
D·ROM
eluded

MICROSOFT@ PROGRAMMING SERIES . Aficl'OSott®

Progra m m i ng

Get Ready
for

Windows 2000
Fatu ,nfornIation

to help JOU develop and
depIoJ applications for

WI 2000

/

ft- the

Indows • er
odel

The official
guide to the
Microsoft Windows
Driver Model

Walter Oney
"The author's command of the details
of the new Windows Driver Model
(WDM) standard is what makes this
book such a clear success."

- Richard Dragan,
Amazon.com editorial reviews

AficlOSoft®press

r mming
the

Walter Oney

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1999 by Walter Oney

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Oney, Walter.

Programming the Microsoft Windows Driver Model
p. cm.

Includes index.
ISBN 0-7356-0588-2
1. Microsoft Windows NT device drivers (Computer programs)

2. Computer programming. I. Title.
QA76.76.D49054 1999
005.7'126--dc21 99-33878

CIP

Printed and bound in the United States of America.

23456789 QMQM 43210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For
further information about international editions, contact your local Microsoft Corporation
office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web
site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Microsoft, Microsoft Press, MSDN, Visual C++,
Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are
fictitious. No association with any real company, organization, product, person, or event is
intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Devon Musgrave
Technical Editor: Robert Lyon

To. my parents, who gave me life and taught me what to do with it.

Foreword
Acknowledgments

Contents

Chapter 1 Introduction
AN OVERVIEW OF THE OPERATING SYSTEMS

WINDOWS 2000 DRIVERS

SAMPLE CODE

ORGANIZATION OF THIS BOOK

OTHER RESOURCES

WARNING

Chapter 2 Basic Structure of a WDM Driver
DEVICE AND DRIVER LAYERING

THE DRIVER ENTRY ROUTINE

THE ADD DEVICE ROUTINE

WINDOWS 98 COMPATIBILITY NOTES

Chapter 3 Basic Programming Techniques
THE KERNEL-MODE PROGRAMMING ENVIRONMENT

ERROR HANDLING

MEMORY MANAGEMENT

STRING HANDLING

MISCELLANEOUS PROGRAMMING TECHNIQUES

WINDOWS 98 COMPATIBILITY NOTES

Chapter 4 Synchronization
AN ARCHETYPAL SYNCHRONIZATION PROBLEM

INTERRUPT REQUEST LEVEL

SPIN LOCKS

KERNEL DISPATCHER OBJECTS

OTHER KERNEL-MODE SYNCHRONIZATION PRIMITIVES

viii
ix

1
1

5
12
14
17
18

19
19
44
48
69

71
71
74
90

111

115
129

131
132
134
139
141
162

Programming the Microsoft Windows Driver Model

Chapter 5 The 110 Request Packet
DATA STRUCTURES

THE "STANDARD MODEL" FOR IRP PROCESSING

COMPLETING 1/0 REQUESTS

PASSING REQUESTS DOWN TO LOWER LEVELS

CANCELLING 1/0 REQUESTS

MANAGING YOUR OWN IRPs

LOOSE ENDS

Chapter 6 Plug and Play
IRP _MJ_PNP DISPATCH FUNCTION

STARTING AND STOPPING YOUR DEVICE

MANAGING PNP STATE TRANSITIONS

OTHER CONFIGURATION FUNCTIONALITY

WINDOWS 98 COMPATIBILITY NOTES

Chapter 7 Reading and Writing Data
CONFIGURING YOUR DEVICE

ADDRESSING A DATA BUFFER

PORTS AND REGISTERS

SERVICING AN INTERRUPT

DIRECT MEMORY ACCESS

Chapter 8 Power Management
THE WDM POWER MODEL

MANAGING POWER TRANSITIONS

ADDITIONAL POWER MANAGEMENT DETAILS

WINDOWS 98 COMPATIBILITY NOTES

Chapter 9 Specialized Topics
FILTER DRIVERS

LOGGING ERRORS

1/0 CONTROL OPERATIONS

SYSTEM THREADS

EXECUTIVE WORK ITEMS

WATCHDOG TIMERS

WINDOWS 98 COMPATIBILITY NOTES

173
173
179
189
197
200
211
217

221
223
225
236
260
287

289
289
293
298
303
320

345
346
353
387
396

399
399
406
414
436
442
446
449

Chapter 10 Windows Management Instrumentation
WMI CONCEPTS

WDM DRIVERS AND WMI

USER-MODE ApPLICATIONS AND WMI

WINDOWS 98 COMPATIBILITY NOTES

Chapter 11 The Universal Serial Bus
PROGRAMMING ARCHITECTURE

WORKING WITH THE Bus DRIVER

Chapter 12 Installing Device Drivers
THE INF FILE

DEFINING A DEVICE CLASS

LAUNCHING AN ApPLICATION

WINDOWS 98 COMPATIBILITY NOTES

Appendix A Coping with Windows 98 . Incompatibilities
DEFINING STUBS FOR KERNEL-MODE ROUTINES

DETERMINING THE OPERATING SYSTEM VERSION

Appendix BUsing GENERIC.SYS

Appendix C Using WDMWIZ.AWX
BASIC DRIVER INFORMATION

DEVICEloCONTROL CODES

110 RESOURCES

POWER CAPABILITIES

USB ENDPOINTS

WMI SUPPORT

PARAMETERS FOR THE INF FILE

Now WHAT?

Index

Contents

451
452
456
475
485

487
489
510

557
558
575
581
587

589
589
594

595

597
597
599
600
601
602
603
604
605

607

Foreword

The Windows Driver Model traces its roots several years back to an OS called Windows for
Workgroups 3.10. At that time we were struggling with support for the myriad of different
SCSI controllers, and I was gazing longingly at the assortment of mini ports that the
Windows NT team had created. It didn't take long to realize that it would take less effort to
re-create the necessary image loader and execution environment that the miniports expected
than it would to rewrite and debug all of those miniports in some sort of VxD form.

Unfortunately Windows for Workgroups 3.10 ended up shipping without support for
SCSI miniports, due mainly to peripheral issues such as solid ASPI (Advanced SCSI Pro
gramming Interface) compatibility. However, the groundwork to share the same execut
able driver images across the Windows and Windows NT operating systems was in place
and would see the light of day in Windows 95, which could share both SCSI and NDIS
miniport binaries with Windows NT.

The potential benefits of a shared driver model are significant. For driver developers
interested in supporting both platforms, a shared driver model can cut the driver develop
ment and testing costs almost in half. For Microsoft, a shared model means easier migra
tion from Windows 9x to Windows 2000 and future releases of this platform. And for the
end user, a larger variety of more stable drivers would be available for both platform families.

The next logical step, then, was to create a driver model with the ability to share
general purpose drivers across both platforms. But what form should it take? Three require
ments were immediately obvious: it must be multiprocessor-capable, it must be proces
sor-independent, and it must support Plug and Play (PnP). Fortunately, the Windows NT 4.0
driver modet met the first two requirements, and it seemed clear that the next major re
lease of Windows NT would support PnP as well. As a result, WDM can be considered a
proper subset of what is now the Windows NT driver model.

The potential benefitsCof a shared driver model can be realized today for many classes
of devices, and choosing the WDM driver model will continue to pay dividends in the future.
For example, a correctly written WDM driver requires only a recompile before function
ing in an NT 64-bit environment prototype.

WDM will continue to evolve as new platforms and device classes are supported. Future
versions of Windows 9x and Windows 2000 will contain upwardly revised WDM execu
tion environments. Fortunately, WDM is designed to be "backward compatible," meaning
that WDM drivers written according to the Windows 2000 DDK and designed to work for
the intended environment will continue to work in subsequent WDM environments.

There is a lot to WDM, and in this book Walter does an excellent job of offering an
in-depth tour of every aspect as well as the philosophy of the Windows Driver Model.

Forrest Foltz
Architect, Windows Development
Microsoft Corporation

viii

Acknowledgments

I'm indebted to many people who helped make this book a reality. Devon Musgrave,
Robert Lyon, a,nd the rest of the team at Microsoft Press performed yeoman service
in turning a rugged WinWord manuscript into the polished work you're holding in
your hands. I know that Ben Ryan, the Acquisitions Editor for this project, logs
countless hours and frequent flyer miles searching for great authors and sizzling new
books; well, better luck next time. Microsoft's Sandy Spinrad, in just one of his many
aspects, ably assisted by locating technical information, hardware for testing, up-to
date releases, and much of the other research material on which I relied. Many mem
bers of the Windows 2000 and Windows 98 base teams reviewed this material and
deserve personal mention, but they've requested anonymity; they and I know who
they are, at least. My seminar students and the online community helped in many large
and small ways by asking thought-provoking questions or sharing hard-won insights.
Finally, I want to thank my wife, Marty, who's always there when the going gets tough.

Walter Oney
http;llwww.oneysoft·com

ix

Chapter 1

. Introduction

Souvenir shops in many of the cities I visit sell posters depicting the world from the
local perspective. Landmarks and famous watering holes appear prominently in the
foreground. The background features the rest of the planet in progressively less detail,
conftrming that the natives are less impressed by, say, the pyramids in Giza or the
Great Wall of China than by some busy downtown street corner. From the same sort
of insular perspective, a Microsoft Windows 2000 or Microsoft Windows 98 system
consists of an operating system and a collection of device drivers for whatever hard
ware the end user chooses to populate the system with from one moment to the next.
This book is all about the drivers and the nearby detail.

AN OVERVIEW OF THE OPERATING SYSTEMS
The Windows Driver Model (WDM) provides a framework for device drivers that
operate in two operating systems-Windows 98 and Windows 2000. Although to the
end user these two systems are very similar, they work very differently on the inside.
In this section, I'll present a brief overview of the two systems.

Windows 2000 Overview
Figure 1-1 is my perspective poster of the Windows 2000 operating system, wherein
I emphasize the features that are important to people who write device drivers. Soft
ware executes either in user mode (untrusted and restricted to authorized activities
only) orin kernel mode (fully trusted and able to do anything). Auser-mode program
that wants to, say, read some data from a device would call an application program
ming interface (API) such as ReadFne. A subsystem module such as KERNEL32.DLL
implements this API by invoking some sori of platform-dependent system service in
terface to reach a kernel-mode support routine. In the case of a call to ReadFile, the

1

Programming· the Microsoft Windows Driver Model

2

mechanism involves making a user-mode call to an entry point named NtReadFile
in a system dynamic-link library (DLL) named-redundantly, I've always thought
NTDLL.DLL. The user-mode NtReadFile function uses the system service interface to
reach a kernel-mode routine that's also named NtReadFile.

~
Win32 API calls

User Mode

Kernel Mode

IRP passed to driver dispatch routine

Figure 1-1. The Windows 2000 architecture.

We often say that NtReadFile is part of a system component that we call the I/O
Manager. The term I/O Manager is perhaps a little misleading because there isn't any
Single executable module with that name. We need a name to use when discussing
the "cloud" of operating system services that surrounds our own driver, though, and
this name is the one we usually pick.

Many routines serve a purpose similar to NtReadFile. They operate in kernel
mode to service an application's request to interact with a device in some way. They
all validate their parameters, thereby ensuring that they don't inadvertently allow a
security breach by performing an operation or accessing some data that the user-mode
program wouldn't have beeh able to perform or access by itself. They then create a
data structure called an I/O request packet (IRP) that they pass to an entry point in
some device driver. In the case of an original ReadFile call, NtReadFile would create
an IRP with a major function code of IRP _MLREAD (a· constant in a DDK [Device
Driver Kit] header file). Processing details at this point can differ; but a likely scenario
is for a routine like NtReadFile to return to the user-mode caller with an indication that
the operation described by the IRP hasn't finished yet. The user-mode program might
continue about its business and then wait for the operation to finish, or it might wait

Chapter 1 Introduction

immediately. Either way, the device driver proceeds independently of the applica- .
tion to service the request.

A device driver might eventually need to actually access its hardware to per
form an IRP. In the case of an IRP _MJ_READ to a programmed I/O (PIO) sort of
device, the access might take the form of a read operation directed to an I/O port or
a memory register implemented by the device. Drivers,even though they execute in
kernel mode and can therefore talk directly to their hardware, use facilities provided
by the hardware abstraction layer (HAL) to access hardware. A read operation might
involve calling READ_PORT_UCHAR to read a single data byte from an I/O port. The
HAL routine uses a platform-dependent method to actually perform the operation.
On an Intel x86 computer, the HAL would use the IN instruction; on an Alpha, it would
perform a memory fetch.

After a driver has fInished with an I/O operation, it completes the IRP by call
ing. a particular kernel-mode service routine. Completion is the last act in process
ing an IRP, and it allows the waiting application to resume execution.

Windows 98 Overview
Figure 1-2 shows one way of thinking about Windows 98. The operating system kernel
is called the Virtual Machine Manager (VMM) because its main job is to create one
or more "virtual" machines that share the hardware of a single physical machine. The
original purpose of a virtual device driver (VxD) in Microsoft Windows 3.0 was to
virtualize a speciftc device to help the VMM create the fiction that each virtual ma
chine had a full complement of hardware. The· same VMM architecture introduced
with Windows 3.0 is in Windows 98 today but with a bunch of accretions to handle
new hardware and 32-bit applications.

System Virtual Machine DOS Virtual Machine

User Mode

Kernel Mode

-Figure 1-2. The Windows 98 architecture.

3

Programming the Microsoft Windows Driver Model

4

Windows 98 doesn't handle I/O operations in quite as orderly a way as Win
dows 2000. There are major differences in how Windows 98 handles operations di
rected to disks, to communication ports, to keyboards, and so on. Windows 98 also
services 32-bit and 16-bit applications in fundamentally different ways. See Figure 1-3.

System Virtual Machine DOS Virtual Machine
r-----------------,

User Mode

Kernel Mode

Figure 1-3. I/O requests in Windows 98.

The left column of Figure 1-3 shows how 32-bit applications get I/O done for
them. An application calls a Win32 API such as ReadFile, which a system DLL like
KERNEL32.DLL services. But applications can only use ReadFile for reading disk files,
communication ports, and devices that have WDM drivers. For any other kind of
device, an application must use some ad hoc mechanism based on DeviceloControl.
The system DLL contains different code than its Windows 2000 counterpart, too. The
user-mode implementation of ReadFile, for example, validates parameters-a step
done in kernel mode on Windows 2000-and uses one or another special mecha
nism to reach a kernel-mode driver. There's one special mechanism for disk files,
another for serial ports, another for WDM devices, and so on. The mechanisms all
use software interrupt 30h to make the transition from user mode to kernel mode,
but they're otherwise completely different.

The middle column of Figure 1-3 shows how 16-bit Windows-based applica
tions (Win16 applications) perform I/O. The right column illustrates the control flow
for DOS-based applications. In both cases, the user-mode program calls directly or
indirectly on the services of a user-mode driver that, in principle, could stand

Chapter 1 Introduction

alone by itself on a bare machine. Win16 programs perform serial port I/O by in
directly calling a 16-bit DLL named COMM.DRV, for example. (Up until Microsoft
Windows 95, COMM.DRV was a stand-alone driver that hooked IRQ 3 and 4 and
issued IN and OUT instructions to talk directly to the serial chip.) A virtual commu
nications device (VCD) driver intercepts the port I/O operations to guard against
having two different virtual machines access the same port simultaneously. In a weird
way of thinking about the process, you might say that these user-mode drivers use
an "API" interface based on interception of I/O operations. "Virtualizing" drivers like
VCD service these pseudo-API calls by Simulating the operation of hardware.

Whereas all kernel-mode I/O operations in Windows 2000 use a common
data structure (the IRP), no such uniformity exists in Windows 98 even once an
application's request reaches kernel mode. Drivers of serial ports conform to a port
driver function-calling paradigm orchestrated by VCOMM.VXD. Disk drivers, on the
other hand, participate in a packet-driven layered architecture implemented by
IOS.VXD. Other device classes use still other means.

When it comes to WDM drivers, however, the interior architecture of Win
dows 98 is necessarily very similar to that of Windows 2000. A system module
(NTKERN.VXD) contains Windows-specific implementations of a great many Microsoft
Windows NT kernel support functions. NTKERN.VXD creates IRPs and sends them
to WDM drivers in just about the same way as Windows 2000. WDM drivers almost
cannot tell the difference between the two environments, in fact.

WINDOWS 2000 DRIVERS
Many kinds of drivers form a complete Windows 2000 system. Figure 1-4 diagrams
several of them.

Figure 1-4. Types of device drivers in Windows 2000.

5

Programming the Microsoft Windows Driver Model

6

• A virtual device driver (VDD) is a user-mode component that allows DOS
based applications to access hardware on x86 platforms. A VDD relies on
the I/O permission mask to trap port access, and it essentially simulates
the operation of hardware for the benefit of applications that were origi
nally programmed to talk directly to hardware on a bare machine. Al
though this kind of driver shares a name and a purpose with a kind of
driver used in Windows 98, it's a different animal altogether. We use the
acronym VDD for this kind of driver and the acronym VxD for the Win
dows 98 driver to distinguish the two.

• The category of kernel-mode drivers includes many subcategories. A PnP
driver is a kernel-mode driver that understands the Plug and Play (PnP)
protocols of Windows 2000. To be perfectly accurate, this book concerns
PnP drivers and nothing else.

• A WDM driver is a PnP driver that also understands power management
protocols and is source-compatible with both Windows 98 and Win
dows 2000. Within the category of WDM drivers, you can also distinguish
between class drivers, which manage a device belonging to some well
defined class of device, and minidrivers, which supply vendor-specific
help to a class driver.

• Video drivers are kernel-mode drivers for displays and printers--devices
whose primary characteristic is that they render visual data.

• File system drivers implement the standard PC file system model (which
includes the concept of a hierarchical directory structure containing
named files) on local hard disks or over network connections.

• Legacy device drivers are kernel-mode drivers that directly control a hard
ware device without help from other drivers. This category essentially
includes drivers for earlier versions of Windows NT that are running with
out change in Windows 2000.

Not all the distinctions implied by this classification scheme are important all of
the time. As I remarked in my previous book, Systems Programmingfor Windows 95
(Microsoft Press, 1996), you have not stumbled into a nest of pedants by buying my
book. In particular, I'm not always going to carefully distinguish between WDM drivers
and PnP drivers in the rigorous way implied by the preceding taxonomy. The dis
tinction is a phenomenological one based on whether a given driver runs both in
Windows 2000 and Windows 98. Without necessarily using the technically exact term,
I'll be very careful to discuss system dependencies when they come up hereafter.

Chapter 1 Introduction

Attributes of Kernel-Mode Drivers
Kernel-mode drivers share a number of general attributes, as suggested by the list
of attributes (drawn from the introductory chapters of the Windows 2000 Device Driver
Kit) that I describe in the following sections. (Note that throughout this book, I'll often
refer to just the "DDK," meaning the Windows 2000 DDK. If I need to discuss an
other DDK, I'll give its specific name.)

Portable
Kernel-mode drivers should be source-portable across all Windows NT platforms.
WDM drivers are, by definition, source-portable between Windows 98 and Win
dows 2000 as well. To achieve portability, you should write your driver entirely in C,
using language elements specified by the ANSI C standard. You should avoid us
ing implementation-defined or vendor-specific features of the language, and you
should avoid using run-time library functions that aren't already exported by the
operating system kernel (concerning which, see Chapter 3). If you can't avoid plat
form dependencies in your code, you should isolate them with conditional compi
lation directives. If you follow all of these guidelines, you'll be able to recompile and
relink your source code to produce a driver that will "just work" on any new Win
dows NT platform.

In many cases, it will be possible to achieve binary compatibility for a WDM
driver between Windows 98 and the 32-bit Intel x86 Windows 2000 operating sys
tem. You achieve source compatibility merely by restricting yourself to using the subset
of kernel-mode support functions declared in WDM.H. There are some areas in which
the two operating systems behave differendy in a way that matters to a device driver,
however, and I'll discuss these areas in various parts of the book.

Configurable
A kernel~mode driver should avoid hard-coded assumptions about device character
istics or system settings that can differ from one platform to another. It's easiest to
illustrate this abstract and lofty goal with a couple of examples. On an x86-based PC,
a standard serial port uses a particular interrupt request line and set of eight I/O ports
whose numeric values haven't changed in over 20 years. Hard-coding these values
into a driver makes it not configurable. In Chapter 8, I'll discuss two power manage
ment features-idle detection and system wake-up--that an end user should be able
to control; a driver that always uses particular idle timeout constants or that· always
arms its device's wake-up feature would not allow for that kind of control. The driver
would therefore not be configurable in the sense we're discussing.

Achieving configurability requires, first of all, that you avoid coding direct ref
erences to hardware, even within platform-specific conditional compilation blocks.
Call on the facilities of the HAL or of a lower-level bus driver instead. You can also

7

Programming the Microsoft Windows Driver Model

8

implement a standard or custom control interface to allow control-panel applications
. to communicate end user wishes. Better yet, you can support Web-Based Enterprise
Management (WBEM) controls that allow users and administrators to configure hard
ware features in a distributed enterprise environment. (See Chapter 10.) Finally, you
can use the registry database as a repository for configuration information that ought
to persist from one session to the next.

Preemptible and Interruptible
Windows 2000 and Windows 98 are multitasking operating systems that apportion
use of a CPU among an arbitrary number of threads. Much of the time, driver sub
routines execute in an environment in which they can be preempted to allow another
thread to execute on the same cpu. Thread preemption depends on a thread prior
ity scheme and on using the system clock to allocate CPU time in slices to threads
having the same priority.

Windows 2000 also incorporates an interrupt prioritization concept known as
interrupt request level QRQL). I'll discuss IRQL in detail in Chapter 4, but the following
summary will be useful for now. You can think of a CPU as having an IRQL register
that records the level at which the CPU is currently executing. Three IRQL values have
major significance for device drivers: PASSIVE_LEVEL (numerically equal to 0),
DISPATCH_LEVEL (numerically equal to 2), and the so-called device IRQL (or
DIRQL, numerically equal to a value higher than 2) at which a particular device's
interrupt service routine exeCutes. Most of the time, a CPU executes at PASSIVE_LEVEL.
All user-mode code runs at PASSIVE_LEVEL, and many of the activities a driver
performs also occur at PASSIVE_LEVEL. While a CPU is at PASSIVE_LEVEL, the
current thread can be preempted by any other thread that has a higher thread prior
ity or by expiration of its own time slice. Once a CPU's IRQL is above PASSIVE_LEVEL,
however, thread preemption no longer occurs. The CPU executes in the context
of whatever thread was current when the IRQL was most recently raised above
PASSIVE_LEVEL.

You can think of the IRQ levels above PASSIVE_LEVEL as a priority scheme for
interrupts. This is a different sort of priority than that which governs thread preemp
tion because, as I just remarked, no thread preemption occurs above PASSIVE_LEVEL.
But an activity running at any IRQL can be interrupted to perform an activity at a
higher IRQL. Consequently, a driver must anticipate that it might lose control at any
moment while the system performs some more essential task.

Multiprocessor-Safe
Windows 2000 can run on computers with one or more than one CPU. Win
dows 2000 uses a symmetric multiprocessor model, in which all CPUs are considered
equal. System tasks and user-mode programs can execute on any CPU, and all CPUs
have equal access to memory. The existence of multiple CPUs poses a difficult

Chapter 1 Introduction

synchronization problem for device drivers because code executing on two or more
CPUs might simultaneously need to access shared data or shared hardware resources.
The Windows 2000 kernel provides a synchronization object called a spin lock that
drivers can use to avoid destructive interference in such situations; (See Chapter 4.)

Object-Based
The Windows 2000 kernel is ohject-based in the sense that many of the data struc
tures used by device drivers and kernel routines have common features that a cen
tralized Object Manager component controls. These features include names, reference
counts, security attributes, and so on. Internally, the kernel contains method routines
for performing common object management tasks such as opening and closing ob
jects or parsing object names.

Kernel components export service routines that drivers use to manipulate cer
tain kinds of object or certain fields within objects. Some kernel objects-the kernel
interrupt object, for example-are completely opaque in that the DDK headers don't
declare the members of the data structure. Other kernel objec~such as the device
object or the driver object-are partially opaque: the DDK headers declare all the
members of the structure, but documentation describes only certain accessible mem
bers anc~ cautions driver writers not to access or modify other members directly.
Support routines exist to access and modify those opaque fields that must be indi
rectly available to drivers. Partially opaque objects are analogous to c++ classes, which
can have public members accessible to anyone and private or protected members
accessible only via method functions.

Packet-Driven
The I/O Manager and device drivers use the I/O request packet to manage the de
tails of I/O operations. Some kernel-mode component creates an IRP· to perform an
operation on a device or to send an instruction or query to a driver. The I/O Man
ager sends the IRP to one or more of the subroutines that a driver exports. Gener
ally, each driver subroutine performs a discrete amount of work on the IRP and returns
back to the I/O Manager. Eventually, some driver subroutine completes the IRP,
whereupon the I/O Manager destroys the IRP and reports the ending status backJo
the originator of the request.

Asynchronous
Windows 2000 allows applications and drivers to initiate operations and continue
processing while the operations progress. Consequently, drivers ordinarily process
time-consuming operations in an asynchronous way. That is, a driver accepts an IRP,
initializes whatever state information it requires to manage the operation, and then
returns to its caller after arranging for the IRP to be performed and completed in the
future. The caller can then decide whether or not to wait for the IRP to finish.

9

Programming the Microsoft Windows Driver Model

As a multitasking operating system, Windows 2000 schedules threads for ex
ecution on the available processors according to eligibility and priority. The asynchro
nous operations a driver needs to perform for handling an I/O request often occur
in the context of some unpredictable thread, the identification of which can differ
from one invocation of the driver's asynchronous processing routines to the next. We
use the term arbitrary thread context to describe the situation in which a driver doesn't
know (or care) which thread happens to be current as it performs its work. Drivers
should avoid blocking arbitrary threads, and this stricture generally results in a driver
architecture that responds to hardware events by performing discrete operations and
then returning.

The Windows Driver Model

10

In the Windows Driver Model, each hardware device has at least two device drivers.
One of these drivers, which we call the function driver, is what you've always thought
of as being "the" device driver. It understands all the details about how to make the
hardware work. It's responsible for initiating I/O operations, for handling the inter
rupts that occur when those operations finish, and for providing a way for the end
user to exercise whatever control over the device might be appropriate.

We call the other of the two drivers that every device has the bus driver. It's
responsible for managing the connection between the hardware and the computer.
For example, the bus driver for the PCI (Peripheral Component Interconnect) bus is
the software component that actually detects that your card is plugged in to a PCI slot
and determines what requirements your card has for I/O-mapped or memory-mapped
connections with the host. It's also the software that turns the flow of electrical cur
rent to your card's slot on or off.

Some devices have more than two drivers. We use the generic termfllter driver
to describe these other drivers. Some fllter drivers simply watch as the function driver
performs I/O. More often, a software or hardware vendor supplies a fllter driver to
modify the behavior of an existing function driver in some way. "Upper" fllter driv
ers see IRPs before the function driver, and they have the chance to support addi
tional features that the function driver doesn't know about. Sometimes an upper fllter
can perform a workaround for a bug or other deficiency in the function driver or the
hardware. "Lower" fllter drivers see IRPs that the function driver is trying to send to
the bus driver. In some cases, such as when the device is attached to a universal serial
bus (USB), a lower fllter can modify the stream of bus operations that the function
driver is trying to perform.

A WDM function driver is often composed of two separate executable flles. One
flle, the class driver, understands how to handle all of the WDM protocols that the
operating system uses (and some of them can be very complicated) and how to

Chapter 1 Introduction

manage the basic features of an entire class of devices. A class driver for the class of
USB cameras is one example. The other file, called the minidriver, contains functions
that the class driver uses to manage the vendor-specific features of a particular in
stance of that class. The combination of class plus minidriver adds up to a complete
function driver.

A useful way to think of a complete driver is as a container for a collection of
subroutines that the operating system calls to perform various operations on an
IRP. Figure 1-5 illustrates this concept. Some routines, such as the DriverEntry and
AddDevice routines, as well as dispatch functions for a few types of IRP, will be
present in every such container. Drivers that need to queue requests-and most do-
might have a StartIo routine. Drivers that perform direct memory access (DMA) trans
fers will have an AdapterControl routine. Drivers for devices that generate hardware
interrupts-again, most do--will have an interrupt service routine (ISR) and a deferred
procedure call (Ope) routine. Most drivers will have dispatch functions for several
types of IRP besides the three that are required. One of your jobs as the author of a
WDM driver, therefore, is to select the functions that need to be included in your
particular container.

Basic Driver Routines 110 Control Routines

DriverEntry

Add Device

D Required driver routines

III Include Startlo to handle request queuing

Dispatch Routines

DispatchPnp

DispatchPower

DispatchWml

DispatchRead

DispatchWrite

III Include interrupt and DPC routines if device interrupts

III Include AdapterControl routine for DMA

III Optional IRP dispatch routines

Figure 1-5. ContentsoJ a WVM driver executable "package."

11

Programming the Microsoft Windows Driver Model

SAMPLE CODE
The companion disc contains a great many sample drivers and test programs. I crafted
each sample with a view toward illustrating a particular issue or technique that the
text discusses. Each of the samples is, therefore, a "toy" that you can't just ship after
changing a few lines of code. I wrote the samples this way on purpose. Over the years,
I've observed that programmer-authors tend to build samples that illustrate their
prowess at overcoming complexity rather than samples that teach beginners how to
solve basic problems, so I won't do that to you. Chapters 7 and 11 have some driv
ers that work with "real" hardware, namely development boards from the makers of
a PCI chip set and a USB chip set. Apart from that, however, all the drivers are for
nonexistent hardware.

In nearly every case, I built a simple user-mode test program that you can use
to explore the operation of the sample driver. These test programs are truly tiny: they
contain just a few lines of code and are concerned only with whatever point the driver
sample attempts to illustrate. Once again, I think it's better to give you a simple way
to exercise the driver code that I assume you're really interested in instead of trying
to show off every MFC programming trick I ever learned.

You're free to use all of the sample code in this book in your own projects
without paying me or anyone else a royalty. (Of course, you must consult the de
tailed license agreement at the end of the book-this paraphrase is not intended to
override that agreement in any way.) There are few cases in which I ask that you get
my permission before redistributing one of my sample modules as a freestanding piece
of software, however; these include GENERIC.SYS (discussed in Appendix B) and
WDMSTUB.VXD (discussed in Appendix A). I'll gladly give permission, but I will need
to ask your company to agree to some conditions designed to ensure that if a bunch
of readers all decide to ship copies of these modules along with their production
drivers, end users receive up-to-date and reliable versions. See the companion disc
for more information on redistribution.

The Companion Disc

12

The CD-ROM that comes with this book contains the complete source code and an
executable copy of each sample. It also contains a few utility programs that you might
find useful in your own work. Open the me WDMBOOK.HTM in your Web browser
for an index to the samples and an explanation of how to use these tools.

The setup program on the disc gives you the option to install all of the samples
on your own disk or to leave them on the CD-ROM. However, setup will not install
any kernel-mode components on your system. Setup will ask your permission to
add some environment variables to your AUTOEXEC.BAT me. The build procedure
for the samples relies on these environment variables. They will be correctly set the

Chapter 1 Introduction

next time you reboot your Windows 2000 or Windows 98 computer. Setup will also
install the necessary registry entries to define a SAMPLE class of device, to which each
of the sample drivers belongs.

If your computer runs both Windows 2000 and Windows 98, I recommend
performing a full install under one OS and a compact install under the other. Addi
tionally, I recommend allowing the setup program to modify your AUTOEXEC.BAT
under just one OS. If you follow these suggestions, setup will be able to make nec
essary changes in both registry databases but will copy the sample code only one
time. (Note that Windows 2000 interprets your AUTOEXEC.BAT file at startup time
to set environment variables. That's why the setup program needs to modify this file.)

Each sample includes an HTML file that explains (very briefly) what the sample
does, how to build it, and how to test it. I recommend that you read the file before
trying to install the sample, because some of the samples have unusual installation
requirements. Once you've installed a sample driver, you'll find that the Device
Manager has an extra property page from which you can view the same HTML file.
(See Figure 1-6.)

Figure 1-6. A custom Device Manager property page for sample drivers.

How the Samples Were Created
There's a good reason why my sample drivers look like they all came out of a cookie
cutter: they did. Faced with so many samples to write, I decided to write a custom
application wizard. The wizard functionality in Microsoft Visual C++ version 6.0 is
almost up to snuff for building a WDM driver project, so I elected to depend on it.

13

Programming the Microsoft Windows Driver Model

The wizard is named WDMWIZ.AWX, and you'll find it on the companion disc. I've
documented how to use it in Appendix C. Use it, if you wish, to construct the skel
etons for your own· drivers. But be wary that this wizard is not of product grade
it's intended to help you learn about writing drivers rather than to replace or compete
with a commercial toolkit. Be aware, too, that you need to change a few project set
tings by hand because the wizard support is only almost what's needed. Refer to the
WDMBOOK.HTM in the root directory of the companion disc for more information.

Installing the Windows 2000 Device Driver Kit provides you with Start menu
commands for opening a "checked build" environment and a "free build" environ
ment. Each environment is a command prompt with a collection· of environment
variables set in a particular way to dovetail with a command line-based method of
building drivers. This method relies on a utility named BUILD.EXE that comes with
the DDK and on the existence of a me named SOURCES that describes a driver project.
I've provided a SOURCES file for each project so that you can use this method for
building a driver if you want to.

I personally prefer using the Microsoft Visual Studio environment for driver
projects. I used to advocate using BUILD.EXE because I was afraid that Microsoft might
change some important compile or link option in such a way that any approach based
on an integrated development environment (IDE) would break. Something like this
happened during the Windows 2000 beta period, in fact. (Somebody decided to
change the decade-old structure of library files, and I had to change a slew of project
settings.) I guess I think the productivity improvement I gain by using modern IDE
based tools is significant enough that I'll run the risk of having to make similar changes
in the future.

GENERIC.SYS
A WDM driver contains a great deal of code that you could call boilerplate for han
dling Plug and Play and power management. This code is long. It's boring. It's easy
to get wrong. My samples all rely on what amounts to a kernel-mode DLL named
GENERlC.SYS. WDMWIZ.AWX will build a project that uses GENERlC.SYS or that
doesn't, as you specify. Appendix B details the support functions that GENERlC.SYS
exports in case you want to use them yourself.

ORGANIZATION OF THIS BOOK

14

After teaching driver programming seminars to hundreds of students over· the past
several years, I've come to understand that people learn things in fundamentally
different ways. Some people like to learn a great deal of theory about something and
then learn how to apply that theory to practical problems. Other people like to learn
practical things first and then learn the general theory. I'd call the former approach

Chapter 1 Introduction

deductive and the latter approach inductive. I personally prefer an inductive approach,
and I've organized this book to suit that style of learning.

My aim is to explain how to write device drivers. Broadly speaking, I wanted
to provide the minimum background you'll need to write an actual driver and then
move on to more specialized topics. That "minimum background" is pretty extensive,
however; it consumes six chapters. Once past Chapter 7, you'll be reading about topics
that are important but not necessarily on the fall line that leads straight downhill to
a working driver.

Chapter 2, "Basic Structure of a WDM Driver," explains the basic data structures
that Windows 2000 uses to manage I/O devices and the basic way your driver re
lates to those data structures. I'll discuss the driver object and the device object. I'll
also discuss how you write two of the subroutines-the DriverEntry and AddDevice
routines-that every WDM driver package contains.

Chapter 3, "Basic Programming Techniques," describes the most important
service functions you can call on to perform mundane programming tasks. In that
chapter, I'll discuss error handling, memory management, and a few other miscella
neous tasks.

Chapter 4, "Synchronization," discusses how your driver can synchronize ac
cess to shared data in the multitasking, multiprocessor world of Windows 2000. You'll
learn the details about IRQL and about various synchronization primitives that the
operating system offers for your use.

Chapter 5, "The I/O Request Packet," introduces the subject of input/output
programming, which of course is the real reason for this book. I'll explain where I/O
request packets come from, andTll give an overview of what drivers do with them
when they follow what I call the "standard model" for IRP processing. I'll also discuss
the knotty subject of IRP cancellation, wherein accurate reasoning about synchroni
zation problems becomes crucial.

Chapter 6, "Plug and Play," concerns just one type ofI/O request packet, namely
IRP _MLPNP. The Plug and Play Manager component of the operating system sends
you this IRP to give you details about your device's configuration and to notify you
of important events in the life of your device. Being a good PnP citizen implies that
many drivers can't use the "standard model" for IRP processing. I'll therefore describe
an object I named a DEVQUEUE that you can use to queue and dequeue IRPs ap
propriately when PnP events are occurring all around you.

Chapter 7, "Reading and Writing Data," is where we finally get to write driver
code that performs I/O operations. I'll discuss how you obtain configuration infor
mation from the PnP Manager and how you use that information t~ prepare your
driver for "substantive" IRPs that read and write data. I'll present two simple driver
sample programs as well: one for dealing with a PIa device and one for dealing with
a bus-mastering DMA device.

15

Programming the Microsoft Windows Driver Model

Chapter 8, "Power Management," describes how your driver participates in
power management. I think you'll find, as I did, that power management is pretty
complicated. Unfortunately, you have to participate in the system's power manage
ment protocols or else the system as a whole won't work right. Worse yet, the sys
tem will sometimes present a dialog box that identifies you as the culprit if you don't
do the right things. Luckily, the community of driver writers already has a grand tra
dition of cutting and pasting, and that will save you.

Chapter 9, "Specialized Topics," contains a discussion of filter drivers, error
logging, I/O control operations, and system threads.

Chapter 10, "Windows Management Instrumentation," concerns a scheme for
enterprisewide computer management in which your driver can and should partici
pate. I'll explain how you can provide statistical and performance data for use by
monitoring applications, how you can respond to standard WBEM controls, and how
you can alert controlling applications of important events when they occur.

Chapter 11, "The Universal Serial Bus," describes how to write drivers for
USB devices.

Chapter 12, "Installing Device Drivers," tells you how to arrange for your driver
to get installed onto end user systems. You'Ulearn the basics of writing an INF file
to control installation, and you'll also learn some interesting and useful things to do
with the system registry.

Appendix A, "Coping with Windows 98 Incompatibilities," explains a VxD-based
scheme that will allow you to deploy the same driver binary on both Windows 2000
and Windows 98 platforms. The basic problem you now have to solve-and the basic
reason a distinction exists between PnP drivers and WDM drivers-is that Win
dows 2000 was finished after Windows 98 and predictably exports some service
routine that Windows 98 either doesn't export or doesn't implement in quite the same
way. You can solve this problem with a short VxD that I'll show you.

Appendix B, "Using GENERIC.SYS," describes the public interface to my
GENERIC.SYS library. Most of my sample drivers use GENERIC.SYS, and you might
need to consult this documentation to fully understand how the samples work.

Appendix C, "Using WDMWIZ.AWX," describes how to use my Visual C++
application wizard to build a driver. I repeat that WDMWlZ.AWX is not intended to
take the place of a commercial toolkit. Among other things, that means that it's not
easy enough to use that you can dispense with documentation.

Note on Errors

16

This book is as accurate as I could make it. Let's face it, though: when writing about
a complex technology with many new elements, it's impossible to be 100 percent right.
In addition, WDM will in~vitably change over the next few months as the Win
dows 2000 beta period winds down to a retail release, My publisher and I have a plan
to deal with this. To deal with errors, I'll publish an errata page at my Web site

Chapter 1 Introduction

(http://www.oneysojt.com). I hope friendly readers will email me comments that I can
post there.

OTHER RESOURCES
This book should not be the only source of information you use to learn about driver
programming. It emphasizes the features that I think are important; but you might
need information I don't provide, or you might have a different way of learning than
I do. I don't explain how the operating system works except insofar as it bears on
what I think one needs to know to effectively write drivers. If you're a deductive
learner, or if you simply want more theoretical background, you might want to con
sult one of the additional resources listed below. If you're standing in a bookstore
right now trying to decide which book to buy, my advice is to buy all of them: a wise
craftsperson never skimps on his or her tools. Besides, books on specialized subjects
like driver writing often go out of print before their useful life expires.

Books Specifically About Driver Development

Art Baker, The Windows NT Device Driver Book: A Guide for Programmers (Prentice
Hall, 1997).

Chris Cant, Writing Windows W'DM Device Drivers (R&D Press, 1999).

Edward N. Dekker and Joseph M. Newcomer, Developing Windows NT Device Drivers:
A Programmer's Handbook (Addison-Wesley, 1999).

Rajeev Nagar, Windows NT File System Internals: A Developer'S Guide (O'Reilly &
Associates, 1997).

Peter G. Viscarola and W. Anthony Mason, Windows NT Device Driver Development
(Macmillan, 1998).

Dekker and Newcomer's book went to press as the Beta 2 release of Windows 2000
appeared and contains just two chapters on WDM drivers. My publishing schedule
was such that I wasn't able to look at Chris Cant's book. Nagar's book, while nomi
nally concerned with file system drivers, contains a great deal of material that's gen
erally applicable to writing kernel-mode drivers of any kind. I don't believe in trying
to evaluate another book on the same subject as my own, inasmuch as you'd have
a perfect right to doubt my objectivity, so I simply present this list for you to use as
you wish.

Another Useful Book

David A. Solomon, Inside Windows NT, Second Edition (Microsoft Press, 1998).

17

Programming the Microsoft Windows Driver Model

Magazines
Microsoft Systems Journal occasionally has articles of interest to driver developers.
Windows Developer Journal usually has at least one relevant article in each issue.

Newsgroup
The comp.os.ms-windowsprogrammer.nt.kernel-mode newsgroup provides a forum
for technical discussion on kernel-mode programming issues. This is the place to go
. for support from your peers.

Seminars
I conduct public and on-site seminars on WDM programming. Visit my Web site at
http://www.oneysoft.com for more information and schedules. Most other authors in
this subject area conduct seminars as well. This is how we pay our bills. Once again,
I won't presume to offer any evaluation. And I'm sure you'll forgive me for not giv
ing explicit pointers to information about my competition!

WARNING

18

For expository purposes, this book presents fragments of driver code without error
checking and without all of the special case checks that are necessary in a working
driver. I'm follOWing the precept that it's better to explain complicated subjects in a
step-by-step manner without inundating you with too much detail too soon. I promise
not to lie to you, but I won't always be telling the whole, ugly truth either.

The sample drivers on the companion disc, on the other hand, do have all of
the error checking and other stuff that production drivers need. Please refer to the
disc, therefore, before incorporating something in your own code.

Chapter 2

Basic Structure
of a WDM Driver

In the ftrst chapter, I described the basic architecture of the Microsoft Windows 2000
and Microsoft Windows 98 operating systems. I introduced the idea that a device driver
is a container for a collection of subroutines that the operating system can call upon
,to carry out various activities related to a hardware device, This chapter is about the
basic contents of one of those driver containers. I'll discuss how device drivers are
layered and how that layering comes about. I'll also discuss the DriverEntry and
AddDevice functions that every WDM driver includes. In later chapters, I'll tell you
about the other types of subroutines that will be part of the driver for your device.

DEVICE AND DRIVER LAYERING
The Windows Driver Model formalizes a layering of drivers, as illustrated in Figure 2-1.
A stack of device objects appears at the left of the ftgure. The device objects are data
structures that the system creates to help software manage hardware. Many of these
data structures can exist for a single piece of physical hardware. The lowest-level de
vice object in a stack is called the physical device object,· or PD~ for short. Somewhere
in the middle of a device object stack is an object called the junctional device ob
ject, or FDO. Above and below the FDO there might be a collection of filter device
objects. Filter device objects above the FDO are called upper filters, whereas filter de
vice objects below the FDO (but still above the PD~) are called lower filters;

19

Programming the Microsoft Windows Driver Model

20

Figure 2-1. Layering of device objects and drivers in the WDM.

AN ACRONYM FOR FILTER DEVICE OBJECTS?

In an industry known for its prolific use of acronyms, it seems odd that the term
filter device object has no official abbreviation. FDa is taken-as I've said, it
refers to the functional device . object that belongs to the real driver for the de
vice. Once upon a time, Microsoft was using the acronym Filla to describe these
objects. This acronym suffers from a slight lack of specificity in that you can't
immediately tell whether you're talking about an upper or a lower filter. There
may have been other reasons why the term fell into disfavor as something ap
propriate to sober discussion about a serious new technology, however. My
seminar students have been quick to point out, for example, that the FiDO at
the top of any given stack is, of course, the "top dog."

Being a sometime cat owner and thus unoffended by canine allusions, and
not being a total slave to prevailing convention, I'll use the acronym Filla in
this book as a generic way of describing filter device objects. I guess driver
programming (or at least this book) is going to the dogs.

The Plug and Play (PnP) Manager component of the operating system constructs
the stack of device objects at the behest of device drivers. For our purposes in this

Chapter 2 Basic Structure of a WDM Driver

book, we can use the generic term bus to describe a piece of hardware to which
devices connect electronically. This is a pretty broad definition. Not only does it
include things like the PCI (Peripheral Component Interconnect) bus, but it also
includes a SCSI (Small Computer System Interface) adapter, a parallel port, a serial
port, a USB (universal serial bus) hub, and so on-anything, in fact, that can have
multiple devices plugged into it. One responsibility of the driver for a bus is to enu
merate the devices attached to the bus and to create PDOs for each of them. The PnP
Manager begins painting the picture in Figure 2-1, then, by creating a PDO because
some bus driver has detected some actual hardware.

Having created a PDO, the PnP Manager consults the registry database to find
the filter and function drivers that occupy the middle of the figure. The setup pro
gram is responsible for many of these registry entries, and the INF files that control
hardware installation are responsible for others. The registry entries define the or
der in which the drivers will appear in the stack, so the PnP Manager begins by loading
the lowest-level filter driver and calling its AddDevice function. This function creates
a FiDO, thus establishing the horizontal link between a FiDO and a driver. AddDevice
then connects the PDO to the FiDO; that's where the line connecting the two device
objects comes from. The PnP Manager proceeds upward, loading and calling each
lower filter, the function driver, and each upper filter, until the stack is complete.

The purpose for the layering becomes apparent when you consider the flow
of I/O requests diagrammed on the right-hand side of Figure 2-1. Each request for
an operation affecting a device uses an I/O request packet (IRP). IRPs are normally
sent to the topmost driver for the device and can percolate down the stack to the other
drivers. At each level, the driver decides what to do with the IRP. Sometimes, a driver
will do nothing except pass the IRP down. Other times, a driver might completely
handle the IRP without passing it down. Still other times, a driver might process the
IRP and pass it down, or vice versa. It all depends on the device and the exact se
mantics of the IRP. I'll explain in a later sidebar how it comes to pass that drivers can
send IRPs down even though device objects are linked upward from the PDO.

The various drivers that occupy the stack for a single piece of hardware per
form different roles. The function driver manages the device, represented by the FDa.
The bus driver manages the connection between the device and the computer, rep
resented by the PDO. Because of the close relationship between driver software and
device object, I'll sometimes use the term FDO driver to mean the function driver
and the term PD~ driver to refer to the bus driver. The filter drivers, if they even
exist, monitor or modify the stream of IRPs.

21

Programming the Microsoft Windows Driver Model

One of my seminar students, on seeing a diagram similar to Figure 2-1, was
misled (I won't say by which teacher, who also wrote this book) into thinking of C++
and class inheritance. A perfectly reasonable way of designing an architecture for
device drivers would be to define base classes from which programmers could derive
progressively more specialized classes. In such a scheme, you could have a set of
abstract classes that manage different sorts of PDOs, and you could derive 'FDO drivers
from them. The system would send IRPs to virtual functions, some of which would
be handled by the base class in the PD~ driver and some of which would be handled
by the derived class in the FDO driver. WDM doesn't work this way, though. The PD~
driver performs completely different jobs from the FDO driver. The FDO driver "dele
gates" certain work to the PD~ driver by passing IRPs down to it, but the relation
ship is more like being peers in a bucket brigade (and we won't discuss the contents
of the metaphOrical buckets!) than like being hierarchically related.

How the System Loads Drivers

22

Having presented this much deSCription of device layering in the WDM, it's time for
me to be a bit more precise. To begin with, there's an obvious chicken-and-egg
problem with what I've described. I said that the bus driver creates the PD~, but I
also said that the PnP Manager loads drivers based on registry entries for a PD~ that
already exists. So where does the bus driver come from? I'll explain that in the next
section. The registry database plays a crucial role in the process of loading drivers
and configuring devices, so I'll explain which registry keys are relevant and what they
contain.

Recursive Enumeration
In the first instance, the PnP Manager has a built-in "driver" for a "root" bus that doesn't
actually exist. The root bus conceptually connects the computer to all hardware that
can't electronically announce its presence-including the primary hardware bus (such
as PCl). The root bus driver gets information about the computer from the registry,
which was initialized by the Windows 2000 Setup program. Setup got the informa
tion by running an elaborate hardware detection program and by asking the end user
suitable questions. Consequently, the root bus driver knows enough to create a PD~
for the primary bus.

The function driver for the primary bus can then enumerate its own hardware
electronically. The PCI bus, for example, provides a way of accessing a special con
figuration space for each attached device, and the configuration space contains a
deSCription of the device and its resource requirements. When a bus driver enumerates

Chapter 2 Basic Structure of a WDM Driver

hardware, it acts in the guise of an ordinary function driver. Having detected a piece
of hardware, however, the driver switches roles: it becomes a bus driver and creates
a new PDQ for the detected hardware. The PnP Manager then loads drivers for this
device PDQ, as previously discussed. It might happen that the function driver for the
device enumerates still more hardware, in which case the whole process repeats
recursively. The end result will be a tree like that shown in Figure 2-2, wherein a bus
device stack branches into other device stacks for the hardware attached to that bus.

Figure 2-2. Layering of recursively enumerated devices.

23

Programming the Microsoft Windows Driver Model

24

The Role of the Registry
lbree different registry keys bear on configuration. These are called the hardware
key, the class key, and the service key. To be clear, these are not the proper names of
specific subkeys: they are generic names of three keys whose pathnames depend on
the device to which they belong. Broadly speaking, the hardware key contains in
formation about a single device, the class key concerns all devices of the same type,
and the service keys contains information about drivers. People sometimes use the
name "instance key" to refer to the hardware key and "software key" to refer to the
service key. The multiplicity of names derives from the fact that Windows 95/98 and
Windows 2000 were written (mostly) by different people.

The Hardware (Instance) Keys Device hardware keys appear in the \System\
CurrentControlSet\Enum subkey of the local machine branch of the registry. You
normally can't look inside this key because the system grants access to the System
account only. In other words, kernel-mode programs and user-mode services run
ning in the System account can read from and write to the Enum key and its subkeys,
but not even an administrator can do so. To see what's inside Enum, you can run
REGEDT32.EXE from an administrator-privilege account and change the security set
tings. Figure 2-3 illustrates the hardware key for one of the sample devices that ac
companies this book (namely, the USB42 sample I'll discuss in Chapter 11, "The
Universal Serial Bus").

Figure 2-3. A hardware key in the registry.

{894A71&1-A!J33.11D2-e21E-<l4155354OOOJI
IJSB\OasS~JlQN'rotJIIUSB\a....ff6SIjICIessJlOUSII\CIas5Jf
-(~

"" ""'" {8MA~ltD2-e21E~\UXIO

USB\Vkl.0547&PkI.J.CI2a&I!#t _(0)1 USB\ViIUIS478PkUD211
waterOneyS!lftw.e

""""

Chapter 2 Basic Structure If a WDM Driver

HOw REGISTRY KEYS ARE NAMED

The naming of the very top level of the registry key hierarchy is confusing for
the fIrst-time visitor. When you use Win32 API functions to access the registry
in user mode, you identify the top level with one of the predefined handle
constants, such as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_
LOCAL_MACHINE, and a few others. The REGEDIT.EXE registry editor applet
uses these same names, as shown in Figure 2-3. Sometimes, in writing about
registry access, the length of these keywords induces one to use abbreviations
like HKCR, HKCU, HKLM, and so on.

In point of fact, HKCR is an alias for HKLM\Software\Classes, and HKCU
is an alias for one of the subkeys of HKEY _USERS. The targets of these two
aliases depend on which session context you're dealing with.

In kernel mode, however, you use a different naming scheme, based on
the kernel namespace. (I'll discuss this namespace a bit further on in this chap
ter.) The top levels are named \Registry\User and \Registry\Machine. The
Machine branch, which is the same branch that user mode knows as HKLM, is
where you can fInd all information relevant to device drivers. Unless otherwise
indicated, therefore, you should assume that a particular registry key referred
to in the text can be found in \Registry\Machine.

The subkeys on the fIrst level below the Enum key correspond to the different
bus enumerators in the system. The deSCription of all past or present USB devices is
in the ... \Enum \ USB subkey. I've expanded the key for the USB42 sample to show
you how the device's hardware ID (vendor 0574, product 102A) has turned into the
name of a key (Vid_0547&Pid_102A) and how a particular instance of the device that
has that ID appears as a further subkey named 7&2. The 7&2 key is the hardware,
or instance, key for this device.

Some of the values in the hardware key provide descriptive information that
user-mode components such as the Device Manager can use. (You reach the Device
Manager from the Management Console or, more easily, from the Hardware tab of
the property sheet you get when you right-click the My Computer desktop icon and
select Properties.) Figure 2-4 shows how the Device Manager portrays the proper
ties of USB42. Refer to the sidebar "Accessing Device Keys from User Mode" for an
indication of how the Device Manager can gather this information even though it can't,
by itself, get past the normal security block to the Enum key.

25

Programming the Microsoft Windows Driver Model

26

Figure 2·4. The Device Manager properties display for a device.

ACCESSING DEVICE KEYS FROM USER MODE

Applications often need to access information about hardware devices. To make
this possible without tempting fate by exposing the crucial Enum key to inad
vertent (or not-so-inadvertent) tampering, Microsoft provides the CFGMGR32
set of APIs. The header file and library for this API is part of the Windows 2000
DDK, and the functions in the API set work both in Windows 2000 and Win
dows 98. The API is currently documented in a DOC file that's part of the
Microsoft Windows NT version 4.0 (0 DDK.

To give you one example, let's suppose you knew the name of a device's
hardware key somehow. One of the ways you could know is by enumerat
ing all "device instances" starting from the device root by recursively calling
CM_Locate_DevNode, CM_GeCChild, and CM_GeCSibling. Here's a short
fragment of code illustrating how to read the Manufacturer value from the cor
responding hardware key:

#include <cfgmgr32.h>

LPTSTR lpszDevnodeName;

(continued)

Chapter 2 Basic Structure of a WDM Driver

continued

DEVNODE dn;
CONFIGRET cr = CM_Locate_DevNode(&dn. lpszDevnodeName.

CM_LOCATE_DEVNODE_NORMAL);
if (cr 1= CR-SUCCESS)

<handle error>
TCHAR buffer[_MAX_PATH];
DWORD size = sizeof(buffer);
cr = CM_Get_DevlnstRegistry_Property(dn. CM_DRP_MFG. NULL.

buffer. size. 0);

The IpszDevnodeName is a string like "USB\ Vid_0547&Pid_102A \7&2"
whose relationship to the hardware key name should now be obvious. I use
code just like this fragment to gather some of the information in the DEVVIEW
applet I'll tell you about presently.

The hardware key also contains several values that identify the class of device
to which the device belongs and the drivers for the device. ClassGUID is the ASCII
representation of a globally unique identifier (GUID) that uniquely identifies a de
vice class; in effect, it's a pointer to the class key for this device. Service is a pointer
to the service key. Optional values (which USB42 doesn't have) named LowerFilters
and UpperFilters, if present, would identify the service names for any lower or up
per filter drivers, respectively.

Finally, a hardware key might have overriding values named Security, Exclu
sive, DeviceType, and DeviceCharacteristics that force the device object the driver
will create to have certain attributes. I'll discuss the importance of these overrides later
on when I tell you how to create a device object.

Most of the values in the hardware key get there automatically as part of the
setup process or because the system recognizes new hardware (or gets told it about
via the Hardware Wizard) sometime after initial setup. Some of the values get there
because the INF file that's used to install the hardware directs that they be put there.
I'll discuss INF files when I talk about how to plan for installation in Chapter 12,
"Installing Device Drivers."

The Class Keys The class keys for all classes of device appear in the HKLM\
System\CurrentControISet\Control\Class key. Their key names are GUIDs assigned
by Microsoft. Figure 2-5 illustrates the class key for SAMPLE devices, which is the class
to which the USB42 sample and all the other sample drivers in this book belong.

27

Programming the Microsoft Windows Driver Model

28

Figure 2-5. A class key in the registry.

The USB class isn't particularly interesting as it lacks some of the optional val
ues that might be there, such as these:

• LowerFllters and UpperFllters, if present, specify filter drivers for all
devices of this class.

• Security, Exclusive, DeviceType, and DeviceCharacteristics, if present
in a Properties subkey of the class key, specify values that override de
fault settings of certain device object parameters for all devices of this class.
These overrides have less precedence than the ones (if any) in the hard
ware key. System administrators will eventually be able to set up these
overrides through the Management Console.

Each device also has its own subkey below the class key. The name of this key
is the Driver value in the device's hardware key. Refer to Figure 2-6 for an illustra
tion of the contents of this subkey, the purpose of which is to correlate all these
registry entries with the INF file used to install the device.

The AnsWer Device
oem2.inf

DriverlnstaU

.NT
usb\vi<C0547&pkU02a

Figure 2-6. A device-specific subkey a/the device's class key in the registry.

The Service (Software) Keys The last key that's important for a device driver
is the service key. It indicates where the driver's executable file is on disk and contains
some other parameters that govern the way the driver is loaded. Service keys appear

Chapter 2 Basic Structure of a WDM Driver

in the HKLM\System \ CurrentControlSet\Services key. Refer to Figure 2-7 for USB42's
service key.

Figure 2-7. A service key in the registry.

It's not my purpose to rehash all the possible settings in the service key, which
is splendidly documented in several places,. including under the heading "Service
Install" in the Platform Software Development Kit (SDK). In this particular case, the
values have the following significance:

• ImagePath indicates that the executable file for the driver is named
USB42.SYS and can be found in O/oSystemRoot%\system32\drivers. Note
that the registty setting in this case is a relative pathname starting from the
system root directory.

• Type (1) indicates that this entty describes a kernel-mode driver.

• Start (3) indicates that the system should load this driver when it's needed
to support a newly arrived device. (This numeric value corresponds to the
SERVICE_DEMAND_START constant in a call to CreateService. When
applied to a kernel-mode driver, it has the meaning I just described-it's
not necessary to explicitly call StartService or issue a NET START command
to start the driver.)

• ErrorControl (1) indicates that a failure to load this driver should cause
the system to log the error and display a message box.

29

Progra_lng the Microsoft Windows Driver Model

30

Order of Driver Loading
When the PnP Manager encounters a new device, it opens the hardware and class
keys and proceeds to load drivers in the following order:

1. Any lower filter drivers specified in the hardware key for the device. Since
the LowerFilters value is of type REG_MULTI_SZ, it can specify more than
one driver. They're loaded in the order in which they appear in the value's
data string.

2. Any lower filter drivers specified in the class key. Again, these are loaded
in the order in which they appear in the LowerFilters value's data string.

3. The driver specified by the Service value in the hardware key.

4. Any upper fJ1,ter drivers specified in the hardware key, in the order in which
they appear in the UpperFilters data string.

5. Any upper filter drivers specified in the class key, in the order in which
they appear in the UpperFilters data string.

When I say the system "loads" a driver, I mean that it maps the driver's image
into virtual memory, fixes up relocatable reference~, and calls the driver's main entry
point. The main entry point is usually named DriverEntry. I'll describe the DriverEntry
function a bit further on in this chapter. It might turn out that a particular driver is
already present in memory, in which case nothing happens at the load stage except
incrementing a reference count that will preserve the image in memory for however
long some device needs it.

You might have noticed that the loading of upper and lower filters belonging
to the class and to the device instance isn't nearly nested as you might have expected.
Before I knew the facts, I guessed that device-level filters would be closer to the
function driver than class-level filters. As we'll see later on, it's not very important in
what order the loading occurs. However, the system calls the drivers' AddDevice
functions (another topic I'll discuss in considerable detail shortly) in the same order
in which the PnP Manager loads the drivers. Consequenrly, the device object stack
will mirror this order, with possibly unexpected results.

How Device Objects Interrelate
The tree of device object stacks shown in Figure 2-2 doesn't imply that IRPs necessari
ly flow from a PD~ to the top FiDO for the next lower branch of the tree. In fact, the
driver for one stack's PD~ is the FDO driver for the next lower branch, as illustrated
by the shading in the figure. When the driver receives an IRP in its PD~ role, it will
do something to perform the IRP, but that might not involve sending the same, or even
any other, IRP to the devices in the stack it occupies while performing its FDO role.

Chapter 2 Basic Structure of a WDM Driver

Conversely, when a bus driver receives an IRP in its FDO role, it might or might not
need to send some IRPs to one or more of the devices for which it acts as PD~.

A few examples should clarify the relationship between FiDOs, FDOs, and
PDOs. The first example concerns a read operation directed to a device that happens
to be on a secondary PCI bus that itself attaches to the main bus through a PCI-to
PCI bridge chip. To keep things simple, let's suppose that there's one FiDO for this
device, as illustrated in Figure 2-8. You'll learn in later chapters that a read request
turns into an IRP with a major function code of IRP _MLREAD. Such a request would
flow first to the upper FiDO and then to the function driver for the device. (That driver
is the one for the device object marked FDOdev in the figure.) The function driver calls
the hardware abstraction layer (HAL) directly to perform its work, so none of the other
drivers in the figure will see the IRP.

Device Secondary Bus Main Bus

Figure 2-8. The flow of a read request for a device on a secondary bus.

A variation on the first example is shown in Figure 2~9. Here we have a read
request for a device plugged into a USB hub that itself is plugged into the host con
troller. The complete device tree therefore contains stacks for the device, for the hub,
and for the host controller. The IRP _MLREAD flows through the FiDO to the func
tion driver, which then sends one or more IRPs of a different kind downward to its

31

Programming the Microsoft Windows Driver Model

32

own PD~. The PD~ driver for a USB device is USBHUB.SYS, and it forwards the IRPs
to the topmost driver in the host controller device stack, skipping the two-driver stack
for the USB hub in the middle of the figure.

Device USB Hub Host Controller

Figure 2-9. The flow of a read request for a USB device.

The third example is similar to the first, except that the IRP in question is a
notification concerning whether a disk drive on a PCI bus will or will not be used as
the repository for a system paging file. You'll learn in Chapter 6, "Plug and Play," that
this notification takes the form of an IRP jiLPNP request with the minor function
code IRP _MN_DEVICE_USAGE_NOTIFlCATION. In this case, the FiDO driver will
pass the request to th~ FDOdev driver, which will take note of it and pass it further
down the stack to the PDOdev driver. This particular notification has implications about
how other VO requests that concern the PnP system or power management will be
handled, so the PDOdev driver sends an identical notification to the stack within which
it's the FDOoo., as illustrated in Figure 2-10. (Not all bus drivers work this way, but
the PCI bus does.)

Chapter 2 Basic Structure of a WDM Driver

Device Secondary Bus Main Bus

Figure 2-10. Tbeflow of a device usage notification.

Examining the Device Stack
To better visualize the way device objects and drivers are layered, it helps to have a
tool. I wrote the DEVVIEW utility, which you'll find on the companion disc, for this
purpose. I'll be describing other uses for DEVVIEW in this chapter, but the feature
that concerns us now is its ability to display the device objects that are used to manage
hardware devices. With the so-called Answer device plugged into my USB hub, I ran
DEVVIEW and generated the two screen shots shown in Figure 2-11 and Figure 2-12.

This particular device uses only two device objects. The PD~ is managed by
USBHUB.SYS, whereas the FDO is managed by USB42.SYS (the image for the An

swer deVice). In the first of these screen shots, you can see other information about
the PD~. Based on our exploration of the registry keys associated with USB42, it
should now be clear where that information came from.

It's worth experimenting with DEVVIEW on your own system to see how vari
ous drivers are layered for the hardware you own.

33

Programming the Microsoft Windows Driver Model

Figure 2-11. DEVV7EWtnjormation about USB42's PD~.

Figure 2-12. DEVVlEWtnjormatton about USB42's FDO.

34

Chapter 2 Basic Structure of a WDM Driver

Driver Objects
The I/O Manager uses a driver object data structure to represent each device driver.
See Figure 2-13. Like many of the data structures we'll be discussing, the driver ob
ject is partially opaque. This means that you and I ·are only supposed to directly ac
cess or change certain fields in the structure, even though the DDK headers declare
the entire structure. I've shown the opaque fields of the driver object in the figure
with a gray background. These opaque fields are analogous to the private and protected
members of a C++ class, and the accessible fields are analogous to public members.

HardwareDatabase

FastloDispatch

Driverlnit

DrlverStartlo

DrlverUnload

MajorFunction

Figure 2-13. The DRIVER_OBJECT data structure.

35

Programming the Microsoft Windows Driver Model

36

The DDK headers declare the driver object, and all other kernel-mode data
structures for that matter, in a stylized way, as this excerpt from WDM.H illustrates:

typedef struct _DRIVER-OBJECT {
CSHORT Type:
CSHORT Size:

} DRIVER-OBJECT, *PDRIVER-OBJECT:

That is, the header declares a structure with a type name of DRIVER_OBJECT. It also
declares a pointer type (PDRIVER_OBJECT) and assigns a structure tag CDRIVER_
OBJECT). This declaration pattern appears many places in the DDK, and I won't
mention it again. The headers also declare a small set of type names (like CSHORT)
to describe the atomic data types used in kernel mode. Table 2-1 lists some of these
names. CSHORT, for example, means "signed short integer used as a cardinal number."

Type Name

PVOID, PVOID64

NTAPI

VOID

CHAR,PCHAR

UCHAR, PUCHAR

SCHAR, PSCHAR

SHORT, PSHORT

USHORT, PUSHORT

LONG, PLONG

ULONG, PULONG

WCHAR, PWSTR

PCWSTR

NTSTATUS

LARGE_INTEGER

ULARGE_INTEGER

PSZ, PCSZ

BOOLEAN, PBOOLEAN

. Descrlption

Generic pointers (default precision and 64-bit
precision)

Used with service function declarations to force use
of __ stdcall calling convention on x86 architectures

Equivalent to "void"

8-bit character, pointer to same (signed or not
according to compiler default)

Unsigned 8-bit character, pointer to same

Signed 8-bit character, pointer to same

Signed 16-bit integer, pointer to same

Unsigned 16-bit integer, pointer to same

Signed 32-bit integer, pointer to same

Unsigned 32-bit integer, pointer to same

Wide (Unicode) character or string

Pointer to constant Unicode string

Status code (typed as signed long integer)

Signed 64-bit integer

Unsigned 64-bit integer

Pointer to ASCIIZ (single-byte) string or
constant string

TRUE or FALSE (equivalent to UCHAR)

Table 2-1. Common type names for kernel-mode drivers.

Chapter 2 Basic Structure of a WDM Driver

NOTE ON 64·BIT TYPES

The DDK headers contain type names that will make it relatively painless for
driver authors to compile the same source code for either 32-bit or 64-bit Intel
platforms. For example, instead of blithely assuming that a long integer and a
pointer are the same size, you should declare variables that might be either a
LONG_PTR or a ULONG_PTR. Such a variable can hold either a long (or un
signed long) or a pointer to something. Also, for example, declare an integer
that can count as high as a pointer might span as a SIZE_T-you'll get a 64-bit
integer on a 64-bit platform. These and other 32/64 typedefs are in the DDK
header file named BASETSD.H.

I'll briefly discuss the accessible fields of the driver object structure now.
DeviceObject (PDEVICE_OBJECT) anchors a list of device object data struc

tures, one for each of the devices managed by the driver. The I/O Manager links the
device objects together and maintains this field. The DriverUnload function of a non
WDMdriver would use this field to traverse the list of device objects in order to delete
them. A WDM driver probably doesn't have any particular need to use this field.

DriverExtension (PDRIVER_EXTENSION) points to a small substructure within
which only the AddDevice (PDRIVER_ADD_DEVICE) member is accessible to the
likes of us. (See Figure 2-14.) AddDevice is a pointer to a function within the driver
that creates device objects; this function is rather a big deal, and I'll discuss it at length
later in this chapter.

Figure 2-14. The DRIVER_EXTENSION data structure.

37

Programming the Microsoft Windows Driver Model

HardwareDatabase (PUNIC ODE_STRING) describes a string that names a
hardware database registry key for the device. This is a name like "\Registry\Machine \
Hardware\Description\System" and names the registry key within which resource
allocation information resides. WDM drivers have no need to access the information
below this key because the PnP Manager performs resource allocation automatically.
The name is stored in Unicode. (In fact, all kernel-mode s1:[ing data uses Unicode.)
I'll discuss the format and the use of the UNICODE_STRING data structure in the
next chapter.

FastIoDispatch (PFAST_IO_DISPATCH) points to a table of function pointers
that me system and network drivers export. How these functions are used is beyond
the scope of this book. If you're interested in learning more about me system driv
ers, consult Rajeev Nagar's Windows NT File System Internals: A Developer's Guide
(O'Reilly & Associates, 1997).

DriverStartIo (PDRIVER_STARTIO) points to a function in your driver that
processes I/O requests that the I/O Manager has serialized for you. I'll discuss request
queuing in general and the use of this routine in particular in Chapter 5, "The I/O
Request Packet."

DriverUnload (PDRIVER_UNLOAD) points to a cleanup function in your driver.
I'll discuss this function a bit further on in connection with DriverEntry, but you might
as well know now that a WDM driver probably doesn't have any significant cleanup
to do anyway.

MajorFunction (array of PDRIVER_DISPATCH) is a table of pointers to func
tions in your driver that handle each of the roughly two dozen types of I/O request.
This table is also something of a big deal, as you might guess, because it defines how
I/O requests make it into your code.

Device Objects

38

Figure 2-15 illustrates the format of a device object and uses the same shading con
vention for opaque fields that I used in the preceding discussion of driver objects.
As the author of a WDM driver, you will create some of these objects by calling
IoCreateDevice, but the I/O Manager will be responsible for managing them.

DriverObject (PDRIVER_OBJECT) points to the object describing the driver
associated with this device object, usually the one that called 10CreateDevice to cre~
ate it. Filter drivers sometimes need to use this pointer to find the driver object for a
device they're mtering so that they can inspect entries in the MajorFunction table.

NextDevice (PDEVICE_OBJECT) points to the next device object that belongs
to the same driver as this one. This field is the one that links device objects together
starting from the driver object's DeviceObject member. There's probably no reason
for a WDM driver to use this field.

Chapter 2 Basic Structure of a WDM Driver

Figure 2-15. The DEVICE_OBJECT data structure.

CurrentIrp (PIRP) points to the I/O request packet most recently sent to the
corresponding driver's Startlo function. I'll have more to say about the CurrentIrp field
in Chapter 5 when I discuss cancel routines.

39

Programming the Microsoft Windows Driver Model

40

Flags (ULONG) contains a collection of flag bits. Table 2-2 lists the bits that are
accessible to driver writers.

Flag DescrlpUon

Reads and writes use the buffered method
(system copy buffer) for accessing user-mode
data

Only one thread at a time allowed to open
a handle

Reads and writes use the direct method
(memory descriptor list) for accessing
user-mode data

DO_DEVlCE_INITIALIZING Device object not initialized yet

DO_POWER_PAGABLE IRP _MJ]NP must be handled at
PASSIVE_LEVEL

DO_POWER_INRUSH Device requires large in-rush of current
during power-on

DO_POWER_NOOP Device doesn't participate in power
management

Table 2-2. Accessibleflags in a DEVICE_OBJECT data structure.

Characteristics (ULONG) is another collection of flag bits describing various
optional characteristics of the device. (See Table 2-3.) The I/O Manager initializes these
flags based on an argument to 10CreateDevice. Filter drivers propagate them upward
in the device stack.

Flag

FILE_REMOV ABLE_MEDIA

FILE_READ_ONLY_DEVICE

FILE_FLOPPY _DISKETI'E

FILE_ WRITE_ONCE-.MEDIA

FILE_REMOTE_DEVICE

FILE_DEVlCE_IS_MOUNTED

FILE_DEVlCE_SECURE_OPEN

DescrlpUon

Media can be removed from device

Media can only be read, not written

Device is a floppy disk drive

Media can be written once

Device accessible through network connection

Physical media is present in device

Check security on device object during open
operations

Table 2-3. Cbaracteristicsjlags in a DEVICE_OBJECT data structure.

DeviceExtension (PVOID) points to a data structure you define that will hold
per-instance information about the device. The I/O Manager allocates space for the

Chapter 2 Basic Structure of a WDM Driver

structure, but its name and contents are entirely up to you. A common convention
is to declare a structure with the type name DEVICE_EXTENSION. To access 'it given
a pointer (for example, fdo) to the device object, use a statement like this one:

PDEVICE_EXTENSION pdx = (PDEVICE-EXTENSION) fdo->DeviceExtension;

It happens to be true (now, anyway) that the device extension immediately
follows the device object in memory. It would be a bad idea to rely on this always
being true, though, especially when the documented method of following the
DeviceExtension pointer will always work.

DeviceType (DEVICE_1YPE) is an enumeration constant describing what type
of device this is. The I/O Manager initializes this member based on an argument to
IoCreateDevice. Filter drivers might conceivably need to inspect it. At the date of this
writing, there are roughly 50 possible values for this member. (See Table 2-4.)

Device Type DefauU Security

FILE_DEVICE_BEEP Public Open Unrestricted

FILE_DEVlCE_CD_ROM Modified Public Default Unrestricted

FILE_DEVlCE_CD_ROM_FILE_SYSTEM Public Default Uruestricted

FILE_DEVICE_CONTROLLER Public Open Unrestricted

FILE_DEVlCE_DATALINK Public Open Unrestricted

FILE_DEVICE_DFS Public' Open Unrestricted

FILE_DEVICE_DISK Modified Public Default' Unrestricted

FILE_DEVlCE_DISK_FILE_SYSTEM Public Default Unrestricted

FILE_DEVlCE]ILE_SYSTEM Public Default Unrestricted

FILE_DEVlCE_INPORT_PORT Public Open Unrestricted

FILE_DEVlCE'_KEYBOARD Public Open Unrestricted

FILE_DEVlCE_MAILSLOT Public Open Unrestricted

FILE_DEVlCE_MIDI_IN Public Open Unrestricted

FILE_DEVlCE_MIDCOUT Public Open Unrestricted

FILE_DEVICE_MOUSE Public Open Unrestricted

FILE_DEVlCE_MVLTCUNC]ROVlDER Public Open Unrestricted

FILE_DEVlCE_NAMED]IPE Public Open Unrestricted

FILE_DEVICE_NETWORK Modified Public Default Unrestricted

FILE_DEVICE_NETWORK_BROWSER Public Open Unrestricted

Table 2-4. Device type codes and d~ault security. (continued)

41

Programming the Microsoft Windows Driver Model

42

continued

Device Type

FILE_DEVICE_NETWORK]ILE_SYSTEM

FILE_DEVICE_NULL

FILE_DEVICE] ARALLEL_PORT

FILE_DEVICE_PHYSICAL_NETCARD

FILE_DEVICE_PRINTER

FILE_DEVICE_SCANNER

FILE_DEVICE_SERIAL_MOUSE_PORT

FILE_DEVICE_SERIAL_PORT

FILE_DEVICE_SCREEN

FILE_DEVICE_SOUND

FILE_DEVICE_STREAMS

FILE_DEVICE_TAPE

FILE_DEVICE3APE_FILE_SYSTEM

FILE_DEVICE_TRANSPORT

FILE_DEVICE_UNKNOWN

FILE_DEVICE_ VIDEO

FILE_DEVICE_ VIRTUAL_DISK

FILE_DEVICE_ WAVE_IN

FILE_DEVICE_ WAVE_OUT

FILE_DEVICE_B042_PORT

FILE_DEVICE_NETWORK_REDIRECTOR

FILE_DEVICE~BATTERY

FILE_DEVICE_BUS_EXTENDER

FILE_DEVICE_MODEM

FILE_DEVICE_ VDM

FILE_DEVICE_MASS_STORAGE

FILE_DEVICE_SMB

. FILE_DEVICE_KS

FILE_DEVICE_CHANGER

FILE_DEVICE_SMARTCARD

FILE_DEVICE_ACPI

FILE_DEVICE_DVD

FILE_DEVICE_FULLSCREEN_ VIDEO

Default Security

Modified Public Default Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Default Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Modified Public Default Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Modified Public Default Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

(continued)

, Chapter 2 Basic Structure of a WDM Driver

continued

DevtceType

FILE_DEVICE_DFS]ILE_SYSTEM

FILE_DEVICE_DFS_ VOLUME

FILE_DEVICE_SERENUM

FILE_DEVICE_TERMSRV

FILE_DEVICE_KSEC

Default Security

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

Public Open Unrestricted

StackSize (CCHAR) counts the number of device objects starting from this one
and descending all the way to the PDO. The purpose of this field is to inform inter
ested parties about how many stack locations should be created for an IRP that will
be sent first to this device's driver. WDM drivers don't normally need to modify this
value, however, because the support routines they use for building the device stack
do so automatically. .

How THE DEVICE STACK IS IMPLEMENTED

In the textual discussion of the DEVICE_OBJECT, I indicated that there's a
NextDevice field that horizontally links together all the devices belonging to a
particular driver, but I didn't describe the method that links device objects into
a vertical stack from the uppermost Filla through the FDa and from the lower
FiDOs to the PDO. The opaque field AttachedDevice performs this office.
Starting with the PDO, each device object points to the object immediately above
it. There is no documented downward pointer-drivers must keep track on their
own of what's underneath them. (In fact, IoAttachDeviceToDeviceStack does
set up a downward pointer in a structure for which the DDK doesn't have a
complete declaration. It would be unwise to try to reverse-engineer that struc
ture because it's subject to change at any time.)

The AttachedDevice field is purposely not documented because its proper
use requires synchronization with code that might be deleting device objects
from memory. You and I are allowed to call IoGetAttachedDeviceReference
to find the topmost device object in a given stack and to increment a reference
count that will prevent that object from being prematurely removed from memory.
If you wanted to work your way down to the PDO, you could send your own
device an IRP _MLPNP request with the minor function code IRP _MN_
QUERY _DEVICE_RELATIONS and a Type parameter of TaigetDeviceRe1ation.

(con'tinued)

43

Programming the Microsoft Windows Driver Model

continued

The PDO's driver will answer by returning the address of the PDO. This IRP is
supposedly reserved for use by the operating system, though, so you really
shouldn't be issuing it on your own. Instead, you need to remember the PDO
address when you first create the device object.

Similarly, to know what device object is immediately underneath you, you
need to save a pointer when you first add your object to the stack. . Since each
of the drivers in a stack will have its own unknowable way of implementing
the downward pointers used for IRP dispatching, it's not practical to alter the
device stack once the stack has been created.

THE DRIVERENTRY ROUTINE

44

In the preceding section, I said that the PnP Manager loads the drivers needed for
hardware and calls their AddDevice functions. A given driver might be used for more
than one piece of similar hardware, and there's some global initialization that the driver
needs to perform only once when it's loaded for the first time. That global initializa
tion is the responsibility of the DriverEntry routine.

DriverEntry . is the name conventionally given to the main entry point to a
kernel-mode driver. The I/O Manager calls the routine as follows:

extern "C" NTSTATUS DriverEntry(IN PDRIVEILOBJECT DriverObject.
IN PUNICODE~STRING RegistryPath)
{

}

NOTE You call the main entry point to a kernel-mode driver "DriverEntry" be
cause the build script-if you use standard procedures-will instruct the linker
that DriverEntry is the entry point, and it's best to make your code match this
assumption (or else to change the build script, but why bother?).

Before I describe the code you'd write inside DriverEntry, I want to mention a
few things about the function prototype itself. Unbeknownst to you and I (unless we
look carefully at the compiler options used in the build script), kernel-mode func
tions and the functions in your driver use the __ stdcall calling convention when
compiled for an x86 computer. This shouldn't affect any of your programming, but
it's something to bear in mind when you're debugging. I used the extern "C" direc
tive because, as a rule, I package my code in a C++ compilation unit-mostly to gain
the freedom to declare variables wherever I please instead of only immediately af
ter left braces. This directive suppresses the normal C++ decoration of the external

Chapter 2 Basic Structure of a WDM Driver

name so that the linker can Hnd this function. Thus, an x86 compile produces a func
tion whose external name is _DriverEntry@8.

Another point about the prototype of DriverEntry is those "IN" keywords. IN,
OUT, and INOUT are all noise words that the DDK defines as empty strings. By
original intention, they perform a documentation function. That is, when you see an
IN parameter, you're supposed to infer that it's purely input to your function. An OUT
parameter is output by your function, while an INOUT parameter is used for both
input and output. As it happens, the DDK headers don't really use these keywords
intuitively, and there's not a great deal of point to them. To give you just one example
out of many: DriverEntry claims that the DriverObject pointer is IN; indeed, you don't
change the pointer, but you will assuredly change the object to which it points.

The last general thing I want you to notice about the prototype is that it declares
this function as returning an NTSTATUS value. NTSTATUS is actually just a long in
teger, but you want to use the typedef name NTSTATUS instead of LONG so that
people understand your code better. A great many kernel-mode support routines
return NTSTATUS status codes, and you'll Hnd a list of them in the DDK header
NTSTATUS.H. I'll have a bit more to say about status codes in the next chapter; for
now, just be aware that your DriverEntry function will be returning a status code
when it Hnishes.

Overview of DriverEntry
The fust argument to DriverEntry is a pointer to a barely initialized driver object that
represents your driver. A WDM driver's DriverEntry function will fUlish initializing this
object and return. Non-WDM drivers have a great deal of extra work to do-they must
also detect the hardware for which they're responsible, create device objects to rep
resent the hardware, and do all the configuration and initialization required to make
the hardware fully functional. The relatively arduous detection and conflguration steps
are handled automatically for WDM drivers by the PnP Manager, as I'll discuss in
Chapter 6. If you want to know how a non-WDM driver initializes itself, consult Art

Baker's The Windows NT Device Driver Book (Prentice !fall, 1997) and Viscarola and
Mason's Windows NT Device Driver Development (Macmillan, 1998).

The second argument to DriverEntry is the name of the service key in the reg
istry. This string is not persistent-you must copy it if you plan to use it later.

A WDM driver's main job in DriverEntry is to fill in the various function point
ers in the driver object. These pointers indicate to the operating system where to Hnd
the subroutines you've decided to place in your driver container. They include these
pointer members of the driver object:

• DriverUnload Set this to point to whatever cleanup routine you create.
The I/O Manager will call this routine just prior to unloading the driver.

45

Programming the·Mlcrosoft Windows Driver Model

46

Most of the time, a WDM driver doesn't allocate any resources during
DriverEntry, so it doesn't need to clean anything up.

• DriverExtension->AddDevice Set this to point to your AddDevice
function. The PnP Manager will can AddDevice once for each hardware
instance you're responsible for. Since AddDevice is so important to the way
WDM drivers work, I've devoted the next main section ("The AddDevice
Routine") of this chapter to explaining what it does.

• DriverStartlo If your driver uses the standard method of queuing I/O
requests, you'd set this member of the driver object to point to your StartIo
routine. Don't worry (yet, that is) if you don't understand what I mean by
the "standard" queuing method; 'all will become clear in Chapter 5, where
you'll discover that many drivers do use it.

• MajorFunction The I/O Manager initializes this vector of function pointers
to point to a dummy dispatch function that fails every request. You're pre
sumably going to be handling certain types of IRPs-otherwise, your driver
is basically going to be deaf and dumb--so you'd set at least some of these
pointers to your own dispatch functions. Chapter 5 discusses IRPs and
dispatch functions in detail. For now, all you need to know is that you
must handle three kinds of IRPs and that you'll probably be handling sev
eral other kinds as well.

A nearly complete DriverEntry routine would, then, look like this:

extern "c" NTSTATUS DriverEntry(lN PDRIVEILOBJECT DriverObject.
IN PUNICODE_STRING RegistryPath)
{

DriverObject-)DriverUnload = DriverUnload;
DriverObject-)DriverExtension-)AddDevice = AddDevice;
DriverObject-)DriverStartlo = Startlo;
DriverObject-)MajorFunction[IRP_MJ_PNP] = DispatchPnp:
DriverObject-)MajorFunction[IRP_MJ_POWER~ = DispatchPower:
DriverObject-)MajorFunction[IRP_MJ_SYSTEM_CONTROL] = DispatchWmi:

servkey.Buffer.= (PWSTR) ExAllocatePool(PagedPool.
RegistryPath-)Length + sizeof(WCHAR»:

if (lservkey.Buffer)
return STATUS_INSUFFICIENT_RESOURCES:

servkey.MaximumLength = RegistryPath-)Length + size~f(WCHAR):
RtlCopyUnicodeString(&servkey. RegistryPath):
return STATUS_SUCCESS:
}

Chapter 2 Basic Structure of a WDM Driver

1. These three statements set the function pointers for entry points elsewhere
in the driver. I elected to give them simple names indicative of their func
tion: DriverUnload, AddDevice, and StartIo.

2. Every WDM driver must handle PNP, POWER, and SYSTEM_CONTROL I/O
requests; this is where you'd specify your dispatch functions for these
requests. What's now IRP _MLSYSTEM_CONTROL was called IRP_
ML WMI in some early beta releases of the Windows 2000 DDK, which
is why I called my dispatch function DispatchWmi.

3. In place of this ellipsis, you'd have code to set several additional
MajorFunction pointers.

4. If you ever need to access the service registry key elsewhere in your driver,
it's a good idea to make a copy of the RegistryPath string here. If you're
going to be acting as a WMI (Windows Management Instrumentation)
proVider (as I discuss in Chapter 10, "Windows Management Instrumen
tation"), you'll need to have this string around, for example. I've assumed
that you declared a global variable named servkey as a UNICODE_
STRING elsewhere. I'll explain the mechanics of working with Unicode
strings in the next chapter.

5. Returning STATUS_SUCCESS is how you indicate success. If you were to
discover something wrong, you'd rerurn an error code chosen from the
standard set in NTSTATUS.H or from a set of error codes that you define
yourself. STATUS_SUCCESS happens to be numerically O.

DriverUnload
The purpose of a WDM driver's DriverUnload function is to clean up after any glo
bal initialization that DriverEntry might have done. There's almost nothing to do. If
you made a copy of the RegistryPath string in DriverEntry, though, DriverUnload
would be the place to release the memory used for the copy:

VOID DriverUnload(PDRIVER-OBJECT DriverObject)
{

RtlFreeUnicodeString(&servkey);
}

If your DriverEntry routine returns a failure status, the system does not call your
DriverUnload routine. Therefore, if DriverEntry generates any side effects that need
cleaning up prior to returning an error status, DriverEntry has to perform the cleanup.

47

Programming the Microsoft Windows Driver Model

Driver Reinitialization Routine
The I/O Manager provides a service function, IoRegisterDriverReinitialization,
that solves a peculiar problem for non-WDM drivers, and I want to explain what it
does so you'll know why you don't need to worry about it. Non-WDM drivers need
to enumerate their hardware at DriverEntry time. It might happen that a non-WDM
driver must load and initialize before all possible instances of its own hardware have
been identified. This is true for mouse and keyboard devices, for example. But, if
DriverEntry is supposed to enumerate all the mice or keyboards and create device
objects for them, these drivers can't do their work properly if their DriverEntry rou
tine runs too soon. They use IoRegisterDriverReinitialization to register a routine that
the I/O Manager will call back the next time someone detects new hardware. The
reinitialization routine can then try again and, potentially, register itself for even
later callbacks.

WDM drivers shouldn't nee<;l to register reinitialization routines because they
don't rely on their own resources to detect hardware. The PnP Manager will auto
matically match up newly arrived hardware to the right WDM driver and call that
driver's AddDevice routine (the subject of the next section) to do all the necessary
initialization work.

THE ADDDEVICE ROUTINE

48

In the preceding main section, I showed how you initialize a WDM driver when it's
first loaded. In general, though, a driver might be called upon to manage more than
one actual device. In the WDM architecture, a driver has a special AddDevice func
tion that the PnP Manager can call for each such device. The function has the fol
lowing prototype:

NTSTATUS AddDevice(PDRIVER-OBJECT DriverObject. PDEVICE_OBJECT pdo)
{

}

The DriverObject argument points to the same driver object that you initial
ized in your DriverEntry routine. The pdo argument is the address of the physical
device object at the bottom of the device stack, even if there. are already filter driv
ers below.

The basic responsibility of AddDevice in a function driver is to create a device
object and link it into the stack rooted in this PDO. The steps involved are as follows:

Chapter 2 Basic Structure of a WDM Driver

1. Call 10CreateDevice to create a device object and an instance of your own
device extension object.

2. Register one or more device interfaces so that applications know about
the existence of your device. Alternatively, give the device object a name
and then create a symbolic link.

3. Next initialize your device extension and the Flags member of the device
object.

4. Call 10AttachDeviceToDeviceStack to put your new device object into the
stack.

Now I'll explain these steps in more detail.

Creating a Device Object
You create a device object by calling IoCreateDevice. For example:

PDEVICE_OBJECT fdo;
NTSTATUS status = IoCreateDevice(DriverObject.

sizeof(DEVICE_EXTENSION). NULL,
FILE_DEVICE_UNKNOWN. FILE_DEVICE_SECURE_OPEN. FALSE. &fdo);

The first argument (DrlverObject) is the same value supplied to AddDevice as
the first argument. This argument establishes the connection between your driver and
the new device object, thereby allowing the I/O Manager to send you IRPs intended
for the device. The second argument is the size of your device extension structure.
As I discussed earlier in this chapter, the I/O Manager allocates this much additional
memory and sets the DeviceExtension pointer in the device object to point to it.

The third argument, which is NULL in this example, can be the address of a
UNICODE_STRING providing a name for the device object. Deciding whether to name
your device object and which name to give it requires some thought, and I'll describe
these surprisingly complex considerations a bit further on in the section, "Should I
Name My Device Object?"

The fourth argument (FILE_DEVICE_UNKNOWN) is one of the device types
listed in Table 2-4. Whatever value you specify here can be overridden by an entry
in the device's hardware key or class key. If both keys have an override, the hard
ware key has precedence. For devices that fit into one of the established categories,
specify the right value in one of these places because some details about the inter
action between your driver and the surrounding system depend on it. In addition,
the default security settings for your device object depend on this device type.

49

Programming the Microsoft Windows· Driver. Model

50

The fIfth argument (0) provides the Characteristics flag for the device object.
(See Table 2-3 on page 40.) These flags are relevant mostly for mass storage devices.
The undocumented flag bit FILE-:-AUTOGENERATED_DEVICE~AME is for internal
use only-the DDK documenters didn't simply forget to mention it. Whatever value
you specify here can be overridden by an entry in the device's hardware key or class
key. If both keys have an override, the hardware key has precedence.

The sixth argument to IoCreateDevice (FAlSE in my example) indicates whether
the device is exclusive. The I/O Manager allows only one handle to be opened by
normal means to an exclusive device. Whatever value you specify here can be over
ridden by an entry in the device's hardware key or class key. If both keys have an
override, the hardware key has precedence.

NOTE The exclusivity attribute matters only for whatever named device ob
ject is the target of an open request. If you follow Microsoft's recommended
guidelines for WDM drivers, you won't give your device object a name. Open
requests will then target the PD~, but the PD~ will not usually be marked ex
clusive because the bus driver usually has no way of knowing whether you need
your device to be exclusive. The only time the PD~ will be marked exclusive is
when there's an Exclusive override in the device's hardware key or class key's
Properties subkey. You're best advised, therefore, to avoid relying on the ex
clusive attribute altogether. Instead, make your IRP _MJ_CREATE handler re
ject open requests that would violate whatever restriction you require.

The last argument (&£do) points to a location where IoCreateDevice will store
the address of the device object it creates.

If IoCreateDevice fails for some reason, it returns a status code and does not
alter the PDEVICE_OBJECT described by the last argument. If it succeeds, it returns
a successful status code and sets the PDEVICE_OBJECT pointer. You can then pro
ceed to initialize your device extension and do the other work associated with cre
ating a new device object. Should you discover an error after this point, you should
release the device object and return a status code. The code to accomplish these tasks
would be something like this:

NTSTATUS status = IoCreateDevice(...):
if (INT_SUCCESS(status»

return status:

if «some other error discovered»
{

IoDeleteDevice(fdo):
return status:
}

· Chapter 2 Basic Structure of a WDM Driver

I'll explain the NTSTATUS status codes and the NT_SUCCESS macro in the next
chapter.

Naming Devices
Windows NT uses a centralized Object Manager to manage many of its internal data
structures, including the driver and device objects I've been talking about. David
Solomon presents a fairly complete explanation of the Windows NT Object Manager
and namespace in Chapter 3, "System Mechanisms," of Inside Windows NT, Second
Edition (Microsoft Press, 1998). Objects have names, which the Object Manager
maintains in a hierarchical namespace. Figure 2-16 is a screen shot of my DEVVIEW
application showing the top level of the name hierarchy. The objects displayed as
folders in this screen shot are directory objects, which can contain subdirectories and
"regular" objects. The objects displayed with other icons are examples of these regular
objects. (In this respect, DEVVIEW is similar to the WINOB] utility that you'll find in
the BIN\ WINNT directory of the Platform SDK. WINOB] can't give you informa
tion about device objects and drivers, though, which is why I wrote DEVVIEW in
the first place.)

Directory
Directory

SymbolicUnk \71
Directory

Directory
Directory

Directory
Directory
Directory

Directory
Directory

Directory
Directory

Device
Port

Po"
Device

Even'
Port
Device

E ... nt

Port
Mutant

Ke,
Event

Po"
Event

Port

Po"
SymbolicLink \Devlce\Harddiskl\parttionl\WINNT
Event

Figure 2-16. Using DEVVIEWto view the names pace.

51

Programming the Microsoft Windows Driver Model

52

Device objects can have names that conventionally live in the \Device direc
tory. Names for devices serve two purposes in Windows 2000. Giving your device
object a name allows other kernel-mode components to find it by calling service
functions like IoGetDeviceObjectPointer. Having found your device object, they
can send you IRPs.

The other purpose of naming a device object is to allow applications to open
handles to the device so they can send you IRPs. An application uses the standard
CreateFile API to open a handle, whereupon it can use ReadFile, WrlteFile, and
DeviceIoControl to talk to you. The pathname an application uses to open a de
vice handle begins with the prefix \ \. \ rather than with a standard Universal Nam
ing Convention (UNC) name such as C:\MYFILE.CPP or \ \FRED\C-Drive\HISFII.E.CPP.
Internally, the I/O Manager converts this prefix into \??\ before commencing a name
search. To provide a mechanism for connecting names in the \?? directory to objects
whose names are elsewhere (such as in the \Device directory), the Object Manager
implements an object called a symbolic link.

Symbolic Links
A symbolic link is a little bit like a desktop shortcut in that it points to some other
entity that's the real object of attention. Symbolic links are mainly used in Windows
NT to connect the leading portion of DOS-style names to devices. Figure 2-17 shows
a portion of the \?? directory, which includes a number of symbolic links. Notice, for
example, that C: and other drive letters in the DOS file-naming scheme are actually
links to objects whose names are in the \Device directory. These links allow the Object
Manager to "jump" somewhere else in the namespace as it parses through a name.
So, if I call CreateFile with the name C:\MYFILE.CPP, the Object Manager will take
this path to open the file:

1. Kernel-mode code initially sees the name \??\C:\MYFILE.CPP. The Object
Manager looks up "??" in the root directory and finds a directory object
with that name.

2. The Object Manager now looks up "C:" in the \?? directory. It finds a
symbolic link by that name, so it forms the new kernel-mode pathname
\Device\HarddiskVolume1 \MYFILE.CPP and parses that.

3. Working with the new pathname, the Object Manager looks up "Device"
in the root directory and finds a directory object.

4. The Object Manager looks up "HarddiskVolume1" in the \Device direc
tory. It finds a device object by that name.

Chapter 2 Basic Structure of a WDM Driver

SymboIIi.k _Porollol",*",

-"* """''"~_COMI

Symbollc:l..i1k. 1,OevIce\S£CTEST_D ~\De __ .,

~ _1C<RcrnD s,mboIdr« __

s,.., 1rk \D"""\SorI~l

s,mboIkli* _IHrihkYokmo3

"""" _"* _1-__ loe.D\Yidool

Symbok"* 1""""1-
~_\lln<oadoo'
_nctJnk __

"'-I~ SymboIIiirI<_ ... s __ 1FtC_d

SymboIIiirI<_\HCllO
SymboIIiirI<_IIP

Figure 2-17. The \1? directory with several symbolic links.

At this point in the process, the Object Manager will create an IRP that it will
send to the driver(s) for HarddiskVolume1. The IRP will eventually cause some file
system driver or another to locate and open a disk file. Describing how a file system
driver works is beyond the scope of this book. If we were dealing with a device
name like COM1, the driver that ends up receiving the IRP would be the driver for
\Device\SerialO. How a device driver handles an open request is definitely within
the scope of this book, and I'll be discussing it in this chapter (in the section "Should
I Name My Device Object?") and in Chapter 5 when I'll talk about IRP processing
in general.

A user-mode program can create a symbolic link by calling DefineDosDevice,
as in this example:

BOOl okay = DefineDosDeviceCDDD_RAW_TARGET_PATH,
"barf", "\\Device\\SECTESL0");

You can see the aftermath of a call like this one in Figure 2-17, by the way.
You can create a symbolic link in a WDM driver by calling IoCreate

SymboUcIJnk,

IoCreateSymboliclinkClinkname, targname);

where linkname is the name of the symbolic link you want to create and targname
is the name to which you're linking. Incidentally, the Object Manager doesn't care
whether targname is the name of any existing object: someone who tries to access
an object by using a link that points to an undefmed name simply receives an error.
If you want to allow user-mode programs to override your link and point it some
where else, you should call IoCreateUnprotectedSymboUcllnk instead.

53

Programming the Microsoft Windows Driver Model

54

ARC NAMES

In the Advanced RISC Computing (ARC) architecture, there is a concept known
as ARC naming that Windows 2000 relies on. You can see ARC names at work
in the BOOT.lNI file in the root directory of your boot drive; Here's what my
c()py of that file looked like at one point in the development of this book:

[boot loader]
timeout=30
default=c:\
[operating systems]
C:\="Microsoft Windows 98"
scsi(0)disk(1)rdtsk(0)partition(1)\BETA2F="Win2k Beta-2 (Free Build)"

Ifastdetect Inoguiboot
scsi(0)disk(1)rdisk(0)part1tion(1)\WINNT="Win2K Beta-3 (Free Build)"

Ifastdetect Inoguiboot

On an Intel platform, ARC names like scsiCO)disk(l)rdisk(O)partition(l) are
symbolic links within the kernel's \ArcName direCtory that point---eventually,
that is, if you resolve all the links inthe way-to regular device objects. DEVVIEW
will show you these links on your own system.

Drivers for mass-storage devices other than hard disks should call
IoAssignArcName during initialization to set up one of these links. The I/O
Manager automatically creates the ARC names for hard disk devices, since these
are needed to boot the system in the first place.

Should I Name My Device Object?
Deciding whether to give your device object a name requires, as I said earlier, a little
thought. If you give your object a name, it will be possible for any kernel-mode
program to try to open a handle to your device. Furthermore, it will be possible for
any kernel-mode or user-mode program to create a symbolic link to your device object
and to use the symbolic link to try to open a handle. You might or might not want
to allow these actions.

The primary consideration in deciding whether to name your device object is
security. When someone opens a handle to a named object, the Object Manager
verifies that they have permission to do so. When IoCreateDevice creates a device
object for you, it assigns a default security deSCriptor based on the device type you
specify as the fourth argument. There are three basic categories that the I/O Man
ager uses to select a security deSCriptor. (Refer to the second column in Table 2-4 on
pages 41-43.)

Chapter 2 Basic Structure of a WDM Driver

• Most file system device objects (that is, disk, CD-ROM, file, and tape)
receive the "public default unrestricted" access control list (ACL). TIli$ list
gives just SYNCHRONIZE, READ_CONTROL, FlLE_READ_AlTRIBUTES,
and FILE_TRAVERSE access to everyone except the System account and
all administrators. File system device objects, by the way, exist only so that
there Can be a target for a CreateFile call that will open a handle to a file
managed by the file system.

• Disk devices and network file system objects receive the same ACL as the
file system objects with some modifications. For example, everyone gets
full access to a named floppy disk device object, and administrators get
sufficient rights to run ScanDisk. (User-mode network provider DLLs need
greater access to the device object for their corresponding file system
driver, which is why network file systems are treated differently than other
file systems.)

• All other device objects receive the "public open unrestricted" ACL, which
allows anyone with a handle to the device to do pretty much anything.

You can see that anyone will be able to access a nondisk device for both read
ing and writin~ if the driver gives the device object a name at the time when it calls
10CreateDevice. This is because the default security allows nearly full access and
because there is no. security check at all associated with creating a symbolic linh
the security checks happen at open time, based on the named object's security de
scriptor. This is true even if other device objects in the same sta~k have more
restrictive security.

DEVVIEW will show you the security attributes of the device objects it displays.
You can see the operation of the default rules I just described by examining a file
system, a disk device, and any other random device.

The PDO also receives a default security descriptor, but it's possible to over
ride it with a security descriptor stored in the hardware key or in the Properties subkey
of the class key. (The hardware key has precedence if both keys specify a descrip
tor.) Even lacking a specific security override, if either the hardware key or the class
key's Properties subkey overrides the device type or characteristics specification, the
I/O Manager constructs a new default security deSCriptor based on the new type. The
I/O Manager does not, however, override the security setting for any of the other
device objects above the PDO. Consequently, for the overrides (and the administra
tive actions that set them up) to have any effect, you should not name your device
object. Don't despair though-applications can still access your device by means of
a registered interface, which I'll discuss very shortly.

55

Programming the Microsoft Windows Driver Model

56

You need to know about one last security concern. As the Object Manager parses
its way through an object name, it needs only FILE_TRAVERSE access to the inter
mediate components of the name. It only performs a full security check on the ob
ject named by the ftnal component. So, suppose you had a device object reachable
under the name \Device\SECTEST_O or by the symbolic link \??\SecurityTescO. A
user-mode application that tries to open \ \.\SecurityTescO for writing will be blocked
if the object security has been set up to deny write access. But if the application tries
to open a name like \ \.\SecurityTesCO\ExtraStuff that has additional name qualifi
cations, the open request will make it all the way to the device driver (in the form
of an IRP _MLCREATE I/O request) if the user merely has FILE_TRAVERSE permis
sion, which is routinely granted. The I/O Manager expects the device driver to deal
with the additional name components and to perform any required security checks
with regard to them.

To avoid the security concern I just described, you can supply the flag FILE_
DEVICE_SECURE_OPEN in the device characteristics argument to 10CreateDevice. This
flag causes Windows 2000 to verify that someone has the right to open a handle to
a device even if additional name components are present.

The Device Name
If you decide to name the device object, you would normally put the name in the
\Device branch of the namespace. To give it a name, you have to create a UNICODE_
STRING structure to hold the name, and you have to specify that string a1! an argument
to loCreateDevice:

UNICODE_STRING devname;
RtlIriitUnicodeStr1ng(&devname. L"\\Device\\Simple0"):
IoCreateDevice(Dr1verObject. sizeof(DEVICE_EXTENSION). &devname •...);

I'll discuss the usage of RtlInitUnicodeString in the next chapter.
Conventionally, drivers assign their device objects a name by concatenating a

string naming their device type ("Simple" in this fragment) with a zero-based inte-
ger denoting an instance of that type. In general, you don't want to hard-code a name
like I. just did-you want to compose it dynamically using string-manipulation func
tions like the following:

UNICODE_STRING devname;
static LONG lastindex = -1:
LONG devindex = InterlockedIncrement(&lastindex):
WCHAR name[32];

Chapter 2 Basic Structure of a WDM Driver

_snwprintf(name, arraysize(name)~ L"\\Device\\SIMPLE%2.2d", devindex);
RtllnitUnicodeString(&devname, name);
IoCreateDevice(...);

I'll explain the various service functions used in this fragment in the next couple
of chapters. The instance number you derive for private device types might as well
be a static variable, as shown in the previous fragment.

