waiting threads that an event has occurred.
For more information, see Event Objects.

Can be owned by only one thread at a time, enabling threads to
coordinate mutually exclusive access to a shared resource. For
more information, see Mutex Objects.

Maintains a count between zero and some maximum value, limiting
the number of threads that are simultaneously accessing a shared
resource. For more information, see Semaphore Objects.

Notifies one or more waiting threads that a specified time has
arrived. For more information, see Waitable Timer Objects.

Though available for other uses, the following objects can also be used for
synchronization.

Object

Change
notification

Console input

Job

Process

Thread

Description

Created by the FindFirstChangeNotification function, its state is
set to signaled when a specified type of change occurs within a
specified directory or directory tree. For more information, see File
I/O.

Created when a console is created. The handle to console input is
returned by the Create File function when CONIN$ is specified, or
by the GetStdHandle function. Its state is set to signaled when
there is unread input in the console's input buffer, and set to
nonsignaled when the input buffer is empty. For more information
about consoles, see Consoles and Character-Mode Support.

Created by calling the CreateJobObject function. The state of a
job object is set to signaled when all its processes are terminated
because the specified end-of-job time limit has been exceeded.
For more information about job objects, see Job Objects.

Created by calling the CreateProcess function. Its state is set to
nonsignaled while the process is running, and set to signaled when
the process terminates. For more information about processes,
see Processes and Threads.

Created when a new thread is created by calling the
CreateProcess, Cl'eateThread, or CreateRemoteThread
function. Its state is set to nonsignaled while the thread is running,
and set to Signaled when the thread terminates. For more
information about threads, see Processes and Threads.

In some circumstances, you can also use a file, named pipe, or communications device
as a synchronization object; however, their use for this purpose is discouraged. Instead,
use asynchronous I/O and wait on the event object set in the OVERLAPPED structure. It

Chapter 6 Processes, Threads, and DLLs 239

is safer to use the event object because of the confusion that can occur when multiple
simultaneous overlapped operations are performed on the same file, named pipe, or
communications device. In this situation, there is no way to know which operation
caused the object's state to be signaled.

For additional information about I/O operations on files, named pipes, or
communications, see Synchronization and Overlapped Input and Output.

Event Objects
An event object is a synchronization object whose state can be explicitly set to signaled
by use of the SetEvent or PulseEvent function. Following are the two types of event
object:

Object Description

Manual-reset event

Auto-reset event

An event object whose state remains signaled until it is explicitly
reset to nonsignaled by the ResetEvent function. While it is
signaled, any number of waiting threads, or threads that
subsequently specify the same event object in one of the wait
functions, can be released.

An event object whose state remains signaled until a single
waiting thread is released, at which time the system
automatically sets the state to nonsignaled. If no threads are
waiting, the event object's state remains signaled.

The event object is useful in sending a signal to a thread indicating that a particular
event has occurred. For example, in overlapped input and output, the system sets a
specified event object to the signaled state when the overlapped operation has been
completed. A single thread can specify different event objects in several simultaneous
overlapped operations, then use one of the multiple-object wait functions to wait for the
state of anyone of the event objects to be signaled.

A thread uses the CreateEvent function to create an event object. The creating thread
specifies the initial state of the object and whether it is a manual-reset or auto-reset
event object. The creating thread can also specify a name for the event object. Threads
in other processes can open a handle to an existing event object by specifying its name
in a call to the OpenEvent function. For additional information about names for mutex,
event, semaphore, and timer objects, see Inter process Synchronization.

A thread can use the PulseEvent function to set the state of an event object to signaled
and then reset it to nonsignaled after releasing the appropriate number of waiting
threads. For a manual-reset event object, all waiting threads are released. For an auto­
reset event object, the function releases only a single waiting thread, even if multiple
threads are waiting. If no threads are waiting, PulseEvent simply sets the state of the
event object to nonsignaled and returns.

240 Volume 1 Microsoft Windows Base Services

Mutex Objects
A mutex object is a synchronization object whose state is set to signaled when it is not
owned by any thread, and nonsignaled when it is owned. Only one thread at a time can
own a mutex object, whose name comes from the fact that it is useful in coordinating
mutually exclusive access to a shared resource. For example, to prevent two threads
from writing to shared memory at the same time, each thread waits for ownership of a
mutex object before executing the code that accesses the memory. After writing to the
shared memory, the thread releases the mutex object.

A thread uses the CreateMutex function to create a mutex object. The creating thread
can request immediate ownership of the mutex object and can also specify a name for
the mutex object. Threads in other processes can open a handle to an existing mutex
object by specifying its name in a call to the OpenMutex function. For additional
information about names for mutex, event, semaphore, and timer objects, see
Interprocess Synchronization.

Any thread with a handle to a mutex object can use one of the wait functions to request
ownership of the mutex object. If the mutex object is owned by another thread, the wait
function blocks the requesting thread until the owning thread releases the mutex object
using the ReleaseMutex function. The return value of the wait function indicates
whether the function returned for some reason other than the state of the mutex being
set to signaled.

Threads that are waiting for ownership of a mutex are placed in a first in, first out (FIFO)
queue. Therefore, the first thread to wait on the mutex will be the first to receive
ownership of the mutex, regardless of thread priority. However, kernel-mode APes and
events that suspend a thread will cause the system to remove the thread from the
queue. When the thread resumes its wait for the mutex, it is placed at the end of the
queue.

After a thread obtains ownership of a mutex, it can specify the same mutex in repeated
calls to the wait functions without blocking its execution. This prevents a thread from
deadlocking itself while waiting for a mutex that it already owns. To release its ownership
under such circumstances, the thread must call ReleaseMutex once for each time that
the mutex satisfied the conditions of a wait function.

If a thread terminates without releasing its ownership of a mutex object, the mutex object
is considered to be abandoned. A waiting thread can acquire ownership of an
abandoned mutex object, but the wait function's return value indicates that the mutex
object is abandoned. It is best to assume that an abandoned mutex object indicates that
an error has occurred and that any shared resource being protected by the mutex object
is in an undefined state. If the thread proceeds as though the mutex object had not been
abandoned, its "abandoned" flag is cleared when the thread releases its ownership. This
restores normal behavior if a handle to the mutex object is subsequently specified in a
wait function.

Chapter 6 Processes, Threads, and DLLs 241

Semaphore Objects
A semaphore object is a synchronization object that maintains a count between zero and
a specified maximum value. The count is decremented each time a thread completes a
wait for the semaphore object and incremented each time a thread releases the
semaphore. When the count reaches zero, no more threads can successfully wait for the
semaphore object state to become signaled. The state of a semaphore is set to signaled
when its count is greater than zero, and nonsignaled when its count is zero.

The semaphore object is useful in controlling a shared resource that can support a
limited number of users. It acts as a gate that limits the number of threads sharing the
resource to a specified maximum number. For example, an application might place a
limit on the number of windows that it creates. It uses a semaphore with a maximum
count equal to the window limit, decrementing the count whenever a window is created
and incrementing it whenever a window is closed. The application specifies the
semaphore object in call to one of the wait functions before each window is created.
When the count is zero-indicating that the window limit has been reached-the wait
function blocks execution of the window-creation code.

A thread uses the CreateSemaphore function to create a semaphore object. The
creating thread specifies the initial count and the maximum value of the count for the
object. The initial count must be neither less than zero nor greater than the maximum
value. The creating thread can also specify a name for the semaphore object. Threads in
other processes can open a handle to an existing semaphore object by specifying its
name in a call to the OpenSemaphore function. For additional information about names
for mutex, event, semaphore, and timer objects, see Inter process Synchronization.

Threads that are waiting for a semaphore are placed in a first in, first out (FIFO) queue.
Therefore, the first thread to wait on the semaphore will be the first to successfully
complete the wait, regardless of thread priority. However, kernel-mode APCs and events
that suspend a thread will cause the system to remove the thread from the queue. When
the thread resumes its wait for the semaphore, it is placed at the end of the queue.

Each time one of the wait functions returns because the state of a semaphore was set to
signaled, the count of the semaphore is decreased by one. The ReleaseSemaphore
function increases a semaphore's count by a specified amount. The count can never be
less than zero or greater than the maximum value.

The initial count of a semaphore is typically set to the maximum value. The count is then
decremented from that level as the protected resource is consumed. Alternatively, you
can create a semaphore with an initial count of zero to block access to the protected
resource while the application is being initialized. After initialization, you can use
ReleaseSemaphore to increment the count to the maximum value.

A thread that owns a mutex object can wait repeatedly for the same mutex object to
become signaled without its execution becoming blocked. A thread that waits repeatedly
for the same semaphore object, however, decrements the semaphore's count each time
a wait operation is completed; the thread is blocked when the count gets to zero.
Similarly, only the thread that owns a mutex can successfully call the ReleaseMutex

242 Volume 1 Microsoft Windows Base Services

function, though any thread can use ReleaseSemaphore to increase the count of a
semaphore object.

A thread can decrement a semaphore's count more than once by repeatedly specifying
the same semaphore object in calls to any of the wait functions. However, calling one of
the multiple-object wait functions with an array that contains multiple handles of the
same semaphore does not result in multiple decrements.

Timer Queues
The CreateTimerQueue function creates a queue for timers. Timers in this queue,
known as timer-queue timers, are lightweight objects that enable you to specify a
callback function to be called when the specified due time arrives. The wait operation is
performed by a thread in the thread pool.

To add a timer to the queue, call the CreateTimerQueueTimer function. To update a
timer-queue timer, call the ChangeTimerQueueTimer function. You can specify a
callback function to be executed by a worker thread from the thread pool when the timer
expires.

A timer-queue timer is set to the signaled state when its specified due time arrives. Any
thread with a handle to the timer can use one of the wait functions to wait for the timer
state to be set to signaled.

To cancel a pending timer, call the DeleteTimerQueueTimer function. When you are
finished with the queue of timers, call the DeleteTimerQueueEx function to delete the
timer queue. Any pending timers in the queue are canceled and deleted.

Waitable Timer Objects
A "waitable" timer object is a synchronization object whose state is set to signaled when
the specified due time arrives. There are two types of waitable timers that can be
created: manual-reset and synchronization. A timer of either type can also be a periodic
timer:

Object

manual-reset timer

synchronization timer

periodic timer

Description

A timer whose state remains signaled until
SetWaitableTimer is called to establish a new due time.

A timer whose state remains signaled until a thread
completes a wait operation on the timer object.

A timer that is reactivated each time the specified period
expires, until the timer is reset or canceled. A periodic timer
is either a periodic manual-reset timer or a periodic
synchronization timer.

A thread uses the CreateWaitableTimer function to create a timer object. Specify TRUE
for the bManualReset parameter to create a manual-reset timer and FALSE to create a
synchronization timer. The creating thread can specify a name for the timer object in the
IpTimerName parameter. Threads in other processes can open a handle to an existing

Chapter 6 Processes, Threads, and DLLs 243

timer by specifying its name in a call to the OpenWaitableTimer function. Any thread
with a handle to a timer object can use one of the wait functions to wait for the timer
state to be set to signaled.

• The thread calls the SetWaitableTimer function to activate the timer. Note the use of
the following parameters for SetWaitableTimer:

• Use the IpDueTime parameter to specify the time at which the timer is to be set to the
signaled state. When a manual-reset timer is set to the signaled state, it remains in
this state until SetWaitableTimer establishes a new due time. When a
synchronization timer is set to the signaled state, it remains in this state until a thread
completes a wait operation on the timer object.

• Use the IPeriod parameter of the SetWaitableTimer function to specify the timer
period. If the period is not zero, the timer is a periodic timer; it is reactivated each time
the period expires, until the timer is reset or canceled. If the period is zero, the timer is
not a periodic timer; it is signaled once and then deactivated.

A thread can use the CancelWaitableTimer function to set the timer to the inactive
state. To reset the timer, call SetWaitableTimer. When you are finished with the timer
object, call CloseHandle to close the handle to the timer object.

Interprocess Synchronization
Multiple processes can have handles to the same event, mutex, semaphore, or timer
object, so these objects can be used to accomplish interprocess synchronization. The
process that creates an object can use the handle returned by the creation function
(CreateEvent, CreateMutex, CreateSemaphore, or CreateWaitableTimer). Other
processes can open a handle to the object by using its name, or through inheritance or
duplication.

Object Names
Named objects provide an easy way for processes to share object handles. Once a
process has created a named event, mutex, semaphore, or timer object, other processes
can use the name to call the appropriate function (OpenEvent, OpenMutex,
OpenSemaphore, or OpenWaitableTimer) to open a handle to the object. Name
comparison is case sensitive.

The names of event, semaphore, mutex, waitable timer, file-mapping, and job objects
share the same name space. If you try to create an object using a name that is in use by
an object of another type, the function fails and GetLastError returns
ERROR_INVALlD_HANDLE. Therefore, when creating named objects, use unique
names and be sure to check function return values for duplicate-name errors.

If you try to create an object using a name that is in use by an object of same type, the
function succeeds, returning a handle to the existing object, and GetLastError returns
ERROR_ALREADY _EXISTS. For example, if the name specified in a call to the
CreateMutex function matches the name of an existing mutex object, the function
returns a handle to the existing object. In this case, the call to CreateMutex is equivalent

244 Volume 1 Microsoft Windows Base Services

to a call to the OpenMutex function. Having multiple processes use CreateMutex for the
same mutex is therefore equivalent to having one process that calls CreateMutex while
the other processes call OpenMutex, except that it eliminates the need to ensure that
the creating process is started first. When using this technique for mutex objects,
however, none of the calling processes should request immediate ownership of the
mutex. If multiple processes do request immediate ownership, it can be difficult to predict
which process actually gets the initial ownership.

Terminal Services: A Terminal Services environment has a global name space for
events, semaphores, mutexes, waitable timers, file-mapping objects, and job objects. In
addition, each Terminal Services client session has its own separate name space for
these objects. Terminal Services client processes can use object names with a "Global\"
or "Local\,' prefix to explicitly create an object in the global or session name space. For
more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the
"Global\" and "Local\" prefixes are ignored. The names of events, semaphores, mutexes,
waitable timers, file-mapping objects, and job objects share the same name space.

Windows NT 4.0 and earlier, Windows 95/98: The names of events, semaphores,
mutexes, waitable timers, and file-mapping objects share the same name space. The
functions for creating or opening these objects fail if you specify a name containing the
backslash character (\).

Object Inheritance
When you create a process with the CreateProcess function, you can specify that the
process inherit handles to mutex, event, semaphore, or timer objects using the
SECURITY_ATTRIBUTES structure. The handle inherited by the process has the same
access to the object as the original handle. The inherited handle appears in the handle
table of the created process, but you must communicate the handle value to the created
process. You can do this by specifying the value as a command-line argument when you
call CreateProcess. The created process then uses the GetCommandLine function to
retrieve the command-line string and convert the handle argument into a usable handle.
For more information, see Inheritance.

Object Duplication
The DuplicateHandle function creates a duplicate handle that can be used by another
specified process. This method of sharing object handles is more complex than using
named objects or inheritance. It requires communication between the creating process
and the process into which the handle is duplicated. The necessary information (the
handle value and process identifier) can be communicated by any of the interprocess
communication methods, such as named pipes or named shared memory.

Synchronization Object Security and Access Rights
Windows NTlWindows 2000 security enables you to control access to event, mutex,
semaphore, and waitable timer objects. Timer queues, interlocked variables, and critical

Chapter 6 Processes, Threads, and Dlls 245

section objects are not securable. For more information about security, see Access­
Control Model.

You can specify a security descriptor for an interprocess synchronization object when
you call the CreateEvent, CreateMutex, CreateSemaphore, or CreateWaitableTimer
function. To get or set the security descriptor of an event, mutex, semaphore, or waitable
timer object, call the GetNamedSecuritylnfo, SetNamedSecuritylnfo,
GetSecuritylnfo, or SetSecuritylnfo functions.

The handles returned by CreateEvent, CreateMutex, CreateSemaphore, and
CreateWaitableTimer have full access to the new object. When you call the
Open Event, OpenMutex, Open Semaphore, and OpenWaitableTimer functions, the
system checks the requested access rights against the object's security descriptor.

The valid access rights for all interprocess synchronization objects include the DELETE,
READ_CONTROL, SYNCHRONIZE, WRITE_DAC, and WRITE_OWNER standard
access rights.

The following table lists the specific access rights for event objects:

Value Meaning

Specifies all possible access rights for an event
object.

Specifies modify state access, which is required for
the ResetEvent and PulseEvent functions.

The following table lists the specific access rights for mutex objects:

Value Meaning

Specifies all possible access rights for a mutex
object.

Specifies modify state access, which is required for
the ReleaseMutex function.

The following table lists the specific access rights for semaphore objects:

Value Meaning

SEMAPHORE_ALL_ACCESS Specifies all possible access rights for a semaphore
object.

SEMAPHORE_MODIFY _STATE Specifies modify state access, which is required for
the ReleaseSemaphore function.

The following table lists the specific access rights for waitable timer objects:

246 Volume 1 Microsoft Windows Base Services

Value Meaning

Specifies all possible access rights for a waitable
timer object.

Specifies modify state access, which is required for
the SetWaitableTimer and CancelWaitableTimer
functions.

Reserved for future use.

To read or write the SACL of an interprocess synchronization object, you must request
the ACCESS_SYSTEM_SECURITY access right. For more information, see Access­
Control Lists (ACLs) and SACL Access Right.

Synchronization and Overlapped Input and Output
The Win32 API supports both synchronous and asynchronous (or overlapped) I/O
operations on files, named pipes, and serial communications devices. The WriteFile,
ReadFile, DeviceloControl, WaitCommEvent, ConnectNamedPipe, and
TransactNamedPipe functions can be performed either synchronously or
asynchronously. The ReadFileEx and WriteFileEx functions can be performed
asynchronously only.

When a function is executed synchronously, it does not return until the operation has
been completed. This means that the execution of the calling thread can be blocked for
an indefinite period while it waits for a time-consuming operation to finish. Functions
called for overlapped operation can return immediately, even though the operation has
not been completed. This enables a time-consuming I/O operation to be executed in the
background while the calling thread is free to perform other tasks. For example, a single
thread can perform simultaneous I/O operations on different handles, or even
simultaneous read and write operations on the same handle.

To synchronize its execution with the completion of the overlapped operation, the calling
thread uses the GetOverlappedResult function or one of the wait functions to determine
when the overlapped operation has been completed. You can also use the
HasOverlappedloCompleted macro to poll for completion.

To cancel all pending asynchronous I/O operations, use the Cancello function. This
function only cancels operations issued by the calling thread for the specified file handle.

Overlapped operations require a file, named pipe, or communications device that was
created with the FILE_FLAG_OVERLAPPED flag. To call a function to perform an
overlapped operation, the calling thread must specify a pointer to an OVERLAPPED
structure. If this pointer is NULL, the function return value may incorrectly indicate that
the operation completed. The OVERLAPPED structure must contain a handle to a
manual-reset-not an auto-reset-event object. The system sets the state of the event
object to nonsignaled when a call to the I/O function returns before the operation has
been completed. The system sets the state of the event object to signaled when the
operation has been completed.

Chapter 6 Processes, Threads, and DLLs 247

When a function is called to perform an overlapped operation, it is possible that the
operation will be completed before the function returns. When this happens, the results
are handled as if the operation had been performed synchronously. If the operation was
not completed, however, the function's return value is FALSE, and the GetLastError
function returns ERROR_la_PENDING.

A thread can manage overlapped operations by either of two methods:

• Use the GetOverlappedResult function to wait for the overlapped operation to be
completed.

• Specify a handle to the OVERLAPPED structure's manual-reset event object in one
of the wait functions and then call GetOverlappedResult after the wait function
returns. The GetOverlappedResult function returns the results of the completed
overlapped operation, and for functions in which such information is appropriate, it
reports the actual number of bytes that were transferred.

When performing multiple simultaneous overlapped operations, the calling thread must
specify an OVERLAPPED structure with a different manual-reset event object for each
operation. To wait for anyone of the overlapped operations to be completed, the thread
specifies all the manual-reset event handles as wait criteria in one of the multiple-object
wait functions. The return value of the multiple-object wait function indicates which
manual-reset event object was signaled, so the thread can determine which overlapped
operation caused the wait operation to be completed.

If no event object is specified in the OVERLAPPED structure, the system signals the state
of the file, named pipe, or communications device when the overlapped operation has
been completed. Thus, you can specify these handles as synchronization objects in a wait
function, though their use for this purpose can be difficult to manage. When performing
simultaneous overlapped operations on the same file, named pipe, or communications
device, there is no way to know which operation caused the object's state to be signaled.
It is safer to use a separate event object for each overlapped operation.

For examples that illustrate the use of overlapped operations, completion routines, and
the GetOverlappedResult function, see Using Pipes.

Asynchronous Procedure Calls
An asynchronous procedure call (APC) is a function that executes asynchronously in the
context of a particular thread. When an APC is queued to a thread, the system issues a
software interrupt. The next time the thread is scheduled, it will run the APC function.
APCs made by the system are called "kernel-mode APCs." APCs made by an
application are called "user-mode APCs." A thread must be in an alertable state to run a
user-mode APC.

Each thread has its own APC queue. An application queues an APC to a thread by
calling the QueueUserAPC function. The calling thread specifies the address of an APC
function in the call to QueueUserAPC. The queuing of an APC is a request for the
thread to call the APC function.

248 Volume 1 Microsoft Windows Base Services

When a user-mode APC is queued, the thread to which it is queued is not directed to call
the APC function unless it is in an alertable state. A thread enters an alertable state when it
calls the SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx,
WaitForMultipleObjectsEx, or WaitForSingleObjectEx function. Note that you can not
use WaitForSingleObjectEx to wait on the handle to the object for which the APC is
queued. Otherwise, when the asynchronous operation is completed, the handle is set to the
signaled state and the thread is no longer in an alertable wait state, so the APC function will
not be executed. However, the APC is still queued, so the APC function will be executed if
you call another alertable wait function.

Note that the ReadFileEx, SetWaitableTimer, and WriteFileEx functions are
implemented using an APC as the completion notification callback mechanism.

Critical Section Objects
Critical section objects provide synchronization similar to that provided by mutex objects,
except that critical section objects can be used only by the threads of a single process.
Event, mutex, and semaphore objects can also be used in a Single-process application, but
critical section objects provide a slightly faster, more efficient mechanism for mutual­
exclusion synchronization. Like a mutex object, a critical section object can be owned by
only one thread at a time, which makes it useful for protecting a shared resource from
simultaneous access. There is no guarantee about the order in which threads will obtain
ownership of the critical section, however, the system will be fair to all threads.

The process is responsible for allocating the memory used by a critical section. Typically,
this is done by simply declaring a variable of type CRITICAL_SECTION. Before the
threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection or InitializeCriticalSectionAndSpinCount function.

A thread uses the EnterCriticalSection or TryEnterCriticalSection function to request
ownership of a critical section. It uses the LeaveCriticalSection function to release
ownership of a critical section. If the critical section object is currently owned by another
thread, EnterCriticalSection waits indefinitely for ownership. In contrast, when a mutex
object is used for mutual exclusion, the wait functions accept a specified time-out interval.
The TryEnterCriticalSection function attempts to enter a critical section without blocking
the calling thread.

Once a thread owns a critical section, it can make additional calls to EnterCriticalSection
or TryEnterCriticalSection without blocking its execution. This prevents a thread from
deadlocking itself while waiting for a critical section that it already owns. To release its
ownership, the thread must call LeaveCriticalSection once for each time that it entered
the critical section.

A thread uses the InitializeCriticalSectionAndSpinCount or
SetCriticalSectionSpinCount function to specify a spin count for the critical section
object. On Single-processor systems, the spin count is ignored and the critical section
spin count is set to O. On multiprocessor systems, if the critical section is unavailable, the
calling thread will spin dwSpinCount times before performing a wait operation on a

Chapter 6 Processes, Threads, and Dlls 249

semaphore associated with the critical section. If the critical section becomes free during
the spin operation, the calling thread avoids the wait operation.

Any thread of the process can use the DeleteCriticalSection function to release the
system resources that were allocated when the critical section object was initialized.
After this function has been called, the critical section object can no longer be used for
synchronization.

When a critical section object is owned, the only other threads affected are those waiting
for ownership in a call to EnterCriticalSection. Threads that are not waiting are free to
continue running.

Interlocked Variable Access
The interlocked functions provide a simple mechanism for synchronizing access to a
variable that is shared by multiple threads. The threads of different processes can use
this mechanism if the variable is in shared memory. Note that simple reads and writes to
properly-aligned 32-bit variables are atomic. The interlocked functions should be used to
perform complex operations in an atomic manner.

The Interlockedlncrement and Interlocked Decrement functions combine the
operations of incrementing or decrementing the variable and checking the resulting
value. This atomic operation is useful in a multitasking operating system, in which the
system can interrupt one thread's execution to grant a slice of processor time to another
thread. Without such synchronization, one thread could increment a variable but be
interrupted by the system before it can check the resulting value of the variable. A
second thread could then increment the same variable. When the first thread receives its
next time slice, it will check the value of the variable, which has now been incremented
not once but twice. The interlocked variable-access functions protect against this kind of
error.

The InterlockedExchangePointer function atomically exchanges the values of the
specified variables. The InterlockedExchangeAdd function combines two operations:
adding two variables together and storing the result in one of the variables.

The InterlockedCompareExchangePointer function combines two operations:
comparing two values and storing a third value in one of the variables, based on the
outcome of the comparison.

251

CHAPTER 7

Memory Management

About Memory Management
Each process has its own 32-bit virtual address space that enables addressing up to 4
gigabytes (GB) of memory.

Virtual Address Space
The virtual addresses used by a process do not represent the actual physical location of
an object in memory. Instead, the system maintains a page map for each process, which
is an internal data structure used to translate virtual addresses into corresponding
phYSical addresses.

The virtual address space is divided into partitions, as follows:

Windows NT Server Enterprise EditionlWindows 2000 Advanced Server: The 3-GB
partition in low memory (OxOOOOOOOO through OxBFFFFFFF) is available to the process,
and the 1-GB partition in high memory (OxCOOOOOOO through OxFFFFFFFF) is reserved
for the system.

Windows NT/2000: The 2-GB partition in low memory (OxOOOOOOOO through
Ox7FFFFFFF) is available to the process, and the 2-GB partition in high memory
(Ox80000000 through OxFFFFFFFF) is reserved for the system.

Windows 95/98: The following are the partitions on Windows 95/98:

Range Usage

OK-64K (OxFFFF)

-64K (Ox10000)-
4 MB (Ox3FFFFF)

4MB (Ox400000)-
2GB (Ox7FFFFFFF)

Not writable. This boundary is approximate due to the
way the Windows 95/98 loads some features of
Microsoft® MS-DOS®. This memory is private to the
process.

Reserved for MS-DOS compatibility. This memory is
fully readable and writable by the process. However,
this range of memory may have some MS-DOS­
related structures or code in it, so processes should
not arbitrarily read from or write to it. This memory is
private to the process.

Available for code and user data. User data is
readable and writable by the process. Code is
execute-only. This memory is private to the process.

(continued)

252 Volume 1 Microsoft Windows Base Services

(continued)

Range Usage

2GB (Ox80000000)-
3GB (OxBFFFFFFF)

Shared area, readable and writable by all processes.
A number of system DLLs and other data are loaded
into this space.

3GB (OxCOOOOOOO)-
4GB (OxFFFFFFFF)

System memory, readable or writable by any process.
However, this is where low-level system code resides,
so writing to this region can corrupt the system, with
potentially catastrophic consequences.

Virtual Address Space and Physical Storage
The virtual address space of each process is much larger than the total physical memory
available to all processes. To increase the size of physical storage, the system uses the
disk for additional storage. The total amount of storage available to all executing processes
is the sum of the physical memory and the free space on disk available to the paging file, a
disk file used to increase the amount of physical storage. Physical storage and the virtual
address space of each process are organized into pages, units of memory for which size
depends on the host computer. For example, on x86 computers the host page size is 4
kilobytes (KB).

To maximize its flexibility in managing memory, the system can move pages of physical
memory to and from a paging file on disk. When a page is moved in physical memory,
the system updates the page maps of the affected processes. When the system needs
space in physical memory, it moves the least recently used pages of physical memory to
the paging file. Manipulation of physical memory by the system is completely transparent
to applications, which operate only in their virtual address spaces.

Page State
The pages of a process's virtual address space can be in one of the following states:

State Description

Free

Reserved

A free page is not currently accessible, but it is available to be
committed or reserved.

A reserved page is a block of the process's virtual address space that
has been set aside for future use. The process cannot access a
reserved page, and there is no physical storage associated with it. A
reserved page reserves a range of virtual addresses that cannot be
used subsequently by other allocation functions. A process can use the
VirtualAlloc function to reserve pages of its address space and later to
commit the reserved pages. It can use the Virtual Free function to
release them.

Committed

Chapter 7 Memory Management 253

A committed page is one for which physical storage (in memory or on
disk) has been allocated. It can be protected to allow either no access
or read-only access, or it can have read and write access. A process
can use the VirtualAlioc function to allocate committed pages. The
GlobalAlioc and LocalAlioc functions allocate committed pages with
read/write access. A committed page allocated by VirtualAlioc can be
decommitted by the VirtualFree function, which releases the page's
storage and changes the state of the page to reserved.

Scope of Allocated Memory
All memory a process allocates by using the Win32 memory allocation functions
(HeapAlloc, VirtualAlloc, GlobalAlloc, LocalAlloc) is accessible only to the process.
However, memory allocated by a DLL is allocated in the address space of the process
that called the DLL and is not accessible to other processes using the same DLL. To
create shared memory, you must use file mapping.

Named file mapping provides an easy way to create a block of shared memory. A process
can specify a name when it uses the CreateFileMapping function to create a file-mapping
object. Other processes can specify the same name to either the CreateFileMapping or
OpenFileMapping function to obtain a handle to the mapping object.

Each process specifies its handle to the file-mapping object in the MapViewOfFile function
to map a view of the file into its own address space. The views of all processes for a single
file-mapping object are mapped into the same sharable pages of physical storage.
However, the virtual addresses of the mapped views can vary from one process to
another, unless the MapViewOfFileEx function is used to map the view at a specified
address. Although sharable, the pages of physical storage used for a mapped file view are
not global; they are not accessible to processes that have not mapped a view of the file.

Any pages committed by mapping a view of a file are released when the last process
with a view of the mapping object either terminates or unmaps its view by calling the
UnmapViewOfFile function. At this time, the specified file (if any) associated with the
mapping object is updated. A specified file also can be forced to update by calling the
FlushViewOfFile function.

For more information, see File Mapping. For an example of shared memory in a DLL,
see Using Shared Memory in a Dynamic Link Library.

If multiple processes have write access to shared memory, you must synchronize access
to the memory. For more information, see Synchronization.

Virtual Memory Functions
The Microsoft Win32 API provides a set of virtual memory functions that enable a
process to manipulate or determine the status of pages in its virtual address space. They
can perform the following operations:

254 Volume 1 Microsoft Windows Base Services

• Reserve a range of a process's virtual address space. Reserving address space does
not allocate any physical storage, but it prevents other allocation operations from
using the specified range. It does not affect the virtual address spaces of other
processes. Reserving pages prevents needless consumption of physical storage,
while enabling a process to reserve a range of its address space into which a dynamic
data structure can grow. The process can allocate physical storage for this space, as
needed.

• Commit a range of reserved pages in a process's virtual address space, so that
physical storage (either in RAM or on disk) is accessible only to the allocating
process.

• Specify read/write, read-only, or no access for a range of committed pages. This
differs from the standard allocation functions that always allocate pages with
read/write access.

• Free a range of reserved pages, making the range of virtual addresses available for
subsequent allocation operations by the calling process.

• Decommit a range of committed pages, releasing their physical storage and making it
available for subsequent allocation by any process.

• Lock one or more pages of committed memory into physical memory (RAM), so that
the system cannot swap the pages out to the paging file.

• Obtain information about a range of pages in the virtual address space of the calling
process or a specified process.

• Change the access protection for a specified range of committed pages in the virtual
address space of the calling process or a specified process.

Allocating Virtual Memory
The virtual memory functions manipulate pages of memory. The functions use the size of
a page on the current computer to round off specified sizes and addresses.

The VirtualAlioc function performs one of the following operations:

• Reserves one or more free pages

• Commits one or more reserved pages

• Reserves and commits one or more free pages

You can specify the starting address of the pages to be reserved or committed, or you
can allow the system to determine the address. The function rounds the specified
address to the appropriate page boundary. Reserved pages are not accessible, but
committed pages can be allocated with the PAGE_READWRITE, PAGE_READONL Y,
or PAGE_NOACCESS flag. When pages are committed, storage is allocated in the
paging file, but each page is initialized and loaded into physical memory only at the first
attempt to read from or write to that page. You can use normal pointer references to
access memory committed by the VirtualAlioc function.

Chapter 7 Memory Management 255

Freeing Virtual Memory
The VirtualFree function performs one of the following operations:

• Decommits one or more committed pages, changing the state of the pages to
reserved. Decommitting pages releases the physical storage associated with the
pages, making it available to be allocated by any process. Any block of committed
pages can be decommitted.

• Releases a block of one or more reserved pages, changing the state of the pages to
free. Releasing a block of pages makes the range of reserved addresses available to
be allocated by the process. Reserved pages can be released only by freeing the
entire block that was initially reserved by VirtualAlloc.

• Decommits and releases a block of one or more committed pages simultaneously,
changing the state of the pages to free. The specified block must include the entire
block initially reserved by VirtualAlloc, and all of the pages must be currently
committed.

Once memory is released or decommitted, you can never refer to it again.
Any information that may have been in that memory is gone forever. Attempting to read
from or write to a free page results in an access violation exception. If you require
information, do not decommit or free memory containing that information.

Working with Pages
To determine the size of a page on the current computer, use the GetSystemlnfo
function.

The VirtualQuery and VirtualQueryEx functions return information about a region of
consecutive pages beginning at a specified address in the address space of a process.
VirtualQuery returns information about memory in the calling process. VirtualQueryEx
returns information about memory in a specified process and is used to support
debuggers that need information about a process being debugged. The region of pages
is bounded by the specified address rounded down to the nearest page boundary. It
extends through all subsequent pages with the following attributes in common:

• The state of all pages is the same: either committed, reserved, or free.

• If the initial page is not free, all pages in the region are part of the same initial
allocation of pages that were reserved by a call to VirtualAlloc.

• The access protection of all pages is the same (that is, the PAGE_READONLY,
PAGE_READWRITE, or PAGE_NOACCESS flag).

The VirtualLock function enables a process to lock one or more pages of committed
memory into physical memory (RAM), preventing the system from swapping the pages
out to the paging file. It can be used to ensure that critical data is accessible without disk
access. Locking pages into memory is dangerous because it restricts the system's ability
to manage memory. Excessive use of Virtual Lock can degrade system performance by

256 Volume 1 Microsoft Windows Base Services

causing executable code to be swapped out to the paging file. The VirtualUnlock
function unlocks memory locked by Virtual Lock.

The Virtual Protect function enables a process to modify the access protection of any
committed page in the address space of a process. For example, a process can allocate
read/write pages to store sensitive data, and then it can change the access to read only
or no access to protect against accidental overwriting. VirtualProtect is typically used
with pages allocated by VirtualAlloc, but it also works with pages committed by any of
the other allocation functions. However, Virtual Protect changes the protection of entire
pages, and pOinters returned by the other functions are not necessarily aligned on page
boundaries. The VirtualProtectEx function is similar to Virtual Protect, except it
changes the protection of memory in a specified process. Changing the protection is
useful to debuggers in accessing the memory of a process being debugged.

Heap Functions
The heap functions enable a process to create a private heap, a block of one or more
pages in the address space of the calling process. The process can then use a separate
set of functions to manage the memory in that heap. There is no difference between
memory allocated from a private heap and allocated by using the other memory
allocation functions.

The HeapCreate function creates a private heap object from which the calling process
can allocate memory blocks by using the HeapAlioc function. HeapCreate specifies
both an initial size and a maximum size for the heap. The initial size determines the
number of committed, read/write pages initially allocated for the heap. The maximum
size determines the total number of reserved pages. These pages create a contiguous
block in the virtual address space of a process into which the heap can grow. Additional
pages are automatically committed from this reserved space if requests by HeapAlioc
exceed the current size of committed pages, assuming that the physical storage for it is
available. Once the pages are committed, they are not decommitted until the process is
terminated or until the heap is destroyed by calling the HeapDestroy function.

The memory of a private heap object is accessible only to the process that created it. If a
DLL creates a private heap, it does so in the address space of the process that called
the DLL. It is accessible only to that process.

The HeapAlioc function allocates a specified number of bytes from a private heap and
returns a pointer to the allocated block. The pOinter identifies the block for the HeapFree
function to release or for the HeapSize function to determine the size.

Memory allocated by HeapAlioc is not movable. Because the system cannot compact a
private heap, the heap can become fragmented.

A possible use for the heap functions is to create a private heap when a process starts
up, specifying an initial size sufficient to satisfy the memory requirements of the process.
If the call to the HeapCreate function fails, the process can terminate or notify the user
of the memory shortage; if it succeeds, however, the process is assured of having the
memory it needs.

Chapter 7 Memory Management 257

Memory requested by HeapCreate mayor may not be contiguous. Memory allocated
within a heap by HeapAlioc is contiguous. You should not write to or read from memory
in a heap except that which is allocated by HeapAlloc; neither should you assume any
relationship between two areas of memory allocated by HeapAlioc.

You should not refer in any way to memory that has been freed by HeapFree. Once that
memory is freed, any information that may have been in it is gone forever. If you require
information, do not free memory containing the information. Function calls that return
information about memory (such as HeapSize) may not be used with freed memory, as
they might return bogus data.

External factors may cause accesses to heap memory to generate access violations.
One possible cause of an access violation is very limited space in the paging file.
Therefore, all accesses to heap memory should be protected with structured exception
handlers. For more information, see Structured Exception Handling.

Windows 95/98: The heap managers are designed for memory blocks smaller than 4
megabytes (MS). If you expect your memory blocks to be larger than one or 2 MS, you
can avoid significant performance degradation by using the VirtualAlioc or
VirtualAllocEx function instead.

Access Validation Functions
The Win32 API provides a set of functions that a process can use to verify whether it has
a specified type of access to a given memory address or range of addresses. The
following access validation functions are available:

Function Description

IsBadCodePtr

IsBadReadPtr

IsBadStringPtr

IsBadWritePtr

Determines whether the calling process has read access to the
memory at the specified address.

Determines whether the calling process has read access to the
memory at a specified range of addresses.

Determines whether the calling process has read access to the
memory pointed to by a null-terminated string pOinter. The
function validates access for a specified number of characters or
until it encounters the string's terminating null character.

Determines whether the calling process has write access to the
memory at a specified range of addresses.

The IsBadHugeReadPtr and IsBadHugeWritePtr functions are also available for
compatibility with 16-bit versions of Windows that distinguished between normal memory
allocations and huge allocations occupying multiple segments. In 32-bit versions of
Windows, these functions are equivalent to IsBadReadPtr and IsBadWritePtr.

In a preemptive multitasking environment, it is possible for some other thread to change
the process's access to the memory being tested. Even when an access validation
function indicates that the process has the desired access to the specified memory, you

258 Volume 1 Microsoft Windows Base Services

should use structured exception handling when attempting to access the memory. Use of
structured exception handling enables the system to notify the process if an access
violation exception occurs, giving the process an opportunity to handle the exception.
For more information, see Structured Exception Handling.

Address Windowing Extensions
This topic describes the Address Windowing Extensions (AWE). These Windows 2000
extensions provide user applications with 32-bit virtual addressing to greater than 32-bit
regions of physical memory.

Windows NT and Windows 2000 have always provided applications with a flat 32-bit
virtual address space, which describes 4 GB of virtual memory. The address space is
usually split so that 2 GB of address space is directly accessible to the application. The
other 2 GB are accessible only to the executive software. Additionally, with Windows NT
4.0 SP3, an option is provided on Windows NT Server Enterprise Edition/windows 2000
Advanced Server x86 systems for applications to have a 3-GB flat virtual address space,
with the executive software using only 1 GB.

AWE is a set of extensions that allows an application with the Lock Pages in Memory
user right to use physical non paged memory and window views to various portions of
this physical memory within a 32-bit virtual address space. In this way, applications are
able to quickly manipulate phYSical memory greater than 4 GB. Certain data-intensive
applications, such as database management systems and scientific and engineering
software, need access to very large caches of data. In the case of very large data sets,
restricting the cache to fit within an application's 2 GB of user address space is a severe
restriction. In these situations, the cache is too small to properly support the application.

AWE solves this problem by allowing applications to directly address huge amounts of
memory while continuing to use 32-bit pointers. AWE allows applications to have data
caches larger than 4 GB (where sufficient physical memory is present).

AWE places a few restrictions on how this memory may be used, primarily because
these restrictions allow extremely fast mapping, remapping, and freeing. Fast memory
management is important for these potentially enormous address spaces .

• Virtual address ranges allocated for the AWE are not sharable with other processes
(and therefore not inheritable). In fact, two different AWE virtual addresses within the
same process are not allowed to map the same physical page. These restrictions
provide fast remapping and cleanup when memory is freed .

• The physical pages that can be allocated for an AWE region are limited by the
number of physical pages present in the machine, since this memory is never
paged-it is locked down until the application explicitly frees it or exits. The physical
pages allocated for a given process can be mapped into any AWE virtual region within
the same process. Applications that use AWE must be careful not to take so much
physical memory that they cause other applications to page excessively, or prevent
creation of new processes or threads due to lack of resources. Use the
GlobalMemoryStatusEx function to monitor physical memory use.

Chapter 7 Memory Management 259

• AWE virtual addresses are always read/write and cannot be protected via calls to
VirtualProtect (that is, no read-only memory, no access memory, guard pages, or the
like can be specified).

• AWE address ranges cannot be used to buffer data for graphics or video calls.

• An AWE memory range cannot be split, and pieces of it cannot be deleted. Instead,
the entire virtual address range must be deleted as a unit when deletion is required.
This means that the MEM_RELEASE flag (and not the MEM_DECOMMIT flag) must
be specified to Virtual Free.

• Applications that use AWE are not supported in emulation mode. That is, an x86
application that uses AWE functions must be recompiled to run on Windows 2000 on
the Alpha processor, whereas most applications can run without recompiling under an
emulator on other platforms.

This solution addresses the physical memory issues in a very general, widely applicable
manner. Some of the benefits of AWE are:

• A small group of new functions is defined to manipulate AWE memory.
• AWE is supported on all platforms supported by Windows 2000, including Alpha (32-

bit) and the 64-bit version of Windows 2000.

• AWE provides a very fast remapping capability. Remapping is done by manipulating
virtual memory tables in the kernel, not by moving data in physical memory.

• AWE provides page size granularity appropriate to the processor (for example, 4 KB
on x86 and 8 KB on Alpha), which is more useful to applications than large pages (for
example, 2 MB or 4 MB on x86).

To obtain the Lock Pages in Memory privilege, an administrator must add the attribute
"Lock Pages in Memory" to the user's User Rights ASSignments. For more information on
how to do this, see "User Rights" in the Windows 2000 help system.

AWE Functions
Three new functions have been added to allow applications to explicitly control their
virtual address space. The following functions make up the AWE API:

Function

VirtualAlioc

AllocateUserPhysicalPages

MapUserPhysicalPages

MapUserPhysicalPagesScatter

FreeUserPhysical Pages

Description

Reserve a portion of virtual address space to use
for AWE, using the AWE flag MEM_PHYSICAL

Allocate physical memory for use with AWE

Map (or invalidate) AWE virtual addresses onto
any set of physical pages obtained with
AllocateUserPhysicalPages

Map (or invalidate) AWE virtual addresses onto
any set of physical pages obtained with
AliocateUserPhysicalPages, but with finer control
than that provided by MapUserPhysicalPages
Free physical memory that was used for AWE

260 Volume 1 Microsoft Windows Base Services

Global and Local Functions
The global and local functions are the 16-bit Windows heap functions. Win32 memory
management supports these functions for porting from 16-bit Windows, or maintaining
source code compatibility with 16-bit Windows. The global and local functions are slower
than the new memory management functions and do not provide as many features.
Therefore, new applications should not use these functions.

A process can use the GlobalAlioc and LocalAlioc functions to allocate memory.
Win32 memory management does not provide a separate local heap and global heap,
as 16-bit Windows does. As a result, there is no difference between the memory objects
allocated by these functions. In addition, the change from a 16-bit segmented memory
model to a 32-bit virtual memory model has made some of the related global and local
functions and their options unnecessary or meaningless. For example, there are no
longer near and far pointers, because both local and global allocations return 32-bit
virtual addresses.

Memory objects allocated by GlobalAlioc and LocalAlioc are in private, committed
pages with read/write access that cannot be accessed by other processes. Memory
allocated by using GlobalAlioc with the GMEM_DDESHARE flag is not actually shared
globally as it is in 16-bit Windows. However, this flag is available for compatibility
purposes and can be used by some applications to enhance the performance of
dynamic data exchange (DOE) operations. Applications requiring shared memory for
other purposes must use file-mapping objects. Multiple processes can map a view of the
same file-mapping object to provide named shared memory. For more information, see
File Mapping.

By using GlobalAlioc and LocalAlloc, you can allocate a block of memory of any size
that can be represented by 32 bits. You are limited only by the available physical
memory, including storage in the paging file on disk. In 16-bit Windows, when you
allocate a fixed memory object, GlobalAlioc and LocalAlioc return a 32-bit pointer that
the calling process can immediately use to access the memory. When you allocate
memory using GMEM_MOVEABLE, the return value is a handle. To get a pointer to a
movable memory object, use the GlobalLock and LocalLock functions.

The actual size of the memory allocated by GlobalAlioc or LocalAlioc can be larger
than the requested size. To determine the actual number of bytes allocated, use the
GlobalSize or LocalSize function. If the amount allocated is greater than the amount
requested, the process can use the entire amount.

The GlobalReAlioc and LocalReAlioc functions change the size, in bytes, or the
attributes of a memory object allocated by GlobalAlioc and LocalAlioc. The size can
increase or decrease.

The GlobalFree and LocalFree functions release memory allocated by GlobalAlloc,
LocalAlloc, GlobalReAlloc, or LocalReAlioc.

Chapter 7 Memory Management 261

Other global and local functions include the GlobalDiseard, LoealDiseard,
GlobalFlags, LoealFlags, GlobalHandle, and LoealHandle functions. To discard the
specified memory object without invalidating the handle, use GlobalDiseard or
LoealDiseard. The handle can be used later by GlobalReAlioe or LoealReAlioe to
allocate a new block of memory associated with the same handle. To return information
about a specified memory object, use GlobalFlags or LoealFlags. The information
includes the object's lock count and indicates whether the object is discardable or has
already been discarded. To return a handle to the memory object associated with a
specified pointer, use GlobalHandle or LoealHandle.

Windows 95/98: The heap managers are designed for memory blocks smaller than 4
MB. If you expect your memory blocks to be larger than one or 2 MB, you can avoid
significant performance degradation by using the VirtualAlioe or VirtualAlloeEx
function instead.

Standard C Library Functions
Win32-based applications can safely use the memory management features of the C
run-time library (malloe, free, and so on) and C++ (new, delete, and so on). The C run­
time library functions do not have the potential problems they have under 16-bit
Windows. Memory management is no longer a problem because the system is free to
manage memory by moving pages of physical memory without affecting the virtual
addresses. Similarly, the distinction between near and far pointers is no longer relevant.
Therefore, you can use the standard C library functions for memory management.
However, the Win32 memory management functions do provide functionality that is
unavailable in the C run-time library.

Memory Management Reference

AllocateUserPhysical Pages
The AlioeateUserPhysiealPages function allocates physical memory pages to be
mapped and unmapped within any AWE virtual address space region of the specified
process.

The caller must have Lock Pages in Memory privilege for this call to succeed.

i.~1~~J~~~;~~i~~f;~!i~~;i';';;~~!c~!~:;~;;i2~~~fii~

262 Volume 1 Microsoft Windows Base Services

Parameters
hProcess

[in] Handle to a process. The function allocates memory within the virtual address space
of this process. The user executing the calling application must have Lock Pages in
Memory privileged access to this process. If the user does not, the function fails.

NumberOfPages
[in/out] Specifies the size, in pages, of the physical memory to allocate. Use the
GetSystemlnfo function to determine the page size of the computer. This parameter
also returns the number of pages actually allocated, which may be less than the
number requested.

UserPfnArray
[out] Specifies the virtual address in which to store the page frame numbers of the
allocated memory. The size of the memory allocated should be at least
NumberOfPages times the size of the data type ULONG_PTR.

Do not attempt to modify this buffer. It contains operating system data, corruption of
which could be catastrophic. There is no information in it that is useful to your
application.

Return Values
If the function succeeds, the return value is TRUE. Fewer pages than requested may
actually be allocated. The caller must check the value of the NumberOfPages parameter
on return to see how many pages were allocated. All allocated page frame numbers are
sequentially placed in the memory pOinted to by the UserPfnArray parameter.

If the function fails, the return value is FALSE and no frames are allocated. To get
extended error information, call GetLastError.

Remarks
The AliocateUserPhysicalPages function is used to allocate physical memory. Memory
allocated by this function must be physically present in the system. After it is allocated, it
is locked down and unavailable to the rest of the virtual memory management system of
Windows 2000.

Note that a given physical page cannot be simultaneously mapped at more than one
virtual address.

Physical pages can reside at any physical address. You should make no assumptions
about the contiguity of the physical pages.

Use the GetSystemlnfo function to determine the page size of the computer.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

Chapter 7 Memory Management 263

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, Address Windowing
Extensions, MapUserPhysicalPages, MapUserPhysicalPagesScatter,
FreeUserPhysical Pages, GetSystemlnfo

CopyMemory
The CopyMemory function copies a block of memory from one location to another.

~~I~fC~,i~,p~\¥~\/j"0(;}'<' .,' " . (>,.;;:.;;"
•• ~:~VlJ,'J),(:1fe$;ttn'!::r:1'()jJ.,,·),;;;;;J!J:<:9p~;;,:e&t 1n:,a,tt0f1j,"

;,!~~!~;~~~t':Jf,~;,::t:~;~b~~:~,
)'r;"';/' .,\' ,.'", ",,;, ,,'" :::;> ',' J'

Parameters
Destination

[in] Pointer to the starting address of the copied block's destination.

Source
[in] Pointer to the starting address of the block of memory to copy.

Length
[in] Specifies the size, in bytes, of the block of memory to copy.

Return Values
This function has no return value.

Remarks
If the source and destination blocks overlap, the results are undefined. For overlapped
blocks, use the MoveMemory function.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

264 Volume 1 Microsoft Windows Base Services

Memory Management Overview, Memory Management Functions, Fill Memory,
MoveMemory, ZeroMemory

FillMemory
The FiIIMemory function fills a block of memory with a specified value.

Parameters
Destination

[out] Pointer to the starting address of the block of memory to fill.

Length
[in] Specifies the size, in bytes, of the block of memory to fill.

Fill
[in] Specifies the byte value with which to fill the memory block.

Return Values
This function has no return value.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Memory Management Overview, Memory Management Functions, CopyMemory,
MoveMemory, ZeroMemory

Chapter 7 Memory Management 265

FreeUserPhysical Pages
The FreeUserPhysicalPages function frees physical memory pages previously
allocated with AliocateUserPhysicalPages. If any of these pages is currently mapped
in the AWE address space, it is automatically unmapped by this call. Note that this does
not affect the virtual address space occupied by the specified AWE region.

Parameters
hProcess

[in] Handle to a process. The function frees memory within the virtual address space
of this process.

NumberOfPages
[in/out] Specifies the size, in pages, of the physical memory to free. On return, if the
function failed, this parameter indicates the number of pages freed.

UserPfnArray
[in] Specifies the virtual address to obtain the page frame numbers to free.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. In this case, the NumberOfPages
parameter will reflect how many pages have actually been released. To get extended
error information, call GetLastError.

Remarks
In a multiprocessor environment, this function maintains coherence of the hardware
translation buffer. Upon return from this function, all threads on all processors are
guaranteed to see the correct mapping.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

266 Volume 1 Microsoft Windows Base Services

Memory Management Overview, Memory Management Functions, Address Windowing
Extensions, AliocateUserPhysicalPages, MapUserPhysicalPages,
MapUserPhysicalPagesScatter

GetProcessHeap
The GetProcessHeap function obtains a handle to the heap of the calling process. This
handle then can be used in subsequent calls to the HeapAlloc, HeapReAlloc,
HeapFree, and HeapSize functions.

fI~ti~~~iaet'Pr~~esiHe~p~(~1~!;~ ..• ·•·· .• ·•

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a handle to the calling process's heap.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The GetProcessHeap function allows you to allocate memory from the process heap
without having to first create a heap with the HeapCreate function, as shown in this
example:

Note The handle obtained by calling this function should not be used in calls to the
HeapDestroy function.

To guard against an access violation, use structured exception handling to protect any
code that writes to or reads from a heap. For more information on structured exception
handling with memory accesses, see Reading and Writing and Structured Exception
Handling.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 7 Memory Management 267

D~'~$o··
Memory Management Overview, Memory Management Functions, HeapAlloc,
HeapCreate, HeapDestroy, HeapFree, HeapReAlloc, HeapSize

GetProcessHeaps
The GetProcessHeaps function obtains handles to all of the heaps that are valid for the
calling process.

'~~.~;;"~~;:::f;~·~~~~;~~~:~h~'~I" .. '.
).l < > M':\' ~ ... /{'.: '.':.:', \.:j,:i" ,. . ".,:.:,,,.:.". ".

Parameters
NumberOfHeaps

[in] Specifies the maximum number of heap handles that can be stored into the buffer
pointed to by ProcessHeaps.

ProcessHeaps
[out] Pointer to a buffer to receive an array of heap handles.

Return Values
The return value is the number of heap handles that are valid for the calling process.

If the return value is less than or equal to NumberOfHeaps, it is also the number of heap
handles stored into the buffer pOinted to by ProcessHeaps.

If the return value is greater than NumberOfHeaps, the buffer pointed to by
ProcessHeaps is too small to hold all the valid heap handles of the calling process.The
function will have stored no handles into that buffer. In this situation, use the return value
to allocate a buffer that is large enough to receive the handles, and call the function
again.

If the return value is zero, the function has failed, because every process has at least
one valid heap, the process heap. To get extended error information, call GetLastError.

Remarks
Use the GetProcessHeaps function to obtain a handle to the process heap of the calling
process. The GetProcessHeaps function obtains a handle to that heap, plus handles to
any additional private heaps created by calling the HeapCreate function.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.

268 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
HeapCreate

GetWriteWatch
The GetWriteWatch function retrieves the addresses of the pages that have been
written to in a region of virtual memory.

Parameters
dwFlags

[in] Indicates whether the function resets the write-tracking state. To reset the write­
tracking state, set this parameter to WRITE_WATCH_FLAG_RESET. If this
parameter is zero, GetWriteWatch does not reset the write-tracking state. For more
information, see the following Remarks section.

IpBaseAddress
[in] Specifies the base address of the memory region for which to retrieve write­
tracking information. This address must be in a memory region that was allocated by
the VirtualAlioc function with the MEM_WRITE_WATCH flag.

dwRegionSize
[in] Specifies the size, in bytes, of the memory region for which to retrieve write­
tracking information.

IpAddresses
[out] Pointer to a buffer that receives an array of page addresses in the memory
region. The addresses indicate the pages that have been written to since the region
was allocated or the write-tracking state was reset.

IpdwCount
[in/out] On input, this variable indicates the size, in array elements, of the IpAddresses
array. On output, the variable receives the number of page addresses returned in the
array.

Chapter 7 Memory Management 269

IpdwGranularity
[out] Pointer to a variable that receives the page size, in bytes.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero value.

Remarks
When you call the VirtualAlioc function to reserve or commit memory, you can specify
the MEM_WRITE_WATCH flag. This flag causes the system to keep track of the pages
in the committed memory region that have been written to. You then can call the
GetWriteWatch function to retrieve the addresses of the pages that have been written to
since the region was allocated or the write-tracking state was reset.

To reset the write-tracking state, set the WRITE_WATCH_FLAG_RESET flag in the
cfwFlags parameter. Alternatively, you can call the ResetWriteWatch function to reset
the write-tracking state. If you use ResetWriteWatch, however, you must ensure that no
threads write to the region during the interval between the GetWriteWatch and
ResetWriteWatch calls. Otherwise, there may be written pages that you fail to detect.

The GetWriteWatch function can be useful to profilers, debugging tools, or garbage
collectors.

Windows NT/2000: Unsupported.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, ResetWriteWatch,
VirtualAlioc

GlobalMemoryStatus
The GlobalMemoryStatus function obtains information about the computer system's
current usage of both physical memory and virtual memory.

_\,;'t;"\~,.,,

270 Volume 1 Microsoft Windows Base Services

Parameters
IpBuffer

[out] Pointer to a MEMORYSTATUS structure. The GlobalMemoryStatus function
stores information about current memory availability into this structure.

Return Values
This function does not return a value.

Remarks
You can use the GlobalMemoryStatus function to determine how much memory your
application can allocate without severely impacting other applications.

The information returned by the GlobalMemoryStatus function is volatile. There is no
guarantee that two sequential calls to this function will return the same information.

On computers with more than 4 GB of memory, the GlobalMemoryStatus function can
return incorrect information. Windows 2000 reports a value of -1 to indicate an overflow.
Earlier versions of Windows NT report a value that is the real amount of memory,
modulo 4 GB. For this reason, on Windows 2000, use instead the
GlobalMemoryStatusEx function.

On Intel x86 computers with more than 2 GB and less than 4 GB of memory, the
GlobalMemoryStatus function will always return 2 GB in the dwTotalPhys member of
the MEMORYSTATUS structure. Similarly, if the total available memory is between 2
GBand 4 GB, the dwAvailPhys member of the MEMORYSTATUS structure will be
rounded down to 2 GB. If the executable is linked using the ILARGEADDRESSWARE
linker option, then the GlobalMemoryStatus function will return the correct amount of
physical memory in both members. The lLARGEADDRESSWARE linker option is not
available (or necessary) on the Alpha processor.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions,
GlobalMemoryStatusEx, MEMORYSTATUS

Chapter 7 Memory Management 271

HeapAlloc
The HeapAlioc function allocates a block of memory from a heap. The allocated
memory is not movable.

~::::ij~~r~f~~;i~~~1t
Parameters
hHeap

[in] Specifies the heap from which the memory will be allocated. This parameter is a
handle returned by the HeapCreate or GetProcessHeap function.

dwFlags
[in] Specifies several controllable aspects of heap allocation. Specifying any of these
flags will override the corresponding flag specified when the heap was created with
HeapCreate. You can specify one or more of the following flags:

Flag Meaning

HEAP _GENERATE_EXCEPTIONS Specifies that the system will raise an
exception to indicate a function failure, such
as an out-of-memory condition, instead of

dwBytes

returning NULL.

Specifies that mutual exclusion will not be
used while the HeapAlioc function is
accessing the heap.

This flag should not be specified when
accessing the process heap. The system
may create additional threads within the
application's process, such as a CTRL+C
handler, that simultaneously access the
process heap.

Specifies that the allocated memory will be
initialized to zero. Otherwise, the memory is
not initialized to zero.

[in] Specifies the number of bytes to be allocated.

If the heap specified by the hHeap parameter is a "non-growable" heap, dwBytes
must be less than Ox7FFF8. You create a non-growable heap by calling the
HeapCreate function with a nonzero value.

272 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is a pointer to the allocated memory block.

If the function fails and you have not specified HEAP _GENERATE_EXCEPTIONS, the
return value is NULL.

If the function fails and you have specified HEAP _GENERATE_EXCEPTIONS, the
function may generate the following exceptions:

Value Meaning

The allocation attempt failed because of a lack of
available memory or heap corruption.

The allocation attempt failed because of heap
corruption or improper function parameters.

Note Heap corruption can lead to either exception; depends upon the nature of the
heap corruption.

If the function fails, it does not call SetLastError. An application cannot call
GetLastError for extended error information.

Remarks
If HeapAlioc succeeds, it allocates at least the amount of memory requested. If the
actual amount allocated is greater than the amount requested, the process can use the
entire amount. To determine the actual size of the allocated block, use the HeapSize
function.

To free a block of memory allocated by HeapAlloc, use the HeapFree function.

Memory allocated by HeapAlioc is not movable. Since the memory is not movable, it is
possible for the heap to become fragmented.

Serialization ensures mutual exclusion when two or more threads attempt to
simultaneously allocate or free blocks from the same heap. There is a small performance
cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap. Setting the HEAP _NO_SERIALIZE flag eliminates mutual
exclusion on the heap. Without serialization, two or more threads that use the same
heap handle might attempt to allocate or free memory simultaneously, likely causing
corruption in the heap. The HEAP _NO_SERIALIZE flag, therefore, can be used safely
only in the following situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

Chapter 7 Memory Management 273

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows 95/98: The heap managers are designed for memory blocks smaller than four
megabytes. If you expect your memory blocks to be larger than one or two megabytes,
you can avoid significant performance degradation by using instead the VirtualAlioc or
VirtualAllocEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
HeapCreate, HeapDestroy, HeapFree, HeapReAlloc, HeapSize, SetLastError

HeapCompact
The HeapCompact function attempts to compact a specified heap. It compacts the heap
by coalescing adjacent free blocks of memory and decommitting large free blocks of
memory.

Parameters
hHeap

[in] Handle to the heap that the function will attempt to compact.

dwFlags
[in] A set of bit flags that control heap access during function operation. The following
bit flag has meaning:

Value Meaning

Specifies that mutual exclusion will not be used while
the HeapCompact function accesses the heap.

274 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is the size, in bytes, of the largest committed
free block in the heap. This is an unsigned integer value.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

In the unlikely case that there is absolutely no space available in the heap, the function
return value is zero, and GetLastError returns the value NO_ERROR.

Remarks
There is no guarantee that an application can successfully allocate a memory block of
the size returned by HeapCompact. Other threads or the commit threshold might
prevent such an allocation.

Serialization ensures mutual exclusion when two or more threads attempt to
simultaneously allocate or free blocks from the same heap. There is a small performance
cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap. Setting the HEAP _NO_SERIALIZE flag eliminates mutual
exclusion on the heap. Without serialization, two or more threads that use the same
heap handle might attempt to allocate or free memory simultaneously, likely causing
corruption in the heap. The HEAP _NO_SERIALIZE flag, therefore, can be safely used
only in the following situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 7 Memory Management 275

Memory Management Overview, Memory Management Functions, HeapCreate,
HeapValidate

HeapCreate
The HeapCreate function creates a heap object that can be used by the calling process.
The function reserves space in the virtual address space of the process and allocates
physical storage for a specified initial portion of this block.

Parameters
flOptions

[in] Specifies optional attributes for the new heap. These options affect subsequent
access to the new heap through calls to the heap functions (HeapAlloc, HeapFree,
HeapReAlloc, and HeapSize). You can specify one or more of the following values:

Value Meaning

HEAP _GENERATE_EXCEPTIONS Specifies that the system will raise an
exception to indicate a function failure, such
as an out-of-memory condition, instead of
returning NULL.

HEAP _NO_SERIALIZE Specifies that mutual exclusion will not be
used when the heap functions allocate and
free memory from this heap. The default,
when the HEAP _NO_SERIALIZE flag is not
specified, is to serialize access to the heap.
Serialization of heap access allows two or
more threads to simultaneously allocate and
free memory from the same heap.

dwlnitialSize
[in] Specifies the initial size, in bytes, of the heap. This value determines the initial
amount of physical storage that is allocated for the heap. The value is rounded up to
the next page boundary. To determine the size of a page on the host computer, use
the GetSystemlnfo function.

dwMaximumSize
[in] If dwMaximumSize is a nonzero value, it specifies the maximum size, in bytes, of
the heap. The HeapCreate function rounds dwMaximumSize up to the next page

276 Volume 1 Microsoft Windows Base Services

boundary, and then reserves a block of that size in the process's virtual address
space for the heap. If allocation requests made by the HeapAlioc or HeapReAlioc
functions exceed the initial amount of physical storage specified by dwlnitialSize, the
system allocates additional pages of physical storage for the heap, up to the heap's
maximum size.

In addition, if dwMaximumSize is nonzero, the heap cannot grow, and an absolute
limitation arises: the maximum size of a memory block in the heap is a bit less than
Ox7FFF8 bytes. Requests to allocate larger blocks will fail, even if the maximum size
of the heap is large enough to contain the block.

If dwMaximumSize is zero, it specifies that the heap is growable. The heap's size is
limited only by available memory. Requests to allocate blocks larger than Ox7FFF8
bytes do not automatically fail; the system calls VirtualAlioc to obtain the memory
needed for such large blocks. Applications that need to allocate large memory blocks
should set dwMaximumSize to zero.

Return Values
If the function succeeds, the return value is a handle to the newly created heap.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The HeapCreate function creates a private heap object from which the calling process
can allocate memory blocks by using the HeapAlioc function. The initial size determines
the number of committed pages that are initially allocated for the heap. The maximum
size determines the total number of reserved pages. These pages create a block in the
process's virtual address space into which the heap can grow. If requests by HeapAlioc
exceed the current size of committed pages, additional pages are automatically
committed from this reserved space, assuming that the physical storage is available.

The memory of a private heap object is accessible only to the process that created it. If a
DLL creates a private heap, the heap is created in the address space of the process that
called the DLL, and it is accessible only to that process.

The system uses memory from the private heap to store heap support structures, so not
all of the specified heap size is available to the process. For example, if the HeapAlioc
function requests 64 KB from a heap with a maximum size of 64 KB, the request may fail
because of system overhead.

If the HEAP _NO_SERIALIZE flag is not specified (the simple default), the heap will
serialize access within the calling process. Serialization ensures mutual exclusion when
two or more threads attempt to simultaneously allocate or free blocks from the same
heap. There is a small performance cost to serialization, but it must be used whenever
multiple threads allocate and free memory from the same heap.

Setting the HEAP _NO_SERIALIZE flag eliminates mutual exclusion on the heap.
Without serialization, two or more threads that use the same heap handle might attempt

Chapter 7 Memory Management 277

to allocate or free memory simultaneously, likely causing corruption in the heap. The
HEAP _NO_SERIALIZE flag, therefore, can be safely used only in the following
situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
GetProcessHeaps, GetSystemlnfo, HeapAlloc, HeapDestroy, HeapFree,
HeapReAlloc, HeapSize, HeapValidate, VirtualAlioc

HeapDestroy
The HeapDestroy function destroys the specified heap object. HeapDestroy decommits
and releases all the pages of a private heap object, and invalidates the handle to the
heap.

Parameters
hHeap

[in] Specifies the heap to be destroyed. This parameter should be a heap handle
returned by the HeapCreate function. Do not use the handle to the process heap
returned by the GetProcessHeap function.

278 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Processes can call HeapDestroy without first calling the HeapFree function to free
memory allocated from the heap.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
HeapAlloc, HeapCreate, HeapFree, HeapReAlloc, HeapSize

HeapFree
The HeapFree function frees a memory block allocated from a heap by the HeapAlioc
or HeapReAlioc function.

Parameters
hHeap

[in] Specifies the heap whose memory block the function frees. This parameter is a
handle returned by the HeapCreate or GetProcessHeap function.

dwFlags
[in] Specifies several controllable aspects of freeing a memory block. Only one flag is
currently defined; however, all other flag values are reserved for future use.
Specifying this value overrides the corresponding value specified in the flOptions
parameter when the heap was created by using the HeapCreate function:

Flag

IpMem

Chapter 7 Memory Management 279

Meaning

Specifies that mutual exclusion will not be used while
HeapFree is accessing the heap.

This flag should not be specified when accessing the
process heap. The system may create additional
threads within the application's process, such as a
CTRL+C handler, that simultaneously access the
process heap.

[in] Pointer to the memory block to free. This pointer is returned by the HeapAlioc or
HeapReAlioc function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. An application can call GetLastError for
extended error information.

Remarks
Serialization ensures mutual exclusion when two or more threads attempt to
simultaneously allocate or free blocks from the same heap. There is a small performance
cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap. Setting the HEAP _NO_SERIALIZE flag eliminates mutual
exclusion on the heap. Without serialization, two or more threads that use the same
heap handle might attempt to allocate or free memory simultaneously, likely causing
corruption in the heap. The HEAP _NO_SERIALIZE flag, therefore, can be safely used
only in the following situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

You should not refer in any way to memory that has been freed by HeapFree. After that
memory is freed, any information that might have been in it is gone forever. If you require
information, do not free memory containing the information. Function calls that return
information about memory (such as HeapSize) may not be used with freed memory, as
they can return bogus data.

280 Volume 1 Microsoft Windows Base Services

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
HeapAlloc, HeapCreate, HeapDestroy, HeapReAlloc, HeapSize, SetLastError

HeapLock
The HeapLock function attempts to acquire the critical section object, or lock, that is
associated with a specified heap.

If the function succeeds, the calling thread owns the heap lock. Only the calling thread
will be able to allocate or release memory from the heap. The execution of any other
thread of the calling process will be blocked if that thread attempts to allocate or release
memory from the heap. Such threads will remain blocked until the thread that owns the
heap lock calls the HeapUnlock function.

Parameters
hHeap

[in] Handle to the heap to lock for exclusive access by the calling thread.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 7 Memory Management 281

Remarks
The HeapLock function is primarily useful for preventing the allocation and release of
heap memory by other threads while the calling thread uses the HeapWalk function.

Each call to HeapLock must be matched by a corresponding call to the HeapUnlock
function. Failure to call HeapUnlock will block the execution of any other threads of the
calling process that attempt to access the heap.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, HeapUnlock,
HeapWalk

HeapReAlloc
The HeapReAlioc function reallocates a block of memory from a heap. This function
enables you to resize a memory block and change other memory block properties. The
allocated memory is not movable.

trljl·;lt.1M\~~Jl;~;:~'lJ:

Parameters
hHeap

[in] Heap from which the memory will be reallocated. This is a handle returned by the
HeapCreate or GetProcessHeap function.

282 Volume 1 Microsoft Windows Base Services

Flag

dwFlags
[in] Specifies several controllable aspects of heap reallocation. Specifying any of
these flags overrides the corresponding flag specified in the flOptions parameter when
the heap was created by using the HeapCreate function. You can specify one or
more of the following flags:

Meaning

Specifies that the operating system raises an exception to indic
a function failure, such as an out-of-memory condition, instead
returning NULL.

Specifies that mutual exclusion is not used while HeapReAlioc
accessing the heap.

This flag should not be specified when accessing the process t
The system may create additional threads within the applicatiol
process, such as a CTRL+C handler, that simultaneously acce:
the process heap.

HEAP _REALLOC_IN_PLACE_ONL Y Specifies that there can be no movement when reallocating a
memory block to a larger size. If this flag is not specified and th
reallocation request is for a larger size, the function may move
block to a new location. If this flag is specified and the block ca
be enlarged without moving, the function fails, leaving the origil
memory block unchanged.

HEAP _ZERO_MEMORY If the reallocation request is for a larger size, this flag specifies
the additional region of memory beyond the original size be
initialized to zero. The contents of the memory block up to its
original size are unaffected.

IpMem
[in] Pointer to the block of memory that the function reallocates. This pointer is
returned by an earlier call to the HeapAlioc or HeapReAlioc function.

dwBytes
[in] New size of the memory block, in bytes. A memory block's size can be increased
or decreased by using this function.

If the heap specified by the hHeap parameter is a "non-growable" heap, dwBytes
must be less than Ox7FFF8. You create a non-growable heap by calling the
HeapCreate function with a nonzero value.

Return Values
If the function succeeds, the return value is a pointer to the reallocated memory block.

If the function fails and you have not specified HEAP _GENERATE_EXCEPTIONS, the
return value is NULL.

If the function fails and you have specified HEAP _GENERATE_EXCEPTIONS, the
function may generate the following exceptions:

Value

STATUS_ACCESS_ VIOLATION

Chapter 7 Memory Management 283

Meaning

The reallocation attempt failed for lack of
available memory.

The reallocation attempt failed because of heap
corruption or improper function parameters.

If the function fails, it calls SetLastError. An application can call GetLastError for
extended error information.

Remarks
If HeapReAlioc succeeds, it allocates at least the amount of memory requested. If the
actual amount allocated is greater than the amount requested, the process can use the
entire amount. To determine the actual size of the reallocated block, use the HeapSize
function.

If HeapReAlioc fails, the original memory is not freed, and the original handle and
pointer are still valid.

To free a block of memory allocated by HeapReAlloc, use the HeapFree function.

Serialization ensures mutual exclusion when two or more threads attempt to
simultaneously allocate or free blocks from the same heap. There is a small performance
cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap. Setting the HEAP _NO_SERIALIZE flag eliminates mutual
exclusion on the heap. Without serialization, two or more threads that use the same
heap handle might attempt to allocate or free memory simultaneously, likely causing
corruption in the heap. The HEAP _NO_SERIALIZE flag, therefore, can be safely used
only in the following situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows 95/98: The heap managers are designed for memory blocks smaller than four
megabytes. If you expect your memory blocks to be larger than one or two megabytes,
you can avoid significant performance degradation by using instead the VirtualAlioc or
VirtualAllocEx function.

284 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
HeapAlloc, HeapCreate, HeapOestroy, HeapFree, HeapSize, SetLastError

HeapSize
The HeapSize function returns the size, in bytes, of a memory block allocated from a
heap by the HeapAlloc or HeapReAlloc function.

Parameters
hHeap

[in] Specifies the heap in which the memory block resides. This handle is returned by
the HeapCreate or GetProcessHeap function.

dwFlags
[in] Specifies several controllable aspects of accessing the memory block. Only one
flag is defined currently; however, all other flag values are reserved for future use.
Specifying this flag will override the corresponding flag specified in the flOptions
parameter when the heap was created by using the HeapCreate function:

Value Meaning

Specifies that mutual exclusion will not be used while
HeapSize is accessing the heap.

This flag should not be specified when accessing the
process heap. The system may create additional
threads within the application's process, such as a
CTRL+C handler, that simultaneously access the
process heap.

Chapter 7 Memory Management 285

IpMem
[in] Pointer to the memory block whose size the function will obtain. This is a pOinter
returned by the HeapAlloc or HeapReAlloc function.

Return Values
If the function succeeds, the return value is the size, in bytes, of the allocated memory
block.

If the function fails, the return value is -1. The function does not call SetLastError. An
application cannot call GetLastError for extended error information.

Remarks
Serialization ensures mutual exclusion when two or more threads attempt to
simultaneously allocate or free blocks from the same heap. There is a small performance
cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap. Setting the HEAP _NO_SERIALIZE flag eliminates mutual
exclusion on the heap. Without serialization, two or more threads that use the same
heap handle might attempt to allocate or free memory simultaneously, likely causing
corruption in the heap. The HEAP _NO_SERIALIZE flag, therefore, can be safely used
only in the following situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetProcessHeap,
HeapAlloc, HeapCreate, HeapDestroy, HeapFree, HeapReAlloc, SetLastError

286 Volume 1 Microsoft Windows Base Services

HeapUnlock
The HeapUnlock function releases ownership of the critical section object, or lock, that
is associated with a specified heap. The HeapUnlock function reverses the action of the
HeapLock function.

Parameters
hHeap

[in] Handle to the heap to unlock.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The HeapLock function is primarily useful for preventing the allocation and release of
heap memory by other threads while the calling thread uses the HeapWalk function. The
HeapUnlock function is the inverse of HeapLock.

Each call to HeapLock must be matched by a corresponding call to the HeapUnlock
function. Failure to call HeapUnlock will block the execution of any other threads of the
calling process that attempt to access the heap.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management OveNiew, Memory Management Functions, HeapLock,
HeapWalk

Chapter 7 Memory Management 287

HeapValidate
The HeapValidate function attempts to validate a specified heap. The function scans all
the memory blocks in the heap, and verifies that the heap control structures maintained
by the heap manager are in a consistent state. You can also use the HeapValidate
function to validate a single memory block within a specified heap, without checking the
validity of the entire heap.

Parameters
hHeap

[in] Handle to the heap of interest. The HeapValidate function attempts to validate
this heap, or a single memory block within this heap.

dwFlags
[in] A set of bit flags that control heap access during function operation. This
parameter can be the following value:

Value Meaning

IpMem

Specifies that mutual exclusion is not used while the
HeapValidate function accesses the heap.

[in] Pointer to a memory block within the specified heap. This parameter may be
NULL.

If this parameter is NULL, the function attempts to validate the entire heap specified
by hHeap.

If this parameter is not NULL, the function attempts to validate the memory block
pOinted to by IpMem; it does not attempt to validate the rest of the heap.

Return Values
If the specified heap or memory block is valid, the return value is nonzero.

If the specified heap or memory block is invalid, the return value is zero. On a system set
up for debugging, the HeapValidate function then displays debugging messages that
describe the part of the heap or memory block that is invalid, and stops at a hard-coded
breakpoint, so that you can examine the system to determine the source of the invalidity.
The HeapValidate function does not set the thread's last error value. There is no
extended error information for this function; do not call GetLastError.

288 Volume 1 Microsoft Windows Base Services

Remarks
There are heap control structures for each memory block in a heap, and for the heap as
a whole. When you use the HeapValidate function to validate a complete heap, it
checks all of these control structures for consistency.

When you use HeapValidate to validate a single memory block within a heap, it checks
only the control structures pertaining to that element. HeapValidate can only validate
allocated memory blocks. Calling HeapValidate on a freed memory block will return
FALSE because there are no control structures to validate.

If you want to validate the heap elements enumerated by the HeapWalk function, you
should only call HeapValidate on the elements that have the
PROCESS_HEAP _ENTRY _BUSY bit flag in the wFlags member of the
PROCESS_HEAP _ENTRY structure. HeapValidate returns FALSE for all heap
elements that do not have this bit set.

Serialization ensures mutual exclusion when two or more threads attempt to
simultaneously allocate or free blocks from the same heap. There is a small performance
cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap. Setting the HEAP _NO_SERIALIZE flag eliminates mutual
exclusion on the heap. Without serialization, two or more threads that use the same
heap handle might attempt to allocate or free memory simultaneously, likely causing
corruption in the heap. The HEAP _NO_SERIALIZE flag, therefore, can be safely used
only in the following situations:

• The process has only one thread.

• The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

• The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

Validating a heap can degrade performance, especially on symmetric multiprocessing
(SMP) computers. The side effects can last until the process ends.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 7 Memory Management 289

Memory Management Overview, Memory Management Functions, HeapCreate,
HeapWalk, PROCESS_HEAP _ENTRY

HeapWalk
The HeapWalk function enumerates the memory blocks in a specified heap.

Parameters
hHeap

[in] Handle to the heap whose memory blocks you wish to enumerate.

JpEntry
[in/out] Pointer to a PROCESS_HEAP _ENTRY structure that maintains state
information for a particular heap enumeration.

If the HeapWalk function succeeds, returning the value TRUE, this structure's
members contain information about the next memory block in the heap.

To initiate a heap enumeration, set the IpOata field of the PROCESS_HEAP _ENTRY
structure to NULL. To continue a particular heap enumeration, call the HeapWalk
function repeatedly, with no changes to hHeap, IpEntry, or any of the members of the
PROCESS_HEAP _ENTRY structure.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

If the heap enumeration terminates successfully by reaching the end of the heap, the
function returns FALSE, and GetLastError returns the error code
ERROR_NO _MORE_ITEMS.

Remarks
To initiate a heap enumeration, call HeapWalk with the IpOata field of the
PROCESS_HEAP _ENTRY structure pointed to by JpEntry set to NULL.

To continue a heap enumeration, call HeapWalk with the same hHeap and JpEntry
values, and with the PROCESS_HEAP _ENTRY structure unchanged from the preceding
call to HeapWalk. Repeat this process until you have no need for further enumeration, or

290 Volume 1 Microsoft Windows Base Services

until the function returns FALSE and GetLastError returns ERROR_NO_MORE_ITEMS,
indicating that all of the heap's memory blocks have been enumerated.

No special call of HeapWalk is needed to terminate the heap enumeration, since no
enumeration state data is maintained outside the contents of the
PROCESS_HEAP _ENTRY structure.

HeapWalk can fail in a multithreaded application if the heap is not locked during the
heap enumeration. Use the HeapLock and HeapUnlock functions to control heap
locking during heap enumeration.

Walking a heap can degrade performance, especially on symmetric multiprocessing
(SMP) computers. The side effects can last until the process ends.

Note To guard against an access violation, use structured exception handling to protect
any code that writes to or reads from a heap. For more information on structured
exception handling with memory accesses, see Reading and Writing and Structured
Exception Handling.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, HeapLock,
HeapUnlock, HeapValidate, PROCESS_HEAP _ENTRY

IsBadCodePtr
The IsBadCodePtr function determines whether the calling process has read access to
the memory at the specified address.

Parameters
/pfn

[in] Pointer to an address in memory.

Chapter 7 Memory Management 291

Return Values
If the calling process has read access to the specified memory, the return value is zero.

If the calling process does not have read access to the specified memory, the return
value is nonzero. To get extended error information, call GetLastError.

If the application is compiled as a debugging version, and the process does not have
read access to all bytes in the specified memory range, the function causes an assertion
and breaks into the debugger. Leaving the debugger, the function continues as usual,
and returns a nonzero value. This behavior is by design, as a debugging aid.

Remarks
IsBadCodePtr checks the read access only at the specified address and does not
guarantee read access to a range of memory.

In a preemptive multitasking environment, it is possible for some other thread to change
the process's access to the memory being tested. Even when the function indicates that
the process has read access to the specified memory, you should use structured
exception handling when attempting to access the memory. Use of structured exception
handling enables the system to notify the process if an access violation exception
occurs, giving the process an opportunity to handle the exception.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Memory Management Overview, Memory Management Functions, IsBadReadPtr,
IsBadStringPtr, IsBadWritePtr

IsBadReadPtr
The IsBadReadPtr function verifies that the calling process has read access to the
specified range of memory.

292 Volume 1 Microsoft Windows Base Services

Parameters
Ip

[in] Pointer to the first byte of the memory block.

ucb
[in] Specifies the size, in bytes, of the memory block. If this parameter is zero, the
return value is zero.

Return Values
If the calling process has read access to all bytes in the specified memory range, the
return value is zero.

If the calling process does not have read access to all bytes in the specified memory
range, the return value is nonzero.

If the application is compiled as a debugging version, and the process does not have
read access to all bytes in the specified memory range, the function causes an assertion
and breaks into the debugger. Leaving the debugger, the function continues as usual,
and returns a nonzero value. This behavior is by design, as a debugging aid.

Remarks
If the calling process has read access to some, but not all, of the bytes in the specified
memory range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change
the process's access to the memory being tested. Even when the function indicates that
the process has read access to the specified memory, you should use structured
exception handling when attempting to access the memory. Use of structured exception
handling enables the system to notify the process if an access violation exception
occurs, giving the process an opportunity to handle the exception.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, IsBadCodePtr,
IsBadStringPtr, IsBadWritePtr

Chapter 7 Memory Management 293

IsBadStringPtr
The IsBadStringPtr function verifies that the calling process has read access to a range
of memory pointed to by a string pOinter.

Parameters
/psz

[in] Pointer to a null-terminated string, either Unicode or ASCII.

ucchMax
[in] Specifies the maximum size, in characters, of the string. The function checks for
read access in all bytes up to the string's terminating null character or up to the
number of bytes specified by this parameter, whichever is smaller. If this parameter is
zero, the return value is zero.

Return Values
If the calling process has read access to all bytes up to the string's terminating null
character or up to the number of bytes specified by ucchMax, the return value is zero.

If the calling process does not have read access to all bytes up to the string's terminating
null character or up to the number of bytes specified by ucchMax, the return value is
nonzero.

If the application is compiled as a debugging version, and the process does not have
read access to all bytes in the specified memory range, the function causes an assertion
and breaks into the debugger. Leaving the debugger, the function continues as usual,
and returns a nonzero value. This behavior is by design, as a debugging aid.

Remarks
If the calling process has read access to some, but not all, of the bytes in the specified
memory range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change
the process's access to the memory being tested. Even when the function indicates that
the process has read access to the specified memory, you should use structured
exception handling when attempting to access the memory. Use of structured exception
handling enables the system to notify the process if an access violation exception
occurs, giving the process an opportunity to handle the exception.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

294 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Memory Management Overview, Memory Management Functions, IsBadCodePtr,
IsBadReadPtr,lsBadWritePtr

IsBadWritePtr
The IsBadWritePtr function verifies that the calling process has write access to the
specified range of memory.

Parameters
/p

[in] Pointer to the first byte of the memory block.

ucb
[in] Specifies the size, in bytes, of the memory block. If this parameter is zero, the
return value is zero.

Return Values
If the calling process has write access to all bytes in the specified memory range, the
return value is zero.

If the calling process does not have write access to all bytes in the specified memory
range, the return value is nonzero.

If the application is compiled as a debugging version, and the process does not have
write access to all bytes in the specified memory range, the function causes an assertion
and breaks into the debugger. Leaving the debugger, the function continues as usual,
and returns a nonzero value. This behavior is by design, as a debugging aid.

Remarks
If the calling process has write access to some, but not all, of the bytes in the specified
memory range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change
the process's access to the memory being tested. Even when the function indicates that
the process has write access to the specified memory, you should use structured

Chapter 7 Memory Management 295

exception handling when attempting to access the memory. Use of structured exception
handling enables the system to notify the process if an access violation exception
occurs, giving the process an opportunity to handle the exception.

IsBadWritePtr is not multithread safe. To use it properly on a pointer shared by multiple
threads, call it inside a critical region of code that allows only one thread to access the
memory being checked. Use operating system-level objects, such as critical sections or
mutexes or the interlocked functions, to create the critical region of code.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, IsBadCodePtr,
IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr

MapUserPhysicalPages
The MapUserPhysicalPages function maps previously allocated physical memory
pages at the specified address within an Address Windowing Extensions (AWE) virtual
address space.

Parameters
IpAddress

[in] Pointer to the starting address of the region of memory to remap. The value of
IpAddress must be within the address range returned by the VirtualAlloc function
when the AWE region was allocated.

NumberOfPages
[in] Specifies the size, in pages, of the physical memory (and virtual address space)
for which to establish translations. The virtual address range is contiguous starting at
IpAddress. The physical frames are specified by the UserPfnArray. The total number
of pages cannot extend from the starting address beyond the end of the range
specified in AllocateUserPhysicalPages.

296 Volume 1 Microsoft Windows Base Services

UserPfnArray
[in] Specifies the address of an array of physical page frame numbers. These frames
will be mapped by the argument IpAddress upon return from this function. The size of
the memory allocated should be at least NumberOfPages times the size of the data
type ULONG_PTR.

Do not attempt to modify this buffer. It contains operating system data, corruption of
which could be catastrophic. There is no information in it that is useful to your
application.

Specifying NULL for this parameter results in the specified address range being
unmapped. (The specified physical pages are not freed. You must call
FreeUserPhysicalPages to free them.)

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE and no mapping (partial or other) will have
been done. To get extended error information, call GetLastError.

Remarks
Any number of physical memory pages can be specified, provided the memory will not
extend outside the virtual address space allocated by VirtualAlioc. All existing address
maps are automatically overwritten with the new translations, and the old translations are
unmapped.

You cannot map physical memory pages outside the range specified in
AliocateUserPhysicalPages.

Note The physical pages are unmapped but they are not freed. You must call
FreeUserPhysicalPages to free the physical pages.

Physical pages can reside at any physical address. You should make no assumptions
about the contiguity of the physical pages.

To simply unmap the current address range, specify NULL as the physical memory page
array parameter. Any currently mapped pages are unmapped, but are not freed. You
must call FreeUserPhysicalPages to free the physical pages.

In a multiprocessor environment, this function maintains hardware translation buffer
coherence. Upon return from this function, all threads on all processors are guaranteed
to see the correct mapping.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

Chapter 7 Memory Management 297

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, Address Windowing
Extensions, AliocateUserPhysicalPages, FreeUserPhysicalPages,
MapUserPhysicalPagesScatter

MapUserPhysical PagesScatter
The MapUserPhysicalPagesScatter function maps previously allocated physical
memory pages at the specified address within an Address Windowing Extensions (AWE)
virtual address space. Unlike MapUserPhysicalPages,
MapUserPhysicalPagesScatter allows "batch" mapping and unmapping of multiple
regions.

Parameters
Virtual Addresses

[in] Pointer to an array of starting addresses of the regions of memory to remap. Each
entry in Virtual Addresses must be within the address range that the VirtualAlioc
function returned when the AWE region was allocated. The value in NumberOfPages
indicates the size of the array. Note that entries can be from multiple AWE regions.

NumberOfPages
[in] Specifies the size, in pages, of the physical memory (and virtual address space) to
establish translations for. The array at Virtual Addresses specifies the virtual address
range.

PageArray
[in] A non-NULL pointer to an array of values.

If this parameter is NULL, then every address in the VirtualAddresses array will be
unmapped.

Otherwise, the array is used to indicate how each corresponding page in
VirtualAddresses should be treated. A zero indicates that the corresponding entry in
Virtual Addresses should be unmapped; any nonzero value that it has should be
mapped.

The value in NumberOfPages indicates the size of the array.

298 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE and the function does no mapping or
unmapping (partial or other). To get extended error information, call GetLastError.

Remarks
You can specify any number of physical memory pages, provided the memory would not
extend outside the virtual address space allocated by VirtualAlioc. All existing address
maps are automatically overwritten with the new translations, and the old translations are
unmapped.

You cannot map physical memory pages outside the range specified in
AllocateUserPhysicalPages.

Note The physical pages may be unmapped but they are not freed. You must call
FreeUserPhysicalPages to free the physical pages.

Physical pages can reside at any physical address. You should make no assumptions
about the contiguity of the physical pages.

In a multiprocessor environment, this function maintains coherence of the hardware
translation buffer. Upon return from this function, all threads on all processors are
guaranteed to see the correct mapping.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, Address Windowing
Extensions, AliocateUserPhysicalPages, FreeUserPhysicalPages,
MapUserPhysicalPages

MoveMemory
The MoveMemory function moves a block of memory from one location to another.

Chapter 7 Memory Management 299

SIZLT Length II size of block to move
):

Parameters
Destination

[in] Pointer to the starting address of the destination of the move.

Source
[in] Pointer to the starting address of the block of memory to move.

Length
[in] Specifies the size, in bytes, of the block of memory to move.

Return Values
This function has no return value.

Remarks
The source and destination blocks may overlap.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Memory Management Overview, Memory Management Functions, CopyMemory,
FiIIMemory, ZeroMemory

ResetWriteWatch
The ResetWriteWatch function resets the write-tracking state for a region of virtual
memory. Subsequent calls to the GetWriteWatch function will report only pages that
have been written to since the reset operation.

::l,t;~~;~tiJ<,~~fc;~~;;::dlii.~r.~~~"•..........

300 Volume 1 Microsoft Windows Base Services

Parameters
IpBaseAddress

[in] Pointer to the base address of the memory region for which to reset the write­
tracking state. This address must be in a memory region that was allocated by the
VirtualAlioc function with the MEM_WRITE_WATCH flag.

dwRegionSize
[in] Specifies the size, in bytes, of the memory region for which to reset the write­
tracking information.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero value.

Remarks
The ResetWriteWatch function can be useful to an application such as a garbage
collector. The application calls the GetWriteWatch function to retrieve the list of written
pages, and then writes to those pages as part of its cleanup operation. Then, the
garbage collector calls ResetWriteWatch to remove the write-tracking records caused
by its cleanup.

You can also reset the write-tracking state of a memory region by specifying the
WRITE_WATCH_FLAG_RESET flag when you call GetWriteWatch.

If you use ResetWriteWatch, you must ensure that no threads write to the region during
the interval between the GetWriteWatch and ResetWriteWatch calls. Otherwise, there
might be written pages that you fail to detect.

Windows NT/2000: Unsupported.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetWriteWatch,
VirtualAlioc

Chapter 7 Memory Management 301

VirtualAlioc
The VirtualAlioc function reserves or commits a region of pages in the virtual address
space of the calling process. Memory allocated by this function is automatically initialized
to zero, unless the MEM_RESET flag is set.

To allocate memory in the address space of another process, use the VirtualAllocEx
function.

CPV:~tJ) 'Vii~~~~.1Aflocrr" ... i. ~..,: ,'> '. ..'
L',lPyo:~p,~pAi1tir.e.~.;;·.,.., ,·llr~!lfontQl'esel"'.v.e orcomm;t·
" j1S1~r'!~S:t¥~;':'~?;i !"}:i\i"J/~~.l',:eo~~'r~~.i ot! ... , •.

.. ' PWO~O .fH'l· '1 ¢Jet! t,1~rq3p:e~!;i<' tl;tn.~, ,01";illl~¢a,t ~(ln.; •.•• ':
. DWlD'fl Pf'atect .. '••• . .J I; typ~~: o:rjj·~ce~,s protect10'11

'"? > c,' , ~< "'/ ~ <, "')::,' ';';'/,; Y, f ", ,,< / ' , '

H'! ','

Parameters
IpAddress

[in] Specifies the desired starting address of the region to allocate. If the memory is
being reserved, the specified address is rounded down to the next 64-kilobyte
boundary. If the memory is already reserved and is being committed, the address is
rounded down to the next page boundary. To determine the size of a page on the host
computer, use the GetSystemlnfo function. If this parameter is NULL, the system
determines where to allocate the region.

dwSize
[in] Specifies the size, in bytes, of the region. If the IpAddress parameter is NULL, this
value is rounded up to the next page boundary. Otherwise, the allocated pages
include all pages containing one or more bytes in the range from IpAddress to
(IpAddress+dwSize). This means that a 2-byte range straddling a page boundary
causes both pages to be included in the allocated region.

flAI/oca tion Type
[in] Specifies the type of allocation. This parameter can be any combination of the
following values:

Value Meaning

Allocates physical storage in memory or in the paging file
on disk for the specified region of pages.
An attempt to commit an already committed page will not
cause the function to fail. This means that a range of
committed or decommitted pages can be committed
without having to worry about a failure.

Allocate physical memory. This flag is solely for use with
Address Windowing Extensions (AWE) memory.

(continued)

302 Volume 1 Microsoft Windows Base Services

(continued)

Value Meaning

Reserves a range of the process's virtual address space
without allocating any physical storage. The reserved
range cannot be used by any other allocation operations
(the malloc function, the LocalAlioc function, and so on)
until it is released. Reserved pages can be committed in
subsequent calls to the VirtualAlioc function.

Windows NT/2000: Specifies that memory pages within
the range specified by IpAddress and dwSize will not be
written to or read from the paging file.

When you set the MEM_RESET flag, you are declaring
that the contents of that range are no longer important.
The range is going to be overwritten, and the application
does not want the memory to migrate out to or in from the
paging file.

Setting this flag does not guarantee that the range
operated on with MEM_RESET will contain zeros. If you
want the range to contain zeros, decommit the memory
and then recommit it.

When you set the MEM_RESET flag, the VirtualAlioc
function ignores the value of fProtect. However, you must
still set fProtect to a valid protection value, such as
PAGE_NOACCESS.

VirtualAlioc returns an error if you set the MEM_RESET
flag and the range of memory is mapped to a file. A
shared view is only acceptable if it is mapped to a paging
file.

MEM_ TOP _DOWN Windows NT/2000: Allocates memory at the highest
possible address.

MEM_WRITE_WATCH Windows 98: Causes the system to keep track of the
pages that are written to in the allocated region. If you
specify this flag, you must also specify the
MEM_RESERVE flag. The write-tracking feature remains
enabled for the memory region until the region is freed.

To retrieve the addresses of the pages that have been
written to since the region was allocated or the write­
tracking state was reset, call the GetWriteWatch
function. To reset the write-tracking state, set a flag in the
GetWriteWatch function or call the ResetWriteWatch
function.

Value

Chapter 7 Memory Management 303

flProtect
[in] Specifies the type of access protection. If the pages are being committed, anyone
of the following flags can be specified, along with the PAGE_GUARD and
PAGE_NOCACHE protection values, as needed.

Meaning

Enables execute access to the committed region of pages.
An attempt to read or write to the committed region results in
an access violation.

Enables execute and read access to the committed region of
pages. An attempt to write to the committed region results in
an access violation.

Enables execute, read, and write access to the committed
region of pages.

Windows NT/2000: Pages in the region become guard
pages. Any attempt to read from or write to a guard page
causes the system to raise a STATUS_GUARD_PAGE
exception and turn off the guard page status. Guard pages,
thus, act as a one-shot access alarm.

The PAGE_GUARD flag is a page protection modifier. An
application uses it with one of the other page protection
flags, with one exception: it cannot be used with
PAGE_NOACCESS. When an access attempt leads the
system to turn off guard page status, the underlying page
protection takes over.

If a guard page exception occurs during a system service,
the service typically returns a failure status indicator.

Windows 95/98: To simulate this behavior, use the
PAGE_NOACCESS flag.

PAGE_NOACCESS Disables all access to the committed region of pages. An
attempt to read from, write to, or execute in the committed
region results in an access violation exception, called a
general protection (GP) fault.

Allows no caching of the committed regions of pages. The
hardware attributes for the physical memory should be
specified as "no cache." This is not recommended for
general usage. It is useful for device drivers; for example,
mapping a video frame buffer with no caching. This flag is a
page protection modifier, only valid when used with one of
the page protections other than PAGE_NOACCESS.

(continued)

304 Volume 1 Microsoft Windows Base Services

(continued)

Value

PAGE_READONL Y

PAGE_READWRITE

PAGE_WRITECOMBINE

Return Values

Meaning

Enables read access to the committed region of pages. An
attempt to write to the committed region results in an access
violation. If the system differentiates between read-only access
and execute access, an attempt to execute code in the
committed region results in an access violation.
Enables both read and write access to the committed region of
pages.

Enables write combining, that is, coalescing writes from cache to
main memory, where the hardware supports it. This flag is
primarily for frame buffer memory. Normally a frame buffer is not
cached. However, with this bit, portions of the frame buffer can
be cached. This means that writes to the same cache line are
coalesced in cache and written out to the frame buffer once upon
the first write to another cache line. This can reduce greatly
writes across the bus to video memory. If the hardware does not
support write combining, the flag is ignored. This flag is a page
protection modifier, valid only when used with one of the page
protections other than PAGE_NOACCESS.

If the function succeeds, the return value is the base address of the allocated region of
pages. If the function fails, the return value is NULL. To get extended error information,
call GetLastError.

Remarks
VirtualAlioc can perform the following operations:

• Commit a region of pages reserved by a previous call to the VirtualAlioc function.

• Reserve a region of free pages.

• Reserve and commit a region of free pages.

You can use VirtualAlioc to reserve a block of pages and then make additional calls to
VirtualAlioc to commit individual pages from the reserved block. This enables a process
to reserve a range of its virtual address space without consuming physical storage until it
is needed.

Each page in the process's virtual address space is in one of the following states:

State Meaning

Free The page is not committed or reserved and is not accessible to the
process. VirtualAlioc can reserve, or simultaneously reserve and
commit, a free page.

(continued)

(continued)

State

Reserved

Committed

Chapter 7 Memory Management 305

Meaning

The range of addresses cannot be used by other allocation functions,
but the page is not accessible and has no physical storage associated
with it. VirtualAlioc can commit a reserved page, but it cannot reserve
it a second time. The Virtual Free function can release a reserved
page, making it a free page.

Physical storage is allocated for the page, and access is controlled by a
protection code. The system initializes and loads each committed page
into physical memory only at the first attempt to read or write to that
page. When the process terminates, the system releases the storage
for committed pages. VirtualAlioc can commit an already committed
page. This means that you can commit a range of pages, regardless of
whether they have already been committed, and the function will not
fail. Virtual Free can decommit a committed page, releasing the page's
storage, or it can simultaneously decommit and release a committed
page.

If the IpAddress parameter is not NULL, the function uses the IpAddress and dw$ize
parameters to compute the region of pages to be allocated. The current state of the
entire range of pages must be compatible with the type of allocation specified by the
flAllocationType parameter. Otherwise, the function fails and none of the pages are
allocated. This compatibility requirement does not preclude committing an already
committed page; see the preceding list.

Windows NT/2000: The PAGE_GUARD protection modifier flag establishes guard
pages. Guard pages act as one-shot access alarms. For more information, see Creating
Guard Pages.

Address Windowing Extensions (AWE): The VirtualAlioc function can be used to
reserve an AWE region of memory within the virtual address space of a specified
process. This region of memory can then be used to map physical pages into and out of
virtual memory as required by the application.

The MEM_PHYSICAL and MEM_RESERVE flags must be set in the AllocationType
parameter. The MEM_COMMIT flag must not be set.

The page protection must be set to PAGE_READWRITE.

The VirtualFree function can be used on an AWE region of memory-in this case, it will
invalidate any physical page mappings in the region when freeing the address space.
However, the physical pages themselves are not deleted, and the application subsequently
can use them. The application must explicitly call FreeUserPhysicalPages to free the
physical pages. On process termination, all resources are automatically cleaned up.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

306 Volume 1 Microsoft Windows Base Services

Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, Address Windowing
Extensions (AWE), AliocateUserPhysicalPages, FreeUserPhysicalPages,
GetWriteWatch, HeapAlloc, MapUserPhysicalPages,
MapUserPhysicalPagesScatter, ResetWriteWatch, VirtualAllocEx, VirtualFree,
Virtual Lock, Virtual Protect, VirtualQuery

VirtualAllocEx
The VirtualAllocEx function reserves or commits (or both) a region of memory within the
virtual address space of a specified process. The function initializes the memory it
allocates to zero, unless the MEM_RESET flag is set.

Parameters
hProcess

[in] Handle to a process. The function allocates memory within the virtual address
space of this process.

You must have PROCESS_VM_OPERATION access to the process. If you do not,
the function fails.

IpAddress
[in] Pointer that specifies a desired starting address for the region of pages that you
want to allocate.

If you are reserving memory, the function rounds this address down to the nearest 64-
KB boundary.

If you are committing memory that is already reserved, the function rounds this
address down to the nearest page boundary. To determine the size of a page on the
host computer, use the GetSystemlnfo function.

If IpAddress is NULL, the function determines where to allocate the region.

dwSize
[in] Specifies the size, in bytes, of the region of memory to allocate.

Chapter 7 Memory Management 307

If IpAddress is NULL, the function rounds dwSize up to the next page boundary.

If IpAddress is not NULL, the function allocates all pages that contain one or more
bytes in the range from IpAddress to (IpAddress+dwSize). This means, for example,
that a 2-byte range that straddles a page boundary causes the function to allocate
both pages.

flAllocationType
[in] Specifies the type of memory allocation. This parameter can be one or more of the
following values:

Value Meaning

The function allocates actual physical storage in memory or
in the paging file on disk for the specified region of memory
pages. The function initializes the memory to zero.

An attempt to commit a memory page that is already
committed does not cause the function to fail. This means
that you can commit a range of pages without first
determining the current commitment state of each page.

If a memory page is not yet reserved, setting this flag
causes the function to both reserve and commit the memory
page.

The function reserves a range of the process's virtual
address space without allocating any actual physical
storage in memory or in the paging file on disk.

Other memory allocation functions, such as malloe and
LoealAlloe, cannot use a reserved range of memory until it
is released.

You can commit reserved memory pages in subsequent
calls to the VirtualAlloeEx function.

(continued)

308 Volume 1 Microsoft Windows Base Services

(continued)

Value

tlProtect

Meaning

Windows NT/2000: Specifies that memory pages within the
range specified by IpAddress and dwSize will not be written
to or read from the paging file.

When you set the MEM_RESET flag, you are declaring that
the contents of that range are no longer important. The
range is going to be overwritten, and the application does
not want the memory to migrate out to or in from the paging
file.

Setting this flag does not guarantee that the range operated
on with MEM_RESET will contain zeros. If you want the
range to contain zeros, decommit the memory and, then,
recommit it.

When you set the MEM_RESET flag, the VirtualAllocEx
function ignores the value of fProtect. However, you must
still set fProtect to a valid protection value, such as
PAGE_NOACCESS.

VirtualAllocEx returns an error if you set the MEM_RESET
flag and the range of memory is mapped to a file. A shared
view is only acceptable if it is mapped to a paging file.

The function allocates memory at the highest address
possible.

[in] Specifies access protection for the region of pages you are allocating. You can
specify one of the following flags, along with the PAGE_GUARD and
PAGE_NOCACHE protection values, as desired:

Value Meaning

PAGE_EXECUTE Enables execute permission to the committed region of
pages. An attempt to read or write to the committed region
results in an access violation.

PAGE_EXECUTE_READ Enables execute and read permission to the committed region
of pages. An attempt to write to the committed region results
in an access violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write permission to the committed
region of pages.

Value

PAGE_NOACCESS

PAGE_READONL Y

PAGE_READWRITE

PAGE_WRITECOMBINE

Chapter 7 Memory Management 309

Meaning

Pages in the region become guard pages. Any attempt to read
from or write to a guard page causes the system to raise a
STATUS_GUARD_PAGE exception and turn off the guard page
status. Guard pages, thus, act as a one-shot access alarm.

The PAGE_GUARD flag is a page protection modifier. An
application uses it with one of the other page protection flags,
with one exception: it cannot be used with PAGE_NOACCESS.
When an access attempt leads the system to turn off guard page
status, the underlying page protection takes over.

If a guard page exception occurs during a system service, the
service typically returns a failure status indicator.

Disables all access to the committed region of pages. An attempt
to read from, write to, or execute in the committed region results
in an access violation exception, called a general protection (GP)
fault.

Allows no caching of the committed regions of pages. The
hardware attributes for the physical memory should be specified
as "no cache." This is not recommended for general usage. It is
useful for device drivers; for example, mapping a video frame
buffer with no caching. This flag is a page protection modifier,
only valid when used with one of the page protections other than
PAGE_NOACCESS.

Enables read permission to the committed region of pages. An
attempt to write to the committed region results in an access
violation. If the system differentiates between read-only
permission and execute permission, an attempt to execute code
in the committed region results in an access violation.

Enables both read and write permission to the committed region
of pages.

Enables write combining, that is, coalescing writes from cache to
main memory, where the hardware supports it. This flag is
primarily for frame buffer memory. Normally, a frame buffer is not
cached. However, with this bit, portions of the frame buffer can
be cached. This means that writes to the same cache line are
coalesced in cache and written out to the frame buffer once upon
the first write to another cache line. This can reduce greatly
writes across the bus to video memory. If the hardware does not
support write combining, the flag is ignored. This flag is a page
protection modifier, valid only when used with one of the page
protections other than PAGE_NOACCESS.

310 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is the base address of the allocated region of
pages.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The VirtualAllocEx function can perform the following operations:

• Commit a region of pages reserved by a previous call to the VirtualAllocEx function.

• Reserve a region of free pages.

• Reserve and commit a region of free pages.

You can use VirtualAllocEx to reserve a block of pages and then make additional calls
to VirtualAllocEx to commit individual pages from the reserved block. This lets you
reserve a range of a process's virtual address space without consuming physical storage
until it is needed.

Each page of memory in a process's virtual address space is in one of the following
states:

State

Free

Reserved

Committed

Meaning

The page is not committed or reserved and is not accessible to the
process. The VirtualAllocEx function can reserve, or simultaneously
reserve and commit, a free page.

The page is reserved. The range of addresses cannot be used by other
allocation functions, but the page is not accessible and has no physical
storage associated with it. The VirtualAllocEx function can commit a
reserved page, but it cannot reserve it a second time. You can use the
VirtualFreeEx function to release a reserved page in a specified
process, making it a free page.

Physical storage is allocated for the page, and access is controlled by a
protection code. The system initializes and loads each committed page
into physical memory only at the first attempt to read or write to that
page. When the process terminates, the system releases the storage
for committed pages. The VirtualAllocEx function can commit an
already committed page. This means that you can commit a range of
pages, regardless of whether they have already been committed, and
the function will not fail. You can use the VirtualFreeEx function to
decommit a committed page in a specified process, or to
Simultaneously decommit and free a committed page.

If the IpAddress parameter is not NULL, the function uses the IpAddress and dwSize
parameters to compute the region of pages to be allocated. The current state of the

Chapter 7 Memory Management 311

entire range of pages must be compatible with the type of allocation specified by the
flAllocationType parameter. Otherwise, the function fails, and none of the pages is
allocated. This compatibility requirement does not preclude committing an already
committed page; see the preceding list.

The PAGE_GUARD protection modifier flag establishes guard pages. Guard pages act
as one-shot access alarms. For more information, see Creating Guard Pages.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, HeapAlloc,
VirtualFreeEx, Virtual Lock, VirtualProtect, VirtualQuery

VirtualFree
The VirtualFree function releases or decommits (or both) a region of pages within the
virtual address space of the calling process.

To free memory allocated in another process by the VirtualAllocEx function, use the
VirtualFreeEx function.

,~t~~lt7~jli !~~,:~~·:~j~d~:~;~ri'
::"'&iJ~1JpiF#iry~~?' ,;,' ,Wi O,p~'ra+19~,JYP~'
);L, ,','," ',,'" '",

Parameters
IpAddress

[in] Pointer to the base address of the region of pages to be freed. If the dwFreeType
parameter includes the MEM_RELEASE flag, this parameter must be the base
address returned by the VirtualAlioc function when the region of pages was
reserved.

dwSize
[in] Specifies the size, in bytes, of the region to be freed. If the dwFreeType parameter
includes the MEM_RELEASE flag, this parameter must be zero. Otherwise, the region
of affected pages includes all pages containing one or more bytes in the range from

312 Volume 1 Microsoft Windows Base Services

the /pAddress parameter to (/pAddress+dwSize). This means that a 2-byte range
straddling a page boundary causes both pages to be freed.

dwFreeType
[in] Specifies the type of free operation. This parameter can be one, but not both, of
the following values:

Value

Return Values

Meaning

Decommits the specified region of committed pages.

An attempt to decommit an uncommitted page will not
cause the function to fail. This means that a range of
committed or uncommitted pages can be decommitted
without having to worry about a failure.

Releases the specified region of reserved pages. If this flag
is specified, the dwSize parameter must be zero, or the
function fails.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Virtual Free can perform one of the following operations:

• Decommit a region of committed or uncommitted pages.

• Release a region of reserved pages.

• Decommit and release a region of committed or uncommitted pages.

To release a region of pages, the entire range of pages must be in the same state (all
reserved or all committed) and the entire region originally reserved by the VirtualAlioc
function must be released at the same time. If only part of the pages in the original
reserved region are committed, you must first call Virtual Free to decommit the
committed pages and then call Virtual Free again to release the entire block.

Pages that have been released are free pages available for subsequent allocation
operations. Attempting to read from or write to a free page results in an access violation
exception.

Virtual Free can decommit an uncommitted page; this means that a range of committed
or uncommitted pages can be decommitted without having to worry about a failure.
Decommitting a page releases its physical storage, either in memory or in the paging file
on disk. If a page is decommitted but not released, its state changes to reserved, and it
can be committed again by a subsequent call to VirtualAlioc. Attempting to read from or
write to a reserved page results in an access violation exception.

Chapter 7 Memory Management 313

The current state of the entire range of pages must be compatible with the type of free
operation specified by the dwFreeType parameter. Otherwise, the function fails, and no
pages are released or decommitted.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, VirtualFreeEx

VirtualFreeEx
The VirtualFreeEx function releases decommits (or both) a region of memory within the
virtual address space of a specified process.

Parameters
hProcess

[in] Handle to a process. The function frees memory within the virtual address space
of this process.

You must have PROCESS_VM_OPERATION access to this process. If you do not,
the function fails.

IpAddress
[in] Pointer to the starting address of the region of memory to free.

If the MEM_RELEASE flag is set in the dwFreeType parameter, IpAddress must be
the base address returned by the VirtualAllocEx function when the region was
reserved.

dwSize
[in] Specifies the size,in bytes, of the region of memory to free.

If the MEM_RELEASE flag is set in the dwFreeType parameter, dwSize must be zero.
The function frees the entire region that was reserved in the initial allocation call to
VirtualAllocEx.

314 Volume 1 Microsoft Windows Base Services

If the MEM_DECOMMIT flag is set, the function decommits all memory pages that
contain one or more bytes in the range from the IpAddress parameter to
(/pAddress+dwSize). This means, for example, that a 2-byte region of memory that
straddles a page boundary causes both pages to be decommitted.

The function decommits the entire region that was reserved by VirtualAllocEx. If the
following three conditions are met:

• the MEM_DECOMMIT flag is set

• IpAddress is the base address returned by the VirtualAllocEx function when the
region was reserved

• dwSize is zero

The entire region then enters the reserved state.

dwFreeType
[in] Set of bit flags that specifies the type of free operation. This parameter can be one
of the following values:

Value Meaning

Return Values

The function decommits the specified region of pages. The
pages enter the reserved state.

The function does not fail if you attempt to decommit an
uncommitted page. This means that you can decommit a
range of pages without first determining their current
commitment state.

The function releases the specified region of pages. The
pages enter the free state.

If you specify this flag, dwSize must be zero, and IpAddress
must point to the base address returned by the
VirtualAllocEx function when the region was reserved. The
function fails if either of these conditions is not met.

If any pages in the region are currently committed, the
function first decommits and then releases them.

The function does not fail if you attempt to release pages
that are in different states, some reserved and some
committed. This means that you can release a range of
pages without first determining their current commitment
state.

If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 7 Memory Management 315

Remarks
Each page of memory in a process's virtual address space is in one of the following
states:

State

Free

Reserved

Committed

Meaning

The page is neither committed nor reserved. The page is not
accessible to the process. Attempting to read from or write to a free
page results in an access violation exception.

You can use the VirtualFreeEx function to put reserved or committed
memory pages into the free state.

The page is reserved. The range of addresses cannot be used by
other allocation functions. The page is not accessible and has no
physical storage associated with it. Attempting to read from or write to
a free page results in an access violation exception.

You can use the VirtualFreeEx function to put committed memory
pages into the reserved state, and to put reserved memory pages into
the free state.

The page is committed. Physical storage in memory or in the paging
file on disk is allocated for the page, and access is controlled by a
protection code.

The system initializes and loads each committed page into physical
memory only at the first attempt to read from or write to that page.

When a process terminates, the system releases all storage for
committed pages.

You can use the VirtualAllocEx function to put committed memory
pages into either the reserved or free state.

The VirtualFreeEx function can perform the following operations:

• Decommit a region of committed or uncommitted pages. After this operation, the
pages are in the reserved state.

• Release a region of reserved pages. After this operation, the pages are in the free
state.

• Decommit and release a region of committed or uncommitted pages. After this
operation, the pages are in the free state.