NOTES ON DEVICE NAMING

If all you wanted to do was to provide a quick-and-dirty way for an applica
tion to open a handle to your device during development, you could perfectly
well assign the device object a name in the \?? branch. For a production driver,
however, you're better advised to do what the text suggests and name the device
object with a \Device directory name.

The \?? directory used to be named \DosDevices. In fact, \DosDevices
will still work, but it itself is a symbolic link to \?? The change was made to
move the often-searched directory of user-mode names to the front of the al
phabeticallist of directories. See the "Windows 98 Compatihility Notes" section
at the end of this chapter for an important caution about using \?? in your
names.

In previous versions of Windows NT, drivers for certain classes of devices
\

(notably disks, tapes, serial ports, and parallel ports) called IoGetConflgura-
tionInformation to obtain a pointer to a global table containing counts of
devices in each of these special classes. A driver would use the current value
of the counter to compose a name like HarddiskO, Tapel, and so on, and would
also increment the counter. WDM drivers. don't need to use this service func
tion or the table it returns, however. Constructing names for the devices in these
classes is now the responsibility of a Microsoft type-specific class driver (such
as DISKSYS).

Device Interfaces
The older method of naming I just discussed-naming your device object and creat
ing a symbolic link name that applications can use-has two major problems. We've
already discussed the security implications of giving your device object a name. In
addition, the author of an application that wants to access your device has to know
the scheme. you adopted to name your devices. If you're the only one writing the
applications that will be accessing your hardware, that's not much of a problem. But
if many different companies will be writing applications for your hardware, and
especially if many hardware companies are making similar devices, <;levising a suitable

57

Programming the Microsoft Windows Driver Model

58

naming scheme is difficult. Finally, many naming schemes rely on the language spo
ken by the programmer, which isn't necessarily a good choice in an increasingly global
economy. (My favorite example involves an American chef who tells a German diner
he's eating a "gift" [poison], whereupon the diner, only incompletely realizing the
linguistic difficulty, calls the chef a "schmuck" [jewelry].)

To solve these problems, WDM introduces a new naming scheme for devices
that is language-neutral, easily extensible, usable in an environment with many hard
ware and software vendors, and easily documented. The scheme relies on the con
cept of a device interface, which is baSically a specification for how software can
access hardware. A device interface is uniquely identified by a 128-bit GUID. You can
generate GUIDs by running the Platform SDK utilities UUIDGEN or GUIDGEN-both
utilities generate the same kind of number, but they output the result in different
formats. The idea is that some industry group gets together to define a standard way
of accessing a certain kind of hardware. As part of the standard-making process,
someone runs GUIDGEN and publishes the resulting GUID as the identifier that will
be forever after associated with that interface standard.

MORE ABOUT GUIDS

The GUIDs used to identify software interfaces are the same kind of unique
identifier that's used in the Component Object Model (COM) to identify COM
interfaces and in the Open Software Foundation (OSF) Distributed Computing
Environment (DCE) to identify the target of a remote procedure call (RPC). For
an explanation of how GUIDs are generated so as to be statistically unique,
see page 66 of Kraig Brockschmidt's Inside OLE, Second Edition (Microsoft
Press, 1995), which contains a further reference to the original algorithm speci
fication by the OSF. I found the relevant portion of the OSF specification online
at http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.

The mechanics of creating a GUID for use in a device driver involve run
ning either UUIDGEN or GUIDGEN and then capturing the resulting identifier
in a header file. GUIDGEN is easier to use because it allows you to choose to
format the GUID for use with the DEFINE_GUID macro and to copy the resulting
string onto the clipboard. ~igure 2-18 shows the GUIDGEN window. You can
paste its output into a header file to end up with this:

II {CAF53C68-A94C-lld2-BB4A-00C04FA330A6}
DEFINE_GUID«<name»,
0xcaf53c68. 0xa94c. 0xlld2. 0xbb, 0x4a, 0x0. 0xc0. 0x4f, 0xa3. 0x30. 0xa6);

You then replace the «name» with something more mnemonic like
GUID_SIMPLE and include the definition in your driver and applications.

Chapter 2 Basic Structur. of a WDM Driver

Figure 2-18. Using GUIDGEN to generate a GUID.

I think of an interface as being analogous to the protein markers that populate
the surface of living cells. An application desiring to access a particular kind of de
vice has its own protein markers that fit like a key into the markers exhibited by
conforming device drivers. See Figure 2-19.

Application

~•.... ~
· ·

· · \ ~

"I need an X"

Figure 2-19. Using device interfaces to match up applications and devices.

Registering a Device Interface A function driver's AddDevice function should
register one or more device interfaces by calling IoRegisterDeviceInterface, as
shown here:

#include <initguid.h>
#include "guids.h"

(continued)

59

Pnlgralllling the Microsoft Windows Driver Model

80

NTSTATUS AddDevice(...)
{

IoRegisterDev1celnterface(pdo. &GUID_SIMPLE. NULL. &pdx->ifname):

}

1. We're about to include a header (GUIDS.H) that contains one or more
DEFINE_GUID macros. DEFINE_GUID normally declares an external
variable. Somewhere in the driver, though, we have to actually reserve
initialized storage for every GUID we're going to reference. The system
header file INITGUID.H works some preprocessor magic to make DEFINE_
GUID reserve the storage even if the definition of the DEFINE_GUID
macro happens to be in one of the precompiled header files.

2. I'm assuming here that I put the GUID deftnitions I want to reference into
a separate header file. This would be a good idea, inasmuch as user-mode
code will also need to include these deftnitions and will not want to in
clude a bunch of extraneous kernel-mode declarations relevant only to
our driver.

3. The fust argument to loRegisterDeviceInterface must be the address of the
PDO for your device. The second argument identifies the GUID associ
ated with your interface, and the third argument specifies additional
qualified names that further subdivide your interface. Only Microsoft
code uses this name subdivision scheme. The last argument is the address
of a UNICODE_STRING structure that will receive the name of a symbolic
link that resolves to this device object.

The return value from loRegisterDevicelnterface is a Unicode string that appli
cations will be able to detemiine without knowing anything special about how you
coded your driver and will then be able to use in opening a handle to the device.
The name is pretty ugly, by the way; here's an example that I generated for one of
my sample devices in Windows 98: \DosDevices\0000000000000007#{CAF53
C68-A94C-lld2-BB4A-OOC04FA330A61. (You can call it 007 once you get to know it
better.)

All that registration actually does is create the symbolic link name and save
it in the registry. Later on, in response to the IRP _MN_START_DEVICE Plug and
Play request we'll discuss in Chapter 6, you'll make the following call to IoSet
DeviceInterlaceState to "enable" the interface:

IoSetDevicelnterfaceState(&pdx->1fname. TRUE):

In response to this call, the I/O Manager creates an actual symbolic link object
pointing to th~ PDO for your device. You'll make a matching call to disable the inter
face at a still later time (just call loSetDevicelnterfaceState with a FALSE argument),

Chapter 2 Basic Structure of a WDM Driver

whereupon the I/O Manager will delete the symbolic link object while preserving the
registry entry that contains the name. In other words, the name persists and will always
be associated with this particular instance of your device; the symbolic link object
comes and goes with the hardware.

Since the interface name ends up pointing to the PDO, the PDO's security
descriptor ends up controlling whether people can access your device. That's good,
because it's the PDO's security that an administrator can control through the Man
agement Console.

Enumerating Device Interfaces Both kernel-mode and user-mode code can
locate all the devices that happen to support an interface in which they're interested.
I'm going to explain how to enumerate all the devices for a particular interface in
user mode. The enumeration code is so tedious to write that I eventually wrote a C++
class to make my own life simpler. You'll fmd this code in the DEVICELIST.CPP and
DEVICELIST.H files that are part of the WDMIDLE sample in Chapter 8, "Power Manage
ment." These files declare and implement a CDeviceList class, which contains an array
of CDeviceListEntryobjects. These two classes have the follOwing declaration:

class CDeviceListEntry
{

public:

} ;

CDeviceListEntry(LPCTSTR linkname. LPCTSTR friendlyname);
CDeviceListEntry(){}
CString m-linkname;
CString m-friendlyname;

class CDeviceList
{ .

public:

} ;

CDeviceList(const GUID& guid);
-CDevi ceL i st();
GUID m-guid;
CArray<CDeviceListEntry. CDeviceListEntry&> m-list;
int Initialize();

The classes rely on the CString class and CArray template class that are part
of the Microsoft Foundation Classes (MFC) framework. The constructors for these two
classes simply copy their arguments into the obvious data members:

CDeviceList::CDeviceList(const GUID& guid)
{

m-guid = guid;
}

continued

61

Programming the Microsoft Windows Drlnr Modal

62

CDevicelistEntry::CDevicelistEntry(LPCTSTR l1nkname,
lPCTSTR friendlyname)
{

m-11nkname = linkname:
m-friendlyname = friendlyname:
}

All the interesting work occ;:urs in the CDeviceUst::Initialize function. The
executive overview of what it does is this: it will enumerate all of the devices that
expose the interface whose GUID was supplied to the constructor. For each such
device, it will determine a "friendly" name that we're willing to show to an unsus
pecting end user. Finally, it will return the number of devices it found. Here's the code
for this function:

int CDevicelist::Initialize()
{

HDEVINFO info = SetupDiGetClassDevs(&m-guid, NUll, NUll,
DIGCF_PRESENT I DIGCF~INTERFACEDEVICE):

if (info == INVALID_HANDLE_VALUE)
return 0:

SP_INTERFACE-DEVICE_DATA ifdata:
ifdata.cbSize = sizeof(ifdata):
DWORD devindex:
for (devindex = 0:

SetupDiEnumDeviceInterfaces(info, NUll, &m-guid,
devindex, &1fdata): ++devindex)
{

DWORD needed:
SetupDiGetDeviceInterfaceDetail(info, &ifdata, NUll, 0,

&needed, NULl):

PSP_INTERFACE_DEVICE_DETAIL-DATA detail
(PSP _INTERFACE-DEVICE-DETAI L_DATA) mall oc(neede,d) :

detail->cbSize = sizeof(SP_INTERFACE_DEVICE_DETAIL-DATA):
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}:
SetupDiGetDevicelnterfaceDetail(info, &ifdata, detail,

needed, NUll, &did»:

TCHAR fname[256]:
if (!SetupDiGetDeviceRegistryProperty(info, &did, SPDRP_FRIENDlYNAME,

NULL, (PBYTE) fname, sizeof(fname), NULL)
&& ISetupDiGetDeviceRegistryPropertY(info, &did, SPDRP_DEVICEOESC,

NULL, (PBYTE) fname. sizeof(fname), NUll»
_tcsncpy(fname, detail->Oev1cePath, 256):

Chapter 2 Basic Structure of a WDM Driver

CDeviceListEntry e(detail->DevicePath. fname);
free«PVOID) detail);

nLl i st.Add(e);
}

SetupDiDestroyDeviceInfoList(info);
return m-list.GetSize();
}

1. 1his statement opens an enumeration handle that we can use to fmd all
devices that have registered an interface that uses the same GUID.

2. Here we call SetupDiEnumDeviceInterfaces in a loop to find each
device.

3. 1he only two items of information we need are the "detail" information
about the interface and information about the device instance. 1he detail
is just the symbolic name for the device. Since it's variable in length, we
make two calls to SetupDiGetDeviceInterfaceDetail. 1he first call de
termines the length. 1he second call retrieves the name.

4. We obtain a "friendly" name for the device from the registry by asking for
either the FrlendlyName or the DeviceDesc.

5. We create a temporary instance named e of the CDeviceListEntry class, using
the device's symbolic name as both the link name and the friendly name.

FRIENDLY NAMES

You might be wondering how the registry comes to have a FriendlyName for
a device. 1he INF file you use to install your device driver-see Chapter 12-
can have an HW section that specifies registry parameters for the device. You
should normally provide a FriendlyName as one of these parameters.

Other Global Device Initialization
You need to take some other steps during AddDevice to initialize your device ob
ject. I'm going to describe these steps in the order you should do them, which isn't
exactly the same order as their respective logical importance. I want to emphasize·
that the code snippets in this section are even more fragmented than usual-I'm going
to show only enough of the entire AddDevice routine to establish the surrounding
context for the small pieces I'm trying to illustrate.

83

Programming Ihe Microsoft Windows Driver Model

64

Initializing the Device Extension
The content and management of the device extension are entirely up to you. The data
members you place in this structure will obviously depend on the details of your
hardware and on how you go about programming the device. Most drivers would
need a few items placed there, however, as illustrated in the following fragment of
a declaration:

typedef struct _DEVICE_EXTENSION {
PDEVICE_OBJECT DeviceObject:
PDEVICE_OBJECT LowerDeviceObject:
PDEVICE_OBJECT Pdo:
UNICODE_STRING ifname:
IO_REMOVE_LOCK RemoveLock:
DEVSTATE devstate:
DEVSTATE prevstate:
POWERSTATE powerstate:
DEVICE_POWER-STATE devpower:
SYSTEM_POWER-STATE syspower:
DEVICE_CAPABILITIES devcaps:

} DEVICE_EXTENSION, *PDEVICE_EXTENSION:

1. I find it easiest to mimic the pattern of structure declaration used in the
official DDK, so I declared this device extension as a structure with a tag
as well as a type and pointer-to-type name.

2. You already know that you locate your device extension by following the
DeviceExtension pointer from the device object. It's also useful in sev
eral situations to be able to go the other way-to find the device object
given a pointer to the extension. The reason is that the logical argument
to certain functions is the device extension itself (since that's where all of
the per-instance information about your device resides). Hence, I find it
useful to have this DeviceObject pointer.

3. I'll mention in a few paragraphs that you need to record the address of
the device object immediately below yours when you call IoAttachDevice
ToDeviceStack, and LowerDeviceObject is the place to do that.

4. A few service routines require the address of the PDQ instead of some
higher device object in the same stack. It's very difficult to locate the PDQ,
so the easiest way to satisfy the requirement of those functions is to record
the PDQ address in a member of the device extension that you initialize
during AddDevice.

Chapter 2 Basic Structure of a WDM Driver

5. Whichever method (symbolic link or device interface) you use to name
your device, you'll want an easy way to remember the name you assign.
In this fragment, I've declared a Unicode string member named ifname
to record a device interface name. If you were going to use a symbolic
link name instead of a device interface, it would make sense to give this
member a more mnemonic name, such as "linkname."

6. I'll discuss in Chapter 6 a synchronization problem affecting how you de
cide when it's safe to remove this device object by calling IoDe1eteDevice.
The solution to that problem involves using an IO_REMOVE_LOCK ob
ject that needs to be allocated in your device extension as shown here.
AddDevice needs to initialize that object.

7. You'll probably need a device extension variable to keep track of the cur
rent Plug and Play state and current power states of your device. DEVSTATE
and POWERSTATE are enumerations that I'm assuming you've declared
elsewhere in your own header file. I'll discuss the use of all these state
variables in later chapters.

8. Another part of power management involves remembering some capability
settings that the system initializes by means of an IRP. The devcaps struc
ture in the device extension is where I save those settings in my sample
drivers.

The initialization statements in AddDevice (with emphasis on the parts involv
ing the device extension) would be as follows:

NTSTATUS AddDevice(...)
{

PDEVICE_OBJECT fdo;
IoCreateDevice(...• s1zeof(DEVICE_EXTENSION) •.... &fdo);
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
pdx->DeviceObject = fdo;
pdx->Pdo = pdo;
IoInitia11zeRemoveLock(&pdx->RemoveLock •...);
pdx->devstate = STOPPED;
pdx->powerstate = POWERON;
pdx->devpower = PowerDeviceD0;
pdx->syspower = PowerSystemWorking;
IoRegisterDevicelnterface(..•• &pdx->ifname);
pdx->LowerDev1ceObject = IoAttachDeviceToDeviceStack(...);
}

65

Programming the Microsoft Windows Driver Model

66

Initializing the Default DPC Object
Many devices signal completion of operations by means of an interrupt. As you'llleam
when I discuss interrupt handling in Chapter 7, "Reading and Writing Data," there are
strict limits on what your interrupt service routine (ISR) can do. In particular, an ISR
isn't allowed to call the routine (IoCompleteRequest) that signals completion of an
IRP, but that's exactly one of the steps you're likely to want to take. You utilize a
deferred procedure call (DPC) to get around the limitations. Your device object con
tains a subsidiary DPC object that can be used for scheduling your particular DPC
routine, and you need to initialize it shortly after creating the device object:

NTSTATUS AddDevice(...)
{

IoCreateDevice(...);
IoInitializeDpcRequest(fdo. DpcForIsr);
}

Setting the Buffer Alignment Mask
Devices which perform direct memory access (DMA) transfers work directly with data
buffers in memory. The HAL might require that buffers used for DMA be aligned to
some particular boundary, and your device might require still more stringent align
ment. The AlignmentRequirement field of the device object expresses the restric
tion-it is a bit mask equal to one less that the required address boundary. You can
round an arbitrary address down to this boundary with this statement:

PYOID address = ••. ;
SIZE_T ar = fdo->AlignmentRequirement;
address = (PVOID) ((SIZE_T) address & -ar);

You round an arbitrary address up to the next alignment boundary like this:

PYOID address = ... ;
SIZE_T ar = fdo->AlignmentRequirement;
address = (PVOID) (((SIZLT) address + ar) & -ar);

In these two code fragments, I used SIZE_T casts to transform the pointer (which
may be 32 bits or 64 bits wide, depending on the platform for which you're compil
ing) into an integer wide enough to span the same range as the pointer.

10CreateDevice sets the AlignmentRequirement field of the new device object
equal to whatever the HAL requires. For example, the HAL for Intel x86 chips has
no alignment requirement, so AlignmentRequirement is 0 initially. If your device
requires a more stringent alignment for the data buffers it works with (say, because

Chapter 2 Basic Structure of a WDM Driver

you have bus-mastering DMA capability with a special alignment requirement), you
want to override the default setting. For example:

if (MYDEVICE_ALIGNMENT - 1 > fdo->AlignmentRequirement)
fdo->AlignmentRequirement = MYDEVICE_ALIGNMENT - 1:

I've assumed here that elsewhere in your driver is a manifest constant named
MYDEVICE_ALIGNMENT that equals a power of two and represents the required
alignment of your device's data buffers.

Miscellaneous Objects
Your device might well use other objects that need to be initialized during AddDevice.
Such objects might include a controller object, various synchronization objects, vari
ous queue anchors, scatter/gather list buffers, and so on. I'll discuss these objects,
and the fact that initialization during AddDevice would be appropriate, in various other
parts of the book.

Initializing the Device Flags
Two of the flag bits in your device object need to be initialized during AddDevice
and never changed thereafter: the DO_BUFFERED_IO and DO_DIRECT_10 flags. You
can set one (but only one) of these bits to declare once and for all how you want to
handle memory buffers coming from user mode as part of read and write requests.
(I'll explain in Chapter 7 what the difference between these two buffering methods
is and why you'd want to pick one or the other.) The reason you have to make this
important choice during AddDevice is that any upper filter drivers that load after you
will be copying your flag settings and it's the setting of the bits in the topmost de
vice object that's actually important. Were you to change your mind after the filter
drivers load, they probably wouldn't know about the change.

Three of the flag bits in the device object pertain to power management. In
contrast to the two buffering flags, these three can be changed at any time. I'll dis
cuss them in greater detail in Chapter 8, but here's a preview. DO_POWER_PAGABLE
means that the Power Manager must send you IRP "':MLPOWER requests at interrupt
request level (IRQL) DISPATCH_LEVEL. (If you don't understand all of the concepts
in the preceding sentence, don't worry-I'll completely explain all of them in later
chapters.) DO_POWER_INRUSH means that your device draws a large amount of
current when powering on, such that the Power Manager should make sure that no
other in-rush device is powering up simultaneously. DO_POWER_NOOP means that
you don't participate in power management in the ftrst place and is only an appro
priate setting for WDM driv~rs that don't manage any hardware.

67

Programming Ihe Microsoft Windows Driver Model

88

Setting the Initial Power State
Most devices start life in the fully powered state. If you know the initial state of your
device, you should tell the Power Manager:

POWER-STATE state;
state.DeviceState = PowerDeviceD0;
PoSetPowerState(fdo. DevicePowerState. state);

See Chapter 8 for much more detail about power management.

Building the Device Stack
Each filter and function driver has the responsibility of building up the stack of de
vice objects, starting from the PDO and working upward. You accomplish your part
of this work with a call to IoAttachDeviceToDeviceStack:

NTSTATUS AddDevice(...• PDEVICE_OBJECT pdo)
{

PDEVICE_OBJECT fdo;
IoCreateDevice(...• &fdo);
pdx->LowerDeviceObject ~ IoAttachDeviceTo~eviceStack(fdo. pdo);
}

The first argument to IoAttachDeviceToDeviceStack (fdo) is the address of your
oWn newly created device object. The second argument is the address of the PDO.
The second argumentto AddDevice is this address. The return value is the address
of whatever device object is immediately underneath yours, which can be the PDO
or the address of some lower filter device object.

Clear DO_DEVICE_INITIALIZING
Pretty much the last thing you do in AddDevice should be to clear the DO_
DEVICE_INITIALIZING flag in your driver object:

fdo->Flags &~ -DO_DEVICE_INITIALIZING;

While this flag is set, the I/O Manager will refuse to attach other device objects
to yours or to open a handle to your device. You have to clear the flag because your
device object initially ap1ves in the world with the flag set. In previous releases of Win
dows NT, most drivers created all of their device objects during DriverEntry. When
DriverEntry returns, the I/O Manager automatically traverses the list of device objects
linked from the driver object and clears this flag. Since you're creating your device
object long after DriverEntry returns, however, this automatic flag clearing won't occur,
and you must do it yourself.

Chapter 2 Basic Structure of a WDM Driver

WINDOWS 98 COMPATIBILITY NOTES
Windows 98 handles some of the details surrounding device object creation and driver
loading differently than Windows 98. This section explains the differences that might
affect your driver.

Differences in DriverEntry Can
As I indicated earlier, the DriverEntry routine receives a UNICODE_STRING argument
naming the service key for the driver. In Windows 2000, the string is a full registry path
of the form "\Registry\Machine \ System \CurrentControlSet\Services\xxx" (where "xxx"
is the name of the service entry for your driver). In Windows 98, however, the string
1sof the form "System \ CurrentControlSet\Services \ <classname>\ <instance-#>"
(where <ciassname> is the class name of your device and <instance-#> is an instance
number like 0000 indicating which device of that class you happen to be). You can
open the key in either environment by calling ZwOpenKey, however.

Differences in Registry Organization
Windows 98 uses a slightly different scheme for organizing the registry entries for
devices thim Windows 2000 does. The following short explanation will make bet
ter sense if you come back to it after reading the material on driver installation in
Chapter 12. '

• The hardware key is below HKLM\Enum and isn't protected in any way
(because Windows 98 doesn't have a security system). There is no Ser
vice value; instead, there's a Driver value that supplies the final two
components of the name of the service key. The LowerFUters and
UpperFUters values are treated as binary because the Windows 98 reg
istry doesn't have a MULTCSZ type, and the values use 8-bit characters
to name driver image files (with the .SYS extension) rather than services.

• The class key is below HKLM\System\CurrentControISet\Services\Class.

• The service key is a child of the class key. The entries in the service key
include a DevLoader value pointing'to NTKERN.VXD and an NTMPDriver
value naming your driver image (with the .SYS extension), which must
reside in %SystemRoot<>Al \System32\Drivers.

69

Programming the ~icrosoft Windows Driver Model

The \?? Directory
Windows 98 doesn't understand the directory name \?? Consequently, you need to
put symbolic link names in the \DosDevices directory. You can use \DosDevices in
Windows NT also, because it is a symbolic link to the \?? directory.

Unimplemented Device Types

70

Original Windows 98 doesn't support creating device objects for mass storage devices.
These are devices with types FILE_DEVICE_DISK, FILE_DEVICE_TAPE, FILE_
DEVlCE_CD_ROM, and FlLE_DEVlCE_ VlRTIJAL_DISK. You can call IoCreateDevice,
and it will even return with a status code of STATUS_SUCCESS, but it won't have
actually created a device object or modified the PDEVlCE_OBJECT variable whose
address you gave as the last argument.

The reason this functionality isn't available is that Windows 98 disk drivers must
use the I/O Supervisor architecture invented for Windows 95. Why IoCreateDevice
fails so silently is a bit of a puzzle, though.

Chapter 3

Basic Programming
Techniques

Writing a WDM driver is fundamentally an exercise in software engir).eering. What
ever the requirements of your particular hardware, you will combine various elements
to form a program. In the previous chapter, I described the basic structure of a WDM
driver, and I showed you two of its elements-DriverEntry and AddDevice--in de
tail. In this chapter, I'll focus on the even more basic topic of how you call upon the
large body of kernel-mode support routines that the operating system exposes for
your use. I'll discuss error handling, memory and data structure management, regis
try and file access, and a few other topics. I'll round out the chapter with a short
discussion of the steps you can take to help debug your driver.

THE KERNEL-MODE
PROGRAMMING ENVIRONMENT

Figure 3-1 (on page 73) illustrates some of the components that make up the Microsoft
Windows NT operating system. Each component exports service functions whose
names begin with a particular two-letter prefix:

• The I/O Manager (prefix 10) contains many service functions that drivers
use, and I'll be discussing them all throughout this book.

71

Programming tJae Microsoft Windows Driver Model

, 72

• The Process Structure module (preftx Ps) creates and manages kernel
mode threads. An ordinary WDM driver might use an independent thread
to repeatedly poll a device incapable of generating interrupts.

• The Memory Manager (preftx Mm.) controls the page tables that defme the
mapping of virtual addresses onto physical memory.

• The executive (preftx Ex) supplies heap management and synchroniza
tion services. I'll discuss the heap management service functions in this
chapter. The next chapter covers the synchronization services.

• The Object Manager (preftx Ob) provides centralized control over the many
data objects with which Windows NT works. WDM drivers rely on the Ob
ject Manager only for keeping a reference count that prevents an object
from disappearing while someone is still using it.

• The Security Reference Monitor (prefix Se) allows file system drivers to
perform security checks. Someone else has usually dealt with security
concerns by the time an I/O request reaches a WDM driver, so I won't be
discussing these functions in this book.

• The so-called run-time library component (prefIX Rd) contains utility rou
tines, such as list and string management routines, that kernel-mode drivers
can use instead of regular ANSI standard library routines. For the most part,
the operation of these functions is obvious from their names, and you
would pretty much know how to use them in a program if you just were
aware of them. I'll describe a few of them in this chapter.

• Windows NT implements user-mode calls to the Win32 subsystem in
kernel ,mode with routines whose names begin with the Zw prefIX. The
Microsoft Windows 2000 DDK exposes just a few of these functions for
use by drivets;induding functions for accessing files and the registry. I'll
discuss those functions in this chapter.

• The Windows NT kernel (prefix Ke) is where all the low-level synchro
ni?ati?n of activities between threads and processors occurs. I'll discuss
the KeXxX, functions in the next chapter.

• The very bottom layer of the operating system, on which the support
sandwich rests, is the hardware abstraction layer (or HAL, prefix Hal). All
the <>perating system's knowledge of how the computer is actually wired
together reposes in the HAL. The HAL understands how interrupts work
on a particular platform, how to implement spin locks, how to address
I/O' and memory-mapped devices, and so on. Instead of talking directly

Chapter 3 Basic Programming Techniques

to their hardware, WDM drivers call functions in the HAL to do it. The
driver ends up being platform-independent and bus-independent.

Figure 3-1. Overview of kernel-mode support routines.

Using Standard Run-Time Library Functions
Historically, the Windows NT architects have preferred that drivers not use the run
time libraries supplied by vendors of C compilers. In part, the initial disapproval arose
from simple timing. Windows NT was designed at a time when there was no ANSI
standard for what functions belonged in a standard library and when many compiler
vendors existed, each with its own idea of what might be cool to include and its own
unique quality standards. Another factor is that standard run-time library routines
sometimes rely on initialization that can only happen in a user-mode application and
are sometimes implemented in a thread-unsafe or multiprocessor-unsafe way.

Until now, the official rule has been that kernel-mode drivers should call only
functions specifically documented in the DDK. Rather than call wcscmp, for example,
one should call RdCompareUnicodeString. It's been a pretty open secret, however,
that the standard import library that one uses to build a driver (NTOSKRNL.LIB)
defines many of the functions declared by application header mes such as STRING.H,
STDIO.H, STDLIB.H, and CfYPES.H. So why not call them? In fact, there's no rea
son not to call them, provided you understand all the implications. Don't, for example,
switch to always calling memcpy instead of RdCopyBytes, because there's a subtle
difference between the two. (RtlCopyBytes is guaranteed to proceed byte by byte
instead of in larger chunks, which can matter on particular RISC [reduced instruction
set computing] platforms.)

73

Prl!gramming the Microsoft Windows Driver Model

A Caution About Side Effects
Many of the support "functions" that you use in a driver are defined as macros in the
DDK header files. We were all taught to avoid using expressions that have side effects
(that is, expressions that alter the state of the computer in some persistent way) as
arguments to macros for the obvious reason that the macro can invoke the argument
more or less than exactly once. Consider, for example, the following code:

int a = 2. b = 42. c;
c = min(a++. b);

What's the value of a afterward? (For that matter, what's the value of c?) Take a look
at a plausible implementation of min as a macro:

#define min(x.y) «(x) < (y» ? (x) : (y»

If you substitute a++ for x, you can see that a will equal 4 because the expression
a++ gets executed twice. The value of the "function" min will be 3 instead of the
expected 2 because the second invocation of a++ delivers the value.

You basically can't tell when the DDK will use a macro and when it will declare
a real external function. Sometimes, a particular service function will be a macro for
some platforms and a function call for other platforms. Furthermore, Microsoft is free
to change its mind in the future. Consequently, you should follow this rule when
programming a WDM driver:

Never use an expression that has side effects as an argument to a kernel-mode
service function.

ERROR HANDLING

74

To err is human, to recover is part of software engineering. Exceptional conditions
are always arising in programs. Some of them start with program bugs, either in our
own code or in the user-mode applications that invoke our code. Some of them relate
to system load or the instantaneous state of hardware. Whatever the cause, unusual
circumstances demand a flexible response from our code. In this section, I'll describe
three aspects of error handling: status codes, structured exception handling, and bug
checks. In general, kernel-mode support routines report unexpected errors by return
ing a status code, whereas they report expected variations in normal flow by returning
a Boolean or numeric value other than a formal status code. Structured exception
handling offers a standardized way to clean up after really unexpected events, such
as dividing by zero or dereferencing an invalid pointer, or to avoid the system crash
that normally ensues after such an event. A bug check is the internal name for a
catastrophic failure for which a system shutdown is the only cure.

Chapter 3 Basic Programming Techniques

Status Codes
Kernel-mode support routines (and your code too, for that matter) indicate success
or failure by returning a status code to their caller. An NTSTATUS value is a 32-bit
integer composed of several subfields, as illustrated in Figure 3-2. The high-order
two bits denote the severity of the condition being reported-success, information,
warning, or error. The customer bit is, I believe, a vestige of the 1960s when IBM
reserved customer fields for local modification of its mainframe operating systems. I
can't think of a current use for a customer field. The facility code indicates which
system component originated the message and basically serves to decouple devel
opment groups from each other when it comes to assigning numbers to codes. The
remainder of the status code-16 bits' worth-indicates the exact condition being
reported.

....--~~ Customer

.... --~~ Severity

Figure 3-2. Format of an NTSTATVS code.

You should always check the status returns from routines that provide them.
I'm going to break this rule frequently in some of the code fragments I show you
because including all the necessary error handling code often obscures the expository
purpose of the fragment. But don't you emulate this sloppy practice!

If the high-order bit of a status code is zero, any number of the remaining bits
could be set and the code would still indicate success. Consequently, never just
compare status codes to zero to see if you're dealing with success-instead, use the
NT_SUCCESS macro:

NTSTATUS status = SomeFunction(...);
if (INT_SUCCESS(status»

{

<handle error>
}

Not only do you want to test the status codes you receive from routines you
call, but you also want to return status codes to the routines that call you. In the pre
ceding chapter, I dealt with two driver subroutines-DriverEntry and AddDevice
that are both defmed as returning NTSTATUS codes. As I discussed, you want to return
NT_SUCCESS as the success indicator from these routines. If something goes wrong,
you often want to return an appropriate status code, which is sometimes the same
value that a routine returned to you.

75

Pra I ... tile Microsoft Windows Orlnr Modal

78

As an example, here are some initial steps in· the AddDevice function, with all
the error checking left in:

NTSTATUS AddDevice(PDRIVER-OBJECT DriverObject, PDEVICE-OBJECT pdo)
{

NTSTATUS status:
PDEVICE_OBJECT fdo:
status = IoCreateDevice(DriverObject, sizeof(DEVICE-EXTENSION),

NULL, FILE-DEVICE_UNKNOWN, 0, FALSE, &fdo):
if (INT_SUCCESS(status»

{

KdPrint«"IoCreateDevice failed - n\n", status»:
return status:
}

PDEVICE-EXTENSION pdx = (PDEVICE-EXTENSION) fdo-)DeviceExtension:
pdx-)DeviceObject = fdo:
pdx-)Pdo = pdo:
pdx-)state = STOPPED:
IoInitializeRemoveLock(&pdx-)RemoveLock, 0, 0, 255):
status = IoRegisterDeviceInterface(pdo, &GUID_SIMPLE, NULL,

&pdx-)ifname):
if (INT_SUCCESS(status»

{

}

KdPrint(("IoRegisterDeviceInterface failed - n\n", status»:
IoDeleteDevice(fdo):
return status:
}

1. If IoCreate1)evice fails, we'll simply return the same status code it gave
us. Note the use of the NT_SUCCESS macro as described in the text.

2. It's sometimes a good idea, especially while debugging a driver, to print
any error status you discover. I'll discuss the exact usage of KdPrlnt later
in this chapter (in the "Making Debugging Easier" section).

3. IoInitializeRemoveLock, discussed in Chapter 6, "Plug and Play," is a
VOID function, meaning that it can't fail. Consequently, there's no need
to check a status code.

4. Should IoKegisterDeviceInterface fail, we have some cleanup to do
before we return to our caller; namely, we must call IoDeleteDevice to
destroy the device object we just created.

You don't always have to fail calls that lead to errors in the routines you call,
of course. Sometimes you can ignore an error. For example, in Chapter 8, "Power
Management," I'll tell you about a power management I/O request with the subtype
IRP ~_POWER_SEQUENCE that you can use as an optimization to avoid unneces-

Chapter 3 Basic Programming Techniques

sary state restoration during a power-up operation. Not only is it optional whether
you use this request, but it's also optional for the bus driver to implement it. There
fore, if that request should fail, you should just go about your business. Similarly, you
can ignore an error from IoAllocateErrorLogEntry because the inability to add an
entry to the error log isn't at all critical.

Structured Exception Handling
Windows NT provides a method of handling exceptional conditions that helps you
avoid potential system crashes. Closely integrated with the compiler's code genera
tor, structured exception handling lets you easily place a guard on sections of your
code and invoke exception handlers when something goes wrong in the guarded
section. Structured exception handling also lets you easily provide cleanup statements
that you can be sure will always execute no matter how control leaves a guarded sec
tion of code.

Very few of my seminar students have been familiar with structured excep
tions, so I'm going to explain some of the basics here. You can write better, more
bulletproof code if you use these facilities. In many situations, the parameters that
you receive in a WDM driver have been thoroughly vetted by other code and won't
cause you to generate inadvertent exceptions. Good taste may, therefore, be the only
impetus for you to use the stuff I'm describing in this section. As a general rule, though,
you always want to protect direct references to user-mode virtual memory with a struc
tured exception frame. Such references occur when you call MmProbeAndLockPages,
ProbeForRead, and ProbeForWrite, and perhaps at other times.

NOTE The structured exception mechanism will let you avoid a system crash
when kernel-mode code accesses an invalid user-mode address. It will not catch
other processor exceptions, such as division by zero or attempts to access in
valid kernel-mode addresses. In this respect, the whole facility is less universal
in kernel mode than in user mode.

Kernel-mode programs use structured exceptions by establishing exception
fr4mes on the same stack that's used for argument passing, subroutine calling, and
automatic variables. I'm not going to describe the mechanics of this process in detail
because it differs from one Windows NT platform to another. The mechanism is the
same as the one that user-mode programs use, though, and there are a couple of
places you can look for implementation details. See, for example, Matt Pietrek's article
"A Crash Course on the Depths ofWin32 Structured Exception Handling" in Microsoft
Systems Journal (January 1997). And Jeff Richter discusses the subject in Program
ming Applications for Microsoft Windows, Fourth Edition (Microsoft Press, 1999).

When an exception arises, the operating system scans the stack of exception
frames looking for a haridler. Refer to Figure 3-3 for a flowchart depicting the logic.
In effect, each exception frame designates a filter function that the system calls to
answer the question, "Can you handle this exception?" When the system finds a

77

Programming the Microsoft Windows Driver Model

78

handler, it unwinds the exception and execution stacks in parallel to restore the
context of the handler. The unwinding process involves calling the same set of filter
functions with an argument that indicates, in effect, "We're unwinding now; if you
answered yes the last time, take over now!" There's always a default handler in place
that crashes the system if no one else fields the exception.

Figure 3-3. Logic of structured exception handling.

Chapter 3 Basic Programming Techniques

When you use the Microsoft compiler, you can use Microsoft extensions to the
C/C++ language that hide some of the complexities of working with the raw oper
ating system primitives.· In particular, you use the __ try statement to designate a
compound statement as the guarded body for an exception frame, and you use either
the __ finally statement to establish a termination handler or the __ except state
ment to establish an exception handler. Run-time library routines interact with the
operating system's raw exception mechanisms to produce the effects that I'll describe
in the following sections.

NOTE It's better to always spell the words __ try, __ finally, and __ except with
leading underscores. In C compilation units, the DDK header file WARNING.H
defines macros spelled try, finally, and except to be the words with underscores.
DDK sample programs use those macro names rather than the underscored
names. The problem this can create for you is that in a C++ compilation unit try
is a statement verb that pairs with catch to invoke a completely different excep
tion mechanism that's part of the C++ language. C++ exceptions don't work in a
driver unless you manage to duplicate some infrastructure from the run-time library.
Microsoft would prefer you not do that because of the increased size of your driver
and the memory pool overhead associated with handling the throw verb.

Try-Finally Blocks
It's easiest to begin explaining structured exception handling by describing the try
finally block, which you can use to provide cleanup code:

__ try

{

<guarded body>
}

__ finally
{

<termination hand7er>
}

In this fragment of pseudocode, the guarded body is a series of statements and
subroutine calls that expresses some main idea in your program. In general, these
statements have side effects. If there are no side effects, there's no particular point
to using a try-finally block because there's nothing to clean up. The termination
handler contains statements that undo some or all of the side effects that the guarded
body might leave behind.

Semantically, the try-finally block works as follows. First, the computer executes
the guarded body. When control leaves the guarded body jor any reason, the com
puter executes the termination handler. See Figure 3-4.

79

Programming the Microsoft Windows Driver Model

80

Normal ending,
_leave, goto,
return

Figure 3·4. Flow of control in a try-finally block.

Here's one simple illustration:

LONG counter = 0;
__ try

{

++counter;
}

__ finally
{

--counter;
}

KdPrint«"%d\n", counter»;

<unwind>

First, the guarded body executes and increments the counter variable from 0
to 1. When control "drops through" the right-brace at the end of the guarded body,
the termination handler executes and decrements counter back to O. The value
printed will therefore be O.

Here's a slightly more complicated variation:

VOID RandomFunction(PLONG pcounter)
{
__ try

{

++*pcounter;
return;
}

__ finally

}

{

--*pcounter;
}

Chapter 3 Basic Programming Tecbniques

The net result of this function is no change to the integer at the end of the
pcounter pointer: whenever control leaves the guarded body for any reason, includ
ing a return statement or a goto, the termination handler executes. Here the guarded
body increments the counter and performs a return. Next the cleanup code exe~utes
and decrements the counter. Then the subroutine actually returns.

One final example should cement the idea of a try-finally block:

static LONG counter = 0;
__ try

{

++counter;
BadActor();
}

__ finally
{

--counter;
}

Here I'm supposing that we call a function, BadActor, that will raise some sort
of exception that triggers a stack unWind. As part of the process of unwinding the
execution and exception stacks, the operating system will invoke our cleanup code
to restore the counter to its previous value. The system then continues unwinding
the stack, so whatever code we have after the __ finally block won't get executed.

Try-Except Blocks
The other way to use structured exception handling involves a try-except block:

__ try
{

<guarded body>
}

__ except«filter expression»
{

<exception handler>
}

The guarded body in a try-except block is code that might fail by generating
an exception. Perhaps you're going to call a kernel-mode service function like
MrnProbeAndLockPages that uses pointers derived from user mode without explicit
validity checking. Perhaps you have other reasons. In any case, if you manage to get
all the way through the guarded body without an error, control continues after the
exception handler code. You'll think of this case as being the normal one. If an exception
arises in your code or in any of the subroutines you call, however, the operating

81

Programming the Microsoft Windows Driver Model

82

system will unwind the execution stack, evaluating the filter expressions in __ except
statements. These expressions yield one of the following values:

• EXCEPTlON_EXECUTE_HANDLER is numerically equal to 1 and tells the
operating system to transfer control to your exception handler. If your
handler falls through the ending right-brace, control continues within your
program at the statement immediately following that right-brace. (I've seen
Platform SDK documentation to the effect that control returns to the point
of the exception, but that's not correct.)

• EXCEPTION_CONTINUE_SEARCH is numerically equal to 0 and tells the
operating system that you can't handle the exception. The system keeps
scanning up the stack looking for another handler. If no one has provided
a handler for the exception, a system crash will occur.

• EXCEPTION_ CONTINUE_EXECUTION is numerically equal to -1 and tells
the operating system to return to the point where the exception was raised.
I'll have a bit more to say about this expression value a little further on.

Take a look at Figure 3-5 for the possible control paths within and around a
try-except block. -

Normal ending,
_leave. goto.
return

_<;II(lJ" handler:>

----<unwind to handler:>

Figure 3-5. Flow of control in a try-except block.

For example, you could protect yourself from receiving an invalid pointer by
using code like the following. (See the SEHTEST sample on the companion disc.)

PVOID p = (PVOID) 1;
__ try

{

KdPrint«"About to generate exception\n"»;
ProbeForWrite(p, 4, 4);
KdPrint«"You shouldn't see this message\n"»;
}

Chapter 3 Basic Programming Techniques

__ except(EXCEPTION_EXECUTE_HANDLER)
{

KdPrint«"Exception was caught\n"»;
}

KdPrint«"Program kept control after exception\n"»;

ProbeForWrite tests a data area for validity. In this example, it will raise an
exception because the pointer argument we supply is not aligned to a 4-byte bound
ary. The exception handler gains control. Control then flows to the next statement
after the exception handler and continues within your program.

In the preceding example, had you returned the value EXCEPTION_CONTINUE_
SEARCH, the operating system would have continued unwinding the stack looking
for an exception handler. Neither your exception handler code nor the code fol
lowing it would have been executed: either the system would have crashed or some
higher-level handler would have taken over.

You should not return EXCEPTION_CONTINUE_EXECUTION in kernel mode
because you have no way to alter the conditions that caused the exception in order
to allow a retry to occur.

Note that you cannot trap arithmetic exceptions, page faults, actual references
through invalid pointers, and the like by using structured exceptions. You just have
to write your code so as not to generate such exceptions.

Exception Filter Expressions
You might be wondering how to perform any sort of involved error detection or
correction when all you're allowed to do is evaluate an expression that yields one of
three integer values. You could use the C/C++ comma operator to string expressions
together:

__ except(expr-l •... EXCEPTION_CONTINUE_SEARCH){}

RAW EXCEPTION HANDLING VS. MICROSOFT SYNTAX

The statements __ tty, __ except, and __ finally are Microsoft extensions to the
C language that simplify use of the underlying raw exception handling mecha
nism that the operating system provides. In the flowchart in Figure 3-3 on page
78, I illustrated two calls to each filter function--one for locating the exception
handler and the other for stack unwinding. The run-time library contains the ac
tual filter function that the operating system calls. When you use __ try, __ ex
cept, and __ finally, you're talking to other run~time library functions that work
with that filter function and the operating system to yield the simpler model I've
been describing. In particular, the filter expression that you use in an __ except
clause gets evaluated only once per exception.

83

Programming the Microsoft Windows Driver Model

84

The comma operator basically discards whatever value is on its left side and
evaluates its right side. The value that's left over after this computational game of
musical chairs (with just one chair!) is the value of the expression.

You could use the C/C++ conditional operator to perform some more involved
calculation:

__ except (some-expr>
? EXCEPTION_EXECUTE_HANDLER
: EXCEPTION_CONTINUE_SEARCH)

If the some_expr expression is TRUE, you execute your own handler. Other
wise, you tell the operating system to keep looking for another handler above you
in the stack.

Finally, it should be obvious that you could just write a subroutine whose return
value is one of the EXCEPTION_Xxx values:

LONG EvaluateException()
{

if (some-expr»
return EXCEPTION_EXECUTE_HANDLER;

else
return EXCEPTION_CONTINUE_SEARCH;

}

__ except(EvaluateException(»

For any of these expression formats to do you any good, you need access to
more information about the exception. There are two functions you can call when
evaluating an __ except expression that will supply the information you need. Both
functions actually have intrinsic implementations in the Microsoft compiler and can
be used only at the specific times indicated:

• GetExceptionCodeO returns the numeric code for the current exception.
This value is an NTSTATUS value that you can compare with manifest
constants in NTSTATUS.H if you want to. This function is available in an
__ except expression and within the exception handler code that follows
the __ except clause.

• GetExceptionInformationO returns the address of an EXCEPTION_
POINTERS structure that, in tum, allows you to learn all the details about
the exception, such as where it occurred, what the machine registers
contained at the time, and so on. This function is available only within an
__ except expression.

Chapter 3 Basic Programming Techniques

NOTE The scope rules for names that appear in try-except andtry~finaUy
blocks are the same as elsewhere in the C/C++ language. In particular, if you
declare variables within the scope of the compound statement that 101l0ws _try,
those names are not visible in a filter expression, exception handler, or termi
nation handler. Documentation to the contrary that you might have seen in the
Platform SDK or on MSDN is incorrect. For what it's worth, the stack frame cOil
taining any local variables declared within the scope of the guarded. I:>odystill
exists at the time the filter expression is evaluated. So, if you had a pointer (pre
sumably declared at some outer scope) to a variable declared within the guarded
body, you could safely dereference it in a filter expression.

Because of the restrictions on how you can use these.two expressions in your
program, you'd probably want to use them in a function call tosotne filter function,
like this:

LONG EvaluateExceptionCNTSTATUS status, PEXCfPT!ON __ POINTERS xp)
{

}

__ exceptC Eva 1 uateExcepti on C GetExcepti onCode() ,.
GetExceptionlnformationC»)

Raising Exceptions
Program bugs are one way you can (inadvertently) raise exceptions·thatirtvoke the
structured exception handling mechanism. Application prognunmers are familiar with
the Win32 API function RaiseException, which allows you togenerate.an arbitrary
exception ort your own. In WDM drivers, you cart call the routirteslisted in Table3-1.
I'm not going to give you a specific example of calling these functions because of
the following rule:

Only raise an exception in nonarbitrary thread context when you know there's an
exception handler above you and you otherwise reallY know what you're doing.

Service Function

ExRaiseStatus

ExRaiseAccessViolation

ExRaiseDatatypeMisalignment

Description

Raise exception with specified status code

Raise STATUS_ACCESS_ VIOLATION

Raise STATUS_DATATYPE....:MISALIGNMENT

Table 3-1. Service functions for raising exceptions.

In particular, raising exceptions is not a good way to tell your callers informa
tion that you discover in the ordinary course of executing. It's far better to return a
status code, even though that leads to apparently more unreadable code. Youshould

85

Programming the Microsoft Windows Driver Model

86

eschew exceptions because the stack-unwinding mechanism is very expensive. Even
the cost of establishing exception frames is significant and something to avoid when
you can.

Some Real-World Examples
Notwithstanding the expense of setting up and tearing down exception frames, you
have to use structured exception syntax in an ordinary driver in particular situations.
And on some other occasions when time isn't of the essence, you might as well use
this mechanism because you'll end up with a better program.

One of the times you must set up an exception handler is when you call
MmProbeAndLockPages to lock the pages for a memory descriptor list (MDL)
you've created. This wouldn't be a frequent problem for a WDM driver, because you
typically deal with MDLs for which someone else has already done the probe-and
lock step. But you're allowed to define I/O control (IOCTL) operations that use the
METHOD_NEITHER buffering method, and you might therefore need to write code
like the following:

PMDL mdl = MmCreateMdl(...);
__ try

{

MmProbeAndLockPages(mdl, ...);
}

__ except(EXCEPTION_EXECUTE_HANDLER)
{

NTSTATUS status = GetExceptionCode();
ExFreePool((PVOID) mdl);
return CompleteRequest(Irp, status, 0);
}

(CompleteRequest is a helper function I use to handle the mechanics of com
pleting I/O requests. Chapter 5, "The I/O Request Packet," explains all about I/O
requests and what it means to complete one. ExFreePool is a kernel-mode service
routine that releases a memory block, such as the one that MmCreateMdl creates.
I'll discuss ExFreePoollater in this chapter in "Releasing a Memory Block.")

For another real-world example, consider the code I showed you earlier in this
chapter for dealing with errors in your AddDevice function. As you progress through
the function, you keep accumulating side effects that all have to be undone if you
discover an error. You could use structured exception handling to make the function
more maintainable. I'm omitting a bunch of stuff in this example to emphasize the
error-handling aspects:

NTSTATUS AddDevice(...)
{

NTSTATUS status = STATUS_UNSUCCESSFUL;
PDEVICE_OBJECT fdo;

Chapter 3 Basic Programming Techniques

PDEVICE_EXTENSION pdx;
status = IoCreateDevice(...• &fdo);
if (!NT_SUCCESS(status»

return status;
__ try

{

pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;

IoInitializeRemoveLock(&pdx->RemoveLock);
status = IoRegisterDevicelnterface(...• &pdx->ifname);
if (INT_SUCCESS(status»

return status;

}

__ finally
{

if (!NT_SUCCESS(status»
{

}

if (pdx->ifname.Buffer)
RtlFreeUnicodeString(&pdx->ifname);

IoDeleteDevice(fdo);
}

return status;
}

The key idea here is that whenever we discover an error status from some ser
vice function, we just execute a return status statement. (See the next sidebar for a
description of a more efficient technique.) The return status statement triggers exe
cution of the termination handler, which undoes each of the side effects that have
accumulated so far. For this technique to work properly, you have to do two things.
Since the termination handler is always executed, even by the normal ending of the
guarded body, you have to know when to undo side effects and when not to undo
them. Here we test the status variable. If it's a success code of some kind, we don't
do any cleanup. Otherwise, we undo everything. The second thing you have to do
is provide a way to know which side effects need to be cleaned up. We dealt with
that concern by initializing all the side-effect variables to NULL. If we never succeed
in registering a device interface, there won't be a string in pdx->ifname to release.
And so on.

The biggest advantage of a try-finally block in a situation like that I just showed
you is that your code is easier to modify. You can put any statement at all--even one
which returns a status code and leaves behind a side effect if it succeeds-in between,
say, the call to IoCreateDevice and the call to IoRegiSterDeviceInterface. All you

87

Programming the Microsoft Windows Driver Model

88

need do to ensure proper cleanup is add a compensating statement inside the termi
nation handler. The alternative-having explicit cleanup code after every test of the
status code-is prone to error because you must remember to add a new cleanup
statement in every place where you might exit the subroutine.

THE __ LEAVE STATEMENT

Microsoft added the __ leave statement to the C/C++ language to deal with an
efficiency problem that arises in routines like the AddDevice example in the text.
If you issue a normal return inside a __ try block, you trigger the expensive
unwinding mechanism that the operating system uses for exception handling.
The __ leave statement, however, just transfers control to the termination han
dler and, thereafter, to the statement following the termination handler. It's much
faster than return because it doesn't cause any unwinding. In this case, we
always want to execute the termination handler and then return a status code.
Since the code we want to execute in both success and failure cases is the same
(namely, return status), we should use __ leave instead of return.

So, suppose we needed to allocate a block of memory for some auxiliary pur
pose. We could just insert a few statements in AddDevice like so (with the new parts
in boldface):

NTSTATUS AddDevice(...)
{

NTSTATUS status = STATUS_UNSUCCESSFUL;
PDEVICE_OBJECT fdo;
PDEVICE_EXTENSION pdx;
status = IoCreateDevice(...• &fdo);
if (!NT_SUCCESS(status»

return status;
__ try

{

pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;

pdx-)DeviceDescriptor = (PUSB_DEVICE_DESCRIPTOR)
ExAllocatePool(NonPagedPool. s;zeof(USB_DEVICE_DESCRIPTOR»;

if (lpdx-)DeviceDescriptor)
return STATUS_INSUFFICIENT_RESOURCES;

IoInitializeRemoveLock(&pdx->RemoveLock •...);
status = IoRegisterDevicelnterface(...• &pdx->ifname);
if (!NT_SUCCESS(status»

return status;

}

Chapter 3 Basic Programming Techniques

_3inally
{

if (!NT_SUCCESS(status»
{

}

if (pdx->ifname.Buffer)
RtlFreeUnicodeString(&pdx->ifname):

if (pdx->DeviceDescriptor)
ExFreePool«PVOID) pdx->DeviceDescriptor):

IoDeleteDevice(fdo):
}

return status:
}

Without using structured exceptions, you'd need to go through the rest of the
program and add a call to ExFreePool to every code sequence that returns an error.

Bug Checks
Unrecoverable errors in kernel mode manifest themselves in the so-called blue screen
of death (BSOD) that's all too familiar to driver programmers. Figure 3-6 is an example
(hand-painted because there's no screen capture software running when one of these
occurs!). Internally, these errors are called bug checks after the service function you
use to diagnose their occurrence: KeBugCheckEx. The main feature of a bug check
is that the system shuts itself down in as orderly a way as possible and presents the
BSOD. Once the BSOD appears, the system is dead and must be rebooted.

Figure 3·6. The "blue screen of death."

89

Programming the Microsoft Windows Driver Model

You call KeBugCheckEx like this:

KeBugCheckEx(bugcode. infol. info2. info3. info4);

where bugcode is a numeric value identifying the cause of the error, and infol, info2,
and so on are integer parameters that will appear in the BSOD display to help some
programmer understand the details of the error. This function does not return (0.

I'm not going to describe here how to interpret the information in a BSOD or
in a crash dump. Section 17.3 in Art Baker's The Windows NT Device Driver Book
(Prentice Hall, 1997) is one place you can go for more information. Microsoft's own
bugcheck codes appear in BUGCODES.H (one of the DDK headers); a fuller explana
tion of the codes and their various parameters can be found in Knowledge Base article
QI03059, "Descriptions of Bug Codes for Windows NT," which is available on MSDN,
among other places.

You can certainly create your own bugcheck codes if you want. The Microsoft
values are simple integers beginning with 1 (APC_INDEX_MISMATCH) and (currently)
extending through OxDE (POOL_CORRUPTION_IN_FILE_AREA) along with a few
others. To create your own bugcheck code, define an integer constant as if it were
STATUS_SEVERITY_SUCCESS status code, but supply either the customer flag or a
nonzero facility code. For example:

#define MY_BUGCHECK-CODE 0x002A0001

KeBugCheckEx(MY_BUGCHECK-CODE. 0. 0, 0, 0);

You use a nonzero facility code (42 in this example) or the customer flag (which
I left zero in this example) so that you can tell your own codes from the ones Micro
soft uses.

Now that I've told you how to generate your own BSOD, let me tell you when
to do it: never. Or, at most, in the checked build of your driver for use during your
own internal debugging. You and I are unlikely to write a driver that will discover
an error so serious that taking down the system is the only solution. It would be far
better to log the error (using the error-logging facilities I'll describe in Chapter 9,
"Specialized Topics") and return a status code.

MEMORY MANAGEMENT

90

In this section, I'll discuss the topic of memory management. Windows 2000 divides
the available virtual address space in several ways. One division-a very firm one
based on security and integrity concerns-is between user-mode addresses and
kernel-mode addresses. Another division, which is almost but not quite coextensive
with the first, is between paged and nonpaged memory. All user-mode addresses and

Chapter 3 Basic Programming Techniques

some kernel-mode addresses reference page frames that the Memory Manager swaps
to and from the disk over time, while some kernel-mode addresses always refer
ence the same page frames in physical memory. Since Windows 2000 allows por
tions of drivers to be paged, I'll explain how you control the pagability of your driver
at the time you build your driver and at run time.

Windows 2000 provides several methods for managing memory. I'll describe two
basic service functions-ExAllocatePool and ExFreePool-that you use for allocating
and releasing randomly sized blocks from a heap. I'll also describe the primitives that
you use for organizing memory blocks into linked lists of structures. Finally, I'll describe
the concept of a lookaside list, which allows you to efficiently allocate and release
blocks that are all the same size.

User-Mode and Kernel·ModeAddress Spaces
Windows NT and Microsoft Windows 98 run on computers that support a virtual
address space, wherein virtual addresses are mapped either to physical memory or
(conceptually, anyway) to page frames within a swap file on disk. To grossly simplify
matters, you can think of the virtual address space as being divided into two parts:
a kernel-mode part and a user-mode part. See Figure 3-7.

o

Figure 3-7. User-mode and kernel-mode portions a/the address space.

Each user-mode process has its own address context, which maps the user-mode
virtual addresses to a unique collection of physical page frames. In other words, the
meaning of any particular virtual address changes from one moment to the next as
the Windows NT scheduler switches from a thread in one process to a thread in
another process. Part of the work in switching threads is to change the page tables
used by a processor so that they refer to the incoming thread's process context.

91

Programming the Microsoft Windows Driver Model

92

NOTE If you're familiar with the Alpha and you're a stickler for accuracy, you'll
know that Alphas don't have page tables. They have something different called
translation buffers that map virtual page addresses to physical page addresses.
To me, this is a distinction without a difference-on a par with saying that The
Odysseywa$ written by a different Homer than the one historians used to think
wrote it. But someone would have sent me an email pointing this out if I didn't
say it first.

It's generally unlikely that a WDM driver will execute in the same thread context
as the initiator of the I/O requests it handles. We say that we're running "in arbitrary
thread context" if we don't know for sure to which process the current user-mode
address context belongs. In arbitrary thread context, we simply can't use a virtual
address that belongs to user mode because we can't have any idea to what physical
memory it might point. In view of this uncertainty, we generally obey the following
rule inside a driver program:

Never (well, hardly ever) directly reference user-mode memory.

In other words, don't take an address that a user-mode application provides and
treat that address as a pointer that we can directly dereference. I'll discuss in later
chapters a few techniques for accessing data buffers that originate in user mode. All
we need to know right now, though, is that we're (nearly) always going to be using
kernel-mode virtual addresses whenever we want to access the computer's memory.

How Big Is a Page?
In a virtual memory system, the operating system organizes physical memory and the
swap file into like-sized page frames. In a WDM driver, you can use the manifest
constant PAGE_SIZE to tell you how big a page is. In some Windows NT computers,
a page is 4096 bytes long; in others, it's 8192 bytes long. There's a related constant
named PAGE_SHIFf that equals the page size as a power of two. That is:

PAGE_SIZE == 1 « PAGE_SHIFT

For your convenience, you can use a few preprocessor macros in your code
when you're working with the size of a page:

• ROUND_TO]AGES rounds a size in bytes to the next higher page bound
ary. For example, ROUND_TO_PAGES(1) is 4096 on a 4 KB-page computer.

• BYTES_TO_PAGES determines how many pages are required to hold a
given number of bytes beginning at the start of a page. For example,
BYTES_TO]AGES(42) would be 1 on all platforms, and BYTES_TO_
P AGES(SOOO) would be 2 on some platforms and 1 on others.

Chapter 3 Basic Programming Techniques

• BYTE_OFFSET returns the byte offset portion of a virtual address. That is,
it calculates the starting offset within some page frame of a given address.
On a 4 KB-page computer, BYTE_OFFSET(Ox12345678) would be Ox678.

• PAGE_AliGN rounds a virtual address down to a page boundary. On a 4
KB-page computer, PAGE_ALIGN(Ox12345678) would be Ox12345000.

• ADDRESS_AND_SIZE.,...TO_SPAN_PAGES returns the number of page
frames occupied by a specified number of bytes beginning at a speci
fied virtual address. For example, ADDRESS_AND_SIZE_TO_SPAN_
PAGES(Ox12345FFF, 2) is 2 on a 4 KB-page machine because the two bytes
span a page boundary.

Paged and Nonpaged Memory
The whole point of a virtual memory system is that you can have a virtual address
space that's much bigger than the amount of physical memory on the computer. To
accomplish this feat, the Memory Manager needs to swap page frames in and out of
physical memory. Certain parts of the operating system can't be paged, though,
because they're needed to support the Memory Manager itself. The most obvious
example of something that must always be resident in memory is the code that handles
page faults (the exceptions that occur when a page frame isn't physically present when
needed) and the data structures used by the page fault handler. But the category of
"must be resident" stuff is much broader than that.

Windows NT divides the kernel-mode address space into paged and nonpaged
memory pools. (The user-mode address space is always pagable.) Things that must
always be resident are in the nonpaged pool; things that can come and go on demand
are in the paged pool. Windows NT provides a simple rule for deciding whether your
code and the data it uses must be resident. I'll elaborate on the rule in the next chapter,
but here it is anyway:

Code executing at or above interrupt request level (IRQL) DISPATCH....,
LEVEL cannot cause page faults.

You can use the PAGED_CODE preprocessor macro (declared in WDM.H) to help
you discover violations of this rule in the checked build of your driver. For example:

NTSTATUS DjspatchPawer(PDEVICE_OBJECT fda, PIRP Irp)
{

PAGED_CODE()

}

93

Programming the Microsoft Windows Driver Model

94

PAGED_CODE contains conditional compilation. In the checked-build environ
ment, it prints a message and generates an assertion failure if the current IRQL is too
high. In the free-build environment, it doesn't do anything. If you were to test your
driver in a situation where the page containing DispatchPower happened fortuitously
to be in memory, you would never discover that it had been called at an elevated IRQL.
PAGED_CODE will detect the problem even so. A bug check would occur if the page
happened to not be present, so you would certainly learn about the problem then!

THE DRIVER VERIFIER

The Driver Verifier feature of Windows 2000 helps you debug many features
of your driver, including the placement of programs into sections, your use of
the memory heap, and so on. This feature was still in flux at press time, so I
can't say much more about it here. But notice that the PAGED_CODE macro
spots a problem only in the checked build of your driver that exists at the point
where you invoke it. The Driver Verifier can diagnose a problem arising any
where in a function, even with the free build of the driver.

Compile-Time Control of Pagability
Given that some parts of your driver must always be resident and some parts can be
paged, you need a way to control the assignment of your code and data to the paged
and nonpaged pools. You accomplish part of this job by instructing the compiler how
to apportion your code and data among various sections. The run-time loader uses
the names of the sections to put parts of your driver in the places you intend. You
can also accomplish parts of this job at run time by calling various Memory Manager
routines that I'll discuss in the next section.

NOTE Win32 executable files, including kernel-mode drivers, are internally
composed of one or more sections. A section can contain code or data and,
generally speaking, has additional attributes such as being readable, writable,
sharable, executable, and so on. A section is also the smallest unit that you can
deSignate when you're specifying pagability. When loading a driver image, the
system puts sections whose literal names begin with "page" or ".eda" (the start
of ".edata") into the paged pool unless the DlsablePaglngExecutive value in
the HKLM\System\CurrentControISet\ControI\Session Manager\Memory Manage
ment key happens to be set (in which case no driver paging occurs). In one of
the little twists of fate that affect us all from time to time, running Soft-Ice/W on
Windows 2000 requires you to disable kernel paging in this way. This certainly
makes it harder to find bugs caused by misplacement of driver code or data into
the paged pool! If you use this debugger, I recommend that you religiously use
the PAGED_CODE macro andthe Driver Verifier.

Chapter 3 Basic Programming Techniques

The traditional way of telling the compiler to put code into a particular section
is to use the alloc_text pragma. Since not every compiler will necessarily support
the pragma, the DDK headers either define or don't define the constant ALLOC_
PRAGMA to tell you whether to use the pragma. You can then invoke the pragma to
specify the section placement of individual subroutines in your driver, as follows:

#ifdef ALLOC_P,RAGMA
#pragma alloc_text(PAGE. AddDev;ce)
#pragma alloc_text(PAGE. DispatchPnp)

flendi f

These statements serve to place the AddDevice and DispatchPnp functions into the
paged pool.

The Microsoft C/C++ compiler places two annoying restrictions on using alloc_text:

• The pragma must follow the declaration of a function but precede the
definition. One way to obey this rule is to declare all the functions in your
driver in a standard header file and invoke alloc_text at the start of the
source file that contains a given function but after you include that header.

• The pragma can be used only with functions that have C-linkage. In other
words, it won't work for class member functions or for functions in a C++
source file that you didn't declare using extern "C".

To control the placement of data variables, you use a different pragma under
control of a different preprocessor macro symbol:

#ifdef ALLOC_DATA-PRAGMA
#pragma data_seg("PAGE")

Ilendif

The data_seg pragma causes all static data variables declared in a source module after
. the appearance of the pragma to go into the paged pool. You'll notice that this pragma
differs in a fundamental way from alloc_text. A pagable section starts where #pragma
data_seg("PAGE") appears and ends where a countervailing #pragma data_seg()
appears. Alloc_text, on the other hand, applies to a specific function.

Think twice before putting some of your data into a pagable section, because
you might actually be making things worse. The smallest unit that can be paged is
PAGE_SIZE long. It's probably silly to put just a few bytes into a pagable section. You'll
end up using an entire page worth of memory. Consider, too, that a data page is often
"dirty" (that is, changed since it was fetched from disk) and would need to be rewritten
to disk before its physical page frame could be reused for another purpose.

95

Programming the Microsoft Windows Driver Model

96

MORE ABOUT SECTION PLACEMENT

In general, I fmd it more convenient to specify the section placement of whole
blocks of code by using the Microsoft code_seg pragma, which works the same
way as data_seg, only for code. That is, you can tell the Microsoft compiler to
start putting functions into the paged pool like this:

Ilpragma code_seg("PAGE")
NTSTATUS AddDev;ce(...){ ... }
NTSTATUS D;spatchPnp(...){ ... }

The AddDevice and DispatchPnp functions would both end up in the paged
pool. You can check to see whether you're compiling with the Microsoft com
piler by testing the existence of the predefmed preprocessor macro _MSC_ VER.

To revert to the default code section, just code #pragma code_seg with
no argument:

#pragma code_seg()

Similarly, to revert to the regular nonpaged data section, code #pragma
data_seg with no argument:

#pragma data_seg()

This sidebar is also the logical place to mention that you can also direct
code into the INIT section if it's not needed once your driver finishes initializ
ing. For example:

#pragma alloc_text(INIT, DriverEntry)

This statement forces the DriverEntry function into the INIT section. The
system will release the memory it occupies when it refilrns. This small savings
is not very important in the grand scheme of things because a WDM driver's
DriverEntry function doesn't do much work. Previous Windows NT drivers had
large DriverEntry functions that had to create device objects, locate resources,
configure devices, and so on. For them, using this feature offered significant
memory savings.

You can use the DUMPBIN utility that comes with Microsoft Visual C++
to easily see how much of your driver is initially pagable. Your marketing de
'partment might even want to crow about how much less nonpaged memory
you use than your competitors.

Chapter 3 Basic Programming Techniques

Run-Time Control of Pagability
Table 3-2 lists the service functions you can use at run time to fine-tune the pagability
of your driver in various situations. The purpose of these routines is to let you release
the physical memory that would otherwise be tied up by your code and data during
periods when it won't be needed. In Chapter 8, for example, I'll discuss how you can
register your device with the Power Manager so that.you're automatically powered
down after a period of inactivity. Powering down might be a good time to release
your locked pages.

Service Function

MmLockPagableCodeSection

MmLockPagableDataSection

MmLockPagableSectionByHandle

MmPageEntireDriver

MmResetDriverPaging

MmUnlockPagablelmageSection

Description

Lock a code section given an address inside it

Lock a data section given an address inside it

Lock a code section by using a handle from a
previous MmLockPagableCodeSection call
(Windows 2000 only)

Unlock all pages belonging to driver

Restore compile-time pagability attributes for
entire driver .

Unlock a locked code or data section

Table 3-2. Routines for dynamically locking and unlocking driver pages.

I'm going to describe one way to use these functions to control the pagability
of code in your driver. You might want to read the DDK descriptions to learn about
other ways to use them. First distribute subroutines in your driver into separately
named code sections, like this:

#pragma alloc_text(PAGEIDLE. DispatchRead)
#pragma alloc_text(PAGEIDLE. DispatchWrite)

That is, defme a section name beginning with "PAGE" and ending in any four
character suffix you please. Then use the alloc_text pragma to place some group of
your own routines into that special section. You can have as many special pagable
sections as you want, but your logistical problems will grow as you subdivide your
driver in this way.

During initialization (say, in DriverEntry), lock your pagable sections like this:

PYOID hPageldleSection;
NTSTATUS DriverEntry(...)

{

hPageldleSection = MmLockPagableCodeSection«PVOID) DispatchRead);
}

97

Programming the Microsoft Windows Driver Model

98

When you call MmLockPagableCodeSection, you specify any address at all within
the section you're trying to lock. The real purpose of making this call during DriverEntry
is to obtain the handle value it returns, which I've shown you saving in a global
variable named hPageIdleSection. You'll use that handle much later on, when you
decide you don't need a particular section in memory for a while:

MmUnlockPagableImageSect1on(hPageIdleSect1on):

This call will unlock the pages containing the PAGEIDLE section and allow them to
move in and out of memory on demand. If you later discover that you need those
pages back again, you make this call:

MmLockPagableSectionByHandle(hPageIdleSection):

Following this call, the PAGEIDLE section will once again be in nonpaged
memory (but not necessarily the same physical memory as previously). Note that
this junction call is available to you only in Windows 2000, and then only if you've
included NTDDK.H instead oj WDM.H. In other situations, you will have to call
MmLockPagableCodeSection again.

You can do something similar to place data objects into pagable sections:

PYOID hPageDataSect1on:

#pragma data_seg("PAGE")
ULONG ulSomething:
#pragma data_seg()

hPageDataSection = MmLockPagableDataSection«PVOID) &ulSomething):

MmUnlockPagableImageSect1on(hPageDataSect1on):

MmLockPagableSect1onByHandle(hPageDataSection):

I've played fast and loose with my syntax here-these statements would appear in
widely disparate parts of your driver.

The key idea behind the Memory Manager service functions I just described is
that you initially lock a section containing one or more pages and obtain a handle
for use in subsequent calls. You can then unlock the pages in a particular section by
calling MmUnlockPagableImageSection and passing the corresponding handle.
Relocking the section later on requires a call to MmLockPagableSectionByHandle.

A quick shortcut is available if you're sure that none of your driver will need
to be resident for a while. MmPageEntireDrlver will mark all the sections in a
driver's image as being pagable. Conversely, MmResetDriverPaging will restore the

Chapter 3 Basic Programming Techniques

compile-time pagability attributes for the entire driver. To call these routines, you just
need the address of some piece of code or data in the driver. For example:

MmPageEntireDriver«PVOID) DriverEntry):

MmResetDriverPaging«PVOID) DriverEntry):

You need to exercise care when using any of the Memory Manager routines I've
just described if your device uses an interrupt. Spurious interrupts have been known
to happen, and it will be very difficult for anyone to discover that the reason for some
random crash is that the system tried to call your missing interrupt service routine
(ISR) to handle one. The rule stated in the DDK is that you Simply mustn't page your
ISR or any deferred procedure call (DPC) routine it might schedule after connecting
your interrupt.

Heap Allocator
The basic heap allocation service function in kernel mode used to be ExAllocatePool.
This service is still the one referred to in most discussions of heap allocation and used
by sample drivers. You call it like this:

PYOID p = ExAllocatePool(type. nbytes):

The type argument is one of the POOL_TYPE enumeration constants described in
Table 3-3, and nbytes is the number of bytes you want to allocate. The return value
is a kernel-mode virtual address pointer to the allocated memory block. Unless you
specify either NonPaged.PoolMustSucceed or NonPagedPoolCacheAlignedMustS
for the pool type, you can receive back a NULL pointer if enough memory isn't avail
able to satisfy your request. If you specify either of those two must-succeed types, lack
of memory will cause a bug check with the code MUST_SUCCEED_POOL_EMPIT.

NOTE Drivers should not allocate memory using one of the "must succeed"
specifiers. This is because they can fail whatever operation is underway with a
status code if memory is unavailable. Causing a system crash in a low-memory
situation is not something a driver should do. Furthermore, only a limited pool
of "must succeed" memory exists in the entire system, and the operating sys
tem might not be able to allocate memory needed to keep the computer running
if drivers tie up some. In fact, Microsoft wishes they had never documented the
must-succeed options in the DDK to begin with.

99

Pragrammlng the Microsoft Windows Driver Modal

100

Pool Type

NonPagedPool

PagedPool

NonPagedPoolMustSucceed

NOnPagedPoolCacheAligned

NonPagedPoolCacheAlignedMustS

PagedPoolCacheAligned

Description

Allocate from the nonpaged pool of memory

Allocate from the paged pool of memory

Allocate from the nonpaged pool; bugcheck
if unable to do so

Allocate from the nonpaged pool and ensure
that memory is aligned with the CPU cache

Like NonPagedPooICacheA1igned, but
bugcheck if unable to allocate

Allocate from the paged pool of memory
and ensure that memory is aligned with the
CPU cache

Table 3-3. Pool type arguments for ExAllocatePool.

The most basic decision you must make when you call ExAllocatePool is
whether the allocated memory block should be swapped out of memory. That choice
depends simply on which parts of your driver will need to access the memory block.
If you will be using a memory block at or above DISPATCH_LEVEL, you must allocate
it from the nonpaged pool. If you'll always use the memory block below DISPATCH_
LEVEL, you can allocate from the paged or nonpaged pool as you choose.

The memory block you receive will be aligned to at least an 8-byte boundary.
If you place an instance of some structure into the allocated memory, members to
which the compiler assigns an offset divisible by 4 or 8 will therefore occupy an
address divisible by 4 or 8, too. On some RISC platforms, of course, you must have
doubleword and quadword values aligned in th~ way. For performance reasons, you
might want to be sure that the memory block will fit in the fewest possible number
of processor cache lines. You can specify one of the XXxCacheAligned type codes
to achieve that result. If you ask for at least a page's worth of memory, the block will
start on a page boundary.

Releasing a Memory Block
To release a memory block you previously allocated with ExAllocatePool, you call
ExFreePool:

ExFreePool«PVOID) p);

You do need to keep track somehow of the memory you've allocated from the
pool in order to release it when it's nO longer needed. No one else will do that for
you. You must sometimes closely read the DDK documentation of the functions you
call with an eye toward memory ownership. For example, in the AddDevice func
tion I showed you in the previous chapter, there's a call to IoRegisterDevicelnterface.

Chapter 3 Basic Programming Techniques

That function has a side effect: it allocates a memory block to hold the string that
names the interface. You are responsible for releasing that memory later on.

It should go without saying that you need to be extra careful when accessing
memory you've allocated from the free storage pools in kernel mode. Since driver
code executes in the most privileged mode possible for the processor, there's almost
no protection from wild stores.

ExAllocatePoolWithTag
I said that ExAllocatePooI used to be the standard way to allocate memory from a
kernel-mode heap. For some time, there has been a variant of ExAllocatePool named
ExAllocatePoolWithTag that provides a useful extra feature. For reasons I'll explain
presently, you should prefer to use this variant in new drivers even though neither
I nor the authors of the DDK samples currently do. This is a clear case of "do as I
[actually the people inside Microsoft who make wishes about how programmers use
the DDKJ say, not as I do."

When you use ExAllocatePoolWithTag, the system allocates 4 more bytes of
memory than you asked for and returns you a pointer that's 4 bytes into that block.
The tag occupies the initial 4 bytes and therefore prec~ges the pointer you receive.
The tag will be visible to you when you examine memory blocks while debugging
or while poring over a crash dump, and it can help you identify the source of a
memory block that's involved in some problem or another. For example:

PYOID p = ExAllocatePoolWithTag(PagedPool. -42. 'KNUJ');

Here, I used a 32-bit integer constant as the tag value. On a little-endian computer
like ari x86, the bytes that compose this value will be reversed in memory to spell
out a common word in the English language.

Pool tags are also useful as a way of controlling certain features of the Driver
Verifier. Please consult the DDK documentation for more information.

It turns out that you're using ExAllocatePoolWithTag even when you think you're
calling ExAllocatePool. The declarations of memory allocation functions in wdm.h
are under control of a preprocessor macro named POOL_TAGGING. WDM.H (and
NTDDK.H too, for that matter) unconditionally defines POOL_TAGGING, with the
result that the without-tag functions are actually macro'ed to the equivalent With-tag
functions with a tag value of ' mdW' (that is, a space followed by the mirror image
of "Wdm"). If POOL_TAGGING were not to be defIned in some future release of the
DDK, the with-tag functions would be macro'ed to the without-tag versions. Microsoft
has no current plans to Change the setting of POOL_TAGGING.

Because of the POOL_TAGGING macros, when you write a call to ExAllocate
Pool in your program, you end up calling ExAll6catePoolWithTag, but the tag you
specify is too generic to be of much help. As it turns out, even if you managed to

101

Programming the Microsoft Windows Driver Model

call ExAllocatePool by some subterfuge or another, ExAllocatePool internally calls
ExAllocatePoolWithTag with a tag value of 'enoN' (that is, "None"). Since you can't
get away from memory tagging, you might as well explicitly call ExAllocatePool
WithTag and specify a usefully unique tag of your own devising. In fact, Microsoft
strongly encourages you to do this.

Variations on ExAliocatePool
Although ExAllocatePoolWithTag is the function you should use for heap allocation,
you would use some variations in special circumstances:

• ExAllocatePoolWithQuota allocates a memory block and charges the
current thread's scheduling quota. This function is for use by file system
drivers and other drivers running in a nonarbitrary thread context for allo
cating memory that belongs to the current thread.

• ExAllocatePooIWithQuotaTag allocates a block with a tag and charges
the current thread's quota.

Linked Lists

102

Windows NT makes extensive use of linked lists as a way of organizing collections
of similar data structures. In this chapter, I'll discuss the basic service functions you use
to manage doubly-linked and Singly-linked lists. Separate service functions allow you
to share linked lists between threads and across multiple processors; I'll describe those
functions in the next chapter after I've explained the synchronization primitives on
which they depend.

Whether you organize data structures into a doubly-linked or a Singly-linked
list, you normally embed a linking substructure-either a LIST_ENTRY or a SINGLE_
LIST_ENTRY-into your own data structure. You also reserve a list head element
somewhere that uses the same structure as the linking element. For example:

typedef struct _TWOWAY
{

LIST_ENTRY linkfield;

} TWOWAY. *PTWOWAY;

LIST_ENTRY DoubleHead;

typedef struct _ONEWAY
{

SINGLE_LISLENTRY 1 inkfield;

} ONEWAY. *PONEWAY;

Chapter 3 Basic Programming Techniques

SINGLE_LIST_ENTRY SingleHead;

When you call one of the list-management service functions, you always work
with the linking field or the list head-never directly with the containing structures
themselves. So, suppose you've got a pointer (pdElement) to one of your TWOWAY
structures. To put that structure onto a list, you'd reference the embedded linking field
like this:

InsertTailListC&DoubleHead. &pdElement->linkfield);

Similarly, when you retrieve an element from a list, you're really getting the
address of the embedded linking field. To recover the address of the containing
structure, you can use the CONTAINING_RECORD macro. (See Figure 3-8.)

(PIRP) CONTAINING_RECORD(p, IRP, ListEntry)

Figure 3-8. The CONTAINING_RECORD macro.

So, if you wanted to process and discard all the elements in a singly-linked list,
your code would look something like this:

PSINGLE_LIST_ENTRY psLink = PopEntryListC&SingleHead);
while CpsLink)

{
PONEWAY psElement = CPONEWAY) CONTAINING_RECORDCpsLink.

ONEWAY. linkfield);

ExFreePool(psElement);
psLink = PopEntryListC&SingleHead);
}

Just before the start of this loop, and again after every iteration, you retrieve the current
first element of the list by calling PopEntryUst. PopEntryList returns the address of
the linking field within a ONEWAY structure, or else it returns NULL to signify that
the list is empty. Don't just indiscriminately use CONTAINING_RECORD to develop
an element address that you then test for NULL-you need to test the link field ad
dress that PopEntryList returns!

103

Programming the Microsoft Windows Driver Model

104

Doubly.Linked Lists
A doubly-linked list links its elements both backward and forward in a circular fash
ion. See Figure 3-9. That is, startmg with any element, you can proceed forward or
backward in a circle and get back to the same element. The key feature of a doubly
linked list is that you can add or remove elements anywhere in the list.

Figure 3-9. Topology of a doubly-linked list.

Table 3-4 lists the service functions you use to manage a doubly-linked list.

Service Function or Macro

InitializeListHead

InsertHeadList

InsertT ailList

IsListEmpty

RemoveEntryList

RemoveHeadList

RemoveTailList

Description

Initialize the LIST_ENTRY at the head of the list

Insert element at the beginning

Insert element at the end

Is list empty?

Remove element

Remove first element

Remove last element

Table 3-4. Service functions for use with doubly-linked lists.

Here is a fragment of a fictitious program to illustrate how to use some of these
functions:

typedef struct _TWOWAY {

LIST_ENTRY linkfield;

} TWOWAY. *PTWOWAY;

Chapter 3 Basic Programming Techniques

LIST_ENTRY DoubleHead;
InitializeListHead(&DoubleHead);
ASSERT(IsListEmpty(&DoubleHead»;

PTWOWAY pdElement = (PTWOWAY) ExAllocatePool(PagedPool.
sizeof(TWOWAY»;

InsertTailList(&DoubleHead. &IPElement->linkfield);

if (!IsListEmpty(&DoubleHead»
{

PLIST_ENTRY pdLink = RemoveHeadList(&DoubleHead);
pdElement = CONTAINING_RECORD(pdLink. TWOWAY. linkfield);

ExFreePool(pdElement);
}

1. InitializeListHead initializes a UST _ENTRY to point (both backward and
forward) to itself. That configuration indicates that the list is empty.

2. InsertTailList puts an element at the end of the list. Notice that you
specify the address of the embedded linking field instead of your own
TWOWAY structure. You could call InsertHeadList to put the element at
the beginning of the list instead of the end. By supplying the address of
the link field in some existing TWOWAY structure, you could put the new
element either just before or just after the existing one.

3. Recall that an empty doubly-linked list has the list head pointing to itself,
both backward and forward. Use IsListEmpty to simplify making this
check. The return value from RemoveXxxList will never be NULL!

4. RemoveHeadList removes the element at the head of the list and gives
you back the address of the linking field inside it. RemoveTailList does
the same thing, just with· the element at the end of the list instead.

It's important to know the exact way RemoveHeadList and RemoveTailList are
implemented if you want to avoid errors. For example, consider the following inno
cent looking statement.

if (some-expr»
pdLink = RemoveHeadList(&DoubleHead);

What I obviously intended with this construction was to conditionally extract
the first element from a list. C'est raisonnable, n 'est-ce pas? But no, when you debug
this later on, you find that elements keep mysteriously disappearing from the list. You
discover that pdLink gets updated only when the if expression is TRUE but that
RemoveHeadList seems to get called even when the expression is FALSE.

105

Programming the Microsoft Windows Driver Model

106

Mon dieu! What's going on here? Well, RemoveHeadList is really a macro that
expands into multiple statements. Here's what the compiler really sees in the above
statement:

if «some-expr»
pdLink = (&DoubleHead)->Flink;

{{
PLIST_ENTRY _EX_Blink:
PLIST_ENTRY _EX_Flink;
_EX_Flink = «&DoubleHead)->Flink)->Flink:
_EX_Blink = «&DoubleHead)->Flink)->Blink;
_EX_Blink->Flink = _EX_Flink:
_EX_Flink->Blink = _EX_Blink;
}}

Aha! Now the reason for the mysterious disappearance of list elements becomes
clear. The TRUE branch of the if statement consists of just the single statement pdlink
= (&DoubleHead)~>Flink that stores a pointer to the first element. The logic that
removes a list element stands alone outside the scope of the if statement and is there
fore always executed. Both RemoveHeadList and RemoveTailList amount to an ex
pression plus a compound statement, and you dare not use either of them in a spot
where the syntax requires an expression or statement alone. Zut alors!

The other list-manipulation macros don't have this problem, by the way. The
difficulty with RemoveHeadList and RemoveTailList arises because they have to return
a value and do some list manipulation. The other macros do only one or the other,
and they're syntactically safe when used as intended.

Singly-Linked Lists
A singly-linked list links its elements in only one direction, as illustrated in Figure 3-10.
WindQws NT uses Singly-linked lists to implement pushdown stacks, as suggested by
the names of the service routines in Table 3-5. Just as was true for doubly-linked lists,
these "functions" are actually implemented as macros in WDM.H, and similar cau
tions apply. PushEntryUst and PopEntryUst generate multiple statements, so you
can use them only on the right side of an equal sign in a context where the com
piler is expecting multiple statements.

. Service Function or Macro

PushEntryList

PopEntryList

Description

Add element to top of list

Remove topmost element

Table 3-5. Service functions for use with singly-linked lists.

Chapter 3 Basic Programming Techniques

Figure 3-10. Topology of a singly-linked list.

The following pseudofunction illustrates how to manipulate a singly-linked list:

typedef struct _ONEWAY {

SINGLE_LIST_ENTRY linkfield;
} ONEWAY. *PONEWAY;

SINGLE_LIST_ENTRY SingleHead;
SingleHead.Next = NULL;

PONEWAY psElement = (PONEWAY) ExAllocatePool(PagedPool.
sizeof(ONEWAY»;

PushEntryList(&SingleHead. &psElement->linkfield);

SINGLE_LIST_ENTRY psLink = PopEntryList(&SingleHead);
if (psLink)

{

psElement = CONTAINING_RECORD(psLink. ONEWAY, linkfield);

ExFreePool(psElement);
}

1. Instead of invoking a service function to initialize the head of a singly
linked list, just set the Next field to NULL. Note also the absence of a ser
vice function for testing whether this list is empty; just test Next yourself.

107

Programming the Microsoft Windows Driver Model

2. PushEntryUst puts an element at the head of the list, which is the only
part of the list that's directly accessible. Notice that you specify the address
of the embedded linking field instead of your own ONEWAY structure.

3. PopEntryUst removes the first entry from the list and gives you back a
pointer to the link field inside it. Unlike doubly-linked lists, a NULL value
indicates that the list is empty. In fact, there's no counterpart to IsListEmpty
for use with a Singly-linked list.

Lookaside Lists

108

Even employing the best possible algorithms, a heap manager that deals with ran
domly sized blocks of memory will require some scarce processor time to coalesce
adjacent free blocks from time to time. Figure 3-11 illustrates how, when something
returns block B to the heap at a time when blocks A and C are already free, the heap
manager can combine blocks A, B, and C to form a single large block. The large block
is then available to satisfy some later request for a block bigger than any of the original
three components.

Large combined block

Figure 3-11. Coalescing adjacentfree blocks in a heap.

If you know you're always going to be working with fixed-size blocks of memory,
you can craft a much more efficient scheme for managing a heap. You could, for
example, preallocate a large block of memory that you subdivide into pieces of the
given fixed size. Then you could devise some scheme for knowing which blocks are
free and which are in use, as suggested by Figure 3-12. Returning a block to such a
heap merely involves marking it as free-you don't need to coalesce it with adjacent
blocks because you never need to satisfy randomly sized requests.

Merely allocating a large block that you subdivide might not be the best way
to implement a fixed-size heap, though. In general, it's hard to guess how much
memory to preallocate. If you guess too high, you'll be wasting memory. If you guess
too low, your algOrithm will either fail when it runs out (bad!) or make too frequent
trips to a surrounding random heap manager to get space for more blocks (better).
Microsoft has created the lookaside list object and a set of adaptive algorithms to deal
with these shortcomings.

III Block in use

EJ Block free

Chapter 3 Basic Programming Techniques

Figure 3-12. A heap containingftxed-size blocks.

Figure 3-13 illustrates the concept of a lookaside list. Imagine that you had a
glass that you could (somehow-the laws of physics don't exactly make this easy!)
balance upright in a swimming pool. The glass represents the lookaside list object. When
you initialize the object, you tell the system how big the memory blocks (water drops,
in this analogy) are that you'll be working with. In earlier versions of Windows NT, you
could also specify the capacity of the glass, but the operating system now determines
that adaptively. To allocate a memory block, the system first tries to remove one from
the list (remove a water drop from the glass). If there are no more, the system dips
into the surrounding memory pool. Conversely, to return a memory block, the sys
tem first tries to put it back onto the list (add a water drop to the glass). But if the
list is full, the block goes back into the pool using the regular heap manager routine
(the drop slops over into the swimming pool).

Paged or nonpaged
memory pool __ _

Figure 3-13. Lookaside lists.

Glass containing fixed-size
memory blocks

109

Programming the Microsoft Windows Driver Model

110

The system periodically adjusts the depths of all lookaside lists based on actual
usage. The details of the algorithm aren't really important, and they're subject to
change in any case. Basically (in the current release, anyway), the system will reduce
the depth of lookaside lists that haven't been accessed recently or that aren't forcing
pool access at least 5 percent of the time. The depth never goes below 4, however,
which is also the initial depth of a new list.

Table 3~6 lists the eight service functions that you use when you work with a
lookaside list. There are really two sets of four functions, one set for a lookaside list
that manages paged memory (the ExXXxPagedLookasideUst set) and another for
a lookaside list that manages nonpaged memory (the ExXxxNPagedLookasideUst
set). The first thing you must do is reserve nonpaged memory for a PAGED_
LOOKASIDE_LIST or an NPAGED_LOOKASIDE_LIST object. These objects are simi
lar. The paged variety uses a FAST_MUTEX for synchronization, whereas the nonpaged
variety uses a spin lock. (See the next chapter for a discussion of both of these syn
chronization objects.) Even the paged variety of object needs to be in nonpaged
memory because the system might access it at an elevated IRQL.

Service Function

ExInitializeNPagedLookasideList
ExInitializePagedLookasideList

ExAllocateFromNPagedLookasideList
ExAllocateFromPagedLookasideList

ExFreeToNPagedLookasideList
ExFreeToPagedLookasideList

ExDeleteNPagedLookasideList
ExDeletePagedLookasideList

Table 3-6. Service functions for lookaside lists.

Description

Initialize a lookaside list

Allocate a fixed-size block

Release a block back to a lookaside list

Destroy a lookaside list

After reserving storage for the lookaside list object somewhere, you call the
appropriate initialization routine:

PPAGED_LOOKASIDE_LIST pagedlist;
PNPAGED_LOOKASIDE_LIST nonpagedlist;

ExlnitializePagedLookasideList(pagedlist, Allocate, Free,
0, blocksize, tag, 0);

ExlnitializeNPagedLookasideList(nonpagedlist, Allocate, Free,
0, blocksize, tag, 0);

(The only difference between the two examples is the spelling of the function name
and the first argument.)

Chapter 3 Basic Programming Techniques

The first argument to either of these functions points to the [N]PAGED_
LOOKASIDE_LIST object for which you've already reserved space. Allocate and Free
are pointers to routines you can write to allocate or release memory from a random
heap. You can use NULL for either or both of these parameters, in which case
ExAllocatePoolWithTag and ExFreePool will be used, respectively. The blocksize
parameter is the size of the memory blocks you will be allocating from the list, and tag
is the 32-bit tag value you want placed in front of each such block. (Look back to the
section entitled "Variations on ExAllocatePool" for an explanation of the tagging con
cept.) The two zero arguments are placeholders for values that you supplied in previ
ous versions of Windows NT but which the system now determines on its own; these
values are flags to control the type of allocation and the depth of the lookaside list.

To allocate a memory block from the list, call the appropriate AllocateFrom
function:

PVOID P = ExAllocateFromPagedLookasideList(pagedlist);
PVOID q = ExAllocateFromNPagedLookasideList(nonpagedlist);

To put a block back onto the list, call the appropriate FreeTo function:

ExFreeToPagedLookasideList(pagedlist. pI;
ExFreeToNPagedLookasideList(nonpagedlist. q);

Finally, to destroy a list, call the appropriate Delete function:

ExDeletePagedLookasidelist(pagedlist);
ExDeleteNPagedLookasideList(nonpagedlist);

It's a common mistake to forget to delete a lookaside list. You won't be mak
ing such a mistake of course, but you might need to advise one of your coworkers
about how to avoid itO). You can tell him or her, "Be sure to do that before your
lookaside list passes out of scope. If you created a lookaside list during AddDevice,
for example, you probably put the object into your device object and want to delete
the list before you call IoDeleteDevice. If you created a lookaside list during
DriverEntry, you probably put the object into a global variable and want to delete
the list before you return from your DriverUnload routine."

STRING HANDLING
WDM drivers can work with string data in any of four formats:

• A Unicode string, normally described by a UNICODE_STRING structure,
contains 16-bit characters. Unicode has sufficient code points to accom
modate the language scripts used on this planet (and on at least one
other-see http://www.indigo.ie/egt/standards!csur/klingon.htmf).

111

Programming the Microsoft Windows Driver Model

112

• An ANSI string, normally described by an ANSCSTRING structure, contains
8-bit characters. A variant is an OEM_STRING, which also describes a string
of 8-bit characters. The difference between the two is that an OEM string
has characters whose graphic depends on the current code page, whereas
an ANSI string has characters whose graphic is independent of code page.
WDM drivers would not normally deal with OEM strings because they
would have to originate in user mode, and some other kernel-mode com
ponent will have already translated them into Unicode strings by the time
the driver sees them.

• A null-terminated string of characters. You can express constants u~ing
normal C syntax, such as "Hello, world!" Strings employ 8-bit characters
of type CHAR, which are assumed to be from the ANSI character set. The
characters in string constants originate in whatever editor you used to cre
ate your source code. If you use an editor that relies on the then-current
code page to display graphics in the editing window, be aware that some
characters might have a different meaning when treated as part of the Win
dows ANSI character set.

• A null-terminated string of wide Characters (type WCHAR). You can express
wide string constants using normal C syntax, such as L"Goodbye, cruel
world!" Such strings look like Unicode constants, but, being ultimately
derived from some text editor or another, actually use only the ASCII and
LatinI code points (0020-007F and OOAO-OOFF) that correspond to the
Windows ANSI set.

The UNICODE_STRING and ANSI_STRING data structures both have the layout
depicted in Figure 3-14. The Buffer field of either structure points to a data area
elsewhere in memory that contains the string data. MaximUmLength gives the length
of the buffer area, and Length provides the (current) length of the string without
regard to any null terminator that might be present. Both length fields are in bytes,
even for the UNICODE_STRING structure.

Figure 3·14. The UMCODE_STRING and ANSI_STRING structures.

Chapter 3 Basic Programming Techniques

Table 3-7 lists the service functions that you can use for working with Unicode
and ANSI strings. I've listed them side by side because there's a fair amount of dupli
cation. I've also listed some functions from the standard C run-time library that are
available in kernel mode for manipulating regular C-style strings. The standard DDK
headers include declarations of these functions, and the libraries with which you link
drivers contain them, so there's no particular reason not to use them even though
they've never been documented in the DDK as being available.

operation

Length

Concatenate

Copy

Reverse

Compare

Initialize

Search

Upper/
lowercase

Character

Format

String
conversion

Type
conversion

Memory
release

ANSI String Function

strlen

strcat, strncat

strcpy, stmcpy,
RtlCopyString

_strrev

strcmp, stmcmp,
_stricmp, _strnicmp,
RtlCompareString,
RtlEqualString

_strset, _stmset,
RtlInitAnsiString,
RtlInitString

strchr, strrchr,
strspn, strstr

_strlwr, _strupr,
RtlUpperString

isdigit, islower, isprint,
isspace, isupper,
isxdigit, tolower,
toupper,
RtlUpperChar

Unicode String Function

wcslen

wcscat, wcsncat,
RtlAppendUnicodeStringToString,
RtlAppendUnicodeToString

wcscpy, wcsncpy,
RtlCopyUnicodeString

_wcsrev

wcscmp, wcsncmp, _ wcsicmp,
_wcsnicmp,
RtlCompareUnicodeString,
RtlEqualUnicodeString,
RtlPrefixUnicodeString

_wcsnset,
RtlInitUnicodeString

wcschr, wcsrchr, wcsspn, wcsstr

_ wcslwr, _ wcsupr,
Rtl Upcase UnicodeString

towlower, towupper,
RtiUpcase UnicodeChar

sprintf, vsprintf, swprintf, _snwprintf
_snprintf, _ vsnprintf

atoi, atol, _itoa _itow,
RtlIntegerToUnicodeString,
RtiUnicodeStringToInteger

RtlAnsiStringToUnicodeSize, RtlUnicodeStringToAnsiString
RtlAnsiStringToUnicodeString

RtlFreeAnsiString RtlFreeUnicodeString

Table 3-7. Functions for string manipulation.

113

Programming the Microsoft Windows Driver Model

Many more RtlXx:x functions are exported by the system DLLs, but I've listed
the ones for which the DDK header files (and the SDK headers they include) define
prototypes. These are the only ones we should use in drivers.

Allocating and Releasing String Buffers
I'm not going to describe the string manipulation functions in detail because the DDK
documentation does this perfectly well and you already know, based on your gen
eral programming experience, how to put functions like this together to get your work
done. But I do want to discuss a problem that can rear up and bite you if you don't
look out for it.

You often define UNICODE_STRING (or ANSCSTRING) structures as automatic
variables or as parts of your own device extension. The string buffers to which these
structures point usually occupy dynamically allocated memory, but you'll sometimes
want to work with string constants, too. Keeping track of who owns the memory to
which a particular UNICODE_STRING or ANSCSTRING structure points can be a bit
of a problem. Consider the following fragment of a function:

UNICODE_STRING foo;
if (bArriving)

RtlInitUnicodeString(&foo, L"Hello, world!");
else

RtlAnsiStringToUnicodeString(&foo, "Goodbye, cruel world!", TRUE);

RtlFreeUnicodeString(&foo); II ~ don't do this!

In one case, we initialize foo.Length, foo.MaximumLength, and foo.Buffer
to describe a wide character string constant in our driver. In another case, we ask the
system (by means of the TRUE third argument to Rt1AnsiStringToUnicodeString) to
allocate memory for the Unicode translation of an ANSI string. In the first case, it's a
mistake to call RtlFreeUnicodeString because it will unconditionally try to release
a memory block that's part of our code or data. In the second case, it's mandatory to
call RtlFreeUniGodeString eventUally if we want to avoid a memory leak.

Data Blobs

114

I've borrowed the term data blob from the world of database management to describe
a random collection of bytes that you want to manipulate somehow. Table 3-8 lists
the functions (including some from the standard run-time library) that you can call
in kernel mode for that purpose. Once again, I'm going to assume that you can fig
ure out how to use these functions (based on their largely mnemonic names). I need
to point out a few nonobvious facts, however:

Chapter 3 Basic PrognunlDlng Techniques

• The difference between a memory "copy" and a memory "move" is whether
the implementation can tolerate an overlap between the target and source.
A move- operation is more gen,eral in that· it works correctly whether or
not there's an overlap. The copy operation is faster because it assumes it
can perform a left-to-right copy (which won't work if the target overlaps
the right portion of the source).

• The difference between a "byte" and a "memory" operation is in the granu
larity of the operation. A byte operation is guaranteed to proceed byte by
byte. A memory operation can use larger chunks internally, provided all
the chunks add up to the specified number of bytes. If this distinction is
meaningless on a particular platform (as is true for x86 computers), the
byte operations are actually macro'ed to the corresponding memory opera
tions. Thus, RdCopyBytes is a different function than RdCopyMemory on
an Alpha but is #define'dequal to RtlCopyMemory on a 32-bit Intel.

SenJice Function or Macro

memchr

memcpy, RtlCopyBytes,
RtlCopyMemory

memmove, RtlMoveMemory

memset, RtlFillBytes,
RtlFillMemory

memcmp, RtlCompareMemory,
RtlEqualMemory

memset, RtlZeroBytes,
RtlZeroMemory

Description

Find a byte in a blob

Copy bytes, assuming no overlap

Copy bytes when there might be an
overlap

Fill blob with given value

Compare one blob to another

Zero-fill a blob

Table 3-8. Service functions for working with blobs of data.

MISCELLANEOUS PROGRAMMING TECHNIQUES
In the remainder of this chapter, I'm going to discuss some miscellaneous topics that
might be useful in various parts of your driver. I'll begin by describing how you access
the registry database, which is where you can fmd various configuration and con
trol information that might affect your code or your hardware. I'll go on to describe
how you access disk files and other named devices. A few words will suffice to

115

Programming the Microsoft Windows Driver Model

describe how you can perform floating-point calculations in a WDM driver. Finally,
I'll describe a few of the features you can embed 'in your driver to make it easier to
debug your driver in the unlikely event (©) it shouldn't work correctly the first time
you try it out.

Accessing the Registry

116

Windows NT and Windows 98 record configuration and other important information
in a database called the registry. WDM drivers can call the functions listed in Table 3-9
to access the registry. If you've done user-mode programming involving registry
access, you might be able to guess how to use these functions in a driver. I found
the kernel-mode support functions sufficiently different, however, that I think it's
worth describing how you might use them.

Service Function

IoOpenDeviceRegistryKey

IoOpenDeviceInterfaceRegistryKey

RtiDeleteRegistryValue

RtiQueryRegistryValues

RtlWriteRegistryValue

ZwClose

ZwCreateKey

ZwDeleteKey

ZwEnumerateKey

ZwEnumerateValueKey

ZwFlushKey

ZwOpenKey

ZwQueryKey

ZwQueryValueKey

ZwSetValueKey

Description

Open special key associated with a PDO

Open a registry key associated with a
registered device interface

Delete a registry value

Read several values from the registry

Write a value to the registry

Close handle to a registry key

Create a registry key

Delete a registry key

Enumerate subkeys

Enumerate values within a registry key

Commit registry changes to disk

Open a registry key

Get information about a registry key

Get a value within a registry key

Set a value within a registry key

Table 3-9. Service functions for registry access.

In this section, I'll discuss, among other things, the ZwXxx family of routines
and RtlDeleteRegistryValue, which provide the basic registry functionality that suf
fices for most WDM drivers.

Opening a Registry Key
Before you can interrogate values in the registry, you need to open the key that
contains them. You use ZwOpenKey to open an existing key. You use ZwCreateKey

Chapter 3 Basic Programming Techniques

either to open an existing key or to create a new key. Either function requires you
to first initialize an OBJECT_ATTRIBUTES structure with the name of the key and
(perhaps) other information. The OBJECT_ATTRIBUTES structure has the following
declaration:

typedef struct _OBJECT_ATTRIBUTES
ULONG Length;
HANDLE RootDirectory;
PUNICOOE_STRING ObjectName;
ULONG Attributes;
PYOID SecurityDescriptor;
PYOID SecurityOualityOfService;
} OBJECT_ATTRIBUTES;

Rather than initialize an instance of this structure by hand, it's easiest to use the
macro InitializeObjectAttrlbutes, which I'm about to show you.