The VirtualFreeEx function can decommit a range of pages that are in different states,
some committed and some uncommitted. This means that you can decommit a range of
pages without first determining the current commitment state of each page.
Decommitting a page releases its physical storage, either in memory or in the paging file
on disk.

316 Volume 1 Microsoft Windows Base Services

If a page is decommitted but not released, its state changes to reserved. You can
subsequently call VirtualAllocEx to commit it, or VirtualFreeEx to release it. Attempting
to read from or write to a reserved page results in an access violation exception.

The VirtualFreeEx function can release a range of pages that are in different states,
some reserved and some committed. This means that you can release a range of pages
without first determining the current commitment state of each page. The entire range of
pages originally reserved by the VirtualAllocEx function must be released at the same
time.

If a page is released, its state changes to free, and it is available for subsequent
allocation operations. Once memory is released or decommitted, you can never refer to
the memory again. Any information that may have been in that memory is gone forever.
Attempting to read from or write to a free page results in an access violation exception. If
you require information, do not decommit or free memory containing that information.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, VirtualAllocEx

Vi rtual Lock
The Virtual Lock function locks the specified region of the process's virtual address
space into memory, ensuring that subsequent access to the region will not incur a page
fault. .

Parameters
IpAddress

[in] Pointer to the base address of the region of pages to be locked.

dwSize
[in] Specifies the size, in bytes, of the region to be locked. The region of affected
pages includes all pages that contain one or more bytes in the range from the

Chapter 7 Memory Management 317

IpAddress parameter to (/pAddress+dwSize). This means that a 2-byte range
straddling a page boundary causes both pages to be locked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
Get Last Error.

Remarks
All pages in the specified region must be committed. Memory protected with the
PAGE_NOACCESS flag cannot be locked.

Locking pages into memory may degrade the performance of the system by reducing the
available RAM and forcing the system to swap out other critical pages to the paging file.
By default, a process can lock a maximum of 30 pages. The default limit is intentionally
small to avoid severe performance degradation. Applications that need to lock larger
numbers of pages must first call the SetProcessWorkingSetSize function to increase
their minimum and maximum working set sizes. The maximum number of pages that a
process can lock is equal to the number of pages in its minimum working set minus a
small overhead.

Pages that a process has locked remain resident even when the process is idle for
extended periods.

To unlock a region of locked pages, use the VirtualUnlock function. Locked pages are
automatically unlocked when the process terminates.

This function is unlike the GlobalLock or LocalLock function in that it does not
increment a lock count and translate a handle into a pointer. There is no lock count for
virtual pages, so multiple calls to the VirtualUnlock function are never required to unlock
a region of pages.

Windows 95/98: The Virtual Lock function is implemented as a stub that has no effect
and always returns a nonzero value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions,
SetProcessWorkingSetSize, Virtual Unlock

318 Volume 1 Microsoft Windows Base Services

VirtualProtect
The Virtual Protect function changes the access protection on a region of committed
pages in the virtual address space of the calling process.

To change the access protection of any process, use the VirtualProtectEx function.

Parameters
IpAddress

[in] Pointer to the base address of the region of pages whose access protection
attributes are to be changed.

All pages in the specified region must be within the same reserved region allocated
when calling the VirtualAlioc or VirtualAllocEx function using the MEM_RESERVE
flag. The pages cannot span adjacent reserved regions that were allocated by
separate calls to VirtualAlioc or VirtualAllocEx using MEM_RESERVE.

dwSize
[in] Specifies the size, in bytes, of the region whose access protection attributes are to
be changed. The region of affected pages includes all pages containing one or more
bytes in the range from the IpAddress parameter to (IpAddress+dwSize). This means
that a 2-byte range straddling a page boundary causes the protection attributes of
both pages to be changed.

flNewProtect
[in] Specifies the new access protection. You can specify anyone of the following
values, along with the PAGE_GUARD and PAGE_NOCACHE values, as necessary:

Value Meaning

PAGE_EXECUTE Enables execute access to the committed region
of pages. An attempt to read or write to the
committed region results in an access violation.

PAGE_EXECUTE_READ Enables execute and read access to the
committed region of pages. An attempt to write to
the committed region results in an access
violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the
committed region of pages.

PAGE_EXECUTE_WRITECOPY Enables execute, read, and write access to the
committed region of pages. The pages are
shared read-on-write and copy-on-write.

PAGE_NOACCESS

PAGE_READONL Y

PAGE_READWRITE

PAGE_WRITECOPY

Chapter 7 Memory Management 319

Windows NT/2000: Pages in the region become
guard pages. Any attempt to access a guard
page causes the system to raise a
STATUS_GUARD_PAGE exception and turn off
the guard page status. Guard pages, thus, act as
a one-shot access alarm.

The PAGE_GUARD flag is a page protection
modifier. An application uses it with one of the
other page protection flags, with one exception: it
cannot be used with PAGE_NOACCESS. When
an access attempt leads the system to turn off
guard page status, the underlying page
protection takes over.

If a guard page exception occurs during a
system service, the service typically returns a
failure status indicator.

Windows 95/98: To simulate this behavior, use
the PAGE_NOACCESS flag.

Disables all access to the committed region of
pages. An attempt to read from, write to, or
execute in the committed region results in an
access violation exception, called a general
protection (GP) fault.

Allows no caching of the committed regions of
pages. The hardware attributes for the physical
memory should be specified as "no cache." This
is not recommended for general usage. It is
useful for device drivers; for example, mapping a
video frame buffer with no caching. This flag is a
page protection modifier, valid only when used
with one of the page protections other than
PAGE_NOACCESS.

Enables read access to the committed region of
pages. An attempt to write to the committed
region results in an access violation. If the
system differentiates between read-only access
and execute access, an attempt to execute code
in the committed region results in an access
violation.

Enables both read and write access to the
committed region of pages.

Windows NT/2000: Gives copy-on-write access
to the committed region of pages.

320 Volume 1 Microsoft Windows Base Services

IpflOldProtect
[out] Pointer to a variable that receives the previous access protection value of the
first page in the specified region of pages. If this parameter is NULL or does not point
to a valid variable, the function fails.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
You can set the access protection value on committed pages only. If the state of any
page in the specified region is not committed, the function fails and returns without
modifying the access protection of any pages in the specified region.

The Virtual Protect function changes the access protection of memory in the calling
process, and the VirtualProtectEx function changes the access protection of memory in
a specified process.

Windows NT/2000: The PAGE_GUARD protection modifier flag establishes guard
pages. Guard pages act as one-shot access alarms. For more information, see Creating
Guard Pages.

Windows 95/98: You cannot use VirtualProtect on any memory region located in the
shared virtual address space (from Ox80000000 through OxBFFFFFFF).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, VirtualAlloc,
VirtualProtectEx

Vi rtual ProtectEx
The VirtualProtectEx function changes the access protection on a region of committed
pages in the virtual address space of a specified process.

Parameters
hProcess

Chapter 7 Memory Management 321

[in] Handle to the process whose memory protection is to be changed. The handle
must have PROCESS_VM_OPERATION access. For more information on
PROCESS_VM_OPERATION, see Open Process.

IpAddress
[in] Pointer to the base address of the region of pages whose access protection
attributes are to be changed.

All pages in the specified region must be within the same reserved region allocated
when calling the VirtualAlioc or VirtualAllocEx function using the MEM_RESERVE
flag. The pages cannot span adjacent reserved regions that were allocated by
separate calls to VirtualAlioc or VirtualAllocEx using MEM_RESERVE.

dwSize
[in] Specifies the size, in bytes, of the region whose access protection attributes are
changed. The region of affected pages includes all pages containing one or more
bytes in the range from the IpAddress parameter to (IpAddresS+dwSize). This means
that a 2-byte range straddling a page boundary causes the protection attributes of
both pages to be changed.

f1NewProtect
[in] Specifies the new access protection. You can specify anyone of the following
values, along with the PAGE_GUARD and PAGE_NOCACHE values, as desired:

Value Meaning

PAGE_EXECUTE Enables execute access to the committed
region of pages. An attempt to read or write to
the committed region results in an access
violation.

PAGE_EXECUTE_READ Enables execute and read access to the
committed region of pages. An attempt to write
to the committed region results in an access
violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the
committed region of pages.

PAGE_EXECUTE_WRITECOPY Enables execute, read, and write access to the
committed region of pages. The pages are
shared read-on-write and copy-on-write.

(continued)

322 Volume 1 Microsoft Windows Base Services

(continued)

Value

PAGE_NOACCESS

PAGE_READONLY

PAGE_READWRITE

PAGE_WRITECOPY

Meaning

Windows NT/2000: Pages in the region become
guard pages. Any attempt to read from or write to a
guard page causes the system to raise a
STATUS_GUARD_PAGE exception and turn off the
guard page status. Guard pages, thus, act as a one­
shot access alarm.

The PAGE_GUARD flag is a page protection
modifier. An application uses it with one of the other
page protection flags, with one exception: it cannot
be used with PAGE_NOACCESS. When an access
attempt leads the system to turn off guard page
status, the underlying page protection takes over.

If a guard page exception occurs during a system
service, the service typically returns a failure status
indicator.

Windows 95/98: To simulate this behavior, use the
PAGE_NOACCESS flag.

Disables all access to the committed region of
pages. An attempt to read from, write to, or execute
in the committed region results in an access
violation exception, called a general protection (GP)
fault.

Allows no caching of the committed regions of
pages. The hardware attributes for the physical
memory should be set to "no cache." This is not
recommended for general usage. It is useful for
device drivers; for example, mapping a video frame
buffer with no caching. This flag is a page protection
modifier, only valid when used with one of the page
protections other than PAGE_NOACCESS.

Enables read access to the committed region of
pages. An attempt to write to the committed region
results in an access violation. If the system
differentiates between read-only access and
execute access, an attempt to execute code in the
committed region results in an access violation.

Enables both read and write access to the
committed region of pages.

Windows NT/2000: Gives copy-on-write access to
the committed region of pages.

Chapter 7 Memory Management 323

IpflOldProtect
[out] Pointer to a variable that receives the previous access protection of the first page
in the specified region of pages. If this parameter is NULL or does not point to a valid
variable, the function fails.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The access protection value can be set only on committed pages. If the state of any
page in the specified region is not committed, the function fails and returns without
modifying the access protection of any pages in the specified region.

VirtualProtectEx is identical to the VirtualProtect function except that it changes the
access protection of memory in a specified process.

Windows NT/2000: The PAGE_GUARD protection modifier flag establishes guard
pages. Guard pages act as one-shot access alarms. For more information, see Creating
Guard Pages.

Windows 95/98: You cannot use VirtualProtectEx on any memory region located in the
shared virtual address space (from Ox80000000 through OxBFFFFFFF).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, VirtualAlloc,
Virtual Protect, VirtualQueryEx

VirtualQuery
The VirtualQuery function provides information about a range of pages in the virtual
address space of the calling process.

To obtain information about a range of pages in the address space of another process,
use the VirtualQueryEx function.

324 Volume 1 Microsoft Windows Base Services

Parameters
IpAddress

[in] Pointer to the base address of the region of pages to be queried. This value is
rounded down to the next page boundary. To determine the size of a page on the host
computer, use the GetSystemlnfo function.

IpBuffer
[out] Pointer to a MEMORY _BASIC_INFORMATION structure in which information
about the specified page range is returned.

dwLength
[in] Specifies the size, in bytes, of the buffer pOinted to by the IpBufferparameter.

Return Values
The return value is the actual number of bytes returned in the information buffer.

Remarks
VirtualQuery provides information about a region of consecutive pages beginning at a
specified address that share the following attributes:

• The state of all pages is the same with the MEM_COMMIT, MEM_RESERVE,
MEM_FREE, MEM_PRIVATE, MEM_MAPPED, or MEM_IMAGE flag.

• If the initial page is not free, all pages in the region are part of the same initial
allocation of pages reserved by a call to the VirtualAlioc function.

• The access of all pages is the same with the PAGE_READONLY,
PAGE_READWRITE, PAGE_NOACCESS, PAGE_WRITECOPY, PAGE_EXECUTE,
PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE,
PAGE_EXECUTE_WRITECOPY, PAGE_GUARD, or PAGE_NOCACHE flag.

The function determines the attributes of the first page in the region and then scans
subsequent pages until it scans the entire range of pages or until it encounters a page
with a nonmatching set of attributes. The function returns the attributes and the size, in
bytes, of the region of pages with matching attributes. For example, if there is a 40-MB
region of free memory, and VirtualQuery is called on a page that is 10MB into the
region, the function will obtain a state of MEM_FREE and a size of 30 MB.

This function reports on a region of pages in the memory of the calling process, and the
VirtualQueryEx function reports on a region of pages in the memory of a specified
process.

Chapter 7 Memory Management 325

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetSystemlnfo,
MEMORY _BASIC_INFORMATION, VirtualQueryEx

VirtualQueryEx
The VirtualQueryEx function provides information about a range of pages within the
virtual address space of a specified process.

Parameters
hProcess

[in] Handle to the process whose memory information is queried. The handle must
have been opened with the PROCESS_QUERY _INFORMATION flag, which enables
using the handle to read information from the process object.

IpAddress
[in] Pointer to the base address of the region of pages to be queried. This value is
rounded down to the next page boundary. To determine the size of a page on the host
computer, use the GetSystemlnfo function.

IpBuffer
[out] Pointer to a MEMORY _BASIC_INFORMATION structure in which information
about the specified page range is returned.

dwLength
[in] Specifies the size, in bytes, of the buffer pOinted to by the IpBuffer parameter.

Return Values
The return value is the actual number of bytes returned in the information buffer.

326 Volume 1 Microsoft Windows Base Services

Remarks
VirtualQueryEx provides information about a region of consecutive pages beginning at
a specified address that share the following attributes:

• The state of all pages is the same with the MEM_COMMIT, MEM_RESERVE,
MEM_FREE, MEM_PRIVATE, MEM_MAPPED, or MEM_IMAGE flag.

• If the initial page is not free, all pages in the region are part of the same initial
allocation of pages reserved by a call to the VirtualAllocEx function.

• The access of all pages is the same with the PAGE_READONLY,
PAGE_READWRITE, PAGE_NOACCESS, PAGE_WRITECOPY, PAGE_EXECUTE,
PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE,
PAGE_EXECUTE_WRITECOPY, PAGE_GUARD, or PAGE_NOCACHE flag.

The VirtualQueryEx function determines the attributes of the first page in the region and
then scans subsequent pages until it scans the entire range of pages, or until it
encounters a page with a nonmatching set of attributes. The function returns the
attributes and the size, in bytes, of the region of pages with matching attributes. For
example, if there is a 40-MB region of free memory, and VirtualQueryEx is called on a
page that is 10MB into the region, the function will obtain a state of MEM_FREE and a
size of 30 MB.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, GetSystemlnfo,
MEMORY _BASIC_INFORMATION, VirtualAllocEx, VirtualProtectEx

Vi rtual Unlock
The VirtualUnlock function unlocks a specified range of pages in the virtual address
space of a process, enabling the system to swap the pages out to the paging file if
necessary.

Parameters
IpAddress

Chapter 7 Memory Management 327

[in] Pointer to the base address of the region of pages to be unlocked.

dwSize
[in] Specifies the size, in bytes, of the region being unlocked. The region of affected
pages includes all pages containing one or more bytes in the range from the
IpAddress parameter to (IpAddress+dwSize). This means that a 2-byte range
straddling a page boundary causes both pages to be unlocked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
For the function to succeed, the range specified need not match a range passed to a
previous call to the Virtual Lock function, but all pages in the range must be locked.

Windows NT/2000: Calling VirtualUnlock on a range of memory that is not locked
releases the pages from the process's working set.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Memory Management Overview, Memory Management Functions, Virtual Lock

ZeroMemory
The ZeroMemory function fills a block of memory with zeros.

328 Volume 1 Microsoft Windows Base Services

Parameters
Destination

[in] Pointer to the starting address of the block of memory to fill with zeros.

Length
[in] Size, in bytes, of the block of memory to fill with zeros.

Return Values
This function has no return value.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Memory Management Overview, Memory Management Functions, CopyMemory,
Fill Memory, MoveMemory

Memory Management Structures

MEMORY _BASIC_INFORMATION
The MEMORY_BASIC_INFORMATION structure contains information about a range of
pages in the virtual address space of a process. The VirtualQuery and VirtualQueryEx
functions use this structure.

Members
BaseAddress

Chapter 7 Memory Management 329

Pointer to the base address of the region of pages.

AliocationBase
Pointer to the base address of a range of pages allocated by the VirtualAlioc
function. The page pointed to by the BaseAddress member is contained within this
allocation range.

Allocation Protect
Specifies the access protection given when the region was initially allocated. This
member can be one of the following values, along with the PAGE_GUARD and
PAGE_NOCACHE values.

Flag Meaning

PAGE_EXECUTE Enables execute access to the committed region
of pages. An attempt to read or write to the
committed region results in an access violation.

PAGE_EXECUTE_READ Enables execute and read access to the
committed region of pages. An attempt to write
to the committed region results in an access
violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the
committed region of pages.

PAGE_EXECUTE_WRITECOPY Enables execute, read, and write access to the
committed region of pages. The pages are
shared read-on-write and copy-on-write.

PAGE_GUARD Windows NT/2000: Protects the page with the
underlying page protection. However, access to
the region causes a "guard page entered"
condition to be raised in the subject process.
This flag is a page protection modifier, valid only
when used with one of the page protections
other than PAGE_NOACCESS.

PAGE_NOACCESS

Windows 95/98: To simulate this behavior, use
the PAGE_NOACCESS flag.

Disables all access to the committed region of
pages. An attempt to read from, write to, or
execute in the committed region results in an
access violation exception, called a general
protection (GP) fault.

(continued)

330 Volume 1 Microsoft Windows Base Services

(continued)

Flag

PAGE_READONLY

PAG E_READWRITE

PAGE_WRITECOPY

RegionSize

Meaning

Allows no caching of the committed regions of
pages. The hardware attributes for the physical
memory should be set to no cache. This is not
recommended for general usage. It is useful for
device drivers; for example, mapping a video frame
buffer with no caching. This flag is a page protection
modifier, valid only when used with one of the page
protections other than PAGE_NOACCESS.
Enables read access to the committed region of
pages. An attempt to write to the committed region
results in an access violation. If the system
differentiates between read-only access and
execute access, an attempt to execute code in the
committed region results in an access violation.
Enables both read and write access to the
committed region of pages.
Windows NT/2000: Gives copy-on-write access to
the committed region of pages.

Specifies the size, in bytes, of the region, beginning at the base address in which all
pages have identical attributes.

State
Specifies the state of the pages in the region. One of the following states is indicated:

State Meaning

Protect

Indicates committed pages for which physical storage has
been allocated, either in memory or in the paging file on disk.
Indicates free pages not accessible to the calling process and
available to be allocated. For free pages, the information in the
AliocationBase, AliocationProtect, Protect, and Type
members is undefined.
Indicates reserved pages where a range of the process's
virtual address space is reserved without any phYSical storage
being allocated. For reserved pages, the information in the
Protect member is undefined.

Specifies the access protection of the pages in the region. One of the flags listed for
the AliocationProtect member is specified.

Type
Specifies the type of pages in the region. The following types are defined:

Chapter 7 Memory Management 331

Type Meaning

Indicates that the memory pages within the region are mapped
into the view of an image section.

Indicates that the memory pages within the region are mapped
into the view of a section.

Indicates that the memory pages within the region are private
(that is, not shared by other processes).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winnt.h; include windows.h.

Memory Management Overview, Memory Management Structures, VirtualAlloc,
VirtualQuery, VirtualQueryEx

MEMORYSTATUS
The MEMORYSTATUS structure contains information about the current state of both
physical memory and virtual memory. The GlobalMemoryStatus function stores
information in a MEMORYSTATUS structure.

~'y:p~d:ef~s\truet ';~MEMaRYSTArUS'{ .;:

'i:':~"~:j~:~:::~:k:~:~e~~~cl';)';" " , .'
{;;);.S:.t~t,l:qwrQt'aiPh.js ~ ••
;.Sltt~v~w~~~nf>hYsf ... ,'
·'.<SIt E::'.l i~~T()t.qfpMeFfl ,,~~ .,'
. : SI~Efr~W~va·t1.p~~File:
. :~£iLT.tlw1Dtatvii'tulf)" .

';"~liLT:dI4AV9l~ 1l;'4rtuaJ(

l'MEMbRv~TA l:~S ;'''LPHEMORY,SlAltU5:

Members
dwLength

Size, in bytes, of the MEMORYSTATUS data structure. You do not need to set this
member before calling the GlobalMemoryStatus function; the function sets it.

dwMemoryLoad
Windows NT 3.1-NT 4.0: The percentage of approximately the last 1000 pages of
physical memory that is in use.

332 Volume 1 Microsoft Windows Base Services

Windows 2000: The approximate percentage of total physical memory that is in use.

dwTotalPhys
Total size, in bytes, of physical memory.

dwAvailPhys
Size, in bytes, of physical memory available.

dwTotalPageFile
Total size possible, in bytes, of the paging file. Note that this number does not
represent the actual physical size of the paging file on disk.

dwAvailPageFile
Size, in bytes, of space available in the paging file. The operating system can enlarge
the paging file from time to time. The dwAvailPageFile member shows the difference
between the size of current committed memory and the current size of the paging file
-it does not show the largest size possible of the paging file.

dwTotalVirtual
Total size, in bytes, of the user mode portion of the virtual address space of the calling
process.

dwAvailVirtual
Size, in bytes, of unreserved and uncommitted memory in the user mode portion of
the virtual address space of the calling process.

Remarks
MEMORYSTATUS reflects the state of memory at the time of the call, as well as the size
of the paging file at that time. The operating system can enlarge the paging file up to the
maximum size set by the administrator.

On computers with more than 4 GB of memory, the MEMORYSTATUS structure can
return incorrect information. Windows 2000 reports a value of -1 to indicate an overflow.
Earlier versions of Windows NT report a value that is the real amount of memory,
module 4 GB. If your application is at risk for this behavior, use the
GlobalMemoryStatusEx function instead of the GlobalMemoryStatus function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.

Memory Management Overview, Memory Management Structures,
GlobalMemoryStatus, GlobalMemoryStatusEx

Chapter 7 Memory Management 333

The PROCESS_HEAP _ENTRY structure contains information about a heap element.
The HeapWalk function uses a PROCESS_HEAP _ENTRY structure to enumerate the
elements of a heap.

Members
IpData

Pointer to the data portion of the heap element.

To initiate a HeapWalk heap enumeration, set IpData to NULL.

If the PROCESS_HEAP _REGION bit flag is set in the wFlags member, IpData points
to the first virtual address used by the region.

If the PROCESS_HEAP _UNCOMMITTED_RANGE bit flag is set in wFlags, IpData
pOints to the beginning of the range of uncommitted memory.

cbData
Specifies the size, in bytes, of the data portion of the heap element.

If the PROCESS_HEAP _REGION bit flag is set in wFlags, cbData specifies the total
size, in bytes, of the address space that is reserved for this region.

If the PROCESS_HEAP _UNCOMMITTED_RANGE bit flag is set in wFlags, cbData
specifies the size, in bytes, of the range of uncommitted memory.

cbOverhead
Specifies the size, in bytes, of the data used by the system to maintain information
about the heap element. These overhead bytes are in addition to the cbData bytes of
the data portion of the heap element.

334 Volume 1 Microsoft Windows Base Services

Value

If the PROCESS_HEAP _REGION bit flag is set in wFlags, cbOverhead specifies the
size, in bytes, of the heap control structures that describe the region.

If the PROCESS_HEAP _UNCOMMITTED_RANGE bit flag is set in wFlags,
cbOverhead specifies the size, in bytes, of the control structures that describe this
uncommitted range.

iRegionlndex
Handle to the heap region that contains the heap element. A heap consists of one or
more regions of virtual memory, each with a unique region index.

In the first heap entry returned for most heap regions, HeapWalk sets the
PROCESS_HEAP _REGION flag in the wFlags member. When this flag is set, the
members of the Region structure contain additional information about the region.

The HeapAlioc function sometimes uses the VirtualAlioc function to allocate large
blocks from a growable heap. The heap manager treats such a large block allocation
as a separate region with a unique region index. HeapWalk does not set the
PROCESS_HEAP _REGION flag in the heap entry returned for a large block region,
so the members of the Region structure are not valid. You can use the VirtualQuery
function to get additional information about a large block region.

wFlags
A set of bit flags that specify properties of the heap element. Some of these flags
affect the meaning of other members of this PROCESS_HEAP _ENTRY data
structure. The following bit-flag constants are defined:

Meaning

If this flag is set, the heap element is an
allocated block.

If both this flag and the
PROCESS_HEAP _ENTRY _MOVEABLE flag
are set, the Block structure becomes valid. The
hMem member of the Block structure contains a
handle to the allocated, moveable memory
block.

This flag is only valid if the
PROCESS_HEAP _ENTRY _BUSY flag is set,
indicating that the heap element is an allocated
block.

If this flag is valid and set, the block was
allocated with the GMEM_DDESHARE flag. For
more information on the GMEM_DDESHARE
flag, see GlobalAlioc.

This flag is only valid if the
PROCESS_HEAP _ENTRY _BUSY flag is set,
indicating that the heap element is an allocated
block.

PROCESS_HEAP _REGION

Chapter 7 Memory Management 335

If this flag is valid and set, the block was
allocated with the LMEM_MOVEABLE or
GMEM_MOVEABLE flag, and the Block
structure becomes valid. The hMem member of
the Block structure contains a handle to the
allocated, moveable memory block.

If this flag is set, the heap element is located at
the beginning of a region of contiguous virtual
memory in use by the heap.

If this flag is set, the IpData member of the
structure points to the first virtual address used
by the region; the cbData member specifies the
total size, in bytes, of the address space that is
reserved for this region; and the cbOverhead
member specifies the size, in bytes, of the heap
control structures that describe the region.

If this flag is set, the Region structure becomes
valid. The dwCommittedSize,
dwUnCommittedSize, IpFirstBlock, and
IpLastBlock members of the structure contain
additional information about the region.

PROCESS_HEAP _UNCOMMITTED_RANGE If this flag is set, the heap element is located in a
range of uncommitted memory within the heap

Block

region.

If this flag is set, the IpData member points to
the beginning of the range of uncommitted
memory; the cbData member specifies the size,
in bytes, of the range of uncommitted memory;
and the cbOverhead member specifies the size,
in bytes, of the control structures that describe
this uncommitted range.

This structure is valid only if both the PROCESS_HEAP _ENTRY _BUSY and
PROCESS_HEAP _ENTRY _MOVEABLE flags in wFlags are set.

The members of the Block structure are as follows:

Member

hMem

dwReserved

Description

Contains a handle to the allocated, moveable memory
block.

Reserved; not used.

336 Volume 1 Microsoft Windows Base Services

Region
This structure is valid only if the PROCESS_HEAP _REGION flag is set in the wFlags
member.

The members of the Region structure are as follows:

Member Description

dwCommittedSize

dwUnCommittedSize

IpFirstBlock

IpLastBlock

Specifies the number of bytes in the heap region that
are currently committed as free memory blocks, busy
memory blocks, or heap control structures.

This is an optional field that is set to zero if the number
of committed bytes is not available.

Specifies the number of bytes in the heap region that
are currently uncommitted.

This is an optional field that is set to zero if the number
of uncommitted bytes is not available.

Pointer to the first valid memory block in this heap
region.

Pointer to the first invalid memory block in this heap
region.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Memory Management Overview, Memory Management Structures, GlobalAlloc,
HeapAlloc, HeapWalk, VirtualAlloc, VirtualQuery

337

CHAPTER 8

Interprocess Communications

Interprocess Communications
The Microsoft Win32 API provides mechanisms for facilitating communications and data
sharing between applications. Collectively, the activities enabled by these mechanisms
are called inter process communications (IPC). Some forms of IPC facilitate the division
of labor among several specialized processes. Other forms of IPC facilitate the division
of labor among computers on a network.

Typically, applications can use IPC categorized as clients or servers. A client is an
application or a process that requests a service from some other application or process.
A server is an application or a process that responds to a client request. Many
applications act as both a client and a server, depending on the situation. For example, a
word processing application might act as a client in requesting a summary table of
manufacturing costs from a spreadsheet application acting as a server. The spreadsheet
application, in turn, might act as a client in requesting the latest inventory levels from an
automated inventory control application.

About Interprocess Communications
As computer users become more sophisticated, they demand more power from the
applications they use. To meet this demand, developers add more features to the
applications, and the applications become larger. Large applications eventually become
unmanageable, both from a development standpOint and from a user-interface
standpOint.

One method you can use to manage larger applications is to produce a specialized
application that provides a limited number of features, then enable it to communicate
and share data with other specialized applications using some form of IPC. It is not
necessary for a single application meet all its users' expectations; applications can
communicate and cooperate.

The following IPC mechanisms are supported by the Win32 API:

• Clipboard
• COM

• Dynamic Data Exchange (DOE)

• File Mapping

• Mailslots

• Pipes

338 Volume 1 Microsoft Windows Base Services

• RPC
• Windows Sockets

• WM_COPYDATA

Choosing an IPC Mechanism
After you decide that your application would benefit from IPC, you must decide which of
the available IPC methods to use. It is likely that an application will use severallPC
mechanisms. For example, all Win32-based applications should provide at least minimal
support for the clipboard. In addition, COM and DOE offer the application an opportunity
to communicate with applications that support these protocols. By supporting the
protocols for the clipboard, COM, and DOE, you enable your application to share data
with other applications, without knowing anything about the applications themselves.

The answers to these questions determine whether an application can benefit by using
one or more of the IPC mechanisms available in the Win32 API.

• Should the application be able to communicate with other applications running on
other computers on a network, or is it sufficient for the application to communicate
only with applications on the local computer?

• Should the application be able to communicate with applications running on other
computers that may be running under different operating systems (that is, MS-DOS,
16-bit Windows, UNIX)?

• Should the user of the application have to choose the other application(s) with which
the application communicates, or can the application implicitly find its cooperating
partners?

• Should the application communicate with many different applications in a general
way, such as allowing cut-and-paste operations with any other application, or should
its communications requirements be limited to a restricted set of interactions with
specific other applications?

• Is performance a critical aspect of the application? All IPC mechanisms include some
amount of overhead.

• Should the application be a GUI application or a console application? Some IPC
mechanisms require a GUI application.

Using the Clipboard for IPC
The clipboard acts as a central depository for data sharing among applications. When a
user performs a cut or copy operation in an application, the application puts the selected
data on the clipboard in one or more standard or application-defined formats. Any other
application can then retrieve the data from the clipboard, choosing from the available
formats that it understands. The clipboard is a very loosely coupled exchange medium,
where applications need only agree on the data format. The applications can reside on
the same computer or on different computers on a network.

Chapter 8 Interprocess Communications 339

Key Point All Win32-based applications should support the clipboard for those data
formats that they understand. For example, a text editor or word processor should be
able at least to produce and accept clipboard data in pure text format. For more
information, see Clipboard.

Using COM for IPC
Applications that use OLE manage compound documents-that is, documents made up
of data from a variety of different applications. OLE provides services that make it easy
for applications to call on other applications for data editing. For example, a word
processor that uses OLE could embed a graph from a spreadsheet. The user could start
the spreadsheet automatically from within the word processor by choosing the
embedded chart for editing. OLE takes care of starting the spreadsheet and presenting
the graph for editing. When the user quit the spreadsheet, the graph would be updated
in the original word processor document. The spreadsheet appears to be an extension of
the word processor.

The foundation of OLE is the Component Object Model (COM). A software component
that uses COM can communicate with a wide variety of other components, even those
that have not yet been written. The components interact as objects and clients.
Distributed COM extends the COM programming model so that it works across a
network.

Key Point OLE supports compound documents and enables an application to include
embedded or linked data that, when chosen, automatically starts another application for
data editing. This enables the application to be extended by any other application that
uses OLE. COM objects provide access to an object's data through one or more sets of
related functions, known as interfaces. For more information, see COM and ActiveX
Object Services.

Using DDE for IPC
The Microsoft Win32 Developer's Reference Library does not include programmatiC
reference about DDE, because there are better technologies that should be used instead
of DDE (see the Key Point at the bottom of this section).

DDE is a protocol that enables applications to exchange data in a variety of formats.
Applications can use DDE for one-time data exchanges or ongoing exchanges in which
the applications update one another as new data becomes available.

The data formats used by DDE are the same as those used by the clipboard. DDE can
be thought of as an extension of the clipboard mechanism. The clipboard is almost
always used for a one-time response to a user command, such as choosing the Paste
command from a menu. DDE is also usually initiated by a user command, but it often
continues to function without further user interaction. You also can define custom DDE

340 Volume 1 Microsoft Windows Base Services

data formats for special-purpose IPC between applications with more tightly coupled
communications requirements.

DOE exchanges can occur between applications running on the same computer or on
different computers on a network.

Key Point DOE is not as efficient as newer technologies. However, you can still use
DOE if other IPC mechanisms are not suitable or if you must interface with an existing
application that only supports DOE. For more information, see Dynamic Data Exchange
and Dynamic Data Exchange Management Library.

Using a File Mapping for IPC
File mapping enables a process to treat the contents of a file as if they were a block of
memory in the process's address space. The process can use simple pOinter operations
to examine and modify the contents of the file. When two or more processes access the
same file mapping, each process receives a pOinter to memory in its own address space
that it can use to read or modify the contents of the file. The processes must use a
synchronization object, such as a semaphore, to prevent data corruption in a
multitasking environment.

You can use a special case of file mapping to provide named shared memory between
processes. If you specify the system swapping file when creating a file-mapping object,
the file-mapping object is treated as a shared memory block. Other processes can
access the same block of memory by opening the same file-mapping object.

File mapping is quite efficient and also provides operating system supported security
attributes that can help prevent unauthorized data corruption. File mapping can be used
only between processes on a local computer; it cannot be used over a network.

Key Point File mapping is an efficient way for two or more processes on the same
computer to share data, but you must provide synchronization between the processes.
For more information, see File Mapping and Synchronization.

Using a Mailslot for IPC
Mailslots provide one-way communication. Any process that creates a mailslot is a
mails/ot server. Other processes, called mails/ot clients, send messages to the mailslot
server by writing a message to it$ mailslot. Incoming messages are always appended to
the mailslot. The mailslot saves the messages until the mailslot server has read them. A
process can be both a mailslot server and a mailslot client, so two-way communication is
possible using multiple mailslots.

A mailslot client can send a message to a mailslot on its local computer, to a mailslot on
another computer, or to all mailslots with the same name on all computers in a specified
network domain. Messages broadcast to all mailslots on a domain can be no longer than

Chapter 8 Interprocess Communications 341

400 bytes, whereas messages sent to a single mailslot are limited only by the maximum
message size specified by the mailslot server when it created the mailslot.

Key Point Mailslots offer an easy way for applications to send and receive short
messages. They also provide the ability to broadcast messages across all computers in
a network domain. For more information, see Mails/ots.

Using Pipes for IPC
The Win32 API provides two types of pipes for two-way communication: anonymous
pipes and named pipes. Anonymous (or unnamed) pipes enable related processes to
transfer information to each other. Typically, an anonymous pipe is used for redirecting
the standard input or output of a child process so that it can exchange data with its
parent process. To exchange data in both directions (duplex operation), you must create
two anonymous pipes. The parent process writes data to one pipe using its write handle,
while the child process reads the data from that pipe using its read handle. Similarly, the
child process writes data to the other pipe and the parent process reads from it.
Anonymous pipes cannot be used over a network, nor can they be used between
unrelated processes.

Named pipes are used to transfer data between processes that are not related
processes and between processes on different computers. Typically, a named-pipe
server process creates a named pipe with a well-known name or a name that is to be
communicated to its clients. A named-pipe client process that knows the name of the
pipe can open its other end, subject to access restrictions specified by named-pipe
server process. After both the server and client have connected to the pipe, they can
exchange data by performing read and write operations on the pipe.

Key Point Anonymous pipes provide an efficient way to redirect standard input or
output to child processes on the same computer. Named pipes provide a simple
programming interface for transferring data between two processes, whether they reside
on the same computer or over a network. For more information, see Pipes.

Using RPC for IPC
The Win32 API provides RPC to enable applications to call functions remotely.
Therefore, RPC makes IPC as easy as calling a function. RPC operates between
processes on a single computer or on different computers on a network.

The RPC provided by the Win32 API is compliant with the Open Software Foundation
(OSF) Distributed Computing Environment (DCE). This means that Win32-based
applications that use RPC are able to communicate with applications running with other
operating systems that support DCE. RPC automatically supports data conversion to
account for different hardware architectures and for byte-ordering between dissimilar
environments.

342 Volume 1 Microsoft Windows Base Services

RPC clients and servers are tightly coupled but still maintain high performance. The
system makes extensive use of RPC to facilitate a client-server relationship between
different parts of the operating system.

Key Point RPC is a function-level interface, with support for automatic data conversion
and for communications with other operating systems. Using RPC, you can create high­
performance, tightly coupled distributed applications. For more information, see
Microsoft RPC Components.

Using Windows Sockets for IPC
Windows Sockets is a protocol-independent interface. It takes advantage of the
communications capabilities of the underlying protocols. In Windows Sockets 2, a socket
handle can be used optionally as a file handle with the standard file 1/0 functions.

Windows Sockets are based on the sockets first popularized by Berkeley Software
Distribution (BSD). An application that uses Windows Sockets can communicate with
other socket implementation on other types of systems. However, not all transport
service providers support all available options.

Key Point Windows Sockets is a protocol-independent interface capable of supporting
current and emerging networking capabilities. For more information, see Overview of
Windows Sockets 2.

USing WM_COPYDATA for IPC
The WM_COPYDATA message enables you to send data from one application to
another. The receiving application gets the data in a COPYDATASTRUCT structure.
When data is being passed between a 16-bit Windows-based application and a Win32-
based application, the system translates any pOinters.

For example code, see the following Platform SDK samples:

• SPY. This sample, located in MSTOOLS\SAMPLES\SDKTOOLS\SPY, uses
WM_COPYDATA to pass data to another application.

• INTEROP. This sample, located in SCT\SAMPLES, uses WM_COPYDATA to
dispatch calls from a 16-bit Windows-based application to a Win32-based DLL.

Chapter 8 Interprocess Communications 343

Interprocess Communications Reference
Interprocess Communications Structures

COPYDATASTRUCT
The COPYDATASTRUCT structure contains data to be passed to another application by
the WM_COPYDATA message.

kyp~~ef·.·st.r'uct.ta~GO;PYDATAsrRUCT
tlLOJict..PTRdwDa'ta;· ,
IlWORD' ., . . .•.. cJl.Ollta:;.
PVOI a lPPa ta: .

COPYDA lASTRUCT;¥ PC OPYDA fA ST RUCT;
Members
dwData

Specifies data to be passed to the receiving application.

cbData
Specifies the size, in bytes, of the data pOinted to by the IpData member.

IpData
Pointer to data to be passed to the receiving application. This member can be NULL.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Inter process Communications Overview, Interprocess Communications Structures,
WM_COPYDATA

Interprocess Communications Messages
The following message is used for interprocess communication:

WM_COPYDATA

WM_COPYDATA
An application sends the WM_COPYDATA message to pass data to another application.

344 Volume 1 Microsoft Windows Base Services

To send this message, call the SendMessage function with the following parameters (do
not call the Post Message function).

Parameters
wParam

Handle to the window passing the data.

IParam
Pointer to a COPYDATASTRUCT structure that contains the data to be passed.

Return Values
If the receiving application processes this message, it should return TRUE; otherwise, it
should return FALSE.

Remarks
The data being passed must not contain pointers or other references to objects not
accessible to the application receiving the data.

While this message is being sent, the referenced data must not be changed by another
thread of the sending process.

The receiving application should consider the data read-only. The IParam parameter is
valid only during the processing of the message. The receiving application should not
free the memory referenced by IParam. If the receiving application must access the data
after Send Message returns, it must copy the data into a local buffer.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Inter process Communications Overview, Inter process Communications Messages,
SendMessage, COPYDATASTRUCT

Chapter 8 Interprocess Communications 345

Atoms
An atom table is a system-defined table that stores strings and corresponding identifiers.
An application places a string in an atom table and receives a 16-bit integer, called an
atom, that can be used to access the string. A string that has been placed in an atom
table is called an atom name.

About Atom Tables
The system provides a number of atom tables. Each atom table serves a different
purpose. For example, dynamic data exchange (DOE) applications use the global atom
table to share item-name and topic-name strings with other applications. Instead of
passing actual strings, a DOE application passes global atoms to its partner application.
The partner uses the atoms to obtain the strings from the atom table.

Applications can use local atom tables to store their own item-name associations.

The system uses atom tables that are not directly accessible to applications. However,
the application uses these atoms when calling the Win32 application programming
interface (API). For example, registered clipboard formats are stored in an internal atom
table used by the system. An application adds atoms to this atom table using the
RegisterClipboardFormat function. Also, registered classes are stored in an internal
atom table used by the system. An application adds atoms to this atom table using the
RegisterClass or RegisterClassEx function.

Global Atom Tables
The global atom table is available to all applications. When an application places a string
in the global atom table, the system generates an atom that is unique throughout the
system. Any application that has the atom can obtain the string it identifies by querying
the global atom table.

An application that defines a private DOE-data format for sharing data with other
applications should place the format name in the global atom table. This technique
prevents conflicts with the names of formats defined by the system or by other
applications, and makes the identifiers (atoms) for the messages or formats available to
the other applications.

Local Atom Tables
An application can use a local atom table to efficiently manage a large number of strings
used only within the application. These strings, and the associated atoms, are available
only to the application that created the table.

An application requiring the same string in a number of structures can reduce memory
usage by using a local atom table. Rather than copying the string into each structure, the
application can place the string in the atom table and include the resulting atom in the
structures. In this way, a string appears in memory only once, but can be used many
times in the application.

346 Volume 1 Microsoft Windows Base Services

Applications also can use local atom tables to save time when searching for a particular
string. To perform a search, an application need only place the search string in the atom
table and compare the resulting atom with the atoms in the relevant structures.
Comparing atoms is typically faster than comparing strings.

Atom tables are implemented as hash tables. By default, a local atom table uses 37
buckets for its hash table. However, you can change the number of buckets used by
calling the InitAtomTable function. If the application calls InitAtomTable, however, it
must do so before calling any other atom-management functions.

Atom Types
Applications can create two types of atoms: string atoms and integer atoms. The values
of integer atoms and string atoms do not overlap, so both types of atoms can be used in
the same block of code.

Several Win32 functions accept either strings or atoms as parameters. When passing an
atom to these functions, an application can use the MAKEINTATOM macro to convert
the atom into a form that can be used by the function.

Atom Reference
Atom Functions

AddAtom
The AddAtom function adds a character string to the local atom table and returns a
unique value (an atom) identifying the string.

A1'OMAddAtom(.·.·
·LPcrsTR.7pStr1n~
)f·

Parameters
IpString

[in] Pointer to the null-terminated string to be added. The string can have a maximum
size of 255 bytes. Strings differing only in case are considered identical. The case of
the first string added is preserved and returned by the GetAtomName function.

Alternatively, you can use an integer atom that has been converted using the
MAKEINTATOM macro. See the Remarks for more information.

Return Values
If the function succeeds, the return value is the newly created atom.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 8 Interprocess Communications 347

Remarks
The AddAtom function stores no more than one copy of a given string in the atom table.
If the string is already in the table, the function returns the existing atom and, in the case
of a string atom, increments the string's reference count.

If IpString has the form "#1234", AddAtom returns an integer atom whose value is the
16-bit representation of the decimal number specified in the string (Ox04D2, in this
example). If the decimal value specified is OxOOOO, or greater than or equal to OxCOOO,
the return value is zero, indicating an error. If IpString was created by the
MAKEINTATOM macro, the low-order word must be in the range Ox0001 through
OxBFFF. If the low-order word is not in this range, the function fails.

If IpString has any other form, AddAtom returns a string atom.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Atoms Overview, Atom Functions, DeleteAtom, FindAtom, GetAtomName,
GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom, GlobalGetAtomName,
MAKEINTATOM

DeleteAtom
The DeleteAtom function decrements the reference count of a local string atom. If the
atom's reference count is reduced to zero, DeleteAtom removes the string associated
with the atom from the local atom table.

ArOM/ :Of! 1 eteAioilt
.A'fOM.·~tQ~{· .1.. ;;·0jit 1'it

)'; .. ;

Parameters
nAtom

[in] Identifies the atom to be deleted.

Return Values
If the function succeeds, the return value is zero.

348 Volume 1 Microsoft Windows Base Services

If the function fails, the return value is the nAtom parameter. To get extended error
information, call GetLastError.

Remarks
A string atom's reference count specifies the number of times the atom has been added
to the atom table. The AddAtom function increments the count on each call. The
DeleteAtom function decrements the count on each call but removes the string only if
the atom's reference count is zero.

Each call to AddAtom should have a corresponding call to DeleteAtom. Do not call
DeleteAtom more times than you call AddAtom, or you might delete the atom while
other clients are using it.

The DeleteAtom function has no effect on an integer atom (an atom whose value is in
the range Ox0001 to OxBFFF). The function always returns zero for an integer atom.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Atoms Overview, Atom Functions, AddAtom, FindAtom, GlobalAddAtom,
GlobalDeleteAtom, GlobalFindAtom, MAKEINTATOM

FindAtom
The FindAtom function searches the local atom table for the specified character string,
and retrieves the atom associated with that string.

Parameters
IpString

[in] Pointer to the null-terminated character string to search for.

Alternatively, you can use an integer atom that has been converted using the
MAKEINTATOM macro. See the Remarks for more information.

Chapter 8 Interprocess Communications 349

Return Values
If the function succeeds, the return value is the atom associated with the given string.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Even though the system preserves the case of a string in an atom table, the search
performed by the FindAtom function is not case-sensitive.

If IpString was created by the MAKEINTATOM macro, the low-order word must be in
the range Ox0001 through OxBFFF. If the low-order word is not in this range, the function
fails.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, GlobalAddAtom,
GlobalDeleteAtom, GlobalFindAtom

GetAtomName
The GetAtomName function retrieves a copy of the character string associated with the
specified local atom.

Parameters
nAtom

[in] Specifies the local atom that identifies the character string to be retrieved.

IpBuffer
[out] Pointer to the buffer for the character string.

350 Volume 1 Microsoft Windows Base Services

nSize
[in] Specifies the size, in TCHARs, of the buffer.

Return Values
If the function succeeds, the return value is the length of the string copied to the buffer,
in TCHARs, not including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The string returned for an integer atom (an atom whose value is in the range Ox0001 to
OxBFFF) is a null-terminated string in which the first character is a pound sign (#) and
the remaining characters represent the unsigned integer atom value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom,
GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom, GlobalGetAtomName,
MAKEINTATOM

GlobalAddAtom
The GlobalAddAtom function adds a character string to the global atom table, and
returns a unique value (an atom) identifying the string.

Parameters
IpString

[in] Pointer to the null-terminated string to be added. The string can have a maximum
size of 255 bytes. Strings that differ in case only are considered identical. The case of
the first string of this name added to the table is preserved and returned by the
GlobalGetAtomName function.

Chapter 8 Interprocess Communications 351

Alternatively, you can use an integer atom that has been converted using the
MAKEINTATOM macro. See the Remarks for more information.

Return Values
If the function succeeds, the return value is the newly created atom.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If the string already exists in the global atom table, the atom for the existing string is
returned, and the atom's reference count is incremented.

The string associated with the atom is not deleted from memory until its reference count
is zero. For more information, see the GlobalDeleteAtom function.

Global atoms are not deleted automatically when the application terminates. For every
call to the GlobalAddAtom function, there must be a corresponding call to the
GlobalDeleteAtom function.

If the IpString parameter has the form "#1234", GlobalAddAtom returns an integer atom
whose value is the 16-bit representation of the decimal number specified in the string
(Ox04D2, in this example). If the decimal value specified is OxOOOO, or greater than or
equal to OxCOOO, the return value is zero, indicating an error. If IpString was created by
the MAKEINTATOM macro, the low-order word must be in the range Ox0001 through
OxBFFF. If the low-order word is not in this range, the function fails.

If IpString has any other form, GlobalAddAtom returns a string atom.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GetAtomName,
GlobalDeleteAtom, GlobalFindAtom, GlobalGetAtomName, MAKEINTATOM

352 Volume 1 Microsoft Windows Base Services

Global DeleteAtom
The GlobalDeleteAtom function decrements the reference count of a global string atom.
If the atom's reference count reaches zero, GlobalDeleteAtom removes the string
associated with the atom from the global atom table.

Parameters
nAtom

[in] Identifies the atom and character string to be deleted.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is the nAtom parameter. To get extended error
information, call GetLastError.

Remarks
A string atom's reference count specifies the number of times the string has been added
to the atom table. The GlobalAddAtom function increments the reference count of a
string that already exists in the global atom table each time it is called.

Each call to GlobalAddAtom should have a corresponding call to GlobalDeleteAtom.
Do not call GlobalDeleteAtom more times than you call GlobalAddAtom, or you might
delete the atom while other clients are using it. Applications using DDE should follow the
rules on global atom management to prevent leaks and premature deletion.

GlobalDeleteAtom has no effect on an integer atom (an atom whose value is in the
range Ox0001 to OxBFFF). The function always returns zero for an integer atom.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom,
GlobalAddAtom, GlobalFindAtom, MAKEINTATOM

Chapter 8 Interprocess Communications 353

GlobalFindAtom
The GlobalFindAtom function searches the global atom table for the specified character
string, and retrieves the global atom associated with that string.

Parameters
IpString

[in] Pointer to the null-terminated character string for which to search.

Alternatively, you can use an integer atom that has been converted using the
MAKEINTATOM macro. See the Remarks for more information.

Return Values
If the function succeeds, the return value is the global atom associated with the given
string.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Even though the system preserves the case of a string in an atom table as it was
originally entered, the search performed by GlobalFindAtom is not case-sensitive.

If IpString was created by the MAKEINT ATOM macro, the low-order word must be in the
range Ox0001 through OxBFFF. If the low-order word is not in this range, the function
fails.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GetAtomName,
GlobalAddAtom, GlobalDeleteAtom, GlobalGetAtomName

354 Volume 1 Microsoft Windows Base Services

GlobalGetAtomName
The GlobalGetAtomName function retrieves a copy of the character string associated
with the specified global atom.

Parameters
nAtom

[in] Identifies the global atom associated with the character string to be retrieved.

IpBuffer
[out] Pointer to the buffer for the character string.

nSize
[in] Specifies the size, in characters, of the buffer.

Return Values
If the function succeeds, the return value is the length of the string copied to the buffer,
in characters, not including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The string returned for an integer atom (an atom whose value is in the range Ox0001 to
OxBFFF) is a null-terminated string in which the first character is a pound sign (#) and
the remaining characters represent the unsigned integer atom value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom,
GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom, MAKEINTATOM

Chapter 8 Interprocess Communications 355

InitAtomTable
The InitAtomTable function initializes the local atom table, and sets the number of hash
buckets to the specified size.

P6qL;tn1tA~QI!I:rabl,(
~WQRoi.1i·$.ft~· II'

Parameters
nSize

[in] Specifies the number of hash buckets to use for the atom table. If this parameter
is zero, the default number of hash buckets are created.

To achieve better performance, specify a prime number in nSize.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
An application does not need to use this function to use a local atom table. The default
number of hash buckets used is 37. If an application uses InitAtomTable, however, it
should call the function before any other atom-management function.

If an application uses a large number of local atoms, it can reduce the time required to
add an atom to the local atom table or to find an atom in the table by increasing the size
of the table. However, this increases the amount of memory required to maintain the
table.

The number of buckets in the global atom table cannot be changed. If the atom table has
already been initialized, either explicitly by a prior call to InitAtomTable, or implicitly by
the use of any atom-management function, InitAtomTable returns success without
changing the number of hash buckets.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GetAtomName,
GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom, GlobalGetAtomName

356 Volume 1 Microsoft Windows Base Services

Atom Macros

MAKEINTATOM
The MAKEINTATOM macro converts the specified atom into a string, so it can be
passed to functions which accept either atoms or strings.

Parameters
wlnteger

Specifies the numeric value to be made into an integer atom. This parameter can be
either an integer atom or a string atom.

Return Values
The return value is an integer atom cast to a string pointer.

Remarks
Although the return value of the MAKEINTATOM macro is cast as an LPTSTR value, it
cannot be used as a string pOinter except when it is passed to atom-management
functions that require an LPTSTR argument.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Atoms Overview, Atom Macros, AddAtom, DeleteAtom, GetAtomName,
GlobalAddAtom, GlobalDeleteAtom, GlobalGetAtomName

Clipboard
The clipboard is a set of functions and messages that enable Win32-based applications
to transfer data. Because all applications have access to the Clipboard, data can be
easily transferred between applications or within an application.

This overview does not describe how to copy and paste linked or embedded objects. For
information on these subjects, see the COM documentation on MSDN.

Chapter 8 Interprocess Communications 357

About the Clipboard
A memory object on the clipboard can be in any data format, called a clipboard format.
Each format is identified by an unsigned integer value. For standard (predefined)
clipboard formats, this value is a constant defined by the Microsoft Win32 API; for
registered clipboard formats, it is the return value of the RegisterClipboardFormat
function.

Except for registering clipboard formats, individual windows perform most clipboard
operations. Typically, a window procedure transfers information to or from the clipboard,
in response to the WM_COMMAND message.

The clipboard is user-driven. A window should transfer data to or from the clipboard only
in response to a command from the user. A window must not use the clipboard to
transfer data without the user's knowledge.

Clipboard Formats
A window can place more than one object on the clipboard, each representing the same
information in a different clipboard format. Users need not be aware of the clipboard
formats used for an object on the clipboard.

Standard Clipboard Formats
The clipboard formats defined by the system are called standard clipboard formats.
These clipboard formats are described in the following table:

Value Meaning

CF_BITMAP

CF_DIB

CF_DIF

CF _DSPBITMAP

CF _DSPENHMETAFILE

A handle to a bitmap (HBITMAP).

A memory object containing a BITMAPINFO structure
followed by the bitmap bits.

Windows 2000: A memory object containing a
BITMAPV5HEADER structure followed by the bitmap
color space information and the bitmap bits.

Software Arts' Data Interchange Format.

Bitmap display format associated with a private format.
The hMem parameter must be a handle to data that
can be displayed in bitmap format in place of the
privately formatted data.

Enhanced metafile display format associated with a
private format. The hMem parameter must be a handle
to data that can be displayed in enhanced metafile
format in place of the privately formatted data.

(continued)

358 Volume 1 Microsoft Windows Base Services

(continued)

Value

CF _DSPMETAFILEPICT

CF _ENHMETAFILE

CF _GDIOBJFIRST
through
CF _GDIOBJLAST

Meaning

Metafile-picture display format associated with a
private format. The hMem parameter must be a handle
to data that can be displayed in metafile-picture format
in place of the privately formatted data.

Text display format associated with a private format.
The hMem parameter must be a handle to data that
can be displayed in text format in place of the privately
formatted data.

A handle to an enhanced metafile (HENHMETAFILE).

Range of integer values for application-defined GDI
object clipboard formats. Handles associated with
clipboard formats in this range are not automatically
deleted using the GlobalFree function when the
clipboard is emptied. Also, when using values in this
range, the hMel17 parameter is not a handle to a GDI
object, but is a handle allocated by the GlobalAlioc
function with the GMEM_DDESHARE and
GMEM_MOVEABLE flags.

A handle to type HDROP that identifies a list of files.
An application can retrieve information about the files
by passing the handle to the DragQueryFile functions.

The data is a handle to the locale identifier associated
with text in the clipboard. When you close the
clipboard, if it contains CF _TEXT data but no
CF _LOCALE data, the system automatically sets the
CF _LOCALE format to the current input locale. You
can use the CF _LOCALE format to associate a
different locale with the clipboard text.

An application that pastes text from the clipboard can
retrieve this format to determine which character set
was used to generate the text.

Note that the clipboard does not support plain text in
multiple character sets. To achieve this, use a
formatted text data type, such as RTF, instead.

Windows NT/2000: The system uses the code page
associated with CF _LOCALE to implicitly convert from
CF _TEXT to CF _UNICODETEXT. Therefore, the
correct code page table is used for the conversion.

Value

CF _METAFILEPICT

CF_OEMTEXT

CF _OWNERDISPLAY

CF_PALETTE

CF_PENDATA

CF _PRIVATEFIRST
through
CF _PRIVATELAST

CF_SYLK

CF_TEXT

Chapter 8 Interprocess Communications 359

Meaning

Handle to a metafile picture format, as defined by the
MET AFILEPICT structure. When passing a
CF _METAFILEPICT handle by means of dynamic data
exchange (DOE), the application responsible for deleting
hMem should also free the metafile referred to by the
CF _METAFILEPICT handle.

Text format containing characters in the OEM character set.
Each line ends with a carriage return/line feed (CR-LF)
combination. A null character signals the end of the data.

Owner-display format. The clipboard owner must display and
update the clipboard viewer window, and receive the
WM_ASKCBFORMATNAME,
WM_HSCROLLCLIPBOARD, WM_PAINTCLIPBOARD,
WM_SIZECLIPBOARD, and WM_ VSCROLLCLIPBOARD
messages. The hMem parameter must be NULL.

Handle to a color palette. Whenever an application places
data in the clipboard that depends on or assumes a color
palette, it should place the palette on the clipboard, too.

If the clipboard contains data in the CF _PALETTE (logical
color palette) format, the application should use the
SelectPalette and RealizePalette functions to realize
(compare) any other data in the clipboard against that logical
palette.

When displaying clipboard data, the clipboard always uses,
as its current palette, any object on the clipboard that is in
the CF _PALETTE format.

Data for the pen extensions to the Microsoft Windows for
Pen Computing.

Range of integer values for private clipboard formats.
Handles associated with private clipboard formats are not
freed automatically; the clipboard owner must free such
handles, typically in response to the
WM_DESTROYCLIPBOARD message.

Represents audio data more complex than can be
represented in a CF _WAVE standard wave format.

Microsoft Symbolic Link (SYLK) format.

Text format. Each line ends with a carriage return/line feed
(CR-LF) combination. A null character signals the end of the
data. Use this format for ANSI text.

(continued)

360 Volume 1 Microsoft Windows Base Services

(continued)

Value

CF_TIFF

CF _UNICODETEXT

Registered Clipboard Formats

Meaning

Represents audio data in one of the standard wave
formats, such as 11-kHz or 22-kHz pulse code
modulation (PCM).

Tagged-image file format.

Windows NT/2000: Unicode text format. Each line
ends with a carriage return/line feed (CR-LF)
combination. A null character signals the end of the
data.

Many applications work with data that cannot be translated into a standard clipboard
format without loss of information. These applications can create their own clipboard
formats. A clipboard format that is defined by an application is called a registered
clipboard format. For example, if a word-processing application copied formatted text to
the clipboard using a standard text format, the formatting information would be lost. The
solution would be to register a new clipboard format, such as Rich Text Format (RTF).

To register a new clipboard format, use the RegisterClipboardFormat function. This
function takes the name of the format and returns and unsigned integer value that
represents the registered clipboard format. To retrieve the name of the registered clipboard
format, pass the unsigned integer value to the GetClipboardFormatName function.

If more than one application registers a clipboard format with exactly the same name, the
clipboard format is registered only once. Both calls to the RegisterClipboardFormat
function return the same value. In this way, two different applications can share data by
using a registered clipboard format.

Private Clipboard Formats
An application can identify a private clipboard format by defining a value in the range
CF _PRIVATEFIRST through CF _PRIVATELAST. An application can use a private
clipboard format for an application-defined data format that does not need to be
registered with the system.

Data handles associated with private clipboard formats are automatically freed by the
system. Windows that use private clipboard formats can use the
WM_DESTROYCLIPBOARD message to free any related resources that are no longer
needed.

For more information about the WM_DESTROYCLIPBOARD message, see Clipboard
Ownership.

An application can place data handles on the clipboard by defining a private format in the
range CF _GDIOBJFIRST through CF _GDIOBJLAST. When using values in this range, the
data handle is not a handle to a GDI object, but a handle allocated by the GlobalAlioc
function with the GMEM_DDESHARE and GMEM_MOVEABLE flags. When the clipboard
is emptied the system automatically deletes the object using the GlobalFree function.

Chapter 8 Interprocess Communications 361

Multiple Clipboard Formats
A window can place more than one clipboard object on the clipboard, each representing
the same information in a different clipboard format. When placing information on the
clipboard, the window should provide data in as many formats as possible. To find out
how many formats are currently used on the clipboard, call the
CountClipboardFormats function.

Clipboard formats that contain the most information should be placed on the clipboard
first, followed by less descriptive formats. A window pasting information from the
clipboard typically retrieves a clipboard object in the first format it recognizes. Because
clipboard formats are enumerated in the order they are placed on the clipboard, the first
recognized format is also the most descriptive.

For example, suppose a user copies styled text from a word-processing document. The
window containing the document might first place data on the clipboard in a registered
format, such as RTF. Subsequently, the window would place data on the clipboard in a
less descriptive format, such as text (CF _TEXT).

When the content of the clipboard is pasted into another window, the window retrieves
data in the most descriptive format it recognizes. If the window recognizes RTF, the
corresponding data is pasted into the document. Otherwise, the text data is pasted into
the document, and the formatting information is lost.

Synthesized Clipboard Formats
The system implicitly converts data between certain clipboard formats: if a window
requests data in a format that is not on the clipboard, the system converts an available
format to the requested format. The system can convert data as indicated in the
following table:

Clipboard Format Conversion Format Platform Support

CF_BITMAP CF_DIB Windows NT/2000,
Windows 95/98

CF_BITMAP CF_DIBV5 Windows 2000

CF_DIB CF_BITMAP Windows NT/2000,
Windows 95/98

CF_DIB CF_PALETTE Windows NT/2000,
Windows 95/98

CF_DIB CF_DIBV5 Windows 2000

CF_DIBV5 CF_BITMAP Windows 2000

CF _DIBV5 CF_DIB Windows 2000

CF_DIBV5 CF_PALETTE Windows 2000

CF _ENHMETAFILE CF _METAFILEPICT Windows NT/2000,
Windows 95/98

(continued)

362 Volume 1 Microsoft Windows Base Services

(continued)

Clipboard Format Conversion Format Platform Support

CF _METAFILEPICT CF _ENHMETAFILE Windows NT/2000,
Windows 95/98

CF_OEMTEXT CF_TEXT Windows NT/2000,
Windows 95/98

CF_OEMTEXT CF _UNICOQETEXT Windows NT/2000

CF_TEXT CF_OEMTEXT Windows NT/2000,
Windows 95/98

CF_TEXT CF _UNICODETEXT Windows NT/2000

CF _UNICODETEXT CF_OEMTEXT Windows NT/2000

CF _UNICODETEXT CF_TEXT Windows NT/2000

If the system provides an automatic type conversion for a particular clipboard format,
there is no advantage to placing the conversion format(s) on the clipboard.

If the system provides an automatic type conversion for a particular clipboard format,
and you call EnumClipboardFormats to enumerate the clipboard data formats, the
system first enumerates the format that is on the clipboard, followed by the formats to
which it can be converted.

When copying bitmaps, it is best to place the CF _DIB or CF _DIBV5 format on the
clipboard, because the colors in a device-dependent bitmap (CF _BITMAP) are relative
to the system palette, which may change before the bitmap is pasted. If the CF _DIB or
CF _DIBV5 format is on the clipboard, and a window requests the CF _BITMAP format,
the system renders the device-independent bitmap (DIB) using the current palette at
that time.

If you place the CF _BITMAP format on the clipboard (and not CF _DIB), the system
renders the CF _DIB or CF _DIBV5 clipboard format as soon as the clipboard is closed.
This ensures that the correct palette is used to generate the DIB. If you place the
CF _DIBV5 format with the bitmap color space information in the clipboard, the system
will convert the bitmap bits from the bitmap color space to the sRGB color space when
CF _DIB or CF _DIBV5 is requested. If CF _DIBV5 is requested when there is no color
space information in the clipboard, the system returns sRGB color space information in
the BITMAPV5HEADER structure. Conversions between other clipboard formats occur
upon demand.

If the clipboard contains data in the CF _PALETIE format, the application should use the
SelectPalette and RealizePalette functions to realize any other data in the clipboard
against that logical palette.

There are two clipboard formats for metafiles: CF _ENHMETAFILE and
CF _METAFILEPICT. Specify CF _ENHMETAFILE for enhanced metafiles and
CF _METAFILEPICT for Windows metafiles.

Chapter 8 Interprocess Communications 363

Clipboard Reference
Clipboard Functions

ChangeClipboardChain
The ChangeClipboardChain function removes a specified window from the chain of
clipboard viewers.

jMt:9.ri@Cl1plioay.dCHafll(' " " >'

, JlWNI(IiW,;4RJiIUH'~:> '7J ;'h:ani:ll e to, w1,ndQw to remove

.i;'I;!~~:~~~N~ :>j"/I;;~~~:1;~",;;~' .n~~t";.w1n4Qw." •.•.••. ':.

Parameters
hWndRemove

. ,"" : ~ ':

[in] Handle to the window to be removed from the chain. The handle must have been
passed to the SetClipboardViewer function.

hWndNewNext
[in] Handle to the window that follows the hWndRemove window in the clipboard
viewer chain. (This is the handle returned by SetClipboardViewer, unless the
sequence was changed in response to a WM_CHANGECBCHAIN message.)

Return Values
The return value indicates the result of passing the WM_CHANGECBCHAIN message
to the windows in the clipboard viewer chain. Because a window in the chain typically
returns FALSE when it processes WM_CHANGECBCHAIN, the return value from
ChangeClipboardChain is typically FALSE. If there is only one window in the chain, the
return value is typically TRUE.

Remarks
The window identified by hWndNewNext replaces the hWndRemove window in the
chain. The SetClipboardViewer function sends a WM_CHANGECBCHAIN message to
the first window in the Clipboard viewer chain.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

364 Volume 1 Microsoft Windows Base Services

Clipboard Overview, Clipboard Functions, ChangeClipboardChain,
SetClipboardViewer, WM_CHANGECBCHAIN

CloseClipboard
The CloseClipboard function closes the clipboard.

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
When the window has finished examining or changing the clipboard, close the clipboard
by calling CloseClipboard. This enables other windows to access the clipboard.

Do not place an object on the clipboard after calling CloseClipboard.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

Clipboard Overview, Clipboard Functions, GetOpenClipboardWindow, OpenClipboard

CountClipboardFormats
The CountClipboardFormats function retrieves the number of different data formats
that are currently on the clipboard.

j~t~~u:ritCj'1P,bi;~:":dFbbii.~ ,v,Qrb:)i ';)i,',:,y\hi{;";:r'!:;:'p'!, i", \

Chapter 8 Interprocess Communications 365

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the number of different data formats currently
on the clipboard.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, EnumClipboardFormats,
RegisterClipboardFormat

EmptyClipboard
The EmptyClipboard function empties the clipboard and frees handles to data in the
Clipboard. The function then assigns ownership of the clipboard to the window that
currently has the clipboard open.

'~cit:; ,i~,pt.Ye11~~.~'(?lQ;tD)t/' ", ~.

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Before calling EmptyClipboard, an application must open the Clipboard by using the
OpenClipboard function. If the application specifies a NULL window handle when
opening the Clipboard, EmptyClipboard succeeds but sets the clipboard owner to
NULL.

366 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

", ~ .. : .

Clipboard Overview, Clipboard Functions, OpenClipboard, SetClipboardData,
WM_DESTROYCLIPBOARD

EnumClipboardFormats
The EnumClipboardFormats function lets you enumerate the data formats that are
available currently on the clipboard.

Clipboard data formats are stored in an ordered list. To perform an enumeration of
clipboard data formats, you make a series of calls to the EnumClipboardFormats
function. For each call, the format parameter specifies an available clipboard format, and
the function returns the next available clipboard format.

Parameters
format

[in] Specifies a clipboard format that is known to be available.

To start an enumeration of clipboard formats, set formatto zero. When format is zero,
the function retrieves the first available clipboard format. For subsequent calls during
an enumeration, set format to the result of the previous EnumClipboardFormat call.

Return Values
If the function succeeds, the return value is the clipboard format that follows the specified
format. In other words, the next available clipboard format.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. If the clipboard is not open, the function fails.

If there are no more clipboard formats to enumerate, the return value is zero. In this
case, the GetLastError function returns the value NO_ERROR. This lets you distinguish
between function failure and the end of enumeration.

Chapter 8 Interprocess Communications 367

Remarks
You must open the clipboard before enumerating its formats. Use the OpenClipboard
function to open the clipboard. The EnumClipboardFormats function fails if the
clipboard is not open.

The EnumClipboardFormats function enumerates formats in the order that they were
placed on the clipboard. If you are copying information to the clipboard, add clipboard
objects, in order, from the most descriptive clipboard format to the least descriptive
clipboard format. If you are pasting information from the clipboard, retrieve the first
clipboard format that you can handle. That will be the most descriptive clipboard format
that you can handle.

The system provides automatic type conversions for certain clipboard formats. In the
case of such a format, this function enumerates the specified format, then enumerates
the formats to which it can be converted. For more information, see Standard Clipboard
Formats and Synthesized Clipboard Formats.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, CountClipboardFormats, OpenClipboard,
RegisterClipboardFormat

GetClipboardData
The GetClipboardData function retrieves data from the clipboard in a specified format.
The clipboard must have been opened previously.

,HAND 1:£ 'G,etCl fpb~ardDat~(:; ,
"uilrt,~uF~rm~t":;',il,;.c:ff~bOal'dfOrmijt
h··'" "';"<

Parameters
uFormat

[in) Specifies a clipboard format. For a description of the standard clipboard formats,
see Standard Clipboard Formats.

368 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is the handle to a clipboard object in the
specified format.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
An application can enumerate the available formats in advance by using the
EnumClipboardFormats function.

The clipboard controls the handle that the GetClipboardData function returns, not the
application. The application should copy the data immediately. The application must
neither free the handle nor leave it locked. The application must not use the handle after
the EmptyClipboard or CloseClipboard function is called, or after the
SetClipboardData function is called with the same clipboard format.

The system performs implicit data format conversions between certain clipboard formats
when an application calls the GetClipboardData function. For example, if the
CF _OEMTEXT format is on the clipboard, a window can retrieve data in the CF _TEXT
format. The format on the clipboard is converted to the requested format on demand. For
more information, see Synthesized Clipboard Formats.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

Clipboard OveNiew, Clipboard Functions, CloseClipboard, EmptyClipboard,
EnumClipboardFormats, SetClipboardData

GetClipboardFormatName
The GetClipboardFormatName function retrieves from the clipboard the name of the
specified registered format. The function copies the name to the specified buffer.

Parameters
format

Chapter 8 Interprocess Communications 369

[in] Specifies the type of format to be retrieved. This parameter must not specify any
of the predefined clipboard formats.

IpszFormatName
[out] Pointer to the buffer that is to receive the format name.

cchMaxCount
[in] Specifies the maximum length, in characters, of the string to be copied to the
buffer. If the name exceeds this limit, it is truncated.

Return Values
If the function succeeds, the return value is the length, in characters, of the string copied
to the buffer.

If the function fails, the return value is zero, indicating that the requested format does not
exist or is predefined. To get extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Clipboard Overview, Clipboard Functions, EnumClipboardFormats,
RegisterClipboardFormat

GetCI ipboardOwner
The GetClipboardOwner function retrieves the window handle of the current owner of
the clipboard.

H\fttn~etC~ 1·p~.r(J'tlWner""oltif,;)·

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the handle to the window that owns the
clipboard.

370 Volume 1 Microsoft Windows Base Services

If the clipboard is not owned, the return value is NULL. To get extended error
information, call GetLastError.

Remarks
The clipboard can still contain data even if the clipboard is not owned currently.

In general, the clipboard owner is the window that last placed data in clipboard. The
EmptyClipboard function assigns clipboard ownership.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, EmptyClipboard, GetClipboardViewer

GetClipboardSequenceNumber
The GetClipboardSequenceNumber function returns the clipboard sequence number
for the current window station .

. gW&iU) .•• •• .• ~~~CT4~5()a!'~~equ~nr;elflitnBe~(V,Qjl)j~,· .:." .• :~.~/ ..

Parameters
This function has no parameters.

Return Values
The return value is the clipboard sequence number. If you do not have
WINSTA_ACCESSCLIPBOARD access to the window station, the function returns zero.

Remarks
The system keeps a serial number for the clipboard for each window station. This
number is incremented whenever the contents of the clipboard change or the clipboard
is emptied. You can track this value to determine whether the clipboard contents have
changed, and optimize creating DataObjects. If clipboard rendering is delayed, the
sequence number is not incremented until the changes are rendered.

Chapter 8 Interprocess Communications 371

.~iirfi6ents
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions

GetClipboardViewer
The GetClipboardViewer function retrieves the handle to the first window in the
clipboard viewer chain.

[ttw.mJ~ef£ClJp6~il;rdj,ew~r(y,olij)i, L

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the handle to the first window in the
clipboard viewer chain.

If there is no clipboard viewer, the return value is NULL. To get extended error
information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.

Clipboard Overview, Clipboard Functions, GetClipboardOwner, SetClipboardViewer

GetOpenClipboardWindow
The GetOpenClipboardWindow function retrieves the handle to the window that
currently has the clipboard open.

372 Volume 1 Microsoft Windows Base Services

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the handle to the window that has the
clipboard open. If no window has the clipboard open, the return value is NULL. To get
extended error information, call GetLastError.

Remarks
If an application or dynamic-link library (DLL) specifies a NULL window handle when
calling the OpenClipboard function, the clipboard is opened but not associated with a
window. In such a case, GetOpenClipboardWindow returns NULL.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, GetClipboardOwner, GetClipboardViewer,
OpenClipboard

GetPriorityClipboardFormat
The GetPriorityClipboardFormat function returns the first available clipboard format in
the specified list.

~1~~~~~~~t~~~;~\~:~~·",1.···'
Parameters
paFormatPriorityList

[in] Pointer to an array of unsigned integers identifying clipboard formats, in priority
order. For a description of the standard clipboard formats, see Standard Clipboard
Formats.

Chapter 8 Interprocess Communications 373

cFormats
[in] Specifies the number of entries in the paFormatPriorityUst array. This value must
not be greater than the number of entries in the list.

Return Values
If the function succeeds, the return value is the first clipboard format in the list for which
data is available. If the clipboard is empty, the return value is NULL. If the clipboard
contains data, but not in any of the specified formats, the return value is -1. To get
extended error information, call GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, CountClipboardFormats,
EnumClipboardFormats, GetClipboardFormatName, IsClipboardFormatAvailable,
RegisterClipboardFormat

IsCI ipboard FormatA vai lable
The IsClipboardFormatAvaiiable function determines whether the clipboard contains
data in the specified format.

Parameters
format

[in] Specifies a standard or registered clipboard format. For a description of the
standard clipboard formats, see Standard Clipboard Formats.

Return Values
If the clipboard format is available, the return value is nonzero.

If the clipboard format is not available, the return value is zero. To get extended error
information, call GetLastError.

374 Volume 1 Microsoft Windows Base Services

Remarks
Typically, an application that recognizes only one clipboard format would call this
function when processing the WM_INITMENU or WM_INITMENUPOPUP message. The
application would then enable or disable the Paste menu item, depending on the return
value. Applications that recognize more than one clipboard format should use the
GetPriorityClipboardFormat function for this purpose.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, CountClipboardFormats,
EnumClipboardFormats, GetPriorityClipboardFormat, RegisterClipboardFormat,
WM_INITMENU, WM_INITMENUPOPUP

OpenCI ipboard
The OpenClipboard function opens the clipboard for examination, and prevents other
applications from modifying the clipboard content.

Parameters
hWndNewOwner

[in] Handle to the window to be associated with the open clipboard. If this parameter is
NULL, the open clipboard is associated with the current task.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
OpenClipboard fails if another window has the clipboard open.

Chapter 8 Interprocess Communications 375

An application should call the CloseClipboard function after every successful call to
OpenClipboard.

The window identified by the hWndNewOwnerparameter does not become the clipboard
owner unless the EmptyClipboard function is called.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, CloseClipboard, EmptyClipboard

RegisterClipboardFormat
The RegisterClipboardFormat function registers a new clipboard format. This format
can be used then as a valid clipboard format.

Parameters
IpszFormat

[in] Pointer to a null-terminated string that names the new format.

Return Values
If the function succeeds, the return value identifies the registered clipboard format.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If a registered format with the specified name already exists, a new format is not
registered and the return value identifies the existing format. This enables more than one
application to copy and paste data using the same registered clipboard format. Note that
the format name comparison is case-insensitive.

Registered clipboard formats are identified by values in the range OxCOOO through
OxFFFF.

376 Volume 1 Microsoft Windows Base Services

When registered clipboard formats are placed on or retrieved from the clipboard, they
must be in the form of an HGLOBAL value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Clipboard Overview, Clipboard Functions, CountClipboardFormats,
EnumClipboardFormats, GetClipboardFormatName

SetClipboardData
The SetClipboardData function places data on the clipboard in a specified clipboard
format. The window must be the current clipboard owner, and the application must have
called the OpenClipboard function. (When responding to the WM_RENDERFORMAT and
WM_RENDERALLFORMATS messages, the clipboard owner must not call
OpenClipboard before calling SetClipboardData.)

Parameters
uFormat

[in] Specifies a clipboard format. This parameter can be a registered format or any of
the standard clipboard formats. For more information, see Registered Clipboard
Formats and Standard Clipboard Formats.

hMem
[in] Handle to the data in the specified format. This parameter can be NULL, indicating
that the window provides data in the specified clipboard format (renders the format)
upon request. If a window delays rendering, it must process the
WM_RENDERFORMAT and WM_RENDERALLFORMATS messages.

After SetClipboardData is called, the system owns the object identified by the hMem
parameter. The application can read the data, but must not free the handle or leave it
locked until the CloseClipboard function is called. (The application can access the
data after calling CloseClipboard.) If the hMem parameter identifies a memory

Chapter 8 Interprocess Communications 377

object, the object must have been allocated using the GlobalAlioc function with the
GMEM_MOVEABLE and GMEM_DDESHARE flags.

Return Values
If the function succeeds, the return value is the handle to the data.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The uFormat parameter can identify a registered clipboard format, or it can be one of the
standard clipboard formats. For more information, see Registered Clipboard Formats
and Standard Clipboard Formats.

If an application calls SetClipboardData, in response to WM_RENDERFORMAT or
WM_RENDERALLFORMATS, the application should not use the handle after
SetClipboardData has been called.

The system performs implicit data format conversions between certain clipboard formats
when an application calls the GetClipboardData function. For example, if the
CF _OEMTEXT format is on the clipboard, a window can retrieve data in the CF _TEXT
format. The format on the clipboard is converted to the requested format on demand. For
more information, see Synthesized Clipboard Formats.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, CloseClipboard, GetClipboardData,
OpenClipboard, RegisterClipboardFormat, WM_RENDERALLFORMATS,
WM_RENDERFORMAT

SetClipboardViewer
The SetClipboardViewer function adds the specified window to the chain of clipboard
viewers. Clipboard viewer windows receive a WM_DRAWCLIPBOARD message whenever
the content of the clipboard changes.

378 Volume 1 Microsoft Windows Base Services

Parameters
hWndNewViewer

[in] Handle to the window to be added to the clipboard chain.

Return Values
If the function succeeds, the return value identifies the next window in the clipboard
viewer chain. If an error occurs, or there are no other windows in the clipboard viewer
chain, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The windows that are part of the clipboard viewer chain, called clipboard viewer
windows, must process the clipboard messages WM_CHANGECBCHAIN and
WM_DRAWCLIPBOARD. Each clipboard viewer window calls the Send Message
function to pass these messages to the next window in the clipboard viewer chain.

A clipboard viewer window must remove itself eventually from the clipboard viewer chain
by calling the ChangeClipboardChain function-for example, in response to the
WM_DESTROY message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Clipboard Overview, Clipboard Functions, ChangeClipboardChain,
GetClipboardViewer, SendMessage

Clipboard Structures

METAFILEPICT
The METAFILEPICT structure defines the metafile picture format used for exchanging
metafile data through the clipboard.

Chapter 8 Interprocess Communications 379

.LQ:N:G'· .. : xExt:···· . "'/>.

;t~i~1~t~~~it&Wt~t~~0;i;~~i"~~~J'~"¥~; ."
Members
mm

Specifies the mapping mode in which the picture is drawn.

xExt
Specifies the size of the metafile picture for all modes except the MM_ISOTROPIC
and MM_ANISOTROPIC modes. (For more information about these modes, see the
yExt member.) The x-extent specifies the width of the rectangle within which the
picture is drawn. The coordinates are in units that correspond to the mapping mode.

yExt
Specifies the size of the metafile picture for all modes except the MM_ISOTROPIC
and MM_ANISOTROPIC modes. The y-extent specifies the height of the rectangle
within which the picture is drawn. The coordinates are in units that correspond to the
mapping mode.

For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can be scaled, the xExt
and yExt members contain an optional suggested size in MM_HIMETRIC units. For
MM_ANISOTROPIC pictures, xExt and yExt can be zero when no suggested size is
supplied. For MM_ISOTROPIC pictures, an aspect ratio must be supplied even when
no suggested size is given. (If a suggested size is given, the aspect ratio is implied by
the size.) To give an aspect ratio without implying a suggested size, set xExt and
yExt to negative values whose ratio is the appropriate aspect ratio. The magnitude of
the negative xExt and yExt values is ignored; only the ratio is used.

hMF
Handle to a memory metafile.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wingdi.h; include windows.h.

Clipboard Overview, Clipboard Structures, SetClipboardData

380 Volume 1 Microsoft Windows Base Services

Clipboard Messages

WM_ASKCBFORMATNAME
The WM_ASKCBFORMATNAME message is sent to the clipboard owner by a clipboard
viewer window to request the name of a CF _OWNERDISPLAY clipboard format.

A window receives this message through its WindowProc function.

Parameters
wParam

Specifies the size, in characters, of the buffer pointed to by the IParam parameter.

IParam
Pointer to the buffer that is to receive the clipboard format name.

Return Values
If an application processes this message, it should return zero.

Remarks
In response to this message, the clipboard owner should copy the name of the owner­
display format to the specified buffer, not exceeding the buffer size specified by the
wParam parameter.

A clipboard viewer window sends this message to the clipboard owner to determine the
name of the CF _OWNERDISPLAY format-for example, to initialize a menu listing
available formats.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Clipboard OveNiew, Clipboard Messages

Chapter 8 Interprocess Communications 381

WM_ CHANGECBCHAIN
The WM_CHANGECBCHAIN message is sent to the first window in the clipboard viewer
chain when a window is being removed from the chain.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the window being removed from the clipboard viewer chain.

IParam
Handle to the next window in the chain following the window being removed. This
parameter is NULL if the window being removed is the last window in the chain.

Return Values
If an application processes this message, it should return zero.

Remarks
Each clipboard viewer window saves the handle to the next window in the clipboard
viewer chain. Initially, this handle is the return value of the SetClipboardViewer
function.

When a clipboard viewer window receives the WM_CHANGECBCHAIN message, it
should call the Send Message function to pass the message to the next window in the
chain, unless the next window is the window being removed. In this case, the clipboard
viewer should save the handle specified by the IParam parameter as the next window in
the chain.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, Send Message, SetClipboardViewer

382 Volume 1 Microsoft Windows Base Services

WM_CLEAR
An application sends a WM_CLEAR message to an edit control or combo box to delete
(clear) the current selection, if any, from the edit control.

To send this message, call the Send Message function with the following parameters.

Parameters
This message has no parameters.

Return Values
This message does not return a value.

Remarks
The deletion performed by the WM_CLEAR message can be undone by sending the edit
control an EM_UNDO message.

To delete the current selection and place the deleted content on the clipboard, use the
WM_CUT message.

When sent to a combo box, the WM_CLEAR message is handled by its edit control. This
message has no effect when sent to a combo box with the CBS_DROPDOWNLIST
style.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, EM_UNDO, WM_COPY, WM_CUT,
WM_PAsTE

Chapter 8 Interprocess Communications 383

WM_COPY
An application sends the WM_COPY message to an edit control or combo box to copy
the current selection to the clipboard in CF _TEXT format.

To send this message, call the Send Message function with the following parameters.

Parameters
This message has no parameters.

Return Values
This message does not return a value.

Remarks
When sent to a combo box, the WM_COPY message is handled by its edit control. This
message has no effect when sent to a combo box with the CBS_DROPDOWNLIST
style.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, WM_CLEAR, WM_CUT, WM_PASTE

An application sends a WM_CUT message to an edit control or combo box to delete
(cut) the current selection, if any, in the edit control, and copy the deleted text to the
clipboard in CF _TEXT format.

To send this message, call the Send Message function with the following parameters.

(continued)

384 Volume 1 Microsoft Windows Base Services

(continued)

Parameters
This message has no parameters.

Return Values
This message does not return a value.

Remarks
The deletion performed by the WM_CUT message can be undone by sending the edit
control an EM_UNDO message.

To delete the current selection without placing the deleted text on the clipboard, use the
WM_CLEAR message.

When sent to a combo box, the WM_CUT message is handled by its edit control. This
message has no effect when sent to a combo box with the CBS_DROPDOWNLIST style.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, EM_UNDO, WM_CLEAR, WM_COPY,
WM_PASTE

WM_DESTROVCLIPBOARD
The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when a call to
the EmptyClipboard function empties the clipboard.

A window receives this message through its WindowProc function.

Chapter 8 Interprocess Communications 385

Parameters
This message has no parameters.

Return Values
If an application processes this message, it should return zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, EmptyClipboard

WM_DRAWCLIPBOARD
The WM_DRA WCLIPBOARD message is sent to the first window in the clipboard
viewer chain when the content of the clipboard changes. This enables a clipboard viewer
window to display the new content of the clipboard.

A window receives this message through its WindowProc function.

L~tstJLT; CA~~8ACl«wltld"QwPtcic(; " . ..
cc H1IIMD hWnrt ... N nllrldTe1:t;> Wl ntlow~

,:OIMT/l!Msg .·1/WM":'PRAWC t IPBOARD
... WPARAM'wParqm, f1 ,notu$ed~.

lpA.AAM'J1>aram· !jnot'us~fi •
);

Parameters
This message has no parameters.

Remarks
Only clipboard viewer windows receive this message. These are windows that have
been added to the clipboard viewer chain by using the SetClipboardViewer function.

Each window that receives the WM_DRAWCLIPBOARD message must call the
Send Message function to forward the message to the next window in the clipboard
viewer chain. The handle to the next window in the chain is returned by
SetClipboardViewer, and may change in response to a WM_CHANGECBCHAIN
message.

386 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, SendMessage, SetClipboardViewer,
WM_CHANGECBCHAIN

WM_HSCROLLCLIPBOARD
The WM_HSCROLLCLIPBOARD message is sent to the clipboard owner by a clipboard
viewer window. This occurs when the clipboard contains data in the
CF _OWNERDISPLAY format and an event occurs in the clipboard viewer's horizontal
scroll bar. The owner should scroll the clipboard image and update the scroll bar values.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the clipboard viewer window.

IParam
The low-order word of IParam specifies a scroll bar event. This parameter can be one
of the following values:

Value

SB_ENDSCROLL

SB_LEFT

SB_LlNELEFT

SB_LlNERIGHT

SB_PAGELEFT

SB_PAGERIGHT

SB_RIGHT

Meaning

End scroll.

Scroll to upper left.

Scroll left by one unit.

Scroll right by one unit.

Scroll left by the width of the window.

Scroll right by the width of the window.

Scroll to lower right.

SB_ THUMBPOSITION

Chapter 8 Interprocess Communications 387

Scroll to absolute position. The current position is
specified by the high-order word.

The high-order word of IParam specifies the current position of the scroll box, if the
low-order word of IParam is SB_ THUMBPOSITION; otherwise, the high-order word is
not used.

Return Values
If an application processes this message, it should return zero.

Remarks
The clipboard owner can use the ScroliWindow function to scroll the image in the
clipboard viewer window and invalidate the appropriate region.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

WM_PAINTCLIPBOARD
The WM_PAINTCLIPBOARD message is sent to the clipboard owner by a clipboard
viewer window when the clipboard contains data in the CF _OWNERDISPLAY format
and the clipboard viewer's client area needs repainting.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the clipboard viewer window.

IParam
Handle to a global memory object that contains a PAINTSTRUCT structure. The
structure defines the part of the client area to paint.

388 Volume 1 Microsoft Windows Base Services

Return Values
If an application processes this message, it should return zero.

Remarks
To determine whether the entire client area, or just a portion of it, needs repainting, the
clipboard owner must compare the dimensions of the drawing area given in the repaint
member of PAINTSTRUCT to the dimensions given in the most recent
WM_SIZECLIPBOARD message.

The clipboard owner must use the GlobalLoek function to lock the memory that contains
the PAINTSTRUCT structure. Before returning, the clipboard owner must unlock that
memory by using the GlobalUnloek function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, GlobalLoek, GlobalUnloek, PAINTSTRUCT,
WM_SIZECLIPBOARD

An application sends a WM_PASTE message to an edit control or combo box to copy
the current content of the clipboard to the edit control at the current caret position. Data
is inserted only if the clipboard contains data in CF _TEXT format.

To send this message, call the SendMessage function with the following parameters.

Parameters
This message has no parameters.

Return Values
This message does not return a value.

Chapter 8 Interprocess Communications 389

Remarks
When sent to a combo box, the WM_PASTE message is handled by its edit control. This
message has no effect when sent to a combo box with the CBS_DROPDOWNLIST
style.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, WM_CLEAR, WM_COPY, WM_CUT

WM_RENDERALLFORMATS
The WM_RENDERALLFORMATS message is sent to the clipboard owner before it is
destroyed, if the clipboard owner has delayed rendering one or more clipboard formats.
For the content of the clipboard to remain available to other applications, the clipboard
owner must render data in all the formats it is capable of generating, and place the data
on the clipboard by calling the SetClipboardData function.

A window receives this message through its WindowProc function.

Parameters
This message has no parameters.

Return Values
If an application processes this message, it should return zero.

Remarks
When responding to a WM_RENDERALLFORMATS message, the clipboard owner
must call the OpenClipboard and EmptyClipboard functions before calling
SetClipboardData.

390 Volume 1 Microsoft Windows Base Services

When the application returns, the system removes any unrendered formats from the list
of available clipboard formats. For information about delayed rendering, see
SetClipboardData.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, EmptyClipboard, OpenClipboard,
SetClipboardData, WM_RENDERFORMAT

WM_RENDERFORMAT
The WM_RENDERFORMAT message is sent to the clipboard owner if it has delayed
rendering a specific clipboard format and if an application has requested data in that
format. The clipboard owner must render data in the specified format and place it on the
clipboard by calling the SetClipboardData function.

A window receives this message through its WindowProc function.

Parameters
wParam

Specifies the clipboard format to be rendered.

IParam
This parameter is not used.

Return Values
If an application processes this message, it should return zero.

Remarks
When responding to a WM_RENDERFORMAT message, the clipboard owner must not
open the clipboard before calling SetClipboardData.

Chapter 8 Interprocess Communications 391

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, SetClipboardData,
WM_RENDERALLFORMATS

WM_SIZECLIPBOARD
The WM_SIZECLIPBOARD message is sent to the clipboard owner by a clipboard
viewer window, when the clipboard contains data in the CF _OWNERDISPLAY format
and the clipboard viewer's client area has changed size.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the clipboard viewer window.

IParam
Handle to a global memory object that contains a RECT structure. The structure
specifies the new dimensions of the clipboard viewer's client area.

Return Values
If an application processes this message, it should return zero.

Remarks
When the clipboard viewer window is about to be destroyed or resized, a
WM_SIZECLIPBOARD message is sent with a null rectangle (0, 0, 0, 0) as the new
size. This permits the clipboard owner to free its display resources.

The clipboard owner must use the GlobalLock function to lock the memory object that
contains RECT. Before returning, the clipboard owner must unlock the object by using
the GlobalUnlock function.

392 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, GlobalLock, GlobalUnlock, RECT

WM_ VSCROLLCLIPBOARD
The WM_ VSCROLLCLIPBOARD message is sent to the clipboard owner by a clipboard
viewer window, when the clipboard contains data in the CF _OWNERDISPLAY format
and an event occurs in the clipboard viewer's vertical scroll bar. The owner should scroll
the clipboard image and update the scroll bar values.

A window receives this message through its WindowProc function.

Parameters
wParam

Handle to the clipboard viewer window.

IParam
The low-order word of IParam specifies a scroll bar event. This parameter can be one
of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LlNEDOWN

SB_LlNEUP

SB_PAGEDOWN

SB_PAGEUP

SB_ THUMBPOSITION

Meaning

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to absolute position. The current position is
specified by the high-order word.

Scroll to upper left.

Chapter 8 Interprocess Communications 393

The high-order word of IParam specifies the current position of the scroll box, if the
low-order word of IParam is SB_ THUMBPOSITION; otherwise, the high-order word of
IParam is not used.

Return Values
If an application processes this message, it should return zero.

Remarks
The clipboard owner can use the ScroliWindow function to scroll the image in the
clipboard viewer window and invalidate the appropriate region.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Clipboard Overview, Clipboard Messages, HIWORD, LOWORD, ScroliWindow

Handles and Objects
An object is a data structure that represents a system resource, such as a file, thread, or
graphic image. An application cannot directly access object data or the system resource
that an object represents. Instead, an application must obtain an object handle, which it
can use to examine or modify the system resource. Each handle has an entry in an
internally maintained table. These entries contain the addresses of the resources and
the means to identify the resource type.

About Handles and Objects
The system uses objects and handles to regulate access to system resources for two
reasons. First, the use of objects ensures that Microsoft can update system functionality,
as long as the original object interface is maintained. When subsequent versions of the
system are released, you can use the updated object with little or no additional work.

Secondly, the use of objects enables you to take advantage of Microsoft Windows
NTIWindows 2000 security. Each object has its own access-control list (ACL) that
specifies the actions a process can perform on the object. Windows NTIWindows 2000
examines an object's ACL each time an application creates a handle to the object. For
more information, see Access Control.

394 Volume 1 Microsoft Windows Base Services

Object Manager
An object consists of a standard header and object-specific attributes. Because all
objects have the same structure, there is a single object manager that maintains all
objects.

The object header includes items such as the object name, so that other processes can
reference the object by name, and a security descriptor, so that the object manager can
control the processes that access the system resource.

The tasks that the object manager performs include the following:

• Creating objects

• Verifying that a process has the right to use the object

• Creating object handles and returning them to the caller

• Maintaining resource quotas

• Creating duplicate handles

• Closing handles to objects

Object Interface
The Microsoft Win32 application programming interface (API) provides functions that
perform the following tasks:

• Create an object

• Get an object handle

• Get information about the object

• Set information about the object

• Close the object handle

• Destroy the object

Some of these tasks are not necessary for each object. Some of these tasks are
combined for certain objects. For example, an application can create an event object.
Other applications can open the event to obtain a unique handle to this event object. As
each application finishes using the event, it closes its handle to the object. When there
are no remaining open handles to the event object, the system destroys the event
object. In contrast, an application can obtain a handle to an existing window object.
When the window object is no longer needed, the application must destroy the object,
which invalidates the window handle.

Occasionally, an object remains in memory after all object handles have been closed.
For example, a thread could create an event object and wait on the event handle. While
the thread is waiting, another thread could close the same event object handle. The
event object remains in memory, without any event object handles, until the event object
is set to the signaled state and the wait operation is completed. At this time, the system
removes the object from memory.

Chapter 8 Interprocess Communications 395

Handles and objects consume memory. Therefore, to preserve system performance, you
should close handles and delete objects as soon as they are no longer needed. If you do
not do this, your application can hurt system performance, due to excessive use of the
paging file.

Note When a process terminates, the system automatically closes handles and deletes
objects created by the process. However, when a thread terminates, the system usually
does not close handles or delete objects. The only exceptions are window, hook, window
position, and dynamic data exchange (DOE) conversation objects; these objects are
destroyed when the creating thread terminates.

Handle Limitations
Some objects support only one handle at a time. The system provides the handle when
an application creates the object, and invalidates the handle when the application
destroys the object. Other objects support multiple handles to a single object. The
operating system automatically removes the object from memory after the last handle to
the object is closed.

The total number of open handles in the system is limited only by the amount of memory
available. However, a single process can have no more than 65,536 handles. Some
object types support a limited number of handles per process, while other object types
support a limited number of handles in the system.

Handle Inheritance
A child process can inherit handles from its parent process. An inherited handle is valid
only in the context of the child process. To enable a child process to inherit open
handles from its parent process, use the following steps:

1. Create the handle with the blnheritHandle member of the SECURITY_ATTRIBUTES
structure set to TRUE.

2. Create the child process using the CreateProcess function, with the blnheritHandles
parameter set to TRUE.

The DuplicateHandle function duplicates a handle to be used either in the current
process or in another process. If an application duplicates one of its handles for another
process, the duplicated handle is valid only in the context of the other process.

A duplicated or inherited handle is a unique value, but it refers to the same object as the
original handle. Processes can inherit or duplicate handles to the following types of
objects:

396 Volume 1 Microsoft Windows Base Services

Access Token Mailslot

Communications device Mutex

Console input Pipe

Console screen buffer Process

Desktop Registry key

Directory Semaphore

Event Socket

File Thread

File mapping Timer

Job Window station

All other objects are private to the process that created them; their object handles cannot
be duplicated or inherited.

For more information, see Inheritance.

Object Categories
The system provides three categories of objects: user, graphical device interface (GDI),
and kernel. The system uses user objects to support window management; GDI objects
to support graphics; and kernel objects to support memory management, process
execution, and interprocess communications (IPC). For information about creating and
using a specific object, refer to the associated overview:

User object Overview

Accelerator table

Caret

Cursor

ODE conversation

Desktop

Hook

Icon

Menu

Window

Window position

Window station

GOlobject

Bitmap

Brush

Keyboard Accelerators

Carets

Cursors

Dynamic Data Exchange Management Library

Window Stations and Desktops

Hooks

Icons

Menus

Windows

Windows

Window Stations and Desktops

Overview

Bitmaps

Brushes

DC

Enhanced metafile

Enhanced-metafile DC

Font

Memory DC

Metafile

Metafile DC

Palette

Pen and extended pen

Region

Kernel object

Access token

Change notification

Communications device

Console input

Console screen buffer

Event

Event log

File

File mapping

Find file

Heap

Job

Mailslot

Module

Mutex

Pipe

Process

Semaphore

Socket

Thread

Timer

Update resource

User Objects

Chapter 8 Interprocess Communications 397

Device Contexts

Metafiles

Metafiles

Fonts and Text

Device Contexts

Metafiles

Metafiles

Colors

Pens

Regions

Overview

Access Control

File liD

Communications

Consoles and Character-Mode Support

Consoles and Character-Mode Support

Synchronization

Event Logging

File liD

File Mapping

File liD

Memory Management

Job Objects

Mailslots

Dynamic-Link Libraries

Synchronization

Pipes

Processes and Threads

Synchronization

Windows Sockets 2

Processes and Threads

Synchronization

Resources

User objects support only one handle per object. Processes cannot inherit or duplicate
handles to user objects. There is no per-process limit on user handles, but there is a
system-wide limit of 65,536 user handles.

398 Volume 1 Microsoft Windows Base Services

Handles to user objects are public to all processes. That is, any process can use the
user object handle, provided that the process has security access to the object.

In Figure 8-1, an application creates a window object. The CreateWindow function
creates the window object and returns an object handle.

1. Executes the
CreateWindow function.

Figure 8-1: Creating a window object.

I

: Virtual address space
L ___________ __ J

2. CreateWindow creates
a window obiect in memor..\'.

After the window object has been created, the application can use the window handle to
display or change the window. The handle remains valid until the window object is
destroyed.

In Figure 8-2, the application destroys the window object. The DestroyWindow function
removes the window object from memory, which invalidates the window handle.

1. Executes the
D estrol'Window function.

Figure 8-2: Destroying a window object.

Virtual address space
___________ __ J

2. D estroyWindow removes
the window obiect from memor..\'.

The following table lists the user objects, along with each object's creator and destroyer
functions. The creator functions either create the object and an object handle or simply
return the existing object handle. The destroyer functions remove the object from
memory, which invalidates the object handle:

User Objects

Object

Accelerator
table

Caret

Creator function Destroyer function

CreateAcceleratorTable DestroyAcceleratorTable

CreateCaret DestroyCaret

Chapter 8 Interprocess Communications 399

Cursor

DDE
conversation

Desktop

Hook

Icon

Menu

Window

Window
position

CreateCursor, LoadCursor,
Loadlmage

DdeConnect,
DdeConnectList

GetThreadDesktop

SetWindowsHookEx

Createlconlndirect,
Loadlcon, Loadlmage·

CreateMenu,
CreatePopupMenu,
LoadMenu,
LoadMenulndirect

CreateWindow,
CreateWindowEx,
CreateDialogParam,
CreateDialoglndirectParam,
CreateMDIWindow

BeginDeferWindowPos

Window station GetProcessWindowStation

GOIObjects

DestroyCursor

DdeDisconnect,
DdeDisconnectList

Applications cannot delete this
object.

UnhookWindowsHookEx

Destroylcon

DestroyMenu

DestroyWindow

EndDeferWindowPos

Applications cannot delete this
object.

GDI objects support only one handle per object. Handles to GDI objects are private to a
process. That is, only the process that created the GDI object can use the object handle.
A single process may have no more than 16,384 open GDI object handles.

The following table lists the GDI objects, along with each object's creator and destroyer
functions. The creator functions either create the object and an object handle or simply
return the existing object handle. The destroyer functions remove the object from
memory, which invalidates the object handle.

GOIObjects

Object

Bitmap

Creator function

CreateBitmap,
CreateBitmaplndirect,
CreateCompatibleBitmap,
CreateDIBitmap,
CreateDIBSection,
CreateDiscardableBitmap

Destroyer function

DeleteObject

(continued)

400 Volume 1 Microsoft Windows Base Services

(continued)

Object

Brush

DC

Enhanced
metafile
Enhanced­
metafile DC

Font

Memory DC
Metafile

Metafile DC

Palette

Pen and
extended pen

Region

Creator function

CreateBrushlndirect,
CreateDIBPatternBrush,
CreateDIBPatternBrushPt,
CreateHatchBrush,
CreatePatternBrush,
CreateSolidBrush
CreateDC
CreateEnhMetaFile

CreateEnhMetaFile

CreateFont, CreateFontlndirect
CreateCompatibleDC
CreateMetaFile
CreateMetaFile
CreatePalette
CreatePen, CreatePenlndirect,
ExtCreatePen
CombineRgn, CreateEllipticRgn,
CreateEllipticRgnlndirect,
CreatePolygonRgn,
CreatePolyPolygonRgn,
CreateRectRgn,
CreateRectRgnlndirect,
CreateRoundRectRgn,
ExtCreateRegion, PathToRegion

Kernel Objects

Destroyer function

DeleteObject

DeleteDC, ReleaseDC
DeleteEnhMetaFile

CloseEnhMetaFile

DeleteObject
DeleteDC
DeleteMetaFile
CloseMetaFile
DeleteObject
DeleteObject

DeleteObject

Kernel object handles are process specific. That is, a process must either create the
object or open an existing object to obtain a kernel object handle.

The per-process limit on kernel handles is 2A30.

Any process can create a new handle to an existing kernel object (even one created by
another process), provided that the process knows the name of the object and has
security access to the object. Kernel object handles include access rights that indicate
the actions that can be granted or denied to a process. An application specifies access
rights when it creates an object or obtains an existing object handle. Each type of kernel
object supports its own set of access rights. For example, event handles can have "set"
or ''wait'' access (or both), file handles can have "read" or "write" access (or both), and so
on. For more information, see Securable Objects.

Chapter 8 Interprocess Communications 401

In Figure 8-3, an application creates an event object. The CreateEvent function creates
the event object and returns an object handle.

1. Executes the
CreateE yent function.

Figure 8-3: Creating an event object.

Virtual address space

2. CreateE yent creates
an event object in memory.

After the event object has been created, the application can use the event handle to set
or wait on the event. The handle remains valid until the application closes the handle or
terminates.

Most kernel objects support multiple handles to a single object. For example, the
application in Figure 8-3 could obtain additional event object handles by using the
OpenEvent function, as shown in Figure 8-4.

1. Executes the
CreateE yent function.
4. Executes the
o penE yent function.

3. CreateE yent returns
an event object handle.

5. OpenE yent creates
a second handle to the
event object

r - - - - - - - - - - - - -,
I
I
I

I

: Virtual address space
L _____________ J

2. CreateE yent creates
an event object in memory.

Figure 8-4: Obtaining additional event object handles.

This method enables an application to have handles with different access rights. For
example, Handle 1 might have "set" and "wait" access to the event, and Handle 2 might
have only "wait" access.

If another process knows the event name and has security access to the object, it can
create its own event object handle by using Open Event. The creating application could
also duplicate one of its handles into the same process, or into another process, by
using the DuplicateHandle function.

An object remains in memory as long as at least one object handle exists. In the
following illustration, the applications use the CloseHandle function to close their event
object handles. When there are no event handles, the system removes the object from
memory, as shown in Figure 8-5.

402 Volume 1 Microsoft Windows Base Services

1. E !!ecutes the
CloseHandle function.

3. E!!ecutes the
CloseHandle function.

Figure 8-5: Closing event object handles.

r-------------
I

L _____________ J

5. After the last handle to
the object is closed, the
s'ystem removes the object
from memow

The system manages file objects somewhat differently from other kernel objects. File
objects contain the file pOinter-the pointer to the next byte to be read or written in a file.
Whenever an application creates a new file handle, the system creates a new file object.
Therefore, more than one file object can refer to a single file on disk, as shown in Figure
8-6.

8. E !!ecutes the
CreateFile function.

3. CreateFile
creates a file object.
r--- --- --- ----,

I Virtual address
: space1 I L. ____________ ...

6. CreateFile
creates a second file
obiect for the file.
r- --- --- -----,

I

: Virtual address :
I space 2 I 1 ____________ J

8.CreateFile creates a
third file obiect for the file.

2. CreateFile
creates a file in
memory and,
evenhiall'y,
on disk.

Figure 8-6: Multiple file objects referring to a single file on disk.

Only through duplication or inheritance can more than one file handle refer to the same
file object, as shown in Figure 8-7.

Object

1. Executes the
CreateFile function.

5. Executes the
D uplicateH andle function.

6. D uplicateH andle
creates a handle for
another process to
access the file object.

Chapter 8 Interprocess Communications 403

3. CreateFile creates
a file object for the file. r----------- --,

I

I
I

I

I Virtual address space: 2. CreateFile
l.. ____________ J creates a file

in memory and,
eventually,
on disk.

Figure 8-7: Multiple file handles referring to the same file object.

The following table lists each of the kernel objects, along with each object's creator and
destroyer functions. The creator functions either create the object and an object handle
or create a new existing object handle. The destroyer functions close the object handle.
When an application closes the last handle to a kernel object, the system removes the
object from memory:

Kernel Objects

Creator function Destroyer function

Access token CreateRestrictedToken,
DuplicateToken,
DuplicateTokenEx,
OpenProcessToken,
OpenThreadToken

CloseHandle

Change notification

Communications device

Console input

Console screen buffer

Event

Event log

File

FindFirstChangeNotification

CreateFile

CreateFile, with CONIN$

Create File, with CONOUT$

CreateEvent, Open Event

OpenBackupEventLog,
OpenEventLog,
RegisterEventSource

CreateFile

FindCloseChangeNotification

CloseHandle

CloseHandle

CloseHandle

CloseHandle

CloseEventLog

CloseHandle, DeleteFile

(continued)

404 Volume 1 Microsoft Windows Base Services

(continued)

Object Creator function

File mapping CreateFileMapping,
OpenFileMapping

Find file FindFirstFile
Heap HeapCreate
Job CreateJobObject
Mailslot CreateMaiislot
Module GetModuleHandle, LoadLibrary
Mutex CreateMutex, OpenMutex
Pipe CreateNamedPipe, CreatePipe

Process CreateProcess,
GetCurrentProcess,
OpenProcess

Semaphore CreateSemaphore,
OpenSemaphore

Socket socket, accept
Thread CreateRemoteThread,

CreateThread, GetCurrentThread
Timer CreateWaitableTimer,

OpenWaitableTimer
Update resource BeginUpdateResource

Handle and Object Reference
Handle and Object Functions

CloseHandle

Destroyer function

CloseHandle

FindClose
HeapDestroy
CloseHandle
CloseHandle
FreeLibrary
CloseHandle
CloseHandle,
DisconnectNamedPipe
CloseHandle,
TerminateProcess

CloseHandle

CloseHandle
CloseHandle,
TerminateThread
CloseHandle

EndUpdateResource

The CloseHandle function closes an open object handle.

Jl~:\~;f'"
~ HAi1i),L£ ,"

}.i': "

Parameters
hObject

[in/out] Handle to an open object.

Return Values
If the function succeeds, the return value is nonzero.

Chapter 8 Interprocess Communications 405

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Closing an invalid handle raises an exception when the application
is running under a debugger. This includes closing a handle twice, and using
CloseHandle on a handle returned by the FindFirstFile function.

Remarks
The CloseHandle function closes handles to the following objects:

Access token Mailslot

Communications device Mutex

Console input Named pipe

Console screen buffer Process

Event Semaphore

File Socket

File mapping Thread

Job

CloseHandle invalidates the specified object handle, decrements the object's handle
count, and performs object retention checks. After the last handle to an object is closed,
the object is removed from the system.

Closing a thread handle does not terminate the associated thread. To remove a thread
object, you must terminate the thread, then close all handles to the thread.

Use CloseHandle to close handles returned by calls to the CreateFile function. Use
FindClose to close handles returned by calls to FindFirstFile.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Handles and Objects Overview, Handle and Object Functions, CreateFile, DeleteFile,
FindClose, FindFirstFile

406 Volume 1 Microsoft Windows Base Services

Du pi icateHand Ie
The DuplicateHandle function duplicates an object handle. The duplicate handle refers
to the same object as the original handle. Therefore, any changes to the object are
reflected through both handles. For example, the current file mark for a file handle is
always the same for both handles.

Parameters
hSourceProcessHandle

[in] Handle to the process with the handle to duplicate.

Windows NT/2000: The handle must have PROCESS_DUP _HANDLE access. For
more information, see Process Security and Access Rights.

hSourceHandle
[in] Handle to duplicate. This is an open object handle that is valid in the context of the
source process. For a list of objects whose handles can be duplicated, see the
following Remarks section.

h TargetProcessHandle
[in] Handle to the process that is to receive the duplicated handle. The handle must
have PROCESS_DUP _HANDLE access.

Ip TargetHandle
[out] Pointer to a variable that receives the value of the duplicate handle. This handle
value is valid in the context of the target process.

If IpTargetHandle is NULL, the function duplicates the handle, but does not return the
duplicate handle value to the caller. This behavior exists only for backward
compatibility with previous versions of this function. You should not use this feature,
as you will lose system resources until the target process terminates.

dwDesiredAccess
[in] Specifies the access requested for the new handle. This parameter is ignored if the
dwOptions parameter specifies the DUPLICATE_SAME_ACCESS flag. Otherwise, the
flags that can be specified depend on the type of object whose handle is being
duplicated. For the flags that can be specified for each object type, see the following
Remarks section. Note that the new handle can have more access than the original
handle.

Chapter 8 Interprocess Communications 407

blnheritHandle
[in] Indicates whether the handle is inheritable. If TRUE, the duplicate handle can be
inherited by new processes created by the target process. If FALSE, the new handle
cannot be inherited.

dwOptions
[in] Specifies optional actions. This parameter can be zero, or any combination of the
following values:

Value Meaning

Closes the source handle. This occurs
regardless of any error status returned.

Ignores the dwDesiredAccess parameter. The
duplicate handle has the same access as the
source handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
DuplicateHandle can be called by either the source process or the target process. It
also can be invoked where the source and target process are the same. For example, a
process can use DuplicateHandle to create a noninheritable duplicate of an inheritable
handle, or a handle with different access than the original handle.

The duplicating process uses the GetCurrentProcess function to get a handle of itself.
To get the other process handle, it might be necessary to use a form of interprocess
communication (for example, named pipe or shared memory) to communicate the
process identifier to the duplicating process. This identifier is used then in the
Open Process function to open a handle.

If the process that calls DuplicateHandle is not the target process, the duplicating
process must use interprocess communication to pass the value of the duplicate handle
to the target process.

DuplicateHandle can duplicate handles to the following types of objects:

Object Description

Access token The handle is returned by the CreateRestrictedToken,
DuplicateToken, DuplicateTokenEx, OpenProcessToken, or
OpenThreadToken function.

Communications The handle is returned by the CreateFile function.
device

(continued)

408 Volume 1 Microsoft Windows Base Services

(continued)

Object

Console input

Console screen
buffer

Desktop
Directory

Event
File
File mapping

Job
Mailslot

Mutex
Pipe

Process

Registry key

Semaphore

Socket
Thread

Timer

Window station

Description

The handle is returned by the CreateFile function when CONIN$ is
specified, or by the GetStdHandle function when
STD_INPUT _HANDLE is specified. Console handles can be
duplicated for use only in the same process.
The handle is returned by the CreateFile function when CONOUT$
is specified, or by the GetStdHandle function when
STD_OUTPUT _HANDLE is specified. Console handles can be
duplicated for use only in the same process.
The handle is returned by the GetThreadDesktop function.
The handle is returned by the CreateDirectory function.

The handle is returned by the CreateEvent or Open Event function.
The handle is returned by the CreateFile function.
The handle is returned by the CreateFileMapping function.
The handle is returned by the CreateJobObject function.
The handle is returned by the CreateMaiislot function.
The handle is returned by the CreateMutex or OpenMutex function.

A named pipe handle is returned by the CreateNamedPipe or
CreateFile function. An anonymous pipe handle is returned by the
CreatePipe function.
The handle is returned by the CreateProcess, GetCurrentProcess,
or Open Process function.
Windows NT/2000: The handle is returned by the Reg C reate Key,
RegCreateKeyEx, RegOpenKey, or RegOpenKeyEx function.
Note that registry key handles returned by the RegConnectRegistry
function cannot be used in a call to DuplicateHandle.
Windows 95/98: You cannot use DuplicateHandle to duplicate
registry key handles.
The handle is returned by the CreateSemaphore or
OpenSemaphore function.
The handle is returned by the socket or accept function.
The handle is returned by the CreateProcess, CreateThread,
CreateRemoteThread, or GetCurrentThread function.
The handle is returned by the CreateWaitableTimer or
OpenWaitableTimer function.
The handle is returned by the GetProcessWindowStation function.