Suppose, for example, that we wanted to open the service key for our driver.
The I/O Manager gives us the name of this key as a parameter to DriverEntry. So,
we could write code like the following:

NTSTATUS DriverEntry(PDRIVER-OBJECT DriverObject.
PUNICODE_STRING RegistryPath)
{

OBJECT_ATTRIBUTES oa;
InitializeObjectAttributes(&oa, RegistryPath. 0. NULL. NULL);
HANDLE hkey;
status = ZwOpenKey(&hkey. KEY_READ. &oa);
if (NT_SUCCESS(status»

{

3, ZwCl ose(hkey);
}

}

1. We're initializing the object attributes structure with the registry pathname
supplied to us by the I/O Manager and with a NULL security descriptor.
ZwOpenKey will ignore the security descriptor anyway-you can specify
security attributes only when you create a key for the first time.

2. ZwOpenKey will open the key for reading and store the resulting handle
in our hkey variable.

3. ZwClose is a generic routine for closing a handle to a kernel-mode ob
ject. Here, we use it to close the handle we have to the registry key.

117

Programming the Microsoft Windows Driver Model

118

Even though we often refer to the registry as being a database, it doesn't have
all of the attributes that have come to be associated with real databases. It doesn't
allow for committing or rolling back changes, for example. Furthermore, the access
rights you specify when you open a key (KEY_READ in the previous example) are
for security checking rather than for the prevention of incompatible sharing. That is,
two different processes can have the same key open after specifying write access (for
example). The system does guard against destructive writes that occur simultaneously
with reads, however, and it does guarantee that a key won't be deleted while some
one has an open handle to it.

Other Ways to Open Registry Keys
In addition to ZwOpenKey, Windows 2000 provides two other functions for opening
registry keys.

IoOpenDeviceRegistryKey allows you to open one of the special registry keys
associated with a device object:

HANDl.:E hkey;
status = IoOpenDeviceRegistryKey(pdo, flag, access, &hkey);

where pdo is the address of the physical device object (PDO) at the bottom of your
particular driver stack, flag is an indicator for which special key you want to open
(see Table 3-10), and access is an access mask such as KEY_READ.

Flag Value Selected Registry Key

The hardware (instance) subkey of the
Enum key

The software (service) key

Table 3-10. Registry key codes/or !oOpenDeviceRegistryKey.

IoOpenDevicelnterfaceRegistryKey opens the key associated with an in
stance of a registered device interface:

HANDLE hkey;
status = IoOpenDevicelnterfaceRegistryKey(linkname, access, &hkey);

where linkname is the symbolic link name of the registered interface and access is
an access mask like KEY_READ.

The interface registry key is a subkey of HKLM\System\CurrentControlSet\
Control\DeviceClasses that persists from one session to the next. It's a good place
to store parameter information that you want to share with user-mode programs,
because user-mode code can call SetupDiOpenDevicelnterfaceRegKey to gain
access to the same key.

Chapter 3 Basic Programming Techniques

In Chapter 12, "Installing Device Drivers," I'll discuss how your installation script
can insert values into the hardware and interface keys, and how application programs
can access these values.

Getting and Setting Values
Usually, you open a registry key because you want to retrieve a value from the data
base. The basic function you use for that purpose is ZwQueryValueKey. For example,
to retrieve the Im.agePath value in the driver's service key-I don't actually know
why you'd want to know this, but that's not my department-you could use the fol
lowing code:

UNICODE_STRING val name;
RtlInitUnicodeString(&valname. L"ImagePath");
size = 0;
status = ZwQueryValueKey(hkey. &valname. KeyValuePartialInformation.

NULL. 0. &size);
if (status == STATUS_OBJECT_NOT_FOUND I I size == 0)

<handle error>;
PKEY_VALUE_PARTIAL_INFORMATION vpip = (PKEY_VALUE_PARTIAL_INFORMATION)

ExAllocatePool{PagedPool. size);
if (!vpip)

<handle error>;
status = ZwQueryValueKey(hkey. &valname. KeyValuePartiallnformation.

vpip. size. &size);
if (!NT_SUCCESS(status»

<handle error>;
<do something with vpip->Data>
ExFreePool(vpip);

Here, we make two calls to ZwQueryValueKey. The purpose of the first call is
to determine how much space we need to allocate for the KEY _ VALUE_PARTIAL_
INFORMATION structure we're trying to retrieve. The second call retrieves the infor
mation. I left the error checking in this code fragment because the errors didn't work
out in practice the way I expected them to. In particular, I initially guessed that the
ftrst call to ZwQueryValueKey would return STATUS_BUFFER_TOO_SMALL if I passed
it a NULL buffer pointer. It didn't do that, though. The important failure code is
STATUS_OBJECT_NAME_NOT]OUND, which indicates that the value doesn't actu
ally exist. Hence, I test for that value only. If there's some other error that prevents
ZwQueryValueKey from working, the second call will uncover it.

The so-called "partial" information structure you retrieve in this way contains
the value's data and a description of its data type:

typedef struct _KEY_VALUE_PARTIAL-INFORMATION {
ULONG Titlelndex;
ULONG Type;

(continued)

119

Programming the Microsoft Windows Driver Model

120

ULONG DataLength;
UCHAR Data [1] ;

} KEY_VALUE_PARTIAL_INFORMATION.
*PKEY_VALUE_PARTIAL_INFORMATION;

Type is one of the registry data types listed in Table 3-11. (Additional data types are
possible but not interesting to device drivers.) DataLength is the length of the data
value, and Data is the data itself. Tidelndex has no relevance to drivers. Here are
some useful facts to know about the various data types:

• REG_DWORD is a 32-bit unsigned integer in whatever format (big-endian
or little-endian) is natural for the platform.

• REG_SZ describes a null-terminated Unicode string value. The null termi
nator is included in the DataLength count.

• To expand a REG_EXPAND_SZ value by substituting environment variables,
you should use RdQueryRegistryValues as your method of interrogat
ing the registry. The internal routines for accessing environment variables
aren't documented or exposed for use by drivers.

• RtlQueryRegistryValues is also a good way to interrogate REG~ULTI_SZ
values, in'that it will call your designated callback routine once for each
of the potentially many strings.

NOTE RtlQueryRegistryValues is a complex routine for which I'm not provid
ing an example here. The DDK samples contain several drivers that use it.

Data Type Constant

REG_BINARY

REG_DWORD

REG_DWORD_BIG_ENDIAN

REG_EXPAND _SZ

Description

Variable-length binary data

Unsigned long integer in natural format for
the platform

Unsigned long integer in big-endian format

Null-terminated Unicode string containing
o/o-escapes for environment variable names

One or more null-terminated Unicode strings,
followed by an extra null

Null-terminated Unicode string

Table 3-11. Types of registry values useful to WVM drivers.

To set a registry value, you must have KEY_SET_VALUE access to the parent
key. I used KEY_READ earlier, which wouldn't give you such access. You could use

Chapter 3 BasIc Pro ln. 'Icbnlqu ..

KEY_WRITE or KEY_All_ACCESS, although you thereby gain more than the neces
sary permission. Then call ZwSetValueKey. For example:

RtllnftUn1codeStr1ng(&valname. L"TheAnswer"):
ULONG value = 42:
ZwSetValueKey(hkey. &valn~me. 0. REfLDWORD. &value. s1zeof(value»:

Deleting Subkey. or Value.
To delete a value in an open key, you can use RtIDe1eteRegistryValue in the fol
lowing special way:

RtlDeleteRegistryValue(RTLREGISTRLHANDLE. (PCWSTR) hkey. L"TheAnswer"):

RtlDeleteRegistryValue is a general service function whose ftrst argument .can
designate one of several special places in the registry. When you use R~REGISTRY_
HANDLE, as I did in this example, you indicate that you've already got an open handle
to the key within which you want to delete a value. You specify the key (with a cast
to make the compiler happy) as the second argument. The third and ftnal argument
is the null-terminated Unicode name of the value you want to delete. This is one time
when you don't have to create a UNICODE_STRING structure to describe the string.

You can delete only those keys that you've opened with at least DELETE permis
sion (which you get with KEY_All_ACCESS), You call ZwDe1eteKey:

ZwDeleteKey(hkey):

The key lives on until all handles are closed, but subsequent attempts to open
a new handle to the. key or to access the key by using any currently open handle
will fail with STATUS_KEY _DELETED. Since you have an open handle at this pOint,
you must be sure to call ZwClose sometime. (The DDK documentation entry for
ZwDeleteKey says the handle becomes invalid. It doesn't-you must still close it by
calling ZwClose.)

Enumerating Subkey. or Value.
A complicated activity you can carry out with an open registry key is to enumerate
the elements (subkeys and values) that the key contains. To do this, you'll ftrst call
ZwQueryKey to determine a few facts about the subkeys and values, such as their
number, the length of the largest name, and so on. ZwQueryKey has an argument
that indicates which of three types of information you want to retrieve about the key.
These types are named baSiC, node, and full. To prepare for an enumeration, you'd
be interested ftrst in the full information:

typedef struct _KEY_FULLINFORMATION {
LARGE~INTEGER LastWr1teT1me:
ULONG T1tlelndex:
ULONG ClassOffset:

(continued)

121

Programming the Microsoft Windows Driver Model

122

ULONG ClassLength;
ULONG SubKeys;
ULONG MaxNameLen;
ULONG MaxClassLen;
ULONG Values;
ULONG MaxValueNameLen;
ULONG MaxValueDataLen;
WCHAR Class[l];

} KEY_FULL_INFORMATION, *PKEY_FULL-INFORMATION;

This structure is actually of variable length, since Ciass[O] is just the first char
acter of the class name. It's customary to make one call to find out how big a buffer
you need to allocate and a second call to get the data, as follows:

ULONG size;
ZwQueryKey(hkey, KeyFullInformation, NULL, 0, &size);
PKEY_FULL_INFORMATION fip = (PKEY_FULL_INFORMATION)

ExAllocatePool(PagedPool, size);
ZwQueryKey(hkey, 0, KeyFullInformation, bip, size, &size);

Were you now interested in the subkeys of your registry key, you could perform
the following loop calling ZwEnumerateKey:

for (ULONG i = 0; i < fip->SubKeys; ++i)
{

ZwEnumerateKey(hkey, i, KeyBasicInformation, NULL, 0, &size);
PKEY_BASIC_INFORMATION bip = (PKEY_BASIC_INFORMATION)

ExAllocatePool(PagedPool, size);
ZwEnumerateKey(hkey, i, KeyBasicInformation, bip, size, &size);
<do something with bip->Name>
ExFreePool(bip);
}

The key fact you discover about each subkey is its name, which shows up as
a counted Unicode string in the KEY_BASIC_INFORMATION structure you retrieve
inside the loop:

typedef struct _KEY_BASIC_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG Type;
ULONG NameLength;
WCHAR Name[l];

} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION;

The name isn't null-terminated; you must use the NameLength member of the struc
ture to determine its length. Don't forget that the length is in bytes! The name isn't
the full registry path either: it's the just the name of the subkey within whatever key
contains it. This is actually lucky, because you can easily open a subkey given its name
and an open handle to its parent key.

Chapter 3 Basic Programming Techniques

To accomplish an enumeration of the values in an open key, employ the fol
lowing method:

ULONG maxlen = fip->MaxValueNameLen +
sizeof(KEY_VALUE_BASIC_INFORMATION);

PKEY_VALUE_BASIC_INFORMATION vip = (PKEY_VALUE_BASIC_INFORMATION)
ExAllocatePool(PagedPool. maxlen); .

for (ULONG i = 0; i < fip->Values; ++i)
{

ZwEnumerateValueKey(hkey. i. KeyValueBasicInformation. vip,
maxlen, &size);

(do something with vip->Name>
}

ExFreePool(vip);

Allocate space for the largest possible KEY _ VALUE_BASIC_INFORMATION struc
ture that you'll ever retrieve based on the MaxValueNameLen member of the
KEY_FULL_INFORMATION structure. Inside the loop, you'll want to do something
with the name of the value, which comes to you as a counted Unicode string in this
structure:

typedef struct _KEY_VALUE_BASIC_INFORMATION {
ULONG TitleIndex;
ULONG Type;
ULONG NameLength;
WCHAR Name[1] ;

} KEY_VALUE_BASIC_INFORMATION. *PKEY_VALUE_BASIC_INFORMATION;

Once again, having the name of the value and an open handle to its parent key is
just what you need to retrieve the value, as shown in the previous section.

There are variations on ZwQueryKey and on these two enumeration functions
that I haven't discussed. You can, for example, obtain full information about a
subkey when you call ZwEnumerateKey. I showed you only how to get the basic
information that includes the name. You can retrieve data values only, or names
plus data values, from ZwEnumerateValueKey. I showed you only how to get the
name of a value.

Accessing Files
It's sometimes useful to be able to read and write regular disk files from inside a WDM
driver. Perhaps you need to download a large amount of microcode to your hard
ware, or perhaps you need to create your own extensive log of information for some
purpose. There's a set of ZwXxx routines to help you do these things.

The first step in accessing a disk file is to open a handle by calling ZwCreateFile.
The full deSCription of this function in the DDK is relatively complex because of all the
ways in which it can be used. I'm going to show you two simple scenarios, however,
that are useful if you just want to read or write a file whose name you already know.

123

Programming the Microsoft Windows Driver Model

124

Opening an Existing File for Reading
To open an existing file so that you can read it, follow this example:

NTSTATUS status;
OBJECT-ATTRIBUTES oa;
IO_STATUS_BLOCK iostatus;
HANDLE hfile;
PUNICODE_STRING pathname;

II ~ the output from this process
II ~ you've been given this

InitializeObjectAttributes(&oa. pathname. OBJ_CASE_INSENSITIVE.
NULL. NULL);

status = ZwCreateFile(&hfile. GENERIC_READ. &oa. &iostatus.
NULL. 0. FILE_SHARE_READ. FILE_OPEN.
FILE_SYNCHRONOUS_IO_NONALERT. NULL. 0);

Creating or Rewriting a File
To create a new file, or to open and truncate to zero length an existing file, replace
the call to ZwCreateFile in the previous fragment with this one:

status = ZwCreateFll e(&hfll e. GENERILWRITE. &oa. &i ostatus.
NULL. FILE-ATTRIBUTE_NORMAL. 0. FILE_OVERWRITE_IF.
FILE_SYNCHRONOUS_IO_NONALERT. NULL. 0);

In these fragments, we set up an Object Attributes structure whose main pur
pose is to point to the full pathname of the file we're about to open. We specify the
OBJ_CASEJNSENSITIVE attribute because the Win32 file system model does not treat
case as significant in a pathname. Then we call ZwCreateFile to open the handle.

The first argument to ZwCreateFile (&hflle) is the address of the HANDLE
variable where ZwCreateFile will return the handle;: it creates. The second argument
(GENERIC_READ or GENERIC_WRITE) specifies the access we need to the handle
to perform either reading or writing. The third argument (&oa) is the address of the
OBJECT_ATfRIBUfES structure containing the name of the file. The fourth argument
points to an IO_STATIJS_BLOCK that will receive a disposition code indicating how
ZwCreateFile actually implemented the operation we asked it to perform. When we
open a read-only handle to an existing file, we expect the Status field of this struc
ture to end up equal to FILE_OPENED. When we open a write-only handle, we expect
it to end up equal to FILE_OVERWRITTEN or FILE_CREATED, depending on whether
the file did or did not already exist. The fifth argument (NUll.) can be a pointer to
a 64-bit integer that specifies the initial allocation size for the file. This argument
matters only when you create or overwrite a file, and omitting it as I did here means
that the file grows from zero length as you write data. The sixth argument (0 or
FILE...ATfRIBUTE_NORMAL) specifies file attribute flags for any new file that you
happen to create. The seventh argument (FILE_SHAKE_READ or 0) specifies how
the file can be shared by other threads. If you're opening for input, you can probably

Chapter 3 Basic Progr.ming Tecbnlques

tolerate having other threads read the file simultaneously. If you're opening for sequen
tial output, you probably don't want other threads trying to access the file at all.

The eighth argument (Fll.E_OPEN or Fll.E_OVERWRITE_IF) indicates how to
proceed if the fIle either already exists or doesn't. In the read-only case, I specified
FILE_OPEN because I expected to open an existing file and wanted a failure if the
file didn't exist. In the write-only case, I specilled FILE_OVER WRITE_IF because I
wanted to overwrite any existing file by the same name or create a brand new file
as necessary. The ninth argument (Fll.E_SYNOIRONOUS_IO_NONALERT) specifIes
additional flag bits to govern the open operation and the subsequent use of the handle.
In this case, I indicated that I'm going to be doing synchronous I/O operations
(wherein I expect the read or write function not to return until the I/O is complete).
The tenth and eleventh arguments (MJU. and 0) are, respectively, an optional pointer
to a buffer for extended attributes and the length of that buffer.

You expect ZwCreateFile to return STATUS_SUCCESS and to set the handle vari
able. You can then carry out whatever read or write operations you please by calling
ZwReadFlle or ZwWriteFll.e, and then you close the handle by calling ZwClose:

ZwCl ose(hfll e) :

You can perform synchronous or asynchronous reads and writes, depending
on the flags you specifIed to ZwCreateFile. In the simple scenarios I've outlined, you
would do synchronous operations that don't return until they've completed. For
example:

PYOID buffer:
ULONG bufsize:
status = ZwReadFile(hfile. NULL. NULL. NULL. &1ostatus. buffer.

bufsize. NULL: NULL):

-or-

status = ZwWriteFile(hf11e. NULL. NULL. NULL. &iostatus. buffer.
bufs1ze. NULL. NULL):

These calls are analogous to a nonoverlapped ReadFlle or WriteFlle call from user
mode. When the function returns, you might be interested in iostatus.blformation,
which will hold the number of bytes transferred by the operation.

If you plan to read an entire file into a memory buffer, you would probably want
to call ZwQueryInformationFlle to determine the total length of the file:

FILE_STANDARD_INFORMATION s1:
ZwOuerylnformat1onF1le(hf1le. &1ostatus. &si. s1zeof(si).

FileStandardInformation):
ULONG length = si.EndOfF1le.LowPart:

125

Programming the Microsoft Windows Driver Model

TIMING OF FILE OPERATIONS

You'll be likely to want to read a disk file in a WDM driver while you're initializing
your device in response to an IRP _MN_START_DEVICE request. (See Chapter 6.)
Depending on where your device falls in the initialization sequence, you might
or might not have access to files using normal pathnames like \??\C:\dir\file.ext.
To be safe, put your data files into some directory below the system root di
rectory and use a filename like \SystemRoot\dir\file.ext. The SystemRoot branch
of the namespace is always accessible, since the operating system has to be able
to read disk files to start up.

Floating.Point Calculations
There are times when integer arithmetic just isn't sufficient to get your job done and
you need to perform floating-point calculations. On an Intel processor, the math co
processor is also where Multimedia Extensions (MMX) instructions execute. His
torically, there have been two problems with drivers carrying out floating-point
calculations. The operating system will emulate a missing coprocessor, but the emu
lation is expensive and normally requires a processor exception to trigger it. Handling
exceptions, especially at elevated IRQLs, can be difficult in kernel mode. Additionally,
on computers that have hardware coprocessors, the CPU architecture might require
a separate, expensive operation to save and restore the coprocessor state during con
text switches. Therefore, conventional wisdom has forbidden kernel-mode drivers
from using floating-point calculations.

Windows 2000 and Windows 98 provide a way around past difficulties. First of
all, a system thread-see Chapter 9--running at or below DISPATCH_LEVEL is free to
use the math coprocessor all it wants. In addition, a driver running in an arbitrary
thread context at or below DISPATCH_LEVEL can use these two system calls to bracket
its use of the math coprocessor:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
KFLOATING_SAVE FloatSave;
NTSTATUS status = KeSaveFloatingPointState(&FloatSave);
if (NT_SUCCESS(status»

{

KeRestoreFloatingPointState(&FloatSave);
}

These calls, which must be paired as shown here, save and restore the "nonvola
tile" state of the math coprocessor for the current CPU-that is, all the state informa
tion that persists beyond a single operation. This state information includes registers,

Chapter 3 Basic Programming Techniques

control words, and so on. In some CPU architectures, no actual work might occur
because the architecture inherently allows any process to perform floating-point
operations. In other architectures, the work involved in saving and restoring state
information can be quite substantial. For this reason, Microsoft recommends that you
avoid using floating-point calculations in a kernel-mode driver unless necessary.

What happens when you call KeSaveFloatingPointState depends, as I said,
on the CPU architecture. To give you an idea, on an Intel-architecture processor, this
function saves the entire floating-point state by executing an FSAVE instruction. It can
save the state information either in a context block associated :with the current thread
or in an area of dynamically allocated memory. It uses the opaque FloatSave area to
record "meta" information about the saved state to allow KeRestoreF1oatingPointState
to correctly restore the state later.

KeSaveFloatingPointState will fail with STATUS_ILLEGAL_FLOAT_CONTEXT if
there's no real coprocessor present. (All CPUs of a multi-CPU computer must have
coprocessors, or else none of them may, by the way.) Your driver will therefore need
alternative code to carry out whatever calculations you had in mind, or else you'll
want to decline to load (by failing DriverEntry) if the computer doesn't have a
coprocessor.

Making Debugging Easier
My drivers always have bugs. Maybe you're as unlucky as I am. If so, you'll find
yourself spending lots of time with a debugger trying to figure out what your code
is doing or not doing correctly or incorrectly. I won't discuss the potentially divisive
subject of which debugger is best or the noncontroversial but artistic subject of how
to debug a driver. But you can do some things in your driver code that will make
your life easier.

When you build your driver, you select either the "checked" or the "free" build
environment. (Readers may now thank me for not making a bad joke about how the
opposite of "checked" ought really to be named "striped" or something like that.) In
the checked build environment, the preprocessor symbol DBG equals 1, whereas it
equals 0 in the free build environment. So, one of the things you can do in your own
code is to provide additional code that will take effect only in the checked build:

IIi f DBG
<extra debugging code>

Ilend; f

One of the most useful debugging techniques ever invented is to simply print
messages from time to time. I used to do this when I was first learning to program
(in FORTRAN on a computer made out of vacuum tubes, no less), and I still do it
today. DbgPrint is a kernel-mode service routine you can call to display a formatted
message in whatever output window your debugger provides. Another way to see

127

Programming the Microsoft Windows Driver Model

128

the output from DbgPrint calls is to download the DbgView utility from http://
www.systnternals.com.InsteadofdirectlyreferencingDbgPrintinyourcode.it·s often
easier to use the macro named KdPrint,which calls DbgPrint if DBG is true and
generates no code at all if DBG is false:

KdPri nt« "KeReadProgrammersMi nd fail ed wi th code %X\n". status»;

You use two sets of parentheses with KdPrint because of the way it's defined. The first
argument is a string with o/o-escapes where you want to substitute values. The second,
third, and following arguments provide the values to go with the o/o-escapes. The
macro expands into a call to DbgPrint, which internally uses the standard run-time
library routine _vsnprintf to format the string. You can, therefore, use the same set
of o/o-escape codes that are available to application programs that call this routine.

Another useful debugging technique relies on the ASSERT macro:

ASSERT(1 + 1 == 2);

In the checked build of your driver, ASSERT generates code to evaluate the Boolean
expression. If the expression is false, ASSERT will try to halt execution in the debugger
so that you can see what's going on. If the expression is true, your program continues
executing normally.

If you debug with Soft-Ice/W from Compuware (formerly Nu-Mega Technologies,
Inc.), the ASSERT macro in the DDK isn't as useful as it might be. First of all, it relies
on calling RtlAssert, which does nothing in the free version of the operating sys
tem. (You should test your driver in the checked build, but you can debug it perfectly
well in the free build.) Second, if it does generate a debug exception, it does so inside
RtlAssert rather than in the execution context of your code, which makes it more
difficult for you to inspect local variables. You can replace the DDK ASSERT macro
(for x86 only, which is the only place Soft-Ice/W currently runs anyway) to overcome
these problems as follows:

Hif DBG && defined(_X86_)
ffundef ASSERT
ffdefine ASSERT(e) if(!(e»{DbgPrint("Assertion failure in "\

__)FILE_) ". 1 ine %d: " ffe "\n". __ LINE_);\
_asm int 1\
}

ffend; f

Also remember to issue the Soft-Ice/W command ilhere on so that the INT 1
traps from your ASSERT macros actually cause the debugger to halt. A possible dis
advantage to replacing ASSERT like this is that you will bugcheck even in the free
build of the operating system if you're not running a debugger when one of these
ASSERTs fails.

Chapter 3 Basic Programming Techniques

WINDOWS 98 COMPATIBILITY NOTES
The ZwXxx routines for accessing disk mes don't work in the retail release of Win
dows 98 because of two basic problems-one from the architecture of Windows and
the other from what looks like an ordinary bug.

The fIrst problem with me access has to do with the order in which Windows 98
initializes various virtual device drivers. The ConfIguration Manager (CONFIGMG.VXD)
initializes before the Installable File System Manager (IFSMGR.VXD). WDM drivers for
devices that exist at startup time receive their IRP _MN_START_DEVICE requests during
CONFIGMG's initialization phase. But, since IFSMGR hasn't initialized at that point,
it's not possible to perform me I/O operations by using ZwCreateFile and the other
functions discussed earlier in the chapter. Furthermore, there's no way for a WDM
driver to defer handling IRP _MN_START_DEVICE until me system functionality becomes
available. If you don't have a debugger like Soft-IceIW running, the symptom you will
§ee is a blue screen complaining of a Windows Protection Error while initializing
CONFIGMG.

The second and mote crippling problem with me access has to do with the
validity checking that ZwReadFile, ZwWriteFile, and ZwQueryInformationFile do on
their arguments. If you supply an IO_STATUS_BLOCK in kernel-mode memory (and
there's basically no way to do anything else), these functions probe a virtual address
that doesn't exist. The resulting page fault gets caught by a structured exception
handler and results in you getting back STATUS_ACCESS_ VIOLATION even when
you've done everything right. There is no workaround for this 'problem in the
July 1998 retail release of Windows 98.

The FILEIO sample on the companion disc illustrates a way past these Windows 98
diffIculties. FILEIO makes a run-time decision whether to call the ZwXxx functions
or instead to call VxD selVices to perform me operations.

129

Chapter 4

Synchronization

Microsoft Windows 2000 is a multitasking operating system that can run in a sym
metric multiprocessor environment. It's not my purpose here to provide a rigorous
description of the multitasking capabilities of Microsoft Windows NT; one good place
to get more information is David Solomon's Inside Windows NT, Second Edition
(Microsoft Press, 1998). All we need to understand as driver writers is that our code
executes in the context of one thread or another (and the thread context can change
from one invocation of our code to another) and that the exigencies of multitasking
can yank control away from us at practically any moment. Furthermore, true simul
taneous execution of multiple threads is possible on a multiprocessor machine. In
general, we need to assume two worst-case scenarios:

• The operating system can preempt any subroutine at any moment for an
arbitrarily long period of time, so we cannot be sure of completing criti
cal tasks without interference or delay.

• Even if we take steps to prevent preemption, code executing simulta
neously on another CPU in the same computer can interfere with our
code-it's even possible that the exact same set of instructions belonging
to one of our programs could be executing in parallel in the context of
two· different threads.

Windows NT allows you to solve these general synchronization problems by
usfug the interrupt request level (IRQL) priority scheme and by claiming and releas
ing spin locks around critical code sections. IRQL avoids destructive preemption on
a single CPU, while spin locks forestall interference among CPUs.

131

Pngralllllnl the Microsoft Windows Driver Modal

AN ARCHETYPAL SYNCHRONIZATION PROBLEM

132

A hackneyed example will motivate this discussion. Suppose your driver had a static
integer variable that you used for some purpose, say to count the number of I/O
requests that were currently outstanding:

static LONG lActiveRequests;

Suppose further that you increment this variable when you receive a request
and decrement it when you later complete the request:

NTSTATUS DispatchPnp(PDEVICE-OBJECT fdo. PIRP Irp)
{

++lActiveRequests;
... II process PNP request
--lActiveRequests;
}

I'm sure you recognize already that a counter like this one ought not to be a
static variable: it should be a member of your device extension so that each device
object has its own unique counter. Bear with me and pretend that your driver only
ever manages a single device. To make the example more meaningful, suppose fi
nally that a function in your driver would be called when it was time to delete your
device object. You might want to defer the operation until no more requests were
outstanding, so you might insert a test of the counter:

NTSTATUS HandleRemoveDevice(PDEVICE-OBJECT fdo. PIRP Irp)
{

if (lActiveRequests)
<wait for a77 requests to comp7ete>

IoDeleteDevice(fdo);
}

1his example describes a real problem, by the way, which we'll tackle in Chajr
ter 6, "Plug and Play," in our discussion of Plug and Play (PnP) requests. The I/O Manager
can try to remove one of our devices at a time when requests are active, and we need
to guard against that by keeping some sort of counter. I'll show you in Chapter' 6 how
to use IoAcquireRemoveL and some related functions to solve the problem.

A horrible synchronization problem lurks in the code fragments I just showed
you, but it becomes apparent only if you look behind the increment and decrement
operations inside DispatchPnp. On an x86 processor, the compiler might implement
them using these instructions:

++lActiveRequests;
mov ea·x. lActiveRequests
add eax. 1
mov lActiveRequests. eax

--lActiveRequests;
mov eax. lActiveRequests
sub eax. 1
mov lActiveRequests. eax

Chapter 4 Synchronization

To expose the synchronization problem, let's consider ftrst what might go wrong
on a single CPU. Imagine two threads that are both trying to advance through
DispatchPnp at roughly the same time. We know they're not both executing truly si
multaneously because we have only a single CPU for them to share. But imagine that
one of the threads is executing near the end of the function and manages to load the
current contents of lA~equests into the EAX register just before it gets preempted
by the other thread. Suppose that lActiveRequests equals 2 at that instant. As part of
the thread switch, the operating system saves the EAX register (containing the value
2) as part of the outgoing thread's context image somewhere in main memory.

Now imagine that the other thread manages to get past the incrementing code
at the beginning of DispatchPnp. It will increment lActiveRequests from 2 to 3 (be
cause the ftrst thread never got to update the variable). If this other thread gets pre
empted by the ftrst thread, the operating system will restore the first thread's context,
which includes the value 2 in the EAX register. The first thread now proceeds to
subtract one from EAX and store the result back into lActiveRequests. At this point,
lActiveRequests contains the value 1, which is incorrect. Somewhere down the road,
we may prematurely delete our device object because we've effectively lost track of
one I/O request.

Solving this particular problem is very easy on an x86 computer-we just re
place the load/add/store and load/subtract/store instruction sequences with atomic
instructions:

++lActiveRequests;
inc lActiveRequests

--lActiveRequests;
dec lActiveRequests

On an Intel x~6, the INC and DEC instructions cannot be interrupted, so there
will never be a case where a thread could be preempted in the middle of updating
the counter. As it stands, though, this code still isn't safe in a multiprocessor environ
ment because INC and DEC are implemented in several microcode steps. It's pos
sible for two different CPUs to be executing their microcode just slightly out of step
such that one of them ends up updating a stale value. The multi-CPU problem can
also be avoided in the x86 architecture by using a LOCK preftx:

++lActiveRequests;
lock inc lActiveRequests

--lActiveRequests;
lock dec lActiveRequests

133

Programming the Microsoft Windows Driver Model

The LOCK instruction preftx locks out all other CPUs while the microcode for
the current instruction executes, thereby guaranteeing data integrity.

Not all synchronization problems have such an easy solution, unfortunately. The
point of this example isn't to demonstrate how to solve one simple problem on one
of the platforms where Windows NT runs, but rather to illustrate the two sources of
difficulty: preemption of one thread by another in the middle of a state change and
simultaneous execution of conflicting state-change operations. As we'll see in the
remainder of this chapter, we can avoid preemption by using the IRQL priority
scheme, and we can prevent simultaneous execution by judiciously using spin locks.

INTERRUPT REQUEST LEVEL

134

Windows NT assigns a priority level known as the interrupt request level to each
hardware interrupt and to a select few software events. IRQLs provide a synchroni
zation method for activities on a single CPU based on the following rule:

Once a CPU is executing at an IRQL above PASSIVE_LEVEL, an activity on that
CPU can be preempted only by an activity that executes at a higher IRQL.

Figure 4-1 illustrates the range of IRQL values for the xs6 platform. (In general,
the numeric values of IRQL depend on which platform you're talking about.) User
mode programs execute at PASSIVE_LEVEL and are therefore preemptable by any
activity that executes at an elevated IRQL. Many of the functions in a. device driver
also execute at PASSIVE_LEVEL. The DriverEntry and AddDevice routines discussed
in Chapter 2, "Basic Structure of a WDM Driver," are in this category, as are most of
the I/O request packet (IRP) dispatch routines that I'll discuss in ensuing chapters.

Certain common driver routines execute at DISPATCH_LEVEL, which is higher
than PASSIVE_LEVEL. These include the StartIo routine, deferred procedure call
(DPC) routines, and many others. What they have in common is a need to access ftelds
in the device object and device extension without interference from driver dispatch
routines and each other. When one of these routines is running, the rule stated ear
lier guarantees that no thread can preempt it to execute a driver dispatch routine
because the dispatch routine runs at a lower IRQL. Furthermore, no thread could
preempt it to run another of these special routines because that other routine would
run at the same IRQL. The rule, once again, is that preemption is allowed to run only
an activity at a higher IRQL.

NOTE Dispatch routine and DISPATCH_LEVEL have unfortunately similar
names. Dispatch routines are so called because the 1/0 Manager dispatches 1/0
requests to them. DISPATCH_LEVEL is so called because it's the IRQL at which
the kernel's thread dispatcher originally ran when deciding which thread to run
next. (The thread dispatchernow usually runs at SYNCHJ-EVEL, if you care.)

Chapter 4 Synchronization

31

30

29

28

28

27

2

o

Figure 4-1. Intemtpt request levels.

Between DISPATCH_LEVEL and PROFILE_LEVEL is room for various hardware
interrupt levels. In general, each device that generates interrupts has an IRQL that
defines its interrupt priority vis-a.-vis other devices. A WDM driver discovers the IRQL
for its interrupt when it receives an IRP _:.MLPNP request with the minor function code
IRP _MN_START_DEVICE. The device's interrupt level is one of the many items of con
figuration information passed as a parameter to this request. We often refer to this
level as the device IRQL, or DIRQL for short. DIRQL is not a single request level. Rather,
it is the IRQL for the interrupt associated with whichever device is under discussion
at the time.

The other IRQL levels have meanings that sometimes depend on the particular
CPU architecture. Since those levels are used internally by the Windows NT kernel,
their meanings aren't especially germane to the job of writing a device driver. The
purpose of APC_LEVEL, for example, is to allow the system to schedule an asynchro
nous procedure call (APC), which I'll describe in detail later in this chapter, for a
particular thread without interference from some other thread on the same cpu.
Operations that occur at HIGH_LEVEL include taking a memory snapshot just prior
to hibernating the computer, processing a bug check, handling a totally spurious
interrupt, and others. I'm not going to attempt to provide an exhaustive list here
because, as I said, you and I don't really need to know all the details.

135

Programming the Microsoft Windows Driver Model

IRQL in Operation
To illustrate the importance of IRQL, refer to Figure 4-2, which illustrates a possible time
sequence of events on a single CPU. At the beginning of the sequence, the CPU is
executing at PASSIVE_LEVEL. At time tl' an interrupt arrives whose service routine
executes at IRQL-l, one of the levels between DISPATCH_LEVEL and PROFILE_LEVEL.
Then, at time t2, another interrupt arrives whose service routine executes at IRQL-2,
which is less than IRQL-l. Because of the preemption rule already discussed, the CPU
continues servicing the first interrupt. When the first interrupt service routine com
pletes at time t3, it might request a DPC. DPC routines execute at DISPATCH_LEVEL.
Consequently, the highest priority pending activity is the service routine for the sec
ond interrupt, which therefore executes next. When it finishes at t4, assuming noth
ing else has occurred in the meantime, the DPC will run at DISPATCH_LEVEL. When
the DPC routine finishes at ts, IRQL can drop back to PASSIVE_LEVEL.

IRQL-1 · · ·T r .. ·;:~~~~ · ..
........... ···············r-·.... ··········l···~,:~~:~:~Eva
............................ [" ["

PASSIVE_LEVEL I r r · · .. r .. · ·
Figure 4-2. Interrupt priority in action.

The Basic Synchronization Rule

136

You can take advantage of IRQL's synchronizing effects by following this rule:

Always access shared data at the same elevated I ROL.

In other words, whenever and wherever your code will access a data object that
it shares with some other code, make sure that you execute at some specified IRQL
above PASSIVE_LEVEL. Once above PASSIVE_LEVEL, the operating system won't
allow preemption by another activity at the same IRQL, so you thereby forestall
potential interference. Following this rule isn't sufficient to protect data on a multi
processor machine, however, so you often need to take the additional precaution of
acquiring a spin lock, as described in "Spin Locks" later in this chapter. If you only
had to worry about operations on a single CPU, IRQL might be the only synchro
nizing concept you'd need to use, but the reality is that all WDM drivers must be
designed to run on multiprocessor systems.

Chapter 4 Synchronization

IRQL Compared with Thread Priorities
Thread priority is a very different concept than IRQL. Thread priority controls the ac
tions of the scheduler in deciding when to preempt running threads and what thread
to start running next. No thread switching occurs at or above DISPATCH_LEVEL,
however. Whatever thread is active at the time IRQL rises to DISPATCH_LEVEL re
mains active at least until IRQL drops below DISPATCH_LEVEL. The only "priority"
that means anything at elevated IRQL is IRQL itself, and it controls which programs
can execute rather than the thread context within which they execute.

IRQL and Paging
One consequence of running at elevated IRQL is that the system becomes incapable
of servicing page faults. The rule this fact implies is Simply stated:

Code executing at or above DISPATCH_LEVEL must not cause page faults.

One implication of this rule is that any of the subroutines in your driver that exe
cute at or above DISPATCH_LEVEL must be in nonpaged memory. Furthermore,. all the
data you access in such a subroutine must also be in nonpaged memory. Finally, as IRQL
rises, fewer and fewer kernel-mode support routines are available for your use.

The DDK documentation explicitly states the IRQL restrictions on support rou
tines. For example, the entry for KeWaitForSingleObject indicates two restrictions:

1. The caller must be running at or below DISPATCH_LEVEL.

2. If a nonzero timeout period is specified in the call, the caller must be run
ning strictly below· DISPATCH_LEVEL.

Reading between the lines, what is being said here is this: if the call to
KeWaitForSingleObject might conceivably block for any period of time (that is, you've
specified a nonzero timeout), you must be below DISPATCH_LEVEL, where thread
blocking is permitted. If all you want to do is check to see if an event has been sig
nalled, however, you can be at DISPATCH_LEVEL. You cannot call this routine at all
from an interrupt service routine or other routine runriing above DISPATCH_LEVEL.

Implicitly Controlling IRQL
Most of the time, the system calls the routines in your driver at the correct IRQL for
the activities you're supposed to carry out. Although I haven't discussed many of these
routines in detail, I want to give you an example of what I mean. Your first encoun
ter with a new I/O request is when the I/O Manager calls one of your dispatch rou
tines to process an IRP. The call occurs at PASSIVE_LEVEL because you might need
to block the calling thread and you might need to call any support routine at all. You
can't block a thread at a higher IRQL, of course, and PASSIVE_LEVEL is the only level
at which there are no restrictions on the support routines you can call.

137

Programming the Microsoft Windows Driver Model

If your dispatch routine queues the IRP by calling IoStartPacket, your next en
counter with the request will be when the I/O Manager calls your Startlo routine. This
call occurs at DISPATCH_LEVEL because the system needs to access the queue of
I/O requests without interference from the other routines that are inserting and re
moving IRPs from the queue. Remember the rule stated earlier: always access shared
data objects at the same (elevated) IRQL. Since every routine that accesses the IRP
queue does so at DISPATCH_LEVEL, it's not possible (on a single CPU, that is) for
anyone to be interrupted in the middle of an operation on the queue.

Later on, your device might generate an interrupt, whereupon your interrupt
service routine will be called at DIRQL. It's likely that some registers in your de
vice can't safely be shared. If you only access those registers at DIRQL, you can
be sure that no one can interfere with your interrupt service routine (ISR) on a single
CPU computer. If other parts of your driver need to access these crucial hardware
registers, you would guarantee that those other parts execute only at DIRQL. The
K.eSynchronJzeExecution service function helps you enforce that rule, and I'll dis
cuss it in Chapter 7, "Reading and Writing Data," in connection with interrupt handling.

Still later, you might arrange to have a DPC routine called. DPC routines exe
cute at DISPATCH_LEVEL because, among other things, they need to access your IRP
queue to remove the next request from a queue and pass it to your Startlo routine.
You call the IoStartNextPacket service routine to extract the next request from the
queue, and it must be called at DISPATCH_LEVEL. It might call your Startlo routine
before returning. Notice how neatly the IRQL requirements dovetail here: queue access,
the call to IoStartNextPacket, and the possible call to StartIo are all required to occur
at DISPATCH_LEVEL, and that's the level at which the system calls the DPC routine.

Although it's possible for you to explicitly control IRQL (and I'll explain how
in the next section), there's seldom any reason to do so because of the correspondence
between your needs and the level at which the system calls you. Consequently, you
don't need to get hung up on which IRQL you're executing at from moment to mo
ment: it's almost surely the correct level for the work you're supposed to do right then.

Explicitly Controlling IRQL
When necessary, you can raise and subsequently lower the IRQL on the current pro
cessor by calling KeRaiseIrql and KeLowerIrql. For example, from within a rou
tine running at PASSIVE_LEVEL:

KIRQL oldirql;
ASSERT(KeGetCurrentlrql() <= DISPATCH_LEVEL);
KeRaiseIrql(DISPATCH_LEVEL. &oldirql);

~ KeLowerIrql(oldirql);

138

Chapter 4 Synchronization

1. KIRQL is the typedef name for an integer that holds an IRQL value. We'll
need a variable to hold the current IRQL, so we declare it this way.

2. This ASSERT expresses a necessary condition for calling KeRaiseIrql: the
new IRQL must be greater than or equal to the current level. If this rela
tion isn't true, KeRaiseIrql will bugcheck (that is, report a fatal error via a
blue screen of death).

3. KeRaiselrql raises the current IRQL to the level specified by the first ar
gument. It also saves the current IRQL at the location pointed to by the
second argument. In this example, we're raising IRQL to DISPATCH_LEVEL
and saving the current level in oldirql.

4. After executing whatever code we desired to execute at elevated IRQL, we
lower the request level back to its previous value by calling KeLowerIrql
and specifying the oldirql value previously returned by KeRaiseIrql.

The DDK documentation says that you must call KeLowerIrql with the same
value returned by the immediately preceding call to KeRaiseIrql. This is true in the
larger sense that you should restore IRQL to what it was before you raisetl it. Other
wise, various assumptions made by code you call later or by the code which called
you can later turn out to be incorrect. This statement in the documentation isn't true
in the exact sense, however, because the only rule that KeLowerIrql actually applies
is that the new IRQLmust be less than or equal to the current one.

It's a mistake (and a big one!) to lower IRQL below whatever it was when some
system routine called your driver, even if you raise it back before returning. Such a
break in synchronization might allow some activity to preempt you and interfere with
a data object that your caller assumed would remain inviolate.

, You can use a special routine if you want to raise theIRQL to DISPATCH_LEVEL:

KIROL oldirql = KeRaiselrqlToDpcLevel();

KeLowerlrql(oldirql);

The advantage of using this service call is that you don't need to know or re
member that DISPATCH_LEVEL is the level you're aiming for. In addition, since
KeRaiseIrqlToDpcLevel returns the current IRQL as its value, this function is slightly
more convenient to use than KeRaiseIrql.

SPIN LOCKS
Since IRQL is a per-CPU concept, it doesn't help you safeguard data against interfer
ence by code running on another processor in the same multiprocessor computer.
A primitive object known as a spin lock serves that purpose. To acquire a spin lock,

139

Programming the Microsoft Windows Driver Model

code on one CPU executes an atomic operation that tests and then sets some memory
variable in such a way that no other CPU can access the variable until the operation
completes. If the test indicates that the lock was previously free, the program con
tinues. If the test indicates that the lock was previously busy, the program repeats
the test-and-set in a tight loop: it "spins." Eventually the owner releases the lock by
resetting the variable, whereupon one of the waiting CPUs' test-and-set operations
will report the lock as free.

Two facts about spin locks are probably obvious but still worth stating. First of
all, if a CPU already owns a spin lock and tries to obtain it a second time, the CPU
will deadlock. No usage counter or owner identifier is associated with a spin lock;
the lock is either owned by somebody or not. If you try to acquire it when it's owned,
you will wait until the owner releases it. If your CPU happens to already be the owner,
the code which would release the lock can never execute because you're spinning
in a tight loop testing and setting the lock variable.

The second fact about spin locks is that no useful work occurs on a CPU that's
, waiting for a spin lock. Therefore, to avoid harming performance, you need to mini

mize the amount of work you do while holding a spin lock that some other CPU is

likely to want.
There's another important fact about spin locks that's not obvious but still pretty

important: you can only request a spin lock when you're running at or below
DISPATCH_LEVEL, and the kernel will raise the IRQL to DISPATCH_LEVEL for the du
ration of your ownership of the lock. Internally, the kernel is able to acquire spin locks
at an IRQL higher than DISPATCH_LEVEL, but you and I are unable to accomplish
that feat.

Working with Spin Locks

140

To use a spin lock explicitly, allocate storage for a KSPIN_LOCK object in nonpaged
memory. Then call KeInitia1izeSpinLock to initialize the object. Later, while run
ning at or below DISPATCH_LEVEL, acquire the lock, perform the work that needs
to be protected from interference, and then release the lock. For example, suppose
that your device extension contains a spin lock named QLOck that you use for guard
ing access to a special IRP queue you've set up. You'd initialize this lock in your
AddDevice function:

typedef struct _DEVICE_EXTENSION {

KSPIN_lOCK Qlock;
} DEVICE-EXTENSION. *PDEVICE_EXTENSION;

Chapter 4 Synchronization

NTSTATUS AddDevice(...)
{

PDEVICE-EXTENSION pdx =
KelnitializeSpinLock(&pdx->OLock):

}

Elsewhere in your driver, say in the dispatch function for some type of IRP, you
could claim (and quickly release) the lock around some queue manipulation that you
needed to perform. Note that this function must be in nonpaged memory because it
executes for some period of time at an elevated IRQL.

NTSTATUS DispatchSomething(...)
{

KIROL oldirql:
PDEVICE_EXTENSION pdx = ••••

~ KeAcquireSpinLock(&pdx->OLock. &oldirql):

~ KeReleaseSp1nLock(&pdx->QLock. old1rql):
}

1. When KeAcquireSpinLock acquires the spin lock, it also raises IRQL to
DISPATCH_LEVEL and returns the current (that is, preacquisition) levelto
us wherever the second argument points.

2. When KeRe1easeSpinLock releases the spin lock, it also lowers IRQL
back to the value specified in the second· argument.

If you know you're already executing at DISPATCH_LEVEL, you can save a little
time by calling two special routines. This technique is appropriate, for example, in
DPC, Startlo, and other driver routines that execute at DISPATCH_LEVEL:

KeAcqujreSpinLockAtDpcLevel(&pdx->OLock):

KeReleaseSpinLockFromDpcLevel(&pdx->OLock):

KERNEL DISPATCHER OSdECTS
The Windows NT kernel provides five types of synchronization objects that you can
use to control the flow of nonarbitrary threads. See Table 4-1 fora summary of these
kernel dispatcher object types and their uses. At any moment, .one of these objects
is in one of two states: signalled or not-Signalled. At times when it's permissible
for you to block a thread in whose context you're running, you can wait for one
or more objects too reach the Signalled state by calling KeWaitForSingleObject or
KeWaitForMultipleObjects. The kernel also provides routines for initializing and
controlling the state of each of these objects.

141

Programming the Microsoft Windows Driver Model

Object Data Type Description

Event KEVENT Blocks a thread until some other thread
detects that an event has occurred

Semaphore KSEMAPHORE Used instead of an event"when an arbi-
trary number of wait calls can be satisfied

Mutex KMUTEX Excludes other threads- from executing a
particular section of code

Timer KTIMER Delays execution of a thread for some
period of time

Thread KTHREAD Blocks one thread until another thread
terminates

Table 4-1. Kernel dispatcher objects.

In the next few sections, I'll describe how to use the kernel dispatcher objects.
I'll start by explaining when you can block a thread by calling one of the wait primi
tives, and then I'll discuss the support routines that you use with each of the object
types. I'll fmish this section by discussing the related concepts of thread alerts· and
asynchronous procedure call delivery.

How and When You Can Block

142

To understand when and how it's permissible for a WDM driver to block a thread
on a kernel dispatcher object, you have to know some basic facts about threads. In
general, whatever thread was executing at the time of a software or hardware inter
rupt continues to be the "current" thread while the kernel processes the interrupt.
We speak of executing kernel-mode code "in the context" of this current thread. In
response to interrupts of various kinds, the Windows NT scheduler might decide to
switch threads, of course, in which case a new thread becomes "current."

We use the terms arbitrary thread context and nonarbitrary thread context to
describe the precision with which we can know the thread in whose context we're
currently operating in a driver subroutine. If we know that we're in the context of
the thread which initiated an I/O request, the context is not arbitrary. Most of the time,
however, a WDM driver can't know this' fact because chance usually controls which
thread is active when the interrupt occurs that results in the driver being called. When
applications issue I/O requests, they cause a transition from user mode to kernel
mode. The I/O Manager routines that create an IRP and send it to a driver dispatch
routine continue to operate in this nonarbitrary thread context, as does the first dis
patch routine to see the IRP. We use the term highest-level driver to describe the driver
whose dispatch routine first receives the IRP.

As a general rule, only the highest-level driver for a given device can know for
sure that it's operating in a nonarbitrarythread context. This is because driver dispatch

Chapter 4 Synchronization

routines often put requests ontd queues and return back to their callers. Queued re
quests are then removed from their queues and forwarded to lower-level drivers from
within callback routines that execute later. Once a dispatch routine pends a request,
all subsequent processing of that request must occur in arbitrary thread context.

Having explained these facts about thread context, we can state a Simple rule
about when it's okay to block a thread:

Block only the thread that originated the request you're working on.

To follow this rule, you generally have to be the highest-level driver for the
device that's getting sent the IRP. One important exception occurs for requests like
IRP _MN_START_DEVICE-see Chapter 6-that all drivers process in a synchronous
way. That is, drivers don't queue or pend certain requests. When you receive one of
these requests, you can trace the call/return stack directly back to the originator of
the request. As we'll see in Chapter 6, it's not only okay for you to block the thread
in which you process these requests, but blocking and waiting is the prescribed way
to handle them.

One more rule should be obvious from the fact that thread switching doesn't
occur at elevated IRQL:

You can't block a thread if you're executing at or above DISPATCH_LEVEL.

As a practical matter, this rule means that you must be in your DriverEntry or
AddDevice function to block the current thread, or else in a driver dispatch function.
All of these functions execute at PASSNE_LEVEL. I'm hard-pressed to think of why
you might need to block to finish DriverEntry or AddDevice, even, because those
functions merely initialize data structures for downstream use.

Waiting on a Single Dispatcher Object
You call KeWaitForSingleObject as illustrated in the following example:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LARGE_INTEGER timeout;
NTSTATUS status = KeWaitForSingleObject(object. WaitReason.

WaitMode. Alertable. &timeout);

As suggested by the ASSERT, you must be executing at or below DISPATCH_LEVEL
to even call this service routine.

In this call, object points to the object on which you wish to wait. While this
argument is typed as a PYOID, it should be a pointer to one of the dispatcher ob
jects listed in Table 4-1. The object must be in nonpaged memory-for example, in
a device extension structure or other data area allocated from the nonpaged pool.
For most purposes, the execution stack can be considered nonpaged.

143

Programming the Microsoft Windows Driver Model

144

WaitReason is a purely advisory value chosen from the KWAIT_REASON enu
meration. No code in the kernel actually cares what value you supply here, so long
as you don't specify WrQueue. (Internally, scheduler code bases some decisions on
whether a thread is currently blocked for this "reason.") The reason a thread is blocked
is saved in an opaque data structure, though. If you knew more about that data struc
ture and were trying to debug a deadlock of some kind, you could perhaps gain clues
from the reason code. The bottom line: always specify Executive for this parameter;
there's no reason tosay anything else.

WaitMode is one of the two values of the MODE enumeration: KernelMode
or UserMode. Alertable is a simple Boolean value. Unlike WaitReason, these param
eters do make a difference to the way the system behaves, by controlling whether
the wait can be terminated early in order to deliver asynchronous procedure calls of
various kinds. I'll explain these interactions in more detail in "Thread Alerts and APes"
later in this chapter. Waiting in user mode also authorizes the Memory Manager to
swap your thread's kernel-mode stack out. You'll see examples in this book and else
where where drivers create event objects, for instance, as automatic variables. A bug
check would result if some other thread were to call KeSetEvent at elevated IRQL
at a time when the event object was absent from memory. The bottom line: you should
probably always wait in KernelMode and specify FALSE for the alertable parameter.

The last parameter to KeWaitForSingleObject is the address of a 64-bit timeout
value, expressed in 100-nanosecond units. A positive number for the timeout is an
absolute timestamp relative to the same January 1, 1601, epoch of the system clock.
You can determine the current time by calling KeQuerySystemTime. A negative
number is an interval relative to the current time. If you specify an absolute time, a
subsequent change to the system clock alters the duration of the timeout you might
experience. That is, the timeout doesn't expire until the system clock equals or exceeds
whatever absolute value you specify. In contrast, if you specify a relative timeout, the
duration of the timeout you experience is unaffected by changes in the system clock.

WHY JANUARY 1, 1601?

Years ago when I was first learning the Win32 API, I was bemused by the choice
of January 1, 1601, as the origin for the timestamps in Windows NT. I under
stood the reason for this choice when I had occasion to write a set of conver
sion routines. Everyone knows that years divisible by four are leap years. Many
people know that century years (such as 1900) are exceptions-they're not leap
years even though they're divisible by 4. A few people know that every fourth
century year (such as 1600 and 2000) is an exception to the exception-theyare
leap years. January 1, 1601 was the start of a 400-year cycle that ends in a leap

(continued)

Chapter 4 Synchronization

continued

year. If you base timestamps on this origin, it's possible to write programs that
convert a Windows NT timestamp into a conventional representation of the date
(and vice versa) without doing any jumps.

Specifying a zero timeout causes KeWaitForSingleObject to return immediately
with a status code indicating whether the object is in the signalled state. g you're exe
cuting at DISPATCH_lEVEL, you must specify a zero timeout because blocking is not
allowed. Each kernel dispatcher object offers a KeReadStateXxx service function that
allows you to determine the state of the object. Reading the state is not completely
equivalent to waiting for zero time, however: when KeWaitForSingleObject discovers
that the wait is satisfied, it performs the side effects that the particular object requires.
In contrast, reading the state of the object does not perform the side effects, even if the
object is already Signalled and a wait would be satisfied if it were requested right now.

Specifying a NULL pointer for the timeout parameter is okay and indicates an
infinite wait.

The return value indicates one of several possible results. STATUS_SUCCESS is
the result you expect and indicates that the wait was satisfied. Tharis, either the object
was in the Signalled state when you made the call to KeWaitForSingleObject, or else
the object was in the not-signalled state and later became signalled. When the wait
is satisfied in this way, there may be side effects that need to be performed on the
object. The nature of these side effects depends on the type of the object, and I'll
explain them later in this chapter in connection with discussing each type of object.
(For example, a synchronization type of event will be reset after your wait is satisfied.)

A return value of STATUS_TIMEOUT indicates that the specified timeout oc
curred without the object reaching the signalled state. If you specify a zero timeout,
KeWaitForSingleObject returns immediately with either this code (indicating that the
object is not-signalled) or STATUS_SUCCESS (indicating that the object is signalled).
This return value is not possible if you specify a NULL timeout parameter pointer,
because you thereby request an infinite wait.

Two other return values are possible. STATUS_ALERTED and STATUS_USER_APC
mean that the wait has terminated without the object having been signalled because
the thread has received an alert or a user-mode APC, respectively. I'll' discuss these
concepts a bit further on in "Thread Alerts and APCs."

Waiting on Multiple Dispatcher Objects
KeWaitForMultipleObjects is a companion function to KeWaitForSingleObject that
you use when you want to wait for one or all of several dispatcher objects simulta
neously. Call this function as in the example at the top of the follOwing page.

145

Programming the Microsoft Windows Driver Model

146

ASSERT(KeGetCurrentlrql() <= DISPATCH_LEVEL);
LARGE_INTEGER timeout;
NTSTATUS status = KeWaitForMultipleObjects(count, objects,

WaitType. WaitReason. WaitMode, Alertable. &timeout,waitblocks);

Here, objects is the address of an array of pointers to dispatcher objects, and
count is the number of pointers in the array. The count must be less than or equal
to the value MAXIMUM_ WAIT_OBJECTS, which currently equals 64. The array, as well
as each of the objects to which the elements of the array point, must be in nonpaged
memory. WaitType is one of the enumeration values WaitAl1 or WaitAny and specifies
whether you want to wait until all of the objects are simultaneously in the signalled
state or whether, instead, you want to wait until anyone of the objects is signalled.

The waitblocks argument points to an array of KWAIT_BLOCK structures that
the kernel will use to administer the wait operation. You don't need to initialize these
structures in any way-the kernel just needs to know where the storage is for the
group of wait blocks that it will use to record the status of each of the objects during
the pendency of the wait. If you're waiting for a small number of objects (specifically,
a number no bigger than THREAD_ WAIT_OBJECTS, which currently equals 3), you
can supply NULL for this parameter. If you supply NULL, KeWaitForMultipleObjects
uses a preallocated array of wait blocks that lives in the thread object. If you're waiting
for more objects than this, you must provide nonpaged memory that's at least count
* sizeof(KWAfCBLOCK) bytes in length.

The remaining arguments to KeWaitForMultipleObjects are the same as the cor
responding arguments to KeWaitForSingleObject, and most return codes have the
same meaning.

If you specify WaitAll, the return value STATUS_SUCCESS indicates that all the
objects managed to reach the signalled state simultaneously. If you specify WaitAny,
the return value is numerically equal to the objects array index of the single object
that satisfied the wait. If more than one of the objects happens to be signalled, you'll
be told about one of them-maybe the lowest numbered of all the ones that are
Signalled at that moment, but maybe some other one. You can think of this value being
STATUS_ WAIT_O plus the array index. You can perform the usual NT_SUCCESS test
of the returned status before extracting the array index from the status code:

NTSTATUS status = KeWaitForMultipleObjects(...);
if (NT_SUCCESS(status))

{

ULONG iSignalled = (ULONG) status - (ULONG) STATUS_WAIT_0;

}

When KeWaitForMultipleObjects returns a success code, it also performs the side
effects required by the object(s) that satisfied the wait. If more than one object is

Chapter 4 Synchronization

signalled but you specified WaitAny, only the one that's deemed to satisfy the wait
has its side effects performed.

Kernel Events
You use the service functions listed in Table 4-2 to work with kernel event objects.
To initialize an event object, first reserve nonpaged storage for an object of type
KEVENT and then call KeInitializeEvent:

ASSERT(KeGetCurrentIrql() ==>PASSIVE_LEVEL:
KeInitializeEvent(event. EventType. initialstate);

Event is the address of the event object. EventType is one of the enumeration
values Noti8cationEvent or SynchronizationEvent. A notification event has the
characteristic that, when it is set to the Signalled state, it stays signalled until it is
e,xplic~tly reset to the not-Signalled state. Furthermore, all threads that wait on a no
tification event are released when the event is signalled. This is like a manual-reset
event in user mode. A synchronization event, on the other hand, gets reset to the not
signalled state as soon as a single thread gets released. This is what happens in user •
mode when someone calls SetEvent on an auto-reset event object. The only side
effect performed on an event object by KeWaitXxx is to reset a synchronization event
to not-signalled. Finally, initialstate is mUE to specify that the initial state of the event
is to be Signalled and FALSE to specify that the initial state is to be not-Signalled.

Service Function

KeClearEvent

KeInitializeEvertt

KeReadStateEvent

KeResetEvent

KeSetEvent

Description

Sets event to not-signalled, don't report previous state

Initializes event object

Determines current state of event

Sets event to not-Signalled, return previous state

Sets event to signalled, return previous state

Table 4-2. Service functions for use with kernel event o.bjects.

NOTE In this series of sections on synchronization primitives, I'm repeating the
IROL restrictions that the DDK documentation describes. In the current release
of Microsoft Windows 2000, the DDK is sometimes more restrictive than the as
actually is. For example, KeClearEvent can be called at any IROL, not just at or
below DISPATCH_LEVEL. KelnitializeEvent can be called at any IROL, not just
at PASSIVE_LEVEL. However, you should regard the statements in the DDK as
being tantamount to saying that Microsoft might someday impose the docu
mented restriction, which is why I haven't tried to report the true state of affairs.

147

Programming the Microsoft Windows Driver Model

148

You can call KeSetEvent to place an event into the signalled state:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LONG wassignalled = KeSetEvent(event. boost. wait);

As implied by the ASSERT, you must be running at or below DISPATCH_LEVEL to call
this function. The event argument is a pointer to the event object in question, and boost
is a value to be added to a waiting thread's priority if setting the event results in satis
fying someone's wait. See the sidebar ("That Pesky Third Argument to KeSetEvent")

. for an explanation of the Boolean wait argument, which a WDM driver would almost
never want to specify as TRUE. The return value is nonzero if the event was already
in the signalled state before the call and 0 if the event was in the not-signalled state.

A multitasking scheduler needs to artificially boost the priority of a thread that
waits for I/O operations or synchronization objects in order to avoid starving threads
that spend lots of time waiting. This is because a thread that blocks for some reason
generally relinquishes its time slice and won't regain the CPU until either it has a rela
tively higher priority than other eligible threads or other threads that have the same
priority finish their time slices. A thread that never blocks, however, gets to complete
its time slices. Unless a boost is applied to the thread that repeatedly blocks, therefore,
it will spend a lot of time waiting for CPU-bound threads to finish their time slices.

You and I won't always have a good idea of what value to use for a priority boost.
A good rule of thumb to follow is to specify IO_NO_INCREMENT unless you have a
good reason not to. If setting the event is going to wake up a thread that's dealing with
a time-sensitive data flow (such as a sound driver), supply the boost that's appropri
ate to that kind of device (such as IO_SOUND_INCREMENT). The important thing is

to not boost the waiter for a silly reason. For example, if you're trying to handle an
IRP _MLPNP request synchronously-see Chapter 6--you'1l be waiting for lower-level
drivers to handle the IRP before you proceed and your completion routine will be calling
KeSetEvent. Since Plug and Play requests have no special claim on the processor and
occur only infrequently, specify IO_NO_INCREMENT even for a sound card.

THAT PESKY THIRD ARGUMENT TO KESETEvENT

The purpose of the wait argument to KeSetEvent is to allow internal code to
hand off control from one thread to another very quickly. System components
other than device drivers can, for example, create paired event objects that
are used by client and server threads to gate their communication. When the
server wants to wake up its paired client, it will call KeSetEvent with the wait
argument set to TRUE and then immediately call KeWaitXxx to put itself to sleep.
The use of wait allows these two operations to be done atomically so that no
other thread can be awakened in between and possibly wrest control away from
the client and the server.

(continued)

Chapter 4 Synchronization

continued

The DDK has always sort of described what happens internally, but I've
found the explanation confusing. I'll try to explain it in a different way so that
you can see why you should always say FALSE for this parameter. Internally,
the kernel uses a "dispatcher database lock" to guard operations related to thread
blocking, waking, and scheduling. KeSetEvent needs to acquire this lock, and
so do the KeWaitXxx routines. If you say TRUE for this argument, KeSetEvent
sets a flag so that KeWaitXxx will know you did so, and it returns to you with
out releasing this lock. When you turn around and (immediately, please-you're
running at a higher IRQL than every hardware device and you own a spin lock
that's very frequently in contention) call KeWaitXxx, it needn't acquire the lock
all over again. The net effect is that you'll wake up the waiting thread and put
yourself to sleep without giving any other thread a chance to start running.

You can see, first of all, that a function which calls KeSetEvent with wait
set to TRUE has to be in nonpaged memory because it will execute briefly at
elevated IRQL. But it's hard to imagine why an ordinary device driver would
even need to use this mechanism because it would almost never know better
than the kernel which thread ought to be scheduled next. The bottom line:
always say FALSE for this parameter. In fact, it's not clear why the parameter
has even been exposed to tempt us.

You. can determine the current state of an event (at any IRQL) by calling
KeReadStateEvent:

LONG signalled = KeReadStateEvent(event);

The return value is nonzero if the event is signalled, 0 if it's not-signalled.

NOTE KeReadStateEvent is not supported in Microsoft Windows 98 even
though the other KeReadStateXxx functions described here are. The absence
of support has to do with how events and other synchronization primitives are
implemented in Windows 98.

You can determine the current state of an event and, immediately thereafter,
place it in the not-Signalled state by calling the KeResetEvent function (at or below
DISPATCH_LEVEL):

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LONG signalled = KeResetEvent(event);

If you're not interested in the previous state of the event, you can save a little
time by calling KeC1earEvent instead, as shown at the top of the next page.

149

Programming the Microsoft Windows Driver Model

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
KeClearEvent(event);

KeClearEvent is faster because it doesn't need to capture the current state of the event
before setting it to not-signalled.

Kernel Semaphores

150

A kernel semaphore is an integer counter with associated synchronization semantics.
The semaphore is considered signalled when the counter is positive and not-signalled
when the counter is 0. The counter cannot take on a negative value. ReleaSing a
semaphore increases the counter, whereas successfully waiting on a semaphore decre
ments the counter. If the decrement makes the count 0, the semaphore is then
considered not-signalled, with the consequence that other KeWaitXx:x callers who in
sist on finding it signalled will block. Note that if more threads are waiting for a sema
phore than the value of the counter, not all of the waiting threads will be unblocked.

The kernel provides three service functions to control the state of a semaphore
object. (See Table 4-3.) You initialize a semaphore by making the following function
call at PASSIVE_LEVEL:

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL);
KeInitializeSemaphore(semaphore. count. limit);

In this call, semaphore points to a KSEMAPHORE object in nonpaged memory.
Count is the initial value of the counter, and limit is the maximum value that the
counter will be allowed to take on, which must be as large as the initial count.

Service Function

KeInitializeSemaphore

KeReadStateSemaphore

KeReieaseSemaphore

Description

Initializes semaphore object

Determines current state of semaphore

Sets semaphore object to the signalled state

Table 4-3. Service functions for use with kernel semaphore objects.

If you create a semaphore with a limit of 1, the object is somewhat similar to a
mutex in that only one thread at a time will be able to claim it. A kernel mutex has
some features that a semaphore lacks, however, to help prevent deadlocks. Accord
ingly, there's almost no point in creating a semaphore with a limit of 1.

If you create a semaphore with a limit bigger than 1, you have an object that
allows multiple threads to access some resource. A familiar theorem in queuing theory
dictates that proViding a single queue for multiple servers is more fair (that is, results
in less variation in waiting times) than providing a separate queue for each of sev
eral servers. The average waiting time is the same in both cases, but the variation in
waiting times is smaller. (This is why queues in stores are increasingly organized so

Chapter 4 Synchronization

that customers wait in a single line for the next available clerk.) This kind of sema
phore allows you to organize a set of software or hardware servers to take advan
tage of that theorem.

The owner (or one of the owners) of a semaphore releases its claim to the sema
phore by calling KeReleaseSemaphore:

ASSERT(KeGetCurrent I rql ()<= DISPATCH_LEVEL);
LONG wassignalled = KeReleaseSemaphore(semaphore, boost, delta, wait);

This operation adds delta, which must be positive, to the counter associated with
semaphore, thereby putting the semaphore into the Signalled state and allowing other
threads to be released. In most cases, you would specify 1 for this parameter to
indicate that one claimant of the semaphore is releasing its claim. The boost and wait
parameters have the same import as the corresponding parameters to KeSetEvent,
discussed earlier. The return value is 0 if the previous state of the semaphore was
not-signalled and nonzero if the previous state was Signalled.

KeReleaseSemaphore doesn't allow you to increase the counter beyond the
limit specified when you initialized the semaphore. If you try, it does not adjust the
counter at all, and it raises an exception with the code STATUS_SEMAPHORE_
LIMIT_EXCEEDED. Unless someone has a structured exception handler to trap the
exception, a bug check will eventuate.

You can also interrogate the current state of a semaphore with this call:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LONG signalled = KeReadStateSemaphore(semaphore);

The return value is nonzero if the semaphore is signalled and 0 if the semaphore
is not-signalled. You shouldn't assume that the return value is the current value of
the counter-it could be any nonzero value if the counter is positive.

Kernel Mutexes
The word mutex is a contraction of mutual exclusion. A kernel mutex object pro
vides one method (and not necessarily the best one) to serialize access by com
peting threads to some shared resource. The mutex is signalled if no thread owns
it and not-signalled if some thread currently does own it. When a thread gains
control of a mutex after calling one of the KeWaitXxx routines, the kernel also takes
some steps to help avoid possible deadlocks. These are the side effects referred to
in the earlier discussion of KeWaitForSingleObject (in the section "Waiting on a
Single Dispatcher Object"). The kernel ensures that the thread can't be paged out,

151

Programming the Microsoft Windows Driver Model

152

and it forestalls all but the delivery of "special" kernel APCs (such as the one that
IoCompleteRequest uses to complete I/O requests).

It's generally better to use an executive fast mutex rather than a kernel mutex,
as I'll explain in more detail later in "Fast Mutex Objects." The main difference be
tween the two is that a kernel mutex can be acquired recursively, whereas an ex
ecutive fast mutex cannot. That is, the owner of a kernel mutex can make a subsequent
call to KeWaitXxx specifying the same mutex and have the wait immediately satis
fied. A thread that does this must release the mutex an equal number of times be
fore the mutex will be considered free.

The reason you would use a mutex in the first place (instead of relying on ele
vated IRQL and a spin lock) is that you need to serialize access to an object for a long
tinie or in pagable code. By gating access to a resource through a mutex, you allow
other threads to run on the other CPUs of a multiprocessor system, and you also al-

. low your code to cause page faults while still locking out other threads. Table 4-4 lists
the service functions you use with mutex objects.

Service Function

KeInitializeMutex

KeReadStateMutex

KeReleaseMutex

Description

Initializes mutex object

Determines current state of mutex

Sets mutex object to the signalled state

Table 4-4. Seroice junctions for use with kernel mute,x objects.

To create a mutex, you reserve nonpaged memory for a KMUTEX object and
make the following initialization call:

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL):
KeIn1tializeMutex(mutex. level):

where mutex is the address of the KMUTEX object, and level is a parameter origi
nally intended to help avoid deadlocks when your own code uses more than one
mutex. Since the kernel currently ignores the level parameter, I'm not going to at
tempt to describe what it used to mean.

The mutex begins life in the signalled-that is, unowned-state. Anirnmediate
call to KeWait:X%xwould take control of the mutex and put it into the not-signalled state.

You can interrogate the current state of a mutex with this function call:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL):
LONG signalled = KeReadStateMutex(mutex):

The return value is 0 if the mutex is currently owned, nonzero if it's currently unowned.

Chapter 4 Synchronization

The thread that owns a mutex can release ownership and return the mutex to
the signalled state with this function call:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LONG wassignalled = KeReleaseMutex(mutex. wait);

The wait parameter means the same thing as the corresponding argument to
KeSetEvent. The return value is always 0 to indicate that the mutex was previously
owned because, if this were not the case, KeReleaseMutex would have bugchecked
(it being an error for anyone but the owner to release a mutex).

Just for the sake of completeness, I want to mention a macro in the DDK named
KeWaitForMutexObject. CSeeWDM.H.) It is defined simply as follows:

#define KeWaitForMutexObject KeWaitForSingleObject

Using this special name offers no benefit at all. You don't even get the benefit of having
the compiler insist that the first argument be a pointer to a KMUTEX instead of any
random pointer type.

Kernel Timers

The kernel provides a timer object that functions something like an event that auto
matically signals itself at a specified absolute time or after a specified interval. It's also
possible to create a timer that signals itself repeatedly and to arrange for a DPC call
back following the expiration of the timer. Table 4-5 lists the service functions you
use with timer objects. With so many different ways of using timers, it will be easi
est to describe the use of these functions in several different scenarios.

Service Function

KeCancelTimer

KeInitializeTimer

KeInitializeTimerEx

KeReadStateTimer

KeSetTimer

KeSetTimerEx

Description

Cancels an active timer

Initializes a one-time notification timer

Initializes a one-time or repetitive notification or
synchronization timer

Determines current state of a timer

(Re)specifies expiration time for a notification timer

(Re)specifies expiration time and other properties of
a timer

Table 4-5. Service functions for use with kernel timer objects.

Notification Timers Used like Events
In this scenario, we'll create a notification timer object and wait until it expires.
First allocate a KTIMER object in nonpaged memory. Then, running at or below
DISPATCH_LEVEL, initialize the timer object, as at the top of the next page.

153

Programming the Microsoft Windows Driver Model

154

PKTIMER timer; II 4" someone gives you this
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
KeInitializeTimer(timer);

At this point, the timer is in the not-signalled state and isn't counting down-a wait
on the timer would never be satisfied. To start the timer counting, call KeSeffimer
as follows:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LARGE_INTEGER duetime;
BOOLEAN wascountihg = KeSetTimer(timer, &duetime, NULL);

The duetime value is a 64-bit time value expressed in lOa-nanosecond units. If the
value is positive, it is an absolute time relative to the same January 1, 1601, epoch
used for the system timer. If the value is negative, it is an interval relative to the current
time. If you specify an absolute time, a subsequent change to the system clock al
ters the duration of the timeout you experience. That is, the timer doesn't expire until
the system clock equals or exceeds whatever absolute value you specify. In contrast,
if you specify a relative timeout, the duration of the timeout you experience is unaf
fected by changes in the system clock. These are the same rules that apply to the
timeout parameter to KeWaitXXx.

The return value from KeSetTimer, if TRUE, indicates that the timer was already
counting down (in which case our call to KeSetTimer would have cancelled it and
started the count all over again).

At any time, you can determine the current state of a timer:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
BOOLEAN counting = KeReadStateTimer(timer);

KeInitializeTimer and KeSetTimer are actually older service functions that have been
superseded by newer functions. We could have initialized the timer with this call:

ASSERT(KeGetCurrentIqrl() <= DISPATCH_LEVEL);
KeInitializeTimerEx(timer, NotificationTimer);

We could also have used the extended version of the set timer function,
KeSetTimerEx:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LARGE_INTEGER duetime;
BOOLEAN wascounting = KeSetTimerEx(timer, &duetime, 0, NULL);

I'll explain a bit further on in this chapter the purpose of extra parameters in
these extended versions of the service functions.

Once the timer is counting down, it's still considered to be not-signalled until
the specified due time arrives. At that point, the object becomes signalled, and all
waiting threads are released. The system guarantees only that the expiration of the
timer will be noticed no sooner than the due time you specify. If you specify a due

Chapter 4 Synchronization

time with a precision finer than the granularity of the system timer (which you can't
control), the timeout will be noticed later than the exact instant you specify.

Notification Timers Used with a DPC
In this scenario, we want expiration of the timer to trigger a DPC. You would choose
this method of operation if you wanted to be sure that you could service the timeout
no matter what priority level your thread had. (Since you can only wait at
PASSIVE_LEVEL, regaining control of the CPU after the timer expires is subject to the
normal vagaries of thread scheduling. The DPC, however, executes at elevated IRQL
and thereby effectively preempts all t?reads.)

We initialize the timer object in the same way. We also have to initialize a KDPC
object for which we allocate nonpaged memory. For example:

PKDPC dpc; II ~ points to KDPC you've allocated
ASSERT(KeGetCurrentlrql() == PASSIVE_LEVEL);
KelnitializeTimer(timer);
KelnitializeDpc(dpc, DpcRoutine, context);

You can initialize the timer object by using either KelnitializeTimer or
KeInitializeTimerEx, as you please. DpcRoutine is the address of a deferred proce
dure call routine, which must be in nonpaged memory. The context parameter is
an arbitrary 32-bit value (typed as a PYOID) that will be passed as an argument to
the DPC routine. The dpc argument is a pointer to a KDPC object for which you
provide nonpaged storage. (It might be in your device extension, for example.)

When we want to start the timer counting down, we specify the DPC object as
one of the arguments to KeSetTimer or KeSetTimerEx:

ASSERT(KeGetCurrentlrql() <= DISPATCH_LEVEL);
LARGE_INTEGER duetime;
BOOLEAN wascounting = KeSetTimer(timer, &duetime, dpc);

You could also use the extended form KeSetTimerEx if you wanted to. The only
difference between this call and the one we examined in the previous section is that
we've specified the DPC object address as an argument. When the timer expires, the
system will queue the DPC for execution as soon as conditions permit. This would
be at least as soon as you'd be able to wake up from a wait at PASSIVE_LEVEL. Your
DPC routine would have the following skeletal appearance:

VOID DpcRoutine(PKDPC dpc, PVOID context, PVOID junkl. PVOID junk2)
{

}

For what it's worth, even when you supply a DPC argument to KeSetTimer or
KeSetTimerEx, you can still call KeWaitXx:x to wait at PASSIVE_LEVEL if you want.

155

Programming the Microsoft Windows Driver Mod.1

156

On a single-CPU system, the DPC would occur before the wait could finish because
it executes at higher IRQL.

Synchronization Timers
Like event objects, timer objects come in both notification and synchronization fla
vors. A notification timer allows any number of waiting threads to proceed once it
expires. A synchronization timer, by contrast, allows only a single thread to proceed.
Once some thread's wait is satisfied, the timer switches to the not-signalled state. To
create a synchronization timer, you must use the extended form of the initialization
service function:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
KeIn1tia11zeT1merEx(timer. Synchron1zationT1mer);

SynchronizationTimer is one of the values of the TIMER_TYPE enumeration. The
other value is NotificationTimer.

If you use a DPC with a synchronization timer, think of queuing the DPC as
being an extra thing that happens when the timer expires. That is, expiration puts
the timer into the Signalled state and queues a DPC. One thread can be released as
a result of the timer being Signalled.

Periodic Timers
So far, I've discussed only timers that expire exactly once. By using the extended set
timer function, you can also request a periodic timeout:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
LARGE_INTEGER duet1me;
BOOLEAN wascount1ng = KeSetTimerEx(timer. &duet1me. period. dpc);

Here, period is a periodic timeout, expressed in milliseconds (ms), and dpc
is an optional pointer to a KDPC object. A timer of this kind expires once at the due
time and periodically thereafter. To achieve exactly periodic expiration, specify the
same relative due time as the interval. Specifying a zero due time causes the timer
to immediately expire, whereupon the periodic behavior takes over. It often makes
sense to start a periodic timer in conjunction with a DPC object, by the way, because
doing so allows you to be notified without having to repeatedly wait for the timeout.

An Example
One use for kernel timers is to conduct a polling loop in a system thread dedicated
to the task of repeatedly checking a device for activity. Not many devices nowadays
need to be served by a polling loop, but yours may be one of the few exceptions.
I'll discuss this subject in Chapter 9, "Specialized Topics," and the companion disc
includes a sample driver (POLLING) that illustrates all of the concepts involved. Part
of that sample is the follOWing loop that polls the device at fixed intervals. The logic
of the driver is such that the loop can be broken by setting a kill event. Consequently,

Chapter 4 Synchronization

the driver uses KeWaitForMultipleObjects. The code is actually a bit more complicated
than the following fragment, which I've edited to concentrate on the part related to
the timer:

VOID PollingThreadRoutine(PDEVICE_EXTENSION pdx)
{

NTSTATUS status;
KTIMER timer;
KelnitializeTimerEx(&timer, SynchronizationTimer);
PYOID pollevents[] = {

(PVOID) &pdx->evKill,
(PVOID) &timer,
} ;

ASSERT(arraysize(pollevents) <= THREAD_WAIT_OBJECTS);

LARGE_INTEGER duetime = {0}:
#define POLLIN~INTERVAL 500
KeSetTimerEx(&timer, duetime, POLLlN~INTERVAL, NULL);
whi 1 e (TRUE)

{

status = KeWaitForMultipleObjectsCarraysize(pollevents),
pollevents, WaitAny, Executive, KernelMode, FALSE, NULL, NULL);

if (status == STATUS_WAlT_0)
break;

if «device needs attention»
<do something>;

}

KeCancelTimerC&timer);
PsTerminateSystemThread(STATUS_SUCCESS);
}

1. Here we initialize a kernel timer object to act as a synchronization timer.
It would have worked just as well to initialize it as a notification timer
because only one thread-this one-will ever wait on the timer.

2. We'll need to supply an array of dispatcher object pointers as one of the
arguments to KeWaitForMultipleObjects, and this is where we set that up.
The first element of the array is the kill event that some other part of the
driver might set when it's time for this system thread to exit. The second
element is the timer object. The ASSERT statement that follows this array
verifies that we have few enough objects in our array such that we can
implicitly use the default array of wait blocks in our thread object.

3. The KeSetTimerEx statement starts a periodic timer running. The duetime '
is 0, so the timer goes immediately into the signalled state. It will expire
every 500 rns thereafter.

157

Programming the Microsoft Windows Driver Model

4. Within our polling loop, we wait for the timer to expire or for the kill event
to be set. If the wait terminates because of the kill event, we leave the loop,
clean up, and exit this system thread. If the wait terminates because the
timer has expired, we go on to the next step.

S. This is where our device driver would do something related to our hardware.

Alternatives to Kernel Timers
Rather than using a kernel timer object, you can use two other timing functions that
might be more appropriate. First of all, you can call K.eDelayExecutionThread to
wait at PASSIVE_LEVEL for a given interval. This function is obviously less cumber
some than creating, initializing, setting, and awaiting a timer by using separate func
tion calls:

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL);
LARGE_INTEGER duet1me;
NSTATUS status = KeDelayExecutionThread(WaitMode, Alertable, &duetime);

Here, WaitMode, Alertable, and the returned status code have the same meaning
as the corresponding parameters to KeWaitXxx, and duetime is the same kind of
timestamp that I discussed previously in connection with kernel timers.

If your requirement is to delay for a very brief period of time (less than 50 mi
croseconds), you can call KeStallExecutionProcessor at any IRQL:

KeStallExecutionProcessor(nM1croSeconds);

The purpose of this delay is to allow your hardware time to prepare for its next
operation before your program continues executing. The delay might end up being
significantly longer than you request because KeStallExecutionProcessor can be pre
empted by activities that occur at a higher IRQL than that which the caller is using.

Using Threads for Synchroniza~ion

158

The Process Structure component of the operating system provides a few routines
that WDM drivers can use for creating and controlling system threads. I'll be discussing
these routines later on in Chapter 9 from the perspective of how you can use these
functions to help you manage a device that requires periodic polling. For the sake
of thoroughness, I want to mention here that you can use a pointer to a kernel thread
opject in a call to KeWaitXxx to wait for the thread to complete. The thread termi
nates itself by calling PsTerminateSystemThread.

Before you can wait for a thread to terminate, you need to first obtain a pointer
to the opaque KTIIREAD object that internally represents that thread, which poses
a bit of a problem. While running in the context of a thread, you can determine your
own K1HREAD easily:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
PKTHREAD thread = KeGetCurrentThread();

Chapter 4 Synchronization

Unfortunately, when you call PsCreateSystem.Thread to create a new thread,
you can retrieve only an opaque HANDLE for the thread. To get the KTIIREAD pointer,
you use an Object Manager service function:

HANDLE hthread;
PKTHREAD thread;
PsCreateSystemThread(&hthread •...);
ObReferenceObjectByHandle(hthread. THREAD-ALL-ACCESS. NULL. KernelMode.

(PVOID*) &thread. NULL);
ZwClose(hthread);

ObR.eferenceObjectByHandle converts your handle into a pointer to the underlying
kernel object. Once you have the pointer, Y9u can discard the handle by calling
ZwClose. At some point, you need to release your reference to the thread object by
making a call to ObDereferenceObject:

ObDereferenceObject(thread);

Thread Alerts and APCs
Internally, the Windows NT kernel uses thread alerts as a way of waking threads. It
uses an asynchronous procedure call as a way of waking a thread to execute some
particular subroutine in that thread's context. The support routines that generate alerts
or APes are not exposed for use by WDM driver writers. But, since the DDK documen
tation and header files contain a great many references to these concepts, I want to
finish this discussion of kernel dispatcher objects by explaining them.

I'll start by describing the "plumbing"-how these two mechanis~ work. When
someone blocks a thread by calling one of the KeWaitXxx routines, they specify by
means of a Boolean argument whether the wait is to be "alertable." An alertable wait
might fInish early-that is, without any of the wait conditions or the timeout being
satisfIed-because of a thread alert. Thread alerts originate in user mode when some
one calls the native API function NtA1ertThread. The kernel returns the special sta
tus value STATUS_ALERTED when a wait terminates early because of an alert.

An APe is a mechanism whereby the operating system can execute a function
in the context of a particular thread. The asynchronous part of an APe sterns from
the fact that the system effectively interrupts the target thread to execute an out-of
line subroutine. The action of an APe is somewhat similar to what happens when a
hardware interrupt causes a processor to suddenly and, from the point of view of
whatever code happens to be running at the time, unpredictably execute an inter-'
rupt service routine.

APes come in three flavors: user-mode, kernel-mode, and special kernel-mode.
User-mode code requests a user-mode APe by calling the Win32 API QueueUserAPC.

159

Programming tha Microsoft Windows Drlnr Modal

160

Kernel-mode code requests an APC by calling an undocumented function for which
the DDK headers have no prototype. Diligent reverse engineers probably already
know the name of this routine and something about how to call it, but it's really just
for internal use and I'm not going to say any more about it. The system queues APCs
to a specific thread until appropriate execution conditions exist. Appropriate execu
tion conditions depend on the type of APC, as follows:

• Special kernel APCs execute as soon as possible-that is, as soon as an
activity at APC_LEVEL can be scheduled. A special kernel APC can even
awaken a blocked thread in many circumstances.

• Normal kernel APCs execute after all special APCs have been executed
but only when the target thread is running and no other kernel-mode APC
is executing in this thread.

• User-modeAPCs execute after both flavors of kernel-mode APC for the
target thread have been executed but only if the thread has previously been
in an alertable wait in user mode. Execution actually occurs the next time
the thread is dispatched for execution in user mode.

If the system awakens a thread to deliver an APC, the wait primitive on which
the thread was previously blocked returns with one of the special status values
STATUS_KERNEL_APC or STATUS_USER_APC.

How APCs Work with I/O Requests
The kernel uses the APC concept for several purposes. We're concerned in this book
just with writing device drivers, though, so I'm only going to explain how APCs re
late to the process of performing an I/O operation. In one of many possible scenarios,
when a user-mode program performs a synchronous ReadFlle operation on a handle,
the Win32 subsystem calls a kernel-mode routine named (as is widely known despite
its being undocumented) NtReadFlle. NtReadFile creates and submits an IRP to the
appropriate device driver, which often returns STATUS_PENDING to indicate that it
hasn't fInished the operation. NtReadFile returns this status code to ReadFile, which
thereupon calls NtWaitForSingleObject to wait on the me object to which the user
mode handle pOints. NtWaitForSingleObject, in tum, calls KeWaitForSingleObject to
perform a nonalertable, user-mode wait on an event object within the me object.

When the device driver eventually finishes the read operation, it calls
IoCompleteRequest, which, in turn, queues a special kernel-mode APe. The APC rou
tine calls KeSetEvent to signal the me object, thereby releasing the application to con
tinue execution. Some sort of APC is required because some of the tasks that need.
to be performed when an I/O request is completed (such as buffer copying) must
occur in the address context of the requesting thread. A kernel-mode APC is required
because the thread in question is not in an alertable wait state. A special APC is

Chapter 4 Synchronization

required because the thread is actually ineligible to run at the time we need to de
liver the APC. In fact, the APC· routine is the mechanism for awakening the thread.

Kernel-mode routines can also call NtReadFile. Drivers should call ZwReadFlle
instead, which uses the same system service interface to reach NtReadFile that user
mode programs use. (Note that NtReadFile is not documented for use by device drivers.)
If you obey the injunctions in the DDK documentation when you call ZWReadFile, your
call to NtReadFile will look almost like a user-mode call and will be processed in
almost the same way, with just two differences. The fIrst, which is quite minor, is that
any waiting will be done in kernel mode. The other difference is that if you speci
fIed in your call to ZwCreateFlle that you wanted to do synchronous operations, the
I/O Manager will automatically wait for your read to fmish. The wait will be alertable
or not, depending on the exact option you specify to ZwCreateFile.

How to Specify Alertabr. and WaitMode Parameters
Now you have enough background to understand the ramillcations of the Alertable
and WaitMode parameters in the calls to the various wait primitives. AF, a general
rule, you'll never be writing code that responds synchronously to requests from user
mode. You could do so for, say, certain I/O control requests. Generally speaking,
however, it's better to pend any operations that take a long time to fmish (by return
ing STATUS_PENDING from your dispatch routine) and to fInish them asynchronously.
So, to continue speaking generally, you don't often call a wait primitive in the fIrst
place. Thread blocking is appropriate in a device driver in only a few scenarios, which
I'll describe in the following sections.

Kemel Threads Sometimes you'll create your own kernel-mode thread-when your
device needs to be polled periodically, for example. In this scenario, any waits
performed will be in kernel mode because the thread runs exclUSively in kernel mode.

Handling Plug and Play Requests I'll show you in Chapter 6 how to handle the
I/O requests that the PnP Manager sends your way. Several such requests require syn
chronous handling on your part. In other words, you pass them down the driver stack
to lower levels and wait for them to complete. You'll be calling KeWaitForSingleObject
to wait in kernel mode because the PnP Manager calls you within the context of a
kernel-mode thread. In addition, if you needed to perform subsidiary requests as part
of handling a PnP request-for example, to talk to a universal serial bus (USB)
device-you'd be waiting in kernel mode.

Handling Other I/O Requests When you're handling other sorts of I/O requests
and you know that you're running in the context of a nonarbitrary thread that must get
the results of your deliberations before proceeding, it might conceivably be appropri
ate to block that thread by calling a wait primitive. In such a case, you want to wait in
the same processor mode as the entity that called you. Most of the time, you can

161

Programming the Microsoft Windows Driver Model

simply rely on the RequestorMode in the IRP you're currently processing. If you some
how gained control by means other than an IRP, you could call ExGetPreviousMode

to determine the previous processor mode. If you wait in user mode, and if the be
havior you want to achieve is that user-mode programs should be able to terminate
the wait early by calling QueueUserAPC, you should perform an alertable wait.

The last situation I mentioned-you're waiting in user mode and need to allow
user-mode APCs to break in-is the only one I know of in which you'd want to al
low alerts when waiting.

The bottom line: perform nonalertable waits unless you know you shouldn't.

OTHER KERNEL·MODE
SYNCHRONIZATION PRIMITIVES

The Windows 2000 kernel offers some additional methods for synchronizing execu
tion between threads or for guarding access to shared ot>jects. In this section, I'll
discuss the fast mutex, which is a mutual exclusion object that offers faster perfor
mance than a kernel mutex because it's optimized for the case where no contention
is actually occurring. I'll also describe the category of support functions that include
the word Interlocked in their name somewhere. These functions carry out certain
common operations---such as incrementing or decrementing an integer or inserting
or removing an entry from a linked list-in an atomic way that prevents multitasking
or multiprocessing interference.

Fast Mutex Objects

162

Compared to kernel mutexes, fast mutexes have the strengths and weaknesses sum
marized in Table 4-6. On the plus side, a fast mutex is much faster to acquire and
release if there's no actual contention for it. On the minus side, you must avoid try
ing to recursively acquire a fast mutex, and that can mean preventing the delivery
of APCs while you own it. Preventing APCs means raising IRQL to APC_LEVEL or
above, which effectively negates thread priority and gains you the assurance that your
code will execute except while the processor handles a higher-priority interrupt.

Kernel Mutex

Can be acquired recursively by a single
thread (system maintains a claim counter)

Relatively slower

Owner won't receive any but "special"
kernel APCs

Fast Mutex

Cannot be acquired recursively

Relatively faster

Owner won't receive any APCs

Table 4-6. Comparison of kernel and fast mutex objects. (continued)

Chapter 4 Synchronization

continued

Kernel Mutex Fast Mutex

Owner can't be removed from "balance
set" (that is, can't be paged out)

No automatic priority boost (if you
run at or above APC_LEVEL)

Can be part of a multiple object wait Cannot be used as an argument to
Ke WaitForMultipleObjects

Incidentally, the DDK documentation about kernel mutex objects has long said
that the kernel gives a priority boost to a thread that claims a mutex. I'm reliably
informed that this hasn't actually been true since 1992 (the year, that is, not the
Windows 2000 build number).

Table 4-7 summarizes the service functions you use to work with fast mutexes.

Service Function

ExAcquireFastMutex

ExAcquireFastMutexUnsafe

ExInitializeFastMutex

ExReleaseFastMutex

ExReleaseFastMutexUnsafe

ExTryTbAcquireFastMutex

Description

Acquires ownership of mutex, waiting if
necessary

Acquires ownership of mutex, waiting if
necessary, in circumstance where caller has
already disabled receipt of APCs

Initializes mutex object

Releases mutex

Releases mutex without reenabling APC
delivery

Acquires mutex if possible to do so without
waiting

Table 4-7. Service functions for use with executive fast mutexes.

To create a fast mutex, you must first allocate a FAST_MUTEX data structure in
nonpaged memory. Then you initialize the object by "calling" ExInitializeFastMutex,
which is really a macro in WDM.H: -

ASSERTCKeGetCurrentIrql() <= DISPATCH_LEVEL);
ExInitializeFastMutex(FastMutex);

where FastMutex is the address of your FAST_MUTEX object. The mutex begins life
in the unowned state. To acquire ownership later on, call one of these functions:

ASSERTCKeGetCurrentIrqlC) < DISPATCH_LEVEL);
ExAcquireFastMutexCFastMutex);

or

ASSERTCKeGetCurrentIrqlO < DISPATCH_LEVEL);
ExAcquireFastMutexUnsafeCFastMutex);

163

Programming the Microsoft Windows Driver Model

The first of these functions waits for the mutex to become available, assigns own
ership to the calling thread, and then raises the current processor IRQL to APC_LEVEL.
Raising the IRQL has the effect of blocking delivery of all APCs. The second of these
functions doesn't change IRQL. You need to think about potential deadlocks if you
use the "unsafe" function to acquire a fast mutex. The situation you must avoid is an
APC routine that is running in the same thread context to acquire the same mutex
or any other object that can't be recursively locked. Otherwise, you'll run the risk of
instantly deadlocking that thread.

If you don't want to wait if the mutex isn't immediately available, use the "try
to acquire" function:

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
BOOLEAN acquired = ExTryToAcquireFastMutex(FastMutex);

If the return value is TRUE, you now own the mutex. If it's FALSE, someone else owns
the mutex and has prevented you from acquiring it.

To release control of a fast mutex and allow some other thread to claim it, call
the release function corresponding to the way you acquired the fast mutex:

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
ExReleaseFastMutex(FastMutex);

or

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
ExReleaseFastMutexUnsafe(FastMutex);

A fast mutex is fast because the acquisition and release steps are optimized for
the usual case when there's no contention for themutex. The critical step in acquir
ing the mutex is to atomically decrement and test an integer counter that indicates
how many threads either own or are waiting for the mutex. If the test indicates that
no other thread owns the mutex, no additional work is required. If the test indicates
that another thread does own the mutex, the current thread blocks on a synchroni
zation event that's part of the FAST_MUTEX object. Releasing the mutex entails atomi
cally incrementing and testing the counter. If the test indicates that no thread is
currently waiting, no additional work is required. If another thread is waiting, how
ever, the owner calls KeSetEvent to release one of the waiters.

Interlocked Arithmetic

164

You can call several service functions in a WDM driver to perform arithmetic in a way
that's thread-safe and multiprocessor-safe. See Table 4-8. These routines come in two
flavors. The first type of routine has a name beginning with Interlocked and per
forms an atomic operati~n in such a way that no other thread or CPU can interfere.
The other flavor has a name beginning with Exlnterlocked and uses a spin lock.

Chapter 4 Synchronization

Service Function

InterlockedCompareExchange

InterlockedDecrement

InterlockedExchange

InterlockedExchangeAdd

Interlockedlncrement

ExInterlockedAddLargelnteger

ExlnterlockedAddLargeStatistic

ExInterlockedAddUlong

ExInterlockedCompareExchange64

Description

Compares and conditionally exchanges

Subtracts one from an integer

Exchanges two values

Adds two values and retums sum

Adds one to an integer

Adds value to 64-bit integer

Adds value to ULONG

Adds value to ULONG and returns
initial value

Exchanges two 64-bit values

Table 4-8. Seroice functions for interlocked arithmetic.

The InterlockedXxx functions can be called at any IRQL; they can also handle
pagable data at PASSIVE_LEVEL because they don't require a spin lock. Although the
ExInterlocked.Xx:x routines can be called at any IRQL, they operate on the target
data at or above DISPATCH_LEVEL and therefore require a nonpaged argument. The
only reason to use an ExInterlockecL\Xx function is if you have a data variable that
you sometimes. need to increment or decrement and sometimes need to access
throughout some series of instructions . .You would explicitly claim the spin lock
around the multi-instruction accesses and use the ExInterlockecL\Xx function to
perform the simple increments or decrements.

InterlockedXxx Functions
InterlockedIncrement adds one to a long integer in memory and returns the post
increment value to you:

LONG result = Interlockedlncrement(pLong);

where pLong is the address of a variable typed as a LONG (that is, a long integer).
Conceptually, the operation of the function is equivalent to the statement return

++*pLong in C, but the implementation differs from that Simple statement in order to
provide thread safety and multiprocessor safety. InterlockedIncrement guarantees that
the integer is successfully incremented even if code on other CPUs or in other eligible
threads on the same CPU is simultaneously trying to alter the same variable. In the
nature of the operation, it cannot guarantee that the value it returns is still the value
of the variable even one machine cycle later, because other threads or CPUs will be
able to modify the variable as soon as the atomic increment operation completes.

InterlockedDecrement, shown at the top of the following page, is similar to
InterlockedIncrement, but it subtracts one from the target variable and returns the
postdecrement value, just like the C statement return --*pLong but with thread safety
and multiprocessor safety.

165

Programming the Microsoft Windows Driver Model

166

LONG result = InterlockedOecrement(pLong);

You call InterlockedCompareExchange like this:

LONG target;
LONG result = InterlockedCompareExchange(&target. newval. oldval);

Here, target is a LONG integer used both as input and output to the function, oldval
is your guess about the current contents of the target, and newval is the new value
that you want installed into the target if your guess is correct. The function performs
an operation similar to that indicated in the following C code, but does so via an
atomic operation that's both thread-safe and multiprocessor-safe:

LONG CompareExchange(PLONG ptarget. LONG newval. LONG oldval)
{

LONG value = *ptarget;
if (value == oldval)

*ptarget = newval;
return value;
}

In other words, the function always returns the previous value of the target vari
able to you. In addition, if that previous value equals oldval, it sets the target equal
to the newval you specify. The function uses an atomic operation to do the com
pare and exchange so that the replacement happens only if you're correct in your
guess about the previous contents.

You can also call the InterlockedCompareExchangePointer function to per
form a similar sort of compare and exchange operation with a pointer. This function
is either defined as a compiler intrinsic (that is, a function for which the compiler
supplies an inline implementation) or a real function call, depending on how wide
pointers are on the platform for which you're compiling and on the ability of the
compiler to generate inline code. You could use the pointer version of the function,
as shown in the following example, to add a structure to the head of a singly-linked
list without needing to acquire a spin lock or raise IRQL:

typedef struct _SOMESTRUCTURE {
struct _SOMESTRUCTURE* next;
... } SOMESTRUCTURE. *PSOMESTRUCTURE;

void InsertElement(PSOMESTRUCTURE p. PSOMESTRUCTURE anchor)
{

PSOMESTRUCTURE next. first;
do

{

p->next = first = *anchor;
next = I~terlockedCompareExchangePointer(anchor. P. first);

Chapter 4 Synchronization

}

while (next != first);
}

Each time through the loop, we make the assumption that the new element will
end up being chained to the current head of the list, the address of which we save
in the variable named first. Then we call InterlockedCompareExchangePointer to see
whether the anchor still points to first even these few nanoseconds later. If so,
InterlockedCompareExchangePointer will set the anchor to point our new element
p. The fact that the return value from InterlockedCompareExchangePointer is the same
as our assumption causes the loop to terminate. If, for some reason, the anchor no
longer points to the same first element, we'll discover that fact and repeat the loop.

The last function in this class is InterlockedExchange, which simply uses an
atomic operation to replace the value of an integer variable and to return the previ
ous value:

LONG value;
LONG oldval = InterlockedExchange(&value. newval);

As you might have guessed, there's also an InterlockedExcbangePointer that
exchanges a pointer value C64-bit or 32-bit, depending on the platform).

ExlnterlockedXxx Functions
Each of the ExInterlockedXXx functions requires that you create and initialize a spin
lock before you call it. Note that the operands of these functions must all be in
nonpaged memory because the functions operate on the data at elevated IRQL.

ExInterlockedAddLargeInteger adds two 64-bit integers and returns the pre
vious value of the target:

LARGE-INTEGER value. increment;
KSPIN_LOCK spinlock;
LARGE_INTEGER prey = ExInterlockedAddLargeInteger(&value.

increment. &spinlock);

Value is the target of the addition and one of the operands. Increment is an inte
ger operand that's added to the target. Spinlock is a spin lock that you previously
initialized. The return value is the target's value before the addition. In other words,
the operation of this function is similar to the following function except that it oc
curs under protection of the spin lock:

__ int64 AddLargeInteger(__ int64* pvalue. __ int64 increment)
{

__ int64 prey = *pvalue;
*pvalue += increment;
return prey;
}

167

Programming the Microsoft Windows Driver Model

Note that the return value is the preaddition value, which contrasts with the
postincrement return from InterlockedExchange and similar functions. (Also, not all
compilers support the __ int64 integer data type, and not all computers can perform
a 64-bit addition operation using atomic instructions.)

ExInterlockedAddUlong is analogous to ExlnterlockedAddLargelnteger ex
cept that it works with 32-bit unsigned integers:

ULONG value. increment;
KSPIN_LOCK spinlock;
ULONG prey = ExInterlockedAddUlong(&value. increment. &spinlock);

This function likewise returns the preaddition value of the target of the operation.
ExInterlockedAddLargeStatistic is similar to ExInterlockedAddUlong in that

it adds a 32-bit value to a 64-bit value. It hadn't been documented in the DDK at press
time, so I'll show you its prototype here:

VOID ExInterlockedAddLargeStat1stic(PLARGE_INTEGER Addend.
ULONG Increment);

This new function is faster than ExInterlockedAddUlong because it doesn't need
to return the preincrement value of the Addend variable. It therefore doesn't need to
employ a spin lock for synchronization. The atomicity provided by this function is,
however, only with respect to other callers of the same function. In other words, if you
had code on one CPU calling ExInterlockedAddLargeStatistic at the same time as code
on another CPU was accessing the Addend variable for either reading or writing, you
could get inconsistent results. I can explain why this is so by showing you .this para
phrase of the Intel x86 implementation of the function (not the actual source code}

mov eax. Addend
mov ecx. Increment
lock add [eax]. ecx
lock adc [eax+4]. 0

This code works correctly for purposes of incrementing the Addend because the
lock prefixes guarantee atomicity of each addition operation and because no carries
from the low-order 32 bits can ever get lost. The instantaneous value of the 64-bit
Addend isn't always consistent, however, because an incrementer might be poised
between the ADD and the ADC just at the instant someone makes a copy of the com
plete 64-bit value. Therefore, even a caller of ExInterlockedCompareExchange64
on another CPU could obtain an inconsistent value.

Interlocked List Access

168

The Windows NT executive offers three sets of support functions for dealing with
linked lists in a thread-safe and multiprocessor-safe way. These functions support

Chapter 4 Synchronization

doubly-linked lists, singly-linked lists, and a special kind of singly-linked list called
an S-List. I discussed noninterlocked doubly-linked and singly-linked lists in the pre
ceding chapter. To close this chapter on synchronization within WDM drivers, I'll
explain how to use these interlocked accessing primitives.

If you need the functionality of a FIFO queue, you should use a doubly-linked
list. If you need the functionality of a thread-safe and multiprocessor-safe pushdown
stack, you should use an S-List. In both cases, to achieve thread safety and multipro
cessor safety, you will allocate and initialize a spin lock. The S-List might not actually
use the spin lock, however, because the presence of a sequence number might allow
the kernel to implement it using just atomic compare-exchange sorts of operations,

The support functions for performing interlocked access to list objects are very
similar, so I've organized this section along functional lines. I'll explain how to ini
tialize all three kinds of list. Then I'll explain how to insert an item into all three kinds.
After that, I'll explain how to remove items.

Initialization
You can initialize these lists as shown here:

LISLENTRY Doubl eHead:
SINGLE-LIST_ENTRY SingleHead:
SLIST_HEADER SListHead:

InitializeListHead(&DoubleHead):

SingleHead.Next = NULL:

ExInitializeSListHead(&SListHead):

Don't forget that you must also allocate and initialize a spin lock for each list.
Furthermore, the storage for the list heads and all the items you put into the lists must
. come from nonpaged memory because the support routines perform their accesses
at elevated IRQL. Note that the spin lock isn't used during initialization of the. list head
because it doesn't make any sense to allow contention for list access before the list
has been initialized.

Inserting Items
You can insert items at the head and tail of a doubly-linked list and at the head (only)
of a singly-linked list or an S-List:

PLIST_ENTRY pdElement. pdPrevHead. pdPrevTail:
PSINGLE_LIST_ENTRY psElement. psPrevHead:
PKSPIN_LOCK spinlock:

(continued)

169

Programming the Microsoft Windows Driver Model

170

pdPrevHead = ExlnterlockedlnsertHeadList(&DoubleHead. pdElement. spinlock);
pdPrevTail = ExlnterlockedlnsertTailList(&DoubleHead. pdElement. spinlock);

psPrevHead = ExlnterlockedPushEntryList(&SingleHead. psElement. spinlock);

psPrevHead = ExlnterlockedPushEntrySList(&SListHead. psElement. spinlock);

The return values are the addresses of the elements previously at the head (or
tail) of the list in question. Note that the element addresses you use with these func
tions are the addresses of list entry structures that are usually embedded in larger
structures of some kind, and you will need to use the CONTAINING_RECORD macro
to recover the address of the surrounding structure.

Removing Items
You can remove items from the head of any of these lists:

pdElement = ExlnterlockedRemoveHeadList(&DoubleHead. spinlock);

psElement = ExlnterlockedPopEntryList(&SingleHead. spinlock);

psElement = ExlnterlockedPopEntrySList(&SListHead. spinlock);

The return values are NULL if the respective lists are empty. Be sure to test the
return value for NULL before applying the CONTAINING_RECORD macro to recover
a containing structure pointer.

IRQL Restrictions
You can call the S-List functions only while running at or below DISPATCH_LEVEL.
The ExInterlockedXxx functions for accessing doubly-linked or singly-linked lists can
be called at any IRQL so long as all references to the list use an ExInterlockedXxx
call. The reason for no IRQL restrictions is that the implementations of these func
tions disable interrupts, which is tantamount to raising IRQL to the highest possible
level. Once interrupts are disabled, these functions then acquire the spin lock you've
specified. Since no other code can gain control on the same CPU, and since no code
on another CPU can acquire the spin lock, your lists are protected.

NOTE The DDK documentation states this rule in an overly restrictive way for
at least some of the ExlnteriockedXXxfunctions. It says that all callers must be
running at some single IROL less than or equal to the DIROL of your interrupt
object. There is, in fact, no requirement that all callers be at the same IROL,
because you can call the functions at any IROL. Likewise, no restriction to <=
DIROL exists either, but there's also no reason for the code you and I write to
raise IROL higher than that.

It's perfectly okay for you to use ExInterlockedXxx calls to access a singly
linked or doubly-linked list (but not an S-List) in some parts of your code and to
use the noninterlocked functions (InsertHeadList and so on) in other parts of your
code if you follow a simple rule. Before using a noninterlocked primitive, acquire

Chapter 4 Synchronization

the same spin lock that your interlocked calls use. Furthermore, restrict list access to
code running at or below DISPATCH_LEVEL. For example:

II Access list using noninterlocked calls:

VOID FunctionlC)
{

ASSERTCKeGetCurrentIrqlC) <= DISPATCH_LEVEL);
KIRQL oldirql;
KeAcquireSpinLockCspinlock. &oldirql);
InsertHeadListC ...);
RemoveTailListC ...);

KeReleaseSp1nLockCspinlock. oldirql);
}

II Access list using interlocked calls:

VOID Function2()
{

ASSERTCKeGetCurrentIrqlC) <= DISPATCH_LEVEL);
ExInterlockedInsertTailListC ..•• spinlock);
}

The first function must be running at or below DISPATCH_LEVEL because that's
a requirement of calling KeAcquireSpinLock. The reason for the IRQL restriction on
the interlocked calls in the second function is as follows: Suppose that Function!
acquires the spin lock in preparation for performing some list accesses. Acquiring the
spin lock raises IRQL to DISPATCH_LEVEL. Now suppose that an interrupt occurs on
the same CPU at a higher IRQL and that Function2 gains control to use one of the
ExInterlockedXxx routines. The kernel will now attempt to acquire the same spin lock,
and the CPU will deadlock. This problem arises from allowing code running at two
different IRQLs to use the same spin lock: Functionl is at DISPATCH_LEVEL, and
Function2 is-practically speaking, anyway-at HIGH_LEVEL when it tries to recur
sively acquire the lock.

171

Chapter 5

The I/O
Request Packet

The operating system uses a data structure known. as an I/O request packet, or IRP,
to communicate with a kernel-mode device driver. In this chapter, I'll discuss this
important data struCture and the means by which it's created, sent, processed, and
ultimately destroyed. I'll end with a discussion of the relatively complex subject of
IRP cancellation. This chapter is rather abstract, I'm afraid, because I haven't yet talked
about any of the concepts that surround specific types of IRPs. You might, therefore,
want to skim this chapter and refer back to it while you're reading later chapters.

DATA STRUCTURES
Two data structures are crucial to the handling of I/O requests: the I/O request
packet itself and the 10_STAC~LOCATION structure. I'll describe both structures in
this section.

Structure of an IRP
Figure 5-1 illustrates the IRP data structure, with opaque fields shaded in the usual
convention of this book. A brief description of the important fields follows.

MdlAddress (PMDL) is the address of a memory descriptor list (MDL) describing
the user-mode buffer associated with this request. The I/O Manager creates this
MDL for IRP _MLREAD and IRP _ML WRITE requests if the topmost device .object's
flags indicate DO_DlRECT_IO. It creates an MDL for the output buffer used with an

173

Programming the Microsoft Windows Driver Model

174

IRP _MLDEVICE_CONTROL request if the control code indicates METHOD_IN_
DIRECT or METHOD_OlIT_DIRECT. The MDL itself describes the user~mode virtual
buffer and also contains the physical addresses of locked pages containing that buffer.
A driver has to do additional work, which can be quite minimal, to actually access
the user-mode buffer.

MdlAddress

Flags

Assoclatedlrp

Cancel Routine

UserBuffer

Tall

Figure 5-1. I/O request packet data structure.

Flags (ULONG) contains flags that a device driver can read but not directly alter.
None of these flags are relevant to a Windows Driver Model driver.

Assoclatedlrp (union) is a union of three possible pointers. The alternative that
a typical WDM driver might want to access is named Associatedlrp.SystemBuffer.

Chapter 5 The I/O Request Packet

The SystemBuffer pointer holds the address of a data buffer in nonpaged kernel-mode
memory. For IRP _MLREAD and IRP _ML WRITE operations, the I/O Manager creates
this data buffer if the topmost device object's flags specify DO_BVFFERED_IO. For
IRP _MLDEVICE_CONTROL operations, the I/O Manager creates this buffer if the
I/O control function code indicates that it should. (See Chapter 9, "Specialized Top
ics.") The I/O Manager copies data sent by user-mode code to the driver into this
buffer as part of the process of creating the IRP. Such data includes the data involved
in a WriteFile call or the so-called input data for a call to DeviceIoControl. For read
requests, the device driver fills this buffer with data; the I/O Manager later copies the
buffer back to the user-mode buffer. For control operations that specify ME1HOD_
BUFFERED, the driver places the so-called output data in this buffer, and the I/O
Manager copies it to the user-mode output buffer.

, IoStatus (IO_STATUS_BLOCK) is a structure containing two fields that driv
ers set when they ultimately complete a request. IoStatus.Status will receive an
NTSTATUS code, while IoStatus.Information is a ULONGYTR that will receive
an information value whose exact content depends on the type of IRP and the comple
tion status. A common use of the Information field is to hold the total number of bytes
transferred by an operation like IRP _MLREAD that transfers data. Certain Plug and
Play (PnP) requests use this field as a pointer to a structure that you can think of as
the answer to a query.

RequestorMode will equal one of the enumeration constants UserMode or
KernelMode, depending on where the original I/O request originated. Drivers some
times inspect this value. to know whether to trust some parameters.

PendingReturned (BOOLEAN) is 1RUE if the lowest-level dispatch routine to
process this IRP returned STATUS_PENDING. Completion routines reference this field
to avoid a potential race condition between completion and dispatch routines.

Cancel (BOOLEAN) is 1RUE if IoCancellrp has been called to cancel this re
quest and FALSE if it hasn't (yet) been called. IRP cancellation is a relatively com
plex topic that I'll discuss fully later on in this chapter (in "Cancelling I/O Requests").

Cance1Irq1 (KIRQL) is the interrupt request level (IRQL) at which the special
cancel spin lock was acquired. You reference this field in a cancel routine when you
release the spin lock.

CancelRoutine (PDRIVER_CANCEL) is the address of an IRP cancellation rou
tine in your driver. You use IoSetCanceIRoutine to set this field instead of modify
ing it directly.

UserBuffer (PVOID) contains the user-mode virtual address of the output buffer
for an IRP _MLDEVICE_CONTROL request for which the control code specifies
ME1HOD_NEI1HER. It also holds the user-mode virtual address of the buffer for read
and write requests, but a driver should usually specify one of the device flags
DO_BVFFERED.:JO or DO_DlRECT_IO and should therefore not usually need to
access the field for reads or writes. When handling a METHOD_NEITHER control
operation, the driver can create its own MDL using this address.

175

Programming the Microsoft Windows Driver Model

Tail. Overlay is a structure within a union that contains several members po
tentially useful to a WDM driver. Refer to Figure 5-2 for a map of the Tail union. In
the figure, items at the same level as you read left to right are alternatives within a
union, while the vertical dimension portrays successive locations within a structure.
TailOverlay.DeviceQueueEntry (KDEVlCE_QUEUE_ENTRY) and Tall.Overlay.
DriverContext (PVOID[4]) are alternatives within an unnamed union within
Tail. Overlay. The I/O Manager uses DeviceQueueEntry as a linking field within the
standard queue of requests for a device. At moments when the IRP is not on some
queue that uses this field and when you own the IRP, you can use the four pointers
in DriverContext in any way you please. Tail.Overlay.IlstEntry (LIST_ENTRY) is
available for you to use as a linking field for IRPs on any private queue you choose
to implement.

Tail.Overlay Tail.Ape Tail.CompletionKey

---A --
{ Y

A __ y __ A. __ ,

Completion Key

DeviceQueueEntry

DriverContext

Thread

AuxiliaryBuffer
Ape

ListEntry

CurrentStackLocation PacketType

OriginalFileObject

Figure 5·2. Map of the Tail union in an IRP.

176

Chapter 5 The I/O Request Packet

CurrentLocation (CHAR) and Tall.Overlay.CurrentStackLocation (PIO_
STACK_LOCATION) are not documented for use by drivers because support func
tions like IoGetCurrentIrpStackLocation can be used instead. During debugging,
however, it might help you to realize that CurrentLocation is the index of the cur
rent I/O stack location and CurrentStackLocation is a pointer to it.

The 1/0 Stack
Whenever any kernel-mode program creates an IRP, it also creates an associated array
of IO_STACK_LOCATION structures: one stack location for each of the drivers that will
process the IRP and often one more stack location for the use of the originator of the
IRP. (See Figure 5-3.) A stack location contains type codes and parameter information
for the IRP as well as the address of a completion routine. Refer to Figure 5-4 for an
illustration of the stack structure .

..... ~ ~

..... ~ ~

..... ~ ---

Figure 5·3. Parallelism between driver and I/O stacks.

NOTE I'll discuss the mechanics of creating IRPs a bit further on in this chap
ter. It helps to know right now that the StackCourit field of a DEVICE_OBJECT
indicates how many locations to reserve for an IRP sent to that device's driver.

177

Programming Iha Microsoft Windows Driver Modal

178

MaJorFunction I MlnorFunctlon I Flags I Control

Parameters

DeviceObJ8Ct

FlleObject

CompletionRoutine

Context

Figure 5-4. I/O stack location data structure.

MajorFunction (UCHAR) is the major function code associated with this IRP.
This would be a value like IRP _MLREAD that corresponds to one of the dispatch
function pointers in the MajorFunction table of a driver object. Since this code is in
the I/O stack location for a particular driver, it's conceivable that an IRP could start
life as an IRP;.,.MLREAD (for example) and be transformed into something else as it
progresses down the stack of drivers. I'll show you examples in Chapter 11, "The
Universal Serial Bus," of how a USB driver changes the personality of a read or write
request into an internal control operation in order to submit the request to the USB
bus driver.

MinorFunction (UCHAR) is a minor function code that further identifies an
IRP belonging to a few major function classes. IRP J1LPNP requests, for example,
are divided into a dozen or so subtypes with minor function codes such as
IRP _MN_START_DEVICE, IRP _MN_REMOVE_DEVICE, and so on.

Parameters (union) is a union of substructures, one for each type of request
that has specific parameters. The substructures include, for example, Create (for
IRP _MLCREATE requests), Read (for IRP _MLREAD requests), and StartDevice (for
the IRP _MN_START_DEVICE subtype of IRP _MLPNP).

DeviceObject (PDEVICE_OBJECT) is the address of the device object that
corresponds to this stack entry. IoCallDriver fills in this field.

FlleObject (PFILE_OBJECT) is the address of the kernel file object to which the
IRP is directed. Drivers often use the FileObject pointer to correlate IRPs in a queUe

Chapter 5 The 110 Request Packet

with a request (in the form of an IRP _MLCLEANUP) to cancel all queued IRPs in
preparation for closing the file object.

CompletionRoutine (PIO_COMPLETION_ROUTINE) is the address of an I/O
completion routine installed by the driver above the one to which this stack location
corresponds. You never set this field directly-instead, you call IoSetCompletion
Routine, which knows to reference the stack location below the one that your driver
owns. The lowest-level driver in the hierarchy of drivers for a given device never needs
a completion routine because it must complete the request. The originator of a re
quest, however, sometimes does need a completion routine but doesn't usually have
its own stack location. That's why each level in the hierarchy uses the next lower stack
location to hold its own completion routine pointer.

Context (PVOID) is an arbitrary context value that will be passed as an argu
ment to the completion routine. You never set this field directly; it's set automatically
from one of the arguments to IoSetCompletionRoutine.

THE "STANDARD MODEL" FOR IRP PROCESSING
Particle physics has its "standard model" for the universe, and so does WDM.
Figure 5-5 illustrates a typical flow of ownership for an IRP as it progresses through
various stages in its life. Not every type of IRP would go through these steps, and
some of the steps might be missing or altered depending on the type of device and
the type of IRP. Notwithstanding the possible variability, however, the picture pro
vides a useful starting point for discussion.

Figure 5-5. The ''standard model" for IRP processing.

179

Programming the Microsoft Windows Driver Model

IT'S EVEN MORE COMPLICATED THAN YOU THOUGHT •••

The first time you encounter the concepts that make up the standard model for
IRP processing, they'll probably seem pretty complicated. Unfortunately, the stan
dard model is also not quite sufficient to handle all the problems that can arise
in a regime that includes hot pluggable devices, dynamic resource reconfiguration,
and power management. In later chapters, I'll describe another way of queuing
and cancelling IRPs that deals with these extra problems. The standard model will
seem like a model of clarity when you're done reading about that!

Despite the problems that some devices present, many devices can still
employ the standard model (which is, of course, why I'm bothering to explain
it here). If your device cannot be removed or reconfigured while the system is
running and can reject I/O requests while in a low-power state, you can use
the standard model.

Creating an IRP

180

The IRP begins life when some entity calls an I/O Manager function to create it. In
the figure, I used the term I/O Manager to describe this entity, as though there were
a single system component responsible for creating IRPs. In reality, no such single
actor in the population of operating system routines exists, and it would have been
more accurate to just say that something creates the IRP. Your own driver will be
creating IRPs from time to time, for example, and you will occupy the initial owner
ship box for those particular IRPs.

You can use any of four functions to create a new IRP:

• IoBulldAsynchronousFsdRequest builds an IRPon whose completion
you don't plan to wait. This function and the next are appropriate for
building only certain types of IRP.

• IoBuUdSynchronousFsdRequest builds an IRP on whose completion
you do plan to wait.

• IoBulldDeviceIoControJRequest builds a synchronous IRP _MLDEVICE_
CONfROL or.IRP _MLINTERNAL_DEVICE_CONTROL request.

• IoAllocateIrp builds an IRP that is not one of the types supported by the
preceding three functions.

The Fsd in the first two of these function names stands for file system driver
(FSD). Although FSDs are the primary users of the functions, any driver is allowed
to call them. The DDK also documents a function named IoMakeAssociatedirp for

Chapter 5 The 110 Request Packet

building an IRP that's subordinate to some other IRP. WDM drivers should not call
this function. Indeed, completion of associated IRPs doesn't work correctly in
Microsoft Windows 98 anyway.

Deciding which of these functions to call and determining what additional
initialization you need to perform on an IRP is a rather complicated matter. I'll come
back to this subject, therefore, at the end of this chapter.

Forwarding to a Dispatch Routine

After you create an IRP, you call IoGetNextlrpStackLocation to obtain a pointer to
the first stack location. Then you initialize just that first location. At the very least,
you need to fill in the MajorFunction code. Having initialized the stack, you call
IoCallDriver to send the IRP to a device driver:

PDEVICE_OBJECT DeviceObject; II + something gives you this
PIO_STACK-LOCATION stack = IoGetNextIrpStackLocation(Irp);
stack-)MajorFunction = I RP_MJ_Xxx;
<other initialization of "stack">
NTSTATUS status = IoCallDriver(DeviceObject. Irp);

The first argument to loCallDriver is the address of a device object that you've ob
tained somehow. I'll describe two common ways of getting a device object pointer
at the very end of this chapter in "Where Do Device Object Pointers Come From?"
For the time being, imagine that these pointers just come to you out of the blue.

The initial stack location pointer in the IRP gets initialized to one before the actual
first location. Since the I/O stack is an array of IO_STACK_LOCATION structures, you
could think of the stack pointer as being initialized to point to the "-1" element, which
doesn't exist. (In fact, the stack "grows" from high toward low addresses, but that detail
shouldn't obscure the concept I'm trying to describe here.) We therefore ask for the
"next" stack location when we want to initialize the first one. IoCallDriver will ad
vance the stack pointer to the 0 entry and extract the major function code that we
left there. That's the made-up value IRP _MLXXx in this example. Then, loCallDriver
will follow the DriverObject pointer inside the device object to the MajorFunction table
belonging to the top-level driver. Recall that the driver's DriverEntry function filled
that table in with pointers to dispatch functions in the driver. IoCallDriver will use
the major function code to index the table, and it will then call the function whose
address it finds.

You can imagine IoCallDriver as looking something like this (but I hasten to
add that this is not a copy of the actual source code):

NTSTATUS IoCallDriver(PDEVICE_OBJECT device. PIRP Irp)
{

IoSetNextlrpStackLocation(Irp);
(continued)

181

Programming the Microsoft Windows Driver Model

PIO_STACK-LOCATION stack = loGetCurrentlrpStackLocation(lrp):
stack-)DeviceObject = device:
ULONG fcn = stack-)MajorFunction:
PDRIVER-OBJECT driver = device-)DriverObject:
return (*driver-)MajorFunction[fcn])(device. lrp):
}

Duties of a Dispatch Routine

182

An archetypal IRP dispatch routine would look similar to this example:

NTSTATUS DispatchXxx(PDEVICE_OBJECT device. PIRP lrp)
{

PIO_STACK-LOCATION stack = loGetCurrentlrpStackLocation(Irp):
POEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) device-)DeviceExtension:

return STATUS_Xxx:
}

1. You generally need to access the current stack location to determine
parameters or to examine the minor function code.

2. You also generally need to access the device extension you created and
initialized during AddDevice.

3. You'll be returning some NTSTATUS code to IoCallDriver, which will
propagate the code back to its caller.

In this book, I'll be using names of the form DispatchX.xx (for example,
DispatchRead, DispatchPnp, and so forth) for the dispatch functions in my sample
drivers. Other authors use different conventions for these names. Microsoft rec
ommends, for example, that you use a name like RandomDispatchRead for the
IRP _MLREAD dispatch function in a driver named RANDOM.SYS. Conventions like
this make it easier to understand debugger traces in some situations, but they also
require you to do more typing. Since these names aren't visible outside the name space
of your own driver, it's up to you whether you use very specific names as Microsoft
recommends or names such as Fred that have meaning to you.

Where I used an ellipsis in the prototypical dispatch function above, a dispatch
function has to choose between three courses of action. It can complete the request
immediately, pass the request down to a lower~level driver in the same driver stack,
or queue the request for later processing by other routines in this driver. I'm going
to discuss each of these alternatives fully in this chapter, but I'm going to talk about
only the queuing possibility now because that's what comes next in the standard
model for IRP processing. You see, the largest number of requests that come into a
device involves reading or writing data, and you usually need to put these requests
into a queue to serialize access to your hardware.

Chapter 5 The I/O Request Packet

Every device object gets a request queue object "for free," and there's a stan
dard way of using this queue:

NTSTATUS DispatchXxx(...)
{

IoMarkIrpPending(Irp);
IoStartPacket(device. Irp. NULL. NULL);
return STATUS_PENDING;
}

1. Whenever we return STATUS_PENDING from a dispatch routine (as we're
about to do here), we make this call to help the I/O Manager avoid an
internal race condition. We must do this before we relinquish ownership
of the IRP.

2. If our device is currently busy, IoStartPacket puts the request onto a
queue. If our device is idle, loStartPacket marks the device as being busy
and calls our StartIo routine. I'll describe the Startio routine in the next
section. The third argument to loStartPacket is the address of a ULONG
key used for sorting the queue. Disk drivers, for example, might specify
a cylinder address here to provide for ordered-seek queuing. If you sup
ply NULL, as here, this request is added to the tail of the queue. The last
argument is the address of a cancel routine. I'll discuss cancel routines later
in this chapter-they're complicated!

3. We return STATUS_PENDING to tell our caller that we're not done with
this IRP yet.

It's very important not to touch the IRP once we call loStartPacket. By the time
that function returns, the IRP may have been completed and the memory it occupies
released. The pointer we have might, therefore, now be invalid.

The Startlo Routine

The I/O Manager calls your StartIo routine to process one IRP at a time:

VOID StartIo(PDEVICE_OBJECT device. PIRP Irp)
{

PIO_STACICLOCATION stack = IoGetCurrentI rpStackLocat i on (I rp) ;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) device-)DeviceExtension;

}

Your Startio routine receives control at DISPATCH_LEVEL, meaning that it must
not generate any page faults. In addition, the CurrentIrp field of the device object

183

Programming the Microsoft Windows Driver Model

and the Irp argument will both point to the IRP that's being submitted to you
for processing.

Your job in Startlo is to commence the IRP you've been handed. How you do
this depends entirely on your device. Often you will need to access hardware regis
ters that are also used by your interrupt service routine (ISR) and, perhaps, by other
routines in your driver. In fact, sometimes the easiest way to commence a new oper
ation is to store some state information in your device extension and then fake an
interrupt. Since either of these approaches needs to be carried out under protection
of the same spin lock that protects your ISR, the correct way to proceed is to call
KeSyncbronizeExecution. For example:

VOID Startlo(...)
{

KeSynchron1zeExecution(pdx->InterruptObject.
TransferF1rst. (PVOID) pdx):

}

BOOLEAN TransferFirst(PVOID context)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) context:

return TRUE:
}

The TransferFirst routine shown here is an example of the generic class of
SynchCritSection routines, so called because they are synchronized with the ISR. I'll
discuss the SynchCritSection concept in more detail in Chapter 7, "Reading and Writ
ing Data."

Once Startlo gets the device busy handling the new request, it returns. You'll
see the request next when your device interrupts to signal that it's done with what
ever transfer you started.

The Interrupt Service Routine

184

When your device is ftnished transferring data, it might signal a hardware interrupt. In
Chapter 7, I'll show you how to use IoConnectlnterrupt to "hook" the interrupt.
One of the arguments to 10Connectlnterrupt is the address of your ISR. When the inter
rupt occurs, the hardware abstraction layer (HAL) calls your ISR. The ISR runs at the
device IRQL (DIRQL) of your particular device and under the protection of a spin
lock associated speciftcally with your ISR. The ISR has the following prototype:

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject. PYOID context)
{

}

Chapter 5 The 110 Request Packet

The first argument of your ISR is the address of the interrupt object created by
IoConnectInterrupt, but you're unlikely to use this argument. The second argument
is whatever context value you specified in your original call to IoConnectInterrupt;
it will probably be the address of your device object or of your device extension,
depending on your preference.

I'll discuss the duties of your ISR in detail in Chapter 7 in connection with reading
and writing data, the subject to which interrupt handling is most relevant. To carry
on with this discussion of the standard model, I need to tell you that one of the likely
things for the ISR to do is to schedule a deferred procedure call (DPC). The purpose
of the DPC is to let you do things, like calling IoCompleteRequest, that can't be done
at the rarified DIRQL at which your ISR runs. So, supposing you develop a pointer
named device to your device object inside the ISR, you'd have a line of code like
this one:

IoRequestDpc(device. device->CurrentIrp. NULL);

You'll next see the IRP in the DPC routine you registered inside AddDevice with
your call to IoInitializeDpcRequest. The traditional name for that routine is
DpcForIsr because it's the DPC routine your ISR requests.

Deferred Procedure Can Routine
The DpcForIsr routine requested by your ISR receives control at DISPATCH_LEVEL.
Generally, its job is to finish up the processing of the IRP that caused the most re
cent interrupt. Often that job entails calling IoCompleteRequest to complete this IRP
and IoStartNextPacket to remove the next IRP from your device queue for forward
ing to Startlo.

VOID DpcForlsr(PKDPC Dpc PDEVICE_OBJECT device. PIRP Irp. PVOID context)
{

IoStartNextPacket(device. FALSE);
IoCompleteRequest(Irp. boost);
}

1. IoStartNextPacket removes the next IRP from your queue and sends it to
StartIo. The FALSE argument indicates that this IRP can't be cancelled in the
normal way. By the time you finish this chapter, you'll know how to handle
the more normal case in which you specify TRUE for the second argument.

2. IoCompleteRequest completes the IRP you specify as the first argument.
The second argument specifies a priority boost for the thread that has been
waiting for this IRP. You'll also fill in the IoStatus block within the IRP
before calling IoCompleteRequest, as I'll explain later in the section
"Completion Mechanics."

185

Programming the Microsoft Windows Driver Model

The call to IoCompleteRequest is the end of this standard way of handling an
I/O request. After that call, the I/O Manager (or whatever created the IRP in the first
place) owns the IRP once more. That entity will destroy the IRP and might unblock
a thread that has been waiting for the request to complete.

Custom Queues

186

Some devices operate in such a way that it makes sense to have more than one queue
of requests. A common example is a serial port, which can handle independent
streams of input and output requests simultaneously. Both IoStartPacket and IoStart
NextPacket (and their key-sorting equivalents) work with a queue that you get "for
free" as part of the device object. It's relatively easy to create additional queues that
work the same way as the standard queue managed by those routines.

To make it easier to discuss things, let's suppose that you need a separate queue
to manage IRP ->1LSPECIAL requests. (There's no such major function code-I made
it up just so that we'd have a concrete topic for the discussion.) You would write two
helper functions that would do for these special IRPs pretty much the same thing as
the Startlo and DpcForIsr routines I mentioned earlier:

• A Startlo-like function-let's call it StartIoSpecial-that starts the next
IRP _MLSPECIAL request.

• A DPC function-let's call it DpcSpecial-that handles completing an
IRP _MLSPECIAL request.

You'll also create a KDEVICE_QUEUE object in your device extension. You'd
initialize this object during AddDevice:

NTSTATUS AddDevice(...)
{

KelnitializeDeviceQueue(&pdx->dqSpecial);

}

where dqSpecial is the name of the KDEVICE_ OBJECT we'll use for IRP _MLSPECIAL
requests. A device queue object is a three-state object. (See Figure 5-6.) These states
influence how the support routines for device queues operate:

• The idle state occurs when the device isn't busy handling any requests
and the queue is empty. KeInsertDeviceQueue and KeInsertByKey
DeviceQueue mark the queue busy but empty (the next state) and return
FALSE. You shouldn't call KeRemoveDeviceQueue or KeRemoveBy
KeyDeviceQueue when the queue is idle.

..

Chapter 5 The lID Request Packet

• The busy but empty state occurs when the device· is busy but no IRPs
are on the queue. KeInsertDeviceQueue and KeInsertByKeyDeviceQueue
add an IRP to the end of the queue, put the queue into the busy but not
empty state, and return TRUE. KeRemoveDeviceQueue or KeRemoveBy
KeyDeviceQueue return NULL and put the queue into the idle state.

• The busy but not empty state occurs when the device is busy and there's
at least one IRP on the queue: KeInsertDeviceQueue and KeInsertByKey
DeviceQueue add an IRP to the end of the queue, leave the queue in this
same state, and return TRUE. (This is like what happens in the busy but
empty state, except that no state transition occurs.) KeRemoveDevice
Queue or KeRemoveByKeyDeviceQueue remove the first entry from the
queue and return its address. In addition, if the queue becomes empty,
they put the queue into the busy but empty state.

Insert

,-----/sert

Figure 5-6. States of a KDEVlCE-.QUEUE queue.

We use these support routines and the special device queue in our dispatch and
DPC routines, as follows:

NTSTATUS 01 spatchSpeci al(POEVICLOBJECT fdo. PI RP I rp)
{

IoMarklrpPend1ng(Irp);
KIRQL old1rql;
KeRaiselrql(OISPATCH_LEVEL. &old1rql);
POEVICE_EXTENSION pdx = (PDEVICE~EXTENSION) fdo->Oev1ceExtens1on;
if (IKeInsertOeviceQueue(&pdx->dqSpec1al.

&Irp->Ta11.0verlay.Dev1ceQueueEntry»
StartIoSpecial(fdo. Irp);

(continued)

187

Programming the Microsoft Windows Driver Mode.

188

KeLowerlrql(old1rql);
return STATUS_PENDING;
}

VOID DpcSpec1al(.~.)
{

PKDEVICLQUEULENTRY qep = KeRemoveDeviceQueue(&pdx-)dqSpecial);
if (qep)

StartloSpecial(fdo. CONTAINING_RECORD(qep. IRP.
Tail.Overlay.DeviceQueueEntry»;

}

1. As with a "regular" dispatch routine, we mark this IRP as pending because
we're going to queue it and return STATUS_PENDING.

2. KeInsertDeviceQueue and our own StartloSpecial expect to be called at
DISPATCH_LEVEL. Hence, we explicitly raise IRQL to that level. We'll use
K.eLowerIrql shortly to lower IRQL back to what it currently is (probably
PASSIVE_LEVEL).

3. This call to KeInsertDeviceQueue might add the IRP to the queue, in
which case the return value will be TRUE and we won't do anything more
with the IRP. If the device is currently idle, however, the return value will
be FALSE and the IRP will not have been placed on the queue. We there
fore call StartIoSpecial directly.

4. This call to KeRemoveDeviceQueue from the DPC routine will have one
of two results. If the queue is currently empty, the return value will be
NULL and we won't do anything more about starting a new request (as
there aren't any!). Otherwise, the return value will be the address of the
queue linking field within the IRP. We use CONTAINING_RECORD to
recover the address of the IRP, which we then pass to StartloSpecial. Note
that this DPC routine is already running at DISPATCH_LEVEL, so we don't
need to adjust IRQL before removing an entry from the queue or calling
the Startlo routine.

It's no coincidence that my earlier descriptions of StartPacket and StartNextPacket
sound so similar to what I've just described. Those functions work with a
KDEVICE_QUEUE object named DeviceQueue that's one of the opaque fields of a
device object, and their logic is the same as your logic when you manage your own
device queue.

Chapter 5 The I/O Request Packet

COMPLETING 1/0 REQUESTS
Every IRP has an urge toward completion. In the standard processing model, you
might complete an IRP in at least two circumstances. The DpcForIsr routine would
generally complete the request that's responsible for the most recent interrupt. A
dispatch function might also complete an IRP in situations like these:

• If the request is erroneous in some easily determined way (such as a re
quest to rewind a printer or to eject the keyboard), the dispatch routine
should fail the request by completing it with an appropriate statUs code.

• If the request calls for information that the dispatch function can easily
determine (such as a control request asking for the driver's version num
ber), the dispatch routine should provide the answer and complete the
request with a successful status code.

Completion Mechanics
Mechanically, completing an IRP entails mling in the Status and Information mem
bers within the IRP's IoStatus block and calling IoCompleteRequest. The Status
value is one of the codes defined by manifest constants in the DDK header file
NTSTATUS.H. Refer to Table 5-1 for an abbreviated list of status codes for common
situations. The Information value depends on what type of IRP you're completing and
on whether you're succeeding or failing the IRP. Most of the time, when you're fail
ing an IRP (that is, completing it with an error status of some kind), you'll set Infor
mation to zero. When you succeed an IRPthatinvolves data transfer, you ordinarily
set the Information field equal to the number of bytes transferred.

Status Code Description

STATUS_SUCCESS Normal completion

STATUS_UNSUCCESSFUL Request failed, but no other status
code describes the reason specifically

STATUS_NOT_IMPLEMENTED A function hasn't been implemented

STATUS_INVALID_HANDLE An invalid handle was supplied for
an operation

STATUS_INVALID_PARAMETER A parameter is in error

STATUS_INVALID_DEVICE_REQUEST The request is invalid for this device

STATUS_END_OF_FILE End-of-file marker reached

STATUS_DELETE_PENDING The device is in the process of being
removed from the system

Not enough system resources (often
memory) to perform an operation

Table 5-1. Some commonly used Nl'STAWS codes.

189

Programming the Microsoft Windows Driver Model

190

NOTE Always be sure to consult the DDK documentation for the correct set
ting of 10Status.lnformation for the IRP you're dealing with. In some flavors of
IRP _MJ_PNP, for example, this field is used as a pOinter to a data structure that
the PnP Manager is responsible for releasing. If you were to overstore the Infor
mation field with zero when failing the request, you would unwittingly cause a
resource leak.

Since completing a request is something you do so often, I find it useful to have
a helper routine to carry out the mechanics:

NTSTATUS CompleteRequest(PIRP Irp. NTSTATUS status. ULONILPTR Information)
{

Irp->IoStatus.Status = status:
Irp->IoStatus.Information = Information:
IoCompleteRequest(Irp. IO_NO_INCREMENT):
return status:
}

I defmed this routine in such a way that it returns whatever status value you
supply as its second argument. That's because I'm such a lazy typist: the return value
allows me to use this helper whenever I want to complete a request and then im
mediately return a status code. For example:

NTSTATUS DispatchControl(PDEVICE_OBJECT device, PIRP Irp)
{

PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocat1on(Irp):
ULONG code = stack->Parameters.Dev1ceIoControl.loControlCode:
if (code == IOCTL-TOASTER-BOGUS)

return CompleteRequest(Irp, STATUS_INVALID_DEVrCE_REQUEST. 0):

}

You might notice that the Information argument to the CompleteRequest
function is typed as a ULONG_PTR. In other words, this value can be either a ULONG
or a pointer to something (and therefore potentially 64 bits wide).

When you call 10CompleteRequest, you supply a priority boost value to be
applied to whatever thread is currently waiting for this request to complete. You
normally choose a boost value that depends on the type of device, as suggested by
the manifest constant names listed in Table 5-2. The priority adjustment improves the
throughput of threads that frequently wait for I/O operations to complete. Events for
which the end user is directly responsible, such as keyboard or mouse operations,
result in greater priority boosts in order to give preference to interactive tasks. Con
sequently, you want to choose the boost value with at least some care. Don't use
10_SOUND_INCREMENT for absolutely every operation a sound card driver fmishes,
for example-it's not necessary to apply this extraordinary priority increment to a get
driver-version control request.

Chapter 5 The I/O Request Packet

Manifest Constant

10_NO_INCREMENT

10_CD_ROM_INCREMENT

10_DlSK_INCREMENT

10_KEYBOARD_INCREMENT

IO_MAILSLOT_INCREMENT

10_MOUSE_INCREMENT

10_NAMED]IPE_INCREMENT

10_NETWORK_INCREMENT

10_P ARALLEL_INCREMENT

IO_SERIAL~INCREMENT

10_SOUND_INCREMENT

10_VIDEO_INCREMENT

Numeric Priority Boost

o
1

1

6
2

6
2

2

1

2

8

1

Table 5-2. Priority boost values for IoCompleteRequest.

Don't, by the way, complete an IRP with the special status code STATUS_
PENDING. Dispatch routines often return STATUS_PENDING as their return value,
but you should never set IoStatus.Status to this value. Just to make sure, the checked
build of IoCompleteRequest generates an ASSERT failure if it sees STATUS_PENDING
in the ending status. Another popular value for people to use by mistake is appar
ently "-I", which doesn't have any meaning as an NTSTATUS code at all. There's a
checked-build ASSERT to catch that mistake, too.

Using Completion Routines
You often need to know the results of I/O requests that you pass down to lower levels
of the driver hierarchy or that you originate. To find out what happened to a request,
you install a completion routine by calling IoSetCompletionRoutine:

loSetCompletionRoutine(Irp. CompletionRoutine. context.
InvokeOnSuccess. InvokeOnError. InvokeOnCancel);

Irp is the request whose completion you want to know about. Completion
Routine is the address of the completion routine you want called, and context is
an arbitrary pointer-sized value you want passed as an argument to the completion
routine. The InvokeOnXxx arguments are Boolean values indicating whether you
want the completion routine called in three different circumstances:

• InvokeOnSuccess means you want the completion routine called when
something completes the IRP with a status code that passes the NT_
SUCCESS test.

191

Programming Ih. Microsoft Windows Driver Model

192

• InvokeOnError means you want the completion routine called when
something completes the IRP with a status code that does not pass the
NT_SUCCESS test.

• InvokeOnCancel means you want the completion routine called when
something calls 10CanceUrp before completing the IRP. I worded this quite
delicately: IoCancelIrp will set the Cancel flag in the IRP, and that's the
condition that gets tested if you specify this argument. A cancelled IRP
might end up being completed with STATUS_CANCELLED (which would
fail the NT_SUCCESS test) or with any other status at all. If the IRP gets .
completed with an error and you specified InvokeOnError, InvokeOnError
by itself would cause your completion routine to be called. Conversely,
if the IRP gets completed without error and you specified Invoke
OnSuccess, InvokeOnSuccess by itself would cause your completion rou
tine to be called. In these cases, InvokeOnCancel would be redundant.
But if you left out one or the other (or both) of InvokeOnSuccess or
InvokeOnError, the InvokeOnCancel flag would let you see the eventual
completion of an IRP whose Cancel flag had been set no matter what status
is used for the completion.

At least one of these three flags must be TRUE. Note that IoSetCompletion
Routine is a macro, so you want to avoid arguments that generate side effects. The
three flag arguments and the function pointer, in particular, are each referenced twke
by the macro.

10SetCompletionRoutine installs the completion routine address and context
argument in the next IO_STACK_LOCATION-that is, in the stack location in which
the next lower driver will fmd its parameters. Consequently, the lowest-level driver
in a particular stack of drivers does not dare attempt to install a completion routine.
Doing so would be pretty futile, of course, because-by defmition of what it means
to be the lowest-level driver-there's no driver left to pass the request on to.

A completion routine looks like this:

NTSTATUS CompletionRoutine(PDEVICLOBJECT device. PIRP Irp. PYOID context)
{

if (Irp->PendingReturned)
IoMarkIrpPending(Irp);

return <some status code>;
}

It receives pointers to the device object and the IRP, and it also receives what
ever context value you specified in the call to loSetC6mpletionRoutine. Completion

Chapter 5 The I/O Request Packet

routines are usually called at DISPATCH_LEVEL and in an arbitrary thread context,
but can be called at PASSIVE_LEVEL or APC_LEVEL. To accommodate the usual case
(DISPATCH_LEVEL), completion routines therefore need to be in nonpaged memory
and must call only service functions that are callable at DISPATCH_LEVEL. To accom
modate the possibility of being called at a lower IRQL, however, a completion rou
tine shouldn't call functions like K.eA.cquireSpinLockAtDpcLevel that assume they're
at DISPATCH_LEVEL to start with.

NOTE The device object pointer argument to a completion routine is the value
left in the 1/0 stack location's DeviceObject pOinter. 10CaliDriver ordinarily sets
this value. People sometimes create an IRP with an extra stack location so that
they can pass parameters to a completion routine without creating an extra con
text structure. Such a completion routine gets a NULL device object pOinter
unless the creator sets the DeviceObject field.

How Completion Routines Get Called
IoCompleteRequest is responsible for calling all of the completion routines that drivers
installed in their respective stack locations. The way the process works, as shown in
the flowchart in Figure 5-7, is this: Something calls IoCompleteRequest to signal the
end of processing for the IRP. IoCompleteRequest then consults the current stack
location to see whether the driver above the current level installed a completion
routine. If not, it moves the stack pointer up one level and repeats the test. This
process repeats until a stack location is found that does specify a completion routine
or until IoCompleteRequest reaches the top of the stack. Then IoCompleteRequest
takes steps that eventually result in something releasing the memory occupied by the
IRP (among other things).

When IoCompleteRequest fmds a stack frame with a completion routine pointer,
it calls that routine and examines the return code. If the return code is anything other
than STATUS_MORE_PROCESSING_REQUIRED, IoCompleteRequest moves the stack
pointer up one level and continues as before. If the return code is STATUS_MORE_
PROCESSING_REQUIRED, however, IoCompleteRequest stops dead in its tracks and
returns to its caller. The IRP will then be in a sort of limbo state. The driver whose
completion routine halted the stack unwinding process is expected to do more work
with the IRP.

Within a completion routine, a call to IoGetCurrentirpStackLocation will retrieve
the same stack pointer as was current when something called IoSetCompletionRoutine
to install the completion routine pointer. In other words, it returns the stack location
above the one which contains the actual pointer to this completion routine. You
should not rely in a completion routine on the contents of any lower stack location.
To reinforce this rule, IoCompleteRequest zeroes most of the next location just be
fore calling a completion routine.

193

Programming Ihe Mlcr_ft Windows Driver Model

194

Yes

Done

Figure 5-7. Logic of IoCompleteRequest.

Why Completion Routine. Call loMarklrpPending
You may have noticed these two lines at the beginning of the skeleton completion
routine I just showed you:

if (Irp->PendingReturned)
IoMarklrpPending(Irp);

This particular piece of boilerplate is required in any completion routine that
doesn't return STATUS_MORE_PROCESSING_REQUIRED. If you'd like to know why,
read the rest of this section. However, be aware that you should not develop drivers
that rely on the information related to how the I/O Manager processes pending IRPs
that process is likely to change in future versions of Windows.

~:: This explanalion Is compllcatedl

To maximize system throughput, the I/O Manager expects drivers to defer the
completion ofIRPs that take a long time to complete. A driver indicates that completion

Chapter 5 The 110 Request Packet

will be deferred by calling IoMarkIrpPending and returning STATUSYENDING from
the dispatch routine. Often, though, the original caller of the I/O Manager wants to wait
until the operation finishes before proceeding. The I/O Manager will therefore have
logic similar to this (not the actual source code of any particular Microsoft Windows NT
function) to deal with the deferred completion:

Irp->UserEvent = pEvent; II ~ don't do this yourself
status = IoCallDriver(...);
if (status == STATUS_PENDING)

KeWaitForSingleObject(pEvent •...):

In other words, if IoCallDriver returns STATUS_PENDING, this code will wait
on a kernel event. IoCompleteRequest is responsible for setting this event when the
IRP finally completes. The address of the event (User Event) is in one of the opaque
fields of the IRP so that IoCompleteRequest can fmd it. But there's more to the story
than that.

To keep things Simple for the moment, suppose that there were just one driver
involved in processing this request. Its dispatch function does the· two things we've
discussed: it calls IoMarkIrpPending, and it returns STATUSYENDING. That status code
will be the return value from IoCallDriver as well, so you can see that something is now
going to wait on an event. The eventual call to IoCompleteRequest occurs in an arbi
trary thread context, so IoCompleteRequest will schedule a special kernel APC to
execute in the context of the original thread (which is currendy blocked). The APe (asyn
chronous procedure call) routine will set the event, thereby releasing whatever is waiting
for the operation to fmish. There are reasons we don't need to go into right now for
why an APC is used for this purpose instead of a simple call to KeSetEvent.

But queuing an APC is relatively expensive. Suppose that, instead of returning
STATUS_PENDING, the dispatch routine were to call IoCompleteRequest and return
some other status. In this case, the call to IoCompleteRequest is in the same thread
context as the caller of IoCallDriver. It's not necessary to queue an APC, therefore.
Furthermore, it's not even necessary to call KeSetEvent since the I/O Manager isn't
going to be waiting on an event if it doesn't get STATUS_PENDING back from the
dispatch routine. If IoCompleteRequest just had a way to know this case were oc
curring, it could optimize its processing to avoid the APC, couldn't it? That's where
IoMarkIrpPending comes in.

What IoMarkIrpPending does-it's a macro in WOM.H, so you can see this for
yourself-is set a flag named SL_PENDING_RETURNED in the current stack location.
IoCompleteRequest will set the IRP's PendingRewrned flag equal to whatever value
it finds in the topmost stack location. Later on, it inspects this flag to see whether the
dispatch routine has returned or will return STATUS_PENDING. If you do your job
correcdy, it won't matter whether the return from the dispatch routine happens be
fore or after IoCompleteRequest makes this determination. "Doing your job correcdy,"

195

Programming Ibe Microsoft Windows Driver Model

196

in this particular case, means calling IoMarkIrpPending before you do anything that
might result in the IRP getting completed.

So, anyway, IoCompleteRequest looks at the PendingReturned flag. If it's set,
and if the IRP in question is of the kind that normally gets completed asynchronously,
IoCompleteRequest simply returns to its caller without queuing the APe. It assumes
that it's running in the originator's thread context and that some dispatch routine is
shortly going to return a nonpending status code to the originator. The originator, in
turn, avoids waiting for the event, which is just as well because no one is ever going·
to signal that event. So far, so good.

Now let's put some additional drivers into the picture. The top-level driver has
no clue what will happen below it. It simply passes the request down using code such
as the following. (See the next section, "Passing Requests Down to Lower Levels.")

IoCopyCurrentlrpStackLocationToNext(Irp);
IoSetCompletionRoutine(Irp •...);
return IoCallDriver(...);

In other words, the top-level driver installs a completion routine, calls IoCallDriver,
and then returns whatever status code IoCallDriver happens to return. This process
might now repeat additional times as other drivers pass the request· down to whatever
is really destined to service it. When the request reaches that level, the dispatch rou
tine calls IoMarkIrpPending and returns STATUS_PENDING. The STATUS_PENDING
value then percolates all the way back up to the top and out into the originator of the
IRP, which will promptly decide to wait for something to signal the event.

But notice that the driver that called IoMarkIrpPending only managed to set
SL_PENDING_RETURNEO in its own stack location. The drivers above it actually re
turned STATUS_PENDING, but they didn't call IoMarkIrpPending on their own behalf
because they didn't know they'd end up returning STATUS_PENDING as proxies for
the guy at the bottom of the stack. Sorting this out is where the boilerplate code in the
completion routine comes in, as follows. As IoCompleteRequest walks up the I/O stack,
it pauses at each level to set the IRP's PendingReturned flag to the value of the current
stack's SL_PENDING_RETURNED flag. If there's no completion routine at this level, it
then sets the next higher stack's SL_PENDING_RETURNED if PendingReturned is set
and repeats its loop. It doesn't change SL_PENDING_RETURNED if PendingReturned
is clear. In this way, SL_PENDING_RETURNED gets propagated from the bottom to the
top of the stack, and the lRP's PendingReturned flag ends up TRUE if any of the driv
ers ever called IoMarkIrpPending.

IoCompleteRequest does not automatically propagate SL_PENDING_RETURNED
across a completion routine, however. The completion routine must do this itself
by testing the IRP's PendingReturned flag (that is, did the driver below me return
STATUS_PENDING?) and then calling IOMarkIrpPending. If every completion routine

Chapter 5 The I/O Request Packet

does its job, the SL_PENDING_RETURNED flag makes its way to the top of the stack
just as if IoCompleteRequest had done all of its work.

Now that I've explained these intricacies, you can see why it's important for
dispatch routines to c~ll IoMarkIrpPending if they're going to explicitly return
STATUS_PENDING and why completion routines should conditionally do so. If a
completion routine were to break the chain, you'd end up with a thread waiting in
vain on an event that's destined never to be signalled. Failing to see PendingReturned,
IoCompleteRequest would act as if it were dealing with a same-context completion
and therefore would not queue the APC that's supposed to signal the event. The same
thing would happen if a dispatch routine were to omit the IoMarkIrpPending call and
then return STATUS_PENDING.

On the other hand, it's okay, albeit slightly inefficient, to call IoMarkIrpPending
and then complete the IRP synchronously. All that will happen is that IoComplete
Request will queue an APC to signal an event on which no one will ever wait. (Logic
is in place to make sure that the event object can't cease to exist before the call to
KeSetEvent, too.) This is slower than need be, but it's not harmful.

Do not, by the way, be tempted, in the hope of avoiding the boilerplate call to
IoMarkIrpPending inside your completion routine, to code like this:

status = IoCallDriver(...);
if (status == STATUS_PENDING)

IoMarklrpPending(...); II ~ DON'T DO THIS!

The reason this is a bad idea is that you must treat the IRP pointer as poison
after you give it away by calling IoCallDriver. Whatever receives the IRP can com
plete it, allowing something to call IoFreeIrp, which will render your pointer invalid
long before you regain control from IoCallDriver.

PASSING REQUESTS DOWN TO LOWER LEVELS
The whole goal of the layering of device objects which WDM facilitates is that you
want to be able to easily pass IRPs from one layer down to the next. Back in Chap
ter 2, "Basic Structure of a WDM Driver," I discussed how your AddDevice routine
would contribute its portion of the effort required to create a stack of device objects
with a statement like this one:

pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo. pdo);

where fdo is the address of your own device object and pdo is the address of
the physical device object (PDO) at the bottom of the device stack. IoAttachDevice
ToDeviceStack returns to you the address of the device object immediately under
neath yours. When you decide to forward an IRP that you received from above, this
is the device object you'll specify in the eventual call to IoCallDriver.

197

Programming the Microsoft Windows Driver Model

198

When you pass an IRP down, you have the additional responsibility of initial
izing the 10_STACK_LOCATION that the next driver will use to obtain its parameters.
One way of doing this is to perform a physical copy, like this:

IoCopyCurrentlrpStackLocationToNext(Irp);
status = IoCallDriver(pdx->LowerDeviceObject. Irp);

IoCopyCurrentIrpStackLocationToNext is a macro in WDM.H that copies
all the fields in an 10_STACK_LOCATION-except for the ones that pertain to the I/O
completion routines-from the current stack location to the next one. In previous
versions of Windows NT, kernel-mode driver writers sometimes copied the entire stack
location, which would cause the caller's completion routine to be called twice. (Re
call that your completion routine pointer goes in the stack location underneath yours.)
For an explanation of how this particular trap could bite the unwary developer, see
"Secrets of the Universe Revealed! How NT Handles I/O Completion" in The NT In
sider (May 1997, vol. 4, no. 3). The loCopyCurrentIrpStackLocationToNext macro,
which is new with the WDM, avoids the problem.

Driver writers that don't care what happens to the IRP after they pass it down often
use a shortcut to get around actually copying a stack location. In such a situation, they
won't be installing a completion routine-I just said they don't care what happens to
the IRP. Refer to Figure 5-8 for an illustration of the timing of events in this case.

r------------

I I

I We call1oCallDriver u:

___ ,....: We return a status code
I

I/O Manager calls
next driver's dispatch routine

V
Dispatch routine returns

pretty soon with status code

,,------------

Time passes ...

!
Something calls

10CompieteRequest

Figure 5·8. Passing an IRP down and ignoring its ending status.

Chapter 5 The I/O Request Packet

There's no reason to spend the machine cycles to copy your stack location to
the next location-the one you already have contains the parameters you want the
next driver to see as well as whatever completion pointer the driver above you might
have specified. You therefore use the following shortcut:

NTSTATUS ForwardAndForget(PDEVICE_OBJECT fdo. PIRP Irp)
{

PDEVICE_EXTENSION pdx = CPDEVICE_EXTENSION) fdo->DeviceExtension;
IoSkipCurrentlrpStackLocation(Irp);
return IoCallDriver(pdx->LowerDeviceObject. Irp);
}

The shortcut is in the function (actually a macro) misleadingly named IoSkip
CurrentlrpStackLocation. What this macro does is retard the IRP's stack pointer
by one position. 10CallDriver will immediately advance the stack pointer. The net
effect is to not change the stack pointer. When the next driver's dispatch routine calls
10GetCurrentirpStackLocation, it will retrieve exacdy the same IO_STACK_LOCATION
pointer that we were working with, and it will thereby process exacdy the same
request (same major and minor function codes) with the same parameters.

You'll notice that the array of IO_STACK_LOCATIONs contains an entry at the
very bottom that won't be used in this scenario. In fact, if drivers underneath us play
the same trick, there might be more than one location that won't be used. That's not
a problem, though-it just means that something allocated more stack locations than
it needed to. It's not a problem that the stack gets unwound a little bit quicker dur
ing completion processing, either. 10CompleteRequest doesn't use any absolute in
dices or pointers when it unwinds the stack. It just starts at whatever the current
location is when it gains control and works its way upward calling completion rou
tines. All the completion routines that got installed will get called, and the then-current
stack locations will be the ones that their drivers were expecting to work with.

The explanation of why 10SkipCurrentirpStackLocation works is so tricky that
I thought an illustration might help. Figure 5-9 illustrates a situation in which three
drivers are in a particular stack: yours (the functional device object [FDO]) and two
others (an upper filter device object [FiOO] and the PO~). In the ftrst picture (a), you
see the relationship between stack locations, parameters, and completion routines
when we do the copy step with 10CopyCurrentirpStackLocationToNext. In the sec
ond picture (b), you see the same relationships when we use the IoSkipCurrent
IrpStackLocation shortcut. In the second picture, the third an'd last stack location is
fallow, but nobody gets confused by that fact.

199

Programming the Microsoft Windows Driver Model

Figure 5·9. Comparison of copying vs. skipping I/O stack locations.

CANCELLING 1/0 REQUESTS

200

Just as happens with people in real life, programs sometimes change their mind about
the I/O requests they've asked you to perform for them. We're not talking about simple
fickleness here. Applications might issue requests that will take a long time to com
plete and then terminate, leaving the request outstanding. Such an occurrence is
especially likely in the WDM world, where the insertion of new hardware might
require us to stall requests while the Configuration Manager rebalances resources or
where you might be told at any moment to power down your device.

To cancel a request in kernel mode, the creator of the IRP calls IoCancelIrp.
The operating system automatically calls IoCanceUrp for every IRP that Qelongs to a
thread that's terminating with requests still outstanding. A user-mode application can
call Cancello to cancel all outstanding asynchronous operations issued by a given
thread on a file handle. IoCancelIrp would like to simply complete the IRP it's given

Chapter 5 The 110 Request Packet

with STATUS_CANCELLED, but there's a hitch: it doesn't know where you have salted
away pointers to the IRP, and it doesn't know for sure whether you're currently pro
cessing the IRP. So it relies on a cancel routine you provide to do most of the work
of cancelling an IRP.

It turns out that a call to 10CancelIrp is more of a suggestion than a mandate.
It would be nice if every IRP that something tried to cancel really got completed with
STATUS_CANCELLED. But it's okay if a driver wants to go ahead and Hnish the IRP
normally if that can be done relatively quickly. You should provide a way to cancel
I/O requests that might spend significant time waiting in a queue between a dispatch
routine and a Startlo routine. How long is signiflcant is a matter for your own sound
judgment; my advice is to err on the side of providing for cancellation because it's
not that hard to do and makes your driver Ht better into the operating system.

fii Nerd
[iAlert

The explanation of how to put cancellation logic into your
driver is unusually intricate, even for kernel-mode program
ming. You might want to simply cut to the chase and read the
code samples without worrying overmuch about how they work.

If It Weren't for Multitasking •••
There's an intricate synchronization problem associated with cancelling IRPs. Before
I explain the problem and the solution, I want to describe the way cancellation would
work in a world where there was no multitasking and no concern with multiproces
sor computers. In that Utopia, several pieces of the I/O Manager would Ht together
with your Startlo routine and with a cancel routine you'd provide, as follows:

• When you call 10StartPacket, you specify the address of a cancel routine
that gets saved in the IRP. When you call 10StartNextPacket (from your
DPC routine), you specify TRUE for the Boolean argument that indicates
that you're going to use the standard cancellation mechanism. Before
10StartPacket or 10StartNextPacket calls your Startlo routine, it sets the
CurrentIrp Held of your device object to point to the IRP it's about to send.
10StartNextPacket sets CurrentIrp to NULL if there are no more requests
in the queue.

• One of the first things your Startlo routine does is set the cancel routine
pointer in the IRP to NULL.

• 10CancelIrp unconditionally sets the Cancel flag in the IRP. Then it checks
to see whether the IRP specffies a cancel routine. In between the time you
call 10StartPacket and the time your Startlo routine gets control, the can
cel routine pointer in the IRP will be non-NULL. In this case, 10CancelIrp
calls your cancel routine. You remove the IRP from the queue where
it currently resides-this is the DeviceQueue member of the device
object-and complete the IRP with STATUS_CANCELLED. After Startlo

201

Programming the Microsoft Windows Drlvar Model

starts processing the IRP, however, the cancel routine pointer will be NUll
and IoCancelIrp won't do anything more.

Synchronizing Cancellation

202

Unfortunately for us as programmers, we write code for a multiprocessing, multitask
ing environment in which effects can sometimes appear to precede causes. There are
at least three race conditions in the logic I just described. Figure 5-10 illustrates these
race conditions, and I'll explain them here:

• Suppose IoCancelIrp gets as far as setting the Cancel flag and then (on
another CPU) IoStartNextPacket dequeues the IRP and sends it to Startlo.
Since IoCancelIrp will soon send the same IRP to your cancel routine, your
Startlo routine shouldn't do anything else with it.

• It's possible for two actors (your cancel routine and IoStartNextPacket) to
both try, more or less simul~eously, to remove the same IRP from the
request queue. That obviously won't work.

• It's possible for Startlo to get past the test for the Cancel flag, the one that
you're going to put in because of the first race, and for IoCancelIrp to sneak
in to test the cancel routine pointer before Startlo can manage to nullify that
pointer. Now you've got a cancel routine that will complete a request that
something (probably your OPC routine) will also try to complete. Oops!

The standard way of preventing these races relies on a systemwide spin lock
called the cancel spin lock. A thread that wants to cancel an IRP acquires the spin
lock once inside IoCancelIrp and releases it inside the driver cancel routine. A thread
that wants to start an IRP acquires and releases the spin lock twice: once just before
calling Startlo and again inside Startlo. The code in your driver will be as follows:

VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp)
{

KIRQL oldirql;
IoAcquireCancelSpinLock(&oldirql);
if (lrp 1= fdo->CurrentIrp II Irp->Cancel)

{

IoReleaseCancelSpinLock(oldirql);
return;
}

else
{

}

IoSetCancelRoutine(Irp. NULL);
IoReleaseCancelSpinLock(oldirql);
}

Chapter 5 The I/O Request Packet

VOID OnCancelCPDEVICE_OBJECT fdo. PIRP Irp)
{

if Cfdo->CurrentIrp == Irp)
{

IoReleaseCancelSpinLock(Irp->CancelIrql);
IoStartNextPacketCfdo. TRUE);
}

else
{

KeRemoveEntryDeviceQueueC&fdo->DeviceQueue.
&Irp->Tail.Overlay.DeviceQueueEntry);

IoReleaseCancelSpinLockCIrp->CancelIrql);
}

CompleteRequestCIrp. STATUS_CANCELLED. 0);
}

CPU A

1 loCancelirp
1

1 1 loStartNextPacket
1

I. I 1

Oops!
Figure 5·10. Race conditions during IRP cancellation.

CPUB

203

Programming the Microsoft Windows Driver Model

204

AVOIDING THE GLOBAL CANCEL SPIN LOCK

Microsoft has identified the global cancel spin lock as a significant bottleneck in
multiple CPU systems. You can see why it would be so. Every driver is poten
tially acquiring and releasing this lock several times for each IRP it processes, and
no work can occur on a CPU while it's waiting for the lock. Microsoft Windows
2000 now implements IoSetCancelRoutine as an atomic (that is, interlocked)
exchange operation, and IoCancelIrp follows a precise sequence that allows some
drivers to avoid using the global cancel spin lock altogether. Ervin Peretz's article
"The Windows Driver Model Simplifies Management of Device Driver I/O Re
quests" (Microsoft SystemsJournal, January 1999), explains a way to support
cancellation without using the cancel spin lock. I built on his ideas when I crafted
the DEVQUEUE object described in the next chapter, "Plug and Play."

Notwithstanding that it's a bad idea to rely on the global cancel spin lock
if you can avoid it, sometimes you can't avoid it. Namely, when you're using
the standard model for IRP processing. That's why I'm explaining the whole gory
mess in this chapter. Plus, it's good for your character.

Behind. the scenes, the system routines that are calling your code will be do
, ing something like the following. (This is not a copy of the actual Windows 2000

source codeO

VOID IoStartPacket(PDEVICE_OBJECT device. PIRP Irp.
PULONG key. PDRIVER-CANCEL cancel)
{

KIRQL oldirql:
IoAcquireCancelSpinLock(&oldirql):
IoSetCancelRout1ne(Irp. cancel):
device-)CurrentIrp = Irp:
IoReleaseCancelSpinLock(oldirql):
device-)Dr1verObject-)DriverStartIo(device. Irp):
}

VOID IoStartNextPacket(PDEVICE_OBJECT device. BOOLEAN cancancel)
{

KIRQL old1rql;
if (cancancel)

IoAcquireCancelSpinLock(&oldirql):
PKDEVICE_QUEUE_ENTRY p = KeRemoveDeviceQueue(&device-)DeviceQueue»:
PIRP Irp = CONTAININ~RECORD(p. IRP. Tail.Overlay.DeviceQueueEntry):
device-)CurrentIrp = Irp; ,
if (cancancel)

IoReleaseCancelSp1nLock(oldirql):

Chapter 5 The I/O Request Packet

device->DriverObject->DriverStartlo(device. Irp);
}

BOOLEAN IoCancellrp(PIRP Irp)
{

IoAcquireCancelSpinLock(&Irp->Cancellrql);
Irp->Cancel ~ TRUE;
PDRIVER-CANCEL cancel = IoSetCancelRoutine(Irp, NULL);
if (cancel)

{

(*cancel)(device. Irp);
return TRUE;
}

IoReleaseCancelSpinLock(&Irp->Cancellrql);
return FALSE;
}

It should be obvious that the real system routines do more than these sketches
suggest. For example, IoStartNextPacket will be testing the return value from the
KeRemoveDeviceQueue pointer to see whether it's NULL before just uncritically
developing the IRP pointer with CONTAINING_RECORD. I've also left out the IoStart
NextPacketByKey routine, a sister routine to IoStartNextPacket that selects a request
based on a sorting key.

To prove that this code works, we need to consider three cases. Figure 5-11 on
page 207 will help you follow this discussion. We're going to assume that code run
ning on CPU A of a multi-CPU computer wants to cancel a particular IRP and that
code running on CPU B wants to start it. Since only two activities are going on with
respect to this IRP Simultaneously, we don't need to worry about what might hap
pen if there were more than two CPUs.

Case 1: CPU A Oets the Spin Lock First
Suppose that CPU A gets past point 1 by acquiring the spin lock. It sets the Cancel
flag and then tests to see whether there's a CancelRoutine for this IRP. The answer is
Yes because the code that would nullify the pointer can't run yet without getting past
the two acquisitions of the spin lock. So CPU A calls the cancel routine, dequeues
the IRP, and then releases the spin lock. CPU B is now able to a~quire the spin lock
at point 2 and proceeds to remove an IRP from the queue. But this isn't the same
IRP-it's whatever IRP was next in the· queue. So CPU A will complete the IRP with
STATUS_CANCELLED while CPU B goes ahead and initiates the next queued request.

Case 2: CPU B Oets the Spin Lock Just Before CPU A Tries
Now suppose that CPU B manages to get past point 2 and owns the spin lock just
before CPU A tries to acquire the lock. CPU B will dequeue the IRP and set the device
object's CurrentIrp to point to this IRP. Then it releases the spin lock (briefly) while
it calls Startlo. In the meantime, CPU A grabs the spin lock at 1, which will keep CPU B

205

Programming the Microsoft Windows Driver Model

206

from advancing past 3. CPU A sets the Cancel flag and calls the cancel routine. The .
. cancel routine sees that this is the current IRP, so it releases the spin lock. CPU B is
now free to advance past point 3 inside the StartIo routine. It will see that the Can
cel flag is set in this IRP, so it will release the lock and just return. At this exact point,
the device is idle. CPU A continues executing the cancel routine, however, which calls
IoStartNextPacket and then completes the cancelled request.

It's very important not to call IoStartNextPacket while still owning the cancel spin
lock because, as you can see by looking at the sketch of that function, it will acquire
the lock on its own behalf. If we made the call to IoStartNextPacket while owning the
lock, our CPU would deadlock because spin locks can't be recursively acquired.

The code in StartIo also guards against another subtle race condition. You might
have wondered why StartIo tests the CurrentIrp field before testing the Cancel flag.
(It's part of the C language specification, by the way, that a Boolean operation be
evaluated left-to-right with a short circuit when the result is known. If the first part
of the if test-Irp !- Currentlrp-is TRUE, the generated code won't go on to evalu
ate the second part: Irp->Cancel.) Suppose that CPU A manages to completely fin
isb completing this IRP before CPU B makes it to point 3. Something on CPU A would
call IoFreeIrp to release the IRP's storage. CPU B's Irp pointer would then become
stale, and it would be unsafe to dereference the pointer.

Take another look at the previous code for IoStartNextPacket, and notice that
it alters the device object's CurrentIrp pointer under the umbrella of the cancel spin
lock. Our cancel routine calls IoStartNextPacket before it completes the IRP. There
fore, it's certain that one of the following two situations· will occur: either CPU B's
StartIo will get the spin lock before CPU A's IoStartNextPacket, in which case the IRP
pointer is safe and the Cancel flag will be found set, or CPU B's StartIo will get the
spin lock after· CPU A's IoStartNextPacket, in which case the Irp variable won't be
equal to CurrentIrp anymore-IoStartNextPacket changed it-and CPU B won't
dereference the pointer.

The close reasoning of the preceding two paragraphs illustrates ~t, if you don't
want to call IoStartNextPacket (or IoStartNextPacketByKey) from the cancel routine,
you must be sure to set CurrentIrp to NULL while owning the cancel spin lock.

Whew! No wonder we cut and paste sample code so much!

Case 3: CPU B Gets the Spin Lock Twice
The third and last case to consider is the one in which CPU B manages to get all the
way past point 3 and therefore owns the spin lock inside StartIo before CPU A ever
tries to acquire the spin lock at point 1. In this case, StartIo will nullify the
CancelRoutine pointer in the IRP before releasing the spin lock. CPU A could get as
far as setting the Cancel flag in the IRP, but it will never call the cancel routine be
cause the pointer is now NULL. Mind you, CPU B now goes ahead and processes the
IRP to completion even though the Cancel flag is set, but this will be okay if it can
be done rapidly.

CPU A

loCancellrp

Chapter 5 The I/O Request Packet

I loStartNextPacket
I

I
I I •••......• ~••...•..
I

.............

CPUB

Figure 5-11. Using the cancel spin lock to guard cancellation logic.

Closely allied to the subject of IRP cancellation is the I/O request with the major
function code IRP_ML CLEANUP. To explain how you should process this request, I
need to give you a little additional background.

207

Programming the Microsoft Windows Driver Model

208

When applications and other drivers want to access your device, they first open
a handle to the device. Applications call CreateFile to do this; drivers call
ZwCreateFile. Internally, these functions create a kernel file object and send it to
your driver in an IRP _MLCREATE request. When whatever opened the handle is done
accessing your driver, it will call another function, such as CloseHandle or ZwClose.
Internally, these functions send your driver an IRP _MLCLOSE request. Just before
sending you the IRP _MLCLOSE, however, the I/O Manager sends you an
IRP _ML CLEANUP so that you can cancel any IRPs that belong to the same file ob
ject but which are still Sitting in one of your queues. From the perspective· of your
driver, the one thing all the requests have in common is that the stack location you
receive points to the Same file object in every instance.

Figure 5-12 illustrates your responsibility when you receive IRP _MLCLEANUP.

VO Manager
is closing this,

.'eobject ~

•

Queued
IRPs

Figure 5-12. Driver responsibility for IRP _MLCLEANUP.

If you're using the standard model, your dispatch function might look some
thing like this:

NTSTATUS DispatchCleanup(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PIO_STACICLOCAHON stack = IoGetCurrentlrpStackLocation(Irp);
PFILE_OBJECT fop = stack->FileObject;

Chapter 5 The 110 Request Packet

LIST_ENTRY cancellist;
InitializeListHead(&cancellist);

KIRQL oldirql;
IoAcquireCancelSpinLock(&oldirql);
KeAcquireSpinLockAtDpcLevel(&fdo->DeviceQueue.Lock);

PLIST_ENTRY first = &fdo->DeviceQueue.DeviceListHead;
PLIST_ENTRY next;

for (next = first->Flink; next != first;)
{

PIRP QueuedIrp = CONTAININ~RECORD(next,
IRP, Tail.0verlay.ListEntry);

PIO_STACK-LOCATION QueuedIrpStack =
IoGetCurrentIrpStackLocation(QueuedIrp);

PLIST_ENTRY current = next;
next = next->Flink;

if (QueuedIrpStack->FileObject != fop)
continue;

IoSetCancelRoutine(QueuedIrp, NULL);
RemoveEntryList(current);
InsertTailList(&cancellist, current);
}

KeReleaseSpinLockFromDpcLevel(&fdo->DeviceQueue.Lock);
IoReleaseCancelSpinLock(oldirql)~

while (!IsListEmpty(&cancellist»
{

next = RemoveHeadList(&cancellist);
PIRP CancelIrp = CONTAINING_RECORD(next, IRP, Tail.Overlay.ListEntry);
CompleteRequest(CancelIrp, STATUS_CANCELLED, 0);
}

return CompleteRequest(Irp, STATUS_SUCCESS, 0);
}

1. We're going to look for queued IRPs that belong to the same me object
as the one that this IRP _MLCLEANUP belongs to. The me object is men
tioned in the stack location.

2. Our strategy will be to pull the IRPs we're going to cancel off the main
device queue while holding two spin locks. Since there might be more
than one IRP, it's convenient to construct another (temporary) list of them,
so we initialize a list head here.

209

Programming the Microsoft Windows Driver Model

210

3. We need to hold two spin locks to safely extract IRPs from our queue. We
acquire the global cancel spin lock to prevent interference by IoCancelIrp.
We also acquire the spin lock associated with the devic~ queue to prevent
interference by ExInterlockedXxxUst operations on the same queue.

4. This loop allows us to examine each IRP that's on our device queue. We
know that no one can be adding or removing IRPs from the queue be
cause we own the spin lock that guards the queue. We can therefore use
regular (noninterlocked) list primitives to access the list.

5. When we fmd an IRP belonging to the same file object, we remove it from
the device queue and add it to the temporary cancellist queue. We also
nullify the cancel routine. pointer to render the IRP noncancellable. Notice
that we examine the stack for the queued IRP to see which file object the
IRP belongs to. It would be a mistake to look at the queued IRP's opaque·
TaiLOverlay.OriginalFlleObject field-the I/O Manager uses that field to
tell it when to dereference a file object during IRP completion. It can some
times be NULL, even when the IRP belongs to a particular file object. The
stack location, on the other hand, should hold the right file object pointer
if whatever created the IRP did its job properly.

6. We release our spin locks at the end of the loop.

7. This loop actually cancels the IRPs we selected during the first loop. At
this point, we no longer hold any spin locks, and it will therefore be
perfectly okay to call time-consuming and lock-grabbing routines like
IoCompleteRequest.

8. This final call to IoCompleteRequest pertains to the IRP _MLCLEANUP
request itself, which we always succeed.

FILE OBJECTS

Ordinarily, just one driver (the function driver, in fact) in a device stack imple
ments all three of the following requests: IRP _MLCREATE, IRP _MLCLOSE, and
IRP _MLCLEANUP. The I/O Manager creates a file object (a regular kernel object)
and passes it in the I/O stack to the dispatch routines for all three of these IRPs.
Anything that sends an IRP to a device should have a pointer to the same file
object and should insert that pointer into the I/O stack as well. The driver that
handles these three IRPs acts as the "owner" of the file object in some sense,
in that it's the driver that's entitled to use the FsContext and FsContext2 fields
of the object. So, your DispatchCreate routine could put something into one
of these context fields for use by other dispatch routines and for eventual
cleanup by your DispatchOose routine.

Chapter 5 The 110 Request Packet

The real point of the code I just showed you is the first loop, where we remove
the IRPs we want to cancel from the device queue. Owning the 'device queue's spin
lock guarantees the integrity of the queue itself. We also need to hold the global cancel
spin lock. If we didn't hold it, something could call 10Cancelirp for the same IRP we're
removing from the queue, and 10Cancelirp could go on to call our cancel routine.
Our cancel routine would block while trying to dequeue the IRP. (Refer to the ear
lier example of a cancel routine in the "Synchronizing Cancellation" section.) As soon
as we release the queue lock, our cancel routine would go on to incorrectly attempt
to remove the IRP from the queue and complete it. Both of those steps would be
incorrect because we're doing exactly the same two things in this dispatch routine.
The solution is to prevent 10CancelIrp from even starting down this road by taking
the global spin lock. By the time 10CancelIrp is able to proceed past its own acqui
sition of the global spin lock, the IRP will appear noncancellable.

You might notice that we acquire the global cancel spin lock Hrst and then the
device queue. Acquiring these locks in the other order might lead to a deadlock: our
cancel routine and routines in the I/O Manager (such as 10StartPacket) acquire the
global lock and then call KeXxxDeviceQueue routines that acquire the queue lock.
We don't want there to be a situation in which we acquire the queue lock and then
block, waiting for the global lock to be released by something that's waiting for the
queue lock.

In an earlier Sidebar, "Avoiding the Global Cancel Spin Lock," I mentioned that
the global cancel spin lock is a signiftcant system bottleneck. The fact that your
IRP _MLCLEANUP routine needs to hold that spin lock long enough to examine the
entire IRP queue only makes the bottleneck worse. Imagine every driver needing
to claim this lock for every call to 10StartPacket, 10StartNextPacket, Startlo, and
DispatchCleanup--even when no one is trying to perform the relatively unusual
activity of actually cancelling an IRP! Furthermore, as the system becomes more slug
gish, IRP queues will tend to build and cleanup dispatch routines will take longer to
examine their queues, thereby increasing contention for the global cancel spin lock
and slowing the system even further.

Because of the performance bottleneck, you really want to avoid using the glo
bal cancel spin lock if you can. Doing so requires you to manage your own IRP
queues. How to do that will be one of the subjects of the next chapter.

MANAGING YOUR OWN IRPS
Now that I've explained all of the infrastructure for handling IRPs, I can return to the
subject of how to create IRPs in your own driver. I already mentioned that there are
four different service functions you can call to create an IRP,but I had to defer until
now a discussion of how you'd choose among them. The factors that bear on your
choice appear at the top of the following page.

211

Programming the Microsoft Windows Driver Model

• IoBuildAsynchronousFsdRequest and IoBuildSynchronousFsdRequest
can be used to build IRPs with only the major function codes listed in
Table 5-3.

• IoBuildDeviceIoControlRequest can be used to build IRPs with only one
of the major function codes IRP _MLDEVlCE_CONTROL and IRP _ML
INTERNAL_DEVICE_CONTROL.

• You need to be sure that something will release the memory occupied
by the IRP and by its various hangers-on when something finally calls
IoCompleteRequest.

• You might need to plan ahead so that it will be possible for you to can
cel the IRP by calling IoCancelIrp.

Major Function Code

IRP_MLREAD

IRP _ML WRITE

IRP _MLFLUSH_BUFFERS

IRP _MLSHlITDOWN

IRP_MLPNP

IRP _MLPOWER

Table 5-3. IRP tYPes for IoBuildXxxFsdRequest.

Using loBuildSynchronousFsdRequest

212

The easiest scenario to explain is the one involving IoBuildSynchronousFsdRequest.
You call this function like this:

PIRP Irp ~ IoBuildSynchronousFsdRequest(MajorFunction, DeviceObject,
Buffer, Length, StartingOffset, Event, IoStatusBlock);

MajorFunction (ULONG) is the major function code for the new IRP. (See
Table 5-3.) DeviceObject (PDEVlCE_OBJECT) is the address of the device object to
which you'll initially send the IRP. (See the last section of this chapter, "Where Do Device
Object Pointers Come From?" for more information about this parameter.) For read and
write requests, you must supply the Buffer (PYOID), Length (ULONG), and
StartingOffset (PLARGE_INTEGER) parameters. Buffer is the address of a kernel-mode
data buffer, Length is the number of bytes you want to read or write, and StartingOffset

Chapter 5 The I/O Request Packet

is the byte location within the target me where the read or write operation should
commence. For the other requests that you can build with this function, these three
parameters are ignored. (That's why the function prototype in WDM.H classifies them
as "optional," but they're not optional for reads and writes.) The I/O Manager assumes
that the buff~r address you supply is valid in the current process context. It's up to you
to make sure that it is valid.

Event (PKEVENT) is the address of an event object that 10CompieteRequest
should set when the operation completes, and IoStatusBlock (PIO_STATUS_BLOCK)
is the address of a status block in which the ending status and information will be
saved. The event object and status block need to be in memory that will persist at
least until the operation completes.

If you've created a read or write IRP, you don't need to do anything else before
submitting the IRP. If you've created another type of IRP, you'll need to complete
the first stack location with additional parameter information; MajorFunction
has, however, already been set. You should not set the undocumented field
Tail.Overlay.OriginaIFileObject-cioing so will cause a file object to be incorrectly
dereferenced on completion. There's probably no reason to set RequestorMode, be
cause it's already been initialized to KernelMode and you've already validated any
parameters you're passing in the IRP. (I'm mentioning t;hese two minor points only
because I recall reading a pUblished discussion of this service function once upon a
time that said you should do the two things I just told you not to do.) You can now
submit the IRP and wait for it to finish:

PIRP Irp. = IoBuildSynchronousFsdRequest(.•.);
NTSTATUS status = IoCallDriver(DeviceObject, Irp);
if (status == STATUS_PENDING)

KeWaitForSingleObject(Event. Executive, Kernel Mode. FALSE. NULL);

Once the IRP finishes, you can inspect the ending status and inforlll4tion val
ues in your I/O status block.

It's obvious, isn't it, that you must be running at PASSIVE_LEVEL in a nonarbitrary
thread context before you wait for the operation to complete?

Cleaning Up
I said earlier that you needed to plan for how the memory occupied by the IRP would
get released and that you might have to plan for cancelling an IRP. The first of these
two problems is quite easy to solve when you use 10BuildSynchronousFsdRequest
to build the IRP: the I/O Manager will release memory for you automatically as part
of completing the IRP. In fact, if the request is for a read or write and needs a sys
tem buffer or a memory descriptor list-see Chapter 7-the I/O Manager will auto
matically clean those up, too .. The overall convenience. of this function is a major
reason why you might want to call it.

213

Programming the Microsoft Windows Driver Model

214

Although cleanup from a synchonous IRP is easy (because you needn't do
anything about it), planning for cancellation is anything but. Read on ...

Cancelling a Synchronous IRP
Only two entities in the system are allowed to cancel IRPs. One entity is the I/O Man
ager code that implements so-called thread rundown when a thread terminates while
I/O requests are still outstanding. The other entity is the driver that originated the
IRP in the fIrst place. But great care is required to avoid an obscure, low-probability
problem. Just for the sake of illustration, suppose that you wanted to impose an
overall 5-second timeout on an I/O operation. If the time period elapses, you want
to cancel the operation. Here is some naive code that, you might suppose, would
execute this plan:

SomeFunct1on()
{

KEVENT event:
IoInitializeEvent(&~vent •...):
PIRP Irp = IoBuildSynchronousFsdRequest(...):
NTSTATUS status = IoCallDriver(DeviceObject. Irp):
if (status == STATUS_PENDING)

}

{

LARGE_INTEGER timeout:
timeout.QuadPart = -5 * 10000000:
if (KeWaitForSingleObject(&event. Executive. KernelMode.

}

FALSE. &timeout) == STATUS_TIMEOUT)
{

IoCancelIrp(Irp): 1/ + don't do thisl
KeWaitForSingleObject(&event. Executive. KernelMode. FALSE. NULL):
}

The second call to KeWaitForSingleObject makes sure that the event object doesn't
pass out of scope before the I/O Manager is done using it. Whoever owns the IRP is
supposed to complete it quickly, so any inordinate delay that might happen at this
point is somebody else's bug. (Easy for you and me to say, huh?)

The problem with the preceding code is truly miniscule. Imagine that someone
manages to call 10CompieteRequest for this IRP right around the same time we de
cide to cancel it by calling 10CancelIrp. Maybe the operation finishes shortly after
the 5-second timeout terminates the first KeWaitForSingleObject, for example.
10CompieteRequest initiates a process that fmishes with a call to 10FreeIrp. If the call
to 10Freelrp were to happen before 10CancelIrp is done mucking about with the IRP,
you can see that 10CancelIrp could inadvertently corrupt memory when it touches
the CancelIrql, Cancel, and CancelRoutine fields of the IRP. It's also possible, depend
ing on the exact sequence of events, for 10CancelIrp to call a cancel routine, just before
someone clears the CancelRoutine pointer in preparation for completing the IRP, and
for the cancel routine to be in a race with the completion process.

Chapter 5 The 110 Request Packet

It's very unlikely that the scenario I just described will happen. But, as James
Thurber once said in connection with the chances of being eaten by a tiger on Main
Street (one in a million, as I recall), "Once is enough." This kind of bug is almost
impossible to find, so you want to prevent it if you can. In current releases of
Windows 98 and Windows 2000, a common technique relies on the fact that the call
to 10Freelrp happens in the context of an APC in the thread that originates the IRP.
You make sure you're in that same thread, raise IRQL to APC_LEVEL, check whether
the IRP has been completed yet, and (if not) call loCancellrp. In current systems, you
can be sure of blocking the APC arid the problematic call to loFreelrp. See the
USBCAMD sample in the DDK, for example. I've also seen this technique discussed
extensively on line and in a technical note on Compuware Numega's Web site.

You should notrely on future releases of Windows always using an APC to
perform the cleanup for an IRP. Consequently, you should not rely on boosting IRQL
to APC_LEVEL as a way to avoid a race between 10CancelIrp and 10FreeIrp. By "should
not" here, I really mean to say that the operating system might conceivably change
in some hypothetical future release in such a way that this technique will no longer
suffice to guard against the race. Wink, wink, if you get my drift. So, I'll show you
another approach.

The key thing we need to accomplish in a solution to the race is to prevent the
call to 10Freelrp from happening until after any possible call to loCancellrp. We do
this by means of a completion routine that returns STATUS_MORE_PROCESSING_
REQUIRED, as follows:

SomeFuncti on()
{

KEVENT event:
Iolnit1alizeEvent(&event, ...):
PIRP Irp = IoBuildSynchronousFsdRequest(.. ,):
IoSetCompletfonRoutfne(Irp. OnComplete. (PVOID) &event. TRUE. TRUE.

TRUE) :
NTSTATUS status = IoCallDriver(...):
if (status == STATUS_PENDING)

{

LARGE_INTEGER timeout:
timeout.QuadPart = -5 * 10000000:
if (KeWaitForSingleObject(&event, Executive, KernelMode,

FALSE, &timeout) == STATUS_TIMEOUT)
{

IoCancelIrp(Irp): II ~ okay in this context
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL):

}

}

(conttnued)

215

Programming the Microsoft Windows Driver Model

KeClearEvent(levent):
IoCompleteRequest(Irp. IO_NO_INCREMENT):
KeWa1.tForS1 ngl eObject(levent. Executive. Kernel Mode. FALSE. NULL):
}

NTSTATUS OnComplete(PDEVICE-OBJECT junk. PIRP Irp. PYOID pev)
{

KeSetEvent«PKEVENT) pev. IO_NO_INCREMENT. FALSE):
return STATUS-HORE-PROCESSIN~REOUIRED:
}

The new code in boldface prevents the race. Suppose IoCallDriver returns STATUS_
PENDING. In a normal case, the operation will complete normally, and some lower
level driver will call IoCompleteRequest. Our completion routine gains control and
signals the event on which our mainline is waiting. Since the completion routine
returns STATUS_MORE_PROCESSING~REQUIRED, IoCompleteRequest will then
stop working on this IRP. We eventually regain control in our SomeFunction and
notice that our wait terminated normally. The IRP hasn't yet been cleaned up,
though, so we need to call IoCompleteRequest a second time to trigger the nor
mal cleanup mechanism. We still need to make sure that our event object doesn't
pass out of scope too soon, though, so we need to perform a second wait on our
event object .

. Now suppose we decide we want to cancel the IRP and that Thurber's tiger is
loose so we have to worry about the IRP being IoFreeIrp'ed out from under us. Our
completion routine will prevent the cleanup mechanism from running by returning
STATUS_MORE_PROCESSING_REQUIRED. IoCancelIrp can stomp away to its heart's
content on our hapless IRP without causing any harm. The IRP can't be released
until the second call to IoCompleteRequest from our mainline, and that can't hap
pen until IoCancelIrp has safely returned.

Using lo411ocatelrp

216

If you're willing to work a little harder, you can use IoAllocateIrp to build an IRP
of any type:

PIRP Irp = IoAllocatelrp(StackS;ze. ChargeQuota):

where StackSize (CCHAR) is the nu~ber of I/O stack locations to allocate with the
IRP, and Chal'geQuota (BOOLEAN) indicates whether the process quota should be
charged for the memory allocation. Normally, you get the StackSize parameter from

Chapter 5 lhe I/O Request Packet

the device object to which you're going to send the IRP, and you specify FALSE for
the ChargeQuota argument. For example:

PDEVICE_OBJECT DeviceObject:
PIRP Irp = IoAllocateIrp(DeviceObject->StackSize. FALSE):

When you use IoAllocateIrp, you must install a completion routine, and it must
return STATUS_MORE_PROCESSING_REQUIRED. Furthermore, you're responsible for
releasing the IRP and any associated objects. If you don't plan to cancel the IRP, your
completion routine might look like this:

NTSTATUS OnComplete(PDEVICE_OBJECT DeviceObject. PIRP Irp. PVOID Context)
{

IoFreeIrp(lrp) :
return STATUS_MORE_PROCESSING_REQUIRED:
}

An IRP created by IoAllocateIrp won't be cancelled automatically if the origi
nating thread terminates.

LOOSE ENDS
I'll close this chapter by describing some other things you need to know that I didn't
cover earlier. These include two more ways of building IRPs and a word or two about
how to locate a device object to use as a target for IoCallDriver.

Using loBuildDeviceloControlRequest
I'll discuss IoBulldDeviceIoControlRequest in Chapter 9 when I discuss how to
perform I/O control operations. As far as cleanup and cancellation are concerned, IRPs
created with this function are like ones created by IoBuildSynchronousFsdRequest.

Using loBuildAsynchronousFsdRequest
IoBulldAsynchronousFsdRequest is another routine that you can use to build one
of the IRPs listed in Table 5-3. The prototype of the function is as follows:

PIRP IoBuildAsynchronousFsdRequest(ULONG MajorFunction.
PDEVICE_OBJECT DeviceObject. PVOID Buffer. ULONG Length,
PLARGE_INTEGER StartingOffset. PIO_STATUS_BLOCK IoStatusBlock):

This prototype differs from that for IoBuildSynchronousFsdRequest in that there's
no Event argument and the IoStatusBlock pointer can be NULL. The DDK goes on

217

Programming the Mlcr.ft Windows Driver Model

218

to tell you to install a completion routine whose job will be to call 10Freelrp on this
IRP and return STATUS_MORE_PROCESSING_REQUIRED.

I wondered about the different treatment for IRPs built with the two 10Build
XxxFsdRequest functions, so I dug a little deeper. The code for these two functions
is essentially identical. In fact, 10BuildSynchronousFsdRequest calls 10BuildAsynchro
nous FsdRequest as a subroutine. I'm not telling you anything here that you couldn't
find out on your own after five minutes with a kernel debugger. 10BuildSynchronous
FsdRequest's only additional actions are saving your event pointer in the IRP (rea
sonable, since that's how the I/O Manager can find it to signal it) and putting the IRP
on the queue of IRPs for the current thread, wliich allows the IRP to be cancelled
when the thread dies.

I've been able to discern only two situations in which you'd want to call 10Build
AsynchronousFsdRequest. The first situation is when you find yourself executing in
an arbitrary thread context and need to create an IRP. 10BuildAsynchronousFsdRequest .
is ideal for this purpose, since termination of the current (arbitrary) thread should
not result in cancelling the new IRP. The other situation is when you're running at
APC_LEVEL in a nonarbitrary thread and need to synchronously-yes, syncbro
nousry-execute an IRP. 10BuildSynchronousFsdRequest won't work for this purpose
because the IRQL blocks the APC that would normally set the event. So you call
10BuildAsynchronousFsdRequest and wait on an event that your completion routine
will set. This second case won't come up often, if ever, for a device driver.

In a general case, the completion routine you use with 10BuildAsynchronous
FsdRequest has to do quite a bit more work than just call 10Freelrp. In fact, you need
to duplicate the functionality of the internal routine (IopCompleteRequest) that the
I/O Manager uses to clean up completed IRPs. You can't just create an IRP with
10BuildAsynchronousFsdRequest and launch it into the void, relying on the I/O
Manager to clean up. Since the cleanup requires an APC in the current releases of
Windows 98 and Windows 2000, and since it would be incorrect to depend on exe
cuting an APC in an arbitrary thread, the I/O Manager doesn't do the cleanup for you.
You must do all the cleanup yourself.

If the device object to which you send the IRP has the DO_DIRECLIO flag set,
10BuildAsynchronousFsdRequest will create an MDL that you must release with code
like the following:

NTSTATUS· CompletionRoutine(...)
{

PMDL mdl:
while ((mdl = Irp->MdlAddress»

{

Irp->MdlAddress = mdl~>Next:
IoFreeMdl (mdl):
}

IoFreelrp(Irp):

Chapter 5 The 110 Request Packet

return STATUS_MORE_PROCESSIN~REQUIRED:
}

If the device object to which you send the IRP has the DO_BUFFERED_IO flag
set, 10BuildAsynchronousFsdRequest will allocate a system buffer that you need to
release. If you're doing an input operation, you also have to copy the input data from
the system buffer to your real input buffer-before releasing the memory! If you need
to do this copy, you need to be sure that the real buffer is in nonpaged memory
because completion routines might run at DISPATCH_LEVEL. You also need to be sure
that you've got a kernel address for the buffer, because completion routines run in
arbitrary thread context. If these restrictions aren't enough to discourage you from
using 10BuildAsynchronousFsdRequest with a DO_BUFFERED_IO device, consider
that you must also test the undocumented flag bits IRP _BUFFERED_10, IRP_
INPUT_OPERATION, and IRP _DEALLOCATE_BUFFER to discover what to do in your
completion routine. I'm not going to show you the code to do this because I took a
solemn pledge to avoid undocumented tricks in this book.

My advice is to use 10BuildAsynchronousFsdRequest only when you know that
the device you're sending the IRP to doesn't use DO_BUFFERED_IO.

Where Do Device Object Pointers Come From?
The call to 10CallDriver requires a PDEVICE_OBJECT as its first argument. You might
be wondering where you get a pointer to a device object so that you can send an
IRP to something.

One of the obvious ways to get a pointer to a device object is by calling
IoAttachDeviceToDeviceStack, which is something that every WDM driver's
AddDevice function does. In all of the sample drivers in this book, you'll see a line
of code like this one:

pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo. pdo):

We use this device object pointer whenever we want to pass an IRP down the driv
er stack.

Another common way to locate a device object is to start with an object name
that you happen to know about:

PUNICODE_STRING DeviceName; II 4" something gives you this
PDEVICLOBJECT Devi ceObject: /I 4" an output from thi s process
PFILE_OBJECT FileObject: II 4" another output
NTSTATUS status = IoGetDeviceObjectPointer(DeviceName.

<access mask>. &FileObject. &DeviceObject);

You get back a pointer to the device object having the name you specify and
a pointer to a file object. A file object is the thing a file handle points to. Eventually,
you'll need to dereference the file object, as at the top of the next page.

219

Programming the Microsoft Windows Driver Model

220

ObDereferenceObject(FileObject): II ~ DeviceObject now poisonl

As soon as you dereference the me object, you also release your implicit refer
ence to the device object. If you want to continue using the device object, be sure
to reference it fIrst:

ObReferenceObject(DeviceObject):
ObDereferenceObject(FileObject): /1 ~ DeviceObject still okay

You shouldn't automatically put the preceding two lines of code in your driver,
however. In fact, when you send an IRP to a device object whose address you ob
tained by calling IoGetDeviceObjectPointer, you should send the address of the
me object along:

PIRP Irp = IoBuildXxxRequest(...):
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp):
stack->FileObject = FileObject:
IoCallDriver(DeviceObject. Irp):

Here's the explanation for this extra statement. loGetDeviceObjectPointer inter
nally opens a regular handle to the device object, which causes the driver to receive
an IRP _MLCREATE request with a pointer to the same me object you'll later be getting
as a return value. The driver might create some auxiliary data structure that it asso
ciates with the me object, and it might require access to that structure to handle later
IRPs. It will destroy that structure when it processes the IRP _MLCLOSE operation that
occurs when the last reference to the me object disappears. For this to work right,
you need to set the FlleObject pointer in the fIrst stack location for each IRP you
send the driver.

You don't always set the me object pointer in a new IRP you create, by the way.
If you're the driver that owns the fue object by virtue of being the real implementor
of IRP J1LCREATE, no one below you has any business looking at the me object.
In the case I just described, however, the owner of the me object is the driver for the
device object you found by calling 10GetDeviceObjectPointer. In that situation, you
must set the fue object pointer.

Chapter 6

Plug and Play

The Plug and Play (PnP) Manager communicates information and requests to device
drivers via I/O request packets (IRPs) with a major function code of IRP _MLPNP. This
type of request is new with Microsoft Windows 2000 and the Windows Driver Model:
previous versions of Microsoft Windows NT required device drivers to do most of
the work of detecting and configuring their devices. Happily, WDM drivers can let
thePnP Manager do that work. To work with the· PnP Manager, driver authors will .
have to understand a few relatively complicated IRPs.

Plug and Play requests play two roles in the WDM. In their first role, these
. requests instruct the driver when and how to configure or deconfigure itself and the

hardware. Table 6-1 lists the roughly two dozen minor functions that a PnP request
can designate. Ortly the bus driver handles the nine minor functions shown with an
asterisk; a filter driver or function driver would simply pass theseIRPs down the stack.
Of the remaining minor functions, three have special importance to a typical filter
driver or function driver. The PnP Manager uses IRP _MN_START_DEVICE to inform
the function driver what I/O resources it has assigned to the hardware and to instruct
the function driver to do any necessary hardware and software setup so that the device
can function. IRP _MN_STOP _DEVICE tells the function driver to shut down the de
vice. IRP _MN_REMOVE_DEVICE tells the function driver to shut down the device and
release the associated device object. I'll discuss these three minor functions in detail
in this chapter and the next; along the way, I'll also describe the purpose for the other
unstarred minor functions that a filter driver or function driver might need to handle.

221

Programming the Microsoft Windows Driver Model

IRP Minor Function Code

IRP _MN_STARLDEVICE

IRP _MN_QUERY _REMOVE_DEVICE

IRP _MN_REMOVE_DEVICE

IRP ~N_CANCEL_REMOVE_DEVICE

IRP _MN_STOP _DEVICE

IRP ~N_QUERY_STOP _DEVICE

IRP _MN_CANCEL_STOP _DEVICE

IRP _MN_QUERY _DEVICE_RELATIONS

IRP _MN_QUERYJNTERFACE

IRP _MN_QUERY_CAPABILITIES

IRP _MN_QUERY _RESOURCES·

IRP _MN_QUERY _RESOURCE_REQUIREMENTS·

IRP _MN_QUERY _DEVICE_TEXT*

IRP _MN_FIL TER_RESOURCE_REQUIREMENTS

IRP _MN_READ_CONFIG·

IRP _MN_ WRITE_CONFIG*

IRP _MN_EJECT*

IRP _MN_SET_LOCK·

IRP _MN_QUERY_ID*

IRP _MN_QUERY _PNP _DEVICE_STATE

IRP _MN_QUERY_BUS_INFORMATION*

IRP _MN_DEVICE_USAGE_NOTIFlCATION

Description

Configures and initializes device

Can device be removed safely?

Shuts down and removes device

Ignores previous QUERY_REMOVE

Shuts down device

Can device be shut down safely?

Ignores previous QUERY_STOP

Gets list of devices which are related in
some specified way

Obtains direct-call function
addresses

Determines capabilities of device

Determines boot configuration

Determines I/O resource
requJrements

Obtains description or location string

Modifies I/O resource requirements list

Reads configuration space

Writes configuration space

Ejects the device

Locks/unlocks device agai~t ejection

Determines hardware ID of device

Determines state of device

Determines parent bus type

Notes creation or deletion of paging,
dump, or hibernate fIle

Notes fact that device has been
removed

Table 6-1. Minor function codes for IRP _MLPNP. (* indicates handled only by bus drivers.)

222

A second and more complicated purpose of PnP requests is to guide the driver
through a series of state transitions, as illustrated in Figure 6-1. WORKING and
STOPPED are the two fundamental states of the device. The STOPPED state is the
initial state of a device immediately after you create the device object. The WORK
ING state indicates that the device is fully operational. Two of the intermediate states
PENDINGSTOP and PENDINGREMOVE-arise because of queries that all drivers
for a device must process before making the transition from WORKING. SURPRISE
REMOVED occurs after the sudden and unexpected removal of the physical hardware.

Chapter 6 Plug and Play

Figure 6-1. State.diagramJora device.

When I described the standard model for IRP processing in the previous chap
ter, I indicated that Plug and Play would impose additional requirements on IRP
queuing and cancellation. I'll describe a DEVQUEUE object in this chapter that sat
isfies those requirements and helps you manage the state transitions.

In Chapter 5, "The I/O Request Packet," I explained the mechanics of passing IRPs
down the driver stack in two situations: one in which you care about the result and
therefore need a completion routine, and the other in which you don't care about
the result and therefore don't install a completion routine. Many of the PnP requests
fit into the second of these categories-you're receiving the IRP and passing it down,
but you don't care what happens to it afterward. To begin with, then, I suggest writ
ing a helper function that you can use to pass a request down in the "don't care"
scenario--see the code at the top of the following page.

223

Programming the Microsoft Windows Driver Model

NTSTATUS DefaultPnpHandler(PDEVICE_OBJECT fdo. PIRP Irp)
{

IoSkipCurrentIrpStackLocat1on(Irp):
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension:
return IoCallDr1ver(pdx-)LowerDeviceObject. Irp):
}

A simplified version of the dispatch function for IRP _MLPNP might look like
the following:

NTSTATUS D1spatchPnp(PDEVICE_OBJECT fdo. PIRP Irp)
{

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocat1on(Irp):
ULONG fcn = stack-)M1norFunction: .

static NTSTATUS (*fcntab[])(PDEVICE_OBJECT. PIRP) = {
HandleStartDevice. II IRP_MN_START_DEVICE
HandleQueryRemove. II IRP_MN_QUERY_REMOVE_DEVICE
<etc.>.
} :

...,. if (fcn)= arraysize(fcntab»
return DefaultPnpHandler(fdo. Irp):

~ return (*fcntab[fcn])(fdo. irp): .
}

224

1. All the parameters for the IRP, including the all-important minor function
code, are in the stack location. Hence, we obtain a pointer to it by call
ing IoGetCurrentIrpStackLocation.

2. We expect the IRP's minor function code to be one of those listed in
Table 6-1.

3. A method of handling the two dozen possible minor function codes is to
write a subdispatch function for each one we're going to handle and then
to define a table of pointers to those subdispatch functions. Many of the
entries in the table will be DefaultPnpHandier. Subdispatch functions
like HandleStartDevice will take pointers to a device object and an IRP
as parameters and will return an NTSTAruS code.

4. If we get a minor function code we don't recognize, it's probably because
Microsoft defined a new one in a release of the DDK after the DDK with
which we built our driver. The right thing to do is to pass the minor
function code down the stack by calling the default handler. By the way,
arraysize ,is a macro that returns the number of elements in an array. It's
defined as #define arraysize(p) (sizeof{p)/sizeot{(p)[OD).

Chapter 6 Plug and Play

5. This is the operative statement in the dispatch routine, with which we
index the table of sUbdispatch functions and call the right one.

USING A FUNCTION POINTER TABLE

Using a table of function pointers to dispatch handlers for minor function codes
as I'm showing you in DispatchPnp entails some danger. A future version of
the operating system might change the meaning of some of the codes. That's
not a practical worry except during the beta test phase of a system, though,
because a later change would invalidate an unknown number of existing driv
ers. I like using a table of pointers to subdispatch functions because having
separate functions for the minor function codes seems like the right engineer
ing solution to me. Ifl were designing a C++ class library, for instance, I'd defIne
a base class that used virtual functions for each of the minor function codes.