Note that DuplicateHandle should not be used to duplicate handles to I/O completion
ports. In this case, no error is returned, but the duplicate handle cannot be used.

Chapter 8 Interprocess Communications 409

In addition to STANDARD_RIGHTS_REQUIRED, the following access flags can be
specified in the dwDesiredAccess parameter for the different object types. Note that the
new handle can have more access than the original handle. However, in some cases,
DuplicateHandle cannot create a duplicate handle with more access permission than
the original handle. For example, a file handle created with GENERIC_READ access
cannot be duplicated so that it has both GENERIC_READ and GENERIC_WRITE
access.

Any combination of the following access flags is valid for handles to communications
devices, console input, console screen buffers, files, and pipes:

Access

GENERIC_READ

GENERIC_WRITE

Description

Enables read access.

Enables write access.

Any combination of the following access flags is valid for file-mapping objects:

Access Description

Specifies all access flags possible for the file­
mapping object.

Enables mapping the object into memory that
permits read access.

Enables mapping the object into memory that
permits write access. For write access,
PAGE_READWRITE protection must have been
specified when the file-mapping object was created
by the CreateFileMapping function.

Any combination of the following flags is valid for mutex objects:

Access

SYNCHRONIZE

Description

Specifies all access flags possible for the mutex
object.

Windows NT/2000: Enables use of the mutex
handle in any of the wait functions to acquire
ownership of the mutex, or in the ReleaseMutex
function to release ownership.

Any combination of the following access flags is valid for semaphore objects:

Access Description

Specifies all access flags possible for the
semaphore object.

(continued)

410 Volume 1 Microsoft Windows Base Services

(continued)

Access Description

SEMAPHORE_MODIFY _STATE Enables use of the semaphore handle in the
ReleaseSemaphore function to modify the
semaphore's count.

SYNCHRONIZE Windows NT/2000: Enables use of the semaphore
handle in any of the wait functions to wait for the
semaphore's state to be signaled.

Any combination of the following access flags is valid for event objects:

Access

SYNCHRONIZE

Description

Specifies all access flags possible for the event
object.

Enables use of the event handle in the SetEvent
and ResetEvent functions to modify the event's
state.

Windows NT/2000: Enables use of the event
handle in any of the wait functions to wait for the
event's state to be signaled.

Any combination of the following access flags is valid for handles to registry keys:

Value Meaning

KEY _ALL_ACCESS Specifies all possible flags for the registry key.

KEY _CREATE_LINK Enables using the handle to create a link to a
registry-key object.

KEY _CREATE_SUS_KEY Enables using the handle to create a subkey of a
registry-key object.

KEY _ENUMERATE_SUS_KEYS Enables using the handle to enumerate the
subkeys of a registry-key object.

KEY_EXECUTE Equivalent to KEY_READ.

KEY_NOTIFY Enables using the handle to request change
notifications for either a registry key or subkeys of
a registry key.

KEY_QUERY _VALUE Enables using the handle to query a value of a
registry-key object.

KEY_READ Combines the STANDARD_RIGHTS_READ,
KEY_QUERY_VALUE,
KEY _ENUMERATE_SUS_KEYS, and
KEY_NOTIFY values.

(continued)

(continued)

Value

KEY_SET_VALUE

KEY_WRITE

Chapter 8 Interprocess Communications 411

Meaning

Enables using the handle to create or set a value of a
registry-key object.
Combines the STANDARD_RIGHTS_WRITE,
KEY_SET_VALUE, and KEY _CREATE_SUB_KEYvalues.

Any combination of the following access flags is valid for process objects:

Access Description

PROCESS_ALL_ACCESS Specifies all possible access flags for the process
object.

PROCESS_CREATE_PROCESS Used internally.
PROCESS_CREATE_THREAD Enables using the process handle in the

CreateRemoteThread function to create a thread
in the process.

PROCESS_DUP _HANDLE Enables using the process handle as either the
source or target process in the DuplicateHandle
function to duplicate a handle.

PROCESS_QUERY _INFORMATION Enables using the process handle in the
GetExitCodeProcess and GetPriorityClass
functions to read information from the process
object.

PROCESS_SET _INFORMATION Enables using the process handle in the
SetPriorityClass function to set the process's
priority class.

PROCESS_TERMINATE Enables using the process handle in the
TerminateProcess function to terminate the
process.

PROCESS_ VM_OPERATION Enables using the process handle in the
VirtualProtectEx and WriteProcessMemory
functions to modify the virtual memory of the
process.

PROCESS_ VM_READ Enables using the process handle in the
ReadProcessMemory function to read from the
virtual memory of the process.

PROCESS_VM_WRITE Enables using the process handle in the
WriteProcessMemory function to write to the
virtual memory of the process.

SYNCHRONIZE Windows NT/2000: Enables using the process
handle in any of the wait functions to wait for the
process to terminate.

412 Volume 1 Microsoft Windows Base Services

Any combination of the following access flags is valid for thread objects:

Access Description

SYNCHRONIZE Windows NT/2000: Enables using the
thread handle in any of the wait functions to
wait for the thread to terminate.

THREAD_ALL_ACCESS Specifies all possible access flags for the
thread object.

THREAD_DIRECT _IMPERSONATION Used internally.

THREAD_GET _CONTEXT Enables using the thread handle in the
GetThreadContext function to read the
thread's context.

THREAD_IMPERSONATE Used internally.

THREAD_QUERY _INFORMATION Enables using the thread handle in the
GetExitCodeThread, GetThreadPriority,
and GetThreadSelectorEntry functions to
read information from the thread object.

THREAD_SET _CONTEXT Enables using the thread handle in the
SetThreadContext function to set the
thread's context.

THREAD_SET_INFORMATION Enables using the thread handle in the
SetThreadPriority function to set the
thread's priority.

THREAD_SET _ THREAD_TOKEN Used internally.

THREAD_SUSPEND_RESUME Enables using the thread handle in the
SuspendThread or ResumeThread
functions to suspend or resume a thread.

THREAD_TERMINATE Enables using the thread handle in the
TerminateThread function to terminate the
thread.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Handles and Objects Overview, Handle and Object Functions, CloseHandle

Chapter 8 Interprocess Communications 413

GetHandlelnformation
The GetHandlelnformation function obtains information about certain properties of an
object handle. The information is obtained as a set of bit flags .

. ~~~il~~;;'~::~~ii,~~~
Parameters
hObject

[in] Specifies a handle to an object. The GetHandlelnformation function obtains
information about this object handle.

You can specify a handle to one of the following types of objects: access token, event,
file, file mapping, job, mailslot, mutex, pipe, printer, process, registry key, semaphore,
serial communication device, socket, thread, or waitable timer.

Windows 2000: This parameter also can be a handle to a console input buffer or a
console screen buffer.

IpdwFlags
[out] Pointer to a variable that receives a set of bit flags that specify properties of the
object handle. The following flags are defined:

Value Meaning

HANDLE_FLAG_INHERIT If this flag is set, a child process created with the
blnheritHandles parameter of CreateProcess set
to TRUE will inherit the object handle.

HANDLE_FLAG_PROTECT _FROM_CLOSE If this flag is set, calling the CloseHandle function
will not close the obj!3ct handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

414 Volume 1 Microsoft Windows Base Services

Handles and Objects Overview, Handle and Object Functions, CloseHandle,
CreateProcess, SetHandlelnformation

SetHandlelnformation
The SetHandlelnformation function sets certain properties of an object handle. The
information is specified as a set of bit flags.

Parameters
hObject

[in] Handle to an object. The SetHandlelnformation function sets information
associated with this object handle.

You can specify a handle to one of the following types of objects: access token, event,
file, file mapping, job, mailslot, mutex, pipe, printer, process, registry key, semaphore,
serial communication device, socket, thread, or waitable timer.

Windows 2000: This parameter also can be a handle to a console input buffer or a
console screen buffer.

dwMask
[in] A mask that specifies the bit flags to be changed. Use the same flag constants
shown in the description of dwFlags.

dwFlags
[in] A set of bit flags that specify properties of the object handle. This parameter can
be one of the following values:

Value Meaning

HANDLE_FLAG_PROTECT_
FROM_CLOSE

Return Values

If this flag is set, a child process created with the
blnheritHandles parameter of CreateProcess set to
TRUE will inherit the object handle.

If this flag is set, calling the CloseHandle function
will not close the object handle.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 8 Interprocess Communications 415

Remarks
To set or clear the associated bit flag in dwFlags, you must set a change mask bit flag in
dwMask.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Handles and Objects Overview, Handle and Object Functions, CreateProcess,
CloseHandle, GetHandlelnformation

Hooks
A hook is a point in the system message-handling mechanism where an application can
install a subroutine to monitor the message traffic in the system and process certain
types of messages before they reach the target window procedure.

About Hooks
Hooks tend to slow down the system because they increase the amount of processing
the system must perform for each message. You should install a hook only when
necessary, and remove it as soon as possible.

Hook Chains
The system supports many different types of hook; each type provides access to a
different aspect of its message-handling mechanism. For example, an application can
use the WH_MOUSE hook to monitor the message traffic for mouse messages.

The system maintains a separate hook chain for each type of hook. A hook chain is a list
of pointers to special, application-defined callback functions called hook procedures.
When a message occurs that is associated with a particular type of hook, the system
passes the message to each hook procedure referenced in the hook chain, one after the
other. The action a hook procedure can take depends on the type of hook involved. The
hook procedures for some types of hooks can only monitor messages; others can modify
messages or stop their progress though the chain, preventing them from reaching the
next hook procedure or the destination window.

416 Volume 1 Microsoft Windows Base Services

Hook Procedures
To take advantage of a particular type of hook, the developer provides a hook procedure
and uses the SetWindowsHookEx function to install it into the chain associated with the
hook. A hook procedure must have the following syntax.

HookProc is a placeholder for an application-defined name.

The nCode parameter is a hook code that the hook procedure uses to determine the
action to perform. The value of the hook code depends on the type of the hook; each
type has its own characteristic set of hook codes. The values of the wParam and IParam
parameters depend on the hook code, but they typically contain information about a
message that was sent or posted.

The SetWindowsHookEx function always installs a hook procedure at the beginning of
a hook chain. When an event occurs that is monitored by a particular type of hook, the
system calls the procedure at the beginning of the hook chain associated with the hook.
Each hook procedure in the chain determines whether to pass the event to the next
procedure. A hook procedure passes an event to the next procedure by calling the
CaliNextHookEx function.

Note that the hook procedures for some types of hooks can only monitor messages. The
system passes messages to each hook procedure, regardless of whether a particular
procedure calls CaliNextHookEx.

A global hook monitors messages for all threads in the same desktop as the calling
thread. A thread-specific hook monitors messages for only an individual thread. A global
hook procedure can be called in the context of any application in the same desktop as
the calling thread, so the procedure must be in a separate dynamic link library (DLL)
module. A thread-specific hook procedure is called only in the context of the associated
thread. If an application installs a hook procedure for one of its own threads, the hook
procedure can be either in the same module as the rest of the application's code or a
DLL. If the application installs a hook procedure for a thread of a different application,
the procedure must be in a DLL. For information, see Dynamic-Link Libraries.

Note You should use global hooks only for debugging purposes; otherwise, you should
avoid them. Global hooks hurt system performance and cause conflicts with other
applications that implement the same type of global hook.

Hook Types
Each type of hook enables an application to monitor a different aspect of the system's
message-handling mechanism. The available hooks are described in this section:

Chapter 8 Interprocess Communications 417

WH_CALLWNDPROC and WH_CALLWNDPROCRET

WH_CBT

WH_DEBUG

WH_FOREGROUNDIDLE

WH_ GETMESSAGE

WH_JOU RNALPLAYBACK

WH_JOU RNALRECORD

WH_KEYBOARD

WH_KEYBOARD_LL

WH_MOUSE

WH_MOUSE_LL

WH_MSGFIL TER and WH_SYSMSGFIL TER

WH_SHELL

WH_ CALLWNDPROC and WH_ CALLWNDPROCRET Hooks
The WH_CALLWNDPROC and WH_CALLWNDPROCRET hooks enable you to monitor
messages sent to window procedures. The system calls a WH_CALLWNDPROC hook
procedure before passing the message to the receiving window procedure, and calls the
WH_CALLWNDPROCRET hook procedure after the window procedure has processed
the message.

The WH_CALLWNDPROCRET hook passes a pointer to a CWPRETSTRUCT structure
to the hook procedure. The structure contains the return value from the window
procedure that processed the message, as well as the message parameters associated
with the message. Subclassing the window does not work for messages set between
processes.

For more information, see the CallWndProc and CallWndRetProc functions.

WH_CBTHook
The system calls a WH_CBT hook procedure before activating, creating, destroying,
minimizing, maximizing, moving, or sizing a window; before completing a system
command; before removing a mouse or keyboard event from the system message
queue; before setting the input focus; or before synchronizing with the system message
queue. The value the hook procedure returns determines whether the system allows or
prevents one of these operations. The WH_CBT hook is intended primarily for computer­
based training (CBT) applications.

For more information, see the CBTProc function.

For information, see WinEvents.

418 Volume 1 Microsoft Windows Base Services

WH_DEBUG Hook
The system calls a WH_DEBUG hook procedure before calling hook procedures
associated with any other hook in the system. You can use this hook to determine
whether to allow the system to call hook procedures associated with other types of
hooks.

For more information, see the DebugProc function.

WH_FOREGROUNDIDLE Hook
The WH_FOREGROUNDIDLE hook enables you to perform low priority tasks during
times when its foreground thread is idle. The system calls a WH_FOREGROUNDIDLE
hook procedure when the application's foreground thread is about to become idle.

For more information, see the ForegroundldleProc function.

WH_GETMESSAGE Hook
The WH_GETMESSAGE hook enables an application to monitor messages about to be
returned by the Get Message or PeekMessage function. You can use the
WH_GETMESSAGE hook to monitor mouse and keyboard input and other messages
posted to the message queue.

For more information, see the GetMsgProc function.

WH_JOURNALPLAYBACK Hook
The WH_JOURNALPLA YBACK hook enables an application to insert messages into the
system message queue. You can use this hook to play back a series of mouse and
keyboard events recorded earlier by using the WH_JOURNALRECORD hook. Regular
mouse and keyboard input is disabled as long as a WH_JOURNALPLAYBACK hook is
installed. A WH_JOURNALPLAYBACK hook is a global hook-it cannot be used as a
thread-specific hook.

The WH_JOURNALPLAYBACK hook returns a time-out value. This value tells the
system how many milliseconds to wait before processing the current message from the
playback hook. This enables the hook to control the timing of the events it plays back.

For more information, see the JournalPlaybackProc function.

WH_JOURNALRECORD Hook
The WH_JOURNALRECORD hook enables you to monitor and record input events.
Typically, you use this hook to record a sequence of mouse and keyboard events to play
back later by using the WH_JOURNALPLAYBACK hook. The WH_JOURNALRECORD
hook is a global hook-it cannot be used as a thread-specific hook.

For more information, see the JournalRecordProc function.

WH_KEYBOARD Hook
The WH_KEYBOARD hook enables an application to monitor message traffic for
WM_KEYDOWN and WM_KEYUP messages about to be returned by the GetMessage

Chapter 8 Interprocess Communications 419

or PeekMessage function. You can use the WH_KEYBOARD hook to monitor keyboard
input posted to a message queue.

For more information, see the KeyboardProc function.

WH_KEYBOARD _LL Hook
The WH_KEYBOARD_LL hook enables you to monitor keyboard input events about to
be posted in a thread input queue.

For more information, see the LowLevelKeyboardProc function.

WH_MOUSE Hook
The WH_MOUSE hook enables you to monitor mouse messages about to be returned
by the GetMessage or PeekMessage function. You can use the WH_MOUSE hook to
monitor mouse input posted to a message queue.

For more information, see the MouseProc function.

WH_MOUSE_LL Hook
The WH_MOUSE_LL hook enables you to monitor mouse input events about to be
posted in a thread input queue.

For more information, see the LowLevelMouseProc function.

WH_MSGFIL TER and WH_SYSMSGFIL TER Hooks
The WH_MSGFIL TER and WH_SYSMSGFIL TER hooks enable you to monitor
messages about to be processed by a menu, scroll bar, message box, or dialog box,
and to detect when a different window is about to be activated as a result of the user's
pressing the ALT + TAB or ALT +ESC key combination. The WH_MSGFILTER hook can
monitor only messages passed to a menu, scroll bar, message box, or dialog box
created by the application that installed the hook procedure. The WH_SYSMSGFIL TER
hook monitors such messages for all applications.

The WH_MSGFIL TER and WH_SYSMSGFIL TER hooks enable you to perform
message filtering during modal loops that is equivalent to the filtering done in the main
message loop. For example, an application often examines a new message in the main
loop between the time it retrieves the message from the queue and the time it dispatches
the message, performing special processing as appropriate. However, during a modal
loop, the system retrieves and dispatches messages without allowing an application the
chance to filter the messages in its main message loop. If an application installs a
WH_MSGFIL TER or WH_SYSMSGFIL TER hook procedure, the system calls the
procedure during the modal loop.

An application can call the WH_MSGFIL TER hook directly by calling the CallMsgFilter
function. By using this function, the application can use the same code to filter messages
during modal loops as it uses in the main message loop. To do so, encapsulate the
filtering operations in a WH_MSGFIL TER hook procedure, and call CallMsgFilter
between the calls to the GetMessage and DispatchMessage functions.

420 Volume 1 Microsoft Windows Base Services

The last argument of CallMsgFilter is passed to the hook procedure; you can enter any
value. The hook procedure, by defining a constant such as MSGF _MAINLOOP, can use
this value to determine from where the procedure was called.

For more information, see the MessageProc and SysMsgProc functions.

WH_SHELL Hook
A shell application can use the WH_SHELL hook to receive important notifications. The
system calls a WH_SHELL hook procedure when the shell application is about to be
activated, and when a top-level window is created or destroyed.

For more information, see the SheliProc function.

Hook Reference
Hook Functions

Call Msg Filter
The CallMsgFilter function passes the specified message and hook code to the hook
procedures associated with the WH_SYSMSGFIL TER and WH_MSGFIL TER hooks. A
WH_SYSMSGFIL TER or WH_MSGFIL TER hook procedure is an application-defined
callback function that examines and, optionally, modifies messages for a dialog box,
message box, menu, or scroll bar.

Parameters
/pMsg

[in] Pointer to an MSG structure that contains the message to be passed to the hook
procedures.

nCode
[in] Specifies an application-defined code used by the hook procedure to determine
how to process the message. The code must not have the same value as system­
defined hook codes (MSGF _ and HC_) associated with the WH_SYSMSGFIL TER
and WH_MSGFIL TER hooks.

Chapter 8 Interprocess Communications 421

Return Values
If the application should process the message further, the return value is zero.

If the application should not process the message further, the return value is nonzero.

Remarks
The system calls CallMsgFilter to enable applications to examine and control the flow of
messages during internal processing of dialog boxes, message boxes, menus, and scroll
bars, or when the user activates a different window by pressing the AL T + T AS key
combination.

Install this hook procedure by using the SetWindowsHookEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Hooks Overview, Hook Functions, MessageProc, MSG, SetWindowsHookEx,
SysMsgProc

Call NextHookEx
The CaliNextHookEx function passes the hook information to the next hook procedure
in the current hook chain. A hook procedure can call this function either before or after
processing the hook information.

Parameters
hhk

[in] Handle to the current hook. An application receives this handle as a result of a
previous call to the SetWindowsHookEx function.

422 Volume 1 Microsoft Windows Base Services

nCode
[in] Specifies the hook code passed to the current hook procedure. The next hook
procedure uses this code to determine how to process the hook information.

wParam
[in] Specifies the wParam value passed to the current hook procedure. The meaning
of this parameter depends on the type of hook associated with the current hook chain.

IParam
[in] Specifies the IParam value passed to the current hook procedure. The meaning of
this parameter depends on the type of hook associated with the current hook chain.

Return Values
The return value is the value returned by the next hook procedure in the chain. The
current hook procedure must also return this value. The meaning of the return value
depends on the hook type. For more information, see the descriptions of the individual
hook procedures.

Remarks
Hook procedures are installed in chains for particular hook types. CaliNextHookEx calls
the next hook in the chain.

Calling CaliNextHookEx is optional, but it is highly recommended; otherwise, other
applications that have installed hooks will not receive hook notifications and may behave
incorrectly as a result. You should call CaliNextHookEx unless you absolutely need to
prevent the notification from being seen by other applications.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Hooks Overview, Hook Functions, SetWindowsHookEx, UnhookWindowsHookEx

CallWndProc
The CallWndProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function.

Windows 95/98 and Windows NT 3.51: The system calls this function whenever the
thread calls the SendMessage function. The WH_CALLWNDPROC hook is called in the
context of the thread that calls SendMessage, not the thread that receives the message.

Chapter 8 Interprocess Communications 423

Windows NT 4.0 and later: The system calls this function before calling the window
procedure to process a message sent to the thread.

The HOOKPROC type defines a pointer to this callback function. CallWndProc is a
placeholder for the application-defined or library-defined function name.

Parameters
nCode

[in] Specifies whether the hook procedure must process the message. If nCode is
HC_ACTION, the hook procedure must process the message. If nCode is less than
zero, the hook procedure must pass the message to the CaliNextHookEx function
without further processing and must return the value returned by CaliNextHookEx.

wParam
[in] Specifies whether the message was sent by the current thread. If the message
was sent by the current thread, it is nonzero; otherwise, it is zero.

IParam
[in] Pointer to a CWPSTRUCT structure that contains details about the message.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, it is highly recommended that you call
CaliNextHookEx and return the value it returns; otherwise, other applications that have
installed WH_CALLWNDPROC hooks will not receive hook notifications and may
behave incorrectly as a result. If the hook procedure does not call CaliNextHookEx, the
return value should be zero.

Remarks
The CallWndProc hook procedure can examine the message, but it cannot modify it.
After the hook procedure returns control to the system, the message is passed to the
window procedure.

An application installs the hook procedure by specifying the WH_CALLWNDPROC hook
type and a pointer to the hook procedure in a call to the SetWindowsHookEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

424 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CallNextHookEx, CWPSTRUCT, SendMessage,
SetWindowsHookEx

CallWndRetProc
The CallWndRetProc hook procedure is an application-defined or library-defined
callback function used with the SetWindowsHookEx function. The system calls this
function after the Send Message function is called. The hook procedure can examine the
message; it cannot modify it.

The HOOKPROC type defines a pointer to this callback function. CallWndRetProc is a
placeholder for the application-defined or library-defined function name.

Parameters
nCode

[in] Specifies whether the hook procedure must process the message. If nCode is
HC_ACTION, the hook procedure must process the message. If nCode is less than
zero, the hook procedure must pass the message to the CallNextHookEx function
without further processing and should return the value returned by CallNextHookEx.

wParam
[in] Specifies whether the message is sent by the current process. If the message is
sent by the current process, it is nonzero; otherwise, it is NULL.

IParam
[in] Pointer to a CWPRETSTRUCT structure that contains details about the message.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, it is highly recommended that you call
CaliNextHookEx and return the value it returns; otherwise, other applications that have
installed WH_CALLWNDPROCRET hooks will not receive hook notifications and may
behave incorrectly as a result. If the hook procedure does not call CaliNextHookEx, the
return value should be zero.

Chapter 8 Interprocess Communications 425

Remarks
An application installs the hook procedure by specifying the WH_CALLWNDPROCRET
hook type and a pOinter to the hook procedure in a call to the SetWindowsHookEx
function.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, CallWndProc, CWPRETSTRUCT,
SendMessage, SetWindowsHookEx

CBTProc
The CBTProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function. The system calls this function
before activating, creating, destroying, minimizing, maximizing, moving, or sizing a
window; before completing a system command; before removing a mouse or keyboard
event from the system message queue; before setting the keyboard focus; or before
synchronizing with the system message queue. A computer-based training (CBT)
application uses this hook procedure to receive useful notifications from the system.

The HOOKPROC type defines a pointer to this callback function. CBTProc is a
placeholder for the application-defined or library-defined function name.

Parameters
nCode

[in] Specifies a code that the hook procedure uses to determine how to process the
message. This parameter can be one of the following values:

426 Volume 1 Microsoft Windows Base Services

Value Meaning

HCBT _ACTIVATE

HCBT _CLlCKSKIPPED

HCBT _CREATEWND

HCBT _DESTROYWND

HCBT _KEYSKIPPED

HCBT _MINMAX

HCBT _MOVESIZE

HCBT_QS

HCBT _SETFOCUS

HCBT _SYSCOMMAND

The system is about to activate a window.

The system has removed a mouse message from the system message
queue. Upon receiving this hook code, a CBT application must install a
WH_JOURNALPLAYBACK hook procedure in response to the mouse
message.

A window is about to be created. The system calls the hook procedure
before sending the WM_CREATE or WM_NCCREATE message to the
window. If the hook procedure returns a nonzero value, the system
destroys the window; the CreateWindow function returns NULL, but
the WM_DESTROY message is not sent to the window. If the hook
procedure returns zero, the window is created normally.

At the time of the HCBT _CREATEWND notification, the window has
been created, but its final size and position may not have been
determined and its parent window may not have been established. It is
possible to send messages to the newly created window, although it
has not yet received WM_NCCREATE or WM_CREATE messages. It
is also possible to change the position in the Z order of the newly
created window by modifying the hwndlnsertAfter member of the
CBT_CREATEWND structure.

A window is about to be destroyed.

The system has removed a keyboard message from the system
message queue. Upon receiving this hook code, a CBT application
must install a WH_JOURNALPLAYBACK hook procedure in response
to the keyboard message.

A window is about to be minimized or maximized.

A window is about to be moved or sized.

The system has retrieved a WM_QUEUESYNC message from the
system message queue.

A window is about to receive the keyboard focus.

A system command is about to be carried out. This allows a CBT
application to prevent task switching by means of hot keys.

If nCode is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
[in] Depends on the nCode parameter. For details, see the following Remarks section.

IParam
[in] Depends on the nCode parameter. For details, see the following Remarks section.

Value

Chapter 8 Interprocess Communications 427

Return Values
The value returned by the hook procedure determines whether the system allows or
prevents one of these operations. For operations corresponding to the following CBT
hook codes, the return value must be 0 to allow the operation, or 1 to prevent it:

HCBT _ACTIVATE

HCBT_CREATEWND

HCBT _DESTROYWND

HCBT _MINMAX

HCBT _MOVESIZE

HCBT _SETFOCUS

HCBT _SYSCOMMAND

For operations corresponding to the following CBT hook codes, the return value is
ignored:

HCBT _CLlCKSKIPPED

HCBT _KEYSKI PPED

HCBT_QS

Remarks
The hook procedure should not install a WH_JOURNALPLAYBACK hook procedure
except in the situations described in the preceding list of hook codes.

This hook procedure must be in a dynamic-link library (DLL). An application installs the
hook procedure by specifying the WH_CBT hook type and a pOinter to the hook
procedure in a call to the SetWindowsHookEx function.

The following table describes the wParam and IParam parameters for each HCBT _ hook
code:

wParam IParam

HCBT _ACTIVATE Specifies the handle to
the window about to be
activated.

Specifies a long pOinter to a
CBTACTIVATESTRUCT structure
containing the handle to the active window,
and specifies whether the activation is
changing because of a mouse click.

(continued)

428 Volume 1 Microsoft Windows Base Services

(continued)

Value

HCBT _CLlCKSKIPPED

HCBT_CREATEWND

HCBT _DESTROYWND

HCBT _KEYSKIPPED

HCBT _MOVESIZE

wParam

Specifies the mouse
message removed from
the system message
queue.

Specifies the handle to
the new window.

Specifies the handle to
the window about to be
destroyed.

Specifies the virtual-key
code.

Specifies the handle to
the window being
minimized or
maximized.

Specifies the handle to
the window to be
moved or sized.

Is undefined and must
be zero.

IParam

Specifies a long pointer to a
MOUSEHOOKSTRUCT structure
containing the hit-test code and the handle
to the window for which the mouse
message is intended.

The HCBT _CLlCKSKIPPED value is sent
to a CBTProc hook procedure only if a
WH_MOUSE hook is installed. For a list of
hit-test codes, see WM_NCHITTEST.

Specifies a long pointer to a
CBT_CREATEWND structure containing
initialization parameters for the window.
The parameters include the coordinates
and dimensions of the window. By
changing these parameters, a CBTProc
hook procedure can set the initial size and
position of the window.

Is undefined and must be set to zero.

Specifies the repeat count, scan code, key­
transition code, previous key state, and
context code. The HCBT _KEYSKIPPED
value is sent to a CBTProc hook
procedure only if a WH_KEYBOARD hook
is installed. For more information, see
WM_KEYUP or WM_KEYDOWN.

Specifies, in the low-order word, a show­
window value (SW_) specifying the
operation. For a list of show-window
values, see the ShowWindow. The high­
order word is undefined.

Specifies a long pointer to a RECT
structure containing the coordinates of the
window. By changing the values in the
structure, a CBTProc hook procedure can
set the final coordinates of the window.

Is undefined and must be zero.

Chapter 8 Interprocess Communications 429

Value wParam IParam

HCBT _SETFOCUS Specifies the handle to
the window gaining the
keyboard focus.

Specifies the handle to the window losing
the keyboard focus.

HCBT _SYSCOMMAND Specifies a system­
command value (SC_)
specifying the system
command. For more
information about
system-command
values, see
WM_SVSCOMMAND.

For information, see WinEvents.

".,' '. . -:~ , "

Contains the same data as the IParam
value of a WM_SVSCOMMAND message:
If a system menu command is chosen with
the mouse, the low-order word contains
the x-coordinate of the cursor, in screen
coordinates, and the high-order word
contains the y-coordinate; otherwise, the
parameter is not used.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CallNextHookEx, CreateWindow,
SetWindowsHookEx, WM_SVSCOMMAND

DebugProc
The DebugProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function. The system calls this function
before calling the hook procedures associated with any type of hook. The system passes
information about the hook to be called to the DebugProc hook procedure, which
examines the information and determines whether to allow the hook to be called.

The HOOKPROC type defines a pOinter to this callback function. DebugProc is a
placeholder for the application-defined or library-defined function name.

430 Volume 1 Microsoft Windows Base Services

Parameters
nCode

[in] Specifies whether the hook procedure must process the message. If nCode is
HC_ACTION, the hook procedure must process the message. If nCode is less than
zero, the hook procedure must pass the message to the CaliNextHookEx function
without further processing and should return the value returned by CaliNextHookEx.

wParam
[in] Specifies the type of hook about to be called. This parameter can be one of the
following values:

Value Description

WH_CALLWNDPROC Insta"s a hook procedure that monitors messages
sent to a window procedure. For more information,
see the description of the CallWndProc hook
procedure.

WH_CALLWNDPROCRET Insta"s a hook procedure that monitors messages that
have just been processed by a window procedure. For
more information, see the description of the
CallWndRetProc hook procedure.

WH_CBT Insta"s a hook procedure that receives notifications
useful to a computer-based training (CBT) application.
For more information, see the description of the
CBTProc hook procedure.

WH_DEBUG Insta"s a hook procedure useful for debugging other
hook procedures. For more information, see the
description of the DebugProc hook procedure.

WH_GETMESSAGE Insta"s a hook procedure that monitors messages
posted to a message queue. For more information,
see the description of the GetMsgProc hook
procedure.

WH_JOURNALPLAYBACK Insta"s a hook procedure that posts messages
previously recorded by a WH_JOURNALRECORD
hook procedure. For more information, see the
description of the JournalPlaybackProc hook
procedure.

WH_JOURNALRECORD Insta"s a hook procedure that records input messages
posted to the system message queue. This hook is
useful for recording macros. For more information,
see the description of the JournalRecordProc hook
procedure.

WH_KEYBOARD Insta"s a hook procedure that monitors keystroke
messages. For more information, see the description
of the KeyboardProc hook procedure.

Value

WH_SYSMSGFIL TER

IParam

Chapter 8 Interprocess Communications 431

Description

Installs a hook procedure that monitors mouse
messages. For more information, see the description
of the MouseProc hook procedure.

Installs a hook procedure that monitors messages
generated as a result of an input event in a dialog box,
message box, menu, or scroll bar. The hook
procedure monitors these messages only for the
application that installed the hook procedure. For
more information, see the description of the
MessageProc hook procedure.

Installs a hook procedure that receives notifications
useful to a shell application. For more information, see
the description of the SheliProc hook procedure.

Installs a hook procedure that monitors messages
generated as a result of an input event in a dialog box,
message box, menu, or scroll bar. The hook
procedure monitors these messages for all
applications in the system. For more information, see
the description of the SysMsgProc hook procedure.

[in] Pointer to a DEBUGHOOKINFO structure that contains the parameters to be
passed to the destination hook procedure.

Return Values
To prevent the system from calling the hook, the hook procedure must return a nonzero
value. Otherwise, the hook procedure must call CaliNextHookEx.

Remarks
An application installs this hook procedure by specifying the WH_DEBUG hook type and
the pointer to the hook procedure in a call to the SetWindowsHookEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, CallWndProc, CallWndRetProc,
CBTProc, DEBUGHOOKINFO, GetMsgProc, JournalPlaybackProc,
JournalRecordProc, KeyboardProc, MessageProc, MouseProc,
SetWindowsHookEx, SheliProc, SysMsgProc

432 Volume 1 Microsoft Windows Base Services

ForegroundldleProc
The ForegroundldleProc hook procedure is an application-defined or library-defined
callback function used with the SetWindowsHookEx function. The system calls this
function whenever the foreground thread is about to become idle.

The HOOKPROC type defines a pOinter to this callback function. ForegroundldleProc
is a placeholder for the application-defined or library-defined function name.

Parameters
code

[in] Specifies whether the hook procedure must process the message. If code is
HC_ACTION, the hook procedure must process the message. If code is less than
zero, the hook procedure must pass the message to the CallNextHookEx function
without further processing and should return the value returned by CallNextHookEx.

wParam
This parameter is not used.

IParam
This parameter is not used.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
Call NextHookEx.

If nCode is greater than or equal to zero, it is highly recommended that you call
CallNextHookEx and return the value it returns; otherwise, other applications that have
installed WH_FOREGROUNDIDLE hooks will not receive hook notifications and may
behave incorrectly as a result. If the hook procedure does not call CallNextHookEx, the
return value should be zero.

Remarks
An application installs this hook procedure by specifying the WH_FOREGROUNDIDLE
hook type and the pOinter to the hook procedure in a call to the SetWindowsHookEx
function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Chapter 8 Interprocess Communications 433

Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, SetWindowsHookEx

GetMsgProc
The GetMsgProc function is an application-defined or library-defined callback function
used with the SetWindowsHookEx function. The system calls this function whenever
the GetMessage or PeekMessage function has retrieved a message from an application
message queue. Before returning the retrieved message to the caller, the system passes
the message to the hook procedure.

The HOOKPROC type defines a pointer to this callback function. GetMsgProc is a
placeholder for the application-defined or library-defined function name.

Parameters
code

[in] Specifies whether the hook procedure must process the message. If code is
HC_ACTION, the hook procedure must process the message. If code is less than
zero, the hook procedure must pass the message to the CaliNextHookEx function
without further processing and should return the value returned by CaliNextHookEx.

wParam
[in] Specifies whether the message has been removed from the queue. This
parameter can be one of the following values:

Value Meaning

IParam

Specifies that the message has not been removed from the
queue. (An application called the PeekMessage function,
specifying the PM_NOREMOVE flag.)

Specifies that the message has been removed from the
queue. (An application called GetMessage, or it called the
PeekMessage function, specifying the PM_REMOVE flag.)

[in] Pointer to an MSG structure that contains details about the message.

434 Volume 1 Microsoft Windows Base Services

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, it is highly recommended that you call
CaliNextHookEx and return the value it returns; otherwise, other applications that have
installed WH_GETMESSAGE hooks will not receive hook notifications and may behave
incorrectly as a result. If the hook procedure does not call CaliNextHookEx, the return
value should be zero.

Remarks
The GetMsgProc hook procedure can examine or modify the message. After the hook
procedure returns control to the system, the Get Message or PeekMessage function
returns the message, along with any modifications, to the application that originally
called it.

An application installs this hook procedure by specifying the WH_GETMESSAGE hook
type and a pOinter to the hook procedure in a call to the SetWindowsHookEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, GetMessage, MSG,
PeekMessage, SetWindowsHookEx

JournalPlaybackProc
The JournalPlaybackProc hook procedure is an application-defined or library-defined
callback function used with the SetWindowsHookEx function. Typically, an application
uses this function to play back a series of mouse and keyboard messages recorded
previously by the JournalRecordProc hook procedure. As long as a
JournalPlaybackProc hook procedure is installed, regular mouse and keyboard input is
disabled.

The HOOKPROC type defines a pointer to this callback function. JournalPlaybackProc
is a placeholder for the application-defined or library-defined function name.

~_~~~i

Chapter 8 Interprocess Communications 435

LPARAM lParam /I message being processed
) ;

Parameters
code

[in] Specifies a code the hook procedure uses to determine how to process the
message. This parameter can be one of the following values.

Value Meaning

HC_GETNEXT The hook procedure must copy the current mouse or
keyboard message to the EVENTMSG structure pOinted to
by the IParam parameter.

HC_NOREMOVE An application has called the PeekMessage function with
wRemoveMsg set to PM_NOREMOVE, indicating that the
message is not removed from the message queue after
PeekMessage processing.

HC_SKIP The hook procedure must prepare to copy the next mouse
or keyboard message to the EVENTMSG structure pOinted
to by IParam. Upon receiving the HC_GETNEXT code, the
hook procedure must copy the message to the structure.

HC_SYSMODALOFF A system-modal dialog box has been destroyed. The hook
procedure must resume playing back the messages.

HC_SYSMODALON A system-modal dialog box is being displayed. Until the
dialog box is destroyed, the hook procedure must stop
playing back messages.

If code is less than zero, the hook procedure must pass the message to the
CallNextHookEx function without further processing and should return the value
returned by CallNextHookEx.

wParam
This parameter is not used.

IParam
[in] Pointer to an EVENTMSG structure that represents a message being processed
by the hook procedure. This parameter is valid only when the code parameter is
HC_GETNEXT.

Return Values
To have the system wait before processing the message, the return value must be the
amount of time, in clock ticks, that the system should wait. (This value can be computed
by calculating the difference between the time members in the current and previous
input messages.) To process the message immediately, the return value should be zero.
The return value is used only if the hook code is HC_GETNEXT; otherwise, it is ignored.

436 Volume 1 Microsoft Windows Base Services

Remarks
A JournalPlaybackProc hook procedure should copy an input message to the IParam
parameter. The message must have been previously recorded by using a
JournalRecordProc hook procedure, which should not modify the message.

To retrieve the same message over and over, the hook procedure can be called several
times with the code parameter set to HC_GETNEXT without an intervening call with
code set to HC_SKIP.

If code is HC_GETNEXT and the return value is greater than zero, the system sleeps for
the number of milliseconds specified by the return value. When the system continues, it
calls the hook procedure again with code set to HC_GETNEXT to retrieve the same
message. The return value from this new call to JournalPlaybackProc should be zero;
otherwise, the system will go back to sleep for the number of milliseconds specified by
the return value, call JournalPlaybackProc again, and so on. The system will appear to
have stopped responding.

Unlike most other global hook procedures, the JournalRecordProc and
JournalPlaybackProc hook procedures are always called in the context of the thread
that set the hook.

After the hook procedure returns control to the system, the message continues to be
processed. If code is HC_SKIP, the hook procedure must prepare to return the next
recorded event message on its next call.

Install the JournalPlaybackProc hook procedure by specifying the
WH_JOURNALPLAYBACK hook type and a pointer to the hook procedure in a call to
the SetWindowsHookEx function.

If the user presses CTRL+ESC or CTRL+AL T +DEL during journal playback, the system
stops the playback, unhooks the journal playback procedure, and posts a
WM_CANCELJOURNAL message to the journaling application.

If the hook procedure returns a message in the range WM_KEYFIRST to
WM_KEYLAST, the following conditions apply:

• The paramL member of the EVENTMSG structure specifies the virtual key code of the
key that was pressed.

• The paramH member of the EVENTMSG structure specifies the scan code.

• There's no way to specify a repeat count. The event is always taken to represent one
key event.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Chapter 8 Interprocess Communications 437

Hooks Overview, Hook Functions, CaliNextHookEx, EVENTMSG,
JournalRecordProc, PeekMessage, SetWindowsHookEx, WM_CANCELJOURNAL

JournalRecordProc
The JournalRecordProc hook procedure is an application-defined callback function
used with the SetWindowsHookEx function. The function records messages the system
removes from the system message queue. Later, an application can use a
JournalPlaybackProc hook procedure to play back the messages.

The HOOKPROC type defines a pOinter to this callback function. JournalRecordProc is
a placeholder for the application-defined or library-defined function name:

Parameters
code

[in] Specifies how to process the message. This parameter can be one of the
following values:

Value Meaning

HC_SYSMODALOFF

HC_SYSMODALON

The IParam parameter is a pOinter to an EVENTMSG
structure containing information about a message removed
from the system queue. The hook procedure must record
the contents of the structure by copying them to a buffer or
file.

A system-modal dialog box has been destroyed. The hook
procedure must resume recording.

A system-modal dialog box is being displayed. Until the
dialog box is destroyed, the hook procedure must stop
recording.

If code is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
This parameter is not used.

IParam
[in] Pointer to an EVENTMSG structure that contains the message to be recorded.

438 Volume 1 Microsoft Windows Base Services

Return Values
The return value is ignored.

Remarks
A JournalRecordProc hook procedure must copy but not modify the messages. After
the hook procedure returns control to the system, the message continues to be
processed.

Install the JournalRecordProc hook procedure by specifying the
WH_JOURNALRECORD hook type and a pointer to the hook procedure in a call to the
SetWindowsHookEx function.

A JournalRecordProc hook procedure does not need to live in a dynamic-link library
(DLL). A JournalRecordProc hook procedure can live in the application itself.

Unlike most other global hook procedures, the JournalRecordProc and
JournalPlaybackProc hook procedures are always called in the context of the thread
that set the hook.

An application that has installed a JournalRecordProc hook procedure should watch for
the VK_CANCEL virtual keycode (which is implemented as the CTRL+BREAK key
combination on most keyboards). This virtual keycode should be interpreted by the
application as a signal that the user wishes to stop journal recording. The application
should respond by ending the recording sequence and removing the
JournalRecordProc hook procedure. Removal is important; it prevents a journaling
application from locking up the system by hanging inside a hook procedure.

This role as a signal to stop journal recording means that a CTRL+BREAK key
combination cannot itself be recorded. Since the CTRL+C key combination has no such
role as a journaling signal, it can be recorded. There are two other key combinations that
cannot be recorded: CTRL+ESC anq CTRL+AL T +DEL. Those two key combinations
cause the system to stop all journaling activities (record or playback), remove all
journaling hooks, and post a WM_CANCELJOURNAL message to the journaling
application.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; inClude windows.h.

Hooks OveNiew, Hook Functions, CaliNextHookEx, EVENTMSG,
JournalPlaybackProc, SetWindowsHookEx, WM_CANCELJOURNAL

Chapter 8 Interprocess Communications 439

KeyboardProc
The KeyboardProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function. The system calls this function
whenever an application calls the GetMessage or PeekMessage function and there is a
keyboard message (WM_KEYUP or WM_KEYDOWN) to be processed.

The HOOKPROC type defines a pointer to this callback function. KeyboardProc is a
placeholder for the application-defined or library-defined function name.

Parameters
code

[in] Specifies a code the hook procedure uses to determine how to process the
message. This parameter can be one of the following values:

Value Meaning

HC_ACTION The wParam and IParam parameters contain information about
a keystroke message.

HC_NOREMOVE The wParam and IParam parameters contain information about
a keystroke message, and the keystroke message has not been
removed from the message queue. (An application called the
PeekMessage function, specifying the PM_NOREMOVE flag.)

If code is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
[in] Specifies the virtual-key code of the key that generated the keystroke message.

IParam
[in] Specifies the repeat count, scan code, extended-key flag, context code, previous
key-state flag, and transition-state flag. This parameter can be one or more of the
following values:

Value Description

0-15

16-23

Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user's holding down the key.

Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

(continued)

440 Volume 1 Microsoft Windows Base Services

(continued)

Value

24

25-28
29

30

31

Description

Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if the key is an extended key;
otherwise, it is O.

Reserved.

Specifies the context code. The value is 1 if the ALT key is down;
otherwise, it is O.

Specifies the previous key state. The value is 1 if the key is down before
the message is sent; it is 0 if the key is up.

Specifies the transition state. The value is 0 if the key is being pressed,
and 1 if it is being released.

For more information about the IParam parameter, see Keystroke Message Flags.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, and the hook procedure did not process the
message, it is highly recommended that you call CaliNextHookEx and return the value it
returns; otherwise, other applications that have installed WH_KEYBOARD hooks will not
receive hook notifications and may behave incorrectly as a result. If the hook procedure
processed the message, it may return a nonzero value to prevent the system from
passing the message to the rest of the hook chain or the target window procedure.

Remarks
An application installs the hook procedure by specifying the WH_KEYBOARD hook type
and a pointer to the hook procedure in a call to the SetWindowsHookEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, GetMessage, PeekMessage,
SetWindowsHookEx, WM_KEYDOWN, WM_KEYUP

Chapter 8 Interprocess Communications 441

Low Level KeyboardProc
The LowLevelKeyboardProc hook procedure is an application-defined or library­
defined callback function used with the SetWindowsHookEx function. The system calls
this function every time a new keyboard input event is about to be posted into a thread
input queue. The keyboard input can come from the local keyboard driver or from calls to
the keybd_event function. If the input comes from a call to keybd_event, the input was
"injected."

The HOOKPROC type defines a pOinter to this callback function.
LowLevelKeyboardProc is a placeholder for the application-defined or library-defined
function name.

~'~W:li!I~~~t",,/',!~""~~~+ ..
",</:,,~._{,r:/ . ,,;~~:,; iC ,,",.," 'I" .'

Parameters
nCode

[in] Specifies a code the hook procedure uses to determine how to process the
message. This parameter has the following value:

Value Meaning

HC_ACTION The wParam and IParam parameters contain information about a
keyboard message.

If nCode is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
[in] Specifies the identifier of the keyboard message. This parameter can be one of
the following messages: WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN, or
WM_SYSKEYUP.

IParam
[in] Pointer to a KBDLLHOOKSTRUCT structure.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, and the hook procedure did not process the
message, it is highly recommended that you call CaliNextHookEx and return the value it
returns; otherwise, other applications that have installed WH_KEYBOARD_LL hooks will
not receive hook notifications and may behave incorrectly as a result. If the hook

442 Volume 1 Microsoft Windows Base Services

procedure processed the message, it may return a nonzero value to prevent the system
from passing the message to the rest of the hook chain or the target window procedure.

Remarks
An application installs the hook procedure by specifying the WH_KEYBOARD_LL hook
type and a pointer to the hook procedure in a call to the SetWindowsHookEx function.

This hook is called in the context of the thread that installed it. The call is made by
sending a message to the thread that installed the hook. Therefore, the thread that
installed the hook must have a message loop.

The hook procedure should process a message in less time than the data entry specified
in the LowLevelHooksTimeout value in the following registry key:

HKEY _CURRENT _USER\Control Panel\Desktop

The value is in milliseconds. If the hook procedure does not return during this interval,
the system will pass the message to the next hook.

Note that debug hooks cannot track this type of hook.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CallNextHookEx, KBDLLHOOKSTRUCT,
keybd_event, SetWindowsHookEx, WM_KEYDOWN, WM_KEYUP,
WM_SYSKEYDOWN, WM_SYSKEYUP

LowLevelMouseProc
The LowLevelMouseProc hook procedure is an application-defined callback function
used with the SetWindowsHookEx function. The system call this function every time a
new mouse input event is about to be posted into a thread input queue. The mouse input
can come from the local mouse driver or from calls to the mouse_event function. If the
input comes from a call to mouse_event, the input was "injected."

The HOOKPROC type defines a pOinter to this callback function. LowLevelMouseProc
is a placeholder for the application-defined or library-defined function name.

LR$Q~.,T'C~L~aJ\~K.to'(L:eve.1Mousep. ro~(..
',.ijJtnCode. " 'II hMk 'Code ".' .
.... , ·~ARAM''tttpq;itm/''tI.iI\essa~~.·:i d~nt'ifie:r'"

Chapter 8 Interprocess Communications 443

LPARAM lParam II message data
) :

Parameters
nCode

[in] Specifies a code the hook procedure uses to determine how to process the
message. This parameter has the following value:

Value Meaning

The wParam and IParam parameters contain information about a
mouse message.

If nCode is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
[in] Specifies the identifier of the mouse message. This parameter can be one of the
following messages: WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_MOUSEMOVE, WM_MOUSEWHEEL, WM_RBUTTONDOWN, or
WM_RBUTTONUP.

IParam
[in] Pointer to an MSLLHOOKSTRUCT structure.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, and the hook procedure did not process the
message, it is highly recommended that you call CaliNextHookEx and return the value it
returns; otherwise, other applications that have installed WH~MOUSE_LL hooks will not
receive hook notifications and may behave incorrectly as a result. If the hook procedure
processed the message, it may return a nonzero value to prevent the system from
passing the message to the rest of the hook chain or the target window procedure.

Remarks
An application installs the hook procedure by specifying the WH_MOUSE_LL hook type
and a pOinter to the hook procedure in a call to the SetWindowsHookEx function.

This hook is called in the context of the thread that installed it. The call is made by
sending a message to the thread that installed the hook. Therefore, the thread that
installed the hook must have a message loop.

The hook procedure should process a message in less time than the data entry specified
in the LowLevelHooksTimeout value in the following registry key:

HKEY _CURRENT _USER\Control Panel\Desktop

444 Volume 1 Microsoft Windows Base Services

The value is in milliseconds. If the hook procedure does not return during this interval,
the system will pass the message to the next hook.

Note that debug hooks can not track this type of hook.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, mouse_event,
MSLLHOOKSTRUCT, SetWindowsHookEx, WM_LBUTTONDOWN,
WM_LBUTTONUP, WM_MOUSEMOVE, WM_MOUSEWHEEL,
WM_RBUTTONDOWN, WM_RBUTTONUP

MessageProc
The MessageProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function. The system calls this function after
an input event occurs in a dialog box, message box, menu, or scroll bar, but before the
message generated by the input event is processed. The hook procedure can monitor
messages for a dialog box, message box, menu, or scroll bar created by a particular
application or all applications.

The HOOKPROC type defines a pointer to this callback function. MessageProc is a
placeholder for the application-defined or library-defined function name.

Parameters
code

[in] Specifies the type of input event that generated the message. This parameter can
be one of the following values:

Value

MSGF _DIALOGBOX

MSGF_MENU

MSGF _SCROLLBAR

Chapter 8 Interprocess Communications 445

Meaning

The input event occurred while the Dynamic Data Exchange
Management Library (DDEML) was waiting for a
synchronous transaction to finish. For more information
about DDEML, see Dynamic Data Exchange Management
Library.

The input event occurred in a message box or dialog box.

The input event occurred in a menu.

The input event occurred in a scroll bar.

If code is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing, and return the value returned by
CaliNextHookEx.

wParam
This parameter is not used.

IParam
[in] Pointer to an MSG structure.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, and the hook procedure did not process the
message, it is highly recommended that you call CaliNextHookEx and return the value it
returns; otherwise, other applications that have installed WH_MSGFILTER hooks will not
receive hook notifications and may behave incorrectly as a result. If the hook procedure
processed the message, it may return a nonzero value to prevent the system from
passing the message to the rest of the hook chain or the target window procedure.

Remarks
An application installs the hook procedure by specifying the WH_MSGFIL TER hook type
and a pointer to the hook procedure in a call to the SetWindowsHookEx function.

If an application that uses the DDEML and performs synchronous transactions must
process messages before they are dispatched, then it must use the WH_MSGFIL TER
hook.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

446 Volume 1 Microsoft Windows Base Services

Hooks Overview, Hook Functions, CaliNextHookEx, SetWindowsHookEx, MSG

MouseProc
The MouseProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function. The system calls this function
whenever an application calls the Get Message or PeekMessage function and there is a
mouse message to be processed.

The HOOKPROC type defines a pointer to this callback function. MouseProc is a
placeholder for the application-defined or library-defined function name.

lR;St(l tC/l.f.UA<1K MfillItPI)'I'nI'!ILc",',

"'iYlt,I1Cfide', '

"WP'ARAM'II/)jjr'lJlJJ 1

UARAM; 7PlJrani
~ c, c ,

Parameters
nCode

[in] Specifies a code the hook procedure uses to determine how to process the
message. This parameter can be one of the following values:

Value Meaning

HC_ACTION The wParam and IParam parameters contain information about
a mouse message.

HC_NOREMOVE The wParam and IParam parameters contain information about
a mouse message, and the mouse message has not been
removed from the message queue. (An application called the
PeekMessage function, specifying the PM_NOREMOVE flag.)

If nCode is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
[in] Specifies the identifier of the mouse message.

IParam
[in] Pointer to a MOUSEHOOKSTRUCT structure.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

Chapter 8 Interprocess Communications 447

If nCode is greater than or equal to zero, and the hook procedure did not process the
message, it is recommended highly that you call CaliNextHookEx and return the value it
returns; otherwise, other applications that have installed WH_MOUSE hooks will not
receive hook notifications and may behave incorrectly as a result. If the hook procedure
processed the message, it may return a nonzero value to prevent the system from
passing the message to the target window procedure.

Remarks
An application installs the hook procedure by specifying the WH_MOUSE hook type and
a pOinter to the hook procedure in a call to the SetWindowsHookEx function.

The hook procedure must not install a JournalPlaybackProc callback function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Functions, CaliNextHookEx, Get Message,
JournalPlaybackProc, MOUSEHOOKSTRUCT, PeekMessage, SetWindowsHookEx

SetWindowsHookEx
The SetWindowsHookEx function installs an application-defined hook procedure into a
hook chain. You would install a hook procedure to monitor the system for certain types of
events. These events are associated with either a specific thread or all threads in the
same desktop as the calling thread.

ifkOOKSetWf nd~w$HOokEx~

jt~i~~~~;~~:~;, :~;:.~;) 1< • ., •• i.st".e
>;>bw~~odwtlir~~cpd: . t~rea~t i'den.t1 fi~'r ..:.,: '.' ; ..
:)t'.· "'.' .

Parameters
idHook

. ... " .

, .i,·
,"'.' '".

"-:.."---- ,-: .. ,"

[in] Specifies the type of hook procedure to be installed. This parameter can be one of
the following values:

448 Volume 1 Microsoft Windows Base Services

Value Description

WH_CALLWNDPROC Installs a hook procedure that monitors messages before the
system sends them to the destination window procedure. For more
information, see the Ca"WndProc hook procedure.

WH_CALLWNDPROCRET Installs a hook procedure that monitors messages after they have
been processed by the destination window procedure. For more
information, see the Ca"WndRetProc hook procedure.

WH_CBT Installs a hook procedure that receives notifications useful to a
computer-based training (CBT) application. For more information,
see the CBTProc hook procedure.

WH_DEBUG Installs a hook procedure useful for debugging other hook
procedures. For more information, see the DebugProc hook
procedure.

WH_FOREGROUNDIDLE Installs a hook procedure that will be called when the application's
foreground thread is about to become idle. This hook is useful for
performing low priority tasks during idle time. For more information,
see the ForegroundldleProc hook procedure.

WH_GETMESSAGE Installs a hook procedure that monitors messages posted to a
message queue. For more information, see the GetMsgProc hook
procedure.

WH_JOURNALPLAYBACK Installs a hook procedure that posts messages previously recorded
by a WH_JOURNALRECORD hook procedure. For more
information, see the JournalPlaybackProc hook procedure.

WH_JOURNALRECORD Installs a hook procedure that records input messages posted to
the system message queue. This hook is useful for recording
macros. For more information, see the JournalRecordProc hook
procedure.

WH_KEYBOARD Installs a hook procedure that monitors keystroke messages. For
more information, see the KeyboardProc hook procedure.

WH_KEYBOARD_LL Windows NT/2000: Installs a hook procedure that monitors low­
level keyboard input events. For more information, see the
LowLevelKeyboardProc hook procedure.

WH_MOUSE Installs a hook procedure that monitors mouse messages. For
more information, see the MouseProc hook procedure.

WH_MOUSE_LL Windows NT/2000: Installs a hook procedure that monitors low­
level mouse input events. For more information, see the
LowLevelMouseProc hook procedure.

WH_MSGFIL TER Installs a hook procedure that monitors messages generated as a
result of an input event in a dialog box, message box, menu, or
scroll bar. For more information, see the MessageProc hook
procedure.

WH_SYSMSGFIL TER

Ipfn

Chapter 8 Interprocess Communications 449

Installs a hook procedure that receives notifications useful to shell
applications. For more information, see the SheliProc hook
procedure.

Installs a hook procedure that monitors messages generated as a
result of an input event in a dialog box, message box, menu, or
scroll bar. The hook procedure monitors these messages for all
applications in the same desktop as the calling thread. For more
information, see the SysMsgProc hook procedure.

[in] Pointer to the hook procedure. If the dwThreadld parameter is zero or specifies
the identifier of a thread created by a different process, the Ipfn parameter must pOint
to a hook procedure in a dynamic-link library (DLL). Otherwise, Ipfn can point to a
hook procedure in the code associated with the current process.

hMod
[in] Handle to the DLL containing the hook procedure pointed to by the Ipfn parameter.
The hMod parameter must be set to NULL if the dwThreadld parameter specifies a
thread created by the current process and if the hook procedure is within the code
associated with the current process.

dwThreadld
[in] Specifies the identifier of the thread with which the hook procedure is to be
associated. If this parameter is zero, the hook procedure is associated with all existing
threads running in the same desktop as the calling thread.

Return Values
If the function succeeds, the return value is the handle to the hook procedure.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
An error can occur if the hMod parameter is NULL and the dwThreadld parameter is
zero or specifies the identifier of a thread created by another process.

Calling the CaliNextHookEx function to chain to the next hook procedure is optional, but
it is highly recommended; otherwise, other applications that have installed hooks will not
receive hook notifications and may behave incorrectly as a result. You should call
CaliNextHookEx unless you absolutely need to prevent the notification from being seen
by other applications.

Before terminating, an application must call the UnhookWindowsHookEx function to
free system resources associated with the hook.

The scope of a hook depends on the hook type. Some hooks can be set only with global
scope; others can be set for only a specific thread, as shown in the following table:

450 Volume 1 Microsoft Windows Base Services

Hook Scope

WH_CALLWNDPROC Thread or global

WH_CALLWNDPROCRET Thread or global

WH_CBT Thread or global

WH_DEBUG Thread or global

WH_FOREGROUNDIDLE Thread or global

WH_GETMESSAGE Thread or global

WH_JOURNALPLAYBACK Global only

WH_JOURNALRECORD Global only

WH_KEYBOARD Thread or global

WH_KEYBOARD _LL Global only

WH_MOUSE Thread or global

WH_MOUSE_LL Global only

WH_MSGFIL TER Thread or global

WH_SHELL Thread or global

WH_SYSMSGFIL TER Global only

For a specified hook type, first thread hooks are called, then global hooks.

The global hooks are a shared resource, and installing one affects all applications in the
same desktop as the calling thread. All global hook functions must be in libraries. Global
hooks should be restricted to special-purpose applications or to use as a development
aid during application debugging. Libraries that no longer need a hook should remove its
hook procedure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Hooks Overview, Hook Functions, CaliNextHookEx, CallWndProc, CallWndRetProc,
CBTProc, DebugProc, ForegroundldleProc, GetMsgProc, JournalPlaybackProc,
JournalRecordProc, LowLevelKeyboardProc, LowLevelMouseProc,
KeyboardProc, MessageProc, MouseProc, SheliProc, SysMsgProc,
UnhookWindowsHookEx

Chapter 8 Interprocess Communications 451

SheliProc
The SheliProc hook procedure is an application-defined or library-defined callback
function used with the SetWindowsHookEx function. The function receives notifications
of shell events from the system.

The HOOKPROC type defines a pointer to this callback function. SheliProc is a
placeholder for the application-defined or library-defined function name.

~,.e~~~t;.¢4t.ij4Ct(>$h,i:1P,@~(·:;:. . ..

jittt~"i~,;,j~~'~i~~~~~.~~~~:$~'i)l;
Parameters
nCode

[in] Specifies the hook code. This parameter can be one of the following values:

Value Meaning

HSHELL_ACCESSIBILITYSTATE

HSHELL_ACTIVATESHELLWINDOW

HSHELL_APPCOMMAND

HSHELL_GETMINRECT

HSHELL_LANGUAGE

HSHELL_REDRAW

HSHELL_ T ASKMAN

HSHELL_WINDOWACTIVATED

Windows 2000: The accessibility state has
changed.

The shell should activate its main window.

Windows 2000: The user completed an
input event (for example, the user pressed
an application command button on the
mouse or an application command key on
the keyboard), and the application did not
handle the WM_APPCOMMAND message
generated by that input.

A window is being minimized or maximized.
The system needs the coordinates of the
minimized rectangle for the window.

Keyboard language was changed or a new
keyboard layout was loaded.

The title of a window in the task bar has
been redrawn.

The user has selected the task list. A shell
application that provides a task list should
return TRUE to prevent Windows from
starting its task list.

The activation has changed to a different
top-level, unowned window.

(continued)

452 Volume 1 Microsoft Windows Base Services

(continued)

Value

HSHELL_WINDOWCREATED

HSHELL_WINDOWDESTROYED

Meaning

A top-level, unowned window has been
created. The window exists when the system
calls a SheliProc function.

A top-level, unowned window is about to be
destroyed. The window still exists when the
system calls a SheliProc function.

If nCode is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
[in] The value depends on the value of the nCode parameter, as shown in the
following table:

nCode wParam

HSHELL_ACCESSIBILITYSTATE Indicates which accessibility feature has changed
state. This value is one of the following:
ACCESS_FIL TERKEYS, ACCESS_MOUSEKEYS,
or ACCESS_STICKYKEYS.

HSHELL_APPCOMMAND Windows 2000: Where the WM_APPCOMMAND
message was sent originally; for example, the
handle to a window. For more information, see

HSHELL_GETMINRECT

HSHELL_LANGUAGE

HSHELL_REDRAW

HSHELL_WINDOWACTIVATED
HSHELL_WINDOWCREATED

HSHELL_WINDOWDESTROYED

IParam

cmd parameter in WM_APPCOMMAND.
Handle to the minimized or maximized window.

Handle to the window.

Handle to the redrawn window.

Handle to the activated window.

Handle to the created window.

Handle to the destroyed window.

[in] The value depends on the value of the nCode parameter, as shown in the
following table:

nCode

HSHELL_APPCOMMAND

IParam

Windows 2000:
GET _APPCOMMAND_LPARAM(IParam) is the
application command corresponding to the input
event.

GET _DEVICE_LPARAM(IParam) indicates what
generated the input event; for example, the

nCode

Chapter 8 Interprocess Communications 453

IParam

mouse or keyboard. For more information, see the
uDevice parameter description under
WM_APPCOMMAND.

GET _FLAGS_LPARAM(IParam) depends on the
value of cmd in WM_APPCOMMAND; for example,
it might indicate which virtual keys were held down
when the WM_APPCOMMAND message was
originally sent. For more information, see the
dwCmdFlags description parameter under
WM_APPCOMMAND.

HSHELL_GETMINRECT Pointer to a RECT structure.

HSHELL_LANGUAGE Handle to a keyboard layout.

HSHELL_REDRAW The value is TRUE if the window is flashing, or
FALSE otherwise.

HSHELL_WINDOWACTIVATED The value is TRUE if the window is in full-screen
mode, or FALSE otherwise.

Return Values
The return value should be zero.

Remarks
Install this hook procedure by specifying the WH_SHELL hook type and a pOinter to the
hook procedure in a call to the SetWindowsHookEx function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks OveNiew, Hook Functions, CaliNextHookEx, Send Message,
SetWindowsHookEx, WM_APPCOMMAND

SysMsgProc
The SysMsgProc hook procedure is a library-defined callback function used with the
SetWindowsHookEx function. The system calls this function after an input event occurs
in a dialog box, message box, menu, or scroll bar, but before the message generated by

454 Volume 1 Microsoft Windows Base Services

the input event is processed. The function can monitor messages for any dialog box,
message box, menu, or scroll bar in the system.

The HOOKPROC type defines a pointer to this callback function. SysMsgProc is a
placeholder for the library-defined function name.

Parameters
nCode

[in] Specifies the type of input event that generated the message. This parameter can
be one of the following values:

Value

MSGF _DIALOGBOX

MSGF_MENU

MSGF _SCROLLBAR

Meaning

The input event occurred in a message box or dialog box.

The input event occurred in a menu.

The input event occurred in a scroll bar.

If nCode is less than zero, the hook procedure must pass the message to the
CaliNextHookEx function without further processing and should return the value
returned by CaliNextHookEx.

wParam
This parameter is not used.

IParam
[in] Pointer to an MSG message structure.

Return Values
If nCode is less than zero, the hook procedure must return the value returned by
CaliNextHookEx.

If nCode is greater than or equal to zero, and the hook procedure did not process the
message, it is recommended highly that you call CaliNextHookEx and return the value it
returns; otherwise, other applications that have installed WH_SYSMSGFIL TER hooks
will not receive hook notifications and may behave incorrectly as a result. If the hook
procedure processed the message, it may return a nonzero value to prevent the system
from passing the message to the target window procedure.

Remarks
An application installs the hook procedure by specifying the WH_SYSMSGFIL TER hook
type and a pOinter to the hook procedure in a call to the SetWindowsHookEx function.

Chapter 8 Interprocess Communications 455

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

. . .
, ."'

Hooks Overview, Hook Functions, CaliNextHookEx, MSG, SetWindowsHookEx

UnhookWindowsHookEx
The UnhookWindowsHookEx function removes a hook procedure installed in a hook
chain by the SetWindowsHookEx function.

~b!~~R~rE~~~j~~~'iL
Parameters
hhk

[in] Handle to the hook to be removed. This parameter is a hook handle obtained by a
previous call to SetWindowsHookEx.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get eXtended error information, call
GetLastError.

Remarks
The hook procedure can be in the state of being called by another thread even after
UnhookWindowsHookEx returns. If the hook procedure is not being called
concurrently, the hook procedure is removed immediately before
UnhookWindowsHookEx returns.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported. .
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

456 Volume 1 Microsoft Windows Base Services

Hooks Overview, Hook Functions, SetWindowsHookEx, UnhookWindowsHook

Hook Structures

The CBT_CREATEWND structure contains information passed to a WH_CBT hook
procedure, CBTProc, before a window is created.

Members
Ipcs

Pointer to a CREATESTRUCT structure that contains initialization parameters for the
window about to be created.

hwndlnsertAfter
Handle to the window whose position in the Z order precedes that of the window
being created.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Unicode: Declared as Unicode and ANSI structures.

Hooks Overview, Hook Structures, CBTProc, CREATESTRUCT, SetWindowsHookEx

CBTACTIVATESTRUCT
The CBTACTIVATESTRUCT structure contains information passed to a WH_CBT hook
procedure, CBTProc, before a window is activated.

Chapter 8 Interprocess Communications 457

HWND hWndAct1ve:
} CBTA{;TIVATESTRUCT. * LPCBTACTlVATESTRUCT :

Members
fMouse

Specifies whether the window is being activated as a result of a mouse click. This
value is TRUE if a mouse click is causing the activation or FALSE if it is not.

hWndActive
Handle to the active window.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, CBTProc, SetWindowsHookEx

CWPRETSTRUCT
The CWPRETSTRUCT structure defines the message parameters passed to a
WH_CALLWNDPROCRET hook procedure, CallWndRetProc.

Members
IResult

Specifies the return value of the window procedure that processed the message
specified by the message value.

IParam
Specifies additional information about the message; the exact meaning depends on
the message value.

wParam
Specifies additional information about the message; the exact meaning depends on
the message value.

458 Volume 1 Microsoft Windows Base Services

message
Specifies the message.

hwnd
Handle to the window that processed the message specified by the message value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported:
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, CallWndRetProc, SetWindowsHookEx

CWPSTRUCT
The CWPSTRUCT structure defines the message parameters passed to a
WH_CALLWNDPROC hook procedure, CallWndProc.

Members
IParam

Specifies additional information about the message; the exact meaning depends on
the message value.

wParam
Specifies additional information about the message; the exact meaning depends on
the message value.

message
Specifies the message.

hwnd
Handle to the window to receive the message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Chapter 8 Interprocess Communications 459

Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, CallWndProc, SetWindowsHookEx

DEBUGHOOKINFO
The DEBUGHOOKINFO structure contains debugging information passed to a
WH_DEBUG hook procedure, DebugProc.

Members
idThread

Handle to the thread containing the filter function.

idThreadlnstalier
Handle to the thread that installed the debugging filter function.

IParam
Specifies the value to be passed to the hook in the IParam parameter of the
DebugProc callback function.

wParam
Specifies the value to be passed to the hook in the wParam parameter of the
DebugProc callback function.

code
Specifies the value to be passed to the hook in the nCode parameter of the
DebugProc callback function.

"',',,: -

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, DebugProc, SetWindowsHookEx

460 Volume 1 Microsoft Windows Base Services

EVENTMSG
The EVENTMSG structure contains information about a hardware message sent to the
system message queue. This structure is used to store message information for the
JournalPlaybackProc callback function.

Members
message

Specifies the message.

paramL
Specifies additional information about the message; the exact meaning depends on
the message value.

paramH
Specifies additional information about the message; the exact meaning depends on
the message value.

time
Specifies the time at which the message was posted.

hwnd
Handle to the window to which the message was posted.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, JournalPlaybackProc, SetWindowsHookEx

KBDLLHOOKSTRUCT
The KBDLLHOOKSTRUCT structure contains information about a low-level keyboard
input event.

Chapter 8 Interprocess Communications 461

typedef struct tagKBDLLHOOKSTRUCT
DWORD vkCode;
DWORD scanCode;
DWORD flags:
DWORD time;
ULONG:...PTRdwExtraInfo·:

} KBDI.LHOOKSTRUCT. *PKBDLLHOOK$TRUCT;

Members
vkCode

Specifies a virtual-key code. The code must be a value in the range 1 to 254.

scanCode
Specifies a hardware scan code for the key.

flags
Specifies the extended-key flag, event-injected flag, context code, and transition-state
flag. This member is specified as follows:

Value

o

1-3
4

5

6

7

Description

Specifies whether the key is an extended key, such as a function key or
a key on the numeric keypad. The value is 1 if the key is an extended
key; otherwise, it is o.
Reserved.

Specifies whether the event was injected. The value is 1 if the event was
injected; otherwise, it is O.

Specifies the context code. The value is 1 if the AL T key is pressed;
otherwise, it is o.
Reserved.

Specifies the transition state. The value is 0 if the key is pressed and 1 if
it is being released.

An application can use the following values to test the keystroke flags:

Value Purpose

LLKHF _ALTDOWN Test the context code.

LLKHF _EXTENDED Test the extended-key flag.

LLKHF _INJECTED Test the event-injected flag.

LLKHF _UP Test the transition-state flag.

time
Specifies the time stamp for this message.

dwExtralnfo
Specifies extra information associated with the message.

462 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, LowLevelKeyboardProc, SetWindowsHookEx

MOUSEHOOKSTRUCT
The MOUSEHOOKSTRUCT structure contains information about a mouse event passed
to a WH_MOUSE hook procedure, MouseProc.

Members
pt

Specifies a POINT structure that contains the x-coordinates and y-coordinates of the
cursor, in screen coordinates.

hwnd
Handle to the window that will receive the mouse message corresponding to the
mouse event.

wHitTestCode
Specifies the hit-test value. For a list of hit-test values, see the description of the
WM_NCHITTEST message.

dwExtralnfo
Specifies extra information associated with the message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Chapter 8 Interprocess Communications 463

;1J1'Se~AI$O
Hooks Overview, Hook Structures, MouseProc, POINT, SetWindowsHookEx,
WM_NCHITTEST

MOUSEHOOKSTRUCTEX
The MOUSEHOOKSTRUCTEX structure contains information about a mouse event
passed to a WH_MOUSE hook procedure, MouseProc.

This is an extension of the MOUSEHOOKSTRUCT structure that includes information
about wheel movement or the use of the X button.

t:'yp~d'ef'struct't:agl1ousEtro6KsrRUcCHX (/ ••.
. 'MOVSEHqtil<~T;Ruei'. }," . ..',' .

. DWQfHr ~Qu.&e.oat~; . !.' •

} MQ~SEHOOKSTRUCT~X. *~M;QVS~H(}OKSTRUCTt"(" .' '

Members
MOUSEHOOKSTRUCT

The members of a MOUSEHOOKSTRUCT structure make up the first part of this
structure.

mouseData
If the message is WM_MOUSEWHEEL, the HIWORD of this member is the wheel
delta. The LOWORD is undefined and reserved.

If the message is WM_XBUTTONDOWN, WM_XBUTTONUP, or
WM_XBUTTONDBLCLK, the HIWORD OF mouseData specifies which X button was
pressed or released, and the LOWORD is undefined and reserved. This member can
be one or more of the following values:

Value Meaning

XBUTTON1

XBUTTON2

The first X button was pressed or released.

The second X button was pressed or released.

Otherwise, mouseData is not used.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

464 Volume 1 Microsoft Windows Base Services

Hooks Overview, Hook Structures, MouseProc, MOUSEHOOKSTRUCT,
WM_MOUSEWHEEL, WM_XBUTTONDOWN, WM_XBUTTONDBLCLK,
WM_XBUTTONUP

MSLLHOOKSTRUCT
The MSLLHOOKSTRUCT structure contains information about a low-level keyboard
input event.

Members
pt

Specifies a POINT structure that contains the x-coordinates and y-coordinates of the
cursor, in screen coordinates.

mouseData
If the message is WM_MOUSEWHEEL, the high-order word of this member is the
wheel delta. The low-order word is reserved.

If the message is WM_XBUTTONDOWN, WM_XBUTTONUP, or
WM_XBUTTONDBLCLK, the high-order word specifies which X button was pressed
or released, and the low-order word is reserved. This value can be one or more of the
following values:

Value

XBUTTON1

XBUTTON2

Meaning

The first X button was pressed or released.

The second X button was pressed or released.

Otherwise, mouseData is not used.

flags
Specifies the event-injected flag.

Value

o

1-15

Meaning

Specifies whether the event was injected. The value is 1 if the
event was injected; otherwise, it is O.

Reserved.

Chapter 8 Interprocess Communications 465

An application can use the following value to test the mouse flags:

Value Purpose

LLMHF _INJECTED Test the event-injected flag.

time
Specifies the time stamp for this message.

dwExtralnfo
Specifies extra information associated with the message.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Structures, LowLevelMouseProc, POINT,
SetWindowsHookEx, WM_MOUSEWHEEL, WM_XBUTTONDBLCLK,
WM_XBUTTONDOWN, WM_XBUTTONUP

Hook Messages
The following messages are used with hooks:

WM_CANCELJOURNAL
WM_QUEUESYNC

WM_CANCELJOURNAL
The WM_CANCELJOURNAL message is posted to an application when a user cancels
the application's journaling activities. The message is posted with a NULL window
handle.

Parameters
This message has no parameters.

Return Values
This message does not return a value. It is meant to be processed from within an
application's main loop or a GetMessage hook procedure, not from a window procedure.

466 Volume 1 Microsoft Windows Base Services

Remarks
Journal record and playback modes are modes imposed on the system that let an
application sequentially record or play back user input. The system enters these modes
when an application installs a JournalRecordProc or JournalPlaybackProc hook
procedure. When the system is in either of these journaling modes, applications must
take turns reading input from the input queue. If anyone application stops reading input
while the system is in a journaling mode, other applications are forced to wait.

To ensure a robust system, one that cannot be made to stop responding by anyone
application, the system automatically cancels any journaling activities when a user
presses the CTRL+ESC or CTRL+AL T +DEL key combination. The system then unhooks
any journaling hook procedures and posts a WM_CANCELJOURNAL message, with a
NULL window handle, to the application that set the journaling hook.

The WM_CANCELJOURNAL message has a NULL window handle and, therefore, it
cannot be dispatched to a window procedure. There are two ways for an application to
see a WM_CANCELJOURNAL message: if the application is running in its own main
loop, it must catch the message between its call to GetMessage or PeekMessage and
its call to DispatchMessage; if the application is not running in its own main loop, it must
set a GetMsgProc hook procedure (through a call to SetWindowsHookEx specifying
the WH_GETMESSAGE hook type) that watches for the message.

When an application sees a WM_CANCELJOURNAL message, it can assume two
things: the user has intentionally cancelled the journal record or playback mode, and the
system has already unhooked any journal record or playback hook procedures.

Note that the key combinations mentioned above (CTRL+ESC or CTRL+AL T +DEL)
cause the system to cancel journaling. If anyone application stops respodning, these
key combinations give the user a means of recovery. The VK_CANCEL virtual key code
(usually implemented as the CTRL+BREAK key combination) is what an application that
is in journal record mode should watch for as a signal that the user wishes to cancel the
journaling activity. The difference is that watching for VK_CANCEL is a suggested
behavior for journaling applications, whereas CTRL+ESC or CTRL+AL T +DEL causes
the system to cancel journaling, regardless of a journaling application's behavior.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks Overview, Hook Messages, DispatchMessage, GetMessage, GetMsgProc,
JournalPlaybackProc, JournalRecordProc, PeekMessage, SetWindowsHookEx

Chapter 8 Interprocess Communications 467

WM_QUEUESVNC
The WM_QUEUESYNC message is sent by a computer-based training (CST)
application to separate user-input messages from other messages sent through the
WH_JOURNALPLAYSACK hook procedure.

Parameters
This message has no parameters.

Return Values
A CST application should return zero if it processes this message.

Remarks
Whenever a CST application uses the WH_JOURNALPLAYSACK hook procedure, the
first and last messages are WM_QUEUESYNC. This allows the CST application to
intercept and examine user-initiated messages without doing so for events that it sends.

If an application specifies a NULL window handle, the message is posted to the
message queue of the active window.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Hooks OveNiew, Hook Messages, SetWindowsHookEx

CHAPTER 9

File 1/0

About Fi Ie 1/0
A file is the basic unit of storage that,enables a computer to distinguish one set of
information from another. This overview describes the file input and output (I/O)
operations and the information provided by the file I/O functions.

Files are stored on storage media, such as disks or tapes, and can be organized into
groups called directories. The file I/O functions enable applications to create, open,
modify, and delete files. They also enable applications to obtain system information,
such as what disk drives are present.

File System Organization

469

A volume is a storage device, such as a fixed disk or floppy disk, formatted to store
directories and files. Each volume has a root directory. Directories and files on the
volume are organized in a tree structure that starts at the root directory. Each directory
entry identifies the name, attributes, location, and size of a file or subdirectory.

A large volume can be divided into more than one logical volume, also called a partition.
To the user and to the operating system, each partition appears to be a separate
volume.

A file system is operating system software that manages the low-level organization of
files on a volume. The operating system supports one or more of the following file
systems:

• File Allocation Table (FAT)

• NT File System (NTFS)

The type of file system defines the file name conventions on a volume and may also
provide specific file system features, such as security, recoverability, and high I/O
performance. Each volume can use a different file system.

Accessing Files
The first time a file function accesses a volume and whenever a diskette is placed in a
floppy-disk drive, the operating system examines the volume to determine its file system.
Thereafter, the operating system manages all I/O to that volume through the device
driver supporting the file system.

470 Volume 1 Microsoft Windows Base Services

The file I/O functions enable applications to access files regardless of the underlying file
system. However, capabilities may vary depending on the file system and/or operating
system in use. For example, the CreateFile function includes a security parameter that
provides no security benefits for files not residing on an NTFS volume.

The file I/O functions that create, open, and delete files and directories identify them by
their names. These functions store or search for the file or directory in the current
directory on the current disk drive, unless the name explicitly specifies a path to a
different directory, disk drive, or both.

File Name Conventions
Although each file system can have specific rules about the formation of individual
components in a directory or file name, all file systems follow the same general
conventions: a base file name and an optional extension, separated by a period. For
example, the MS-DOS FAT file system supports 8 characters for the base file name and
3 characters for the extension. This is known as an 8.3 file name. The FAT file system
and NTFS support file names that can be up to 255 characters long. This is known as a
long file name. To get an MS-DOS file name given a long file name, use the

. GetShortPathName function. To get the full path of a file, use the GetFuliPathName
function.

Both file systems use the backslash (\) character to separate directory names and the
file name when forming a path.

General rules for applications creating names for directories and files or processing
names supplied by the user include the following:

• Use any character in the current code page for a name, but do not use a path
separator, a character in the range 0 through 31, or any character explicitly disallowed
by the file system. A name can contain characters in the extended character set (128-
255).

• Use the backslash (\), the forward slash (I), or both to separate components in a path.
No other character is acceptable as a path separator. Note that UNC names must
adhere to the following format: \\servet\share.

• Use a period (.) as a directory component in a path to represent the current directory.

• Use two consecutive periods (..) as a directory component in a path to represent the
parent of the current directory.

• Use a period (.) to separate the base file name from the extension in a directory name
or file name.

• Do not use the following characters in directory names or file names, because they
are reserved:

<>:" /\ I
• Do not use device names, such as aux, con, /pt1, and pm, as file names or directory

names.

Chapter 9 File I/O 471

• Process a path as a null-terminated string. The maximum length for a path, including
a trailing backslash, is given by MAX_PATH.

The wide (Unicode) versions of the CreateDirectory, FindFirstFile,
GetFileAHributes, and SetFileAttributes functions permit paths that exceed the
MAX_PATH length if the path has the "\\?'i' or ',\\?\UNC\" prefix. However, each
component in the path cannot be more than MAX_PATH characters long. Use the
''\\?'i' prefix with paths for local storage devices and the ',\\?\UNC\" prefix with paths
having the Universal Naming Convention (UNC) format.

• Do not assume case sensitivity. Consider names such as OSCAR, Oscar, and oscar
to be the same.

By following the rules listed in this section, an application can create valid names for files
and directories regardless of the file system in use.

Backslashes (\) are used as element dividers in paths (dividing the file name from the
path to it, or directories from one another in a path). You cannot use them in file or
directory names. They may be required as part of volume names (for example, "C:'i').

Long File Names
The operating system stores the long file names on disk as special directory entries.
When you create a long file name, the operating system creates a corresponding short
8.3 form of the name.

The operating system stores the long file names on disk in Unicode. This means that the
original long file name is always preserved, even if it contains extended characters, and
regardless of the code page that is active during a disk read or write operation. The case
of the file name is preserved, but the file system is not case-sensitive.

The valid character set for these long file names is the NTFS character set, less one
character: the colon (:) that NTFS uses for opening alternate file streams. This means
that you can freely copy files between NTFS and FAT partitions without losing any file
name information.

MS-DOS Device Names
MS-DOS device names are global. Once defined, an MS-DOS device name remains
visible to all processes until either it is explicitly removed or the system reboots.

The DefineDosDevice and SetVolumeMountPoint functions are used to create and
modify the symbolic links used to implement the MS-DOS device namespace. To obtains
a list of all MS-DOS devices known to the system, use the QueryDosDevice function.

File Operations
Creating and Opening Files with the CreateFile Function
The CreateFile function can create a new file or open an existing file.

472 Volume 1 Microsoft Windows Base Services

When an application uses CreateFile, it must specify whether it will read from the file,
write to the file, or both. The application must also specify what action to take whether or
not the file exists. For example, an application can specify that CreateFile always be
used to create the file. As a result, the function creates the file if it does not exist and
overwrites the file if it does exist.

CreateFile also enables an application to specify whether it wants to share the file for
reading, writing, both, or neither. A file that is not shared cannot be opened more than
once by the first application nor by another application until the first application has
closed the file.

The operating system assigns a unique identifier, called a file handle, to each file that is
opened or created. An application can use the file handle in functions that read from,
write to, and describe the file. It is valid until the file is closed. When an application starts,
it inherits all open file handles from the process that started it, if the handles are
inheritable. For more information about processes, see Processes and Threads.

For information about the standard input, standard output, and standard error file
handles, see Consoles and Character-Mode Support.

An application should check the return value of CreateFile before attempting to use the
handle to access the file. If an error occurs, the application can use the GetLastError
function to get extended error information.

Creating Temporary Files
Applications can obtain unique file names for temporary files with the
GetTempFileName function. The GetTempPath function retrieves the path to the
directory where temporary files are to be created.

Copying and Moving Files
Before a file can be copied, it must be closed or opened only for reading. No thread can
have the file opened for writing. To copy an existing file to a new one, use the CopyFile
or CopyFileEx function. Applications can specify whether CopyFile and CopyFileEx fail
if the destination file already exists.

The CopyFileEx function also allows an application to specify the address of a callback
function (see CopyProgressRoutine) that is called each time another portion of the file
has been copied. The application can use this information to display am indicator that
shows the total number of bytes copied as a percent of the total file size.

The ReplaceFile function replaces one file with another file, with the option of creating a
backup copy of the original file. The operation is atomic; either all data is saved to the
file, or the original file is left unchanged. The function preserves attributes of the original
file, such as its creation time, ACLs, and encryption attribute.

A file must also be closed before an application can move it. The MoveFile and
MoveFileEx functions copy an existing file to a new location and deletes the original.

Chapter 9 File 1/0 473

The MoveFileEx function also allows an application to specify how to move the file. The
function can replace an existing file, move a file across volumes, and delay moving the
file until the operating system is restarted.

Reading from and Writing to a File
Every open file has a file pOinter that specifies the next byte to be read or the location to
receive the next byte written. When a file is opened for the first time, the system places
the file pointer at the beginning of the file. As each byte is read or written, the system
advances the file pOinter. An application can also move the file pointer by using the
SetFilePointer function.

An application reads from and writes to a file by using the ReadFile and WriteFile
functions. These functions require a handle to a file to be opened for reading and writing,
respectively. ReadFile and Write File read and write a specified number of bytes at the
location indicated by the file pointer. The data is read and written exactly as specified;
the functions do not format the data.

For Very Large Memory (VLM), ReadFileVlm and WriteFileVlm may be used similarly
to ReadFile and WriteFile. For more information, see Very Large Memory (VLM).

An application can implement a scatter-gather scheme with ReadFileScatter and
WriteFileGather. A scatter-gather scheme uses the operating system to deliver in one
operation multiple discrete chunks of data (such as database records) from a file to
separate, noncontiguous buffers in memory. A scatter-gather scheme also writes the
data from noncontiguous buffers in one operation.

When the file pointer reaches the end of a file and the application attempts to read from
the file, no error occurs, but no bytes are read. Therefore, reading zero bytes without an
error means the application has reached the end of the file. Writing zero bytes does
nothing.

An application can truncate or extend a file by using the SetEndOfFile function. This
function sets the end of file to the current position of the file pointer.

When an application writes to a file, the system usually collects the data being written in
an internal buffer and writes the data to the disk on a regular basis.

An application can force the operating system to write the contents of the buffer to the
disk by using the FlushFileBuffers function. Alternatively, an application can specify
that write operations are to bypass the internal buffer and write directly to the disk by
setting a flag when the file is created or opened by using the CreateFile function.

If there is data in the internal buffer when the file is closed, the operating system does
not automatically write the contents of the buffer to the disk before closing the file. If the
application does not force the operating system to write the buffer to disk before closing
the file, the caching algorithm determines when the buffer is written.

474 Volume 1 Microsoft Windows Base Services

Note Accessing the data buffer while a read or write operation is using the buffer may
lead to corruption of the data in that buffer. Applications must not read from, write to,
reallocate, or free the data buffer that a read or write operation is using until the
operation completes.

Locking and Unlocking Files
Although the system allows more than one application to open a file and write to it,
applications must not write over each other's work. An application can prevent this
problem by temporarily locking a region in a file. The LockFile and LockFileEx functions
lock a specified range of bytes in a file. The range may extend beyond the current end of
the file. Locking part of a file prevents all other processes from reading or writing
anywhere in the specified area. Attempts to read from or write to a region locked by
another process always fail.

The LockFileEx function allows an application to specify either a shared lock or an
exclusive lock. An exclusive lock denies all other processes both read and write access
to the specified region of the file. A shared lock denies all processes write access to the
specified region of the file, including the process that first locks the region. This can be
used to create a read-only region in a file.

The application unlocks the region by using the UnlockFile or UnlockFileEx function.
An application should unlock all locked areas before closing a file.

Searching for Files
An application can search the current directory for all file names that match a given
pattern by using the FindFirstFile, FindFirstFileEx, FindNextFile, and FindClose
functions. The pattern must be a valid file name and can include wildcard characters.

The FindFirstFile and FindFirstFileEx functions create handles that FindNextFile uses
to search for other files with the same pattern. All functions return information about the
file that was found. This information includes the file name, size, attributes, and time.

The FindFirstFileEx function also allows an application to search for files based on
additional search criteria. The function can limit searches to device names or directory
names.

The FindClose function destroys handles created by FindFirstFile and
FindFirstFileEx.

An application can search for a single file on a specific path by using the Search Path
function.

Monitoring Directories
An application can monitor the contents of a directory and its subdirectories by using the
FindFirstChangeNotification, FindNextChangeNotification, and
FindCloseChangeNotification functions. Waiting for a change notification is similar to

Chapter 9 File 1/0 475

having a read operation pending against a directory and, if necessary, its subdirectories.
When something changes within the directory being watched, the read operation is
completed. For example, an application can use these functions to update a directory
listing whenever a file name within the monitored directory changes.

An application can specify a set of conditions that trigger a change notification by using
the FindFirstChangeNotification function. The conditions include changes to file
names, directory names, attributes, file size, time of last write, and security. This function
also returns a handle that can be waited on by using the wait functions. If the wait
condition is satisfied, FindNextChangeNotification can be used to provide a notification
handle to wait on subsequent changes.

The FindCloseChangeNotification function closes the notification handle.

Another way to monitor directory changes is by using the ReadDirectoryChangesW
function.

Closing and Deleting Files
To use operating system resources efficiently, an application should close files when
they are no longer needed by using the CloseHandle function. If a file is open when an
application terminates, the system closes it automatically.

The DeleteFile function can be used to delete a file. The file must, however, be closed
before any attempt to delete it will succeed.

Directory Operations
When an application creates a new file, the operating system adds it to the specified
directory. Each directory can have any number of files, up to the physical limit of the
disk. An application can create new directories and delete existing directories by using
the CreateDirectory, CreateDirectoryEx, and RemoveDirectory functions. An
application cannot delete a directory unless it is empty.

The directory at the end of the active path is called the current directory; it is the
directory in which the active application started, unless explicitly changed. An application
can determine which directory is current by using the GetCurrentDirectory function. An
application can change the current directory by using the SetCurrentDirectory function.

Windows NT/2000: You can obtain a handle to a directory by calling the CreateFile
function with the FILE_FLAG_BACKUP _SEMANTICS flag set, as follows:

trofr ."".Cr,eate:Fne .(
I) .irName; ".

'GE.IiER IfU<I:Ao,
it ftE:c;SHA~Ec:.REAOJ fILE~SHARE,OELnE. ~

'NUl:.k •. :'·:.; .i·'•

; .. ,gf!~N;:.,EXi?TI~!>~.... '.' '. '"
f.¥,lCfLAG .. J'ACKUP .::.StlvlM;tTI'CS;,

'''I!IIH.L J'

476 Volume 1 Microsoft Windows Base Services

You can pass a directory handle to the following functions:

BackupRead GetFileTime
BackupSeek GetFileType
BackupWrite ReadDirectoryChangesW
GetFilelnformationByHandle SetFileTime
GetFileSize

Asynchronous Input and Output
Asynchronous input and output (asynchronous I/O) allows some I/O functions to return
immediately, even though an I/O request is still pending. Asynchronous I/O enables an
application to continue with other processing and wait for the I/O to be completed at a
later time. Asynchronous I/O is also called overlapped I/O.

The ReadFile, WriteFile, ReadFileVlm, and WriteFileVlm functions enable an
application to specify an OVERLAPPED structure that indicates where to position the file
pOinter before the read or write operation. The handle of the file being read from or
written to must have been opened with the FILE_FLAG_OVERLAPPED flag. You can
also create an event and put the handle in the OVERLAPPED structure; the wait
functions can then be used to wait for the I/O operation to complete by waiting on the
event handle.

An application can also wait on the file handle to synchronize the completion of an I/O
operation, but doing so requires extreme caution. Each time an I/O operation is started,
the operating system sets the file handle to the nonsignaled state. Each time an I/O
operation is completed, the operating system sets the file handle to the Signaled state.
Therefore, if an application starts two I/O operations and waits on the file handle, there is
no way to determine which operation is finished when the handle is set to the signaled
state. If an application must perform multiple asynchronous 110 operations on a single
file, it should wait on the event handle in the OVERLAPPED structure for each I/O
operation, rather than on the file handle.

To cancel all pending asynchronous I/O operations, use the Cancello function. This
function only cancels operations issued by the calling thread for the specified file handle.

The ReadFileEx and WriteFileEx functions enable an application to specify a routine to
execute (see FilelOCompletionRoutine) when the asynchronous I/O request is
completed.

For more information, see Synchronization and Overlapped Input and Output.

1/0 Completion Ports
I/O completion ports are used with asynchronous I/O. The CreateloCompletionPort
function associates an I/O completion port with one or more file handles. When an
asynchronous I/O operation started on a file handle associated with a completion port is
completed, an I/O completion packet is queued to the port. This can be used to combine
the synchronization point for multiple file handles into a single object.

Chapter 9 File I/O 477

A thread uses the GetQueuedCompletionStatus function to wait for a completion
packet to be queued to the completion port, rather than waiting directly for the
asynchronous I/O to complete. Threads that block their execution on a completion port
are released in last-in-first-out (UFO) order. This means that when a completion packet
is queued to the completion port, the system releases the last thread to block its
execution on the port.

When a thread calls GetQueuedCompletionStatus, it is associated with the specified
completion port until it exits, specifies a different completion port, or frees the completion
port. A thread can be associated with at most one completion port.

The most important property of a completion port is the concurrency value. The
concurrency value of a completion port is specified when the completion port is created.
This value limits the number of runnable threads associated with the completion port.
When the total number of runnable threads associated with the completion port reaches
the concurrency value, the system blocks the execution of any subsequent threads that
specify the completion port until the number of runnable threads associated with the
completion port drops below the concurrency value. The most efficient scenario occurs
when there are completion packets waiting in the queue, but no waits can be satisfied
because the port has reached its concurrency limit. In this case, when a running thread
calls GetQueuedCompletionStatus, it will immediately pick up the queued completion
packet. No context switches will occur, because the running thread is continually picking
up completion packets and the other threads are unable to run.

The best value to pick for the concurrency value is the number of CPUs on the machine.
If your transaction required a lengthy computation, a larger concurrency value will allow
more threads to run. Each transaction will take longer to complete, but more transactions
will be processed at the same time. It is easy to experiment with the concurrency value
to achieve the best effect for your application.

The PostQueuedCompletionStatus function allows an application to queue its own
special-purpose I/O completion packets to the completion port without starting an
asynchronous I/O operation. This is useful for notifying worker threads of external
events.

The completion port is freed when there are no more references to it. The completion
port handle and every file handle associated with the completion port reference the
completion port. All the handles must be closed to free the completion port. To close the
port handle, call the CloseHandle function.

Getting Information About Files
File Attributes
The GetFilelnformationByHandle function retrieves information about a file and stores
it in a structure of type BY _HANDLE_FILE_INFORMATION. This information includes
creation time, file size, and attributes.

478 Volume 1 Microsoft Windows Base Services

Eight characteristics called attributes may be associated with a file. The attributes can be
one or more of the following values.

Attribute Meaning

FILE_A TTRI BUTE_DEVICE

FILE_ATTRIBUTE_DI RECTORY

FI LE_ATTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_REPARSE_POINT

FILE_ATTRIBUTE_SPARSE_FILE

FI LE_ATTRIBUTE_SYSTEM

The file or directory is an archive file.
Applications use this attribute to mark files for
backup or removal.

The file or directory is compressed. For a file,
this means that all of the data in the file is
compressed. For a directory, this means that
compression is the default for newly created
files and subdirectories.

Reserved; do not use.

The handle identifies a directory.

The file or direct9ry is encrypted. For a file, this
means that all data in the file is encrypted. For
a directory, this means that encryption is the
default for newly created files and
subdirectories.

The file or directory is hidden. It is not included
in an ordinary directory listing.

The file or directory has no other attributes set.
This attribute is valid only if used alone.

The file will not be indexed by the content
indexing service.

The data of the file is not immediately
available. This attribute indicates that the file
data has been physically moved to offline
storage. This attribute is used by Remote
Storage, the hierarchical storage management
software in Microsoft® Windows® 2000.
Applications should not arbitrarily change this
attribute.

The file or directory is read-only. Applications
can read the file but cannot write to it or delete
it. In the case of a directory, applications
cannot delete it.

The file has an associated reparse point.

The file is a sparse file.

The file or directory is part of the operating
system or is used exclusively by the operating
system.

Chapter 9 File 1/0 479

The file is being used for temporary storage.
File systems attempt to keep all of the data in
memory for quicker access rather than flushing
the data back to mass storage. A temporary
file should be deleted by the application as
soon as it is no longer needed.

An application can retrieve the file attributes by using the GetFileAttributes
or GetFileAttributesEx function. The CreateFile and SetFileAttributes functions can
set many of the attributes. However, applications cannot set all attributes. For more
information on how to set these attributes, see SetFileAttributes.

File Type
The GetFileType function returns the type of a file: disk, character (such as a console),
pipe, or unknown. The GetBinaryType function determines whether a file is executable,
and if so, what type of executable file it is. The GetFileSize function returns the size of a
file.

File Date and Ti me
Applications can retrieve and set the date and time a file was created, last modified, or
last accessed by using the GetFileTime and SetFileTime functions. For more
information about file times, see Time.

File Code Page
The AreFileApisANSI function determines whether the file 1/0 functions are using the
ANSI or OEM character set code page. The SetFileApisToANSI function causes the
functions to use the ANSI code page. The SetFileApisToOEM function causes the
functions to use the OEM code page.

By default, file I/O functions use ANSI file names. Functions exported by
KERNEL32.DLL that accept or return file names are affected by the file code page
setting.

Both SetFileApisToANSI and SetFileApisToOEM set the code page per process,
rather than per thread or per computer.

Volume Information
The GetVolumelnformation function retrieves information about the file system on a
given volume. This information includes the volume name, volume serial number, file
system name, file system flags, maximum length of a file name, and so on. The
SetVolumeLabel function sets the label of a file system volume.

The GetSystemDirectory and GetWindowsDirectory functions retrieve the paths to
the system directory and the Windows directory, respectively.

480 Volume 1 Microsoft Windows Base Services

The GetDiskFreeSpace function retrieves organizational information about a volume,
including the number of bytes per sector, the number of sectors per cluster, the number
of free clusters, and the total number of clusters.

The GetDriveType function indicates whether the volume referenced by the specified
drive letter is a removable, fixed, CD-ROM, RAM, or network drive.

The GetLogicalDrives function identifies the volumes present. The
GetLogicalDriveStrings function retrieves a null-terminated string for each volume
present. Use these strings whenever a root directory is required.

File and Directory Security
Windows NTlWindows 2000 security enables you to control access to file and directory
objects stored on a secure file system, such as NTFS. For more information about
security, see Access-Control Model.

You can specify a security descriptor for a file or directory when you call the CreateFile,
CreateDirectory, or CreateDirectoryEx function. To retrieve the security descriptor of a
file or directory object, call the GetNamedSecuritylnfo or GetSecuritylnfo function. To
change the security descriptor of a file or directory object, call the
SetNamedSecuritylnfo or SetSecuritylnfo function.

When a thread calls the CreateFile function to open a handle to a file or directory object,
the thread requests a set of generic access rights to the object. The requested access
rights determine the operations that the thread can perform with the returned handle.
Before returning a handle to the object, CreateFile checks the thread's access token
and the requested access rights against the DACL in the object's security descriptor.

For file and directory objects, GENERIC_READ access maps to the following standard
and specific access rights.

Access right Description

FILE_READ_ATTRIBUTES

FILE_READ_DATA

FILE_READ_EA

STANDARD _RIGHTS_READ

SYNCHRONIZE

Right to read file attributes.

Right to read data from the file. For a directory, the
right to list the contents of the directory.

Right to read extended attributes.

Includes READ_CONTROL, which is the right to
read the information in the object's security
descriptor, not including the information in the
SACL.

Right to specify a file handle in one of the wait
functions. However, for asynchronous file I/O
operations, you should wait on the event handle in
an OVERLAPPED structure rather than using the
file handle for synchronization.

Chapter 9 File 110 481

For file and directory objects, GENERIC_WRITE access maps to the following standard
and specific access rights.

Access right

FI LE_ WRITE_ATTRIBUTES

FILE_WRITE_DATA

FILE_ WRITE_EA

STANDARD_RIGHTS_WRITE

SYNCHRONIZE

Description

Right to append data to the file. For a directory, the
right to create a subdirectory.

Right to write file attributes.

Right to write data to the file. For a directory, the
right to create a file in the directory.

Right to write extended attributes.

Includes READ_CONTROL, which is the right to
read the information in the object's security
descriptor, not including the information in the
SACL.

Right to specify a file handle in one of the wait
functions. However, for asynchronous file I/O
operations, you should wait on the event handle in
an OVERLAPPED structure rather than using the
file handle for synchronization.

You cannot use an access-denied ACE to deny only GENERIC_READ or only
GENERIC_WRITE access to a file. This is because for file objects, the generiC mappings
for both GENERIC_READ or GENERIC_WRITE include the SYNCHRONIZE access
right. If an ACE denies GENERIC_WRITE access to a trustee, and the trustee requests
GENERIC_READ access, the request will fail because the request implicitly includes
SYNCHRONIZE access which is implicitly denied by the ACE. And vice versa, too.
Instead of using access-denied ACEs, use access-allowed ACEs to explicitly allow the
permitted access rights.

You can request the ACCESS_SYSTEM_SECURITY access right to a file or directory
object if you want to read or write the object's SACL. For more information, see Access­
Control Lists (ACLs) and SACL Access Right.

Fi Ie 1/0 Reference

File 1/0 Functions

AreFileApisANSI
The AreFileApisANSI function determines whether a set of file I/O functions is using the
ANSI or OEM character set code page. This function is useful for 8-bit console input and
output operations.

482 Volume 1 Microsoft Windows Base Services

Parameters
This function has no parameters.

Return Values
If the set of file I/O functions is using the ANSI code page, the return value is nonzero.

If the set of file I/O functions is using the OEM code page, the return value is zero.

Remarks
The SetFileApisToOEM function causes a set of file I/O functions to use the OEM code
page. The SetFileApisToANSI function causes the same set of file I/O functions to use
the ANSI code page. Use the AreFileApisANSI function to determine which code page
the set of file I/O functions is currently using. For a discussion of these functions' usage,
please refer to the Remarks sections of SetFileApisToOEM and SetFileApisToANSI.

The file I/O functions whose code page is ascertained by AreFileApisANSI are those
functions exported by KERNEL32.DLL that accept or return a file name.

The functions SetFileApisToOEM and SetFileApisToANSI set the code page for a
process, so AreFileApisANSI returns a value indicating the code page of an entire
process.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, SetFileApisToANSI, SetFileApisToOEM

Can cello
The Cancello function cancels all pending input and output (I/O) operations that were
issued by the calling thread for the specified file handle. The function does not cancel I/O
operations issued for the file handle by other threads.

Parameters
hFile

Chapter 9 File 1/0 483

[in] Handle to a file. The function cancels all pending I/O operations for this file handle.

Return Values
If the function succeeds, the return value is nonzero. All pending I/O operations issued
by the calling thread for the file handle were successfully canceled.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If there are any I/O operations in progress for the specified file handle, and they were
issued by the calling thread, the Cancello function cancels them.

Note that the I/O operations must have been issued as overlapped I/O. If they were not,
the I/O operations would not have returned to allow the thread to call the Cancello
function. Calling the Cancello function with a file handle that was not opened with
FILE_FLAG_OVERLAPPED does nothing.

All I/O operations that are canceled will complete with the error
ERROR_OPERATION_ABORTED. All completion notifications for the I/O operations will
occur normally.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, CreateFile, DeviceloControl, LockFileEx,
ReadDirectoryChangesW, ReadFile, ReadFileEx, WriteFile, WriteFileEx

CopyFile
The CopyFile function copies an existing file to a new file.

The CopyFileEx function provides two additional capabilities. CopyFileEx can call a
specified callback function each time a portion of the copy operation is completed, and
CopyFileEx can be canceled during the copy operation.

(continued)

484 Volume 1 Microsoft Windows Base Services

(continued)

Parameters
IpExistingFileName

[in] Pointer to a null-terminated string that specifies the name of an existing file.

IpNewFileName
[in] Pointer to a null-terminated string that specifies the name of the new file.

bFaillfExists
[in] Specifies how this operation is to proceed if a file of the same name as that
specified by IpNewFileName already exists. If this parameter is TRUE and the new file
already exists, the function fails. If this parameter is FALSE and the new file already
exists, the function overwrites the existing file and succeeds.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Security attributes for the existing file are not copied to the new file.

File attributes for the existing file are copied to the new file. For example, if an existing
file has the FILE_ATTRIBUTE_READONLY file attribute, a copy created through a call
to CopyFile will also have the FILE_ATTRIBUTE_READONLY file attribute.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, CopyFileEx, CreateFile, MoveFile

Chapter 9 File 1/0 485

CopyFileEx
The CopyFileEx function copies an existing file to a new file. This function preserves
extended attributes, OLE structured storage, NTFS alternate data streams, and file
attributes. Security attributes for the existing file are not copied to the new file.

l: . ; ,,,;',< '--:,-"

Parameters
IpExistingFileName

[in] Pointer to a null-terminated string that specifies the name of an existing file.

IpNewFileName
[in] Pointer to a null-terminated string that specifies the name of the new file.

IpProgressRoutine
[in] Specifies the address of a callback function of type LPPROGRESS_ROUTINE
that is called each time another portion of the file has been copied. This parameter
can be NULL. For more information on the progress callback function, see
CopyProgressRoutine.

IpData
[in] Specifies an argument to be passed to the callback function. This parameter can
be NULL.

pbCancel
[in] Pointer to a Boolean variable that can be used to cancel the operation. If this flag
is set to TRUE during the copy operation, the operation is canceled.

dwCopyFlags
[in] Specifies how the file is to be copied. This parameter can be a combination of the
following values.

Value Meaning

The copy operation fails immediately if the target
file already exists.

Progress of the copy is tracked in the target file
in case the copy fails. The failed copy can be
restarted at a later time by specifying the same
values for IpExistingFileName and
IpNewFileName as those used in the call that
failed.

486 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information call
GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, Create File, CopyFile, CopyProgressRoutine,
MoveFile

CopyProgressRoutine
The CopyProgressRoutine function is an application-defined callback function used
with the CopyFileEx or MoveFileWithProgress functions. It is called when a portion of
a copy or move operation is completed. The LPPROGRESS_ROUTINE type defines a
pointer to this callback function. CopyProgresRoutine is a placeholder for the
application-defined function name.

Parameters
TotalFileSize

[in] Specifies the total size of the file, in bytes.

Chapter 9 File I/O 487

Tota/Bytes Transferred
[in] Specifies the total number of bytes transferred from the source file to the
destination file since the copy operation began.

StreamSize
[in] Specifies the total size of the current file stream, in bytes.

StreamBytes Transferred
[in] Specifies the total number of bytes in the current stream that have
been transferred from the source file to the destination file since the copy operation
began.

dwStreamNumber
[in] Handle to the current stream. The stream number is 1 the first time
CopyProgressRoutine is called.

dwCallbackReason
[in] Specifies the reason that CopyProgressRoutine was called. This parameter can
be one of the following values.

Value Meaning

CALLBACK_CHUNK_FINISHED

CALLBACK_STREAM_SWITCH

Another part of the data file was copied.

Another stream was created and is about to
be copied. This is the callback reason given
when the callback routine is first invoked.

hSourceFile
[in] Handle to the source file.

hDestinationFile
[in] Handle to the destination file

/pData
[in] The argument passed to CopyProgressRoutine by the CopyFileEx or
MoveFileWithProgress function.

Return Values
The CopyProgressRoutine function should return one of the following values.

Value Meaning

PROGRESS_CANCEL

PROGRESS_STOP

PROGRESS_QUIET

Remarks

Cancel the copy operation and delete the destination
file.

Stop the copy operation. It can be restarted at a later
time.
Continue the copy operation, but stop invoking
CopyProgressRoutine to report progress.

An application can use this information to display a progress bar that shows the total
number of bytes copied as a percent of the total file size.

488 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

File I/O Overview, File I/O Functions, CopyFileEx, MoveFileWithProgress

CreateDirectory
The CreateDirectory function creates a new directory. If the underlying file system
supports security on files and directories, the function applies a specified security
descriptor to the new directory.

To specify a template directory, use the CreateDirectoryEx function.

Parameters
IpPathName

[in] Pointer to a null-terminated string that specifies the path of the directory to be
created.

There is a default string size limit for paths of 248 characters. This limit is related to
how the CreateDirectory function parses paths.

Windows NT/2000: An application can transcend this limit and send in paths longer
than MAX_PATH characters by calling the wide (W) version of CreateDirectory and
prepending ',\\?\" to the path. The ',\\?\" tells the function to turn off path parsing; it lets
paths longer than MAX_PATH be used with CreateDirectoryW. However, each
component in the path cannot be more than MAX_PATH characters long. This also
works with UNC names. The ''\\?'\' is ignored as part of the path. For example,
''\\?\C:\myworld\private'' is seen as "C:\myworld\private", and
''\\?\UNC\bill_g_1\hotstuff\coolapps'' is seen as ''\\bill_g_1\hotstuff\coolapps''.

IpSecurity Attributes
Windows NT/2000: [in] Pointer to a SECURITY_ATTRIBUTES structure. The
IpSecurityDescriptor member of the structure specifies a security descriptor for the
new directory. If IpSecurityAttributes is NULL, the directory gets a default security
descriptor. The target file system must support security on files and directories for this
parameter to have an effect.

Chapter 9 File I/O 489

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Some file systems, such as NTFS, support compression or encryption for individual files
and directories. On volumes formatted for such a file system, a new directory inherits the
compression and encryption attributes of its parent directory.

Windows NT/2000: An application can obtain a handle to a directory by calling
CreateFile with the FILE_FLAG_BACKUP _SEMANTICS flag set. For a code example,
see CreateFile.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File liD Overview, File liD Functions, CreateDirectoryEx, CreateFile,
RemoveDirectory, SECURITY_ATTRIBUTES

CreateDirectoryEx
The CreateDirectoryEx function creates a new directory with a specified path that
retains the attributes of a specified template directory. If the underlying file system
supports security on files and directories, the function applies a specified security
descriptor to the new directory. The new directory retains the other attributes of the
specified template directory.

490 Volume 1 Microsoft Windows Base Services

Parameters
Jp TempJateDirectory

[in] Pointer to a null-terminated string that specifies the path of the directory to use as
a template when creating the new directory.

JpNewDirectory
[in] Pointer to a null-terminated string that specifies the path of the directory to be
created.

JpSecurityAttributes
Windows NT/2000: [in] Pointer to a SECURITY_ATTRIBUTES structure. The
IpSecurityDescriptor member of the structure specifies a security descriptor for the
new directory. If JpSecurityAttributes is NULL, the directory gets a default security
descriptor. The target file system must support security on files and directories for this
parameter to have an effect.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The CreateDirectoryEx function allows you to create directories that inherit stream
information from other directories. This function is useful, for example, when dealing with
Macintosh directories, which have a resource stream that is needed to properly identify
directory contents as an attribute.

Some file systems, such as NTFS, support compression or encryption for individual files
and directories. On volumes formatted for such a file system, a new directory inherits the
compression and encryption attributes of its parent directory.

Windows NT/2000: You can obtain a handle to a directory by calling the CreateFile
function with the FILE_FLAG_BACKUP _SEMANTICS flag set. See CreateFile for a
code example.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 9 File 110 491

D:-~~~ISO -
File 110 Overview, File 110 Functions, CreateDirectory, CreateFile, RemoveDirectory,
SECURITY _ATTRIBUTES

CreateFile
The CreateFile function creates or opens the following objects and returns a handle that
can be used to access the object:

• Consoles

• Communications resources

• Directories (open only)

• Disk devices (Windows NT/2000 only)

• Files

• Mailslots
• Pipes

Parameters
IpFileName

[in] Pointer to a null-terminated string that specifies the name of the object to create or
open.

If *lpFileName is a path, there is a default string size limit of MAX_PATH characters.
This limit is related to how the CreateFile function parses paths.

Windows NT/2000: You can use paths longer than MAX_PATH characters by calling
the wide (W) version of CreateFile and prepending "\\?\" to the path. The ''\\?'\' tells
the function to turn off path parsing. This lets you use paths that are nearly 32,000
Unicode characters long. However, each component in the path cannot be more than
MAX_PATH characters long. You must use fully-qualified paths with this technique.
This also works with UNC names. The ''\\?'\' is ignored as part of the path. For
example, ',\\?\C:\myworld\private" is seen as "C:\myworld\private", and
',\\?\UNC\tom_1\hotstuff\coolapps" is seen as ''\\tom_1\hotstuff\coolapps''.

492 Volume 1 Microsoft Windows Base Services

dwDesiredAccess
[in] Specifies the type of access to the object. An application can obtain read access,
write access, read/write access, or device query access. This parameter can be any
combination of the following values.

Value Meaning

o

dwShareMode

Specifies device query access to the object. An
application can query device attributes without accessing
the device.

Specifies read access to the object. Data can be read
from the file and the file pointer can be moved. Combine
with GENERIC_WRITE for read/write access.

Specifies write access to the object. Data can be written
to the file and the file pOinter can be moved. Combine with
GENERIC_READ for read/write access.

[in] Specifies how the object can be shared. If dwShareMode is 0, the object cannot
be shared. Subsequent open operations on the object will fail, until the handle is
closed.

To share the object, use a combination of one or more of the following values.

Value

/pSecurityAttributes

Meaning

Windows NT/2000: Subsequent open operations on
the object will succeed only if delete access is
requested.

Subsequent open operations on the object will
succeed only if read access is requested.

Subsequent open operations on the object will
succeed only if write access is requested.

[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the
returned handle can be inherited by child processes. If /pSecurityAttributes is NULL,
the handle cannot be inherited.