Most programmers would probably place a switch statement in their
DispatchPnp routine. You can Simply recompile your driver to conform to any
reassignment of minor function codes. Recompilation will also highlight-by
producing compilation errors!-name changes that might signal functionality
shifts. That happened a time or two during the Microsoft Windows 98 and
Windows 2000 betas, in fact. Furthermore, an optimizing compiler should be
able to use a jump table to produce slightly faster code for a switch statement
than for calls to subdispatch functions.

I think the choice between a switch statement and a table of function
pointers is mostly a matter of taste, with readability and modularity winning
over efficiency in my own evaluation. You can avoid uncertainty during a beta
test by placing appropriate assertions into your code. For example, the
HandleStartDevice function could assert that stack->MinorFunction -- IRP_
MN_START_DEVICE. If you recompile your driver with each new beta DDK,
you'll catch any number reassignments or name changes.

STARTING AND STOPPING YOUR DEVICE
Working with the bus driver, the PnP Manager automatically detects hardware and
assigns I/O resources in Windows 2000 and Windows 98. Most modem devices have
Plug and Play features that allow system software to detect them automatically and
to electronically determine which I/O . resources they require. In the case of legacy
devices that have no electronic means of identifying themselves to the operating

225

Programming the Microsoft Windows Driver Model

system or of expressing their resource requirements, the registry database contains
the information needed for the detection and assignment operations.

NOTE I find it hard to give an abstract definition of the term I/O resource that
isn't circular (for example, a resource used for 1/0), so I'll give a concrete one
instead. The WOM encompasses four standard 1/0 resource types: 1/0 ports,
memory registers, direct memory access (OMA) channels, and interrupt requests.

When the PnP Manager detects hardware, it consults the registry to learn which
filter drivers and function drivers will manage the hardware. As I discussed in Chap
ter 2, "Basic Structure of a WDM Driver," it loads these drivers (if necessary-one
or more of them might already be present, having been called into memory on be
half of some other hardware) and calls their AddDevice functions. The AddDevice
functions, in tum, create device objects and link them into a stack. At this pOint, the
stage is set for the PnP Manager, working with all of the device drivers, to assign I/O
resources.

The PnP Manager initially creates a list of resource requirements for each device
and allows the drivers to filter that list. I'm going to ignore the filtering step for now
because not every driver will need to take this step. Given a list of requirements, the
PnP Manager can then assign resources so as to harmonize the potentially conflict
ing requirements of all the hardware present on the system. Figure 6-2 illustrates how

--"'~.

the PnP Manager can arbitrate between two different devices that have overlapping, .',
requirements for an interrupt request number, for example.

Interrupt Request

Figure 6-2. Arbitration of conflicting I/O resource requirements.

226

Chapter 6 Plug and Play

Once the resource assignments are known, the PnP Manager notifies each device
by sending it a PnP request with the minor function code IRP _MN_START_DEVICE.
Filter drivers are typically not interested in this IRP, so they usually pass the request down
the stack by using the DefaultPnpHandler technique I showed you in "IRP _MLPNP
Dispatch Function." Function drivers, on the other hand, need to do a great deal of work
on the IRP to allocate and configure additional software resources and to prepare the
device for operation. This work needs to be done, furthermore, at PASSIVE_LEVEL after
the lower layers in the device hierarchy have processed this IRP.

Forwarding and Awaiting the IRP
To regain control of the IRP _MN_START_DEVICE request after passing it down, the
dispatch routine needs to wait for a kernel event that will be signalled by the even
tual completion of the IRP in the lower layers. In Chapter 4, "Synchronization,"
I cautioned you not to block an arbitrary thread. PnP IRPs are sent to you in the con
text of a system thread that you are allowed to block, so that caution is unnecessary.
Since forwarding and awaiting an IRP is a potentially useful function in other contexts,
I suggest writing a helper routine to perform the mechanics:

NTSTATUS ForwardAndWait(PDEVICE_OBJECT fdo, PIRP Irp)
{

KEVENT event;
KeInitializeEvent(&event, NotificationEvent, FALSE);
IoCopyCurrentIrpStack~ocationToNext(Irp);

IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)
OnRequestComplete, (PVOID) &event, TRUE, TRUE, TRUE);

PO£VICE_EXTENSION pdx = (PDEVICE_EXTENSION)
fdo->DeviceExtension;

loCal 1 Driver(pdx->LowerDeviceObject, Irp);
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
return Irp->IoStatus.Status;
}

1. We create a kernel event object as an automatic variable. KeInitialize
Event must be called at PASSIVE_LEVEL. Luckily, PnP requests are always
sent at PASSIVE_LEVEL, so this particular requirement is met. The event
object itself must occupy nonpaged memory, too. For most purposes, in
cluding this one, you can treat the execution stack as being nonpaged.

2. We must make a copy of the stack parameters for the next driver because
we're going to install a completion routine.

227

Programming the Microsoft Windows Driver Model

228

3. We specify a completion routine so that we'll know when something un
derneath us completes this IRP. We might wait for the completion to oc
cur, so wt: must be sure that our completion routine is called. That's why
we specify TRUE for the three flag arguments to indicate that we want
OnRequestComplete called when the IRP completes normally, completes
with an error, or is cancelled. The context argument for the completion
routine is the address of our event object.

4. IoCaIlDriver calls the next lower driver, which can be a lower ftlter or
the physical device object (PDO) driver itself. The PDO driver will per
form some processing and either complete the request immediately or
return STATUS_PENDING.

5. No matter what 10CaliDriver returns, we call KeWaitForSingleObject to
wait forever on the kernel event we created earlier. Our completion rou
tine will gain control when the IRP completes to signal this event.

6. Here, we capture the ending status of the IRP and return it to our caller.

Once we call 10CallDriver, we relinquish control of the IRP until something
running in some arbitrary thread context calls IoCompleteRequest to signal comple
tion of the IRP. 10CompieteRequest will then call our completion routine. Refer to
Figure 6-3 for an illustration of the timing involved. The completion routine is par
ticularly simple:

NTSTATUS OnRequestComplete(PDEVICE_OBJECT fdo. PIRP Irp. PKEVENT pev)
{

KeSetEvent(pev. 0. FALSE):
return STATUS-MORE_PROCESSIN~REQUIRED:
}

1. We set the event on which ForwardAndWait can currently be blocked.

2. By returning STATUS_MORE_PROCESSING_REQUIRED, we halt the un
winding process through the I/O stack. None of the completion routines
installed by upper ftlter drivers will be called at the present time, and the
I/O Manager will cease its work on this IRP. The situation is just as if
loCompleteRequest has not been called at all-except, of course, that some
lower-level completion routines might have been called. At this instant,
the IRP is in limbo, but our ForwardAndWait routine will presently retake
ownership.

Chapter 6 Plug and Play

,------------------1
___ ---We caliloCaliDriver

VO Manager calls
next driver's dispatch routine

V
Dispatch routine returns

pretty soon with status code

We walt for event to be signalled

We return a status code __,
L __________________ ~

Completion routine
calls KeSetEvent

TimepaSHS ...

S
iaCom

~
va Manager calls .J

completion routine

Figure 6-3. Timing of ForwardAndWait.

NOTES ON FORWARDANDWAIT

I glossed over two subtleties when I described how ForwardAndWait and
OnRequestComplete work together. It's sometimes possible for a thread's ker
nel stack to be swapped out of physical memory, but only while the thread is
blocked in user mode. See David Solomon's Inside Windows N/', Second Edi
tion (Microsoft Press, 1998) at page 194 for a state diagram illustrating this
possibility. All the calls inside ForwardAndWait that deal with the event object
will certainly fulftll the requirement that the event object be resident in memory.
Since we specified a kernel mode wait, our stack can't be swapped out, so
KeSetEvent will also find the event resident.

Secondly, you might have noticed the absence of the boilerplate code if
(Irp->PendingReturned) IoMarkIrpPending(lrp) at the beginning of the
completion routine. You don't need that statement in a completion routine that
will return STATUS_MORE]ROCESSING_REQUIRED. The call can't hurt, of
course, and is required in most standard completion routines. That's why all the
DDK samples include the code even when it's not strictly necessary.

229

ProgralRlRing the Microsoft Windows Driver Model

Extracting Resource Assignments

230

In the preceding section, I showed you how to use the ForwardAndWait helper rou
tine to send an IRP _MN_START_DEVICErequest down the device stack and wait for
it to complete. You call ForwardAndWait from a subdispatch routine-reached from
the DispatchPnp dispatch routine shown earlier-that has the following skeletal form:

NTSTATUS HandleStartDevice(PDEVICE_OBJECT fdo. PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS:
NTSTATUS ~tatus = ForwardAndWait(fdo. Irp):
if (INT_SUCCESS(status»

return CompleteRequest(Irp. status. Irp->IoStatus.Information):
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp):
status = StartDevice(fdo. <additiona7 args»;
return CompleteRequest(Irp. status. Irp->IoStatus.Information):
}

1. The bus driver uses the incoming setting of IoStatus.Status to determine
whether upper-level drivers have handled this IRP. The bus driver makes a
similar determination for several other minor functions of IRP _MLPNP. We
therefore need to initialize the Status field of the IRP to STATljS_SUCCESS
before passing it down.

2. ForwardAndWait returns a status code. If it denotes some sort of failure
in the lower layers, we propagate it back to our own caller. Because our
completion routine returned STATUS_MORE_PROCESSING_REQUIRED,
we halted the completion process inside IoCompleteRequest. Therefore,
we have to complete the request all over again, as shown here.

3. Our configuration information is buried inside the stack parameters. I'll
show you where a bit further on.

4. StartDevice is a helper routine you write to handle the details of extracting
and dealing with configuration information. In my s4mple drivers, I've
placed it in a separate source module named READWRITE.CPP. I'll explain
shortly what arguments you would pass to this routine besides . the address
of the device object.

You might guess (correctly!) that the IRP _MN_START_DEVICE handler has work
to do that concerns the transition from the initial STOPPED state to the WORKING
state. I can't explain that yet because I need to first explain the ramifications of other
Plug and Play requests on state transitions, IRP queuing, and IRP cancellation. So,
I'm going to concentrate for a while on the configuration aspects of the PnP requests.

The I/O stack location's Parameters union has a substructure named
StartDevice that contains the configuration information you pass to the StartDevice
helper function. See Table 6-2.

Chapter 6 Plug and Play

Field Name . Description

AllocatedResources Contains raw resource assignments
AllocatedResourcesTranslated Contains translated resource assignments

Table 6-2. Fields in the Parameters.StartDevice substructure of an IO_STACK_LOCA110N.

Both AllocatedResources and AllocatedResourcesTranslated are instances
of the same kind of data structure, called a CM_RESOURCE_LIST. This seems like a
very complicated data structure if you judge only by its declaration in WDM.H. As
used in a start device IRP, however, all that remains of the complication is a great deal
of typing. The "lists" will have just one entry, a CM_PARTIAL_RESOURCE_LIST that
describes all of the I/O resources assigned to the device. You could use statements
like the following to access the two lists:

PCM_PARTIAL-RESOURCE_LIST raw. translated;
raw = stack->Parameters.StartDevice

.AllocatedResources->List[0].PartialResourceList;
translated = stack->Parameters.StartDevice .

. AllocatedResourcesTranslated->List[0].PartialResourceList;

The only difference between the last two statements is the reference to either the
AllocatedResources or AllocatedResourcesTranslated member of the parameters
structure.

The raw and translated resource lists are the logical arguments to send to the
StartDevice helper function, by the way:

status = StartDevice(fdo. raw. translated);

There are two different lists of resources because I/O buses and the CPU can
address the same physical hardware in different ways. The raw resources contain num
bers that are bus-relative, whereas the translated resources contain numbers that are
system-relative. Prior to the WDM, a kernel-mode driver might expect to retrieve raw
resource values from the registry, the PCI (Peripheral Component Interconnect)
configuration space, or some other source, and to translate them by calling routines
such as HalTranslateBusAd.d.ress or HalGetInterruptVector. See, for example, Art

Baker's The Windows NT Device Driver Book: A GUide/or Programmers (Prentice Hall,
1997), at pages 122-62. Both the retrieval and translation steps are done by the PnP
Manager now, and all a WDM driver needs to do is access the parameters of a start
device IRP as I'm now describing.

What you actually do with the resource descriptions inside your StartDevice
function is a subject for the next chapter, "Reading and Writing Data."

231

Programming the Microsoft Windows Driver Model

232

The stop device request tells you to shut your device down so that the PnP Manager
can reassign I/O resources. At the hardware level, shutting down involves pausing
or halting current activity and preventing further interrupts. At the software level, it
involves releasing the I/O resources you configured at start device time. Within the
framework of the dispatchlsubdispatch architecture I've been illustrating, you might
have a subdispatch function like this one:

NTSTATUS HandleStopDev;ce(PDEVICE_OBJECT fdo. PIRP Irp)
{

<complicated stuff>
StopDevice(fdo. oktouch):
Irp">IoStatus.Status = STATUS_SUCCESS:
return DefaultPnpHandler(fdo. Irp):
}

1. Right about here, you need to insert some more or less complicated code
that concerns IRP queuing and cancellation. I'll show you the code that
belongs in this spot further on in this chapter in "While the Device Is
Stopped."

2. In contrast to the start device case, in which we passed the request down
and then did device-dependent work, here we do our device-dependent
stuff first and then pass the request down. The idea is that our hardware
will be quiescent by the time the lower layers see this request. I wrote a
helper function named StopDevice to do the shutdown work. The sec
ond argument indicates whether it will be okay for StopDevice to touch
the hardware if it needs to. Refer to the sidebar "Touching the Hardware
When Stopping the Device" for an explanation of how to set this argument.

3. We always pass PnP requests down the stack. In this case, we don't care
what the lower layers do with the request, so we can simply use the
DefaultPnpHandler code to perform the mechanics.

The StopDevice helper function called in the preceding example is code you
write that essentially reverses the configuration steps you took in StartDevice. I'll show
you that function in the next chapter. One important fact about the function is that you
should code it in such a way that it can be called more than once for a single call to
StartDevice. It's not always easy for a PnP IRP handler to know whether you've already
called StopDevice, but it is easy to make StopDevice proof against..duplicative calls.

Chapter 6 Plug and Play

TOUCHING THE HARDWARE WHEN STOPPING THE DEVICE

In the skeleton of HandleStopDevice, I used an oktouch variable that I didn't
show you how to initialize. In the scheme I'm teaching you in this book for
writing a driver, the StopDevice function gets a BOOLEAN argument that indi
cates whether or not it should be safe to address actual I/O operations to the
hardware. The idea behind this argument is that you may want to send certain
instructions to your device as part of your shutdown protocol, but there might
be some reason why you can't. You might want to tell your PCMCIA modem
to hang up the phone, for example, but there's no point in trying if the end user
has already removed the modem card from the computer.

There's no certain way to know whether your hardware is physically
connected to the computer except. by trying to access it. Mierosoft recommends,
however, that if you succeeded in processing a START_DEVICE request, you
should go ahead and try to access your hardware when you process
STOP_DEVICE and certain other PnP requests. When I discuss how you track
PnP state changes later in this chapter, I'll honor this recommendation by set
ting the oktouch argument TRUE if we believe that the device is currently
working and FALSE otherwise.

Recall that the PnP Manager calls the AddDevice function in your driver to notify you
about an instance of the hardware you manage and to give you an opportunity to
create a device object. Instead of calling a function to do the complementary opera
tion, however, the PnP Manager sends you a Plug and Play IRP with the minor func
tion code IRP _MN_REMOVE_DEVICE. In response to that, you'll do the same things
you did for IRP ~N_STOP _DEVICE to shutdown your device, and then you'll de
lete the device object:

NTSTATUS HandleRemoveDev;ce(PDEVICE_OBJECT fdo. PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
<complicated stuff>
DeregisterAlllnterfaces(pdx);
StopDevice(fdo. oktouch);
Irp->IoStatus.Status = STATUS_SUCCESS;
NTSTATUS status = DefaultPnpHandler(fdo. Irp);
RemoveDevice(fdo);
return status;
}

Programming the Microsoft Windows Driver Model

234

This fragment looks very similar to HandleStopDevice, with a couple of additions.
DeregisterAlllnterfaces will disable any device interfaces you registered (probably
in AddDevice) and enabled (probably in StartDevice), and it will release the memory
occupied by their symbolic link names. RemoveDevice will undo all the work you
did inside AddDevice. For example:

VOID RemoveDevice(PDEVICE_OBJECT fdo)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
IoDetachDevice(pdx->LowerDeviceObject);
IoDeleteDevice(fdo);
}

1. This call to IoDetachDevice balances the call AddDevice made to
IoAttachDeviceToDeviceStack.

2. This call to IoDeleteDevice balances the call AddDevice made to
IoCreateDevice. Once this function returns, the device object will no
longer exist. If your driver isn't managing any other devices, your driver
will shortly be unloaded from memory, too.

You might be troubled by the fact that you call IoDeleteDevice at a time when
the lower levels of the device hierarchy might still be processing the IRP _MN_
REMOVE_DEVICE request. No harm can come from that, however, because the Object
Manager maintains a reference count on your device object to prevent it from dis
appearing while anything has an active pointer to it.

Note, by the way, that you don't get a stop device request followed by a re
m.ove device request. The remove device request implies a shutdown, so you do both
pieces of work in reply.

Sometimes the end user has the physical ability to remove a device without going
through any user interface elements ftrst. If the system detects that such a surprise
removal has occurred, it sends the driver a PnP request with the minor function code
IRP _MN_SURPRISE_REMOVAL. It will later send an IRP _MN_REMOVE_DEVICE.
Unless you previously set the SurpriseRemovalOK flag while processing IRP _MN_
QUERY_CAPABILITIES (as I'll discuss in Chapter 8, "Power Management"), the
system also posts a dialog box to inform the user that it's potentially dangerous to
yank hardware out of the computer.

Chapter 6 Plug and Play

In response to the surprise removal request, a device driver should disable any
registered interfaces. This will give applications a chance to close handles to your
device if they're on the lookout for the notifications I discuss later in "PnP Notifica
tions." Then the driver should release I/O resources and pass the request down:

NTSTATUS HandleSurpriseRemoval(PDEVICE_OBJECT fdo. PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
<comp7icated stuff>
EnableAllInterfaces(pdx, FALSE);
StopDevice(fdo. oktouch);
Irp->IoStatus.Status = STATUS_SUCCESS;
return DefaultPnpHandler(fdo. Irp);
}

FROM WHENCE IRP MN SURPRISE REMOVAL?

The surprise removal PnP notification doesn't happen as a simple and direct
result of the end user yanking the device from the computer. Some bus drivers
can know when a device disappears. For example, removing a universal serial
bus (USB) device generates an electronic signal that the bus driver notices. For
many other buses, however, there isn't any signal to alert the bus driver. The
PnP Manager therefore relies on other methods to deCide that a device has
disappeared.

A function driver can signal the disappearance of its device (if it knows)
by calling IoInvalidateDeviceState and then returning any of the values
PNP _DEVICE_FAILED, PNP _DEVICE_REMOVED, or PNP _DEVICE_DISABLED
from the ensuing IRP _MN_QVERY_PNP _DEVICE_STATE. You might want to do
this in your own driver if-{o give one example of many-your interrupt service
routines (ISRs) read all I-bits from a status port that normally returns a mixture
of Is and Os. More commonly, a bus driver calls IoInvalidateDeviceRelations
to trigger a reenumeration and then fails to report the newly missing device.
It's worth knowing that when the end user removes a device while the system
is hibernating or in another low-power state, the driver receives a series of
power management IRPs hefore it receives the IRP _MN_SURPRISE_REMOVAL
request.

What these facts mean, practically speaking, is that your driver should be
able to cope with errors that might arise from having your device suddenly not
present.

235

Programming the Microsoft Windows Driver Model

MANAGING PNP STATE TRANSITIONS

236

As I said at the outset of this chapter, WDM drivers need to track their devices through
the state transitions diagrammed in Figure 6-1 on page 223. This state tracking also ties
in with how you queue and cancel I/O requests. Cancellation in tum implicates the
global cancel spin lock, which is a performance bottleneck in a multi-CPU system. The
standard model of IRP processing can't solve all these interrelated problems. In this
section, therefore, I'll present a new type of object--called a DEVQUEUE-that you
can use in your PnP request handlers and in place of the standard model routines
StartPacket and StartNextPacket. DEVQUEUE is my own invention, but it's based
on sample drivers, especially PNPPOWER and CANCEL, that used to be in the DDK.
See also the discussion of IRP cancellation in Ervin Peretz's "The Windows Driver
Model Simplifies Management of DeviCe Driver I/O Requests," (Microsoft Systems
Journal, January 1999). A portion of the IRP cancellation logiC I'm describing also
derives from work by Peretz and other MiCrosoft employees and by Jamie Hanrahan
that had not been published at the time I was writing this book.

I described the KDEVICE_QUEUE queue object in the previous chapter as
encompassing an idle state, a busy but empty state, and a busy but not empty state.
The support routines you use to manipulate a KDEVICE_QUEUE assume that if the
deviCe is not currently busy, all you want to do is start any new request running on
the deviCe. It's precisely this behavior that we need to overcome to successfully man
age PnP states. Figure 6-4 illustrates the states of a DEVQUEUE.

AbortRequests

A1IowRequests

StalIRequests)

Figure 6-4. States of a DEVQUEUE object.

Chapter 6 Plug and Pia,

In the READY state, the queue operates much like a KDEVICE_QUEUE, accept
ing and forwarding requests to your Startlo routine in such a way that the device
stays busy. In the STALLED state, however, the queue does not forward IRPs to Startlo
even when the device is idle. In the REJECTING state, the queue doesn't even ac
cept new IRPs. Figure 6-5 illustrates the flow of IRPs through the queue.

IRPs

Figure 6-5. Flow of lRPs through a DEVQUEUE.

Startlo
routine

Using DEVQUEUE for IRP Queuing and Cancellation
You define a DEVQUEUE object for each queue of requests you'll manage in the
driver. For example, if your device manages reads and writes in a single queue, you'd
define one DEVQUEUE:

typedef struct _DEVICE-EXTENSION {

DEVQUEUE dqReadWrite:

} DEVICE_EXTENSION, *PDEVICE_EXTENSION:

Table 6-3 lists the support functions you can use with a DEVQUEUE.

237

Programming the Microsoft Windows Driver Model

238

support Function

AbortRequests

AllowRequests

AreRequestsBeingAborted

CancelRequest

CheckBusyAndStall

CleanupRequests

GetCurrentIrp

InitializeQueue

RestartRequests

StallRequests

StartNextPacket

StartPacket

WaitForCurrentirp

Description

Aborts current and future requests

Undoes effect of previous AbortRequests

Are we currently aborting new requests?

Generic cancel routine

Checks for idle device and stalls requests in one
atomic operation

Cancels all requests for a given ftle object in order
to service IRP _MLCLEANUP

Determines which IRP is currently being pro
cessed by associated Startlo routine

Initializes DEVQUEUE object

Restarts a stalled queue

Stalls the queue

Dequeues and starts the next request

Starts or queues a new request

Waits for current IRP to fmish

Table 6-3. DEVQUEUE service routines.

For the moment, I'll just discuss the support functions that replace furictions like
Sta.rtPacket and StartNextPacket in the standard IRP processing model. For each
queue, you provide a separate Startlo routine. Your DriverEntry routine would not
store anything in the DriverStartlo pointer field of the driver ·object. Instead, dur
ing AddDevice, you'd initialize your queue object(s) like.so:

NTSTATUS AddDevice(...)
{

PDEVICE_EXTENSION pdx =
InitializeQueue(&pdx->dqReadWrite. Startlo):

}

The dispatch function for an IRP that uses a DEVQUEUE would follow the
following pattern:

NTSTATUS DispatchWrite(PDEVICE_OBJECT fdo. PIRP lrp)
{

<some power management stuff you haven't heard about yet>
IoMarkIrpPending(Irp):
StartPacket(&pdx->dqReadWrite. fdo. Irp. OnCancel):
return STATUS_PENDING:
}

Chapter 6 Plug and Play

That is; instead of calling IoStartPacket, you call the queue's StartPacket function
with· the address of the queue object, the device object, the IRP, and your cancel
routine. At the start of a dispatch routine, you'll also have a small bit of code to handle
restoring power after a period of disuse; I'll discuss that code in Chapter 8.

Here's a sketch of the new kind of Startlo routine you use with a DEVQUEUE:

VOID Startlo(PDEVICE_OpJECT fdo, PIRP Irp)
{

<some PnP stuff you haven't heard about yet>
II start request on device
}

StartIo doesn't worry about IRP cancellation. The cancel routine you use in this scheme
is different from a. standard one--.-it simply delegates all work to the DEVQUEUE:

VOID OnCancel(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
Cancel Request(&pdx->dqReadWrite. Irp);
}

CancelRequest will release the global cancel spin lock, which your cancel routine owns
when it gets control, and will then cancel the IRP in a thread-safe and multiprocessor
safe way.

The deferred procedure call (DPC) routine you use when the request fInishes
also looks a little different from the standard-model one I showed you in Chapter 5,
as you can see here:

VOID DpcForIsr(PKDPC Dpc. PDEVICE_OBJECT device. PIRP junk. PYOID context)
{

PIRP Irp = GetCurrentlrp(&pdx->dqReadWr1te);

StartNextPacket(&pdx->dqReadWrite. device);
<some PnP stuff you haven't heard about yet>
CompleteRequest(Irp •...);
}

Like IoStartNextPacket, the StartNextPacket function removes the next IRP from
the queue and sends it to your (queue-specllc) StartIo routine. It also returns the ad
dress of the IRP you were processing or NULL to indicate that your device was not
processing an IRP. A NUll return value indicates that the IRP was cancelled or aborted
for some reason, so it would be incorrect for you to try to complete it. Since you'll
obtain the address of the finishing IRP by calling GetCurrentlrp,don't use the IRP
pointer that comes to you as the third argument to the DPC routine. I named it junk
to reinforce the point. "

239

Programming the Microsoft Windows Driver Model

The DEVQUEUE also simplifies the handling of an IRP _MLCLEANVP. In fact,
the code is almost trivial:

NTSTATUS DispatchCleanup(PDEVICE_OBJECT fdo. PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocat1on(Irp);
CleanupRequests(&pdx->dqReadWrite. stack->FileObject.

STATUS_CANCELLED);
return CompleteRequest(Irp. STATUS_SUCCESS. 0);
}

Using DEVQUEUE with PnP Requests

240

The real point of using a DEVQUEUE instead of a KDEVlCE_QUEUE is that a
DEVQUEUE makes it easier to manage the transitions between PnP states. In all of
my sample drivers, the device extension contains a state variable with the imagina
tive name state. I also deftne an enumeration named DEVSTATE whose values cor
respond to the PnP states. When you initialize your device object in AddDevice, you'll
call InitializeQueue for each of your device queues and also indicate that the de
vice is in the STOPPED state:

NTSTATUS AddDevice(...)
{

PDEVICLEXTENSIONpdx =
Init1alizeQueue(&pdx->dqRead. StartloReadWrite);
pdx->state = STOPPED;

}

After AddDevice returns, the system sends IRP _MLPNP requests to direct you
through the variousPnP states the device can assume.

Starting the Device
A newly initialized DEVQUEUE is in a STAllED state, such that a call to StartPacket
will queue a request even when the device is idle. You'll keep the queue(s) in the
STALLED state until you successfully process IRP _MN_START DEVICE, whereupon
you'll execute code like the following:

NTSTATUS HandleStartDevice(...)
{

s~atus = StartDevice(•.•);
if (NT_SUCCESS(status»

}

{

pdx->state = WORKING;
RestartRequests(&pdx->dqReadWr1te. fdo);
}

Chapter 6 Plug and Play

You record WORKING as the current state of your device, and you call
RestartRequests for each of your queues to release any IRPs that might have arrived
between the time AddDevice ran and the time you received the IRP _MN_
START_DEVICE request.

Is It Okay to Stop the Device?
The PnP Manager always asks your permission before sending you an IRP _MN_
STOP _DEVICE. The query takes the form of an IRP _MN_QUERY _STOP _DEVICE
request that you can succeed or fail as you choose. The query basically means, "Would
you be able to immediately stop your device if the system were to send you an
IRP _MN_STOP _DEVICE in a few nanoseconds?" You can handle this query in two
slightly different ways. Here's the first way, which is appropriate when your device
might be busy with an IRP that either finishes quickly or can be easily terminated in
the middle:

NTSTATUS HandleQueryStop(PDEVICE_OBJECT fdo. PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS:
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
if (pdx~>state !~ WORKING)

return DefaultPnpHandler(fdo, Irp);
if (!OkayToStop(pdx»

return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0):
StallRequests(&pdx->dqReadWr1te):
WaitForCurrentlrp(&pdx->dqReadWrite):
pdx->state = PENDINGSTOP:
return DefaultPnpHandler(fdo. Irp):
}

1. This statement handles a peculiar situation that can arise for a boot de
vice: the PnP Manager might send you a QUERY_STOP when you haven't
initialized yet. You want to ignore such a query, which is tantamount to
saying "yes."

2. At this point, you perform some sort of investigation to see if it will be
okay to revert to the STOPPED state. I'll discuss factors bearing on the in
vestigation immediately below.

3. StalJRequests puts the DEVQUEUE into the STALLED state so that any
new IRP just goes into the queue. WaitForCurrentlrp waits until the
current request, if there is one, finishes on the device. These two steps
make the device quiescent until we know whether the device is really
going to stop or not.

4. At this point, we have no reason to demur. We therefore record Our state
as PENDINGSTOP. Then we pass the request down the stack so that other
drivers ·can have a chance to accept or decline this query.

24.1

Programming the Microsoft Windows Driver Model

242

The other basic way of handling QUERY_STOP is appropriate when your device
might be busy with a request that will take a long time and can't be stopped in the
middle, such as a tape retension operation that can't be stopped without potentially
breaking the tape. In this case, you can use the DEVQUEUE's CheckBusyAndStall
function. That function returns TRUE if the device is busy, whereupon you'd fail the
QUERY_STOP with STATUS_UNSUCCESSFUL. The function returns FALSE if the device
is idle, in which case it also stalls the queue. (The operations of checking the state
of the device and stalling the queue need to be protected by a spin lock, which is
why I wrote this function in the first place.)

You can fail a stop query for many reasons. Disk devices that are used for paging,
for example, cannot be stopped. Neither can devices that are used for storing hiber
nation or crash dump meso (You'll know about these characteristics as a result of an
IRP _MN_DEVICE_USAGE_NOTIFICATION request, which I'll discuss later in "Other
Configuration Functionality.") Other reasons may also apply to your device.

Even if you succeed the query, one of the drivers underneath you might fail it
for some reason. Even if all the drivers succeed the query, the PnP Manager might decide
not to shut you down. In any of these cases, you'll receive another PnP request with
the minor code IRP _MN_CANCEL_STOP _DEVICE to tell you that your device won't be
shut down. You should then clear whatever state you set during the initial query:

NTSTATUS HandleCancelStop(PDEVICE_OBJECT fdo. PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
if (pdx->state 1= PENDINGSTOP)

return DefaultPnpHandler(fdo. Irp);
NTSTATUS status = ForwardAndWait(fdo. Irp);
if (NT_SUCCESS(status»

{

pdx->state = WORKING;
RestartRequests(&pdx->dqReadWrite. fdo);
}

return CompleteRequest(Irp. status. Irp->IoStatus.lnformation);
}

We first check to see whether a stop operation is even pending. Some higher
level driver might have vetoed a query that we never saw, so we'd still be in the
WORKING state. If we're not in the PENDINGSTOP state, we simply forward the IRP.
Otherwise, we send the CANCEL_STOP IRP synchronously to the lower-level drivers.
That is, we use our ForwardAndWait helper function to send the IRP down the stack
and await its completion. We wait for low-level drivers because we're about to resume
processing IRPs, and the drivers might have work to do before we send them an IRP. If
the lower layers successfully handle this IRP _MN_CANCEL_STOP _DEVICE, we change
our state variable to indicate that we're back in the WORKING state, and we call
RestartRequests to unstall the queues we stalled when we succeeded the query.

Chapter 6 Plug and Play

While the Device Is Stopped
If, on the other hand, all device drivers succeed the query and the PnP Manager
decides to go ahead with the shutdown, you'll get an IRP _MN_STOP _DEVICE next.
Your subdispatch function would look like this one:

NTSTATUS HandleStopDeviceCPDEVICE_OBJECT fdo, PIRP Irp)
{

Irp-)IoStatus~Status = STATUS_SUCCESS;
PDEVICE_EXTENSION pdx = CPDEVICE_EXTENSION) fdo-)DeviceExtension;
if Cpdx-)state != PENDINGSTOP);

{

<complicated stuff>
}

StopDeviceCfdo, pdx-)state == WORKING);
pdx-)state = STOPPED;
return DefaultPnpHandlerCfdo, Irp);
}

1. We expect the system to send us a QUERY_STOP before it sends us a
STOP, so we should already be in the PENDINGSTOP state with all of our
queues stalled. There is, however, a bug in Windows 98 such that we can
sometimes get a STOP (without a QUERY_STOP) instead of a, REMOVE.
You need to take some action at this point that causes you to reject any
new IRPs, but you mustn't really remove your device object or do the other
things you do when you really receive a REMOVE request.

2. StopDevice is the helper function I've already discussed that deconfigures
the device.

3. We now enter the STOPPED state. We're in almost the same situation as
we were when AddDevice was done. That is, all queues are stalled, and
the device has no I/O resources. The only difference is that we've left our
registered interfaces enabled, which means that applications Will not have
received removal notifications and will leave their handles open. Appli
cations can also open new handles in this situation. Both aspects are just
as they should be, because the stop condition won't last long.

4. As I previously discussed, the last thing we do to handle IRP _MN_
STOP_DEVICE is pass the request down to the lower layers of the driver
hierarchy.

Is It Okay to Remove the Device?
Just as the PnP Manager asks your permission before shutting your device down with
a stop device request, it also might ask your permission before removing your device.
This query takes the form of an IRP _MN_QVERY_REMOVE_DEVICE request that you
can, once again, succeed or fail as you choose. And, just as with the stop query, the

243

Programming the Microsoft Windows Driver Model

244

PnP Manager will.use an IRP _MN_CANCEL_REMOVE_DEVICE request if it changes its
mind about removing the device.

NTSTATUS HandleQueryRemove(PDEVICLOBJECT fdo, PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
if (OkayToRemove(fdo»

{

StallRequests(&pdx->dqReadWrite);
WaitForCurrentIrp(&pdx->dqReadWrite);
pdx->prevstate = pdx->state;
pdx->state = PENDINGREMOVE;
return DefaultPnpHandler(fdo, Irp);
}

return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0);
}

NTSTATUS HandleCancelRemove(PDEVICE_OBJECT fdo, PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
if (pdx->state 1= PENDINGREMOVE)

return DefaultPnpHandler(fdo, Irp);
NTSTATUS status = ForwardAndWait(fdo, Irp);
if (NT_SUCCESS(status»

{

pdx->state = pdx->prevstate;
if (pdx->state == WORKING)

RestartRequests(&pdx->dqReadWrite, fdo);
}

return CompleteRequest(Irp, status, Irp->IoStatus.Information);
}

1. This OkayToRemove helper function provides the answer to the ques
tion, "Is it okay to remove this device?" In general, this answer includes
some device-specific ingredients, such as whether the device holds a
paging or hibernation me, and so on.

2. Just as I showed you for IRP _MN_QUERY _STOP _DEVICE, you want to stall
the request queue and wait for a short period, if necessary, until the cur
rent request finishes.

3. If you look at Figure 6-1 on page 223 carefully, you'll notice that it's pos
sible to get a QUERY_REMOVE when you're in either the WORKING or
STOPPED state. The right thing to do if the current query is later cancelled
is to return to the original state. Hence, I have a prevstate variable in the
device extension to record the prequery state.

Chapter 6 Plug and Play

4. We get the CANCEL_REMOVE request when something either above or
below us vetoes a QUERY_REMOVE. If we never saw the query, we'll still
be in the WORKING state and don't need to do anything with this IRP.
Otherwise, we need to forward it to the lower levels before we process
it because we want the lower levels to be ready to process the IRPs we're
about to release from our queues.

5. Here, we undo the steps we took when we succeeded the QUERY_
REMOVE. We revert to. the previous state. If the previous state was
WORKING, we stalled the queues when we handled the query and need
to unstall them now.

Synchronizing Removal
It turns out that the I/O Manager can send you PnP requests simultaneously with other
substantive I/O requests, such as requests that involve reading or writing. It's entirely
possible, therefore, for you to receive an IRP _MN_REMOVE_DEVICE at a time when
you're still processing another IRP. It's up to you to prevent untoward consequences,
and the standard way to do that involves using an 10_REMOVE_LOCK object and
several associated kernel-mode support routines ..

The basic idea behind the standard scheme for preventing premature removal
is that you acquire the remove lock each time you start processing a request and you
release the lock when you're done. Before you remove your device object, you make .
sure that the lock is free. If not, you wait until all references to the lock are released.
Figure 6-6 illustrates the process.

Figure 6-6. Operation of an lO_REMOVE_LOCK.

To handle the mechanics of this process, you define a variable in the device
extension:

struct DEVICE_EXTENSION {

IO_REMOVE_LOCK RemoveLock;

} ;

245

Programming the Microsoft Windows Driver Model

246

You initialize the lock object during AddDevice:

NTSTATUS AddDevice(PDRIVER-OBJECT DriverObject, PDEVICE_OBJECT pdo)
{

IoInitializeR~moveLock(&pdx->RemoveLock, 0, 0, 256);

}

The last three parameters to IoInitiaUzeRemoveLock are, respectively, a tag value,
an expected maximum lifetime for a lock, and a maximum lock count, none of which
are used in the free build of the operating system.

These preliminaries set the stage for what you do during the lifetime of the de
vice object. Whenever you receive an I/O request, you call IoAcquireRemoveLock.
10AcquireRemoveLock will return STATIJS_DELET'E_PENDING if a removal operation
is underway. Otherwise, it will acquire the lock and return STATIJS_SUCCESS. When
ever you finish an I/O operation, you call IoReleaseRemoveLock, which will re
lease the lock and might unleash a heretofore pending removal operation. In the
context of some purely hypothetical dispatch function that completes the IRP it's
handed, the code might look like this:

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp);
if (!NT_SUCCESS(status»

return CompleteRequest(Irp, status, 0);

IoReleaseRemoveLock(&pdx->RemoveLock, Irp);
return CompleteRequest(Irp, <some code>, <info value»;
}

The second argument to 10AcquireRemoveLock and 10ReleaseRemoveLock is just a
tag value that a checked build of the OS can use to match up acquisition and release
calls, by the way.

The calls to acquire· and release the remove lock dovetail with additional logic
in the PnP dispatch function and the remove device subdispatch function. First,
DispatchPnp has to obey the rule about locking and unlocking the device, so it
will contain the following code that I didn't show you earlier in "IRP _MLPNP
Dispatch Function":

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx-)RemoveLock, Irp);
if (!NT_SUCCESS(status»

return CompleteRequest(Irp, status, 0);

Chapter 6 Plug and Play

status = (*fcntab[fcn](fdo. Irp);
if (fen 1= IRP_MN_REMOVE_DEVICE)

IoReleaseRemovelock(&pdx->Removelock. Irp);
return status;
}

In other words, DispatchPnp locks the device, calls the subdispatch routine, and
then (usually) unlocks the device afterward. The subdispatch routine for IRP _MN_
REMOVE_DEVICE has additional special logic that you also haven't seen yet:

NTSTATUS HandleRemoveDevice(PDEVICE_OBJECT fdo. PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
AbortRequests(&pdx->dqReadWrite. STATUS_DELETE_PENDING);
DeregisterAllInterfaces(pdx);
StopDevice(fdo. pdx->state == WORKING);
pdx->state = REMOVED;
NTSTATUS status = DefaultPnpHandler(pdx->lowerDeviceObject. Irp);
IoReleaseRemovelockAndWait(&pdx->Removelock. Irp);
RemoveDevice(fdo);
return status;
}

1. Wmdows 98 doesn't send the SURPRISE_REMOVAL request, so this REMOVE
IRP may be the first indication you have that the device has disappeared.
Calling StopDevice allows you to release all your I/O resources in case
you didn't get an earlier IRP that caused you to release them. Calling
AbortRequests causes you to complete any queued IRPs and to start
rejecting any new IRPs.

2. We pass this request to the lower layers now that we've done our work.

3. The PnP dispatch routine acquired the remove lock. We now call the
special function IoReleaseRemoveLockAndWait to release that lock
reference and wait until all references to the lock are released. Once the
IoReleaseRemoveLockAndWait routine returns, any subsequent call to
IoAcquireRemoveLock will elicit a STATUS_DELETE_PENDING status to
indicate that device removal is under way.

NOTE You'll notice that the IRP _MN_REMOVE_DEVICE handler might block
while some IRP finishes. This is certainly okay in Windows 98and Windows 2000,
which were designed with this possibility in minc!-the IRP gets sent in the con
text of a system thread that is allowed to block. Some WDM functionality (a
Microsoft developer even called it "embryonic") is present in OEM releases of
Microsoft Windows 95, but you can't block a remove device request there. Con
sequently, if your driver needs to run in Windows 95, you need to discover that
fact and avoid blocking. That discovery process is left as an exercise for you.

247

Progranunlng the Microsoft Windows Driver Model

These are the mechanics of locking and unlocking the device to forestall re
moving the device while it's still in use. You still need to know when to invoke
IoAcquireRemoveLock and IoReleaseRemoveLock to bring that mechanism into play.
BaSically, an IRP dispatch function that will complete the request quickly should
acquire and release the lock.

A dispatch routine that queues an IRP should not acquire the remove lock,
however. For a queued IRP, you acquire the lock inside Startlo and release it inside
your DPC routine. So, we can expand the earlier skeleton of StartIo and DpcForisr
as follows:

VOID Startlo(PDEVICE_OBJECT fdo. PIRP Irp)
{

PDEVICE_EXTENSION pdx =(PDEVICE_EXTENSION) fdo->DeviceExtension;
~ NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp);

if (INT_SUCCESS(status»
{

~ CompleteRequest(Irp. status. 0);
return;
}

II start request on device
}

VOID DpcForlsr(PKDPC Dpc. PDEVICLOBJECT device. PIRP junk.
PYOID context)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite);

StartNextPacket(&pdx->dqReadWr1te. device);
~ IoReleaseRemoveLock(&pdx->RemoveLock. Irp);

Compl eteRequest(lrp •...);

248

}

1. We acquire the lock here rather than in the dispatch routine. We don't want
the fact that we've got an IRP sitting in our queue to prevent the PhP.
Manager from shutting us down. It's also better to not have to worry about
the remove lock in our cancel routine.

2. IoAcquireRem.oveLock fails only if a delete operation is pending. Its re
turn value can be either STATIJS_SUCCESS or STATIJS_DELETE_PENDING.
In the failure ,case, don't call StartNextPacket-there's no point in try

ing to start a new operation when the device is about to disappear. Were
we to call StartNextPacket, it would recursively call this routine, which
would try to acquire the remove lock and fail, whereupon it would call

Chapter 6 Plug and Play

StartNextPacket, which would call Startlo, which would ... <BSOD due to
stack overflow>. You get the idea.

3. This call to IoRe1easeRemoveLock balances the call inside Startlo.

You should also acquire the remove lock when you successfully process an
IRP _MLCREATE. In contrast to the other situations we've considered, you don't re
lease the lock before returning from the DispatchCreate routine. The balancing call
to 10ReleaseRemoveLock occurs instead in the dispatch routine for IRP _MLCLOSE.
In other words, you hold the remove lock for the entire time something has a handle
open to your device. Here's a sketch of what I mean:

NTSTATUS DispatchCreate(...)
{

IoAcquireRemoveLock(&pdx->RemoveLock, stack->FileObject);
return CompleteRequest(...);
}

NTSTATUS DispatchClose(...)
{

IoReleaseRemoveLock(&pdx->RemoveLock, stack->FileObject);
return CompleteRequest(...);
}

For debugging purposes, the balancing calls to loAcquireRemoveLock and
10ReleaseRemoveLock should use the same value for the second argument. You
wouldn't use the IRP pointer as I've done in my other examples because the CRE
ATE and CLOSE requests are different IRPs. The me object will be the same in both
requests, though, which is why I used the me object in this example.

If the end user uses the Device Manager to remove a device when some ap
plication has an open handle, the operating system declines to remove the device
and so informs the user. In that situation, the fact that you've also claimed the re
move lock won't influence the course of events because you'll never get the
IRP _MN_REMOVE_DEVICE that would cause you to wait for all holders of the lock
to release it. If it's possible for the device to be physically removed from the com
puter without first going through the Device Manager, however, a correctly written
application will be looking for a WM_DEVICECHANGE message that signals depar
ture of the device. (See the discussion of user-mode notifications near the end of this
chapter in "PnP Notifications".) The application will then close its handles. You should
delay IRP _MN_REMOVE_DEVICE until the handles are actually closed, and the locking
logic I've just described allows you to do that.

249

Programming the Microsoft Windows Driver Model

COMPATIBILITY NOTE FOR IO_REMOVE_LOCK

It turns out that the IO_REMOVE_LOCK object and associated service functions
are technically not part of the WDM. The declarations your C code needs are
actually in WDM.H, and WDM.llB contains import deftnitions for the remove-lock
functions. But Windows 98 doesn't actually export the functions. A driver that ref
erences these functions therefore won't load in Windows 98. This state of affairs
is very unfortunate because every WDM driver needs to interlock device removal.

DDK sample programs cope with this incompatibility in one of two ways.
Some samples use a custom-built mechanism instead of an IO_REMOVE_LOCK.
Others provide functions with names like XxxAcquireRem.oveLock, and so on,
that mimic the names of the standard remove lock functions.

My sample drivers use a variation on the second of these approaches.
By means of #define statements, I substitute my own declarations of the
IO_REMOVE_LOCK object and support functions for the official ones. Thus, my
sample code calls 10AcquireRemoveLock, and so on. In the samples that use
GENERIC.SYS, preprocessor trickery actually routes these calls to functions with
names like GenericAcquireRem.oveLock that reside in GENERIC.SYS. In the
samples that don't use GENERIC.SYS, the preprocessor trickery routes the
calls to functions with names like AcquireRem.oveLock that are located in

a me named REMOVELOCK.CPP.
I could have written my samples in such a way that they would call the

standard remove lock functions instead of my own in Windows 2000. To make
any of the samples work in Windows 98, I'd have needed to write stub imple
mentations of the remove lock functions and required you to install a stub vir
tual device driver (YxD) before you could run any of the samples. (See Appendix
A, "Coping with Windows 98 Incompatibilities.") I didn't think this was a good
way to explain WDM· programming.

How DEVQUEUE Works

250

In contrast to other examples in this book, I'm going to show you the full implemen
tation of the DEVQUEUE object even though the source code is on the companion
disc. I'm making an exception in this case because I think an annotated listing of the
functions will make it easier for you to understand how to use it.

Chapter 6 Plug and Play

Initializing a DEVQUEUE
The DEVQUEUE object has this declaration in my DEVQUEUE.H header file:

typedef struct _DEVQUEUE {
LIST_ENTRY head;
KSPIN_LOCK lock;
PDRIVER-START Startlo;
LONG stallcount;
PIRP Currentlrp;
KEVENT evStop;
NTSTATUS abortstatus;
} DEVQUEUE. *PDEVQUEUE;

InitializeQueue initializes one of these objects like this:

VOID NTAPI InitializeQueue(PDEVQUEUE pdq, PDRIVER-STARTIO Startlo)
{

InitializeListHead(&pdq-)head);
KelnitializeSpinLock(&pdq-)lock);
pdq-)Startlo = Startlo;
pdq-)stallcount = 1;
pdq-)Currentlrp = NULL;
KelnitializeEvent(&pdq-)evStop. NotificationEvent. FALSE);
pdq-)abortstatus = (NTSTATUS) 0;
}

1. We use an ordinary Cnoninterlocked) doubly-linked list to queue IRPs. We
don't need to use an interlocked list because we'll always access it within
the protection of our own spin lock.

2. This spin lock guards access to the queue and other fields in the
DEVQUEUE structure. It also takes the place of the global cancel spin lock
for guarding nearly all of the cancellation process, thereby improving
system performance.

3. Each queue has its own associated StartIo function that we call automati
cally in the appropriate places.

4. The stall counter indicates how many times something has requested that
IRP delivery to StartIo be stalled. Initializing the counter to 1 means that
the IRP _MN_START_DEVICE handler must call RestartRequests to release
an IRP.

5. The Currentlrp field records the IRP most recently sent to the Startlo rou
tine. Initializing this field to NULL indicates that the device is initially idle.

6. We use this event to block WaitForCurrentirp when necessary. We'll set
this event inside StartNextPacket, which should always be called when the
current IRP completes.

251

Programming the Microsoft Wlndo .. Drll8rModel

252

7. We reject incoming IRPs in two situations. The first situation is after we
irrevocably commit to removing the device, when we must start failing new
IRPs with STATUS_DELETE_PENDING. The second situation is during a
period of low power, when, depending on the type of device we're man
aging, we might choose to fail new IRPs with the STATUS_DEVICE_
POWERED_OFF code. The abortstatus field records the status code we
should use in rejecting IRPs in these situations.

Stalling the Queue
stalling the IRP queue involves two DEVQUEUE functions:

VOID NTAPI StallRequests(POEVOUEur pdq)
{

InterlockedIncrement(&pdq->stallcount);
}

BOOLEAN NTAPI CheckBusyAndStall(POEVOUEUE pdq)
{

KIROL oldirql:
KeAcquireSpinLock(&pdq->lock. &oldirql);
BOOLEAN busy = pdq->CurrentIrp 1= NULL;
if (Ibusy)

InterlockedIncrement(&pdq->stallcount):
KeReleaseSpinLock(&pdq->lock. oldirql):
return busy;
}

1. To stall requests, we just need to set the stall counter to a nonzero value.
It's unnecessary to protect the increment with a spin lock because any de
vice that might be racing with us to change the value will also be using
an interlocked increment or decrement.

2. Since CheckBusyAndStall needs to operate as an atomic function, we first
take the queue's spin lock.

3. CurrentIrp being non-NUll. is the signal that the device is busy handling
one of the requests from this queue.

4. If the device is currently idle, this statement starts stalling the queue,
thereby preventing the device from becoming busy later on.

Queuing IRPs
IRPs get added to the queue when a dispatch function calls StartPacket:

VOID NTAPI StartPacket(POEVOUEUE pdq. POEVICE_OBJECT fdo.
PIRP Irp. PORIVER-CANCEL cancel)
{

KIROL oldirql:

· Chapter 6 Plug and Play

KeAcquireSpinLock(&pdq->lock. &oldirql):
if (pdq->abortstatus)

{

KeReleaseSpinLock(&pdq->lock. oldirql):
Irp->IoStatus.Statu$ = pdq->abortstatus:
IoCompleteRequest(Irp. IO_NO_INCREMENT):
}

else if (pdq->Currentlrp I I pdq->stallcount)
{

IoSetCancelRoutine(Irp. cancel):
if (Irp->Cancel && IoSetCancelRoutine(Irp. NULL»

{

KeReleaseSpinLock(&pdq->lock. oldirq1):
Irp->IoStatus.Status = STATULCANCELLED:
IoCompleteRequest(Irp. IO_NO_INCREMENT):
}

else
{

InsertTaillist(&pdq->head. &Irp->Tail.Overlay.ListEntry):
KeReleaseSpinLock(&pdq->lock. oldirql):
}

else
{

}

pdq->Currentlrp = lrp:
KeReleaseSpi nLock(&pdq->l ock. DISPATCH_LEVEL);
(*pdq->Startlo)(fdo. Irp):
KeLowerlrql(oldirql):
}

1. Acquiring the spin lock allows us to access fields in the DEVQUEUE
without interference from the other support routines-principally
StartNextPacket-that might be trying to access the same queue.

2. As I described earlier, we sometimes need to reject IRPs on arrival. If
abortstatus is nonzero, we just complete the request. Our caller will be
returning STATUS_PENDING, so it's up to us to do the completion.

3. If the device is currently busy, or if some other part of the driver has stalled
this queue, we need to queue the IRP for later processing.

4. We might be in race with an instance of IoCancelirp that is trying to can
cel this very IRP. We first install our own cancel routine in the IRP by using
IoSetCa11ceJRoutine, which performs an (atomic) interlocked exchange.
Then we test the Cancel flag. If we find the Cancel flag set, our cancel
routine might or might not have been called by now, depending on the exact
order in which our code and IoCanceUrp executed their program steps. If

253

Programming the Microsoft Windows Driver Model

254

our cancel routine was called, a second call to IoSetCancelRoutine will return
NULL; we can then enqueue the IRP and rely on the cancel routine to
immediately dequeue the IRP and complete it. If our cancel routine has
not yet been called, it won't be possible for it to ever be called after the
second invocation of IoSetCancelRoutine; we will complete the IRP now
in this case.

5. This is where we actually queue the IRP. The Tai1.Overlay.llstEntry field
of an IRP was designed for uses like this one.

6. The last case is when the queue is in the READY state and the device is
not currently busy. We set the CurrentIrp pointer in the DEVQUEUE, re
lease the spin lock, and call the Startlo routine at DISPATCH_LEVEL.

I'd like to discuss a pesky nonproblem in the above code. Programs that change
CurrentIrp do so while owning our spin lock, so we can be sure there's no ambigu
ity in our test of CurrentIrp. The stall counter, on the other hand, can be incremented
without the spin lock inside StallRequests. It should be obvious that the only poten
tial problem occurs when the counter is being incremented from ° to 1 more or less
simultaneously with us, because we behave the same way no matter what nonzero value
the counter might have. Consider the potential race with a call to StallRequests that will
increment the counter from ° to 1. If we beat the increment and find the counter 0,
we'll go ahead and start a request. That's okay, because the caller of StallRequests is
willing to have the device be busy. (If the caller weren't willing, it would have used
CheckBusy AndStall instead.) If we find the counter already incremented, we'll queue
the IRP, which is also consistent with what the caller of StallRequests intended.

Dequeuing IRPs
The function that dequeues most IRPs is StartNextPacket, which is called from a
DPC, routine:

PIRP NTAPI StartNextPacket(PDEVQUEUE pdq, PDEVICE_OBJECT fdo)
{

KIRQL oldirql;
KeAcquireSpinLock(&pdq->lock, &oldirql»;
PIRP CurrentIrp = (PIRP) InterlockedExchangePointer

(&pdq->CurrentIrp, NULL);
if (CurrentIrp)

KeSetEvent(&pdq->evStop, 0, FALSE);
while (!pdq->stallcount

&& !pdq->abortstatus
&& !IsListEmpty(&pdq->head»
{

PLIST_ENTRY next = RemoveHeadList(&pdq->head);
PIRP Irp = CONTAINING_RECORD(next, IRP, Tail.Overlay.ListEntry);

Chapter 6 Plug and Play

if (!IoSetCancelRoutine(Irp. NULL»
{

InitializeListHead(&Irp-)Tail.Overlay.ListEntry);
continue;
}

pdq-)Currentlrp = Irp;
KeReleaseSpinLockFromDpcLevel(&pdq-)lock);
(*pdq-)Startlo)(fdo. Irp);
KeLowerlrql(oldirql);
return Currentlrp;
}

KeReleaseSpinLock(&pdq-)lock. oldirql);
return Currentlrp;
}

1. We first acquire the queue's spin lock so that we can muck about with the
internal structure of the object without interference.

2. We'll be returning the address of the current IRP as our return value, and
we also want to set the CurrentIrp pointer to NULL. Because of the spin
lock, we don't need to use an atomic operation to extract and nullify
CurrentIrp, but doing so can't hurt either.

3. Some rou,tine might be waiting inside WaitForCurrentIrp for the current
request to finish. This call to KeSetEvent will satisfy that wait.

4. This series of tests determines whether we can and should dequeue a re
quest. The queue must not be stalled. Neither can we be in the REJECT
ING state, in which we're rejecting new IRPs. Finally, the queue must
contain a request before it makes sense to call RemoveHeadUst.

5. This code removes the oldest entry in our IRP queue.

6. NUllifying the cancel routine pointer in the IRP will prevent IoCancelIrp
from trying to cancel the IRP. It's possible that IoCanceUrp is in the process
of trying to cancel this IRP on another CPU at this very I)1oment, in which
case we should get NUll as the return value from IoSetCancelRoutine. When
CancelRequest gains control, it will need to acquire the queue's spin lock
before proceeding further. At that point, it will blindly try to remove this IRP
from whatever queue it happens to be on. Calling InitializeListHead on
the IRP's own chaining field will make it safe for CancelRequest to do this
when it eventually gains control of the spin lock and proceeds.

7. This is where we finally pass the newly dequeued IRP to the StartIo
routine for processing.

255

Programming the Microsoft Windows Driver Model

256

The RestartRequests function balances a call to StallRequests or CheckBusy
AndStall. It's complicated-very slightly-by the need to send the first IRP to the
Startlo routine. Luckily, it can just call StartNextPacket:

VOID NTAPI RestartRequestsCPDEVQUEUE pdq. PDEVICE_OBJECT fdo)
{

if ClnterlockedDecrementC&pdq->stallcount) > 0)
return;

StartNextPacketCpdq. fdo);
}

Cancelling IRPs
StartPacket registers a cancel routine supplied by its caller, which in turn simply
delegates the work to the queue's CancelRequest function:

VOID NTAPI CancelRequestCPDEVQUEUE pdq. PIRP Irp)
{

KIRQL oldirql = Irp->Cancellrql;
IoReleaseCancelSpinLockCDISPATCH_LEVEL);
KeAcquireSpinLockAtDpcLevelC&pdq->lock);
RemoveEntryL1stC&Irp->Tail.Overlay.ListEntry);
KeReleaseSpinLockC&pdq->lock. oldirql);
Irp->IoStatus.Status = STATULCANCELLED;
IoCompleteRequestClrp. IO_NO_INCREMENT);
}

We're called while we own the global cancel spin lock, which we release al
most immediately. After this everything is protected by the queue's spin lock instead.
When IoCanceilrp called loAcquireCancelSpinLock, it saved the previous interrupt
request level (IRQL) value in the CancelIrql field of the IRP, and we need to even
tually revert to that same IRQL; hence, we save it in the oldJrql variable.

NOTE The caller of 10Cancelirp is responsible for making sure that the IRP
has not already been completed.

Chapter 6 PIUI and Play

IRPs can also be cancelled as a result of an IRP _MLCLEANUP, which we'll
receive prior to an IRP .-MLCLOSE. The DEVQUEUE CleanupRequests function is
almost identical to the standard-modell>ispatchCleanup routine I showed you in
the previous chapter. The only substantive difference between the two is that we only
need to acquire the queue's spin lock:

VOID NTAPI CleanupRequests(PDEVQUEUE pdq. PFILE.-OBJECT fop.
NTSTATUS status)
{

LISLENTRY cancell i st;
InitializeListhead(&cancellist);
KIRQL oldirql;
KeAcquireSpinLock(&pdq->lock. &oldirql);
PLIST_ENTRY first = &pdq->head;
PLIST_ENTRY next;
for (next = first->Flink; next 1= first;

{

PIRP Irp = CONTAINING-RECORD(next. IRP. Tail.Overlay.ListEntry);
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp);
next = next->Flink;
if (fop && stack->FileObject 1= fop)

continue;
if (IIoSetCancelRoutine(Irp. NULL»

continue;
RemoveEntryList(next);
InsertTailList(&cancellist. next);
}

KeReleaseSpinLock(&pdq->lock. oldirql);
while (IIsListEmpty(&cancellist»

}

{

next = RemoveHeadList(&cancellist);
PIRP Irp = CONTAINING-RECORD(next. IRP. Tail.Overlay.ListEntry);
Irp->IoStatus.Status = status;
IoCompleteRequest(Irp. IO_NO_INCREMENT);
}

1. Our strategy will be to move the IRPs that need to be cancelled into a pri
vate queue under protection of the queue's spin lock. Hence, we initial
ize the private queue and acquire the spin lock before doing anything else.

257

Programming the Microsoft Windows Driver Model

258

2. This loop traverses the entire queue until we return to the list head. Note
the absence of a loop increment step-the third clause in the for state
ment. I'll explain why none is desirable in a moment.

3. If we're being called to help out with IRP _ML CLEANUP, the fop argument
is the address of a file object that is about to be closed. We're supposed
to isolate the IRPs that pertaln to the same file object, which requires us
to first find the stack location.

4. If we decide to remove this IRP from the queue, we won't thereafter have
an easy way to find the next IRP in the main queue. We therefore perform
the loop increment step here.

5. This especially clever statement is due to Jamie Hanrahan. We need to
worry that someone might be trying to cancel the IRP that we're currently
looking at during this iteration. They could get only as far as the point
where CancelRequest tries to acquire the spin lock. Before getting that far,
however, they necessarily had to execute the statement inside loCancelIrp
that nullifies the cancel routine pointer. If we find that pointer NULL when
we call IOSetCancelRoutine, therefore, we can be sure that someone re
ally is trying to cancel this IRP. By simply skipping this IRP during this
iteration, we allow the cancel routine to complete it later on.

6. Here's where we take the IRP out of the main queue and put it in the
private queue instead.

7. Once we finish moving IRPs into the private queue, we can release our
spin lock. Then we go ahead and cancel all the IRPs we moved.

CleanupRequests can be called from elsewhere in the driver, by the way. For
example, earlier I showed you a call from the IRP _MN_REMOVE_DEVICE handler,
which supplied a NULL file object pointer (in order to select all IRPs) and a status
code of STATUS_DELETE_PENDING.

Awaiting the Current IRP
The handler for IRP _MN_STOP _DEVICE might need to wait for the current IRP, if any,
to finish by calling WaitForCurrentlrp:

VOID NTAPI WaitForCurrentlrp(PDEVQUEUE pdq)
{

KeClearEvent(&pdq->evStop);

Chapter 6 Plug and Play

ASSERT(pdq->stallcount 1= 0):
KIRQL oldirql:
KeAcquireSpinLock(&pdq->lock, &oldirql):
BOOLEAN mustwait = pdq~>Currentlrp 1= NULL:
KeReleaseSpinLock(&pdq->lock, oldirql):
if (mustwai t)

}

KeWaitForSingleObject(&pdq->evStop, Executive, KernelMode,
FALSE, NULl):

1. StartNextPacket signals the evStop event each time it's called. We want
to be sure that the wait we're about to perform doesn't complete because
of a now stale signal, so we clear the event before doing anything else.

2. It doesn't make sense to call this routine without ftrst stalling the queue.
Otherwise, StartNextPacket would just start the next packet if there were
one, and the device would become busy again.

3. If the device is currently busy, we'll wait on the evStop event until some
thing calls StartNextPacket to signal that event. We need to protect our in
spection of Currentlrp with the spin lock because, in general, testing a
pointer for NULL isn't an atomic event. If the pointer is NULL now, it can't
change later because we've assumed that the queue is stalled.

Aborting Requests
Surprise removal of the device demands that we immediately halt every outstanding
IRP that might try to touch the hardware. In addition, we want to make sure that all
further IRPs get rejected. The AbortRequests function helps with these tasks:

VOID NTAPI AbortRequests(POEVQUEUE pdq, NTSTATUS status)
{

pdq->abortstatus = status:
CleanupRequests(pdq, NULL, status):
}

Setting abortstatus puts the queue into the REJECTING state so that all fu
ture IRPs will be rejected with whatever status value our caller supplied. Calling
CleanupRequests at this point---:with a NULL file object pointer so that Cleanup
Requests will process the entire queue-empties the queue.

We don't dare try to do anything with the IRP, if any, that's currently active on
the hardware. Drivers that don't use the hardware abstraction layer (HAL) to access the
hardware-USB drivers, for example, which rely on the hub and host-controllerdriv
ers--can count on another driver to fail the current IRP. Drivers that use the HAL might,
however, need to worry about hanging the system or, at the very least, leaving an IRP

259

Programming the Microsoft Windows Driver Model

in limbo because the nonexistent hardware can't generate the interrupt that would let
the IRP finish. To deal with situations like this, you call AreRequestsBeingAborted:

NTSTATUS AreRequestsBeingAborted(PDEVQUEUE pdq)
{

return pdq->abortstatus:
}

It would be silly, by the way, to use the queue spin lock in this routine. Sup
pose that we were to capture the instantaneous value of abortstatus in a thread-safe
and multiprocessor-safe way. The value we return could become obsolete as soon
as we release the spin lock.

NOTE If your device might be removed in such a way that an outstanding re
quest simply hangs, you should also have a watchdog timer of some sort run
ning that will let you kill the IRP after some period of time. See the "Watchdog
Timers" section in Chapter 9, "Specialized Topics."

Sometimes we need to undo the effect of a previous call to AbortRequest.
AllowRequests lets us do that:

VOID NTAPI AllowRequests(PDEVQUEUE pdq)
{

pdq->abortstatus = (NTSTATUS) 0:
}

OTHER CONFIGURATION FUNCTIONALITY

260

Up to this point I've talked about the important concepts you need to know to write
a hardware device driver. To close the chapter, I'll discuss two less important minor
function codes-IRP _MN_FILTER_RESOURCE_REQUIREMENTS and IRP _MN_
DEVICE_USAGE_NOTIFICATION-that you might need to process in a practical
driver. Then I'll discuss how to write a miniature bus driver to support nonstandard
controller or multifunction devices. Finally, I'll mention how you can register to re
ceive notifications about PnP events that affect other devices besides your own.

NOTE Other flavors of PnP requests exist that I haven't discussed in this chap
ter because it's not my purpose to simply reiterate the DDK reference manuals.
For example, it's potentially useful to be able to export a direct call interface to
other drivers, but you probably don't need to in any garden-variety situation. I'm
therefore not going to provide a sample or an explanation of IRP _MN_
QUERY_INTERFACE. I'll mention IRP _MN_QUERY _CAPABILITIES in Chap
ter 8, on power management, to which it's most relevant.

Chapter 6 Plug and Play

Filtering Resource Requirements
Sometimes the PnP Manager is misinformed about the resource requirements of your
driver. This can occur because of hardware and firmware bugs, mistakes in the INF
file for a legacy device, or other reasons. The system provides an escape valve in the
form of the IRP _MN_FIL TER_RESOURCE_REQUIREMENTS request, which affords you
a chance to examine and possibly alter the list of resources before the PnP Manager
embarks on the arbitration and assignment process that culminates in your receiv
ing a start device IRP.

When you receive a filter request, the FilterResourceRequirements substruc
ture of the Parameters union in your stack location points to an IO_RESOURCE_
REQUIREMENTS_LIST data structure that lists the resource requirements for your
device. In addition, if any of the drivers above you have processed the IRP and
modified the resource requirements, the IoStatus.Information field of the IRP will
point to a second IO_RESOURCE_REQUIREMENTS_LIST, which is the one from which
you should work. Your overall strategy will be as follows: If you wish to add a re
source to the current list of requirements, you do so in your dispatch routine. Then
you pass the IRP down the stack synchronously-that is, by using the ForwardAndWait
method you use with a start device request. When you regain control, you can modify
any of the resource descriptions that appear in the list.

Here is a brief and not very useful example that illustrates the mechanics of the
filtering process:

NTSTATUS HandleFilterResources(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension;
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp);
PIO_RESOURCE_REQUIREMENTS_LIST original = stack-)Parameters

.FilterResourceRequirements.loResourceRequirementList;
PIO_RESOURCE_REQUIREMENTS_LIST filtered =

(PIO_RESOURCE_REQUIREMENTS_LIST) Irp-)IoStatus.lnformation;
PIO_RESOURCE_REQUIREMENTS_LIST source

filtered? filtered: original;
if (source-)AlternativeLists 1= 1)

return DefaultPnpHandler(fdo, Irp);
ULONG sizelist = source-)ListSize;
PIO_RESOURCE_REQUIREMENTS_LIST newlist

(PIO_RESOURCE_REQUIREMENTS_LIST) ExAllocatePool(PagedPool,
sizelist + sizeof(IO_RESOURCE_DESCRIPTOR»;

if (Inewlist)
return DefaultPnpHandler(fdo, Irp);

RtlCopyMemoryCnewlist, source, sizelist);
newlist-)ListSize += sizeof(IO_RESOURCE_DESCRIPTOR);

(continued)

261

Programming the Microsoft Windows Driver Model

262

PIO_RESOURCE_DESCRIPTOR resource =
&newlist->List[0].Descriptors[newlist->List[0].Count++];

RtlZeroMemory(resource. sizeof(IO_RESOURCE_DESCRIPTOR));
resource->Type = CmResourceTypeDevicePrivate;
resource->ShareDisposition = CmResourceShareDeviceExclusive;
resource->u.DevicePrivate.Data[0] = 42;
Irp->IoStatus.Information = (ULONG_PTR) newlist;
if (filtered)

ExFreePool(filtered);
NTSTATUS status = ForwardAndWait(fdo. Irp);
if (NT_SUCCESS(status))

{

II stuff
}

Irp->IoStatus.Status status;
IoCompleteRequest(Irp. IO_NO_INCREMENT);
return status;
}

1. The parameters for this request include a list of I/O resource requirements.
These would be derived from the device's configuration space, the regis
try, or wherever the bus driver happens to find them.

2. Higher-level drivers might have already filtered the resources by adding
additional ones to the original list. If so, they set the IoStatus.Information
field to point to the expanded requirements list structure.

3. If there's no filtered list, we will extend the original list. If there's a filtered
list, we'll extend that.

4. Theoretically, several alternative lists of requirements could exist, but deal
ing with that situation is beyond the scope of this simple example.

5. We need to add any resources before we pass the request down the stack.
First we allocate a new requirements list and copy the old requirements
into it.

6. Taking care to preserve the preexisting order of the descriptors, we add
our own resource description. In this example, we're adding a resource
that's private to the driver.

7. We store the address of the expanded list of requirements in the IRP's
IoStatus.Information field, which is where lower-level drivers and the
PnP system will be looking for it. If we just extended an already filtered
list, we need to release the memory occupied by the old list.

Chapter 6 Plug and Play

8. We pass the request down using the same ForwardAndWait helper func
tion that we used for IRP _MN_START_DEVICE. If we weren't going to
modify any resource descriptors on the IRP's way back up the stack, we
could just call DefaultPnpHandler here and propagate the returned status.

9. When we complete this IRP, whether we indicate success or failure, we
must take care not to modify the Information field of the I/O status block:
it might hold a pointer to a resource requirements list that some driver
maybe even ours!-installed on the way down. The PnP Manager will
release the memory occupied by that structure when it's no longer needed.

Device Usage Notifications
Disk drivers (and the drivers for disk controllers) in particular sometimes need to know
extrinsic facts about how they're being used by the operating system, and the
IRP _MN_DEVICE_USAGE_NOTIFICATION request provides a means to gain that
knowledge. The I/O stack location for the IRP contains two parameters in the
Parameters.UsageNotification substructure. See Table 6-4. The InPath value
(a Boolean) indicates whether the device is in the device path required to support
that usage, and the Type value indicates one of several possible special usages.

Parameter Description

InPath TRUE if device is in the path of the Type usage; FALSE if not

Type Type of usage to which the IRP applies

Table 6-4. Fields in the Parameters.UsageNotification substructure of an I/O stack location.

In the subdispatch routine for the notification, you should have a switch state
ment (or other logic) that differentiates among the notifications you know about.
In most cases you'll pass the IRP down the stack. Consequently, a skeleton for the
subdispatch function is as follows:

NTSTATUS HandleUsageNotification(PDEVICE_OBJECT fdo. PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp):
DEVICE_USAGE_NOTIFICATION_TYPE type =

stack->Parameters.UsageNotification.Type:
BOOLEAN inpath = stack->Parameters.UsageNotification.lnPath:
switch (type)

{

case DeviceUsageTypeHibernation:

(continued)

263

Programming the Microsoft Windows Driver Model

264

Irp->IoStatus.Status = STATUS_SUCCESS:
break:

case DeviceUsageTypeDumpFile:

Irp->IoStatus.Status = STATUS_SUCCESS:
break:

case DeviceUsageTypePaging:

Irp->IoStatus.Status = STATUS_SUCCESS:
break:

default:
break:
}

return DefaultPnpHandler(fdo. Irp):
}

Set the Status field of the IRP to STATUS_SUCCESS for only the notifications
that you explicitly recognize as a signal to the bus driver that you've processed them.
The bus driver will assume that you didn't know about-and therefore didn't pro
cess-a notification for which you don't set STATUS_SUCCESS.

You may know that your device can't support a certain kind of usage. Suppose,
for example, that some fact that only you know prevents your disk device from being
used to store a hibernation file. In such a case, you should fail the IRP if it specifies
the InPath value:

case DeviceUsageTypeHibernation:
if (inpath)

return CompleteRequest(Irp. STATUS_UNSUCCESSFUL. 0):

In the remainder of this section, I'll briefly describe each of the current us
age types.

DeviceUsageTypePaging
The InPath TRUE notification indicates that a paging file will be opened on the de
vice. The InPath FALSE notification indicates that a paging file has been closed.
Generally, you should maintain a counter of the number of paging fUes you've been
notified about. While any paging fUe remains active, you'll fail queries for STOP and
REMOVE functions. In addition, when you receive the ftrst paging notification, make
sure that your dispatch routines for READ, WRITE, DEVICE_CONTROL, PNP, and
POWER requests are locked into memory. (Refer to the information on driver pag
ing in "User and Kernel Mode Address Spaces" in Chapter 3, "Basic Programming
Techniques," for more information.) You should also clear the DO_POWER-PAGABLE

Chapter 6 Plug and Pia,

flag in your device object to force the Power Manager to send you power IRPs at
DISPATCH_LEVEL. To be safe,I'd also suggest nullifying any idle-notification regis
tration you might have made. (See Chapter 8 for a discussion of idle detection.)

NOTE In Chapter 8, "Power Management," I'll discuss how to set the DO_
POWER_PAGABLE flag in a device object. You need to be sure that you never
clear this flag while a device object under yours has the flag set. You would want
to clear the flag only in a completion routine, after the lower-level drivers have
cleared their own flags. You need a completion routine anyway because you must

. undo anything you did in your dispatch routine if the IRP fails in the lower layers.

DeviceUsageTypeDumpFile
The InPath TRUE notification indicates that the device has been chosen as the reposi
tory for a crash dump file should one be necessary. The InPath FALSE notification
cancels that. Maintain a counter of TRUE minus FALSE notifications. While the counter
is nonzero:

• Make sure that your power management code-see Chapter 8--will never
take the device out of the DO, or fully on, state.

• Avoid registering the device for idle detection, and nullify any outstand
ing registration.

• Make sure that your driver fails stop and remove queries.

DeviceUsageTypeHibernation
The InPath TRUE notification indicates that the device has been chosen to hold the
hibernation state file should one be written. The InPath FALSE notification cancels
that. You should maintain a counter of TRUE minus FALSE notifications. Your response
to system power IRPs that specify the PowerSystemHibernate state will be differ
ent than normal because your device will be used momentarily to record the hiber
nate file. Elaboration of this particular feature of disk drivers is beyond the scope of
this book.

Controller and Multifunction Devices
Two categories of devices don't fit nearly into the PnP framework I've described so
far. These categories are controller devices, which manage a collection of child de
vices, and multifunction devices, which have several functions on one card. These
kinds of devices are similar in that their correct management entails the creation of
multiple device objects with independent I/O resources.

265

Programming the Microsoft Windows Driver Model

266

It's very easy in Windows 2000 to support PCI, PCMCIA (Personal Computer
Memory Card International Association), and USB devices that conform to their re
spective bus standards for multifunction devices. The PCI bus driver automatically
recognizes PCI multifunction cards. For PCMCIA multifunction devices, you can follow
the detailed instructions in the DDK for designating MF.SYS as the function driver for
your multifunction card; MF.SYS will enumerate the functions on your card and thereby
cause the PnP Manager to load individual function drivers. The USB hub driver will
normally load separate function drivers for each interface on a one-configuration device.

Except for USB, the original release of Windows 98 lacks the multifunction sup
port that Windows 2000 provides. In Windows 98, to deal with controller or multi
function devices, or to deal with nonstandard devices, you'll need to resort to more
heroic means. You'll supply a function driver for your main device and supply sepa
rate function drivers for the child devices that connect to the main device. The main
device's function driver will act like a miniature bus driver by enumerating the child
devices and providing default handling for PnP and power requests. Writing a full
fledged bus driver is a large undertaking, and I don't intend to attempt a description
of the process here. I will, however, describe the basic mechanisms you use for
enumerating child devices. This information will allow you to write drivers for con
troller or multifunction devices that don't fit the standard molds provided by Microsoft.

Overall Architecture
In Chapter 2, Figure 2-2 (on page 23) illustrates the topology of device objects when
a parent device, such as bus driver, has children. Controller and multifunction de
vices use a similar topology. The parent device plugs into a standard bus. The driver
for the standard bus detects the parent, and the PnP Manager configures it just like
any ordinary device-up to a point. Mter it starts the parent device, the PnP Man
ager sends a Plug and Play request with the minor function code IRP _MN_
QUERY _DEVICE_RELATIONS to learn the so-called bus relations of the parent de
vice. This query occurs for all devices, actually, because the PnP Manager doesn't
know yet whether the device has children.

In response to the bus relations query, the parent device's function driver lo
cates or creates additional device objects. Each of these objects becomes the PD~
at the bottom of the stack for one of the child devices. The PnP Manager will go on
to load the function and filter drivers for the child devices, whereupon you end up
with a picture like that in Figure 2-2.

The driver for the parent device has to play two roles. In one role, it's the func
tional device object (FDO) driver for the controller or multifunction device. In the
other role, it's the PD~ driver for its child devices. In its FDO role, it handles PnP
and power requests in the way function drivers normally handle them. In its PD~
role, however, it acts as the driver of last resort for PnP and power requests.

Chapter 6 .Plug and Play

Creating Child Device Objects
Somewhere along the way, perhaps at the time it processes IRP _MN_START_DEVICE,
the parent driver, in its FDO role, needs to create one or more physical device ob
jects for its children, and it needs to keep track of them for later. The only major
complication at this early stage is this: both the FDO and all the PDOs belong to the
same driver object, which means that IRPs directed to any of these device objects will
come to one set of dispatch routines. The driver needs to handle PnP and power IRPs
differently for FDOs and PDOs. Consequently, you need to provide a way for a dis
patch function to easily distinguish between an FDO and one of the child PDOs. I
dealt with this complication by defining two device extension structures with a com
mon beginning, as follows:

II The FDO extension:

typedef struct _DEVICE_EXTENSION {
ULONG flags;

} DEVICE_EXTENSION. *PDEVICE_EXTENSION;

II The PD~ extension:

typedef struct _PDO_EXTENSION {
ULONG flags;

} PDO_EXTENSION. *PPDO_EXTENSION;

II The common part:

typedef struct _COMMON_EXTENSION {
ULONG flags;
} COMMON_EXTENSION. *PCOMMON_EXTENSION;

#deflne ISPDO 0x00000001

The dispatch routine for IRP _MLPNP then looks like this:

NTSTATUS DispatchPnp(PDEVICE~OBJECT DeviceObject. PIRP Irp)
{

PCOMMON_EXTENSION pcx.=
(PCOMMON_EXTENSION) DeviceObject->DeviceExtension;

if (pcx->flags & ISPDO)
return DlspatchPnpPdo{DevtceObject. Irp);

else
return DispatchPnpFdo(DeviceObject. Irp):

}

267

Programming the Microsoft Windows Driver Model

268

MULFUNC, which is available on the companion disc, is a very lame multifunc
tion device: it has just two children, and we always know what they are. I just called
them A and B. MULFUNC executes the following code-with more error checking
than what I'm showing you here-at IRP _MN_START_DEVICE time to create PDOs
for A and B:

NTSTATUS StartDevice(PDEVICE_OBJECT fdo •...)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
CreateChild(pdx. CHILDTYPEA. &pdx->ChildA);
CreateChild(pdx. CHILDTYPEB. &pdx->ChildB);
return STATUS_SUCCESS;

NTSTATUS CreateChild(PDEVICE_EXTENSION pdx. ULONG flags.
PDEVICE_OBJECT* ppdo)
{

PDEVICE_OBJECT child;
IoCreateDevice(pdx->DriverObject. sizeof(PDO_EXTENSION).

NULL. FILE_DEVICE_UNKNOWN. FILE_AUTOGENERATED_DEVICE_NAME.
FALSE. &child);

PPDO_EXTENSION px = (PPDO_EXTENSION) child->DeviceExtension;
px->flags = ISPDO I flags;
px->DeviceObject = child;
px->Fdo = pdx->DeviceObject;
child->Flags &= -DO_DEVICE_INITIALIZING;
*ppdo = chil d;
return STATUS_SUCCESS;
}

1. CHILDTYPEA and CHILDTYPEB are additional flag bits for the flags
member that begins the common device extension. If you were writing a
true bus driver, you wouldn't create the child PDOs here-you'd enu
merate your actual hardware in response to an IRP _MN_QUERY_
DEVICE_RELATIONS and create the PDOs then.

2. We're creating a named device object here, but we're asking the system
to automatically generate the name by supplying the FILE_
AUTOGENERATED_DEVICE_NAME flag in the DeviceCharacteristics
argument slot.

The end result of the creation process is two pointers to device objects (ChildA
and ChildB) in the device extension for the parent device's FDO.

Telling the PnP Manager About Our Children
The PnP Manager inquires about the children of every device by sending an IRP _MN_
QUERY_DEVICE_RELATIONS request with a type code of BusRelations. Wearing its
FDO hat, the parent driver responds to this request with code like the following:

Chapter 6 Plug and Play

NTSTATUS HandleQueryRelations(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = ..• ;
PIO_STACK-LOCATION stack = ... ;
if (stack->Parameters.QueryDeviceRelations.Type 1= BusRelations)

return DefaultPnpHandler(fdo, Irp);
PDEVICE_RELATIONS newrel = (PDEVICE_RELATIONS)

ExAllocatePool(PagedPool, sizeof(DEVICE_RELATIONS)
+ sizeof(PDEVICE_OBJECT»;

newrel->Count = 2;
newrel->Objects[0] = pdx->ChildA;
newrel->Objects[l] = pdx->ChildB;
ObReferenceObject(pdx->ChildA);
ObReferenceObject(pdx->ChildB);
Irp->IoStatus.Information = (ULONG_PTR) newrel;
Irp->IoStatus.Status = STATUS_SUCCESS;
return DefaultPnpHandler(fdo, Irp);
}

1. This IRP can concern several types of relations besides the bus relations
we're interested in here. We simply delegate these other queries to the bus
driver for the underlying hardware bus.

2. Here, we allocate a structure that will contain two device object pointers.
The DEVICE_RELATIONS structure ends in an array with a dimension of
1, so we need only add on the size of an additional pointer when we
calculate the amount of memory to allocate.

3. We call ObReferenceObject to increment the reference counts associated
with each of the device objects we put into the DEVICE_RELATIONS ar
ray. The PnP Manager will dereference the objects at an appropriate time.

4. We need to pass this request down to the real bus driver in case it or some
lower filter knows additional facts that we didn't know. This IRP uses an
unusual protocol for pass-down and completion. You set the IoStatus as
shown here if you actually handle the IRP; otherwise, you leave the
10Status alone. Note the use of the Information field to contain a pointer
to the DEVICE_RELATIONS structure. In other situations we've encoun
tered in this book, the Information field has always held a number.

I glossed over an additional complication in the preceding code fragment that
you'll notice in the code sample. An upper filter might have already installed a list
of device objects in the 10Status.lnformation field of the IRP. We must not lose that
list. Rather, we must extend it by adding our own two device object pointers.

269

Programming the Microsoft Windows Driver Model

270

The PnP Manager automatically sends a query for bus relations at start time. You
can force the query to be sent by calling this service function:

IoInvalidateDeviceRelations(pdx->Pdo. BusRelations);

You would make this call if you detected the arrival or departure of one of your child
devices, for example.

PDO Handling of PnP Requests
Wearing its PD~ driver hat, the parent driver must handle Plug and Play IRPs in a
way that's very different from how a function driver would handle them. Table 6-5
summarizes the requirements using a shorthand to describe the actions to be taken.

PnPRequest

IRP _MN_START_DEVICE

IRP _MN_ QUERY _REMOVE_DEVICE

IRP _MN_REMOVE_DEVICE

IRP _MN_ CANCEL_REMOVE_DEVICE

IRP _MN_STOP _DEVICE

IRP _MN_QUERY _STOP _DEVICE

IRP _MN_CANCEL_STOP _DEVICE

IRP _MN_ QUERY_DEVICE_RELATIONS

IRP _MN_QUERY _INTERFACE

IRP_MN_QUERY_CAPABILITIES

IRP _MN_QUERY_RESOURCES

IRP _MN_ QUERY _RESOURCE_REQUIREMENTS

IRP _MN_QUERY _DEVICE3EXT

IRP _MN]ILTER_RESOURCE_REQUIREMENTS

IRP _MN_READ_CONFIG

IRP _MN_ WRITE_CONFIG

IRP _MN_EJECT

IRP _MN_SET_LOCK

IRP _MN_ QUERY_ID

IRP _MN_QUERY_PNP _DEVICE_STATE

IRP _MN_QUERY_BUS_INFORMATION

IRP _MN_DEVICE_USAGE_NOTIFICATION

IRP _MN_SURPRISE_REMOVAL

Any other

Table 6-5. PD~ driver handling of PnP requests.

How Handled

Succeed

Succeed

Succeed

Succeed

Succeed

Succeed

Succeed

Special processing

Ignore

Delegate

Succeed

Succeed

Succeed

Succeed

Delegate

Delegate

Delegate

Delegate

Special processing

Delegate

Delegate

Delegate

Succeed

Ignore

Cbapter 6 Plug and Pia,

The parent should simply succeed many PnP IRPs without doing any particu
lar processing:

NTSTATUS SucceedRequest(PDEVICE_OBJECT pdo. PIRP Irp)
{

Irp->IoStatus.Status = STATUS_SUCCESS;
IoCompleteRequest(Irp. IO_NO_INCREMENT);
return STATUS_SUCCESS;
}

The only remarkable feature of this short subroutine is that it doesn't change the
loStatus.Information field of the IRP. The PnP Manager always initializes this field in
some way before launching an IRP. In some cases, the field might be altered by a
ftlter driver or the function driver to point to some data structure or another. It would
be incorrect for the PDO driver to alter the field.

The parent driver can ignore certain IRPs. Ignoring an IRP is similar to failing
it with an error code, except that the driver doesn't change the IRP's status fields:

NTSTATUS IgnoreRequest(PDEVICE_OBJECT pdo. PIRP Irp)
{

NTSTATUS status = Irp->IoStatus.Status;
IoCompleteRequest(Irp. IO_NO_INCREMENT);
return status;
}

A miniature bus driver such as the one I'm discussing can simply delegate some
PnP requests to the real bus driver that lies underneath the parent device's FDO. Del
egation in this case is not quite as simple as just calling loCallDriver because by the
time we receive an IRP as a PDO driver, the I/O stack is generally exhausted. We must
therefore create what I call a repeater IRP that we can send to the driver stack we
occupy as FDO driver:

NTSTATUS RepeatRequest(PDEVICE_OBJECT pdo. PIRP Irp)
{ .

PPDO_EXTENSION pdx = (PPDO_EXTENSION) pdo->DeviceExtension;
PDEVICE_OBJECT fdo = pdx->Fdo;
PDEVICE_EXTENSION pfx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);

PDEVICE_OBJECT tdo = IoGetAttachedDeviceReference(fdo);
PIRP subirp = IoAllocateIrp(tdo->StackSize + 1. FALSE);

PIO_STACK-LOCATION substack = IoGetNextI rpStackLocati on (subi rp) ;
substack->DeviceObject = tdo;
substack->Parameters.Others.Argumentl = (PVOID) Irp;

(continued)

271

Programming the Microsoft Windows Driver Model

272

IOSetNextIrpStacklocation(subirp);
substack = IoGetNextIrpStacklocat1on(sub1rp);
RtlCopyMemory(substack. stack.

FI ElD_OFFSET(I O_STAClLlOCATI ON • Compl eti onRouti ne» ;
substack->Control = 0;
BOOLEAN needs vote = <1'77 exp7ain 7ater>;
IoSetComplet1onRout1ne(subirp. OnRepeaterComplete. (PVOID) needsvote.

TRUE. TRUE. TRUE);
subirp->IoStatus.Status = STATUS_NOT_SUPPORTED;
IoMarkIrpPending(Irp);
IoCallDriver(tdo. subirp);
return STATUS_PENDING
}

NTSTATUS OnRepeaterComplete(PDEVICE-OBJECT tdo. PIRP subirp. PYOID need$vote)
{

ObDereferenceObject(tdo);
PIO_STAClLlOCATION substack = IoGetCurrentIrpStacklocation(subirp);
PIRP Irp = (PIRP) substack->Parameters.Others.Argumentl;
if (subirp->IoStatu-s.Status == STATUS_NOLSUPPORTED)

{

if (needsvote)
Irp-)IoStatus.Status = STATUS_UNSUCCESSFUL;

}

else
Irp->IoStatus = subirp->IoStatus;

IoFreelrp(subirp);
IoCompleteRequest(Irp. IO_NO_INCREMENT);
return STATUS_MORE_PROCESSING_REQUIRED;
}

1. We're going to send the repeater IRP to the topmost fllter driver in the stack
to which our FDa belongs. This service routine returns the address of the
topmost device object, and it also adds a reference to the object to pre
vent the Object Manager from deleting the object for the time being.

2. When we allocate the IRP, we create an extra stack location in which we
can record some context information for the completion routine we're
going to install. The DeviceObject pointer we place in this extra location
becomes the first argument to the completion routine.

,3. Here, we initialize the first real stack location, which is the one that the
topmost driver in the FDa stack will receive. Then we install our comple
tion routine. This is an instance in which we cannot use the standard
IoCopyCurrentIrpStackLocationToNext macro to copy a stack location:
we're dealing with two separate I/O stacks.

Chapter 6 Plug and Play

4. We need to plan ahead for how we're going to deal with the possibility
that the parent device stack doesn't actually handle this repeater IRP. Our
later treatment will depend on exactly which minor function of IRP we're
repeating in a way I'll describe later on. Mechanically, what we do is cal
culate a Boolean value-I called it needsvote-and pass it as the con
text argument to our completion routine.

5. You always initialize the status field of a new PnP IRP to hold the special
value S~ATUS_NOT_SUPPORTED. The Driver Verifier will bugcheck if
you don't.

6. This statement is how we release our reference to the topmost device
object in the FDO stack.

7. We save the address of the original IRP here.

8. This short section sets the completion status for the original IRP. Refer to
the following main text for an explanation of what's going on here.

9. We allocated the repeater IRP, so we need to delete it.

10. We can complete the original IRP now that the FDO driver stack has ser
viced its clone.

11. We must return STATUS_MORE_PROCESSING_REQUIRED because the IRP
whose completion we dealt with-the repeater IRP-has now been deleted.

The preceding code deals with a rather complex problem that afflicts the vari
ous PnP IRPs that MULFUNC is repeating on the parent device stack. The PnP Man
ager initializes PnP IRPs to contain STATUS_NOT_SUPPORTED. It can tell whether
any driver actually handled one of these IRPs by examining the ending status. If the
IRP completes with STATUS_NOT_SUPPORTED, the PnP Manager can deduce that
no driver did anything with the IRP. If the IRP completes with any other status, the
PnP Manager knows that some driver deliberately either failed or succeeded the IRP
but didn't simply ignore it.

A driver like MULFUNC that creates a PnP IRP must follow the same convention
by initializingJoStatus.Status to STATUS_NOT_SUPPORTED. As I remarked, the Driver
Verifier will bugcheck if you forget to do this. But this initialization gives rise to the
following problem: suppose one of the devices in the· child stack (that is, above
the PD~ for the child device) changes IpStatus.Status to another value before pass
ing a particular IRP down to us in our role as PD~ driver. We will create a repeater
IRP, pre-initialized with STATUS_NOT_SUPPORTED, and pass it down the parent stack
(that is, the stack to which we belong in our role as FDO driver). If the repeater IRP
completes with STATUS_NOT_SUPPORTED, what status should we use in completing
the original IRP? It shouldn't be STATUS_NOT_SUPPORTED, because that would imply
that none of the child-stack drivers processed the IRP (but one did, and changed the
main IRP's status). That's where the needsvote flag comes in.

273

Programming the Microsoft Windows Driver Model

274

For some of the IRPs we repeat, we don't care whether a parent driver actually
processes the IRP. We say (actually, the Microsoft developers say) that the parent driv
ers don't need to "vote" on the IRP. If you look carefully at OnJlepeaterComplete,
you'll see that we don't change the main IRP's ending status in this case. For· other
of the IRPs we repeat, we can't provide a real answer if the parent stack drivers ignore
the IRP. For these IRPs, on which the parent must "vote," we fail the main IRP with
STATUS_UNSUCCESSFUL. To see which IRPs belong to the "needs vote" class and
which IRPs don't, take a look at RepeatRequest in the MULFUNC sample (specifi
cally, in PlugPlayPdo.cpp).

If one of the parent drivers actually does process the repeater IRP, however, we
copy the entire 10Status field, which includes both the Status and Information values,
into the main IRP. The Information field might contain the answer to a query, and
this copy step is how we pass the answer upwards.

I did one other slightly subtle thing in RepeatRequest, and that is that I marked
the IRP pending and returned STATUS]ENDING. Most PnP IRPs complete synchro
nously so that the call to 10CallDriver will most likely cause immediate completion
of the IRP. So why mark the IRP pending and cause the I/O Manager unnecessary
pain in the form of needing to schedule an APC as part of completing the main IRP?
The reason is that if we don't return STATUS_PENDING from our dispatch function
recall that RepeatRequest is running as a subroutine below the dispatch function for
IRP _MLPNP-we must return the exact same value that we use when we complete
the IRP. Only our completion routine knows which value this will actually be after
checking for STATUS_NOT_SUPPORTED and checking the needsvote flag.

Handling Device Removal
The PnP Manager is aware of the parent-child relationship between a parent's FDO
and its children PDOs. Consequently, when the user removes the parent device, the
PnP Manager automatically removes all the children. Oddly enough, though, the
parent driver should not normally delete a child PDO when it receives an IRP _MN_
REMOVE_DEVICE. The PnP Manager expects PDOs to persist until the underlying
hardware is gone. A multifunction driver would therefore not delete the children PDOs
until it's told to delete the parent FDO. A bus driver, however, would delete a child
PDO when it receives IRP _MN_REMOVE_DEVICE after failing to report the device
during an enumeration.

MULFUNC deletes the children PDOs when it processes the remove device event
for its own FDO.

If you're trying to provide for a controller-type device (as opposed to the non
standard multifunction device I provided an example 00, your controller driver needs
some additional logic to actually enumerate devices. I've omitted that logic because
my sample device's children are always present if the main device is.present. And
don't forget to restore power to your controller before trying to do the enumeration.

Chapter 6 Plug and Play

Handling IRP _MN_QUERY _ID
The most important of the PnP requests that a parent driver handles is IRP _MN_
QUERY_ID. The PnP Manager issues this request in several forms to determine which
device identifiers it will use to locate the INF file for a child device. You respond by
returning On IoStatus.Information) a MULTCSZ value containing the requisite device
identifiers. The MULFUNC device has two children with the (bogus) device identifi
ers *wco0604 and ·wC00605-the fourth and fifth drivers for Chapter 6, you see.
It handles the query in the following way:

NTSTATUS HandleQueryld(PDEVICE_OBJECT pdo. PIRP Irp)
{

PPDO_EXTENSION pdx = (PPDO_EXTENSION) pdo->DeviceExtension;
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
PWCHAR idstring;
switch (stack->Parameters.QueryId.IdType)

{

case BusQueryInstanceID:
idstring = L"0000";
break;

case BusQueryDeviceID:
if (pdx->flags & CHILDTYPEA)

idstring LDRIVERNAME L"*WC00604";
else

idstring LDRIVERNAME L"*WC00605";
break;

case BusQueryHardwareIDs:
if (pdx->flags & CHILDTYPEA)

idstring L"*WC00604";
else

idstring L"*WC00605";
break;

default:
return CompleteRequest(Irp. STATUS_NOT_SUPPORTED. 0);
}

ULONG nchars = wcslen(idstring);
ULONG size = (nchars + 2) * sizeof(WCHAR);
PWCHAR id = (PWCHAR) ExAllocatePool(PagedPool, size);
wcscpy(id, idstring);
id[nchars + 1] = 0;
return CompleteRequest(Irp. STATUS_SUCCESS, (ULONG_PTR) id);
}

1. The instance identifier is a single string value that uniquely identifies
a device of a particular type on a bus. Using a constant such as "0000"
will not work if more than one device of the parent type can appear in
the computer.

275

Programming the Microsoft Windows Driver Model

276

2. The device identifier is a single string of the form "enumerator\type" and
basically supplies two components in the name of the hardware registry
key. Our ChildA device's hardware key will be in ... \Enum\Mulfunc\
*WC00604\0000, for example.

3. The hardware identifiers are strings that uniquely identify a type of de
vice. In this case, I just made up the pseudO-EISA (Extended Industry Stan
dard Architecture) identifiers *Wco0604 and *Wco0605.

NOTE Be sure to use your own name in place of MULFUNC if you construct a
device identifier in the manner I showed you here. To emphasize that you
shouldn't just copy my sample program's name in a hard-coded constant, I wrote
the code to use the manifest constant LDRIVERNAME, which is defined in the
DRIVER.H file in the MULFUNC project.

The Windows 98 PnP Manager will tolerate your supplying the same string for
a device identifier as you do for a hardware identifier, but the Windows 2000 PnP
Manager won't. I learned the hard way to supply a made-up enumerator name in the
device ID. Calling IoGetDeviceProperty to get the PD~'s enumerator name leads
to a bug check because the PnP Manager ends up working with a NULL string pointer.
Using the parent's enumerator name-ROOT in the case of the MULFUNC sample
leads to the bizarre result that the PnP Manager brings the child devices back after
you delete the parent!

Handling IRP _MN_QUERY _DEVICE_RELATIONS
The last PnP request to consider is IRP _MN_QDERY_DEVICE_RELATIONS. Recall that
the FDO driver answers this request by providing a list of child PDOs for a bus re
lations query. Wearing its PD~ hat, however, the parent driver need only answer a
request for the so-called target device relation by providing the address of the PD~:

NTSTATUS HandleQueryRelations(PDEVICE_OBJECT pdo. PIRP Irp)
{

PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp);
NTSTATUS status = Irp->IoStatus.Status;
if (stack->Parameters.QueryDeviceRelations.Type ==

TargetDeviceRelation)
{

PDEVICE_RELATIONS newrel = (PDEVICE_RELATIONS)
ExAllocatePool(PagedPool. sizeof(DEVICE_RELATIONS»;

newrel->Count = 1;
newrel->Objects[0] = pdo;
ObReferenceObject(pdo);
status = STATUS_SUCCESS;
Irp->IoStatui.Information = (ULONG_PTR) newrel;
}

Irp->IoStatus.Status = status;
IoCompleteRequest(Irp. IO_NO_INCREMENT);
return

Chapter 6 Plug and Play

Handling Child. Device Resources
If your device is a controller type, the child devices that plug into it presumably claim
their own I/O resources. If you have an automated way to discover the devices'
resource requirements, you can return a list of them in response to an IRP _MN_
QUERY _RESOURCE_REQUIREMENTS request. If there is no automated way to dis
cover the resource requirements, the child device's INF file should have a LogConfig
section to establish them.

If you're dealing with a multifunction device, chances are that the parent de
vice claims all the va resources that the child functions use. If the child functions
have separate WDM drivers, you have to devise a way to separate the resources by
function and let each function driver know which ones belong to it. This is not simple.
The PnP Manager normally tells a function driver about its resource assignments in
an IRP _MN_START_DEVICE request. (See the detailed discussion in the next chap
ter.) There's no normal way for you to force the PnP Manager to use some of your
resources instead of the ones it assigns, though. Note that responding to a require
ments query or a filter request doesn't help because those requests deal with require
ments that the PnP Manager will then go on to satisfy using new resources.

Microsoft's MF.SYS driver deals with resource subdivision by using some inter
nal interfaces with the system's resource arbitrators that aren't accessible to us as third
party developers. There are two different ways of subdividing resources: one that
works in Windows 2000 and another one that works in Windows 98. Smce we can't
do what MF.SYS does, we need to find some other way to suballocate resources
owned by the parent device. I haven't actually tried to implement either of the two
suggestions I'm about to float, but I'm interested in hearing from any reader who
carries these ideas further.

If you can control all of the child device function drivers, your parent driver
could export a direct-call interface. Child drivers would obtain a pointer to the inter
face descriptor by sending an IRP _MN_QUERY_INTERFACE request to the parent
driver. They would call functions in the parent driver at start device and stop device
time to obtain and release resources that the parent actually owns.

If you can't modify the function drivers for your child devices, I believe you
could solve the resource subdivision problem by installing a tiny upper filter-see
Chapter 9-above each of the child device's FDOs. The only purpose of the filter is
to plug in a list of assigned resources to each IRP _MN_START_DEVICE. The filter could
communicate via a direct-call interface with the parent driver.

PnP Notifications
Wmdows 2000 and Windows 98 provide a way to rtotify both user-mode and kernel
mode components of particular Plug and Play events. Windows 95 has a WM_
DEVICECHANGE message that user-mode programs could process to monitor, and

277

Programming the Microsoft Windows Driver Model

278

sometiffies control, hardware and power changes in the system. The newer operating
systems build on WM_DEVICECHANGE to allow user-mode programs to easily detect
when some driver enables or disables a registered device interface. Kernel-mode drivers
can also register for similar notifications.

NOTE Refer to the documentation for WM..:.DEVICECHANGE, Register
DeviceNotification, and UnregisterDeviceNotification in the Platform SDK. I'll give
you examples of using this message and these APls, but I won't explain all
possible uses of them. Some of the illustrations that follow also assume you're
comfortable programming with Microsoft Foundation Classes.

Extensions to WM_DEVICECHANGE
An application with a window can subscribe for WM_DEVICECHANGE messages
related to a specific interface GUID (globally unique identifier). Here's an example,
drawn from the AUTOIAUNCH sample described in Chapter 12, "Installing Device
Drivers," of how to do this:

int CAutoLaunch::OnCreate(LPCREATESTRUCT csp)
{

DEV_BROADCAST_DEVICEINTERFACE filter = {0};
filter.dbcc_size = sizeof(filter);
filter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;
filter.dbcc_classguid = GUID-AUTOLAUNCH_NOTIFY;
HDEVNOTIFY hNotification = RegisterDeviceNotification(m_hWnd.

(PVOID) &filter. DEVICE_NOTIFY_WINDOW_HANDLE);

}

The key statement here is the call to RegisterDeviceNotification, which asks the PnP
Manager to send our window a WM_DEVICECHANGE message whenever anyone
enables or disables a GUID_AUTOIAUNCH_NOTIFY interface. So, suppose a device
driver calls IoRegisterDeviceInterface with this interface GUID during its AddDevice
function. We're asking to be notified when that driver calls IoSetDeviceInterfaceState
to either enable or disable that registered interface.

NOTE The Platform SDK documentation tells you to call UnregisterDevice
Notification to unregister the notification handle you get back from Register
DeviceNotification. You should certainly do so in Windows 2000, but not in
Windows 98. Although Windows 98 supports RegisterDeviceNotification as a
way to subscribe for WM_DEVICECHANGE messages pertaining to a specific
device interface, UnregisterDeviceNotification seems to destabilize the system.
Just calling this function led to a number of random crashes during my own test
ing. I eventually just stopped calling UnregisterDeviceNotification and nothing
bad seemed to happen as a result.