Windows NT/2000: The IpSecurityDescriptor member of the structure specifies a
security descriptor for the object. If /pSecurityAttributes is NULL, the object gets a
default security descriptor. The target file system must support security on files and
directories for this parameter to have an effect on files.

dwCreationDisposition
[in] Specifies which action to take on files that exist, and which action to take when
files do not exist. For more information about this parameter, see the Remarks
section. This parameter must be one of the following values.

Value

CREATE_ALWAYS

OPEN_EXISTING

TRUNCATE_EXISTING

dwFlagsAndAttributes

Chapter 9 File I/O 493

Meaning

Creates a new file. The function fails if the specified
file already exists.

Creates a new file. If the file exists, the function
overwrites the file and clears the existing attributes.

Opens the file. The function fails if the file does not
exist.

For a discussion of why you should use the
OPEN_EXISTING flag if you are using the
CreateFile function for devices, see Remarks.

Opens the file, if it exists. If the file does not exist, the
function creates the file as if dwCreationDisposition
were CREATE_NEW.

Opens the file. Once opened, the file is truncated so
that its size is zero bytes. The calling process must
open the file with at least GENERIC_WRITE access.
The function fails if the file does not exist.

[in] Specifies the file attributes and flags for the file.

Any combination of the following attributes is acceptable for the dwFlagsAndAttributes
parameter, except all other file attributes override FILE_ATTRIBUTE_NORMAL.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file should be archived. Applications use
this attribute to mark files for backup or
removal.

FILE_ATTRIBUTE_ENCRYPTED The file or directory is encrypted. For a file, this
means that all data in the file is encrypted. For
a directory, this means that encryption is the
default for newly created files and
subdirectories.

This flag has no effect if
FILE_ATTRIBUTE_SYSTEM is also specified.

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an
ordinary directory listing.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This
attribute is valid only if used alone.

FILE_ATTRIBUTE_NOT _CONTENT _INDEXED The file will not be indexed by the content
indexing service.

(continued)

494 Volume 1 Microsoft Windows Base Services

(continued)

Attribute Meaning

The data of the file is not immediately available. This
attribute indicates that the file data has been physically
moved to offline storage. This attribute is used by
Remote Storage, the hierarchical storage management
software in Windows 2000. Applications should not
arbitrarily change this attribute.

The file is read only. Applications can read the file but
cannot write to it or delete it.

FILE_A TTRIBUTE_SYSTEM The file is part of or is used exclusively by the operating
system.

Flag

The file is being used for temporary storage. File
systems attempt to keep all of the data in memory for
quicker access rather than flushing the data back to
mass storage. A temporary file should be deleted by the
application as soon as it is no longer needed.

Any combination of the following flags is acceptable for the dwFlagsAndAttributes
parameter.

Meaning

Instructs the system to write through any intermediate
cache and go directly to disk. The system can still cache
write operations, but cannot lazily flush them.

Instructs the system to initialize the object, so that
operations that take a Significant amount of time to process
return ERROR_IO_PENDING. When the operation is
finished, the specified event is set to the signaled state.

When you specify FILE_FLAG_OVERLAPPED, the file read
and write functions must specify an OVERLAPPED
structure. That is, when FILE_FLAG_OVERLAPPED is
specified, an application must perform overlapped reading
and writing.

When FILE_FLAG_OVERLAPPED is specified, the system
does not maintain the file pointer. The file position must be
passed as part of the IpOverlapped parameter (pointing to
an OVERLAPPED structure) to the file read and write
functions.

This flag also enables more than one operation to be
performed simultaneously with the handle (a simultaneous
read and write operation, for example).

Flag

Chapter 9 File 1/0 495

Meaning

Instructs the system to open the file with no intermediate
buffering or caching. When combined with
FILE_FLAG_OVERLAPPED, the flag gives maximum
asynchronous performance, because the I/O does not rely
on the synchronous operations of the memory manager.
However, some I/O operations will take longer, because
data is not being held in the cache.

An application must meet certain requirements when
working with files opened with
FILE_FLAG_NO_BUFFERING:

• File access must begin at byte offsets within the file that are
integer multiples of the volume's sector size.

• File access must be for numbers of bytes that are integer
multiples of the volume's sector size. For example, if the
sector size is 512 bytes, an application can request reads
and writes of 512, 1024, or 2048 bytes, but not of 335, 981,
or 7171 bytes.

• Buffer addresses for read and write operations must be
sector aligned (aligned on addresses in memory that are
integer multiples of the volume's sector size).

One way to align buffers on integer multiples of the volume
sector size is to use VirtualAlioc to allocate the buffers. It
allocates memory that is aligned on addresses that are
integer multiples of the operating system's memory page
size. Because both memory page and volume sector sizes
are powers of 2, this memory is also aligned on addresses
that are integer multiples of a volume's sector size.

An application can determine a volume's sector size by
calling the GetDiskFreeSpace function.

FILE_FLAG_RANDOM_ACCESS Indicates that the file is accessed randomly. The system
can use this as a hint to optimize file caching.

FILE_FLAG_SEQUENTIAL_SCAN Indicates that the file is to be accessed sequentially from
beginning to end. The system can use this as a hint to
optimize file caching. If an application moves the file pOinter
for random access, optimum caching may not occur;
however, correct operation is still guaranteed.

Specifying this flag can increase performance for
applications that read large files using sequential access.
Performance gains can be even more

(continued)

496 Volume 1 Microsoft Windows Base Services

(continued)

Flag Meaning

noticeable for applications that read large files mostly
sequentially, but occasionally skip over small ranges
of bytes.

Indicates that the operating system is to delete the file
immediately after all of its handles have been closed,
not just the handle for which you specified
FILE_FLAG_DELETE_ON_CLOSE.

Subsequent open requests for the file will fail, unless
FILE_SHARE_DELETE is used.

Windows NT/2000: Indicates that the file is being
opened or created for a backup or restore operation.
The system ensures that the calling process overrides
file security checks, provided it has the necessary
privileges. The relevant privileges are
SE_BACKUP _NAME and SE_RESTORE_NAME.

You can also set this flag to obtain a handle to a
directory. A directory handle can be passed to some
Win32 functions in place of a file handle.

Indicates that the file is to be accessed according to
POSIX rules. This includes allowing multiple files with
names, differing only in case, for file systems that
support such naming. Use care when using this option
because files created with this flag may not be
accessible by applications written for MS-DOS or
16-bit Windows.

Specifying this flag inhibits the reparse behavior of
NTFS reparse points. When the file is opened, a file
handle is returned, whether the filter that controls the
reparse point is operational or not. This flag cannot be
used with the CREATE_ALWAYS flag.

Indicates that the file data is requested, but it should
continue to reside in remote storage. It should not be
transported back to local storage. This flag is intended
for use by remote storage systems or the Hierarchical
Storage Management system.

If the CreateFile function opens the client side of a named pipe, the
dwFlagsAndAttributes parameter can also contain Security Quality of Service
information. For more information, see Impersonation Levels. When the calling
application specifies the SECURITY _SQOS_PRESENT flag, the
dwFlagsAndAttributes parameter can contain one or more of the following values.

Value

SECURITY_ANONYMOUS

SECURITY_IDENTIFICATION

SECURITY_IMPERSONATION

SECURITY_DELEGATION

SECURITY _EFFECTIVE_ONLY

h TemplateFile

Chapter 9 File 1/0 497

Meaning

Specifies to impersonate the client at the
Anonymous impersonation level.

Specifies to impersonate the client at the
Identification impersonation level.

Specifies to impersonate the client at the
Impersonation level.

Specifies to impersonate the client at the
Delegation impersonation level.

Specifies that the security tracking mode
is dynamic. If this flag is not specified,
Security Tracking Mode is static.

Specifies that only the enabled aspects of
the client's security context are available
to the server. If you do not specify this
flag, all aspects of the client's security
context are available.

This flag allows the client to limit the
groups and privileges that a server can
use while impersonating the client.

[in] Specifies a handle with GENERIC_READ access to a template file. The template
file supplies file attributes and extended attributes for the file being created.

Windows 95: The hTemplateFile parameter must be NULL. If you supply a handle,
the call fails and GetLastError returns ERROR_NOT _SUPPORTED.

Return Values
If the function succeeds, the return value is an open handle to the specified file. If the
specified file exists before the function call and dwCreationDisposition is
CREATE_ALWAYS or OPEN_ALWAYS, a call to GetLastError returns
ERROR_ALREADY _EXISTS (even though the function has succeeded). If the file does
not exist before the call, GetLastError returns zero.

If the function fails, the return value is INVALlD_HANDLE_VALUE. To get extended
error information, call GetLastError.
Remarks
Use the CloseHandle function to close an object handle returned by CreateFile.

As noted above, specifying zero for dwDesiredAccess allows an application to query
device attributes without actually accessing the device. This type of querying is useful,
for example, if an application wants to determine the size of a floppy disk drive and the
formats it supports without having a floppy in the drive.

498 Volume 1 Microsoft Windows Base Services

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Files
When creating a new file, the CreateFile function performs the following actions:

• Combines the file attributes and flags specified by dwFlagsAndAttributes with
FILE_A TTRIBUTE_ARCHIVE.

• Sets the file length to zero.

• Copies the extended attributes supplied by the template file to the new file if the
hTemplateFHe parameter is specified.

When opening an existing file, CreateFile performs the following actions:

• Combines the file flags specified by dwFlagsAndAttributes with existing file attributes.
CreateFile ignores the file attributes specified by dwFlagsAndAttributes.

• Sets the file length according to the value of dwCreationDisposition.

• Ignores the hTemplateFHe parameter.

• Ignores the IpSecurityDescriptor member of the SECURITY_ATTRIBUTES
structure if the IpSecurityAttributes parameter is not NULL. The other structure
members are used. The blnheritHandle member is the only way to indicate whether
the file handle can be inherited.

If you are attempting to create a file on a floppy drive that does not have a floppy disk or
a CD-ROM drive that does not have a CD, the system displays a message box asking
the user to insert a disk or a CD, respectively. To prevent the system from displaying this
message box, call the SetErrorMode function with SEM_FAILCRITICALERRORS.

Windows NT/2000: Some file systems, such as NTFS, support compression or
encryption for individual files and directories. On volumes formatted for such a file
system, a new file inherits the compression and encryption attributes of its directory.

You cannot use the CreateFile function to set a file's compression state. Use the
DeviceloControl function to set a file's compression state.

Pipes
If CreateFile opens the client end of a named pipe, the function uses any instance of the
named pipe that is in the listening state. The opening process can duplicate the handle
as many times as required but, once opened, the named pipe instance cannot be
opened by another client. The access specified when a pipe is opened must be
compatible with the access specified in the dwOpenMode parameter of the
CreateNamedPipe function. For more information about pipes, see Pipes.

Mailslots
If CreateFile opens the client end of a mailslot, the function returns
INVALlD_HANDLE_VALUE if the mailslot client attempts to open a local mailslot before

Chapter 9 File 1/0 499

the mailslot server has created it with the CreateMaiiSlot function. For more information
about mailslots, see Mails/ots.

Communications Resources
The CreateFile function can create a handle to a communications resource, such as the
serial port COM1. For communications resources, the dwCreationDisposition parameter
must be OPEN_EXISTING, and the hTemplate parameter must be NULL. Read, write,
or read/write access can be specified, and the handle can be opened for overlapped 1/0.
For more information about communications, see Communications.

Disk Devices
Volume handles may be opened as noncached at the discretion of the file system, even
when the noncached option is not specified with CreateFile. You should assume that all
Microsoft file systems open volume handles as noncached. The restrictions on
noncached 1/0 for files apply to volumes as well.

A file system mayor may not require buffer alignment even though the data
is noncached. However, if the noncached option is specified when opening a volume,
buffer alignment is enforced regardless of the file system on the volume. It is
recommended on all file systems that you open volume handles as noncached and
follow the noncached 1/0 restrictions.

Windows NT/2000: You can use the CreateFile function to open a disk drive or a
partition on a disk drive. The function returns a handle to the disk device; that handle can
be used with the DevicelOControl function. The following requirements must be met in
order for such a call to succeed:

• The caller must have administrative privileges for the operation to succeed on a hard
disk drive.

• The IpFileName string should be of the form \\.\PHYSICALDRIVExto open the hard
disk x. Hard disk numbers start at zero. For example:

String Meaning

\\.\PHYSICALDRIVE2 Obtains a handle to the third physical drive on the
user's computer.

For an example showing how to open a physical drive, see Calling DeviceloControl on
Windows NT12000.

• The IpFileName string should be \\.\x: to open a floppy drive xor a partition xon a
hard disk. For example:

String Meaning

\\.\A:

\\.\C:

Obtains a handle to drive A on the user's computer.

Obtains a handle to drive C on the user's computer.

500 Volume 1 Microsoft Windows Base Services

There is no trailing backslash in a drive name. The string "\\.\c:\" refers to the root
directory of drive C.

On Windows 2000, you can also open a volume by referring to its unique volume name.
In this case also, there should be no trailing backslash on the unique volume name.

Note that all I/O buffers must be sector aligned (aligned on addresses in memory that
are integer multiples of the volume's sector size), even if the disk device is opened
without the FILE_FLAG_NO_BUFFERING flag.

Windows 95: This technique does not work for opening a logical drive. In Windows 95,
specifying a string in this form causes CreateFile to return an error.

• The dwCreationDisposition parameter must have the OPEN_EXISTING value.

• When opening a floppy disk or a partition on a hard disk, you must set the
FILE_SHARE_WRITE flag in the dwShareMode parameter.

Tape Drives
Windows NT/2000: You can open tape drives using a file name of the form \\.\TAPEx
where x is a number indicating which drive to open, starting with tape drive O. To open
tape drive 0 in C, use the file name ''\\\\.\\TAPEO''. For more information on manipulating
tape drives for backup or other applications, see Tape Backup.

Consoles
The CreateFile function can create a handle to console input (CONIN$). If the process
has an open handle to it as a result of inheritance or duplication, it can also create a
handle to the active screen buffer (CONOUT$). The calling process must be attached to
an inherited console or one allocated by the AliocConsole function. For console
handles, set the CreateFile parameters as follows.

Parameters

IpFileName

dwDesiredAccess

dwShareMode

Value

Use the CONIN$ value to specify console input and the
CONOUT$ value to specify console output.

CONIN$ gets a handle to the console's input buffer, even if
the SetStdHandle function redirected the standard input
handle. To get the standard input handle, use the
GetStdHandle function.

CONOUT$ gets a handle to the active screen buffer, even
if SetStdHandle redirected the standard output handle. To
get the standard output handle, use GetStdHandle.

GENERIC_READ I GENERIC_WRITE is preferred, but
either one can limit access.

If the calling process inherited the console or if a child
process should be able to access the console, this
parameter must be FILE_SHARE_READ I
FILE_SHARE_WRITE.

IpSecurity Attributes

Chapter 9 File 1/0 501

If you want the console to be inherited, the blnheritHandle
member of the SECURITY_ATTRIBUTES structure must
be TRUE.

dwCreationDisposition You should specify OPEN_EXISTING when using
CreateFile to open the console.

dwFlagsAndAttributes

h TemplateFile

Ignored.

Ignored.

The following list shows the effects of various settings of fwd Access and IpFileName.

IpFileName fwd Access Result

CON

CON

CON

Directories

GENERIC_READ
GENERIC_WRITE

GENERIC_READ
GENERIC_WRITE

Opens console for input.
Opens console for output.

Windows 95: Causes CreateFile to fail;
GetLastError returns
ERROR_PATH_NOT _FOUND.

Windows NT/2000: Causes CreateFile to
fail; GetLastError returns
ERROR_FILE_NOT _FOUND.

An application cannot create a directory with CreateFile; it must call CreateDirectory or
CreateDirectoryEx to create a directory.

Windows NT/2000: You can obtain a handle to a directory by setting the
FILE_FlAG_BACKUP _SEMANTICS flag. A directory handle can be passed to some
Win32 functions in place of a file handle.

Some file systems, such as NTFS, support compression or encryption for individual files and
directories. On volumes formatted for such a file system, a new directory inherits the
compression and encryption attributes of its parent directory.

You cannot use the CreateFile function to set a directory's compression state. Use the
DeviceloControl function to set a directory's compression state.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

502 Volume 1 Microsoft Windows Base Services

File I/O Overview, File I/O Functions, AllocConsole, CloseHandle, ConnectNamedPipe,
CreateDirectory, CreateDirectoryEx, CreateNamedPipe, DevicelOControl,
GetDiskFreeSpace, GetOverlappedResult, GetStdHandle, Open File, OVERLAPPED,
ReadFile, SECURITY_ATTRIBUTES, SetErrorMode, SetStdHandle TransactNamedPipe,
Unique Volume Names, VirtualAlloc, WriteFile

CreateloCompletion Port
The CreateloCompletionPort function can associate an instance of an opened file with
a newly created or an existing inpuVoutput (I/O) completion port, or it can create an I/O
completion port without associating it with a file.

Associating an instance of an opened file with an I/O completion port lets an application
receive notification of the completion of asynchronous I/O operations involving that file.

Parameters
FileHandle

[in] Handle to a file opened for overlapped I/O completion. You must specify the
FllE_FLAG_OVERLAPPED flag when using the CreateFile function to obtain the
handle.

If FileHandle specifies INVALID_HANDLE_VALUE, CreateloCompletionPort creates
an I/O completion port without associating it with a file. In this case, the
ExistingCompletionPortparameter must be NULL and the CompletionKeyparameter
is ignored.

ExistingCompletionPort
[in] Handle to the I/O completion port.

If this parameter specifies an existing completion port, the function associates it with
the file specified by the FileHandle parameter. The function returns the handle of the
existing completion port; it does not create a new I/O completion port.

If this parameter is NULL, the function creates a new I/O completion port and
associates it with the file specified by FileHandle. The function returns the handle to
the new I/O completion port.

CompletionKey
[in] Per-file completion key that is included in every I/O completion packet for the
specified file.

Chapter 9 File I/O 503

NumberOfConcurrentThreads
[in] Maximum number of threads that the operating system allows to concurrently
process I/O completion packets for the I/O completion port. If this parameter is zero,
the system allows as many concurrently running threads as there are processors in
the system.

Although any number of threads can call the GetQueuedCompletionStatus function
to wait for an I/O completion port, each thread is associated with only one completion
port at a time. That port is the port that was last checked by the thread.

When a packet is queued to a port, the system first checks how many threads
associated with the port are running. If the number of threads running is less than the
value of NumberOfConcurrentThreads, then one of the waiting threads is allowed to
process the packet. When a running thread completes its processing, it calls
GetQueuedCompletionStatus again, at which point the system can allow another
waiting thread to process a packet.

The system also allows a waiting thread to process a packet if a running thread enters
any wait state. When the thread in the wait state begins running again, there may be a
brief period when the number of active threads exceeds the
NumberOfConcurrentThreads value. However, the system quickly reduces the
number by not allowing any new active threads until the number of active threads falls
below the specified value.

Return Values
If the function succeeds, the return value is the handle to the I/O completion port that is
associated with the specified file.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Remarks
The I/O system can be instructed to send I/O completion notification packets to I/O
completion ports, where they are queued. The CreateloCompletionPort function
provides this functionality.

After an instance of an open file is associated with an I/O completion port, it cannot be
used in the ReadFileEx or WriteFileEx function. It is best not to share such an
associated file through either handle inheritance or a call to the DuplicateHandle
function. Operations performed with such duplicate handles generate completion
notifications.

When you perform an I/O operation with a file handle that has an associated I/O
completion port, the I/O system sends a completion notification packet to the completion
port when the I/O operation completes. The I/O completion port places the completion
packet in a first-in-first-out queue. Use the GetQueuedCompletionStatus function to
retrieve these queued I/O completion packets.

504 Volume 1 Microsoft Windows Base Services

Threads in the same process can use the PostQueuedCompletionStatus function to
place I/O completion notification packets in a completion port's queue. By doing so, you
can use the port to receive communications from other threads of the process, in
addition to receiving I/O completion notification packets from the I/O system.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, CreateFile, DuplicateHandle,
GetQueuedCompletionStatus, PostQueuedCompletionStatus, ReadFileEx,
WriteFileEx

DefineDosDevice

Value

The DefineDosDevice function lets an application define, redefine, or delete MS-DOS
device names.

Parameters
dwFlags

[in] Specifies several controllable aspects of the DefineDosDevice function. This
parameter can be one or more of the following values.

Meaning

If this value is specified, the function does not convert
the IpTargetPath string from an MS-DOS path to a path,
but takes it as is.

DDD _REMOVE_DEFIN ITION

Chapter 9 File 1/0 505

If this value is specified, the function removes the
specified definition for the specified device. To
determine which definition to remove, the function walks
the list of mappings for the device, looking for a match of
IpTargetPath against a prefix of each mapping
associated with this device. The first mapping that
matches is the one removed, and then the function
returns.

If IpTargetPath is NULL or a pOinter to a NULL string,
the function will remove the first mapping associated
with the device and pop the most recent one pushed. If
there is nothing left to pop, the device name will be
removed.

If this value is NOT specified, the string pointed to by the
IpTargetPath parameter will become the new mapping
for this device.

DDD_EXACT_MATCH_ON_REMOVE If this value is specified along with
DDD_REMOVE_DEFINITION, the function will use an
exact match to determine which mapping to remove.
Use this value to insure that you do not delete
something that you did not define.

IpDeviceName
[in] Pointer to an MS-DOS device name string specifying the device the function is
defining, redefining, or deleting. The device name string must not have a trailing
colon, unless a drive letter (C or D, for example) is being defined, redefined, or
deleted. In no case is a trailing backslash allowed.

IpTargetPath
[in] Pointer to a path string that will implement this device. The string is an MS-DOS
path string unless the DDD_RAW_ TARGET _PATH flag is specified, in which case
this string is a path string.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
MS-DOS device names are stored as symbolic links in the object name space. The code
that converts an MS-DOS path into a corresponding path uses these symbolic links to
map MS-DOS devices and drive letters. The DefineDosDevice function provides a
mechanism whereby an application can modify the symbolic links used to implement the
MS-DOS device name space.

506 Volume 1 Microsoft Windows Base Services

To retrieve the current mapping for a particular MS-DOS device name or to obtain a list
of all MS-DOS devices known to the system, use the QueryDosDevice function.

MS-DOS Device names are global. After it is defined, an MS-DOS device name remains
visible to all processes until either it is explicitly removed or the system reboots.

Windows 2000: To define a drive letter assignment that is persistent across boots and
not a network share, use the SetVolumeMountPoint function. If the volume to be
mounted already has a drive letter assigned to it, use the DeleteVolumeMountPoint
function to remove the assignment.

Note Drive letters and device names defined at system boot time are protected from
redefinition and deletion unless the user is an administrator.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, DeleteVolumeMountPoint, QueryDosDevice,
SetVolumeMountPoint

DeleteFile
The DeleteFile function deletes an existing file.

~DOI:. DeleteFile(,' ;
LPCTS:r.R 7pF} leN~f1!e '\ flfilEr ~f}me .'

h: .;;'

Parameters
IpFileName

[in] Pointer to a null-terminated string that specifies the file to be deleted.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 9 File I/O 507

Remarks
If an application attempts to delete a file that does not exist, the DeleteFile function fails.

To delete or rename a file, you must have either delete permission on the file or delete
child permission in the parent directory. If you set up a directory with all access except
delete and delete child and the ACLs of new files are inherited, then you should be able
to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you
create the file. If you requested delete permission at the time you created the file, you
could delete or rename the file with that handle but not with any other.

Windows 95: The DeleteFile function deletes a file even if it is open for normal I/O or as
a memory-mapped file. To prevent loss of data, close files before attempting to delete
them.

Windows NT/2000: The DeleteFile function fails if an application attempts to delete a
file that is open for normal I/O or as a memory-mapped file.

To close an open file, use the CloseHandle function.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, CloseHandle, CreateFile

FilelOCompletionRoutine
The FilelOCompletionRoutine function is an application-defined callback function used
with the ReadFileEx or WriteFileEx function. It is called when the asynchronous input
and output (I/O) operation is completed or canceled and the calling thread is in an
alertable state (using the SleepEx, MsgWaitForMultipleObjectsEx,
WaitForSingleObjectEx, or WaitForMultipleObjectsEx function with the fA/ertable flag
set to TRUE).

508 Volume 1 Microsoft Windows Base Services

The LPOVERLAPPED_COMPLETION_ROUTINE type defines a pOinter to this callback
function. FilelOCompletionRoutine is a placeholder for the application-defined function
name.

Parameters
dwErrorCode

[in] Specifies the I/O completion status. This parameter can be one of the following
values.

Value Meaning

o
ERROR_HANDLE_EOF

dwNumberOfBytes Transfered

The I/O was successful.

The ReadFileEx function tried to read past the end of
the file.

[in] Specifies the number of bytes transferred. If an error occurs, this parameter is
zero.

/pOver/apped
[in] Pointer to the OVERLAPPED structure specified by the asynchronous I/O
function.

The system does not use the hEvent member of the OVERLAPPED structure; the
calling application may use this member to pass information to the completion routine.
The system does not use the OVERLAPPED structure after the completion routine is
called, so the completion routine can deallocate the memory used by the overlapped
structure.

Return Values
This function does not return a value.

Remarks
The FilelOCompletionRoutine function is a placeholder for an application-defined or
library-defined function name.

Returning from this function allows another pending I/O completion routine to be called.
All waiting completion routines are called before the alertable thread's wait is completed
with a return code of WAIT _IO_COMPLETION. The system may call the waiting
completion routines in any order. They mayor may not be called in the order the I/O
functions are completed.

Chapter 9 File 110 509

Each time the system calls a completion routine, it uses some of the application's stack.
If the completion routine does additional asynchronous I/O and alertable waits, the stack
may grow.

For more information, see Asynchronous Procedure Calls.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

File liD Overview, File liD Functions, OVERLAPPED, ReadFileEx, SleepEx,
WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFileEx

FindClose
The FindClose function closes the specified search handle. The FindFirstFile and
FindNextFile functions use the search handle to locate files with names that match a
given name.

Parameters
hFindFile

[in/out] File search handle. This handle must have been previously opened by the
FindFirstFile function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
After the FindClose function is called, the handle specified by the hFindFile parameter
cannot be used in subsequent calls to either the FindNextFile or FindClose function.

MAPI: For more information, See Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

510 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, FindFirstFile, FindNextFile

FindCloseChangeNotification
The FindCloseChangeNotification function stops change notification handle
monitoring.

;~~ni~~it~~~~\5~~~i:~t[~~:;:~,~~'~"""'C~1~
Parameters
hChangeHandle

[in] Handle to a change notification handle created by the
FindFirstChangeNotification function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
After the FindCloseChangeNotification function is called, the handle specified by the
hChangeHandle parameter cannot be used in subsequent calls to either the
FindNextChangeNotification or FindCloseChangeNotification function.

Change notifications can also be used in the wait functions.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

Chapter 9 File 1/0 511

File 110 Overview, File 110 Functions, FindFirstChangeNotification,
FindNextChangeNotification

Fi nd Fi rstChangeNotification
The FindFirstChangeNotification function creates a change notification handle and
sets up initial change notification filter conditions. A wait on a notification handle
succeeds when a change matching the filter conditions occurs in the specified directory
or subtree.

~H§!~i~!~~f;~~~ffil!~~::!~1
):;::.,;<::;.,' ", .' "'_::":.~,.L.;_._~,.,

Parameters
IpPathName

[in] Pointer to a null-terminated string that specifies the path of the directory to watch.

bWatchSubtree
[in] Specifies whether the function will monitor the directory or the directory tree. If this
parameter is TRUE, the function monitors the directory tree rooted at the specified
directory; if it is FALSE, it monitors only the specified directory.

dwNotifyFilter
[in] Specifies the filter conditions that satisfy a change notification wait. This
parameter can be one or more of the following values.

Value Meaning

FILE_NOTIFY _CHANGE_FILE_NAME Any file name change in the watched directory or
subtree causes a change notification wait operation to
return. Changes include renaming, creating,
or deleting a file name.

FILE_NOTIFY _CHANGE_DIR_NAME Any directory-name change in the watched directory
or subtree causes a change notification wait operation
to return. Changes include creating or deleting a
directory.

FILE_NOTIFY _CHANGE_ATTRIBUTES Any attribute change in the watched directory or
subtree causes a change notification wait operation to
return.

(continued)

512 Volume 1 Microsoft Windows Base Services

(continued)

Value Meaning

FILE_NOTIFY _CHANGE_SIZE Any file-size change in the watched directory or
subtree causes a change notification wait operation to
return. The operating system detects a change in file
size only when the file is written to the disk. For
operating systems that use extensive caching,
detection occurs only when the cache is sufficiently
flushed.

FILE_NOTIFY _CHANGE_LAST_WRITE Any change to the last write-time of files in the
watched directory or subtree causes a change
notification wait operation to return. The operating
system detects a change to the last write-time only
when the file is written to the disk. For operating
systems that use extensive caching, detection occurs
only when the cache is sufficiently flushed.

FILE_NOTIFY _CHANGE_SECURITY Any security-descriptor change in the watched
directory or subtree causes a change notification wait
operation to return.

Return Values
If the function succeeds, the return value is a handle to a find change notification object.

If the function fails, the return value is INVALlD_HANDLE_VALUE. To get extended
error information, call GetLastError.

Remarks
The wait functions can monitor the specified directory or subtree by using the handle
returned by the FindFirstChangeNotification function. A wait is satisfied when one of
the filter conditions occurs in the monitored directory or subtree.

After the wait has been satisfied, the application can respond to this condition and
continue monitoring the directory by calling the FindNextChangeNotification function
and the appropriate wait function. When the handle is no longer needed, it can be closed
by using the FindCloseChangeNotification function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 9 File I/O 513

File I/O Overview, File I/O Functions, FindCloseChangeNotification,
FindNextChangeNotiflcation

FindFirstFile
The FindFirstFile function searches a directory for a file whose name matches the
specified file name. FindFirstFile examines subdirectory names as well as file names.

To specify additional attributes to be used in the search, use the FindFirstFileEx
function.

Parameters
IpFileName

Windows 95: [in] Pointer to a null-terminated string that specifies a valid directory or
path and file name, which can contain wildcard characters (* and ?). This string must
not exceed MAX_PATH characters.

Windows NT/2000: [in] Pointer to a null-terminated string that specifies a valid
directory or path and file name, which can contain wildcard characters (* and ?).

There is a default string size limit for paths of MAX_PATH characters. This limit is
related to how the FindFirstFile function parses paths. An application can transcend
this limit and send in paths longer than MAX_PATH characters by calling the wide (W)
version of FindFirstFile and prepending ',\\?\" to the path. The ',\\?\" tells the function
to turn off path parsing; it lets paths longer than MAX_PATH be used with
FindFirstFileW. However, each component in the path cannot be more than
MAX_PATH characters long. This also works with UNC names. The ',\\?\" is ignored
as part of the path. For example, ''\\?\C:\myworld\private'' is seen as
"C:\myworld\private", and ',\\?\UNC\biILg_1\hotstuff\coolapps" is seen as
''\ \bilLg_1 \hotstuff\coolapps".

IpFindFileData
[out] Pointer to the WIN32_FIND_DATA structure that receives information about the
found file or subdirectory.

Return Values
If the function succeeds, the return value is a search handle used in a subsequent call to
FindNextFile or FindClose.

If the function fails, the return value is INVALlD_HANDLE_VALUE. To get extended
error information, call GetLastError.

514 Volume 1 Microsoft Windows Base Services

Remarks
The FindFirstFile function opens a search handle and returns information about the first
file whose name matches the specified pattern. After the search handle has been
established, use the FindNextFile function to search for other files that match the same
pattern. When the search handle is no longer needed, close it by using the FindClose
function.

This function searches for files by name only; it cannot be used for attribute-based
searches.

You cannot use root directories as the IpFileName input string for FindFirstFile, with or
without a trailing backslash. To examine files in a root directory, use something like "C:*"
and step through the directory with FindNextFile. To get the attributes of a root
directory, use GetFileAttributes. Prepending the string ''\\?'\' does not allow access to
the root directory.

Similarly, on network shares, you can use an IpFileName of the form ''\\server\service*''
but you cannot use an IpFileName that points to the share itself, such as
''\\server\service'' .

To examine any directory other than a root directory, use an appropriate path to that
directory, with no trailing backslash. For example, an argument of "C:\windows" will
return information about the directory "C:\windows", not about any directory or file in
"C:\windows". An attempt to open a search with a trailing backslash will always fail.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 OveNiew, File 110 Functions, FindClose, FindFirstFileEx, FindNextFile,
GetFileAttributes, SetFileAttributes, WIN32_FIND_DATA

FindFirstFileEx
The FindFirstFileEx function searches a directory for a file whose name and attributes
match those specified in the function call.

,.~t~~~t~~iJlt,~~~W'·

LPVOID IpFfndF17eData.
FINDEX_SEARC~OPS fSearchOp.
LPVOID7 pSearchFf7 ter.
DWOR!) dwAdd1t j onalF7 a~s '

):

Parameters
IpFileName

II information buffer
1/ f11 teri ~g~~pe
II search criteria

Chapter 9 File I/O 515

II addi tJona 1 ,S,ll/lrCh 50n~r,.Ol~,

Windows 95: [in] Pointer to a null-terminated string that specifies a valid directory or
path and file name, which can contain wildcard characters (* and ?). This string must
not exceed MAX_PATH characters.

Windows NT/2000: [in] Pointer to a null-terminated string that specifies a valid
directory or path and file name, which can contain wildcard characters (* and ?).

There is a default string size limit for paths of MAX_PATH characters. This limit is
related to how the FindFirstFileEx function parses paths. An application can
transcend this limit and send in paths longer than MAX_PATH characters by calling
the wide (W) version of FindFirstFileEx and prepending ''\\?\'' to the path. The ''\\?\''
tells the function to turn off path parsing; it lets paths longer than MAX_PATH be used
with FindFirstFileExW. However, each component in the path cannot be more than
MAX_PATH characters long. This also works with UNC names. The ''\\?'i' is ignored
as part of the path. For example, ',\\?\C:\myworld\private" is seen as
"C:\myworld\private", and ''\\?\UNC\bill_g_1\hotstuff\coolapps'' is seen as
''\\biILg_1 \hotstuff\coolapps".

flnfoLevelld
[in] Specifies a FINDEX_INFO_LEVELS enumeration type that gives the information
level of the returned data.

IpFindFileData
[out] Pointer to the buffer that receives the file data. The pointer type is determined by
the level of information specified in the flnfoLevelld parameter.

fSearchOp
[in] Specifies a FINDEX_SEARCH_OPS enumeration type that gives the type of
filtering to perform beyond wildcard matching.

IpSearchFilter
[in] If the specified fSearchOp needs structured search information, IpSearchFilter
pOints to the search criteria. At this time, none of the supported fSearchOp values
require extended search information. Therefore, this pOinter must be NULL.

dwAdditionalFlags
[in] Specifies additional optionsfor controlling the search. You can use
FIND_FIRST _EX_CASE_SENSITIVE for case-sensitive searches. The default search
is case insensitive. At this time, no other flags are defined.

Return Values
If the function succeeds, the return value is a search handle that can be used in a
subsequent call to the FindNextFile or FindClose functions.

516 Volume 1 Microsoft Windows Base Services

If the function fails, the return value is INVALlD_HANDLE_VALUE. To get extended
error information, call GetLastError.

Remarks
The FindFirstFileEx function is provided to open a search handle and return information
about the first file whose name matches the specified pattern and attributes.

If the underlying file system does not support the specified type of filtering, other than
directory filtering, FindFirstFileEx fails with the error ERROR_NOT _SUPPORTED. The
application has to use FINDEX_SEARCH_OPS type FileExSearchNameMatch and
perform its own filtering.

After the search handle has been established, use it in the FindNextFile function to
search for other files that match the same pattern with the same filtering being
performed. When the search handle is no longer needed, it should be closed using the
FindClose function.

You cannot use root directories as the IpFileName input string for FindFirstFileEx, with
or without a trailing backslash. To examine files in a root directory, use something like
"C:*" and step through the directory with FindNextFile. To get the attributes of a root
directory, use GetFileAttributes. Prepending the string "\\?'i' does not allow access to
the root directory.

Similarly, on network shares, you can use an IpFileName of the form ''\\server\service*''
but you cannot use an IpFileName that points to the share itself, such as
''\\server\service''.

To examine any directory other than a root directory, use an appropriate path to that
directory, with no trailing backslash. For example, an argument, of "C:\windows" will
return information about the directory "C:\windows", not about any directory or file in
"C:\windows". An attempt to open a search with a trailing backslash will always fail.

The call

is equivalent to the call

The following code shows a minimal use of FindFirstFileEx. This program is the
equivalent of the example shown in FindFirstFile.

int
main(int argc. char *argv[])
{

WIN32_FIND_DATA F1ndFileData.
HANDLE hF'ind;

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 9 File 1/0 517

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, FINDEX_INFO_LEVELS,
FINDEX_SEARCH_OPS, FindFirstFile, FindNextFile, FindClose, GetFileAttributes

FindNextChangeNotification
The FindNextChangeNotification function requests that the operating system signal a
change notification handle the next time it detects an appropriate change.

518 Volume 1 Microsoft Windows Base Services

Parameters
hChangeHandle

[in] Handle to a change notification handle created by the
FindFirstChangeNotification function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
After the FindNextChangeNotification function returns successfully, the application can
wait for notification that a change has occurred by using the wait functions.

If a change occurs after a call to FindFirstChangeNotification but before a call to
FindNextChangeNotification, the operating system records the change. When
FindNextChangeNotification is executed, the recorded change immediately satisfies a
wait for the change notification.

FindNextChangeNotification should not be used more than once on the same handle
without using one of the wait functions. An application may miss a change notification if it
uses FindNextChangeNotification when there is a change request outstanding.

When hChangeHandle is no longer needed, close it by using the
FindCloseChangeNotification function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, FindCloseChangeNotification,
FindFirstChangeNotification

Fi nd NextFi Ie
The FindNextFile function continues a file search from a previous call to the
FindFirstFile function.

~M$titi.hdNextFdef

Parameters
hFindFile

Chapter 9 File 110 519

[in] Search handle returned by a previous call to the FindFirstFile function.

IpFindFileData
[out] Pointer to the WIN32_FIND_DATA structure that receives information about the
found file or subdirectory. The structure can be used in subsequent calls to
FindNextFile to refer to the found file or directory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. If no matching files can be found, the GetLastError function returns
ERROR_NO_MORE_FILES.

Remarks
The FindNextFile function searches for files by name only; it cannot be used for
attribute-based searches.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, FindClose, FindFirstFile, GetFileAttributes,
SetFileAttributes, WIN32_FIND_DATA

Flush FileBuffers
The FlushFileBuffers function clears the buffers for the specified file and causes all
buffered data to be written to the file.

520 Volume 1 Microsoft Windows Base Services

Parameters
hFile

[in] Handle to an open file. The function flushes this file's buffers. The file handle must
have GENERIC_WRITE access to the file.

If hFile is a handle to a communications device, the function only flushes the transmit
buffer.

If hFile is a handle to the server end of a named pipe, the function does not return
until the client has read all buffered data from the pipe.

Windows NT/2000: The function fails if hFile is a handle to console output. That is
because console output is not buffered. The function returns FALSE, and
GetLastError returns ERROR_INVALlD_HANDLE.

Windows 95: The function does nothing if hFile is a handle to console output. That is
because console output is not buffered. The function returns TRUE, but it does
nothing.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The Write File and WriteFileEx functions typically write data to an internal buffer that the
operating system writes to disk on a regular basis. The FlushFileBuffers function writes
all of the buffered information for the specified file to disk.

You can pass the same file handle used with the _Iread, _Iwrite, _Icreat, and related
functions to FlushFileBuffers.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, _I read , _Iwrite, _Icreat, WriteFile, WriteFileEx

Chapter 9 File 1/0 521

GetBinaryType
The GetBinaryType function determines whether a file is executable, and if so, what
type of executable file it is. That last property determines which subsystem an
executable file runs under.

Parameters
IpApplicationName

[in] Pointer to a nUll-terminated string that contains the full path of the file whose
binary type the function shall determine.

IpBinaryType
[out] Pointer to a variable to receive information about the executable type of the file
specified by IpApplicationName. The function adjusts a set of bit flags in this variable.
The following bit flag constants are defined.

Value

SCS_32BIT _BINARY

SCS_DOS_BINARY

SCS_OS216_BINARY

SCS_PIF _BINARY

SCS_POSIX_BINARY

SCS_WOW_BINARY

Return Values

Description

A Win32-based application

An MS-DOS-based application

A 16-bit OS/2-based application

A PIF file that executes an MS-DOS-based
application

A POSIX-based application

A 16-bit Windows-based application

If the file is executable, the return value is nonzero. The function sets the variable
pointed to by IpBinaryType to indicate the file's executable type.

If the function is not executable, or if the function fails, the return value is zero. To get
extended error information, call GetLastError.

Remarks
As an alternative, you can obtain the same information by calling the SHGetFilelnfo
function, passing the SHGFI_EXETYPE flag in the uFlags parameter.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.

522 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 OveNiew, File 110 Functions

GetCurrentDirectory
The GetCurrentDirectory function retrieves the current directory for the current process.

Parameters
nBufferLength

[in] Specifies the length, in characters, of the buffer for the current directory string.
The buffer length must include room for a terminating null character.

IpBuffer
[out] Pointer to the buffer that receives the current directory string. This nulI­
terminated string specifies the absolute path to the current directory.

Return Values
If the function succeeds, the return value specifies the number of characters written to
the buffer, not including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

If the buffer pointed to by IpBuffer is not large enough, the return value specifies the
required size of the buffer, including the number of bytes necessary for a terminating null
character.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 9 File 1/0 523

File 110 Overview, File 110 Functions, CreateDirectory, GetSystemDirectory,
GetWindowsDirectory, RemoveDirectory, SetCurrentDirectory

GetDiskFreeSpace
The GetDiskFreeSpace function retrieves information about the specified disk, including
the amount of free space on the disk.

,This function has been superseded by the GetDiskFreeSpaceEx function. New Win32-
based applications should use GetDiskFreeSpaceEx.

~oo~·,:,.~~q1'~~Fr~~~p,~(:,:~.'::, ... :: .~,"
, LP:CTSTR IpRl1J;> tP{l thNarne..

,.~~!-.~~l1~~i~'::;~ .
..... LFiDwnRi)· .·1pTotalNuliiberllfC7'{f;$;te;rt, n ",i, •• ,,-• ,,: ,.:,~; ,'",;" ;".

Parameters
IpRootPathName

[in] Pointer to a null-terminated string that specifies the root directory of the disk to
return information about. If IpRootPathName is NULL, the function uses the root of the
current directory. If this parameter is a UNC name, you must follow it with a trailing
backslash. For example, you would specify \\MyServer\MyShare as
\\MyServer\MyShare\. However, a drive specification such as "C:" cannot have a
trailing backslash.

Windows 95: The initial release of Windows 95 does not support UNC paths for the
IpszRootPathName parameter. To query the free disk space using a UNC path,
temporarily map the UNC path to a drive letter, query the free disk space on the drive,
then remove the temporary mapping. Windows 95 OSR2 and later: UNC paths are
supported.

IpSectorsPerCluster
[out] Pointer to a variable for the number of sectors per cluster.

IpBytesPerSector
[out] Pointer to a variable for the number of bytes per sector.

IpNumberOfFreeClusters
[out] Pointer to a variable for the total number of free clusters on the disk that are
available to the user associated with the calling thread.

Windows 2000: If per-user disk quotas are in use, this value may be less than the
total number of free clusters on the disk.

524 Volume 1 Microsoft Windows Base Services

Ip TotalNumberOfClusters
[out] Pointer to a variable for the total number of clusters on the disk that are available
to the user associated with the calling thread.

Windows 2000: If per-user disk quotas are in use, this value may be less than the
total number of clusters on the disk.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetDiskFreeSpaceEx function lets you avoid the arithmetic required by the
GetDiskFreeSpace function.

Windows 95: The GetDiskFreeSpace function returns incorrect values for volumes that
are larger than 2 gigabytes. The function caps the values stored into
*lpNumberOfFreeClusters and *lpTotalNumberOfClusters so as to never report volume
sizes that are greater than 2 gigabytes.

Even on volumes that are smaller than 2 gigabytes, the values stored into
*lpSectorsPerCluster, *lpNumberOfFreeClusters, and *lpTotalNumberOfClusters values
may be incorrect. That is because the operating system manipulates the values so that
computations with them yield the correct volume size.

Windows 95 OSR2 and Windows 98:The GetDiskFreeSpaceEx function is available
on beginning with Windows 95 OEM Service Release 2 (OSR2). The
GetDiskFreeSpaceEx function returns correct values for all volumes, including those
that are greater than 2 gigabytes.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, GetDiskFreeSpaceEx, GetDriveType

Chapter 9 File VO 525

GetDiskFreeSpaceEx
The GetDiskFreeSpaceEx function obtains information about the amount of space
available on a disk volume: the total amount of space, the total amount of free space,
and the total amount of free space available to the user associated with the calling
thread.

~i"!ti~~li~,~~,~~1i~f• · .•........
Parameters
IpDirectoryName

[in] Pointer to a null-terminated string that specifies a directory on the disk of interest.
This string can be a UNC name. If this parameter is a UNC name, you must follow it
with an additional backslash. For example, you would specify \\MyServer\MyShare as
\\MyServer\MyShare\.

If IpDirectoryName is NULL, the GetDiskFreeSpaceEx function obtains information
about the disk that contains the current directory.

Note that IpDirectoryName does not have to specify the root directory on a disk. The
function accepts any directory on the disk.

IpFreeBytesAvailable
[out] Pointer to a variable that receives the total number of free bytes on the disk that
are available to the user associated with the calling thread.

Windows 2000: If per-user quotas are in use, this value may be less than the total
number of free bytes on the disk.

Ip TotalNumberOfBytes
[out] Pointer to a variable that receives the total number of bytes on the disk that are
available to the user associated with the calling thread.

Windows 2000: If per-user quotas are in use, this value may be less than the total
number of bytes on the disk.

Ip TotalNumberOfFreeBytes
[out] Pointer to a variable that receives the total number of free bytes on the disk.

This parameter can be NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

526 Volume 1 Microsoft Windows Base Services

Remarks
Note that the values obtained by this function are of type ULARGE_INTEGER. Be
careful not to truncate these values to 32 bits.

Windows 95 OSR2 and Windows 98: The GetDiskFreeSpaceEx function is available
beginning with Windows 95 OEM Service Release 2 (OSR2).

To determine whether GetDiskFreeSpaceEx is available, call GetModuleHandle to get
the handle to Kernel32.dll. Then you can call GetProcAddress.

It is not necessary to call LoadLibrary on Kernel32.dll because it is already loaded into
every Win32 process's address space.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 OveNiew, File 110 Functions, GetDiskFreeSpace, GetModuleHandle,
GetProcAddress

GetDriveType
The GetDriveType function determines whether a disk drive is a removable, fixed, CO­
RaM, RAM disk, or network drive.

Parameters
IpRootPathName

[in] Pointer to a null-terminated string that specifies the root directory of the disk to
return information about. A trailing backslash is required. If IpRootPathName is NULL,

. the function uses the root of the current directory.

Return Values
The return value specifies the type of drive. It can be one of the following values.

Value

DRIVE_UNKNOWN

DRIVE_NO_ROOT _DIR

DRIVE_REMOVABLE

DRIVE_FIXED

DRIVE_REMOTE

DRIVE_CDROM

DRIVE_RAMDISK

Chapter 9 File VO 527

Meaning

The drive type cannot be determined.

The root path is invalid. For example, no volume is
mounted at the path.

The disk can be removed from the drive.

The disk cannot be removed from the drive.

The drive is a remote (network) drive.

The drive is a CD-ROM drive.

The drive is a RAM disk.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

, ,

'" .. <'> "\.
File 110 Overview, File 110 Functions, GetDiskFreeSpace

GetFileAttributes
The GetFileAttributes function returns attributes for a specified file or directory.

This function returns a set of FAT-style attribute information. The GetFileAttributesEx
function can obtain other sets of file or directory attribute information.

Parameters
IpFileName

[in] Pointer to a null-terminated string that specifies the name of a file or directory.

Windows NT/2000: There is a default string size limit for paths of MAX_PATH
characters. This limit is related to how the GetFileAttributes function parses paths.
An application can transcend this limit and send in paths longer than MAX_PATH
characters by calling the wide (W) version of GetFileAttributes and prepending ''\\?'\'
to the path. The ''\\?\'' tells the function to turn off path parsing; it lets paths longer than

528 Volume 1 Microsoft Windows Base Services

MAX_PATH be used with GetFileAttributesW. However, each component in the path
cannot be more than MAX_PATH characters long. This also works with UNC names.

The ''\\?\'' is ignored as part of the path. For example, ''\\?\C:\myworld\private'' is seen
as "C:\myworld\private", and ',\\?\UNC\biILg_1\hotstuff\coolapps" is seen as
''\\bilLg_1 \hotstuff\coolapps".

Windows 95: The IpFileName string must not exceed MAX_PATH characters.
Windows 95 does not support the ''\\?\'' prefix.

Return Values
If the function succeeds, the return value contains the attributes of the specified file or
directory.

If the function fails, the return value is -1. To get extended error information, call
GetLastError.

The attributes can be one or more of the following values.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive file or
directory. Applications use this attribute to
mark files for backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For a file,
this means that all of the data in the file is
compressed. For a directory, this means that
compression is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_DEVICE Reserved; do not use.

FILE_ATTRIBUTE_DIRECTORY The handle identifies a directory.

FI LE_ATTRI BUTE_ENCRYPTED The file or directory is encrypted. For a file,
this means that all data streams in the file
are encrypted. For a directory, this means
that encryption is the default for newly
created files and subdirectories.

FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It is not
included in an ordinary directory listing.

FILE_ATTRIBUTE_NORMAL The file or directory has no other attributes
set. This attribute is valid only if used alone.

FILE_ATTRIBUTE_NOT _CONTENT _INDEXED The file will not be indexed by the content
indexing service.

FILE_ATTRIBUTE_OFFLINE

FILE_ATTRIBUTE_REPARSE_POINT

FILE_ATTRIBUTE_SPARSE_FILE

FILE_ATTRIBUTE_SYSTEM

Remarks

Chapter 9 File VO 529

The data of the file is not immediately
available. This attribute indicates that the file
data has been physically moved to offline
storage. This attribute is used by Remote
Storage, the hierarchical storage
management software in Windows 2000.
Applications should not arbitrarily change
this attribute.

The file or directory is read-only. Applications
can read the file but cannot write to it or
delete it. In the case of a directory,
applications cannot delete it.

The file has an associated reparse point.

The file is a sparse file.

The file or directory is part of, or is used
exclusively by, the operating system.

The file is being used for temporary storage.
File systems attempt to keep all of the data
in memory for quicker access rather than
flushing the data back to mass storage. A
temporary file should be deleted by the
application as soon as it is no longer needed.

When GetFileAttributes is called on a directory containing a volume mount point, the
file attributes returned are those of the directory where the volume mount point is set, not
those of the root directory in the target mounted volume. To obtain the file attributes of
the mounted volume, call GetVolumeNameForVolumeMountPoint to obtain the name
of the target volume. Then use the resulting name in a call to GetFileAttributes. The
results will be the attributes of the root directory on the target volume.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

530 Volume 1 Microsoft Windows Base Services

File I/O Overview, File I/O Functions, DeviceloControl, FindFirstFile, FindNextFile,
GetFileAttributesEx, SetFileAttributes

GetFileAttri butesEx
The GetFileAttributesEx function obtains attribute information about a specified file or
directory.

Parameters
IpFileName

[in] Pointer to a null-terminated string that specifies a file or directory.

By default, this string is limited to MAX_PATH characters. The limit is related to how
the GetFileAttributesEx function parses paths. An application can transcend this limit
and send in paths longer than MAX_PATH characters by calling the wide (W) version
of GetFileAttributesEx and prepending ',\\?V' to the path. However, each component
in the path cannot be more than MAX_PATH characters long. The ',\\?V' tells the
function to turn off path parsing. This technique also works with UNC names. The
''\\?\'' is ignored as part of the path. For example, ''\\?\C:\myworld\private'' is seen as
"C:\myworld\private", and ',\\?\UNC\peanuts\hotstuff\coolapps" is seen as
"\ \peanuts\hotstuff\coolapps".

flnfoLevelld
[in] Specifies a GET _FILEEX_INFO_LEVELS enumeration type that gives the set of
attribute information to obtain.

IpFilelnformation
[out] Pointer to a buffer that receives the attribute information. The type of attribute
information stored into this buffer is determined by the value of flnfoLevelld.

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetFileAttributes function returns a set of FAT-style attribute information.
GetFileAttributesEx can obtain other sets of file or directory attribute information.

Chapter 9 File I/O 531

Currently, GetFileAttributeEx obtains a set of standard attributes that is a superset of
the FAT-style attribute information.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, GetFileAttributes, GET_FILEEX_INFO_LEVELS,
SetFileAttributes

GetFi lei nformation ByHand Ie
The GetFilelnformationByHandle function retrieves information about a specified file.

Parameters
hFile

[in] Handle to the file for which to obtain information.

This handle should not be a pipe handle. The GetFilelnformationByHandle function
does not work with pipe handles.

IpFilelnformation
[out] Pointer to a BY _HANDLE_FILE_INFORMATION structure that receives the file
information. The structure can be used in subsequent calls to
GetFilelnformationByHandle to refer to the information about the file.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

532 Volume 1 Microsoft Windows Base Services

Remarks
Depending on the underlying network components of the operating system and the type
of server connected to, the GetFilelnformationByHandle function may fail, return partial
information, or full information for the given file. In general, you should not use
GetFilelnformationByHandle unless your application is intended to be run on a limited
set of operating system configurations.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, BY _HANDLE_FILE_INFORMATION

GetFileSize
The GetFileSize function retrieves the size, in bytes, of a specified file.

This function stores the file size in a DWORD value. To retrieve a file size that is larger
than a DWORD value, use the GetFileSizeEx function.

Parameters
hFile

[in] Handle to the file whose size is to be returned. This handle must have been
created with either GENERIC_READ or GENERIC_WRITE access to the file.

IpFileSizeHigh
[out] Pointer to the variable where the high-order word of the file size is returned. This
parameter can be NULL if the application does not require the high-order word.

Return Values
If the function succeeds, the return value is the low-order doubleword of the file size,
and, if IpFileSizeHigh is non-NULL, the function puts the high-order doubleword of the
file size into the variable pOinted to by that parameter.

Chapter 9 File 1/0 533

If the function fails and IpFileSizeHigh is NULL, the return value is -1. To get extended
error information, call GetLastError.

If the function fails and IpFileSizeHigh is non-NULL, the return value is -1 and
GetLastError will return a value other than NO_ERROR.

Remarks
You cannot use the GetFileSize function with a handle of a nonseeking device such as
a pipe or a communications device. To determine the file type for hFile, use the
GetFileType function.

The GetFileSize function obtains the uncompressed size of a file. Use the
GetCompressedFileSize function to obtain the compressed size of a file.

Note that if the return value is -1 and IpFileSizeHigh is non-NULL, an application must
call GetLastError to determine whether the function has succeeded or failed.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File liD Overview, File liD Functions, GetCompressedFileSize, GetFileSizeEx,
GetFileType

GetFileSizeEx
The GetFileSizeEx function retrieves the size, in bytes, of a specified file.

Parameters
hFile

[in] Handle to the file whose size is to be returned. The handle must have been
created with either GENERIC_READ or GENERIC_WRITE access to the file.

IpFileSize
[out] Pointer to a LARGE_INTEGER structure that receives the file size.

534 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

File 110 Overview, File 110 Functions, LARGE_INTEGER

GetFileType
The GetFileType function returns the type of the specified file.

Parameters
hFile

[in] Handle to an open file.

Return Values
The return value is one of the following values.

Value Meaning

FILE_ TYPE_UNKNOWN

FILE_ TYPE_DISK

FILE_ TYPE_CHAR

The type of the specified file is unknown.

The specified file is a disk file.

The specified file is a character file, typically an LPT
device or a console.

The specified file is either a named or anonymous pipe.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 9 File 1/0 535

File I/O Overview, File I/O Functions, GetFileSize, GetFileTime

GetFu II Path Name
The GetFuliPathName function retrieves the full path and file name of a specified file.

rlW~RD~GetFu:tlPatIlName(;•..•
LPCTST;RlpF.f7eNIlf1)e. /1 fil £f<.nallle"
·DWO~ nBufferiengtffr Ils"14e ofipatnitii'ffer
·l:PTS1R 7pBuft<ar" :.fI~.pa£·h ·buffep'• . .' .

IPi:STR';'7.oifJ~E..aPt· ·ll.atldr:ess .of fl.' e .. nallle .. '; np:Elth
);

Parameters
IpFileName

[in] Pointer to a null-terminated string that specifies a valid file name. This string can
use either short (the 8.3 form) or long file names.

nBufferLength
[in] Specifies the size, in characters, of the buffer for the drive and path.

IpBuffer
[out] Pointer to a buffer that contains the null-terminated string for the name of the
drive and path.

IpFilePart
[out] Pointer to a buffer that receives the address (in IpBuffer) of the final file name
component in the path.

Return Values
If the GetFuliPathName function succeeds, the return value is the length, in characters,
of the string copied to IpBuffer, not including the terminating null character.

If the IpBufferbuffer is too small, the return value is the size of the buffer, in characters,
required to hold the path.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

536 Volume 1 Microsoft Windows Base Services

Remarks
The GetFuliPathName function merges the name of the current drive and directory with
the specified file name to determine the full path and file name of the specified file. It also
calculates the address of the file name portion of the full path and file name. This function
does not verify that the resulting path and file name are valid or that they refer to an
existing file on the associated volume.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, GetShortPathName, GetTempPath, SearchPath

GetLogicalDrives
The GetLogicalDrives function returns a bitmask representing the currently available
disk drives.

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a bitmask representing the currently
available disk drives. Bit position a (the least-significant bit) is drive A, bit position 1 is
drive B, bit position 2 is drive C, and so on.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, GetLogicalDriveStrings

Get Log ical DriveStri ngs

Chapter 9 File 1/0 537

The GetLogicalDriveStrings function fills a buffer with strings that specify valid drives in
the system.

Parameters
nBufferLength

[in] Specifies the maximum size, in characters, of the buffer pointed to by IpBuffer.
This size does not include the terminating null character.

IpBuffer
[out] Pointer to a buffer that receives a series of null-terminated strings, one for each
valid drive in the system, that end with a second null character. The following example
shows the buffer contents with <null> representing the terminating null character.

Return Values
If the function succeeds, the return value is the length, in characters, of the strings
copied to the buffer, not including the terminating null character. Note that an ANSI­
ASCII null character uses one byte, but a Unicode null character uses two bytes.

If the buffer is not large enough, the return value is greater than nBufferLength. It is the
size of the buffer required to hold the drive strings.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.

Remarks
Each string in the buffer may be used wherever a root directory is required, such as for
the GetDriveType and GetDiskFreeSpace functions.

538 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O OveNiew, File I/O Functions, GetDriveType, GetDiskFreeSpace,
GetLogicalDrives

GetLongPathName
The GetLongPathName function converts the specified path to its long form. If no long
path is found, this function simply returns the specified name.

Parameters
IpszShortPath

[in] Pointer to a null-terminated path to be converted.

IpszLongPath
[out] Pointer to the buffer to receive the long path. You can use the same buffer you
used for the IpszShortPath parameter.

cchBuffer
[in] Specifies the size of the buffer, in characters.

Return Values
If the function succeeds, the return value is the length of the string copied to the
IpszLongPath parameter, in characters. This length does not include the terminating null
character.

If IpszLongPath is too small, the function returns the size of the buffer required to hold
the long path, in characters.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 9 File I/O 539

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, GetShortPathName

GetQueuedCompletionStatus
The GetQueuedCompletionStatus function attempts to dequeue an I/O completion
packet from a specified I/O completion port. If there is no completion packet queued, the
function waits for a pending I/O operation associated with the completion port to
complete.

j~

Parameters
Completion Port

[in] Handle to the completion port of interest. To create a completion port, use the
CreateloCompletionPort function.

IpNumberOfBytes
[out] Pointer to a variable that receives the number of bytes transferred during an I/O
operation that has completed.

IpCompletionKey
[out] Pointer to a variable that receives the completion key value associated with the
file handle whose I/O operation has completed. A completion key is a per-file key that
is specified in a call to CreateloCompletionPort.

IpOverlapped
[out] Pointer to a variable that receives the address of the OVERLAPPED structure
that was specified when the completed I/O operation was started.

The following functions can be used to start I/O operations that complete using
completion ports. You must pass the function an OVERLAPPED structure and a file

540 Volume 1 Microsoft Windows Base Services

handle associated with an completion port (by a call to CreateloCompletionPort) to
invoke the I/O completion port mechanism:

ConnectNamedPipe

DeviceloControl

LockFileEx

ReadDirectoryChangesW

ReadFile

ReadFileVlm

TransactNamedPipe

WaitCommEvent

WriteFile

WriteFileVlm

Even if you have passed the function a file handle associated with a completion port
and a valid OVERLAPPED structure, an application can prevent completion port
notification. This is done by specifying a valid event handle for the hEvent member of
the OVERLAPPED structure, and setting its low-order bit. A valid event handle whose
low-order bit is set keeps I/O completion from being queued to the completion port.

dwMilliseconds
[in] Specifies the number of milliseconds that the caller is willing to wait for an
completion packet to appear at the completion port. If a completion packet doesn't
appear within the specified time, the function times out, returns FALSE, and sets
*lpOverlappedto NULL.

If dwMilliseconds is INFINITE, the function will never time out. If dwMilliseconds is
zero and there is no I/O operation to dequeue, the function will time out immediately.

Return Values
If the function dequeues a completion packet for a successful I/O operation from the
completion port, the return value is nonzero. The function stores information in the
variables pOinted to by the IpNumberOfBytesTransferred, IpCompletionKey, and
IpOverlapped parameters.

If *lpOverlappedis NULL and the function does not dequeue a completion packet from
the completion port, the return value is zero. The function does not store information in
the variables pOinted to by the IpNumberOfBytesTransferred and IpCompletionKey
parameters. To get extended error information, call GetLastError. If the function did not
dequeue a completion packet because the wait timed out, GetLastError returns
WAIT_TIMEOUT.

If */pOverlapped is not NULL and the function dequeues a completion packet for a failed
I/O operation from the completion port, the return value is zero. The function stores
information in the variables pointed to by IpNumberOfBytesTransferred,
IpCompletionKey, and IpOverlapped. To get extended error information, call
GetLastError.

Chapter 9 File I/O 541

Remarks
This function associates a thread with the specified completion port. A thread can be
associated with at most one completion port.

The 1/0 system can be instructed to send completion notification packets to completion
ports, where they are queued. The CreateloCompletionPort function provides a
mechanism for this.

When you perform an input/output operation with a file handle that has an associated
input/output completion port, the 1/0 system sends a completion notification packet to the
completion port when the 1/0 operation completes. The completion port places the
completion packet in a first-in-first-out queue. The GetQueuedCompletionStatus
function retrieves these queued completion packets.

A server application may have several threads calling GetQueuedCompletionStatus for
the same completion port. As input operations complete, the operating system queues
completion packets to the completion port. If threads are actively waiting in a call to this
function, queued requests complete their call. For more information, see 110 Completion
Ports.

You can call the PostQueuedCompletionStatus function to post an completion packet
to an completion port. The completion packet will satisfy an outstanding call to the
GetQueuedCompletionStatus function.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, ConnectNamedPipe, CreateloCompletionPort,
DeviceloControl, LockFileEx, OVERLAPPED, ReadFile,
PostQueuedCompletionStatus, TransactNamedPipe, WaitCommEvent, WriteFile

GetShortPathName
The GetShortPathName function obtains the short path form of a specified input path.

::~f~~1'i~\',III~~fff]f

542 Volume 1 Microsoft Windows Base Services

Parameters
IpszLongPath

[in] Pointer to a null-terminated path string. The function obtains the short form of this
path.

IpszShortPath
[out] Pointer to a buffer to receive the null-terminated short form of the path specified
by IpszLongPath.

cchBuffer
[in] Specifies the size, in characters, of the buffer pOinted to by IpszShortPath.

Return Values
If the function succeeds, the return value is the length, in characters, of the string copied
to IpszShortPath, not including the terminating null character.

If the function fails due to the IpszShortPath buffer being too small to contain the short
path string, the return value is the size, in characters, of the short path string. You need
to call the function with a short path buffer that is at least as large as the short path
string.

If the function fails for any other reason, the return value is zero. To get extended error
information, call GetLastError.

Remarks
When an application calls this function and specifies a path on a volume that does not
support 8.3 aliases, the function fails with ERROR_INVALlD_PARAMETER if the path is
longer than 67 bytes.

The path specified by IpszLongPath does not have to be a full or a long path. The short
form may be longer than the specified path.

If the specified path is already in its short form, there is no need for any conversion, and
the function simply copies the specified path to the buffer for the short path.

You can set IpszShortPath to the same value as IpszLongPath; in other words, you can
set the buffer for the short path to the address of the input path string.

You can obtain the long name of a file from the short name by calling the FindFirstFile
function.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 9 File 1/0 543

File 1100veNiew, File 110 Functions, GetFuliPathName, FindFirstFile

GetTempFileName
The GetTempFileName function creates a name for a temporary file. The file name is
the concatenation of specified path and prefix strings, a hexadecimal string formed from
a specified integer, and the .tmp extension.

The specified integer can be nonzero, in which case, the function creates the file name
but does not create the file. If you specify zero for the integer, the function creates a
unique file name and creates the file in the specified directory.

U~~!#~~f:e~~}~~~::r"<, .,., ' . ' ... ' .
" .. ~~.~~~!S~~~i~:~rj~jt,s~~r· .. :.(. ;,:., .•. ··.·.,:/ •• · .•. I.~/: .. •· .• · •. ·.:.·:fj..·.;:'.· .••. tl;.'.:e: .. ,.~~fe·~,·,f,· .•. ,ur[.·.,~.· •• e~·.~.'; .. ,.'.:.,' ,
·'i,:~PT$TR:J'Pr_·nhilA!"III~>. '1. """" lit' ,. ,.
0"' "", ,." '." :",,',;,) • ,."

H,,~,. L,·:<·<Y',,,:;/,:.;::.

Parameters
IpPathName

-" ~:

[in] Pointer to a null-terminated string that specifies the directory path for the file
name. This string must consist of characters in the ANSI character set. Applications
typically specify a period (.) or the result of the GetTempPath function for this
parameter. If this parameter is NULL, the function fails.

IpPrefixString
[in] Pointer to a null-terminated prefix string. The function uses the first three
characters of this string as the prefix of the file name. This string must consist of
characters in the ANSI character set.

uUnique
[in] Specifies an unsigned integer that the function converts to a hexadecimal string
for use in creating the temporary file name.

If uUnique is nonzero, the function appends the hexadecimal string to IpPrefixString to
form the temporary file name. In this case, the function does not create the specified
file, and does not test whether the file name is unique.

If uUnique is zero, the function uses a hexadecimal string derived from the current
system time. In this case, the function uses different values until it finds a unique file
name, and then it creates the file in the IpPathName directory.

IpTempFileName
[out] Pointer to the buffer that receives the temporary file name. This null-terminated
string consists of characters in the ANSI character set. This buffer should be at least
the length, in bytes, specified by MAX_PATH to accommodate the path.

544 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value specifies the unique numeric value used in the
temporary file name. If the uUnique parameter is nonzero, the return value specifies that
same number.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetTempFileName function creates a temporary file name of the following form:

The following table describes the file name syntax.

Component

path

pre

uuuu

Meaning

Path specified by the IpPathName parameter

First three letters of the IpPrefixString string

Hexadecimal value of uUnique

When the system shuts down, temporary files whose names have been created by this
function are not automatically deleted.

To avoid problems resulting when converting an ANSI string, an application should call
the CreateFile function to create a temporary file.

If the uUnique parameter is zero, GetTempFileName attempts to form a unique number
based on the current system time. If a file with the resulting file name exists, the number
is increased by one and the test for existence is repeated. Testing continues until a
unique file name is found. GetTempFileName then creates a file by that name and
closes it. When uUnique is nonzero, no attempt is made to create and open the file.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000 .

. :. "

File 110 Overview, File 110 Functions, CreateFile, GetTempPath

Chapter 9 File I/O 545

GetTempPath
The GetTempPath function retrieves the path of the directory designated for temporary
files.

Parameters
nBufferLength

[in] Specifies the size, in characters, of the string buffer identified by IpBuffer.

IpBuffer
[out] Pointer to a string buffer that receives the null-terminated string specifying the
temporary file path. The returned string ends with a backslash, for example,
C:\TEMP\.

Return Values
If the function succeeds, the return value is the length, in characters, of the string copied
to IpBuffer, not including the terminating null character. If the return value is greater than
nBufferLength, the return value is the size of the buffer required to hold the path.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Windows 95/98: The GetTempPath function gets the temporary file path as follows:

1. The path specified by the TMP environment variable.

2. The path specified by the TEMP environment variable, if TMP is not defined or if TMP
specifies a directory that does not exist.

3. The current directory, if both TMP and TEMP are not defined or specify nonexistent
directories.

Windows NT/2000: The GetTempPath function does not verify that the directory
specified by the TMP or TEMP environment variables exists. The function gets the
temporary file path as follows:

1. The path specified by the TMP environment variable.

2. The path specified by the TEMP environment variable, if TMP is not defined.

3. The Windows directory, if both TMP and TEMP are not defined.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

546 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, GetTempFileName

Int32x32T064
The Int32x32To64 function multiplies two signed 32-bit integers, returning a signed 64-
bit integer result. The function performs optimally on all Win32 platforms.

Parameters
Multiplier

[in] Specifies the first signed 32-bit integer for the multiplication.

Multiplicand
[in] Specifies the second signed 32-bit integer for the multiplication.

Return Values
The return value is the signed 64-bit integer result of the multiplication.

Remarks
This function is implemented on all platforms by optimal inline code: a single multiply
instruction that returns a 64-bit result.

Please note that the function's return value is a 64-bit value, not a LARGE_INTEGER
structure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Chapter 9 File 1/0 547

Di8~';
File liD Overview, File liD Functions, Ulnt32x32To64

Int64ShllMod32
The Int64ShllMod32 function performs a left logical shift operation on an unsigned 64-
bit integer value. The function provides improved shifting code for left logical shifts where
the shift count is in the range 0-31.

[a:~t.l~~~f~~~~il.t~~&.'!--·"·······' .: .. :
Parameters
Value

[in] Specifies the unsigned 64-bit integer to be shifted.

ShiftCount
[in] Specifies a shift count in the range 0-31.

Return Values
The return value is the unsigned 64-bit integer result of the left logical shift operation.

Remarks
The shift count is the number of bit positions that the value's bits move.

In a left logical shift operation on an unsigned value, the value's bits move to the left, and
vacated bits on the right side of the value are set to zero.

A compiler can generate optimal code for a left logical shift operation when the shift
count is a constant. However, if the shift count is a variable whose range of values is
unknown, the compiler must assume the worst case, leading to non-optimal code: code
that calls a subroutine, or code that is inline but branches. By restricting the shift count to
the range 0-31, the Int64ShllMod32 function lets the compiler generate optimal or near­
optimal code.

Please note that the Int64ShllMod32 function's Value parameter and return value are
64-bit values, not LARGE_INTEGER structures.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

548 Volume 1 Microsoft Windows Base Services

File I/O Overview, File I/O Functions, Int64ShraMod32, Int64ShrlMod32

Int64ShraMod32
The Int64ShraMod32 function performs a right arithmetic shift operation on a signed 64-
bit integer value. The function provides improved shifting code for right arithmetic shifts
where the shift count is in the range 0-31.

Parameters
Value

[in] Specifies the signed 64-bit integer to be shifted.

ShiftCount
[in] Specifies a shift count in the range 0-31.

Return Values
The return value is the signed 64-bit integer result of the right arithmetic shift operation.

Remarks
The shift count is the number of bit positions that the value's bits move.

In a right arithmetic shift operation on a signed value, the value's bits move to the right,
and vacated bits on the left side of the value are set to the value of the sign bit.

A compiler can generate optimal code for a right arithmetic shift operation when the shift
count is a constant. However, if the shift count is a variable whose range of values is
unknown, the compiler must assume the worst case, leading to non-optimal code: code
that calls a subroutine, or code that is inline but branches. By restricting the shift count to
the range 0-31, the Int64ShraMod32 function lets the compiler generate optimal or
near-optimal code.

Please note that the Int64ShraMod32 function's Value parameter and return value are
64-bit values, not LARGE_INTEGER structures.

. . . ~ .'

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

Chapter 9 File 110 549

_ii~~··
File 110 Overview, File 110 Functions, Int64ShllMod32, Int64ShrlMod32

Int64ShrlMod32
The Int64ShrlMod32 function performs a right logical shift operation on an unsigned 64-
bit integer value. The function provides improved shifting code for right logical shifts
where the shift count is in the range 0-31.

Parameters
Value

[in] Specifies the unsigned 64-bit integer to be shifted.

ShiftCount
[in] Specifies a shift count in the range 0-31.

Return Values
The return value is the unsigned 64-bit integer result of the right logical shift operation.

Remarks
The shift count is the number of bit positions that the value's bits move.

In a right logical shift operation on an unsigned value, the value's bits move to the right,
and vacated bits on the left side of the value are set to zero.

A compiler can generate optimal code for a right logical shift operation when the shift
count is a constant. However, if the shift count is a variable whose range of values is
unknown, the compiler must assume the worst case, leading to non-optimal code: code
that calls a subroutine, or code that is inline but branches. By restricting the shift count to
the range 0-31, the Int64ShrlMod32 function lets the compiler generate optimal or near­
optimal code.

Note The Int64ShrlMod32 function's Value parameter and return value are 64-bit
values, not LARGE_INTEGER structures.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

550 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File 110 Overview, File 110 Functions, Int64ShllMod32, Int64ShraMod32

LockFile
The LockFile function locks a region in an open file. Locking a region prevents other
processes from accessing the region.

To specify additional options, use the LockFileEx function.

Parameters
hFile

[in] Handle to the file with a region to be locked. The file handle must have been
created with GENERIC_READ or GENERIC_WRITE access to the file (or both).

dwFileOffsetLow
[in] Specifies the low-order word of the starting byte offset in the file where the lock
should begin.

dwFileOffsetHigh
[in] Specifies the high-order word of the starting byte offset in the file where the lock
should begin.

Windows 95198: dwFileOffsetHigh must be 0, the sign extension of the value of
dwFileOffsetLow. Any other value will be rejected.

nNumberOfBytesToLockLow
[in] Specifies the low-order word of the length of the byte range to be locked.

nNumberOfBytesToLockHigh
[in] Specifies the high-order word of the length of the byte range to be locked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Chapter 9 File I/O 551

Remarks
Locking a region of a file gives the locking process exclusive access to the specified
region. File locks are not inherited by processes created by the locking process.

Locking a region of a file denies all other processes both read and write access to the
specified region. Locking a region that goes beyond the current end-of-file position is not
an error.

Locks may not overlap an existing locked region of the file.

The UnlockFile function unlocks a file region locked by LockFile.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, CreateFile, LockFileEx, UnlockFile

LockFileEx
The LockFileEx function locks a byte range within an open file for shared or exclusive
access.

Parameters
hFile

[in] Handle to an open handle to a file that is to have a range of bytes locked for
shared or exclusive access. The handle must have been created with either
GENERIC_READ or GENERIC_WRITE access to the file.

dwFlags
[in] Specifies flags that modify the behavior of this function. This parameter may be
one or more of the following values:

552 Volume 1 Microsoft Windows Base Services

Value Meaning

dwReserved

If this value is specified, the function returns immediately if it
is unable to acquire the requested lock. Otherwise, it waits.

If this value is specified, the function requests an exclusive
lock. Otherwise, it requests a shared lock.

Reserved parameter; must be set to zero.

nNumberOfBytesToLockLow
[in] Specifies the low-order 32 bits of the length of the byte range to lock.

nNumberOfBytesToLockHigh
[in] Specifies the high-order 32 bits of the length of the byte range to lock.

/pOver/apped
[in] Pointer to an OVERLAPPED structure that the function uses with the locking
request. This structure, which is required, contains the file offset of the beginning of
the lock range. Be sure to initialize the hEvent member to a valid handle or zero.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero or NULL. To get extended error information,
call GetLastError.

Remarks
Locking a region of a file is used to acquire shared or exclusive access to the specified
region of the file. File locks are not inherited by a new process during process creation.

Locking a portion of a file for exclusive access denies all other processes both read and
write access to the specified region of the file. Locking a region that goes beyond the
current end-of-file position is not an error.

Locking a portion of a file for shared access denies all processes write access to the
specified region of the file, including the process that first locks the region. All processes
can read the locked region.

If an exclusive lock is requested for a range of a file that already has a shared or
exclusive lock, this call waits until the lock is granted, unless the
LOCKFILE_FAIL_IMMEDIATELY flag is specified.

Locks may not overlap an existing locked region of the file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 9 File 110 553

File I/O Overview, File I/O Functions, CreateFile, LockFile, OVERLAPPED,
UnlockFile, UnlockFileEx

MoveFile
The MoveFile function renames an existing file or a directory (including all its children).

To specify how to move the file, use the MoveFileEx function.

Parameters
IpExistingFileName

[in] Pointer to a null-terminated string that names an existing file or directory.

IpNewFileName
[in] Pointer to a null-terminated string that specifies the new name of a file or directory.
The new name must not already exist. A new file may be on a different file system or
drive. A new directory must be on the same drive.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The MoveFile function will move (rename) either a file or a directory (including all its
children) either in the same directory or across directories. The one caveat is that the
MoveFile function will fail on directory moves when the destination is on a different
volume.

Windows 2000: The MoveFile function coordinates its operation with the link tracking
service, so link sources can be tracked as they are moved.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

554 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, CopyFile, MoveFileEx, MoveFileWithProgress

MoveFileEx
The MoveFileEx function renames an existing file or directory.

The MoveFileWithProgress function is equivalent to the MoveFileEx function, except
that MoveFileWithProgress allows you to provide a callback function that receives
progress notifications.

Parameters
IpExistingFileName

[in] Pointer to a nUll-terminated string that names an existing file or directory on the
local machine.

If dwflags specifies MOVEFILE_DELA Y _UNTIL_REBOOT, the file cannot have the
read-only attribute.

IpNewFileName
[in] Pointer to a nUll-terminated string that specifies the new name of
IpExistingFileName on the local machine.

When moving a file, the destination can be on a different file system or drive. If the
destination is on another drive, you must set the MOVEFILE_COPY _ALLOWED flag
in dwFlags.

When moving a directory, the destination must be on the same drive.

If dwFlags specifies MOVEFILE_DELAY _UNTIL_REBOOT, IpNewFileName can be
NULL. In this case, MoveFileEx registers the IpExistingFileName file to be deleted
when the system reboots. If IpExistingFileName refers to a directory, the system
removes the directory at reboot only if the directory is empty.

Chapter 9 File I/O 555

dwFlags
[in] Specifies how to move the file. This parameter can be one or more of the following
values.

Value Meaning

MOVEFILE_COPY _ALLOWED If the file is to be moved to a different volume, the
function simulates the move by using the CopyFile and
DeleteFile functions.

This flag cannot be used with the
MOVEFILE_DELAY _UNTIL_REBOOT flag.

MOVEFILE_DELAY _UNTIL_REBOOT The function does not move the file until the operating
system is restarted. The system moves the file
immediately after AUTOCHK is executed, but before
creating any paging files. Consequently, this parameter
enables the function to delete paging files from previous
startups.

Return Values

This flag can be used only if the process is in the context
of a user who belongs to the administrator group or the
LocalSystem account.

This flag cannot be used with the
MOVEFILE_COPY _ALLOWED flag.

If a file of the name specified by IpNewFileName already
exists, the function replaces its contents with those
specified by IpExistingFileName.

The function does not return until the file has actually
been moved on the disk.

Setting this flag guarantees that a move performed as a
copy and delete operation is flushed to disk before the
function returns. The flush occurs at the end of the copy
operation.

This flag has no effect if the
MOVEFILE_DELAY _UNTIL_REBOOT flag is set.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If the dwFlags parameter specifies MOVEFILE_DELAY _UNTIL_REBOOT, MoveFileEx
stores the locations of the files to be renamed at reboot in the following registry value:

556 Volume 1 Microsoft Windows Base Services

HKEY _LOCAL_MACHINE\SYSTEM\CurrentControISet\ControI\Session
Manager\PendingFileRenameOperations

The function fails if it cannot access the registry.

The PendingFileRenameOperations value is of type REG_MUL TI_SZ. Each rename
operation stores a pair of NULL-terminated strings. The system uses these registry
entries to complete the operations at reboot in the same order that they were issued. For
example, the following code fragment creates registry entries that delete szDstFile and
rename szSrcFile to be szDstFile at reboot:

ij~I~':~;~t~''''''
The system stores the following entries in PendingFileRenameOperations:

Because the actual move and deletion operations specified with the
MOVEFILE_DELAY _UNTIL_REBOOT flag take place after the calling application has
ceased running, the return value cannot reflect success or failure in moving or deleting
the file. Rather, it reflects success or failure in placing the appropriate entries into the
registry.

The system deletes a directory tagged for deletion with the
MOVEFILE_DELAY _UNTIL_REBOOT flag only if it is empty. To ensure deletion of
directories, move or delete all files from the directory before attempting to delete it. Files
may be in the directory at boot time, but they must be deleted or moved before the
system can delete the directory.

The move and deletion operations are carried out at boot time in the same order they
are specified in the calling application. To delete a directory that has files in it at boot
time, first delete the files.

Windows 2000: The MoveFileEx function coordinates its operation with the link tracking
service, so link sources can be tracked as they are moved.

Windows 95/9B: The MoveFileEx function is not supported. To rename or delete a file
at reboot, use the following procedure.

To rename or delete a file on Windows 95/98:

1. Check for the existence of the WININIT.INI file in the Windows directory.

2. If WININIT.INI exists, open it and add new entries to the existing [rename] section. If
the file does not exist, create the file and create a [rename] section.

3. Add lines of the following format to the [rename] section:

··~*t'f~it~~bftft~1~1!t1Iit~S:~uf~~t1~i'~~I1i~

Chapter 9 File 1/0 557

Both DestinationFileName and SourceFileName must be short file names. To delete a
file, use NUL as the value for DestinationFileName.

The system processes WININIT.INI during system boot. After WININIT.INI has been
processed, the system names it WININIT.BAK.

To delete or rename a file, you must have either delete permission on the file or delete
child permission in the parent directory. If you set up a directory with all access except
delete and delete child and the ACLs of new files are inherited, then you should be able
to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you
create the file. If you requested delete permission at the time you created the file, you
could delete or rename the file with that handle but not with any other.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, CopyFile, DeleteFile, GetWindowsDirectory,
MoveFileWithProgress, WritePrivateProfileString

MoveFi Ie With Progress
The MoveFileWithProgress function moves a file or directory. MoveFileWithProgress
is equivalent to the MoveFileEx function, except that MoveFileWithProgress allows
you to provide a callback function that receives progress notifications.

BOQ[·· .. ~V~FtleW·i t.1t~r~grus<
l'{:lS~R tPEXj$tjfIP.F;lre~ame/ .

..... ~PCt~tR.l PJ(f}W:f1'7eNdme;··· .' . ~~ ..

... 'I..PPcROORESS.:...ROtlltN E
•... , .lPVql D.t7pf)d;ta •

DwgiW'(JwfJdgs
n··
Parameters
IpExistingFileName

[in] Pointer to a null-terminated string that names an existing file or directory on the
local machine.

558 Volume 1 Microsoft Windows Base Services

Value

IpNewFileName
[in] Pointer to a null-terminated string containing the new name of the file or directory.

When moving a file, IpNewFileName can be on a different file system or drive. If
IpNewFileName is on another drive, you must set the MOVEFILE_COPY _ALLOWED
flag in dwFlags.

When moving a directory, IpExistingFileName and IpNewFileName must be on the
same drive.

If dwFlags specifies MOVEFILE_DELAY _UNTIL_REBOOT, IpNewFileName can be
NULL. In this case, MoveFileEx registers IpExistingFileName to be deleted when the
system reboots. The function fails if it cannot access the registry to store the
information about the delete operation. If IpExistingFileName refers to a directory, the
system removes the directory at reboot only if the directory is empty.

IpProgressRoutine
[in] Pointer to a CopyProgressRoutine callback function that is called each time
another portion of the file has been moved. The callback function can be useful if you
provide a user interface that displays the progress of the operation. This parameter
can be NULL.

IpData
[in] Specifies an argument that MoveFileWithProgress passes to the
CopyProgressRoutine callback function. This parameter can be NULL.

dwFlags
[in] Specifies how to move the file. This parameter can be one or more of the following
values.

Meaning

If the file is to be moved to a different volume, the
function simulates the move by using the CopyFile
and DeleteFile functions.

MOVEFILE_CREATE_HARDLINK

MOVEFILE_DELAY _UNTIL_REBOOT

Reserved for future use.

The system does not move the file until the operating
system is restarted. The system moves the file
immediately after AUTOCHK is executed, but before
creating any paging files. Consequently, this
parameter enables the function to delete paging files
from previous startups.

This flag can only be used if the process is in the
context of a user who belongs to the administrator
group or the LocalSystem account.

This flag cannot be used with the
MOVEFILE_COPY _ALLOWED flag.

Chapter 9 File 110 559

MOVEFILE_FAIL_IF _NOT _ TRACKABLE MoveFileWithProgress fails if the source file is a link
source, but the file cannot be tracked after the move.
This situation can occur if the destination is a volume
formatted with the FAT file system.

MOVEFILE_REPLACE_EXISTING If a file named IpNewFileName exists, the function
replaces its contents with the contents of the
IpExistingFileName file.

MOVEFILE_WRITE_ THROUGH MoveFileWithProgress does not return until the file
has actually been moved on the disk.

Return Value

Setting this flag guarantees that a move performed as
a copy and delete operation is flushed to disk before
the function returns. The flush occurs at the end of
the copy operation.

This flag has no effect if the
MOVEFILE_DELAY _UNTIL_REBOOT flag is set.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The MoveFileWithProgress function coordinates its operation with the link tracking
service, so link sources can be tracked as they are moved.

To delete or rename a file, you must have either delete permission on the file or delete
child permission in the parent directory. If you set up a directory with all access except
delete and delete child and the ACLs of new files are inherited, then you should be able
to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you
create the file. If you requested delete permission at the time you created the file, you
could delete or rename the file with that handle but not with any other.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

560 Volume 1 Microsoft Windows Base Services

File 110 Overview, File 110 Functions, CopyFileEx, CopyProgressRoutine, MoveFileEx

MulDiv
The MulDiv function multiplies two 32-bit values and then divides the 64-bit result by a
third 32-bit value. The return value is rounded up or down to the nearest integer.

Parameters
nNumber

[in] Specifies the multiplicand.

nNumerator
[in] Specifies the multiplier.

nDenominator
[in] Specifies the number by which the result of the multiplication (nNumber *
nNumeratof) is to be divided.

Return Values .
If the function succeeds, the return value is the result of the multiplication and division. If
either an overflow occurred or nDenominatorwas 0, the return value is -1.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, I nt32x32To64 , Ulnt32x32To64

Chapter 9 File va 561

PostQueuedCompletionStatus
The PostQueuedCompletionStatus function lets you post an I/O completion packet to
an I/O completion port. The I/O completion packet will satisfy an outstanding call to the
GetQueuedCompletionStatus function. The GetQueuedCompletionStatus function
returns with the three values passed as the second, third, and fourth parameters of the
call to PostQueuedCompletionStatus.

Parameters
Completion Port

[in] Handle to an 110 completion port to which the I/O completion packet is to be
posted.

dwNumberOfBytes Transferred
[in] Specifies a value to be returned through the IpNumberOfBytesTransferred
parameter of the GetQueuedCompletionStatus function.

dwCompletionKey
[in] Specifies a value to be returned through the IpCompletionKey parameter of the
GetQueuedCompletionStatus function.

IpOver/apped
[in] Specifies a value to be returned through the IpOverlapped parameter of the
GetQueuedCompletionStatus function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
For more information concerning dwNumberOfBytesTransferred, dwCompletionKey, and
IpOverlapped, see GetQueuedCompletionStatus and the descriptions of the
parameters those values are returned through.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

562 Volume 1 Microsoft Windows Base Services

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, CreateloCompletionPort,
GetQueuedCompletionStatus, OVERLAPPED

QueryDosDevice
The QueryDosDevice function lets an application obtain information about MS-DOS
device names. The function can obtain the current mapping for a particular MS-DOS
device name. The function can also obtain a list of all existing MS-DOS device names.

MS-DOS device names are stored as symbolic links in the object name space. The code
that converts an MS-DOS path into a corresponding path uses these symbolic links to
map MS-DOS devices and drive letters. The QueryDosDevice function provides a
mechanism whereby a Win32-based application can query the names of the symbolic
links used to implement the MS-DOS device namespace as well as the value of each
specific symbolic link.

Parameters
IpDeviceName

[in] Pointer to an MS-DOS device name string specifying the target of the query. The
device name cannot have a trailing backslash.

This parameter can be NULL. In that case, the QueryDosDevice function will store a
list of all existing MS-DOS device names into the buffer pointed to by IpTargetPath.

IpTargetPath
[out] Pointer to a buffer that will receive the result of the query. The function fills this
buffer with one or more null-terminated strings. The final null-terminated string is
followed by an additional NULL.

If IpDeviceName is non-NULL, the function obtains information about the particular
MS-DOS device specified by IpDeviceName. The first null-terminated string stored
into the buffer is the current mapping for the device. The other null-terminated strings
represent undeleted prior mappings for the device.

If IpDeviceName is NULL, the function obtains a list of all existing MS-DOS device
names. Each null-terminated string stored into the buffer is the name of an existing
MS-DOS device.

Chapter 9 File I/O 563

ucchMax
[in] Specifies the maximum number of characters that can be stored into the buffer
pointed to by IpTargetPath.

Return Values
If the function succeeds, the return value is the number of characters stored into the
buffer pointed to by IpTargetPath.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The DefineDosDevice function provides a means whereby a Win32-based application
can create and modify the symbolic links used to implement the MS-DOS device
namespace.

MS-DOS device names are global. Once defined, an MS-DOS device name remains
visible to all processes until either it is explicitly removed or the system reboots.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, DefineDosDevice

ReadDirectoryChangesW
The ReadDirectoryChangesW function returns information describing the changes
occurring within a directory.

'llhi;Hidlft to dJrect9~Y'
II read r~sults '~uffer;
Il.lemfl;h M buffer'

" Um9~'itaring ,opt1,on '
, ,', i.1'hter ennUl hems, '

,', Ii bytes returned
(continued)

564 Volume 1 Microsoft Windows Base Services

Value

(continued)

Parameters
hDirectory

[in] Handle to the directory to be monitored. This directory must be opened with the
FILE_LIST _DIRECTORY access right.

IpBuffer
[in/out] Pointer to the formatted buffer in which the read results are to be returned.
The structure of this buffer is defined by the FILE_NOTIFY _INFORMATION structure.
This buffer is filled either synchronously or asynchronously, depending on how the
directory is opened and what value is given to the IpOver/apped parameter. For more
information, see the Remarks section.

nBufferLength
[in] Specifies the length of the buffer pointed to by the IpBuffer parameter.

b Watch Subtree
[in] Specifies whether the ReadDirectoryChangesW function will monitor the
directory or the directory tree. If TRUE is specified, the function monitors the directory
tree rooted at the specified directory. If FALSE is specified, the function monitors only
the directory specified by the hDirectory parameter.

dwNotifyFilter
[in] Specifies filter criteria the function checks to determine if the wait operation has
completed. This parameter can be one or more of the following values.

Meaning

FILE_NOTIFY _CHANGE_FILE_NAME Any file name change in the watched directory or
subtree causes a change notification wait operation to
return. Changes include renaming, creating, or deleting
a file.

FILE_NOTIFY _CHANGE_DIR_NAME Any directory-name change in the watched directory or
subtree causes a change notification wait operation to
return. Changes include creating or deleting a directory.

FILE_NOTIFY _CHANGE_ATTRIBUTES Any attribute change in the watched directory or subtree
causes a change notification wait operation to return.

FILE_NOTIFY _CHANGE_SIZE Any file-size change in the watched directory or subtree
causes a change notification wait operation to return.
The operating system detects a change in file size only
when the file is written to the disk. For operating systems
that use extensive caching, detection occurs only when
the cache is sufficiently flushed.

Chapter 9 File 1/0 565

Value Meaning

FILE_NOTIFY _CHANGE_LAST _WRITE Any change to the last write-time of files in the
watched directory or subtree causes a change
notification wait operation to return. The operating
system detects a change to the last write-time only
when the file is written to the disk. For operating
systems that use extensive caching, detection occurs
only when the cache is sufficiently flushed.

FILE_NOTIFY _CHANGE_LAST _ACCESS Any change to the last access time of files in the
watched directory or subtree causes a change
notification wait operation to return.

FILE_NOTIFY _CHANGE_CREATION Any change to the creation time of files in the
watched directory or subtree causes a change
notification wait operation to return.

FILE_NOTIFY _CHANGE_SECURITY Any security-descriptor change in the watched
directory or subtree causes a change notification wait
operation to return.

IpBytesReturned
[out] For synchronous calls, this parameter receives the number of bytes transferred
into the IpBufferparameter. For asynchronous calls, this parameter is undefined. You
must use an asynchronous notification technique to retrieve the number of bytes
transferred.

IpOverlapped
[in] Pointer to an OVERLAPPED structure that supplies data to be used during
asynchronous operation. Otherwise, this value is NULL. The Offset and OftsetHigh
members of this structure are not used.

IpCompletionRoutine
[in] Pointer to a completion routine to be called when the operation has been
completed or canceled and the calling thread is in an alertable wait state. For more
information about this completion routine, see FilelOCompletionRoutine.

Return Values
If the function succeeds, the return value is nonzero. For synchronous calls, this means
that the operation succeeded. For asynchronous calls, this indicates that the operation
was successfully queued.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
To obtain a handle to a directory, use the CreateFile function with
FILE_FLAG_BACKUP _SEMANTICS as follows:

566 Volume 1 Microsoft Windows Base Services

A call to ReadDirectoryChangesW can be completed synchronously or
asynchronously. To specify asynchronous completion, open the directory
with CreateFile as shown above, but additionally specify the
FILE_FLAG_OVERLAPPED attribute in the dwFlagsAndAttributes parameter. Then
specify an OVERLAPPED structure when you call ReadDirectoryChangesW.

Upon successful synchronous completion, the IpBuffer parameter is a formatted buffer
and the number of bytes written to the buffer is available in IpBytesReturned. If the
number of bytes transferred is zero, the buffer was too small to provide detailed
information on all the changes that occurred in the directory or subtree. In this case, you
should compute the changes by enumerating the directory or subtree.

For asynchronous completion, you can receive notification in one of three ways:

• Using the GetOverlappedResult function. To receive notification through
GetOverlappedResult, do not specify a completion routine in the
IpCompletionRoutine parameter. Be sure to set the hEvent member of the
OVERLAPPED structure to a unique event.

• Using the GetQueuedCompletionStatus function. To receive notification through
GetQueuedCompletionStatus, do not specify a completion routine in
IpCompletionRoutine. Associate the directory handle hDirectorywith a completion port
by calling the CreateloCompletionPort function.

• Using a completion routine. To receive notification through a completion routine, do
not associate the directory with a completion port. Specify a completion routine in
IpCompletionRoutine. This routine is called whenever the operation has been
completed or canceled while the thread is in an alertable wait state. The hEvent
member of the OVERLAPPED structure is not used by the system, so you can use it
yourself.

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Declared only as Unicode.

Chapter 9 File 110 567

-..:J$P:,'
File 110 Overview, File 110 Functions, CreateFile, CreateloCompletionPort,
FILE_NOTIFY _INFORMATION, FilelOCompletionRoutine, GetOverlappedResult,
GetQueuedCompletionStatus, OVERLAPPED

ReadFile
The ReadFile function reads data from a file, starting at the position indicated by the file
pOinter. After the read operation has been completed, the file pOinter is adjusted by the
number of bytes actually read, unless the file handle is created with the overlapped
attribute. If the file handle is created for overlapped input and output (1/0), the application
must adjust the position of the file pointer after the read operation.

This function is designed for both synchronous and asynchronous operation. The
ReadFileEx function is designed solely for asynchronous operation. It lets an application
perform other processing during a file read operation.

Parameters
hFile

[in] Handle to the file to be read. The file handle must have been created with
GENERIC_READ access to the file.

Windows NT/2000: For asynchronous read operations, hFile can be any handle
opened with the FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a
socket handle returned by the socket or accept function.

Windows 95/98: For asynchronous read operations, hFile can be a communications
resource opened with the FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket
handle returned by socket or accept. You cannot perform asynchronous read
operations on mailslots, named pipes, or disk files.

IpBuffer
[out] Pointer to the buffer that receives the data read from the file.

nNumberOfBytesToRead
[in] Specifies the number of bytes to be read from the file.

IpNumberOfBytesRead
[out] Pointer to the variable that receives the number of bytes read. ReadFile sets this
value to zero before doing any work or error checking. If this parameter is zero when

568 Volume 1 Microsoft Windows Base Services

ReadFile returns TRUE on a named pipe, the other end of the message-mode pipe
called the WriteFile function with nNumberOfBytesToWrite set to zero.

Windows NT/2000: If IpOverlapped is NULL, IpNumberOfBytesRead cannot be
NULL. If IpOverlapped is not NULL, IpNumberOfBytesRead can be NULL. If this is an
overlapped read operation, you can get the number of bytes read by calling
GetOverlappedResult. If hFile is associated with an I/O completion port, you can get
the number of bytes read by calling GetQueuedCompletionStatus.

Windows 95/98: This parameter cannot be NULL.

IpOverlapped
[in] Pointer to an OVERLAPPED structure. This structure is required if hFile was
created with FILE_FLAG_OVERLAPPED.

If hFile was opened with FILE_FLAG_OVERLAPPED, the IpOverlapped parameter
must not be NULL. It must point to a valid OVERLAPPED structure. If hFile was
created with FILE_FLAG_OVERLAPPED and IpOverlapped is NULL, the function can
incorrectly report that the read operation is complete.

If hFile was opened with FILE_FlAG_OVERLAPPED and IpOverlapped is not NULL,
the read operation starts at the offset specified in the OVERLAPPED structure and
ReadFile may return before the read operation has been completed. In this case,
ReadFile returns FALSE and the GetLastError function returns
ERROR_10_PENDING. This allows the calling process to continue while the read
operation finishes. The event specified in the OVERLAPPED structure is set to the
signaled state upon completion of the read operation.

If hFile was not opened with FILE_FLAG_OVERLAPPED and IpOverlapped is NULL,
the read operation starts at the current file position and ReadFile does not return until
the operation has been completed.

Windows NT/2000: If hFile is not opened with FILE_FLAG_OVERLAPPED and
IpOverlapped is not NULL, the read operation starts at the offset specified in the
OVERLAPPED structure. ReadFile does not return until the read operation has been
completed.

Windows 95/98: For operations on files, disks, pipes, or mailslots, this parameter
must be NULL; a pointer to an OVERLAPPED structure causes the call to fail.
However, Windows 95/98 supports overlapped I/O on serial and parallel ports.

Return Values
The ReadFile function returns when one of the following is true: a write operation
completes on the write end of the pipe, the number of bytes requested has been read, or
an error occurs.

If the function succeeds, the return value is nonzero.

If the return value is nonzero and the number of bytes read is zero, the file pOinter was
beyond the current end of the file at the time of the read operation. However, if the file
was opened with FILE_FLAG_OVERLAPPED and IpOverlapped is not NULL, the return
value is FALSE and GetLastError returns ERROR_HANDLE_EOF when the file pOinter
goes beyond the current end of file.

Chapter 9 File 1/0 569

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
If part of the file is locked by another process and the read operation overlaps the locked
portion, this function fails.

An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

• File access must begin at byte offsets within the file that are integer multiples of the
volume's sector size. To determine a volume's sector size, call the
GetDiskFreeSpace function.

• File access must be for numbers of bytes that are integer multiples of the volume's
sector size. For example, if the sector size is 512 bytes, an application can request
reads and writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171 bytes.

• Buffer addresses for read and write operations must be sector aligned (aligned on
addresses in memory that are integer multiples of the volume's sector size). One way
to sector align buffers is to use the VirtualAlioc function to allocate the buffers. This
function allocates memory that is aligned on addresses that are integer multiples of
the system's page size. Because both page and volume sector sizes are powers of 2,
memory aligned by multiples of the system's page size is also aligned by multiples
of the volume's sector size.

Accessing the input buffer while a read operation is using the buffer may lead to
corruption of the data read into that buffer. Applications must not read from, write to,
reallocate, or free the input buffer that a read operation is using until the read operation
completes.

Characters can be read from the console input buffer by using ReadFile with a handle to
console input. The console mode determines the exact behavior of the ReadFile
function.

If a named pipe is being read in message mode and the next message is longer than the
nNumberOfBytesToRead parameter specifies, ReadFile returns FALSE and
GetLastError returns ERROR_MORE_DATA. The remainder of the message may be
read by a subsequent call to the ReadFile or PeekNamedPipe function.

When reading from a communications device, the behavior of ReadFile is governed by
the current communication time-outs as set and retrieved using the SetCommTimeouts
and GetCommTimeouts functions. Unpredictable results can occur if you fail to set the
time-out values. For more information about communication time-outs, see
COMMTIMEOUTS.

If ReadFile attempts to read from a mailslot whose buffer is too small, the function
returns FALSE and GetLastError returns ERROR_INSUFFICIENT _BUFFER.

570 Volume 1 Microsoft Windows Base Services

If the anonymous write pipe handle has been closed and ReadFile attempts to read
using the corresponding anonymous read pipe handle, the function returns FALSE and
GetLastError returns ERROR_BROKEN_PIPE.

The ReadFile function may fail and return ERROR_INVALlD_USER_BUFFER or
ERROR_NOT _ENOUGH_MEMORY whenever there are too many outstanding
asynchronous I/O requests.

The ReadFile code to check for the end-of-file condition (eof) differs for synchronous
and asynchronous read operations.

When a synchronous read operation reaches the end of a file, ReadFile returns TRUE
and sets * IpNumberOfBytesRead to zero. The following sample code tests for end-of-file
for a synchronous read operation:

An asynchronous read operation can encounter the end of a file during the initiating call
to ReadFile, or during subsequent asynchronous operation.

If EOF is detected at ReadFile time for an asynchronous read operation, ReadFile
returns FALSE and GetLastError returns ERROR_HANDLE_EOF.

If EOF is detected during subsequent asynchronous operation, the call to
GetOverlappedResult to obtain the results of that operation returns FALSE and
GetLastError returns ERROR_HANDLE_EOF.

To cancel all pending asynchronous I/O operations, use the Cancello function. This
function only cancels operations issued by the calling thread for the specified file handle.
I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to read from a floppy drive that does not have a floppy disk, the
system displays a message box prompting the user to retry the operation. To prevent the
system from displaying this message box, call the SetErrorMode function with
SEM_NOOPENFILEERRORBOX.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 9 File I/O 571

File I/O Overview, File I/O Functions, Cancello, CreateFile, GetCommTimeouts,
GetOverlappedResult, GetQueuedCompletionStatus, OVERLAPPED,
PeekNamedPipe, ReadFileEx, SetCommTimeouts, SetErrorMode, WriteFile

ReadFileEx
The ReadFileEx function reads data from a file asynchronously. It is designed solely for
asynchronous operation, unlike the ReadFile function, which is designed for both
synchronous and asynchronous operation. ReadFileEx lets an application perform other
processing during a file read operation.

The ReadFileEx function reports its completion status asynchronously, calling a
specified completion routine when reading is completed or canceled and the calling
thread is in an alertable wait state.

Parameters
hFile

;~an~l~t~t'fle:~:' "
h:,tI,a'i~buffer, ,," ,. ' .

:·'.j'j~;i.::~,Of ·by~:es.t()'·"
II comj) 1 ~t1.~)liroiJt;1ne

[in] Handle to the file to be read. This file handle must have been created with the
FILE_FLAG_OVERLAPPED flag and must have GENERIC_READ access to the file.

Windows NT/2000: This parameter can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a socket handle
returned by the socket or accept function.

Windows 95/98: This parameter can be a communications resource opened with the
FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned by
socket or accept. You cannot perform asynchronous read operations on mailslots,
named pipes, or disk files.

IpBuffer
[out] Pointer to a buffer that receives the data read from the file.

This buffer must remain valid for the duration of the read operation. The application
should not use this buffer until the read operation is completed.

572 Volume 1 Microsoft Windows Base Services

nNumbenJfBytesToRead
[in] Specifies the number of bytes to be read from the file.

IpOverlapped
[in] Pointer to an OVERLAPPED data structure that supplies data to be used during
the asynchronous (overlapped) file read operation.

If the file specified by hFile supports the concept of byte offsets, the caller
of ReadFileEx must specify a byte offset within the file at which reading should begin.
The caller specifies the byte offset by setting the OVERLAPPED structure's Offset
and OffsetHigh members.

The ReadFileEx function ignores the OVERLAPPED structure's hEvent member. An
application is free to use that member for its own purposes in the context of a
ReadFileEx call. ReadFileEx signals completion of its read operation by calling, or
queuing a call to, the completion routine pointed to by IpCompletionRoutine, so it does
not need an event handle.

The ReadFileEx function does use the OVERLAPPED structure's Internal and
InternalHigh members. An application should not set these members.

The OVERLAPPED data structure pointed to by IpOverlapped must remain valid for
the duration of the read operation. It should not be a variable that can go out of scope
while the file read operation is in progress.

IpCompletionRoutine
[in] Pointer to the completion routine to be called when the read operation is complete
and the calling thread is in an alertable wait state. For more information about the
completion routine, see FilelOCompletionRoutine.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

If the function succeeds, the calling thread has an asynchronous input/output (I/O)
operation pending: the overlapped read operation from the file. When this I/O operation
completes, and the calling thread is blocked in an alertable wait state, the system calls
the function pointed to by IpCompletionRoutine, and the wait state completes with a
return code of WAIT _IO_COMPLETION.

If the function succeeds, and the file reading operation completes, but the calling thread
is not in an alertable wait state, the system queues the completion routine call, holding
the call until the calling thread enters an alertable wait state. For information about
alertable waits and overlapped input/output operations, see Synchronization and
Overlapped Input and Output.

If ReadFileEx attempts to read past the end of the file, the function returns zero, and
GetLastError returns ERROR_HANDLE_EOF.

Chapter 9 File 1/0 573

Remarks
When using ReadFileEx you should check GetLastError even when the function
returns "success" to check for conditions that are "successes" but have some outcome
you might want to know about. For example, a buffer overflow when calling ReadFileEx
will return TRUE, but GetLastError will report the overflow with ERROR_MORE_DATA.
If the function call is successful and there are no warning conditions, GetLastError will
return ERROR_SUCCESS.

An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

• File access must begin at byte offsets within the file that are integer multiples of the
volume's sector size. To determine a volume's sector size, call the
GetDiskFreeSpace function.

• File access must be for numbers of bytes that are integer multiples of the volume's
sector size. For example, if the sector size is 512 bytes, an application can request
reads and writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171 bytes.

• Buffer addresses for read and write operations must be sector aligned (aligned on
addresses in memory that are integer multiples of the volume's sector size). One way
to sector align buffers is to use the VirtualAlioc function to allocate the buffers. This
function allocates memory that is aligned on addresses that are integer multiples of
the system's page size. Because both page and volume sector sizes are powers of 2,
memory aligned by multiples of the system's page size is also aligned by multiples
of the volume's sector size.

If a portion of the file specified by hFile is locked by another process, and the read
operation specified in a call to ReadFileEx overlaps the locked portion, the call to
ReadFileEx fails.

If ReadFileEx attempts to read data from a mailslot whose buffer is too small, the
function returns FALSE, and GetLastError returns ERROR_INSUFFICIENT _BUFFER.

Accessing the input buffer while a read operation is using the buffer may lead to
corruption of the data read into that buffer. Applications must not read from, write to,
reallocate, or free the input buffer that a read operation is using until the read operation
co~pletes.

The ReadFileEx function may fail if there are too many outstanding asynchronous I/O
requests. In the event of such a failure, GetLastError can return
ERROR_INVALlD_USER_BUFFER or ERROR_NOT _ENOUGH_MEMORY.

To cancel all pending asynchronous I/O operations, use the Cancello function. This
function only cancels operations issued by the calling thread for the specified file handle.
I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to read from a floppy drive that does not have a floppy disk, the
system displays a message box prompting the user to retry the operation. To prevent the

574 Volume 1 Microsoft Windows Base Services

system from displaying this message box, call the SetErrorMode function with
SEM_NOOPENFILEERRORBOX.

An application uses the MsgWaitForMultipleObjectsEx, WaitForSingleObjectEx,
WaitForMultipleObjectsEx, and SleepEx functions to enter an alertable wait state. For
more information about alertable waits and overlapped input/output, refer to those
functions' reference and Synchronization.

Windows 95/98: On this platform, neither ReadFileEx nor WriteFileEx can be used by
the comm ports to communicate. However, you can use ReadFile and WriteFile to
perform asynchronous communication.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, Cancello, CreateFile, FilelOCompletionRoutine,
MsgWaitForMultipleObjectsEx, OVERLAPPED, ReadFile, SetErrorMode, SleepEx,
WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFileEx

Read FileScatter
The ReadFileScatter function reads data from a file and stores the data into a set of
buffers.

The ReadFileScatter function starts reading data from the file at a position specified by
an OVERLAPPED structure.

The ReadFileScatter function operates asynchronously.

Parameters
hFile

[in] Handle to the file to be read.

Chapter 9 File VO 575

This file handle must have been created using GENERIC_READ to specify read
access to the file, FILE_FLAG_OVERLAPPED to specify asynchronous 110, and
FILE_FLAG_NO_BUFFERING to specify non-cached 110.

aSegmentArray
[in] Pointer to an array of FILE_SEGMENT _ELEMENT pointers to buffers. The
function stores the data it reads from the file into this set of buffers.

Each buffer should be the size of a system memory page. Each buffer should be
aligned on a system memory page size boundary.

A FILE_SEGMENT _ELEMENT pOinter is a 64-bit value. The ReadFileScatter
function uses all 64 bits. Because the operating systems do not currently support
64-bit memory addressing, you must explicitly set the upper 32 bits of each
FILE_SEGMENT _ELEMENT pOinter. This is best done with a cast to _ptr64. For
compilers where _ptr64 is not available, setting the upper 32 bits of the pOinter to
zero is a less elegant workaround.

The function stores the data into the buffers in a sequential manner: it stores data into
the first buffer, then into the second buffer, then into the next, filling each buffer, until
there is no more data or there are no more buffers.

The final element of the array should be a 64-bit NULL pOinter.

nNumbenJfBytesToRead
[in] Specifies the number of bytes to read from the file.

IpReserved
[in] This parameter is reserved for future use. You must set it to NULL.

IpOver/apped
[in] Pointer to an OVERLAPPED data structure.

The ReadFileScatter function requires a valid OVERLAPPED structure. The
IpOverlapped parameter cannot be NULL.

The ReadFileScatter function starts reading data from the file at a position specified
by the Offset and OffsetHigh members of the OVERLAPPED structure.

The ReadFileScatter function may return before the read operation has completed. In
that case, the ReadFileScatter function returns the value zero, and the GetLastError
function returns the value ERROR_10_PENDING. This asynchronous operation of
ReadFileScatter lets the calling process continue while the read operation completes.
You can call the GetOverlappedResult, HasOverlappedloCompleted, or
GetQueuedCompletionStatus function to obtain information about the completion of
the read operation.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call the
GetLastError function.

If the function attempts to read past the end of the file, the function returns zero, and
GetLastError returns ERROR_HANDLE_EOF.

576 Volume 1 Microsoft Windows Base Services

If the function returns before the read operation has completed, the function returns
zero, and GetLastError returns ERROR_10_PENDING.

Windows NT/2000: Requires Windows NT 4.0 SP2 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, CreateFile, GetOverlappedResult,
GetQueuedCompletionStatus, HasOverlappedloCompleted, OVERLAPPED,
ReadFile, ReadFileEx, ReadFileVlm, WriteFileGather

RemoveDirectory
The RemoveDirectory function deletes an existing empty directory.

Parameters
IpPathName

[in] Pointer to a null-terminated string that specifies the path of the directory to be
removed. The path must specify an empty directory, and the calling process must
have delete access to the directory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 9 File 110 577

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, CreateDirectory

ReplaceFile
The ReplaceFile function replaces one file with another file, with the option of creating a
backup copy of the original file. The replacement file assumes the name of the replaced
file and its identity. The operation is atomic; either all data is saved to a file, or the
original file is left unchanged.

Parameters
IpReplacedFileName

[in] Pointer to a null-terminated string that specifies the name of the file that will be
replaced by the IpReplacementFileName file.

This file is opened with the GENERIC_READ, DELETE, and SYNCHRONIZE access
rights. The sharing mode is FILE_SHARE_READ I FILE_SHARED_WRITE I
FILE_SHARE_DELETE.

IpReplacementFileName
[in] Pointer to a null-terminated string that specifies the name of the file that will
replace the IpReplacedFileName file.

The function attemps to open this file with the SYNCHRONIZE, GENERIC_READ,
GENERIC_WRITE, DELETE, and WRITE_DAC access rights. If this fails, the function
attemps to open the file with the SYNCHRONIZE, GENERIC_READ, DELETE, and
WRITE_DAC access rights. No sharing mode is specified.

IpBackupFileName
[in] Pointer to a null-terminated string that specifies the name of the file that will serve
as a backup copy of the IpReplacedFileName file. If this parameter is NULL, no
backup file is created.

578 Volume 1 Microsoft Windows Base Services

dwReplaceFlags
[in] Specifies how the file is to be replaced. This parameter can be one or more of the
following values.

Value Meaning

REPLACEFILE_WRITE_ THROUGH Guarantees that information copied from the
replaced file is flushed to disk before the
function returns.

REPLACEFILE_IGNORE_MERGE_ERRORS Ignores errors that occur while merging
information from the replaced file to the
replacement file.

IpExclude
Reserved for future use.

IpReserved
Reserved for future use.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes that are
specific to this function.

Error Code Meaning

ERROR_UNABLE_ TO_REMOVE_REPLACED The replaced file could not be deleted. The
replaced and replacement files retain their
original file names.