Chapter 6 Plug and Play

The handler for WM_DEVICECHANGE messages would be something like this:

BOOl CAutolaunch::OnDeviceChange(UINT evtype, DWORD dwData)
{

_DEV_BROADCAST_HEADER* dbhdr = (_DEV_BROADCAST_HEADER*) dwData;
if (!dbhdr I I dbhdr->dbcd_devicetype != DBT_DEVTYP_DEVICEINTERFACE)

return TRUE;
PDEV_BROADCAST_DEVICEINTERFACE p =

(PDEV_BROADCAST_DEVICEINTERFACE) dbhdr;
CString devname = p->dbcc_name;
if (evtype == DBLDEVICEARRIVAL)

<handle arrival>
else if (evtype == DBT_DEVICEREMOVECOMPlETE)

<handle removal>
return TRUE;
}

This handler ignores all messages that don't pertain to device interfaces. The devname
variable will be the symbolic link name for the device that's arriving or departing.
(This is the same name you obtain with SetupDlGetDeviceInterfaceDetall and
pass to CreateFne.) Refer to Chapter 12 for details about how you can use various
SetupDiXxx APIs to learn interesting information about the new device.

Knowing When to Close a Device Handle
The PnP Manager won't be able to remove your device object while an application
has a handle open. To permit removal to occur, your driver has to somehow induce
applications with open handles to close them. A variation on the device interface
notification change message considered in the previous section comes to your res
cue here.

Once the application has a handle to your device, it should call RegisterDevice
Notification to register for handle notifications. (See TESTDLG.CPP in the TEST sub
directory of the PNPEVENT. sample on the companion disc.)

DEV_BROADCAST_HANDlE filter = {0};
filter.dbch_size = sizeof(filter);
filter.dbch_devicetype = DBT_DEVTYP_HANDlE;
filter.dbch_handle = ffi-hDevice; II C the device handle
HDEVNOTIFY hNotify = RegisterDev;ceNotification(ffi-hWnd,

&filter, DEVICE_NOTIFY_WINDOW_HANDlE);

Now the application can be on the lookout for a WM_DEVICECHANGE with
an event code (wParam) equal to DBT_DEVICEQUERYREMOVE and a d.evicetype
of DBT_DEVfYP ...:.HANDLE. That message means that the interface is about to be

279

Programming the Microsoft Windows Driver Model

280

disabled, and you should therefore close your handles. You should also uncondi
tionally return TRUE from your message handler.

NOTE According to the Platform SDK documentation, you can return
BROADCAST _QUERY _DENY in response to a DBT _DEVICEQUERYREMOVE
message. This special retum value supposedly means you don't want the de
vice removed or disabled after all. I've encountered wildly different results from
attempting this in various versions of Windows 98 and Windows 2000. I would
recommend that you program applications to always succeed this query.

THE PNPEVENT SAMPLE

The PNPEVENT sample driver (or, more properly, the TEST program that's part
of the sample) illustrates how to use WM_DEVICECHANGE for detecting the
arrival and departure of a registered interface and how to know when you must
close a handle to allow a device to be disabled or removed. You can launch
the TEST program either before or after you install the PNPEVENT "device" via
the hardware wizard.

You'll notice a Send Event button in the test program dialog. Clicking that
button causes the driver to signal a custom PnP event. I'll discuss custom events
a bit further on. I've never succeeded in getting a user-mode notification about
a custom event, though,so nothing will appear to happen when you click this
button unless you also happen to be running PNPMON's test program. (See the
PNPMON sample on the companion disc.)

Notiflcatioils to Windows 2000 Services
Windows 2000 service programs can also subscribe for PnP notifications. The service
shol.l1tl call RegisterServiceCtrlHandlerEx to register an extended control handler
function. Then it can register for service control notifications about device interface
changes. For example, take a look at the follOWing code (and see the AUTOLAUNCH
sample).

DEV_BROADCAST_DEVICEINTERFACE filter = {0};
filter.dbcc_size = sizeof(filter);
filter.dbcc_devicetype = DBT_DEVTYPE_DEVICEINTERFACE;
filter.dbcc_classguid = GUID_AUTOLAUNCH_NOTIFY;
ffi-hNotification = RegisterDeviceNotification(ffi-hService.

(PVOID) &filter. DEVICLNOTIFLSERVICLHANDLE);

Chapter 6 Plug and Play

Here, m_hService is a service handle provided by the service manager when it starts
your service, and DEVICE_NOTIFY _SERVICE_HANDLE indicates that you're register
ing for service control notifications instead of window messages. After receiving a
SERVICE_CONTROL_STOP command, you want to unregister the notification handle:

UnregisterDeviceNotification(m_hNotification);

When a PnP event involving the interface GUID occurs, the system calls your
extended service control handler function:

DWORD __ stdcall HandlerEx(DWORD ctlcode. DWORD evtype.
PVOID evdata. PVOID context)
{

}

where ctlcode will equal SERVICE_CONTROL_DEVICEEVENT, evtype will equal
DBT_DEVICEARRIVAL or one of the other DBT_XXx codes, evdata will be the ad
dress of a Unicode version of the DEV _BROADCAST_DEVICEINTERFACE structure,
and context will be whatever context value you specified in your call to the
RegisterServiceCtrlHandlerEx function.

Kernel-Mode Notifications
WDM drivers can use IoRegisterPlugPlayNotification to subscribe for interface and
handle notifications. Here's an exemplary statement from the PNPMON sample driver
that registers for notifications about the arrival and departure of an interface GUID
deSignated by an application-PNPMON's TEST.EXE in this case--via an I/O control
(IOCTL) operation:

status = IoRegisterPlugPlayNotification
(EventCategoryDevicelnterfaceChange.
PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES.
&p->guid. pdx->DriverObject.
(PDRIVEILNOTI FICATION_CALLBACICROUTI NE) OnPnpNoti fy.
reg. ®->InterfaceNotificationEntry);

The first argument indicates that we want to receive notifications whenever
something enables or disables a specific interface GUID. The second argument is a
flag indicating that we want to receive callbacks right away for all instances of the
interface GUm that are already enabled. This flag allows us to start after some or all
of the drivers that export the interface in question and still receive notification call
backs about those interfaces. The third argument is the interface GUID in question.
In this case, it comes to us via an IOCTL from an application. The fourth argument
is the address of our driver object. The PnP Manager adds a reference to the object

281

Programming the Microsoft Windows Driver Model

282

so that we can't be unloaded while we have· any notification handles outstanding.
The fifth argument is the address of a notification callback routine. The sixth argument
is a context parameter for the callback routine. In this case, I specified the address of
a structure (reg) that contains information relative to this registration call. The seventh
and final argument gives the address of a variable where the PnP Manager should record
a notification handle. We will eventually call IoUnregisterPlugPlayNotification with
the notification handle.

You need to call 10UnregisterPlugPIayNotification to close the registration
handle. Since 10RegisterPlugPIayNotification adds a reference to your driver object,
it won't do you any particular good to put this call in your DriverUnload routine.
DriverUnload won't be called until the reference count drops to 0, which will never
happen if Driverunload itself has the unregistration calls. This problem isn't hard to
solve-you just need to pick an appropriate time to unregister, such as when you
notice the last interface of a particular type being removed or in response to an IOcn
request from an application.

Given a symbolic link name for an enabled interface, you can also request
notifications about changes to the device named by the link. For example:

PUNICODE_STRING SymbolicLinkName; II ~ input to this process
PDEVICE_OBJECT DeviceObject; II ~ an output
PFILE_OBJECT FileObject; II ~ another output
IoGetDeviceObjectPointer(&SymbolicLinkName, 0, &FileObject,

&Devi ceObject);
IoRegisterPlugPlayNotification(EventCategoryTargetDeviceChange, 0,

FileObject, pdx->DriverObject,
(PDRIVER-NOTIFICATION_CALLBACK-ROUTINE) OnPnpNotify,
reg, ®->HandleNotificationEntry);

You shouldn't put this code inside your PnP event handler, by the way. IoGet
DeviceObjectPointer internally performs an open operation for the named device
object. A deadlock might occur if the target device were to perform certain kinds of
PnP operations. You should instead schedule a work item by calling IoQueue
WorkItem. Chapter 9 has more information about work items. The PNPMON sample
driver illustrates how to use a work item in this particular situation.

The notifications that result from these registration calls take the form of a call
to the callback routine you specified:

NTSTATUS OnPnpNotify(PPLUGPLAY_NOTIFICATION_HEADER hdr,
PYOID Context)
{

return STATUS_SUCCESS:
}

Chapter 6 Plug and Play

The PLUGPLAY _NOTIFICATION_HEADER structure is the common header for
several different structures that the PnP Manager uses for notifications:

typedef struct _PLUGPLALNOTIFICATION_HEADER {
USHORT Version;
USHORT Size;
GUID Event;
} PLUGPLAY_NOTIFICATION_HEADER.
*PPLUGPLAY_NOTIFICATION_HEADER;

The Event GUID indicates what sort of event is being reported to you. See Table 6-6.
The DDK header file WDMGUID.H contains the definitions of these GUIDs.

GUID Name Purpose of Notification

GUID_HWPROFILE_QUERY_CHANGE Okay to change to a new hard
ware profile?

GUID_HWPROFILE_CHANGE_CANCELLED . Change previously queried
about has been cancelled

GUID_HWPROFILE_CHANGE_COMPLETE Change previously queried
about has been accomplished

GUID_DEVICE_INTERFACE_ARRIVAL A device interface has just
been enabled

GUID_DEVICE_INTERFACE_REMOVAL A device interface has just
been disabled

GUID_TARGET_DEVICE_QUERY_REMOVE Okay to remove a device
object?

GUID_TARGET_DEVICE_REMOVE~CANCELLED Removal previously queried
about has been cancelled

GUID_TARGET_DEVICE_REMOVE_COMPLETE Removal previously queried
about has been accomplished

Table 6-6. PnP notification GUIDs.

If you receive either of the DEVICE_INTERFACE notifications, you can cast the
hdr argument to the callback function as a pointer to the following structure:

typedef struct _DEVICLINTERFACE_CHANGE_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
GUID InterfaceClassGuid;
PUNICODE_STRING SymbolicLinkName;
} DEVICE_I NTERFACE_CHANGE_NOTI FICATION.
*PDEVICE_INTERFACE_CHANGE_NOTIFICATION;

283

Programming the Microsoft Windows Driver Model

284

In the interface change notification structure, InterfaceClassGuid is the interface
GUID, and SymbolicUnkNrune is the name of an instance of the interface that's just
been enabled or disabled.

If you receive any of the TARGET_DEVICE notifications, you can cast the hdr
argument as a pointer to this structure instead:

typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION {
USHORT Version;
USHORT Size;
GUID Event;
PFILE_OBJECT FileObject;
} TARGET_DEVICE_REMOVAL_NOTIFICATION,
*PTARGET_DEVICE_REMOVAL_NOTIFICATION;

where FileObject is the file object for which you requested notifications.
Finally, if you receive any of the HWPROFlLE_CHANGE notifications, hdr will

really be a pointer to this structure:

typedef struct _HWPROFILE_CHANGE_NOTIFICATION {
USHORT Versi on;
USHORT Size;
GUID Event;
} HWPROFILE_CHANGE_NOTIFICATION,
*PHWPROFILE_CHANGE_NOTIFICATION;

This doesn't have any more information than the header structure itself-just a dif
ferent typedef name.

One way to use these notifications is to implement a filter driver for an entire
class of device interfaces. (There is a standard way to implement filter drivers, either
for a single driver or for a class of devices, based on setting entries in the registry.
I'll discuss that subject in Chapter 9. Here, I'm talking about filtering all devices that
register a particular interface, for which there's no other mechanism.) In your driver's
DriverEntry routine, you'd register for PnP notifications about one or more interface
GUIDs. When you receive the arrival notification, you use IoGetDeviceObjectPointer
to open a file object and then register for target device notifications about the asso
ciated device. You also get a device object pointer from IoGetDeviceObjectPointer,
and you can send IRPs to that device by calling IoCallDriver. Be on the lookout for
the GUID_TARGET_DEVICE_QUERY_REMOVE notification because you have to
dereference the file object before the removal can continue.

Chapter 6 Plug and Play

THE PNPMON SAMPLE

The PNPMON sample illustrates how to register for and process PnP notifica
tions in kernel mode. To give you something you could run On your computer
and actually see working, I designed PNPMON to simply pass notifications back
to a user-mode application (named TEST-what else?). This is pretty silly, in
that a user-mode application can get these notifications on its own by calling
RegisterDeviceNotification.

PNPMON is different from the other driver samples in this book. It's in
tended to be dynamically loaded as a helper for a user-mode application. The
other drivers we look at are intended to manage hardware, real or imagined.
The user-mode application uses service manager API calls to load PNPMON,
which creates exactly one device object in its DriverEntry routine so that the
application can use DeviceIoControl to get things done in kernel mode. When
the application exits, it closes its handle and calls the service manager to ter
minate the driver.

PNPMON also includes a Windows 98 VxD that the test application can
dynamically load. It's possible to dynamically load a WDM driver in Windows
98 by using an undocumented function LNtKernLoadDriver, if you care), but
there's no way to unload a driver that you've loaded in this way. You don't need
to resort to undocumented functions, though, because VxDs can call most of
the WDM .support routines directly by means of the WDMVXD import library
in the Windows 98 DDK. Just about the only extra things you need to do in
your VxD project are include WDM.H ahead of the VxD header files and add
WDMVXD.CLB to the list of inputs to the linker. So PNPMON.VXD simply reg
isters for PnP notifications as if it were a WDM driver and supports the same
IOCTL interface that PNPMON.SYS supports.

Custom Notifications
I'll close this chapter by explaining how a WDM driver can generate custom PnP
notifications. To signal a custom PnP event, create an instance of the custom notifi
cation structure and call one of IoReportTargetDeviceChange or IoReportTarget
DeviceChangeAsynchronous. The asynchronous flavor returns immediately. The

285

Programming the Microsoft Windows Driver Model

286

synchronous flavor waits-a long time, in my experience-until the notification has
been sent. The notification structure has this declaration:

typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION {
USHORT Versi on;
USHORT Size;
GUID Event;
PFILE_OBJECT FileObject;
LONG NameBufferOffset;
UCHAR CustomDataBuffer[l];
} TARGET_DEVICE_CUSTOM_NOTIFICATION,
*PTARGET_DEVICE_CUSTOM_NOTIFICATION;

Event is the custom GUID you've defined for the notification. FileObject is NULL
the PnP Manager wilt be sending notifications to drivers who opened file objects for
the same PD~ as you specify in the IoReport\Xx call. CustomDataBuffer contains
whatever binary data you elect followed by Unicode string data. NameBufferOffset
is -1 if you don't have any string data; otherwise, it's the length of the binary data
that precedes the strings. You can tell how big the total data payload is by subtract
ing the field offset of CustomDataBuffer from the Size value.

Here's how PNPEVENT generates a custom notification when you press the Send
Event button in the associated test dialog:

struct _RANDOM~NOTIFICATION
: public _TARGELDEVICE_CUSTOM_NOTIFICATION {
WCHAR text[14];
} ;

_RANDOM_NOTIFICATION notify;
notify.Version = 1;
notify.Size = sizeof(notify);
notify.Event = GUID_PNPEVENT_EVENT;
notify.FileObject = NULL;
notify.NameBufferOffset = FIELD_OFFSET(RANDOM_NOTIFICATION, text)

- FI ELD_OFFSET(RANDOM_NOTI FICA TION, CustomDataBuffer);
*(PULONG)(notify.CustomDataBuffer) = 42;
wcscpy(notify.text, L"Hello, world!");
IoReportTargetDeviceChangeAsynchronous(pdx->Pdo, ¬ify, NULL, NULL);

That is, PNPEVENT generates a custom notification whose data payload contains the
number 42 followed by the string, Hello, world!.

Incidentally, if you want to use the asynchronous reporting API, which I rec
ommend because it returns immediately, you must include NTDDK.H instead of
WDM.H and you must link with both WDM.LIB and NTOSKRNL.LIB.

Chapter 6, Plug and Play

The notification shows up in any driver that registered for target device notifi
cations pertaining to a file object for the same PDO. If your notification callback
routine gets a notification structure with a nonstandard Gum in the Event field, you
can expect that it's somebody's custom notification GUID. You need to understand
what the GUID means before you go mucking about in the CustomDataBuffer!

User-mode applications are supposed to be able to receive custom event noti
fications, too, but I've not been able to get that to work.

WINDOWS 98 COMPATIBILITY NOTES
Windows 98 never sends an IRP _MN_SVRPRISE_REMOVAL request. Consequently,
a WDM driver needs to treat an unexpected IRP .-MN_REMOVE_DEVICE as indicat
ing surprise removal. The code samples I showed you in this chapter accomplish that
by calling AbortRequests and StopDevice when they get this IRP out of the blue.

Windows 98 fails calls to the 10ReportTargetDeviceChange function with STATUS_
NOT_IMPLEMENTED. It doesn't export the symbol IoReportTargetDeviceChange
Asynchronous at all; a driver that calls that function will simply fail to load in Win
dows 98. Refer to Appendix A for information about how you can stub this and other
missing support functions so as to be able to ship a single driver binary.

The architecture of Windows 98 doesn't lend itself at all well to blocking in
kernel mode while waiting for user-mode programs to do things. This fact bit me
especially hard in connection with one of my USB sample drivers (USBINT). The test
program for this sample opens a handle and issues an asynchronous DeviceloControl
call. If you now unplug the device, what's supposed to happen is this: the driver
receives an IRP _MN_SURPRISE_REMOVAL, whereupon it cancels the outstanding
DeviceIoControl. The test program then closes its handle. Meanwhile, back in the
driver, the REMOVE_DEVICE handler has blocked on a call to 10ReleaseRemove
LockAndWait. When the IRP _MLCLOSE arrives, the driver will release the last claim
on the remove lock and allow the device removal to proceed. This works just fine
in Windows 2000, but it hangs Windows 98 because the test program never gets a
chance to run in order to close its handle. (We don't get the SURPRISE_REMOVAL in
Windows 98, but we do get a REMOVE_DEVICE' that serves the same purpose.) A
code path through QUERY_REMOVE does not hang the system, however. Moral: don't
acquire the remove lock while a handle is open in Windows· 98 if your device can
be removed by the user without going through the Device Manager API.

287

Chapter 7

Reading and
Writing Data

All the infrastructure I've described so far in this book leads up to this chapter, where
I fInally cover how to read and write data from a device. I'll discuss the service func
tions you call to perform these important operations on a device plugged in to one
of the traditional buses, such as PCI (Peripheral Component Interconnect). Since many
devices use a hardware interrupt to notify system software about I/O completion or
exceptional events, I'll also discuss how to handle an interrupt. Interrupt processing
normally requires you to schedule a deferred procedure call (DPC) , so I'll describe
the DPC mechanism, too. Finally, I'll tell you how to arrange direct memory access
(DMA) transfers between your device and main memory.

CONFIGURING YOUR DEVICE
In the previous chapter, I discussed the various IRP _MLPNP requests that the Plug
and Play (PnP) Manager sends you. IRP YiN_START_DEVICE is the vehicle for giv
ing you information about the I/O resources that have been assigned by the PnP
Manager for your use .. I showed you how to obtain parallel lists of raw and trans
lated resource descriptions and how to call a StartDevice helper function that would
have the following prototype:

NTSTATUS StartDev;ce(PDEVICE_OBJECT fda,
PCM-PARTIAL-RESOURCE_LIST raw,
PCM_PARTIAL-RESOURCE_LIST translated)
{

}

289

Programming the Microsoft Windows Driver Model

290

The time has now come to explain what to do with these resource lists. In
summary, you'll extract descriptions of your assigned resources from the translated
list and use those descriptions to create additional kernel objects that give you ac
cess to your hardware.

The CM_PARTIAL_RESOURCE_LIST structures contain a count and an array of
CM_PARTIAL_RESOURCE_DESCRIPTOR structures, as illustrated in Figure 7-1. Each
resource descriptor in the array has a Type member that indicates what type of re
source it describes and some additional members that supply the particulars about
some allocated resource. You're not going to be surprised by what you find in this
array, by the way: if your device uses an IRQ and a range of I/O ports, you'll get
two resource descriptors in the array. One of the descriptors will be for your IRQ,
and the other will be for your I/O port range. Unfortunately, you can't predict in
advance the order in which these descriptors will happen to appear in the array. Con
sequently, your StartDevice helper function has to begin with a loop that "flattens"
the array by extracting resource values into a collection of local variables. You can
later use the local variables to deal with the assigned resources in whatever order you
please (which, it goes without saying, can be different from the order in which the
PnP Manager chose to present them to you).

Version I Revision

Count

Is~~1 " Type Flags

PartiaIDescriptors[O]

u

Type I~sposmonl Flags

PartialDescriptors[1]
u

..I

Figure 7-1. Structure of a partial resource list.

Chapter 7 Reading and Writing Data

In sketch, then, your StartDevice function looks like this:

NTSTATUS StartDevice(PDEVICE_OBJECT fdo.
PCM_PARTIAL_RESOURCE_LIST raw.
PCM_PARTIAL_RESOURCE_LIST translated)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PCM_PARTIAL_RESOURCE_DESCRIPTOR resource

translated->PartialDescriptors;
ULONG nres = translated->Count;
<local variable declarations>
for (ULONG i = 0; i < nres; ++i. ++resource)

{

switch (resource->Type)
{

case CmResourceTypePort:
<save port info in local variables>
break;

case CmResourceTypelnterrupt:
<save interrupt info in local variables>
break;

case CmResourceTypeMemory:
<save memory info in local variables>
break;

case CmResourceTypeDma:

}

<save DNA info in local variables>
break;
}

<use local variables to configure driver & hardware>
IoSetDevicelnterfaceState(&pdx->ifname. TRUE);
}

1. I'll use the resource pointer to point to the current resource descriptor
in the variable-length array. By the end of the upcoming loop, it will point
past the last valid descriptor.

2. The Count member of a resource list indicates how many resource de
scriptors are in the PartialDescriptors array.

3. You should declare appropriate local variables for each of the I/O re
sources you expect to receive. I'll detail what these would be later on when
I discuss how to deal with each of the standard I/O resources.

4. Within the loop over resource descriptors, you use a switch statement
to save resource description information into the appropriate local vari
ables. In the text, I posited a device that needed just an I/O port range

291

Programming the Microsoft Windows Driver Model

292

and an interrupt, and such a device would expect to find resource types
CmResourceTypePort and CmResourceTypeInterrupt. I'm showing
the other two standard resource types--CmResourceTypeMemory and
CmResourceTypeDma-for thoroughness.

5. Once outside the loop, the local variables you initialized in the various
case labels will hold the resource information you need.

6. If you registered a device interface during AddDevice, this is the time to
enable that interface so that applications can find you and open handles
to your device.

If you have more than one resource of a particular type, you need to invent a
way to tell the resource deSCriptors apart. To give a concrete (but entirely fictitious)
example, suppose that your device uses one 4-KB range of memory for control
purposes and a different 16-KB range of memory as a data capture buffer. You ex
pect to receive two CmResourceTypeMemory resources from the PnP Manager. The
control memory is the block that's 4 KB long, whereas the data memory is the block
that's 16 KB long. If your device's resources have a distinguishing characteristic such
as the size difference in the example, you'll be able to tell which resource is which.

When dealing with multiple resources of the same type, don't assume that the
resource descriptors will be in the same order that your configuration space lists them
in, and don't assume that the same bus driver will always construct resource descrip
tors in the same order on every platform or every release of the operating system.
The first assumption is tantamount to assuming that the bus driver programmer
adopted a particular algorithm, while the second is tantamount to assuming that all
bus driver programmers think alike and will never change their minds.

I'll explain how to deal with each of the four standard I/O resource types at
appropriate places in the remainder of this chapter. Table 7-1 presents an overview
of the critical step(s) for each type of resource.

Resource Type

Port

Memory

Dma

Interrupt

Overview

Possibly maps port range; saves base port address in
device extension

Maps memory range; saves base address in device
extension

Calls IoGetDmaAdapter to create an adapter object

Calls IoConnectInterrupt to create an interrupt object
that points to your interrupt service routine (ISR)

Table 7-1. Overview o/processing steps/or I/O resources.

Chapter 7 Reading and Writing Data

ADDRESSING A DATA BUFFER
When an application initiates a read or write operation, it provides a data buffer by
giving the I/O Manager a user-mode virtual address and length. As I said back in
Chapter 3, "Basic Programming Techniques," a kernel driver hardly ever accesses
memory using a user-mode virtual address because, in general,You can't pin down
the thread context with certainty. Microsoft Windows 2000 gives you three ways to
access a user-mode data buffer:

• In the huffered method, the I/O Manager creates a system buffer equal in
size to the user-mode data buffer. You work with this system buffer. The
I/O Manager takes care of copying data between the user-mode buffer and
the system buffer.

• In the direct method, the I/O Manager locks the physical pages containing
the user-mode buffer and creates an auxiliary data structure called a memory
descriptor list (MDL) to describe the locked pages. You ~ork with the MDt.

• In the neither method, the I/O Manager simply passes the user-mode
virtual address to you. You work-very carefully!-with the user-mode
address.

Figure 7-2 illustrates the first two methods. The last method, of course, is kind
of a nonmethod in that the system doesn't do anything to help you reach your data.

Figure 7-2. Accessing user-mode data buffers.

293

Programming the Microsoft Windows Driver Model

Specifying a Buffering Method

294

You specify your device's buffering method for reads and writes by setting certain
flag bits in your device object shortly after you create it in your AddDevice function:

NTSTATUS AddDevice(...)
{

PDEVICE_OBJECT fdo;
loCreateDevice(...• &fdo);
fdo->Flags 1= DO_BUFFERED_IO;

<or>
fdo->Flags 1= DO_DIRECT_IO;

<or>
fdo->Flags 1= 0; II i.e .• neither direct nor buffered
}

You can't change your mind about the buffering method afterward. Filter driv
ers might copy this flag setting and will have no way to know if you do change your
mind and specify a different buffering method.

The Buffered Method
When the I/O Manager creates an IRP _MLREAD or IRP _ML WRITE request, it inspects
the direct and buffered flags to decide how to describe the data buffer in the new
I/O request packet (IRP). If DO_BUFFERED_IO is set, the I/O Manager allocates
nonpaged memory equal in size to the user buffer. It saves the address and length
of the buffer in two wildly different places, as shown in boldface in the following
code fragment. You can imagine the I/O Manager code being something like this
this is not the actual Microsoft Windows NT source code.

PVOID uva;
ULONG length;

II ~ user-mode virtual buffer address
II ~ length of user-mode buffer

PVOID sva; = ExAllocatePoolWithQuota(NonPagedPoolCacheAligned. length);
if (writing)

RtlCopyMemory(sva. uva. length);

Irp->Assocfatedlrp.SystemBuffer = sva;

PIO_STACK-LOCATION stack = loGetNextlrpStackLocation(lrp);
if (reading)

stack->Parameters.Read.Length = length;
el se

stack->Parameters.Wrfte.Length = length;

Chapter 7 Reading and Writing Data

<code to send and await IRP>

if (reading)
RtlCopyMemory(uva. sva. length);

ExFreePool(sva);

In other words, the system (copy) buffer address is in the IRP's Associated
Irp.SystemBuffer field, and the request length is in the stack->Parameters union.
This process includes additional details that you and I don't need to know to write
drivers. For example, the copy that occurs after a successful read operation actually
happens· during an asynchronous procedure call (APC) in the original thread con
text and in a different subroutine than the one that constructs the IRP. The I/O Man
ager saves the user-mode virtual address (my uva variable in the preceding fragment)
in the IRP's UserBuffer field so that the copy step can find it. Don't count on either
of these facts, though-they're subject to change at any time.

The I/O Manager also takes care of releaSing the free storage obtained for the
system copy buffer when something eventually completes the IRP.

The Direct Method
If you specified DO_DlRECT_IO in the device object, the I/O Manager creates a MDL
to describe locked pages containing the user-mode data buffer. The MDL structure
has the following declaration:

typedef struct _MDL {
struct _MOL *Next;
CSHORT Size;
CSHORT MdlFlags;
struct _EPROCESS *Process;
PYOID MappedSystemVa;
PYOID StartVa;
ULONG ByteCount;
ULONG ByteOffset;
} MOL. *PMDL;

Figure 7-3 illustrates the role of the MDL. The StartVa member gives the vir
tual address-valid only in the context of the user-mode process that owns the data
of the buffer. ByteOffset is· the <?ffset of the beginning of the buffer within a page
frame, and ByteCount is the size of the. buffer in bytes. The Pages array, which is
not formally declared as part of the MDL structure, follows the MDL in memory and
contains the numbers of the physical page frames to which the user-mode virtual
addresses map.

295

Programming the Microsoft Windows Driver Model

296

·····r·
ByteCount

! ····-1-···
ByteOffset

..... '-

Virtual addresses
In user space

Physical address
space

Figure 7-3. The memory descriptor list structure.

We never, by the way, access members of an MDL structure directly. We use
macros and support functions instead-see Table 7-2.

Macro or Function

IoAllocateMdl

IoBuildPartialMdl

IoFreeMdl

MmBuildMdlForNonPagedPool

MmGetMdlByteCount

MmGetMdlByteOffset

MmGetMdlVirtualAddress

MmGetPhysicalAddress

Description

Creates an MDL

Builds an MDL for a subset of an exist-
ing MoL .

Destroys an MDL

Modifies an MDL to describe a region of
kernel-mode nonpaged memory

Determines byte size of buffer

Gets buffer offset within frrst page

Gets virtual address

Gets physical address corresponding to
a virtual address within the MDL
described region

Table 7-2. Macros and support functions for accessing an MDL. (continued)

Chapter 7 Reading and Writing Data

continued

Macro or Function

MmGetSystemAddressForMdl

MmGetSystemAddressForMdlSafe

MmInitializeMdl

MmPrepareMdlForReuse

MmProbeAndLockPages

MmSizeOfMdl

MmUnlockPages

Description

Creates a kernel-mode virtual address
that maps to the same locations in
memory

Same as MmGetSystemAddressForMdl
but preferred in Windows 2000

(Re)initializes an MDL to describe a
given virtual buffer

Reinitializes an MDL

Locks pages after verifying address
validity

Determines how much memory would
be needed to create an MDL to describe
a given virtual buffer

Unlocks the pages for this MDL

You can imagine the I/O Manager executing code iike the following to perform
a direct-method read or write:

KPROCESSOR-MODE mode; II ~ either KernelMode or UserMode
PMDL mdl = loAllocateMdl(uva, length, FALSE, TRUE, Irp):
MmProbeAndLockPages(mdl, mode,

read1ng 1 IOWr1teAccess : IoReadAccess):

<code to send and await IRP>

MmUnlockPages(mdl):
ExFreePool(mdl):

The I/O Manager first creates an MDL to describe the user buffer. The third argument
to IoAllocateMdl (FALSE) indicates this is the primary data buffer. The fourth argu
ment (TRUE) indicates that the Memory Manager should charge the process quota.
The last argument (Irp) specifies the IRP to which this MDL should be attached.
Internally, IoAllocateMdl sets Irp->MdlAddress to the address of the newly created
MDL, which is how you find it and how the I/O Manager eventually fmds it so as to
clean up.

The key event in this code sequence is the call to MmProbeAndLockPages,
shown in boldface. This function verifies that the data buffer is valid and can be accessed
in the appropriate mode. If we're writing to the device, we must be able to read

297

Programming the Microsoft Windows Driver Model

the buffer. If we're reading from the device, we must be able to write to the buffer. In
addition, the function locks the physical pages containing the data buffer and fills in
the array of page numbers that follows the MDL proper in memory. In effect, a locked
page becomes part of the nonpaged pool until as many callers unlock it as locked it
in the first place.

The thing you'll most likely do with an MDL in a direct-method read or write
is to pass it as an argument to something else. DMA transfers, for example, require

. an MDL for the MapTransfer step you'll read about later in this chapter in "Performing
DMA Transfers." Universal serial bus (USB) reads and writes, to give another example,
always work internally with an MDL, so you might as well specify DO_DlRECT_IO
and pass the resulting MDLs along to the USB bus driver.

Incidentally, the I/O Manager does save the read or write request length in the
stack->Parameters union. It's nonetheless customary for drivers to learn the request
length directly from the MDL:

ULONG length = MmGetMdlByteCount(mdl);

The Neither Method
If you omit both the DO_DlRECT_IO and DO_BUFFERED_IO flags in the device
object, you get the neither method by default. The I/O Manager simply gives you a
user-mode virtual address and a byte count (as shown in boldface) and leaves the
rest to you:

Irp->UserBuffer = uva;
PIO_STACK-LOCATION stack = IoGetNextlrpStackLocation(Irp);
if (reading)

stack->Parameters.Read.Length = length;
else

stack->Parameters.Wr1te.Length = length;

<code to send and await IRP>

PORTS AND REGISTERS

298

Windows 2000 models driver access to many devices, as depicted in Figure 7-4.
Generally, CPUs can have separate memory and I/O address spaces. To access a
memory-mapped device, the CPU employs a memory-type reference such as a load
or a store directed to a virtual address. The CPU translates the virtual address to a
physical address by using a set of page tables. To access an I/O-mapped device, on
the other hand, the CPU invokes some special mechanism such as the x86 IN and
OUT instructions.

Chapter 7 Reading and Writing Data

Figure 7-4. Accessing ports and registers.

Devices have bus-specific ways of decoding memory and I/O addresses. In the
case of the PCl bus, a host bridge maps CPU physical memory addresses and I/O
addresses to a bus address space that's directly accessible to devices. Flag bits in the
device's configuration space determine whether the bridge maps the device's regis
ters to a memory or an I/O address on CPUs that have both address spaces.

As I've said, some CPUs have separate memory and I/O address spaces. Intel
architecture CPUs have both, for example. Other CPUs, such as the Alpha, have just
a memory address space. If your device is I/O-mapped, the PoP Manager will give
you port resources. If your device is memory-mapped, it will give you memory
resources instead.

Rather than have you place reams of conditionally compiled code into your
driver for all possible platforms, the Windows NT designers invented the hardware
abstraction layer (HAL) to which I've alluded a few times in this book. The HAL pro
vides functions that you use to access port and memory resources. See Table 7-3. As

the table indicates, you can READ/WRITE either a single UCHAR!USHORT/ULONG
or an array of them from or to a PORT/REGISTER. That makes 24 HAL functions in
all that are used for device access. Since a WDM driver doesn't directly rely on the
HAL for anything else, you might as well think of these 24 functions as being the entire
public interface to the HAL.

299

Programming the Microsoft Windows Driver Model

Access Width Functions for Port Access Functions for Memory Access

8 bits READ]ORT_UCHAR READ_REGISTER_UCHAR
~TE_PORT_UCHAR ~TE_REGISTER_UCHAR

16 bits READ_PORLUSHORT READ_REGISTER_USHORT
~TE_PORLUSHORT ~TE_REGISTER_USHORT

32 bits READ]ORT_ULONG READ_REGISTER_ ULONG
WRITE_PORT_ULONG WRITE_REGISTER_ ULONG

string of READ_PORT_BUFFER-UCHAR READ_REGISTER_BUFFER_UCHAR
8-bit bytes WRITE]ORT_BUFFER_UCHAR WRITE_REGISTER_BUFFER_UCHAR

string of READ_PORT _BUFFER_USHORT READ_REGISTER_BUFFER_USHORT
16-bit words ~TE_PORT_BUFFER_USHORT ~TE_REGISTER_BUFFER_USHORT

string of 32-bit READ]ORLBUFFER_ULONG READ_REGISTER_BUFFER_ ULONG
double words ~TE]ORT_BUFFER_ULONG ~TE_REGISTER_BUFFER_ULONG

Table 7-3. HAL functions for accessing ports and memory registers.

What goes on inside these access functions is (obviously!) highly dependent on
the platform. The Intel x86 version of READ_PORT_CHAR, for example, performs an
IN instruction to read one byte from the designated I/O port. The Microsoft Windows 98
implementation goes so far as to overstore the driver's call instruction with an actual
IN instruction in some situations. The Alpha version of this routine performs a memory
fetch. The Intel x86 version of READ_REGISTER_UCHAR performs a memory fetch
also; this function is macro'ed as a direct memory reference on the Alpha. The buff
ered version of this function (READ_REGISTER_BUFFER_UCHAR), on the other hand,
does some extra work in the Intel x86 environment to be sure that all CPU caches
get properly flushed when the operation finishes.

The whole point of having the HAL in the first place is so that you don't have
to worry about platform differences or about the sometimes arcane requirements for
accessing devices in the multitasking, multiprocessor environment of Windows 2000.
Your job is quite simple: use a PORT call to access what you think is a port resource,
and use a REGISTER call to access what you think is a memory resource.

Port Resources

300

I/O-mapped devices expose hardware registers that, on some CPU architectures (in
cluding Intel x86), are addressed by software using a special I/O address space. On
other CPU architectures, no separate I/O address space exists and these registers are
addressed using regular memory references. Luckily, you don't need to understand
these addressing complexities. If your device requests a port resource, one iteration
of your loop over the translated resource descriptors will find a CmResourceTypePort
deSCriptor and you'll save three pieces of information.

.. ..

typedef struct _DEVICE-EXTENSION {

PUCHAR portbase;
ULONG nports:
BOOLEAN mappedport;

Chapter 7 Raadlng and Writing lata

•.. } DEVICE-EXTENSION, *PDEVICE_EXTENSION;

PHYSICALADDRESS portbase; II base address of range

for (ULONG 1 = 0; 1 < nres: ++1, ++resource)
{

swi tch (res'ource- >Type)
{

case CmResourceTypePort:
portbase'= resource->u.Port.Start;
pdx->nports = resource->u.Port.Length;
pdx->mappedport = (resource->Flags & GM..,.RESOURCE-PORLIO) == 0;
break;

}

1 f (mappedport)
{
pdx->portbase = (PUCHAR) MmMapIoSpace(portbase, nports, MmNonCached);' ,
if (!pdx->portbase)

return STATUS_NO-HEMORY;
}

else
.. pdx-)portbase = (PUCHAR) portbase.OuadPart;

1. The resource deScriptor contains a union named u that has substructures
for each of the standard resource types. u.Port has information apQut ~
port resource. u.Port.Start is the beginning address of a,contigv.ous range
ofI/O ports, and u.Port.Lengtb is the number of po$, in the range. The
start address is a 64-bit PHYSICAL_ADDRESS value.

2. The Flags member of the resource descriptor for a port reso1.J.rce ~s th~'
CM_RESOURCE_PORT_IO flag set if the CPU architecture has a sep~te
I/O address space to which the given port address belongs.

3. If the CM_RESOURCE_PORT_IO flag was clear, as. it will be on an Alpha
and perhaps other RISC platforms, you must call MmMaploSpace to .
obtain a kernel-mode virtual address by which the port can be accessed,.
The access will really employ a memory reference, but yOl.l'll still call
the PORT flavor of HAL routines CREAD_PORT_UCHAR and soon}from
Yol.lr driver.

, ~01

Progl'Ulmlng the Microsoft Windows Driver Model

4. If the CM_RESOURCE_PORT_IO flag was set, as it will be on an xs6 plat
form, you do not need to map the port address. You'll call the PORT fla
vor of HAL routines from your driver when you want to access one of your
ports. The HAL routines demand a PUCHAR port address argument, which
is why we cast the base address to that type. The QuadPart reference,
by the way, results in your getting a 32-bit or 64-bit pointer, as appropri
ate to the platform for which you're compiling.

Whether or not the port address needs to be mapped via MmMapIoSpace, you'll
always call the HAL routines that deal with I/O port resources: READ_PORT_UCHAR,
WRITE_PORT_UCHAR, and so on. On a CPU that requires you to map a port address,
the HAL will be making memory references. On a CPU that doesn't require the
mapping, the HAL will be making I/O references; on anxS6, this means using one
of the IN and OUT instruction family.

Your StopDevice helper routine has a small cleanup task to perform if you
happen to have mapped your port resource:

VOID StopDevice(...)
{

if (pdx->portbase && pdx->mappedport)
MmUnmapIoSpace(pdx->portbase. pdx->nports);

pdx->portbase = NULL;

}

Memory Resources

302

Memory-mapped devices expose registers that software accesses using load and store
instructions. The translated resource value you get from the PnP Manager is a physi
cal address, and you need to reserve virtual addresses to cover the physical memory.
Later on, you'll be calling HAL routines that deal with memory registers, such as
READ_REGISTER_UCHAR, WRITE_REGISTER_UCHAR, and so on. Your extraction
and configuration code would look like this fragment:

typedef struct _DEVICE_EXTENSION {

PUCHAR membase;
ULONG nbytes;
... } DEVICE_EXTENSION. *PDEVICE_EXTENSION;

PHYSICAL-ADDRESS membase; II base address of range

for (ULONG i = 0; i < nres; ++i. ++resource)
{

switch (resource~>Type)

Chapter 7 Reading and Writing Data

{

case CmResourceTypeMemory:
membase = resource->u.Memory.Start;
pdx->nbytes = resource->u.Memory.Length;
break;

}

pdx->membase = (PUCHAR) MmMaploSpace(membase. pdx->nbytes.
MmNonCached) ;

if (!pdx->membase)
return STATUS_NO_MEMORY;

1. Within the resource descriptor, u.Memory has information about a memory
resource. u.Memory.Start is the beginning address of a contiguous range
of memory locations, and u.Memory.Length is the number of bytes in
the range. The start address is a 64-bit PHYSICAL_ADDRESS value. It's not
an accident that the u.Port and u.Memory substructures are identical
it's on purpose, and you can rely on it being true if you want to.

2. You must call MmMaploSpace to obtain a kernel-mode virtual address
by which the memory range can be accessed.

Your StopDevice function unconditionally unmaps your memory resources:

VOID StopDevice(...)
{

if (pdx->membase)
MmUnmaploSpace(pdx->membase. pdX->nbytes);

pdx->membase = NULL;

}

SERVICING AN INTERRUPT
Many devices signal completion of I/O operations by asynchronously interrupting the
processor. In this section, I'll discuss how you configure your driver for interrupt
handling and how you service interrupts when they occur.

Configuring an Interrupt
You configure an interrupt resource in your StartDevice function by calling IoConnect
Interrupt using parameters that you can simply extract from a CmResourceType
Intetrupt descriptor. Your driver and device need to be entirely ready to work correctly
when you call IoConnectInterrupt-you might even have to service an interrupt before

303

Programming the Microsoft Windows Drl,.r Model

304

the function returns-so you normally make the call near the end of the configura
tion process. Some devices have a hardware feature that allows you to prevent them
from interrupting. If your device has such a feature, disable interrupts before calling
IoCol'l11ectlnterrupt and enable them afterward. The extraction and configuration code
for an interrupt would look like this:

typedef struct _DEVICE_EXTENSION {

PKINTERRUPT InterruptObj~ct:
.•• } DEVICE-EXTENSION. *PDEVICE_EXTENSION:

ULONG vector:
KIRQL irql:
KINTERRUPT_MODE mode:
KAFFINITY affinity;
BOOLEAN irqshare:

// interrupt vector
/1 interrupt level
// latching mode
// processor affinity
/1 shared interrupt?

for (ULONG i = 0: < nres: ++i. ++resource)
{

switch (resource->Type)
{

case CmResourceTypelnterrupt:

}

irql = (KIRQL) resource->u.lnterrupt.Level:
v~ctor = resource->u.Interrupt.Vector:
affinity = resource->u.lnterrupt.Affinity:
mode = (resource->Flags == CM_RESOURCE_INTERRUPT_LATCHED)

? Latched : LevelSensitive:
irqshare = resource->ShareDisposition == CmResourceShareShared:
break:

status = loConpectlnterrupt(&pdx->InterruptObject.
(PKSERVICE_ROUTINE) OnInterrupt. (PVOID) pdx. NULL.
vector. irql. irql. mode. irqshare. affinity. FALSE):

1. The Le\te1 parameter specifies the interrupt request level (IRQL) for this
interrupt.

2. The Vector parameter specifies the hardware interrupt vector for this
interrupt. We don't care what this number is, since we're just going to act
as a conduit between the PnP Manager and IoConnectlnterrupt. All that
matters is that the HAL understand what the number means.

3. Affinity is a bit mask that indicates which CPUs will be allowed to handle
this interrUpt.

Chapter 7 Reading and Writing Data

4. We need to tell 10ConnectInterrupt whether our interrupt is edge-triggered
or level-triggered. If the resource Flags are CM_RESOURCE_INTERRUPT_
LATCHED, we have an edge-triggered interrupt. Otherwise, we have a
level-triggered interrupt.

5. Use this statement to discover whether your interrupt is shared.

In the call to 10ConnectInterrupt at the end of this sequence, we will simply
regurgitate the values we pulled out of the interrupt resource descriptor. The first
argument (&pdx->InterruptObject) indicates where to store the result of the con
nection operation-namely, a pointer to a kernel interrupt object that describes your
interrupt. The second argument (OnInterrupt) is the name of your interrupt service
routine; I'll discuss ISRs a bit further on in this chapter. The third argumerit (pdx) is
a context value that will be passed as an argument to the ISR each time your device
interrupts. I'll have more to say about-this context parameter later as well in "Select
ing an Appropriate Context Argument."

The fifth and sixth arguments (vector and irqI) specify the interrupt vector
number and interrupt request level, respectively, for the interrupt you're connecting.
The eighth argument (mode) is either Latched or LevelSensitive to indicate whether
the interrupt is edge-triggered or level-triggered. The ninth argument is TRUE if your
interrupt is shared with other devices and FALSE otherwise. The tenth argument
(affinity) is the processor affinity mask for this interrupt. The eleventh and final
argument indicates whether the operating system needs to save the floating-point
context when the device interrupts. Since you're not allowed to do floating-point cal
culations in an ISR on an x86 platform, a portable driver would always set this flag
to FALSE.

I haven't yet described two other arguments to 10Connectinterrupt. These become
important when your device uses more than one interrupt. In such a case, you would
create spin locks for your interrupts and initialize them by calling KeInitializeSpinLock.
You would also calculate the largest IRQL needed by any of-your interrupts before
connecting any of them. In each call to 10ConnectInterrupt, you'd specify the address
of the appropriate spin lock for the fourth argument (which is NULL in my example)
and you'd specify the maximum IRQL for the seventh argument (which is irqI in my
~xample). This seventh argument indicates the IRQL used for synchronizing the in
terrupts, which you should make the maximum of all your interrupt IRQLs so that
you're troubled ~y only one of your interrupts at a time.

If, however, your device uses only a single interrupt, you won't need a special
spin lock (because the I/O Manager automatically allocates one for you) and the
synchronization level for your interrupt will be the same as the interrupt IRQL.

305

Programming the Microsoft Windows Driver Model

Handling Interrupts

306

When your device generates an interrupt, the HAL selects a CPU to service the inter
rupt based on the CPU affinity mask you specified. It raises that CPU's IRQL to the
appropriate synchronization level and claims the spin lock associated with your in
terrupt object. Then it calls your ISR, which would have the following skeletal form:

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject. PYOID Context)
{

if «device not interrupting»
return FALSE:

<handle interrupt>
return TRUE:
}

Windows NT's interrupt-handling mechanism assumes that hardware interrupts
can be shared by many devices. Thus your first job in the ISR is to determine whether
your device is interrupting at the present moment. If not, you return FALSE right away
so that the HAL can send the interrupt to another device driver. If yes, you clear the
interrupt at the device level and return TRUE. Whether the HAL thenca11s other drivers'
ISRs depends on whether the device interrupt is edge-triggered or level-triggered and
on other platform details.

Your main job in the ISR is to service your hardware to clear the interrupt. I'll
have some general things to say about this job, but the details pretty much depend
on how your hardware works. Once you've performed this major task, you return
TRUE to indicate to the HAL that you've serviced a device interrupt.

Programming Restrictions in the ISR
ISRs execute at an IRQL higher than DISPATCH_LEVEL. All code and data used in
an ISR must therefore be in nonpaged memory. Furthermore, the set of kernel-mode
functions that an ISR can call is very limited.

Since an ISR executes at elevated IRQL, it freezes out other activities on its CPU
that require the same or a lower IRQL. For best system performance, therefore, your
ISR should execute as quickly as possible. Basically, do the minimum amount of work
required to service your hardware and return. If there is additional work to do (such
as completing an IRP), schedule a DPC to handle that work.

Despite the admonition you usually receive to do the smallest amount of work
possible in yotir ISR, you don't want to carry that idea to an extreme. For example,
if you're dealing with a device that interrupts to signal its readiness for the next output
byte, go ahead and send the next byte directly from your ISR. It's fundamentally silly
to schedule a DPC just to transfer a Single byte. Remember that the end user wants
you to service your hardware (or else he or she wouldn't have the hardware installed
on the computer), and you are entitled to your fair share of system resources to
provide that service.

Chapter 7 Reading and Writing Data

But don't go crazy calculating pi to a thousand decimal places in your ISR, either
(unless your device requires you to do something that ridiculous, and it probably
doesn't). Good sense should tell you what the right balance of work between an ISR
and a DPC routine should be.

Se.ecting an Appropriate Context Argument
In the call to loConnectInterrupt, the third argument is an arbitrary context value that
eventually shows up as the second argument to your ISR. You want to choose this
argument so as to allow your ISR to execute as rapidly as possible; the address of
your device object or of your device extension would be a good choice. The device
extension is where you'll be storing items---such as your device's base port address-
that you'll use in testing whether your device is currently asserting an interrupt. To
illustrate, suppose that your device, which is I/O-mapped, has a status port at its
base address and that the low-order bit of the status value indicates whether the device
is currently trying to interrupt. If you adopt my suggestion, the Brst few lines of your
ISR would read like this:

BOOLEAN Onlnterrupt(PKINTERRUPT InterruptObject. PDEVICE_EXTENSION pdx)
{

UCHAR devstatus READ_PORT_UCHAR(pdx->portbase);
if (!(devstatus & 1»

return FALSE;
<etc.>
}

The fully optimized code for this function will require only a few instructions
to read the status port and test the low-order bit.

If you elect to use the device extension as your context argument, be sure to
supply a cast when you call 10ConnectInterrupt:

IoConnectlnterrupt(...• (PKSERVICE_ROUHNE) Onlnterrupt •...);

If you omit the cast, the compiler will generate an exceptionally obscure error mes
sage because the second argument to your OnInterrupt routine (a PDEVICE_
EXTENSION) won't match the prototype of the function pointer argument to IoConnect
Interrupt, which demands a PYOID.

Synchronizing Operations with the ISR
As a general rule, the ISR shares data and hardware resources with other parts of the
driver. Anytime you hear the word share, you should immediately start thinking about
synchronization problems. For example, a standard DART (universal asynchronous
receiver-transmitter) device has a data port the driver uses for reading and writing
data. You'd expect a serial port driver's ISR to access this port from time to time.
Changing the baud rate also entails setting a control flag called the divisor latch,
performing two single-byte write operations to this same data port, and then clearing

307

Programming the Microsoft Windows Driver Model

the divisor latch. If the UART were to interrupt in the middle of changing the baud
rate, you can See that a data byte intended to be transmitted could easily end up in
the baud-rate divisor register or that a byte intended for the divisor register could end
up being transmitted as data.

The system guards the ISR with a spin lock and with a relatively high IRQL
the device IRQL (DIRQL). To simplify the mechanics of obtaining the same spin lock
and raising IRQL to the same level as an interrupt, the system provides this service
function:

BOOLEAN result = KeSynchronizeExecution(InterruptObject.
SynchRoutine. Context);

where InterruptObject (PKINTERRUPT) is a pointer to the interrupt object describing
the interrupt we're trying to synchronize with, SynchRoutine (PKSYNCHRONIZE_
ROUTINE) is the address of a callback function in our driver, and Context (PVOID)
is an arbitrary context parameter to be sent to the SynchRoutine as an argument. We
use the generic term synch critical section routine to describe a subroutine that we
call by means of KeSynchronizeExecution. The synch critical section routine has
the following prototype:

BOOLEAN SynchRoutine(PVOID Context);

That is, it receives a single argument and returns a BOOLEAN result. When it
gets control, the current CPU is running at the synchronization IRQL that the origi
nal call to IoConnectinterrupt specified, and it owns the spin lock associated with
the interrupt. Consequently, interrupts from the device are temporarily blocked out,
and the SynchRoutine can freely access data and hardware resources that it shares
with the ISR.

KeSynchronizeExecution returns whatever value SynchRoutine returns, by the
way. This gives you a way of providing a little bit-actually 8 bits, since BOOLEAN
is declared as an unsigned character-of feedback from SynchRoutine to whatever
calls KeSynchronizeExecution.

Deferred Procedure Calls

308

Completely servicing a device interrupt often requires you to perform operations that
aren't legal inside an ISR or that are too expensive to carry out at the elevated IRQL
of an ISR. To avoid these problems, the designers of Windows NT provided the de
ferred procedure call mechanism. The DPC is a general-purpose mechanism, but you
use it mqst often.in connection with interrupt handling. In the most common sce
nario, your ISR decides that the current request is complete and r~quests a DPC . Later
on, the kernel calls your DPC routine at DISPATCH_LEVEL. While restrictions on what
service routines you can call and on paging still apply, fewer restrictions ;apply be
cause you're now running at a lower IRQL than inside the ISR. In particular, it's legal

Chapter 7 Reading and Writing Data

to call routines like IoCompleteRequest or IoStartNextPacket that are logically nec
essary at the end of an I/O operation.

Every device object gets a DPC object "for free." That is, the DEVICE_OBJECT
has a OPC object-named, prosaically enough, Dpc-built in. You need to initialize
this built-in OPC object shortly after you create your device object:

NTSTATUS AddDevice(...)
{

PDEVICE_OBJECT fdo;
IoCreateDevice(...• &fdo);
IoInftf a11 zeDpcRequest(fdo. DpcForIsr):

}

IoInitializeDpcRequest is a macro in WDM.H that initializes the device object's built
in DPC object. The second argument is the address of the DPC procedure that I'll show
you presently.

With your initialized DPC object in place, your ISR can request a OPC by using
the follOwing macro:

BOOLEAN Onlnterrupt(...)
{

IoRequestDpc(pdx->DeviceObject. NULL. NULL);

}

This call to IoRequestDpc places your device object's OPC object in a systemwide
queue, as illustrated in Figure 7-5.

IRQL

DIRQL3 •••••..•••••..•••••••••••• - ~ ••••..•••• .,,

DIRQ~ 1 •• • __ • 1.':;· .. ••, .. • .. .,·· .. ·., .. • ·~, .. • • ..

DIRQL1 1 .. · · ·I· · .. · __ .. r..~·~~l,· · .. ·:::""""

DISPATCH_LEVEL I · · ·,.,· · · · ·t---...... · .. ~~

. PASSIVE_LEVEL "'--.... , .. ~~ IIl ••• ---

Figure 7-5. Processing DPC requests.

309

Programming the Microsoft Windows Driver Model

310

The two NULL parameters are context values that don't really have a good use
in this particular situation. Later on, when no other activity is occurring at DISPATCH_
LEVEL, the kernel removes your DPC object from the queue and calls your DPC
routine, which has the following prototype:

VOID DpeForIsr(PKDPC Dpe. PDEVICE_OBJECT fdo. PIRP junk. PVOID Context)
{

}

What you do inside the DPC routine depends in great measure on how your
device works. A likely task would be to complete the current IRP and rel~ase the next
IRP from the queue. If you use the "standard model" for IRP queuing, the code would
be as follows:

VOID DpeForIsr(...)
{

PIRP Irp = fdo-)CurrentIrp;
IoStartNextPaeket(fdo. TRUE);
IoCompleteRequest(Irp. <boost value»;
}

The TRUE argument to IoStartNextPacket indicates that the next IRP is cancellable
meaning that the original call to IoStartPacket specified a cancel routine-and causes
IoStartNextPacket to acquire and release the global cancel spin lock around its access
to the device queue and CurrentIrp.

In this code fragment, we rely on the fact that the I/O Manager sets the device
object's CurrentIrp field to point to the IRP it sends to our Startlo routine. The IRP
we want to complete is the one that's the CurrentIrp when we commence the DPC
routine. It's customary to call IoStartNextPacket before IoCompleteRequest so that
we can get our device busy with a new request before we start the potentially long
process of completing the current IRP.

If you use the DEVQUEUE object presented in the previous chapter for IRP
queuing, the code would be similar:

VOID DpeForIsr(...)
{

PDEVICE_EXTENSION pdx = ••••
PIRP Irp = GetCurrentIrp(&pdx-)dqRead);
StartNextPaeket(&pdx-)dqRead. fdo);
IoCompleteRequest(Irp. <boost value»;
}

DPC Scheduling
I've glossed over two fairly important details and a minor one about DPCs until now.
The first important detail is implicit in the fact that you have a DPC object that gets
put onto a queue by IoRequestDpc. If your device generates an additional interrupt

Chapter 7 Reading and Writing Data

before the OPC routine actually runs, and if your ISR requests another OPC, the kernel
will simply ignore the second request. In other words, your OPC object will be on
the queue one time no matter how many OPCs are requested by successive invoca
tions of your ISR, and the kernel will call your callback routine only one time. Dur
ing that one invocation, your OPC routine needs to accomplish all the work related
to all the interrupts that have occurred since the last ope.

As soon as the OPC dispatcher dequeues your OPC object, it's possible for some
thing to queue it again, even while your OPC routine executes. This won't cause you
any grief if the object happens to be queued on the same CPU both times. The sec
ond important detail about OPC processing, therefore, has to do with CPU affmity.
Normally, the kernel queues a OPC object for handling on the same processor that
requests the OPC-for example, the processor that just handled an interrupt and called
IoRequestDpc. As soon as the OPC dispatcher dequeues the OPC object and calls your
callback routine on one CPU, it's theoretically possible for your device to interrupt
on a different CPU, which might end up requesting a OPC that could execute simul
taneously on that different CPU. Whether simultaneous execution of your OPC
routine poses a problem or not depends, obviously, on the details of your coding.

You can avoid the potential problems that might come from having your OPC
routine Simultaneously active on multiple CPUs in several ways. One way, which
isn't the best, is to designate a particular CPU for running your OPC by calling
KeSetTargetProcessorDpc. Also, you could theoretically restrict the CPU affmity of
your interrupt when you first connect it; if you never queue the OPC except from
your ISR, you'll never be executing the OPC on any different cpu. The real reason
you're able to specify the CPU affmity of a OPC or an interrupt, however, is to improve
performance by allowing the code and data accessed during your OPC or ISR rou
tines to remain in a cache.

You can also use a spin lock or other synchronization primitive to prevent inter
ference between two instances of your OPC routine. Be careful of using a spin lock
here: you often need to coordinate the hypothetical multiple instances of your OPC
routine with your ISR, and an ISR runs at too high an IRQL to use an ordinary spin
lock. An interlocked list-that is, one you manipulate by using support functions
in the same family as ExInterlockedInsertHeadList-might help you, since (so
long as you never explicitly acquire the same spin lock that you use to guard the
list) you can use the list at any IRQL. Interlocked forms of the bitwise OR and AND
operators also might help by allowing you to manage a bit mask (such as a mask
indicating recent interrupt conditions) that controls what your OPC routine is sup
posed to accomplish; you can cobble these functions together with the help of
InterlockedCompareExchange.

Most simply, you can just make sure that your device won't interrupt in between
the time you request a ope and the time your OPC routine finishes its work. ("Yo,
hardware guys, stop flooding me with interrupts!") ,

311

Programming the Microsoft Windows Driver Model

312

The third DPC detail, which I consider less crucial than the two I've just ex
plained, concerns the importance of the DPC. By calling KeSetImportanceOpe, you
can designate one of three importance levels for your DPC:

• MediumImportance is the default and indicates that the DPC should be
queued after all currently queued DPCs. If the DPC is queued to another
processor, that other processor won't necessarily be interrupted right away
to service the DPC. If it's queued to the current processor, the kernel will
request a DPC interrupt as soon as possible to begin servicing DPCs.

• HighImportance causes the DPC to be queued Brst. Iftwo.or more high
importance DPCs get requested at about the same time, the last one
queued gets serviced first.

• LowImportance causes the DPC to be queued last. In addition, the ker
nel won't necessarily request a DPC interrupt for whatever processor is
destined to service' the DPC.

The net effect of a DPC's importance level is to influence, but not necessarily
control, how soon the DPC occurs. Even a DPC that has low importance might trig
ger a DPC interrupt on another CPU if that other CPU reaches some threshold for
queued DPCs or if DPCs haven't been getting processed fast enough on it. If your
device is capable of interrupting again before your DPC routine runs, changing your
DPC to low importance will increase the likelihood that you'll have multiple work
items to perform. If your DPC has an affinity for some CPU other than the one that
requests the DPC, choosing high importance for your DPC will increase the likeli
hood that your ISR will still be active when your DPC routine begins to run. But neither
of these possibilities is a certainty; conversely, altering or not altering your impor
tance can't prevent either of them from happening.

Custom DPC Objects
You can create other DPC objects besides the one named Ope in a device object.
Simply reserve storage-in your device extension or some other persistent place that
isn't paged-for a KDPC object, and initialize it:

typedef struct _DEVICE_EXTENSION {

KDPC CustomDpc:
... }:

KeIn1tializeDpc(&pdx->CustomDpc, (PKDEFERRED_ROUTINE) DpcRoutine, fdo):

In the callto KeInitializeOpe, the second argument is the address of a DPC routine
in nonpaged memory, and the third argument is an arbitrary context parameter that
will be sent to the DPC routine as its second argument.

To request a deferred call to a custom DPC routine, call KeInsertQueueOpc:

BOOLEAN inserted = KeInsertQueueDpc(&pdx->CustomDpc, argl, arg2):

Chapter 7 Reading and Writing Data

Here, argl and arg2 are arbitrary context pointers that will be passed to the custom
DPC routine. The return value is FALSE if the DPC object was already in a processor
queue and TRUE otherwise.

Also, you can also remove a DPC object from a processor queue by calling·
KeRemoveQueueDpc.

A Simple Interrupt-Driven Device
I wrote the PCI42 sample driver (available on the companion disc) to illustrate how
to write the various different driver routines that a typical interrupt-driven, non-DMA
device might use. The method used to handle such a device is often called programmed
I/O (PIO) because program intervention is required to transfer each unit of data.

PCI42 is a dumbed-down driver for the S5933 PCI chip set from Applied Micro
Circuits Corporation (AMCC). The S5933 acts a(> a matchmaker between the PCI bus
and an add-on device that implements the actual function of a device. The S5933 is
very flexible. In particular, you can program nonvolatile RAM so as to initialize the
PCI configuration space for your device in any desired way. PCI42 uses the S5933 in
its factory default state, however.

To grossly oversimplify matters, a WDM driver communicates with the add-on
device connected to an S5933 either by doing DMA (which I'll discuss in the next
major section of this chapter) or by sending and receiving data through a set of mail
box registers. PCI42 will be using one byte in one of the mailbox registers to trans
fer data one byte at a time.

The AMCC development kit for the S5933 (part number S5933DKl) includes two
breadboard cards and an ISA (Industry Standard Architecture) interface card· that
connects to the S5933 development board via a ribbon cable. The ISA card allows
you to access the S5933. from the add-on device side in order to provide software
simulation of the add-on function. One component of the PCI42 sample is a driver
(S5933DK1.SYS) for the ISA card that exports an interface for use by test programs.

Hardware people will snicker at the simplicity of the way PCI42 manages the
device. The advantage of using such a trivial example is that you'll be able to see each
step in the process of handling an I/O operation unfold at human speed. So chortle
right back if your social dynamics allow it.

Initializing PCI42
The StartDevice function in PCI42 handles a port resource and an interrupt resource·.
The port resource describes a collection of sixteen 32-bit operation registers in I/O
space, and the interrupt resource describes the host manifestation of the device's
INTA# interrupt capability. At the end of StartDevice, we have the following device
specific code:

NTSTATUS StartDevice(...)
{

(continued)

313

Programming the Microsoft Windows Driver Model

314

ResetDevice(pdx):
status = loConnectInterrupt(...):
KeSynchronizeExecution(pdx->InterruptObject.

(PKSYNCHRONIZE_ROUTINE) SetupDevice. pdx):
return STATUS_SUCCESS:
}

That is, we invoke a helper routine (ResetDevice) to reset the hardware. One
of the tasks for ResetDevice is to prevent the device from generating any interrupts,
insofar as that's possible. Then we call IoConnectInterrupt to connect the device
interrupt to our ISR. Even before 10Connectlnterrupt returns, it's possible for our
device to generate an interrupt, so everything about our driver and the hardware has
to be ready to go beforehand. After connecting the interrupt, we invoke another helper
routine named SetupDevice to program the device to act the way we want it to. We
must synchronize this step with our ISR because it uses the same hardware registers
as our ISR would use, and we don't want any possibility of sending the device in
consistent instructions. The SetupDevice call is the last step in PC142's StartDevice
because-contrary to what I told you in Chapter 2, "Basic Structure of a WDM
Driver"-PCI42 hasn't registered any device interfaces and therefore has none to
enable at this point.

ResetDevice is highly device-specific and reads as follows:

VOID ResetDevice(PDEVICE_EXTENSION pdx)
{

PAGED_CODE():

WRITE_PORT_ULONG«PULONG) (pdx->portbase + MCSR). MCSR-RESET):

LARGE_INTEGER timeout:
timeout.QuadPart = -10 * 10000: II i.e .• 10 milliseconds

KeDelayExecutionThread(KernelMode. FALSE. &timeout):
WRITE_PORT_ULONG«PULONG) (pdx->portbase + MCSR). 0):

WRITE_PORT_ULONG«PULONG) (pdx->portbase + INTCSR).
INTCSR-INTERRUPT_MASK):

}

1. The S5933 has a master controVstatus register (MCSR) that controls bus
mastering DMA transfers and other actions. Asserting four of these bits re
sets different features of the device. I defined the constant MCSR_RESET
to be a mask containing all four of these reset flags. This and other mani
fest constants for S5933 features are in the S5933.H file that's part of the
PCI42 project.

2. Three of the re,set flags pertain to features internal to the S5933 and take
effect immediately. Setting the fourth flag to 1 asserts a reset signal for the
add-on function. To deassert the add-on reset, you have to explicitly reset

Chapter 7 Reading and Writing Data

this flag to O. In general, you want to give the hardware a little bit of time
to recognize a reset pulse. KeDelayExecutionThread, which I discussed
in Chapter 4, "Synchronization," puts this thread to sleep for about 10
milliseconds. You can raise or lower this constant if your hardware has
different requirements, but don't forget that the timeout will never be
less than the granularity of the system clock. Since we're blocking our
thread, we need to be running at PASSIVE_LEVEL in a nonarbitrary thread
context. Those conditions are met because our ultimate caller is the
PnP Manager, which has sent us an IRP _MN_START_DEVICE in the full
expectation that we'd be blocking the system thread we happen to be in.

3. The last step in resetting the device is to clear any pending interrupts. The
S5933 has six interrupt flags in an interrupt controVstatus register (INTCSR).
Writing 1 bits in these six positions clears all pending interrupts. (If we
write back a mask value that has a 0 bit in one of the interrupt flag posi
tions, the state of that interrupt is not affected. This kind of flag bit is called
read/write-clear or just RlWC.) Other bits in the INTCSR enable interrupts
of various kinds. By writing 0 bits in those locations, we're disabling the
device to the maximum extent possible.

Our SetupDevice function is quite simple:

VOID SetupDevice(PDEVICE_EXTENSION pdx)
{

WRITE_PORT_ULONG«PULONG) (pdx->portbase + INTCSR),
INTCSR-IMBI_ENABLE

}

I (lNTCSR-MBl « INTCSR-IMBLREG_SELECLSHIFT)
I (INTCSR-BYTE0 « INTCSR-IMBI_BYTE_SELECT_SHIFT)
) ;

This function reprograms the INTCSR to specify that we want an interrupt to occur
when there's a change to byte 0 of inbound mailbox register 1. We could have speci
fied other interrupt conditions for this chip, including the emptying of a particular
byte of a specified outbound mailbox register, the completion of a read DMA trans
fer, and the completion of a write DMA transfer.

Starting a Read Operation
PCI42's Startlo routine follows the pattern we've already studied:

VOID StartIo(lN PDEVICE_OBJECT fdo, IN PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->OeviceExtension;
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp);
if (INT_SUCCESS(status»

{

(continued)

315

Programming the Microsoft Windows Driver Modal

316

CompleteRequest(Irp. status. O);
return;
}

if (!stack->Parameter"s.Read.Length)
{

StartNextPacket(&pdx->dqReadWrite. fdo);
CompleteRequest(Irp. STATUS_SUCCESS. O);
return;
}

pdx->buffer = (POCHAR) Irp->Assoclatedlrp.SystemBuffer;
pdx->nbytes = stack->Parameters.Read.Length;
pdx->numxfer = O;

KeSynchronizeExecutlon(pdx->InterruptObject.
(PKSYNCHRONIZE_ROUTINE) TransferFlrst. pdx);

}

1. Here, we save parameters in the device extension to describe the ongo
ing progress of the input operation we're about to undertake. PCI42 uses
the DO_BUFFERED_IO method, which isn't typical but helps make this
driver simple enough to be used as an example.

2. Since our interrupt is connected, our device can interrupt at any time. The
ISR will want to transfer data bytes when interrupts happen, but we want
to be Sure that the ISR is never confused about which data buffer to use
or about the number of bytes we're trying to read. To restrain our ISR's
eagerness, we put a flag in the device extension named activerequest
that's ordinarily FALSE. Now is the time to set that flag to TRUE. As usual
when dealing with a shared resource, we need to synchronize the setting
of tj:le flag with the code in the ISR that tests it, and we therefore need to
invoke a SynchCritSection routine as I previously discussed. It might also
happen that a data byte is already available, in which case the ftrst inter
rupt will never happen. TransferFirst is a helper routine that checks for
this eventuality and reads the first byte. The add-on function has ways of
knowing that we emptied themailbox.soit will presumably send the next
byte in due course. Here's TransferFirst:

VOID TransferFlrst(PDEVICE_EXTENSION pdx)
{

pdx-)activerequest = TRUE;
ULONG mbef = READ_PORT_ULONG«PULONG) (pdx->portbase + MBEF»;
if (!(mbef & MBEF_INl_0»

return;

*pdx->buffer = READ_PORT_UCHAR(pdx->portbase + IMBl):
++pdx->buffer;

Chapter 7 Reading and Writing Data

++pdx-)numxfer;
if (--pdx-)nbytes == 0)

{

}

pdx-)activerequest = FALSE;
IoRequestDpc(pdx-)DeviceObject, NULL, NULL);
}

The S5933 has a mailbox empty/full register (MBEF) whose bits indicate the
current status of each byte of each mailbox register. Here, we check whether the
register byte we're using for input (inbound mailbox register 1, byte 0) is presently
unread. If so, we read it. That might exhaust the transfer count. We already have a
subroutine (DpcForIsr) that knows what to do with a complete request, so we re
quest a DPC if this first byte turns out to satisfy the request. (Recall that we're exe
cuting at DIRQL under protection of an interrupt spin lock because we've been
invoked as a SynchCritSection routine, so we can't just complete the IRP right now.)

Handling the Interrupt
In normal operation with PCI42, the S5933 interrupts when a new data byte arrives
in mailbox 1. The following ISR then gains control:

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, PDEVICE_EXTENSION pdx)
{

ULONG intcsr = READ_PORT_ULONG«PULONG) (pdx-)portbase + INTCSR»;
if (!(intcsr & INTCSR-INTERRUPLPENDING»

return FALSE;

BOOLEAN dpc = FALSE;

PIRP Irp = GetCurrentIrp(&pdx-)dqReadWrite);

if (!Irp .
11 AreRequestsBeingAborted(&pdx-)dqReadWrite)
11 Irp-)Cancel)
{

pdx-)nbytes = 0;
dpc = Irp != NULL;
}

while (intcsr & INTCSR-INTERRUPT_PENDING)
{

if (intcsr & INTCSR-IMBI)
{

if (pdx-)nbytes && pdx-)activerequest)
{

*pdx-)buffer = READ_PORT_UCHAR(pdx-)portbase + IMBl);
++pdx-)buffer;

(continued)

317

Programming the Microsoft Windows Driver Model .

318

}

++pdx->numxfer;
if (!--pdx->nbytes)

dpc = TRUE;
}

WRITE_PORT_ULONG«PULONG) (pdx->portbase + INTCSR), intcsr);

intcsr = READ_PORT_ULONG«PULONG) (pdx->portbase + INTCSR»;
}

if (dpc)
{

pdx->activerequest = FALSE;
IoRequestDpc(pdx->Dev1ceObj~ct, NULL, NULL);
}

return TRUE;
}

1. Our ftrst task is to discover whether our own device is trying to interrupt
now. We read the S5933's INTCSR and test a bit (INTCSR_INTERRUPT_
PENDING) that summarizes all pending causes of interrupts. If this bit is
clear, we return immediately. The reason I chose to use the device exten
sion pointer as the context argument to this routine-back when I called
10Connectlnterrupt-should now be clear: we need immediate access to
this structure to get the base port address.

2. When we use a DEVQUEUE, we rely on the queue object to keep track
of the current IRP. This interrupt might be one that we don't expect be
cause we're not currently servicing any IRP. In that case, we still have to
clear the interrupt but shouldn't do anything else.

3. It's also possible that a Plug and Play or power event has occurred that
will cause any new IRPs to be rejected by the dispatch routine. The
DEVQUEUE's AreRequestsBeingAborted function tells us that fact so
that we can abort the current request right now. Aborting an active request
is a reasonable thing to do with a device such as this that proceeds byte
by byte. Similarly it's a good idea to check whether the IRP has been
cancelled if it will take a long time to ftnish the IRP. If your device inter
rupts only when it's done with a long transfer, you could leave this test
out of your ISR.

4. We're now embarking on a loop that will terminate when all of our device's
current interrupts have been cleared. At the end of the loop, we'll reread
the INTCSR to determine whether any more interrupt conditions have
arisen. If so, we'll repeat the loop. We're not being greedy with CPU time

Chapter 7 Reading and Writing Data

here-we want to avoid letting interrupts cascade into the system because
servicing an interrupt is by itself relatively expensive.

5. If the S5933 has interrupted because of a mailbox event, we'll read a new
data byte from the mailbox into the I/O buffer for the current IRP. If you
were to look in the MBEF register immediately after the read, you'd see
that the bit corresponding to inbound mailbox register 1, byte 0, gets
cleared by the read. Note that we needn't test the MBEF to determine
whether our byte has actually changed because we programmed the
device to interrupt only upon a change to that single byte.

6. Writing the INTCSR with its previous contents has the effect of clearing
the six R/WC interrupt bits, not changing a few read-only bits, and pre
serving the original setting of all read/write control bits.

7. Here, we read the INTCSR to determine whether additional interrupt
conditions have arisen. If so, we'll repeat this loop to service them.

8. As we progressed through the preceding code, we set the BOOLEAN dpc
variable to TRUE if a DPC is now appropriate to complete the current IRP.

The DPC routine for PCI42 is as follows:

VOID DpeForlsr(PKDPC Dpe, PDEVICE_OBJECT fdo, PIRP junk, PYOID Context)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DevieeExtension;
NTSTATUS status = STATUS_SUCCESS;
PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite);
ULONG info = pdx->numxfer;
StartNextPaeket(&pdx->dqReadWrite, fdo);
CompleteRequest(Irp, status, info);
}

Testing PCI42
If you want to examine PCI42 in operation, you need to do several things. First obtain
and install an S5933DKI development board, including the ISA add-in interface card.
Use the Add Hardware wizard to install the S5933DK1.SYS driver and the PCI42.SYS
driver. (I found that Windows 98 initially identified the development board as a
nonworking sound card and that I had to remove it in the Device Manager before I
could install PCI42 as its driver. Windows 2000 handled the board normally, but I did
encounter an annoying setup freeze when trying to upgrade from one release can
didate to another during the beta phase.)

Then run both the ADDONSIM and TEST programs, which are in the PCI42
directory tree on the companion disc. ADDONSIM writes a data value to the mail
box via the ISA interface. TEST reads a data byte from PCI42. Determining the value
of the data byte is left as an exercise for you.

319

Programming the Microsoft Windows Driver Model

DIRECT MEMORY ACCESS

320

Windows 2000 supports direct memory access transfers based on the abstract model
of a computer depicted in Figure 7-6. In this model, the computer is considered to
have a collection of map registers that translate between physical CPU address and
bus addresses. Each map register holds the address of one physical page frame.
Hardware accesses memory for reading or writing by means of a "logical," or bus
specific, address. The map registers play the same role as page table entries for soft
ware by allowing hardware to use different numeric values for their addresses than
the CPU understands.

Physical address
space

Adapter
object

Bus address
space

Figure 7-6. Abstract computermodelfor DMA transfers.

Some CPUs, such as the Alpha, have actual hardware map registers. One of the
steps in initializing a DMA transfer-specifically, the MapTransfer step I'll discuss
presently-reserves some of these registers for your use. Other CPUs, such as the
Intel x86, do not have map registers, but you write your driver as if they did. The
MapTransfer step on such a computer might end up reserving use of physical memory
buffers that belong to the system, in which case the DMA operation will proceed using
the reserved buffer. Obviously, something has to copy data to or from the DMA buffer
before or after the transfer. In certain cases--for example, when dealing with a bus
master device that has scatter/gather capability-the MapTransfer phase might do all
of nothing on an architecture without map registers.

Chapter 7 Reading and Writing Data

The Windows 2000 kernel uses a data structure known as an adapter object to
. describe the DMA characteristics of a device and to control access to potentially
shared resources, such as system DMA channels and map registers. You get a pointer
to an adapter object by calling IoGetDmaAdapter during your StartDevice process
ing. The adapter object has a pointer to a structure named DmaOperations that,
in turn, contains pointers to all the other functions you need to call. See Table 7-4.
These functions take the place of global functions (such as IoAllocateAdapter,
IoMapTransfer, and the like) that you would have used in previous versions of
Windows NT. In fact, the global names are now macros that invoke the Dma
Operations functions.

DmaOperativns Function Pointer

PutDmaAciapter

AllocateCommonBuffer

FreeCommonBuffer

AllocateAdapterChannel

FlushAdapterBuffers

FreeAdapterChannel

FreeMapRegisters

MapTransfer

GetDmaAlignment

ReadDmaCounter

GetScatterGatherList

PutScatterGatherList

Description

Destroys adapter object

Allocates a common buffer

Releases a common buffer

Reserves adapter and map registers

Flushes intermediate data buffers af
ter transfer

Releases adapter object and map
registers

Releases map registers only

Programs one stage of a transfer

Gets address alignment required for
adapter

Determines residual count

Reserves adapter and construct scat
ter/ gather list

Releases scatter/gather list

Table 7-4. DmaOperations function pointers for DMA helper routines.

Transfer Strategies
How you perform a DMA transfer depends on several factors:

• If your device has bus-mastering capability, it has the necessary electronics
to access main memory if you tell it a few basic facts, such as where to
start, how many units of data to transfer, whether you're performing an
input or an output operation, and so on. You'll consult withyour hardware

321

Programming the Microsoft Windows Driver Model

322

designers to sort out these details, or else you'll be working from a speci
fication that tells you what to do at the hardware level.

• A device with scatter/gather capability can transfer large blocks of data
to or from discontiguous areas of physical memory. Using scatter/gather
is advantageous for software because it eliminates the need to acquire
large blocks of contiguous page frames. Pages can simply be locked
wherever they're found in physical memory, and the device can be told
where they are.

• If your device is not a bus master, you'll be using the system DMA con
troller on the motherboard of the computer. This style of DMA is some
times called slave DMA. The system DMA controller associated with the
ISA bus has some limitations on what physical memory it can access and
how large a transfer it can perform without reprogramming. The control
ler for an EISA bus lacks these limits. You won't have to know-at least,
not in Windows 200O-which type of bus your hardware plugs in to because
the operating system is able to take account of these different restrictions
automatically.

• Ordinarily, DMA operations involve programming hardware map registers
or copying data either before or after the operation. If your device needs
to read or write data continuously, you don't want to do either of these
steps for each I/O request-they might slow down processing too much
to be acceptable in your particular situation. You can, therefore, allocate
what's known as a common buffer that your driver and your device can
both Simultaneously access at any time.

Notwithstanding the fact that many details will be different depending on how
these four factors interplay, the steps you perform will have many common fea
tures. Figure 7-7 illustrates the overall operation of a transfer. You start the trans
fer in your Startlo routine by requesting ownership of your adapter object. Ownership
has meaning only if you're sharing a system DMA channel with other devices, but
the Windows 2000 DMA model demands that you perform this step anyway. When
the I/O Manager is able to grant you ownership, it allocates some map registers for
your temporary use and calls back to an adapter control routine you provide. In your
adapter control routine, you perform a transfer mapping step to arrange the first
(maybe the only) stage of the transfer. Multiple stages can be necessary if sufficient
map registers aren't available; your device must be capable of handling any delay that
might occur between stages.

Chapter 7 Reading and Writing Data

Figure 7-7. Flow of ownership during D.MA.

Once your adapter control routine has initialized the map registers for the first
stage, you signal your device to begin operation. Your device will instigate an interrupt
when this initial transfer completes, whereupon you'll schedule a DPC. The DPC rou
tine will initiate another staged transfer, if necessary, or else it will complete the request.

Somewhere along the way, you'll release the map registers and the adapter
object. The timing of these two events is one of the details that differs based on the
factors I summarized earlier in this section.

Performing DMA Transfers
Now I'll go into detail about the mechanics of what's often called a packet-based DMA
transfer, wherein you transfer a discrete amount of data by using the data buffer that
accompanies an I/O request packet. Let's start simply and suppose that you face what
will be a very common case nowadays: your device is a PCI bus master but does not
have scatter/gather capability.

To start with, when you create your device object, you'd ordinarily indicate that
you want to use the direct method of data buffering by setting the DO_DIRECT_IO
flag. You'd choose the direct method because you'll eventually be passing the ad
dress of a memory descriptor list as one of the arguments to the MapTransfer func-

. tion you'll be calling. This choice poses a bit of a problem with regard to buffer

323

Programming Ihe Microsoft Windows Driver Modal

324

alignment, though. Unless the application uses the FILE_FLAG_NO_BUFFERING flag
in its call to CreateFlle, the I/O Manager won't enforce the device object's Alignm.ent
Requirement on user-mode data buffers. (It doesn't enforce the requirement for a
kernel-mode caller at all except in the checked build.) If your device or the HAL
requires DMA buffers to begin on some particular boundary, therefore, you might
end up copying a small portion of the user data to a correctly aligned internal buffer
to meet the alignment requirement-either that or fail any request that has a mis
aligned buffer.

In your StartDevice function, you create an adapter object by using code like
the following:

INTERFACE_TYPE bustype;
ULONG junk;
IoGetDeviceProperty(pdx->Pdo. DevicePropertyLegacyBusType.

sizeof(bustype). &bustype. &junk);

DEVICE_DESCRIPTION dd;
RtlZeroMemory(&dd. sizeof(dd»;
dd.Version = DEVICE_DESCRIPTION_VERSION;
dd.Master = TRUE;
dd.InterfaceType = bustype;
dd.MaximumLength = MAXTRANSFER;
dd.Dma32BitAddresses = TRUE;

pdx->AdapterObject = IoGetDmaAdapter(pdx->Pdo. &dd. &pdx->nMapRegisters);

The last statement in this code fragment is the important one. IoGetDmaAdapter
will communicate with the bus driver or the HAL to create an adapter object, whose
address it returns to you. The first parameter (pdx->Pdo) identifies the physical de
vice object (PDO) for your device. The second parameter points to a DEVICE_
DESCRIPTION structure that you initialize to describe the DMA characteristics of your
device. The last parameter indicates where the system should store the maximum
number of map registers you'll ever be allowed to attempt to reserve during a single
transfer. You'll notice that I reserved two fields in the device extension (AdapterObject
and nMapRegisters) to receive the two outputs from this function.

In your StopDevice function, you destroy the adapter object with this call:

VOID StopDevice(...)
{

if (pdx->AdapterObject)
(*pdx->Ad~pterObject->DmaOperations->PutDmaAdapter)

(pdx->AdapterObject):
pdx->AdapterObject = NULL;

}

Chapter 7 Reading and Writing Data

You won't expect to receive an official DMA resource when your device is a
bus master. That is, your resource extraction loop won't need a CmResourceTypeDma
case label. The PnP Manager doesn't assign you a DMA resource because your hardware
itself contains all the necessary electronics for performing DMA transfers, so nothing
additional needs to be assigned to you.

Previous versions of Windows NT relied on a service function named HalGet
Adapter to acquire the DMA adapter object. That function still exists for compatibility,
but newWDM drivers should call IoGetDmaAdapter instead. The difference between
the two is that IoGetDmaAdapter first issues an IRP _MN_QUERY_INTERFACE Plug
and Play IRP to determine whether the physical device object supports the GUID_
BUS_INTERFACE_STANDARD direct call interface. If so, IoGetDmaAdapter uses that
interface to allocate the adapter object. If not, it simply calls HalGetAdapter.

Table 7-5 summarizes the fields in the DEVICE_DESCRIPTION structure you pass
to IoGetDmaAdapter. The only fields that are relevant for a bus-master device are
those shown in the preceding StartDevice code fragment. The HAL might or might
not need to know whether your device recognizes 32-bit or 64-bit addresses-the Intel
x86 HAL uses this flag only when you allocate a common buffer, for example-but
you should indicate that capability anyway to retain portability. By zeroing the en
tire structure, we set ScatterGather to FALSE. Since we won't be using a system
DMA channel, none of DmaChannel, DmaPort, DmaWidth, DemandMode,
AutoInitialize,IgnoreCount, and DmaSpeed will be examined by the routine that
creates our adapter object.

Field Name

Version

Master

ScatterGather

DemandMode

AutoInitialize

Dma32BitAddresses

Relevant
Description To Device

Version number of structure- All
initialize to DEVICE_
DESCRIPTION3ERSION

Bus-master device-set based on All
your knowledge of device

Device supports scatter/gather All
list-set based on your knowledge
of device

Use system DMA controller's Slave
demand mode-set based on your
knowledge of device

Use system DMA controller's Slave
autoinitialize mode-set based on
your knowledge of device

Can use 32-bit physical addresses Common buffer

Table 7-5. Device desCription strncture used with !oGetDmaAdapter. (continued)

325

Programming the Microsoft Windows Driver Model

326

continued

Field Name

IgnoreCount

Reservedl

Dma64BitAddresses

DoNotUse2

DmaChannel

InterfaceType

DmaWidth

DmaSpeed

MaximumLength

DmaPort

Description

Controller doesn't maintain an
accurate transfer count-set based
on your knowledge of device

Reserved-must be FALSE

Can use 64-bit physical addresses

Reserved-must be 0

DMA channel number-initialize
from Channel attribute of resource
descriptor

Bus type-use result of
IoGetDeviceProperty call to get
DevicePropertyLegacyBusType

Width of transfers-set based on
your knowledge of device to
Width8Bits, Widthl6Bits, or
Width32Bits

Speed of transfers-set based on
your knowlecige of device to
Compatible, TypeA, TypeB,
TypeC, or TypeF

Maximum length of a single
transfer-set based on your
knowledge of device (and round
up to a multiple of PAGE_SIZE)

Microchannel-type bus port
number-initialize from Port
attribute of resource descriptor

Relevant
To Device

Slave

Common buffer

Slave

All

Slave

Slave

All

Slave

To initiate an I/O operation, your Startlo routine ftrst has to reserve the adapter
object by calling the object's AIlocateAdapterChanne1 routine. One of the arguments
to AllocateAdapterChannel is the address of an adapter control routine that the I/O
Manager will call when the reservation lias been accomplished. Here's an example
of code you would use to prepare and execute the call to AllocateAdapterChanne1:

typedef struct _DEVICE_EXTENSION {

PADAPTER-OBJECT AdapterObject; II device's adapter object
ULONG nMapRegisters; II max * map registers
ULONG,nMapRegistersAllocated; II * allocated for this xfer
ULONG numxfer; II * bytes transferred so far
ULONG xfer; II * bytes to transfer during this stage
ULONG nbytes; II * bytes remaining to transfer

Chapter 7 Reading and Writing Data

PVOID vaddr: II virtual address for current stage
II map register bas~ for this stage PVOID regbase:

} DEVICE_EXTENSION, *PDEVICE_EXTENSION:

VOID StartIo(PDEVICLOBJECT fdo, PIRP Irp)
{

PDEVICLEXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
. NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, I~p):

if (!NT_SUCCESS(status»
{

CompleteRequest(Irp, status, 0):
return:
}

PMDL mdl = Irp->MdlAddress:
pdx->numxfer = 0:
pdx->xfer = pdx->nbytes = MmGetMdlByteCount(mdl):
pdx->vaddr = MmGetMdlVirtualAddress(mdl):

UlONG nregs = ADDRESS-AND_SIZE_TO_SPAN_PAGES(pdx->vaddr,
pdx ->nbytes) :

if (nregs > pdx->nMapRegisters)
{

nregs = pdx->nMapRegisters:
pdx->xfer = nregs * PAGE_SIZE - MmGetMdlByteOffset(mdl):
}

pdx->nMapRegistersAllocated = nregs:

status = (*pdx->AdapterObject->DmaOperations
->AllocateAdapterChannel)(pdx->AdapterObject, fdo, nregs,
(PDRIVER-CONTROL) AdapterControl, pdx):

if (!NT_SUCCESS(status»
{

}

IoReleaseRemoveLock(&pdx->RemoveLock, Irp):
CompleteRequest(Irp, status, 0):
StartNextPacket(&pdx->dqReadWrite, fdo):
}

1. Your device extension needs several fields related to DMA transfers. The
comments indicate the uses for these fields.

2. This is the appropriate time to claim the remove lock to forestall PnP
removal events during the pendency of the I/O operation, The balancing
call to IoReleaseRemoveLock occurs in the DPC routine that ultimately
completes this request.

3. These few statements initialize fields in the device extension for the first
stage of the transfer.

327

Programming the Microsoft Windows Driver Model

328

4. Here, we calculate how many map registers we'll ask the system to reserve
for our use during this transfer. We begin by calculating the number re
quired for the whole transfer. The ADDRESS_AND_SIZE_TO_SPAN]AGES
macro takes into account that the buffer might span a page boundary. The
number we end up with might, however, exceed the maximum allowed
us by the Original call to IoGetDmaAdapter. In that case, we need to
perform the transfer in multiple stages. We therefore scale back the first
stage so as to use only the allowable number of map registers. We also
need to remember how many map registers we're allocating (in the
nMapRegistersAllocated field of the device extension) so that we can
release exactly the right number later on.

5. In this call to AllocateAdapterChanne1, we specify the address of the
adapter object, the address of our own device object, the calculated num
ber of map registers, and the address of our adapter control procedure. The
last argument Cpdx) is a context parameter for the adapter control procedure.

In general, several devices can share a Single adapte~ object. Adapter object
sharing happens in real life only when you rely on the system DMA controller; bus
master devices own dedicated adapter objects. But, since you don't need to know
how the system decides when to create adapter objects, you shouldn't make any
assumptions about it. In general, then, the adapter object might be busy when you
call AllocateAdapterChannel, and your request might therefore be put into a queue
until the adapter object becomes available. Also, all DMA devices on the computer
share a set of map registers. Further delay can ensue until the requested number of
registers becomes available. Both of these delays occur inside AllocateAdapterChannel,
which calls your adapter control procedure when the adapter object and all the map
registers you asked for are available.

Even though a PCI bus-mastering device owns its own adapter object, if the
device doesn't have scatter/gather capability, it requires the use of map registers. On
CPUs like Alpha that have map registers, AllocateAdapterChannel will reserve them
for your use. On CPUs like Intel that don't have map registers, AllocateAdapterChannel
will reserve use of a software surrogate, such as a contiguous area of physical memory.

WHAT GETS QUEUED IN ALLOCATEADAPTERCHANNEL?

The object that AllocateAdapterChannel puts into queues to wait for the adapter
object or the necessary number of map registers is your device object. Some
device architectures allow you to perform more than one DMA transfer simul
taneously. Since you can put only one device object into an adapter object queue
at a time C without crashing the system, that is), you need to create dummy device
objects to take advantage of that multiple-DMA capability.

Chapter 7 Reading and Writing Data

As I've been discussing, AllocateAdapterChannel eventually calls your adapter
control routine (at DISPATCH_LEVEL, just like your StartIo routine does). You have
two tasks to accomplish. First, you should call the adapter object's MapTransfer rou
tine to prepare the map registers and other system resources for the first stage of your
I/O operation. In the case of a bus-mastering device, MapTransfer will return a logi
cal address that represents the starting point for the first stage. This logical address
might be the same as a CPU physical memory address, and it might not be. All you
need to know about it is that it's the right address to program into your hardware.
MapTransfer might also trim the length of your request to fit the map registers it's
using, which is why you need to supply the address of the variable that contains the
current stage length as an argument.

Your second task is to perform whatever device-dependent steps are required
to inform your device of the physical address and to start the operation on your
hardware:

IO_ALLOCATION_ACTION AdapterControl(PDEVICE_OBJECT fdo.
PIRP junk. PVOID regbase. PDEVICE_EXTENSION pdx)
{

PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite);
PMDL mdl = Irp->MdlAddress;
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
BOOLEAN isread = stack->MajorFunction == IRP_MJ_READ;
pdx->regbase = regbase;
KeFlushIoBuffers(mdl. isread. TRUE);
PHYSICAL_ADDRESS address =

(*pdx->AdapterObject->DmaOperations->MapTransfer)
(pdx->AdapterObject, mdl, regbase. pdx->vaddr. &pdx->xfer.
!isread);

return DeallocateObjectKeepRegisters;
}

1. The second argument-which I named junk-to AdapterControl is
whatever was in the CurrentIrp field of the device object when you called
AllocateAdapterChannel. When you use a DEVQUEUE for IRP queuing,
you need to ask the DEVQUEUE object what IRP is current. If you use the
standard model, wherein IoStartPacket and IoStartNextPacket manage the
queue, junk would be the right IRP. In that case, I'd have named it Irp
instead.

2. There are few differences between code to handle input and output op
erations using DMA, so it's often convenient to handle both operations in
a single subroutine. This line of code examines the major function code
for the IRP to decide whether a read or write is occurring.

3. The regbase argument to this function is an opaque handle that identi
fies the set of map registers that have been reserved for your use during

329

Programming the Microsoft Windows Driver Model

330

this operation. You'll need this value later, so you should save it in your
device extension.

4. . KeFlushIoBuffers makes sure that the contents of all processor memory
caches for the memory buffer you're using are flushed to memory. The
third argument (TRUE) indicates that you're flushing the cache in prepa
ration for a DMA operation. The CPU architecture might require this step
because, in general, DMA operations proceed directly to or from memory
without necessarily involving the caches.

5. The MapTransfer routine programs the DMA hardware for one stage of
a transfer and returns the physical address where the transfer should start.
Notice that you supply the address of an MDL as the second argument to
this function. Since you need an MDL at this point, you would ordinarily
have opted for the DO_DIRECT_IO buffering method when you first cre
ated your device object, and the I/O Manager would therefore have au
tomatically created the MDL for you. You also pass along the map register
base address (regbase). You indicate which portion of the MDL is involved
in this stage of the operation by supplying a virtual address (pdx->vaddr)
and a byte count (pdx->:xier). MapTransfer will use the virtual address
argument to calculate an offset into the buffer area, from which it can
determine the physical page numbers containing your data.

6. This is the point at which you program your hardware in the device
specific way that is required. You might, for example, use one of the
WRITE_XXx HAL routines to send the physical address and byte count
values to registers on your card, and you might thereafter strobe some
command register to begin transferring data.

7. We return the constant DeallocateObjectKeepRegisters to indicate that
we're done using the adapter object but are still using the map registers.
In this particular example (PCI bus master), there will never be any con
tention for the adapter object in the first place, so it hardly matters that
we've released the adapter object. In other bus-mastering situations,
though, we might be sharing a DMA controller with other devices. Re
leasing the adapter object allows those other devices to begin transfers
by using a disjoint set of map registers from the ones we're still using.

An interrupt usually occurs shortly after you start the transfer, and the interrupt
service routine usually requests a DPC to deal with completion of the first stage of
the transfer. Your DPC routine would look something like this:

VOID DpeForIsr(PKDPC Dpe, PDEVICE_OBJECT fdo, PIRP junk, PYOID Context)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;

Chapter 7 Reading and Writing Data

PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite);
PMDL mdl = Irp->MdlAddress;
BOOLEAN isread = IoGetCurrentIrpStackLocation(Irp)

->MajorFunction == I RP_MJ_READ;
(*pdx->AdapterObject->DmaOperations->FlushAdapterBuffers)

(pdx->AdapterObject. mdl. pdx->regbase. pdx->vaddr.
pdx->xfer. !isread);

pdx->nbytes -= pdx->xfer;
pdx->numxfer += pdx->xfer;
NTSTATUS status = STATUS_SUCCESS;

if (pdx->nbytes && NT_SUCCESS(status»
{

pdx->vaddr = (PVOID) «PUCHAR) pdx->vaddr + pdx->xfer);
pdx->xfer = pdx->nbytes;
ULONG nregs = ADDRESS_AND_SIZE_TO_SPAN_PAGES(pdx->vaddr.

pdx->nbytes);
if (nregs > pdx->nMapRegistersAllocated)

{

nregs = pdx->nMapRegistersAllocated;
pdx->xfer = nregs * PAGE_SIZE;
}

PHYSICAL_ADDRESS address =
(*pdx->AdapterObject->DmaOperations->MapTransfer)
(pdx->AdapterObject. mdl. pdx->regbase. pdx->vaddr.
pdx->xfer. !isread);

}

else
{

}

ULONG numxfer = pdx->numxfer;
(*pdx->AdapterObject->DmaOperations->FreeMapRegisters)

(pdx->AdapterObject. pdx->regbase.
pdx->nMapRegistersAllocated);

IoReleaseRemoveLock(&pdx->RemoveLock. Irp);
StartNextPacket(&pdx->dqReadWrite. fdo);
CompleteRequest(Irp. status. numxfer);
}

1. When you use a DEVQUEUE for IRP queuing, you rely on the queue object
to keep track of the current IRP.

2. The FlushAdapterBuffers routine handles the situation in which the
transfer required use of intermediate buffers owned by the system. If
you've done an input operation that spanned a page boundary, the input
data is now sitting in an intermediate buffer and needs to be copied to
the user-mode buffer.

331

Programming the Microsoft Windows Driver Model .

332

3. Here, we update the residual and cumulative data counts after the trans
fer stage that just completed.

4. At this point, you determine whether the current stage of the transfer
completed successfully or with an error. You might, for example, read a
status port or inspect the results of a similar operation performed by your
interrupt routine. In this example, I set the status variable to STATUS_
SUCCESS with the expectation that you'd change it if you discovered an
error here.

5. If the transfer hasn't finished yet, you need to program another stage. The
first step in this process is to calculate the virtual address of the next
portion of the user-mode buffer. Bear in mind that this calculation is
merely working with a number-we're not actually trying to access
memory by using this virtual address. Accessing the memory would be a
bad idea, of course, because we're currently executing in an arbitrary
thread context.

6. The next few statements are almost identical to the ones we performed
in the first stage for Startlo and AdapterControl. The end result will be a
logical address that can be programmed into your device. It might or might
not correspond to a physical address as understood by the cpu. One slight
wrinkle is that we're constrained to use only as many map registers as were
allocated by the .adapter control routine; Startlo saved that number in the
nMapRegistersAllocated field of the device extension.

7. If the entire transfer is now complete, we need to release the map regis
ters we've been using.

8. The remaining few statements in the OPC routine handle the mechanics
of completing the IRP that got us here in the first place. We release the
remove lock to balance the acquisition that we did inside Startlo.

Transfers Using Scatter/Gather Lists
If your hardware has scatter/gather support, the system has a much easier ti'me doing
OMA transfers to and from your device. The scatter/gather capability permits the device
to perform a transfer involving pages that aren't contiguous in physical memory.

Your StartDevice routine creates its adapter object in just about the same way I've
already discussed, except Cof course) that you'll set the ScatterGather flag to TRUE.

The traditional method-that is, the method you would have used in previous
versions of Windows NT-to program a OMA transfer involving scatter/gather func
tionality is practically identical to the packet-based example considered in the pre
vious section, "Performing OMA Transfers." The only difference is that instead of
making one call to MapTransfer for each stage of the transfer, you need to make
multiple calls. Each call gives you the information you need for a single element in
a scatter/gather list that contains a physical address and length. When you're done

Chapter 7 Reading and Writing Data

with the loop, you can send the scatter/gather list to your device by using some
device-specific method, and you can then initiate the transfer.

I'm going to make some assumptions about the framework into which you'll
fit the construction of a scatter/gather list. First, I'll assume that you've defined a
manifest constant named MAXSG that represents the maximum number of scatter/
gather list elements your device can handle. To make life as simple as possible, I'm
also going to assume that you dm just use the SCATTER_GATHER_UST structure
defined in WDM.H to construct the list:

typedef struct _SCATTER-GATHER-ELEMENT {
PHYSICAL-ADDRESS Address:
ULONG Length:
ULONG_PTR Reserved:
} SCATTER-GATHER-ELEMENT. *PSCATTER-GATHER-ELEMENT:

typedef struct _SCATTER-GATHER-LIST {
ULONG NumberOfElements:
ULON~PTR Reserved:
SCATTER-GATHER-ELEMENT Elements[];
} SCATTER-GATHER-LIST. *PSCATTER-GATHER-LIST;

Finally, I'm going to suppose that you can simply allocate a maximum-sized
scatter/gather list in your AddDevice function and leave it lying around for use
whenever you need it:

pdx->sgl ist = (PSCATTER-GATHER-LIST)
ExAllocatePoolCNonPagedPool. sizeof(SCATTER-GATHER-LIST) +
MAXSG * sizeof(SCATTER-GATHER-ELEMENT»:

With this infrastructure in place, your AdapterControl procedure would look
like this:

IO_ALLOCATION-ACTION AdapterControl(PDEVICE_OBJECT fdo.
PIRP junk. PYOID regbase. PDEVICE_EXTENSION pdx)
{

PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite):
PMDL mdl = Irp->MdlAddress;
BOOLEAN isread = IoGetCurrentIrpStackLocation(Irp)

->MajorFunction == IRP_MJ_READ:
pdx->regbase = regbase:
KeFl ush IoBuffers (mdl. is read. TRUE):
PSCATTER-GATHER-LIST sglist = pdxc>sglist:

ULONG xfer = pdx->xfer;
PYOID vaddr =pdx->vaddr:
pdx->xfer = 0;
ULONG isg = 0:

(continued)

333

Programming t~. Microsoft Windows Driver Model

334

while (xfer && isg < MAXSG)
{

ULONG elen = xfer;
sglist->Elements[isg].Address

(*pdx->AdapterObject->DmaOperations->MapTransfer)
(pdx->AdapterObject. mdl. regbase. pdx->vaddr.
&el en. ! i sread);

sglist->Elements[isg].Length = elen;
xfer -= ele.n;
pdx->xfer += elen;
vaddr = (PVOID) «PUCHAR) vaddr + elen);
++isg;
}

sglist->NumberOfElements isg;

return DeallocateObjectKeepRegisters;
}

1. See the earlier discussion (in "Performing DMA Transfers") of how to get
a pointer to the correct IRP in an adapter control procedure.

2. We previously (in StartIo) calculated pdx->xfer based on the allowable
number of map registers. We're going to try to transfer that much data now,
but the allowable number of scatter/gather elements might further limit
the amount we can transfer during this stage. During the follOwing loop,
xfer will be the number of bytes that we haven't yet mapped and we'll
recalculate pdx->xfer as we go.