ERROR_UNABLE_ TO_MOVE_REPLACEMENT The replacement file could not be
renamed. If IpBackupFileName was
specified, the replaced and replacement
files retain their original file _names.
Otherwise, the replaced file no longer
exists and the replacement file exists
under its original name.

ERROR_UNABLE_ TO_MOVE_REPLACEMENT _2 The replacement file could not be
renamed. The replacement file still exists
with its original name, but the replaced file
exists with the name specified by
IpBackupFileName.

This error occurs only if IpBackupFileName
is not NULL.

If any other error is returned, such as ERROR_INVALID_PARAMETER, the replaced
and replacement files will retain their original file names.

Chapter 9 File va 579

Remarks
The ReplaceFile function combines several of steps into a single function. An
application can call ReplaceFile instead of calling separate functions to save the data to
a new file, rename the original file using a temporary name, rename the new file to have
the same name as the original file, and delete the original file. Another advantage is that
ReplaceFile not only copies the new file data, but also preserves the following attributes
of the original file:

• creation time

• short file name

• object identifier

• ACLs

• encryption

• compression

• named streams not already in the replacement file

For example, if the replacement file is encrypted, but the replaced file is not encrypted,
the resulting file is not encrypted.

The backup file, replaced file, and replacement file must all reside on the same volume.

To delete or rename a file, you must have either delete permission on the file or delete
child permission in the parent directory. If you set up a directory with all access except
delete and delete child and the ACLs of new files are inherited, then you should be able
to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you
create the file. If you requested delete permission at the time you created the file, you
could delete or rename the file with that handle but not with any other .

. ' ;~" .'

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, CopyFile, CopyFileEx, MoveFile, MoveFileEx,
MoveFileWithProgress

580 Volume 1 Microsoft Windows Base Services

SearchPath
The Search Path function searches for the specified file.

Parameters
IpPath

[in] Pointer to a null-terminated string that specifies the path to be searched for the
file. If this parameter is NULL, the function searches for a matching file in the following
directories in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. Windows 95: The Windows system directory. Use the GetSystemDirectory
function to get the path of this directory.

Windows NT/2000: The 32-bit Windows system directory. Use the
GetSystemDirectory function to get the path of this directory. The name of this
directory is SYSTEM32.

4. Windows NT/2000: The 16-bit Windows system directory. There is no Win32
function that obtains the path of this directory, but it is searched. The name of this
directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of
this directory.

6. The directories that are listed in the PATH environment variable.

IpFileName
[in] Pointer to a null-terminated string that specifies the name of the file to search for.

IpExtension
[in] Pointer to a null-terminated string that specifies an extension to be added to the
file name when searching for the file. The first character of the file name extension
must be a period (.). The extension is added only if the specified file name does not
end with an extension.

If a file name extension is not required or if the file name contains an extension, this
parameter can be NULL.

Chapter 9 File 1/0 581

nBufferLength
[in] Specifies the length, in characters, of the buffer that receives the valid path and
file name.

IpBuffer
[out] Pointer to the buffer that receives the path and file name of the file found.

IpFilePart
[out] Pointer to the variable that receives the address (within IpBuffet) of the last
component of the valid path and file name, which is the address of the character
immediately following the final backs lash (\) in the path.

Return Values
If the function succeeds, the value returned is the length, in characters, of the string
copied to the buffer, not including the terminating null character. If the return value is
greater than nBufferLength, the value returned is the size of the buffer required to hold
the path.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File 110 Overview, File 110 Functions, FindFirstFile, FindNextFile,
GetSystemDirectory, GetWindowsDirectory

SetCurrentDirectory
The SetCurrentDirectory function changes the current directory for the current process.

'~~~1t~~~~~~;,::!=~,~.

582 Volume 1 Microsoft Windows Base Services

Parameters
IpPathName

[in] Pointer to a null-terminated string that specifies the path to the new current
directory. This parameter may be a relative path or a full path. In either case, the full
path of the specified directory is calculated and stored as the current directory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Each process has a single current directory made up of two parts:

• A disk designator that is either a drive letter followed by a colon, or a server name and
share name (\\servername\sharename)

• A directory on the disk designator

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, GetCurrentDirectory

SetEndOfFile
The SetEndOfFile function moves the end-of-file (EOF) position for the specified file to
the current position of the file pointer.

Parameters
hFile

[in] Handle to the file to have its EOF position moved. The file handle must have been
created with GENERIC_WRITE access to the file.

Chapter 9 File I/O 583

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
This function can be used to truncate or extend a file. If the file is extended, the contents
of the file between the old EOF position and the new position are not defined.

If you called CreateFileMapping to create a file-mapping object for hFile, you must first
call UnmapViewOfFile to unmap all views and call CloseHandle to close the file­
mapping object before you can call SetEndOfFile.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

File 110 Overview, File 110 Functions, CloseHandle, CreateFile, CreateFileMapping,
UnmapViewOfFile

SetFileApisToANSI
The SetFileApisToANSI function causes a set of file I/O functions to use the ANSI
character set code page. This function is useful for 8-bitconsole input and output
operations.

j~i,)~iMi~~~I{M·,>~gr;'\;·n:~:&;,t;;·,:Ys;,'i ~:r,::;;;~)p:;~;j'1;~1;;;/,:@;':;,4·;,.; •. ,.· ..

Parameters
This function has no parameters.

Return Values
This function has no return value.

584 Volume 1 Microsoft Windows Base Services

Remarks
The file I/O functions whose code page is set by SetFileApisToANSI are those functions
exported by KERNEL32.DLL that accept or return a file name. SetFileApisToANSI sets
the code page per process, rather than per thread or per computer.

The SetFileApisToANSI function complements the SetFileApisToOEM function, which
causes the same set of file I/O functions to use the OEM character set code page.

The 8-bit console functions use the OEM code page by default. All other functions use
the ANSI code page by default. This means that strings returned by the console
functions may not be processed correctly by other functions, and vice versa. For
example, if the FindFirstFileA function returns a string that contains certain extended
ANSI characters, and the 8-bit console functions are set to use the OEM code page,
then the WriteConsoleA function does not display the string properly.

Use the AreFileApisANSI function to determine which code page the set of file I/O
functions is currently using. Use the SetConsoleCP and SetConsoleOutputCP
functions to set the code page for the 8-bit console functions.

To solve the problem of code page incompatibility, it is best to use Unicode for console
applications. Console applications that use Unicode are much more versatile than those
that use 8-bit console functions. Barring that solution, a console application can call the
SetFileApisToOEM function to cause the set of file I/O functions to use OEM character
set strings rather than ANSI character set strings. Use the SetFileApisToANSI function
to set those functions back to the ANSI code page.

When dealing with command lines, a console application should obtain the command
line in Unicode form and then convert it to OEM form using the relevant character-to­
OEM functions. Note also that the array in the argv parameter of the command-line main
function contains ANSI character set strings in this case.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, AreFileApisANSI, FindFirstFileA,
SetFileApisToOEM, SetConsoleCP, SetConsoleOutputCP, WriteConsoleA

Chapter 9 File 110 585

SetFileApisToOEM
The SetFileApisToOEM function causes a set of file I/O functions to use the OEM
character set code page. This function is useful for 8-bit console input and output
operations.

VOIDSetF116AphToOEM(VOtD):

Parameters
This function has no parameters.

Return Values
This function has no return value.

Remarks
The file I/O functions whose code page is set by SetFileApisToOEM are those functions
exported by KERNEL32.DLL that accept or return a file name. SetFileApisToOEM sets
the code page per process, rather than per thread or per computer.

The SetFileApisToOEM function is complemented by the SetFileApisToANSI function,
which causes the same set of file I/O functions to use the ANSI character set code page.

The 8-bit console functions use the OEM code page by default. All other functions use
the ANSI code page by default. This means that strings returned by the console
functions may not be processed correctly by other functions, and vice versa. For
example, if the FindFirstFileA function returns a string that contains certain extended
ANSI characters, and the 8-bit console functions are set to use the OEM code page,
then the WriteConsoleA function will not display the string properly.

Use the AreFileApisANSI function to determine which code page the set of file I/O
functions is currently using. Use the SetConsoleCP and SetConsoleOutputCP
functions to set the code page for the 8-bit console functions.

To solve the problem of code page incompatibility, it is best to use Unicode for console
applications. Console applications that use Unicode are much more versatile than those
that use 8-bit console functions. Barring that solution, a console application can call the
SetFileApisToOEM function to cause the set of file I/O functions to use OEM character
set strings rather than ANSI character set strings. Use the SetFileApisToANSI function
to set those functions back to the ANSI code page.

When dealing with command lines, a console application should obtain the command
line in Unicode form and then convert it to OEM form using the relevant character-to­
OEM functions. Note also that the array in the argv parameter of the command-line main
function contains ANSI character set strings in this case.

586 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, AreFileApisANSI, FindFirstFileA,
SetConsoleCP, SetConsoleCP, SetConsoleOutputCP, SetFileApisToANSI,
WriteConsoleA

SetFi leAttri butes
The SetFileAttributes function sets a file's attributes.

Parameters
IpFileName

[in] Pointer to a string that specifies the name of the file whose attributes are to be set.

Windows NT/2000: There is a default string size limit for paths of MAX_PATH
characters. This limit is related to how the SetFileAttributes function parses paths.
An application can transcend this limit and send in paths longer than MAX_PATH
characters by calling the wide (W) version of SetFileAttributes and prepending \\?'I'
to the path. However, each component in the path cannot be more than MAX_PATH
characters long. The "\\?V' tells the function to turn off path parsing; it lets paths longer
than MAX_PATH be used with SetFileAttributesW. However, each component in the
path cannot be more than MAX_PATH characters long. This also works with UNC
names. The "\\?'I' is ignored as part of the path. For example, "\\?\C:\myworld\private"
is seen as "C:\myworld\private", and ',\\?\UNC\wow\hotstuff\coolapps" is seen as
''\ \wow\hotstuff\coolapps".

Windows 95: This string must not exceed MAX_PATH characters.

dwFileAttributes
[in] Specifies the file attributes to set for the file. This parameter can be one or more of
the following values. However, all other values override FILE_ATTRIBUTE_NORMAL.

Attribute

Chapter 9 File I/O 587

Meaning

The file is an archive file. Applications use
this attribute to mark files for backup or
removal.

The file is hidden. It is not included in an
ordinary directory listing.

The file has no other attributes set. This
attribute is valid only if used alone.

The file will not be indexed by the content
indexing service.

FILE_ATTRIBUTE_OFFLINE The data of the file is not immediately
available. This attribute indicates that the file
data has been physically moved to offline
storage. This attribute is used by Remote
Storage, the hierarchical storage
management software in Windows 2000.
Applications should not arbitrarily change this
attribute.

Attribute

Return Values

The file is read-only. Applications can read
the file but cannot write to it or delete it.

The file is part of the operating system or is
used exclusively by it.

The file is being used for temporary storage.
File systems attempt to keep all of the data in
memory for quicker access rather than
flushing the data back to mass storage. A
temporary file should be deleted by the
application as soon as it is no longer needed.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The following table describes how to set the attributes that cannot be set using
SetFileAttributes.

How to set

FILE_ATTRIBUTE_COMPRESSED To set a file's compression state, use the
DeviceloControl function with the
FSCTL_SET_COMPRESSION operation.

(continued)

588 Volume 1 Microsoft Windows Base Services

(continued)

Attribute How to set

FILE_ATTRIBUTE_DEVICE Reserved; do not use.
FILE_ATTRIBUTE_DIRECTORY Files cannot be converted into directories. To create a

directory, use the CreateDirectory or
CreateDirectoryEx function.

FILE_ATTRIBUTE_ENCRYPTED To create an encrypted file, use the CreateFile function
with the FILE_ATTRIBUTE_ENCRYPTED attribute. To
convert an existing file into an encrypted file, use the
EncryptFile function.

FILE_ATTRIBUTE_REPARSE_POINT To associate a reparse point with a file, use the
DeviceloControl function with the
FSCTL_SET _REPARSE_POINT operation.

FILE_ATTRIBUTE_SPARSE_FILE To set a file's sparse attribute, use the DeviceloControl
function with the FSCTL_SET _SPARSE operation.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File I/O Overview, File I/O Functions, GetFileAttributes

SetFilePointer
The SetFilePointer function moves the file pointer of an open file.

This function stores the file pOinter in two DWORD values. To more easily work with file
pointers that are larger than a single DWORD value, use the SetFilePointerEx function.

Parameters
hFile

[in] Handle to the file whose file pointer is to be moved. The file handle must have
been created with GENERIC_READ or GENERIC_WRITE access to the file.

Chapter 9 File 1/0 589

IDistance ToMove
[in] Low-order 32 bits of a signed value that specifies the number of bytes to move the
file pOinter. If IpDistanceToMoveHigh is not NULL, IpDistanceToMoveHigh and
IDistanceToMove form a single 64-bit signed value that specifies the distance to
move. If IpDistanceToMoveHigh is NULL, IDistanceToMove is a 32-bit signed value. A
positive value for IDistanceToMove moves the file pointer forward in the file, and a
negative value moves the file pointer backward.

IpDistance ToMoveHigh
[in] Pointer to the high-order 32 bits of the signed 64-bit distance to move. If you do
not need the high-order 32 bits, this pointer may be NULL. When non-NULL, this
parameter also receives the high-order DWORD of the new value of the file pointer.
For more information, see the Remarks section later in this topic.

Windows 95/98: If the pointer IpDistanceToMoveHigh is not NULL, then it must point
to either 0 or -1 , the sign extension of the value of IDistance ToMove. Any other value
will be rejected.

dwMoveMethod
[in] Starting point for the file pointer move. This parameter can be one of the following
values.

Value Meaning

FILE_BEGIN

FILE_CURRENT

FILE_END

Return Values

The starting point is zero or the beginning of the file.

The starting point is the current value of the file pointer.

The starting point is the current end-of-file position.

If the SetFilePointer function succeeds and IpDistanceToMoveHigh is NULL, the return
value is the low-order DWORD of the new file pointer. If IpDistanceToMoveHigh is not
NULL, the function returns the low order DWORD of the new file pointer, and puts the
high-order DWORD of the new file pOinter into the LONG pointed to by that parameter.

If the function fails and IpDistanceToMoveHigh is NULL, the return value
is INVALlD_SET_FILE_POINTER. To get extended error information, call GetLastError.

If the function fails, and IpDistanceToMoveHigh is non-NULL, the return value is
INVALlD_SET_FILE_POINTER. However, because INVALlD_SET_FILE_POINTER is a
valid value for the low-order DWORD of the new file pointer, you must check
GetLastError to determine whether an error occurred. If an error occurred,
GetLastError returns a value other than NO_ERROR. For a code example that
illustrates this point, see the Remarks section later in this topic.

If the new file pointer would have been a negative value, the function fails, the file pointer
is not moved, and the code returned by GetLastError is ERROR_NEGATIVE_SEEK.

590 Volume 1 Microsoft Windows Base Services

Remarks
You cannot use the SetFilePointer function with a handle to a nonseeking device such
as a pipe or a communications device. To determine the file type for hFile, use the
GetFileType function.

To determine the present position of a file pOinter, see Retrieving a File Pointer.

Use caution when setting the file pOinter in a multithreaded application. You must
synchronize access to shared resources. For example, an application whose threads
share a file handle, update the file pointer, and read from the file must protect this
sequence by using a critical section object or mutex object. For more information about
these objects, see Critical Section Objects and Mutex Objects.

If the hFile file handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an
application can move the file pointer only to sector-aligned positions. A sector-aligned
position is a position that is a whole number multiple of the volume's sector size. An
application can obtain a volume's sector size by calling the GetDiskFreeSpace function.
If an application calls SetFilePointer with distance-to-move values that result in a
position that is not sector-aligned and a handle that was opened with
FILE_FLAG_NO_BUFFERING, the function fails, and GetLastError returns
ERROR_INVALlD_PARAMETER.

Note that it is not an error to set the file pOinter to a position beyond the end of the file.
The size of the file does not increase until you call the SetEndOfFile, WriteFile, or
WriteFileEx function. A write operation increases the size of the file to the file pOinter
position plus the size of the buffer written, leaving the intervening bytes uninitialized.

If the return value is INVALID_SET _FILE_POINTER and if IpDistanceToMoveHigh is
non-NULL, an application must call GetLastError to determine whether the function has
succeeded or failed.

The parameter IpDistanceToMoveHigh is used to manipulate huge files. If it is set to
NULL, then IDistanceToMove has a maximum value of 21\31-2, or 2 gigabytes less two.
This is because all file pointer values are signed values. Therefore if there is even a
small chance that the file will grow to that size, you should treat the file as a huge file and
work with 64-bit file pointers. With file compression on NTFS, and sparse files, it is
possible to have files that are large even if the underlying volume is not very large.

If IpDistanceToMoveHigh is not NULL, then IpDistanceToMoveHigh and
IDistanceToMove form a single 64-bit signed value. The IDistanceToMove parameter is
treated as the low-order 32 bits of the value, and IpDistanceToMoveHigh as the upper
32 bits. Thus, IpDistanceToMoveHigh is a sign extension of IDistanceToMove.

To move the file pOinter from zero to 2 gigabytes, IpDistanceToMoveHigh can be either
NULL or a sign extension of IDistanceToMove. To move the pointer more than 2
gigabytes, use IpDistanceToMoveHigh and IDistanceToMove as a single 64-bit quantity.
For example, to move in the range from 2 gigabytes to 4 gigabytes set the contents of
IpDistanceToMoveHigh to zero, or to -1 for a negative sign extension of
IDistanceToMove.

Chapter 9 File 1/0 591

To work with 64-bit file pOinters, you can declare a LONG, treat it as the upper half of the
64-bit file pointer, and pass its address in IpDistanceToMoveHigh. This means you have
to treat two different variables as a logical unit, which is error-prone. The problems can
be ameliorated by using the LARGE_INTEGER structure to create a 64-bit value and
passing the two 32-bit values by means of the appropriate elements of the union.

It is conceptually simpler and better design to use a function to hide the interface to
SetFilePointer.

Note You can use SetFilePointer to determine the length of a file. To do this, use
FILE_END for dwMoveMethod and seek to location zero. The file offset returned is the
length of the file. However, this practice can have unintended side effects, such as
failure to save the current file pointer so that the program can return to that location. It is
simpler and safer to use GetFileSize instead.

You can also use the SetFilePointer function to query the current file pointer position.
To do this, specify a move method of FILE_CURRENT and a distance of zero.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File I/O Overview, File I/O Functions, GetDiskFreeSpace, GetFileSize, GetFileType,
ReadFile, ReadFileEx, ReadFileVlm, SetEndOfFile, SetFilePointerEx, WriteFile,
WriteFileEx, WriteFileVlm

SetFi lePoi nterEx
The SetFilePointerEx function moves the file pOinter of an open file.

592 Volume 1 Microsoft Windows Base Services

Parameters
hFile

[in] Handle to the file whose file pointer is to be moved. The file handle must have
been created with GENERIC_READ or GENERIC_WRITE access to the file.

liDistanceToMove
[in] Specifies the number of bytes to move the file pointer. A positive value moves the
pointer forward in the file and a negative value moves the file pOinter backward.

IpNewFilePointer
[in] Pointer to a variable that receives the new file pOinter. If this parameter is NULL,
the new file pointer is not returned.

dwMoveMethod
[in] Specifies the starting point for the file pointer move. This parameter can be one of
the following values.

Value Meaning

FILE_CURRENT

FILE_END

Return Values

The starting point is zero or the beginning of the file. If
this flag is specified, then the IiDistanceToMove
parameter is interpreted as an unsigned value.

The start pOint is the current value of the file pointer.

The starting point is the current end-of-file position.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
You cannot use the SetFilePointerEx function with a handle to a nonseeking device
such as a pipe or a communications device. To determine the file type for hFile, use the
GetFileType function.

Use caution when setting the file pointer in a multithreaded application. You must
synchronize access to shared resources. For example, an application whose threads
share a file handle, update the file pointer, and read from the file must protect this
sequence by using a critical section object or a mutex object. For more information about
these objects, see Critical Section Objects and Mutex Objects.

If the hFile handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an
application can move the file pointer only to sector-aligned positions. A sector-aligned
position is a position that is a whole number multiple of the volume's sector size. An
application can obtain a volume's sector size by calling the GetDiskFreeSpaceEx
function. If an application calls SetFilePointerEx with distance-to-move values that
result in a position that is not sector-aligned and a handle that was opened with
FILE_FLAG_NO_BUFFERING, the function fails, and GetLastError returns
ERROR_INVALlD_PARAMETER.

Chapter 9 File 110 593

Note that it is not an error to set the file pOinter to a position beyond the end of the file.
The size of the file does not increase until you call the SetEndOfFile, WriteFile, or
WriteFileEx function. A write operation increases the size of the file to the file pointer
position plus the size of the buffer written, leaving the intervening bytes uninitialized.

You can use SetFilePointerEx to determine the length of a file. To do this, use
FILE_END for dwMoveMethod and seek to location zero. The file offset returned is the
length of the file. However, this practice can have unintended side effects, such as
failure to save the current file pointer so that the program can return to that location. It is
simpler and safer to use the GetFileSizeEx function instead.

You can also use SetFilePointerEx to query the current file pointer position. To do this,
specify a move method of FILE_CURRENT and a distance of zero.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File liD Overview, File liD Functions, GetDiskFreeSpaceEx, GetFileSizeEx,
GetFileType, SetEndOfFile, WriteFile, WriteFileEx

SetVolumeLabel
The SetVolumeLabel function sets the label of a file system volume.

Parameters
IpRootPathName

[in] Pointer to a null-terminated string specifying the root directory of a file system
volume. This is the volume the function will label. A trailing backslash is required. If
this parameter is NULL, the root of the current directory is used.

IpVolumeName
[in] Pointer to a string specifying a name for the volume. If this parameter is NULL, the
function deletes the label from the specified volume.

594 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File liD Overview, File liD Functions, GetVolumelnformation

Ulnt32x32To64
The Ulnt32x32To64 function multiplies two unsigned 32-bit integers, returning an
unsigned 64-bit integer result. The function performs optimally on all Win32 platforms.

Parameters
Multiplier

[in] Specifies the first unsigned 32-bit integer for the multiplication.

Multiplicand
[in] Specifies the second unsigned 32-bit integer for the multiplication.

Return Values
The return value is the unsigned 64-bit integer result of the multiplication.

Remarks
This function is implemented on all platforms by optimal inline code: a single multiply
instruction that returns a 64-bit result.

Please note that the function's return value is a 64-bit value, not a LARGE_INTEGER
structure.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File 110 OveNiew, File 110 Functions, Int32x32To64

UnlockFile

Chapter 9 File 1/0 595

The UnlockFile function unlocks a region in an open file. Unlocking a region enables
other processes to access the region.

For an alternate way to specify the region, use the UnlockFileEx function.

~i~Uli~ciJc 'l~('
~'il~~ "ii .'lfnan,tlletoHJe
f!()rfs:et,(;.J)w~ ; II)ow~!;t.rdeirword ofstlH't;
'~fr:#f!fftrfr1!J,~: ',' ..••. I(~igh-order w?i'dof stal"t

f),fi1.Y1;,e:$.TioIJfI1(Jt:kLQw.I.f,1ow~ol"del" wor'd of length
i, i ,~~~~f1~'fifri~~r~iJ;:'J&.CkHiflh Hhigh~iorderwordOflen!1th

Af;.~\><rf:)~ ;J~>~;'; ~,;2i'<t·~ />: ":(': ",',' ': ,> ,<

Parameters
hFile

[in] Handle to a file that contains a region locked with LockFile. The file handle must
have been created with either GENERIC_READ or GENERIC_WRITE access to the
file.

dwFileOffsetLow
[in] Specifies the low-order word of the starting byte offset in the file where the locked
region begins.

dwFileOffsetHigh
[in] Specifies the high-order word of the starting byte offset in the file where the locked
region begins.

Windows 95198: dwFileOffsetHigh must be 0, the sign extension of the value of
dwFileOffsetLow. Any other value will be rejected.

nNumberOfBytesToUnlockLow
[in] Specifies the low-order word of the length of the byte range to be unlocked.

nNumberOfBytes ToUnlockHigh
[in] Specifies the high-order word of the length of the byte range to be unlocked.

596 Volume 1 Microsoft Windows Base Services

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Unlocking a region of a file releases a lock on the file. The region to unlock must
correspond exactly to an existing locked region. For example, two adjacent regions of a
file cannot be locked separately and then unlocked as a single region that spans both
locked regions.

A process should not be terminated with a portion of a file locked and a file that has
locked regions should not be closed.

This function works on a file allocation table (FAT)-based file system only if the
operating system is running SHARE.EXE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File liD Overview, File liD Functions, Create File , LockFile, UnlockFileEx

UnlockFileEx
The UnlockFileEx function unlocks a previously locked byte range in an open file.

Parameters
hFile

Chapter 9 File I/O 597

[in] Handle to a file that is to have an existing locked region unlocked. The handle
must have been created with either GENERIC_READ or GENERIC_WRITE access to
the file.

dwReserved
Reserved parameter; must be zero.

nNumberOfBytesToUnlockLow
[in] Specifies the low-order part of the length of the byte range to unlock.

nNumberOfBytesToUnlockHigh
[in] Specifies the high-order part of the length of the byte range to unlock.

IpOverlapped
[in] Pointer to an OVERLAPPED structure that the function uses with the unlocking
request. This structure contains the file offset of the beginning of the unlock range.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero or NULL. To get extended error information,
call GetLastError.

Remarks
Unlocking a region of a file releases a previously acquired lock on a file. The region to
unlock must correspond exactly to an existing locked region. Two adjacent regions of a
file cannot be locked separately and then unlocked using a single region that spans both
locked regions.

If a process terminates with a portion of a file locked or closes a file that has outstanding
locks, the behavior is not specified.

. ~ . . , '" . . . '

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

",:> : •

File 110 Overview, File 110 Functions, CreateFile, LockFile, LockFileEx,
OVERLAPPED, UnlockFile

598 Volume 1 Microsoft Windows Base Services

WriteFile
The WriteFile function writes data to a file and is designed for both synchronous and
asynchronous operation. The function starts writing data to the file at the position
indicated by the file pointer. After the write operation has been completed, the file pOinter
is adjusted by the number of bytes actually written, except when the file is opened with
FILE_FLAG_OVERLAPPED. If the file handle was created for overlapped input and
output (110), the application must adjust the position of the file pointer after the write
operation is finished.

This function is designed for both synchronous and asynchronous operation. The
WriteFileEx function is designed solely for asynchronous operation. It lets an application
perform other processing during a file write operation.

Parameters
hFile

[in] Handle to the file to be written to. The file handle must have been created with
GENERIC_WRITE access to the file.

Windows NT/2000: For asynchronous write operations, hFile can be any handle
opened with the FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a
socket handle returned by the socket or accept function.

Windows 95/98: For asynchronous write operations, hFile can be a communications
resource opened with the FILE_FlAG_OVERLAPPED flag by CreateFile, or a socket
handle returned by socket or accept. You cannot perform asynchronous write
operations on mailslots, named pipes, or disk files.

IpBuffer
[in] Pointer to the buffer containing the data to be written to the file.

nNumberOfBytes To Write
[in] Specifies the number of bytes to write to the file.

A value of zero specifies a null write operation. A null write operation does not write
any bytes but does cause the time stamp to change.

Named pipe write operations across a network are limited to 65,535 bytes.

IpNumberOfBytesWritten
[out] Pointer to the variable that receives the number of bytes written. WriteFile sets
this value to zero before doing any work or error checking.

Chapter 9 File I/O 599

Windows NT/2000: If IpOverlapped is NULL, IpNumberOfBytesWritten cannot be
NULL. If IpOverlapped is not NULL, IpNumberOfBytesWritten can be NULL. If this is
an overlapped write operation, you can get the number of bytes written by calling
GetOverlappedResult. If hFile is associated with an I/O completion port, you can get
the number of bytes written by calling GetQueuedCompletionStatus.

Windows 95/98: This parameter cannot be NULL.

IpOverlapped
[in] Pointer to an OVERLAPPED structure. This structure is required if hFile was
opened with FILE_FLAG_OVERLAPPED.

If hFile was opened with FILE_FLAG_OVERLAPPED, the IpOverlapped parameter
must not be NULL. It must point to a valid OVERLAPPED structure. If hFile was
opened with FILE_FLAG_OVERLAPPED and IpOverlapped is NULL, the function can
incorrectly report that the write operation is complete.

If hFile was opened with FILE_FLAG_OVERLAPPED and IpOverlapped is not NULL,
the write operation starts at the offset specified in the OVERLAPPED structure and
WriteFile may return before the write operation has been completed. In this case,
Write File returns FALSE and the Get Last Error function returns
ERROR_IO_PENDING. This allows the calling process to continue processing while
the write operation is being completed. The event specified in the OVERLAPPED
structure is set to the signaled state upon completion of the write operation.

If hFile was not opened with FILE_FLAG_OVERLAPPED and IpOverlapped is NULL,
the write operation starts at the current file position and WriteFile does not return until
the operation has been completed.

Windows NT/2000: If hFile was not opened with FILE_FLAG_OVERLAPPED and
IpOverlapped is not NULL, the write operation starts at the offset specified in the
OVERLAPPED structure and WriteFile does not return until the write operation has
been completed.

Windows 95/98: For operations on files, disks, pipes, or mailslots, this parameter
must be NULL; a pOinter to an OVERLAPPED structure causes the call to fail.
However, Windows 95/98 supports overlapped I/O on serial and parallel ports.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

• File access must begin at byte offsets within the file that are integer multiples of the
volume's sector size. To determine a volume's sector size, call the
GetDiskFreeSpace function.

600 Volume 1 Microsoft Windows Base Services

• File access must be for numbers of bytes that are integer multiples of the volume's
sector size. For example, if the sector size is 512 bytes, an application can request
reads and writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171 bytes.

• Buffer addresses for read and write operations must be sector aligned (aligned on
addresses in memory that are integer multiples of the volume's sector size). One way
to sector align buffers is to use the VirtualAlioc function to allocate the buffers. This
function allocates memory that is aligned on addresses that are integer multiples of
the system's page size. Because both page and volume sector sizes are powers of 2,
memory aligned by multiples of the system's page size is also aligned by multiples
of the volume's sector size.

If part of the file is locked by another process and the write operation overlaps the locked
portion, this function fails.

Accessing the output buffer while a write operation is using the buffer may lead to
corruption of the data written from that buffer. Applications must not read from, write to,
reallocate, or free the output buffer that a write operation is using until the write operation
completes.

Characters can be written to the screen buffer using Write File with a handle to console
output. The exact behavior of the function is determined by the console mode. The data
is written to the current cursor position. The cursor position is updated after the write
operation.

The system interprets zero bytes to write as specifying a null write operation and
Write File does not truncate or extend the file. To truncate or extend a file, use the
SetEndOfFile function.

When writing to a nonblocking, byte-mode pipe handle with insufficient buffer space,
Write File returns TRUE with */pNumberOfBytesWritten < nNumberOfByfes To Write.

When an application uses the WriteFile function to write to a pipe, the write operation
may not finish if the pipe buffer is full. The write operation is completed when a read
operation (using the ReadFile function) makes more buffer space available.

If the anonymous read pipe handle has been closed and WriteFile attempts to write
using the corresponding anonymous write pipe handle, the function returns FALSE and
GetLastError returns ERROR_BROKEN_PIPE.

The Write File function may fail with ERROR_INVALlD_USER_BUFFER
or ERROR_NOT _ENOUGH_MEMORY whenever there are too many outstanding
asynchronous I/O requests.

To cancel all pending asynchronous I/O operations, use the Cancello function. This
function only cancels operations issued by the calling thread for the specified file handle.
I/O operations that are canceled complete with the error
ERROR_ OPERATION_ABORTED.

If you are attempting to write to a floppy drive that does not have a floppy disk, the
system displays a message box prompting the user to retry the operation. To prevent the

Chapter 9 File 1/0 601

system from displaying this message box, call the SetErrorMode function with
SEM_NOOPENFILEERRORBOX.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in
MAPI Development.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kernel32.1ib.

File 110 Overview, File 110 Functions, Cancello, CreateFile, GetLastError,
GetOverlappedResult, GetQueuedCompletionStatus, OVERLAPPED, ReadFile,
SetEndOfFile, SetErrorMode, WriteFileEx

WriteFileEx
The WriteFileEx function writes data to a file. It is designed solely for asynchronous
operation, unlike WriteFile, which is designed for both synchronous and asynchronous
operation.

WriteFileEx reports its completion status asynchronously, calling a specified completion
routine when writing is completed or canceled and the calling thread is in an alertable
wait state.

Parameters
hFile

[in] Handle to the file to be written to. This file handle must have been created with the
FILE_FLAG_OVERLAPPED flag and with GENERIC_WRITE access to the file.

Windows NT/2000: This parameter can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a socket handle
returned by the socket or accept function.

602 Volume 1 Microsoft Windows Base Services

Windows 95/98: This parameter can be a communications resource opened with the
FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned by
socket or accept. You cannot perform asynchronous write operations on mailslots,
named pipes, or disk files.

IpBuffer
[in] Pointer to the buffer containing the data to be written to the file.

This buffer must remain valid for the duration of the write operation. The caller must
not use this buffer until the write operation is completed.

nNumberOfBytes To Write
[in] Specifies the number of bytes to write to the file.

If nNumberOfBtyesToWrite is zero, this function does nothing; in particular, it does not
truncate the file. For additional discussion, see the following Remarks section.

IpOveriapped
[in] Pointer to an OVERLAPPED data structure that supplies data to be used during
the overlapped (asynchronous) write operation.

For files that support byte offsets, you must specify a byte offset at which to start
writing to the file. You specify this offset by setting the Offset and OffsetHigh
members of the OVERLAPPED structure. For files that do not support byte offsets,
Offset and OffsetHigh are ignored.

The Write File Ex function ignores the OVERLAPPED structure's hEvent member. An
application is free to use that member for its own purposes in the context of a
WriteFileEx call. WriteFileEx signals completion of its writing operation by calling, or
queuing a call to, the completion routine pointed to by IpCompletionRoutine, so it does
not need an event handle.

The WriteFileEx function does use the Internal and InternalHigh members of the
OVERLAPPED structure. You should not change the value of these members.

The OVERLAPPED data structure must remain valid for the duration of the write
operation. It should not be a variable that can go out of scope while the write
operation is pending completion.

IpCompletionRoutine
[in] Pointer to a completion routine to be called when the write operation has been
completed and the calling thread is in an alertable wait state. For more information
about this completion routine, see FilelOCompletionRoutine.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

If the WriteFileEx function succeeds, the calling thread has an asynchronous I/O
(input/output) operation pending: the overlapped write operation to the file. When this I/O
operation finishes, and the calling thread is blocked in an alertable wait state, the

Chapter 9 File 1/0 603

operating system calls the function pointed to by IpCompletionRoutine, and the wait
completes with a return code of WAIT _IO_COMPLETION.

If the function succeeds and the file-writing operation finishes, but the calling thread is
not in an alertable wait state, the system queues the call to * IpCompletionRoutine,
holding the call until the calling thread enters an alertable wait state. See
Synchronization for more information about alertable wait states and overlapped
input/output operations.

Remarks
When using WriteFileEx you should check GetLastError even when the function
returns "success" to check for conditions that are "successes" but have some outcome
you might want to know about. For example, a buffer overflow when calling WriteFileEx
will return TRUE, but GetLastError will report the overflow with ERROR_MORE_DATA.
If the function call is successful and there are no warning conditions, GetLastError will
return ERROR_SUCCESS.

An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

• File access must begin at byte offsets within the file that are integer multiples of the
volume's sector size. To determine a volume's sector size, call the
GetDiskFreeSpace function.

• File access must be for numbers of bytes that are integer multiples of the volume's
sector size. For example, if the sector size is 512 bytes, an application can request
reads and writes of 512, 1024, or 2048 bytes, but not of 335,981, or 7171 bytes.

• Buffer addresses for read and write operations must be sector aligned (aligned on
addresses in memory that are integer multiples of the volume's sector size). One way
to sector align buffers is to use the VirtualAlioc function to allocate the buffers. This
function allocates memory that is aligned on addresses that are integer multiples of
the system's page size. Because both page and volume sector sizes are powers of 2,
memory aligned by multiples of the system's page size is also aligned by multiples of
the volume's sector size.

If part of the output file is locked by another process, and the specified write operation
overlaps the locked portion, the WriteFileEx function fails.

Accessing the output buffer while a write operation is using the buffer may lead to
corruption of the data written from that buffer. Applications must not read from, write to,
reallocate, or free the output buffer that a write operation is using until the write operation
completes.

The WriteFileEx function may fail, returning the messages
ERROR_INVALlD_USER_BUFFER or ERROR_NOT _ENOUGH_MEMORY if there are
too many outstanding asynchronous I/O requests.

To cancel all pending asynchronous I/O operations, use the Cancello function. This
function only cancels operations issued by the calling thread for the specified file handle.

604 Volume 1 Microsoft Windows Base Services

I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to write to a floppy drive that does not have a floppy disk, the
system displays a message box prompting the user to retry the operation. To prevent the
system from displaying this message box, call the SetErrorMode function with
SEM_NOOPENFILEERRORBOX.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx,
MsgWaitForMultipleObjectsEx, SignalObjectAndWait, and SleepEx functions to
enter an alertable wait state. Refer to Synchronization for more information about
alertable wait states and overlapped inpuVoutput operations.

Windows 95/98: On this platform, neither WriteFileEx nor ReadFileEx can be used by
the comm ports to communicate. However, you can use WriteFile and ReadFile to
perform asynchronous communication.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, Cancello, CreateFile, FilelOCompletionRoutine,
MsgWaitForMultipleObjectsEx, OVERLAPPED, ReadFileEx, SetEndOfFile,
SetErrorMode, SleepEx, SignalObjectAndWait, WaitForMultipleObjectsEx,
WaitForSingleObjectEx, WriteFile, WriteFileVlm

WriteFileGather
The WriteFileGather function gathers data from a set of buffers and writes the data to a
file.

The WriteFileGather function starts writing data to the file at a position specified by an
OVERLAPPED structure.

The WriteFileGather function operates asynchronously.

;Bi'1~fj~]~ii~~:I;IIII~1Ill~ili~~

Chapter 9 File I/O 605

) l

Parameters
hFile

[in] Handle to the file to write to.

This file handle must have been created using GENERIC_WRITE to specify write
access to the file, FILE_FLAG_OVERLAPPED to specify asynchronous 110, and
FILE_FLAG_NO_BUFFERING to specify non-cached 110.

aSegmentArray
[out] Pointer to an array of FILE_SEGMENT_ELEMENT pointers to buffers. The
function gathers the data it writes to the file from this set of buffers.

Each buffer should be the size of a system memory page. Each buffer should be
aligned on a system memory page size boundary.

A FILE_SEGMENT _ELEMENT pOinter is a 64-bit value. The WriteFileGather
function uses all 64 bits. Because the operating systems do not currently support
64-bit memory addressing, you must explicitly set the upper 32 bits of each
FILE_SEGMENT _ELEMENT pOinter. This is best done with a cast to _ptr64. For
compilers where _ptr64 is not available, setting the upper 32 bits of the pointer to
zero is a less elegant workaround.

The function gathers the data from the buffers in a sequential manner: it writes data to
the file from the first buffer, then from the second buffer, then from the next, until there
is no more data to write.

The final element of the array should be a 64-bit NULL pointer.

nNumberOfBytes To Write
[in] Specifies the number of bytes to write to the file.

If nNumberOfBytesToWrite is zero, the function performs a null write operation. A null
write operation does not write any bytes to the file, but it does cause the file's time
stamp to change.

Note that this behavior differs from file writing functions on the MS-DOS platform,
where a write count of zero bytes truncates a file. WriteFileGather does not truncate
or extend the file. To truncate or extend a file, use the SetEndOfFile function.

IpReserved
This parameter is reserved for future use. You must set it to NULL.

IpOverlapped
[in] Pointer to an OVERLAPPED data structure.

The WriteFileGather function requires a valid OVERLAPPED structure. The
IpOverlapped parameter cannot be NULL.

The WriteFileGather function starts writing data to the file at a position specified by
the Offset and OffsetHigh members of the OVERLAPPED structure.

The WriteFileGather function may return before the write operation has completed. In
that case, the WriteFileGather function returns the value zero, and the GetLastError
function returns the value ERROR_10_PENDING. This asynchronous operation of

606 Volume 1 Microsoft Windows Base Services

WriteFileGather lets the calling process continue while the write operation completes.
You can call the GetOverlappedResult, HasOverlappedloCompleted, or
GetQueuedCompletionStatus function to obtain information about the completion of
the write operation.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call the
GetLastError function.

If the function returns before the write operation has completed, the function returns
zero, and GetLastError returns ERROR_la_PENDING.

Remarks
If part of the file specified by hFile is locked by another process, and the write operation
overlaps the locked portion, the WriteFileGather function fails.

Windows NT/2000: Requires Windows NT 4.0 SP2 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

File 110 Overview, File 110 Functions, CreateFile, GetOverlappedResult,
GetQueuedCompletionStatus, HasOverlappedloCompleted, OVERLAPPED,
ReadFile, Read FileEx, Read FileScatter, ReadFileVlm

File 1/0 Structures

The BY _HANDLE_FILE_INFORMATION structure contains information retrieved by the
GetFilelnformationByHandle function.

,.~e~~~!~!l~l~M~;tlll~~i~'!~lr

Chapter 9 File va 607

DWORD nF11eS1zeH1gh:
DWORD nF11eS1zeLow:
DWORD nNumberOfL1nks;
DWORD nFileIndexHigh;

> DWORD '"'''~rfFflethttii!xtow: .
}8y;"HANDLLFILLINFORMATION, *PBLHANDLLFILLINFORMATION:

Members
dwFileAttributes

Specifies file attributes. This member can be one or more of the following values.

Attribute

FILE_ATTRIBUTE_COMPRESSED

FILE_ATTRIBUTE_DIRECTORY

FILE_ATTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_OFFLINE

FILE_ATTRIBUTE_REPARSE_POINT

FILE_A TTRIBUTE_SPARSE_FILE

FILE_ATTRIBUTE_SYSTEM

Meaning

The file or directory is an archive file. Applications
use this attribute to mark files for backup or removal.

The file or directory is compressed. For a file, this
means that all of the data in the file is compressed.
For a directory, this means that compression is the
default for newly created files and subdirectories.

The handle identifies a directory.

The file or directory is encrypted. For a file, this
means that all data in the file is encrypted. For a
directory, this means that encryption is the default for
newly created files and subdirectories.

The file or directory is hidden. It is not included in an
ordinary directory listing.

The file has no other attributes. This attribute is valid
only if used alone.

The file data is not immediately available. This
attribute indicates that the file data has been
physically moved to offline storage. This attribute is
used by Remote Storage, the hierarchical storage
management software in Windows 2000.
Applications should not arbitrarily change this
attribute.

The file or directory is read-only. Applications can
read the file but cannot write to it or delete it. In the
case of a directory, applications cannot delete it.

The file has an associated reparse point.

The file is a sparse file.

The file or directory is part of the operating system or
is used exclusively by the operating system.

(continued)

608 Volume 1 Microsoft Windows Base Services

(continued)

Attribute Meaning

The file is being used for temporary storage. File
systems attempt to keep all the data in memory for
quicker access, rather than flushing the data back to
mass storage. A temporary file should be deleted by
the application as soon as it is no longer needed.

ftCreationTime
Specifies the time the file was created. If the underlying file system does not support
this time member, ftCreationTime is zero.

ftLastAccessTime
Specifies the time the file was last accessed. If the underlying file system does not
support this time member, ftLastAccessTime is zero.

ftLastWriteTime
Specifies the last time the file was written to.

dwVolumeSerialNumber
Specifies the serial number of the volume that contains the file.

nFileSizeHigh
Specifies the high-order word of the file size.

nFileSizeLow
Specifies the low-order word of the file size.

nNumberOfLinks
Specifies the number of links to this file. For the FAT file system this member is
always 1. For NTFS, it may be more than 1.

nFilelndexHigh
Specifies the high-order word of a unique identifier associated with the file.

nFilelndexLow
Specifies the low-order word of a unique identifier associated with the file. This
identifier and the volume serial number uniquely identify a file. This number may
change when the system is restarted or when the file is opened. After a process
opens a file, the identifier is constant until the file is closed. An application can use
this identifier and the volume serial number to determine whether two handles refer to
the same file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.

File 110 Overview, File 110 Structures, GetFilelnformationByHandle

Chapter 9 File VO 609

FILE_NOTIFY _INFORMATION
The FILE_NOTIFY _INFORMATION structure describes the changes found by the
ReadDirectoryChangesW function.

Members
NextEntryOffset

Specifies the number of bytes that must be skipped to get to the next record. A value
of zero indicates that this is the last record.

Action
Specifies the type of change that occurred.

Value Meaning

FILE_ACTION_ADDED The file was added to the directory.

FILE_ACTION_REMOVED The file was removed from the directory.

FILE_ACTION_MODIFIED The file was modified. This can be a change in the
time stamp or attributes.

FILE_ACTION_RENAMED_OLD_NAME The file was renamed and this is the old name.

FILE_ACTION_RENAMED_NEW_NAME The file was renamed and this is the new name.

FileName Length
Specifies the length, in bytes, of the file name portion of the record. Note that this
length does not include the terminating null character.

FileName
This is a variable-length field that contains the file name relative to the directory
handle. The file name is in the Unicode character format and is not null-terminated.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File 110 Overview, File 110 Structures, ReadDirectoryChangesW

610 Volume 1 Microsoft Windows Base Services

LARGE_INTEGER
The LARGE_INTEGER structure is used to represent a 64-bit signed integer value.

Note Your C compiler may support 64-bit integers natively. For example, Microsoft
Visual C++ supports the _int64 sized integer type. For more information, see the
documentation included with your C compiler.

Members
LowPart

Specifies the low-order 32 bits.

HighPart
Specifies the high-order 32 bits.

QuadPart
Specifies a 64-bit signed integer.

Remarks
The LARGE_INTEGER structure is actually a union. If your compiler has built-in support
for 64-bit integers, use the QuadPart member to store the 64-bit integer. Otherwise, use
the LowPart and HighPart members to store the 64-bit integer.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File 110 Overview, File 110 Structures, LUID, ULARGE_INTEGER

Chapter 9 File I/O 611

OFSTRUCT
The OFSTRUCT structure contains information about a file that the Open File function
opened or attempted to open.

typedef.struct _OFSTRLlCT {
apE. ca,y~es :

'· ... ByTtfFi,~~<mi,?k;.
WOROrrErf'Code;,

. '·W·O.Rrj;R'eS,~ r\(edi::

WORQReserveii2r, .• .'«', .. ,•.....
.. · •.. CHAR S z;~aihNa1l1etoFs~NAXPATl1NA~Elh<

} DFS!RUCT;"'" POFSTRIJGT ;

Members
cBytes

Specifies the length, in bytes, of the structure.

fFixedDisk
Specifies whether the file is on a hard (fixed) disk. This member is nonzero if the file is
on a hard disk.

nErrCode
Specifies the MS-DOS error code if the Open File function failed.

Reserved1
Reserved; do not use.

Reserved2
Reserved; do not use.

szPathName
Specifies the path and file name of the file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

File I/O Overview, File I/O Structures, Open File

ULARGE_INTEGER
The ULARGE_INTEGER structure is used to specify a 64-bit unsigned integer value.

612 Volume 1 Microsoft Windows Base Services

Note Your C compiler may support 64-bit integers natively. For example, Microsoft
Visual C++ supports the _int64 sized integer type. For more information, see the
documentation included with your C compiler.

Members
LowPart

Specifies the low-order 32 bits.

HighPart
Specifies the high-order 32 bits.

QuadPart
Specifies a 64-bit unsigned integer.

Remarks
The ULARGE_INTEGER structure is actually a union. If your compiler has built-in
support for 64-bit integers, use the QuadPart member to store the 64-bit integer.
Otherwise, use the LowPart and HighPart members to store the 64-bit integer.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winnt.h; include windows.h.

File 110 Overview, File 110 Structures, LARGE_INTEGER

The WIN32_FILE_ATTRIBUTE_DATA structure contains attribute information for a file
or directory. The GetFileAttributesEx function uses this structure.

Chapter 9 File I/O 613

FILETIME ftLastAcc.~sT1me:

FILETIME ftLa·stWritef1:me;:
DWORO' 'nFil~siz~Htg~f:r." ' ."

. .~ti~ORO' ., •.. ,:nFi) eSi~ LQtii.c "'. ,~.'.', ',~ . ; ;, .,:, " " :
J' wtN3'2; ... FtL£:ArtrtI~bit:~~tA~'''*t~WfN:31':::F1:LE:.::AhR:r8iitLbAiAi' ,. ."

Members
dwFileAttributes

Specifies FAT-style attribute information for the file or directory.

The following attributes are defined.

Attribute

FILE_ATTRIBUTE_COMPRESSED

FI LE_ATTRIBUTE_DI RECTORY

FILE_A TTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_OFFLINE

FILE_ATTRIBUTE_REPARSE_POINT

FILE_A TTRIBUTE_SPARSE_FILE

FILE_A TTRIBUTE_SYSTEM

Meaning

The file or directory is an archive file. Applications use
this attribute to mark files for backup or removal.

The file or directory is compressed. For a file, this means
that all of the data in the file is compressed. For a
directory, this means that compression is the default for
newly created files and subdirectories.

The handle identifies a directory.

The file or directory is encrypted. For a file, this means
that all data in the file is encrypted. For a directory, this
means that encryption is the default for newly created
files and subdirectories.

The file or directory is hidden. It is not included in an
ordinary directory listing.

The file or directory has no other attributes set. This
attribute is valid only if used alone.

The data of the file is not immediately available. This
attribute indicates that the file data has been physically
moved to offline storage. This attribute is used by
Remote Storage, the hierarchical storage management
software in Windows 2000. Applications should not
arbitrarily change this attribute.

The file or directory is read-only. Applications can read
the file but cannot write to it or delete it. In the case of a
directory, applications cannot delete it.

The file has an associated reparse point.

The file is a sparse file.

The file or directory is part of the operating system or is
used exclusively by the operating system.

(continued)

614 Volume 1 Microsoft Windows Base Services

(continued)

Attribute Meaning

The file is being used for temporary storage. File
systems attempt to keep all of the data in memory for
quicker access rather than flushing the data back to
mass storage. A temporary file should be deleted by the
application as soon as it is no longer needed.

ftCreationTime
A FILETIME structure that specifies when the file or directory was created.

ftLastAccessTime
A FILETIME structure. For a file, the structure specifies when the file was last read
from or written to. For a directory, the structure specifies when the directory was
created. For both files and directories, the specified date will be correct, but the time
of day will always be set to midnight.

ftLastWriteTime
A FILETIME structure. For a file, the structure specifies when the file was last written
to. For a directory, the structure specifies when the directory was created.

nFileSizeHigh
Specifies the high-order DWORD of the file size. This member has no meaning for
directories.

nFileSizeLow
Specifies the low-order DWORD of the file size. This member has no meaning for
directories.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

'. :..

File liD Overview, File liD Structures, GetFileAttributesEx,
GET _FILEEX_INFO_LEVELS

The WIN32_FIND_DATA structure describes a file found by the FindFirstFile,
FindFirstFileEx, or FindNextFile function.

Chapter 9 File 110 615

FILETIME ftLastWr1teT1me:
OWOR,J) " nFileSi ze!i1 gh;
,OW()RO' ", nFfleSize,Low:

,.-', 0 "Q,t,truQtX.,,::>.QwRtt"ryed'0::.,

.' . ,;;~:::~::i~,::~:!::,::1~'~AX:~ATW}: ,>
;, ,,>.tP:~M;;'>~.,~1,,~,e,"7~a~~f,1:1~~alli~E' (,~,451l.,'
J ,1'tt.~2'.4FJJWWlUA~ .:,7tPW IM32..iFrml~OA'T~ ;.' ,.

Members
dwFileAttributes

'"' .. :. ~

Specifies the file attributes of the file found. This member can be one or more of the
following values.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive file or directory.
Applications use this attribute to mark files for backup or
removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For a file, this means
that all of the data in the file is compressed. For a
directory, this means that compression is the default for
newly created files and subdirectories.

FILE_ATTRIBUTE_DIRECTORY The handle identifies a directory.

FILE_ATTRIBUTE_ENCRYPTED The file or directory is encrypted. For a file, this means
that all data in the file is encrypted. For a directory, this
means that encryption is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It is not included in an
ordinary directory listing.

FILE_ATTRIBUTE_NORMAL The file or directory has no other attributes set. This
attribute is valid only if used alone.

FILE_ATTRIBUTE_OFFLINE The file data is not immediately available. This attribute
indicates that the file data has been physically moved to
offline storage. This attribute is used by Remote
Storage, the hierarchical storage management software
in Windows 2000. Applications should not arbitrarily
change this attribute.

FILE_ATTRIBUTE_READONLY The file or directory is read-only. Applications can read
the file but cannot write to it or delete it. In the case of a
directory, applications cannot delete it.

FILE_ATTRIBUTE_REPARSE_POINT The file has an associated reparse point.

FILE_ATTRIBUTE_SPARSE_FILE The file is a sparse file.

(continued)

616 Volume 1 Microsoft Windows Base Services

(continued)

Attribute Meaning

The file or directory is part of the operating system or is
used exclusively by the operating system.

The file is being used for temporary storage. File
systems attempt to keep all of the data in memory for
quicker access, rather than flushing it back to mass
storage. A temporary file should be deleted by the
application as soon as it is no longer needed.

ftCreationTime
Specifies a FILETIME structure containing the time the file was created. FindFirstFile
and FindNextFile report file times in Coordinated Universal Time (UTC) format.
These functions set the FILETIME members to zero if the file system containing the
file does not support this time member. You can use the FileTimeToLocalFileTime
function to convert from UTC to local time, and then use the FileTimeToSystemTime
function to convert the local time to a SYSTEMTIME structure containing individual
members for the month, day, year, weekday, hour, minute, second, and millisecond.

ftLastAccessTime
Specifies a FILETIME structure containing the time that the file was last accessed.
The time is in UTC format; the FILETIME members are zero if the file system does
not support this time member.

ftLastWriteTime
Specifies a FILETIME structure containing the time that the file was last written to.
The time is in UTC format; the FILETIME members are zero if the file system does
not support this time member.

nFileSizeHigh
Specifies the high-order DWORD value of the file size, in bytes. This value is zero
unless the file size is greater than MAXDWORD. The size of the file is equal to
(nFileSizeHigh * (MAXDWORD+ 1)) + nFileSizeLow.

nFileSizeLow
Specifies the low-order DWORD value of the file size, in bytes.

dwReservedO
If the dwFileAttributes member includes the FILE_ATIRIBUTE_REPARSE_POINT
attribute, this member specifies the reparse tag. Otherwise, this value is undefined
and should not be used.

dwReserved1
Reserved for future use.

cFileName
A null-terminated string that is the name of the file.

cAlternateFileName
A null-terminated string that is an alternative name for the file. This name is in the
classic 8.3 (filename.ext) file name format.

Chapter 9 File VO 617

Remarks
If a file has a long file name, the complete name appears in the cFileName field, and the
8.3 format truncated version of the name appears in the cAlternateFileName field.
Otherwise, cAlternateFileName is empty. As an alternative, you can use the
GetShortPathName function to find the 8.3 format version of a file name.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Unicode: Declared as Unicode and ANSI structures .

.. ;' :' '.

File liD OveNiew, File liD Structures, FINDEX_INFO_LEVELS FindFirstFile,
FindFirstFileEx, FlndNextFile, FILETIME, FileTimeToLocalFileTime,
FileTimeToSystemTime, GetShortPathName

File 1/0 Enumeration Types

The FINDEX_INFO_LEVELS enumeration type defines values that are used with the
FindFirstFileEx function to specify the information level of the returned data.

Enumerator Value

FindExlnfoStandard

Meaning

The FindFirstFileEx function obtains a standard set
of attribute information. The data is returned in a
WIN32_FIND_DATA structure.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

618 Volume 1 Microsoft Windows Base Services

File 110 Overview, File 110 Enumeration Types, FindFirstFileEx, WIN32_FIND_DATA

The FINDEX_SEARCH_OPS enumeration type defines values that are used with the
FindFirstFileEx function to specify the type of filtering to perform.

Enumerator Value

FindExSearchNameMatch

FindExSearchLimitToDevices

FindExSearchLimitToDirectories

Meaning

Search for a file that matches the specified file
name. Note that IpSearchFilter parameter of
FindFirstFileEx must be NULL when this search
operation is used.

This filtering type is not available.

For information on enumerating devices, see
Device Interfaces.

This is an advisory flag.

If the file system supports directory filtering, the
function searches for a ''file'' that matches the
specified file name and that is a directory.

If the file system does not support directory
filtering, this flag is Silently ignored.

The IpSearchFilter parameter of FindFirstFileEx
must be NULL when this search operation is used.

If you want directory filtering, use this flag on all file
systems, but be sure to examine the file attribute
data stored into the * IpFindFileData parameter of
FindFirstFileEx to determine whether the function
has indeed returned a handle to a directory.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

Chapter 9 File I/O 619

File 110 Overview, File 110 Enumeration Types, FindFirstFileEx

The GET _FILEEX_INFO_LEVELS enumeration type defines values that are used with
the GetFileAttributesEx function to specify the type of attribute information to obtain.

Enumerator Value

GetFileExlnfoStandard

Meaning

The GetFileAttributesEx function obtains a standard set
of attribute information. The data is returned in a
WIN32_FILE_A TTRIBUTE_DATA structure.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.

File 110 Overview, File 110 Enumeration Types, GetFileAttributesEx,
WIN32_FILE_A TTRIBUTE_DATA

621

CHAPTER 10

File Systems

Win32-based applications rely on file systems to store and retrieve information on mass
storage devices. File systems provide the underlying support that applications need to
create and access files and directories on the individual volumes associated with the
devices.

Each file system consists of one or more drivers and supporting dynamic-link libraries
that define the data formats and features of the file system. These determine the
conventions used for file names, the level of security and recoverability available, and
the general performance of input and output (I/O) operations.

About Fi Ie Systems
Depending on the configuration of a computer, a Win32-based application may have
access to volumes managed by any of the following file systems: NTFS, FAT, or
protected-mode FAT. Because the different volumes your application connects to can be
managed by different file systems, it is important to understand the differences between
file systems and to prepare your application to work effectively with all file systems.

Before you access files and directories on a given volume, you should determine the
capabilities of the file system by using the GetVolumelnformation function. This
function returns values that you can use to adapt your application to work effectively with
the file system.

In general, you should avoid using static buffers for file names and paths. Instead, use
the values returned by GetVolumelnformation to allocate buffers as you need them. If
you must use static buffers, reserve 256 characters for file names and 260 characters for
paths.

Shared File System Features
This section describes features common to both the NTFS and File Allocation Table
(FAT) file systems: opportunistic locks.

Opportunistic Locks
An opportunistic lock (also called an oplock) is a lock placed by a client on a file residing
on a server. A client places an opportunistic lock so it can cache data locally, thus
reducing network traffic and improving apparent response time. Opportunistic locks are
used by network redirectors on clients and by servers.

622 Volume 1 Microsoft Windows Base Services

Opportunistic locks coordinate data caching and coherency between clients and servers
and among multiple clients. Data that is coherent is data that is the same across the
network. In other words, if data is coherent, data on the server and all the clients is
synchronized.

Opportunistic locks are not commands by the client to the server. They are requests
from the client to the server. From the point of view of the client, they are opportunistic.
In other words, the server grants such locks whenever other factors make the locks
possible.

Opportunistic locks and the associated operations implemented in the Microsoft
Windows 2000 operating system are a superset of the opportunistic lock portion of the
Common Internet File System (CIFS) protocol, an Internet Draft. The CIFS protocol is an
enhanced version of the Server Message Block (SMB) protocol. For more information on
the CIFS protocol, see Common Internet File System Protocol in the Networking
Services section of the Platform Software Development Kit (SDK).

Note that the CIFS Internet Draft explicitly provides that a CIFS implementation may
implement opportunistic locks by refusing to grant them.

For additional information on opportunistic locks, see the CIFS Internet Draft discussion
on the topic. To learn the current status of any Internet Draft, check the 1 id-abstracts.txt
listing contained in the Internet Drafts shadow directories on ftp.is.co.za (Africa),
nic.nordu.net (Europe), munnarLoz.au (Pacific Rim), dS.internic.net (U.S. East Coast), or
ftp.isLedu (U.S. West Coast). The file name for the current CIFS Internet Draft is in the
format draft-Ieach-cifs *.txt, where * stands for specific draft information.

Any discrepancies between this discussion and the current CIFS Internet Draft should be
resolved in favor of the Internet Draft.

Alternatives to Opportunistic Lock Operations
The following operations are of very limited use to Win32-based applications. Probably
the only practical use for these operations at the Win32 level is to test a network
redirector or a server opportunistic lock handler.

Typically, file systems implement support for opportunistic locks. Applications generally
leave opportunistic lock management to the file system drivers. Anyone implementing a
file system for Windows 2000 should use the Installable File System (IFS) Kit for
Windows 2000.

Anyone developing a device driver other than an installable file system should use the
Windows 2000 Driver Development Kit (DDK).

Local Caching
Local caching of data is a technique used to speed network access to data files. It simply
means caching data when possible on clients rather than on servers.

Local caching of data to be written allows multiple write operations on the same region of
a file to be combined into one write operation across the network. Local caching reduces

Chapter 10 File Systems 623

network traffic because the data is written once. Such caching improves the apparent
response time of applications because the applications do not wait for the data to be
sent across the network to the server.

Local caching of data to be read can appear to speed things up by means of reading
ahead. A simple example is an application accessing data sequentially, such as a
compiler's preprocessor. In such cases, the network layer of the operating system reads
data across the network before the application requests the data. Ideally, the network
delivers the data before the application requests it from the file system, resulting in near­
instantaneous response. In practice, this rarely happens, but often reading ahead
speeds applications by anticipating the next request.

Local caching can also help reduce network traffic by reading a portion of a file across
the network once and then keeping it in the local cache. Subsequent read operations on
that portion by the application read from the local cache.

One type of application that can benefit from local caching is batch files. Command
processors such as the Command.com command processor in Microsoft Windows 95
read and execute a batch file one line at a time. For each line, the command processor
opens the file, searches to the beginning of the line, reads as much as it needs, closes
the file, then executes the line. Each line results in a lot of network traffic. Network traffic
can be reduced considerably by caching the entire batch file on a client.

Local caching also helps with another problem associated with networks, especially
networks that perform work over modems and other thin pipes: slow response time.
Users do not want to wait while data is retrieved over the network, modified, and then
written back. With reading ahead and write caching, it often appears that these functions
operate much faster than they actually do.

A hazard of local caching is that written data only has as much integrity as the client
itself for as long as the data is cached on the client. With modern operating systems and
hardware support such as uninterruptible power supplies, the risk of losing locally
cached data is reduced. But the risk still exists, and you should consider both the trade­
off between data integrity and apparent response speed and the trade-off between data
integrity and reduced network traffic.

If written data is cached on the client, the data must be flushed to the server as soon as
possible.

Data Coherency
Data that is coherent is data that is the same across the network. In other words, if data
is coherent, data on the server and all the clients is synchronized. One type of software
system that provides data coherency is a revision control system (RCS). Such a system
is usually fairly simple, with only one user allowed to modify a specified file at a time.
Others can read the file but cannot change it.

The user who can change a file is said to have checked it out. The user then checks in
the modified file so that others may see the changes. Only after the user has checked a
file back in can another user check it out.

624 Volume 1 Microsoft Windows Base Services

An RCS requires the active intervention of users to operate in a useful manner. A file
system that operates across a network should handle the problem automatically.

Providing local caching of coherent data is fairly simple when you have one thread on
one client accessing a file across the network at a time. However, in most situations
many different threads on one or more computers may be reading the same file. This
situation is still fairly straightforward. Because the data in the file is static, each client
computer can have its own local copy with no implications for data coherency.

A more common situation is one thread modifying the file, and a lot of other threads
reading it. The moment a write operation occurs, all of the local caches of that file are
obsolete. The server must notify each client to abandon its cache. Any subsequent read
operations for the file must be performed across the network.

In another common situation, multiple threads on one or more network clients might try
to write to the same file. This situation is similar to a one in which several RCS users all
want to make changes to the same file. Each user in sequence must check out the file,
make changes, and then check the file back in. Similarly, in a local caching scheme the
server must hand off the privilege of writing to a file to one client thread at a time.

Typical Use
The typical way to use opportunistic locks is first to open a file with permissions and flags
appropriate to the application opening the file. All files for which opportunistic locks will
be requested must be opened for overlapped (asynchronous) operation. Once the files
are opened for overlapped operation, use the DeviceloControl function with the
appropriate operation to request an opportunistic lock. For a list of the opportunistic lock
operations, see Opportunistic Lock Operations.

Applications are notified that an opportunistic lock is broken by using the hEvent member
of the OVERLAPPED structure associated with the file. Applications may also use
functions such as GetOverlappedResult and HasOverlappedloCompleted. The
application is responsible for associating the correct file with the broken opportunistic lock.

For more information on notification, see Synchronization.

Server Response to Open Requests on Locked Files
The life of an opportunistic lock includes three distinct time spans. During each, the
server determines by different means its reaction to a request from a client to open a file
locked by another client. In general, you can minimize the impact your application has on
other clients and the impact they have on your application by granting as much sharing
as possible, requesting the minimum access level necessary, and using the least
intrusive opportunistic lock suitable for your application.

First is the period after the server opens a file for a client but before it grants a lock.
During this time, no lock exists on the file, and the server depends on sharing, access
modes, and the type of opportunistic lock you request to determine its reaction to
another request to open the same file. For example, if you open the file in question for
write access, you may inhibit granting opportunistic locks that allow read caching access

Chapter 10 File Systems 625

to other clients. The time span before the server grants a lock is typically in the
millisecond range but may be longer.

Once the opportunistic lock is granted, the server examines the lock to determine server
reaction to an open request on a locked file. Again, how your application opened the file
and the type of lock it holds affects how the server responds. For more information on
how the server responds in each case, see Level 1 Opportunistic Locks, Level 2
Opportunistic Locks, Batch Opportunistic Locks, and Filter Opportunistic Locks.

Finally, there is the span after the server determines that your lock should be broken
(ended) but before your application completes its reaction to the break. Depending on
the type of lock, your application can downgrade the lock to a lower level or to none at
all. Your application can also close the file and the lock. During this time, the server
holds in abeyance any requests from other clients to open the formerly locked file. This
time span may range from milliseconds to tens of seconds. For more information, see
Breaking Opportunistic Locks.

Types of Opportunistic Locks
The opportunistic lock operations work with four types of opportunistic locks: levell,
level 2, batch, and filter. Exclusive opportunistic locks are level 1 , batch, and filter locks.
If a thread has any type of exclusive lock on a file, it cannot also have a level 2 lock on
the same file.

Level 1 Opportunistic Locks
A level 1 opportunistic lock on a file allows a client to read ahead in the file and cache
both read-ahead and write data from the file locally. As long as the client has sole
access to a file, there is no danger to data coherency in providing a level 1 opportunistic
lock.

The client can request a level 1 opportunistic lock after opening a file. If no other client
(or no other thread on the same client) has the file open, the server may grant the
opportunistic lock. The client can then cache read and write data from the file locally. If
another client has opened the file, then the server refuses the opportunistic lock and the
client does no local caching. (The server may refuse the opportunistic lock for other
reasons as well, such as not supporting opportunistic locks.)

When the server opens a file that already has a level 1 opportunistic lock on it, the server
examines the sharing state of the file before it breaks the level 1 opportunistic lock. If the
server breaks the lock after this examination, the time the client with the former lock
spends flushing its write cache is time the client requesting the file must wait. This time
expenditure means that level 1 opportunistic locks should be avoided on files that many
clients open.

However, because the server checks the sharing state before it breaks the lock, in the
case where the server would deny an open request due to a sharing conflict the server
does not break the lock. For example, if you have opened a file, denied sharing for write
operations, and obtained a level 1 lock, the server denies another client's request to

626 Volume 1 Microsoft Windows Base Services

open the file for writing before it even examines your lock on the file. In this instance,
your opportunistic lock is not broken.

For an example of how a level 1 opportunistic lock works, see Level 1 Opportunistic Lock
Example. For more information on breaking opportunistic locks, see Breaking
Opportunistic Locks.

Level 2 Opportunistic Locks
A level 2 opportunistic lock informs a client that there are multiple concurrent clients of a
file and that none has yet modified it. This lock allows the client to perform read
operations and obtain file attributes using cached or read-ahead local information, but
the client must send all other requests (such as for write operations) to the server. Your
application should use the level 2 opportunistic lock when you expect other applications
to write to the file at random or read the file at random or sequentially.

A level 2 opportunistic lock is very similar to a filter opportunistic lock. In most situations,
your application should use the level 2 opportunistic lock. Only use the filter lock if you
do not want open operations for reading to cause sharing-mode violations in the time
span between your application's opening the file and receiving the lock. For more
information, see Filter Opportunistic Locks and Server Response to Open Requests on
Locked Files.

For more information on breaking opportunistic locks, see Breaking Opportunistic Locks.

Batch Opportunistic Locks
A batch opportunistic lock manipulates file openings and closings. For example, in the
execution of a batch file, the batch file may be opened and closed once for each line of
the file. A batch opportunistic lock opens the batch file on the server and keeps it open.
As the command processor "opens" and "closes" the batch file, the network redirector
intercepts the open and close commands. All the server receives are the seek and read
commands. If the client is also reading ahead, the server receives a particular read
request at most one time.

When opening a file that already has a batch opportunistic lock, the server checks the
sharing state of the file after breaking the lock. This check gives the holder of the lock a
chance to complete flushing its cache and to close the file handle. An open operation
attempted during the sharing check does not cause the sharing check to fail if the lock
holder releases the lock.

For an example of how a batch opportunistic lock works, see Batch Opportunistic Lock
Example. For more information on breaking opportunistic locks, see Breaking
Opportunistic Locks.

Filter Opportunistic Locks
A filter opportunistic lock locks a file so that it cannot be opened for either write or delete
access. All clients must be able to share the file. Filter locks allow applications to perform
nonintrusive filtering operations on file data (for example, a compiler opening source
code or a cataloging program).

Chapter 10 File Systems 627

A filter opportunistic lock differs from a level 2 opportunistic lock in that it allows open
operations for reading to occur without sharing-mode violations in the time span between
your application's opening the file and receiving the lock. The filter opportunistic lock is
the best lock to use when it is important to allow other clients reading access. In other
cases, your application should use a level 2 opportunistic lock. A filter opportunistic lock
differs from a batch opportunistic lock in that it does not allow multiple openings and
closings to be handled by the network redirector the way a batch opportunistic lock does.

Your application should request a filter opportunistic lock on a file in three steps:

1. Use the Create File function to open a handle to the file with the DesiredAccess
parameter set to zero, indicating no access, and the dwShareMode parameter set to
the FILE_SHARE_READ flag to allow sharing for reading. The handle obtained at this
point is called the locking handle.

2. Request a lock on this handle with the DeviceloControl operation
FSCTL_REQUEST _FIL TER_ OPLOCK.

3. When the lock is granted, use CreateFile to open the file again with DesiredAccess
set to the GENERIC_READ flag if you want read access, the GENERIC_WRITE flag
if you want write access, or both. Set dwShareMode to the FILE_SHARE_READ flag
to allow others to read the file while you have it open, the FILE_SHARE_DELETE flag
to allow others to mark the file for deletion while you have it open, or both. The handle
obtained at this point is called the read handle.

Use the read handle to read from or write to the contents of the file.

When opening a file that already has a filter opportunistic lock, the server breaks the lock
and then checks the sharing state of the file. This check gives the client that held the
former opportunistic lock a chance to abandon any cached data and acknowledge the
break. An open operation attempted during this sharing check does not cause the
sharing check to fail if the former lock holder releases the lock. The file system holds in
abeyance the open operation until the lock's owner closes both the read handle and then
the locking handle. Once this is done, the other client's open request can proceed.

Breaking Opportunistic Locks
Breaking an opportunistic lock is the process of degrading the lock that one client has on
a file so that another client can open the file, with or without an opportunistic lock. When
the other client requests the open operation, the server delays the open operation and
notifies the client holding the opportunistic lock.

The client holding the lock then takes actions appropriate to the type of lock, for example
abandoning read buffers, closing the file, and so on. Only when the client holding the
opportunistic lock notifies the server that it is done does the server open the file for the
client requesting the open operation. However, when a level 2 lock is broken, the server
reports to the client that it has been broken but does not wait for any acknowledgement,
as there is no cached data to be flushed to the server.

In acknowledging a break of any exclusive lock (filter, level 1 , or batch), the holder of a
broken lock cannot request another exclusive lock. It can degrade an exclusive lock to a

628 Volume 1 Microsoft Windows Base Services

level 2 lock or no lock at all. The holder typically releases the lock and closes the file
when it is about to close the file anyway.

Applications are notified that an opportunistic lock is broken by using the hEvent
member of the OVERLAPPED structure associated with the file on which the lock is
broken. Applications may also use functions such as GetOverlappedResult and
HasOverlappedloCompleted.

Opportunistic Lock Examples
The following examples show data and 5MB message movements as opportunistic locks
are made and broken. Note that clients can cache file attribute data as well as file data.

Level 1 Opportunistic Lock Example
The following diagram shows a network-traffic view of a level 1 opportunistic lock on a
file. The arrows indicate the direction of data movement, if any.

Event Client X Server Client Y

2

3

4

5

6

7

8

9

10

Opens file, requests
level 1 lock ~

Performs read,
write, and other
operations ~

Discards read-
ahead data

Writes data ~

Sends "close" or
"done" message ~

Performs read,
write, and other
operations ~

f- Grants level 1
opportunistic lock

f- Requests to
open file

f- Breaks
opportunistic lock

Okays open
operation ~

f- Performs read,
write, and other
operations

In event 1, client X opens a file and as part of the open operation requests a level 1
opportunistic lock on the file. In event 2, the server grants the level 1 lock because no
other client has the file open. The client proceeds to access the file in the usual manner
in event 3.

Chapter 10 File Systems 629

In event 4, client V attempts to open the file and requests an opportunistic lock. The
server sees that client X has the file open. The server ignores V's request while client X
flushes any write data and abandons its read cache for the file.

The server forces X to clean up by sending to X an 5MB message breaking the
opportunistic lock, event 5. Client X "silently" discards any read-ahead data; in other
words, this process generates no network traffic. In event 7, client X writes any cached
write data to the server. When client X is done writing cached data to the server, client X
sends either a "close" or a "done" message to the server, event 8.

Once the server has been notified that client X is done flushing its write cache to the
server or has closed the file, then the server can open the file for client V, in event 9.
Because the server now has two clients with the same file open, it grants an
opportunistic lock to neither. Both clients proceed to read from the file, and one or
neither writes to the file.

Batch Opportunistic Lock Example
The following diagram shows a network-traffic view of a batch opportunistic lock. The
arrows indicate the direction of data movement, if any.

Event Client X Server Client Y

1 Opens file, requests
batch lock~

2 +- Grants batch
opportunistic lock

3 Reads file ~

4 +- Sends data

5 Closes file

6 Opens file

7 Searches for data

8

9
10

11

Reads data ~

Closes file

+- Sends data

12 +- Breaks opportunistic
lock

13 Closes file ~

14 Okays open operation
~

+- Opens file

15 +- Performs read,
write, and other
operations

630 Volume 1 Microsoft Windows Base Services

In the batch opportunistic lock, client X opens a file, event 1, and the server grants client
X a batch lock in event 2. Client X attempts to read data, event 3, to which the server
responds with data, event 4.

Event 5 shows the batch opportunistic lock at work. The application on Client X closes
the file. However, the network redirector filters out the close operation and does not
transmit a close message, thus performing a "silent" close. The network redirector can
do this because client X has sole ownership of the file. Later on, in event 6, the
application reopens the file. Again, no data flows across the network. As far as the
server is concerned, this client has had the file open since event 2.

Events 7, 8, and 9 show the usual course of network traffic. In event 10, another silent
close occurs.

In event 11, client Y attempts to open the file. The server's view of the file is that client X
has it open, even though the application on client X has closed it. Therefore, the server
sends an a message breaking the opportunistic lock to client X. Client X now sends the
close message across the network, event 13. Event 14 follows as the server opens the
file for client Y. The application on client X has closed the file, so it does no more
transfers to or from the server for that file. Client Y begins data transfers as usual in
event 15.

Between the time client X is granted the lock on the file in event 2 and the final close at
event 13, any file data that the client has cached is valid, in spite of the intervening
application open and close operations. However, after the opportunistic lock is broken,
cached data cannot be considered valid.

Filter Opportunistic Lock Example
The following diagram shows a network-traffic view of a filter opportunistic lock. The
arrows indicate the direction of data movement, if any.

Event Client X Server Client Y

1 Opens file with no
access rights ~

2 +-- Opens the file

3 Requests filter lock ~

4 +-- Grants lock

5 Opens file for reading
~

6 +-- Reopens the file

7 Reads data using the
read handle ~

8 +-- Sends data

9 +-- Sends data

10 +-- Sends data

11

12

13

14

15

Opens the file ---+

Denies filter lock ---+

16 Sends data ---+
17 Reads (cached) data

18 Closes file ---+

Chapter 10 File Systems 631

~ Opens the file

~ Requests filter lock

~ Reads data

19 ~ Closes file

In the filter opportunistic lock, client X opens a file, event 1, and the server responds in
event 2. The client then requests a filter opportunistic lock in event 3, followed by the
server granting the opportunistic lock in event 4. Client X then opens the file again for
reading in event 5, to which the server responds in event 6. The client then attempts to
read data, to which the server responds with data, event 8.

Event 9 shows the filter opportunistic lock at work. The server reads ahead of the client
and sends the data over the network even though the client has not requested it. The
client caches the data. In event 10, the server also anticipates a future request for data
and sends another portion of the file for the client to cache.

In event 11 and 12, another client, Y, opens the file. Client Y also requests a filter
opportunistic lock. In event 14, the server denies it. In event 15, client Y requests data,
which the server sends in event 16. None of this affects client X. At any time, another
client can open this file for read access. No other client affects client X's filter lock.

Event 17 shows client X reading data. However, because the server has already sent
the data and the client has cached it, no traffic crosses the network.

In this example, client X never tries to read all the data in the file, so the read-ahead
indicated by events 9 and lOis "wasted"; that is, the data is never actually used. This is
an acceptable loss because the read-ahead has sped up the application.

In event 18, client X closes the file. The client's network redirector abandons the cached
data. The server closes the file.

Opportunistic Lock Operations
If a Win32 application requests opportunistic locks, all files for which it requests locks
must be opened for overlapped (asynchronous) input and output using the CreateFile
function with the FILE_FLAG_OVERLAPPED flag. Once the files are opened for
overlapped operation, you can use the DeviceloControl function with one of the
operations listed following to work with those files' opportunistic locks.

FSCTL_OPBATCH_ACK_CLOSE_PENDING
FSCTL_OPLOCK_BREAK_ACK_NO_2
FSCTL_OPLOCK_BREAK_ACKNOWLEDGE

632 Volume 1 Microsoft Windows Base Services

FSCTL_OPLOCK_BREAK_NOTIFY
FSCTL_REQUEST_BATCH_OPLOCK
FSCTL_REQUEST _FIL TER_OPLOCK
FSCTL_REQUEST _OPLOCK_LEVEL_1
FSCTL_REQUEST _OPLOCK_LEVEL_2

NTFS File System
Microsoft Windows NTIWindows 2000 provides support for the NTFS file system. This
file system supports object-oriented applications by treating all files as objects with user­
and system-defined attributes. NTFS provides all the capabilities of the FAT file system
without many of its limitations. Accessing files under NTFS is often faster than accessing
similar files under the FAT file system.

NTFS also includes features not present in FAT, such as security, Unicode file names,
automatic creation of MS-DOS aliases, multiple data streams, and unique functionality
specific to the POSIX subsystem. For more information about security, see Access
Control. For more information about Unicode, see Unicode and Character Sets.

NTFS file names can be any practical length (up to 255 characters). There is no
requirement that NTFS file names have extensions; however, many applications still
create and use them. For more information, see File Name Conventions.

The following features are supported on NTFS:

• File System Recovery

• File Compression

• File Encryption

• Disk Quotas

• Sparse Files

• Distributed Link Tracking

• Reparse Points

• Volume Mount Points and Mounting Volumes

File System Recovery
NTFS is a fully recoverable file system. It is designed to restore consistency to a disk
after a CPU failure, system crash, or 110 error. NTFS allows the operating system to
recover without your having to use disk-checking utilities. However, NTFS provides
some disk utilities in case recovery fails or corruption occurs outside the control of the
file system.

Chapter 10 File Systems 633

File Compression
Windows NT 3.51 and later support file compression on an individual file basis for NTFS
volumes.

Compression Attribute
On NTFS volumes, each file and directory has a compression attribute. Other file
systems may also implement a compression attribute for individual files and directories.

You can determine whether a file system supports a compression attribute for files and
directories by calling the GetVolumelnformation function and examining the
FS_FILE_COMPRESSION bit flag.

Use the GetFileAttributes or GetFileAttributesEx function to determine the
compression attribute of a file or directory.

If a file's compression attribute is set, all of the data in the file is compressed. If the
attribute is clear, none of the data in the file is compressed. There is no partially
compressed state. The compression attribute is a simple Boolean indicator of
compression state.

A directory's compression attribute provides a default compression attribute for newly
created files and subdirectories. When you call CreateFile or Create Directory to create
a new file or directory, the new file or directory inherits the compression attribute of its
parent directory.

Compression State
Each file and directory on a volume that supports compression for individual files and
directories has a compression state.

Whereas the compression attribute of a file or directory indicates simply whether the file
or directory is compressed or not compressed, the compression state also specifies the
format of any compressed data.

Use the FSCTL_GET _COMPRESSION DeviceloControl operation to determine the
compression state of a file or directory.

Compression state is encoded as a 16-bit value. A compression state value of
COMPRESSION_FORMAT_NONE indicates that a file is not compressed. A value of
COMPRESSION_FORMAT _DEFAULT indicates that a file is compressed, using the
default compression format. Any other value indicates that a file is compressed, using
the compression format specified by the compression state value.

Use the FSCTL_SET _COMPRESSION DeviceloControl operation to set the
compression state of a file or directory. This operation also sets the compression
attribute of the file or directory.

Setting the compression state of a file to a nonzero value compresses the file, using the
compression format encoded by the compression state value. Setting a file's
compression state to zero decompresses the file. These are synchronous operations.

634 Volume 1 Microsoft Windows Base Services

The file is compressed or decompressed immediately when you set its compression
state.

Setting a directory's compression state does not cause any immediate compression or
decompression. Instead, setting a directory's compression state sets a default
compression state that will be given to all newly created files and subdirectories.

Obtaining the Size of a Compressed File
Use the GetCompressedFileSize function to obtain the compressed size of a file. If the
file is compressed, its compressed size will be less than its uncompressed size. Use the
GetFileSize function to determine the uncompressed size of a file.

File Encryption
Windows 2000 supports the Encrypted File System (EFS), which provides cryptographic
protection of files on NTFS volumes. EFS provides file encryption on an individual file
basis using a public-key system.

Note that EFS encryption and NTFS file compression are mutually exclusive; you cannot
compress an encrypted file. However, encrypted files tend to be compressed already,
due to the nature of cryptographic algorithms. Sparse files may be encrypted.

You can determine whether a file system supports file encryption for files and directories
by calling the GetVolumelnformation function and examining the
FILE_SUPPORTS_ENCRYPTION bit flag. Note that the following items cannot be
encrypted:

• system files
• system directories

• root directories

Handling Encrypted Files and Directories
A programmer or user may mark a directory or file as encrypted. A file so marked is
encrypted by NTFS using the current encryption driver. If the file is later marked as not
encrypted, it is decrypted and left in a plaintext (unsecured) state.

Directories are not themselves encrypted. Rather, by default, in an "encrypted" directory
all new files in the directory are encrypted at creation. A user must specifically change
the status of a new file to decrypted if the user does not want the file to be encrypted. An
encrypted directory is visible. To make a directory inaccessible to other users, use the
standard methods of access control.

To encrypt a file, use the CreateFile function with the FILE_ATTRIBUTE_ENCRYPTED
flag. To encrypt an existing file, use the EncryptFile function. All data streams in the file
are encrypted. If the file is already encrypted, EncryptFile does nothing but return a
nonzero value, which indicates success. If the file is compressed, EncryptFile
decompresses the file before encrypting it.

To decrypt an encrypted file, use the DecryptFile function. If the file is not encrypted,
DecryptFile does nothing but return a nonzero value indicating success.

Chapter 10 File Systems 635

The EncryptionDisable function disables or enables encryption of the indicated
directory and the files in it. It does not affect encryption of subdirectories below the
indicated directory.

To retrieve the encryption status of a file, use the FileEncryptionStatus function.
Alternatively, call the GetFileAttributes function and examine the
FILE_ATTRIBUTE_ENCRYPTED flag in the return value.

Encrypted Files and User Keys
To create a new key for a user, use the SetUserFileEncryptionKey function. To add
user keys to an encrypted file, use the AddUsersToEncryptedFile function. To query
the user keys for an encrypted file, use the QueryUsersOnEncryptedFile function. To
remove user keys from an encrypted file, use the RemoveUsersFromEncryptedFile
function.

Disk Quotas
NTFS version 5.0 supports disk quotas, which allow administrators to control the amount
of data that each user can store on an NTFS volume. Administrators can optionally
configure the system to log an event when users are near their quota, and to deny
further disk space to users who exceed their quota. Administrators can also generate
reports and use the event monitor to track quota issues.

You can determine whether a file system supports disk quotas by calling the
GetVolumelnformation function and examining the FILE_VOLUME_QUOTAS bit flag.

Disk quotas are transparent to the user. When a user asks how much space is free on a
disk, the system reports only the available quota allowance the user has available. If the
user exceeds this allowance, the system returns the same error it would return to
indicate that the disk was full.

To obtain more free disk space after exceeding the quota allowance, the user must do
one of the following:

• Delete some files.

• Have another user claim ownership of some files.

• Have the administrator increase the quota allowance.

Programs that need to retrieve the actual amount of free disk space can call the
GetDiskFreeSpaceEx function and look at the TotalNumberOfFreeBytes parameter.

Disk Quota Limits
The disk space used by each file is charged directly to the user who owns the file. The
owner of a file is identified by the security identifier (SID) in the security information for
the file. The total disk space charged to a user is the sum of the length of all data
streams. In other words, property set streams and resident user data streams affect the
user's quota. Compressing or decompressing files does not affect the disk space

636 Volume 1 Microsoft Windows Base Services

reported for the files. Therefore, quota settings on one volume can be compared to
settings on another volume.

The following are the types of disk quota limits:

• Warning threshold. You can configure the system to generate a system logfile entry
when the disk space charged to the user exceeds this value.

• Hard quota. You can configure the system to generate a system logfile entry when the
disk space charged to the user exceeds this value. You can also configure the system
to deny additional disk space to the user when the disk space charged to the user
exceeds this value.

NTFS automatically creates a user quota entry when a user first writes to the volume.
Entries that are created automatically are assigned the default warning threshold and
hard quota limit values for the volume.

Disk Quota States
The administrator can turn quota enforcement on and off. There are three quota states,
as shown in the following table.

State Description

Quota disabled

Quota tracked

Quota enforced

Quota usage changes are not tracked, but the quota limits are
not removed. In this state, performance is not affected by disk
quotas. This is the default state.

Quota usage changes are tracked, but quota limits are not
enforced. In this state, no quota violation events are generated
and no file operations fail because of disk quota violations.

Quota usage changes are tracked and quota limits are
enforced.

Administering Disk Quotas
The administrator can set quotas for specific users on a volume. The administrator can
also set default quotas for the volume. A new user on the volume receives the default
quota unless the administrator established a quota specifically for that user.

The administrator can query the level of quota tracking, the default quota limits, and the
per-user quota information. The per-user quota information contains the user's hard
quota limit, warning threshold, and the quota usage.

Sparse Files
A very large file without a lot of data is said to contain a sparse data set. Applications
that use sparse data sets include image processors and high-speed databases. In
versions of NTFS prior to version 5.0, the portions of the file that did not contain useful
data occupied valuable disk space.

Chapter 10 File Systems 637

The file compression introduced in NTFS 3.51 is a partial solution to the problem. The
portions of the file that do not contain useful data are set to zero, and file compression
compacts the non-data portions. However, file compression has its own drawbacks.
Access time may increase due to data compression and decompression.

Windows 2000 NTFS introduces another solution, called a sparse file. When the sparse
file facilities are used, the system does not allocate hard drive space to a file except in
regions where it contains something other than zeros. The default data value of a sparse
file is zero.

Sparse File Operations
You can determine whether a file system supports sparse files by calling the
GetVolumelnformation function and examining the
FILE_SUPPORTS_SPARSE_FILES bit flag.

Most applications are not aware of sparse files and will not create sparse files. The fact
that an application is reading a sparse file is transparent to the application. An
application that is aware of sparse-files should determine whether its data set is suitable
to be kept in a sparse file. After that determination is made, the application must
explicitly declare a file as sparse, using the FSCTL_SET _SPARSE DeviceloControl
operation.

After an application has set a file to be sparse, the application can use the
FSCTL_SET_ZERO_DATA DeviceloControl operation to set a region of the file to
zero. In addition, the application can use the FSCTL_QUERY_ALLOCATED_RANGES
DeviceloControl operation to speed searches for nonzero data in the sparse file.

When you perform a write operation (with a function or operation other than
FSCTL_SET_ZERO_DATA) whose data consists of nothing but zeros, zeros will be
written to the disk for the entire length of the write. To zero out a range of the file and
maintain sparseness, use FSCTL_SET_ZERO_DATA.

A sparseness-aware application may also set an existing file to be sparse. If an
application sets an existing file to be sparse, it should then scan the file for regions which
contain zeros, and use FSCTL_SET_ZERO_DATA to reset those regions, thereby
possibly deallocating some physical disk storage. An application upgraded to sparse file
awareness should perform this conversion.

When you perform a read operation from a zeroed-out portion of a sparse file, the
operating system may not read from the hard drive. Instead, the system recognizes that
the portion of the file to be read contains zeros, and it returns a buffer full of zeros
without actually reading from the disk.

As with any other file, the system can write data to or read data from any position in a
sparse file. Nonzero data being written to a previously zeroed portion of the file may
result in allocation of disk space. Zeros being written over nonzero data (only with
FSCTL_SET_ZERO_DATA) may result in a deallocation of disk space.

638 Volume 1 Microsoft Windows Base Services

Note It is up to the application to maintain sparseness by writing zeros with
FSCTL_SET_ZERO_DATA.

Defragmenting tools that handle compressed files on NTFS file systems will correctly
handle sparse files on Windows 2000 NTFS volumes.

Obtaining the Size of a Sparse File
Use the GetCompressedFileSize function to obtain the actual size allocated on disk for
a sparse file. This total does not include the size of the regions which were deallocated
because they were filled with zeroes. Use the GetFileSize function to determine the total
size of a file, including the size of the sparse regions that were deallocated.

Sparse Files and Disk Quota
A sparse file affects user quotas by the nominal size of the file, not the actual allocated
amount of disk space. That is, creating a 50-MB file with all zero bytes consumes 50 MB
of that user's quota. This means that as the user writes data to the sparse file, he need
not worry about exceeding his hard quota limit, because he has already been charged
for the space. System administrators should not count on the size of a sparse file
remaining small. Therefore they should not grant their users hard quota limits that
exceed the physical space available, despite the use of sparse files.

Distributed Link Tracking
Windows 2000 provides the distributed link-tracking service enabling client applications
to track link sources that have been moved. As a result, clients that subscribe to the link­
tracking service can maintain the integrity of their references, and the objects referenced
can be moved transparently.

A link source is an object referenced by a link client. For example, in a Microsoft Word
document that contains an OLE link to a Microsoft Excel worksheet, the Word document
is the link client and the Excel worksheet is the link source.

The distributed link-tracking service tracks link sources for shell shortcuts and OLE links
within NTFS version 5.0 volumes. The link client can mend the broken link with updated
information on the new location of the link source.

Link Tracking Features
Shell shortcuts in Windows 95/98 include heuristic link tracking that uses a tree-search
algorithm to find a likely match for a moved link source. The search algorithm is based on
the last known path of the file as well as file information that includes the creation date,
the file size, and the file name and extension. OLE linking includes the same heuristic link
tracking. Windows NT 4.0 also includes the same heuristic link tracking with some added
improvements in searching name spaces to yield results in some common scenarios. The
improvements include the following steps subject to time limits imposed by the client
application:

Chapter 10 File Systems 639

1. Search four directory levels down from the last directory.

2. Move up one directory and repeat steps 1 and 2 another three times which can yield
results if the object has been moved nearby.

3. Search four levels down from the desktop root which can yield results if the object has
been moved to a location on the same desktop.

4. Search four levels down from the root on each local fixed drive.

5. Repeat steps 1-3 without the four directory limit.

These link-tracking schemes are transparent to the end user. However, they do not
always yield positive results and can be time consuming.

Windows 2000 adds a new distributed link tracking service for NTFS. The distributed
link-tracking service can be used to track links to files. This service is used by shell
shortcuts and by OLE links. See the topic on the ISheliLink interface for more
information on shell shortcuts. See the topic on the IOleLink interface for more
information on OLE links. If a link is made to a file on an NTFS version 5.0 volume and
the file is moved to any other NTFS version 5.0 volume within the same domain, the file
will be found by the tracking service, subject to time considerations. Additionally, if the
file is moved outside the domain or within a workgroup, it will most likely be found.

When a link is created to a file, the target file is considered the link source and the
creator of the link is the link client. For example, if a shell shortcut is created to link to a
text document, the text document is the link source and the shell shortcut is the link
client.

The distributed link-tracking service maintains file links for the following situations
occurring within a domain:

• The link source file is moved from one NTFS version 5.0 volume to another NTFS
version 5.0 volume within the same domain.

• The name of the machine that holds the link source is renamed.

• The network shares on the link source machine are changed.

• The volume holding the link source file is moved to another machine within the same
domain.

The distributed link-tracking service also attempts to maintain links in the preceding
situations even when they do not occur within a domain, i.e., they are cross-domain or
within a workgroup. Links can always be maintained in these situations when the
network share on the link source machine is changed. They can also be maintained
when a link source is moved within a machine. Links can usually be maintained when
the link source is moved to another machine, though this form of tracking is less reliable
overtime.

Link Tracking Components
This section describes how distributed link tracking is implemented.

640 Volume 1 Microsoft Windows Base Services

Link tracking functionality is primarily implemented in the form of two system services.

Tracking Service
The tracking service runs on all machines and manages the link-tracking activities for
that machine. These activities include searching for link sources and processing link
source moves. When a link source is moved, the service passes information to the
Tracking (Server) Service which runs on domain controllers (DCs), and which is
described below.

Tracking (Server) Service
The server portion of the tracking service runs on each domain controller in a domain.
The service accepts notifications of file and volume moves from the tracking service
on a given machine and allows the tracking services to query a link source's current
location.

This server service maintains information in the DC about volumes and files which
have been moved. The information on moves cannot grow above a certain size and it
is automatically removed if it becomes incorrect or stale.

The link tracking services are exposed via the IShellLink and IOleLink interfaces. Thus,
they are used by shell shortcuts. When the ISheIlLink::Resolve method is called and
the referent file cannot be found (for example, when the user activates a shell Shortcut),
the tracking service is called automatically to find the file. Similarly, when the IOleLink
implementation cannot find a file, for example in its BindToSource method, it
automatically calls on the tracking service.

Link Tracking Limitations
The distributed link-tracking services are available only on Windows 2000, and are only
available for link sources on Windows 2000 NTFS volumes. Thus if a link source is moved to
a non-Windows 2000 NTFS volume (for example, to a FAT volume), or if a link source is
moved to a computer running Windows NT 4.0, the tracking information is lost. Additionally,
if a link source is moved even between Windows 2000 NTFS volumes, but the computer
performing the move is running an earlier version of Windows NT or Windows 95/98, the link
tracking information is lost. When the link tracking information is lost, no harm is done to the
link-source file itself, it is simply not trackable by the distributed link-tracking services.

Links to files on removable media are not maintained. Also, the tracking service does not
recognize a new NTFS volume until the system is rebooted. A new volume might
become available because of repartitioning, reformatting a FAT volume to NTFS, or
connecting a new external drive.

Reparse Points
On a Windows 2000 NTFS volume, a file or directory can contain a reparse point, which
is a collection of user-defined data. The format of this data is understood by the
application which stores the data, and a file system filter, which you install to interpret the
data and process the file. When an application sets a reparse point, it stores this data,
plus a reparse tag, which uniquely identifies the data it is storing. When the file system

Chapter 10 File Systems 641

opens a file with a reparse point, it attempts to find the file system filter associated with
the data format identified by the reparse tag. If such a file system filter is found, the filter
processes the file as directed by the reparse data. If no such file system filter is found,
the file open operation fails.

For example, reparse pOints are used to implement NTFS links and the Microsoft
Remote Storage Server (RSS). RSS uses an administrator-defined set of rules to move
infrequently used files to long term storage, such as tape or CD-ROM. It uses reparse
pOints to store information about the file in the file system. This information is stored in a
stub file that contains a reparse point whose data points to the device where the actual
file is now located. The file system filter can use this information to retrieve the file.

Reparse Point Tags
Each reparse point has an identifier tag so that you can efficiently differentiate between
the different types of reparse points, without having to examine the user-defined data in
the reparse point. Windows 2000 has a set of predefined tags and a range of tags
reserved for Microsoft. If you use any of the reserved tags when setting a reparse point,
the operation fails. Tags not included in these ranges are not reserved and are available
for your application.

When you set a reparse point, you must tag the data to be placed in the reparse point.
After the reparse point has been established, a new set operation fails if the tag for the
new data does not match the tag for the existing data. If the tags match, the set
operation overwrites the existing reparse point.

Tag Contents
Reparse tags are stored as ULONG values. The bits define certain attributes, as shown
in the following diagram.

The low 16 bits determine the kind of reparse point. The high 16 bits have 13 bits
reserved for future use and 3 bits that denote specific attributes of the tags and the data
represented by the reparse point. The following table describes these bits.

Bit Description

M

L

N

Microsoft bit. If this bit is set, the tag is owned by Microsoft. All other
tags must use zero for this bit.

High-latency bit. If this bit is set, the operating system is expected to be
slow to retrieve the first byte of data. Your application should display
some indication to the user that the operation is in progress.

Name surrogate bit. If this bit is set, the file represents another named
entity in the system.

642 Volume 1 Microsoft Windows Base Services

A set of macros is defined in the Winnt.h header file to assist in testing tags. The set
includes:

• IsReparseTagHighLatency

• IsReparseTagMicrosoft

• IsReparseTagNameSurrogate

Each macro returns a nonzero value if the associated bit is set.

To ensure uniqueness of tags, Microsoft provides a mechanism to distribute new tags. For
more information, see the Microsoft Installable File System (lFS) kit.

Reparse Point Operations
You can determine whether a file system supports reparse pOints by calling the
GetVolumelnformation function and examining the
FILE_SUPPORTS_REPARSE_POINTS bit flag.

You can set, mOdify, obtain, and remove reparse points by using the DeviceloControl
function. The following table describes the reparse point operations that you can perform
using DeviceloControl.

Operation Description

Allows the calling program to set a new
reparse pOint, or to modify an existing one.

Obtains the information stored in an existing
reparse point.

Removes an existing reparse point.

If you are modifying, getting, or deleting a reparse pOint, you must specify the same
reparse tag in the operation that is contained in the file. Otherwise, the operation will fail
with the error ERROR_REPARSE_ATTRIBUTE_CONFLICT.

To determine whether a file contains a reparse pOint, use the GetFileAttributes
function. If the file has an associated reparse point, the
FILE_ATTRIBUTE_REPARSE_POINT attribute is set.

To overwrite an existing reparse point without already having a handle to the file, call
CreateFile with the FILE_OPEN_REPARSE_POINT flag. This flag allows you to open
the file whether or not the corresponding file system filter is installed and working
correctly.

Chapter 10 File Systems 643

Reparse Points and File Operations
Reparse points enable new behavior that you should be aware of when writing
applications that manipulate files. For example, backup applications should specify
BACKUP _REPARSE_DATA in the WIN32_STREAM_ID structure when backing up files
with reparse pOints. Virus detection applications should search for reparse points that
indicate linked files. Most applications should take special actions for files that have
been moved to long-term storage, if only to notify the user that it may take a while to
retrieve the file.

Reparse Point Restrictions
The following restrictions apply to reparse points:

• Reparse pOints can be established for a directory, but the directory must be empty.
Otherwise, NTFS fails to establish the reparse point. In addition, you cannot create
directories or files in a directory that contains a reparse point.

• Reparse points and extended attributes are mutually exclusive. NTFS cannot create a
reparse point when the file contains extended attributes, and it cannot create
extended attributes on a file that contains a reparse point.

• Reparse point data cannot exceed 16 kilobytes. Setting a reparse point fails if the
amount of data to be placed in the reparse point exceeds this limit.

Volume Mount Points and Mounting Volumes
A volume mount point is a directory on a volume that an application can use to "mount" a
different volume, that is, to set it up for use at the location a user specifies. In other
words, you can use a volume mount point as a gateway to the volume. When a volume
is mounted at a volume mount point, users and applications can refer to the mounted
volume by the path of the volume mount point or a drive letter. For example, with a
volume mount point set the user might refer to drive D as "C:\mnt\Ddrive" as well as "D:".

Using volume mount points, you can unify into one logical file system disparate file
systems such as Windows 2000 NTFS, a 16-bit FAT file system, an ISO-9660 file
system on a CD-ROM drive, and so on. Neither users nor applications need information
about the volume on which a specific file resides. All the information they need to locate
a specified file is a complete path. Volumes can be rearranged, substituted, or
subdivided into many volumes without users or applications needing to change settings.

Your application can designate any directory on a volume other than the root as a
volume mount point. Instead of making the root directory a volume mount pOint, your
application should create a subdirectory and make that a volume mount point.

When a volume is mounted, volume mount points refer to the drive, not the medium in
the drive. Thus, you need not unmount and mount volumes to change removable media.

You can set multiple volume mount points to refer to the same physical drive. For
example, you might have a volume mount point for each of several compact discs, all of
which share one CD-ROM drive. Each point refers to the same physical CD-ROM drive,

644 Volume 1 Microsoft Windows Base Services

and you can access any disc in the drive from any of the volume mount points. The
advantage of setting multiple volume mount points is that the different paths make clear
the difference between different CDs' applications, for example between a word
processor and a game.

To give a brief example of the use of volume mount points, suppose you have a
computer with four volumes on it. You have two partitions on a single hard drive, a CO­
ROM drive, and a removable media drive. In a conventional system, you might refer to
these volumes as C, 0, E, and F, respectively.

To use volume mount pOints, you might build a directory on C: called \mnt:

Below that, you might build directories Odrive, COROM, and removeable:

Then you might mount each volume at its volume mount point, using a hypothetical
command-line utility called Mountvolume:

At this point, you can refer to the root directory of the removeable drive as either F:\ or as
C:\mnt\removeable. You can also refer to files on the mounted volume with a
concatenated path. Thus, you can refer to the file "O:\Program
Files\Windows NT\Accessories\Wordpad.exe" as "C:\Mnt\Odrive\Program
Files\Windows NT\Accessories\Wordpad.exe".

Once the volume mount pOints have been established, they are maintained through
computer restarts automatically.

If a volume fails, paths that cross the failed drive break. Thus, it is best to mount all
volumes to the boot drive (usually drive C). It is a useful mnemonic for system
administrators to use one directory as the volume mount point for all volumes on the
system, but nothing in the volume mount point design requires that you use only one
directory.

A volume mount point is a directory where a volume can be mounted but not necessarily
where a volume currently is mounted.

NTFS volume mount pOints are implemented by using reparse points and are subject to
their restrictions. For more information, see Reparse Points. Volume mount pOints are
supported by Windows 2000 NTFS and higher. It is not necessary to manipulate reparse
pOints in order to use volume mount points; the volume mount point functions handle all
the reparse point details for you.

Chapter 10 File Systems 645

Because volume mount points are directories, you can rename, remove, move, and
otherwise manipulate them, just as you can with directories.

Volume mount points are available only in Windows 2000. Only NTFS volumes can hold
a volume mount point, although any local drive can be mounted on one.

Unique Volume Names
Two factors can make it hard to reliably mount a specific volume at a specified volume
mount point across operating system restarts. One factor is that two different volumes
can have the same label, which makes them indistinguishable except by drive letter. The
other factor is that drive letters do not necessarily remain the same. If a computer's
administrator does not use the Disk Administrator to enforce drive letters, then drive
letters can change as drives are removed from or added to the system.

To solve this problem, the system refers to volumes to be mounted with unique volume
names. These are strings of this form:

"\\?Wolume{GUID}\"

where GUID is a globally unique identifier (GUID) that identifies the volume. The \\?\
turns off path parsing and is ignored as part of the path, as discussed in Path Lengths.
Note the trailing backslash. All volume mount point functions that take a unique volume
name as a parameter require the trailing backslash; all volume mount point functions that
return a unique volume name provide the trailing backslash. You can use CreateFile to
open a volume by referring to its unique volume name, but without a trailing backslash.
When using CreateFile, a unique volume name with a backs lash refers to the root
directory of the volume.

The operating system assigns a unique volume name to a volume when the computer
first encounters it, for example during formatting or installation. The volume mount point
functions use unique volume names to refer to volumes. To learn the unique volume
name of any drive, use the GetVolumeNameForVolumeMountPoint function.

Path Lengths
Path lengths may be a concern when a volume with a deep directory tree is mounted to
another volume. This is because paths are concatenated by mounting. The path of a file
on a mounted volume thus includes the path of the volume mount point. The globally
defined constant MAX_PATH defines the maximum number of characters a path can
have. You can avoid this constraint by doing both of the following:

• Referring to volumes by their unique volume names, which have \\? prepended to the
path.

• Using Unicode so that you use the Unicode (W) versions of file functions, which
support the \\? prefix.

The \\?\ turns off path parsing. By using this form, you can work with paths that are
nearly 32,000 Unicode characters long. However, each component in the path cannot be
more than a file-system-specific value indicated by the function GetVolumelnformation.

646 Volume 1 Microsoft Windows Base Services

You must use full paths with this technique. This technique also works with universal
naming convention (UNC) names such as ''\\OtherComputer\Directory\Filename.ext''.

The \\?\ is ignored as part of the path example, and ''\\?\C:\myworld\private'' is seen as
"C:\myworld\private" .

Mounting a Volume
Mounting a volume is a two-step process. First, call
GetVolumeNameForVolumeMountPoint with the DOS drive letter of the volume you
want to mount. Then, use the returned unique volume name and the directory where you
want to mount the volume in a call to SetVolumeMountPoint. See the example program
mount.c.

Enumerating Volumes
To make a complete list of the volumes on a computer, or to manipulate each volume in
turn, you can enumerate volumes. Within a volume, you can scan for volume mount
pOints or other objects on the volume.

Three functions allow an application to enumerate volumes on a computer:

• FindFirstVolume

• FindNextVolume

• FindVolumeClose

These three functions operate in a manner very similar to the FindFirstFile,
FindNextFile, and FindClose functions.

Begin a search for volumes with FindFirstVolume. If the search is successful, process
the results according to the design of your application. Then use FindNextVolume in a
loop to locate and process each subsequent volume. When the supply of volumes is
exhausted, close the search with FindVolumeClose.

You should not assume any correlation between the order of volumes returned with
these functions and the order of volumes returned by other tools. In particular, do not
assume any correlation between volume order and drive letters as assigned by the BIOS
(if any) or the Disk Administrator.

See Volume Mount Point Examples for an example of how to enumerate the volumes on
a computer.

Scanning Volume Mount Points on a Volume
To enumerate all of the volume mount points on a volume, or to manipulate each in turn,
scan a volume for volume mount pOints. Three functions allow an application to
enumerate the volume mount points on a specified NTFS volume:

• FindFirstVolumeMountPoint

• FindNextVolumeMountPoint

Chapter 10 File Systems 647

• FindVolumeMountPointClose

These three functions operate in a manner very similar to the FindFirstFile,
FindNextFile, and FindClose functions.

To enumerate volume mount points on a volume, first find out if the volume is a
Windows 2000 NTFS volume and thus supports volume mount pOints. To do so, use the
volume name returned by the FindFirstVolume and FindNextVolume functions to call
the GetVolumelnformation function. The names returned include a trailing backslash (\)
to be compatible with the GetDriveType function and related functions. For more
information on the functions used to scan the volumes on a computer, see Enumerating
Volumes.

If the volume is an NTFS volume and supports volume mount points, begin a search for
the volume's volume mount points with FindFirstVolumeMountPoint. If the search is
successful, process the results according to your application's requirements. Then use
FindNextVolumeMountPoint in a loop to locate and process each subsequent volume
mount point. When the supply of volume mount pOints is exhausted, close the process
with FindVolumeMountPointClose.

Volume mount point searches are confined to the specified volume. To search all of the
volume mount points on a computer, use the volume enumerating functions to scan all
the volumes, and search each volume in turn. For more information, see Enumerating
Volumes.

You should not assume any correlation between the order of volume mount pOints
returned by these functions and the order of volume mount points returned by other
tools.

See Volume Mount Point Examples for an example of how to enumerate the mount
pOints on a volume.

Checking Directories for Volume Mount Points
It is useful to determine if a directory is a volume mount point when, for example, you are
using a backup utility or search utility that is constrained to one volume. Such a utility
can reach information on multiple volumes if you mount all volumes to the one the utility
addresses.

To determine if a specified directory is a volume mount point, first call the
GetFileAttributes function and inspect the FILE_ATTRIBUTE_REPARSE_POINT flag
in the return value to see if the directory has an associated reparse point. If it does, use
the FindFirstFile and FindNextFile functions to obtain the reparse tag. To determine if
the reparse point is a volume mount point (and not some other form of reparse point),
test whether the tag value equals the value IO_REPARSE_ TAG_MOUNT _POINT. For
more information, see Reparse Points.

To obtain the target volume of a volume mount pOint, use the function
GetVolumeNameForVolumeMountPoint.

648 Volume 1 Microsoft Windows Base Services

Persistent Assignment of Drive Letters
You can assign a drive letter (for example, x:\) to a local volume using
SetVolumeMountPoint, provided there is no volume already assigned to that drive
letter. If the local volume already has a drive letter then SetVolumeMountPoint will fail.
To handle this, first delete the drive letter using DeleteVolumeMountPoint.

Windows 2000 allows at most one drive letter per volume, so you cannot have C:\ and
F:\ pointing to the same volume.

Caution Deleting an existing drive letter and assigning a new one may break existing
paths, such as those in desktop shortcuts. It may also break the path to the program
making the drive letter changes. With Windows 2000's virtual memory management, this
may break the application, leaving the system in an unstable and possibly unusable
state. It is the program designer's responsibility to avoid such potential catastrophes.

Volume Mount Point Reference
The volume mount point functions can be divided into three groups: general-purpose
functions, functions used to scan for volumes, and functions used to scan a volume for
volume mount points.

General-Purpose Volume Mount Point Functions
Function

De1eteVolumeMountPoint

GetVolumeNameForVolumeMountPoint

GetVolumePathName

SetVolumeMountPoint

Description

Unmounts a volume from the specified
volume mount point.

Returns the unique volume name for a
specified volume mount point or root
directory.

Returns the volume mount point at
which the specified path is mounted.

Mounts the specified volume at the
specified volume mount point.

Volume Mount Point Volume-Scanning Functions
Function

FindFirstVolume

FindNextVolume

FindVolumeClose

Description

Returns the name of a volume on a computer.
FindFirstVolume is used to begin enumerating
the volumes of a computer.

Continues a volume search started by a call to
FindFirstVolume.

Closes a search for volumes.

Chapter 10 File Systems 649

Volume Mount Point Scanning Functions
Function

FindFirstVolumeMountPoint

FindNextVolumeMountPoint

FindVolumeMountPointClose

NTFS Change Journal

Description

Returns the name of a volume mount point on
the specified volume.
FindFirstVolumeMountPoint is used to begin
scanning the volume mount points on a volume.

Continues a volume mount point search started
by a call to FindFirstVolumeMountPoint.

Closes a search for volume mount pOints.

The NTFS file system maintains a log or change journal that records changes to files.
NTFS maintains the change journal in order to recover file system indexing, for example
after a computer or volume failure. The ability to recover indexing means the file system
can avoid the time-consuming process of reindexing the whole volume in such cases.
The change journal software is available only with the Microsoft Windows 2000 operating
system.

The change journal provides support for any service that tracks changes to a volume.
Such services can include indexing packages as well as storage management software.

As files, directories, and other NTFS objects are added, deleted, and modified, NTFS
enters records into the change journal in streams, one for each volume on the computer.
Each record indicates the type of change and the object changed. The offset from the
beginning of the stream for a particular record is called the update sequence number
(USN) for the particular record. New records are appended to the end of the stream.

NTFS may delete old records in order to conserve space. If needed records have been
deleted, the indexing service recovers by reindexing the volume, as it does when no
change journal exists.

The change journal logs only the fact of a change to a file and the reason for the change
(for example, write operations, truncation, lengthening, deletion, and so on). It does not
record enough information to allow reversing the change.

In addition, multiple changes to the same file may result in only one reason flag being
added to the current record. If the same kind of change occurs more than once, NTFS
does not write a new record for the changes after the first. For example, several write
operations with no intervening close and reopen operations result in only one change
record with the reason flag USN_REASON_DATA_OVERWRITE set.

To illustrate how the change journal works, suppose a user accesses a file in the
following fashion:

1. Writes to the file.

2. Sets the time stamp for the file.

650 Volume 1 Microsoft Windows Base Services

3. Writes to the file.

4. Truncates the file.

5. Writes to the file.

6. Closes the file.

In this case, NTFS takes the following actions in the change journal (where I indicates a
bitwise OR operation).

Event

Initial write operation

Setting of file time stamp

Second write operation

File truncation

Third write operation

Close operation

NTFS action

NTFS writes a new USN record with the
USN_REASON_DATA_OVERWRITE reason flag set. For
more information on possible reason flags, see the
USN_RECORD structure topic.