3. Here's the loop I promised you where we call MapTransfer to construct (
scatter/gather elements. We'll continue the loop until we've mapped the
entire stage of this transfer or until we run out of scatter/gather elements,
whichever happens first.

4. When we call MapTransfer for a scatter/gather device, it will modify the
length argument (elen) to indicate how much of the MDL starting at the
given virtual address (vaddr) is physically contiguous and can therefore
be mapped by a single scatter/gather list element. It will also return the
physical address of the begihning of the contiguous region.

5. Here's where we update the variables that describe the current stage of
the transfer. When we leave the loop, xfer will be down to 0 (or else we'll
have run out of scatter/gather elements), pdx->xfer will be up to the total
of all the elements we were able to map, and vaddr will be up to the byte
after the last one we mapped. We don't update the pdx->vaddr field in
the device extension-we're doing that in our DPC routine. Just another
one of those pesky details

· Chapter 7 Reading and Writing Data

6. Here's where we increment the scatter/gather element index to reflect the
fact that we've just used one up.

7. At this point, we have isg scatter/gather elements that we should program
into our device in whatever hardware-dependent way is appropriate. Then
we should start the device working on the request.

8. Returning DeallocateObjectKeepRegisters is appropriate for a 'bus
mastering device. You can theoretically have a nonmaster device with
scatter/gather capability, and it would return KeepObject instead.

Your device now performs its DMA transfer and, presumably, interrupts to sig
nal completion. Your ISR requests a DPC, and your DPC routine initiates the next stage
in the operation. The DPC routine would perform a MapTransfer loop like the one
I just showed you as part of that initiation process. I'll leave the details of that code
as an exercise for you.

Using GetScatterGatherList
Windows 2000 provides a shortcut to avoid the relatively cumbersome loop of calls
to MapTransfer in the common case in which you can accomplish the entire transfer
by using either no map registers or no more than the maximum number of map
registers returned by IoGetDmaAdapter. The shortcut, which is illustrated in the
SCATGATH sample on the companion disc, involves calling the GetScatte1'GatherList
routine instead of AllocateAdapterChannel. Your Startlo routine looks like this:

VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp);
if (INT_SUCCESS(status»

{

CompleteRequest(Irp, status, 0);
return;
}

PMDL mdl = Irp->MdlAddress;
ULONG nbytes = MmGetMdlByteCount(mdl);
PYOID vaddr = MmGetMdlVirtualAddress(mdl);
BOOLEAN isread = stackc>MajorFunction == I RP-MJ_READ;
pdx->numxfer = 0;
pdx->nbytes = nbytes;
status = (*pdx->AdapterObject->DmaOperat1ons->GetScatterGatherL1st)

(pdx->AdapterObject, fdo. mdl. vaddr. nbytes.
(PDRIVER-LIST_CONTROL) DmaExecut1onRout1ne, pdx, 11sread);

(continued)

335

Programming the Microsoft Windows .Driver Model

336

if (INT_SUCCESS(status»
{

}

IoReleaseRemoveLoek(&pdx->RemoveLoek. Irp):
CompleteRequest(Irp. status. 0):
StartNextPaeket(&pdx->dqReadWrite. fdo):
}

The call to GetScatterGatherList, shown in bold in the previous code fragment,
is the main difference between this Startlo routine and the one we looked at in the
preceding section. GetScatterGatherList waits, if necessary, until you can be granted
use of the adapter object and all the map registers you need. Then it builds a
SCATTER_GATHER_LIST structure and passes it to the DmaExecutionRoutine. You
can then program your device by using the physical addresses in the scatter/gather
elements and initiate the transfer:

VOID DmaExeeutionRoutine(PDEVICE_OBJECT fdo. PIRP junk.
PSCATTER-GATHER-LIST sglist. PDEVICE_EXTENSION pdx)
{

PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite):
pdx->sglist = sglist:

}

1. You'll need the address of the scatter/gather list in the DPC routine, which
will release it by calling PutScatterGatherUst.

2. At this point, program your device to do a read or write using the address
and length pairs in the scatter/gather list. If the list has more elements than
your device can handle at one time, you'll need to perform the whole
transfer in stages. If you can program a stage fairly quickly, I'd recommend
adding logic to your interrupt service routirle to initiate the additional
stages. If you think about it, your DmaExecutionRoutine is probably go
ing to be synchronizing with your ISR anyway to start the frrst stage, so
this extra logic is probably not large. I programmed the SCATGATH sample
with this idea in mind.

When the transfer fInishes, call the adapter object's PutScatterGatherList to re
lease the list and the adapter:

VOID DpeForIsr(PKDPC Dpe. PDEVICE_OBJECT fdo. PIRP junk. PYOID Context)
{

(*pdx->AdapterObjeet->DmaOperations->PutSeatterGatherList)
(pdx->AdapterObjeet. pdx-)sglist. lisread):

}

Chapter 7 Reading and Writing Data

To decide whether you can use GetScatterGatherList, you need to be able to
predict whether you'll meet the preconditions for its use. On an Intel 32-bit platform,
scatter/gather devices on a PCI or EISA bus can be sure of not needing any map
registers. Even on an ISA bus, you'll be allowed to request up to 16 map register
surrogates (eight if you're also a bus-mastering device) unless physical memory is so
tight that the I/O system can't allocate its intermediate I/O buffers. In that case, you
wouldn't be able to do DMA using the traditional method either, so there'd be no point
in worrying about it.

If you can't predict with certainty at the time you code your driver that you'll
be able to use GetScatterGatherList, my advice is to just fall back on the traditional
loop of MapTransfer calls. You'll need to put that cwe in place anyway to deal with
cases in which GetScatterGatherList won't work, and having two pieces of logic in
your driver is just unnecessary complication.

Transfers Using the System Controller
If your device is not a bus master, DMA capability requires that it use the system DMA
controller. As I've said, people often use the phrase slave DMA, which emphasizes
that such a device is not master of its own DMA fate. The system DMA controllers have
several characteristics that affect the internal details of how DMA transfers proceed:

• There are a limited number of DMA channels that all slave devices must
share. AllocateAdapterChannel has real meaning in a sharing situation,
since only one device can be using a particular channel at a time.

• You can expect to fInd a CmResourceTypeDma resource in the list of I/O
resources delivered to you by the Pnp· Manager.

• Your hardware is wired, either physically or logically, to the partieular
channel it uses. If you can confIgure the DMA channel connection, you'll
need to send the appropriate commands at StartDevice time.

• The system DMA controllers for an ISA bus computer are able to access
data buffers in only the fIrst 16 megabytes of physical memory. Four chan
nels for transferring data 8 bits at a time and three channels for transfer
ring data 16 bits at a time exist. The controller for 8-bit channels doesn't
correcdy handle a buffer that crosses a 64-KB boundary; the controller for
16-bit channels doesn't correcdy handle a buffer that crosses a 128-KB
boundary.

Notwithstanding these factors, your driver code will be very similar to the bus
mastering code we've just discussed. Your StartDevice routine just works a little harder
to set up its call to 10GetDmaAdapter, and your AdapterControl and DPC routines
apportion the steps of releaSing the adapter object and map registers differendy.

337

Programming the Microsoft Windows Driver Model

338

In StartDevice, you have a little bit of additional code to determine which DMA
channel the PnP Manager has assigned for you, and you also need to initialize more
of the fields of the DEVICE_DESCRIPTION structure for IoGetDmaAdapter:

NTSTATUS StartDevice(...)
{

ULONG dmachannel:
ULONG dmaport:

for (ULONG i = 0:
{

II system DMA channel #
II MCA bus port number

< nres: ++i. ++resource)

switch (resource->Type)
{

case CmResourceTypeDma:

}

dmachannel = resource->u.Dma.Channel:
dmaport = resource->u.Dma.Port:
break:
}

INTERFACCTYPE bustype:
IoGetDeviceProperty(...):

DEVICE_DESCRIPTION dd:
RtlZeroMemory(&dd. sizeof(dd»:
dd.Version = DEVICE_DESCRIPTION_VERSION:
dd.InterfaceType = bustype:
dd.MaximumLength = MAXTRANSFER:

dd.DmaChannel = dma~hannel:
dd.DmaPort = dmaport:
dd.DemandMode = ??:
dd.AutoInitialize = ??:
dd.IgnoreCount = ??:
dd.DmaWidth = ??:
dd.DmaSpeed = ??:

pdx->AdapterObject = IoGetDmaAdapter(...):
}

1. The I/O resource list will have a DMA resource, from which you need to
extract the channel and port numbers. The channel number identifies one

. of the DMA channels supported by a system DMA controller. The port
number is relevant only on a Micro Channel Architecture (MCA)-bus
machine.

2. Refer to the previous discussion of how to determine the bus type (in
"Performing DMA Transfers").

Chapter 7 Reading and Writing Data

3. Beginning here, you have to initialize several fields of the DEVICE_
DESCRIPTION structure based on your knowledge of your device. See
Table 7-5 on pages 325-26.

Everything about your adapter control and DPC procedures will be identical to
the code we looked at earlier for handling a bus-mastering device without scatter/
gather capability, except for two small details. First, AdapterControl returns a
different value:

IO-ALLOCATION-ACTION AdapterContro1(...)
{

return KeepObject:
}

The return value KeepObject indicates that we want to retain control over the map
registers and the DMA channel we're using. Second, since we didn't release the
adapter object when AdapterControl returned, we have to do so in the DPC routine
by calling FreeAdapterChannel instead of FreeMapRegisters:

VOID DpcForIsr(...)
{

(*pdx->AdapterObject->DmaOperations->FreeAdapterChanne1)
(pdx->AdapterObject):

}

By the way, you don't need to remember how many map registers you were
assigned-I previously showed you an nMapRegistersAllocated variable in the device
extension to be used for this purpose-since you won't be calling FreeMapRegisters.

Using a Common Buffer
As I mentioned in "Transfer Strategies," you might want to allocate a common buffer
for your device to use in performing DMA transfers. A common buffer is an area of
nonpaged, physically contiguous memory. Your driver uses a fixed virtual address
to access the buffer. Your device uses a ftxed logical address to access the same buffer.

You can use the common buffer area in several ways. You can support a de
yice that continuously transfers data to or from memory by using the system DMA
controller's autoinitialize mode. In this mode of operation, completion of one trans
fer triggers the controller to immediately reinitialize for another transfer.

Another use for a common buffer area is as a means to avoid extra data copy
ing. The MapTransfer routine often copies the data you supply into auxiliary buffers
owned by the I/O Manager and used for DMA. If you're stuck with doing slave DMA

339

Programming the Microsoft Windows Driver Model

340

on an ISA bus, it's especially likely that MapTransfer will copy data to conform to the
16-MB address and buffer alignment requirements of the ISA DMA controller. But if
you have a common buffer, you'll avoid the copy steps.

Allocating a Common Buffer
You'd normally allocate your common buffer at StartDevice time after creating your
adapter object:

typedef struct _DEVICE_EXTENSION {

PVOID vaCommonBuffer; •
PHYSICAL-ADDRESS paCommonBuffer;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

dd.Dma32BitAddresses = ??;
dd.Dma64BitAddresses = ??;
pdx->AdapterObject = IoGetDmaAdapter(...);
pdx->vaCommonBuffer =

(*pdx->AdapterObject->DmaOperations->AllocateCommonBuffer)
(pdx->AdapterObject, <7ength>, &pdx->paCommonBuffer, FALSE);

Prior to calling IoGetDmaAdapter, you set the Dma32BitAddresses and Dma64Bit
Addresses flags in the DEVICE_DESCRIPTION structure to state the truth about your
device's addressing capabilities. That is, if your device can address a buffer using any
32-bit physical address, set Dma32BitAddresses to 1RUE. If it can address a buffer
using any 64-bit physical address, set Dma64BitAddresses to TRUE.

In the call to AllocateCommonBuffer, the second argument is the byte length
of the buffer you want to allocate. The fourth argument is a BOOLEAN value that
indicates whether you want the allocated memory to be capable of entry into the CPU
cache (1RUE) or not (FALSE).

AllocateCommonBuffer returns a virtual address. This address is the one you
use within your driver to access the allocated buffer area. AllocateCommonBuffer also
sets the PHYSICAL_ADDRESS pointed to by the third argument to be the logical
address used by your device for its own buffer access.

NOTE The DDK carefully uses the term logical address to refer to the address
value returned by MapTransfer and the address value returned by the third
argument of AliocateCommonBuffer. On many CPU architectures, a logical
address will be a physical memory address that the CPU understands. On other
architectures, it might be an address that only the I/O bus understands. Perhaps
bus address would have been a better term.

Slave DMA with a .Common Buffer
If you're going to be performing slave DMA, you must create an MDL to describe
the virtual addresses you receive. The actual purpose of the MDL is to occupy an

Chapter 7 Reading and Writing Data

argument slot in an eventual call to MapTransfer. MapTransfer won't end up doing
any copying, but it requires the MDL to discover that it doesn't need to do any copying!
You'd normally create the MDL in your StartDevice function just after allocating the
common buffer:

pdx->vaCommonBuffer = ••• ;
pdx->mdlCommonBuffer = IoAllocateMdl(pdx->vaCommonBuffer.

<1 ength>. FALSE. FALSE. NULL);
MmBuildMdlForNonPagedPool(pdx->mdlCommonBuffer);

To perform an output operation, first make sure by some means (such as an
explicit memory copy) that the common buffer contains the data you want to send to
the device. The other DMA logic in your driver will be essentially the same as I showed
you earlier (in "Performing DMA Transfers"). You'll call AllocateAdapterChannel. It
will call your adapter control routine, which will call KeFlushIoBuffers-if you allo
cated a cacheable buffer-and then call MapTransfer. Your DPC routine will call
FlushAdapterBuffers and FreeAdapterChannel. In all of these calls, you'll specify the
common buffer's MDL instead of the one that accompanied the read or write IRP
you're processing. Some of the service routines you call won't do as much work when
you have a common buffer as when you don't, but you must call them anyway. At
the end of an input operation, you might need to copy data out of your common
buffer to some other place.

To fulfill a request to read or Write more data than fits in your common buffer,
you might need to periodically refill or empty the buffer. The adapter object's
ReadDmaCountet' function allows you to determine the progress of the ongoing
transfer to help you decide what to do.

Bus-Master DMA with a Common Buffer
If your device is a bus master, allocating a common buffer allows you to dispense
with calling AllocateAdapterChannel, MapTransfer, and FreeMapRegisters. You don't
need to call those routines because AllocateCommonBuffer also reserves the map
registers, if any, needed for your device to access the buffer. Each bus-master device
has an adapter object that isn't shared with other devices and for which you there
fore need never wait. Since you have a virtual address you can use to access the buffer
at any time, and since your device's bus-mastering capability allows it to access the buffer
by using the physical address you've received back from AllocateCommonBuffer, no
additional work is required.

Cautions About Using Common Buffers
A few cautions are in order with respect to common buffer allocation and usage.
Physically contiguous memory is scarce in a running system-so scarce that you might
not be able to allocate the buffer you want unless you stake your claim quite early
in the life of a new session. The Memory Manager makes a limited effort to shuffle
memory pages around to satisfy your request, and that process can delay the return

341

Programming the Microsoft Windows Driver Model

from AllocateCommonBuffer for a period of time. But the effort might fail, and you
must be sure to handle the failure case. Not only does a common buffer tie up poten
tially scarce physical pages, but it can also tie up map registers that could otherwise
be used by other devices. For both these reasons, you should use a common-buffer
strategy advisedly.

Another caution about common buffers arises from the fact that the Memory
Manager necessarily gives you one or more full pages of memory. Allocating a com
mon buffer that's just a few bytes long is wasteful and should be avoided. On the
other hand, it's also wasteful to allocate several pages of memory that don't actually
need to be physically contiguous. As the DDK suggests, therefore, it's better to make
several requests for smaller blocks if the blocks don't have to be contiguous.

Releasing a Common Buffer
You would ordinarily release the memory occupied by your common buffer in your
StopDevice routine just before you destroy the adapter object:

(*pdx->AdapterObject->DmaOperations->FreeCommonBuffer)
(pdx->AdapterObject. <length>. pdx->paCommonBuffer.
pdx->vaCommonBuffer. FALSE);

The second parameter to FreeCommonBuffer is the same length value you used
when you allocated the buffer. The last parameter indicates whether the memory is
cacheable, and it should be the same as the last argument you used in the call to
AllocateCommonBuffer.

A Simple Bus .. Master Device

342

The PKTDMA sample driver on the companion disc illustrates how to perform bus
master DMA operations without scatter/gather support using the AMCC S5933 PCI
matchmaker chip. I've already discussed details of how this driver initializes the device
in StartDevice and how it initiates a DMA transfer in Startlo. I've also discussed nearly
all of what happens in this driver's AdapterControl and DpcForIsr routines. I indicated
earlier that these routines would have some deVice-dependent code for starting an
operation on the device; I wrote a helper function named StartTransfer for that
purpose:

VOID StartTransfer(PDEVICE-EXTENSION pdx. PHYSICAL-ADDRESS address.
BOOLEAN 1sread)
{

ULONG mcsr = READ_PORT_ULONG«PULONG)(pdx->portbase + MCSR);
ULONG intcsr = READ_PORT_ULONG«PULONG)(pdx->portbase + INTCSR);
if (isread)

{

mcsr 1= MCSR-WRITE_NEED4 1 MCSR-WRITE_ENABLE;
intcsr 1= INTCSR-WTCI_ENABLE;

Chapter 7 Reading and Writing Data

WRITE_PORT_ULONG«PULONG)(pdx->portbase + MWTC). pdx->xfer);
WRITE_PORT_ULONG«PULONG)(pdx->portbase + MWAR). address.LowPart);
}

else
{

mcsr 1= MCSR-READ_NEED4 1 MCSR-READ_ENABLE;
intcsr 1= INTCSR-RTCI_ENABLE;
WRITE_PORT~ULONG«PULONG)(pdx->portbase + MRTC). pdx->xfer);
WRITE_PORT_ULONG«PULONG)(pdx->portbase + MRAR). address.LowPart);
}

WRITE_PORT_ULONG«PULONG)(pdx->portbase + INTCSR). intcsr);
WRITE_PORLULONG((PULONG)(pdx->portbase + MCSR). mcsr);
}

This routine sets up the S5933 operations registers for a DMA transfer and then
starts the transfer running. The steps in the process are:

1. Program the address (MxAR) and transfer count (MXfC) registers appro
priate to the direction of data flow. AMCC chose to use the term read to
describe an operation in which data moves from memory to the device.
Therefore, when we're implementing an IRP _ML WRITE, we prograIJ? a
read operation at the chip level. The address we use is the logical address
returned by MapTransfer.

2. Enable an interrupt when the transfer count reaches 0 by writing to the
INTCSR.

3. Start the transfer by setting one of the transfer-enable bits in the MCSR.

It's not obvious from this fragment of code, but the S5933 is actually capable
of doing a DMA read and a DMA write at the same time. I wrote PKTDMA in such a
way that only one operation (either a read or a write) can be occurring. To general
ize the driver to allow both kinds of operation to occur simultaneously, you would
need to (a) implement separate queues for read and write IRPs, and (b) create two
device objects and two adapter objects--one pair for reading and the other for writ
ing-so as to avoid the embarrassment of trying to queue the same object twice inside
AllocateAdapterChannei. I thought putting that additional complication into the sample
would end up confusing you. (I know I'm being pretty optimistic about my exposi
tory skills to imply that I haven't already confused you, but it could have been worse.)

Handling Interrupts in PKTDMA
PCI42 included an interrupt routine that did a small bit of work to move some data.
PKTDMA's interrupt routine is a little simpler:

BOOLEAN Onlnterrupt(PKINTERRUPT InterruptObject. PDEVICE_EXTENSION pdx)
{

ULONG intcsr = READ_PORLULONG«PULONG) (pdx->portbase + INTCSR»;
if (I(intcsr & INTCSR-INTERRUPT_PENDING»

return FALSE;
(conttnued)

343

Programming the Microsoft Windows Driver Model

344

ULONG mcsr = READ_PORT_ULONG«PULONG) (pdx->portbase + MCSR»;
WRITE_PORT_ULONG«PULONG) (pdx->portbase + MCSR) ,

mcsr & -(MCSR-WRITE_ENABLE I MCSR-READ_ENABLE»;

intcsr &= -(INTCSR-WTCI_ENABLE I INTCSR-WTCI_ENABLE);

BOOLEAN dpc = GetCurrentIrp(&pdx->dqReadWrite) 1= NULL;

while (intcsr & INTCSR-INTERRUPT_PENDING)
{

InterlockedOr(&pdx->intcsr, intcsr);
WRITE_PORLULONG((PULONG) (pdx->portbase + INTCSR), intcsr);
intcsr = READ_PORT_ULONG«PULONG) (pdx->portbase + INTCSR»;
}

if (dpc)
IoRequestDpc(pdx->DeviceObject, NULL, NULL);

return TRUE;
}

I'll only discuss the ways in which this ISR differs from the one in PC142:

1. The S5933 will keep trying to transfer data-subject to the count register,
that is-so long as the enable bits are set in the MCSR. This statement
clears both bits. If your driver were handling simultaneous reads and
writes, you'd determine which kind of operation had just finished by test
ing the interrupt flags in the INTCSR and then disable just the transfer in
that direction.

2. We'll shortly write back to the INTCSR to clear the interrupt. This state
ment ensures that we'll also disable the transfer-count-O interrupts so that
they can't occur anymore. Once again, a driver that handles simultaneous
reads and writes would disable only the interrupt that just occurred.

3. InterlockedOr is a helper routine I wrote so that I wouldn't have to worry
about racing with DpcForIsr in accumulating interrupt flags.

Testing PKTDMA
You can test PKTDMA if you have an S5933DK1 development board. If you ran the
PCI42 test, you already installed the S5933DK1.SYS driver to handle the ISA add
on interface card. If not, you'll need to install that driver for this test. Then install
PKTDMA.SYS as the driver for the S5933 development board itself. You can then run
the TEST.EXE test program that's in the PKTDMA \ TEST\DEBUG directory. TEST will
perform a write for 8192 bytes to PKTDMA. It will also issue a DeviceloControl to
S5933DK1 to read the data back from the add-on side, and it will verify that it read
the right values.

Chapter 8

Power
Management

Technophobes may take solace in the fact that they retain ultimate control over their
electronic servants so long as they control the power switch. Power is, of course, the
sine qua non of computing, but personal computers haven't done an especially good
job of managing it until quite recently.

More effective power management is important for at least three reasons. First,
as a matter of sound ecology, using less power helps to minimize the impact of
computing on the environment. Not only do computers require power, but so do the
air-conditioning systems for the rooms where the computers reside. A second rea
son better power management is needed is familiar to many travelers: battery tech
nology simply hasn't kept pace with the demand for mobile computing of all kinds.
And, finally, greater consumer acceptance of PCs as home appliances depends on
improving power management. Current machines have noisy fans and squealing disk
drives when they're on, and they take a long time to start up from the power-off state.
Decreasing the power-up latency and eliminating unnecessary noise-which also
means minimizing power consumption so that less cooling is required-will be nec
essary before PCs can comfortably occupy consumer niches.

345

Programming the Microsoft Windows Driver Model

In this chapter, I'll discuss the role WDM drivers play in power management in
the Microsoft Windows 2000 and Microsoft Windows 98 operating systems. The first
major section of the chapter, "The WDM Power Model," presents an overview of the
concepts you need to know about. The second section, "Managing Power Transitions,"
is the meat of the chapter: I'll describe there the very complicated tasks a typical
function driver carries out. I'll finish the chapter with a discussion of some ancillary
responsibilities a WDM function driver has with respect to power management.

THE WDM POWER MODEL
In Windows 2000 and Windows 98, the operating system takes over most of the job
of managing power. This makes sense because only the operating system really knows
what's going on, of course. A system BIOS charged with power management, for
example, can't tell the difference between an application's use of the screen and a
screen saver's. But the operating system can tell the difference and thus can deter
mine whether it's okay to turh off the display.

As the global power policy oumer for the computer, the operating system supports
user interface elements that give the end user ultimate control over power decisions.
These elements include the control panel, commands in the Start menu, and APls for
controlling device wake-up features. The Power Manager component of the kernel
implements the operating system's power policies by sending I/O request packets
(IRPs) to devices. WDM drivers have the primarily passive role of responding to these
IRPs, although you'll probably find this passivity to incorporate a lot of active motion
when I show you how much code is involved.

The Roles of WDM Drivers

346

One of the drivers for a device acts as the power policy owner for the device. Since
the function driver most often fills this role, I'll continue discussing power manage
ment as though thatwere invariably the case. Just bear in mind that your device might
have unique requirements that mandate giving the responsibilities of policy owner
to some filter driver or to the bus driver instead.

The function driver receives IRPs (system IRPs) from the Power Manager that
pertain to changes in the overall power state of the system. Acting as policy owner
for the device, it translates these instructions into device terms and originates new
IRPs (device IRPs). When responding to the device IRPs, the function driver worries
about the details that pertain to the device. Devices might carry onboard context
information that you don't want to lose during a period of low power. Keyboard
drivers, for example, might hold the state of locking keys (such as CAPS-LOCK, NUM-

Chapter 8 Power Management

LOCK, and SCROLL-LOCK), LEDs, and so on. The function driver is responsible for
saving and restoring that context. Some devices have a wake-up feature that allows
them to wake up a sleeping system when external events occur; the function driver
works together with the end user to make sure that the wake-up feature is available
when needed. Many function drivers manage queues of substantive IRPs--that is, IRPs
that read or write data to the device, and they need to stall or release those queues
as power wanes and waxes.

The bus driver at the bottom of the device stack is responsible for controlling
the flow of current to your device and for performing whatever electronic steps are
necessary to arm or disarm your device's wake-up feature.

A f1lter driver normally acts as a simple conduit for power requests, passing them
down to lower-level drivers by using the special protocol I'll describe a bit further on.

Device Power and System Power States
The Windows Driver Model uses the same terms to describe power states as does
the Advanced Configuration and Power Interface (ACPI) specification. (See http://
www.teleport.com/ acpilspec.htm.) Devices can assume the four states illustrated in
Figure 8-1. In the DO state, the device is fully functional. In the D3 state, the device
is using no (or very minimal) power and is therefore not functioning (or is func
tioning at a very low level). The intermediate Dl and D2 states denote two different
somnolent states for the device. As a device moves from DO to D3, it consumes less
and less power. In addition, it remembers less and less context information about its
current state. Consequendy, the latency period needed for the device's transition back
to DO increases.

Fully on

Almost on

Almost off

Fully off

Figure 8-1. ACPI device power states.

347

Programming the Microsoft Windows Driver Model

348

Microsoft has formulated class-specific requirements for different types of devices.
I found these requirements on line at http://www.microsojt.comlhwdevlspecsIPMnif!.
The specifications mandate, for example, that every device support at least the DO
and D3 states. Input devices (keyboards, mice, and so on) should also support the
Dl state. Modem devices, on the other hand, should additionally support D2. These
differences in specifications for device classes stem from likely usage scenarios and
industry practice.

The operating system doesn't deal directly with the power states of devices--
that's exclusively the province of device drivers. Rather, the system controls power
by using a set of system power states that are analogous to the ACPI device states.
See Figure 8-2. The Working state is the full-power, fully functional state of the com
puter. Programs are able to execute only when the system is in the Working state.

-Figure 8-2. System power states.

The other system power states correspond to reduced power configurations
in which no instructions execute. The Shutdown state is the power-off state. (Dis
cussing the Shutdown state seems like discussing an unanswerable question such
as "What's inside a black hole?" Like the event horizon surrounding a black hole,
though, the transition to Shutdown is something you'll need to know about as your
device spirals in.) The Hibernate state is a variant of Shutdown in which the entire
state of the computer is recorded on disk so that a live session can be restarted when
power comes back. The three sleeping states between Hibernate and Working encom
pass gradations in power consumption.

Chapter 8 Power Management

Power State Transitions
The system initializes in the Working state. This almost goes without saying, be
cause the computer is, by definition, in the Working state whenever it's executing
instructions. Most devices start out in the DO state, although the policy owner for
the device might put it into a lower power state when it's not actually in use. After
the system is up and running, then, it reaches a steady state in which the system
power level is Working and devices are in various states depending on activity and
capability.

End user actions and external events cause subsequent transitions between
power states. A common transition scenario arises when the user uses the Shut
Down command on the Start menu to put the machine into standby. In response,
the Power Manager first asks each driver whether the prospective loss of power will
be okay by sending an IRP _MJ_POWER request with the minor function code
IRP _MN_QUERY_POWER. If all drivers acquiesce, the Power Manager sends a sec
ond power IRP with the minor function code IRP _MN_SET_POWER. Drivers put their
devices into lower power states in response to this second IRP. If any driver vetoes
the query, the Power Manager still sends an IRP _MN_SET_POWER request; but it
usually specifies the current power level instead of the one originally proposed.

The system doesn't always send IRP _MR_QUERY]OWER requests, by the way.
Some events (such as the end user unplugging the computer or the battery expiring)
must be accepted without demur, and the operating system won't issue a query when
they occur. But when a query is issued, and when a driver accepts the proposed
state change by passing the request along, the driver undertakes that it won't start
any operation that might interfere with the expected set-power request. A tape
driver, for example, would make sure that it's not currently retensioning a tape
the interruption of which might break the tape-:-before succeeding a query for a low
power state. In addition, the driver would reject any subsequent retension command
until (and unless) a countervailing set-power request arrives to signal abandonment
of the state change.

The Power Manager communicates with drivers by means of an IRP _MLPOWER I/O
request packet. Four minor function codes are currently possible .. See Table 8-1.

349

Programming the Microsoft Windows Driver Model

350

Minor Function Code DescripUon

Detennine if prospective change in power
state can safely occur

IRP _MN_SET_POWER

IRP _MN_ W AIT_ WAKE

Instructs driver to change power state

Instructs bus driver to arm wake-up fea
ture; provides way for function driver to
know when wake-up signal occurs

Provides optimization for context saving
and restoring

Table 8-1. Minor function codesfor IRP_MLPOWER.

The Power substructure in the IO_STACK_LOCATION's Parameters union has
four parameters that describe the request, of which only two will be of interest to
most WDM drivers. See Table 8-2.

Field Name

SystemContext

Type

State

ShutdownType

Description

A context value used internally by the Power Manager

DevicePowerState or SystemPowerState (values
of POWER_STATE_1YPE enumeration)

Power state-either a DEVICE]OWER_STATE
enumeration value or a SYSTEM_POWER_STATE
enumeration value

A code indicating the reason for a transition to
PowerSystemShutdown

Table 8-2. Fields in the Parameters.Power substructure of an IO_STACKJ.OCA110N.

All drivers-both filter drivers and the function driver-generally pass every
power request down the stack to the driver underneath them. The only exceptions
are an IRP _MN_QUERY_POWER request that the driver wants to fail and an IRP that
arrives while the device is being deleted.

Special rules govern how' you pass power requests down to lower-level driv
ers. Refer to Figure 8-3 for an overview of the process in the three possible varia
tions you might use. First, before releasing control of a power IRP, you must call
PoStartNextPowerIrp. You do so even if you are completing the IRP with an error
status. The reason for this call is that the Power Manager maintains its own queue of
power requests and must be told when it will be okay to dequeue and send the next

Chapter 8 Power Management

request to your device. In addition to calling PoStartNextPowerIrp, you must call
the special routine PoCaIlDriver (instead of IoCaIlDriver) to send the request to
the next driver.

loSkipCurrentlrpStackLocation
PoStartNextPowerlrp
PoCaliDriver

(a) Pass down to next layer (b) Fallin the dispatch routine

.............•......•.............•.••

.
loCopyCurrentlrpStackLocationToNext
loSetCompletionRoutine
PoCaliDriver

'~ .•...•..............•.........•.••.••••••......... ~
(c) Pass down with completion routine

Figure 8-3. Handling /RP _MJ]OWER requests.

NOTE Not only does the Power Manager maintain a queue of power IRPs for
each device, but it maintains two such queues. One queue is for system power
IRPs (that is, IRP _MN_SET _POWER requests that specify a system power state).
The other queue is for device power IRPs (that is, IRP _MN_SET _POWER re
quests that specify a device power state). One IRP of each kind can be simulta
neously active. Your driver might also be handling a Plug and Play (PnP) request
and any number of substantive IRPs at the same time, too, by the way.

The following function illustrates the mechanical aspects of passing a power
request down the stack:

NTSTATUS DefaultPowerHandler(IN PDEVICE_OBJECT fdo, IN PIRP Irp)
{

PoStartNextPowerIrp(Irp);
IoSkipCurrentIrpStackLocation(Irp);
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
return PoCal1Driver(pdx->LowerDeviceObject. Irp);
}

351

Programming the Microsoft Windows Driver Model

352

1. PoStartNextPowerlrp tells the Power Manager that it can dequeue and
send the next power IRP. You must make this call for every power iRP
you receive ata time when you own the IRP. In other words, the call must
occur either in your dispatch routine before you send the request to
PoCallDriver or in a completion routine.

2. We use IoSkipCurrentlrpStackLocation to retard the IRP's stack pointer
by one position in anticipation that PoCallDriver will immediately advance
it. This is the same technique I've already discussed for passing a request
down and ignoring what happens to it afterwards.

3. You use PoCallDriver to forward power requests. Microsoft imple
mented this function to forestall the minimal, but nonetheless measur
able, impact on performance that might result from adding conditional
logic to IoCallDriver to handle power management.

The function dnver takes the two steps of passing the IRP down and performing
its device-specific action in a neatly nested order, as shown in Figure 8-4: When
removing power-that is, when changing to a lower power state-it performs the
device-dependent step first and then passes the request down. When adding power
when changing to a higher power state-it passes the request down and performs
the device-dependent step in a completion routine. This neat nesting of operations
guarantees that the pathway leading to the hardware has power while the driver
manipulates the hardware.

Removing Adding

Figure 8-4. Handling system power requests.

Chapter 8 Power Management

Power IRPs come to you in the context of a system thread that you must not
block. You can't block the thread for any of several reasons. If your device has the
INRUSH characteristic, or if you've cleared the DO_POWER_PAGABLE flag in your
device object, the Power Manager will send you IRPs at DISPATCH_LEVEL. You re
member, of course, that you can't block a thread while executing at DISPATCH_LEVEL.
Even if you've set DO_POWER_PAGABLE, however, so that you get power IRPs at
PASSIVE_LEVEL, you can cause a deadlock by requesting a device power IRP while
servicing a system IRP and then blocking: the Power Manager might not send you
the device IRP until your system IRP dispatch routine returns, so you'll wait forever.

The function driver normally needs to perform several steps that require time
to finish as part of handling some power requests. The DDK points out that you can
delay the completion of power IRPs by periods that the end user won't fmd percep
tible under the circumstances, but being able to delay doesn't mean being able to
block. The requirement that you can't block while these operations fmish means lavish
use of completion routines to make the steps asynchronous.

Implicit in the notion that IRP _MN_QUERY_POWER poses a question for you
to answer "Yes" or "No" is the fact that you can fail an IRP with that minor function
code. Failing the IRP is how you say "No." You don't have any such freedom with
IRP _MN_SET_POWER requests, however: you must carry out the instructions they
convey.

MANAGING POWER TRANSITIONS
Performing power management tasks correctly requires very accurate coding, and
there are many complicating factors. For example, your device might have the ability
to wake up the system from a sleeping state. Deciding whether to succeed or fail a
query, and deciding which device power state corresponds to a given new system
power state, depends on whether your wake-up feature is currently armed. You may
have powered down your own device jJecause of inactivity, and you need to pro
vide for restoring power when a substantive IRP comes along. Maybe your device is
an "inrush" device that needs a large spike of current to power on, in which case the
Power Manager treats you specially. And so on.

When I thought about solving all the problems of handling query-power and set
power operations in a traditional way-that is, with normal-looking dispatch and
completion routines-I was daunted by the sheer number of different subroutines
that would be required and that would end up doing fairly similar things. I therefore

353

Programming the Microsoft Windows Driver Model

decided to build my power support around a ftnite state machine that could easily
deal with the asynchronous nature of the activities.

I'll explain this finite state machine as it appears in GENERIC.SYS, which is a
support driver that most of the code samples on the companion disc use. Appendix
B, "Using GENERIC.SYS," explains the client interface to GENERIC.syS in complete
detail. GENERIC.SYS amounts to a kernel-modeDLL containing helper functions for
WDM drivers. You could think of it as a generic class driver with broad applicability.
Client drivers, including most of my own sample drivers, delegate handling of power
IRPs to GENERIC.SYS by calling GenericDispatchPower. GENERIC.SYS also imple
ments the DEVQUEUE object I discussed in Chapter 6, "Plug and Play."

Overview of the Finite State Machine

354

I wrote a function named HandlePowerEvent to implement the finite state machine
that manages power IRPs. I call this function with two arguments:

NTSTATUS HandlePowerEvent(PPOWCONTEXT ctx. enum POWEVENT event):

The ftrst argument is a context structure that contains a state variable, among
other things:

typedef struct _POWCONTEXT {
LONG id:
LONG eventcount:
PGENERIC_EXTENSION pdx:
PIRP i rp:
enum POWSTATE state:
NTSTATUS status:
PKEVENT pev:
DEVICE_POWER-STATE devstate:
UCHAR MinorFunction:
BOOLEAN UnstallQueue:

} POWCONTEXT. *PPOWCONTEXT:

The id and eventcount fields are for debugging. If you compile POWER.CPP
in the GENERIC project with the preprocessor macro VERBOSETRACE defined as
a nonzero value, the POWTRACE macro will produce volumes of trace messages.
I used this feature to debug the finite state machine. The prebuilt version of

Chapter 8 Power Management

GENERIC.SYS on the companion disc was built without VERBOSETRACE to cut down
on the sheer number of trace messages you'd be confronted with when you began
to try out my samples.

The pdx member points to GENERIC's portion of the device extension for a
given device. There are just a couple of members in the device extension that are
important for power management, and I'll mention them later in "Initial Handling
for a New IRP." The irp member points to the power IRP that the finite state ma
chine is currently working on; state is the state variable for the machine. The sta
tus member is the ending status of an IRP. In some situations, we want to wait while
HandlePowerEvent originates and completes a device power IRP; we use the event
pointed to by pev to await completion in those situations. The devstate member
holds the device power state we want to use in a device IRP, and MinorFunction
holds the minor function code (IRP _MN_QDERY_POWER or IRP _MN_SET_POWER)
we want to use in that IRP. Finally, UnstallQueue indicates whether we want the
state machine to unstall the substantive IRP queue when it finishes handling the
current power IRP.

The second argument to HandlePowerEvent is an event code that indicates why
we're calling the function. There are just these few event codes:

• NewIrp indicates that we are submitting a new power IRP to the ftnite
state machine for processing. The context structure's irp member points
to the IRP in question.

• MainIrpComplete indicates that an IRP is complete.

• AsyncNotify indicates that some other asynchronous activity has oc
curred.

HandlePowerEvent uses the value of the state variable and the event code to
determine an action to take. See Table 8-3. (In the table, by the way, an empty cell
denotes an impossible situation that leads to an ASSERT failure in the checked build
of GENERIC.SYS.) An action corresponds to a series of program steps that advance
the power IRP along its processing path.

355

Programming the Microsoft Windows Driver Model

356

State Bvent

NewIrp MainIrpCom.p1ete

lnitialState TriageNewlrp

SysPowerUpPending SysPowerUpComplete

SubPowerUpPending SubPowerUpComplete

SubPowerDownPending SubPowerDownComplete

SysPowerDownPending SysPowerDownComplete

DevPowerUpPending DevPowerUpComplete

DevPowerDownPending CompleteMainlrp

ContextSavePending ContextSaveComplete

ContextRestorePending ContextRestoreComplete

DevQueryUpPending DevQueryUpComplete

DevQueryDownPending DevQueryDownComplete

Que"ueStallPending QueueStallComplete

Fina!State

Table 8-3. Table giving initial action for each event and state.

Since many of the events require multiple actions in some situations, I coded
HandlePowerEvent in what may seem at first like a peculiar way, as follows:

NTSTATUS HandlePowerEvent(...)
{

NTSTATUS status;
POWACTION action
while (TRUE)

{

switch (action)
{

case <someaction>:
action = <someotheraction>;
continue;

Chapter 8 Power Management

case <anotheraction):
break:
}

break:
}

return status:
}

That is, the function amounts to a switch on the action code imbedded Within an
infinite loop. An action case that performs a continue statement repeats the loop;
this is how I string together a series of actions during one call to the function. An
action case that performs a break from the switch reaches another break statement
that exits from the loop, whereupon the function returns.

I adopted this coding style for the state machine because I really took to heart
the structured programming precepts I learned in my youth. I wanted there to be just
one return statement in this whole function to make it easier to prove that the func
tion worked correctly. To aid in the proof, I developed a couple of rules for myself
that I could test either by inspection or with ASSERT statements at the end of the
function. H~re are the rules:

• Every code path eventually leads to a break statement and, hence, to a
return from the function. Somewhere along the path, someone has to
change the status variable (I initialize it to -1 and then test to be sure it
got changed) and the state variable (I test to be sure it got changed).

• Any continue statement should be preceded by a change in the action
variable.

• Any case that might generate a recursive call to HandlePowerEvent-for
example, by calling PoCallDriver, which might cause a completion event
to be signalled before it returns-must immediately break from the loop
without touching the context structure or the IRP.

Initial Handling for a New IRP
When we receive a new query-power or set-power IRP, we create a context struc
ture to drive the fInite state· machine and call HandlePowerEvent:

NTSTATUS GenericDispatchPower(PGENERIC_EXTENSION pdx. PIRP Irp)
{

NTSTATUS status = IoAcquireRemoveLock(pdx->RemoveLock. Irp):
(continued)

357

Programming the Microsoft Windows Driver Model

358

if (INT_SUCCESS(status»
return CompleteRequest(Irp. status);

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
ULONG fcn = stack-)MinorFunction;
if (fcn == IRP_MN_SET_POWER I I fcn == IRP_MN_QUERY_POWER)

{

PPOWCONTEXT ctx = (PPOWCONTEXT) ExAllocatePool(NonPagedPool.
sizeof(POWCONTEXT»;

RtlZeroMemory(ctx. sizeof(POWCONTEXT»;
ctx-)pdx = pdx;
ctx-)irp = Irp;
status = HandlePowerEvent(ctx. NewIrp);
}

IoReleaseRemoveLock(pdx-)RemoveLock. Irp);
return status;
}

1. The client driver provides a remove lock that both it and GENERIC use
to guard against premature removal of the device object. The actual code
in GENERIC is a little more complicated than I'm showing you here, in
that the remove lock isn't required. The actual code therefore tests the
RemoveLock pointer for NULL before using it. There are other unim
portant respects, including error checking, in which GENERIC differs from
the simplified version I'm showing throughout this chapter.

2. For set and query operations, we allocate nonpaged memory for the con
text structure and initialize it. The state variable gets initialized to Initial
State, which is numerically equal to 0, by the call to RtlZeroMemory.

The initial state of the fInite state machine is InitialState. When we call Handle
PowerEvent for the NewIrp event, the fIrst action taken will be the following, which
I named TriageNewIrp:

case TriageNewIrp:
{

status = STATUS_PENDING;
IoMarkIrpPending(Irp);
IoAcquireRemoveLock(pdx-)RemoveLock. Irp);
if (stack-)Parameters.Power.Type == SystemPowerState)

{ II system IRP
if (stack-)Parameters.Power.State.SystemState < pdx-)syspower)

{

action = ForwardMainIrp;

Chapter 8 Power Management

ctx->state SysPowerUpPending;
}

else
{

action = SelectDState;
ctx->state = SubPowerDownPending;
}

} II system IRP
else

{ II device IRP
ctx->state = QueueStallPending;
if (!pdx->StalledForPower)

{

ctx->UnstallQueue = TRUE;
pdx->StalledForPower = TRUE;
NTSTATUS qstatus = StallRequestsAndNotify(pdx->dqReadWrite.

GenericSaveRestoreComplete. ctx);
if (qstatus == STATUS_PENDING)

break;
}

action = QueueStallComplete;
} II device IRP

continue;
}

1 ~ We always pend the power IRPs that come to us. In nearly every case, we
need to delay completing the IRP until after some asynchronous activity
occurs.

2. We acquire the remove lock an extra time beyond the acquisition that
occurs in the dispatch routine. We'll release this instance of the lock when
we finally complete the IRP.

3. If the power state in the IRP is numerically less than the syspower value
we carry around in the device extension, the IRP relates to a higher system
power state.

4. This statement illustrates how HandlePowerEvent can perform more than
one action during a single invocation. Later on we'll execute a continue
statement that repeats the infinite loop. The action value will be different,
however, which will cause us to execute a different piece of code.

359

Programming the Microsoft Windows Driver Model

360

5. This statement illustrates how action cases can alter the state of the finite
state machine. To simplify the conditional compilation I used for debug
ging print statements, the actual code in GENERIC uses a macro named
SETSTATE to perform this assignment, by the way.

6. We're about to call a function (StallRequestsAndNotify) that might
cause recursion into this function. We're not allowed to touch the con
text structure afterwards, so we set this flag now. The flag means that
CompleteMainIrp should call RestartRequests to unstall the queue.

7. This statement illustrates how an action case can cause HandlePowerEvent
to return. This break statement exits from the switch on action. Immedi
ately after the switch statement is another break, which exits from the
while loop in which the switch is embedded.

Basically, TriageNewlrp is distinguishing between system power IRPs (that is,
IRPs whose Type is SystemPowerState) that increase the power level, system
power IRPs that leave the power level alone or reduce it, and device power IRPs
(that is, IRPs whose Type is DevicePowerState), regardless of whether they raise
or lower the power level. The state machine doesn't distinguish at this stage be
tween QUERY_POWER and SET_POWER requests, so they end up being treated
very similarly up to a point.

For us to know whether power is rising or falling, our device extension needs
two variables for keeping track of system power and device power states:

typedef struct _GENERIC_EXTENSION {

DEVICE_POWER-STATE devpower; II current dev power state
SYSTEM_POWER-STATE syspower; II current sys power state
} GENERIC_EXTENSION, *PGENERIC_EXTENSION;

We initialize these values to PowerDeviceDO and PowerSystemWorking,
respectively, when the client driver first registers with GENERIC.SYS.

You can guess from context that the device extension also has a BOOLEAN
member named StalledForPower. This flag, when set, indicates that the substantive
IRP queue is presently stalled for purposes of power management. Incidentally, you'll
notice Of you've got the right sort of nasty and suspicious mind to be doing device
driver programming, that is) that I'm not explicitly synchronizing access to the power

Chapter 8 Power Management

state fields or this flag. No additional synchronization is required beyond the seriali
zation that the Power Manager already imposes.

I'll discuss the three initial categories of IRPs separately now.

System Power IRPs That Increase Power
If a system power IRP implies an increase in the system power level, you'll forward
it immediately to the next lower driver. In your completion routine for the system
power IRP, you'll request the corresponding device power IRP and return STATUS_
MORE]ROCESSING_REQUIRED to temporarily halt the completion process. In a
completion routine for the device power IRP, you'll finish the completion process
ing for the system power IRP. Figure 8-5 diagrams the flow of the IRP through all of
the drivers. Figure 8-6 is a state diagram that shows how our finite state machine
handles the IRP.

System power IRP

PoStartNextPowerl rp
loCompleteRequest

PoRequestPowerlrp

Figure 8-S. IRP flow when increasing system power.

PoStartNextPowerlrp

361

Programming the Microsoft Windows Driver Model

- State

• ACtion

--. Nonnal flow

--. Error condition

•••• ~ Asynchronous event

Figure 8-6. State transitions when increasing system power.

362

Chapter 8 Power Management

In terms of how the code works, I showed you earlier that TriageNewlrp puts
the machine into the SysPowerUpPending state and requests the ForwardMainIrp
action, which is as follows:

case ForwardMainIrp:
{

IoCopyCurrentIrpStackLocationToNext(Irp);
IoSetCompletionRoutine(Irp. (PIO_COMPLETION_ROUTINE)

MainCompletionRoutine. (PVOID) ctx. TRUE. TRUE. TRUE);
PoCa 11 Dri ver(pdx-)LowerDevi ceObje.ct. I rp) ;
break;
}

HandlePowerEvent will now return STATUS]ENDING, as mandated by the
code we already saw in TriageNewirp. This return value percolates back out through
GenericDispatchPower and, presumably, the client driver's IRP _MLPOWER dispatch
function.

Our next contact with this IRP is when the bus driver completes it. Our own
MainCompletionRoutine gets control as part of the completion process, saves the
IRP;s ending status in the context structure's status field, and invokes the finite state
machine:

NTSTATUS MainCompletionRoutine(PDEVICE_OBJECT junk. PIRP Irp,
PPOWCONTEXT ctx)
{

ctx-)status = Irp-)IoStatus.Status;
return HandlePowerEvent(ctx. MainIrpComplete);
}

Our initial action will be SysPowerUpComplete:

case SysPowerUpComplete:
{

if (!NT_SUCCESS(ctx-)status»
action = CompleteMainIrp;

else
{

if (stack-)MinorFunction == IRP_MN_SET_POWER)
pdx-)syspower = stack-)Parameters.Power.State.SystemState;

action = SelectDState;
ctx-)state = SubPowerUpPending;
status = STATUS_MORE_PROCESSING_REQUIRED;
}

continue;
}

363

Programming the Microsoft Windows Driver Model

364

1. If the IRP failed in the lower levels of the driver hierarchy, we're going
to let it complete without doing any more work on this power event. I'll
explain in the next section, "Dealing with Failure," what CompleteMainIrp
does.

2. This is where we record the new system power state. We use the syspower
value when we check to see whether a new system IRP is raising or low
ering power.

3. We've been called from MainCompletionRontine and now want to
interrupt completion of the system IRP while we process the device IRP
we're about to originate. Hence, we'll cause MainCompletionRoutine to
return STATUS_MORE]ROCESSING_REQUIRED.

Dealing with Failure
If the IRP failed, you can see that we'll do the CompleteMainIrp action next:

case CompleteMainlrp:
{

PoStartNextPowerlrp(Irp);
if (event == MainlrpComplete)

status = ctx->status;
else

{

Irp->IoStatus.Status ctx->status;
IoCompleteRequest(Irp. IO_NO_INCREMENT);
}

IoReleaseRemoveLock(pdx->RemoveLock. Irp);
if (ctx->UnstallQueue)

{

pdx->StalledForPower = FALSE;
RestartRequests(pdx->dqReadWrite. pdx->DeviceObject);
}

action = DestroyContext;
continue;
}

Chapter 8 Power Management

1. Here's the call to PoStartNextPowerIrp that we must make for each
power IRP while we still own it.

2.· If we were entered to handle a MainIrpComplete event, our caller must
have been MainCompletionRoutine, and the first action routine will
have set status equal to STATUS_MORE_PROCESSING_REQUIRED to
short-circuit the completion proce~s. Since we've decided we want to
complete this IRP after all-that's why we're at CompleteMainIrp-the
right thing to do is to return a different status code and allow the comple
tion process to take its normal course.

3. If we were entered for any other event, we need to explicitly complete
the IRP.

4. This IoReleaseRemoveLock call balances the call to IoAcquireRemove
Lock that we did during TriageNewIrp.

5. I'll explain what this block of code is all about when I talk about device
IRPs later in this chapter.

When handling a system power IRP that increases power, the machine enters
CompleteMainIrp after a MainIrpComplete event. CompleteMainIrp will therefore
arrange to return the error status we originally fetched (inside MainCompletionRoutine)
from the IRP. That will permit the completion process to continue. There are other code
paths we haven't studied yet in which CompleteMainIrp calls IoCompleteRequest in
stead. CompleteMainIrp finishes by requesting yet another action:

case DestroyContext:
{

if (ctx->pev)
KeSetEvent(ctx->pev. IO_NO_INCREMENT. FALSE);

else
ExFreePool(ctx);

break;
}

365

Programming the Microsoft Windows Driver Model

366

1. This branch is taken when SendDeviceSetPower calls the state machine
engine to create and wait for a device IRP.

2. This branch is taken when GenericDispatchPower calls the state machine
engine to process an IRP.

DestroyContext is, of course, the last action the finite state machine ever
performs.

Mapping the System State to a Device State
The other possible path out of SysPowerUpComplete generates a device power IRP
with a power state that corresponds to the system power state. We perform the
mapping of system to device states in the SelectDState action:

case SelectDState:
{

SYSTEM_POWER-STATE sysstate =
stack-)Parameters.Power.State.SystemState;

if (sysstate == PowerSystemWorking)
ctx->devstate = PowerDeviceD0;

else
{

DEVICE_POWER-STATE maxstate =
pdx-)devcaps.DeviceState[sysstate];

DEVICE_POWER-STATE minstate = pdx->WakeupEnabled ?
pdx-)devcaps.DeviceWake : PowerDeviceD3;

ctx-)devstate = minstate > maxstate ? minstate maxsstate;
}

ctx-)MinorFunction = stack->MinorFunction;
action = SendDevicelrp;
continue;
}

By the way, the Power Manager never transitions directly from one low system
power state to another: it always moves via PowerSystemWorking. That's why I coded
Se1ectDState to choose one mapping for PowerSystemWorking and a different map
ping for all other system power states.

In general, we always want to put our device into the lowest power state that's
consistent with current device activity, with our own wake-up feature (if any), with
device capabilities, and with the impending state of the system. These factors can

Chapter 8 Power Management

interplay in a relatively complex way. To explain them fully, I need to digress briefly
and talk about a Plug and Play IRP that I avoided discussing in Chapter 6: IRP _MN_
QUERY_CAPABILITIES.

The PnP Manager sends a capabilities query shortly after starting your device
and perhaps at other times. The parameter for the request is a DEVICE_CAPABILITIES
structure that contains several fields relevant to power management. Since this is the
only time in this book I'm going to discuss this structure, I'm shOWing you the entire
declaration:

typedef struct _DEVICE_CAPABILITIES {
USHORT Size;
USHORT Version;
ULONG DeviceDl:l:
ULONG DeviceD2:1;
ULONG LockSupported:l;
ULONG EjectSupported:l;
ULONG Removable:l;
ULONG DockDevice:l;
ULONG UniqueID:l;
ULONG SilentInstall:l;
ULONG RawDeviceOK:l;
ULONG SurpriseRemovalOK:l;
ULONG WakeFromD0:1:
ULONG WakeFromDl:l;
ULONG WakeFromD2:1;
ULONG WakeFromD3:1;
ULONG HardwareDi~abled:l;
ULONG NonDynamic:l;
ULONG Reserved:16;

ULONG Address;
ULONG UINumber;

DEVICE_POWER-STATE DeviceState[PowerSystemMax1mum];
SYSTEM_POWER-STATE SystemWake;
DEVICE_POWER-STATE DeviceWake;
ULONG DILatency;
ULONG D2Latency;
ULONG D3Latency;

} DEVICE-CAPABILITIES. *PDEVICE_CAPABILITIES;

361

Programming the Microsoft Windows Driver Model

368

Table 8-4 describes the fields· in this structure that relate to power management.

Field

DeviceState

SystemWake

DeviceWake

DlLatency

D2Latency

D3Latency

WakeFromDO

WakeFromDl

WakeFromD2

WakeFromD3

Description

Array of highest device s~tes possible for each system state

Lowest system power state from which the device can
generate a wake-up signal for the system-PowerSystem
Unspecified indicates that device can't wake up the system

Lowest power state from which the device can generate a
wake-up signal-PowerDeviceUnspecified indicates that
device can't generate a wake-up signal

Approximate worst-case time (in 100-microsecond units)
required for device to switch from Dl to DO states

Approximate worst-case time (in lOO-microsecond units)
required for device to switch from D2 to DO states

Approximate worst-case time (in 100-microsecond units)
required for device to switch from D3 to DO states

Flag indicating whether device's system wake-up feature is
operative when the device is in the indicated state

Same as above

Same as above

Same as above

Table 8·4. Power-management fields in DEVICE_CAPABILI11ES structure.

You normally handle the query capabilities IRP synchronously by passing it
down and waiting for the lower layers to complete it. After the pass-down, you'll make
any desired changes to the capabilities recorded by the bus driver. Your subdispatch
routine would look like this one:

NTSTATUS HandleQueryCapabilities(lN PDEVICE_OBJECT fdo,
IN PIRP Irp)
{

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
PDEVICE_CAPABILITIES pdc = stack->

Parameters.DeviceCapabilities.Capabilities;
if (pdc->Version < 1)

return DefaultPnpHandler(fdo, Irp);
NTSTATUS status = ForwardAndWait(fdo, Irp);
if (NT_SUCCESS(status»

{

stack = IoGetCurrentIrpStackLocation(Irp);

Chapter 8 Power Management

pdc = stack-)Parameters.DeviceCapabilities.Capabilities;
<stuff>
pdx-)devcaps = *pdc;
}

return CompleteRequest(Irp. status);
}

1. The device capabilities structure has a version number member, which is
currently always equal to 1. The structure is designed to always be up
ward compatible, so you'll be able to work with the version defined in
theDDK that you build your driver with and with any later incarnation
of the structure. If, however, you're confronted with a structure that's older
than you're able to work with, you should just ignore this IRP by passing
it along.

2. Here's where you can override any capabilities that were set by the bus
driver.

3. It's a good idea to make a copy of the capabilities structure. I already
described how you'll use the DeviceState map when you receive a sys
tem power IRP. You might have occasion to consult other fields in the
structure, too.

Don't bother altering the characteristics structure before you pass this IRP down:
the bus driver will completely reinitialize it. When you regain control, you can modify
SystemWake and DeviceWake to specify a higher power state than the bus driver
thought was appropriate. You can't specify a lower power state for the wake-up
fields, and you can't override the bus driver's decision that your device is incapable
of waking the system. If your device is ACPI-compliant, the ACPI filter will set the
LockSupported, EjectSupported, and Removable flags automatically based on
the ACPI Source Language (ASL) deSCription of the device-you won't need to worry
about these capabilities.

You might want to set the SUl"priseRemovalQK flag at point "2" in the capa
bilities handler. Setting the flag suppresses the dialog box that Windows 2000 nor
mally presents when it detects the sudden and unexpected removal of a device. It's
normally okay for the end user to remove a universal serial bus (USB) or 1394 device
without first telling the system, and the function driver should set this flag to avoid
annoying the user.

To return to our discussion of SelectDState, suppose we're dealing with a set
power request that will take the computer from Working to Sleepingl; we'll there
fore execute the second branch of the if statement in SelectDState. Let's suppose that
the bus driver knows that our device can be in any of the states DO, Dl, D2, or D3

369

Programming the Microsoft Windows Driver Model

370

when the system is in Sleeping!. When it answered the PnP capabilities query it would
therefore have filled in DeviceState [PowerSystemSleepingl] in the device capa
bilities structure with the value PowerDeviceDO because DO is the highest power state
our device can occupy for this system state. We'll initially record PowerDeviceDO, then,
as the value of maxstate.

Our device might also have a wake-up feature. I'll say more about wake-up later
on. If so, the bus driver will have set the DeviceWake member of the capabilities
structure equal to the lowest power state from which wake-up can occur. Let's sup
pose that value is PowerDeviceDl. If our wake-up feature happens to be enabled
right now, we'll set minstate to PowerDeviceDl.

If we don't have a wake-up feature, however, or if we have one and it's not
currently enabled, we're free to choose any device power state lower than the
maxstate value we derived from the device capabilities stn]cture. We could blindly
choose D3, but that wouldn't be right for every type of device because generally
speaking it takes longer to resume from D3 to DO than from D2 or Dl. The choice
you make in this case therefore depends on factors for which I can't give you cut
and-dried guidance. If your device is capable of the D2 state, for example, you might
decide to enter D2 for any of the system sleeping states and reserve D3 for the hiber
nate and shutdown states.

It seems reasonable to leave your device in a low power state when the sys
tem resumes from a sleeping state. The DDK suggests you do this, and so does good
sense. There are two situations in which you would need to restore your device to
DO when the system goes to Working. The fIrst situation is when your device has the
INRUSH characteristic. In this case, the Power Manager won't send power IRPs to any
other INRUSH device until you've powered on your device. The second situation is
when you've got substantive IRPs queued and waiting to run once power is back.
Notwithstanding what a good idea it seems to be to just leave your device in a low
power state, you'll notice that the code fragment I just showed you for SelectDState
unconditionally picks the DO state. In my testing, Windows 2000 seemed to hang
coming out of standby if I didn't do that. Maybe there's a mistake in my code or in
the operating system. Stay tuned to my errata page for more information about this.

Requesting a Device Power IRP
In Chapter 5, "The I/O Request Packet," I discussed support functions such as
IoAllocateIrp that you can use to build IRPs. You don't use those functions when you
want to create power IRPs, though. (Actually, you would use one of those functions
for an IRP _MN_POWER_SEQUENCE request, but not for the other IRP _MLPOWER
requests.) Instead, you use PoRequestPowerIrp, as shown here in the code for the

Chapter 8 Power Management

SendDeviceIrp action we'd perform after SelectDState:

case SendDeviceIrp:
{

if (wing8 && ctx->devstate == pdx->devpower)
{

ctx->status = STATUS_SUCCESS;
action = actiontable[ctx->state][AsyncNotify];
continue;
}

POWER-STATE powstate;
powstate.DeviceState = ctx->devstate;
NTSTATUS postatus = PoRequestPowerIrp(pdx->Pdo.

ctx->MinorFunction. powstate. (PREQUEST_POWER-COMPLETE)
, PoCompletionRoutine. ctx. NULL);

if (NT_SUCCESS(postatus»
break;

action = CompleteMainIrp;
ctx->status = postatus;
continue;
}

1. Refer to "Windows 98 Compatibility Notes" at the end of this chapter for
an explanation of what this section of code is all about.

2. The first argument to PoRequestPowerIrp is the address of the physi
cal device object (PDO) for our device. Note that the IRP we're requesting
will actually get sent to the topmost fIlter device object (FiDO) anyway. The
second argument is the minor function code for the IRP we want to send.
This will either be IRP _MN_QUERY]OWER or IRP _MN_SET]OWER in
our case. The third argument is a POWER_STATE that should contain a
device power state value when we're requesting a query or set operation.
The fourth and ftfth arguments are, respectively, the address of a callback
routine for when the IRP finishes and a context parameter for that func
tion. The last argument is an optional address of a PIRP variable to receive
the address of the IRP that PoRequestPowerIrp creates.

3. PoRequestPowerIrp normally returns STATUS_PENDING after creating
and launching the power IRP you've requested. This, and any success
code, in fact, mean that our callback function will eventually be called. It
will generate another call to HandlePowerEvent, so we're done with this
invocation of the engine. .

371

Programming the Microsoft Windows Driver Model

4. If PoRequestPowerIrp fails, it never created the IRP and our callback
function will never be called. We therefore want to fail the system IRP with
whatever status code we've gotten.

In the system power-up scenario I'm currently discussing; our state machine will
be in the SubPowerUpPending state when we get to SendDeviceIrp. The status
variable will be STATUS_MORE_PROCESSING_REQUIRED, which is the right value
for MainCompletionRoutine to return if we're going to wait for the device IRP to
finish. Normally, then j when we break from SendDeviceIrp, we'll interrupt the
completion processing for the system power IRP for the time being.

I'll discuss what happens to the device IRP we request via PoRequestPowerIrp
later on.

Finishing the System IRP
Eventually, the device IRP that SendDeviceIrp requests will finish, whereupon the Power
Manager will call the PoCompletionRoutine callback routine. It in turn calls Handle
PowerEvent with the event code AsyncNotify. Our first action in the SubPower
UpPending state will be SubPowerUpComplete:

case SubPowerUpComplete:
{

if (status == -1)
status = STATUS_SUCCESS:

action = CompleteMainIrp:
continue:
}

The only job performed by this action routine is to alter the status variable. The
reason we do that is that we have an ASSERT statement at the end of HandlePowerEvent
to make sure someone changes status. In this exact scenario, it doesn't matter what
status value we return because PoCompletionRoutine is a void function. But you don't
want to trigger an ASSERT and a BSOD unless something is really wrong.

The next action after SubPowerUpComplete is CompleteMainIrp, which leads
to DestroyContext. You've already seen what those action routines do.

System Power IRPs That Decrease Power

372

If the system power IRP implies no change or a reduction in the system power level,
you'll request a device power IRP with the same minor function code (set or query)
and a device power state that corresponds to the system state. When the device

Chapter 8 Power Management

power IRP completes, you'll forward the system power IRP to the next lower driver.
You'll need a completion routine for the system power IRP so that you can make
the requisite call to PoStartNextPowerIrp and so that you can perform some addi
tional cleanup. See Figure 8-7 for an illustration of how the IRPs flow through the
system in this case.

System power IRP

PoRequestPowerlrp

Figure 8-7. IRP flow when decreasing system power.

PoStartNextPowerlrp

........•.•

PoStartNeJdPowerlrp
loCompleteRequest

Figure 8-8 diagrams how our finite state machine handles this type of IRP.
TriageNewIrp puts the state machine into the SubPowerDownPending state and
jumps to the SeiectDState action. You already saw that SelectDState selects a device
power state and leads to a SendDeviceIrp action to request a device power IRP. In
the system power-down scenario, we'll be specifying a lower power state in this
device IRP.

Programming the Microsoft Windows Driver Model

Figure 8-8. State transitions when decreasing system power.

374

.,

• •
.......

" " " " " ." ••
• ••••• MainlrpComplete event

State

Action

Normal flow

Error condition

· ... >- Asynchronous event

Chapter·8 Power Management

When the device IRP finishes, we execute SubPowerDownComplete:

case SubPowerDownComplete:
{

if (status == -1)
status = STATUS_SUCCESS:

if (NT_SUCCESS(ctx->status»
{

ctx->state = SysPowerDownPending:
action = ForwardMainIrp:
}

else
action = CompleteMainIrp:

continue:
}

As you can see, if the device IRP fails, we fail the system IRP too. If the device IRP
succeeds, we enter the SysPowerDownPending state and exit via ForwardMainItp.
When the system IRP finishes, and MainCompletionRoutine runs, we'll execute
SysPowerDownComplete:

case SysPowerDownComplete:
{

if (stack->MinorFunction == IRP-HN_SET_POWER)
pdx->syspower = stack->Parameters.Power.State.SystemState:

action = CompleteMa1nIrp:
continue:
}

The only putpose of this action is to record the new system power state in our device
extension and then to exit via CompleteMainItp and DestroyContext.

Device Power IRPs
All we actually do with system power IRPs is act as a conduit for them and request
a device IRP either as the system IRP travels down the driver stack or as it travels back
up. We have more work to do with device power IRPs, however.

To begin with, we don't want our device occupied by any substantive I/O
operations while a change in the device power state is under way. As early as we
can in a sequence that leads to powering down our device, therefore, we wait for
any outstanding operation to finish, and we stop processing new operations. Since
we're not allowed to block the system thread in which we receive power IRPs, an
asynchronous mechanism is required. Once the current IRP finishes, we'll continue
processing the device IRP.

375

Programming the Microsoft Windows Driver Model

If the device power IRP implies an increase in the device power level, we'll
forward it to the next lower driver. Refer to Figure 8-9 for an illustration of how
the IRP flows through the system. The bus driver will process a device set-power
IRP by, for example, using whatever bus-specific mechanism is appropriate to turn
on the flow of electrons to your device, and it will complete the IRP. Your comple
tion routine will initiate whatever operations are required to restore context infor
mation to the device, and it will return STATUS_MORE_PROCESSING_REQUIRED
to interrupt the completion process for the device IRP. When the context restore
operation finishes, you'll resume processing substantive IRPs and finish complet
ing the device IRP.

Device power IRP

PoStartNextPowerlrp
loCompleteRequest

PoStartNextPowerlrp

(Asynchronous
••• • device-dependent ••••

operations)

Figure 8-9. IRP flow when increasing device power.

376

If the device power IRP implies no change or a reduction in the device power
level, you perform any device-specific processing (asynchronously, as we've discussed)
and then forward the device IRP to the next lower driver. See Figure 8-10. The "device
specific processing" for a set operation includes saving device context information,
if any, in memory so that you can restore it later. There probably isn't any device
specific processing for a query operation beyond deciding whether to succeed or fail
the query. The bus driver completes the request. In the case of a query operation,
you can expect the bus driver to complete the request with STATUS_SUCCESS to

Chapter 8 Power Management

indicate acquiescence in the proposed power change. In the case of a set operation,
you can expect the bus driver to take whatever bus-dependent steps are required to
put your device into the specified device power state. Your completion routine cleans
up by calling PoStartNextPowerIrp, among other things.

Device power IRP

(Asynchronous
• •• devlce-clependent ••••

operations)

Figure 8-10. IRP flow when decreasing device power.

PoStartNextPowerlrp

PoStartNextPowerlrp
loCompleteRequest

I invented StaIlRequestsAndNotify for use in TriageNewIrp. (It's so new that
Chapter 6, where all the other DEVQUEUE functions are described, was already
beyond my reach when I created it.) The first step it performs is to stall the request
queue. If the device is currendy busy, it records a callback routine addres&-il). this case,
GenericSaveRestoreComplete, which I'm overloading for purposes of receiving a
notification-and returns STATUS_PENDING. TriageNewIrp will then exit in the
QueueStallPending state.

If the device isn't busy, StallRequestsAndNotify returns STATUS_SUCCESS with
out arranging any callback; the device can't become busy now because the queue is
stalled. TriageNewIrp will then go direcdy to the QueueStallComplete action.

We reach the QueueStallComplete routine either directly from TriageNewIrp
(when the device is idle or if the queue was previously stalled for some other power
related reason) or when the client driver calls StartNextPacketto indicate that it's

377

Programming the Microsoft Windows Driver Model

378

finished processing the current IRP. StartNextPacket calls the notification routine we
gave to StallRequestsAndNotify, and that routine signals an AsyncNotify event to the
state machine. QueueStallComplete now separates the device IRP into one of four
categories, as follows:

case QueueStallComplete:
{

if (stack->MinorFunction == IRP_MN_SET_POWER)
{

if (stack->Parameters.Power.State.DeviceState < pdx->devpower)
{

action = ForwardMainlrp:
SETSTATE(DevPowerUpPending):
}

else

}

else
{

action = SaveContext:

if (stack->Parameters.Power.State.DeviceState < pdx->devpower)
{

action = ForwardMainlrp:
SETSTATE(DevQueryUpPending);
}

else
action = DevQueryDown:

}

continue:
}

The upshot of QueueStaliComplete is that we perform the next action indicated
in Table 8-5 for the type of IRP we're dealing with.

Minor Function More or Less Power?

More power

Less or same power

More power

Less or same power

Table 8-5. Next action for device IRPs.

Setting a Higher Device Power State

Next Actio"

ForwardMainIrp

DevQueryDown

ForwardMainIrp

SaveContext

Figure 8-11 diagrams the state transitions that occur for an IRP _MN_SET]OWER that
specifies a higher device power state than that which is current.

Chapter 8 Power Management

MainlrpComplete event

• State

• Action Normal flow Error condition

••••)11. Asynchronous event

Figure 8-11. State transitions when setting a higher device power state.

379

ProgralRlRing the Microsoft Windows Driver Modal

380

ForwardMainIrp will install a completion routine and send the IRP down the
driver stack. When MainCompletionRoutine eventually gains control, it signals a
MainIrpComplete event. We will be in the DevPowerUpPending state, so we'll
execute the DevPowerUpComplete action:

case DevPowerUpComplete:
{

if (!NLSUCCESS(ctx->status) II stack->MinorFunction !=
I RP_MN_SET_POWER)
{

action = CompleteMainIrp;
continue;
}

status = STATUS-MORE~PROCESSIN~REQUIRED;
DEVICE_POWER-STATE oldpower = pdx->devpower;
pdx->devpower = stack->Parameters.Power.State.DeviceState;
if (pdx->RestoreContext)

{

ctx->state = ContextRestorePending;
(*pdx->RestoreDeviceContext) (pdx->DeviceObject. oldpower.

pdx->devpower. ctx);
break;
}

action = ContextRestoreComplete;
continue;
}

The main task we need to accomplish is restoring any device context that was
lost during the previous power-doWn transition. Since we're not allowed to block our
thread, we initiate whatever operations are required and return STATUS_MORE_
PROCESSING_REQUIRED to interrupt the completion of the device IRP. When the
restore operations fInish, the client driver calls GenericSaveRestoreComplete, which
signals an AsyncNotify event. We'll be in the ContextRestorePending state at that
point, so we'll perform the ContextRestoreComplete action:

Chapter 8 Power Management

case ContextRestoreComplete:
{

if (event == AsyncNotify)
status = STATUS_SUCCESS;

action = CompleteMainIrp;
if (!NT_SUCCESS(ctx-)status) I I pdx-)devpower != PowerDev;ceD0)

continue;
ctx-)UnstallQueue = TRUE;
continue;
}

The main result of this action routine is that we unstall the queue of substan
tive IRPs at the conclusion of an IRP _MN_SET_POWER to the DO state. We exit via
CompleteMainlrp and DestroyContext.

Querying for a Higher Device Power State
You shouldn't expect to receive an IRP _MN_QUERY:...POWER that refers to a higher
power state than your device is already in, but you shouldn't crash the system if
you happen to receive one. The following code shows what GENERIC does when
such a query completes in the lower level drivers. (Refer to Figure 8-12 for a state
diagram.)

case DevQueryUpComplete:
{

if (NT_SUCCESS(ctx-)status) && pdx-)QueryPower)
if (!(*pdx-)QueryPower)(pdx-)DeviceObject. pdx-)devpower.

stack-)Parameters.Power.State.DeviceState»
ctx-)status = STATUS_UNSUCCESSFUL;

action = CompleteMainIrp;
continue;
}

That is, GENERIC allows the client driver to accept or veto the query by calling its

Query-Power function, and then it exits via CompleteMainIrp and DestroyContext.

381

Programming the Microsoft Windows Driver Model

382

• State

• Action

--. Nonnalflow

--. Error condition

.... ~ Asynchronous event

Figure 8·12. State transitions for a query about a higher device power state.

Setting a Lower Device Power State
If the IRP is an IRP _MN_SET_POWER for the same or a lower device power state than
current, the finite state machine goes through the state transitions diagrammed in
Figure 8-13.

Chapter 8 Power Management

• State

Action ... Normal flow ... Error condition

... ->- Asynchronous event

Figure 8-13. State transitions when setting a lower device power state.

383

Progralllming the Microsoft Windows Driver Model

384

SaveContext will initiate an asynchronous process to save any device context
that will be lost when the device loses power:

case SaveContext:
{

DEVICE_POWER-STATE devpower =
stack->Parameters.Power.State.DeviceState;

if (pdx->SaveDeviceContext && devpower > pdx->devpower)
{

ctx->state = ContextSavePending;
(*pdx->SaveDeviceContext)(pdx->DeviceObject. pdx->devpower.

devpower. ctx);
break;
}

action = ContextSaveComplete;
}

When the save operations finish, the client driver calls GenericSaveRestore
Complete, which signals an AsyncNotify event. We'll be in the ContextSavePending
state at that point, so we'll perform the ContextSaveComplete action:

case ContextSaveComplete:
{

if (event == AsyncNotify)
status = STATUS_SUCCESS;

ctx->state = DevPowerDownPending;
action = ForwardMainlrp;
DEVICE_POWER-STATE devpower =

stack->Parameters.Power.State.DeviceState;
if (devpower <= pdx->devpower)

continue;
pdx->devpower = devpower;
if (devpower > PowerDeviceD0)

ctx->UnstallQueue = FALSE;
continue;
}

1. We'll come directly here from GenericSaveRestoreComplete, and we
need to change status to prevent an ASSERT failure (but not for any other
reason).

2. If we didn't actually change power, there's no more work to do here.

Chapter 8 Power Management

3. This is where we record the new device power state when we're pow
ering down.

4. If the device is now in a low-power or no-power state, we want to leave
the substantive IRP queue stalled.

The next action, ForwardMainIrp, sends the device IRP down the driver stack.
The bus driver will turn the physical flow of current off and complete the IRP. We'll
see it next when MainCompletionRoutine signals a MainIrpComplete event, which
takes us directly to CompleteMainIrp and thence to DestroyContext.

Querying for a Lower Device Power State
An IRP _MN_QUERY_POWER that specifies the same or a lower device power state
than current is the basic vehicle by which a function driver gets to vote on changes
in power levels. Although the DDK doesn't specifically say you should create one
of these requests when you handle a system query, it's a good idea to do so. You
have to handle device queries anyway and might as well put all the query logic in

one place. Figure 8-14 shows how our state machine will handle such a query.
The DevQueryDown action follows QueueStallComplete for this kind of IRP:

case DevQueryDown:
{

DEVICE_POWER-STATE devpower =
stack->Parameters.Power.State.DeviceState;

if (devpower > pdx->devpower
&& pdx->QueryPower
&& !(*pdx->QueryPower)(pdx->DeviceObject.
pdx->devpower. devpower»
{

ctx->status = STATUS_UNSUCCESSFUL;
action = DevQueryDownComplete;
continue;
}

ctx->state = DevQueryDownPending);
action = ForwardMainlrp;
continue;
}

385

Programming the Microsoft Windows Driver Model

MainlrpComplete event

- State

til Action Normal flow Error condition

.... >- Asynchronous event

Figure 8-14. State transitions for a query about a lower device power state.

386

Chapter 8 Powar Management

GENERIC basically lets the client driver decide whether the query should succeed.
If the client driver says "Yes," we enter the DevQueryDownPending state and exit
via ForwardMainIrp to send the query down the driver stack. Completion of the IRP
sends us to the DevQueryDownComplete action:

case DevQueryDownComplete:
{

if (NLSUCCESS(ctx->status»
ctx->UnstallQueue = FALSE:

action = CompleteMainIrp:
continue:
}

The basic action we take is to leave the substantive IRP queue stalled if the query
succeeds. (CompleteMainIrp will unstall the queue if it sees the UnstallQueue flag
set in the context structure. Clearing the flag causes this step to be skipped.) Recall
that we first stalled the queue when we received the query. We'll leave it stalled until
someone eventually sends us a set-power IRP to put the device into DO.

ADDITIONAL POWER MANAGEMENT DETAILS
In this section, I'll describe some additional details about power management, includ
ing flags you might need to set in your device object, controlling your device's wake
up feature, arranging for power-down requests after your device has been idle for a
predetermined time, and optimizing context restore operations.

Flags to Set in AddDevice
Three flag bits in a device object-see Table 8-6---control various aspects of power
management. After you call IoCreateDevice in your AddDevice function, all three
of these bits will be set to 0, and you can set one or more of them depending on
circumstances.

Flag Brief Description

DO_POWER_PAGABLE Driver's IRP_MLPOWER dispatch routine must run
at PASSIVE_LEVEL

DO_POWER_INRUSH Powering on this device requires a large amount of
current

Device doesn't participate in power management

Table 8-6. Power-management flags in DEVICE_OBJECT.

387

Programming the Microsoft Windows Driver Model

Set the DO_POWER_PAGABLE flag if your dispatch function for IRP _MLPOWER
requests must run at PASSIVE_LEVEL. The flag has the name it does because, as you
know, paging is allowed at PASSIVE_LEVEL only. If you leave this flag set to 0, the
Power Manager is free to send you power requests at DISPATCH_LEVEL. In fact, it
always will do so in the current release of Windows 2000.

Set the DO_POWER_INRUSH flag if your device draws so much current when
powering up that other devices should not be allowed to power up simultaneously.
The problem solved by this flag is familiar to people who've experienced multiple
simultaneous spikes of electricity demand at the end of a power outage-having all
your appliances trying to cycle on at the same time can blow the main breaker. The
Power Manager guarantees that only one inrush device at a time will be powered up.
Furthermore, it sends power requests to inrush devices at DISPATCH_LEVEL, which
implies that you may not also set the DO_POWER_PAGABLE flag.

The system's ACPI filter driver will set the INRUSH flag in the PD~ automatically
if the ASL description of the device so indicates. All that's required for the system to
properly serialize inrush power is that some device object in the stack have the INRUSH
flag set, so you won't need to set the flag in your own device object too. If the system
can't automatically determine that you require inrush treatment, however, you would
need to set the flag yourself.

Set the DO_POWER_NOOP flag if your driver isn't managing hardware and
needn't participate in power management. When PoCallDriver sees this flag set in a
device object, it simply completes the IRP with STATUS_SUCCESS without even calling
the corresponding driver's dispatch routine.

The settings of the PAGABLE and INRUSH flags need to be consistent in all the
device objects for a particular device. If the PD~ has the PAGABLE flag set, every
device object should also have PAGABLE set. Otherwise, a bug check with the code
DRIVER]OWER_STATE]AILURE may occur. (It's legal for a PAGABLE device to be
layered on top of a non-PAGABLE device, just not the other way around.) If a device
object has the INRUSH flag set, neither it nor any lower device objects should be
PAGABLE, or else an INTERNAL_POWER_ERROR bug check will occur. If you're
writing a disk driver, don't forget that you may change back and forth from time to
time between pagable and nonpagable status in response to device usage PnP noti
fications about paging meso

Device Wake-Up Features

388

Some devices have a hardware wake-up feature, which allows them to wake up a
sleeping computer when an external event occurs. See Figure 8-15. The power switch
on the current crop of PCs is such a device. So are many modems and network cards,
which are able to listen for incoming calls and packets, respectively.

Chapter 8 Power Management

Network card

Figure 8-15. Examples of devices that wakethe system.

If your device has a wake-up feature, your function driver has additional power
management responsibilities beyond the ones we've already discussed. The first
additional responsibility is to handle the IRP _MN_ WAIT_WAKE flavor of IRP _ML
POWER. Most devices don't need to do any processing in their dispatch functions
for WAIT_WAKE requests beyond installing a standard I/O completion routine and
passing the IRP down the driver stack. The bus drivers for the USB and Peripheral
Component Interconnect (PCI) bus, for example, implement the bus specifications
for arming, disarming, and detecting wake-up. More explicitly, if your device doesn't
have additional features related to device wake-up beyond the ones prescribed by
the relevant bus specification, you don't need any special processing.

You want to fail IRP _MN_QUERY_POWER requests that specify a power state
incompatible with your wake-up feature. If the query is for a system state, compare
the proposed new state with the SystemWake field in the device capabilities structure,
which gives the lowest system state from which your device can wake up the system.
If the query is for a device state, compare the proposed new state with the DeviceWake
field, which gives the lowest device state from which your device can issue the wake
up signal. If the result of the comparison shows that the proposed power state is too
low, fail the query with STATUS_INVALID_DEVICE_STATE. Otherwise, process the
query in the way I've already discussed.

You need to originate an IRP _MN_ WAIT_WAKE at appropriate times. To do this,
call PoRequestPowerIrp as illustrated by this code fragment:

typedef struct _DEVICE_EXTENSION {
PIRP WaitWakeIrp;
} ;

NTSTATUS SomeFunction(...)
{

(continued)

389

Programming the Microsoft Windows Drlvar Modal

390

POWER-STATE junk;
junk.SystemState = pdx-)devcaps.SystemWake;
status = PoRequestPowerlrp(pdx-)Pdo. IRP~MN_WAIT_WAKE.

junk. (PREQUEST_POWER-COMPLETE) WaitWakeCallback.
pdx. &pdx-)WaitWakelrp);

}

The last extra responsibility related to wake-up is to cancel the WAIT_WAKE
IRP when it's no longer needed using code like this:

PIRP Irp = (PIRP) InterlockedExchangePointer(&pdx-)WaitWakelrp. NULL);
if (Irp)

IoC~ncellrp(Irp);

For most devices, you need to perform three tasks when the WAIT_WAKE com
pletes. You should nullify the member of the device extension structure that points
to the active WAIT_WAKE IRP. That will prevent some other part of your driver from
thinking that the WAIT_WAKE is still active. You should initiate a device set-power
IRP to restore power to your device. Some devices might need to perform some
sort of device-specific operation to disarm the device's wake-up feature at this point,
too. Finally, you might want to automatically reissue a WAIT_WAKE so that your
device's wake-up feature remains armed for the future. The first of these tasks
nullifying the WAIT_WAKE IRP pointer-ought to be done in a standard I/O comple
tion routine that your dispatch routine installs.- The other two tasks-repowering
your device and requesting a new WAIT_WAKE IRP-should be done in the call
back routine CWaitWakeCaIlback in my fragment) that you specify in your. call to
PoRequestPowerIrp.

NOTE It looks to me as though it's very difficult to be 100 percent sure that
you're calling loCancelirp for your WAIT_WAKE request with a valid pointer.
You could decide to cancel the IRP a nanosecond before your I/O completion
routine nullifies your cached pointer to the IRP. The completion process could
run its course, ending with a call to 10Freeirp from inside the Power Manager as
soon as your callback routine returns. Thereafter, 10Cancelirp or the bus driver's
cancel routine could try to work with the now-invalid IRP. This is the same "tiger
on Main Street" problem that I discussed in Chapter 5. Between us, I and one of
the Microsoft developers who reviewed this code came up with an elegant solu
tion that's unfortunately too big to fit in the margin. Please refer to the GENERIC
sample on the companion disc.

When to Launch WAIT _W~KE
In the preceding section, I showed you how to launch a WAIT_WAKE IRP, how to
cancel one, and what to do when one completes. You should be wondering when
you should launch this IRP in the first place.

Chapter 8 Power Management

The first part of the answer to "when?" is that you need a way to know whether
the end user wants your device's wake-up feature to be armed. Your driver should
arm the wake-up feature unless the end user says not to. The end user will interact
with some sort of user interface element (such as a control panel applet similar to
POWCPL.DLL) to indicate whether your wake-up feature should be armed when the
system po~ers down. The user interface element communicates in turn with your
driver, either by using a private IOCTL interface or by setting a WMI control. You
then remember the arm/disarm setting. At some point in the evolution of Windows
2000, user-mode programs will perhaps be able to use the so far unimplemented
RequestDeviceWakeup and CanceIDeviceWakeupRequest APIs to trigger WMI
calls to your driver.

The second part of the answer concerns when you invoke PoRequestPowerIrp
to request the WAIT_WAKE. The DDK indicates that you may request a WAIT_WAKE
at any time when your device is in the DO state and a device power transition is not
in progress. Good times are when you're told by the end user to enable your wake
up feature and when you process a system power query that will reduce the device
power state.

You should disable wake-up (and cancel an outstanding WAIT_WAKE) whenever
you're told to do so by the end user and also when you process an IRP _MN_
STOP_DEVICE request.

Idle Detection
As a general matter, the end user would prefer that your device not draw any power
if it isn't being used. You can register with the Power Manager to be sent a low-power
device IRP when your device remains idle for a specified period. The mechanics of
the idle detection scheme involve two service functions: PoRegisterDeviceForIdie
Detection and PoSetDeviceBusy.

To register for idle detection, make this service function call:

pdx->idlecount = PoRegisterDeviceForldleDetection(pdx->Pdo.
ulConservationTimeout. ulPerformanceTimeout. PowerDeviceD3);

The first argument to PoRegisterDeviceForIdleDetection is the address of the PD~
for your device. The second and third arguments specify timeout periods measured
in seconds. The conservation period will apply when the system is trying to con
serve power, such as when running on battery power. The performance period will
apply when the system is trying to maximize performance, such as when running

391

Programming the Microsoft Windows Driver Model

392

on AC power. The fourth argument specifies the device power state into which you
want your device to be forced if it's idle for longer than whichever of the timeout
periods applies.

Indicating That You're Not Idle
The return value from PoRegisterDeviceForIdleDetection is the address of a long
integer that the system uses as a counter. Every second, the Power Manager increments
that integer. If it reaches the appropriate timeout value, the Power Manager sends
you a device set-power IRP indicating the power state you registered. At various places
in your driver, YOli'll reset this counter to 0 to restart the idle detection period:

if (pdx-)idlecount)
PoSetDeviceBusy(pdx-)idlecount);

PoSetDeviceBusy is a macro in the WDM.H header file that uncritically derefer
ences its pointer argument to store a O. It turns out that PoRegisterDeviceForIdle
Detection can return a NULL pointer, so you should check for NULL before calling
PoSetDeviceBusy.

Now that I've described what PoSetDeviceBusy does, you can see that its name
is slightly misleading. It doesn't tell the Power Manager that your device is "busy,"
in which case you'd expect to have to make another call later to indicate that your
device is no longer "busy." Rather, it indicates that, at the particular instant you use
the macro, your device is not idle. I'm not making this point as a mere semantic
quibble. If your device is busy with some sort of active request, you'll want to have
logic that forestalls idle detection. So, you might want to call PoSetDeviceBusy from
many places in your driver: from various dispatch routines, from your StartIo routine,
and so on. Basically, you want to make sure that the detection period is longer than
the longest time that can elapse betWeen the calls to PoSetDeviceBusy that you make
during the normal processing of a request.

NOTE PoRegisterSystemState allows you to prevent the Power Manager
from changing the system power state, but you can't use it to forestall idle timeouts.
Besides, it isn't implemented in Windows 98, so calling it is contraindicated for
drivers that need to be portable between Windows 2000 and Windows 98.

Choosing Idle Timeouts
Picking the idle timeout values isn't necessarily simple. Certaih kinds of devices can
specify -1 to indicate the standard power policy timeout for their class of device. At
the time of this writing, only FILE_DEVICE_DISK and FILE_DEVlCE_MASS_STORAGE
devices are in this category. While you'll probably want to have default values for
the timeout constants, their values should ultimately be under end user control.
underlying the method by which a user gives you these values is a tale of consider
able complexity.

Chapter 8 Power Management

Unless your device is one for which the system designers planned a generic idle
detection scheme, you'll need to provide a user-mode component that allows the end
user to specify timeout values. To fit in best with the rest of die operating system, that
piece should be a property page extension to the Power control panel applet. That is,
you should provide a user-mode DLL that implements the IShellPropSheetExt and
IShellExtInit COM interfaces. This DLL would fit the general description of a shell
extension DLL, which is the topic you would research if you wanted to learn all the
ins and outs of writing this particular piece of user interface software.

Learning about COM in general and shell extension DLLs in particular seems
to me like a case of the tail wagging the dog insofar as driver programming goes.
So the WDMIDLE sample on the companion disc includes a shell extension DLL
(POWCPL.DLL) that you can copy and adapt. If you install this sample, you'll start
noticing a new property page in the Power Options property sheet. See Figure 8-16.
POWCPL.DLL uses the user-mode functions we discussed in Chapter 2, "Basic Struc
ture of a WDM Driver," to enumerate all the devices that have registered a GUID_
WDMIDLE interface, and it presents their "friendly" names in a list box. It uses a private
I/O control (IOCTL) scheme-see Chapter 9, "Specialized Topics"- to query and alter
the idle timeout constants used by WDMIDLE.syS. Using 10CTLs for this purpose gives
you a workable scheme for both Windows 2000 and Windows 98. Another possible
method uses the COM interfaces that are part of WMI. (See Chapter 10, "Windows
Management Instrumentation. ") This method is a great deal more cumbersome and
doesn't work in the original release of Windows 98, which is why I didn't code
POWCPL.DLL to use it.

Figure 8-16. The property page/or idle devices.

393

Programming the Microsoft Windows Driver Model .

394

On the driver side of the user interface is a handler for IRP _MLDEVICE_
CONTROL to answer queries and honor requests to alter power management settings.
The end user expects that settings, once specified, will remain in effect in subsequent
sessions. The driver therefore needs to record the current values of the constants in
the registry by using the functions I discussed in Chapter 3, "Basic Programming Tech~
niques." Furthermore, at StartDevice time, the driver needs to read those persistent
settings from the registry to initialize the driver according to the user's expectations.

All of these details, though important to delivering a polished product, are rather
tangential to the issues of power management that I'm discussing in this chapter, so
I won't discuss the code here.

Waking Up from an Idle State
If you implement idle detection, you'll also have to provide a way to restore power
to your device at some later time-no one else will do it for you. I wrote a function
named SendDeviceSetPower to deal with this detail. You would have code like this
in the dispatch function for an IRP that needs power:

NTSTATUS DispatchWrite(IN PDEVICE_OBJECT fdo. IN PIRP Irp)
{

PDEVICE_EXTENSION pdx =
(PDEVICE_EXTENSION) fdo->DeviceExtension;

if (pdx->idlecount)
PoSetDeviceBusy(pdx->idlecount);

if (pdx->powerstate > PowerDeviceD0)
{

NTSTATUS status = SendDeviceSetPower(fdo. PowerD~viceD0. FALSE);
if (!NT~SUCCESS(status»

return CompleteRequest(Irp. status. 0);
}

IoMarkIrpPending(Irp);
StartPacket(&pdx->dqReadWrite. fdo. Irp. OnCancel);
return STATUS_PENDING;
}

1. This is the dispatch routine for IRP _ML WRITE requests in some driver.
At the beginning of the routine is one of the places you should call
PoSetDeviceBusy to reset the idle countdown that's occurring once each
second.

Chapter 8 Power Management

2. You might have powered down your device after a period of inactivity,
or you might simply have left it off when the system resumed from
standby. Whatever the reason, no one else in the system will realize that
your device needs power right now, and so you have to initiate the power
on sequence.

3. If the device set-power request should fail for some reason, you should
fail the write request.

4, The rest of this dispatch routine is the same as I've discussed in earlier
chapters. We mark the IRP pending, put it into the queue of write requests,
and return STATUS_PENDING to tell our caller that we didn't finish the
IRP in our dispatch routine.

In general, we get read and write requests in an arbitrary thread context, so we
should not block that thread. When we power ourselves back on, therefore, we return
without waiting for the power-up operation to finish. The DEVQUEUE takes care of
starting the request when power is finally back.

The SendDeviceSetPower helper routine calls PoRequestPowerlrp directly. The
resulting device IRP gets handled in the same way as we've already discussed.

Using Sequence Numbers to Optimize State Changes
You might want to use an optimization technique in connection with removing and
restoring power to your device. Two background facts will help you make sense of
the optimization technique. First, the bus driver doesn't always power down a device
even when it receives a device set-power IRP. This particular bit of intransigence arises
because of the way computers are wired together. There might be one or more power
channels, and there might be any random collection of devices wired to any given
channel. These devices are said to share a power relation. A particular device can't
be powered down unless all the other devices on the same power channel are pow
ered down as well. So, to use the macabre example that I sometimes give my semi
nar students, suppose the modem you want to power down happens to share a power
channel with your computer's heart-lung machine-the system can't power down your
modem until the bypass operation is over.

395

Programming the Microsoft Windows Driver Model

The second background fact is that some devices require a great deal of time
to change power. To return to the previous example, suppose that your modem were
such a device. At some point, you received and passed along a device set-power
request to put your modem to sleep. Unbeknownst to you, however, the bus driver
didn't actually power down the modem. When the time comes to restore power, you
could save some time if you knew that your modem hadn't lost power. That's where
this particular optimization comes into play.

At the time you remove power, you can create and send a power request with
the minor function code IRP _MN_POWER_SEQUENCE to the drivers underneath
yours. Even though this IRP is technically an IRP _MLPOWER, you use 10Allocatelrp
instead of PoRequestPowerIrp to create it. You still use PoStartNextPowerIrp and
PoCallDriver when you handle it, though. The request completes after the bus driver
stores three sequence numbers in an array you provide. The sequence numbers indi
cate how many times your device has been put into the D1, D2, and D3 states. When
you're later called upon to restore· power, you create and send another IRP _MN_
POWER_SEQUENCE request to obtain a new set of sequence numbers. If the new
set is the same as the set you captured at power-down time, you know that no state
change has occurred and that you can bypass whatever expensive process would be
required to restore power.

Since IRP _MN]OWER_SEQUENCE simply optimizes a process that will work
without the optimization, you needn't use it. Furthermore, the bus driver needn't
support it, and you shouldn't treat failure of a power-sequence request as indicative
of any sort of error. The GENERIC sample on disc actually includes code to use the
optimization, but I didn't want to further complicate the textual discussion of the state
machine by showing it here.

WINDOWS 98 COMPATIBILITY NOTES

396

Windows 98 incompletely implements many power management features. Conse
quently, the Windows 98 environment will forgive your mistakes more readily than
Windows 2000 will, facilitating the initial development of a driver. But, since Wmdows 98
tolerates mistakes that Windows 2000 won't tolerate, you must be sure to test all of
your driver's power functionality under Windows 2000.

The DO_POWER_PAGABLE flag has additional and unexpected significance in
Windows 98. Unless every device object, including the PD~ and all filter devices,

Chapter 8 Power Management

in your particular stack has this flag set, the I/O Manager tells the Windows 98 Con
figuration Manager that the device only supports the DO power state and is inca
pable of waking the system. Thus, an additional consequence of not setting the
DO_POWER]AGABLE flag is that any idle notification request you make by calling
PoRegisterDeviceForIdleDetection is effectively ignored-that is, you'll never receive
a power IRP as a result of being idle too long. Another consequence is that your
device's wake-up feature, if any, won't be used.

Requesting Device Power IRPs
Windows 98 appears to have a bug whereby PoRequestPowerIrp can appear to suc
ceed-that is, it returns STATUS_PENDING-without actually causing you to receive
a device set-power IRP. The problem arises when you ask for a set-power IRP that
specifies the same device state that your device is already in-the Windows 98 Con
figuration Manager "knows" that there's no news to report by sending a configuration
event to the configuration function that NTKERN operates on your behalf. Mind you,
if you're waiting for a device IRP to complete, your device will simply stop responding
at this point.

I used an obvious workaround to overcome this problem: if we're running under
Windows 98 and detect that we're about to request a device power IRP for the same
power state as the device already occupies, I simply pretend that the device IRP
succeeded. lri terms of the state transitions that HandlePowerEvent goes through, I
jump from SendDevicelrp directly to whatever action (SubPowerUpComplete or
SubPowerDownComplete) is appropriate.

PoCaliDriver
PoCallDriver just calls 10CallDriver in Windows 98. Consequently, it would be easy
for you to make the mistake of using 10CallDriver to forward power IRPs. There is,
however, an even worse problem in Windows 98.

The Windows 2000 version of PoCallDriver makes sure that it sends power IRPs
to DO]OWER_PAGABLE drivers at PASSIVE_LEVEL and to INRUSH or nonpaged
drivers at DISPATCH_LEVEL. I took advantage of that fact in GENERIC to forward
power IRPs in situations where HandlePowerEvent is called at DISPATCH_LEVEL from
an I/O completion routine. The Windows 98 version, since it's just 10CallDriver un
der a different name, doesn't switch IRQL. As it happens, all power IRPs in Windows
98 should be sent at PASSIVE_LEVEL. So I wrote a helper routine named
SafePoCallDriver for use in GENERIC that queues an executive work item-refer to
Chapter 9-to send the IRP at PASSIVE_LEVEL.

397

Programming the Microsoft Windows DrlVlr Model

Other Differences

398

You should know about a few other differences between the way Windows 98 and
Wmdows 2000 handle power management features. I'll describe them briefly and indi
cate how they might affect the development of your drivers.

When you call PoRegisterDeviceForIdleDetection, you must supply the address
of the PDO rather than your own device object. That's because, internally, the sys
tem needs to find the address of the DEVNODE that the Windows 98 Configuration
Manager workS with, and that's accessible only from the PDO. You can also use the
PDO as the argument in Windows 2000, so you might as well write your code that
way in the fIrst place.

The PoSetPowerState support routine is a no-operation in Windows 98. further
more, although it's documented as returning the previous device or system power
state, the Windows 98 version returns whatever state argument you happen to supply.
This is the new state rather than the old state-or maybe just a random number that
occupies an uninitialized variable that you happened to use as an argument to the
function: no one checks.

PoStartNextPowerIrp is a no-operation in Windows 98, so it would be easy for
you to forget to call it if you do your development in Windows 98.

As best I can tell, the PO_POWER_NOOP flag in a device object doesn't do
anything in Windows 98. Accordingly, there's no point in setting it in the hope of
avoiding the need to handle power IRPs.

The service routines having to do with device power relations (PoRegister
DeviceNotify and PoCancelDeviceNotify) are not defIned in Windows 98. As far
as I can tell, Windows 98 also doesn't issue a PowerRelations query to gather the
information needed to support the callbackS in the fIrst place. The service routines
PoRegisterSystemState, PoSetSystemState, and PoUnregisterSystemState are
also not implemented in Windows 98. To load a driver in Windows 98 that calls these
or other undefined service functions, you'll need to supply a virtual device driver with
stubs, as I'll describe in Appendix A, "Coping with Windows 98 Incompatibilities."

Chapter 9

Specialized Topics

In the preceding eight chapters, I've described most of the features of a full-blown
WDM driver suitable for any random sort of hardware device. But you should un
derstand a few more general-purpose techniques, and I'll describe them in this chapter.
In the chapter's first section, I'll explain how to create a filter driver that sits above
or below the function driver and modifies the standard behavior evoked by the func
tion driver. Then I'll describe how to log errors for eventual viewing by a system
administrator. After that, I'll discuss the very important subject of how you use I/O
control (IOCTL) operations to allow an application to control your hardware or fea
tures of your driver. That discussion includes an explanation of how a WDM driver
can alert an application to "interesting" events. I'll wrap up the chapter with instruc
tions about how to create your own system threads, how to queue work items for
execution within the context of existing system threads, and how to set up watch
dog timers for unresponsive devices.

FILTER DRIVERS
The Windows Driver Model assumes that a hardware device can have several driv
ers that each contribute in some way to the successful management of the device.
The WDM accomplishes the layering of drivers by means of a stack of device objects.
I discussed this concept in Chapter 2, "Basic Structure of a WDM Driver." Up until
now, I've been talking exclUSively about the function driver that manages the main
functionality of a device. In this section, I'll describe how you write a filter driver that
resides above or below the function driver and modifies the behavior of the device
in some way by filtering the I/O request packets (IRPs) that flow through it.

399

Programming the Microsoft Windows Driver Model

400

A filter driver that's above the function driver is called an upper filter driver; a
filter driver tha(s below the function driver (but still above the bus driver) is called
a lower filter driver. The mechanics of building either type of filter are exactly the same,
even though the drivers themselves serve different purposes. In fact, you build a filter
driver just as you build any other WDM driver-with a DriverEntry routine, an
AddDevice routine, a bunch of dispatch functions, and so on.

The intended purpose of an upper filter driver is to facilitate supporting a de
vice that behaves in most respects like a generic device of its class but that has some
additional functionality. You can rely, perhaps, on a generic function driver to sup
port the generic behavior. To deal with the extra functionality, you write an upper
filter driver to intervene in the flow of I/O requests. To give a silly example, suppose
there existed a standard class of toaster device for which someone had written a
standard driver. And suppose that your particular, toaster had an Advanced Waffle
Eject feature that caused your toaster to pop toasted waffles two feet into the air. Con
trolling this AWEsome feature would be a natural job for an upper filter driver. See
Figure 9-1.

IRPs

Figure 9-1. Role of an upper filter driver.

Another use for upper filter drivers is to compensate for bugs in the hardware
or in the function driver. If you're going to deploy a filter driver for this purpose,
Microsoft implores you to version-stamp the driver and, insofar as it's under your
control, to change the version number of whatever component you're compensat
ing for when the bug someday gets fixed. Otherwise, it will be harder for Microsoft
to install automatic updates.

Lower filter drivers can't intervene in the normal operation of a device with
which the function driver communicates directly. That's because the function driver
will implement most substantive requests by making hardware abstraction layer (HAL)

Chapter 9 Specialized Topics

calls that directly access the hardware. The filter driver, of course, sees only those
IRPs that something above chooses to pass down to it, and it never knows about the
HAL calls.

A lower filter driver might fmd employment in the stack of drivers for a USB
(universal serial bus) device, however. For such devices, the function driver uses
internal control IRPs as containers for USB request blocks (URBs). A lower ftlter driver
could monitor and modify these IRPs, perhaps. See Figure 9-2.

Figure 9·2. Role of a lower filter driver.