NTFS writes a new USN record with the flag setting
USN_REASON_DATA_OVERWRITE I
USN_REASON_BASIC_INFO_CHANGE.

NTFS does not write a new USN record. Because
USN_REASON_DATA_OVERWRITE is already set for
the existing record, no changes are made to the record. \

NTFS writes a new USN record with the flag setting
USN_REASON_DATA_OVERWRITE I
USN_REASON_BASIC_INFO_CHANGE I
USN_REASON_DATA_ TRUNCATION.

NTFS does not write a new USN record. Because
USN_REASON_DATA_OVERWRITE is already set for
the existing record, no changes are made to the record.

If the user making changes is the only user of the file,
NTFS writes a new USN record with the following flag
setting: USN_REASON_DATA_OVERWRITE I
USN_REASON_BASIC_INFO_CHANGE I
USN_REASON_DAT A_TRUNCATION I
USN_REASON_CLOSE.

The change journal accumulates a series of records between the first opening and last
closing of a file. Each record has a new reason flag set, indicating that a new kind of
change has occurred. The sequence of records gives a partial history of the file. The
final record, created when the file is closed, adds the USN_REASON_CLOSE flag. This
record represents a summary of changes to the file, but unlike the prior records, gives no
indication of the order of the changes.

The next user to access and change the file generates a new USN record with a single
reason flag.

Chapter 10 File Systems 651

Using the Change Journal Identifier
NTFS associates an unsigned 64-bit identifier with each change journal. The journal is
stamped with this identifier when it is created. The file system restamps the journal with
a new identifier where the existing USN records either are or may be unusable.

For example, NTFS restamps a change journal with a new identifier when a volume is
moved from Windows 2000 to Microsoft Windows NT version 4.0 and then back to
Windows 2000. Such a move can happen in a dual-boot environment or when working
with removable media.

To obtain the identifier of the current change journal on a specified volume, use the
FSCTL_QUERY _USN_JOURNAL operation for the DeviceloControl function. To
perform this and all other change journal operations, you must have system
administrator privileges. That is, you must be a member of the Administrators group.

When an administrator deletes and recreates the change journal, for example when the
current USN value approaches the maximum possible USN value, the USN values begin
again from zero. When NTFS stamps a journal with a new identifier rather than
recreating the journal, it does not reset the USN to zero but continues from the current
USN. In either case, all existing USNs are less than any future USNs.

When you need information on a specific set of records, use the DeviceloControl
operation FSCTL_QUERY _USN_JOURNAL to obtain the change journal identifier.
Then use the FSCTL_READ_USN_JOURNAL operation to read the journal records of
interest. NTFS only returns records that are valid for the journal specified by the
identifier.

Your application needs both the records' USNs and the identifier to read the journal. This
requirement provides an integrity check for cases where your application should ignore
the existing records in the file and where records were written in previous instances of
the journal for the same volume.

To obtain the records in which you are interested, you must start at the oldest record
(that is, with the lowest USN) and scan forward until you locate the first record of
interest.

Note In order for a Windows NT 4.0 system to read an NTFS file system in Windows
2000, either you should upgrade the Windows NT 4.0 system to Windows NT 4.0
Service Pack 4 or higher, or install Windows 2000 on the same computer. Installation of
Windows 2000 beta 2 or higher upgrades Windows NT 4.0 to read and write Windows
2000 volumes and upgrades all volumes to Windows 2000 NTFS.

The Windows NT 4.0 drivers for NTFS volumes in Windows 2000 do not maintain the
change journal, and Windows NT 4.0 does not allow access to the change journal.

652 Volume 1 Microsoft Windows Base Services

Creating, Modifying, and Deleting a Change Journal
Administrators can use the Windows 2000 user interface to create, delete, and recreate
change journals at will. An administrator should delete a journal when the current USN
value approaches the maximum possible USN value, as indicated by the MaxUsn
member of the USN_JOURNAL_DATA structure. An administrator might also delete
and recreate a change journal to reclaim disk space. To perform this and all other
nonprogrammatic change journal operations, you must have system administrator
privileges. That is, you must be a member of the Administrators group.

To create or modify a change journal on a specified volume programmatically, use the
FSCTL_CREATE_USN_JOURNAL operation with the function DeviceloControl.

When you create a new change journal or modify an existing one, NTFS sets information
for that change journal from information in the CREATE_USN_JOURNAL_DATA
structure, which FSCTL_CREATE_USN_JOURNAL takes as input.
CREATE_USN_JOURNAL_DATA has the members MaximumSize and
AllocationDelta.

MaximumSize is the target maximum size for the change journal in bytes. The change
journal can grow larger than this value, but at NTFS checkpoints NFTS examines the
journal and trims it when its size exceeds the value of MaximumSize plus the value of
AllocationDelta. (At NTFS checkpoints, the operating system writes records that allow
NTFS to determine what processing is required to recover from a failure.)

AllocationDelta is the number of bytes of disk memory added to the end and removed
from the beginning of the change journal each time memory is allocated or deallocated.
In other words, allocation and deallocation take place in units of this size. An integer
multiple of a cluster size is a reasonable value for this member.

If an administrator modifies an existing change journal to have a larger MaximumSize
value, for example if a volume is being reindexed too often, the change journal simply
receives new entries until it exceeds the new maximum size. If the new maximum size is
smaller than the old one, then at the next NTFS checkpoint, NTFS deletes enough old
entries to truncate the change journal to a size less than the new maximum size.

To delete a change journal, use the FSCTL_DELETE_USN_JOURNAL operation with
DeviceloControl. When you use this operation, the operation walks through all of the
files on the volume and resets the USN for each file to zero. The operation then deletes
the existing change journal. This operation persists across system restarts until it
completes. Any attempt to read, create, or modify the change journal during this process
fails with the error code ERROR_JOURNAL_DELETE_IN_PROGRESS.

You can also use the FSCTL_DELETE_USN_JOURNAL operation to determine if a
deletion started by some other process is in progress. For example, your application,
when it is started, can determine if a deletion is in progress. Because journal deletions
persist across system restarts, services and applications started at system restart should
check for an ongoing deletion.

Chapter 10 File Systems 653

Change journals do not necessarily run automatically at startup. In order to start a
change journal, an administrator may do so explicitly or start another service that
requires a change journal.

Obtaining a Volume Handle for Change Journal Operations
To obtain a handle to a volume for use with change journal operations, pass in the
IpFileName parameter of the CreateFile function a value of the following form:

~ .\. ·:\X~"C'\ '.'''' ...
:\, ,'''''-; .'~. J ," -:,.,

where X is the letter identifying the drive on which the volume appears. The volume must
be an NTFS volume on Windows 2000.

Walking a Buffer of Change Journal Records
The two operations for the DeviceloControl function that return change journal records,
FSCTL_READ_USN_JOURNAL and FSCTL_ENUM_USN_DATA, return almost the
same data. Both return zero or more change journal records, each in a USN_RECORD
structure. Use FSCTL_ENUM_USN_DATA when you want a listing (enumeration) of all
change journal records between two USNs. Use FSCTL_READ_USN_JOURNAL when
you want to be more selective, such as selecting specific reasons for changes or
returning when a file is closed.

USN_RECORD contains the name of the file to which the record in question applies.
The file name varies in length, so USN_RECORD is a variable-length structure. Its first
member, Record Length , is the length of the structure (including the file name) in bytes.
Returned USN_RECORD structures are aligned on 64-bitboundaries.

Both of these operations return only the subset of change journal records between the
boundariE;ls specified. These operations also return the next record number to be
retrieved, so that you can continue reading records from the end boundary forward.

To walk the buffer of change journal records returned by either operation from the first
entry onward, you must round up the length of the buffer to match the alignment of the
USN_RECORD structures.

To simplify matters, when you read records from a change journal declare your input
buffer on a 64-bit boundary. That way, the first record always occurs at the boundary
equal to the value of the DeviceloControl IpOutBuffer parameter plus 8.

The size in bytes of any record specified by a USN_RECORD structure is at most
((MaximumComponentLength - 1) * Width) + Size where MaximumComponentLength
is the maximum length, in characters, of the record's file name, Width is the size of a
wide character, and Size is the size of the structure. To obtain this maximum length, call
the GetVolumelnformation function and examine the value pointed to by the
IpMaximumComponentLength parameter. You subtract one from
MaximumComponentLength to account for the fact that the definition of USN_RECORD
includes one character of the file name.

Thus, in C the largest possible record size is:

654 Volume 1 Microsoft Windows Base Services

When working with the FileName member of USN_RECORD, do not count on the
change journal's file name containing a trailing '\0' delimiter. To determine the length of
the file name, use the FileNameLength member.

Change Journal Operations
The following DeviceloControl function operations work with the NTFS change journal.

FSCTL_CREATE_USN_JOURNAL
FSCTL_DELETE_USN_JOURNAL
FSCTL_ENUM_USN_DATA
FSCTL_MARK_HANDLE
FSCTL_QUERV_USN_JOURNAL
FSCTL_READ_USN_JOURNAL

Change Journal Structures
The following structures hold information relating to the NTFS change journal.

CREATE_USN_JOURNAL_DATA
DELETE_USN_JOURNAL_DATA
MARK_HANDLE_INFO
MFT_ENUM_DATA
READ_USN_JOURNAL_DATA
USN_JOURNAL_DATA
USN_RECORD

FAT File System
The File Allocation Table (FAT) file system organizes data on fixed disks and floppy
disks. The distinguishing feature of the FAT file system is its file name convention. The
file name convention consists of a file name (up to eight characters), a separating period
(.), and a file name extension (up to three characters).

The main advantage of FAT volumes is that they are accessible by MS-DOS, Microsoft
Windows, and OS/2 systems. FAT is also the only file system currently supported on
floppy disks and other removable media.

Valid FAT file names have the following form:

[[drive:]][[directory\ll filename[[. extension]]

The drive parameter must name an existing drive and can be any letter from A through
Z. The drive letter must be followed by a colon (:).

The directory parameter specifies the directory that contains the file's directory entry.
This value must be followed by a backslash (\) to separate it from the file name. If the
specified directory is not in the current directory, directory must include the names of all

Chapter 10 File Systems 655

directories in the file's path, separated by backslashes. The root directory is specified by
using a backslash at the beginning of the name. For example, if the directory ABCD is in
the directory SAMPLE and SAMPLE is in the root directory, the correct directory
specification is \SAMPLE\ABCD. A directory name consists of any combination of up to
eight letters, digits, or the following special characters:

$%'--@O-' !#()

A directory name can also have an extension that is any combination of up to three
letters, digits, or special characters, preceded by a period (.).

The filename and extension parameters specify the file. Filename can be any
combination of up to eight letters, digits, or the special characters previously listed;
extension can be any combination of up to three letters, digits, or special characters, all
preceded by a period. Filename can also include embedded (preceded and followed by
one or more letters, digits, or special characters just noted) spaces. For example, the
string "disk 1" is a valid value for filename.

FAT volumes do not distinguish between uppercase and lowercase letters.

Protected-Mode FAT File System
The protected-mode FAT file system organizes data on fixed and floppy disks.
Protected-mode FAT is compatible with the FAT file system, using file allocation tables
and directory entries to store information about the contents of a disk. Protected-mode
FAT also supports long file names, storing these names and other information such as
the date and time the file was last accessed in the FAT structures.

Protected-mode FAT allows file names of up to 255 characters, including the terminating
null character. This is similar to NTFS, which allows file names of up to 256 characters.

Protected-mode FAT allows paths of up to 260 characters, including the terminating null
character.

File System Reference

File System Functions

AddUsersToEncryptedFile
The AddUsersToEncryptedFile function adds user keys to a specified encrypted file.

I»IO~O. AddUerto~tl,i:;rii>tedfne~,' ",.
LpCWSTR·lpfH€I'IJ!tm~;; .;; ' .. ,' .•..

. PE~CJtYPTiort:cehrF I CA .. rCLt$ipvst¥~:·.
); .. /.' ;• :.

656 Volume 1 Microsoft Windows Base Services

Parameters
IpFileName

[in] Pointer to a nUll-terminated Unicode string that specifies the name of the
encrypted file.

pUsers
[in] Pointer to a ENCRYPTION_CERTIFICATE_LlST structure that contains the list of
new user keys to be added to the file.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a Win32 error code. For a complete list of error
codes, see Error Codes or the Platform SDK header file WinError.h.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.

File Systems Overview, File System Functions, ENCRYPTION_CERTIFICATE_LlST

CreateHard Link
The CreateHardLink function establishes an NTFS hard link between an existing file
and a new file. An NTFS hard link is similar to a POSIX hard link.

Parameters
IpFileName

[in] Pointer to the name of the new directory entry to be created.

IpExistingFileName
[in] Pointer to the name of the existing file to which the new link will pOint.

Chapter 10 File Systems 657

IpSecurityAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security
descriptor for the new file.

If this parameter is NULL, it leaves the file's existing security descriptor unmodified.

If this parameter is not NULL, it modifies the file's security descriptor.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Any directory entry for a file, whether created with CreateFile or CreateHardLink, is a
hard link to the associated file. Additional hard links, created with the CreateHardLink
function, allow you to have multiple directory entries for a file, that is, multiple hard links
to the same file. These may be different names in the same directory, or they may be the
same (or different) names in different directories. However, all hard links to a file must be
on the same volume.

Because hard links are just directory entries for a file, whenever an application modifies
a file through any hard link, all applications using any other hard link to the file see the
changes. Also, all of the directory entries are updated if the file changes. For example, if
the file's size changes, all of the hard links to the file will show the new size.

The security descriptor belongs to the file to which the hard link points. The link itself,
being merely a directory entry, has no security descriptor. Thus, if you change the
security descriptor of any hard link, you're actually changing the underlying file's security
descriptor. All hard links that point to the file will thus allow the newly specified access.
There is no way to give a file different security descriptors on a per-hard-link basis.

Use DeleteFile to delete hard links. You can delete them in any order regardless of the
order in which they were created.

Flags, attributes, access, and sharing as specified in CreateFile operate on a per-file
basis. That is, if you open a file with no sharing allowed, another application cannot
share the file by creating a new hard link to the file.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

658 Volume 1 Microsoft Windows Base Services

File Systems Overview, File System Functions, CreateFile, DeleteFile,
SECURITY _ATTRIBUTES

DecryptFile
The DecryptFile function decrypts an encrypted file or directory.

Parameters
IpFileName

[in] Pointer to a nUll-terminated Unicode string that specifies the name of the file to
decrypt.

The caller must have FILE_READ_DATA, FILE_WRITE_DATA,
FILE_READ_ATTRIBUTES, FILE_WRITE_ATTRIBUTES, and SYNCHRONIZE
access to the file.

dwReserved
Reserved; must be zero.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The DecryptFile function requires exclusive access to the file being decrypted, and will
fail if another process is using the file. If the file is not encrypted, DecryptFile simply
returns a nonzero value, which indicates success.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 10 File Systems 659

File Systems Overview, File System Functions, CreateFile, EncryptFile

Delete Vol umeMountPoi nt
The DeleteVolumeMountPoint function unmounts the volume from the specified
volume mount point.

'""~~~~\~eM~~~~~<ii n1< """
:fpi~~ifJtlfilreM/)RfltiH~tif:·· :(t:~Qlt)rti$"""rilQtj~'t:"~01"t\t"

'':c~ JtL,,,;~~':c, < f ~~;>:o '~:1< ,v~: ~'f' '1>~l: ';', " ~» " .<" '))~"' 0

Parameters
IpszVolumeMountPoint

[in] Pointer to a string that indicates the volume mount point to be unmounted. This
may be a root directory (X:\, in which case the DOS drive letter assignment is
removed) or a directory on a volume (X:\mnt\). A trailing backslash is required.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
It is not an error to attempt to unmount a volume from a volume mount point when there
is no volume actually mounted at that volume mount point.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions,
GetVolumeNameForVolumeMountPoint, GetVolumePathName,
SetVolumeMountPoint

660 Volume 1 Microsoft Windows Base Services

EncryptFile
The EncryptFile function encrypts a file or directory. All data streams in a file are
encrypted. All new files created in an encrypted directory are encrypted.

Parameters
IpFileName

[in] Pointer to a nUll-terminated string that specifies the name of the file or directory to
encrypt.

The caller must have FILE_READ_DATA, FILE_WRITE_DATA,
FILE_READ_ATTRIBUTES, FILE_WRITE_ATTRIBUTES, and SYNCHRONIZE
access to the file.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The EncryptFile function requires exclusive access to the file being encrypted, and will
fail if another process is using the file.

If the file is already encrypted, EncryptFile simply returns a nonzero value, which
indicates success. If the file is compressed, EncryptFile will decompress the file before
encrypting it.

To decrypt an encrypted file, use the DecryptFile function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: UnsUpported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, DecryptFile

Chapter 10 File Systems 661

EncryptionDisable
The EncryptionDisable function disables or enables encryption of the indicated
directory and the files in it. It does not affect encryption of subdirectories below the
indicated directory.

BOOLEncryptiQnD1.${lbleC '. , ..•.. ,<.'

'LPCWSTRD1 rNth. lI,dfr~¢torY'flaine'
BOOL Dfs a tt7 €I ' .. ?ct: 'Iont;p*,Ptl,Q:u: p'rit4~,,;:

, ,,',' "'''' ">s~ ,- '" ,>,

) ;

Parameters
DirPath

0) ,

[in] Pointer to a null-terminated Unicode string that specifies the name of the directory
for which to enable or disable encryption.

Disable
[in] Indicates whether to disable encryption (TRUE) or enable it (FALSE).

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Under normal circumstances, EncryptFile will not encrypt files and directories with the
FILE_ATTRIBUTE_SYSTEM attribute set. It is possible to override the
FILE_ATTRIBUTE_SYSTEM attribute and encrypt files. Also, if a file or directory is
marked with the FILE_ATTRIBUTE_SYSTEM attribute, it will normally be invisible to the
user in directory listings and Windows Explorer directory windows. EncryptionDisable
disables encryption of directories and files. It does not affect the visibility of files with the
FILE_ATTRIBUTE_SYSTEM attribute set.

If TRUE is passed in, EncryptionDisable will write

[Encryption]
Pi sable=l

to the Desktop.ini file in the directory (creating it if necessary). If the section already
exists but Disable is set to 0, it will be set to 1.

Thereafter, EncryptFile will fail on the directory and the files in it, and the code that
GetLastError returns will be FILE_DIR_DISALLOWED. This function does not affect
encryption of subdirectories within the given directory.

The user can also manually add or edit the above lines in the Desktop.ini file and
produce the same effect.

662 Volume 1 Microsoft Windows Base Services

EncryptionDisable affects only FileEncryptionStatus and EncryptFile. Once the
directory is encrypted, any new files and new subdirectories created without the
FILE_ATTRIBUTE_SYSTEM attribute will be encrypted.

If FALSE is passed in, EncryptionDisable will write

and file encryption is permitted on the files in that directory.

If you try to use EncryptionDisable to set the directory to the state it is already in, the
function succeeds but has no effect.

If you try to use EncryptionDisable to disable or enable encryption on a file, the attempt
will fail.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, DecryptFile, EncryptFile,
FileEncryptionStatus, GetFileAttributes

Fi leEncryptionStatus
The FileEncryptionStatus function retrieves the encryption status of the specified file.

Parameters
IpFileName

[in] Pointer to a null-terminated string that specifies the name of the file.

IpStatus
[out] Pointer to a variable that receives the encryption status of the file. This
parameter can be one of the following values:

Value

FI LE_ENCRYPT ABLE
FILE IS ENCRYPTED
FILE_SYSTEM_ATTR

FILE_USER_DISALLOWED
FILE_READ_ONL Y

Return Values

Chapter 10 File Systems 663

Meaning

The file can be encrypted.
The file is encrypted.
The file is a system file. System files cannot
be encrypted.
The file is a root directory. Root directories
cannot be encrypted.
The file is a system directory. System
directories cannot be encrypted.
The encryption status is unknown. The file
may be encrypted.
The file system does not support file
encryption.

Reserved for future use.
The file is a read-only file.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use advapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, EncryptFile

FindFirstVolume
The FindFirstVolume function returns the name of a volume on a computer.
FindFirstVolume is used to begin scanning the volumes of a computer.

»AHOhf;F1ndFir$t~olume(.. .
•. :;LPT$lflt7pszW1um~N8m~; ·'·//:autp·utbuffer .
. . D~~cCh~Uff~r:L$.!1gth . . l{size'of output buffElr .
.)~ ..

664 Volume 1 Microsoft Windows Base Services

Parameters
IpszVolumeName

[out] Pointer to a buffer that receives the unique volume name of the first volume
found.

cchBufferLength
[in] Length, in characters, of the buffer to receive the name.

Return Values
If the function succeeds, the return value is a search handle used in a subsequent call to
the FindNextVolume and FindVolumeClose functions.

If the function fails to find any volumes, the return value is the
INVALlD_HANDLE_VALUE error code. To get extended error information, call
GetLastError.

Remarks
The FindFirstVolume function opens a volume search handle and returns information
about the first volume found on a computer. Once the search handle is established, you
can use the FindNextVolume function to search for other volumes. When the search
handle is no longer needed, close it by using the FindVolumeClose function.

You should not assume any correlation between the order of volumes returned with
these functions and the order of volumes on the computer. In particular, do not assume
any correlation between volume order and drive letters as assigned by the BIOS (if any)
or the Disk Administrator.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, FindNextVolume, FindVolumeClose

Chapter 10 File Systems 665

FindFirstVolumeMountPoint
The FindFirstVolumeMountPoint function returns the name of a volume mount point
on the specified volume. FindFirstVolumeMountPoint is used to begin scanning the
volume mount pOints on a volume.

KAN~"i:fi1~~~~~~~~~~~~~i;lJ.ti('~i'::': .
"VI&Tll li>#R(ic:t.paUtlf~,"~;:,;;7r, vQlUme itJI:m~ ;:" , ""',,'

j~~~!~~~~~~,.~~r~~i~.ff'; ·
Parameters
IpszRootPathName

' ..
", "

[in] Unique volume name of the volume to scan for volume mount points. A trailing
backslash is required.

IpszVolumeMountPoint
[out] Pointer to a buffer that receives the name of the first volume mount pOint found.

cchBufferLength
[in] Specifies the length, in characters, of the buffer that receives the volume mount
point name.

Return Values
If the function succeeds, the return value is a search handle used in a subsequent call to
the FindNextVolumeMountPoint and FindVolumeMountPointClose functions.

If the function fails to find a volume mount point on the volume, the return value is the
INVALlD_HANDLE_VALUE error code. To get extended error information, call
GetLastError.

Remarks
The FindFirstVolumeMountPoint function opens a mount-point search handle and
returns information about the first volume mount point found on the specified volume.
Once the search handle is established, you can use the FindNextVolumeMountPoint
function to search for other volume mount pOints. When the search handle is no longer
needed, close it with the FindVolumeMountPointClose function.

You should not assume any correlation between the order of volume mount pOints
returned by these functions and the order of volume mount points returned by other
tools.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.

666 Volume 1 Microsoft Windows Base Services

Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, FindNextVolumeMountPoint,
FindVolumeMountPointClose

FindNextVolume
The FindNextVolume function continues a volume search started by a call to the
FindFirstVolume function. FindNextVolume finds one volume per call.

Parameters
hFindVolume

[in] Volume search handle returned by a previous call to the FindFirstVolume
function.

IpszVolumeName
[out] Pointer to a string that receives the unique volume name found.

cchBufferLength
[in] Specifies the length, in characters, of the buffer that receives the name.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. If no matching files can be found, the GetLastError function returns the
ERROR_NO_MORE_FILES error code. In that case, close the search with the
FindVolumeClose function.

Remarks
Once the search handle is established by calling FindFirstVolume, you can use the
FindNextVolume function to search for other volumes.

You should not assume any correlation between the order of volumes returned with
these functions and the order of volumes on the computer. In particular, do not assume
any correlation between volume order and drive letters as assigned by the BIOS (if any)
or the Disk Administrator.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 10 File Systems 667

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, FindFirstVolume, FindVolumeClose

FindNextVolumeMountPoint
The FindNextVolumeMountPoint function continues a volume mount point search
started by a call to the FindFirstVolumeMountPoint function.
FindNextVolumeMountPoint finds one volume mount point per call.

Parameters
hFindVolumeMountPoint

[in] Mount-point search handle returned by a previous call to the
FindFirstVolumeMountPoint function.

IpszVolumeMountPoint
[out] Pointer to a string that receives the name of the volume mount point found.

cchBufferLength
[in] Specifies the length, in characters, of the buffer that receives the names.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. If no matching files can be found, the GetLastError function returns the
ERROR_NO_MORE_FILES error code. In that case, close the search with the
FindVolumeMountPointClose function.

Remarks
Once the search handle is established by calling FindFirstVolumeMountPoint, you can
use the FindNextVolumeMountPoint function to search for other volume mount pOints.

668 Volume 1 Microsoft Windows Base Services

You should not assume any correlation between the order of volume mount points
returned with these functions and the order of volume mount points returned by other
tools.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, FindFirstVolumeMountPoint,
FindVolumeMountPointClose

FindVolumeClose
The FindVolumeClose function closes the specified volume search handle. The
FindFirstVolume and FindNextVolume functions use this search handle to locate
volumes.

Parameters
hFindVolume

[in] Volume search handle to close. This handle must have been previously opened
by the FindFirstVolume function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
After the FindVolumeClose function is called, the handle hFindVolume cannot be used
in subsequent calls to either FindNextVolUme or FindVolumeClose.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Chapter 10 File Systems 669

File Systems Overview, File System Functions, FindFirstVolume, FindNextVolume

FindVolumeMountPoi ntClose
The FindVolumeMountPointClose function closes the specified mount-point search
handle. The FindFirstVolumeMountPoint and FindNextVolumeMountPoint functions
use this search handle to locate volume mount points on a specified volume.

Parameters
hFindVolumeMountPoint

[in] Mount-point search handle to close. This handle must have been previously
opened by the FindFirstVolumeMountPoint function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
After the FindVolumeMountPointClose function is called, the handle
hFindVolumeMountPoint cannot be used in subsequent calls to either
FindNextVolumeMountPoint or FindVolumeMountPointClose.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

670 Volume 1 Microsoft Windows Base Services

File Systems OveNiew, File System Functions, FindFirstVolumeMountPoint,
FindNextVolumeMountPoint

FreeEncryptionCertificateHash List
The FreeEncryptionCertificateHashList function frees a certificate hash list.

Parameters
pHashes

[in] Pointer to a certificate hash list structure,
ENCRYPTION_CERTIFICATE_HASH_LlST, which was returned by the
QueryUsersOriEncryptedFile or QueryRecoveryAgentsOnEncryptedFile function.

Return Values
This function does not return a value.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.

File Systems Overview, File System Functions,
ENCRYPTION_CERTIFICATE_HASH_LlST,
QueryRecoveryAgentsOnEncryptedFile, QueryUsersOnEncryptedFile

GetCompressedFileSize
The GetCompressedFileSize function obtains the actual number of bytes of disk
storage used to store a specified file. If the file is located on a volume that supports
compression, and the file is compressed, the value obtained is the compressed size of
the specified file. If the file is located on a volume that supports sparse files, and the file
is a sparse file, the value obtained is the sparse size of the specified file.

Chapter 10 File Systems 671

If the file is not located on a volume that supports compression or sparse files, or if the
file is not compressed or a sparse file, the value obtained is the actual file size, the same
as the value returned by a call to GetFileSize.

DWQRD.G.e~Campi'ea&edF11e$~~e("',';~• ·'i/ ,'.

LPCTSTR 7pFJleNlfJiII.e, FI fil~/na\'1El •..• · >"·.id.'ii">.' ..•
LPDW6RDipFfJeSiteHtPt/: /I bl gh"orderDWORD.of· nl estle' .'

'''' ,", .,', l: >, ,: .;';",'.;" '

Parameters
JpFileName

[in] Pointer to a null-terminated string that specifies the name of the file.

JpFileSizeHigh
[out] Pointer to a DWORD variable that receives the high-order doubleword of the
compressed file size. The function's return value is the low-order doubleword of the
compressed file size.

This parameter can be NULL if the high-order doubleword of the compressed file size
is not needed. Files less than 4 gigabytes in size do not need the high-order
doubleword.

Return Values
If the function succeeds, the return value is the low-order doubleword of the actual
number of bytes of disk storage used to store the specified file, and if JpFileSizeHigh is
non-NULL, the function puts the high-order doubleword of that actual value into the
DWORD pOinted to by that parameter. This is the compressed file size for compressed
files, the actual file size for noncom pressed files.

If the function fails, and JpFileSizeHigh is NULL, the return value is -1. To get extended
error information, call GetLastError.

If the function fails, and JpFileSizeHigh is non-NULL, the return value is -1, and
GetLastError returns a value other than NO_ERROR.

Remarks
Calling the GetCompressedFileSize function with the name of a nonseeking device,
such as a pipe or a communications device, has no meaning.

Note that if the return value is -1 and JpFileSizeHigh is non-NULL, an application must
call GetLastError to determine whether the function has succeeded or failed.

An application can determine whether a volume is compressed by calling
GetVolumelnformation, then checking the status of the FS_ VOL_IS_COMPRESSED
flag in the DWORD value pointed to by that function's JpFiJeSystemFJags parameter.

An application can determine whether a file is compressed by implementing the following
pseudocode:

672 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, GetFileSize, GetVolumelnformation

GetVol umelnformation
The GetVolumelnformation function returns information about a file system and volume
whose root directory is specified.

Parameters
IpRootPathName

[in] Pointer to a string that contains the root directory of the volume to be described. If
this parameter is NULL, the root of the current directory is used. A trailing backslash is
required. For example, you would specify \\MyServer\MyShare as
\\MyServer\MyShare\, or the C drive as "C:\".

Ip VolumeNameBuffer
[out] Pointer to a buffer that receives the name of the specified volume.

Chapter 10 File Systems 673

nVolumeNameSize
[in] Specifies the length, in characters, of the volume name buffer. This parameter is
ignored if the volume name buffer is not supplied.

Ip VolumeSerialNumber
[out] Pointer to a variable that receives the volume serial number. This parameter can
be NULL if the serial number is not required.

Windows 95/98: If the queried volume is a network drive, the serial number will not
be returned.

IpMaximumComponentLength
[out] Pointer to a variable that receives the maximum length, in characters, of a file
name component supported by the specified file system. A file name component is
that portion of a file name between backslashes.

The value stored in variable pOinted to by *lpMaximumComponentLength is used to
indicate that long names are supported by the specified file system. For example, for
a FAT file system supporting long names, the function stores the value 255, rather
than the previous 8.3 indicator. Long names can also be supported on systems that
use the NTFS file system.

IpFileSystemFlags
[out] Pointer to a variable that receives flags associated with the specified file system.
This parameter can be any combination of the following flags; however,
FS_FILE_COMPRESSION and FS_ VOL_IS_COMPRESSED are mutually exclusive.

Value Meaning

FS_CASE_IS_PRESERVED The file system preserves the case of file names when
it places a name on disk.

FS_CASE_SENSITIVE The file system supports case-sensitive file names.

FS_UNICODE_STORED_ON_DISK The file system supports Unicode in file names as they
appear on disk.

FS_PERSISTENT _ACLS The file system preserves and enforces ACLs. For
example, NTFS preserves and enforces ACLs, and
FAT does not.

FS_FILE_COMPRESSION The file system supports file-based compression.

FS_ VOL_IS_COMPRESSED The specified volume is a compressed volume; for
example, a DoubleSpace volume.

FILE_NAMED_STREAMS The file system supports named streams.

FILE_SUPPORTS_ENCRYPTION The file system supports the Encrypted File System
(EFS).

FILE_SUPPORTS_OBJECT _IDS The file system supports object identifiers.

FILE_SUPPORTS_REPARSE_POINTS The file system supports reparse points.

FILE_SUPPORTS_SPARSE_FILES The file system supports sparse files.

FILE_VOLUME_QUOTAS The file system supports disk quotas.

674 Volume 1 Microsoft Windows Base Services

IpFileSystemNameBuffer
[out] Pointer to a buffer that receives the name of the file system (such as FAT or
NTFS).

nFileSystemNameSize
[in] Specifies the length, in characters, of the file system name buffer. This parameter
is ignored if the file system name buffer is not supplied.

Return Values
If all the requested information is retrieved, the return value is nonzero.

If not all the requested information is retrieved, the return value is zero. To get extended
error information, call GetLastError.

Remarks
If you are attempting to obtain information about a floppy drive that does not have a
floppy disk or a CD-ROM drive that does not have a compact disc, the system displays a
message box asking the user to insert a floppy disk or a compact disc, respectively. To
prevent the system from displaying this message box, call the SetErrorMode function
with SEM_FAILCRITICALERRORS.

The FS_ VOL_IS_COMPRESSED flag is the only indicator of volume-based
compression. The file system name is not altered to indicate compression. This flag
comes back set on a DoubleSpace volume, for example. With volume-based
compression, an entire volume is either compressed or not compressed.

The FS_FILE_COMPRESSION flag indicates whether a file system supports file-based
compression. With file-based compression, individual files can be compressed or not
compressed.

The FS_FILE_COMPRESSION and FS_ VOL_IS_COMPRESSED flags are mutually
exclusive; both bits cannot come back set.

The maximum component length value, stored in the DWORD variable pOinted to by
IpMaximumComponentLength, is the only indicator that a volume supports longer-than­
normal FAT (or other file system) file names. The file system name is not altered to
indicate support for long file names.

The GetCompressedFileSize function obtains the compressed size of a file. The
GetFileAHributes function can determine whether an individual file is compressed .

. " ,'"

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 10 File Systems 675

File Systems Overview, File System Functions, GetCompressedFileSize,
GetFileAttributes, SetErrorMode, SetVolumeLabel

GetVolumeNameForVolumeMountPoint
The GetVolumeNameForVolumeMountPoint function takes a volume mount point or
root directory and returns the corresponding unique volume name.

-)"~:1~,t,.~,i,.~,1~,',·~'~:~~!~~J@5::~~~~;;·i:":~;';~~i~~~
';", " '. ' j .• , .~f,;.~t':j,;;:,;>i;:[;';,;,,;;;,:':'~iT;\:,:'> ':;;::~;;}>;;:<:;i;':f';;;~;;',?;

Parameters
IpszVolumeMountPoint

[in] Pointer to a string that contains either the path of a volume mount point with a
trailing backslash (\) or a drive letter indicating a root directory in the form "0:\".

IpszVolumeName
[out] Pointer to a string that receives the volume name. This name is a unique volume
name of the form "\\?Wolume{GUID}\" where GUID is the GUIO that identifies the
volume.

cchBufferLength
[in] Specifies the length, in characters, of the output buffer. A reasonable size for the
buffer to accommodate the largest possible volume name is 50 characters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The IpszVolumeMountPoint input string may be a drive letter with appended backslash
(\), such as "0:\". Alternatively, it may be a path to a volume mount point, again with
appended backslash (\), such as "c:\mnt\edrive\".

Use GetVolumeNameForVolumeMountPoint to obtain unique volume names for use
with other functions that work with volume mount points and volume mounting. For more
information, see Unique Volume Names.

676 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Wind.ows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, DeleteVolumeMountPoint,
GetVolumePathName, SetVolumeMountPoint

GetVolumePathName
The GetVolumePathName function returns the volume mount point at which the
specified path is mounted.

Parameters
IpszFileName

[in] Specifies the input path string. Both absolute and relative file and directory names,
such as ".", are acceptable in this path.

IpszVolumePathName
[out] Pointer to a string that receives the volume mount point for the input path.

cchBufferLength
[in] Specifies the length, in characters, of the output buffer.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Passed a specified path, GetVolumePathName returns the path to the volume mount
point. In other words, it returns the root of the volume where the end point of the
specified path resides.

Chapter 10 File Systems 677

For example, assume you have volume D mounted at C:\Mnt\Ddrive and volume E
mounted at C:\Mnt\Ddrive\Mnt\Edrive. Assume you have a file with the path
E:\Dir\Subdir\MyFile. If you pass GetVolumePathName the input string
"C:\Mnt\Ddrive\Mnt\Edrive\Dir\Subdir\MyFile", it returns the output path
"C:\Mnt\Odrive\Mnt\Edrive" .

The length of the path returned by this call always is less than or equal to that of the path
passed in. A slower but safer way to set the size of the return buffer is to call the
GetFuliPathName function and then make sure that the buffer is at least as big as the
full path GetFuliPathName returns.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

File Systems Overview, File System Functions, DeleteVolumeMountPoint,
GetFuliPathName, GetVolumeNameForVolumeMountPoint, SetVolumeMountPoint

QueryRecovery AgentsOn Encrypted File
The QueryRecoveryAgentsOnEncryptedFile function retrieves a list of recovery
agents for the specified file.

:!i~l~~~,;;;~r~~~~~~
Parameters
IpFileName

[in] Pointer to a null-terminated Unicode string that specifies the name of the file to
query.

pRecoveryAgents
[out] Receives a list of recovery agents, represented by a
ENCRYPTION_CERTIFICATE_HASH_LlST structure.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

678 Volume 1 Microsoft Windows Base Services

If the function fails, the return value is a Win32 error code. For a complete list of error
codes, see Error Codes or the Platform SDK header file WinError.h.

Remarks
When the list of recovery agents is no longer needed, free it by calling the
FreeEncryptionCertificateHashList function.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.

File Systems Overview, File System Functions,
ENCRYPTION_CERTIFICATE_HASH_LlST, FreeEncryptionCertificateHashList

QueryUsersOnEncryptedFile
The QueryUsersOnEncryptedFile function retrieves a list of users for the specified file.

Parameters
IpFileName

[in] Pointer to a null-terminated Unicode string that specifies the name of the file to
query.

pUsers
[out] Receives a list of users, represented by a
ENCRYPTION_CERTIFICATE_HASH_LlST structure.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a Win32 error code. For a complete list of error
codes, see Error Codes or the Platform SDK header file WinError.h.

Chapter 10 File Systems 679

Remarks
When the list of users is no longer needed, call the FreeEncryptionCertificateHashList
function to free the list.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.

File Systems Overview, File System Functions,
ENCRYPTION_CERTIFICATE_HASH_LIST, FreeEncryptionCertificateHashList

RemoveUsersFromEncryptedFile
The RemoveUsersFromEncryptedFile function removes specified certificate hashes
from a specified file.

~'t~~§!:~;·~lljil,;~{fl~#_':~_~'~!:~J.~{""-;
Parameters
IpFileName

[in] Pointer to a null-terminated Unicode string that specifies the name of the file.

pHashes
[in] Pointer to an ENCRYPTION_CERTIFICATE_HASH_LIST structure that contains
a list of certificate hashes to be removed from the file.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a Win32 error code. For a complete list of error
codes, see Error Codes or the Platform SDK header file WinError.h.

Remarks
The RemoveUsersFromEncryptedFile function removes the specified certificate
hashes if they exist in the specified file. If any of the certificate hashes are not found in
the specified file, they are ignored and no error code is returned.

680 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.

File Systems Overview, File System Functions,
ENCRYPTION_CERTIFICATE_HASH_LlST

SetUserFileEncryption Key
The SetUserFileEncryptionKey function sets the user's current key to the specified
certificate.

Parameters
pEncryptionCertificate

[in] Pointer to a certificate that will be the user's key. This parameter is a pointer to an
ENCRYPTION_CERTIFICATE structure.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a Win32 error code. For a complete list of error
codes, see Error Codes or the Platform SDK header file WinError.h.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.
Library: Use advapi32.lib.

File Systems Overview, File System Functions, ENCRYPTION_CERTIFICATE

Chapter 10 File Systems 681

SetVolumeMountPoint
The SetVolumeMountPoint function mounts the specified volume at the specified
volume mount point.

:~f~.~lii"~!I~::::i~:~~d!~",~<~~;:i~@):f
Parameters
IpszVolumeMountPoint

[in] Pointer to a string that indicates the volume mount point where the volume is to be
mounted. This may be a root directory (X:\) or a directory on a volume (X:\mnt\). The
string must end with a trailing backslash ('\').

IpszVolumeName
[in] Pointer to a string that indicates the volume to be mounted. This string must be a
unique volume name of the form "\\?Wolume{GUID}\" where GUID is a GUID that
identifies the volume. The \\?\ turns off path parsing and is ignored as part of the path,
as discussed in Path Lengths. For example, ''\\?\C:\myworld\private'' is seen as
"C:\myworld\private" .

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
It is not an error to attempt to mount a volume at a volume mount point at which a
volume is already mounted. In this case, the system unmounts the preceding volume
without sending notifications before attempting to mount the new volume.

It is an error to attempt to mount a volume on a directory that has any files or
subdirectories in it. This error occurs for system and hidden directories as well as other
directories, and it occurs for system and hidden files.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

682 Volume 1 Microsoft Windows Base Services

File Systems OveNiew, File System Functions, DeleteVolumeMountPoint,
GetVolumeNameForVolumeMountPoint, GetVolumePathName

File System Control Codes

Value

Value

The following control codes are used with NTFS change journals.

Meaning

Creates an NTFS change journal stream on a
target volume or modifies an existing change
journal stream.

Deletes the NTFS change journal on a volume
or awaits notification of deletion of an NTFS
change journal.

Creates an enumeration that lists the NTFS
change journal entries between two specified
boundaries.

Marks a specified file or directory and its NTFS
change journal record with information about
changes to that file or directory.

Queries for information on the current NTFS
change journal, its records, and its capacity.

Returns to the calling process the set of NTFS
change journal records between two specified
USN values.

The following control codes are used with opportunistic locks.

Meaning

Notifies a server that a client application is
about to close a file. An application uses this
operation following notification that an
opportunistic lock on the file is about to be
broken.

Responds to notification that an opportunistic
lock on a file is about to be broken. An
application uses this operation to loose all
opportunistic locks on the file but keep the file
open.

Chapter 10 File Systems 683

FSCTL_OPLOCK_BREAK_ACKNOWLEDGE Responds to notification that an exclusive
opportunistic lock on a file is about to be
broken. An application uses this operation to
indicate that the file should receive a level 2
opportunistic lock.

FSCTL_OPLOCK_BREAK_NOTIFY Allows the calling application to wait for
completion of an opportunistic lock break.

FSCTL_REQUEST_BATCH_OPLOCK Requests a batch opportunistic lock on a file.

FSCTL_REQUEST _FIL TER_OPLOCK Requests a filter opportunistic lock on a file.

FSCTL_REQUEST _OPLOCK_LEVEL_1 Requests a level 1 opportunistic lock on a file.

FSCTL_REQUEST_OPLOCK_LEVEL_2 Requests a level 2 opportunistic lock on a file.

The following control codes are used with reparse points.

Value

FSCTL_DELETE_REPARSE_POINT

FSCTL_GET _REPARSE_POINT

FSCTL_SET _REPARSE_POINT

Meaning

Deletes a reparse point for a file or directory.

Returns reparse point data for a file or directory.

Sets a reparse point on a file or directory.

The following control codes are used with sparse files.

Value Meaning

FSCTL_SET _SPARSE

FSCTL_SET_ZERO_DATA

File System Interfaces

IDiskQuotaControl

Scans a file for ranges of the file for which disk
space is allocated.

Marks a file as a sparse file.

Sets a range of a files bytes to zeroes.

The IDiskQuotaControl interface provides methods for controlling the disk quota
facilities of a single NTFS volume. The client can query and set volume-specific quota
attributes through IDiskQuotaControl. The client can also enumerate all per-user quota
entries on the volume. A client instantiates this interface by calling the
CoCreatelnstance function using the class identifier CLSID_DiskQuotaControl.

684 Volume 1 Microsoft Windows Base Services

Virtual function table

IUnknown Methods
Querylnterface
AddRef
Release

IDiskQuotaControl Methods
Initialize
SetQuotaState
GetQuotaState
SetQuotaLogFlags
GetQuotaLogFlags
SetDefaultQuotaThreshold
GetDefaultQuotaThreshold
GetDefaultQuotaThresholdText
SetDefaultQuotaLimit
GetDefaultQuotaLimit
GetDefaultQuotaLimitText

Remarks

AddUserSid
AddUserName
DeleteUser
FindUserSid
FindUserName
CreateEnumUsers
CreateUserBatch
InvalidateSidNameCache
GiveUserNameResolutionPriority
ShutdownNameResolution

The disk quota control object also implements the IConnectionPointContainer interface
to service the IDiskQuotaEvents interface.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions

IDiskQuotaControl: :AddUserName
Adds a new quota entry on the volume for the specified user. The user is identified by
domain and account name.

Value

Parameters
pszLogonName

Pointer to the user's account logon name string.

fNameReso/ution

Chapter 10 File Systems 685

Indicates how the user account information is to be obtained. The volume's quota
information identifies users by SID. The user account information (such as container,
logon name, and display name) must be obtained from the network domain controller,
or the local computer if it is not on a network. This parameter can be one of the
following values.

Meaning

DISKQUOT A_USERNAME_RESOLVE_NON E

DISKQUOTA_USERNAME_RESOLVE_SYNC

Do not resolve user account information.

Resolve user account information
synchronously. AddUserName returns when
the information is resolved. If the information
exists in the disk quota SID cache, it is
returned immediately. Otherwise, the method
must locate the information. This can take
several seconds.

DISKQUOTA_USERNAME_RESOLVE_ASYNC Resolve user account information
asynchronously. AddUserName returns
immediately. The caller must implement the
IDiskQuotaEvents interface to receive
notification when the information is available.
If the information was cached during a
previous request, notification occurs as soon
as the object is serviced. Otherwise, the
method obtains the information from the
network domain controller, then notifies
IDiskQuotaEvents.

ppUser
Pointer to receive the IDiskQuotaUser interface pointer to the newly created quota
user object.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

S_OK

S_FALSE

ERROR_NOT _READY

ERROR_USER_UNKNOWN

Success.

User already exists. Not added.

The DiskQuotaControl object is not initialized.

The specified user name is unknown.

(continued)

686 Volume 1 Microsoft Windows Base Services

(continued)

Value

E_I NVALI DARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Remarks

Meaning

A pointer parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

The NTFS file system automatically creates a user quota entry when a user first writes to the
volume. Entries that are created automatically are assigned the default warning threshold anc
hard quota limit values for the volume. This method allows you to create a user quota entry
before a user has written information to the volume. Therefore, you can pre-assign a warning
threshold or hard quota limit value different than the volume default settings.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl::AddUserSid
Adds a new quota entry on the volume for the specified user. The user is identified by
security identifier (SID).

Parameters
pUserSid

Pointer to a buffer containing the user's SID.

fNameResolution
Indicates how the user account information is to be obtained. The volume's quota
information identifies users by SID. The user account information (such as domain
name, account name, and full name) must be obtained from the network domain
controller, or the local computer if it is not on a network. This parameter can be one of
the following values:

Value

DISKQUOTA_USERNAME_RESOLVE_NONE

DISKQUOTA_USERNAME_RESOLVE_SYNC

Chapter 10 File Systems 687

Meaning

Do not resolve user account information.

Resolve user account information
synchronously. AddUserSid returns when the
information is resolved. If the information
exists in the disk quota SID cache, it is
returned immediately. Otherwise, the method
must locate the information. This can take
several seconds.

DISKQUOTA_USERNAME_RESOLVE_ASYNC Resolve user account information
asynchronously. AddUserSid returns
immediately. The caller must implement the
IDiskQuotaEvents interface to receive
notification when the information is available.
If the information was cached during a
previous request, notification occurs as soon
as the object is serviced. Otherwise, the
method obtains the information from the
network domain controller, then notifies
IDiskQuotaEvents.

ppUser
Pointer to receive the IDiskQuotaUser interface pointer to the newly created quota
user object.

Return Values
This method returns a file system error or one of the following values.

Value

NOERROR

ERROR_ACCESS_DENIED

ERROR_INVALlD_SID

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Remarks

Meaning

Success.

The caller has insufficient access rights.

The specified SDI is unknown.

The DiskQuotaControl object is not initialized.

The pUserSid or ppUser parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

The NTFS file system automatically creates a user quota entry when a user first writes to
the volume. Entries that are created automatically are assigned the default warning
threshold and hard quota limit values for the volume. This method allows you to create a
user quota entry before a user has written information to the volume. Therefore, you can

688 Volume 1 Microsoft Windows Base Services

pre-assign a warning threshold or hard quota limit value different than the volume default
settings.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl::CreateEnumUsers

Value

Creates an enumerator object for enumerating quota users on the volume. The newly
created object implements the IEnumDiskQuotaUsers interface.

Parameters
rgpUserSids

Array of security identifier (SID) pointers representing the user objects to be included
in the enumeration. If this value is NULL, all user entries are enumerated.

cpSids
Number of items in the rgpUserSids array. Ignored if rgpUserSids is NULL.

fNameResolution
Indicates how the user account information is to be obtained. The volume's quota
information identifies users by SID. The user account information (such as domain
name, account name, and full name) must be obtained from the network domain
controller, or the local computer if it is not on a network. This parameter can be one of
the following values.

Meaning

Do not resolve user account information.

(continued)

(continued)

Value

Chapter 10 File Systems 689

Meaning

Resolve user account information
synchronously. The
IEnumDiskQuotaUsers::Next method
returns when the information is resolved. If the
information exists in the disk quota SID cache,
it is returned immediately. Otherwise, the
method must locate the information. This can
take several seconds.

DISKQUOTA_USERNAME_RESOLVE_ASYNC Resolve user account information
asynchronously. The
IEnumDiskQuotaUsers::Next method

ppEnum

returns immediately. The caller must
implement the IDiskQuotaEvents interface to
receive notification when the information is
available. If the information was cached during
a previous request, notification occurs as soon
as the object is serviced. Otherwise, the
method obtains the information from the
network domain controller, then notifies
IDiskQuotaEvents.

Pointer to a pointer to the IEnumDiskQuotaUsers enumerator.

Return Values
This method returns one of the following values.

Value

NOERROR

ERROR_ACCESS_DEN I ED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_UNEXPECTED

Meaning

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The ppEnum parameter is NULL.

Insufficient memory.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

690 Volume 1 Microsoft Windows Base Services

File Systems Overview, File System Functions, IDiskQuotaControl

I DiskQuotaControl:: CreateUserBatch
Creates a batching object for optimizing updates to the quota settings of multiple users
simultaneously.

Parameters
ppBatch

Pointer to receive the IDiskQuotaUserBatch interface pointer.

Return Values
This method returns one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DEN I ED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_UNEXPECTED

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The ppBatch parameter is NULL.

Insufficient memory.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaControl

Chapter 10 File Systems 691

I DiskQuotaControl:: DeleteUser
Removes a user entry from the volume quota information file, if the user's charged quota
amount is zero bytes.

Parameters
pUser

Pointer to the IDiskQuotaUser interface of the user whose quota record is marked for
deletion.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_FILE_EXISTS

ERROR_NOT _READY

E_I NVALI DARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Remarks

Success.

The caller has insufficient access rights.

The user owns files on the volume.

The DiskQuotaControl object is not initialized.

The pUserparameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

This method does not actually remove the quota entry from the volume. It marks the
entry for deletion. NTFS performs the actual deletion at a later time. Following a call to
IDiskQuotaControl::DeleteUser, the IDiskQuotaUser interface is still active. This
method does not delete the user object from memory. To release the user object, call
IUnknown::Release.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

692 Volume 1 Microsoft Windows Base Services

IDiskQuotaControl:: FindUserName
Locates a specific entry in the volume quota information. The user's account logon name
is used as the search key.

Parameters
pszLogonName

Pointer to the user's account logon name.

ppUser
Pointer to receive the IDiskQuotaUser interface pointer to the quota user object.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_INVALID_SID

ERROR_NONE_MAPPED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Remarks

Success.

The caller has insufficient access rights.

The SID for the user is invalid.

There is no mapping available for the SID.

The DiskQuotaControl object is not initialized.

The pUserSidor ppUserparameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

This method will return a user object even if there is no quota record for the user in the
quota file. This is consistent with the idea of automatic user addition and default quota
settings. If there is currently no quota entry for the requested user, and the user would
be added to the quota file if he were to request disk space, the returned user object will
have warning threshold and hard quota limits equal to the volume default settings.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 693

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl::FindUserSid

Value

Locates a specific user entry in the volume quota information. The user's security
identifier (SID) is used as the search key.

HSES)JLT.;F1!\dU~e.rSfd(;; .
P:S10 ft1~ttrrP~.Ii.,~i:; •.•. ;/.i;
D)lO~:fNilrrt~l1e~lJJiQtJ¥)"r ;.' .

,;~DI $ K~:O'F~U~R:~*~pU$er

b

Parameters
pUserSid

Pointer to the user's SID.

fNameResolution
Indicates how the user account information is to be obtained. The volume's quota
information identifies users by SID. The user account information (such as domain
name, account name, and full name) must be obtained from the network domain
controller, or the local computer if it is not on a network. This parameter can be one of
the following values.

Meaning

DISKQUOT A_ USERNAME_RESOLVE_NONE Do not resolve user account information.

Resolve user account information
synchronously. FindUserSid returns when the
information has been resolved. If the information
exists in the disk quota SID cache, it is returned
immediately. Otherwise, the method must locate
the information. This can take several seconds.

DISKQUOTA_USERNAME_RESOLVE_ASYNC Resolve user account information
asynchronously. FindUserSid returns
immediately. The caller must implement the
IDiskQuotaEvents interface to receive
notification when the information is available. If
the information was cached during a previous
request, notification occurs as soon as the
object is serviced. Otherwise, the method
obtains the information from the network domain
controller, then notifies IDiskQuotaEvents.

694 Volume 1 Microsoft Windows Base Services

ppUser
Pointer to receive the IDiskQuotaUser interface pointer to the quota user object.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DEN I ED

ERROR_NOT _READY

ERROR_INVALlD_SID

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Remarks

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The SID for the user is invalid.

The pUserSid or ppUser parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

This method will return a user object even if there is no quota record for the user in the
quota file. This is consistent with the idea of automatic user addition and default quota
settings. If there is currently no quota entry for the requested user, and the user would
be added to the quota file if he were to request disk space, the returned user object will
have warning threshold and hard quota limits equal to the volume default settings.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

I DiskQuotaControl:: GetDefau ItQuotaLi m it
Retrieves the default quota limit for the volume. This limit is applied automatically to new
users of the volume.

Parameters
pI/Limit

Pointer to the variable to receive the quota limit.

Return Values

Chapter 10 File Systems 695

This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The pI/Limit parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl: :GetDefaultQuotaLimitText
Retrieves the default quota limit for the volume. This limit is applied automatically to new
users of the volume. The limit is expressed as a text string, for example "10.5 MB". If the
volume has no limit, the string returned is "No Limit" (localized). If the buffer is too small,
it is truncated to fit the buffer.

HRESUI..T Getl)efaultQuotaI..1m'ltText{

);

~PWST:Rp:szTe){t.
DWOiU) cch Text .

Parameters
pszText

Pointer to the buffer to receive the text string.

696 Volume 1 Microsoft Windows Base Services

cchText
Size of the buffer, in characters.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR Success.

ERROR_ACCESS_DENIED The caller has insufficient access rights.

ERROR_NOT _READY The DiskQuotaControl object is not initialized.

E_INVALIDARG The pszTextparameter is NULL.

E_OUTOFMEMORY Insufficient memory.

E_FAIL An unexpected file system error occurred.

E_UNEXPECTED An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl::GetDefaultQuotaThreshold
Retrieves the default quota warning threshold for the volume. This threshold is applied
automatically to new users of the volume.

Parameters
pI/Threshold

Pointer to the variable to receive the default warning threshold value, in bytes.

Return Values
This method returns a file system error or one of the following values:

Chapter 10 File Systems 697

Value Meaning

Success. NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

The caller has insufficient access rights.

E_I NVALI DARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

The DiskQuotaControl object is not initialized.

The pI/Threshold parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl::GetDefaultQuotaThresholdText
Retrieves the default warning threshold for the volume. This threshold is expressed as a
text string, for example "10.5 MB". If the volume does not have a threshold, the string
returned is "No Limit" (localized). If the buffer is too small, the string is truncated to fit the
buffer.

'filEsUi1,ietDefaultatt(it"'IIl~itio:tdf~Xot(,:"
;'~,'t,~lffl:t~,p.i,2"te~fh; '::, ,;i;; ," "
, ;~nwoiU)bE~Text/; ,
;,)' :e";'

Parameters
pszText

Pointer to the buffer to receive the text string.

cchText
Size of the buffer, in characters.

Return Values
This method returns a file system error or one of the following values:

698 Volume 1 Microsoft Windows Base Services

Value

NOERROR

ERROR_ACCESS_DEN I ED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Meaning

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The pszText parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl: :GetQuotaLogFlags
Retrieves the flags that control the logging of user-related quota events on the volume.
Logging makes an entry in the volume server's event log.

KRESUL r GetcQuota log Flags(..
c lPDWORo r:niwF7f]g$

);

Parameters
pdwFlags

Pointer to a variable to receive the volume's quota logging flags. Use the following
macros to retrieve the contents of the flag value.

Flag Meaning

DISKQUOTA_IS_LOGGED_USER_ THRESHOLD If set, an event log entry will be created
when the user exceeds his assigned
warning threshold.

DISKQUOTA_IS_LOGGED_USER_LlMIT If set, an event log entry will be created
when the user exceeds his assigned hard
quota limit.

Chapter 10 File Systems 699

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The pdwFlags parameter is incorrect.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

IDiskQuotaControl: :GetQuotaState

Flag

Retrieves a set of flags describing the state of the quota system.

Parameters
pdwState

Pointer to a variable to receive the quota state flags. This parameter can be one or
more of the following flags.

Meaning

DISKQUOTA_STATE_DISABLED

DISKQUOT A_ST ATE_TRACK

Quotas are not enabled on the volume.

Quotas are enabled but the limit value is not being
enforced. Users may exceed their quota limit.

Quotas are enabled and the limit value is enforced.
Users cannot exceed their quota limit.

(continued)

700 Volume 1 Microsoft Windows Base Services

(continued)

Flag

DISKQUOT A_FI LEST ATE_INCOMPLETE

DISKQUOT A_FILEST ATE_REBU ILDI NG

Return Values

Meaning

The volume's quota information is out of date.
Quotas are probably disabled.

The volume is rebuilding its quota information.

This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

The pdwState parameter is incorrect.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems OveNiew, File System Functions, IDiskQuotaControl

IDiskQuotaControl::GiveUserNameResolutionPriority
Promotes the specified user object to the head of the queue so that it is next in line for
resolution. By default, quota user objects are serviced in the order in which they were
placed in the queue.

This method is applicable only when asynchronous name resolution is used.

HRESlJLl'··~G1oi1eU~erNailli~l<olUttQ:fte"'i;O:llit~(··
'PhiSr«roor£:u~t~ PU:;~;·>/: :.:./~ r:.+ ..
)~."",,~ ,? ,~~,:<",~""~~::;'~ ~ ';', _~""'~?:~ ~c,' ,',~ J,: 'it"

I <' ~ ,,;;' .',
Parameters
pUser

Pointer to the IDiskQuotaUser interface.

Chapter 10 File Systems 701

Return Values
This method returns one of the following values.

Value Meaning

Success. NOERROR

ERROR_NaT_READY

S_FALSE

E_UNEXPECTED

The DiskQuotaControl object is not initialized.

Quota user object not in the resolver queue.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Functions, IDiskQuotaControl

I DiskQuotaControl:: Initial ize
Initializes a new QuotaControl object by opening the NTFS volume with the requested
access rights. The return value indicates whether the volume supports NTFS disk quotas
and whether the caller has sufficient access rights.

l~~~fuf
Parameters
pszPath

Specifies the path to the volume root.

bReadWrite
If this value is TRUE, the volume is opened in read/write mode. If this value is FALSE,
the volume is opened in read-only mode.

Return Values
This method returns one of the following values:

702 Volume 1 Microsoft Windows Base Services

Value

NOERROR

ERROR_ACCESS_DENIED

ERROR_BAD_PATHNAME

ERROR_FILE_NOT _FOUND

ERROR_INITIALIZED

ERROR_INVALlD_NAME

ERROR_NOTSUPPORTED

ERROR_PATH_NOT _FOUND

Meaning

Success.

The caller has insufficient access rights.

The requested path name is invalid.

The requested file or object was not found.

The controller object has already been initialized.
Multiple initialization is not allowed.

The requested file path is invalid.

The file system does not support quotas.

The requested file path was not found.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaControl

IDiskQuotaControl:: Inval idateSidNameCache
Invalidates the contents of the system's SID-to-name cache so subsequent requests for
new user objects (IEnumDiskQuotaUsers::Next, IDiskQuotaControl::FindUserSid
and IDiskQuotaControl::FindUserName) must obtain user names from the network
domain controller. As names are obtained, they are cached.

'~~~r::ll~~i~;~~~'if~,ltiI.m;;~~liit~tiJ:~.i~jiiT£l~~i~_iil~iii<f~
Parameters
This method has no parameters.

Return Values
This method returns one of the following values.

Value

NOERROR

ERROR_NOT _READY

E_OUTOFMEMORY

Meaning

Success.

The DiskQuotaControl object is not initialized.

Insufficient memory.

E_UNEXPECTED

E_FAIL

Remarks

Chapter 10 File Systems 703

An unexpected exception occurred.

The SID-to-name cache is not available or could not be
exclusively locked.

In general, there is no reason to call this method. It is included to provide a method for
programmatically refreshing the entire SID-to-name cache.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h .

. : "'.' :,', " .'

File Systems Overview, File System Interfaces, IDiskQuotaControl

I DiskQuotaControl: : SetDefau ItQuotaLi m it
Modifies the default quota limit. This limit is applied automatically to new users of the
volume.

~R~~ult$etoe.f~~l~Quo~a~~m~rt{ '\ .",
:;~.l()NGLOfl~ ~r1p ml~':, ;'~<)"~'

~ ':;.. .
,:

'J'

Parameters
IlLimit

The value for the default quota limit, in bytes.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

704 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaControl

IDiskQuotaControl: :SetDefaultQuotaThreshold
Modifies the default warning threshold. This threshold is applied automatically to new
users of the volume.

Parameters
IIThreshold

Specifies the default warning threshold value, in bytes.

Return Values
This method returns a file system error or one of the following values.

Value

NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Meaning

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 705

File Systems Overview, File System Interfaces, IDiskQuotaControl

IDiskQuotaControl: :SetQuotaLogFlags
Controls the logging of user-related quota events on the volume. Logging makes an
entry in the volume server system's event log.

;~l~
Parameters
dwFlags

Specifies the log flags to be applied to the volume. Use the following macros to set
the proper bits in the dwFlags parameter.

Macro Meaning

DISKQUOTA_SET _LOG_USER_ THRESHOLD Turn on/off logging of user warning threshold
violations. If set, an event log entry will be
created when the user exceeds his assigned
warning threshold.

DISKQUOTA_SET_LOG_USER_LlMIT Turn on/off logging of user quota limit
violations. If set, an event log entry will be
created when the user exceeds his assigned
hard quota limit.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_NOT _READY

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

The DiskQuotaControl object is not initialized.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

706 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaControl

IDiskQuotaControl: :SetQuotaState
Sets the state of the quota system. Not all state attributes can be modified. The enable,
track, and enforce attributes can be modified.

Parameters
dwState

Specifies the state to be applied to the volume. Use the following macros to set the
proper bits in the dwState parameter.

Macro

DISKQUOT A_SET _DISABLED

DISKQUOTA_SET _TRACKED

DISKQUOTA_SET _ENFORCED

Return Values

Enable

No

Yes

Yes

Track

No

Yes

Yes

This method returns a file system error or one of the following values.

Value Meaning

NOERROR Success.

ERROR_ACCESS_DENIED The caller has insufficient access rights.

Enforce

No

No

Yes

ERROR_NOT _READY The DiskQuotaControl object is not initialized.

E_INVALIDARG The dwState parameter is incorrect.

E_OUTOFMEMORY Insufficient memory.

E_FAIL An unexpected file system error occurred.

E_UNEXPECTED An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 707

File Systems Overview, File System Interfaces, IDiskQuotaControl

IDiskQuotaControl: :ShutdownNameResolution
The SID-to-name resolver translates user security identifiers (SID) to user names. It runs
as a background thread. When a quota control object is destroyed, this thread
automatically terminates. The final call to the IUnknown::Release method terminates
the thread. This is normally all that is required. If you finish with the quota control object,
but it is not ready to be destroyed (there are other open reference counts), call this
method to terminate the background thread before the object is destroyed.

_$Uitt!:~~~.~~i~u!oll{~~{}~:i::;.,l;<~;':;i':'··'>:1(;,::', .';~:.i:·:;:i:iD:.:.:;':~1l:t:~·.;~it:;·Zf:TY;i~{T;f::':~.~:~tf;

Parameters
This method has no parameters.

Return Values
This method returns NOERROR.

Remarks
Asynchronous name resolution will also cease after the threa~ terminates. A subsequent
call to the following methods may recreate the SID-to-name resolver thread:

IDiskQuotaControl: :AddUserName
IDiskQuotaControl::AddUserSid
IDiskQuotaControl::CreateEnumUsers
IDiskQuotaControl::FindUserName
IDiskQuotaControl:: FindUserSid

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaControl

\

708 Volume 1 Microsoft Windows Base Services

IDiskQuotaEvents
A client must implement the IDiskQuotaEvents interface as an event sink to receive
quota-related event notifications. Its methods are called by the system whenever
significant quota events have occurred. Currently, the only event supported is the
asynchronous resolution of user account name information.

Virtual Function Table

IUnknown Methods
Querylnterface
AddRef
Release

IDiskQuotaEvents Methods
OnUserNameChanged

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces,

I DiskQuotaEvents:: On UserNameChanged
Notifies the client's connection sink whenever a user's SID has been asynchronously
resolved. If IDiskQuotaUser::GetAccountStatus returns
DISKQUOTA_USER_ACCOUNT_RESOLVED, the user's account container name,
logon name, and display name strings are available in the quota user object.

:.,~)'~.} ... ; ... ,.bl .. ~ •• ',:' ... ~. s.;.:f.Ko.: .. ;.;.·.:,·.::.:.F.:-.C: .•. ~.$.• :., •••.• e.:.J.~.::.:.t .. ·.;.·,·.,·......JW~lf'{
~. .:':~::'t'~< ·,.SIr,.tW·: ~)I , ,.:, .. " ... : ..

Parameters
pUser

Pointer to the IDiskQuotaUser interface for the quota user object. It is not necessary
to call Release on this pOinter. The DiskQuotaControl object controls the lifetime of
the user object.

Chapter 10 File Systems 709

Return Values
The return value is ignored.

B~~"ts··
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaEvents

IDiskQuotaUser
The IDiskQuotaUser interface represents a single user quota entry in the volume quota
information file. Through this interface, you can query and modify user-specific quota
information on an NTFS volume. This interface is instantiated using
IEnumDiskQuotaUsers, IDiskQuotaControl::FindUserSid,
IDiskQuotaControl::FindUserName, IDiskQuotaControl::AddUserSid or
IDiskQuotaControl::AddUserName.

Virtual Function Table

IUnknown Methods
Querylnterface
Add Ref
Release

IDiskQuotaUser Methods
GetlD
GetName
GetSidLength
GetSid
GetQuotaThreshold
GetQuotaThresholdText
GetQuotaLimit
GetQuotaLimitText

GetQuotaUsed
GetQuotaUsedText
GetQuotalnformation
SetQuotaThreshold
SetQuotaLimit
Invalidate
GetAccountStatus

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

710 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces,

IDiskQuotaUser: :GetAccountStatus

Value

Retrieves the status of the user object's account. User information is identified in the
quota system by user security identifier (SID). This SID must resolve to a user account
for the user's account name information to be retrieved. To determine why a user's name
strings are not available, use the status information.

Parameters
pdwStatus

Pointer to receive the user's account status. The status value can be one of the
following.

Meaning

The SID was resolved to a user account.
Names are available through
IDiskQuotaUser: :GetName.

The user account is unavailable at this time.
The network domain controller may not be
available. Name information is not available.

The user account was deleted from the
domain. Name information is not available.

The user account is invalid. Name
information is not available.

DISKQUOTA_USER_ACCOUNT_UNKNOWN The user account is unknown. Name
information is not available.

DISKQUOTA_USER_ACCOUNT_UNRESOLVED The SID has not been resolved to a user
account.

Return Values
This method returns one of the following values:

Chapter 10 File Systems 711

Value Meaning

Success. NOERROR

E_INVALIDARG The pdwStatus parameter is NULL.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :GetiD
Retrieves a unique identifier (ID) number for the DiskQuotaUser object. This 10 is unique
only within the process. It can be used to identify a user object in a set of user objects if
the programming language you are using does not support pointers.

Parameters
pullD

Pointer to the name strings associated with the disk quota user.

Return Values
This method returns NOERROR.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

712 Volume 1 Microsoft Windows Base Services

IDiskQuotaUser: :GetName
Retrieves the name strings associated with a disk quota user.

Parameters
pszAccountContainer

Pointer to the buffer to receive the name of the user's account container. This value
can be NULL. For Windows NT 4.0 accounts, or for other accounts on without
directory service information, this string is simply the domain name. For accounts with
directory service information available, this string is a canonical name with the
terminating object name removed.

cchAccountContainer
Size of the account container buffer, in characters. Ignored if pszAccountContainer is
NULL.

pszLogonName
Pointer to the buffer to receive the name the user specified to log on the computer.
This value can be NULL. The format of the name returned depends on whether
directory service information is available.

cchLogonName
Size of the logon name buffer, in characters. Ignored if pszLogonName is NULL.

pszDisplayName
Pointer to the buffer to receive the display name for the quota user. This value can be
NULL. If the information is not available, the string returned is of zero length.

cchDisplayName
Size of the display-name buffer, in characters. Ignored if pszDisplayName is NULL.

Return Values
This method returns one of the following values.

Value

NOERROR

ERROR_LOCK_FAILED

Meaning

Success.

Failure to obtain an exclusive lock.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 713

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :GetQuotalnformation
Retrieves the values for the user's warning threshold, hard quota limit, and quota used.

Parameters
pbQuotalnfo

Pointer to the DISKQUOTA_USER_INFORMATION structure to receive the quota
information.

cbQuotalnfo
Size of the quota information structure, in bytes.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_LOCK_FAILED

E_I NVALI DARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

Failure to obtain an exclusive lock.

The pQuotalnfo parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

714 Volume 1 Microsoft Windows Base Services

Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems OveNiew, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser:: GetQuotaLimit
Retrieves the user's quota limit value on the volume. The limit is set as the maximum
amount of disk space available to the volume user.

Parameters
pI/Limit

Pointer to the variable to receive the limit value. If this value is -1, the user has a
unlimited quota.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_LOCK_FAILED

E_INVALIDARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

Failure to obtain an exclusive lock.

The pI/Limit parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

Chapter 10 File Systems 715

IDiskQuotaUser::GetQuotaLimitText
Retrieves the user's quota limit for the volume. This limit is expressed as a text string, for
example "10.5 MB". If the user has no quota limit, the string returned is "No Limit"
(localized). If the destination buffer is too small, the string is truncated to fit the buffer.

Parameters
pszText

Pointer to the buffer to receive the text string.

cchText
Size of the buffer, in characters.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_LOCK_FAILED

E_I NVALI DARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Success.

The caller has insufficient access rights.

Failure to obtain an exclusive lock.

The pszText parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

716 Volume 1 Microsoft Windows Base Services

I DiskQuotaUser: :GetQuotaThreshold
Retrieves the user's warning threshold value on the volume. The threshold is an arbitrary
value set by the volume's quota administrator. You can use it to identify users who are
approaching their hard quota limit.

Parameters
pI/Threshold

Pointer to a variable to receive the warning threshold value.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR Success.

ERROR_ACCESS_DENIED The caller has insufficient access rights.

ERROR_LOCK_FAILED Failure to obtain an exclusive lock.

E_I NVALI DARG The pI/Threshold parameter is NULL.

E_OUTOFMEMORY Insufficient memory.

E_FAIL An unexpected file system error occurred.

E_UNEXPECTED An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems OveNiew, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :GetQuotaThresholdText
Retrieves the user's warning threshold for the volume. This threshold is expressed as a
text string, for example "10.5 MB". If the user's threshold is unlimited, the string returned
is "No Limit" (localized). If the destination buffer is too small, the string is truncated to fit
the buffer.

HRESULT GetQuotaThresholdText(
. LPW$TR ps~Text.

DWGRD. cchText·
);., ,

Parameters
pszText

Pointer to the buffer to receive the text string.

cchText
Size of the destination buffer, in characters.

Return Values
This method returns one of the following values.

Value Meaning

NOERROR Success.

Chapter 10 File Systems 717

ERROR_ACCESS_DENIED The caller has insufficient access rights.

ERROR_LOCK_FAILED Failure to obtain an exclusive lock.

E_INVALIDARG The pszTextparameter is NULL.

E_OUTOFMEMORY Insufficient memory.

E_FAIL An unexpected file system error occurred.

E_UNEXPECTED An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :GetQuotaUsed
Retrieves the user's quota used value on the volume. This is the amount of information
stored on the volume by the user. Note that this is the amount of uncompressed
information. Therefore, the use of NTFS compression does not affect this value.

718 Volume 1 Microsoft Windows Base Services

Parameters
pI/Used

Pointer to the variable to receive the quota used value.

Return Values
This method returns a file system error or one of the following values.

Value

NOERROR

ERROR_ACCESS_DENIED

ERROR_LOCK_FAILED

E_I NVALI DARG

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Meaning

Success.

The caller has insufficient access rights.

Failure to obtain an exclusive lock.

The pI/Used parameter is NULL.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

I DiskQuotaUser: : GetQuotaUsedText
Retrieves the user's quota used value for the volume. This value is expressed as a text
string, for example "10.5 MB". If the destination buffer is too small, the string is truncated
to fit the buffer.

Parameters
pszText

Pointer to the buffer to receive the text string.

cchText
Size of the buffer, in bytes.

Chapter 10 File Systems 719

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR Success.
ERROR_ACCESS_DENIED The caller has insufficient access rights.

ERROR_LOCK_FAILED Failure to obtain an exclusive lock.

E_INVALIDARG The pszTextparameter is NULL.

E_OUTOFMEMORY Insufficient memory.

E_FAIL An unexpected file system error occurred.

E_UNEXPECTED An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :GetSid

Parameters
pbSidBuffer

Pointer to the buffer to receive the SID.

cbSidBuffer
Size of the buffer, in bytes. Use the IDiskQuotaUser::GetSidLength method to
obtain the required size for the buffer.

Return Values
This method returns one of the following values:

:"," ,"

720 Volume 1 Microsoft Windows Base Services

Value

NOERROR

E_INVALIDARG

ERROR_INVALID_SID

ERROR_INSUFFICI ENT _BUFFER

ERROR_LOCK_FAILED

Meaning

Success.

ThepbSidBufferparameter is NULL.

The SID for the user is invalid.

Insufficient destination buffer size.

Failure to obtain an exclusive lock.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :GetSidLength
Retrieves the length of the user's security identifier (SID), in bytes. Use the return value
to determine the size of the destination buffer you pass to IDiskQuotaUser::GetSid.

Parameters
pdwLength

Pointer to the variable to receive the SID length, in bytes.

Return Values
This method returns one of the following values.

Value Meaning

NOERROR

E_INVALIDARG

ERROR_INVALID_SID

ERROR_LOCK_FAILED

Success.

The pdwLength parameter is NULL.

The SID for the user is invalid.

Failure to obtain an exclusive lock.

D[tii~tr~ments
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 721

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser::lnvalidate
Invalidates the quota information stored in the quota user object. The next time
information is requested, it is refreshed from disk.

HRE$U~lin!{oal,1d~te{y(),1;~)j,2';.,.,····.

Parameters
This method has no parameters.

Return Values
This method returns NOERROR.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUser: :SetQuotaLimit
Sets the user's quota limit value on the volume. The limit is set as the maximum amount
of disk space available to the volume user.

'ij'f

722 Volume 1 Microsoft Windows Base Services

Parameters
IlLimit

Specifies the limit value, in bytes. If this value is -1, the user has an unlimited quota.

fWrite Through
If this value is TRUE, the value is written immediately to the volume's quota file.
Otherwise, the value is written only to the quota user object's local memory. This
value should typically be set to TRUE. Set it to FALSE when using the
IDiskQuotaUserBatch interface to modify multiple user quota entries at once.

Return Values
This method returns a file system error or one of the following values.

Value Meaning

NOERROR

ERROR_ACCESS_DENIED

ERROR_LOCK_FAILED

E_FAIL

Success.

The caller has insufficient access rights.

Failure to obtain an exclusive lock.

An unexpected file system error occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

I DiskQuotaUser: :SetQuotaThreshold
Sets the user's warning threshold value on the volume. The threshold is an arbitrary
value set by the volume's quota administrator. You can use it to identify users who are
approaching their hard quota limit.

Parameters
IIThreshold

Specifies the warning threshold value.

Chapter 10 File Systems 723

fWrite Through
If this value is TRUE, the value is written immediately to the volume's quota file.
Otherwise, the value is written only to the quota user object's local memory. This
value should typically be set to TRUE. Set it to FALSE when using the
IDiskQuotaUserBatch interface to modify multiple user quota entries at the same
time.

Return Values
This method returns a file system error or one of the following values.

Value

NOERROR

ERROR_ACCESS_DENIED

ERROR_LOCK_FAILED

E_FAIL

Meaning

Success.

The caller has insufficient access rights.

Failure to obtain an exclusive lock.

An unexpected file system error occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUser

IDiskQuotaUserBatch
The IDiskQuotaUserBatch interface enables you to add multiple quota user objects to a
container that is then submitted for update in a single call. This reduces the number of
calls to the underlying file system, improving update efficiency when a large number of
user objects must be updated. This interface is instantiated by using the
IDiskQuotaControl: :CreateUserBatch method.

Virtual Function Table

IUnknown Methods
Querylnterface
AddRef
Release

724 Volume 1 Microsoft Windows Base Services

IDiskQuotaUserBatch Methods
Add
Remove
RemoveAIi
FlushToDisk

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces

IDiskQuotaUserBatch: :Add
Adds an IDiskQuotaUser pOinter to the batch list. This method calls AddRef on the
pUser interface pointer. Release is automatically called on each contained
IDiskQuotaUser interface pointer when the batch object is destroyed.

When setting values on a quota user object in preparation for batch processing, specify
FALSE for the fWriteThrough parameter in the IDiskQuotaUser::SetQuotaLimit and
IDiskQuotaUser::SetQuotaThreshold methods. This stores the values in memory
without writing to disk. To write the changes to disk, call the
IDiskQuotaUserBatch:: FlushToDisk method.

Parameters
pUser

Pointer to the quota user object's IDiskQuotaUser interface.

Return Values
This method returns one of the following values.

Value Meaning

NOERROR

E_INVALIDARG

Success.

The pUser parameter is NULL.

Chapter 10 File Systems 725

Insufficient memory. E_OUTOFMEMORY

E_UNEXPECTED An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUserBatch

I DiskQuotaUserBatch:: Remove
Removes an IDiskQuotaUser pointer from the batch list.

Parameters
pUser

Pointer to the quota user object's IDiskQuotaUser interface.

Return Values
This method returns one of the following values.

Value

S_OK

S_FALSE

E_I NVALI DARG

E_UNEXPECTED

Meaning

Success.

Quota user object not found in batch.

The pUser parameter is NULL.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

726 Volume 1 Microsoft Windows Base Services

File Systems Overview, File System Interfaces, IDiskQuotaUserBatch

IDiskQuotaUserBatch:: RemoveAl1
Removes all IDiskQuotaUser pointers from the batch list.

Parameters
This method has no parameters.

Return Values
This method returns one of the following values.

Value Meaning

NOERROR

E_UNEXPECTED

Success.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUserBatch

IDiskQuotaUserBatch:: FlushToDisk
Writes user object changes to disk in a single call to the underlying file system.

Parameters
This method has no parameters.

Return Values
This method returns a file system error or one of the following values:

Value

NOERROR

ERROR_ACCESS_DENIED

E_OUTOFMEMORY

E_FAIL

E_UNEXPECTED

Remarks

Chapter 10 File Systems 727

Meaning

Success.

The caller has insufficient access rights.

Insufficient memory.

An unexpected file system error occurred.

An unexpected exception occurred.

There are limitations on the amount of information that can be written to disk in a single
call to the file system. The flush operation may generate multiple calls to the file system.
Nonetheless, the batch operation wi" be more efficient than a single call for each user
object.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IDiskQuotaUserBatch

IEnumDiskQuotaUsers
The IEnumDiskQuotaUsers interface enumerates user quota entries on the volume.
This interface is instantiated by using the IDiskQuotaControl::CreateEnumUsers
method.

Virtual Function Table

IUnknown Methods
Querylnterface
AddRef
Release

IEnumDiskQuotaUsers Methods
Next
Skip
Reset
Clone

728 Volume 1 Microsoft Windows Base Services

Remarks
To use this interface, the client directs an object that maintains a collection of items to
create an enumerator object. By repeatedly calling the Next method, the client gets
successive pOinters to each item in the collection.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces

IEnumDiskQuotaUsers: :Clone
Creates another enumerator that contains the same enumeration state as the current
one. Using this method, a client can record a particular pOint in the enumeration
sequence, and then return to that point at a later time. The new enumerator supports the
same interface as the original one.

Parameters
ppEnum

Pointer to the variable to receive the IEnumDiskQuotaUsers interface pOinter. If the
method is unsuccessful, the value of this variable is undefined.

Return Values
This method returns one of the following values.

Value Meaning

E_INVALIDARG

E_OUTOFMEMORY

E_UNEXPECTED

The ppEnum parameter is NULL.

Insufficient memory.

An unexpected exception occurred.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 729

File Systems Overview, File System Interfaces, IEnumDiskQuotaUsers

IEnumDiskQuotaUsers:: Next
Retrieves the next cUsers items in the enumeration sequence. If there are fewer than the
requested number of elements left in the sequence, it retrieves the remaining elements.
The number of elements actually retrieved is returned through pcUsersFetched (unless
the caller passed in NULL for that parameter).

Parameters
cUsers

Specifies the number of elements being requested.

rgUsers
Array of size cUsers or larger.

pcUsersFetched
Pointer to the number of elements actually supplied in rgUsers. The caller can pass in
NULL if cUsers is one.

Return Values
The return value is NOERROR if the number of elements supplied is cUsers; otherwise,
the return value is S_FALSE.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IEnumDiskQuotaUsers

730 Volume 1 Microsoft Windows Base Services

IEnumDiskQuotaUsers:: Reset
Resets the enumeration sequence to the beginning.

,HRES~~:if~.t:i'~~1dfj;;r;-:;'··,,',)'·"'i:·::;'··· .

Parameters
This method has no parameters.

Return Values
The return value is NOERROR.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

File Systems Overview, File System Interfaces, IEnumDiskQuotaUsers

IEnumDiskQuotaUsers: :Skip
Skips over the next specified number of elements in the enumeration sequence.

f;jtt~u ~ T':S~tpt,:.. ..
':;' f)\fPRP.c:O$~r~': '" .
);-';< .',.. .,.,' •. :'"

Parameters
cUsers

Specifies the number of elements to be skipped.

Return Values
The return value is NOERROR if the number of elements skipped is cUsers; otherwise,
the return value is S_FALSE.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

Chapter 10 File Systems 731

File Systems Overview, File System Interfaces, IEnumDiskQuotaUsers

File System Structures

DISKQUOTA_ USER_INFORMATION
The DISKQUOTA_USER_INFORMATION structure represents the per-user quota
information.

Members
QuotaUsed

Disk space charged to the user, in bytes. This is the amount of information stored, not
necessarily the number of bytes used on disk.

QuotaThreshold
Warning threshold for the user, in bytes. You can use the
IDiskQuotaControl::SetQuotaLogFlags method to configure the system to generate
a system logfile entry when the disk space charged to the user exceeds this value.

QuotaLimit
Quota limit for the user, in bytes. You can use the
IDiskQuotaControl::SetQuotaLogFlags method to configure the system to generate
a system logfile entry when the disk space charged to the user exceeds this value.
You can also use the IDiskQuotaControl::SetQuotaState method to configure the
system to deny additional disk space to the user when the disk space charged to the
user exceeds this value.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in dskquota.h.

732 Volume 1 Microsoft Windows Base Services

File Systems Overview, File System Structures,
IDiskQuotaControl: :SetQuotaLogFlags, IDiskQuotaControl: :SetQuotaState,
IDiskQuotaUser::GetQuotalnformation

The EFS_CERTIFICATE_BLOB structure contains a certificate.

Members
dwCertEncodingType

Specifies the certificate encoding type. This member can be one of the following
values.

CRYPT _ASN_ENCODING
CRYPT _NDR_ENCODING
X509_ASN_ENCODING
X509_NDR_ENCODING

cbData
Specifies the number of bytes in the pbData buffer.

pbData
A binary certificate. The format of this certificate is specified by the
dwCertEncodingType member.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.

File Systems Overview, File System Structures, ENCRYPTION_CERTIFICATE

Chapter 10 File Systems 733

The EFS_HASH_BLOB structure contains a certificate hash.

typ~~'f' struc:t' _EfS:":HASit.BLOB{'
• DWQRD chData; ". .

·: .. R6VTE.pii6~~a.::'· :'. ,
}. 'EF~ U)\SH.···BtOfr\(lp"f!s···t1i;:~ii ;.8 i:;"I1 •. ': ••

, ~.~", ,_, .",',,' ,Ifo,' ,/ .. r~F ,~l~~·~~ .. ~~l;f.f

Members
cbData

Specifies the number of bytes in the pbData buffer.

pbData
The certificate hash.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.

File Systems Overview, File System Structures, ENCRYPTION_CERTIFICATE_HASH

ENCRYPTION_CERTIFICATE
The ENCRYPTION_CERTIFICATE structure contains a certificate.

Members
cbTotalLength

The length of this structure, in bytes.

pUserSid
The SID of the user who owns the certificate.

pCertBlob
Pointer to an EFS_CERTIFICATE_BLOB structure.

734 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.

File Systems OveNiew, File System Structures, EFS_CERTIFICATE_BLOB,
ENCRYPTION_CERTIFICATE_LIST, SetUserFileEncryptionKey

ENCRYPTION_ CERTIFICATE_HASH
The ENCRYPTION_CERTIFICATE_HASH structure contains a certificate hash.

Members
cbTotalLength

The length of this structure, in bytes.

pUserSid
The SID of the user who owns the certificate.

pHash
Pointer to an EFS_HASH_BLOB structure.

IpDisplaylnformation

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.

File Systems Overview, File System Structures, EFS_HASH_BLOB,
ENCRYPTION_CERTIFICATE_HASH_LIST

Chapter 10 File Systems 735

ENCRVPTION_ CERTIFICATE_HASH_LIST
The ENCRYPTION_CERTIFICATE_HASH_LIST structure is a list of certificate hashes.

typedef .struc:t _ENCRYPTION_CERTIFICATE.....HASH_LIST{·
D~ORD. nCert.Jias h:

. PENCRYPTION_CERTIFICATLHASH *pUsers:
) .~.NCRYPTION_CERTIFICATLHASH_LlST. ·:*PENCRYPTION:,..CERTIFICATLHASH .. LJSTi '
Members
nCerCHash

Specifies the number of certificate hashes in the list.

pUsers
Pointer to the first ENCRYPTION_CERTIFICATE_HASH structure in the list.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.

File Systems Overview, File System Structures, ENCRYPTION_CERTIFICATE_HASH,
FreeEncryptionCertificateHashList, QueryRecoveryAgentsOnEncryptedFile,
QueryUsersOnEncryptedFile, RemoveUsersFromEncryptedFile

ENCRVPTION_ CERTIFICATE_LIST
The ENCRYPTION_CERTIFICATE_L1ST structure is a list of certificates.

tlpet~t'syU(:t .; . .ENCIt'YPlrpN ... CERTI FICATL~IST ,{

'.' ::~~~~~Y~f~~!~~«hf'lCAT·t ~PU$e~s ~ , '"
'j:; E'MC~¥PT ~ OtL.~ERT I f:1 PA Tf;~LlS;r" • Pt'NCRlRTIQ N,if RH f ~ CATLLJ ST :

Members
nUsers

Specifies the number of certificates in the list.

pUsers
Pointer to the first ENCRYPTION_CERTIFICATE structure in the list.

736 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winefs.h; include windows.h.

File Systems Overview, File System Structures, AddUsersToEncryptedFile,
ENCRYPTION_CERTIFICATE

File System Macros

IsReparseTagHighLatency
The IsReparseTagHighLatency macro determines whether a reparse point tag has its
high-latency bit set, indicating a file or directory for which the operating system is
expected to be slow to retrieve data.

Parameters
_tag

Reparse point tag to be tested for high latency.

Return Values
The return value is a ULONG that must be treated as zero or nonzero. A nonzero return
value means that the tag's high-latency bit is set. A zero return value means that the
tag's high-latency bit is not set.

Remarks
If the tag has its high-latency bit set, expect the operating system to be slow to retrieve
the first byte of file or directory data. An example of such a file is one residing on very
slow mass storage. Your application should display some indication to users that
retrieval is in progress.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.

Chapter 10 File Systems 737

Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File Systems Overview, File System Macros

IsReparseTagMicrosoft
The IsReparseTagMicrosoft macro determines whether a reparse point tag indicates a
Microsoft reparse point.

Parameters
_tag

Reparse point tag to be tested.

Return Values
The return value is a ULONG that must be treated as zero or nonzero. A nonzero return
value indicates that the tag is a Microsoft tag. A zero return value indicates that the tag is
not a Microsoft tag. Only software developed by Microsoft or in partnership with
Microsoft can use Microsoft tags. All other software must use non-Microsoft tags.

Remarks
If the Microsoft tag bit is set, Microsoft provides the tag. All other tags must use zero for
this bit.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File Systems Overview, File System Macros

738 Volume 1 Microsoft Windows Base Services

IsReparseTagNameSurrogate
The IsReparseTagNameSurrogate macro determines whether a tag's associated
reparse point is a surrogate for another named entity, for example a mount volume point.

Parameters
_tag

Reparse point tag to be tested for surrogacy.

Return Values
The return value is a ULONG that must be treated as zero or nonzero. A nonzero return
value means that the tag indicates a surrogate reparse point. A zero return value means
that the tag does not indicate a surrogate reparse point.

Remarks
If the surrogacy bit is set, the file or directory represents another named entity in the
system, such as a volume mounted at this directory. For more information on volume
mounting, see Volume Mount Points and Mounting Volumes.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Windows CE: Unsupported.
Header: Declared in winnt.h; include windows.h.

File Systems OveNiew, File System Macros

Disk Quota Interface Error Codes
The following error codes are custom HRESULT values defined in DSKQUOTA.H. They
are returned by the disk quota interfaces, along with some of the standard HRESUL T
values.

Error

ERROR_ACCESS_DENIED

ERROR_BAD_PATHNAME

ERROR_FILE_NOT _FOUND

Meaning

The caller has insufficient access rights.

The requested path name is invalid.

The specified user account cannot be located.

ERROR_INITIALIZED

ERROR_INVALlD_NAME

ERROR_INVALlD_SID

ERROR_LOCK_FAILED

ERROR_NO_MORE_ITEMS

ERROR_NO_QUOTAS_FS

ERROR_NO_SID_MAPPING

ERROR_NOT _INITIALIZED

ERROR_NOT_SUPPORTED

ERROR_PATH_NOT _FOUND

ERROR_USER_HAS_FILES

ERROR_USER_UNKNOWN

Chapter 10 File Systems 739

The object has already been initialized.
Multiple initialization is not allowed.

There is insufficient memory to complete the
operation.

The requested file path is invalid.

The SID for the user is invalid.

Failure to obtain an exclusive lock.

There are no more items in the enumeration.

The file system does not support quotas.
Currently, the file system must be NTFS.

The file system version does not support
quotas. Currently, the file system must be
Windows 2000 NTFS or later.

There is no mapping available for the SID.

The object has not been initialized.
Initialization must be completed before the
operation can be performed.

The operation or capability is not supported.

The requested file path was not found.

The user owns files on the volume.

The specified user is unknown.

CHAPTER 11

Structured Exception and
Error Handling

Structured Exception Handling

741

An exception is an event that occurs during the execution of a program, and requires the
execution of code outside the normal flow of control. There are two kinds of exceptions:
hardware exceptions and software exceptions. Hardware exceptions are initiated by the
CPU. They can result from the execution of certain instruction sequences, such as
division by zero or an attempt to access an invalid memory address. Software
exceptions are initiated explicitly by applications or the operating system. For example,
the system can detect when an invalid parameter value is specified.

Structured exception handling is a mechanism for handling both hardware and software
exceptions. Therefore, your code will handle hardware and software exceptions
identically. Structured exception handling enables you to have complete control over the
handling of exceptions, provides support for debuggers, and is usable across all
programming languages and machines.

The system also supports termination handling, which enables you to ensure that
whenever a guarded body of code is executed, a specified block of termination code is
also executed. The termination code is executed regardless of how the flow of control
leaves the guarded body. For example, a termination handler can guarantee that clean­
up tasks are performed even if an exception or some other error occurs while the
guarded body of code is being executed.

About Structured Exception Handling
The structured exception handling and termination handling mechanisms are integral
parts of the system; they enable the system to be robust. You can use these
mechanisms to create consistently robust and reliable applications.

Structured exception handling is made available primarily through compiler support. For
example, the Microsoft 32-bit C/C++ Optimizing Compiler supports the _try keyword
that identifies a guarded body of code, the _except keyword that identifies an
exception handler, and the _finally keyword that identifies a termination handler.
Although this overview uses examples specific to the Microsoft C/C++ compiler, other
compilers provide this support as well.

742 Volume 1 Microsoft Windows Base Services

Exception Handling
Exceptions can be initiated by hardware or software, and can occur in kernel-mode as
well as user-mode code. Structured exception handling provides a single mechanism for
the handling of kernel-mode and user-mode exceptions.

The execution of certain instruction sequences can result in exceptions that are initiated
by hardware. For example, an access violation is generated by the hardware when a
process attempts to read from or write to a virtual address to which it does not have the
appropriate access.

Events that require exception handling may also occur during execution of a software
routine (for example, when an invalid parameter value is specified). When this happens,
a thread can initiate an exception explicitly by calling the RaiseException function. This
function enables the calling thread to specify information that describes the exception.

An exception can be continuable or noncontinuable. A noncontinuable exception arises
when the event is not continuable in the hardware, or if continuation makes no sense. A
noncontinuable exception does not terminate the application. Therefore, an application
may be able to catch the exception and run. However, a noncontinuable exception
typically arises as a result of a corrupted stack or other serious problem, making it
difficult to recover from the exception.

Exception Dispatching
When a hardware or software exception occurs, the processor stops execution at the
point at which the exception occurred and transfers control to the system. First, the
system saves both the machine state of the current thread and information that
describes the exception. The system then attempts to find an exception handler to
handle the exception.

The machine state of the thread in which the exception occurred is saved in a CONTEXT
structure. This information (called the context record) enables the system to continue
execution at the point of the exception if the exception is successfully handled. The
description of the exception (called the exception record) is saved in an
EXCEPTION_RECORD structure. Because it stores the machine-dependent information
of the context record separately from the machine-independent information of the
exception record, the exception-handling mechanism is portable to different platforms.

The information in both the context and exception records is available by means of the
GetExceptionlnformation function, and can be made available to any exception
handlers that are executed as a result of the exception. The exception record includes
the following information.

• An exception code that identifies the type of exception.

• Flags indicating whether the exception is continuable. Any attempt to continue
execution after a noncontinuable exception generates another exception.

• A pointer to another exception record. This facilitates creation of a linked list of
exceptions if nested exceptions occur.

Chapter 11 Structured Exception and Error Handling 743

• The address at which the exception occurred.

• An array of 32-bit arguments that provide additional information about the exception.

When an exception occurs in user-mode code, the system uses the following search
order to find an exception handler:

1. If the process is being debugged, the system notifies the debugger. For more
information, see Debugger Exception Handling.

2. If the process is not being debugged, or if the associated debugger does not handle
the exception, the system attempts to locate a frame-based exception handler by
searching the stack frames of the thread in which the exception occurred. The system
searches the current stack frame first, then searches through preceding stack frames
in reverse order.

3. If no frame-based handler can be found, or no frame-based handler handles the
exception, but the process is being debugged, the system notifies the debugger a
second time.

4. If the process is not being debugged, or if the associated debugger does not handle
the exception, the system provides default handling based on the exception type. For
most exceptions, the default action is to call the ExitProcess function.

When an exception occurs in kernel-mode code, the system searches the stack frames
of the kernel stack in an attempt to locate an exception handler. If a handler cannot be
located or no handler handles the exception, the system is shut down as if the
ExitWindows function had been called.

Debugger Exception Handling
The system's handling of user-mode exceptions provides support for sophisticated
debuggers. If the process in which an exception occurs is being debugged, the system
generates a debug event. If the debugger is using the WaitForDebugEvent function, the
debug event causes that function to return with a pOinter to a DEBUG_EVENT structure.
This structure contains the process and thread identifiers the debugger can use to
access the thread's context record. The structure also contains an
EXCEPTION_DEBUG_INFO structure that includes a copy of the exception record.

When the system is searching for an exception handler, it makes two attempts to notify a
process's debugger. The first notification attempt provides the debugger with an
opportunity to handle breakpoint or Single-step exceptions. This is known as first-chance
notification. The user can then issue debugger commands to manipulate the process's
environment before any exception handlers are executed. The second attempt to notify
the debugger occurs only if the system is unable to find a frame-based exception
handler that handles the exception. This is known as last-chance notification. If the
debugger does not handle the exception after the last-chance notification, the system
terminates the process being debugged.

At each notification attempt, the debugger uses the ContinueDebugEvent function to
return control to the system. Before returning control, the debugger can handle the

744 Volume 1 Microsoft Windows Base Services

exception and modify the thread state as appropriate, or it can choose not to handle the
exception. Using ContinueDebugEvent, the debugger can indicate that it has handled
the exception, in which case the machine state is restored and thread execution is
continued at the point at which the exception occurred. The debugger can also indicate
that it did not handle the exception, which causes the system to continue its search for
an exception handler.

Floating-Point Exceptions
By default, the system has all FP exceptions turned off. Therefore, computations result in
NAN or INFINITY, rather than an exception. Before you can trap floating-point (FP)
exceptions using structured exception handling, you must call the _controlfp C run-time
library function as follows:

This turns on all possible FP exceptions To trap only particular exceptions, use only the
flags that correspond to the exceptions to be trapped. Note that any handler for FP
errors should call_clearfp as its first FP instruction. This function clears floating-point
exceptions.

Frame-Based Exception Handling
A frame-based exception handler allows you to deal with the possibility that an exception
may occur in a certain sequence of code. A frame-based exception handler consists of
the following elements.

• A guarded body of code

• A filter expression

• An exception-handler block

Frame-based exception handlers are declared in language-specific syntax. For example,
in the Microsoft C/C++ Optimizing Compiler, they are implemented using _try and
_except. For more information, see Handler Syntax.

The guarded body of code is a set of one or more statements for which the filter expression
and the exception-handler block provide exception-handling protection. The guarded body
can be a block of code, a set of nested blocks, or an entire procedure or function. Using the
Microsoft C/C++ Optimizing Compiler, a guarded body is enclosed by braces ({}) following
the _try keyword.

Chapter 11 Structured Exception and Error Handling 745

The filter expression of a frame-based exception handler is an expression that is
evaluated by the system when an exception occurs within the guarded body. This
evaluation results in one of the following actions by the system.

• The system stops its search for an exception handler, restores the machine state, and
continues thread execution at the point at which the exception occurred.

• The system continues its search for an exception handler.

• The system transfers control to the exception handler, and thread execution continues
sequentially in the stack frame in which the exception handler is found. If the handler
is not in the stack frame in which the exception occurred, the system unwinds the
stack, leaving the current stack frame and any other stack frames until it is back to the
exception handler's stack frame. Before an exception handler is executed, termination
handlers are executed for any guarded bodies of code that terminated as a result of
the transfer of control to the exception handler. For more information about
termination handlers, refer to Termination Handling.

The filter expression can be a simple expression, or it can invoke a filter function that
attempts to handle the exception. You can call the GetExceptionCode and
GetExceptionlnformation functions from within a filter expression to get information
about the exception being filtered. GetExceptionCode returns a code that identifies the
type of exception, and GetExceptionlnformation returns a pOinter to an
EXCEPTION_POINTERS structure that contains pointers to CONTEXT and
EXCEPTION_RECORD structures.

These functions cannot be called from within a filter function, but their return values can
be passed as parameters to a filter function. GetExceptionCode can be used within the
exception-handler block, but GetExceptionlnformation cannot because the information
it pOints to is typically on the stack and is destroyed when control is transferred to an
exception handler. However, an application can copy the information to safe storage to
make it available to the exception handler.

The advantage of a filter function is that it can handle an exception and return a value
that causes the system to continue execution from the point at which the exception
occurred. With an exception-handler block, in contrast, execution continues sequentially
from the exception handler rather than from the point of the exception.

Handling an exception may be as simple as noting an error and setting a flag that will be
examined later, printing a warning or error message, or taking some other limited action.
If execution can be continued, it may also be necessary to change the machine state by
modifying the context record. For an example of a filter function that handles a page fault
exception, see Using the Virtual Memory Functions.

The UnhandledExceptionFilter function can be used as a filter function in a filter
expression. It returns EXCEPTION_EXECUTE_HANDLER unless the process is being
debugged, in which case it returns EXCEPTION_CONTINUE_SEARCH.

746 Volume 1 Microsoft Windows Base Services

Termination Handling
A termination handler ensures that a specific block of code is executed whenever flow of
control leaves a particular guarded body of code. A termination handler consists of the
following elements.

• A guarded body of code

• A block of termination code to be executed when the flow of control leaves the
guarded body

Termination handlers are declared in language-specific syntax. Using the Microsoft
C/C++ Optimizing Compiler, they are implemented using _try and _finally. For more
information, see Handler Syntax.

The guarded body of code can be a block of code, a set of nested blocks, or an entire
procedure or function. Whenever the guarded body is executed, the block of termination
code will be executed. The only exception to this is when the thread terminates during
execution of the guarded body (for example, if the ExitThread or ExitProcess function
is called from within the guarded body).

The termination block is executed when the flow of control leaves the guarded body,
regardless of whether the guarded body terminated normally or abnormally. The guarded
body is considered to have terminated normally when the last statement in the block is
executed and control proceeds sequentially into the termination block. Abnormal
termination occurs when the flow of control leaves the guarded body due to an
exception, or due to a control statement such as return, goto, break, or continue. The
AbnormalTermination function can be called from within the termination block to
determine whether the guarded body terminated normally.

Handler Syntax
This section describes the syntax and usage of structured exception handling as
implemented in the Microsoft C/C++ Optimizing Compiler. The following keywords are
interpreted by the compiler as part of the structured exception-handling mechanism.

Keyword

_except

_finally

Description

Begins a guarded body of code. Used with the _except keyword to
construct an exception handler, or with the _finally keyword to
construct a termination handler.

Begins a block of code that is executed only when an exception occurs
within its associated _try block.

Begins a block of code that is executed whenever the flow of control
leaves its associated _try block.

Allows for immediate termination of the _try block without causing
abnormal termination and its performance penalty.

The compiler also interprets the GetExceptionCode, GetExceptionlnformation, and
AbnormalTermination functions as keywords, and their use outside the appropriate

Chapter 11 Structured Exception and Error Handling 747

exception-handling syntax generates a compiler error. The following are brief
descriptions of these functions.

Function Description

GetExceptionCode Returns a code that identifies the type of exception. This
function can be called only from within the filter
expression or the exception-handler block.

GetExceptionlnformation Returns a pointer to an EXCEPTION_POINTERS
structure containing pointers to the context record and the
exception record. This function can be called only from
within the filter expression of an exception handler.

AbnormalTermination Indicates whether the flow of control left the associated
_try block sequentially after executing the last statement
in the block. This function can be called only from within
the _finally block of a termination handler.

Exception-Handler Syntax
The _try and _except keywords are used to construct a frame-based exception
handler. The following example shows the structure of an exception handler.

Note that the _try block and the exception-handler block require braces ({}). Using a
90to statement to jump into the body of a _try block or into an exception-handler block
is not permitted. This rule applies to both exception handlers and termination handlers.

The _try block contains the guarded body of code that the exception handler protects.
A function can have any number of exception handlers, and these exception-handling
statements can be nested within the same function or in different functions. If an
exception occurs within the _try block, the system takes control and begins the search
for an exception handler. For a detailed description of this search, see Exception
Handling.

The exception handler receives only exceptions that occur within a single thread. This
means that if a _try block contains a call to the CreateProcess or CreateThread
function, exceptions that occur within the new process or thread are not dispatched to
this handler.

748 Volume 1 Microsoft Windows Base Services

The system evaluates the filter expression of each exception handler guarding the code
in which the exception occurred until either the exception is handled or there are no
more handlers. A filter expression must be evaluated as one of the three following
values.

Value

EXCEPTION_EXECUTE_HANDLER

EXCEPTION_CONTINUE_SEARCH

EXCEPTION_CONTINUE_EXECUTION

Meaning

The system transfers control to the
exception handler, and execution
continues in the stack frame in which the
handler is found.

The system continues to search for a
handler.

The system stops its search for a handler
and returns control to the point at which
the exception occurred. If the exception is
noncontinuable, this results in an
EXCEPTION_NONCONTINUABLE_EXC
EPTION exception.

The filter expression is evaluated in the context of the function in which the exception
handler is located, even though the exception may have occurred in a different function.
This means that the filter expression can access the function's local variables. Similarly,
the exception-handler block can access the local variables of the function in which it is
located.

For more information about filter expressions and filter functions, see Frame-Based
Exception Handling.

Termination-Handler Syntax
The _try and _finally keywords are used to construct a termination handler. The
following example shows the structure of a termination handler.

As with the exception handler, both the _try block and the _finally block require
braces ({}), and using a goto statement to jump into either block is not permitted.

Chapter 11 Structured Exception and Error Handling 749

The _try block contains the guarded body of code that is protected by the termination
handler. A function can have any number of termination handlers, and these termination­
handling blocks can be nested within the same function or in different functions.

The _finally block is executed whenever the flow of control leaves the _try block.
However, the _finally block is not executed if you call any of the following functions
within the _try block: ExitProcess, ExitThread, or abort.

The _finally block is executed in the context of the function in which the termination
handler is located. This means that the _finally block can access that function's local
variables. Execution of the _finally block can terminate by any of the following means.

• Execution of the last statement in the block and continuation to the next instruction

• Use of a control statement (return, break, continue, or goto)

• Use of longjmp or a jump to an exception handler

If execution of the _try block terminates because of an exception that invokes the
exception-handling block of a frame-based exception handler, the _finally block is
executed before the exception-handling block is executed. Similarly, a call to the
longjmp C run-time library function from the _try block causes execution of the
_finally block before execution resumes at the target of the longjmp operation. If _try
block execution terminates due to a control statement (return, break, continue, or
goto), the _finally block is executed.

The AbnormalTermination function can be used within the _finally block to determine
whether the _try block terminated sequentially-that is, whether it reached the closing
brace 0). Leaving the _try block because of a call to longjmp, a jump to an exception
handler, or a return, break, continue, or goto statement, is considered an abnormal
termination. Note that failure to terminate sequentially causes the system to search
through all stack frames in reverse order to determine whether any termination handlers
must be called. This can result in performance degradation due to the execution of
hundreds of instructions.

To avoid abnormal termination of the termination handler, execution should continue to
the end of the block. You can also execute the _leave statement. The _leave
statement allows for immediate termination of the _try block without causing abnormal
termination and its performance penalty. Check your compiler documentation to
determine if the _leave statement is supported.

If execution of the _finally block terminates because of the return control statement, it
is equivalent to a goto to the closing brace in the enclosing function. Therefore, the
enclosing function will return.

750 Volume 1 Microsoft Windows Base Services

Structured Exception Handling Reference

AbnormalTermination
The AbnormalTermination function indicates whether the _try block of a termination
handler terminated normally. The function can be called only from within the _finally
block of a termination handler.

Note The Microsoft C/C++ Optimizing Compiler interprets this function as a keyword,
and its use outside the appropriate exception-handling syntax generates a compiler
error.

Parameters
This function has no parameters.

Return Values
If the _try block terminated abnormally, the return value is nonzero.

If the _try block terminated normally, the return value is zero.

Remarks
The _try block terminates normally only if execution leaves the block sequentially after
executing the last statement in the block. Statements (such as return, goto, continue,
or break) that cause execution to leave the _try block result in abnormal termination of
the block. This is the case even if such a statement is the last statement in the _try
block.

Abnormal termination of a _try block causes the system to search backward through all
stack frames to determine whether any termination handlers must be called. This can
result in the execution of hundreds of instructions, so it is important to avoid abnormal
termination of a _try block due to a return, goto, continue, or break statement. Note
that these statements do not generate an exception, even though the termination is
abnormal.

To avoid abnormal termination, execution should continue to the end of the block. You
can also execute the _leave statement. The _leave statement allows for immediate
termination of the _try block without causing abnormal termination and its performance
penalty. Check your compiler documentation to determine if the _leave statement is
supported.

Chapter 11 Structured Exception and Error Handling 751

DffjiU!iirr.ents
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Structured Exception Handling Overview, Structured Exception Handling Functions

GetExceptionCode
The GetExceptionCode function retrieves a code that identifies the type of exception
that occurred. The function can be called only from within the filter expression or
exception-handler block of an exception handler.

Note The Microsoft C/C++ Optimizing Compiler interprets this function as a keyword,
and its use outside the appropriate exception-handling syntax generates a compiler
error.

:b.ilf§G~t~ic,p~t~q~~,~~bl1tt,i~{,~d,dL~L;~': ,'" ," /,' '
Parameters
This function has no parameters.

Return Values
The return value identifies the type of exception. Following are the exception codes likely
to occur due to common programming errors:

Value Meaning

EXCEPTION_BREAKPOINT

EXCEPTION_OAT ATYPE_MISALIGNMENT

EXCEPTION_SINGLE_STEP

The thread attempted to read from or write to
a virtual address for which it does not have
the appropriate access.

A breakpoint was encountered.

The thread attempted to read or write data
that is misaligned on hardware that does not
provide alignment. For example, 16-bit
values must be aligned on 2-byte
boundaries, 32-bit values on 4-byte
boundaries, and so on.

A trace trap or other single-instruction
mechanism signaled that one instruction has
been executed.

(continued)

752 Volume 1 Microsoft Windows Base Services

(continued)

Value Meaning

EXCEPTION_ARRAY _BOUNDS_EXCEEDED The thread attempted to access an array
element that is out of bounds, and the
underlying hardware supports bounds checking.

EXCEPTION_FL T _DENORMAL_OPERAND One of the operands in a floating-point operation
is denormal. A denormal value is one that is too
small to represent as a standard floating-point
value.

EXCEPTION_FL T _DIVIDE_BY _ZERO The thread attempted to divide a floating-point
value by a floating-point divisor of zero.

EXCEPTION_FL T _'NEXACT _RESULT The result of a floating-point operation cannot
be represented exactly as a decimal fraction.

EXCEPTION_FL T _, NVALI D _OPERATION This exception represents any floating-point
exception not included in this list.

EXCEPTION_FL T _OVERFLOW The exponent of a floating-point operation is
greater than the magnitude allowed by the
corresponding type.

EXCEPTION_FL T_STACK_CHECK The stack overflowed or underflowed as the
result of a floating-point operation.

EXCEPTION_FL T _UNDERFLOW The exponent of a floating-point operation is
less than the magnitude allowed by the
corresponding type.

EXCEPTION_'NT _DIVIDE_BY _ZERO The thread attempted to divide an integer value
by an integer divisor of zero.

EXCEPTION_' NT _OVERFLOW The result of an integer operation caused a
carry out of the most significant bit of the result.

EXCEPTION_PRIV _'NSTRUCT'ON The thread attempted to execute an instruction
whose operation is not allowed in the current
machine mode.

EXCEPTION_NONCONTINUABLE_EXCEPTION The thread attempted to continue execution
after a noncontinuable exception occurred.

Remarks
The GetExceptionCode function can be called only from within the filter expression or
exception-handler block of an exception handler. The filter expression is evaluated if an
exception occurs during execution of the _try block, and it determines whether the
_except block is executed.

The filter expression can invoke a filter function. The filter function cannot call
GetExceptionCode. However, the return value of GetExceptionCode can be passed
as a parameter to a filter function. The return value of the GetExceptionlnformation

Chapter 11 Structured Exception and Error Handling 753

function can also be passed as a parameter to a filter function.
GetExceptionlnformation returns a pOinter to a structure that includes the exception­
code information.

In the case of nested handlers, each filter expression is evaluated until one is evaluated
as EXCEPTION_EXECUTE_HANDLER or EXCEPTION_CONTINUE_EXECUTION.
Each filter expression can invoke GetExceptionCode to get the exception code.

The exception code returned is the code generated by a hardware exception, or the
code specified in the RaiseException function for a software-generated exception.

When handling the breakpoint exception, it is important to increment the instruction
pointer in the context record to continue from this exception.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Structured Exception Handling Overview, Structured Exception Handling Functions,
GetExceptionlnformation, RaiseException

GetExceptionlnformation
The GetExceptionlnformation function retrieves a machine-independent description of
an exception, and information about the machine state that existed for the thread when
the exception occurred. This function can be called only from within the filter expression
of an exception handler.

Note The Microsoft C/C++ Optimizing Compiler interprets this function as a keyword,
and its use outside the appropriate exception-handling syntax generates a compiler
error.

'f'Exc:EjT~PP:I*t.:!~t~~~:~rw~~t.t~ri.(jQj'r~~:;':}F::i~:'tWi':;\,i?2:;;:/!t·.)'N;;:!}.;:i;;c'KS~;ii;f~~:;;;

Parameters
This function has no parameters.

Return Values
The return value is a pointer to an EXCEPTION_POINTERS structure that contains
pointers to two other structures: an EXCEPTION_RECORD structure containing a
description of the exception, and a CONTEXT structure containing the machine-state
information.

754 Volume 1 Microsoft Windows Base Services

Remarks
The filter expression (from which the function is called) is evaluated if an exception
occurs during execution of the _try block, and it determines whether the _except
block is executed.

The filter expression can invoke a filter function. The filter function cannot call
GetExceptionlnformation. However, the return value of GetExceptionlnformation can
be passed as a parameter to a filter function.

To pass the EXCEPTION_POINTERS information to the exception-handler block, the
filter expression or filter function must copy the pOinter or the data to safe storage that
the handler can later access.

In the case of nested handlers, each filter expression is evaluated until one is evaluated
as EXCEPTION_EXECUTE_HANDLER or EXCEPTION_CONTINUE_EXECUTION.
Each filter expression can invoke GetExceptionlnformation to get exception
information.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Structured Exception Handling Overview, Structured Exception Handling Functions,
CONTEXT, EXCEPTION_POINTERS, EXCEPTION_RECORD, GetExceptionCode

RaiseException
The RaiseException function raises an exception in the calling thread.

Parameters
dwExceptionCode

[in] Specifies the application-defined exception code of the exception being raised.
The filter expression and exception-handler block of an exception handler can use the
GetExceptionCode function to retrieve this value.

Chapter 11 Structured Exception and Error Handling 755

Note that the system will clear bit 28 of dwExceptionCode before displaying a
message This bit is a reserved exception bit, used by the system for its own
purposes.

dwExceptionFlags
[in] Specifies the exception flags. This can be either zero to indicate a continuable
exception, or EXCEPTION_NONCONTINUABLE to indicate a noncontinuable
exception. Any attempt to continue execution after a noncontinuable exception causes
the EXCEPTION_NONCONTINUABLE_EXCEPTION exception.

nNumberOfArguments
[in] Specifies the number of arguments in the IpArguments array. This value must not
exceed EXCEPTION_MAXI MUM_PARAMETERS. This parameter is ignored if
IpArguments is NULL.

IpArguments
[in] Pointer to an array of arguments. This parameter can be NULL. These arguments
can contain any application-defined data that needs to be passed to the filter
expression of the exception handler.

Return Values
This function does not return a value.

Remarks
The RaiseException function enables a process to use structured exception handling to
handle private, software-generated, application-defined exceptions.

Raising an exception causes the exception dispatcher to go through the following search
for an exception handler:

1. The system first attempts to notify the process's debugger, if any.

2. If the process is not being debugged, or if the associated debugger does not handle
the exception, the system attempts to locate a frame-based exception handler by
searching the stack frames of the thread in which the exception occurred. The system
searches the current stack frame first, then proceeds backward through preceding
stack frames.

3. If no frame-based handler can be found, or no frame-based handler handles the
exception, the system makes a second attempt to notify the process's debugger.

4. If the process is not being debugged, or if the associated debugger does not handle
the exception, the system provides default handling based on the exception type. For
most exceptions, the default action is to call the ExitProcess function.

The values specified in the dwExceptionCode, dwExceptionFlags,
nNumberOfArguments, and IpArguments parameters can be retrieved in the filter
expression of a frame-based exception handler by calling the GetExceptionlnformation
function. A debugger can retrieve these values by calling the WaitForDebugEvent
function.

756 Volume 1 Microsoft Windows Base Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h; include windows.h.
Library: Use kerneI32.lib.

Structured Exception Handling Overview, Structured Exception Handling Functions,
ExitProcess, GetExceptionCode, GetExceptionlnformation, WaitForDebugEvent

SetUnhandledExceptionFilter

Value

The SetUnhandledExceptionFilter function lets an application supersede the top-level
exception handler that Win32 places at the top of each thread and process.

After calling this function, if an exception occurs in a process that is not being debugged,
and the exception makes it to the Win32 unhandled exception filter, that filter will call the
exception filter function specified by the Ip TopLevelExceptionFilter parameter.

Parameters
Ip TopLevelExceptionFilter

[in] Pointer to a top-level exception filter function that will be called whenever the
UnhandledExceptionFilter function gets control, and the process is not being
debugged. A value of NULL for this parameter specifies default handling within
UnhandledExceptionFilter.

The filter function has syntax congruent to that of UnhandledExceptionFilter: It takes
a single parameter of type LPEXCEPTION_POINTERS, and returns a value of type
LONG. The filter function should return one of the following values.

Meaning

EXCEPTION_EXECUTE_HANDLER Return from UnhandledExceptionFilter and execute
the associated exception handler. This usually results
in process termination.

Chapter 11 Structured Exception and Error Handling 757

Value Meaning

EXCEPTION_CONTINUE_EXECUTION Return from Unhand led Exception Filter and continue
execution from the point of the exception. Note that
the filter function is free to modify the continuation
state by modifying the exception information supplied
through its LPEXCEPTION_POINTERS parameter.

EXCEPTION_CONTINUE_SEARCH Proceed with normal execution of
UnhandledExceptionFilter. That means obeying the
SetErrorMode flags, or invoking the Application Error
pop-up message box.

Return Values
The SetUnhandledExceptionFilter function returns the address of the previous
exception filter established with the function. A NULL return value means that there is no
current top-level exception handler.

Remarks
Issuing SetUnhandledExceptionFilter replaces the existing top-level exception filter for
all existing and all future threads in the calling process.

The exception handler specified by IpTopLevelExceptionFilteris executed in the context
of the thread that caused the fault. This can affect the exception handler's ability to
recover from certain exceptions, such as an invalid stack.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wlnbase.h; include windows.h.
Library: Use kerneI32.lib.

Structured Exception Handling Overview, Structured Exception Handling Functions,
UnhandledExceptionFilter

U nhandled Exception Fi Iter
The UnhandledExceptionFilter function passes unhandled exceptions to the debugger,
if the process is being debugged. Otherwise, it optionally displays an Application Error
message box and causes the exception handler to be executed. This function can be
called only from within the filter expression of an exception handler.

~~~l;'8,r,~~ :i::";;'~:'Sii~':"":~!"f'i': 



758 Volume 1 Microsoft Windows Base Services 

Parameters 
Exceptionlnfo 

[in] Pointer to an EXCEPTION_POINTERS structure containing a description of the 
exception and the processor context at the time of the exception. This pointer is the 
return value of a call to the GetExceptionlnformation function. 

Return Values 
The function returns one of the following values. 

Value Meaning 

EXCEPTION_CONTINUE_SEARCH The process is being debugged, so the exception should 
be passed (as second chance) to the application's 
debugger. 

EXCEPTION_EXECUTE_HANDLER If the SEM_NOGPFAUL TERRORBOX flag was specified 
in a previous call to SetErrorMode, no Application Error 
message box is displayed. The function returns control to 
the exception handler, which is free to take any 
appropriate action. 

Remarks 
If the process is not being debugged, the function displays an Application Error message 
box, depending on the current error mode. The default behavior is to display the dialog 
box, but this can be disabled by specifying SEM_NOGPFAUL TERRORBOX in a call to 
the SetErrorMode function. 

The system uses UnhandledExceptionFilter internally to handle exceptions that occur 
during process and thread creation. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Structured Exception Handling Overview, Structured Exception Handling Functions, 
EXCEPTION_POINTERS, GetExceptionlnformation, SetErrorMode, 
SetUnhandledExceptionFilter, UnhandledExceptionFilter 



Chapter 11 Structured Exception and Error Handling 759 

Structured Exception Handling Structures 

EXCEPTION_POINTERS 
The EXCEPTION_POINTERS structure contains an exception record with a machine­
independent description of an exception and a context record with a machine-dependent 
description of the processor context at the time of the exception. 

·~~.~~~~;~}t~!!.Ei:~~£:l!~~::~ed~!~<";;.' .. (,> ""/ "",,:.::', . 
';;{':;~:~;~~~::;:;!=;~~~*;~~;;'~~;~:I;fii{;~"',: ':' ".' :~:..~:,,:.':,:.;i+' 
Members 
Exception Record 

Pointer to an EXCEPTION_RECORD structure that contains a machine-independent 
description of the exception. 

ContextRecord 
Pointer to a CONTEXT structure that contains a processor-specific description of the 
state of the processor at the time of the exception. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnt.h; include windows.h. 

Structured Exception Handling Overview, Structured Exception Handling Structures, 
GetExceptionlnformation, CONTEXT, EXCEPTION_RECORD 

EXCEPTION_RECORD 
The EXCEPTION_RECORD structure describes an exception. 



760 Volume 1 Microsoft Windows Base Services 

Value 

Members 
ExceptionCode 

Specifies the reason the exception occurred. This is the code generated by a 
hardware exception, or the code specified in the RaiseException function for a 
software-generated exception. Following are the exception codes likely to occur due 
to common programming errors: 

Meaning 

The thread tried to read from or write to a 
virtual address for which it does not have the 
appropriate access. 

The thread tried to access an array element 
that is out of bounds and the underlying 
hardware supports bounds checking. 

EXCEPTION_BREAKPOINT 

EXCEPTION_DATATYPE_MISALIGNMENT 

A breakpoint was encountered. 

The thread tried to read or write data that is 
misaligned on hardware that does not 
provide alignment. For example, 16-bit 
values must be aligned on 2-byte 
boundaries; 32-bit values on 4-byte 
boundaries, and so on. 

One of the operands in a floating-point 
operation is denormal. A denormal value is 
one that is too small to represent as a 
standard floating-point value. 

The thread tried to divide a floating-point 
value by a floating-point divisor of zero. 

The result of a floating-point operation 
cannot be represented exactly as a decimal 
fraction. 

This exception represents any floating-point 
exception not included in this list. 

The exponent of a floating-point operation is 
greater than the magnitude allowed by the 
corresponding type. 

The stack overflowed or underflowed as the 
result of a floating-point operation. 

The exponent of a floating-point operation is 
less than the magnitude allowed by the 
corresponding type. 



EXCEPTION_ILLEGAL_INSTRUCTION 

EXCEPTION_INVALlD_DISPOSITION 

Chapter 11 Structured Exception and Error Handling 761 

The thread tried to execute an invalid 
instruction. 

The thread tried to access a page that was 
not present, and the system was unable to 
load the page. For example, this exception 
might occur if a network connection is lost 
while running a program over the network. 

The thread tried to divide an integer value by 
an integer divisor of zero. 

The result of an integer operation caused a 
carry out of the most significant bit of the 
result. 

An exception handler returned an invalid 
disposition to the exception dispatcher. 
Programmers using a high-level language 
such as C should never encounter this 
exception. 

EXCEPTION_NONCONTINUABLE_EXCEPTION The thread tried to continue execution after a 
noncontinuable exception occurred. 

EXCEPTION_PRIV _INSTRUCTION The thread tried to execute an instruction 

EXCEPTION_SINGLE_STEP 

EXCEPTION_STACK_OVERFLOW 

whose operation is not allowed in the current 
machine mode. 

A trace trap or other single-instruction 
mechanism signaled that one instruction has 
been executed. 

The thread used up its stack. 

Another exception code is likely to occur when debugging console processes. It does 
not arise because of a programming error. The DBG_CONTROL_C exception code 
occurs when CTRL+C is input to a console process that handles CTRL+C signals and 
is being debugged. This exception code is not meant to be handled by applications. It 
is raised only for the benefit of the debugger, and is raised only when a debugger is 
attached to the console process. 

Exception Flags 
Specifies the exception flags. This member can be either zero, indicating a 
continuable exception, or EXCEPTION_NONCONTINUABLE indicating a 
noncontinuable exception. Any attempt to continue execution after a noncontinuable 
exception causes the EXCEPTION_NONCONTINUABLE_EXCEPTION exception. 

Exception Record 
Pointer to an associated EXCEPTION_RECORD structure. Exception records can be 
chained together to provide additional information when nested exceptions occur. 

ExceptionAddress 
Specifies the address where the exception occurred. 



762 Volume 1 Microsoft Windows Base Services 

NumberParameters 
Specifies the number of parameters associated with the exception. This is the number 
of defined elements in the Exceptionlnformation array. 

Exceptionlnformation 
Specifies an array of additional 32-bit arguments that describe the exception. The 
RaiseException function can specify this array of arguments. For most exception 
codes, the array elements are undefined. For the following exception code, the array 
elements are defined as follows: 

Exception code Array contents 

EXCEPTION_ACCESS_VIOLATION The first element of the array contains a read-write flag 
that indicates the type of operation that caused the 
access violation. If this value is zero, the thread 
attempted to read the inaccessible data. If this value is 1, 
the thread attempted to write to an inaccessible address. 

The second array element specifies the virtual address of 
the inaccessible data. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnt.h; include windows.h. 

Structured Exception Handling Overview, Structured Exception Handling Structures, 
EXCEPTION_DEBUG_INFO, EXCEPTION_POINTERS, GetExceptionlnformation, 
RaiseException, UnhandledExceptionFilter 

Error Handling 
Well-written applications include error-handling code that allows them to recover 
gracefully from unexpected errors. When an error occurs, the application may need to 
request user intervention, or it may be able to recover on its own. In extreme cases, the 
application may log the user off or shut down the system. 

About Error Handling 
The Win32 API provides functions that enable you to receive and display error 
information for your application. 



Chapter 11 Structured Exception and Error Handling 763 

Process Error Mode 
Each process has an associated error mode that indicates to the system how the 
application is going to respond to serious errors. Serious errors include disk failure, 
drive-not-ready errors, data misalignment, and unhandled exceptions. An application can 
let the system display a message box informing the user that an error has occurred, or it 
can handle the errors. To handle these errors without user intervention, use the 
SetErrorMode function. After calling SetErrorMode and specifying appropriate flags, 
the system will not display the corresponding error message boxes. 

Last-Error Code 
When an error occurs, most functions in the Win32 API return an error code, usually 
zero, NULL, or -1. Many functions also set an internal error code called the last-error 
code. When a function succeeds, the last-error code is not reset. The error code is 
maintained separately for each running thread; an error in one thread does not overwrite 
the last-error code in another thread. An application can retrieve the last-error code by 
using the GetLastError function; the error code may tell more about what actually 
occurred to make the function fail. 

The SetLastError function sets the error code for the current thread. The 
SetLastErrorEx function also allows the caller to set an error type indicating the severity 
of the error. These functions are intended primarily for dynamic-link libraries (DLL), so 
they can emulate the behavior of the Win32 API. 

The system defines a set of error codes that can be set as last-error codes or be 
returned by these functions. Error codes are 32-bit values (bit 31 is the most significant 
bit). Bit 29 is reserved for application-defined error codes; no system error code has this 
bit set. If you define error codes for your application, set this bit to indicate that the error 
code has been defined by an application and to ensure that the error codes do not 
conflict with any system-defined error codes. For more information, see Error Codes. 

Notifying the User 
To notify the user that some kind of error has occurred, many applications simply 
produce a sound by using the Beep or MessageBeep function or flash the window by 
using the FlashWindow or FlashWindowEx function. An application can also use these 
functions to call attention to an error and then display a message box or an error 
message containing details about the error. 

Message Tables 
Message tables are special string resources used when displaying error messages. 
They are declared in a resource file using the MESSAGETABLE resource-definition 
statement. To access the message strings, use the FormatMessage function. 

The system provides a message table for the Win32 error codes. To retrieve the string 
that corresponds to the error code, call FormatMessage with the 
FORMAT _MESSAGE_FROM_SYSTEM flag. 



764 Volume 1 Microsoft Windows Base Services 

To provide a message table for your application, follow the instructions in About 
Message Text Files. To retrieve strings from your message table, call FormatMessage 
with the FORMAT _MESSAGE_FROM_HMODULE flag. 

Fatal Application Exit 
The FatalAppExit function displays a message box and terminates the application when 
the user closes the message box. This function should only be used as a last resort, 
because it may not free the memory or files owned by the application. 

Error Message Guidelines 
The guidelines presented here are intended to help you write clearer and more useful 
error messages. 

In particular, these guidelines address three common problems: 

• Users often misunderstand popup errors. 

• Administrators cannot easily understand event log messages. 

• Technical support receives many calls as a result of confusing error messages. 

Basic Guidelines 
• Do not anthropomorphize. Do not imply that programs or hardware can think or feel. 

The following table shows an example. 

Correct 

Node [node name] cannot use 
Windows protocols. 

Incorrect 

Node [node name] does not speak any of our 
protocols. 

• Avoid the word "Bad." Try to find a more descriptive term to tell the user what is 
wrong. For example, avoid messages such as the following: 

,,, , 

• Use full sentences. For example, use "Binding is too long." instead of "Binding too 
long." 

• Place a word that is in the index at the start of each message. Avoid starting a 
message with an article (the, a, or an). Never put a placeholder variable, such as % 1 
or %2 at the beginning of a message, because these are very difficult for a user to 
look up. Instead, write the message so that a word that is in the index is at the 
beginning and the placeholder is embedded in the message. The following table 
shows some examples. 



Chapter 11 Structured Exception and Error Handling 765 

Correct 

Log file %1 is full. 

Listen failed in %1. 

Computer name % 1 is a domain 
controller of domain %2. 

Searchable Messages 

Incorrect 

%1 log file is full. 

% 1: Listen failed. 

% 1 is a domain controller of domain %2. 

Place words that are both in the index and relevant to the central meaning at the 
beginning of the message string. The following table shows some examples. 

Correct 

Recycle Bin cannot store some of the 
items you are about to delete. 

Endpoint was not found. 

Move you specified requires moving 
text cards. 

Computer name as entered is not 
valid. 

Chat application cannot start. 

Style Considerations 

Incorrect 

Some of the items you are about to delete 
cannot be stored in the Recycle Bin. 

No endpoint was found. 

That move requires moving text cards. 

The computer name you typed is invalid. 
Or 
Invalid computer name. 

The application cannot start in Chat 
component. 

Users almost always prefer simple sentences that use simple present or past tense and 
active voice. The following table shows some examples. 

Correct Incorrect 

Registry Editor cannot create the 
subkey. 

Setup cannot start Program 
Manager. 

Floppy disk sector 10 field does not 
match floppy disk controller track 
address. 

CHKOSK encountered an error 
during ... 

Cannot find % 1 . 

Modem does not respond. 

Could not create the subkey. 

Setup was unable to activate Program 
Manager. 

Mismatch between the floppy disk sector 10 
field and the floppy disk controller track 
address. 

An error was encountered during ... 

Could not find %1. 

Modem not responding. 



766 Volume 1 Microsoft Windows Base Services 

However, using active voice and simple constructions is less important than making your 
message searchable. Use passive voice and more complex constructions if necessary to 
place search-relevant words at the beginning of the message. The following table shows 
some examples. 

Correct Incorrect 

Log file size cannot be adjusted. 

Printing of % 1 cannot resume. 

Message Length 

Cannot adjust the size of the log file. 

Or 

Was unable to adjust the size of the log file. 

Cannot resume printing % 1. 

Or 

Could not resume printing % 1. 

Wordiness or verbosity of messages should depend on the component. Consider the 
following guidelines on message length: 

• Strings from components that have the potential to destroy an installation or cause the 
system to crash should include more explanation and user guidance. For example, 
Setup and STOP messages can contain more text. 

• Strings from components that are displayed often to less technical users (as opposed 
to administrators or technical support) can also be longer. For example, Print 
Manager and liS messages can be longer. 

• Strings that display mostly to technical users should be shorter. Explanation and user 
action fields in the Messages Help file can go into more detail for these users. For 
example, WINS and TCP/IP messages should be brief and to the point. 

Dialog Box and Popup Message Guidelines 
Users are often confused by messages that appear as dialog boxes or popup messages. 
When these appear on the screen and do not close until the user clicks the OK or 
Cancel button, users often feel they have "broken" something on the computer and are 
not sure what to do next. 

When writing this type of message, consider the following: 

• Does the message give the user a clear, non-technical explanation of the problem? 

• Does the message include steps or a clear explanation of how to prevent the problem 
from occurring again? 

• If a long explanation is needed, point the user to a help file topic to search for more 
information. 

• If it is a critical problem, be sure to use the event log and write out the error. 



Chapter 11 Structured Exception and Error Handling 767 

Error Handling Reference 
Error Handling Functions 

Beep 
The Beep function generates simple tones on the speaker. The function is synchronous; 
it does not return control to its caller until the sound finishes. 

BoO'Ujee.p(."\ . :: 
.i)W01W,.~~F,;r~~;',:<:·' ;,~,j,·I·'·'···'··17.'.·' •. ';,.:,.'.·~.:.QO·,:~nndd····':'':'''·.df.··,ru:.' .. :.'~a·'.·t.u.'e.·1'~.?,· .. ·.··,', •. 

. ,.' JlWORl);,:. Ch(Dltra,t'to./l· .. .... I' . ,un 

Parameters 
dwFreq 

Windows NT/2000: [in] Specifies the frequency, in hertz, of the sound. This 
parameter must be in the range 37 through 32,767 (Ox25 through Ox7FFF). 

dwDuration 
Windows NT/2000: [in] Specifies the duration, in milliseconds, of the sound. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Windows 95: The Beep function ignores the dwFreq and dwDuration parameters. On 
computers with a sound card, the function plays the default sound event. On computers 
without a sound card, the function plays the standard system beep. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Error Handling Overview, Error Handling Functions, MessageBeep 



768 Volume 1 Microsoft Windows Base Services 

FatalAppExit 
The FatalAppExit function displays a message box and terminates the application when 
the message box is closed. If the system is running with a kernel debugger, the message 
box gives the user the opportunity to terminate the application or to cancel the message 
box and return to the application that called FatalAppExit. 

Parameters 
uAction 

Reserved; must be zero. 

/pMessage Text 
[in] Pointer to a null-terminated string that is displayed in the message box. The 
message is displayed on a single line. To accommodate low-resolution screens, the 
string should be no more than 35 characters in length. 

Return Values 
This function does not return a value. 

Remarks 
An application calls FatalAppExit only when it is not capable of terminating any other 
way. FatalAppExit may not always free an application's memory or close its files, and it 
may cause a general failure of the system. An application that encounters an 
unexpected error should terminate by freeing all its memory and returning from its main 
message loop. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Error Handling Overview, Error Handling Functions, FatalExit 



Chapter 11 Structured Exception and Error Handling 769 

FlashWindow 
The FlashWindow function flashes the specified window one time. It does not change 
the active state of the window. 

To flash the window a specified number of times, use the FlashWindowEx function. 

Parameters 
hWnd 

[in] Handle to the window to be flashed. The window can be either open or minimized. 

bIn vert 
[in] Specifies whether the window is to be flashed or returned to its original state. The 
window is flashed from one state to the other if this parameter is TRUE. If it is FALSE, 
the window is returned to its original state (either active or inactive). When an 
application is minimized, if this parameter is TRUE, the taskbar window button flashes 
active/inactive. If it is FALSE, the taskbar window button flashes inactive, meaning 
that it does not change colors. It flashes, as if it were being redrawn, but it does not 
provide the visual invert clue to the user. 

Return Values 
The return value specifies the window's state before the call to the FlashWindow 
function. If the window caption was drawn as active before the call, the return value is 
nonzero. Otherwise, the return value is zero. 

Remarks 
Flashing a window means changing the appearance of its caption bar as if the window 
were changing from inactive to active status, or vice versa. (An inactive caption bar 
changes to an active caption bar; an active caption bar changes to an inactive caption 
bar.) 

Typically, a window is flashed to inform the user that the window requires attention but 
that it does not currently have the keyboard focus. 

The FlashWindow function flashes the window only once; for repeated flashing, the 
application should create a system timer. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



770 Volume 1 Microsoft Windows Base Services 

Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Error Handling Overview, Error Handling Functions 

Flash Wi ndowEx 
The FlashWindowEx function flashes the specified window. It does not change the 
active state of the window. 

Parameters 
pfwi 

[in] Pointer to the FLASHWINFO structure. 

Return Values 
The return value specifies the window's state before the call to the FlashWindowEx 
function. If the window caption was drawn as active before the call, the return value is 
nonzero. Otherwise, the return value is zero. 

Remarks 
Typically, you flash a window to inform the user that the window requires attention but 
does not currently have the keyboard focus. When a window flashes, it appears to 
change from inactive to active status. An inactive caption bar changes to an active 
caption bar; an active caption bar changes to an inactive caption bar. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Error Handling Overview, Error Handling Functions, FLASHWINFO 



Chapter 11 Structured Exception and Error Handling 771 

FormatMessage 
The FormatMessage function formats a message string. The function requires a message 
definition as input. The message definition can come from a buffer passed into the function. 
It can come from a message table resource in an already-loaded module. Or the caller can 
ask the function to search the system's message table resource(s) for the message 
definition. The function finds the message definition in a message table resource based on 
a message identifier and a language identifier. The function copies the formatted message 
text to an output buffer, processing any embedded insert sequences if requested. 

Parameters 
dwFlags 

[in] Specifies aspects of the formatting process and how to interpret the IpSource 
parameter. The low-order byte of dwFlags specifies how the function handles line 
breaks in the output buffer. The low-order byte can also specify the maximum width of 
a formatted output line. 

You can specify a combination of the following values. 

Value Meaning 

FORMAT_MESSAGE_ALLOCATE_BUFFER Specifies that the IpBufferparameter is a pointer 
to a PVOID pOinter, and that the nSize parameter 
specifies the minimum number of TCHARs to 
allocate for an output message buffer. The 
function allocates a buffer large enough to hold 
the formatted message, and places a pOinter to 
the allocated buffer at the address specified by 
IpBuffer. The caller should use the LocalFree 
function to free the buffer when it is no longer 
needed. 

FORMAT_MESSAGE_IGNORE_INSERTS Specifies that insert sequences in the message 
definition are to be ignored and passed through 
to the output buffer unchanged. This flag is useful 
for fetching a message for later formatting. If this 
flag is set, the Arguments parameter is ignored. 

(continued) 



772 Volume 1 Microsoft Windows Base Services 

(continued) 

Value Meaning 

Specifies that IpSource is a pointer to a null­
terminated message definition. The message 
definition may contain insert sequences, just as 
the message text in a message table resource 
may. Cannot be used with 
FORMAT _MESSAGE_FROM_HMODULE or 
FORMAT _MESSAGE_FROM_SYSTEM. 

Specifies that IpSource is a module handle 
containing the message-table resource(s) to 
search. If this IpSource handle is NULL, the 
current process's application image file will be 
searched. Cannot be used with 
FORMAT _MESSAGE_FROM_STRING. 

Specifies that the function should search the 
system message-table resource(s) for the 
requested message. If this flag is specified with 
FORMAT _MESSAGE_FROM_HMODULE, the 
function searches the system message table if 
the message is not found in the module specified 
by IpSource. Cannot be used with 
FORMAT _MESSAGE_FROM_STRING. 

If this flag is specified, an application can pass 
the result of the GetLastError function to retrieve 
the message text for a system-defined error. 

FORMAT _MESSAGE_ARGUMENT _ARRAY Specifies that the Arguments parameter is not a 
va_list structure, but instead is just a pOinter to 
an array of values that represent the arguments. 

Value 

o 

The low-order byte of dwFlags can specify the maximum width of a formatted output 
line. Use the FORMAT_MESSAGE_MAX_WIDTH_MASK constant and bitwise 
Boolean operations to set and retrieve this maximum width value. The following table 
shows how FormatMessage interprets the value of the low-order byte. 

Meaning 

There are no output line width restrictions. The 
function stores line breaks that are in the 
message definition text into the output buffer. 

A nonzero value other than 
FORMAT_MESSAGE_MAX_WIDTH_MASK 

The nonzero value is the maximum number of 
characters in an output line. The function 
ignores regular line breaks in the message 
definition text. The function never splits a string 
delimited by white space across a line break. 



Value 

IpSource 

Chapter 11 Structured Exception and Error Handling 773 

Meaning 

The function stores hard-coded line breaks in 
the message definition text into the output 
buffer. Hard-coded line breaks are coded with 
the %n escape sequence. 

The function ignores regular line breaks in the 
message definition text. The function stores 
hard-coded line breaks in the message 
definition text into the output buffer. The 
function generates no new line breaks. 

[in] Specifies the location of the message definition. The type of this parameter 
depends upon the settings in the dwFlags parameter. 

dwFlags Setting Parameter Type 

This parameter is a handle to the module that 
contains the message table to search. 

This parameter is a pointer to a string that 
consists of unformatted message text. It will be 
scanned for inserts and formatted accordingly. 

If neither of these flags is set in dwFlags, then IpSource is ignored. 

dwMessageld 
[in] Specifies the message identifier for the requested message. This parameter is 
ignored if dwFlags includes FORMAT_MESSAGE_FROM_STRING. 

dwLanguageld 
[in] Specifies the language identifier for the requested message. This parameter is 
ignored if dwFlags includes FORMAT _MESSAGE_FROM_STRING. 

If you pass a specific LANGID in this parameter, FormatMessage will return a 
message for that LANGID only. If the function cannot find a message for that 
LANGID, it returns ERROR_RESOURCE_LANG_NOT _FOUND. If you pass in zero, 
FormatMessage looks for a message for LANGIDs in the following order: 

1. Language neutral 

2. Thread LANGID, based on the thread's locale value 

3. User default LANGID, based on the user's default locale value 

4. System default LANGID, based on the system default locale value 

5. US English 

If FormatMessage doesn't find a message for any of the preceding LANGIDs, it 
returns any language message string that is present. If that fails, it returns 
ERROR_RESOURCE_LANG_NOT _FOUND. 



774 Volume 1 Microsoft Windows Base Services 

/pBuffer 
[out] Pointer to a buffer for the formatted (and null-terminated) message. If dwF/ags 
includes FORMAT _MESSAGE_ALLOCATE_BUFFER, the function allocates a buffer 
using the LocalAlioc function, and places the pointer to the buffer at the address 
specified in /pBuffer. 

nSize 
[in] If the FORMAT _MESSAGE_ALLOCATE_BUFFER flag is not set, this parameter 
specifies the maximum number of TCHARs that can be stored in the output buffer. If 
FORMAT_MESSAGE_ALLOCATE_BUFFER is set, this parameter specifies the 
minimum number of TCHARs to allocate for an output buffer. 

Arguments 
[in] Pointer to an array of values that are used as insert values in the formatted 
message. A % 1 in the format string indicates the first value in the Arguments array; a 
%2 indicates the second argument; and so on. 

The interpretation of each value depends on the formatting information associated 
with the insert in the message definition. The default is to treat each value as a pointer 
to a null-terminated string. 

By default, the Arguments parameter is of type va_list*, which is a language- and 
implementation-specific data type for describing a variable number of arguments. If 
you do not have a pointer of type va_list*, then specify the 
FORMAT _MESSAGE_ARGUMENT _ARRAY flag and pass a pointer to an array of 
values; those values are input to the message formatted as the insert values. Each 
insert must have a corresponding element in the array. 

Windows 95: No single insertion string may exceed 1023 characters in length. 

Return Values 
If the function succeeds, the return value is the number of TCHARs stored in the output 
buffer, excluding the terminating null character. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The FormatMessage function can be used to obtain error message strings for the 
system error codes returned by GetLastError. 

Within the message text, several escape sequences are supported for dynamically 
formatting the message. These escape sequences and their meanings are shown in the 
following table. All escape sequences start with the percent character (%). 



Escape sequence 

%0 

%n!printf format string! 

Chapter 11 Structured Exception and Error Handling 775 

Meaning 

Terminates a message text line without a trailing newline 
character. This escape sequence can be used to build up 
long lines or to terminate the message itself without a trailing 
newline character. It is useful for prompt messages. 

Identifies an insert. The value of n can be in the range 1 
through 99. The printf format string (which must be 
bracketed by exclamation marks) is optional and defaults to 
Is! if not specified. 

The printf format string can contain the * specifier for either 
the precision or the width component. 
If * is specified for one component, the FormatMessage 
function uses insert %n+ 1; it uses %n+2 if * is specified for 
both components. 

Floating-point printf format specifiers--e, E, f, and g-are 
not supported. The workaround is to use the sprintf function 
to format the floating-point number into a temporary buffer, 
then use that buffer as the insert string. 

Any other nondigit character following a percent character is formatted in the output 
message without the percent character. Following are some examples: 

Format string Resulting output 

%% 

%n 

%space 

%. 

%! 

A single percent sign in the formatted message text. 

A hard line break when the format string occurs at the end of 
a line. This format string is useful when FormatMessage is 
supplying regular line breaks so the message fits in a certain 
width. 

A space in the formatted message text. This format string 
can be used to ensure the appropriate number of trailing 
spaces in a message text line. 

A single period in the formatted message text. This format 
string can be used to include a single period at the beginning 
of a line without terminating the message text definition. 

A single exclamation point in the formatted message text. 
This format string can be used to include an exclamation 
point immediately after an insert without its being mistaken 
for the beginning of a printf format string. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



776 Volume 1 Microsoft Windows Base Services 

Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Error Handling Overview, Error Handling Functions, MESSAGETABLE Resource, 
Message Compiler 

GetLastError 
The GetLastError function returns the calling thread's last-error code value. The last­
error code is maintained on a per-thread basis. Multiple threads do not overwrite each 
other's last-error code. 

Parameters 
This function has no parameters. 

Return Values 
The return value is the calling thread's last-error code value. Functions set this value by 
calling the SetLastError function. The Return Value section of each reference page 
notes the conditions under which the function sets the last-error code. 

Windows 95/98: Because SetLastError is a 32-bit function only, Win32 functions that 
are actually implemented in 16-bit code do not set the last-error code. You should ignore 
the last-error code when you call these functions. They include window management 
functions, GDI functions, and Multimedia functions. 

Remarks 
To obtain an error string for system error codes, use the FormatMessage function. For a 
complete list of error codes, see Error Codes. 

You should call the GetLastError function immediateiy when a function's return vaiue 
indicates that such a call will return useful data. That is because some functions call 
SetLastError(O) when they succeed, wiping out the error code set by the most recently 
failed function. 

Most functions in the Win32 API that set the thread's last error code value set it when 
they fail; a few functions set it when they succeed. Function failure is typically indicated 
by a return value error code such as zero, NULL, or -1. Some functions call 
SetLastError under conditions of success; those cases are noted in each function's 
reference page. 



Chapter 11 Structured Exception and Error Handling 777 

Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for 
application-defined error codes; no system error code has this bit set. If you are defining 
an error code for your application, set this bit to one. That indicates that the error code 
has been defined by an application, and ensures that your error code does not conflict 
with any error codes defined by the system. 

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in 
MAPI Development. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Error Handling Overview, Error Handling Functions, FormatMessage, SetLastError, 
SetLastErrorEx 

MessageBeep 
The MessageBeep function plays a waveform sound. The waveform sound for each 
sound type is identified by an entry in the registry. 

Parameters 
uType 

[in] Specifies the sound type, as identified by an entry in the registry. This parameter 
can be one of the following values. 

Value Sound 

-1 

MB_ICONASTERISK 

MB_ICONEXCLAMATION 

MB_ICONHAND 

MB_ICONQUESTION 

MB_OK 

Standard beep using the computer speaker 

SystemAsterisk 

System Exclamation 

SystemHand 

SystemQuestion 

SystemDefault 



778 Volume 1 Microsoft Windows Base Services 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
After queuing the sound, the MessageBeep function returns control to the calling 
function and plays the sound asynchronously. 

If it cannot play the specified alert sound, MessageBeep attempts to play the system 
default sound. If it cannot play the system default sound, the function produces a 
standard beep sound through the computer speaker. 

The user can disable the warning beep by using the Sound control panel application. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Error Handling Overview, Error Handling Functions, FlashWindow, MessageBox 

SetErrorMode 
The SetErrorMode function controls whether the system will handle the specified types 
of serious errors, or whether the process will handle them. 

Ultrr~;\:Er'rotMPge( 
'lJttn:!lMPd~{.' U; 

;Y" ' 

J;;, • 

Parameters 
uMode 

[in] Specifies the process error mode. This parameter can be one or more of the 
following values. 



Chapter 11 Structured Exception and Error Handling 779 

Value 

SEM_FAILCRITICALERRORS 

SEM': .. NOALIGNMENTFAUL TEXCEPT 

SEM_NOGPFAULTERRORBOX 

SEM_NOOPENFILEERRORBOX 

Return Values 

Action 

The system does not display the critical­
error-handler message box. Instead, the 
system sends the error to the calling 
process. 

RISC: The system automatically fixes 
memory alignment faults and makes 
them invisible to the application. It does 
this for the calling process and any 
descendant processes. 

This flag has no effect on x86 
processors. 

The system does not display the 
general-protection-fault message box. 
This flag should only be set by 
debugging applications that handle 
general protection (GP) faults 
themselves with an exception handler. 

The system does not display a message 
box when it fails to find a file. Instead, 
the error is returned to the calling 
process. 

The return value is the previous state of the error-mode bit flags. 

Remarks 
Each process has an associated error mode that indicates to the system how the 
application is going to respond to serious errors. A child process inherits the error mode 
of its parent process. 

RISC: On some non-x86 processors misaligned memory references cause an alignment 
fault exception. The SEM_NOALIGNMENTFAUL TEXCEPT flag lets you control whether 
the system automatically fixes such alignment faults,or makes them visible to an 
application. 

MIPS: On a MIPS computer, an application must explicitly call SetErrorMode with the 
SEM_NOALIGNMENTFAUL TEXCEPT flag to have the system automatically fix 
alignment faults. The default setting is for the system to make alignment faults visible to 
an application. 

Alpha: On an ALPHA computer, you control the alignment fault behavior by setting the 
EnableAlignmentFaultExceptions value in the 
HKEV _LOCAL_MACHINE\System\CurrentControISet\Control\Session Manager 
registry key as follows. 



780 Volume 1 Microsoft Windows Base Services 

Value 

o 
1 

Meaning 

Automatically fix alignment faults. This is the default. 

Make alignment faults visible to the application. You must call 
SetErrorMode with SEM_NOALIGNMENTFAUL TEXCEPT to have the 
system automatically fix alignment faults. 

2 Windows 2000: Alignment faults are visible only when the process is 
running under the debugger. 

x86: On an x86 computer, the system does not make alignment faults visible to an 
application. Therefore, specifying the SEM_NOALIGNMENTFAUL TEXCEPT flag on an 
x86 computer is not an error, but the system is free to silently ignore and not properly 
preserve the flag. This means that code sequences such as the following are not always 
valid on x86 computers: 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Error Handling Overview, Error Handling Functions 

SetLastError 
The SetLastError function sets the last-error code for the calling thread. 

Parameters 
dwErrCode 

[in] Specifies the last-error code for the thread. 

Return Values 
This function does not return a value. 



Chapter 11 Structured Exception and Error Handling 781 

Remarks 
Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for 
application-defined error codes; no system error code has this bit set. If you are defining 
an error code for your application, set this bit to indicate that the error code has been 
defined by your application and to ensure that your error code does not conflict with any 
system-defined error codes. 

This function is intended primarily for dynamic-link libraries (DLL). Calling this function 
after an error occurs lets the DLL emulate the behavior of the Win32 API. 

Most Win32 functions call SetLastError when they fail. Function failure is typically 
indicated by a return value error code such as zero, NULL, or -1. Some functions call 
SetLastError under conditions of success; those cases are noted in each function's 
reference topic. 

Applications can retrieve the value saved by this function by using the GetLastError 
function. The use of GetLastError is optional; an application can call it to find out the 
specific reason for a function failure. 

The last-error code is kept in thread local storage so that multiple threads do not 
overwrite each other's values. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Error Handling Overview, Error Handling Functions, GetLastError, SetLastErrorEx 

SetLastErrorEx 
The SetLastErrorEx function sets the last-error code. 

Currently, this function is identical to the SetLastError function. The second parameter 
is ignored. 



782 Volume 1 Microsoft Windows Base Services 

Parameters 
dwErrCode 

[in] Specifies the last-error code for the thread. 

dwType 
This parameter is ignored. 

Return Values 
This function does not return a value. 

Remarks 
Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for 
application-defined error codes; no Win32 API error code has this bit set. If you are 
defining an error code for your application, set this bit to indicate that the error code has 
been defined by the application and to ensure that your error code does not conflict with 
any system-defined error codes. 

This function is intended primarily for dynamic-link libraries (DLL). Calling this function 
after an error occurs allows the DLL to emulate the behavior of the Win32 API. 

Most Win32 functions call SetLastError when they fail. Function failure is typically 
indicated by a return value error code such as zero, NULL, or -1. Some functions call 
SetLastError under conditions of success; those cases are noted in each function's 
reference topic. 

Applications can retrieve the value saved by this function by using the GetLastError 
function. 

The last-error code is kept in thread local storage so that multiplE! threads do not 
overwrite each other's values. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Error Handling OveNiew, Error Handling Functions, GetLastError 



Chapter 11 Structured Exception and Error Handling 783 

Error Handling Structures 

FLASHWINFO 
The FLASHWINFO structure contains the flash status for a window and the number of 
times the system should flash the window. 

t,YrH~'def strlJet { .:' . • . 
:tH'Wr:'~bS4z~;' , 

.·.·.I:IW"O .. hw.ri~j.~,:'" 
•. {}W(}'RD dw Flag si '. 
···unn,' UC()J~£l:; 
... DWOIID dWl'i meoilt; 
.lFV.SH~lJt~G:i~P.~,LASHWY~FO; ..... 

Members 
cbSize 

Specifies the size, in bytes, of the structure. 

hwnd 
Handle to the window to be flashed. The window can be either opened or minimized. 

dwFlags 
Specifies the flash status. This parameter can be one or more of the following flags. 

Flag Meaning 

FLASHW_CAPTION 

FLASHW_ TRAY 

FLASHW_ALL 

FLASHW_ TIMER 

FLASHW_TIMERNOFG 

uCount 

Stop flashing. The system restores the window to 
its original state. 

Flash the window caption. 

Flash the taskbar button. 

Flash both the window caption and taskbar button. 
This is equivalent to setting the 
FLASHW _CAPTION I FLASHW _TRAY flags. 

Flash continuously, until the FLASHW_STOP flag 
is set. 

Flash continuously until the window comes to the 
foreground. 

Specifies the number of times to flash the window. 

dwTimeout 
Specifies the rate, in milliseconds, at which the window will be flashed. If dwTimeout 
is zero, the function uses the default cursor blink rate. 





785 

CHAPTER 12 

Unicode 

The Microsoft Win32 API provides support for the many different written languages of 
the international marketplace through Unicode and traditional character sets. Unicode is 
a worldwide character-encoding standard that uses 16-bit character values to represent 
all the characters used in modern computing, including technical symbols and special 
characters used in publishing. Traditional character sets are previous character­
encoding standards-such as the Windows ANSI character set-that use 8-bit character 
values or combinations of 8-bit values to represent the characters used in a specific 
language or geographical region. 

About Unicode and Character Sets 
The world's character-based data was developed using both Unicode and traditional 
character sets. Because of this, the Microsoft Win32 API provides character-set 
functions that help Win32-based applications convert the character-based data from its 
original character set to Unicode or another traditional character set. These character-set 
functions also help Win32-based applications create character-based data that can be 
transferred to and used on any operating system, including those that do not support 
Unicode. 

For details about Unicode beyond the scope of this overview, see The Unicode 
Standard: Worldwide Character Encoding, Version 2.0 (Addison-Wesley, 1996). 

Character Sets 
A character set is a mapping of characters to their identifying numeric values. Most of 
the character sets commonly used in computers are single-byte character sets in which 
each character is identified by a value one byte wide. The large number of characters in 
Asian languages led to the development of multi byte character sets, in particular the 
double-byte character set (DBCS). Microsoft Windows NT /Windows 2000 incorporates a 
new global standard for character encoding: Unicode. 

Single-Byte Character Sets 
A single-byte character set is a mapping of 256 individual characters to their identifying 
numeric values. The character codes Ox20 through Ox7E represent standardized 
displayable characters, but the characters represented by the remaining codes vary 
among character sets. The ASCII character set covers the range OxOO through Ox7F. 

The ANSI character set is used in the window manager (User) and graphical device 
interface (GDI), but the Microsoft MS-DOS file allocation table (FAT) file system uses the 



786 Volume 1 Microsoft Windows Base Services 

original equipment manufacturer (OEM) character set. Variations on the character sets, 
called code pages, include different special characters, typically customized for a 
language or group of languages. The OEM code page 437 is generally used in the 
United States. 

Win32-based applications can use Unicode to avoid the inconsistencies of varied code 
pages and as an aid in developing easily localized applications. 

An application can use the GetACP function to retrieve the ANSI code-page identifier for 
the system or use the GetOEMCP function to retrieve the OEM code-page identifier. 

The OemToChar and OemToCharBuff functions allow an application to convert a 
character or string from the OEM code page to either the ANSI code page or Unicode. 
To convert in the other direction, you can use either the CharToOem or 
CharToOemBuff function. In addition, an application can use the 
MultiByteToWideChar and WideCharToMultiByte functions to map single-byte 
character set (SBCS) strings to Unicode and map Unicode strings to SBCS strings. 

The GetCPlnfo function fills a CPINFO structure with information that includes the size, 
in bytes, of the largest character in the code page and the default character used when a 
character code is entered that has no corresponding entry in the code page. 

Double-Byte Character Sets 
The double-byte character set (OBCS) is called an expanded 8-bit character set because 
its smallest unit is a byte. It can be thought of as the ANSI character set for some Asian 
versions of Microsoft Windows NT/ 
Windows 2000, Windows 95, and Windows 98 (particularly the Japanese versions). 
Win32 functions for the Japanese versions of Windows NTlWindows 2000, Windows 95, 
and Windows 98 accept OBCS strings for the ANSI versions of the functions. However, 
unlike the handling of Unicode, OBCS character handling requires detailed changes in 
the character-processing algorithms throughout an application's source code. 

To help identify double-byte character sets, an application can use the 
IsDBCSLeadByte function to determine whether a given character is the first byte in a 
2-byte character. In addition, an application can use the MultiByteToWideChar and 
WideCharToMultiByte functions to map OBCS strings to Unicode and map Unicode 
strings to OBCS strings. 

Unicode 
Unicode is a worldwide character-encoding standard. Windows NT/ 
Windows 2000 uses it exclusively at the system level for character and string 
manipulation. Unicode simplifies localization of software and improves multilingual text 
processing. By implementing it in your applications, you can enable the application with 
universal data exchange capabilities for global marketing, using a single binary file for 
every possible character code. 

Unicode defines semantics for each character, standardizes script behavior, provides a 
standard algorithm for bidirectional text, and defines cross-mappings to other standards. 



Chapter 12 Unicode 787 

Among the scripts supported by Unicode are Latin, Greek, Han, Hiragana, and 
Katakana. Supported languages include, but are not limited to, German, French, 
English, Greek, Chinese, and Japanese. 

Unicode can represent all the world's characters in modern computer use, including 
technical symbols and special characters used in publishing. Because each Unicode 
character is 16 bits wide, it is possible to have separate values for up to 65,536 
characters. Unicode-enabled functions are often referred to as "wide-character" 
functions. 

Win32 functions support applications that use either Unicode or the regular ANSI 
character set. Mixed use in the same application is also possible. Adding Unicode 
support to an application is easy, and you can even maintain a single set of sources 
from which to compile an application that supports either Unicode or the Windows ANSI 
character set. 

Win32 functions support Unicode by assigning its strings a specific data type and 
providing a separate set of entry pOints and messages to support this new data type. A 
series of macros and naming conventions make transparent migration to Unicode, or 
even compiling both non-Unicode and Unicode versions of an application from the same 
set of sources, a straightforward matter. 

Implementing Unicode as a separate data type also enables the compiler's type 
checking to ensure that only Unicode parameters are used with functions expecting 
Unicode strings. 

For a list of functions that support Unicode under Windows 95/98, see Windows 95/98 
General Limitations. 

Surrogates 
There is a need to support more characters than currently fit in the Unicode character 
set. For example, the Chinese speaking community uses at least 55,000 characters. To 
answer this need, the Unicode Standard defines surrogates. A surrogate or surrogate 
pair is a pair of 16-bit Unicode characters that represent a single character or glyph. The 
first (high) surrogate is a 16-bit character in the range U+D800 to U+DBFF. The second 
(low) surrogate is a 16-bit character in the range U+DCOO to U+DFFF. Using surrogates, 
Unicode can support over one million characters. For more details about surrogates, 
refer to the Unicode Standard, version 2.0. 

Windows 2000 provides support for basic input, output, and simple sorting of surrogates. 
However, not all Windows 2000 system components are surrogate compatible. Surrogates ar 
not supported in Windows 95/98 or in Windows NT 4.0. 

Windows 2000 supports surrogates in the following ways: 

• The cmap 12 OpenType font format is introduced, which directly supports the 4-byte 
character code. Refer to the Open Type font specification for more detail. 

• Windows USER supports surrogate-enabled IMEs. 

• Windows GDI APls support cmap 12 so surrogates can be displayed correctly. 



788 Volume 1 Microsoft Windows Base Services 

• Uniscribe APls support surrogates. 

• Windows controls, including Edit and Rich Edit, support surrogates. 

• HTML engine supports HTML page that includes surrogates for display, editing 
(through Outlook Express), and forms submission. 

• System sorting table supports surrogates. 

• Planes two and three (defined in ISO/lEG 10646) are reserved for ideographic 
characters. These planes fall in the high surrogate range of U+DB40 to U+DBBF. 

General Guidelines for Software Development 
Windows 2000 handles surrogates as pairs of 16-bit characters. The system processes 
surrogate pairs in a way similar to the way it processes nonspacing marks. At display 
time, the surrogate pair display as one glyph. (This conforms to the requirements in the 
Unicode Standard, Version 2.0) 

Applications automatically support surrogates if they use system controls and standard 
APls, such as ExtTextOut and DrawText. Thus, if your code uses standard system 
controls or uses general ExtTextOut-type calls to display, surrogate pairs should work 
without any changes necessary. 

Applications implementing their own editing support by working out glyph positions for 
themselves may use Uniscribe for all text processing. Uniscribe has separate APls to 
deal with complex script processing (such as line service, hit testing, and cursor 
movement). The application must call the Uniscribe APls specifically to get these 
advanced features. Applications written to the Uniscribe API are fully multilingual. 

You can also write your own code to handle surrogate text processing. When a program 
encounters a separated Unicode value from either the lower reserved range or the upper 
reserved range, it must be one half of a surrogate pair. Thus, to detect a surrogate pair, 
do simple range checking. If you encounter a Unicode value in the lower or upper range, 
then you need to track backward or forward one 16-bit width to get the rest of the 
character. Keep in mind that CharNext and CharPrev move by 16-bit code pOints, not 
by surrogates. 

For sorting, note that all surrogate pairs are treated as two Unicode code points. 
Surrogates are sorted after other Unicode code pOints, but before the PUA (private user 
area). 

If you are a font or IME provider, note that Windows 2000 disables surrogate support by 
default. If you provide a font and IME package that requires surrogate support, you must 
set the following registry values: 

[HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT 
\CurrentVersion\LanguagePack] 

SURROGATE=(REG_DWORD)Ox00000002 

[HKEY _CURRENT _USER\Software\Microsoft\lnternet 
Explorer\lnternationaI\Scripts\42] 



Chapter 12 Unicode 789 

IEFixedFontName=[Surrogate Font Face Name] 

IEPropFontName=[Surrogate Font Face Name] 

Unicode in the Win32 API 
Win32 API elements that use characters are generally implemented in one of three 
formats: 

• A generic version that can be compiled for either ANSI or Unicode 

• An ANSI version 

• A Unicode version 

The following topics discuss Unicode data types and how they are used in functions and 
messages; the use of resources, file names, and command-line arguments; and 
methods of translating between different types of strings. .. 

Win32 Data Types 

Win32 Function Prototypes 

Message Translation 

String Functions 

Standard C Functions 

Character Sets Used in Filenames 

Translation Between String Types 

Command-line Arguments 

For a list of functions that support Unicode under Windows 95/98, see Windows 95/98 
General Limitations. 

Win32 Data Types 
Most string operations for Unicode can be written by using the same logic used for 
handling the Windows ANSI character set, except that the basic unit of operation is a 16-
bit character instead of an 8-bit byte character. The Platform SDK header files provide 
several type definitions that make it easy to create sources that can be compiled for 
Unicode or the ANSI character set. 

The following example shows the method used in the Platform SDK header files to 
define three sets of data types: a set of generic type definitions that can compile for 
either ANSI or Unicode, and two sets of specific type definitions. The first set of specific 
type definitions is for use with the existing Windows (ANSI) character set, and the other 
is for use with Unicode (or wide) characters. 

fl'~i,~; 
(continued) 



790 Volume 1 Microsoft Windows Base Services 

(continued) 

The letter T in a type definition designates a generic type that can be compiled for either 
ANSI or Unicode. The letter Win a type definition designates a wide-character (Unicode) 
type. For the actual implementation of this method, see the WinNT.h header file. 

An application using generic data types can be compiled for Unicode simply by defining 
UNICODE before the include statements for the header files, or during compilation. To 
compile the code for ANSI, omit the UNICODE definition. It is best to use the generic 
data types, but the specific types exist for applications that require mixed types. 

Win32 Function Prototypes 
Win32 function prototypes are provided in generic, ANSI, and Unicode versions. The 
documentation provides generic function prototypes, which can be compiled to produce 
either ANSI or Unicode prototypes. As an example, all three prototypes are shown in the 
following code sample for the $etWindowText function. 

Generic Prototype: 

The header file provides the generic function name implemented as a macro. 

The preprocessor expands the macro into either the ANSI or Unicode function names, 
depending on whether UNICODE is defined. The letter A (ANSI) or W (wide) is added at 



Chapter 12 Unicode 791 

the end of the generic function name, as appropriate. The header file then provides 
ANSI and Unicode function prototypes, as shown in the following examples. 

ANSI Prototype: 

BOOl " 
WIN'APt,,, , ": 
S~tWin~~1~tA(, ' 
, ""HWND ,', h~ri(!», 

'LP:CslR;~:~it~,t~){ .' 
Unicode Prototype: 

':~:~,~,~:",:/;~),;#,;";\:; 
$$1)W1 ndowTextW (( 

'::'r:~!s~;n1if'Jxt;,~; ':: " .. : " 

'" "".: 

Note that the generic function prototype uses the generic LPCTSTR for the text 
parameter, but the ANSI prototype uses LPCSTR, and the Unicode prototype uses 
LPCWSTR. 

You can call the generic function in your application, then define UNICODE when you 
compile the code to use the Unicode function. To default to the ANSI function, do not 
define UNICODE. You can mix function calls by using the explicit function names ending 
with Aand W. 

This approach applies to all functions with text arguments. Always use a generic function 
prototype with the generic string and character types. All function names that end with an 
uppercase Wtake wide-character arguments. Some functions exist only in wide­
character versions and can be used only with the appropriate data types. 

The Requirements section in the documentation for each function provides information 
on the function versions implemented by the system. If there is a line that begins with 
Unicode, either the function has separate Unicode and ANSI versions, or the function 
accepts only Unicode strings. Otherwise, the function does not accept strings, or accepts 
only ANSI strings. 

Note Whenever a function has a length parameter for a character string, the length 
should be documented as a count of TCHAR values in the string. However, functions 
that require or return pOinters to untyped memory blocks, such as the GlobalAlioc 
function, are exceptions. 

Message Translation 
Although applications generally use the same window class, messages between 
windows of different classes are transparently translated by the system. 



792 Volume 1 Microsoft Windows Base Services 

Even though a window function is implemented to receive messages in Unicode or ANSI 
format, the window procedure can still send messages or call functions of either type. 

The following messages have text arguments and are subject to automatic text 
translation. (For information about automatic translation, see Subclassing and Automatic 
Message Translation.) 

CB_ADDSTRING 
CB_DIR 
CB_FINDSTRING 
CB_GETLBTEXT 
CB_INSERTSTRING 
CB_SELECTSTRING 
EM_GETLINE 
EM_REPLACESEL 
EM_SETPASSWORDCHAR 
LB_ADDFILE 
LB_ADDSTRING 
LB_DIR 
LB_FINDSTRING 
LB_GETTEXT 
LB_INSERTSTRING 

String Functions 

LB_SELECTSTRING 
WM_ASKCBFORMATNAME 
WM_CHAR 
WM_CHARTOITEM 
WM_CREATE 
WM_DEADCHAR 
WM_DEVMODECHANGE 
WM_GETTEXT 
WM_MDICREATE 
WM_MENUCHAR 
WM_NCCREATE 
WM_SETTEXT 
WM_SYSCHAR 
WM_SYSDEADCHAR 
WM_WININICHANGE 

All of the string functions listed in this section exist in ANSI and Unicode implementations 
to support ANSI and Unicode arguments. There are, however, subtle differences among 
some of them. 

The following string functions do not require special comment; their ANSI and Unicode 
implementations work identically. 

CharNext 
CharPrev 
Istrcat 
Istrcpy 
Istrlen 

The value returned by the Istrlen function is always the number of characters, 
regardless of whether the ANSI or Unicode form is used. 

The following string functions are sensitive to the locale of the current thread (as derived 
from the locale the user selects in Control Panel). The Istrcmp and Istrcmpi functions 
do not perform byte comparisons like their ANSI C namesakes; they compare strings 
according to the rules of the selected locale. 

CharLower 
CharLowerBuff 
CharUpper 



CharUpperBuff 
Istrcmp 
Istrcmpi 

Chapter 12 Unicode 793 

The following functions convert between the OEM character set and either ANSI or 
Unicode, depending on which version is used. 

CharToOem 
CharToOemBuff 
OemToChar 
OemToCharBuff 

The print function wsprintf supports Unicode by providing the following new and 
changed data types in its format specifications. These format specifications affect the 
way the wsprintf function interprets the corresponding passed-in parameter. 

Format 
specification ANSI version Unicode version 

c CHAR WCHAR 

C WCHAR CHAR 

hc, hC CHAR CHAR 

hs, hS LPSTR LPSTR 

IC,IC WCHAR WCHAR 

Is, IS LPWSTR LPWSTR 

s LPSTR LPWSTR 

S LPWSTR LPSTR 

The data type for the output text always depends on the version of the function. Where 
the data type of the passed-in parameter and of the output text do not agree, wsprintf 
will perform a conversion from Unicode to ANSI, or vice versa, as required. 

For the Unicode version of wsprintf, the format string is Unicode, as is the output text. 

Standard C Functions 
The standard C run-time libraries contain wide-character versions of the ANSI string 
functions that begin with the letters sfr. The wide-character versions of the functions start 
with the letters wes (or sometimes _wes). The Unicode data type is compatible with the 
wide-character data type wchar_t in ANSI C; this allows access to the wide-character 
string functions. 

Generic functions exist for all standard C string functions. They start with the letters _tes 
and are listed in the Tchar.h header file. These functions use the generic data types 
TCHAR and TCHAR* 

An application must add the following lines to its program in order to use the generic 
functions and compile for Unicode: 



794 Volume 1 Microsoft Windows Base Services 

Note that both the Tchar.h and Wchar.h are required, and that the leading underscore on 
the _UNICODE variable is also required. 

The wcstombs and mbstowcs functions can convert from the character set supported 
by the standard C library to Unicode and back, with some limitations. For more 
information about translating strings to and from Unicode, see Translation Between 
String Types. 

The printf function defined in Tchar.h supports the same format specifications as 
wsprintf; for details, see String Functions. Similarly, Tchar.h contains a wprintf function, 
in which the format string itself is a Unicode string. 

Character Sets Used in Filenames 
Window manager (User) and graphical device interface (GDI) use the ANSI character 
set; the MS-DOS FAT file system uses the OEM character set. Applications that create 
MS-DOS files sometimes have to use the CharToOem and OemToChar functions to 
translate between these character sets. However, NTFS is capable of storing file names 
in Unicode; no translation is necessary with NTFS. 

With Unicode implementations of the file-system functions, it is not necessary to perform 
translations to and from ANSI and OEM character sets. Instead, you can use a single 
source file to compile non-Unicode versions of an application by providing macros for 
functions that are not invoked when compiling for Unicode, such as CharToOem and 
OemToChar. 

The special file name characters in MS-DOS are unchanged in Unicode file names: 

''\,'' "I," ".," "?," "*," 

These special characters are in the ASCII range of characters (OxOO through Ox7F) and 
their Unicode equivalents are simply the same values in a 2-byte form: OxOOOO through 
Ox007F. 

Translation Between String Types 
The following Win32 functions translate character strings from one string type to another. 

Function Description 

FoldString Translates one character string to another. 

LCMapString Maps a character string by locale. 

ToUnicode Translates a virtual-key code into a Unicode character. 

MultiByteToWideChar Maps a multi byte string into a wide-character string. 

WideCharToMultiByte Maps a wide-character string into a multibyte string. 



Chapter 12 Unicode 795 

The WideCharToMultiByte and MultiByteToWideChar functions are particularly useful 
for applications that support several string types. ANSI C also defines the conversion 
functions wcstombs and mbstowcs, but they can only convert to and from the 
character set supported by the standard C library. 

Command-Line Arguments 
An application can use the GetCommandLine function to retrieve Unicode command­
line arguments by calling it as a Unicode function. 

Unicode and Character Set Reference 

Unicode and Character Set Functions 

GetTextCharset 
The GetTextCharset function obtains a character-set identifier for the font that is 
currently selected into a specified device context. 

The function call GetTextCharset(hdc) is equivalent to the function call 
GetTextCharsetlnfo(hdc, NULL, 0). 

Parameters 
hdc 

[in] Handle to a device context. The function obtains a character-set identifier for the 
font that is selected into this device context. 

Return Values 
If the function succeeds, the return value identifies the character set of the font that is 
currently selected into the specified device context. The following character-set 
identifiers are defined: 

ANSLCHARSET 
BAL TIC_CHARSET 
CHINESEBIG5_CHARSET 
DEFAULT_CHARSET 
EASTEUROPE_CHARSET 
GB2312_CHARSET 
GREEK_CHARSET 
HANGUL_CHARSET 



796 Volume 1 Microsoft Windows Base Services 

MAC_CHARSET 
OEM_CHARSET 
RUSSIAN_CHARSET 
SHIFT JIS_CHARSET 
SYMBOL_CHARSET 
TURKISH_CHARSET 

Korean Windows: 
JOHAB_CHARSET 

Middle-Eastern Windows: 
HEBREW_CHARSET 
ARABIC_CHARSET 

Thai Windows: 
THALCHARSET 

If the function fails, the return value is DEFAULT _CHARSET. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Unicode and Character Sets Overview, Unicode and Character Set Functions, 
GetTextCharsetlnfo 

GetTextCharsetlnfo 
The GetTextCharsetlnfo function obtains information about the character set of the font 
that is currently selected into a specified device context . 

. :.}~ 

Parameters 
hdc 

[in] Handle to a device context. The function obtains information about the font that is 
selected into this device context. 



Chapter 12 Unicode 797 

IpSig 
[out] Pointer to a FONTSIGNATURE data structure that receives font-signature 
information. 

If a TrueType font is currently selected into the device context, the FONTSIGNATURE 
structure receives information that identifies the code page and Unicode subranges 
for which the font provides glyphs. 

If a font other than TrueType is currently selected into the device context, the 
FONTSIGNATURE structure receives zeroes. In this case, use the 
TranslateCharsetlnfo function to obtain generic font-signature information for the 
character set. 

The IpSig parameter can be NULL if you do not need the FONTSIGNATURE 
information. In this case, you can also call the GetTextCharset function, which is 
equivalent to calling GetTextCharsetlnfo with IpSig set to NULL. 

dwFlags 
This parameter is reserved for future use. It must be set to zero. 

Return Values 
If the function succeeds, the return value identifies the character set of the font currently 
selected into the specified device context. The following character-set identifiers are 
defined: 

ANSLCHARSET 
BAL TIC_CHARSET 
CHINESEBIG5_CHARSET 
DEFAULT_CHARSET 
EASTEUROPE_CHARSET 
GB2312_CHARSET 
GREEK_CHARSET 
HANGUL_CHARSET 
MAC_CHARSET 
OEM_CHARSET 
RUSSIAN_CHARSET 
SHIFT JIS_CHARSET 
SYMBOL_CHARSET 
TURKISH_CHARSET 

Korean Windows: 
JOHAB_CHARSET 

Middle-Eastern Windows: 
HEBREW_CHARSET 
ARABIC_CHARSET 

Thai Windows: 
THALCHARSET 

If the function fails, the return value is DEFAULT _CHARSET. 



798 Volume 1 Microsoft Windows Base Services 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Unicode and Character Sets OveNiew, Unicode and Character Set Functions, 
FONTSIGNATURE, GetTextCharset, TranslateCharsetlnfo 

IsDBCSLeadByte 
The IsDBCSLeadByte function determines whether a character is a lead byte-that is, 
the first byte of a character in a double-byte character set (DBCS). 

Parameters 
TestChar 

[in] Specifies the character to be tested. 

Return Values 
If the character is a lead byte, it returns a nonzero value. 

If the character is not a lead byte, the return value is zero. To get extended error 
information, call GetLastError. 

Remarks 
Lead bytes are unique to double-byte character sets. A lead byte introduces a double­
byte character. Lead bytes occupy a specific range of byte values. The 
IsDBCSLeadByte function uses the ANSI code page to check lead-byte rariges. To 
specify a different code page, use the IsDBCSLeadByteEx function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 



Chapter 12 Unicode 799 

:~~~feArso 
Unicode and Character Sets Overview, Unicode and Character Set Functions, 
IsDBCSLeadByteEx, MultiByteToWideChar 

IsDBCSLeadByteEx 
The IsDBCSLeadByteEx function determines whether a character is a lead byte that is, 
the first byte of a character in a double-byte character set (DBCS). 

Parameters 
CodePage 

[in] Identifier of the code page to use to check lead-byte ranges. Can be one of the 
values given in the "Code-Page Identifiers" table in Unicode and Character Set 
Constants or one of the following predefined values. 

Value 

o 
CP_ACP 

CP_OEMCP 

TestChar 

Meaning 

Use system default ANSI code page. 

Use system default ANSI code page. 

Use system default OEM code page. 

[in] Character to test. 

Return Values 
If the function succeeds, it returns a nonzero value. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 



800 Volume 1 Microsoft Windows Base Services 

Unicode and Character Sets Overview, Unicode and Character Set Functions 

IsTextUnicode 
The IsTextUnicode function determines whether a buffer is likely to contain a form of 
Unicode text. The function uses various statistical and deterministic methods to make its 
determination, under the control of flags passed via Ipi. When the function returns, the 
results of such tests are reported via Ipi. 

Parameters 
IpBuffer 

cb 

Ipi 

[in] Pointer to the input buffer to be examined. 

[in] Specifies the size, in bytes, of the input buffer pointed to by IpBuffer. 

[in/out] Pointer to an int variable that, upon entry to the function, contains a set of 
flags that specify the tests to be applied to the input buffer text. Upon exit from the 
function, that same variable contains a set of bit flags indicating the results of the 
specified tests: 1 if the contents of the buffer pass a test, 0 for failure. Only flags that 
are set upon entry to the function are significant upon exit. 

If Ipi is NULL, the function uses all available tests to determine whether the data in the 
buffer is likely to be Unicode text. 

The following table shows the constants used with *Ipfs bit flags. 

Value Meaning 

IS_TEXT_UNICODE_ASCII16 The text is Unicode, and contains only 
zero-extended ASCII values/characters. 

IS_TEXT _UNICODE_REVERSE_ASCII16 Same as the preceding, except that the 
Unicode text is byte-reversed. 

IS_TEXT _UNICODE_STATISTICS The text is probably Unicode, with the 
determination made by applying statistical 
analysis. Absolute certainty is not guaranteed. 
See the following Remarks section. 

IS_TEXT _UNICODE_REVERSE_STATISTICS Same as the preceding, except that the 
probably-Unicode text is byte-reversed. 



Chapter 12 Unicode 801 

IS_TEXT _UNICODE_CONTROLS The text contains Unicode representations 
of one or more of these nonprinting 
characters: RETURN, LlNEFEED, SPACE, 
CJK_SPACE, TAB. 

IS_TEXT _UNICODE_REVERSE_CONTROLS Same as the preceding, except that the 
Unicode characters are byte-reversed. 

IS_TEXT _UNICODE_BUFFER_ TOO_SMALL There are too few characters in the buffer for 
meaningful analysis (fewer than two bytes). 

IS_TEXT _UNICODE_SIGNATURE The text contains the Unicode byte-order mark 
(BOM) OxFEFF as its first character. 

IS_TEXT _UNICODE_REVERSE_SIGNATURE The text contains the Unicode byte-reversed 
byte-order mark (Reverse BOM) OxFFFE as its 
first character. 

IS_TEXT _UNICODE_ILLEGAL_CHARS The text contains one of these Unicode-illegal 
characters: embedded Reverse BOM, 
UNICODE_NUL, CRLF (packed into one 
WORD), or OxFFFF. 

IS_TEXT _UNICODE_ODD_LENGTH The number of characters in the string is odd. A 
string of odd length cannot (by definition) be 
Unicode text. 

IS_TEXT _UNICODE_NULL_BYTES The text contains null bytes, which indicate non­
ASCII text. 

IS_TEXT _UNICODE_UNICODE_MASK This flag constant is a combination of 
IS_TEXT _UNICODE_ASCII16, 
IS_TEXT _UNICODE_STATISTICS, 
IS_TEXT _UNICODE_CONTROLS, 
IS_TEXT _UNICODE_SIGNATURE. 

IS_TEXT _UNICODE_REVERSE_MASK This flag constant is a combination of 
IS_TEXT _UNICODE_REVERSE_ASCII16, 
IS_TEXT _UNICODE_REVERSE_STATISTICS, 
IS_TEXT _UNICODE_REVERSE_CONTROLS, 
IS_TEXT _UNICODE_REVERSE_SIGNATURE. 

IS_TEXT _UNICODE_NOT _UNICODE_MASK This flag constant is a combination of 
IS_TEXT _UNICODE_ILLEGAL_CHARS, 
IS_TEXT _UNICODE_ODD_LENGTH, and two 
currently unused bit flags. 

IS_TEXT _UNICODE_NOT _ASCII_MASK This flag constant is a combination of 
IS_TEXT _UNICODE_NULL_BYTES and three 
currently unused bit flags. 

Return Values 
The function returns nonzero if the data in the buffer passes the specified tests. 



802 Volume 1 Microsoft Windows Base Services 

The function returns zero if the data in the buffer does not pass the specified tests. 

In either case, the int variable pointed to by Ipi contains the results of the specific tests 
the function applied to make its determination. 

Remarks 
As noted in the preceding table of flag constants, the IS_TEXT _UNICODE_STATISTICS 
and IS_TEXT_UNICODE_REVERSE_STATISTICS tests use statistical analysis. These 
tests are not foolproof. The statistical tests assume certain amounts of variation between 
low and high bytes in a string, and some ASCII strings can slip through. For example, if 
IpBuffer points to the ASCII string Ox41 , OxOA, OxOD, Ox1 D (A\n\rAZ), the string passes the 
IS_TEXT_UNICODE_STATISTICS test, though failure would be preferable. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use advapi32.lib. 

Unicode and Character Sets Overview, Unicode and Character Set Functions 

Multi ByteToWideChar 
The MultiByteToWideChar function maps a character string to a wide-character 
(Unicode) string. The character string mapped by this function is not necessarily from a 
multibyte character set. 

Parameters 
CodePage 

[in] Specifies the code page to be used to perform the conversion. This parameter can 
be given the value of any code page that is installed or available in the system. You 
can also specify one of the values shown in the following table. 



Value 

CP_ACP 
CP_MACCP 
CP_OEMCP 
CP_SYMBOL 
CP _ THREAD_ACP 
CP_UTF7 

CP_UTF8 

dwFlags 

Meaning 

ANSI code page 
Macintosh code page 

OEM code page 

Chapter 12 Unicode 803 

Windows 2000: Symbol code page (42) 
The current thread's ANSI code page 
Windows NT 4.0 and Windows 2000: Translate using UTF-7 
Windows NT 4.0 and Windows 2000: Translate using UTF-
8. When this is set, dwFlags must be zero. 

[in] Indicates whether to translate to precomposed or composite-wide characters (if a 
composite form exists), whether to use glyph characters in place of control characters, 
and how to deal with invalid characters. You can specify a combination of the 
following flag constants. 

Value Meaning 

Always use precomposed characters-that is, 
characters in which a base character and a 
nonspacing character have a single character value. 
This is the default translation option. Cannot be used 
with MB_COMPOSITE. 

MB_COMPOSITE Always use composite characters-that is, 
characters in which a base character and a 
nonspacing character have different character 
values. Cannot be used with MB_PRECOMPOSED. 

MB_ERR_INVALlD_CHARS If the function encounters an invalid input character, 
it fails and GetLastError returns 
ERROR_NO_ UN ICODE_ TRANSLATION. 

MB_USEGL YPHCHARS Use glyph characters instead of control characters. 

A composite character consists of a base character and a nons pacing character, each 
having different character values. A precomposed character has a single character 
value for a base/nonspacing character combination. In the character e, the e is the 
base character and the accent grave mark is the nons pacing character. 

The function's default behavior is to translate to the precomposed form. If a 
precomposed form does not exist, the function attempts to translate to a composite 
form. 

The flags MB_PRECOMPOSED and MB_COMPOSITE are mutually exclusive. The 
MB_USEGLYPHCHARS flag and the MB_ERR_INVALlD_CHARS can be set 
regardless of the state of the other flags. 

IpMultiByteStr 
[in] Points to the character string to be converted. 



804 Volume 1 Microsoft Windows Base Services 

cbMultiByte 
[in] Specifies the size in bytes of the string pointed to by the IpMultiByteStr parameter. 
If this value is -1, the string is assumed to be null terminated and the length is 
calculated automatically. The length will include the null terminator. 

Ip WideCharStr 
[out] Points to a buffer that receives the translated string. 

cch WideChar 
[in] Specifies the size, in wide characters, of the buffer pointed to by the 
IpWideCharStr parameter. If this value is zero, the function returns the required buffer 
size, in wide characters, and makes no use of the IpWideCharStrbuffer. 

Return Values 
If the function succeeds, and cchWideChar is nonzero, the return value is the number of 
wide characters written to the buffer pOinted to by IpWideCharStr. 

If the function succeeds, and cchWideChar is zero, the return value is the required size, 
in wide characters, for a buffer that can receive the translated string. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 

ERROR_INSUFFICIENT _BUFFER 
ERROR_INVALI D_FLAGS 
ERROR_INVALlD_PARAMETER 
ERROR_NO_UNICODE_ TRANSLATION 

Remarks 
The IpMultiByteStr and IpWideCharStr pOinters must not be the same. If they are the 
same, the function fails, and GetLastError returns the value 
ERROR_INV ALI D _PARAMETER. 

The function fails if MB_ERR_INVALlD_CHARS is set and encounters an invalid 
character in the source string. An invalid character is either, a) a character that is not the 
default character in the source string but translates to the default character when 
MB_ERR_INVALlD_CHARS is not set, or b) for DBCS strings, a character which has a 
lead byte but no valid trailing byte. When an invalid character is found, and 
MB_ERR_INVALlD_CHARS is set, the function returns 0 and sets GetLastError with 
the error ERROR_NO_UNICODE_ TRANSLATION. 

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in 
MAPI Development. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Chapter 12 Unicode 805 

Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 

Unicode and Character Sets Overview, Unicode and Character Set Functions, 
WideCharToMultiByte 

TranslateCharsetlnfo 
The TranslateCharsetlnfo function translates based on the specified character set, 
code page, or font signature value, setting all members of the destination structure to 
appropriate values. 

BaOl . Tranlllat~Cbarse'fInfO( ... . .. 
DWORD*l.pSrc, ./1, inf.b~ml:itioTJ 
.i~HAItSE1.INrO ,cli~ rad~r0$(j!toi nformat tim' 

.. DWOlID '<!wF i a $1.$ ·.tr~:ns1 ationok:t i~!l .. . 
)~ 

Parameters 
IpSrc 

[in/out] If dwFlags is TC,-SRCFONTSIG, this parameter is the address of the fsCsb 
member of a FONTSIGNATURE structure. Otherwise, this parameter is a DWORD 
value. 

IpCs 
[out] Pointer to a CHARSETINFO structure that receives the translated character set 
information. 

dwFlags 
[in] Specifies how to perform the translation. This parameter can be one of the 
following values. 

Value Meaning 

TCI_SRCCHARSET Source contains the character set value in the low word, 
and zero in the high word. 

TCI_SRCCODEPAGE Source is a code-page identifier in the low word and zero in 
the high word. 

(continued) 



806 Volume 1 Microsoft Windows Base Services 

(continued) 

Value 

TCLSRCFONTSIG 

Return Values 

Meaning 

Source is the code-page bitfield portion of a 
FONTSIGNATURE structure. On input this should have 
only one Windows code-page bit set, either for an ANSI 
code-page value or for a common ANSI and OEM value 
(for OEM values, bits 32-63 must be clear.). On output this 
will have only one bit set. 

If the TCI_SRCFONTSIG value is given, the /pSrc 
parameter must be the address of the code-page bitfield. If 
any other TCI_ value is given, the /pSrc parameter must be 
a value not an address. 

If the function succeeds, it returns a nonzero value. 

If the function fails, it returns zero. To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.10 or later. 
Header: Declared in wingdLh; include windows.h. 
Library: Use gdi32.lib. 

Unicode and Character Sets Overview, Unicode and Character Set Functions, 
CHARSETINFO, FONTSIGNATURE 

WideCharToMultiByte 
The WideCharToMultiByte function maps a wide-character string to a new character 
string. The new character string is not necessarily from a multibyte character set. 



Parameters 
CodePage 

Chapter 12 Unicode 807 

[in] Specifies the code page used to perform the conversion. This parameter can be 
given the value of any code page that is installed or available in the system. You can 
also specify one of the following values. 

Value 

CP_ACP 

CP_MACCP 

CP_OEMCP 

CP_SYMBOL 

CP _THREAD_ACP 

CP_UTF7 

CP_UTFS 

dwFlags 

Meaning 

ANSI code page 

Macintosh code page 

OEM code page 

Windows 2000: Symbol code page (42) 

Current thread's ANSI code page 

Windows NT 4.0 and Windows 2000: Translate using UTF-7 

Windows NT 4.0 and Windows 2000: Translate using UTF-S. 
When this is set, dwFlags must be zero. 

[in] Specifies the handling of unmapped characters. The function performs more 
quickly when none of these flags is set. The following flag constants are defined. 

Value Meaning 

WC_NO_BEST _FIT _CHARS Windows 2000: Any Unicode characters that do not 
translate directly to multi byte equivalents will be 
translated to the default character (see 
IpDefaultChar parameter). In other words, if 
translating from Unicode to multibyte and back to 
Unicode again does not yield the exact same 
Unicode character, the default character is used. 

WC_COMPOSITECHECK 

WC_DISCARDNS 

WC_SEPCHARS 

WC_DEFAUL TCHAR 

This flag may be used by itself or in combination 
with the other dwFlag options. 

Convert composite characters to precomposed 
characters. 

Discard nonspacing characters during conversion. 

Generate separate characters during conversion. 
This is the default conversion behavior. 

Replace exceptions with the default character during 
conversion. 

When WC_COMPOSITECHECK is specified, the function converts composite 
characters to precomposed characters. A composite character consists of a base 
character and a nonspacing character, each having different character values. A 
precomposed character has a single character value for a base/nonspacing character 



808 Volume 1 Microsoft Windows Base Services 

combination. In the character e, the e is the base character, and the accent grave 
mark is the nonspacing character. 

When an application specifies WC_COMPOSITECHECK, it can use the last three 
flags in this list (WC_DISCARDNS, WC_SEPCHARS, and WC_DEFAUL TCHAR) to 
customize the conversion to precomposed characters. These flags determine the 
function's behavior when there is no precomposed mapping for a base/nonspace 
character combination in a wide-character string. These last three flags can only be 
used if the WC_COMPOSITECHECK flag is set. 

The function's default behavior is to generate separate characters (WC_SEPCHARS) 
for unmapped composite characters. 

IpWideCharStr 
[in] Points to the wide-character string to be converted. 

cch WideChar 
[in] Specifies the number of wide characters in the string pointed to by the 
IpWideCharStr parameter. If this value is -1, the string is assumed to be nulI­
terminated and the length is calculated automatically. The length will include the nulI­
terminator. 

IpMultiByteStr 
[out] Points to the buffer to receive the translated string. 

cbMultiByte 
[in] Specifies the size, in bytes, of the buffer pointed to by the IpMultiByteStr 
parameter. If this value is zero, the function returns the number of bytes required for 
the buffer. (In this case, the IpMultiByteStr buffer is not used.) 

IpDefaultChar 
[in] Points to the character used if a wide character cannot be represented in the 
specified code page. If this parameter is NULL, a system default value is used. The 
function is faster when both IpDefaultChar and IpUsedDefaultChar are NULL. 

IpUsedDefaultChar 
[in] Points to a flag that indicates whether a default character was used. The flag is set 
to TRUE if one or more wide characters in the source string cannot be represented in 
the specified code page. Otherwise, the flag is set to FALSE. This parameter may be 
NULL. The function is faster when both IpDefaultChar and IpUsedDefaultChar are 
NULL. 

Return Values 
If the function succeeds, and cbMultiByte is nonzero, the return value is the number of 
bytes written to the buffer pointed to by IpMultiByteStr. The number includes the byte for 
the null terminator. 

If the function succeeds, and cbMultiByte is zero, the return value is the required size, in 
bytes, for a buffer that can receive the translated string. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 



ERROR_INSUFFICIENT _BUFFER 
ERROR_INVALlD_FLAGS 
ERROR_INVALlD_PARAMETER 

Remarks 

Chapter 12 Unicode 809 

The IpMultiByteStr and IpWideCharStr pOinters must not be the same. If they are the 
same, the function fails, and GetLastError returns ERROR_INVALlD_PARAMETER. 

If CodePage is CP _SYMBOL and cbMultiByte is less than cchWideChar, no characters 
are written to IpMultiByte. Otherwise, if cbMultiByte is less than cchWideChar, 
cbMultiByte characters are copied to the buffer pointed to by IpMultiByte. 

An application can use the IpDefaultChar parameter to change the default character 
used for the conversion. 

As noted earlier, the WideCharToMultiByte function operates most efficiently when 
both IpDefaultChar and IpUsedDefaultChar are NULL. The following table shows the 
behavior of WideCharToMultiByte for the four combinations of IpDefaultChar and 
IpUsedDefaultChar. 

IpDefaultChar IpUsedDefaultChar Result 

NULL NULL 

non-NULL NULL 

NULL non-NULL 

non-NULL non-NULL 

No default checking. This is the most 
efficient way to use this function. 

Uses the specified default character, but 
does not set IpUsedDefaultChar. 

Uses the system default character and sets 
IpUsedDefaultChar if necessary. 

Uses the specified default character and 
sets IpUsedDefaultChar if necessary. 

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in 
MAPI Development. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 

Unicode and Character Sets Overview, Unicode and Character Set Functions, 
MultiByteToWideChar 



810 Volume 1 Microsoft Windows Base Services 

Unicode and Character Set Structures 

CHARSETINFO 
The CHARSETINFO structure contains information about a character set. 

Members 
ciCharset 

Character set value. 

ciACP 

fs 

ANSI code-page identifier. 

A FONTSIGNATURE structure that identifies the Unicode and code page-font 
signature values. Only one code page will be set when this structure is set by the 
function. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Unicode and Character Sets Overview, Unicode and Character Set Structures, 
FONTSIGNATURE, TranslateCharsetlnfo 

FONTSIGNATURE 
The FONTSIGNATURE structure contains information identifying the code pages and 
Unicode subranges for which a given font provides glyphs. 



Members 
fsUsb 

Chapter 12 Unicode 811 

A 128-bit Unicode subset bitfield (USB) identifying up to 126 Unicode subranges. 
Each bit, except the two most significant bits, represents a single subrange. The most 
significant bit is always 1 and identifies the bitfield as a font signature; the second 
most significant bit is reserved and must be o. Unicode subranges are numbered in 
accordance with the ISO 10646 standard. For more information, see Unicode Subset 
Bitfields. 

fsCsb 
A 64-bit, code-page bitfield (CPB) that identifies a specific character set or code page. 
Code pages are in the lower 32 bits of this bitfield. The high 32 are used for non­
Windows code pages. For more information, see Code-Page Bitfields. 

Remarks 
GDI relies on Windows code pages fitting within a 32-bit value. Furthermore, the highest 
two bits within this value are reserved for GDI internal use and may not be assigned to 
code pages. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdi.h; include windows.h. 

Unicode and Character Sets Overview, Unicode and Character Set Structures, 
LOCALESIGNATURE 

LOCALESIGNATURE 
The LOCALESIGNATURE structure contains extended font-signature information, 
including two code-page bitfields (CPBs) that define the default and supported character 
sets and code pages. This structure is typically used to represent the relationships 
between font coverage and locales. 



812 Volume 1 Microsoft Windows Base Services 

Members 
IsUsb 

A 128-bit Unicode subset bitfield (USB) identifying up to 126 Unicode subranges. 
Each bit, except the two most significant bits, represents a single subrange. The most 
significant bit is always 1 and identifies the bitfield as a font signature; the second 
most significant is reserved and must be o. Unicode subranges are numbered in 
accordance with the ISO 10646 standard. 

IsCsbDefault 
A code-page bitfield that indicates the default OEM and ANSI code pages for a locale. 
The code pages may be identified by separate bits or a single bit representing a 
common ANSI and OEM code page. For a list of possible bitfield values, see Code­
Page Bitfields. 

IsCsbSupported 
A code-page bitfield that indicates all the code pages in which the locale can be 
supported. For a list of possible bitfield values, see Code-Page Bitfields. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in wingdLh; include windows.h. 

Unicode and Character Sets Overview, Unicode and Character Set Structures 

Unicode and Character Set Macros 

TEXT 

The following macro is used in Unicode applications. 

The TEXT macro identifies a string as Unicode when the UNICODE is defined during 
compilation. Otherwise, it identifies a string as an ANSI string. 

Parameters 
string 

Pointer to the string to be interpreted as either Unicode or ANSI. 



Chapter 12 Unicode 813 

;Rj~equirements 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnt.h; include windows.h. 

Unicode and Character Sets Overview, Unicode and Character Set Macros 

Unicode and Character Set Constants 
The following groups of constants are used with the character set functions. 

• ANSI Code-Page Identifiers 

• OEM Code-Page Identifiers 

• Code-Page Identifiers 

• Code-Page Bitfields 

ANSI Code-Page Identifiers 
Identifier 

874 
932 

936 
949 

950 
1200 
1250 
1251 

1252 
1253 

1254 
1255 

1256 
1257 

Meaning 

Thai 

Japan 
Chinese (PRC, Singapore) 
Korean 
Chinese (Taiwan; Hong Kong SAR, PRC) 
Unicode (BMP of ISO 10646) 

Windows 3.1 Eastern European 
Windows 3.1 Cyrillic 

Windows 3.1 Latin 1 (US, Western Europe) 
Windows 3.1 Greek 
Windows 3.1 Turkish 
Hebrew 

Arabic 
Baltic 

OEM Code-Page Identifiers 
Identifier Meaning 

437 MS-DOS United States 
(continued) 



814 Volume 1 Microsoft Windows Base Services 

(continued) 

Identifier Meaning 

708 Arabic (ASMO 708) 

709 Arabic (ASMO 449+, BCON V4) 

710 Arabic (Transparent Arabic) 

720 Arabic (Transparent ASMO) 
737 Greek (formerly 437G) 

775 Baltic 

850 MS-DOS Multilingual (Latin I) 

852 MS-DOS Slavic (Latin II) 

855 IBM Cyrillic (primarily Russian) 

857 IBM Turkish 

860 MS-DOS Portuguese 

861 MS-DOS Icelandic 
862 Hebrew 

863 MS-DOS Canadian-French 

864 Arabic 

865 MS-DOS Nordic 
866 MS-DOS Russian (former USSR) 

869 IBM Modern Greek 
874 Thai 

932 Japan 

936 Chinese (PRC, Singapore) 

949 Korean 

950 Chinese (Taiwan; Hong Kong SAR, PRC) 
1361 Korean (Johab) 

Code-Page Identifiers 
Identifier Meaning 

037 EBCDIC 

437 MS-DOS United States 

500 EBCDIC "500V1" 
708 Arabic (ASMO 708) 

709 Arabic (ASMO 449+, BCON V4) 
710 Arabic (Transparent Arabic) 

720 Arabic (Transparent ASMO) 

737 Greek (formerly 437G) 

775 Baltic 



Chapter 12 Unicode 815 

Identifier Meaning 

850 MS-DOS Multilingual (Latin I) 
852 MS-DOS Slavic (Latin II) 

855 IBM Cyrillic (primarily Russian) 

857 IBM Turkish 

860 MS-DOS Portuguese 
861 MS-DOS Icelandic 

862 Hebrew 

863 MS-DOS Canadian-French 

864 Arabic 

865 MS-DOS Nordic 

866 MS-DOS Russian 

869 IBM Modern Greek 

874 Thai 

875 EBCDIC 

932 Japan 

936 Chinese (PRC, Singapore) 

949 Korean 

950 Chinese (Taiwan; Hong Kong SAR, PRC) 
1026 EBCDIC 

1200 Unicode (BMP of ISO 10646) 

1250 Windows 3.1 Eastern European 
1251 Windows 3.1 Cyrillic 

1252 Windows 3.1 US (ANSI) 

1253 Windows 3.1 Greek 

1254 Windows 3.1 Turkish 
1255 Hebrew 

1256 Arabic 

1257 Baltic 
1361 Korean (Johab) 
10000 Macintosh Roman 

10001 Macintosh Japanese 

10006 Macintosh Greek I 

10007 Macintosh Cyrillic 

10029 Macintosh Latin 2 

10079 Macintosh Icelandic 
10081 Macintosh Turkish 



816 Volume 1 Microsoft Windows Base Services 

Code-Page Bitfields 
Code 

Bit page Description 

ANSI 

0 1252 Latin 1 

1 1250 Latin 2: Eastern Europe 

2 1251 Cyrillic 

3 1253 Greek 

4 1254 Turkish 

5 1255 Hebrew 

6 1256 Arabic 

7 1257 Baltic 

8 -15 Reserved for ANSI 

ANSI and OEM 

16 874 Thai 

17 932 Japanese, Shift-JIS 

18 936 Chinese: Simplified chars-PRC and Singapore 

19 949 Korean Unified Hangeul Code (Hangeul TongHabHyung 
Code) 

20 950 Chinese: Traditional chars-Taiwan and Hong Kong SAR, 
PRC 

21 1361 Korean (Johab) 

22 - 29 Reserved for alternate ANSI and OEM 

30 - 31 Reserved by system. 

OEM 

32 - 47 Reserved for OEM 

48 869 IBM Greek 

49 866 MS-DOS Russian 

50 865 MS-DOS Nordic 

51 864 Arabic 

52 863 MS-DOS Canadian French 

53 862 Hebrew 

54 861 MS-DOS Icelandic 

55 860 MS-DOS Portuguese 

56 857 IBM Turkish 

57 855 IBM Cyrillic; primarily Russian 



Chapter 12 Unicode 817 

Code 
Bit page Description 

58 852 Latin 2 

59 775 Baltic 

60 737 Greek; former 437 G 

61 708 Arabic; ASMO 708 

62 850 Western European/Latin 1 

63 437 US 

Unicode Subset Bitfields 
Bit Description 

0 Basic Latin 

1 Latin-1 Supplement 

2 Latin Extended-A 

3 Latin Extended-B 

4 IPA Extensions 

5 Spacing Modifier Letters 

6 Combining Diacritical Marks 

7 Basic Greek 

8 Greek Symbols and Coptic 

9 Cyrillic 

10 Armenian 

11 Basic Hebrew 

12 Hebrew Extended 

13 Basic Arabic 

14 Arabic Extended 
15 Devanagari 

16 Bengali 

17 Gurmukhi 

18 Gujarati 

19 Oriya 

20 Tamil 

21 Telugu 

22 Kannada 

23 Malayalam 

24 Thai 

25 Lao 

26 Basic Georgian 
(continued) 



818 Volume 1 Microsoft Windows Base Services 

(continued) 

Bit Description 

27 Georgian Extended 
28 Hangul Jamo 
29 Latin Extended Additional 
30 Greek Extended 
31 General Punctuation 
32 Subscripts and Superscripts 
33 Currency Symbols 
34 Combining Diacritical Marks for Symbols 
35 Letter-like Symbols 
36 Number Forms 
37 Arrows 
38 Mathematical Operators 
39 Miscellaneous Technical 
40 Control Pictures 
41 Optical Character Recognition 
42 Enclosed Alphanumerics 
43 Box Drawing 
44 Block Elements 
45 Geometric Shapes 
46 Miscellaneous Symbols 
47 Dingbats 
48 Chinese, Japanese, and Korean (CJK) Symbols and Punctuation 
49 Hiragana 
50 Katakana 
51 Bopomofo 
52 Hangul Compatibility Jamo 
53 CJK Miscellaneous 
54 Enclosed CJK 
55 CJK Compatibility 
56 Hangul 
57 Reserved for Unicode Subranges 
58 Reserved for Unicode Subranges 
59 CJK Unified Ideographs 
60 Private Use Area 



Chapter 12 Unicode 819 

Bit Description 

61 CJK Compatibility Ideographs 

62 Alphabetic Presentation Forms 

63 Arabic Presentation Forms-A 

64 Combining Half Marks 

65 CJK Compatibility Forms 

66 Small Form Variants 

67 Arabic Presentation Forms-B 

68 Halfwidth and Fullwidth Forms 

69 Specials 

70-127 Reserved for Unicode Subranges 





821 

APPENDIX A 

Index A: Elements Grouped by Technology 

The indexes in Part 3 make finding information in the Win32 Library volumes as easy as 
possible. Rather than cluttering the Table of Contents with information about individual 
programmatic elements (and thereby making the TOC uselessly jumbled), I've created 
these indexes and put them in the back of each volume. With these indexes, you'll be 
able to locate the programmatic element you're interested in----and see where it fits within 
the volumes and their technologies-quickly and easily. 

Also, to keep you informed and up-to-date about Microsoft technologies, I've created a 
live Web-based document that maps Microsoft technologies to the locations where you 
can get more information about them. This link gets you to the live index of technologies: 
www.iseminger.com/winprs/techn%gies 

As always, send me feedback if you can think of ways to improve this section. I can't 
guarantee a reply, but I'll read it, and if others can benefit, I'll incorporate the idea into 
future volumes. 

Atom Reference 346 

Atom Functions 346 

AddAtom 

DeleteAtom 
FindAtom 

GetAtomName 

GlobalAddAtom 

GlobalDeleteAtom 
GlobalFindAtom 

GlobalGetAtomName 

InitAtomTable 

Atom Macros 356 

MAKEINTATOM 

Clipboard Reference 363 

Clipboard Functions 363 

ChangeClipboardChain 

CloseClipboard 

CountClipboardFormats 

EmptyClipboard 

EnumClipboardFormats 

GetClipboardData 

GetClipboardFormatName 

GetClipboardOwner 

GetClipboardSequenceNumber 

GetClipboardViewer 

GetOpenClipboardWindow 

GetPriorityClipboardFormat 

IsClipboardFormatAvailable 

Open Clipboard 

RegisterClipboardFormat 

SetClipboardData 

SetClipboardViewer 
Clipboard Structures 378 

METAFILEPICT 

Clipboard Messages 380 

WM_ASKCBFORMATNAME 

WM_CHANGECBCHAIN 

WM_CLEAR 
WM_COPY 

WM_CUT 



822 Volume 1 Microsoft Windows Base Services 

Clipboard Messages 

(continued) 

WM_DESTROYCLIPBOARD 
WM_DRAWCLIPBOARD 

WM_HSCROLLCLIPBOARD 

WM_PAINTCLIPBOARD 

WM_PASTE 

WM_RENDERALLFORMATS 

WM_RENDERFORMAT 

WM_SIZECLIPBOARD 

WM_ VSCROLLCLIPBOARD 

Dynamic Link Library Reference 217 

Dynamic Link Library Functions 217 

Disable ThreadLibraryCalis 

DIiMain 

Free Library 

FreeLibraryAnd ExitTh read 

GetModuleFileName 

GetModuleHandle 

GetProcAddress 

LoadLibrary 

LoadLibraryEx 

Error Handling Reference 767 
Error Handling Functions 767 

Beep 

FatalAppExit 

FlashWindow 

FlashWindowEx 

FormatMessage 

GetLastError 

MessageBeep 
SetErrorMode 

SetLastError 

SetLastErrorEx 

Error Handling Structures 783 

FLASHWINFO 

File I/O Reference 481 

File I/O Functions 481 

AreFileApisANSI 

File I/O Reference (continued) 

File I/O Functions (continued) 

Cancello 
CopyFile 

CopyFileEx 

CopyProgressRoutine 

CreateDirectory 

CreateDirectoryEx 

CreateFile 

CreateloCompletionPort 

DefineDosDevice 

DeleteFile 

FilelOCompletionRoutine 

FindClose 

FindCloseChangeNotification 

FindFirstChangeNotification 

FindFirstFile 

FindFirstFileEx 

FindNextChangeNotification 

FindNextFile 

FlushFileBuffers 

GetBinaryType 

GetCurrentDirectory 

GetDiskFreeSpace 

GetDiskFreeSpaceEx 

GetDriveType 

GetFileAttributes 
GetFileAttributesEx 

GetFilelnformationByHandle 

GetFileSize 

GetFileSizeEx 

GetFileType 

GetFuliPathName 
GetLogicalDrives 

GetLogicalDriveStrings 

GetLongPathName 

GetQueuedCompletionStatus 

GetShortPathName 

GetTempFileName 



Appendix A Index A: Elements Grouped by Technology 823 

File 1/0 Reference (continued) 

File 1/0 Functions (continued) 

GetTempPath 

Int32x32To64 

Int64ShllMod32 

Int64ShraMod32 

I nt64ShrlMod32 

LockFile 

LockFileEx 

MoveFile 

MoveFileEx 

MoveFileWithProgress 

MulDiv 

PostQueuedCompletionStatus 

QueryDosDevice 

ReadDirectoryChangesW 

ReadFile 

ReadFileEx 

ReadFileScatter 

RemoveDirectory 

ReplaceFile 

Search Path 

SetCu rrentDi rectory 
SetEndOfFile 

SetFileApisToANSI 

SetFileApisToOEM 

SetFileAttributes 

SetFilePointer 

SetFilePointerEx 

SetVolumeLabel 

U Int32x32To64 

UnlockFile 

UnlockFileEx 

WriteFile 

WriteFileEx 
WriteFileGather 

File 1/0 Structures 606 

BY _HANDLE_FILE_INFORMATION 

FILE_NOTIFY _INFORMATION 

File 1/0 Structures (continued) 

LARGE_INTEGER 

OFSTRUCT 
ULARGE_INTEGER 

WIN32_FILE_A TTRIBUTE_DAT A 

WIN32_FIND_DATA 

File 1/0 Enumeration Types 617 
FINDEX_INFO_LEVELS 

FINDEX_SEARCH_OPS 

GET _FILEEX_INFO_LEVELS 

AddUsersToEncryptedFile 
CreateHardLink 

DecryptFile 

DeleteVolumeMountPoint 

EncryptFile 

EncryptionDisable 

FileEncryptionStatus 

FindFirstVolume 

FindFirstVolumeMountPoint 

FindNextVolume 

FindNextVolumeMountPoint 

FindVolumeClose 

FindVolumeMountPointClose 

FreeEncryptionCertificateHashList 

GetCompressedFileSize 

GetVolumelnformation 

GetVolumeNameForVolume 
MountPoint 

GetVolumePathName 

QueryRecovery AgentsOn 
EncryptedFile 

QueryUsersOnEncryptedFile 

RemoveUsersFromEncryptedFile 

SetUserFileEncryptionKey 

SetVolumeMountPoint 
File System Interfaces 683 

I DiskQuotaControl 

I DiskQuotaControl: :AddUserName 

I DiskQuotaControl: :AddUserSid 
File System Interfaces 683 



824 Volume 1 Microsoft Windows Base Services 

File System Interfaces (continued) 

I DiskQuotaControl:: 
CreateEnumUsers 

I DiskQuotaControl:: 
CreateUserBatch 

I DiskQuotaControl:: DeleteUser 
I DiskQuotaControl:: FindUserName 
I DiskQuotaControl:: FindUserSid 
IDiskQuotaControl:: 

GetDefaultQuotaLimit 
I DiskQuotaControl:: 

GetDefaultQuotaLimitT ext 
I DiskQuotaControl:: 

GetDefaultQuotaThreshold 
I DiskQuotaControl:: 
GetDefaultQuotaThresholdText 
I DiskQuotaControl:: 

GetQuotaLogFlags 
IDiskQuotaControl: : GetQuotaState 
I DiskQuotaControl:: 

GiveUserNameResolution Priority 
I DiskQuotaControl:: Initialize 
IDiskQuotaControl: : 

InvalidateSidNameCache 
I DiskQuotaControl:: 

SetDefaultQuotaLimit 
I DiskQuotaControl:: 

SetDefaultQuota Threshold 
I DiskQuotaControl:: 

SetQuotaLogFlags 
I DiskQuotaControl: :SetQuotaState 
I DiskQuotaControl:: 

ShutdownNameResolution 
I DiskQuotaEvents 
I DiskQuotaEvents:: 

OnUserNameChanged 
IDiskQuotaUser 
IDiskQuotaUser: :GetAccountStatus 
I DiskQuotaUser: :Getl D 
I DiskQuotaUser: :GetName 

File System Interfaces (continued) 

I DiskQuotaUser:: 
GetQuotalnformation 

IDiskQuotaUser::GetQuotaLimit 
IDiskQuotaUser: :GetQuotaLimitText 
I DiskQuotaUser:: 

GetQuotaThreshold 
IDiskQuotaUser:: 

GetQuotaThresholdText 
I DiskQuotaUser: :GetQuotaUsed 
IDiskQuotaUser: :GetQuotaUsedText 
I DiskQuotaUser: :GetSid 
IDiskQuotaUser::GetSidLength 
I DiskQuotaUser:: Invalidate 
I DiskQuotaUser: :SetQuotaLimit 
IDiskQuotaUser: : 

SetQuotaThreshold 
I DiskQuotaUserBatch 
I DiskQuotaUserBatch: :Add 
IDiskQuotaUserBatch::Remove 
IDiskQuotaUserBatch::RemoveAIi 
I DiskQuotaUserBatch: :FlushToDisk 
IEnumDiskQuotaUsers 
I EnumDiskQuotaUsers: :Clone 
IEnumDiskQuotaUsers::Next 
IEnumDiskQuotaUsers::Reset 
IEnumDiskQuotaUsers::Skip 

File System Structures 731 
DISKQUOTA_USER_ 

INFORMATION 
EFS_CERTIFICATE_BLOB 
EFS_HASH_BLOB 
ENCRYPTION_CERTIFICATE 
ENCRYPTION_CERTIFICATE_ 

HASH 
ENCRYPTION_CERTIFICATE_ 

HASH_LIST 
ENCRYPTION_CERTIFICATE_ 

LIST 



Appendix A Index A: Elements Grouped by Technology 825 

File System Macros 736 
IsReparseTagHighLatency 

IsReparseTagMicrosoft 
IsReparse TagNameSurrogate 

Handle and Object Reference 404 

Handle and Object Functions 404 
CloseHandle 
DuplicateHandle 
GetHandlelnformation 
SetHandlelnformation 

Hook Reference 420 
Hook Functions 420 

CallMsgFilter 
CaliNextHookEx 
CallWndProc 
CallWndRetProc 
CBTProc 

DebugProc 
ForegroundldleProc 
GetMsgProc 
JournalPlaybackProc 
JournalRecordProc 
KeyboardProc 
LowLevelKeyboardProc 

LowLevelMouseProc 
MessageProc 
MouseProc 
SetWindowsHookEx 
SheliProc 

SysMsgProc 
UnhookWindowsHookEx 

Hook Structures 456 
CBT _CREATEWND 
CBTACTIVATESTRUCT 

CWPRETSTRUCT 
CWPSTRUCT 
DEBUGHOOKINFO 
EVENTMSG 

KBDLLHOOKSTRUCT 

Hook Structures (continued) 
MOUSEHOOKSTRUCT 

MOUSEHOOKSTRUCTEX 
MSLLHOOKSTRUCT 

Hook Messages 465 

WM_CANCELJOURNAL 
WM_QUEUESYNC 

Interprocess Communications 
Reference 343 

Interprocess Communications 
Structures 343 

COPYDATASTRUCT 

Interprocess Communications 
Messages 343 

WM_COPYDATA 
Memory Management Reference 261 

AllocateUserPhysicalPages 
CopyMemory 
Fill Memory 
FreeUserPhysicalPages 

GetProcessHeap 
GetProcessHeaps 
GetWriteWatch 
GlobalMemoryStatus 
HeapAlioc 

HeapCompact 
HeapCreate 
HeapDestroy 

HeapFree 

HeapLock 
HeapReAlioc 
HeapSize 

HeapUnlock 
HeapValidate 
HeapWalk 
IsBadCodePtr 
IsBadReadPtr 

IsBadStringPtr 
IsBadWritePtr 
MapUserPhysicalPages 



826 Volume 1 Microsoft Windows Base Services 

Memory Management 
Reference (continued) 

MapUserPhysicalPagesScatter 
MoveMemory 

ResetWriteWatch 

VirtualAlioc 

VirtualAllocEx 
Virtual Free 

VirtualFreeEx 

VirtualLock 

VirtualProtect 

VirtualProtectEx 

VirtualQuery 

VirtualQueryEx 

Virtual Unlock 
ZeroMemory 

Memory Management Structures 328 

MEMORY _BASIC_INFORMATION 

MEMORYSTATUS 
PROCESS_HEAP_ENTRY 

Process and Thread Reference 74 

Process and Thread Functions 74 

AssignProcessToJobObject 
AttachThreadlnput 

BindloCompletionCallback 

CommandLineToArgvW 

ConvertThreadToFiber 

CreateFiber 

CreateJobObject 

CreateProcess 

CreateProcessAsUser 
CreateProcessWithLogonW 

Create Remote Thread 

CreateThread 

DeleteFiber 

ExitProcess 

ExitThread 

FiberProc 

FreeEnvironmentStrings 

Process and Thread 
Reference (continued) 

Process and Thread 
Functions (continued) 

GetCommandLine 

GetCurrentProcess 

GetCurrentProcessld 

GetCurrentThread 

GetCurrentThreadld 

GetEnvironmentStrings 

GetEnvironmentVariable 
GetExitCodeProcess 

GetExitCode Thread 

GetGuiResources 

GetPriorityClass 

GetProcessAffinityMask 

GetProcessloCounters 

GetProcessPriorityBoost 

GetProcessShutdownParameters 

GetProcessTimes 

GetProcessVersion 

GetProcessWorkingSetSize 

GetStartuplnfo 
GetThreadPriority 

GetThreadPriorityBoost 

GetThreadTimes 

OpenJobObject 

Open Process 

OpenThread 

Queryl nformationJobObject 

QueueUserWorkltem 

ResumeThread 

SetEnvironmentVariable 

SetlnformationJobObject 

SetPriorityClass 

SetProcessAffinityMask 

SetProcessPriorityBoost 

SetProcessShutdownParameters 

SetProcessWorkingSetSize 
SetThreadAffinityMask 



Appendix A Index A: Elements Grouped by Technology 827 

Process and Thread 
Reference (continued) 

Process and Thread 
Functions (continued) 

SetThreadldealProcessor 

SetThreadPriority 

SetThreadPriorityBoost 

Sleep 

SleepEx 

SuspendThread 

SwitchToFiber 
SwitchToThread 

TerminateJobObject 

TerminateProcess 

TerminateThread 

Th read Proc 

TlsAlioc 

TlsFree 

TlsGetValue 

TlsSetValue 

UserHandleGrantAccess 

WaitForlnputldle 

Process and Thread Structures 184 
IO_COUNTERS 

JOBOBJECT _ASSOCIATE_ 
COMPLETION 

PORT 
JOBOBJECT _BASIC_ 

ACCOUNTING_ 
INFORMATION 
JOBOBJECT _BASIC_AND_IO_ 

ACCOUNTING_ 
INFORMATION 

JOBOBJECT _BASIC_LIM IT_ 
INFORMATION 

JOBOBJECT _BASIC_PROCESS_ 
I D_LI ST 

JOBOBJECT _BASIC_UL 
RESTRICTIONS 

Process and Thread Structures 
(continued) 

JOBOBJECT _END_OF _JOB_ 
TIME_INFORMATION 

JOBOBJECT _EXTENDED_LlMIT_ 
INFORMATION 

JOBOBJECT _SECU RITY_LlM IT_ 
INFORMATION 

PROCESS_INFORMATION 

STARTUPINFO 

Process and Thread Macros 207 

GetCurrentFiber 

GetFiberData 

Structured Exception Handling 
Reference 750 

AbnormalTermination 

GetExceptionCode 

GetException Information 

RaiseException 

SetUnhandledExceptionFilter 

UnhandledExceptionFilter 

Structured Exception Handling 
Structures 759 

EXCEPTION_POINTERS 

EXCEPTION_RECORD 

Unicode and Character Set 
Reference 795 

Unicode and Character Set 
Functions 795 

GetT extCharset 

GetTextCharsetlnfo 

IsDBCSLeadByte 

IsDBCSLeadByteEx 

IsTextUnicode 

MultiByte ToWideChar 

TranslateCharsetlnfo 

WideCharToMultiByte 

Unicode and Character Set 



828 Volume 1 Microsoft Windows Base Services 

Structures 810 
CHARSETINFO 

FONTSIGNATURE 

LOCALESIGNATURE 

Unicode and Character Set 
Macros 812 

TEXT 



APPENDIX B 

Index B: Volume 1, Elements 
Listed Alphabetically 

A CreateloCompletionPort .............................. 502 
CreateJobObject ............................................ 81 

AbnormalTermination .................................. 750 Create Process ............................................... 82 
AddAtom ...................................................... 346 CreateProcessAsUser ................................... 92 
AddUsersToEncryptedFile .......................... 655 CreateProcessWithLogonW ........................ 100 
AliocateUserPhysicalPages ........................ 261 CreateRemoteThread .................................. 107 
AreFileApisANSI .......................................... 481 CreateThread ............................................... 110 
AssignProcessToJobObject .......................... 74 CWPRETSTRUCT ....................................... 457 
AttachThreadlnput ......................................... 75 CWPSTRUCT ....................................... , ...... 458 

B D 
Beep ............................................................ 767 DEBUGHOOKINFO ..................................... 459 
BindloCompletionCaliback ............................ 77 DebugProc ................................................... 429 
BY _HANDLE_FILE_INFORMATION .......... 606 DecryptFile ................................................... 658 

DefineDosDevice ......................................... 504 

c DeleteAtom .................................................. 347 
DeleteFiber .................................................. 112 

CaIlMsgFilter. ............................................... 420 
CaliNextHookEx .......................................... 421 

DeleteFile ..................................................... 506 
DeleteVolumeMountPoint ............................ 659 

CallWndProc ............................................... 422 DisableThreadLibraryCalis .......................... 217 

CaIlWndRetProc .......................................... 424 DISKQUOTA_USER_INFORMATION ........ 731 

Cancello ...................................................... 482 DIiMain ......................................................... 219 

CBT_CREATEWND .................................... 456 DuplicateHandle .......................................... 406 

CBT ACTIVATESTRUCT ............................. 456 
CBTProc ...................................................... 425 
ChangeClipboardChain ............................... 363 E 
CHARSETINFO ........................................... 810 EFS_CERTIFICATE_BLOB ......................... 732 
CloseClipboard ............................................ 364 EFS_HASH_BLOB ...................................... 733 
CloseHandle ................................................ 404 EmptyClipboard ........................................... 365 
CommandLineToArgvW ................................ 78 EncryptFile ................................................... 660 
ConvertThreadToFiber .................................. 79 ENCRYPTION_CERTIFICATE .................... 733 
COPYDAT ASTRUCT .................................. 343 ENCRYPTION_CERTIFICATE_HASH ....... 734 
CopyFile ...................................................... 483 ENCRYPTION_CERTI FICATE_HASH_ 
CopyFileEx ........................ , ......................... 485 LIST .......................................................... 735 
CopyMemory ............................................... 263 ENCRYPTION_CERTIFICATE_LlST .......... 735 
CopyProgressRoutine ................................. 486 EncryptionDisable ........................................ 661 
CountClipboardFormats .............................. 364 EnumClipboardFormats ............................... 366 
CreateDirectory ........................................... 488 EVENTMSG ................................................. 460 
CreateDirectoryEx ....................................... 489 EXCEPTION_POINTERS ............................ 759 
CreateFiber .................................................... 80 EXCEPTION_RECORD .............................. 759 
Create File .................................................... 491 ExitProcess .................................................. 113 
CreateHardLink ........................................... 656 ExitThread .................................................... 115 

829 



830 Volume 1 Microsoft Windows Base Services 

F GetDiskFreeSpace ...................................... 523 
GetDiskFreeSpaceEx .................................. 525 

FatalAppExit ................................................ 768 GetDriveType ............................................... 526 
FiberProc ..................................................... 116 GetEnvironmentStrings ................................ 122 
FILE_NOTIFY _INFORMATION .................. 609 GetEnvironmentVariable .............................. 123 
FileEncryptionStatus ................................... 662 GetExceptionCode ....................................... 751 
FilelOCompletionRoutine ............................ 507 GetExceptionlnformation ............................. 753 
FiliMemory ................................................... 264 GetExitCodeProcess ................................... 124 
FindAtom ..................................................... 348 GetExitCodeThread ..................................... 125 
FindClose .................................................... 509 GetFiberData ............................................... 207 
FindCloseChangeNotification ...................... 510 GetFileAttributes .......................................... 527 
FINDEX_INFO_LEVELS ............................. 617 GetFileAttributesEx ...................................... 530 
FINDEX_SEARCH_OPS ............................ 618 GetFilelnformationByHandle ........................ 531 
FindFirstChangeNotification ........................ 511 GetFileSize .................................................. 532 
FindFirstFile ................................................. 513 GetFileSizeEx .............................................. 533 
FindFirstFileEx ............................................ 514 GetFileType ................................................. 534 
FindFirstVolume .......................................... 663 GetFuliPathName ........................................ 535 
FindFirstVolumeMountPoint ........................ 665 GetGuiResources ........................................ 126 
FindNextChangeNotification ....................... 517 GetHandlelnformation .................................. 413 
FindNextFile ................................................ 518 GetLastError ................................................ 776 
FindNextVolume .......................................... 666 GetLogicalDrives ......................................... 536 
FindNextVolumeMountPoint ....................... 667 GetLogicalDriveStrings ................................ 537 
FindVolumeClose ........................................ 668 GetLongPathName ...................................... 538 
FindVolumeMountPointClose ...................... 669 GetModuleFileName .................................... 224 
FlashWindow ............................................... 769 GetModuleHandle ........................................ 225 
FlashWindowEx ........................................... 770 GetMsgProc ................................................. 433 
FLASHWINFO ............................................. 783 GetOpenClipboardWindow .......................... 371 
FlushFileBuffers .......................................... 519 GetPriorityClass ........................................... 127 
FONTSIGNATURE ...................................... 810 GetPriorityClipboardFormat ......................... 372 
ForegroundldleProc ..................................... 432 GetProcAddress .......................................... 226 
FormatMessage .......................................... 771 GetProcessAffinityMask ............................... 128 
FreeEncryptionCertificateHashList.. ............ 670 GetProcessHeap ......................................... 266 
FreeEnvironmentStrings .............................. 117 GetProcessHeaps ........................................ 267 
FreeLibrary .................................................. 222 GetProcessloCounters ................................ 130 
FreeLibraryAndExitThread .......................... 223 GetProcessPriorityBoost.. ............................ 130 
FreeUserPhysicaIPages .............................. 265 GetProcessShutdownParameters ............... 131 

GetProcessTimes ........................................ 132 

G 
GetProcessVersion ...................................... 134 
GetProcessWorkingSetSize ........................ 135 

GET _FILEEX_INFO_LEVELS .................... 619 
GetAtomName ............................................. 349 

GetQueuedCompletionStatus ...................... 539 
GetShortPathName ..................................... 541 

GetBinaryType ............................................ 521 
GetClipboardData ........................................ 367 
GetClipboardFormatName .......................... 368 
GetClipboardOwner ..................................... 369 
GetClipboardSequenceNumber .................. 370 
GetClipboardViewer .................................... 371 
GetCommandLine ....................................... 117 

GetStartuplnfo .............................................. 136 
GetTempFileName ...................................... 543 
GetTempPath ............................................... 545 
GetT extCharset ........................................... 795 
GetTextCharsetlnfo ..................................... 796 
GetThreadPriority ......................................... 137 
GetThreadPriorityBoost ............................... 138 

GetCompressedFileSize ............................. 670 
GetCurrentDirectory .................................... 522 
GetCurrentFiber .......................................... 207 

GetThreadTimes .......................................... 139 
GetVolumelnformation ................................. 672 
GetVolumeNameForVolumeMountPoint ..... 675 

GetCurrentProcess ...................................... 118 GetVolumePathName .................................. 676 

GetCurrentProcessld ................................... 119 GetWriteWatch ............................................. 268 

GetCurrentThread ....................................... 120 GlobaIAddAtom ............................................ 350 

GetCurrentThreadld .................................... 121 GlobaIDeleteAtom ........................................ 352 



Appendix B Elements Listed Alphabetically 831 

GlobaIFindAtom ........................................... 353 GetQuotaUsedText ........................... 718 
GlobalGetAtomName .................................. 354 GetSid ............................................... 719 
GlobaIMemoryStatus ................................... 269 GetSidLength .................................... 720 

Invalidate ........................................... 721 

H 
SetQuotaLimit ................................... 721 
SetQuotaThreshold ........................... 722 

HeapAlioc .................................................... 271 
HeapCompact ............................................. 273 
HeapCreate ................................................. 275 
HeapDestroy ................................................ 277 
HeapFree ..................................................... 278 
HeapLock .................................................... 280 
HeapReAlioc ............................................... 281 
HeapSize ..................................................... 284 
HeapUnlock ................................................. 286 
HeapValidate ............................................... 287 
HeapWalk .................................................... 289 

IDiskQuotaUserBatch ................................... 723 
Add .................................................... 724 
Remove ............................................. 725 
RemoveAII ......................................... 726 
FlushToDisk ...................................... 726 

I EnumDiskQuotaUsers ................................. 727 
Clone ................................................. 728 
Next ................................................... 729 
Reset.. ............................................... 730 
Skip ................................................... 730 

InitAtomTable ................................................ 355 
I nt32x32T 064 ................................................ 546 
Int64ShIlMod32 ............................................. 547 
Int64ShraMod32 ........................................... 548 

IDiskQuotaControl ........................................ 683 
AddUserName .............................................. 684 

AddUserSid ...................................... 686 
CreateEnumUsers ............................ 688 
CreateUserBatch .............................. 690 
DeleteUser ........................................ 691 
FindUserName ................................. 692 
FindUserSid ...................................... 693 
GetDefaultQuotaLimit ....................... 694 
GetDefaultQuotaLimitT ext ................ 695 
GetDefaultQuotaThreshold .............. 696 
GetDefaullQuotaThresholdText ....... 697 
GetQuotaLogFlags ........................... 698 

Int64ShrIMod32 ............................................. 549 
IO_COUNTERS ............................................ 184 
IsBadCodePtr ................................................ 290 
IsBadReadPtr ................................................ 291 
IsBadStringPtr ............................................... 293 
IsBadWritePtr ................................................ 294 
IsClipboard FormatAvailable .......................... 373 
IsDBCSLeadByte .......................................... 798 
IsDBCSLeadByteEx ...................................... 799 
IsReparseTagHighLatency ........................... 736 
IsReparseTagMicrosoft.. ............................... 737 
IsReparseTagNameSurrogate ...................... 738 
IsTextUnicode ............................................... 800 

GetQuotaState .................................. 699 
G~~e~serNameResolutionPriority .... 700 
Initialize ............................................. 701 

J 
InvalidateSidNameCache ................. 702 
SetDefaultQuotaLimit ....................... 703 

JOBOBJECT _ASSOCIATE_COMPLETION 
PORT ......................................................... ~85 

SetDefaultQuotaThreshold ............... 704 
SetQuotaLogFlags ........................... 705 
SetQuotaState .................................. 706 
ShutdownNameResolution ............... 707 

JOBOBJECT BASIC ACCOUNTING 
INFORMATION ...... ~ ........................ ~ ........ 188 

JOBOBJECT _BASIC_AND_IO_ACCOUNTING 
INFORMATION .......................................... 190-

IDiskQuotaEvents ......................................... 708 
OnUserNameChanged ..................... 708 

IDiskQuotaUser ............................................ 709 
GetAccountStatus ............................ 710 

JOBOBJECT BASIC LIMIT 
INFORMATION ...... ~ ......... ~ ....................... 191 

JOBOBJECT _BASIC PROCESS 10 
LIST ....................... ~ ................. ~ .... :~ ......... 195 

GetiD ................................................ 711 JOBOBJECT _BASIC_UL 

GetName .......................................... 712 RESTRICTIONS ........................................ 1 96 

GetQuotalnformation ........................ 713 
GetQuotaLimit .................................. 714 

JOBOBJECT END OF JOB TIME 
INFORMATION .. ~ ...... ~ ....... ~ ........ ~ ........... 1 97 

GetQuotaLimitText ........................... 715 
GetQuotaThreshold .......................... 716 

JOBOBJECT EXTENDED LIMIT 
INFORMATION ............... ~ ......... ~ .............. 1 99 

GetQuotaThresholdText ................... 716 
GetQuotaUsed ................................. 717 

JOBOBJECT SECURITY LIMIT 
INFORMATION ............. ~ ......... ~ ................ 200 



832 Volume 1 Microsoft Windows Base Services 

JournalPlaybackProc .................................... 434 
JournalRecordProc ....................................... 437 Q 

QueryDosDevice ........................................... 562 

K 
QuerylnformationJobObject... ....................... 146 
QueryRecoveryAgentsOnEncryptedFile ....... 677 

KBDLLHOOKSTRUCT ................................. 460 QueryUsersOn Encrypted File ........................ 678 

KeyboardProc ............................................... 439 QueueUserWorkltem .................................... 148 

L R 
LARGE_INTEGER ....................................... 610 
LoadLibrary ................................................... 228 
LoadLibraryEx .............................................. 230 
LOCALESIGNATURE .................................. 811 

RaiseException ............................................. 754 
ReadDirectoryChangesW ............................. 563 
ReadFile ........................................................ 567 
ReadFileEx ................................................... 571 

LockFile ........................................................ 550 ReadFileScatter ............................................ 574 

LockFileEx .................................................... 551 RegisterClipboardFormat. ............................. 375 

LowLevelKeyboardProc ............................... 441 
LowLevel Mouse Proc .................................... 442 

RemoveDirectory .......................................... 576 
RemoveUsersFromEncryptedFile ................ 679 
ReplaceFile ................................................... 577 
ResetWriteWatch .......................................... 299 

M ResumeThread ............................................. 150 

MAKEINTATOM ........................................... 356 
MapUserPhysicalPages ............................... 295 s 
MapUserPhysicaIPagesScatter. ................... 297 
MEMORY _BASIC_INFORMATION ............. 328 
MEMORYSTATUS ....................................... 331 

SearchPath ................................................... 580 
SetClipboardData ......................................... 376 

MessageBeep .............................................. 777 
MessageProc ............................................... 444 
METAFILEPICT ............................................ 378 

SetClipboardViewer ...................................... 377 
SetCurrentDirectory ...................................... 581 
SetEndOfFile ................................................. 582 

MOUSEHOOKSTRUCT ............................... 462 SetEnvironmentVariable ............................... 151 

MOUSEHOOKSTRUCTEX .......................... 463 SetErrorMode ................................................ 778 

MouseProc ................................................... 446 SetFileApisToANSI ....................................... 583 

MoveFile ....................................................... 553 SetFileApisToOEM ....................................... 585 

MoveFileEx ................................................... 554 SetFileAttributes ........................................... 586 

MoveFileWithProgress ................................. 557 
MoveMemory ................................................ 298 
MSLLHOOKSTRUCT ................................... 464 

SetFilePointer ............................................... 588 
SetFilePointerEx ........................................... 591 
SetHandlelnformation ................................... 414 

MuIDiv ........................................................... 560 SetinformationJobObject .............................. 152 

MultiByteToWideChar .................................. 802 SetLastError .................................................. 780 
SetLastErrorEx .............................................. 781 

o SetPriorityClass ............................................ 153 
SetProcessAffinityMask ................................ 155 

OFSTRUCT .................................................. 611 
OpenClipboard ............................................. 374 
OpenJobObject ............................................ 141 
OpenProcess ................................................ 142 
OpenThread ................................................. 144 

SetProcessPriorityBoost ............................... 156 
SetProcessShutdownParameters ................. 157 
SetProcessWorkingSetSize .......................... 159 
SetThreadAffinityMask .................................. 161 
SetThreadldealProcessor ............................. 162 
SetThreadPriority .......................................... 163 
SetThreadPriorityBoost... .............................. 165 

p SetUnhandledExceptionFilter ....................... 756 
SetUserFileEncryptionKey ............................ 680 

PostQueuedCompletionStatus ..................... 561 SetVolumeLabel ........................................... 593 
PROCESS_HEAP _ENTRy .......................... 333 SetVolumeMountPoint .................................. 681 
PROCESS_INFORMATION ........................ 202 SetWindowsHookEx ..................................... 447 



Appendix 8 Elements Listed Alphabetically 833 

SheliProc ...................................................... 451 VirtualFreeEx ................................................ 313 
Sleep ............................................................ 166 VirtualLock .................................................... 316 
SleepEx ........................................................ 167 VirtualProtect ................................................ 318 
STARTUPINFO ............................................ 202 VirtualProtectEx ............................................ 320 
SuspendThread ............................................ 169 VirtualQuery .................................................. 323 
SwitchToFiber .............................................. 170 VirtuaIQueryEx .............................................. 325 
SwitchToThread ........................................... 171 VirtuaIUnlock ................................................. 326 
SysMsgProc ................................................. 453 

T 
w 
WaitForlnputldle ........................................... 182 

TerminateJobObject ..................................... 172 WideCharToMultiByte ................................... 806 
TerminateProcess ........................................ 173 WIN32_FILE_ATTRIBUTE_DATA ............... 612 
TerminateThread .......................................... 174 WIN32_FIND_DATA ..................................... 614 
TEXT ............................................................ 812 WM-ASKCBFORMATNAME ........................ 380 
ThreadProc ................................................... 176 WM_CANCELJOURNAL .............................. 465 
TlsAlioc ......................................................... 176 WM_CHANGECBCHAIN .............................. 381 
TlsFree ......................................................... 178 WM_CLEAR .................................................. 382 
TlsGetValue .................................................. 179 WM_COPY ................................................... 383 
TlsSetValue .................................................. 180 WM_COPYDATA .......................................... 343 
TranslateCharsetlnfo .................................... 805 WM_CUT ...................................................... 383 

WM_DESTROYCLIPBOARD ....................... 384 

u WM_DRAWCLIPBOARD .............................. 385 
WM_HSCROLLCLIPBOARD ........................ 386 

Ulnt32x32To64 ............................................. 594 WM_PAINTCLIPBOARD .............................. 387 

ULARGE_INTEGER ..................................... 611 
UnhandledExceptionFilter ............................ 757 
UnhookWindowsHookEx .............................. 455 

WM_PASTE .................................................. 388 
WM_QUEUESYNC ....................................... 467 
WM_RENDERALLFORMATS ...................... 389 

UnlockFile ..................................................... 595 WM_RENDERFORMAT ............................... 390 

UnlockFileEx ................................................. 596 WM_SIZECLIPBOARD ................................. 391 

UserHandleGrantAccess .............................. 181 WM_ VSCROLLCLIPBOARD ........................ 392 
WriteFile ........................................................ 598 

v WriteFileEx .................................................... 601 
WriteFileGather ............................................. 604 

VirtuaIAlloc .................................................... 301 
VirtualAllocEx ............................................... 306 z 
VirtuaIFree .................................................... 311 

ZeroMemory .................................................. 327 





835 

APPENDIX B 

Index B: Volume 2, Elements Listed 
Alphabetically 

A CB_GETLOCALE ........................................ 101 
CB_GETTOPINDEX .................................... 102 

ACCEL. ........................................................ 452 CB_INITSTORAGE ..................................... 103 
ActivateKeyboardLayout ............................. 467 CB_INSERTSTRING ................................... 104 
AppendMenu ............................................... 246 CB_LlMITTEXT ............................................ 1 05 

CB_RESETCONTENT ................................ 106 

B 
CB_SELECTSTRING .................................. 106 
CB_SETCURSEL ........................................ 108 

Blocklnput .................................................... 469 
BM_CLlCK ..................................................... 56 
BM_GETCHECK ........................................... 57 
BM_GETIMAGE ............................................ 58 
BM_GETSTATE ............................................ 59 
BM_SETCHECK ........................................... 60 
BM_SETIMAGE ............................................ 61 
BM_SETSTATE ............................................ 62 
BM_SETSTYLE ............................................. 63 
BN_CLlCKED ................................................ 64 
BN_DBLCLK ................................................. 65 
BN_DOUBLECLICKED ................................. 66 
BN_KILLFOCUS ........................................... 66 
BN_SETFOCUS ............................................ 67 
BroadcastSystemMessage .......................... 614 

CB_SETDROPPEDWIDTH ......................... 108 
CB_SETEDITSEL ........................................ 109 
CB_SETEXTENDEDUI... ............................. 11 0 
CB_SETHORIZONTALEXTENT ................. 111 
CB_SETITEMDATA ..................................... 112 
CB_SETITEMHEIGHT ................................. 113 
CB_SETLOCALE ......................................... 114 
CB_SETTOPINDEX .................................... 115 
CB_SHOWDROPDOWN ............................. 116 
CBN_CLOSEUP .......................................... 117 
CBN_DBLCLK ............................................. 118 
CBN_DROPDOWN ..................................... 119 
CBN_EDITCHANGE .................................... 120 
CBN_EDITUPDATE .................................... 120 
CBN_ERRSPACE ....................................... 121 
CBN_KILLFOCUS ....................................... 122 

c CBN_SELCHANGE ..................................... 123 
CBN_SELENDCANCEL .............................. 124 

CaliWindowProc .......................................... 682 
CB_ADDSTRING .......................................... 84 
CB_DELETESTRING .................................... 85 
CB_DIR ......................................................... 86 
CB_FINDSTRING ......................................... 88 
CB_FINDSTRINGEXACT ............................. 89 
CB_GETCOUNT ........................................... 90 
CB_GETCURSEL ......................................... 91 
CB_GETDROPPEDCONTROLRECT ........... 92 
CB_GETDROPPEDSTATE .......................... 93 
CB_GETDROPPEDWIDTH .......................... 93 
CB_GETEDITSEL ......................................... 94 
CB_GETEXTENDEDUI ................................. 95 
CB_GETHORIZONTALEXTENT .................. 96 
CB_GETITEMDATA ...................................... 97 
CB_GETITEMHEIGHT .................................. 98 
CB_GETLBTEXT .......................................... 99 
CB_GETLBTEXTLEN ................................. 100 

CBN_SELENDOK ........................................ 125 
CBN_SETFOCUS ........................................ 125 
CharLower ................................................... 323 
CharLowerBuff ............................................. 324 
CharNext ...................................................... 325 
CharNextExA ............................................... 326 
CharPrev ...................................................... 327 
CharPrevExA ............................................... 327 
CharToOem ................................................. 328 
CharToOemBuff ........................................... 329 
CharUpper ................................................... 330 
CharUpperBuff ............................................. 331 
CheckDlgButton ............................................. 53 
CheckMenultem ........................................... 249 
CheckMenuRadioltem ................................. 250 
CheckRadioButton ......................................... 54 
ClipCursor .................................................... 200 
COMBOBOXINFO ......................................... 77 



836 Volume 2 Microsoft Windows User Interface 

COMPAREITEMSTRUCT ............................. 78 
CompareString ............................................ 332 E 
CopyAcceleratorTable ................................. 446 EnableMenultem .......................................... 256 
CopyCursor ................................................. 201 EnableScroliBar ........................................... 134 
Copylcon ..................................................... 218 EnableWindow ............................................. 470 
CreateAcceleratorTable .............................. 447 EndDialog .................................................... 555 
CreateCaret ................................................. 192 EndMenu ...................................................... 258 
CreateCursor ............................................... 202 EnumProps .................................................. 687 
CreateDialog ............................................... 537 EnumPropsEx .............................................. 688 
CreateDialoglndirect.. .................................. 539 ExtractAssociatedlcon ................................. 229 
CreateDialoglndirectParam ......................... 541 Extractlcon ................................................... 231 
CreateDialogParam ..................................... 543 ExtractlconEx ............................................... 232 
Createlcon ................................................... 219 
Create Icon From Resource ........................... 221 
Create Icon From Resource Ex ....................... 222 F 
Createlconlndirect ....................................... 224 
CreateMDIWindow ...................................... 653 

FoldString ..................................................... 336 

CreateMenu ................................................. 251 
CreatePopupMenu ...................................... 252 G 
CURSORINFO ............................................ 216 

GET APPCOMMAND LPARAM ................ 437 
GET-DEVICE LPARAM ............................. 438 

D 
DefDlgProc .................................................. 545 
DefFrameProc ............................................. 655 
DefMDIChildProc ......................................... 657 
DefWindowProc ........................................... 684 

GET - KEYSTATE LPARAM ........................ 439 
GET - KEYSTATE - WPARAM ...................... 440 
GET-NCHITTEST WPARAM ..................... 440 
GET - WHEEL_DELTA_WPARAM ............... 441 
GET - XBUTTON WPARAM ........................ 441 
GetActiveWindow ........................................ 472 

DeleteMenu ................................................. 253 
DestroyAcceleratorTable ............................. 448 
DestroyCaret ............................................... 193 
DestroyCursoJ ............................................. 203 

GetAsyncKeyState ....................................... 472 
GetCapture .................................................. 373 
GetCaretBlinkTime ...................................... 194 
GetCaretPos ................................................ 195 

Destroylcon ................................................. 225 
DestroyMenu ............................................... 254 

GetClipCursor .............................................. 204 
GetComboBoxlnfo ......................................... 76 

DialogBox ..................................................... 546 GetCursor .................................................... 205 
DialogBoxlndirect ........................................ 547 GetCursorlnfo .............................................. 206 
DialogBoxlndirectParam .............................. 550 GetCursorPos .............................................. 207 
DialogBoxParam ......................................... 552 
DialogProc ................................................... 553 
DispatchMessage ........................................ 616 
DlgDirListComboBox ..................................... 73 
DlgDirSelectComboBoxEx ............................ 75 
DLGITEMTEMPLATE ................................. 582 

GetDialogBaseUnits .................................... 556 
GetDlgCtrIlD ................................................. 557 
GetDlgltem ................................................... 558 
GetDlg Item Int ............................................... 559 
GetDlgltemText ............................................ 561 
GetDoubleClickTime .................................... 373 

DLGITEMTEMPLATEEX ............................. 584 GetFocus ..................................................... 474 
DLGTEMPLATE .......................................... 586 Getlconlnfo .................................................. 233 
DLGTEMPLATEEX ..................................... 589 
DM_GETDEFID ........................................... 595 
DM_REPOSITION ....................................... 596 
DM_SETDEFID ........................................... 596 
DragDetect .................................................. 372 
Drawlcon ..................................................... 225 
DrawlconEx ................................................. 227 
DRAWITEMSTRUCT .................................... 80 
DrawMenuBar ............................................. 255 

GetinputState ............................................... 617 
GetKeyboardLayout ..................................... 475 
GetKeyboardLayoutList ............................... 476 
GetKeyboardLayoutName ........................... 477 
GetKeyboardState ....................................... 478 
GetKeyNameText ........................................ 479 
GetKeyState ................................................. 480 
GetLastinputlnfo .......................................... 482 
GetMenu ...................................................... 258 

Duplicatelcon ............................................... 229 GetMenuBarlnfo .......................................... 259 



APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 837 

GetMenuCheckMarkDimensions ................ 260 KEYBDINPUT .............................................. 511 
GetMenuDefaultitem ................................... 261 KiliTimer ....................................................... 674 
GetMenulnfo ................................................ 262 
GetMenultemCount ..................................... 263 
GetMenultemlD ........................................... 264 L 
GetMenultemlnfo ......................................... 264 LASTINPUTINFO ......................................... 513 
GetMenultemRect ....................................... 266 LoadAccelerators ......................................... 449 
GetMenuState ............................................. 267 LoadCursor .................................................. 208 
GetMenuString ............................................ 269 LoadCursorFromFile .................................... 209 
GetMessage ................................................ 618 Loadlcon ...................................................... 235 
GetMessageExtralnfo .................................. 620 LoadKeyboardLayout ................................... 485 
GetMessagePos .......................................... 621 LoadMenu .................................................... 278 
GetMessageTime ........................................ 622 LoadMenulndirect ........................................ 279 
GetMouseMovePointsEx ............................. 374 LoadString .................................................... 353 
GetNextDlgGroupltem ................................. 562 LookuplconldFromDirectory ........................ 236 
GetNextDlgTabltem ..................................... 563 LookuplconldFromDirectoryEx .................... 238 
GetProp ....................................................... 689 Istrcat ........................................................... 354 
GetQueueStatus .......................................... 622 Istrcmp ......................................................... 355 
GetScroliBarlnfo .......................................... 136 Istrcmpi ......................................................... 356 
GetScrolllnfo ................................................ 137 Istrcpy ........................................................... 358 
GetScroliPos ............................................... 139 Istrcpyn ......................................................... 359 
GetScroliRange ........................................... 140 Istrlen ........................................................... 360 
GetStringTypeA ........................................... 338 
GetStringTypeEx ......................................... 342 
GetStringTypeW .......................................... 346 M 
GetSubMenu ............................................... 270 MapDialogRect ............................................ 566 
GetSystemMenu .......................................... 271 MapVirtuaIKey .............................................. 487 

MapVirtualKeyEx ......................................... 489 

H MDICREATESTRUCT ................................. 659 
MDINEXTMENU .......................................... 297 

HARDWAREINPUT ..................................... 509 MEASUREITEMSTRUCT .............................. 82 
HideCaret .................................................... 195 MENUBARINFO .......................................... 297 
HiliteMenultem ............................................ 272 MENUEX_TEMPLATE_HEADER ............... 298 

MENUEX_ TEMPLATE_ITEM ...................... 299 
MENUGETOBJECTINFO ............................ 301 
MENUINFO .................................................. 302 

ICONINFO ................................................... 239 MenultemFromPoint .................................... 280 
ICON METRICS ........................................... 240 MENUITEMINFO ......................................... 304 
INPUT .......................................................... 510 MENUITEMTEMPLATE ............................... 309 
InSendMessage .............•............................ 624 MENUITEMTEMPLATEHEADER ............... 310 
InSendMessageEx ...................................... 625 MessageBox ................................................ 567 
InsertMenu ................................................... 273 MessageBoxEx ............................................ 572 
InsertMenultem ........................................... 276 MessageBoxlndirect .................................... 577 
IsCharAlpha ................................................. 350 ModifyMenu ................................................. 281 
IsCharAlphaNumeric ................................... 351 mouse_event ............................................... 376 
IsCharLower ................................................ 352 MOUSEINPUT ............................................. 514 
IsCharUpper ................................................ 352 MOUSEMOVEPOINT .................................. 385 
IsDialogMessage ......................................... 564 MSG ............................................................. 645 
IsDlgButtonChecked ...................................... 55 MSGBOXPARAMS ...................................... 593 
IsMenu ......................................................... 278 
IsWindowEnabled ........................................ 483 o 
K OemKeyScan ............................................... 491 

OemToChar ................................................. 361 
keybd_event ................................................ 483 Oem T oCharBuff ........................................... 361 



838 Volume 2 Microsoft Windows User Interface 

p SetDoubleClickTime .................................... 381 
SetFocus ...................................................... 496 

PeekMessage .............................................. 626 SetKeyboardState ........................................ 497 
PostMessage ............................................... 628 SetMenu ....................................................... 285 
PostQuitMessage ........................................ 630 SetMenuDefaultltem .................................... 286 
PostThreadMessage ................................... 631 SetMenulnfo ................................................. 287 
PropEnumProc ............................................ 690 SetMenultemBitmaps .................................. 288 
PropEnumProcEx ........................................ 691 SetMenultemlnfo ......................................... 290 

SetMessageExtralnfo .................................. 642 

Q SetProp ........................................................ 693 
SetScrolllnfo ................................................. 147 

QueryPerformanceCounter ......................... 675 SetScroliPos ................................................ 149 
QueryPerformanceFrequency ..................... 676 SetScroIiRange ............................................ 151 

SetSystemCursor ......................................... 213 

R SetTimer ...................................................... 677 
ShowCaret ................................................... 198 

RegisterHotKey ........................................... 492 ShowCursor ................................................. 215 
RegisterWindowMessage ........................... 632 ShowScroliBar ............................................. 152 
ReleaseCapture .......................................... 379 STM_GETICON ........................................... 173 
RemoveMenu .............................................. 284 STM_GETIMAGE ........................................ 174 
RemoveProp ............................................... 692 STM_SETICON ........................................... 175 
ReplyMessage ............................................. 633 STM_SETIMAGE ......................................... 176 

STN_CLlCKED ............................................ 177 

s STN_DBLCLK .............................................. 177 
STN_DISABLE ............................................ 178 

SBM_ENABLE_ARROWS .......................... 157 STN_ENABLE .............................................. 179 
SBM_GETPOS ............................................ 158 SwapMouseBuUon ....................................... 382 
SBM_GETRANGE ...................................... 159 
SBM_ GETSCROLLIN FO ............................ 159 
SBM_SETPOS ............................................ 161 T 
SBM_SETRANGE ....................................... 162 TimerProc .................................................... 678 
SBM_SETRANGEREDRAW ....................... 163 ToAscii ......................................................... 498 
SBM_SETSCROLLlNFO ............................. 164 ToAsciiEx ..................................................... 499 
SCROLLBARINFO ...................................... 154 ToUnicode .................................................... 501 
Scroll DC ...................................................... 142 ToUnicodeEx ............................................... 503 
SCROLLINFO ............................................. 155 TPMPARAMS .............................................. 310 
ScroIiWindow ............................................... 143 TrackMouseEvent ........................................ 383 
ScroliWindowEx .......................................... 145 TRACKMOUSEEVENT ............................... 385 
SendAsyncProc ........................................... 634 TrackPopupMenu ........................................ 291 
SendDlgltemMessage ................................. 579 TrackPopupMenuEx .................................... 294 
Sendlnput .................................................... 494 TranslateAccelerator .................................... 450 
Send Message ............................................. 636 TranslateMDISysAccel ................................ 658 
SendMessageCaliback ................................ 637 TranslateMessage ....................................... 642 
SendMessageTimeout ................................ 639 
SendNotifyMessage .................................... 640 
SetActiveWindow ........................................ 495 u 
SetCapture .................................................. 380 Unload Keyboard Layout ............................... 505 
SetCaretBlinkTime ...................................... 196 UnregisterHotKey ......................................... 506 
SetCaretPos ................................................ 197 
SetCursor .................................................... 211 
SetCursorPos .............................................. 212 v 
SetDlgltemlnt. .............................................. 580 VkKeyScan .................................................. 507 
SetDlgltemText ............................................ 581 VkKeyScanEx .............................................. 508 



APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 839 

w WM_MENUCHAR ........................................ 456 
WM_MENUCOMMAND ............................... 316 

WaitMessage ............................................... 644 WM_MENUDRAG ....................................... 316 
WindowProc ................................................ 685 WM_MENUGETOBJECT ............................ 317 
WM_ACTIVATE .......................................... 517 WM_MENURBUTTONUP ........................... 318 
WM_APP ..................................................... 646 WM_MENUSELECT ................................... .458 
WM_APPCOMMAND .................................. 387 WM_MOUSEACTIVATE .............................. 399 
WM_CAPTURECHANGED ......................... 390 WM_MOUSEHOVER .................................. 401 
WM_CHANGEUISTATE ............................. 453 WM_MOUSELEAVE .................................... 402 
WM_CHAR .................................................. 518 WM_MOUSEMOVE ..................................... 403 
WM_COMMAND ......................................... 311 WM_MOUSEWHEEL .................................. 404 
WM_COMPAREITEM ................................. 126 WM_NCHlnEST ........................................ 407 
WM_CONTEXTMENU ................................ 312 WM_NCLBUnONDBLCLK ........................ 409 
WM_CTLCOLORBTN ................................... 68 WM_NCLBUTTONDOWN ........................... 41 0 
WM_CTLCOLORDLG ................................. 597 WM_NCLBUTTONUP ................................ .411 
WM_CTLCOLORSCROLLBAR .................. 165 WM_NCMBUTTONDBLCLK ...................... .412 
WM_CTLCOLORSTATIC ............................ 180 WM_NCMBUTTONDOWN .......................... 414 
WM_DEADCHAR ........................................ 520 WM_NCMBUTTONUP ................................ 415 
WM_DRAWITEM ........................................ 127 WM_NCMOUSEHOVER ............................. 416 
WM_ENTERIDLE ........................................ 599 WM_NCMOUSELEAVE .............................. 417 
WM_ENTERMENULOOP ........................... 314 WM_NCMOUSEMOVE ............................... 418 
WM_ERASEBKGND ................................... 241 WM_NCRBUTTONDBLCLK ........................ 419 
WM_EXITMENULOOP ............................... 315 WM_NCRBUnONDOWN .......................... 420 
WM_GETDLGCODE ................................... 600 WM_NCRBUTTONUP ................................. 421 
WM_GETFONT ............................................. 50 WM_NCXBUTTONDBLCLK ........................ 423 
WM_GETHOTKEY ...................................... 522 WM_NCXBUnONDOWN ........................... 424 
WM_HOTKEY ............................................. 523 WM_NCXBUTTONUP ................................. 426 
WM_HSCROLL ........................................... 166 WM_NEXTDLGCTL. .................................... 602 
WM_ICONERASEBKGND .......................... 242 WM_NEXTMENU ........................................ 319 
WM_INITDIALOG ........................................ 601 WM_PAINTICON ......................................... 243 
WM_INITMENU ........................................... 455 WM_QUERYUISTATE ................................ 459 
WM_INITMENUPOPUP .............................. 456 WM_RBUnONDBLCLK ............................. 427 
WM_KEYDOWN ......................................... 524 WM_RBUTTONDOWN ................................ 429 
WM_KEYUP ................................................ 526 WM_RBUTTONUP ...................................... 430 
WM_KILLFOCUS ........................................ 527 WM_SETCURSOR ...................................... 217 
WM_LBUnONDBLCLK ............................. 391 WM_SETFOCUS ......................................... 528 
WM_LBUTTONDOWN ................................ 392 WM_SETFONT .............................................. 51 
WM_LBUTTONUP ...................................... 394 WM_SETHOTKEY ....................................... 529 
WM_MBUTTONDBLCLK ............................ 395 WM_SYSCHAR ........................................... 460 
WM_MBUTTONDOWN ............................... 397 WM_SYSCOMMAND .................................. 462 
WM_MBUTTONUP ..................................... 398 WM_SYSDEADCHAR ................................. 530 
WM_MDIACTIVATE .................................... 661 WM_SYSKEYDOWN ................................... 532 
WM_MDICASCADE .................................... 662 WM_SYSKEYUP ......................................... 534 
WM_MDICREATE ....................................... 663 WM_ TIMER ................................................. 679 
WM_MDIDESTROY .................................... 665 WM_UNINITMENUPOPUP ......................... 320 
WM_MDIGETACTIVE ................................. 666 WM_UPDATEUISTATE ............................... 464 
WM_MDIICONARRANGE ........................... 667 WM_USER ................................................... 647 
WM_MDIMAXIMIZE .................................... 667 WM_ VSCROLL ............................................ 168 
WM_MDINEXT ............................................ 668 WM_XBUnONDBLCLK ............................. 431 
WM_MDIREFRESHMENU .......................... 669 WM_XBUTTONDOWN ................................ 433 
WM_MDIRESTORE .................................... 670 WM_XBUnONUP ...................................... 435 
WM_MDISETMENU .................................... 671 wsprintf ......................................................... 362 
WM_MDITILE .............................................. 672 wvsprintf ....................................................... 366 
WM_MEASUREITEM .................................. 128 





APPENDIX B 

Index B: Volume 3, Elements 
Listed Alphabetically 

A CreateDIBitmap ............................................. 76 
CreateDIBPatternBrushPt. ........................... 159 

AbortPath ..................................................... 586 CreateDIBSection .......................................... 78 
AlphaBlend .................................................... 66 CreateEnhMetaFile ...................................... 399 
AngleArc ...................................................... 371 CreateHalftonePalette ................................. 203 
AnimatePalette ............................................ 202 CreateHatchBrush ....................................... 160 
Arc ............................................................... 373 CreateIC ....................................................... 306 
ArcTo ........................................................... 375 Create Palette ............................................... 204 

Create Pattern Brush ..................................... 162 

B 
Create Pen .................................................... 605 
CreatePenlndirect ........................................ 607 

BeginPaint ................................................... 512 CreateSolidBrush ......................................... 163 

BeginPath .................................................... 587 
BitBlt .............................................................. 69 
BITMAP ....................................................... 116 D 
BITMAPCOREHEADER. ............................. 118 DeleteDC ..................................................... 307 
BITMAPCOREINFO .................................... 119 DeleteEnhMetaFile ...................................... 401 
BITMAPFILEHEADER ................................ 121 DeleteObject ................................................ 308 
BITMAPINFO .............................................. 122 DIBSECTION ............................................... 145 
BITMAPINFOHEADER ............................... 123 DISPLAY_DEVICE ...................................... 344 
BITMAPV4HEADER .................................... 128 DPtoLP ......................................................... 254 
BITMAPV5HEADER .................................... 133 DrawAnimatedRects .................................... 513 
BLENDFUNCTION ...................................... 140 DrawCaption ................................................ 514 

DrawEdge .................................................... 516 

c DrawEscape ................................................. 309 
DrawFocusRect ........................................... 518 

CancelDC .................................................... 295 
ChangeDisplaySettings ............................... 296 
ChangeDisplaySettingsEx ........................... 299 

DrawFrameControl ...................................... 519 
DrawState .................................................... 522 
DrawStateProc ............................................. 525 

Chord ........................................................... 354 
ClientToScreen ............................................ 252 
CloseEnhMetaFile ....................................... 397 E 
CloseFigure ................................................. 589 Ellipse .......................................................... 356 
COLORADJUSTMENT ............................... 142 EMR ............................................................. 421 
COLORREF ................................................. 223 EMRALPHABLEND ..................................... 423 
CombineTransform ...................................... 253 EMRANGLEARC ......................................... 425 
CopyEnhMetaFile ........................................ 398 EMRARC ..................................................... 426 
CopyRect ..................................................... 619 EMRARCTO ................................................ 426 
Create Bitmap ................................................ 71 EMRCHORD ................................................ 426 
CreateBitmaplndirect. .................................... 73 EMRPIE ....................................................... 426 
CreateBrushlndirect .................................... 157 EMRBITBL T ................................................. 427 
CreateCompatibleBitmap .............................. 74 EMRCREATEBRUSHINDIRECT ................ 431 
CreateCompatibleDC .................................. 303 EMRCREATECOLORSPACE ..................... 432 
CreateDC ..................................................... 304 EMRCREATEDIBPATTERNBRUSHPT ...... 434 

841 



842 Volume 3 Microsoft Windows GOI 

EMRCREATEMONOBRUSH ...................... 435 EMRSCALEWINDOWEXTEX ..................... 468 
EMRCREATEPALETTE .............................. 436 EMRSELECTOBJECT ................................. 469 
EMRCREATEPEN ...................................... 437 EMRDELETEOBJECT ................................. 469 
EMRELLIPSE EMRSELECTPALETTE ............................... 470 
EMRRECTANGLE ...................................... 437 EMRSETARCDIRECTION .......................... 471 
EMREOF ..................................................... 438 EMRSETBKCOLOR .................................... 471 
EMREXCLUDECLIPRECT ......................... 439 EMRSETTEXTCOLOR ................................ 471 
EMRINTERSECTCLIPRECT ...................... 439 EMRSETCOLORADJUSTMENT ................. 472 
EMREXTCREATEFONTINDIRECTW ........ 439 EMRSETCOLORSPACE ............................. 469 
EMREXTCREATEPEN ............................... 440 EMRSELECTCOLORSPACE ...................... 469 
EMREXTFLOODFILL.. ................................ 441 EMRDELETECOLORSPACE ...................... 469 
EMREXTSELECTCLlPRGN ....................... 442 EMRSETDIBITSTODEVICE ........................ 472 
EMREXTTEXTOUT A .................................. 443 EMRSETICMPROFILE ................................ 474 
EMREXTTEXTOUTW ................................. 443 EMRSETMAPPERFLAGS ........................... 475 
EMRFILLPATH EMRSETMITERLIMIT ................................. 476 
EMRSTROKEANDFILLPATH ..................... 444 EMRSETPALETTEENTRIES ...................... 476 
EMRSTROKEPATH .................................... 444 EMRSETPIXELV ......................................... 477 
EMRFILLRGN ............................................. 444 EMRSETVI EWPORTEXTEX ....................... 478 
EMRFORMAT ............................................. 445 EMRSETWINDOWEXTEX .......................... 478 
EMRFRAMERGN ........................................ 446 EMRSETVIEWPORTORGEX ..................... 479 
EMRGDICOMMENT ................................... 447 EMRSETWINDOWORGEX ......................... 479 
EMRGLSBOUNDEDRECORD ................... 448 EMRSETBRUSHORGEX ............................ 479 
EMRGLSRECORD ...................................... 449 EMRSETWORLDTRANSFORM ................. 479 
EMRGRADIENTFILL. .................................. 450 EMRSTRETCHBLT ..................................... 480 
EMRINVERTRGN ....................................... 451 EMRSTRETCHDIBITS ................................ 482 
EMRPAINTRGN .......................................... 451 EMRTEXT .................................................... 484 
EMRLlNETO ............................................... 452 EMRTRANSPARENTBLT ........................... 485 
EMRMOVETOEX ........................................ 452 EndPaint ...................................................... 526 
EMRMASKBL T ............................................ 452 EndPath ....................................................... 590 
EMRMODIFYWORLDTRANSFORM .......... 455 Enhanced Metafile Records with No 
EMROFFSETCLlPRGN .............................. 455 Parameters ............................................... 487 
EMRPIXELFORMAT ................................... 456 Enhanced Metafile Records with One 
EMRPLGBLT ............................................... 457 Parameter ................................................ 487 
EMRPOLYDRAW ........................................ 459 EnhMetaFileProc ......................................... 402 
EMRPOLYDRAW16 .................................... 460 ENHMETAHEADER .................................... 488 
EMRPOL YLiNE ........................................... 461 ENHMETARECORD .................................... 491 
EMRPOLYBEZIER ...................................... 461 EnumDisplayDevices ................................... 31 0 
EMRPOLYGON ........................................... 461 EnumDisplaySetlings ................................... 311 
EMRPOLYBEZIERTO ................................. 461 EnumDisplaySettingsEx .............................. 313 
EMRPOL YLiNETO ...................................... 461 EnumEnhMetaFile ....................................... 403 
EMRPOLYLlNE16 ....................................... 462 EnumObjects ............................................... 316 
EMRPOLYBEZIER16 .................................. 462 EnumObjectsProc ........................................ 317 
EMRPOL YGON16 ....................................... 462 EqualRect .................................................... 619 
EMRPOLYBEZIERT016 ............................. 462 ExcludeClipRect .......................................... 177 
EMRPOLYLINET016 .................................. 462 ExcludeUpdateRgn ...................................... 526 
EMRPOL YPOL YLiNE ................................. 463 ExtCreatePen ............................................... 608 
EMRPOL YPOL YGON ................................. 463 ExtFloodFili .................................................... 80 
EMRPOL YPOL YLlNE16 ............................. 464 EXTLOGPEN ............................................... 611 
EMRPOL YPOL YGON16 ............................. 464 ExtSelectClipRgn ......................................... 178 
EMRPOL YTEXTOUTA ................................ 464 
EMRPOL YTEXTOUTW ............................... 464 
EMRRESIZEPALETTE ............................... 466 F 
EMRRESTOREDC ...................................... 466 FiliPath ......................................................... 591 
EMRROUNDRECT ..................................... 467 FilIRect ......................................................... 357 
EMRSCALEVIEWPORTEXTEX ................. 468 FlattenPath ................................................... 592 



Appendix B Index B: Volume 3, Elements Listed Alphabetically 843 

FrameRect ................................................... 358 GetViewportOrgEx ....................................... 259 
GetWindowDC ............................................. 537 

G GetWindowExtEx ......................................... 260 
GetWindowOrgEx ........................................ 261 

GdiComment ............................................... 404 GetWindowRgn ............................................ 539 

GdiFlush ...................................................... 527 GetWinMetaFileBits ..................................... 413 

GdiGetBatchLimit ........................................ 529 GetWorldTransform ..................................... 262 

GdiSetBatchLimit. ........................................ 530 GRADIENT_RECT ...................................... 146 

GetArcDirection ........................................... 376 GRADIENT_TRIANGLE .............................. 147 

GetBitmapDimensionEx ................................ 82 
GetBkColor .................................................. 531 

GradientFiII ..................................................... 88 
GrayString .................................................... 540 

GetBkMode .................................................. 531 
GetBoundsRect ........................................... 532 
GetBrushOrgEx ........................................... 164 H 
GetBValue ................................................... 226 HANDLETABLE ........................................... 491 
GetClipBox .................................................. 180 HTULColorAdjustment ................................ 211 
GetClipRgn .................................................. 181 
GetColorAdjustment .................................... 205 
GetCurrentObject ........................................ 318 
GetCurrentPositionEx .................................. 255 
GetDC .......................................................... 319 
GetDCBrushColor ....................................... 320 
GetDCEx ..................................................... 321 
GetDCOrgEx ............................................... 323 
GetDCPenColor .......................................... 324 
GetDeviceCaps ........................................... 325 
GetDIBColorTable ......................................... 83 

InflateRect .................................................... 620 
IntersectClipRect. ......................................... 184 
IntersectRect ................................................ 621 
InvalidateRect .............................................. 542 
InvalidateRgn ............................................... 543 
InvertRect. .................................................... 359 
IsRectEmpty ................................................. 622 

GetDIBits ....................................................... 84 
GetEnhMetaFile .......................................... 407 L 
GetEnhMetaFileBits .................................... 408 
GetEnhMetaFileHeader ............................... 411 
GetEnhMetaFilePaletteEntries .................... 412 
GetGraphicsMode ....................................... 256 
GetGValue ................................................... 226 
GetMapMode ............................................... 257 
GetMetaRgn ................................................ 182 
GetMiterLimit ............................................... 593 
GetNearestColor ......................................... 206 
GetNearestPalettelndex .............................. 207 
GetObject .................................................... 331 

LineDDA ....................................................... 377 
LineDDAProc ............................................... 378 
LineTo .......................................................... 379 
LoadBitmap .................................................... 90 
LockWindowUpdate ..................................... 544 
LOG BRUSH ................................................. 169 
LOGBRUSH32 ............................................. 172 
LOG PALETTE ............................................. 224 
LOGPEN ...................................................... 615 
LPtoDP ......................................................... 263 

GetObjectType ............................................ 333 
GetPaletteEntries ........................................ 208 
GetPath ....................................................... 594 

M 
GetPixel ......................................................... 87 MAKEPOINTS ............................................. 631 
GetRandomRgn .......................................... 183 MAKEROP4 ................................................. 152 
GetROP2 ..................................................... 533 MapWindowPoints ....................................... 264 
GetRValue ................................................... 227 MaskBlt .......................................................... 92 
GetStockObject ........................................... 334 ModifyWorldTransform ................................ 265 
GetStretchBltMode ........................................ 88 MoveToEx .................................................... 381 
GetSysColorBrush ....................................... 165 
GetSystemPaletteEntries ............................ 209 
GetSystemPaletteUse ................................. 210 o 
GetUpdateRect. ........................................... 535 
GetUpdateRgn ............................................ 536 

OffsetClipRgn ............................................... 185 
OffsetRect .................................................... 623 

GetViewportExtEx ....................................... 258 



844 Volume 3 Microsoft Windows GOI 

OffsetViewportOrgEx ................................... 267 ScaleWindowExtEx ...................................... 270 
OffsetWindowOrgEx .................................... 268 ScreenToClient ............................................ 271 
OutputProc .................................................. 546 SelectClipPath ............................................. 188 

SelectClipRgn .............................................. 189 

p SelectObject. ................................................ 340 
SelectPalette ................................................ 215 

PaintDesktop ................................................ 547 
PAINTSTRUCT ........................................... 561 

SetArcDirection ............................................ 389 
SetBitmapDimensionEx ................................. 97 

PALETTE ENTRY ........................................ 224 SetBkColor ................................................... 550 

PALETTEINDEX ......................................... 228 SetBkMode .................................................. 551 

PALETTERGB ............................................. 229 SetBoundsRect ............................................ 552 

PatBlt ........................................................... 166 
PathToRegion ............................................. 596 
Pie ............................................................... 360 

SetBrushOrgEx ............................................ 168 
SetColorAdjustment ..................................... 216 
Set DC Brush Color ........................................ 342 

PlayEnhMetaFile ......................................... 415 
PlayEnhMetaFileRecord .............................. 417 
PlgBlt ............................................................. 95 
POINT .......................................................... 629 

SetDCPenColor ........................................... 343 
SetDIBColorTable .......................................... 98 
SetDIBits ...................................................... 100 
SetDIBitsToDevice ....................................... 102 

POINTL. ....................................................... 492 SetEnhMetaFileBits ..................................... 418 

POINTS ....................................................... 629 SetGraphicsMode ........................................ 272 

POINTSTOPOINT ....................................... 631 SetMapMode ................................................ 274 

POINTTOPOINTS ....................................... 632 SetMetaRgn ................................................. 191 

PolyBezier ................................................... 382 
PolyBezierTo ............................................... 383 
PolyDraw ..................................................... 384 
Polygon ........................................................ 362 
Polyline .... , ................................................... 386 
PolylineTo .................................................... 387 
PolyPolygon ................................................. 363 
PolyPolyline ................................................. 388 
PtlnRect ....................................................... 624 

SetMiterLimit ................................................ 597 
SetPaletteEntries ......................................... 217 
SetPixel ........................................................ 105 
SetPixelV ..................................................... 106 
SetRect ........................................................ 625 
SetRectEmpty .............................................. 626 
SetROP2 ...................................................... 554 
SetStretchBltMode ....................................... 107 
SetSystem PaletteUse .................................. 219 

PtVisible ....................................................... 186 SetViewportExtEx ........................................ 276 
SetViewportOrgEx ....................................... 278 
SetWindowExtEx ......................................... 279 

R SetWindowOrgEx ......................................... 280 

RealizePalette ............................................. 213 
RECT ........................................................... 630 
Rectangle .................................................... 364 
RECTL ......................................................... 493 
RectVisible .................................................. 187 
RedrawWindow ........................................... 547 
ReleaseDC .................................................. 336 
ResetDC ...................................................... 337 
ResizePalette .............................................. 214 

SetWindowRgn ............................................ 556 
SetWinMetaFileBits ..................................... 419 
SetWorldTransform ...................................... 282 
SIZE ............................................................. 150 
Stretch Bit ..................................................... 109 
StretchDIBits ................................................ 111 
StrokeAndFiliPath ........................................ 598 
StrokePath ................................................... 599 
SubtractRect ................................................ 626 

RestoreDC ................................................... 338 
RGB ............................................................. 230 T 
RGBQUAD .................................................. 148 
RGBTRIPLE ................................................ 149 TransparentBlt ............................................. 114 

RoundRect.. ................................................. 365 TRIVERTEX ................................................. 151 

s u 
SaveDC ....................................................... 339 UnionRect .................................................... 628 

ScaleViewportExtEx .................................... 269 UnrealizeObject ........................................... 221 



Appendix B Index B: Volume 3, Elements Listed Alphabetically 845 

UpdateColors .............................................. 222 WM_DISPLA YCHANGE .............................. 562 
UpdateWindow ............................................ 557 WM_NCPAINT ............................................. 563 

WM_PAINT .................................................. 564 

v WM_PALETTECHANGED .......................... 231 
WM_PALETTEISCHANGING ...................... 232 

ValidateRect ................................................ 558 WM_PRINT .................................................. 566 

ValidateRgn ................................................. 559 
VIDEOPARAMETERS ................................ 345 

WM_PRINTCLIENT ..................................... 567 
WM_QUERYNEWPALETTE ....................... 233 
WM_SETREDRAW ..................................... 568 

w WM_SYNCPAINT ........................................ 569 
WM_SYSCOLORCHANGE ......................... 234 

Widen Path ................................................... 600 
WindowFromDC .......................................... 560 x 
WM_DEVMODECHANGE .......................... 350 

XFORM ........................................................ 284 





APPENDIX B 

Index B: Volume 4, Elements 
Listed Alphabetically 

A COMBOBOXEXITEM .................................. 164 
CreatePropertySheetPage ........................... 441 

ACM_OPEN ................................................ 133 CreateStatusWindow ................................... 568 
ACM_PLA Y ................................................. 134 CreateUpDownControl. ................................ 741 
ACM_STOP ................................................. 135 
ACN_ST ART ............................................... 142 
ACN_STOP ................................................. 142 D 
AddPropSheetPageProc ............................. 441 
Animate_Close ............................................ 136 
Animate_Create .......................................... 136 
Animate_Open ............................................ 137 
Animate_OpenEx ........................................ 138 
Animate_Play .............................................. 139 
Animate_Seek ............................................. 140 
Animate_Stop .............................................. 141 

DateTime_GetMonthCal .............................. 211 
DateTime_GetMonthCalColor ..................... 211 
DateTime_GetMonthCaIFont. ...................... 213 
DateTime_ GetRange ................................... 213 
DateTime_GetSystemtime ........................... 214 
DateTime_SetFormat .................................. 215 
DateTime_SetMonthCaIColor ...................... 216 
DateTime_SetMonthCalFont ....................... 217 
DateTime_SetRange ................................... 217 

c DateTime_SetSystemtime ........................... 218 
DestroyPropertySheetPage ......................... 442 

CBEM_DELETEITEM ................................. 151 DL_BEGINDRAG ......................................... 234 
CBEM_GETCOMBOCONTROL ................. 152 DL_CANCELDRAG ..................................... 235 
CBEM_GETEDITCONTROL. ...................... 152 DL_DRAGGING ........................................... 236 
CBEM_GETEXTENDEDSTYLE ................. 153 DL_DROPPED ............................................. 236 
CBEM_GETIMAGELIST ............................. 153 DRAGLISTINFO .......................................... 237 
CBEM_GETITEM ........................................ 154 Drawlnsert .................................................... 232 
CBEM_GETUNICODEFORMAT ................. 155 DrawStatusText ........................................... 569 
CBEM_HASEDITCHANGED ...................... 155 DTM_GETMCCOLOR ................................. 203 
CBEM_INSERTITEM .................................. 156 DTM_GETMCFONT .................................... 204 
CBEM_SETEXTENDEDSTYLE .................. 157 DTM_GETMONTHCAL ............................... 204 
CBEM_SETIMAGELlST .............................. 157 DTM_GETRANGE ....................................... 205 
CBEM_SETITEM ........................................ 158 DTM_GETSYSTEMTIME ............................ 206 
CBEM_SETUNICODEFORMAT ................. 159 DTM_SETFORMAT ..................................... 206 
CBEN_BEGINEDIT ..................................... 160 DTM_SETMCCOLOR .................................. 207 
CBEN_DELETEITEM .................................. 160 DTM_SETMCFONT ..................................... 208 
CBEN_DRAGBEGIN ................................... 161 DTM_SETRANGE ....................................... 209 
CBEN_ENDEDIT ......................................... 161 DTM_SETSYSTEMTIME ............................. 210 
CBEN_GETDISPINFO ................................ 162 DTN_CLOSEUP .......................................... 219 
CBEN_INSERTITEM ................................... 163 DTN_DATETIMECHANGE .......................... 220 
CCM_GETUNICODEFORMAT ..................... 86 DTN_DROPDOWN ...................................... 221 
CCM_GETVERSION ..................................... 87 DTN_FORMAT ............................................ 222 
CCM_SETUNICODEFORMAT ..................... 88 DTN_FORMATQUERY ............................... 222 
CCM_SETVERSION ..................................... 89 DTN_USERSTRING .................................... 223 
COLORSCHEME ........................................ 104 DTN_WMKEYDOWN .................................. 224 

847 



848 Volume 4 Microsoft Windows Common Controls 

E HDN_BEGINDRAG ..................................... 297 
HDN_BEGINTRACK .................................... 298 

ExtensionPropSheetPageProc .................... 443 HDN_DIVIDERDBLCLlCK ........................... 298 
HDN_ENDDRAG ......................................... 299 

F HDN_ENDTRACK ....................................... 299 
HDN_FIL TERBTNCLlCK ............................. 300 

FIRST _IPADDRESS ................................... 331 
FlatSB_EnableScroliBar .............................. 242 
FlatSB_GetScrolllnfo ................................... 243 
FlatSB_GetScroIiPos ................................... 244 
FlatSB_GetScroliProp ................................. 245 
FlatSB_GetScroliRange .............................. 247 
FlatSB_SetScrolllnfo ................................... 248 
FlatSB_SetScroliPos ................................... 249 
FlatSB_SetScroIiProp .................................. 250 
FlatSB_SetScroIiRange ............................... 253 
FlatSB_ShowScroliBar ................................ 254 
FORWARD_WM_NOTIFY ............................ 92 
FOURTH_IPADDRESS ............................... 332 

HDN_FILTERCHANGE ............................... 301 
HDN_GETDISPINFO ................................... 301 
HDN_ITEMCHANGED ................................ 302 
HDN_ITEMCHANGING ............................... 303 
HDN_ITEMCLlCK ........................................ 303 
HDN_ITEMDBLCLlCK ................................. 304 
HDN_ TRACK ............................................... 304 
HDTEXTFILTER Structure .......................... 312 
Header_ClearFilter ...................................... 280 
Header_CreateDraglmage .......................... 281 
Header _Delete Item ...................................... 281 
Header _EditFilter ......................................... 282 
Header _GetBitmapMargin ........................... 283 
Header_GetimageList. ................................. 284 

G 
Header_Getitem .......................................... 284 
Headec GetltemCount. ................................ 285 

GetEffectiveClientRect .................................. 81 
GetMUILanguage .......................................... 82 

Header _ GetltemRect ................................... 286 
Header_GetOrderArray ............................... 287 
Headec GetUnicodeFormat. ........................ 288 
HeadeUnsertltem ....................................... 288 

H Header_Layout ............................................ 289 
Header _ OrderTolndex ................................. 290 

HANDLE_WM_NOTIFY ................................ 93 Header_SetBitmapMargin ........................... 291 
HDHITTESTINFO ........................................ 307 Header_SetFilterChangeTimeout ................ 292 
HDITEM ....................................................... 309 Header _SetHotDivider ................................. 292 
HDLAYOUT ................................................. 312 Header_SetimageList ...................... '" ......... 293 
HDM_CLEARFILTER .................................. 264 Header _Setltem ........................................... 294 
HDM_CREATEDRAGIMAGE ..................... 265 Header_SetOrderArray ................................ 295 
HDM_DELETEITEM .................................... 265 Header_SetUnicodeFormat ......................... 296 
HDM_EDITFIL TER. ..................................... 266 HKM_GETHOTKEY ..................................... 321 
HDM_GETBITMAPMARGIN ....................... 267 HKM_SETHOTKEY ..................................... 322 
HDM_GETIMAGELlST ................................ 267 HKM_SETRULES ........................................ 323 
HDM_GETITEM .......................................... 268 
HDM_GETITEMCOUNT ............................. 268 
HDM_GETITEMRECT ................................ 269 
HDM_GETORDERARRAY ......................... 270 
HDM_GETUNICODEFORMAT ................... 271 
HDM_HITTEST ........................................... 271 
HDM_INSERTITEM .................................... 272 
HDM_LA YOUT ............................................ 272 
HDM_ORDERTOINDEX ............................. 273 
HDM_SETBITMAPMARGIN ....................... 274 
HDM_SETFIL TERCHANGETIMEOUT ....... 274 
HDM_SETHOTDIVIDER ............................. 275 
HDM_SETIMAGELIST ................................ 276 
HDM_SETITEM ........................................... 277 
HDM_SETORDERARRA Y .......................... 277 
HDM_SETUNICODEFORMAT ........... 278,279 

INDEXTOSTATEIMAGEMASK ..................... 94 
InitCommonControls ...................................... 83 
InitCommonControlsEx .................................. 83 
INITCOMMONCONTROLSEX .................... 104 
InitializeFlatSB ............................................. 241 
InitMUILanguage ........................................... 84 
IPM_CLEARADDRESS ............................... 326 
IPM_GETADDRESS .................................... 327 
IPM_ISBLANK ............................................. 328 
IPM_SETADDRESS .................................... 328 
IPM_SETFOCUS ......................................... 329 
IPM_SETRANGE ......................................... 329 
IPN_FIELDCHANGED ................................. 330 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 849 

L MonthCal_ SetMonth Delta ............................ 381 
MonthCaLSetRange ................................... 382 

LBltemFromPt ............................................. 233 MonthCaLSetSelRange .............................. 383 
MonthCaLSetToday .................................... 383 

M MonthCaLSetUnicodeFormat ..................... 384 
MONTHDAYSTATE ..................................... 391 

MakeDragList .............................................. 234 
MAKEIPADDRESS ..................................... 332 
MAKEIPRANGE .......................................... 333 N 
MCHITTESTINFO ....................................... 388 NM_CHAR ..................................................... 95 
MCM_GETCOLOR ...................................... 345 NM_CLlCK ..................................................... 95 
MCM_GETCURSEL .................................... 346 NM_CLlCK (status bar) ............................... 584 
MCM_GETFIRSTDAYOFWEEK ................. 347 NM_CLlCK (tab) .......................................... 645 
MCM_GETMAXSELCOUNT ....................... 348 N M_CUSTOM DRAW ................................... 117 
MCM_GETMAXTODAYWIDTH .................. 348 NM_CUSTOMDRAW (header) .................... 305 
MCM_GETMINREQRECT .......................... 349 NM_CUSTOMDRAW (rebar) ....................... 541 
MCM_ GETMONTHDEL T A .......................... 350 NM_CUSTOMDRAW (Tooltip) .................... 693 
MCM_GETMONTHRANGE ........................ 351 NM_CUSTOMDRAW (trackbar) .................. 734 
MCM_GETRANGE ...................................... 352 NM_DBLCLK ................................................. 96 
MCM_GETSELRANGE ............................... 353 NM_DBLCLK (status bar) ............................ 585 
MCM_GETTODAY ...................................... 353 NM_HOVER ................................................... 96 
MCM_GETUNICODEFORMAT .................. 354 NM_KEYDOWN ............................................. 97 
MCM_HITTEST ........................................... 355 NM_KILLFOCUS ........................................... 98 
MCM_SETCOLOR ...................................... 357 NM_KILLFOCUS (date time) ....................... 225 
MCM_SETCURSEL .................................... 358 NM_NCHITTEST ........................................... 98 
MCM_SETDAYSTATE ................................ 359 NM_NCHITTEST (rebar) ............................. 542 
MCM_SETFIRSTDAYOFWEEK ................. 360 NM_OUTOFMEMORY .................................. 99 
MCM_SETMAXSELCOUNT ....................... 360 NM_RCLICK .................................................. 99 
MCM_SETMONTHDEL TA .......................... 361 NM_RCLICK (header) ................................. 306 
MCM_SETRANGE ...................................... 362 NM_RCLICK (status bar) ............................. 585 
MCM_SETSELRANGE ............................... 363 NM_RCLICK (tab) ........................................ 645 
MCM_SETTODA Y ...................................... 364 NM_RDBLCLK ............................................. 100 
MCM_SETUNICODEFORMAT ................... 364 NM_RDBLCLK (status bar) ......................... 586 
MCN_GETDAYSTATE ................................ 385 NM_RELEASEDCAPTURE ......................... 101 
MCN_SELCHANGE .................................... 386 NM_RELEASEDCAPTURE (header) .......... 307 
MCN_SELECT ............................................ 386 NM_RELEASEDCAPTURE (monthcal) ....... 387 
MenuHelp .................................................... 570 NM_RELEASEDCAPTURE (pager) ............ 414 
MonthCaLGetColor ..................................... 365 NM_RELEASEDCAPTURE (rebar) ............. 543 
MonthCal_GetCurSel .................................. 366 NM_RELEASEDCAPTURE (tab) ................ 646 
MonthCal_GetFirstDayOfWeek ................... 367 NM_RELEASEDCAPTURE (trackbar) ........ 735 
MonthCaL GetMaxSelCount ....................... 368 NM_RELEASEDCAPTURE (up-down) ....... 752 
MonthCal_GetMaxTodayWidth ................... 369 NM_RETURN .............................................. 101 
MonthCaLGetMinReqRect ......................... 369 NM_SETCURSOR ....................................... 102 
MonthCaLGetMonthDelta ........................... 370 NM_SETCURSOR (ComboBoxEx) ............. 163 
MonthCal_GetMonthRange ........................ 371 NM_SETFOCUS .......................................... 1 02 
MonthCaLGetRange ................................... 372 NM_SETFOCUS (date time) ....................... 225 
MonthCaLGetSelRange ............................. 373 NM_TOOLTIPSCREATED .......................... 103 
MonthCaLGetToday ................................... 374 NMCBEDRAGBEGIN .................................. 167 
MonthCaLGetUnicodeFormat .................... 374 NMCBEENDEDIT ........................................ 166 
MonthCaLHitTest... ..................................... 375 NMCHAR ..................................................... 105 
MonthCaLSetColor ..................................... 376 NMCOMBOBOXEX ..................................... 167 
MonthCal_SetCurSel ................................... 377 NMCUSTOMDRAW ..................................... 119 
MonthCaL SetDayState ............................... 378 NMDATETIMECHANGE .............................. 226 
MonthCaLSetFirstDayOfWeek ................... 379 NMDATETIMEFORMAT .............................. 227 
MonthCaLSetMaxSeICount ........................ 380 NMDATETIMEFORMATQUERY ................. 228 



850 Volume 4 Microsoft Windows Common Controls 

NMDATETIMESTRING ............................... 229 PGM_GETDROPTARGET .......................... 399 
NMDATETIMEWMKEYDOWN ................... 230 PGM_GETPOS ............................................ 400 
NMDAYSTATE ............................................ 390 PGM_RECALCSIZE .................................... 401 
NMHDDISPINFO ......................................... 313 PGM_SETBKCOLOR .................................. 401 
NMHDFIL TERBTNCLICK Structure ............ 314 PGM_SETBORDER .................................... 402 
NMHDR ....................................................... 106 PGM_SETBUTTONSIZE ............................. 402 
NMHEADER ................................................ 315 PGM_SETCHILD ......................................... 403 
NMIPADDRESS .......................................... 335 PGM_SETPOS ............................................ 404 
NMKEY ........................................................ 107 PGN_CALCSIZE ......................................... 415 
NMMOUSE .................................................. 107 PGN_SCROLL. ............................................ 415 
NMOBJECTNOTIFY ................................... 108 PropertySheet .............................................. 444 
NMPGCALCSIZE ........................................ 416 PropSheeCAddPage ................................... 467 
NMPGSCROLL ........................................... 417 PropSheeCApply ......................................... 467 
NMRBAUTOSIZE ........................................ 550 PropSheeCCancelToClose ......................... 468 
NMREBAR ................................................... 551 PropSheeCChanged ................................... 469 
NMREBARCHEVRON ................................ 552 PropSheeCGetCurrentPageHwnd .............. 470 
NMREBARCHILDSIZE ................................ 553 PropSheeCGetTabControl .......................... 471 
NMSELCHANGE ......................................... 390 PropSheeCHwndTolndex ............................ 471 
NMTCKEYDOWN ....................................... 650 PropSheeUdTolndex .................................. 472 
NMTOOLTIPSCREATED ............................ 109 PropSheeUndexToHwnd ............................ 473 
NMTTCUSTOMDRAW ................................ 697 PropSheeUndexTold .................................. 473 
NMTTDISPINFO ......................................... 697 PropSheeUndexToPage ............................ 474 
NMUPDOWN .............................................. 753 PropSheeUnsertPage ................................ 475 

PropSheeUsDialogMessage ...................... 476 

p PropSheet_PageTolndex ............................ 477 
PropSheeCPressButton .............................. 478 

PageCForwardMouse ................................. 405 
Pager_GetBkColor ...................................... 405 
Pager_GetBorder ........................................ 406 
PagecGetButtonSize .................................. 407 
Pager_GetButtonState ................................ 407 
PagecGetDropTarget.. ............................... 408 
Pager_GetPos ............................................. 409 
Pager_RecalcSize ....................................... 409 
PagecSetBkColor ....................................... 410 
Pager_SetBorder ......................................... 411 
Pager_SetButtonSize .................................. 412 
Pager_SetChild ........................................... 412 
Pager_SetPos ............................................. 413 
PBM_DEL T APOS ....................................... 423 
PBM_GETPOS ............................................ 423 
PB!\CGETRANGE ...................................... 424 
PBM_SETBARCOLOR ............................... 425 
PBM_SETBKCOLOR .................................. 425 
PBM_SETPOS ............................................ 426 
PBM_SETRANGE ....................................... 427 
PBM_SETRANGE32 ................................... 427 
PBM_SETSTEP .......................................... 428 
PBM_STEPIT .............................................. 429 
PBRANGE ................................................... 429 

PropSheeCQuerySiblings ........................... 479 
PropSheeCRebootSystem .......................... 480 
PropSheeCRemovePage ............................ 480 
PropSheeCRestartWindows ........................ 481 
PropSheeCSetCurSel ................................. 482 
PropSheeCSetCurSeIByID .......................... 483 
PropSheeCSetFinishText ............................ 483 
PropSheeCSetHeaderSubTitie ................... 484 
PropSheeCSetHeaderTitle .......................... 485 
PropSheeCSetTitle ...................................... 486 
PropSheeCSetWizButtons .......................... 487 
PropSheeCUnChanged ............................... 488 
PROPSHEETHEADER ................................ 499 
PROPSHEETPAGE ..................................... 505 
PropSheetPageProc .................................... 445 
PropSheetProc ............................................ 446 
PSHNOTIFY ................................................ 509 
PSM_ADDPAGE ......................................... 447 
PSM_APPL Y ................................................ 448 
PSM_CANCEL TOCLOSE ........................... 448 
PSM_CHANGED ......................................... 449 
PSM_GETCURRENTPAGEHWND ............. 450 
PSM_GETTABCONTROL ........................... 451 
PSM_HWNDTOINDEX ................................ 451 

PGM_FORWARDMOUSE .......................... 396 
PGM_GETBKCOLOR ................................. 397 
PGM_GETBORDER ................................... 397 
PGM_GETBUTTONSIZE ............................ 398 
PGM_GETBUTTONSTATE ........................ 398 

PSM_IDTOINDEX ....................................... 452 
PSM_INDEXTOHWND ................................ 452 
PSM_INDEXTOID ....................................... 453 
PSM_INDEXTOPAGE ................................. 453 
PSM_INSERTPAGE .................................... 454 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 851 

PSM_ISDIALOGMESSAGE ........................ 455 RB_PUSHCHEVRON .................................. 532 
PSM_PAGETOINDEX ................................. 456 RB_SETBANDINFO .................................... 533 
PSM_PRESSBUTTON ................................ 457 RB_SETBARINFO ....................................... 533 
PSM_QUERYSIBLINGS ............................. 457 RB_SETBKCOLOR ..................................... 534 
PSM_REBOOTSYSTEM ............................. 458 RB_SETCOLORSCHEME ........................... 535 
PSM_REMOVEPAGE ................................. 459 RB_SETPALETTE ....................................... 535 
PSM_RESTARTWINDOWS ....................... 459 RB_SETPARENT ........................................ 536 
PSM_SETCURSEL ..................................... 460 RB_SETTEXTCOLOR ................................. 537 
PSM_SETCURSELID ................................. 461 RB_SETTOOL TIPS ..................................... 538 
PSM_SETFINISHTEXT ............................... 462 RB_SETUNICODEFORMAT ....................... 538 
PSM_SETHEADERSUBTITLE ................... 462 RB_SHOWBAND ......................................... 539 
PSM_SETHEADERTITLE ........................... 463 RB_SIZETORECT ....................................... 540 
PSM_SETTITLE .......................................... 464 RBHITTESTINFO ........................................ 554 
PSM_SETWIZBUTTONS ............................ 465 RBN_AUTOSIZE ......................................... 543 
PSM_UNCHANGED ................................... 466 RBN_BEGINDRAG ...................................... 544 
PSN_APPL Y ................................................ 489 RBN_CHEVRONPUSHED .......................... 545 
PSN_GETOBJECT ..................................... 490 RBN_CHILDSIZE ........................................ 545 
PSN_HELP .................................................. 490 RBN_DELETEDBAND ................................. 546 
PSN_KILLACTIVE ....................................... 491 RBN_DELETINGBAND ............................... 547 
PSN_QUERYCANCEL. ............................... 492 RBN_ENDDRAG ......................................... 547 
PSN_QUERYINITIALFOCUS ..................... 493 RBN_GETOBJECT ...................................... 548 
PSN_RESET ............................................... 494 RBN_HEIGHTCHANGE .............................. 549 
PSN_SETACTIVE ....................................... 495 RBN_LA YOUTCHANGED ........................... 549 
PSN_TRANSLATEACCELERATOR ........... 495 REBARBANDINFO ...................................... 554 
PSN_WIZBACK ........................................... 496 REBARINFO ................................................ 558 
PSN_WIZFINISH ......................................... 497 
PSN_WIZNEXT ........................................... 498 s 
R SB_GETBORDERS ..................................... 571 

SB_GETICON .............................................. 572 
RB_BEGINDRAG ........................................ 516 SB_GETPARTS ........................................... 572 
RB_DELETEBAND ..................................... 517 SB_GETRECT ............................................. 573 
RB_DRAGMOVE ........................................ 517 SB_GETTEXT. ............................................. 573 
RB_ENDDRAG ........................................... 518 SB_GETTEXTLENGTH ............................... 575 
RB_GETBANDBORDERS .......................... 518 SB_GETTIPTEXT ........................................ 576 
RB_GETBANDCOUNT ............................... 519 SB_GETUN ICODEFORMAT ....................... 576 
RB_GETBANDINFO ................................... 520 SB_ISSIMPLE. ............................................. 577 
RB_GETBARHEIGHT ................................. 521 SB_SETBKCOLOR ..................................... 578 
RB_GETBARINFO ...................................... 521 SB_SETICON .............................................. 578 
RB_GETBKCOLOR .................................... 522 SB_SETMINHEIGHT ................................... 579 
RB_GETCOLORSCHEME .......................... 522 SB_SETPARTS ........................................... 580 
RB_GETDROPTARGET ............................. 523 SB_SETTEXT .............................................. 580 
RB_GETPALETTE ...................................... 524 SB_SETTIPTEXT ........................................ 581 
RB_GETRECT ............................................ 524 SB_SETUNICODEFORMAT ....................... 582 
RB_GETROWCOUNT ................................ 525 SB_SIMPLE ................................................. 583 
RB_GETROWHEIGHT ................................ 525 SBN_SIMPLEMODECHANGE .................... 586 
RB_GETTEXTCOLOR ................................ 526 SECOND_IPADDRESS ............................... 334 
RB_GETTOOL TIPS .................................... 526 ShowHideMenuCtl ......................................... 85 
RB_GETUNICODEFORMAT ...................... 527 
RB_HITTEST .............................................. 528 
RB_IDTOINDEX .......................................... 528 T 
RB_INSERTBAND ...................................... 529 
RB_MAXIMIZEBAND .................................. 530 
RB_MINIMIZEBAND ................................... 530 
RB_MOVEBAND ......................................... 531 

TabCtrl_AdjustRect. ..................................... 625 
TabCtrl_DeleteAliltems ................................ 626 
TabCtrLDeleteltem ...................................... 626 



852 Volume 4 Microsoft Windows Common Controls 

TabCtrl_DeselectAII. .................................... 627 TBM_SETTHUMBLENGTH ......................... 731 
TabCtrl_GetCurFocus ................................. 628 TBM_SETTIC ............................................... 731 
TabCtrl_GetCurSel ...................................... 628 TBM_SETTIPSIDE ...................................... 732 
TabCtrLGetExtendedStyle ......................... 629 TBM_SETTOOL TIPS .................................. 733 
TabCtrl_GetlmageList ................................. 629 TCHITTESTINFO ........................................ 650 
TabCtrl_Getitem .......................................... 630 TCITEM ........................................................ 651 
TabCtrLGetitemCount ................................ 631 TCITEMHEADER ........................................ 653 
TabCtrl_GetltemRect .................................. 631 TCM_ADJUSTRECT ................................... 607 
TabCtrl_GetRowCount ................................ 632 TCM_DELETEALLITEMS ............................ 607 
TabCtrLGetTooITips ................................... 633 TCM_DELETEITEM .................................... 608 
TabCtrLGetUnicodeFormat ........................ 633 TCM_DESELECT ALL .................................. 608 
TabCtrl_Highlightltem .................................. 634 TCM_GETCURFOCUS ............................... 609 
TabCtrLHitTest ........................................... 635 TCM_GETCURSEL ..................................... 610 
TabCtrUnsertltem ....................................... 635 TCM_GETEXTENDEDSTYLE .................... 610 
TabCtrl_Removelmage ............................... 636 TCM_GETIMAGELIST ................................ 611 
TabCtrl_SetCurFocus .................................. 637 TCM_GETITEM ........................................... 611 
TabCtrLSetCurSel ...................................... 638 TCM_GETITEMCOUNT .............................. 612 
TabCtrLSetExtendedStyle .......................... 638 TCM_GETITEMRECT ................................. 612 
TabCtrLSetlmageList... ............................... 639 TCM_GETROWCOUNT .............................. 613 
TabCtrLSetitem .......................................... 640 TCM_GETTOOLTIPS .................................. 613 
TabCtrL Setltem Extra .................................. 640 TCM_GETUNICODEFORMAT .................... 614 
TabCtrl_SetltemSize ................................... 641 TCM_HIGHLIGHTITEM ............................... 615 
TabCtrLSetMinTabWidth ............................ 642 TCM_HITTEST ............................................ 615 
TabCtrLSetPadding .................................... 643 TCM_INSERTITEM ..................................... 616 
TabCtrLSetToolTips ................................... 643 TCM_REMOVEIMAGE ................................ 617 
TabCtrLSetUnicodeFormat ........................ 644 TCM_SETCURFOCUS ................................ 617 
TBM_CLEARSEL ........................................ 711 TCM_SETCURSEL ..................................... 618 
TBM_CLEARTICS ....................................... 712 TCM_SETEXTENDEDSTYLE ..................... 619 
TBM_GETBUDDy ....................................... 712 TCM_SETIMAGELIST ................................. 620 
TBM_GETCHANNELRECT ........................ 713 TCM_SETITEM ........................................... 620 
TBM_GETLINESIZE ................................... 714 TCM_SETITEMEXTRA ............................... 621 
TBM_GETNUMTICS ................................... 714 TCM_SETITEMSIZE ................................... 622 
TBM_GETPAGESIZE ................................. 715 TCM_SETMINTABWIDTH ........................... 622 
TBM_GETPOS ............................................ 716 TCM_SETPADDING .................................... 623 
TBM_GETPTICS ......................................... 716 TCM_SETTOOLTIPS .................................. 623 
TBM_GETRANGEMAX ............................... 717 TCM_SETUNICODEFORMAT .................... 624 
TBM_GETRANGEMIN ........................ 717,718 TCN_FOCUSCHANGE ............................... 646 
TBM_GETSELEND ..................................... 718 TCN_GETOBJECT ...................................... 647 
TBM_GETSELSTART ................................. 719 TCN_KEYDOWN ......................................... 648 
TBM_GETTHUMBLENGTH ........................ 719 TCN_SELCHANGE ..................................... 648 
TBM_GETTHUMBRECT ............................. 720 TCN_SELCHANGING ................................. 649 
TBM_GETTIC .............................................. 721 THIRD_IPADDRESS ................................... 335 
TBM_GETTICPOS ...................................... 721 TOOLlNFO ................................................... 699 
TBM_GETTOOL TiPS .................................. 722 TTHITTESTINFO ......................................... 701 
TBM_GETUNICODEFORMAT ................... 722 TTM_ACTIVATE .......................................... 672 
TBM_SETBUDDY ....................................... 723 TTM_ADDTOOL .......................................... 672 
TBM_SETLINESIZE .................................... 724 TTM_ADJUSTRECT .................................... 673 
TBM_SETPAGESIZE .................................. 725 TTM_DELTOOL ........................................... 674 
TBM_SETPOS ............................................ 725 TTM_ENUMTOOLS ..................................... 675 
TBM_SETRANGE ....................................... 726 TTM_ GETBUBBLESIZE .............................. 675 
TBM_SETRANGEMAX ............................... 727 TTM_ GETCURRENTTOOL ......................... 676 
TBM_SETRANGEMIN ................................ 728 TTM_GETDELAyTIME ................................ 677 
TBM_SETSEL ............................................. 728 TTM_GETMARGIN ...................................... 677 
TBM_SETSELEND ..................................... 729 TTM_ GETMAXTIPWIDTH ........................... 678 
TBM_SETSELSTART ................................. 730 TTM_ GETTEXT ........................................... 679 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 853 

TTM_GETTIPBKCOLOR ............................ 680 
TTM_GETTOOLCOUNT ............................. 680 u 
TTM_GETTOOLINFO ................................. 681 UDACCEL .................................................... 754 
TTM_HITTEST ............................................ 681 UDM_GETACCEL ....................................... 743 
TTM_NEWTOOLRECT ............................... 682 UDM_GETBASE .......................................... 744 
TTM_POP .................................................... 683 UDM_GETBUDDY ....................................... 744 
TTM_RELA YEVENT ................................... 683 UDM_GETPOS ............................................ 744 
TTM_SETDELAYTIME ................................ 684 UDM_GETRANGE ...................................... 745 
TTM_SETMARGIN ...................................... 685 UDM_GETRANGE32 .................................. 746 
TTM_SETMAXTIPWIDTH ........................... 686 UDM_GETUNICODEFORMAT ................... 746 
TTM_SETTI PBKCOLOR ............................. 687 UDM_SETACCEL.. ...................................... 747 
TTM_SETTIPTEXTCOLOR ........................ 687 UDM_SETBASE .......................................... 748 
TTM_SETTITLE .......................................... 688 UDM_SETBUDDY ....................................... 748 
TTM_SETTOOLlNFO .................................. 689 UDM_SETPOS ............................................ 749 
TTM_ TRACKACTIVATE ............................. 689 UDM_SETRANGE ....................................... 749 
TTM_ TRACKPOSITION .............................. 690 UDM_SETRANGE32 ................................... 750 
TTM_UPDATE ............................................ 691 UDM_SETUNICODEFORMAT .................... 751 
TTM_UPDATETIPTEXT .............................. 692 UDN_DEL TAPOS ........................................ 752 
TTM_WINDOWFROMPOINT ..................... 692 UninitializeFlatSB ......................................... 255 
TTN_GETDISPINFO ................................... 694 
TTN_POP .................................................... 695 
TTN_SHOW ................................................ 696 w 

WM_NOTIFY ................................................. 90 
WM_NOTIFYFORMAT .................................. 91 





APPENDIX B 

Index B: Volume 5, Elements 
Listed Alphabetically 

A CPL_STOP .................................................. 736 
CPIAppiet ..................................................... 409 

ABM..:..ACTIVATE ......................................... 721 
ABM_GETAUTOHIDEBAR ......................... 721 
ABM_GETSTATE ........................................ 722 D 
ABM_GETTASKBARPOS ........................... 723 DefScreenSaverProc ................................... 41 0 
ABM_NEW .................................................. 723 DIIGetVersion ............................................... 411 
ABM_QUERYPOS ...................................... 724 DLLGETVERSIONPROC ............................ 412 
ABM_REMOVE ........................................... 724 Dilinstall ....................................................... 71 0 
ABM_SETAUTOHIDEBAR ......................... 725 DoEnvironmentSubst ................................... 413 
ABM_SETPOS ............................................ 726 
ABM_WINDOWPOSCHANGED ................. 726 
ABN_FULLSCREENAPP ............................ 727 
ABN_POSCHANGED ................................. 728 
ABN_STATECHANGE ................................ 728 

DragAcceptFiles ........................................... 414 
DragFinish .................................................... 415 
DragQueryFile .............................................. 416 
DragQueryPoint ........................................... 417 

ABN_WINDOWARRANGE ......................... 729 
AssocCreate ................................................ 670 F 
ASSOCDATA .............................................. 561 
ASSOCF ...................................................... 561 
ASSOCKEY ................................................. 563 
AssocQueryKey ........................................... 671 
AssocQueryString ....................................... 672 
AssocQueryStringByKey ............................. 674 
ASSOCSTR ................................................. 563 

FindEnvironmentString ................................ 418 
FindExecutable ............................................ 419 
FM_GETDRIVEINFO ................................... 736 
FM_GETFILESEL ........................................ 737 
FM_GETFILESELLFN ................................. 738 
FM_GETFOCUS .......................................... 739 
FM_GETSELCOUNT ................................... 739 
FM_GETSELCOUNTLFN ............................ 740 

B FM_REFRESH_WINDOWS ........................ 740 

BrowseCalibackProc ................................... 481 
FM_RELOAD_EXTENSIONS ...................... 741 
FMEVENT _HELPMENUITEM ..................... 742 
FMEVENT _HELPSTRING ........................... 742 

c FMEVENT_INITMENU ................................ 743 
FMEVENT _LOAD ........................................ 744 

ChrCmpl ...................................................... 575 FMEVENT _SELCHANGE ........................... 745 
ColorAdjustLuma ......................................... 707 FMEVENT _ TOOLBARLOAD ....................... 745 
ColorHLSToRGB ......................................... 708 FMEVENT _UNLOAD ................................... 746 
ColorRGBToHLS ......................................... 708 FMEVENT _USER_REFRESH .................... 746 
CPL_DBLCLK ............................................. 730 FMExtensionProc ........................................ 483 
CPL_EXIT .................................................... 730 FOLDERFLAGS ........................................... 564 
CPL_GETCOUNT ....................................... 731 FOLDERVIEWMODE .................................. 566 
CPL_INIT ..................................................... 732 
CPL_INQUIRE ............................................ 732 
CPL_NEWINQUIRE .................................... 733 G 
CPL_STARTWPARMS ............................... 735 GetMenuContextHelpld ............................... 420 

GetWindowContextHelpld ........................... 420 

855 



856 Volume 5 Microsoft Windows Shell 

H IContextMenu 
GetCommandString ......................... 183 

HashData ..................................................... 711 InvokeCommand .............................. 185 
QueryContextMenu .......................... 186 

IContextMenu2 
HandleMenuMsg .............................. 189 

IACList IContextMenu3 

Expand ............................................ 141 
IACList2 

HandleMenuMsg2 ............................ 191 
ICopyHook 

GetOptions ...................................... 143 
SetOptions ....................................... 143 

IActiveDesktop 
Add Desktop Item Method ................. 145 
AddDesktopltemWithUI Method ...... 146 
AddUrl Method ................................ 148 

CopyCaliback ................................... 193 
ICurrentWorkingDirectory 

GetDirectory ..................................... 195 
SetDirectory ..................................... 196 

IDeskBand 
GetBandlnfo ..................................... 197 

ApplyChanges ................................. 149 
GenerateDesktopltemHtml .............. 150 
GetDesktopltem .............................. 150 
GetDesktopltemByID ....................... 151 
GetDesktopltemBySource ............... 152 
GetPattern ....................................... 153 

IDockingWindow 
CloseDW .......................................... 199 
ResizeBorderDW ............................. 199 
ShowDW .......................................... 201 

I DockingWindowFrame 
AddToolbar ...................................... 202 

GetDesktopltemCount ..................... 153 
GetDesktopltemOptions .................. 154 
GetWalipaper .................................. 154 
GetWalipaperOptions ...................... 155 
ModifyDesktopltem .......................... 156 
RemoveDesktopltem ....................... 157 
SetDesktopltemOptions .................. 157 
SetPattern ........................................ 158 

FindToolbar ...................................... 203 
RemoveToolbar ............................... 204 

IDockingWindowSite 
GetBorderDW .................................. 214 
RequestBorderSpaceDW ................ 215 
SetBorderSpaceDW ........................ 215 

I DragSourceHelper 
InitializeFromBitmap ........................ 206 

SetWalipaper ................................... 159 
SetWalipaperOptions ...................... 159 

IASyncOperation 
EndOperation .................................. 161 
GetAsyncMode ................................ 162 
InOperation ...................................... 163 
SetAsyncMode ................................ 163 
StartOperation ................................. 164 

IAutoComplete 
Enable ............................................. 167 

InitializeFromWindow ....................... 207 
I Drop TargetHelper 

DragEnter ......................................... 209 
DragLeave ....................................... 210 
DragOver ......................................... 210 
Drop ................................................. 211 
Show ................................................ 212 

IEmptyVolumeCache 
Deactivate ........................................ 217 
GetSpaceUsed ................................. 218 

Init .................................................... 168 Initialize ............................................ 219 

IAutoComplete2 
GetOptions ...................................... 170 
SetOptions ....................................... 171 

IColumnProvider 

Purge ............................................... 221 
ShowProperties ................................ 222 

IEmptyVolumeCache2 
Initialize Ex ........................................ 224 

GetColumnlnfo ................................ 174 IEmptyVolumeCacheCallback 

GetltemData .................................... 175 PurgeProgress ................................. 227 

Initialize ............................................ 176 ScanProgress .................................. 228 

ICommDlgBrowser 
IncludeObject .................................. 177 
OnDefaultCommand ........................ 178 

IEnumExtraSearch 
Clone ................................................ 229 
Next .................................................. 230 

OnStateChange ............................... 178 
ICommDIgBrowser2 

GetDefaultMenuText ....................... 180 

Reset. ............................................... 231 
Skip .................................................. 231 

IEnumlDList 

GetViewFlags .................................. 181 
Notify ............................................... 182 

Clone ................................................ 233 
Next .................................................. 233 



APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 857 

Reset ............................................... 235 
Skip .................................................. 235 

I Extractlcon 
Extract ............................................. 237 
GetlconLocation .............................. 238 

I Extractlmage 
Extract ............................................. 241 
Get Location ..................................... 241 

I Extractlmage2 
GetDateStamp ................................. 244 

I FileViewer 
PrintTo ............................................. 245 
Show ................................................ 24 6 
Showlnitialize ................................... 247 

IFileViewerSite 
GetPinnedWindow ........................... 248 
SetPinnedWindow ........................... 249 

IInputObject 
HasFocusIO ..................................... 250 
TranslateAcceleratorlO ................... 251 
UIActivatelO .................................... 251 

IInputObjectSite 
OnFocusChangeIS .......................... 253 

InetlsOffline ................................................. 421 
I NewShortcutHook 

GetExtension ................................... 254 
GetFolder ......................................... 255 
GetName ......................................... 256 
GetReferent ..................................... 256 
SetFolder ......................................... 257 
SetReferent ..................................... 258 

INotifyReplica 
YouAreAReplica .............................. 259 

IntiStrEqN .................................................... 576 
IntIStrEqNI ................................................... 577 
IntiStrEqWorker ........................................... 578 
IObjMgr 

Append ............................................ 260 
Remove ........................................... 261 

IPersistFileSystemFolder 
GetFolderTargetlnfo ........................ 265 
InitializeEx ....................................... 266 

I PersistFolder 
Initialize ............................................ 262 

I PersistFolder2 
GetCurFolder ................................... 263 

I ProgressDialog 
HasUserCancelied .......................... 269 
SetAnimation ................................... 269 
SetCancelMsg ................................. 270 
SetLine ............................................ 271 
SetProgress ..................................... 272 
SetProgress64 ................................. 273 
SetTitle ............................................ 274 
StartProgressDialog ........................ 274 

StopProgressDialog ......................... 276 
Timer ................................................ 276 

IQueryAssociations 
GetData ............................................ 279 
GetEnum .......................................... 280 
GetKey ............................................. 280 
GetString .......................................... 281 
Init .............................. ; ..................... 282 

IQuerylnfo 
GetlnfoFlags .................................... 284 
GetlnfoTip ........................................ 285 

I ReconciiableObject 
GetProgressFeedbackMax 

Estimate ........................................ 286 
Reconcile ......................................... 287 

IReconcilelnitiator 
SetAbortCaliback ............................. 292 
SetProgressFeedback ..................... 293 

I RemoteComputer 
Initialize ............................................ 294 

IResolveSheliLink 
ResolveSheliLink ............................. 296 

IRunnableTask 
IsRunning ......................................... 298 
Kill .................................................... 299 
Resume ............................................ 299 
Run ................................................... 300 
Suspend ........................................... 300 

ISheliBrowser 
BrowseObject. .................................. 302 
EnableModelessSB ......................... 304 
GetControlWindow ........................... 304 
GetViewStateStream ....................... 306 
InsertMenusSB ................................ 307 
OnViewWindowActive ...................... 308 
QueryActiveSheliView ..................... 309 
RemoveMenusSB ............................ 31 0 
SendControlMsg .............................. 311 
SetMenuSB ...................................... 312 
SetStatusTextSB .............................. 313 
SetToolbarltems ............................... 314 
TranslateAcceleratorSB ................... 315 

ISheliChangeNotify 
OnChange ........................................ 316 

ISheliDetaiis 
ColumnClick ..................................... 319 
GetDetaiisOf .................................... 320 

IShellExecuteHook 
Execute ............................................ 323 

IShellExtlnit 
Initialize ............................................ 324 

ISheliFolder 
BindToObject ................................... 327 
BindToStorage ................................. 328 
CompareIDs ..................................... 329 



858 Volume 5 Microsoft Windows Shell 

CreateViewObject ........................... 331 DestroyViewWindow ........................ 387 
EnumObjects ................................... 332 EnableModeless .............................. 387 
GetAttributesOf ................................ 333 EnableModelessSV ......................... 388 
GetDisplayNameOf ......................... 335 GetCurrentinfo ................................. 388 
GetUIObjectOf ................................. 337 GetltemObject .................................. 389 
ParseDisplayName .......................... 338 Refresh ............................................ 390 
SetNameOf ...................................... 342 SaveViewState ................................. 391 

ISheliFolder2 Select Item ........................................ 392 
EnumSearches ................................ 344 TranslateAccelerator ........................ 393 
GetDefaultColumn ........................... 345 U IActivate ......................................... 394 
GetDefaultColumnState .................. 346 ISheliView2 
GetDefaultSearchGUID ................... 347 CreateViewWindow2 ....................... 396 
GetDetaiisEx .................................... 347 GetView ........................................... 397 
GetDetaiisOf .................................... 348 HandleRename ................................ 397 
MapNameToSCID ........................... 349 SelectAndPositionltem ..................... 398 

IShellicon ITaskbarList 
GeticonOf ........................................ 351 Activate Tab ...................................... 400 

IShelliconOverlay AddTab ............................................ 400 
GetOverlaylconlndex ....................... 353 DeleteTab ........................................ 401 
GetOverlaylndex ............................. 354 Hrlnit ................................................ 402 

IShelilconOverlayldentifier SetActiveAIt. ..................................... 402 
GetOverlaylnfo ................................ 356 IUniformResourceLocator 
GetPriority ........................................ 357 GetURL ............................................ 403 
IsMemberOf ..................................... 358 InvokeCommand .............................. 405 

ISheliLink SetURL ............................................ 406 
GetArguments ................................. 360 IURL_SETURL_FLAGS ............................... 566 
GetDescription ................................. 361 IURL_SETURL_INVOKECOMMAND_ 
GetHotkey ........................................ 361 FLAGS ...................................................... 567 
GeticonLocation .............................. 362 IURLSearchHook 
GetIDList. ......................................... 363 Translate .......................................... 407 
GetPath ............................................ 364 
GetShowCmd .................................. 365 
GetWorkingDirectory ....................... 366 M 
Resolve ............................................ 366 MAKEDLLVERULL ...................................... 571 
SetArguments .................................. 368 
SetDescription ................................. 369 
SetHotkey ........................................ 370 

MIMEAssociationDialog ............................... 421 
MLLoadLibrary ............................................. 579 

SetlconLocation ............................... 371 
SetiDList .......................................... 371 p 
SetPath ............................................ 372 
SetRelativePath ............................... 373 
SetShowCmd .................................. 374 
SetWorkingDirectory ....................... 375 

ISheliLinkDataList 
AddDataBlock .................................. 376 
CopyDataBlock ................................ 377 
GetFlags .......................................... 378 
RemoveDataBlock ........................... 379 
Set Flags .......................................... 379 

IShell PropSheetExt 
AddPages ........................................ 381 
ReplacePage ................................... 382 

ISheliView 
AddPropertySheetPages ................. 384 
CreateViewWindow ......................... 385 

PathAddBackslash ....................................... 61 0 
PathAdd Extension ....................................... 61 0 
PathAppend ................................................. 611 
Path Build Root .............................................. 612 
PathCanonicalize ......................................... 613 
PathCombine ............................................... 614 
PathCommonPrefix ...................................... 615 
PathCompactPath ........................................ 615 
PathCompactPathEx ................................... 616 
PathCreateFromUrl... ................................... 617 
PathFileExists .............................................. 618 
PathFindExtension ....................................... 619 
PathFind FileName ....................................... 620 
PathFindNextComponent ............................ 620 
PathFindOnPath .......................................... 621 



APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 859 

PathFindSuffixArray .................................... 622 SHAppBarMessage ..................................... 429 
PathGetArgs ................................................ 623 SHAutoComplete ......................................... 712 
PathGetCharType ....................................... 623 SHBindToParent .......................................... 430 
PathGetDriveNumber .................................. 624 SHBrowseForFolder .................................... 431 
PathlsContentType ...................................... 625 SHChangeNotify .......................................... 432 
Path Is Directory ............................................ 625 SHCONTF .................................................... 568 
PathlsDirectoryEmpty .................................. 626 SHCopyKey ................................................. 675 
Path Is FileSpec ............................................ 627 SHCreateDirectoryEx .................................. 437 
PathlsHTMLFile ........................................... 627 SHCreateProcessAsUser ............................ 438 
PathlsLFNFileSpec ..................................... 628 SHCreateShellPalette .................................. 709 
PathlsNetworkPath ...................................... 629 SHCreateStreamOn File ............................... 714 
Path Is Prefix ................................................. 630 SHCreateThread .......................................... 714 
PathlsRelative ............................................. 630 SHDeleteEmptyKey ..................................... 676 
PathlsRoot ................................................... 631 SHDeleteKey ............................................... 677 
PathlsSameRoot ......................................... 632 SHDeleteValue ............................................ 678 
PathlsSystemFolder .................................... 632 ShelLNotifylcon ........................................... 439 
PathlsUNC ................................................... 633 SheIlAbout. ................................................... 441 
PathlsUNCServer ........................................ 634 Shell Execute ................................................ 442 
PathlsUNCServerShare .............................. 634 SheIlExecuteEx ............................................ 445 
PathisURL ................................................... 635 SHEmptyRecycleBin .................................... 447 
PathMakePretty ........................................... 636 SHEnumKeyEx ............................................ 679 
PathMakeSystemFolder .............................. 636 SHEnumValue ............................................. 680 
PathMatchSpec ........................................... 637 SHFileOperation .......................................... 448 
PathParselconLocation ............................... 638 SHFreeNameMappings ............................... 449 
PathQuoteSpaces ....................................... 639 SHGetDataFromIDList ................................. 450 
PathRelativePathTo .................................... 639 SHGetDesktopFolder ................................... 451 
PathRemoveArgs ........................................ 641 SHGetDiskFreeSpace ................................. 452 
PathRemoveBackslash ............................... 641 SHGetFilelnfo .............................................. 453 
PathRemoveBlanks ..................................... 642 SHGetFolderLocation .................................. 457 
PathRemoveExtension ................................ 642 SHGetFolderPath ........................................ 458 
PathRemoveFileSpec .................................. 643 SHGetlconOverlaylndex .............................. 461 
PathRenameExtension ................................ 644 SHGetlnstanceExplorer ............................... 462 
PathSearchAndQualify ................................ 644 SHGetMalloc ................................................ 463 
PathSetDlgltemPath .................................... 645 SHGetNewLinklnfo ...................................... 464 
PathSkipRoot .............................................. 646 SHGetPathFromlDList ................................. 466 
PathStripPath .............................................. 647 SHGetSettings ............................................. 466 
PathStripToRoot .......................................... 647 SHGetSpecialFolderLocation ...................... 468 
PathUndecorate .......................................... 648 SHGetSpeciaIFolderPath ............................. 469 
PathUnExpandEnvStrings ........................... 649 SHGetThreadRef ......................................... 716 
PathUnmakeSystemFolder ......................... 650 SHGetValue ................................................. 681 
PathUnquoteSpaces ................................... 651 SHGNO ........................................................ 569 

SHlnvokePrinterCommand .......................... 470 

R SHLoadlnProc .............................................. 472 
SHOpenRegStream ..................................... 717 

RegisterDialogClasses ................................ 423 
REGSAM ..................................................... 669 

SHOpenRegStream2 ................................... 718 
SHQuerylnfoKey .......................................... 683 
SHQueryRecycleBin .................................... 473 

s SHQueryValueEx ......................................... 684 
SHRegCloseUSKey ..................................... 685 

ScreenSaverConfigureDialog ...................... 424 
ScreenSaverProc ........................................ 425 
SetMenuContextHelpld ............................... 426 
SetWindowContextHelpld ........................... 427 
SHAddToRecentDocs ................................. 428 

SHRegCreateUSKey ................................... 686 
SHREGDEL_FLAGS ................................... 705 
SHRegDeleteEmptyUSKey ......................... 687 
SHRegDeleteUSValue ................................. 688 
SHRegDuplicateHKey ................................. 689 
SHREGENUM_FLAGS ................................ 706 



860 Volume 5 Microsoft Windows Shell 

SHRegEnumUSKey .................................... 690 StrRStrl ........................................................ 602 
SHRegEnumUSValue ................................. 691 StrSpn .......................................................... 603 
SHRegGetBoolUSValue ............................. 692 StrStr ............................................................ 604 
SHRegGetPath ............................................ 693 StrStrl ........................................................... 604 
SHRegGetUSValue ..................................... 694 StrTolnt ........................................................ 605 
SHRegOpenUSKey ..................................... 696 StrTolntEx .................................................... 606 
SHRegQuerylnfoUSKey .............................. 697 StrTrim ......................................................... 607 
SHRegQueryUSValue ................................. 698 
SHRegSetPath ............................................ 700 
SHRegSetUSValue ..................................... 701 T 
SHRegWriteUSValue .................................. 702 
SHSetThreadRef ......................................... 719 
SHSetValue ................................................. 704 
SHStrDup .................................................... 580 

TranslateU RL. .............................................. 475 
TRANSLA TEURUN_FLAGS ..................... 570 

U 
SOANGLETENTHS ..................................... 573 
SoftwareUpdateMessageBox ...................... 473 
SOPALETTEINDEX .................................... 573 
SOPALETTERGB ....................................... 573 
SORGB ........................................................ 574 

Undelete File ................................................. 484 
UrlApplyScheme .......................................... 651 
URLAssociationDialog ................................. 476 
URLASSOCIATIONDIALOG_IN_FLAGS .... 571 
UrICanonicalize ............................................ 653 

SOSETRATIO ............................................. 574 UrlCombine .................................................. 654 
StrCat .......................................................... 581 
StrCatBuff .................................................... 581 

UrICompare .................................................. 655 
UrlCreateFrom Path ...................................... 656 

StrChr .......................................................... 582 
StrChrl ......................................................... 583 
StrCmp ........................................................ 584 

UrlEscape .................................................... 657 
UrlEscapeSpaces ........................................ 658 
UrlGetLocation ............................................. 659 

StrCmpl ....................................................... 585 UrlGetPart .................................................... 660 
StrCmpN ...................................................... 585 UrIHash ........................................................ 661 
StrCmpNI ..................................................... 586 
StrCpy .......................................................... 587 
StrCpyN ....................................................... 588 
StrCSpn ....................................................... 589 
StrCSpnl ...................................................... 590 
StrDup ......................................................... 591 
StrFormatByteSize ...................................... 592 

Urlls .............................................................. 662 
UrllsFileUrl ................................................... 663 
UrllsNoHistory .............................................. 664 
UrllsOpaque ................................................. 665 
UrIUnEscape ................................................ 666 
UrIUnEscapelnPlace .................................... 667 

StrFormatByteSize64A ................................ 593 
StrFormatKBSize ......................................... 594 w 
StrFromTimelnterval .................................... 595 
StrlslntiEqual ............................................... 596 
StrNCat ........................................................ 597 
StrPBrk ........................................................ 598 
StrRChr ........................................................ 598 
StrRChrl ....................................................... 599 
StrRetToBuf ................................................. 600 
StrRetToStr .................................................. 601 

WinHelp ....................................................... 477 
WM CPL LAUNCH ..................................... 747 
WM-CPL -LAUNCHED ................................ 747 
WM - DRO-PFILES ........................................ 748 
WM=HELP ................................................... 749 
WM TCARD ................................................ 749 
wnsprintf ....................................................... 608 
wvnsprintf ..................................................... 609 





MICROSOFT LICENSE AGREEMENT 
Book Companion CD 

IMPORTANT-READ CAREFULLY: This Microsoft End-User License Agreement ("EULA") is a legal agreement between you 
(either an individual or an entity) and Microsoft Corporation for the Microsoft product identified above, which includes computer 
software and may include associated media, printed materials, and "online" or electronic documentation ("SOFTWARE PROD­
UCT'). Any component included within the SOFTWARE PRODUCT that is accompanied by a separate End-User License 
Agreement shall be governed by such agreement and not the terms set forth below. By installing, copying, or otherwise using the 
SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA.lf you do not agree to the terms of this EULA, you are 
not authorized to install, copy, or otherwise use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PROD­
UCT, along with all printed materials and other items that form a part of the Microsoft product that includes the SOFTWARE 
PRODUCT, to the place you obtained them for a full refund. 

SOFTWARE PRODUCT LICENSE 

The SOFrW ARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intellec­
tual property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold. 

1. GRANT OF liCENSE. This EULA grants you the following rights: 

a. Software Product. You may install and use one copy of the SOFrW ARE PRODUCT on a single computer. The primary user 
of the computer on which the SOFrW ARE PRODUCT is installed may make a second copy for his or her exclusive use on a 
portable computer. 

b. StorageiNetwork Use. You may also store or install a copy of the SOFrW ARE PRODUCT on a storage device, such as a 
network server, used only to install or run the SOFTWARE PRODUCT on your other computers over an internal network; 
however, you must acquire and dedicate a license for each separate computer on which the SOFrW ARE PRODUCT is installed 
or run from the storage device. A license for the SOFfW ARE PRODUCT may not be shared or used concurrently on different 
computers. 

c. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may make the number of additional copies of the 
computer software portion of the SOFfW ARE PRODUCT authorized on the printed copy of this EULA, and you may use each 
copy in the manner specified above. You are also entitled to make a corresponding number of secondary copies for portable 
computer use as specified above. 

d. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT that are identified within the SOFT­
WARE PRODUCT as sample code (the "SAMPLE CODE"): 

i. Use and Modification. Microsoft grants you the right to use and modify the source code version of the SAMPLE CODE, 
provided you comply with subsection (d)(iii) below. You may not distribute the SAMPLE CODE, or any modified version 
of the SAMPLE CODE, in source code form. 

ii. Redistributable Files. Provided you comply with subsection (d)(iii) below, Microsoft grants you a nonexclusive, royalty­
free right to reproduce and distribute the object code version of the SAMPLE CODE and of any modified SAMPLE CODE, 
other than SAMPLE CODE, or any modified version thereof, designated as not redistributable in the Readme file that forms 
a part of the SOFTWARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other than the Non­
Redistributable Sample Code is collectively referred to as the "REDISTRIBUTABLES." 

iii. Redistribution Requirements. If you redistribute the REDISTRIBUTABLES, you agree to: (i) distribute the 
REDISTRIBUT ABLES in object code form only in conjunction with and as a part of your software application product; 
(ii) not use Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid 
copyright notice on your software application product; (iv) indemnify, hold harin1ess, and defend Microsoft from and 
against any claims or lawsuits, including attoruey's fees, that arise or result from the use or distribution of your software 
application product; and (v) not permit further distribution of the REDISTRIBUTABLES by your end user. Contact 
Microsoft for the applicable royalties due and other licensing terms for all other uses and/or distribution of the 
REDISTRIBUTABLES. 

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS. 

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or 
disassemble the SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable 
law notwithstanding this limitation. 

• Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be 
separated for use on more than one computer. 

• Rental. You may not rent, lease, or lend the SOFTWARE PRODUCT. 



• Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFT­
WARE PRODUCT ("Support Services"). Use of Support Services is governed by the Microsoft policies and programs 
described in the user manual, in "online" documentation, and/or in other Microsoft-provided materials. Any 
supplemental software code provided to you as part of the Support Services shall be considered part of the SOFT­
WARE PRODUCT and subject to the terms and conditions of this EULA. With respect to technical information you 
provide to Microsoft as part of the Support Services, Microsoft may use such information for its business purposes, 
including for product support and development. Microsoft will not utilize such technical information in a form that 
personally identifies you. 

• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no 
copies, you transfer all of the SOFTWARE PRODUCT (including all component parts, the media and printed 
materials, any upgrades, this EULA, and, if applicable, the Certificate of Authenticity), and the recipient agrees to the 
terms of this EULA. 

• Termination. Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with 
the terms and conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and 
all of its component parts. 

3. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, 
photographs, animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUTABLES, and "applets" incorporated into the 
SOFTWARE PRODUCT) and any copies of the SOFTWARE PRODUCT are owned by Microsoft or its suppliers. The SOFT­
WARE PRODUCT is protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE 
PRODUCT like any other copyrighted material except that you may install the SOFTWARE PRODUCT on a single computer 
provided you keep the original solely for backup or archival purposes. You may not copy the printed materials accompanying the 
SOFTWARE PRODUCT. 

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with 
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph 
(c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(l) and (2) 
of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Microsoft 
Corporation/One Microsoft Way/Redmond, WA 98052-6399. 

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereof, or 
any process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing collectively referred to as the 
"Restricted Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifically agree not 
to export or re-export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted the export 
of goods or services, which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North Korea, Sudan, and 
Syria, or to any national of any such country, wherever located, who intends to transmit or transport the Restricted Components 
back to such country; (ii) to any end user who you know or have reason to know will utilize the Restricted Components in the 
design, development, or production of nuclear, chemical, or biological weapons; or (iii) to any end user who has been prohibited 
from participating in U.S. export transactions by any federal agency of the U.S. government. You warrant and represent that 
neither the BXA nor any other U.S. federal agency has suspended, revoked, or denied your export privileges. 

DISCLAIMER OF WARRANTY 

NO WARRANTIES OR CONDITIONS. MICROSOFT EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDmON FOR THE 
SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED "AS IS" 
WITHOUT WARRANTY OR CONDmON OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA­
TION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR 
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT 
REMAINS WITH YOU. 
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPUCABLE LAW, IN NO EVENT SHALL 
MICROSOFT OR ITS SUPPLIERS BE UABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAM­
AGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS 
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE. USE OF 
OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT 
SERVICES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSmILITY OF SUCH DAMAGES. IN ANY CASE, 
MICROSOFT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE LIMITED TO THE GREATER OF 
THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR US$5.00; PROVIDED, HOWEVER, IF YOU 
HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES AGREEMENT, MICROSOFT'S ENTIRE LIABILITY REGARDING 
SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE SOME STATES AND 
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE UMITATION MAY NOT 
APPLY TO YOU. 

MISCELLANEOUS 

This EULA is governed by the laws of the State of Washington USA, except and only to the extent that applicable law mandates govern­
ing law of a different jurisdiction. 

Should you have any questions concerning this EULA, or if you desire to contact Microsoft for any reason, please contact the Microsoft 
subsidiary serving your country, or write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399. 

PN 097-0002296 







Thank you for acquiring this Microsoft® MSDNTM Universal Subscription. You are eligible to receive 
a rebate by mail on this product. 

To receive your rebate, simply fill out the coupon below and return it along with required proof 
of purchase to Microsoft. Offer expires December 31,2000. Coupons must be received by 
January 31, 2001. 

The Microsoft MSDN Universal Subscription makes it easy to take advantage of the latest 
Microsoft tools and technologies. You'll get all the Microsoft operating systems (including client and server platforms), 
SDKs, DDKs, all the Visual Studio® tools, the BackOffice® Test Platform and Microsoft Office® Developer 2000. Plus, 
you'll stay ahead of the curve with early releases, service packs, betas, and updates for a full year - automatically! 
You will also get exclusive, online access to subscription content and updates. MSDN Universal is a timely, convenient, 
comprehensive resource for developers. 

http://msdn.microsoft.com/subscriptions/ 

MSDN Universal Subscription: 

Feature Benefit 

MSDN Library 
(updated quarterly) 

More than 1.5 GB of programming information and sample code, plus extensive 
keyword indexing and full-text search engine. 

Complete set of Microsoft Includes Microsoft Windows@ 98, Microsoft Windows Nr® Workstation, 
operating systems, Microsoft Windows NT Server, and Microsoft Windows 2000, software 
SDKs, and DDKs development kits (SDK), and driver development kits (DDK). 

Microsoft Visual Studio Includes Visual Studio 6.0, the complete suite of tools to create solutions using 
6.0 Enterprise Edition Microsoft technologies. 

Microsoft BackOffice Develop and test distributed solutions with the BackOffice Test Platform server 
Test Platform family products and applications. 

Microsoft Office 
Developer Edition 

Get all the essential tools for building and deploying solutions with Office. 

Updates Includes Service Packs, betas, and other product releases for a full year. 



To receive your U.S. $200' mail-in rebate, follow each of the steps below. 

'Canadian consumers will receive a check funded in U.S. currency, which will be converted to, and paid in, Canadian 
funds. The conversion will be calculated by reference to the exchange rate at the time the check is deposited at a 
financial institution. 

1. Get an MSDN™ Universal Subscription. 

2. If purchased from a Microsoft reseller, enclose proof of purchase from the MSDN Universal Subscription 
you acquired. Eligible proof of purchase is the product box top, with the product name and bar code clearly identified. 

3. Enclose a copy of your dated sales receipt (with date and store name clearly identified) for the MSDN Universal 
Subscription you just acquired, OR the packing slip from your initial shipment (if you purchased direct from Microsoft) 
indicating price paid. 

4. Print your name, address, and phone number here: 

First name Last name 

Company name (if company licenses product) 

Mailing address (sorry, no PO boxes) 

City State/Province ZIP/Postal code 

Daytime phone, including area code (in case we have a question about your rebate) 

Retailer (store) where MSDN Universal Subscription was acquired City 

5. Mail completed rebate coupon and all required proof of purchase to: 

MSDN Universal Subscription 
Promotion #497-00-675 
P.O. Box 1140 
Ridgely, MD 21681 

Country 

State/Province 

In the United States and Canada, if you have questions about this offer, call (800) 622-4445 (8:30 A.M. to 5:30 P.M. 
eastern time, except weekends and holidays). No rebates will be authorized over the phone. 

Please allow 6 to 8 weeks for delivery of your rebate. This offer allows one rebate of U.S. $200' per coupon. Offer 
good in the 50 United States, the District of Columbia, and Canada only. Offer not valid in U.S. Territories, including 
Puerto Rico, U.S. Virgin Islands, and Guam. Offer not valid where prohibited, taxed, or restricted by law. OFFER 
EXPIRES DECEMBER 31, 2000. Coupons must be received by January 31, 2001. Only original coupons will be 
accepted. Rebate is not valid: if the product was acquired directly from Microsoft and amount of rebate was deducted 
at time of purchase; in conjunction with other Microsoft offers or rebates; or for upgrades from or on Academic Edition 
or Not-for-Resale products, or Microsoft products pre-installed or supplied by a manufacturer. Rebate is for Full 
Package Product MSDN Universal products only. Rebate is good for new subscribers only. Cash redemption value 
11100 of 1¢. Limit one rebate per address. 

©1999 Microsoft Corporation. All rights reserved. Microsoft, MSDN, Visual Studio, BackOffice, Office, Windows and 
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or 
other countries. 

o Occasionally, we offer non-Microsoft products and services to our customers. If you do not wish to receive them, 
please check here. 

Part # 098-86742 





UI 

GD. 

Part No. 097-0002306 

1Vindows 
Base Services 

This essential Windows 2000 and Windows 98/ 
Windows 95 reference volume is part of the five-volume 
Microsoft Win32® Develol?er's Reference Library. In its 
printed form, this material is portable, easy to use, and 
easy to browse-a highly condensed, completely indexed, 
intelligently organized complement to the information 
available on line and through · the Microsoft Developer 
Network (MSDN). Each volume includes an overview of 
the five-volume library, two appendixes of programming 
elements, and tips on how and where to find other 
Microsoft developer reference resources you may need. 

Microsoft Windows Base Services 

This volume includes programming reference and use 
overviews for emerging Windows 2000 technologies such 
as the job object, disk quotas, and file encryption, and 
other new technologies. It also provides complete 
technology information and programmatic reference 
materials about long-standing base services that are 
fundamental to successful Windows programming, such 
as processes and threads, dynamic-link libraries (DLLs), 
memory management, interprocess communications, file 
operations and systems, and exception handling. 

Included on DVD: 

An MSDN'" Quarterly Snapshot 