Another possible use for a lower ftlter driver, suggested by one of my seminar
students, is to help you write a bus-independent driver. Imagine a device packaged
as a PCI (Peripheral Component Interconnect) expansion card, a PCMCIA (Personal
Computer Memory Card International Association) card, a USB device, and so on. You
could write a function driver that is totally independent of the bus architecture, ex
cept that it wouldn't be able to talk to the device. You'd also write several lower fil
ter drivers, one for each possible bus architecture, as illustrated in Figure 9-3. You'd
install the appropriate one of these for a particular instance of the hardware. When
your function driver needed to talk to the hardware, it would send an IRP (perhaps
an IRP _MLINTERNAL_DEVICE_CONTROL) down to the filter.

401

PrograMming the Microsoft Windows Driver Model

Figure 9-3. Using lower filter drivers to acbieve bus independence.

DriverEntry Routine

402

The DrlverEntry routine for a filter driver is very similar to that for a function driver.
The major difference is that a filter driver must install dispatch routines for every type
of IRP, not just for the types of IRP it expects to handle:

extern "c" NTSTATUS DriverEntry(PDRIVEILOBJECT DriverObject.
PUNICODE_STRING RegistryPath)
{

DriverObject->DriverUnload = DriverUnload;
DriverObject->DriverExtension->AddDevfce = AddDevice;
for (int i = 0; i < arraysize(DriverObject->MajorFunctfon); ++i)

DriverObject->MajorFunction[i] = DispatchAny;
DriverObject->MajorFunction[IRP_MJ_POWER] = DfspatchPower;
DriverObject->MajorFunction[IRP_MJ_PNP]= DispatchPnp;
return STATUS_SUCCESS;
}

A filter driver has a DrlverUnload and an AddDevice function just as any other
driver does. I filled the major function table with the address of a routine named
DispatchAny that would pass any. random request down the stack. I specified spe
cific dispatch routines for power and Plug and Play (PnP) requests.

The reason that a filter driver has to handle every conceivable type of IRP has
to do with the order in which driver AddDevice functions get called vis-a-vis
DriverEntry. In general, a filter driver has to support all the same IRP types that the
driver immediately underneath it supports. If a filter were to leave a particular

Chapter 9 Specialized Topics

MajorFunction table entry in its default state, IRPs of that type would get failed with
STATUS_INVALID_DEVICE_REQUEST. (The I/O Manager includes a default dispatch
function that simply completes a request with this status. The driver object initially
comes to you with all the MajorFunction table entries pointing to that default rou
tine.) But you won't know until AddDevice time which device object(s) are under
neath you. You could investigate the dispatch table for each lower device driver inside
AddDevice and plug in the needed dispatch pointers in your own MajorFunction table,
but remember that you might be in multiple device stacks, so you might get multiple
AddDevice calls. It's easier to just declare support for all IRPs at DriverEntry time.

AddDevice Routine
Filter drivers have AddDevice functions that get called for each appropriate piece
of hardware. You'll be calling IoCreateDevice to create an unnamed device object
and IoAttachDeviceToDeviceStack to plug in to the driver stack. In addition, you'll
need to copy a few settings from the device object underneath you:

NTSTATUS AddDev1ce(PDRIVER-OBJECT DriverObject. PDEVICE_OBJECT pdo}
{

PDEVICE_OBJECT fido;
NTSTATUS status = IoCreateDevice(DriverObject.

sizeof(DEVICLEXTENSION}. NULL. FILE_DEVICLUNKNOWN.
0. FALSE. &fido);

if(!NLSUCCESS(status»
return status;

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtens1on;
__ try

{

pdx->DeviceObject = fido;
pdx->Pdo = pdo;
PDEVICE_OBJECT fdo = IoAttachDev1ceToDev1ceStack(fido. pdo);
pdx->LowerDeviceObject = fdo;
f1do-)Flags 1= fdo-)Flags &

(DO-DIRECT_IO I DO_BUFFERED_IO I DO_POWER-PAGABLE
I DO_POWER-INRUSH);

f1do-)Dev1ceType = fdo-)Dev1ceType:
f1do-)Character1st1cs = fdo-)Character1st1cs:
fido->Flags &= -DO_DEVICE_INITIALIZING;
}

__ finally
{

if (!NT_SUCCESS(status»
IoDeleteDevice(fido);

}

return status;
}

403

Programming the Microsoft Windows Driver Model

404

The part that's different from a function driver is shown in boldface. Basically,
we're propagating a few flag bits, the DeviceType value, and the Characteristics
value from the device object next beneath us. We need to make these copies because
the I/O Manager bases some of its decisions on what it sees in the topmost device
object. In particular, whether a read or write IRP gets a memory descriptor list (MDL)
or a system copy buffer depends on what the top object's DO_DlRECT_IO and
DO_BUFFERED_IO flags are. We don't need to copy the SectorSize or Alignment
Requirement members of the lower device object-IoAttachDeviceToDeviceStack
will do that automatically.

NOTE The reason I told you that you have to declare your choice of buffered
versus direct I/O in AddDevice and that you can't change you mind afterward
should now be clear: a filter driver might copy your settings at Add Device time
and won't have any way to know about a later change.

There's ordinarily no need for a ftlter device object (FiDO) to have its own name.
If the function driver names its device· object and creates a symbolic link, or if the
function driver registers a device interface for its device object, an application will
be able to open a handle for the device. Every IRP sent to the device gets sent ftrst
to the topmost FiDO driver, whether or not that FiDO has its own name.

Do not use the FILE_DEVICE_SECURE_OPEN characteristics flag when you cre
ate a FiDO object. The PnP Manager propagates this flag, and a few others, up and
down the device object stack. It's not your decision whether to enforce security
checking on file opens-it's the function driver's and maybe the bus driver's.

Dispatch Routines
You write a ftlter driver in the first place because you want to modify the behavior
of a device in some way. Therefore, you'll have dispatch functions that db something
with some of the IRPs that come your way. But you'll be passing most of the IRPs
down the stack, and you pretty much know how to do this already:

NTSTATUS DispatchAny(PDEVICE_OBJECT fido. PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension:
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp):
if (INT_SUCCESS(status»

return CompleteRequest(Irp. status. 0):
IoSk1pCurrentlrpStackLocation(Irp):
status = IoCallDriver(pdx->LowerDeviceObject. Irp):
IoReleaseRemoveLock(&pdx->RemoveLock. Irp):
return status:
}

NTSTATUS DispatchPnp(PDEVICE_OBJECT fido. PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension:
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp):

Chapter 9 Specialized Topics

if (INT_SUCCESS(status»
return CompleteRequest(Irp. status. 0);

PIO_STACILLOCATION stack = IoGetCurrentlrpStackLo'cation<Irp);
ULONG fen = stack->MinorFunction;
IoSkipCurrentlrpStackLocation(Irp);
status = IoCallDriver(pdx->LowerDeviceObject. Irp);
if (fen == IRP_MN_REMOVE_DEVICE)

{

IoReleaseRemoveLockAndWait(&pdx->RemoveLock. Irp);
IoDetachDevice(pdx->LowerDeviceObject);
IoDeleteDevice(fido);
}

else
IoReleaseRemoveLock(&pdx->RemoveLock. Irp);

return status;
}

NTSTATUS DispatchPower(PDEVICE_OBJECT fido. PIRP Irp)
{

PoStartNextPowerlrp(Irp);
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp);
if (INT_SUCCESS(status»

return CompleteRequest(Irp. status. ~);
IoSkipCurrentlrpStackLocation(Irp);
status = PoCallDriver(pdx->LowerDeviceObject. Irp);'
IoReleaseRemoveLock(&pdx->RemoveLock. Irp);
return status;
}

It's necessary, by the way, to acquire and release the remove lock for a filter
driver's device object, as shown in these examples. The initial call to IoAcquire
RemoveLock checks whether a device removal is currently pending for the FillO.
If so, the dispatch function fails the IRP immediately with STATUS_DELETE]ENDING,
the only nonsuccess value that IoAcquireRemoveLock ever returns. While the filter
owns its remove lock in one ,dispatch function, another thread that might be trying
to process an IRP _MN_REMOVE_DEVICE inside DispatchPnp will block inside
IoReleaseRemoveLockAndWait. What's thereby prevented is the call to IoDetach
Device, which might allow the lower device object to disappear. Our own device
object is protected from deletion by a reference that,was obtained by the caller be
fore sending us this IRP-by using IoGetAttachedDeviceReference, for example.

Except for IRP _MLPNP, all dispatch functions in a filter driver need to be in
nonpaged memory,and none sh.ould assume they're being called at PASSIVE_LEVEL.
Here are two real-world examples of why this might matter. First, a lower filter fora
USB device will be receiving and passing ,along IRP _MLINTERNAL_DEVlCE_
CONTROL requests that contain URBs. (See Chapter 11, "The Universal Serial Bus.")

405

Programming the Microsoft Windows Driver Model

Some of these IRPs arrive at PASSIVE_LEVEL. Others might arrive at DISPATCH_LEVEL
because they're coming from an I/O completion routine. The second example involves
a disk driver, which might start out handling power requests at PASSIVE_LEVEL
because it's set the DO_POWER_PAGABLE flag. The disk driver might subsequently
learn that its device is being used to hold a paging file or some other special file,
whereupon it will lock down its power handler and clear the DO_POWER_PAGABLE
flag. All of a sudden, any filter driver in the same stack will start getting power re
quests at DISPATCH_LEVEL.

NOTE You should follow this guideline when you program a filter driver: First,
do no harm. In other words, don't cause drivers above or below you to fail be
cause you perturbed anything at all in their environment or in the flow of IRPs.

LOGGING ERRORS

406

In the discussions of error handling up until now, I've been concerned only with de
tecting (and propagating) status codes and with doing various things in the checked
build to help debug problems that show up as errors. Even in the free build of a driver,
however, some errors are serious enough that we want to be sure the system admin
istrator knows about them. For example, maybe a disk driver discovers that the disk's
physical surface has an-unusually large number of bad sectors. Or maybe a driver is
encountering unexpectedly frequent data errors or some sort of difficulty configur
ing or starting the device.

To deal with these types of situations, a driver can write an entry to the system
error log. The Event Viewer applet-one of the administrative tools on a Microsoft
Windows 2000 system----can later display this entry so that an administrator can learn
about the problem. See Figure 9-4 for an illustration of the Event Viewer. Another
way to indicate sudden errors is by signaling a Windows Management Instrumenta
tion (WMI) event. I'll discuss event logging in this section; WMI is the subject of
Chapter 10, "Windows Management Instrumentation."

Production of an administrative report from the error log involves the steps
diagrammed in Figure 9-5. A driver uses the kernel-mode service function IoWrite
ErrorLogEntry to send an error log packet data structure to the event logger service;
The packet contains a· numeric code instead of message text. As time permits, the
event logger writes packets to a logging file on disk. Later, the Event Viewer com
bines the packets in the log file with message text drawn from a collection of mes
sageflles to produce the report. The message files are ordinary 32-bit DLLs containing
text appropriate to all possible logged events in the local language.

Chapter 9 Specialized Topics

Figure 9-4. The Windows 2000 Event Viewer.

Figure 9-5. Overview of event logging and reporting.

Your job as a driver author is to create appropriate error log packets when
noteworthy events occur. As a practical matter, you'll probably also be the person
who has to build the message me in at least one natural language. I'll describe both
aspects of error logging in the next two sections.

407

Programming the Microsoft Windows Driver Model

Creating an Error Log Packet

408

To log an error, a driver creates an IO_ERROR_LOG_PACKET data structure and
sends it to the kernel-mode logger. The packet is a variable-length structure-see
Figure 9-6-with a ftxed-size header containing general information about the event
you're logging. ErrorCode indicates what event you're logging; it correlates with the
message text file I'll describe shortly. After the fixed header comes an array of
doublewords called DumpData, which contains DumpDataSize bytes of data that
the Event Viewer will display in hexadecimal notation when asked for detailed in
formation about this event. The size is in bytes even though the array is declared as
consisting of 32-bit integers. After the DumpData, the packet can contain zero or more
null-terminated Unicode strings that will end up being substituted into the format
ted message text by the Event Viewer. The string area begins StrlngOffset bytes from
the start of the packet and contains NumberOfStrings strings.

o
Major- _I DumpDataSize FunctlonCode RetryCount

4
NumberOfStrlngs StringOffset

8
EventCategory

C
ErrorCode

10
UnlqueErrorValue

14
FlnalStatus

18
SequenceNumber

1C
loControlCode

20

DevlceOffset

28

DumpData[DumpDataSlze]

<string data>

Chapter 9 Specialized Topics

You don't have to fill in any of the fixed-header members besides the ones I
just mentioned. But they add, perhaps, diagnostic utility to the log entries, which might
help you track down problems.

Since the logging packet is of variable length, your first job is to determine how
much memory is needed for the packet you want to create. Add the size of the fixed
header to the number of bytes of DumpData to the number of bytes occupied by the
substitution strings (including their null terminators). For example, the following code
fragment, taken from the EVENnOG sample on the companion disc, allocates an error
log packet big enough to hold 4 bytes of dump data plus a single string:

VOID LogEvent(NTSTATUS code. POEVICE_OBJECT fdo)
{

PWSTR rnyname = L"EventLog":
ULONG packetlen = (wcslen(myname) + 1) * sizeof(WCHAR)

+ si'zeof(lO_ERROR-LOG_PACKET) + 4;
if (packetlen > ERROR-LOG_MAXIMUM_SIZE)

return;
PIO_ERROR-LOG_PACKET p = (PIO_ERROR-LO~PACKET)

IoAllocateErrorLogEntry(fdo. (UCHAR) packetlen);
if (!p)

return;

}

One trap for the unwary in this sequence is that error log packets have a maxi
mum length of152 bytes, the value of ERROR_LOG_MAXIMUM_SlZE. Furthermore,
the size argument to IoAllocateErrorLogEntry is a UCHAR, which is only 8 bits
wide. It would be very easy to ask for a packet that was, say, 400 bytes long and be
embarrassed when only 144 bytes get allocated. (400 is Ox190; 144 is Ox90, which is
what you'd get after the truncation to 8 bits.)

Notice that the first argument to 10AlIocateErrorLogEntry is the address of a
device object. The name, if any, of that device object will appear in eventual log entries
in place of the %1 substitution escape, which I will discuss more in the next section.

This code fragment also illustrates the action you should take in response to a
problem allocating a log entry: none. It's not considered an error if you can't log some
other error, so you don't want to fail any IRP, generate a bug check, or do anything
else that will cause your processing to terminate. In fact, you'll notice that this
LogEvent helper function is VOID because no programmer should be concerned
enough,about whether it succeeds or fails to have put a check into his or her code.

409

Programming the Microsoft Windows Driver Model

After successfully allocating the log packet, your next job is to initialize the
structure and hand off control of it to the logger. For example:

memset(p, 0, sizeof(IO_ERROR-LOG_PACKET»:
p->ErrorCode = code:

p->DumpDataSize = 4:
p->DumpData[0] = <whatever>:

p->StringOffset = sizeof(IO_ERROR-LOG_PACKET) + p->DumpDataSize:
p->NumberOfStrings = 1:
wcscpy«PWSTR) «PUCHAR) p + p->StringOffset), myname):

IoWriteErrorLogEntry(p):
}

When logging a device error, you'd fIll in more of the fIelds in the header than
just the error code. For information about these other fIelds, consult the IoAllocate
ErrorLogEntry function in the OOK documentation.

Creating a Message File

410

The Event Viewer uses the ErrorCode in an error packet to locate the text of an
appropriate message in one of the message files associated with your driver. A mes
sage file is just a 011 with a message resource containing text in one or more natu
rallanguages. Since a WDM driver uses the same executable file format as a OLL, the
message file for your private messages could just be your driver file itself. I'll give
you an introduction here to building a message file. You can find additional infor
mation on MSON and in James O. Murray's Windows NT Event Logging (O'Reilly &

Associates, 1998) at pages 125-57.
Figure 9-7 illustrates the process by which you attach message text to your driver.

You begin by creating a message source file with the file extension Me. Your build
script uses the message compiler (MC.EXE) to translate the messages. One of the
outputs of the message compiler is a header file containing symbolic constants for
your messages; you include that file in your driver, and the constants end up being
the ErrorCode values for the events you log. The other outputs from the message
compiler are a set of intermediate files containing message text in one or more natural
languages and a resource script file (.RC) that lists those intermediate files. Your build
script goes on to compile the resource file and to specify the translated resources as
input to the linkage editor. At the end of the build, your driver contains the message
resources required to support the Event Viewer.

Chapter 9 Specialized Topics

Figure 9-7. Creating a messageJile.

The following is an example of a simple message source file. (This is part of
the EVENTLOG sample program.)

MessageldTypedef = NTSTATUS

SeverityNames =
Success
Informational
Warning
Error
)

FacilityNames =

(

= 0x0:STATUS_SEVERITY_SUCCESS
= 0xl:STATUS_SEVERITY_INFORMATIONAL
= 0x2:STATUS_SEVERITY_WARNING
= 0x3:STATUS_SEVERITY_ERROR

System = 0x0
Eventlog = 0x2A:FACILITY_EVENTLOG_ERROR-CODE .
)

LanguageNames =
English = 0xe409:msg00001
German = 0x0407:msg00002

. French = 0x040C: msg00003
)

Messageld = 0x0001
Facility = Eventlog
Severity = Informational
SymbolicName = EVENTLOG_MSG_TEST

(continued)

411

Programming the Microsoft Windows Driver Model

412

Language = English
%2 said. "Hello. world!"

Language = German
%2 hat gesagt. «Wir sind nicht mehr im Kansasl»

Language = French
%2 a dit. «Mon chien a mange mon devoir!»

1. The MessageIdTypedef statement allows you to specify a symbol that will
appear as a cast operator in the definition of each of the message iden
tifier constants generated by this message file. For example, later we'll
define a message with the symbolic name EVEN'ILOG_MSG_TEST. The
presence of the MessageIdTypedef statement causes the header file
generated by the message compiler to define this symbol as
«NTSTATUS)Ox602AOOOlL).

2. The SeverityNames statement allows you to define your own names for
the four possible severity codes. The names on the left side of the equal
signs (Success, Informational, and so on) appear in the definition of
messages elsewhere in this very file. The symbol after the colon ends up
being defined-in the header output file-as equal to the number before
the colon. For example, #define STATUS_SEVERITY_SUCCESS OXO.

3. The Faci1ityNames statement allows you to defme your own names for
the facility codes that will be included in the message identifier definitions.
Here, we've said we'll use the name Evendog in Facility statements later.
The message compiler generates the statement #define FACIIlTY_
EVENTLOG_ERROR_CODE Ox2A as a result of the third line of the
FacilityNames statement.

4. The LanguageNames statement allows you to define your own names
for the languages into which you've translated your messages. Here,
we've said we'll use the name English elsewhere in the file when we
mean to specify LANGID 0x0409, which is Standard English in the normal
Microsoft Windows NT scheme of languages. The name after the colon
is the name of the intermediate binary file that receives the compiled

(

messages for this particular language. :

5. Each individual message definition contains some header statements
followed by the text of the message in each of the languages supported
by this message source file. The MessageId statement can specify an

Chapter 9 Specialized Topics

absolute number, as in this example, or it can specify a delta from the last
message (such as Messageld - +1). You specify the facility code and
severity by using names defined at the start of the message source file. You
also specify, with the SymboUcName statement, a symbolic name for this
message. The message compiler will define this symbol in the header file
it generates.

6. For each language you specified in the LanguageNames statement, you
have a message text definition like this one. It begins with a Language
statement that uses one of the language names you defined. Text for the
message follows. Each message text definition ends with a line contain-
ing just a period. (With respect to the German and French nontranslations
of the phrase "Hello, world!" it will help you to know that at the time I
wrote this chapter I was in the process of studying the passe compose in my
French class and a revival of The Wizard of Oz was underway in theaters.)

Within the message texts, yOu can indicate by means of a percent sign followed
by an integer the places where you want string substitution to occur. %1 refers to
the name of the device object that generated the message. That name is an implicit
parameter when you create an error log entry; you don't have to specify it directly.
%2, %3, and so on, correspond to the first, second, and so on, Unicode strings you
append to the log entry. In the example we've been following, %2 will be replaced
by EventLog because we put that string into our error packet.

This way of indicating substitution is especially useful in that you're free to put
strings into the text in whatever order is appropriate for the language you're dealing
with. So, if your message text read "The %1%2 fox jumped over the %3 dog" in En
glish, it might read "Der %3 Bund wurde vom %1 %2 Fuchs iibergesprungen" in Ger
man. (This is a silly example, of course. If the driver supplied "quick", "brown", and
"lazy" for the substitution strings, they'd appear in English in all displayed versions
of the message. But I think you get the point I'm trying to make about word order.)

The Event Viewer can't find your message file without a little bit of help in
the form of some registry entries. A key named EventLog resides in the services
branch of the Windows NT registry-that is, the collection of sub keys below
HKLM\System\CurrentControISet\Services. Each driver or other service that logs
events has its own subkey below that.. Each serVice-specmc subkey has values named
EventMessageFlle and TypesSupported. The EventMessageFile value is a REG_SZ
or REG_EXPAND_SZ type that names all of the message files that the Event Viewer
might need to access to format the messages your driver generates. This value would
have a data string like "%SystemRoot%\System32\iologmsg.dll; %SystemRoot%
\System32\Drivers\EventLog.sys". IOLOGMSG.DLL contains the text of all the

413

Programming tbe Microsoft Windows Driver Model

standard NTSTATUS.H codes, by the way. Consult the sidebar below for some tan
talizing hints about how to automatically set these registry entries when you install
your driver. The TypesSupported value should just be a REG_DWORD type equal
ling "7" to indicate that your driver can generate all possible events-that is, errors,
warnings, and informational messages. (The fact that you even need to specify this
value seems like a historical artifact of some kind.)

A PRACTICAL NOTE ABOUT MESSAGE FILES

Two practical facts about putting message resources into your driver are diffi
cult to discover: how precisely you make your build script compile your mes
sages, and how you convince the system's hardware installer to put the
necessary entries into the registry so the Event Viewer will fmd your messages.
Art Baker's The Windows NT Device Driver Book: A Guide for Programmers
(Prentice Hall, 1997) alludes to a solution to the first problem on page 308. The
DDK's discussion of INF files explains how to solve the second problem with
syntax in an AddService statement. .

Like the other sample programs in this book, the. EVENTLOG sample is
based on a Microsoft Visual C++ 6.0 project file. I modified the project defini
tion to include a custom build step for EVENTLOG.MC and to include the re
sulting .RC file in the build. If you open the project settings, you'll see what I
mean;

Later in this book (in Chapter 12, "Installing Device Drivers"), I'll discuss
the general topic of how you use an INF file to install drivers. To see how you
specify your message file in an INF file, take a look at DEVICE.INF in the
EVENTLOG project directory and, specifically, at its AddService statement. You'll
see that the AddService line points to an EventLogLogging section that, in turn,
uses the AddReg statement to point to an EventLogAddReg section. The lat
ter section adds EventMessageFile and TypesSupported values to the service
specific subkey of the event logger service.

1/0 CONTROL OPERATIONS

414

If you look at the various types of requests that come to a device, most of them
involve reading or writing data. On occasion, however, an application needs to per
form an IOCTL operation on a device. An application uses the standard Microsoft
Win32 API function DeviceIoControl to perform such an operation. On the driver

Chapter 9 Specialized Topics

side, an application's call to DeviceloControl turns into an IRP with the major function
code IRP _MLDEVICE_CONTROL.

The DeviceloControl API
The user-mode DeviceloControl API has the following prototype:

result = DeviceIoControl(Handle. Code. InputData. InputLength.
OutputData. OutputLength. &Feedback. &Overlapped):

Handle (HANDLE) is an open handle open to the device. You obtain this handle by
calling CreateFlle in the following manner:

Handl e = CreateFil e('" \\,. \\IOCn". GENERICREAD I qENERICWRITE.
0. NULL. OPEN_EXISTING. flags. NULL):

if (Handle == INVALID_HANDLE_VALUE)
<error>

CloseHandle(Handle):

The flags argument to CreateFile is either FlLE_FLAG_OVERLAPPEDor zero
to indicate whether or not you'll be performing asynchronous operations with this
file handle. While you have the handle open, you can make calls to ReadFlle,
WriteFlle, or DeviceloControl. When you're done accessing the device, you should
explicitly close the handle by calling CloseHandle. Bear in mind, though, that the
operating system automatically closes any handles that are left open when your pro
cess terminates.

The Code (DWORD) argument to DeviceIoControl is a control code that indi
cates what control operation you want to perform. I'll discuss how you define these
codes a bit further on (in "Defining I/O Control Codes"). The InputData (PVOID)
and InputLength (DWORD) arguments describe a data area that you are sending
to the device driver. (That is, this data is input from the perspective of the driver.)
The OutputData (PVOID) and OutputLength (DWORD) arguments describe a data
area that the driver can completely or partially fill with information that it wants to
send back to you. (That is, this data is output from the perspective of the driver.) The
driver will update the Feedback variable (a DWORD) to indicate how many bytes
of output data it gave you back. Figure 9-8 illustrates the relationship of these buff
ers with the application and driver. The Overlapped (OVERLAPPED) structure is used
to help control an asynchronous operation, which is the subject of the next section.
If you specified FlLE_FLAG_OVERLAPPED in the call to CreateFile, you must specify
the OVERLAPPED structure pointer. If you didn't specify FILE_FLAG_OVERLAPPED,
you might as well supply NULL for this last argument because the system is going to
ignore it anyway.

415

Programming the Microsoft Windows Driver Model

User Mode Kernel Mode

Figure 9-8. Input and output buffers/or DeviceIoControl.

Whether a particular control operation requires an input buffer or an output
buffer depends on the function being performed. For example, an IOCTL that retrieves
the driver's version number would probably require an output buffer only. An IOCTI
that merely notifies the driver of some fact pertaining to the application would prob
ably require only an input buffer. You can imagine still other operations that would
require either both or neither of the input and output buffers-it all depends on what
the control operation does.

The return value from DeviceIoControl is a Boolean value that indicates suc
cess (if TRUE) or failure (if FALSE). In a failure situation, the application can call
GetLastError to find out why the call failed.

Synchrono~s and Asynchronous Calls to DeviceloControl
When you make a synchronous call to DeviceIoControl, the calling thread blocks until
the control operation completes. For example:

416

HANDLE Handle = CreateFile("\\\\.\\IOCTL" •...• 0. NULL);
DWORD version, junk;
if (DeviceIoControl(Handle, IOCTL-GET_VERSION_BUFFERED,

NULL, 0, &version, sizeof(version), &junk, NULL»
printf("IOCTL.SYS version %d.%2d\n", HIWORD(version),

LOWORD(version»:
else

printf("Error %d in IOCTL-GELVERSION_BUFFERED call\n",
GetLastError(»;

Chapter 9 Specialized Topics

Here, we open the device handle without the FILE_FLAG_OVERLAPPED flag. Our
subsequent call to DeviceIoControl therefore doesn't return until the driver supplies
the answer we're asking for.

When you make an asynchronous call to DeviceIoControl, the calling thread
does not block immediately. Instead, it continues processing until it reaches the point
where it requires the result of the control operation. At that point, it calls some API
that will block the thread until the driver completes the operation. For example:

HANDLE Handle = CreateFile("\\\\.\\IOCTL".
FILE_FLAG_OVERLAPPED. NULL);

DWORD version. junk;
OVERLAPPED Overlapped;

Overlapped.hEvent = CreateEvent(NULL. TRUE. FALSE. NULL);
DWORD code;

if (DeviceIoControl(Handle •...• &Overlapped»
code = 0;

else
code = GetLastError();

<continue processing>

if (code == ERROR-IO_PENDIN~)
{

if (GetOverlappedResult(Handle. &Overlapped. &junk. TRUE»
code = 0;

else
~ode = GetLastErrQr();

}

CloseHandle(Overlapped.hEvent);
if (code != 0)

<error>

Two major differences exist between this asynchronous example and the ear
lier synchronous example. First, we specify the FILE_FLAG_OYERLAPPED flag in
the call to CreateFile. Second, the call to DeviceIoControl specifies the address of
an OVERLAPPED structure, within which we've initialized the hEvent event handle
to describe a manual reset event. (For more information about events and thread
synchronization in general, see Jeffrey Richter'S Programming Applications for
Microsoft Windows, Fourth Edition [Microsoft Press, 1999].)

The asynchronous call to DeviceloControl will have one of three results. First,
it might return TRUE, meaning that the device driver's dispatch routine was able to
complete the request right away. Second, it might return FALSE, and GetLastError

417

Programming the Microsoft Windows Driver Model

might retrieve the special error codeERROR_IO_PENDING. This result indicates that
the driver's dispatch routine returned STATUS_PENDING and will complete the control
operation later. Note that ERROR_IO_PENDING isn't really an error-it's one of the
two ways in which the system indicates that everything is proceeding normally. The
third possible result from the asynchronous call to DeviceloControl is a FALSE return
value coupled with a GetLastError value other than ERROR. . .IO_PENDING. Such a
result would be a real error.

At the point at which the application needs the result of the control 0I>eration,
it calls one of the Win32 synchronization primitives, such as GetOverlappedResult,
WaltForSingleObject, or the like. GetOverlappedResult, the synchronization primi
tive I use in this example, is especially convenient because it also retrieves the bytes
transferred feedback value and sets the GetLastError result to indicate the result of
the I/O operation. Although you could call WaitForSingleObject or a related API
passing the Overlapped.bEvent event handle as an argument-you wouldn't be able
to learn the results of the DeviceloControl operation; you'd just learn that the operation
had finished.

Defining 1/0 Control Codes

418

The Code argument to DeviceloControl is a 32-bit numeric constant that you defme
using the CTI._CODEpreprocessor macro that's part of both the DDK and the Plat
form SDK. Figure 9-9 illustrates the way in which the operating system partitions one
of these 32-bit codes into subfields.

Figure 9-9. Fields in an I/O control code.

The fields have the follOwing interpretation:

• The device type (16 bits, first argument to CTI._CODE) is supposed to
indicate what type of device. implements this control operation. I'm un
aware of any "IOCTI police" inside either Microsoft Windows 98 or
Microsoft Windows 2000, however, and I believe that the content of the
field is actually pretty arbitrary. It is customary, though, to use the same
value (for example, FILE_DEVICE_UNKNOWN) that you use in the driver
when you call loCreateDevice.

• The access code (2 bits, fourth argument to CTI_CODE) indicates the
access rights an application needs to its device handle to issue this con
trol operation.

Chapter 9 Specialized Topics

• The function code (12 bits, second argument to CTL_CODE) indicates
precisely which control operation this code describes. Microsoft reserves
the first half of the range of this field-that is, values 0 through 2047. You
and I therefore assign values in the range 2048 through 4095. I'm pretty
sure I'll never feel cramped by being able to defme only 2048 10CTLs for
one of my devices.

• The buffering method (2 bits, third argument to CTL_CODE) indicates how
the I/O Manager is to handle the input and output buffers supplied by the
application. I'll have a great deal to say about this field in the next sec
tion when I describe how to implement IRP _MLDEVICE_CONTROL in a
driver.

I want to clarify one point of possible confusion. When you create your driver,
you're free to design a series of 10CTL operations that applications can use in talk
ing to your driver. Although some other driver author might craft a set of 10CTL
operations that uses exactly the same numeric values for control codes, the system
will never be confused by the overlap because IOCTL codes are interpreted by only
the driver to which they're addressed. Mind you, if you opened a handle to a device
belonging to that hypothetical other driver and then tried to send what you thought
was one of your own 10CTLs to it, confusion would definitely ensue.

Mechanically, your life and the life of application programmers who need to
call your driver will be easier if you place all of your 10CTL definitions in a dedi
cated header file. In the samples on the companion disc, the projects each have a
header named 10CTLS.H that contains these defmitions. For example:

#ifndef CTL-CODE
flpragma message ("CTL-CODE undefined. Include winioctl.h or wdm.h")

flendi f

#define IOCTL-GET_VERSION_BUFFERED \
CTL_CODE(FILE_DEVICE_UNKNOWN. 0x800. METHOD_BUFFERED. FILE-ANY-ACCESS)

#define IOCT.L-GET_VERSION_DIRECT \
CTL_CODE(FILE_DEVICE_UNKNOWN. 0x801. METHOD_OUT_DIRECT. FILE-ANY-ACCESS)

/Idefine IOCTL-GELVERSION_NEITHER \
CTL_CODE(FILE_DEVICE_UNKNOWN. 0x802. METHOD_NEITHER. FILE-ANY-ACCESS)

The reason for the message #pragma, by the way, is that I'm forever forgetting
to include the header file (WINIOCTL.H) that defines CTL_CODE for user-mode
programs, and I also tend to forget the name. Better a message that will tell me what
I'm doing wrong than a few minutes grep'ing through the include directory, I al
ways say.

419

Programming the Microsoft Windows Driver Model

420

Each user-mode call to DeviceIoControl causes the I/O Manager to create .an IRP with
the major function code IRP _MLDEVICE_CONIROL and to send that IRP to the driver
dispatch routine at the top of the stack for the addressed device. The top stack loca
tion contains the parameters listed in Table 9-1. Filter drivers might interpret some
private codes themselves but will-if correctly coded, that is-pass all others down
the stack. A dispatch function that understands how to handle the IOCTL will reside
somewhere in the driver stack-most likely in the function driver, in fact.

Parameters.DevtceIoCcmtrolfteld

OutputBufferLength

InputBufferLength

IoControlCode

Type3InputBuffer

Description

Length of the output buffer-sixth
argument to DeviceloControl

Length of the input buffer-fourth
argument to DeviceloControl

Control code-second argument to
DeviceloControl

User-mode virtual address of input
buffer for ME1HOD_NEITHER

Table 9-1. Stack location parameters jor IRP j'vfLDEVICE_CONI'ROL.

A skeletal dispatch function for control operations looks like this:

#pragma PAGEDCODE

NTSTATUS D1spatchControl(PDEVICE_OBJECT fdo. PIRP Irp)
{

PAGED_CODE() ;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx-)RemoveLock. Irp);
if (INT_SUCCESS(status»

return CompleteRequest(Irp. status. 0);
ULONG info = 0;

PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp);
ULONG cbin = stack-)Parameters.DeviceloControl.lnputBufferLength;
ULONG cbout = stack~)Parameters.DeviceloControl.OutputBufferLength;
ULONG code = stack-)Parameters.DeviceloControl.loControlCode;

switch (code)
{

Chapter 9 Specialized Topics

default:
status STATUS_INVALID_DEVICE_REQUEST;
break;

}

IoReleaseRemoveLockC&pdx->RemoveLock. Irp);
return CompleteRequestClrp. status. info);
}

1. You can be sure of being called at PASSIVE_LEVEL, so there's no particu
lar reason for a simple dispatch function to be anywhere but paged
memory.

2. Like other dispatch functions, this one needs to claim the remove lock
while it does its work. That prevents the device object frorb. disappear
ing out from underneath us because of a PnP event.

3. The next few statements extract the function code and buffer sizes from
the parameters union in the I/O stack. You often need these values no
matter which specific 10CTI you're processing, so I find it easier to always
include these statements in the function.

4. This is where you get to exercise your own creativity by inserting case
labels for the various 10CTI operations you support.

5. It's a good idea to return a meaningful status code if you're given an IOCTI
operation you don't understand.

The way you handle each 10CTI depends on two factors. The first, and most
important, of these is the actual purpose of the 10CTI in your scheme of things. (Duh.)
The second factor, which is critically important to the mechanics of your code, is the
method you selected for buffering user-mode data.

In Chapter 7, "Reading and Writing Data," I discussed how you work with a user
mode program sending you a buffer load of data for output to your device or ftlling
a buffer with input from your device. As I indicated there, when it comes to read and
write requests, you have to make up your mind at AddDevice time whether you're
going to use the so-called buffered method or direct method (or neither of them) for
accessing user-mode buffers in all read and write requests. Control requests also
utilize· one of these addressing methods, but they work a little differently. Rather
than specify a global addressing method via device-object flags, you specify the ad
dressing method for each 10CTI by means of the two low-order bits of the func
tion code. Consequently, you can have some IOCTLs that use the buffered method,
some that use a direct method, and some that use neither method. Moreover, the

421

. Programming the Microsoft Windows Driver Model

422 '

methods you pick for IOCTLs don't affect in any way how you address buffers for
read and write IRPs.

You choose one or the other buffering method based on several factors. Most
IOcn operations transfer much less than a page worth of data in either direction and
therefore use the MElHOD_BUFFERED method. Operations that will transfer more
than a page of data should use one of the direct methods. The names of the direct
methods seem to oppose common sense: you use MElHOD_IN_DIRECT if the ap
plication is sending data to the driver and MElHOD_OUT_DIRECT if it's the other
way around. If you know that you'll get control in the same thread context as the
application-usually true for IOCTL operations because no filter driver above you
should be pending these and calling you later in an arbitrary thread context-you
could use MElHOD_NEITHER and qecide on the fly how to access user-mode data.

METHOD_BUFFERED
With MElHOD_BUFFERED, the I/O Manager creates a kernel-mode copy buffer big
enough for the larger of the user-mode input and output buffers. When your dis
patch routine gets control, the user-mode input data is sitting in the copy buffer.
Before completing the IRP, you fill the copy buffer with the output data you want
to send back to the application. When you complete the IRP, you set the
IoStatus.Information field equal to the number of output bytes you put into the
copy buffer. The I/O Manager then copies that many bytes of data back to user mode
and sets the feedback variable equal to that same count. Figure 9-10 illustrates these
copy operations.

User Mode Kernel Mode

. Figure 9-10. Buffer management with METIlOD_BUFFERED.

Chapter 9 Specialized Topics

Inside the driver, you access both buffers at the same address-namely, the
AssociatedIrp.SystemBuffer pointer in the IRP. Once again, this is a kernel-mode
virtual address that points to a copy of the input data. It obviously behooves you to
finish processing the input data before you overwrite this buffer with output data. (I
hardly need to tell you-it's the kind of mistake you'll make only once.)

Here's a simple example, drawn from the locn sample program, of the code
specific handling for a METHOD_BUFFERED operation:

case IOCTL-GET_VERSION_BUFFERED:
{

if (cbout < sizeof(ULONG»
{

status = STATUS_INVALID_BUFFER-SIZE;
break;
}

PULONG pversion = (PULONG) Irp->Associatedlrp.SystemBuffer;
*pversion = 0x0004000A;
info = sizeof(ULONG);
break;
}

We first verify that we've been given an output buffer at least long enough to hold
the doubleword we're going to store there. Then we use the SystemBuffer pointer
to address the system copy buffer, into which we store the result of this simple op
eration. The info local variable ends up as the 10Status.lnformation field when the
surrounding dispatch routine completes this IRP. The I/O Manager copies that much
data from the system copy buffer back to the user~mode buffer.

A SECURITY HOLE?

I always get a slight nervous feeling when I think about the importance of the
buffering and access-control flags in an 10CTL function code. Suppose some
malicious application were to submit an 10CTL that used flag values other than
the ones I intended. Would that cause a driver to crash or do something else it
shouldn't? Well, usually not.

Most of the time, you code the dispatch function for 10CTL requests with
a switch statement. The case labels reference numeric constants that must match
exactly with all 32 bits of whatever code the application supplies. So, if an
application were to change any of the bits in an 10CTL code, none of the case
labels in the driver would match and some (presumably benign) default action
would occur.

423

Programming the Microsoft Windows Driver Model

424

The DIRECT Buffering Methods
Both ME1BOD_IN_DIRECT and ME1BOD_OUT_DIRECT are handled the same way
in the driver. They differ only in the access rights required for the user-mode buffer.
ME1BOD_IN_DIRECT needs read access; ME1BOD_OUT_DIRECT needs read and
write access. With both of these methods, the I/O Manager provides a kernel-mode
copy buffer (at AssociatedIrp.SystemBuffer) for the input data and an MDL for the
output data buffer. Refer to Chapter 7 for all the gory details about MDLs and to
Figure 9-11 for an illustration of this method of managing the buffers.

User Mode Kernel Mode

Figure 9-11. Buffer management with METHOD_X1QCDIREcr.

Here's an example of a simple handler for a ME1BOD_XXX_DIRECT request:

case IOCTl-GET_VERSION_DIRECT:
{

if (cbout < sizeof(ULONG»
{

status = STATUS_INVALID_BUFFER-SIZE:
break:
}

PULONG pversion = (PULONG)
MmGetSystemAddressForMdlCIrp->MdlAddress):

*pversion = 0x0004000B:
info = sizeof(ULONG):
break:
}

The only substantive difference between this example and the previous one is
the bold line. (I also altered the reported version number so that I could easily know
I was invoking the correct IOCTL from the test program.) With either DIRECT-method
request, we use the MDL pointed to by the MdlAddress field of the IRP to access
the user-mode output buffer. You c~n do direct memory access (DMA) using this

Chapter 9 Specialized Topics

address. In this example, I just called MmGetSystemAddressForMdl to get a kernel
mode alias address pointing to the physical memory described by the MDt.

METHOD_NEITHER
With METHOD_NEITHER, the 1/0 Manager doesn't try to translate the user-mode
virtual addresses in any way. You get (in the Type3InputBuffer parameter in the
stack location) the user-mode virtual address of the input buffer, and you get (in
the UserBuffer field of the IRP) the user-mode virtual address of the output buffer.
Neither address is of any use unless you know you're running in the same process
context as the user-mode caller. If you do know you're in the right process context,
you can just directly dereference the pointers:

case IOCTL_GET_VERSION_NEITHER:
{

if (cbout < sizeof(ULONG))
{

status = STATUS_INVALID_BUFFER-SIZE;
break;
}

PULONG pversion = (PULONG) Irp->UserBuffer;
if (Irp->RequestorMode 1= KernelMode)

{

_try
{

ProbeForWrite(pversion, sizeof(ULONG), 1):
*pversion = 9x9994999A:
}

__ except(EXCEPTION_EXECUTE-HANDLER)
{

status = GetExcept1onCode():
break:
}

}

else
*pversion = 0x0004000A;

info = sizeof(ULONG);
break;
}

As shown in the previous code in boldface, the only real glitch here is that you
want to make sure that it's .OK to write into any buffer you get from an untrusted
source. Refer to Chapter 3 ("Basic Programming Techniques") if you're rusty about
structured exceptions. ProbeForWrite is a standard kernel-mode service routine for
testing whether a given user-mode virtual address can be written. The second argu
ment indicates the length of the data area you want to probe, and the third argument
indicates the alignment you require for the data area. In this example, we want to
be sure that we can access four bytes for writing, but we're willing to tolerate single
byte alignment for the data area itself. What ProbeForWrite (and its companion

425

Programming Ih. Microsoft Windows Driver Model

426

function ProbeForRead) actually tests is whether the given address range has the
correct alignment and occupies the user-mode portion of the address space-it doesn't
actually try to write to (or read from) the memory in question.

Conventional wisdom holds that you should never access user-mode memory
directly in the way I just showed you for fear that some other thread in the same pro
cess might call VirtualFree to release memory in between the time of the ProbeForXXx
call and the time you make the access. According to this conventional wisdom, you
should therefore always create an MDL and call MmGetSystemAddressForMdl to
obtain a safe virtual address. In fact, however, it's perfecdy safe to direcdy access the
user-mode pointer if three things are true: First, you must be running in the process
context to which the buffer belongs. Second, you must have done a ProbeForXXx.
Finally, you must perform the access within a structured exception frame. If any por
tion of the buffer happens to belong to non-existent pages at the time of the access,
the memory manager will raise an exception instead of immediately bug-checking. Your
exception handler will backstop the exception and prevent the system from crashing.

Interrial 1/0 Control Operations
The system uses IRP _MLDEVICE_CONIROL to implement a DeviceloControl call from
user mode. Drivers sometimes need to talk to each other too, and they use the related
IRP _MLINfERNAL_DEVICE_CONIROL to do so. A typical code sequence is as follows:

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL);
KEVENT event;
KeInitializeEvent(&event, NotificationEvent, FALSE);
IO_STATUS_BLOCK iostatus;
PIRP Irp = IoBuildDeviceIoControlRequest(IoControlCode,

DeviceObject, pInBuffer, cbInBuffer, pOutBuffer, cbOutBuffer,
TRUE, &event, &iostatus);

if (IoCallDriver(DeviceObject, Irp) == STATUS_PENDING)
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);

Being at PASSIVE_LEVEL is a requirement for calling KeInitializeEvent and IoBulld
DeviceloControJRequest as well as for blocking on the event object as shown here.

The IoControlCode argument to 10BuildDeviceloControiRequest is a control
code expressing the operation you want the target device driver to perform. This code
is the same kind of code as you use with regular control operations. DeviceObject is
a pointer to the DEVICE_OBJECT whose driver will perform the indicated operation.
The input and output buffer parameters serve th~ same purpose as their counterparts
in a user-mode DeviceloControl call. The seventh argument, which I specified as lRUE
in this fragment, indicates that you're building an internal control operation. (You
could say FALSE here to create an IRP _MLDEVICE_CONIROL instead.) I'll describe
the purpose of the event and iostatus arguments in a bit.

10BuildDeviceloControiRequest builds an IRP and initializes the first stack 10-
eation to describe the operation code and buffers you specify. It returns the IRP pointer
to you so that you can do any additional initialization that might be required. In
Chapter 11, for example, I'll show you how to use an internal control request to submit

Chapter 9 Specialized Topics

a URB to the USB bus driver. Part of that process involves setting a stack parameter
field.to point to the URB. You then call IoCalIDriver to send the IRP to the target device.
Whatever the return value, you wait on the event object you specified as the eighth
argument to 10BuildDeviceIoControlRequest. The I/O Manager will set the event when
the IRP finishes, and it will also fill in your iostatus structure with the ending status
and information values. Finally, it will call IoFreeIrp to release the IRP. Consequently,
you don't want to access the IRP pointer at all after you call IoCallDriver.

Since internal control operations require cooperation between two drivers,
fewer rules about sending them exist than you'd guess from what I've just described.
You don't have to use IoBuildDeviceIoControlRequest to create one of them, for ex
ample: you could just call IoAllocateIrp and perform your own initialization. Pro
vided that the target driver isn't expecting to handle internal control operations solely
at PASSIVE_LEVEL, you could also send one of these IRPs at DISPATCH_LEVEL, say
from inside an I/O completion or deferred procedure call (DPC) routine. (Of course,
you couldn't use IoBuildDeviceloControlRequest in such a case, and you couldn't wait
for the IRP to finish. But you could send it because 1oA1locateIrp and IoCallDriver
can run at DISPATCH_LEVEL or below.) You don't even have to use the I/O stack
parameter fields exactly like you would for a regular IOCTL. In fact, calls to the USB
bus driver use the field that would ordinarily be the output buffer length to hold the
URB pointer. So, if you're designing an internal control protocol for two ·of your own
drivers, just think of IRP J1LINTERNAL_DEVICE_CONTROL as being an envelope
for whatever kind of message you want to send.

It's not a good idea to use the same dispatch routine for internal arid external
control operations, by the way, at least not without checking the major function code
of the IRP. Here's an example of why not. Suppose that your driver has an external
control interface that allows an application to query the version number of your driver
and an internal control interface that allows a trusted kernel-mode caller to deter
mine some vital secret that you don't want to share with user-mode programs. Then
suppose that you use one routine to handle both interfaces, as in this example:

NTSTATUS DriverEntry(...)
{

DriverObject-)MajorFunction[IRP_MJ_DEVICE_CONTROL]
DispatchControl:

DriverObject-)MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL]
DispatchControl:

}

NTSTATUS DispatchControl(...)
{

switch (code)
{

(continued)

427

Programming Ihe Microsoft Windows Driver Model

case IOCTL-GET_VERSION:

case IOCTL-INTERNAL-GET_SECRET:
II ~ exposed for user-mode calls

}

}

If an application is able to somehow determine the numeric value of IOCTI._
INTERNAL_GET_SECRET, it can issue a regular DeviceloControl call and bypass the
intended security on that function.

Notifying Applications of Interesting Events

428

One extremely important use of IOCTI. operations is to give a WDM driver a way to
notify an application that an interesting event has occurred. To motivate this discus
sion, suppose you had an application that needed to work closely with your driver
in such a way that whenever a certain kind of hardware event occurred your driver
would alert the application so that it could take some sort of user-visible action. For
example, a button press on a medical instrument might trigger an application to be~
collecting and displaying data. Whereas Windows provides a couple of ways for a
driver to signal an application in this kind of situation:"""nameiy, asynchronous
procedure calls or posted window messages-those methods don't work in Win
dows 2000 because the operating system lacks the necessary infrastructure to make
them work. A method that does work, though, is having the application issue an
IOCTI. operation that the driver completes when the interesting event, whatever it
might be, occurs. Implementing this scheme requires excruciating care on the driver
side, so I'll explain the mechanics in detail.

The central idea in this section is that when the application wants to receive
event notifications from the driver, it calls DeviceloControl:

HANDLE hDevice = CreateFile("\\\\.\\(driver-name)" •...):
BOOl okay = DeviceioControl(hDevice. IOCTL-WAIT_NOTIFY •

. . .) :
(IOCTI._ WAIT_NOTIFY, by the way, is the control code I used in the NOTIFY sample
on the companion disc.)

The driver will pend this IOCTI. and complete it later. If other considerations
didn't intrude, the code in the driver might be as simple as this:

NTSTATUS D1spatchControl(...)
{

switch (code)
{

case IOCTL-WAIT_NOTIFY:
pdx-)Notifylrp = Irp:

Chapter 9 Specialized Topics

}

IoMarklrpPending(Irp):
return STATUS_PENDING:

}

VOID OnlnterestingEvent(...)
{

CompleteRequest(pdx->Notifylrp, STATUS_SUCCESS, 0):
}

ApPLICATION NOTIFICATION BY USING EVENTS

Sometimes all you need to do in a driver is notify an application that an event
has occurred, without passing any explanatory data to the application. A stan
dard technique for doing so involves an ordinary Win32 event that the driver
signals. To use this method, the application first calls CreateEvent or OpenEvent
to open a handle to an event object, which it then passes to the driver via
DeviceIoControl.· The driver can convert the user-mode handle to an object
pointer by making this call:

PKEVENT pEvent:
status = ObReferenceObjectByHandle(hEvent, EVENLMODIFLSTATE,

ExEventObjectType, Irp->RequestorMode, (PVOID) &pEvent, NULL):

Note that the IOCTL must be handled at PASSIVE_LEVEL and in the con
• text of the process that owns the hEvent handle.

At this point, the driver has a pointer to a KEVENT object, which it can
use as an argument to KeSetEvent at an auspicious moment. The driver also
owns a reference to the event object, and it must call ObDereferenceObject
at some point. The right time to dereference the object depends on the exact
way the application and the driver fit together. A good guideline might be to
dereference the event as part of handling the IRP _MLCLOSE for the handle used
in the IRP _MLDEVICE_CONTROL that supplied the event handle in the first
place. The EVWAIT driver sample on the companion disc illustrates this par
ticular method.

The kernel service routines IoCreateNotificationEvent and IoCreate
SynchronizationEvent create event objects that can also be shared by user
mode programs. They are unavailable in Windows 98 and, therefore, unavailable
to true WDM drivers.

429

Programming the Microsoft Windows Driver Model

430

The "other considerations" I just so conveniently tucked under the rug are, of
course, all important in crafting a working driver. The originator of the IRP might
decide to cancel it. The application might call Cancello, or termination of the ap
plication thread might cause a kernel-mode component to call IoCance1Irp. In ei
ther case, we must provide a cancel routine so that the IRP gets completed. If power
is removed from our device, or if our device is suddenly removed from the computer,

'. we need to abort any outstanding locn requests. In general, any number of IOens
might need to be aborted. Consequently, we'll need a linked list of them. Since
multiple threads might be trying to access this linked list, we'll also need a spin lock
so that we can access the list safely.

Working with an Asynchronous IOCTL
To simplify my own life, I wrote a set of helper routines for managing asynchronous
IOCTLs. The two most important of these routines are named CacheControIRequest
and UncacheControlRequest. They assume that you're willing to accept only one'
asynchronous IOcn having a particular control code per device object and that you
can, therefore, reserve a pointer cell in the device extension to point to the IRP that's
currently outstanding. In NOTIFY, I call this pointer cell NotifyIrp. You accept the
asynchronous IRP this way:

IoAcquireRemovelock(...);
switch (code)

{

case IOCTl_WAIT_NOTIFY:
if «parameters inva7id in some way»

status = STATUS_INVALID_PARAMETER;
else

status = CacheControlRequest(pdx. Irp. &pdx->NotffyIrp):
break;
}

IoReleaseRemovelock(...);
return status == STATUS_PENDING ? status :

CompleteRequest(Irp. status. info);

The important statement here is the call to CacheControlRequest, which regis
ters this IRP in such a way that we'll be able to cancel it later, if necessary. It also
records the address of this IRP in the Notifylrp member of our device extension. We
expect it to return STATUS_PENDING, in which case we avoid completing the IRP
and simply return STATUS_PENDING to our caller.

Chapter 9 Specialized Topics

NOTE You could easily generalize the scheme I'm describing to permit an
application to have an IRP of each type outstanding for each open handle. In
stead of putting the current IRP pointers in your device extension, put them in
stead into a structure that you associate with the FILE_OBJECTthat corresponds
to the handle. You'll get a pointer to this FILE_OBJECT in the I/O stack location
for IRP _MJ_CREATE, IRP _MJ_CLOSE, and, in fact, all other IRPs generated
for the file handle. You can use either the FsContext or FsContext2 field of the
file object for any purpose you choose.

Later, when whatever event the application is waiting for occurs, we execute
code like this:

PIRP nfyirp = UncacheControlRequest(pdx. &pdx->NotifyIrp);
if (nfyirp)

{

<do something>
CompleteRequest(nfyirp. STATUS_SUCCESS. <info va7ue»;
}

This logic retrieves the address of the pending IOCTL_ WAIT_NOTIFY request, does
something to provide data back to the application, and then completes the pending
I/O request packet.

How the Helper Routines Work
I hid a wealth of complications inside the CacheControlRequest and UncacheControl
Request functions, These two functions provide a thread-safe and multiprocessor-safe
mechanism for keeping track of asynchronous IOCTL requests. They use a variation
on the techniques we've discussed elsewhere in the book for safely queuing and
dequeuing IRPs at times when someone else might be flitting about trying to cancel
the IRP. There's a little bit of extra code to show you, though (refer to CONTROL.CPP
in the NOTIFY sample on the companion disc):

typedef struct _DEVICE_EXTENSION {
KSPIN_LOCK IoctlListLock;
LIST_ENTRY PendingIoctlList;
} DEVICE_EXTENSION. '*PDEVICE_EXTENSION;

NTSTATUS CacheControlRequest(PDEVICE_EXTENSION pdx. PIRP Irp.
PIRP* pIrp)

(continued)

431

Programming the Microsoft Windows Driver Model

432

{

KIROL oldirql;
KeAcquireSpinLock(&pdx->IoctlListLock, &oldirql);
NTSTATUS status;
if (*pIrp)

status = STATUS_UNSUCCESSFUL;
else if (pdx~>IoctlAbortStatus)

status = pdx->IoctlAbortStatus;
else

{

IoSetCancelRoutine(Irp, OnCancelPendingIoctl);
if (Irp->Cancel &&IoSetCancelRoutine(Irp, NULL»

status = STATUS_CANCELLED;
else

}

{

IoMarklrpPending(Irp);
status = STATUS_PENDING;
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
stack->Parameters.nthers.Argumentl = (PVOID) *pIrp;
IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)

OnCompletePendingIoctl, (PVOID) pdx, TRUE, TRUE, TRUE):
PFILE_OBJECT fop = stack->FileObject:
IoSetNextIrpStackLocation(Irp):
stack = IoGetCurrentIrpStackLocation(Irp):
stack->DeviceObject = pdx->DeviceObject:
stack->FileObject = fop:

*pIrp = Irp:
InsertTail List(&pdx->PendingIoctl List,

&Irp->Ta11.0verlay.L1stEntry):
}

KeReleaseSpinLock(&pdx->IoctlListLock, oldirql):
return status:
}

VOID OnCancelPendingIoctl(PDEVICE_OBJECT fdo, PIRP Irp)
{

KIROL oldirql = Irp->CancelIrql:
IoReleaseCancelSpinLock(DISPATCH_LEVEL);
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
KeAcquireSpinLockAtDpcLevel(&pdx->IoctlListLock);
RemoveEntryList(&Irp->Tail.Overlay.ListEntry):
KeReleaseSpinLock(&pdx->IoctlListLock, oldirql):
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
}

..

Chapter 9 Specialized Topics

NTSTATUS OnCompletePendingloctl(PDEVICE_OBJECT junk. PIRP Irp.
PDEVICE_EXTENSION pdx)
{

KIRQL oldirql;
KeAcquireSpinLock(&pdx->IoctlListLock. &oldirql);
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp);
PIRP* plrp = (PIRP*) stack->Parameters.Others.Argumentl;
if (*plrp == Irp)

*pIrp = NULL;
KeReleaseSpinLock(&pdx->IoctlListLock. oldirql);
return STATUS_SUCCESS;
}

PIRP UncacheControl Request(PDEVICCEXTENSION pdx. PIRP* pIrp)
{

KIRQL oldirql;
KeAcquireSpinLock(&pdx->IoctlListLock. &oldirql);
PIRP Irp = (PIRP) InterlockedExchangePointer(pIrp. NULL);
if (lrp)

{

if (IoSetCancelRoutine(Irp. NULL»
{

RemoveEntryList(&Irp->Tail.Overlay.ListEntry);
}

else
Irp = NULL;

}

KeReleaseSpinLock(&pdx->IoctlListLock. old;rql);
return Irp;
}

1. We use a spin lock to guard the list of pending IOCfLs and also to guard
all of the pointer cells that are reselVed to point to the current instance
of each different type of asynchronous IOCTI. request.

2. This is where we enforce the rule-it's more of a design decision, really
that only one IRP of each type can be outstanding at one time.

3. This if statement accommodates the fact that we may need to start failing
incoming IRPs at some point because of PnP or power events.

4. Since we'll pend this IRP for what might be a long time, we need to have
a cancel routine for it. I've discussed cancel logic so many times in this
book that I feel sure you'd rather not read about it once more.

433

Programming the Microsoft Windows Driver Modal

434

5. Here, we've decided to go ahead and cache this IRP so that we can com
plete it later. Since we're going to end up returning STATUS_PENDING
from our DispatchControl function, we need to call IoMarkIrpPending.

6. We need to have a way to NUll. out the cache pointer cell when we can
cel the IRP. It's very difficult to get context parameters into a cancel rou
tine, so I decided to set up an I/O completion routine instead. I use the
Pat'alD.eters.Others.Argumentl slot in the stack to record the cache
pointer address.

7. In order for the completion routine we've just installed to get called, we
must advance the I/O stack pointer by calling IoSetNextIrpStack
Location. In this particular driver, we know there must be at least one
more stack location for us to use because our AddDevice function would
have failed if there hadn't been a driver object underneath ours. The device
and m.e object pointers that later routines need come from the then-current
stack location, so we must initialize them as well.

8. This statement is the point of installing a completion routine. If the IRP
gets cancelled, we'll eventually gain control to nullify the cache pointer.

9. In the normal course of events, this statement uncaches an IRP.

10. Now that we've uncached our IRP, we don't want it to be canceUed any
more. If IoSetCancelRoutine returns NULL, however, we know that this
IRP is currently in the process of being cancelled. We return a NULL IRP
pointer in that case.

NOTIFY also has an IRP _MLCLEANUP handler for pending 10CTLs that looks
just about the same as the cleanup handlers I've discussed for read and write opera
tions. Finally, it includes an AbortPendingIoctIs helper function for use at power
down or surprise removal time, as follows:

VOID AbortPendingIoctls(PDEVICE_EXTENSION pdx. NTSTATUS status)
{

InterlockedExchange(&pdx->IoctlAbortStatus. status);
CleanupControlRequests(pdx. status. NULL);
}

CleanupControlRequests is the handler for IRP _ML CLEANUP. I wrote it in such a
way that it cancels all outstanding IRPs if the third argument-normally a file object
pointer-is NULL. .

NOTIFY is a bit too simple to serve as a complete model for a real-world driver.
Here are some additional considerations for you to mull over in your own design
process:

Chapter 9 Specialized Topics

• A driver might have several types of events that trigger notifications. You
could decide to deal with these by using a single 10CTI code, in which
case you'd indicate the type of event by some sort of output data, or by
using multiple 10CTIcodes.

• You might want to allow multiple threads to register for events. If that's
the case, you certainly can't have a smgle IRP pointer in the device exten
sion-you need a way of keeping track of all the IRPs that relate to a
particular type of event. If you use only a single type of 10CTL for all
notifications, one way to keep track is to rely on the PendingloctlList I've
already discussed. Then, when an event occurs, you execute a loop in
which you call ExInterlockedRemoveHeadList and IoCompleteRequest
to empty the pending list. (I avoided this complexity in NOTIFY by fiat
I decided I'd run only one instance of the test program at a time.)

• Your 10CTI dispatch routine might be in a race with the activity that
generates events. For example, in the USBINT sample I'll discuss in Chap
ter 11, we have a potential race between the 10CTI dispatch routine and
the pseudointerrupt routine that services an interrupt endpoint on a USB
device. To avoid losing events or taking inconsistent .actions, you need a
spin lock. Refer to the USBINT sample on the companion disc for an illus
tration of how to use the spin lock appropriately. (Synchronization wasn't
an issue in NOTIFY because by the time a human being is able to per
form the keystroke that unleashes the event signal, the notification request
is almost certainly pending. If not, the signal request gets an error.)

MORE ABOUT THE NOTIFY SAMPLE

NOTIFY consists ofa WDM device driver (in the SYS subdirectory)and a Win32
console-mode test program (in the TEST subdirectory). You can install the driver
via the Add New Hardware wizard or the FASTINST utility. Then you can launch
the test program. It will spawn a separate thread to issue the IOCTI_ WAIT_
NOTIFICATION I/O control request. Then it prompts you to execute a keystroke
or to press Ctrl+Break to end the test. If you type a key, the test program per
forms an 10CTI_GENERATE_EVENT, passing the scan code of your keystroke as
input data, The driver then completes the pending notification IRP after storing
this scan code as output data. Alternatively, if you hit Ctrl+Break at the point
at which TEST is prompting you for a keystroke, this will eventually cause the
I/O Manager to cancel the outstanding notification IRP.

435

Programming the Microsoft Windows Driver Model

SYSTEM THREADS
In all the device drivers considered so far in the book, we haven't been overly con
cerned about the thread context in which our driver subroutines have executed. Much
of the time, our subroutines run in an arbitrary thread context, which means we can't
block and can't directly access user-mode virtual memory. Some devices are very
difficult to program when faced with the first of these constraints.

Some devices are best handled by polling. A device that can't asynchronously
interrupt the CPU, for example, needs to be interrogated from time to time to check
its state. In other cases, the natural way to program the device might be to perform
an operation in steps with waits in between. A floppy disk driver, for example, goes
through a series of steps to perform an operation. In general, the driver has to com
mand the drive to spin up to speed, wait for the spin-up to occur, commence the
transfer, wait a short while, and then spin the drive back down. You could design a
driver that operates as a finite state machine to allow a callback function to properly
sequence operations. It would be much easier, though, if you could just insert event
and timer waits at the appropriate spots of a straight-line program.

Dealing with situations that require you to periodically interrogate a device is
easy with the help of a system thread belonging to the driver. A system thread is a
thread that operates within the overall umbrella of a process belonging to the oper
ating system as a whole. I'll be talking exclusively about system threads that execute
solely in kernel mode. In the next section, I'll describe the mechanism by which you
create and destroy your own system threads. Then I'll give an example of how to use
a system thread to manage a polled input device.

Creating and Terminating System Threads

436

To launch a system thread, you call PsCreateSystemThread. One of the arguments
to this service function is the address of a thread procedure that acts as the main
program for the new thread. When the thread procedure is going to terminate the
thread, it calls PsTerminateSystemThread, which does not return. Generally speak
ing, you need to proVide a way for a PnP event to tell the thread to terminate and to
wait for the termination to occur. Combining all these factors, you'll end up with code
that performs the functions of these three subroutines:

typedef struct _DEVICE_EXTENSION {

KEVENT evKi 11 :
PKTHREAD thread:
} :

NTSTATUS StartThread(PDEVICE_EXTENSION pdx)
{

NTSTATUS status:

Chapter 9 Specialized Topics

HANDLE hthread;
KelnitializeEvent(&pdx->evKill, NotificationEvent, FALSE);
status = PsCreateSystemThread(&hthread, THREAD-ALL-ACCESS,

NULL, NULL. NULL. (PKSTART_ROUTINE) ThreadProc. pdx);
if (!NT_SUCCESS(status»

return status;
ObReferenceObjectByHandle(hthread. THREAD-ALL-ACCESS. NULL.

KernelMode, (PVOID*) &pdx->thread. NULL);
ZwClose(hthread);
return STATUS_SUCCESS;
}

VOID StopThread(PDEVICE_EXTENSION pdx)
{

KeSetEvent(&pdx->evKill, 0, FALSE);
KeWaitForSingleObject(pdx->thread. Executive. KernelMode. FALSE. NULL);
ObDereferenceObject(pdx->thread);
}

VOID ThreadProc(PDEVICE_EXTENSION pdx)
{

KeWaitForXxx«at least pdx->evKil1»;

PsTerminateSystemThread(STATUS_SUCCESS);
}

1. Declare a KEVENT named evKlll in the device extension to provide a way
for a PnP event to signal the thread to terminate. This is the appropriate
time to initialize the event.

2. This statement launches the new thread. The return value for a success
ful call is a thread handle that appears at the location pointed to by the
first argument. The second argument specifies the access rights you re
quire to the thread; THREAD_ALL_ACCESS is the appropriate value to
supply here. The next three arguments pertain to threads that are part of
user-mode processes and should be NULL when a WDM driver calls this
function. The next-to-Iast argument (ThreadProc) designates the main
program for the thread. The last argument (pdx) is a context argument
that will be the one and only argument to the thread procedure.

3. To wait for the. thread. to terminate, you heed the address of the under
lying KTHREAD object instead of the handle you get back from PsCreate
SystemThread. This call to ObReferenceObjectByHandle gives you that
address.

437

Programming the Microsoft Windows Driver Model

4. We don't actually need the handle once we have the address of the
KTHREAD, so we call ZwClose to close that handle.

5. A routine such as StopDevice--which performs the device-specific part
of IRP _MN_STOP _DEVICE in my scheme of driver modularization-can
call StopThread to halt the system thread. The first step is to set the evKill
event.

6. This call illustrates how to wait for the thread to finish. A kernel thread
object is one of the dispatcher objects on which you can wait. It assumes
the signalled state when the thread finally finishes. In Windows 2000, you
always perform this wait to avoid the embarrassment of having your
driver's image unmapped while one of your system threads executes the
last few instructions of its shutdown processing. That is, don't just wait for
a special "kill acknowledgment" event that the thread sets just before it
exits-the thread has to execute PsTerminateSystemThread before your
driver can safely unload. Refer also to an important Windows 98 com
patibility note ("Waiting for System Threads to Finish ':,) at the end of this
chapter.

7. This call to ObDereferenceObject balances the call to ObReference
ObjectByHandle that we made when we created the thread in the first
place. It's necessary to allow the Object Manager to release the memory
used by the KTHREAD object that formerly described our thread.

8. The thread procedure will contain miscellaneous logic that depends on
the exact goal you're trying to accomplish. If you block while waiting for
some external event, you should call KeWaitForMultipleObjects and
specify the evKill event as one of the objects.

9. When you detect that evKill has been signalled, you call the PsTerminate
System Thread function, which terminates the thread. Consequently, it
doesn't return. Note that you can't terminate a system thread except by
calling this function in the context of the thread itself.

Using a System Thread for Device Polling

438

If you had to write a driver for a device that can't interrupt the CPU to demand ser
vice, a system thread devoted to polling the device may be the way to go. I'll show
you one way to use a system thread for this purpose. This example is based on a
hypothetical device with two input ports. One port acts as a control port; it delivers
a 0 byte when no input data is ready and a 1 byte when input data is ready. The other
port delivers a single byte of data and resets the control port.

Chapter 9 Specialized Topics

In the sample I'll show you, we spawn the system thread when we process the
IRP _MN_START_DEVICE request. We terminate the thread when we receive a Plug
and Play request such as IRP _MN_STOP _DEVICE or IRP _MN_REMOVE_DEVICE that
requires us to release our VO resources. The thread spends most of its time blocked.
When the Startlo routine begins to process an IRP _MLREAD request, it sets an
event that the polling thread has been waiting for. The polling thread . then enters
a loop to service the request. In the loop, the polling thread first blocks for a ftxed
polling interval. After the interval expires, the thread reads the control port. If the
control port is 1, the thread reads a data byte. The thread then repeats the loop until
the request is satisfted, whereupon it goes back to sleep until StartIo receives another
request.

The thread routine in the POLLING sample is as follows:

VOID Po.ll i ngThreadRouti ne(PDEVICE_EXTENSION pdx)
{

NTSTATUS status:
KTIMER timer;
KeInitializeTimerEx(&timer. SynchronizationTimer);

PYOID mainevent~[] = {
(PVOID) &pdx->evKill.
(PVOID) &pdx->evRequest.
};

PYOID pollevents[] = {
(PV~ID) &pdx->evKill.
(PVOID) &timer.
} ;

ASSERT(arraysize(mainevents) <= THREAD_WAIT_OBJECTS):
ASSERT(arraysize(pollevents) <= THREAD_WAIT_OBJECTS):

BOOLEAN kill = FALSE:

whil e (! kill)
{ II until told to quit
status = KeWaitForMultipleObjects(arraysize(mainevents).

mainevents. WaitAny. Executive. KernelMode. FALSE.
NULL. NULl):

if (!NLSUCCESS(status) II status = STATULWAIL0)
break:

ULONG numxfer = 0:
LARGE_INTEGER duetime = {0}:
#define POLLING_INTERVAL 500

(continued)

439

Programming the Microsoft Windows Driver Model

440

KeSetTimerEx(&timer. duetime. POLLING_INTERVAL. NULL);

PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite);

while (TRUE)
{ II read next byte
if (lrp->Cancel)

{

status = STATUS_CANCELLED;
break;
}

status = AreRequestsBeingAborted(&pdx->dqReadWrite);
if (! status)

break;
status = KeWaitForMultipleObjects(arraysize(pollevents).

pollevents. WaitAny. Executive. KernelMode. FALSE.
NULL. NULL);

if (!NT_SUCCESS(status»
{

kill = TRUE;
break;
{

if (status == STATUS_WAIT_0)
{

status = STATUS_DELETE_PENDING;
kill = TRUE;
break;
}

if (pdx->nbytes)
{

if (READ_PORT_UCHAR(pdx->portbase) == 1)
{

}

*pdx->buffer++ = READ_PORT_UCHAR(pdx->portbase + I);

--pdx->nbytes;
++numxfer;
}

if (!pdx->nbytes)
break;

} II read next byte
KeCancelTimer(&timer);
StartNextPacket(&pdx->dqReadWrite. pdx->DeviceObject);
if (lrp)

{

IoReleaseRemoveLock(&pdx->RemoveLock. Irp);

Chapter 9 Specialized Topics

CompleteRequestClrp. STATUS_SUCCESS. numxfer):
}

} II unt1l told to qu1t

PsTerm1nateSystemThreadCSTATUS_SUCCESS):
}

1. We'll be using this kemel timer later to control the frequency with which
we poll the device.

2. We'll call KeWaitForMultipleObjects twice in this function to block the
polling thread until something of note happens. These two arrays provide
the addresses of the dispatcher objects on which we'll wait. The ASSERT
statements verify that we're waiting for few enough events such that we
can use the array of wait blocks that's built in to the thread object.

3. This loop terminates when an error occurs or when evKi11 becomes sig
nalled. We'll then terminate the entire polling thread.

4. This wait terminates when either evKlll or evRequest becomes signalled.
Our StartIo routine will signal evRequest to indicate that an IRP exists for
us to service.

5. The call to KeSetTimerEx starts our timer counting. This is a repetitive
timer that expires once based on the due time and periodically thereafter.
We're specifying a 0 due time, which will cause us to poll the device
immediately. The POlliNG_INTERVAL is measured in milliseconds.

6. This inner loop terminates when either the kill event becomes signalled
or we're done with the current IRP.

7. While we're g9ing about our business in this loop, the current IRP might
get cancelled, or we might receive a PnP or power IRP that requires us
to abort this IRP.

8. In this call to KeWaitForMultipleObjects, we take advantage of the fact
that a kernel timer acts like an event object. The call ftnishes when either
evKlll is signalled (meaning we should terminate the polling thread al
together) or the timer expires (meaning we should execute another poll).

9. This is the actual polling step in this driver. We read the control port, whose
address is the base port address given to us by the PnP Manager. If the
value indicates that data is available, we read the data port.

The Startlo routine that works with this polling routine first sets the buffer
and nbytes ftelds in the device extension; you saw the polling routine use them

441

Programming the Microsoft Windows Driver Model

to sequence through an input request. Then it sets the evRequest event to wake up
the polling thread.

You can organize a polling driver in other ways besides the one I just showed
you. For example, you could spawn a new polling thread each time an arriving re
quest fmds the device idle. The thread services requests until the device becomes idle,
whereupon it terminates. This strategy would be better than the one I illustrated if
long periods elapse between spurts of activity on the device, because the polling
thread wouldn't be occupying virtual memory during the long intervals of quiescence.
If, however, your device is more or less continuously busy, the first strategy might
be better because it avoids repeating the overhead of starting and stopping the poll
ing thread.

EXERCISING THE POLLING SAMPLE

You can test the POLLING sample driver on Windows 98 only. Follow the di
rections on the companion disc for launching the DEVI'EST simulator for the
fake hardware that POLUNG manages. Then launch the user-mode TEST pro
gram to perform a read operation.

EXECUTIVE WORK ITEMS

442

From time to time, you might wish that you could temporarily lower the processor's
interrupt request level (IRQL) to carry out some task or another that must be done
at PASSIVE_LEVEL. Lowering IRQL is, of course, a definite no-no. So long as you're
running at or below DISPATCH_LEVEL, however, you can queue an executive work item
to request a callback into your driver later. The callback occurs at PASSIVE_LEVEL in
the context of a worker thread owned by the operating system. Using a work item can
save you the trouble of creating your own thread that you only occaSionally wake up.

I'll describe a simple way of using an executive work item. First declare a struc
ture that starts with an unnamed instance of the WORK_QUEUE_ITEM structure.
Here's an example drawn from the WORKITEM sample on the companion disc:

struct _RANDOM_JUNK {
struct _WORK-QUEUE_ITEM;
<other stuff>
} RANDOM_JUNK, *PRANDOM_JUNK;

Chapter 9 Specialized Topics

DECLARING THE WORK-ITEM STRUCTURE

The ability to have an unnamed union or structure that's a member of a bigger
structure is a Microsoft extension to the C/C++ language. In the example shown
in the text, you can directly reference members of the standard WORK_QUEUE_
ITEM without needing to supply an intermediate level df name qualification.

If you're able to use C++ syntax-as I'm doing in the sample programs
there's a better way to declare a structure like the one I showed you in the text:

struct _RANDOM_JUNK: public _WORK-QUEUE_ITEM {
<other stuff>
} :

typedef _RANDOM_JUNK RANDOM_JUNK. *PRANDOM_JUNK:

This syntax says that .-RANDOMJUNK is derived from _ WORK_ QUEUE_ITEM,
meaning that it inherits all of the same members as the base structure. You're
probably familiar with the concept of deriving C++ classes from other classes,
but you can derive structures as well. Using this method of declaration, you can
still directly reference WORK_QUEUE_lTEMfields without extra name qualifi
cation, but you won't be relying on a Microsoft language extension to do so.

When you're ready, allocate an instance of this structure from the heap and
initialize it:

PRANDOM_JUNK item = (PRANDOM_JUNK) ExAllocatePool(PagedPool.
s;zeof(RANDOM_JUNK):

ExlnitializeWorkltem(item. (PWORKER-THREAD_ROUTINE) Callback.
(PVOID) item):

(additional initialization>

In the call to ExInitializeWorkItem, the fIrst argument (item.) is the address of the
WORK_QUEUE_lTEM embedded in your structure. ExInitializeWorkItem is actually
a rrulCfO that Simply references WORK_QUEUE_lTEM fIelds using this pointer; I didn't
need to supply a cast here because I declared the WORK_QUEUE_lTEMas an un
named structure member. The second argument (Callback) is the address of a call
back routine elsewhere in your driver .. The third and final argument is a context
parameter that will eventually be used as the single argument to the callback rou
tine. I used the item pointer here for reasons that will become apparent when I show
you the callback routine. ExlnitializeWorkItem'merely initializes that part of your
structure (that is, WORK_QUEUEJTEM) that the system knows about. After calling
ExInitializeWorkItem, you need to do any initialization of your own data members
that might be required.

443

Programming the Microsoft Windows Driver Model

444

At this point, you're ready to ask the system to put your work item into a queue,
which can be done using the ExQueueWorkItem function:

ExQueueWorkltem(item. Queueldentifier):

QueueIdentifier can be either of these two values:

• DelayedWorkQueue indicates that you want your work item executed
in the context of a system worker thread that executes at variable prior
ity-that is, not at a real-time priority level.

• CriticalWorkQueue indicates that you want your work item executed in
the context of a system worker thread that executes at a real-time priority.

You choose the delayed or t;he critical work queue depending on the urgency
of the task you're trying to perform. Putting your item into the critical work queue
will give it priority over all noncritical work in the system at the possible cost of
redUCing the CPU time available for other critical work. In any case, the activities
you perform in your callback can always be preempted by activities that run at an
elevated IRQL.

After you queue the work item, the operating system will call you back in the
context of a system worker thread having the characteristics you specified as the
second argument to ExQueueWorkItem. You'll be at IRQL PASSIVE_LEVEL. What you
do inside the callback routine is pretty much up to you except for one requirement:
you must release or otherwise reclaim the memory occupied by the work queue item.
Here's a skeleton for a work-item callback routine:

VOID Callback(PRANDOM_JUNK item)
{

PAGED_CODE():

ExFreePool(item);
}

This callback receives a single argument (item), which is the context parameter
you supplied earlier in the call to ExInitializeWorkItem. This fragment also shows the
call to ExFreePool that balances the allocation we did earlier. Since you must re
lease the work item memory if you allocated it from the heap in the first place, it's
often convenient to pass the work queue item address itself as the context parameter.
That's what I did here, in fact, because the work queue item occupies the first sev
eral bytes of the RANDOMJUNK structure.

I have one more important point to make about work items. You can't remove
a work item from the system queue. If, however, you were to honor a PnP request
to remove your device, it's possible (though pretty unlikely) for your driver to be

Chapter 9 Specialized Topics

removed from memory while a work item is still pending. The remove lock mecha
nism I described in Chapter 6, "Plug and Play," gives you a perfect way to prevent
this from happening, as follows:

• Before you queue a work item, use IoAcquireRemoveLock to establish
a claim that will prevent your driver from being unloaded.

• At the end of the work-item callback routine, call IoReleaseRemoveLock
to release that claim. To do this, you'll need to have access to your de
vice extension inside the callback routine. Chances are you'll need the
device extension pointer for other reasons, anyway. So, you'll probably
want to put a device extension or device object pointer inside the
RANDOM...JUNK structure (to' which you'll probably also give a better
name!).

In addition, your callback routine needs to take whatever steps are necessary
to avoid accessing hardware that's been surprise-removed or depowered, and so on,

loAliocateWorkltem, loQueueWorkHem, and loFreeltem
Windows 2000 provides a new set of functions--IoAllocateWorkItem, IoQueue
workItem, and IoFreeItem--that Microsoft recommends you use instead of the execu
tive support functions I just described. The new functioI1s surround calls to the
executive-level functions with code that claims a reference to a device object you
specify. That reference prevents your device object from disappearing, but it doesn't
hold off the processing of IRP _MN_REMOVE_DEVICE requests. So long as you un
derstand that you must prevent the disappearance of your driver and any resources
that your work-item callback will access until after the callback executes, there's no
compelling reason to use the new functions.

ABOUT THE WORKITEM SAMPLE

The WORKITEM sample driver on the companion disc illustrates the bare
mechanics of using an executive work item. It's basic;ally a reprise of the NO
TIFY sample that works like this: The test application issues aDeviceloControl
with a code of IOCTL_SUBMIT_lTEM. The driver treats this as an asynchro
nous IOCTL by using the techniques I described earlier in this chapter. It also
queues a work item before returning from the DEVICE_CONTROL dispatch
function .. When the work item callback occurs, the driver then completes the
IOCTI_SUBMIT_lTEM.

445

Programming the Microsoft Windows Driver Model

WATCHDOG TIMERS

446

Some devices won't notify you when something goes wrong-they simply don't
respond when you talk to them. Each device object has an associated 10_TIMER object
that you can use to avoid indefmitely waiting for an operation to fmish. While the
timer is running, the I/O Manager will call a timer callback routine once a second.
Within the timer call,back routine, you can take steps to terminate any outstanding
operations that should have finished but didn't. .

You initialize the timer object at AddDevice time:

NTSTATUS AddDevice(...)
{

IoInitializeT1mer(fdo. (PIO_TIMER-ROUTINE) OnTimer. pdx);

}

where fdo is the address of your device object, OnTimer is the timer callback rou
tine, and pd:x: is a context argument for the I/O Manager's calls to OnTimer.

You start the timer counting by calling IoStartTimer, and you stop it from
counting by calling IoStopTimer. In between, your OnTimer routine is called once
a second.

The PIOFAKE sample on the companion disc illustrates one way of using the
10_TIMER as a watchdog. I put a timer member into the device extension for this
fake device:

typedef struct _DEVICE_EXTENSION {

LONG timer;

} DEVICE_EXTENSION. *PDEVICE_EXTENSION;

When I process an IRP _MLCREATE after a period with no handles open to the
device, I start the timer counting~ When I process the IRP _MLCLOSE that closes the
last handle, I stop the timer:

NTSTATUS DispatchCreate(•..)
{

if (InterlockedIncrement(&pdx->handles == 1)
{

}

pdx->timer = -1;
IoStartTimer(fdo);
}

Chapter 9 Specialized Topics

NTSTATUS DispatchClose(...)
{

if (InterlockedDecrement(&pdx->handles) == 0)
IoStopTimer(fdo):

}

The timer cell begins life with the value -1. I set it to 10 (meaning 10 seconds)
in the Startlo routine and again after each interrupt. Thus, I allow 10 seconds for the
device to digest an output byte and to generate an interrupt that indicates readiness
for the next byte. (See the sidebar "More About PIOFAKE" for an explanation of the
way this nonexistent device works.) The work to be done by the OnTimer routine
at each I-second tick of the timer needs to be synchronized with the interrupt ser
vice routine (ISR). Consequently, I use KeSynchronizeExecution to call a helper
routine (CbeckTimer) at device IRQL (DIRQL) under protection of the interrupt
spin lock. The timer-tick routines dovetail with the ISR and DPC routines as shown
in this excerpt:

VOID OnTimer(PDEVICLOBJECT fdo. PDEVICLEXTENSION pdx)
{

KeSynchronizeExecution(pdx->InterruptObject.
(PKSYNCHRONIZLROUTINE) CheckTimer. pdx):

}

VOID CheckTimer(PDEVICE_EXTENSION pdx)
{

if (pdx->timer <= 0 I I --pdx->timer > 0)
return:

PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite);
1 f (I I rp)

return;
Irp->IoStatus.Status ~ STATUS_IO_TIMEOUT;
Irp->IoStatus.lnformation = 0:
IoRequestDpc(pdx->DeviceObject. Irp. NULL);
}

BOOLEAN Onlnterrupt(..•)
{

if (pdx->timer <= 0)
return TRUE;

if (!pdx->nbytes)
{

Irp->IoStatus.Status = STATUS_SUCCESS;
Irp->IoStatus.lnformation = pdx->numxfer;

(conttnued)

447

Programming the Microsoft Windows Driver Model

448

pdx->timer = -I;
IoRequestDpc(pdx->Dev1ceObject. Irp. NULL);
}

pdx->timer = 10;
}

VOID DpcForIsr(...)
{

PIRP Irp = StartNextPacket(&pdx->dqReadWr1te. fdo);
IoCompleteRequest(Irp. IO_NO_INCREMENT);

}

1. A timer value of -1 means that no request is currently pending. A value
of 0 means that the current request has timed out. In either case, we don't
want or need to do any more work in this routine. The second part of the
if expression decrements the timer. If it hasn't counted down to 0 yet, we
return without doing anything else.

2. This driver uses· a DEVQUEUE, so we call the DEVQUEUE routine
GetCurre:tltlrp to get the address of the request we're currently process
ing. If this value is NULL, the device is currently idle.

3. At this point, we've decided we want to terminate the current request
because nothing has happened for 10 seconds. We request a DPC after
filling in the IRP status fields. This particular status code (STATUS_IO_
TIMEOUT) turns into a Win32 error code (ERROR_SEM_TIMEOUT) for
which the standard error text ("The semaphore timeout period has ex
pired") doesn't really indicate what's gone wrong. If the application that
has requested this operation is under your control, you should provide a
more meaningful explanation.

4. If the timer equals 0, the current request has timed out. The ChecIaimer
routine requested a DPC, so we don't need or want to do any more work
in the ISR besides dismissing the interrupt. By setting timer to -1, we
prevent the next invocation of CheckTimer from requesting another DPC
for this same request.

5. We allow 10 seconds between interrupts.

6. Whateverrequested this DPC also filled in the IRP's status fields. We there
fore need to call only IoCompleteRequest.

Chapter 9 Specialized Topics

MORE ABOUT PIOFAKE

The PIOFAKE sample driver works with a nonexistent device that follows a
programmed I/O (PIO) model. The device has a single output port to which
you can write ASCII characters. After it digests a data byte, it generates an in
terrupt on its IRQ line.

If you install PIOFAKE in Windows 2000 and run the associated TEST
program, nothing will happen for 10 seconds. Then PIOFAKE will time out
because it hasn't seen an interrupt, whereupon the test application will report
a timeout error.

In Windows 98, you can use the DEVfEST device simulator to exercise
the PIO part of this sample driver. Refer to the instructions in PIOFAKE.HTM
for additional information.

WINDOWS 98 COMPATIBILITY NOTES
There are some minor differences between Windows 98 and Windows 2000 insofar
as the material discussed in this chapter goes.

Error Logging
Windows 98 doesn't implement an error.;logging file or an Event Viewer. When you
call IoWrlteErrorLogEntry in Windows 98, all that happens is that several lines of
data appear on your debugging terminal. I find the formatting of this information
unaesthetic, so I prefer to simply not use the error-logging facility under Windows 98.
Refer to Appendix A, "Coping with Windows 98 Incompatibilities," for suggestions
about how to determine whether you're running Windows 98 or Windows 2000.

1/0 Controls and Windows 98 Virtual Device Drivers
A Win32 application can use DeviceloControl to communicate with a Windows 98
virtual device driver (VxD) as well as a WDM driver. Three subtle and minor differ
ences exist between 10CTIs for WDM drivers and 10CTIs for VxDs. The most im
portant difference has to do with the meaning of the device handle you obtain from
CreateFile. When working with a WDM driver, the handle is for a specific device,
whereas you get a handle for the driver when you're talking to a VxD. In practice,
a VxD might need to implement a pseudohandle mechanism (embedded within the
10CTI data flow) to allow applications to refer to specific instances of the hardware
managed by the VxD.

Another difference between VxD and WDM control operations concerns the
assignment of numeric control codes. As I discussed earlier, you define a control code
for a WDM driver by using the CTI_CODE macro, and you can't define more than

449

Programming the Microsoft Windows Driver Model

2048 codes. For a VxD, .all 32-bit values except 0 and -1 are available. If you want
to write an application that can work with either a VxD or a WDM driver, use
CTL_CODE to define your control codes, since a VxD will be able to work with the
resulting numeric values.

The last difference is a pretty minor one: the second-to-Iast argument to
DeviceloControl-a PDWORD pointing to a feedback variable-is required when you
call a WDM driver but not when you call a VxD. In other words, if you're calling a
WDM driver, you must supply a non-NULL value pointing to a DWORD. If you're
calling a VxD, however, you can specify NULL if you're not interested in knowing
how many data bytes are going into your output buffer. It shouldn't hurt to supply
the feedback variable when you call a VxD, though. Furthermore, the fact that this
pointer can be NULL is something that a VxD writer might easily overlook, and you
might provoke a bug if your application takes advantage of the freedom to say NULL.

Caution About Pending IOCTL Operations
If an application uses the pending IOCTL technique to wait for your driver to tell
it about hardware events, the application necessarily has a handle open while it's
running. If your device can be removed from the computer by surprise, you need
to fail the pending IOCTL(s) to encourage the application to close its handles. In
Windows 2000, you could delay handling the eventual IRP _MN_REMOVE_DEVICE
request until all handles get closed. You don't dare delay in Windows 98, however,
because of the deadlock possibility I described at the end of Chapter 6. If you look
at my sample drivers, and at NOTIFY in particular, you'll see that they do not acquire
the remove lock when they process IRP _MLCREATE. That means that they will al
low themselves to be unloaded even though handles are open. Luckily, Windows 98
is able to deal with the aftermath without further incident.

Waiting for System Threads to Finish

450

Windows 98 doesn't support the use of a pointer to a thread object (a PK'fHREAI))
as an argument to KeWaitForSingleObject or KeWaitForMultipleObjects. Those
support functions simply pass their object pointer arguments through to VWIN32.VXD
without any sort of validity checking, and VWIN32 crashes because the thread ob
jects don't have the structure members needed to support synchronization use.

If you need to wait for a kernel-mode thread to complete in Windows 98, there
fore, you'll need to have the thread signal an event just before it calls PsTerminate
SystemThread. It's possible that signalling this event will cause the terminating thread
to lose control to a thread waiting for the same event. The terminating thread would
then still be alive technically, but I don't think anything awful can happen as a re
sult in Windows 98. In Windows 2000, however, you could easily find the driver
unloaded out from under the terminating thread; be sure to wait on the thread ob
ject itself in Windows 2000.

Chapter 10

Windows
Management

Instrumentation

Microsoft Windows 2000 supports a facility named Windows Management Instrumen
tation (WMI) as a way to manage the computer system. WMI is Microsoft's imple
mentation of a broader industry standard called Web~Based Enterprise Management
(WBEM). The goal of WMI is to provide a model for system management and the
description of management data in an enterprise network that's as iridependent as
possible from a specific API set or data object model. Such independence facilitates
the development of general mechanismS for creating, transporting, and displaying data
and for exercising control over individual system components.

WDM drivers fit into WMI in three ways. See Figure 10-1. First, WMI responds
to requests for data that (usually) convey information about performance. Second,
controller applications of various kinds can use the facilities of WMI to control ge
neric features of conforming devices. Finally, WMI provides an event-signalling
mechanism that allows drivers to notify interested applications of important events.
I'll discuss all three of these aspects of driver programming in this· chapter. To help
you understand the test programs that accompany the driver samples for this chap
ter, I'm also going to describe how the user-mode side of WMI works.

451

Programming the Microsoft Windows Driver Modal

Statistical and
performance data

Events

Controls

Figure 10-1. The role of a WDM driver in WMl.

THE WMI AND WaEM NAMES

The Common Information Model (CIM) is a specification for Web-based enter
prise management supported by the Distributed Management Task Force (DMTF),
formerly named the Desktop Management Task Force. Microsoft named its
implementation of the Common Information Model "WBEM," which was essen
tially "CIM for Windows." The kernel-mode portion of CIM for Windows was
called "WMI." In order to get CIM more widely adopted, DMTF started a mar
keting initiative and used WBEM as the name of CIM. Microsoft then renamed
its implementation of WBEM to WMI and renamed WMI (the kernel-mode por
tion) to. "WMI extensions for WDM." That being said, WMI is compliant with
the CIM and WBEM specification.

I'm afraid my usage of the various different terms in this chapter won't
go very far to resolve the confusion you might feel at this point. I'd suggest that
you think "WMI" whenever you see "CIM" or "WBEM" in this book and any
documentation Microsoft provides. You'll probably then at least be thinking
about the same concept that I and Microsoft are trying to write about-until
something with a name like "Windows Basic Extensions for Mortals" or "Com
pletely Integrated Mouse" comes along, that is. Then you're on your own.

WMI CONCEPTS

452

Figure 10-2 diagrams the overall architecture of WMI. In the WMI model, the world
is divided into consumers and providers of data and events. Consumers consume, and
providers proVide, blocks of data that are instances of abstract classes. The concept
involved here is no different from that of a class in the C++ language. Just like C++

Chapter 10 Windows Man~gement Instrumentation

classes, WMI classes have data members and methods that implement behaviors for
objects. What goes inside a data block isn't specified by WMI-that depends on
who's producing and for what purpose. When it comes to device drivers, though,
the content of a WMI data block is most likely going to be statistical in nature.
Consumers of driver data, therefore, are often performance monitors of one kind
or another.

Figure 10-2. The world of WMl.

WMI allows for multiple namespaces, each of which contains classes belong
ing to one or more user-mode providers. Providers register with the Windows Man
agement Service by using COM interfaces that are documented in the Platform SDK.
When Windows 2000 ships, the operating system (including all device drivers) will
support a namespace called root\clm.v2, which stands for Version 2 of the Common
Information Model. At the time of this writing, the structure of the CIMV2 namespace
was rather fluid, with the consequence that Microsoft has temporarily decided to use
another namespace, root\ wmi, for device driver classes.

A WDM driver can act as a provider of instances of a WMI class. The deSCription
of all the classes a driver can provide data for is known as the dover's schema. You
define a schema by using a language named the Managed Object Format, or MOP. The
system maintains a data dictionary known as the repository that contains the defmitions
of all known schemas. Assuming you do all the right things in your driver, the system
will automatically put your schema into the repository When it initializes your driver.

453

Programming thl Microsoft Windows Driver Modll

A Sample Schema
Later in this chapter, rll show you a sample named WMI42.SYS, which is available
on the companion disc. This sample has the following MOP schema:

~ [Dynamic, Provider("WMIProv"),
WMI.

454

Description("Wmi42 Sample Schema"),
gUid("A0F95FD4-A587-11d2-BB3A-00C04FA330A6"),
locale("MS\\0x409")]

class Wmi42
{

} ;

[key, read]
string InstanceName;

[read] boolean Active;

[WmiDatald(1) ,
Description("The Answer to the Ultimate Question")
]

uint32 TheAnswer;

I don't propose to describe all the details of the MOP syntax; that information
is available as part of the Platform SDK and WMI SDK (http://msdn.microsojt.com/
developer/sdk/) documentation. You can either construct your MOF by hand, as I did
for this simple example, or use a tool named WBEM elM Studio that comes with the
Platform SDK and WMI SDK. Here, however, is a brief explanation of the contents
of this MOP me:

1. The provider named WMIProv is the system component that knows how
to instantiate this class. It understands, for example, how to call into ker
nel mode and send an I/O request packet (IRP) to an appropriate driver.
It can find the right driver by means of the globally unique identifier
(GUID) that appears near the beginning of the me.

2. This schema declares a class named WMI42, which coincidentally has the
same name as our driver. Instances of the class have properties named
InstanceName, Active, and TheAnswer.

Chapter 10 Windows Management Instrumentation

As developers, we would run the MOF compiler on this schema definition to
produce a binary file that eventually ends up as a resource in our driver executable
file. (Resource in this sense is the same concept that application developers have in
mind when they build dialog box templates, string tables, and other things that are
part of their project's resource script.) Part of the process of initializing our driver is
telling the WMI provider where the resource is so that it can read the schema and
augment the repository.

We should also run a utility named WMIMOFCK.EXE, which is available in the
DDK, after compiling our schema. This utility performs additional checks to make
sure that the schema is compatible with WMI.

MOF FILES AND BETA RELEASES

WMI was under active development during much of the Windows 2000 beta
testing period, and not all of the plumbing was complete. Depending on which
release of Windows 2000 you're using, you might need to run the MOF com
piler an extra time before you'll be able to run the sample programs described
in this chapter. During the extra run, you'll manually update the WMI reposi
tory so that various COM interfaces can access your driver's schema. Use the
following command-line syntax to place your schema into the WMI
namespace:

mofcomp -N:root\wmi <name>

Thereafter, you'll be able to use development tools like WBEMTEST.EXE
to test your driver, and the console-mode test programs that accompany the
samples will also work. (MOFTEST.EXE and WBEMTEST.EXE are included in
the %windir% \system32\ wbem directory for Windows 2000 and the %winditJlo \
system \ wbem directory for Microsoft Windows 98. In Windows 98, you will
need to install WMI. See "Windows 98 Compatibility Notes" at the end of this
chapter for some additional information.)

455

Programming the Microsoft Windows Driver Model

WDM DRIVERS AND WMI
The kernel-mode support for WMI is based primarily on IRPs with the major code
IRP _MLSYSTEM_CONTROL. You must register your desire to receive these IRPs by
making the following call:

IoWMIRegistrationControl(fdo, WMI_ACTION_REGISTER);

The appropriate time to make the registration call is in the AddDevice routine
at a point when it would be safe for the system to send the driver a system control
IRP. In due course, the system will send you an IRP _MLSYSTEM_CONTROL request
to obtain detailed registration information about your device. You'll balance the reg
istration call with another call at RemoveDevice time:

IoWMIRegistrationControl(fdo, WMI_ACTION_DEREGISTER);

If any WMI requests are outstanding at the time you make the deregistration
call, IoWMIRegistrationControl waits until they complete. It's therefore necessary
to make sure that your driver is still capable of responding to IRPs when you
deregister. You can fail new IRPs with STATUS_DELETE]ENDING, but you have to
respond.

Before explaining how to service the registration request, I'll describe how you
handle system control IRPs in general. An IRP _MLSYSTEM_CONTROL request can
have any of the minor function codes listed in Table 10-1.

Minor Function Code Description

IRP _MN_QUERY_ALL_DATA

IRP _MN_ QUERY_SINGLE_INSTANCE

IRP _MN_ CHANGE_SINGLE_ITEM

IRP _MN_ENABLE_EVENTS

IRP _MN_DISABLE_EVENTS

IRP _MN_ENABLE_COLLECTION

IRP _MN_DISABLE_COLLECTION

IRP _MN_REGINFO

IRP _MN_EXECUTE_METHOD

Get all instances of every item in a data block

Get every item in a single instance of a data
block

Replace every item in a single instance of a
data block

Change one item in a data block

Enable event generation

Disable event generation

Start collecting "expensive" statistics

Stop collecting "expensive" statistics

Get detailed registration information

Execute a method function

Table 10-1. Minor function codes for IRPjl{LSYSTEM_CONIROL.

456

Chapter 10 Windows Management Instrumentation

The Parameters union in the stack location includes a WMI substructure with
parameters for the system control request:

struct {
ULONG_PTR Providerld:
PVOID DataPath:
ULONG BufferSize:
PVOID Buffer:
} WMI:

Providerld is a pointer to the device object to which the request is directed. Buffer
is the address of an input! output area where the first several bytes are mapped by
the WNODE_HEADER structure. BufferSize gives the size of the buffer area. Your
dispatch function will extract some information from this buffer and will also return
results in the same memory area. For all the minor functions e~cept IRP _MN_
REGINFO, DataPatb is the address of a 128-bit GUID that identifies a class of data
block. The DataPath field is either WMIREGISTER or WMIUPDATE (0 or 1, respec
tively) for an IRP _MN_REGINFO request, depending on whether you're being told
to provide initial registration information or just to update the information you sup
plied earlier.

When you design your driver, you must choose between two ways of handling
system control IRPs. One method is relying on the facilities of the WMIUB support
"driver." WMILIB is really a kernel-mode DLL that exports services you can call from
your driver to handle some of the annoying mechanics of IRP processing. The other
method is simply handling the IRPs yourself. If you use WMILIB, you'll end up writ
ing less code but you won't be able to use every ~st feature of WMI to its fullest
you'll be limited to the subset supported by WMILffi. Furthermore, your driver won't
run under the original retail release of Microsoft Windows 98 because WMILIB wasn't
available then. Before you let the lack of WMIllB in original Windows 98 ruin your
day, consult the compatibility notes at the end of this chapter.

WMILIB suffices for most drivers, so I'm going to limit my discussion to using
WMILIB. The DDK documentation describes how to handle system control IRPs
yourself if you absolutely have to.

Delegating IRPs to WMILIB
In your dispatch routine for system control IRPs, you delegate most of the work to
WMILIB with code like the following:

~ WMIGUIDREGINFO guidlist[] = {
{&GUID_WMI42_SCHEMA. 1. WMIRE~FLAG_INSTANCE_PDO}.
} :

(conttnued)

457

Programming the Microsoft Windows Driver Model

458

WMILIB_CONTEXT libinfo {
arraysize(guidlist),
guidlist,
QueryRegInfo,
QueryDataBlock,
SetDataBlock,
Set Data Item,
ExecuteMethod,
FunctionControl,
} ;

NTSTATUS DispatchWmi(IN PDEVICE_OBJECT fdo, IN PIRP Irp)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp);
if (INT_SUCCESS(status»

return CompleteRequest(Irp, status, 0);

SYSCTL_IRP_DISPOSITION disposition;
status = WmiSystemControl(&libinfo, fdo, Irp, &disposition);

switch (disposition)
{

case IrpProcessed:
break;

case IrpNotCompleted:
IoCompleteRequest(Irp, IO_NO_INCREMENT);
break;

default:
case IrpNotWmi:
case IrpForward:

IoSkipCurrentlrpStackLocation(Irp);
status = IoCallDriver(pdx->LowerDeviceObject, Irp);
break;
}

IoReleaseRemoveLock(&pdx->RemoveLock, Irp);
return status;
}

1. The WMILIB_CONTEXT structure declared at file scope describes the class
GUIDs your driver supports and lists several callback functions that WMILIB
uses to handle WMI requests in the appropriate device-dependent and
driver-dependent way.

Chapter 10 Windows Management Instrumentation

2. As with other dispatch routines, we acquire and release the remove lock
while handling this IRP. The problem we prevent is having the device object
underneath us disappear because of a Plug and Play (PnP) event. Our own
device object cannot disappear because our call to IoWMIRegistrationControl
acquired a reference to it.

3. This statement calls WMILIB to handle the IRP. We pass the address of our
WMILIB_CONTEXT structure. It's customary to use a static context struc
ture, by the way, because the information in it is unlikely to change from
one IRP to the next. WmiSystemControl returns two pieces of informa
tion: an NTSTATUS code and a SYSCTL_IRP _DISPOSITION value.

4. Depending on the disposition code, we might have additional work to
perform on this IRP. If the code is IrpProcessed, the IRP has already been
completed and we need do nothing more with it. This case would be the
normal one for minor functions other than IRP ~N_REGINFO.

5. If the dispOSition code is IrpNotCompleted, completing the IRP is our
responsibility. This case would be the normal one for IRP _MN_REGINFO.
WMILIB has already filled in the IoStatus block of the IRP, so we need
only call IoCompleteRequest.

6. The default and IrpNotWmi cases shouldn't arise in Windows 2000. We'd
get to the default label if we weren't handling all possible dispOSition
codes; we'd get to the IrpNotWmi case label if we sent an IRP to WMILIB
that didn't have one of the minor function codes that specifies WMI func
tionality.

7. The IrpForward case occurs for system control IRPs that are intended for
some other driver. Recall that the ProviderId parameter indicates the driver
that is supposed to handle this IRP. WmiSystemControl compares that value
to the device object pointer we supply as the second function argument.
If they're not the same, it returns IrpForward so that we'll send the IRP
down the stack to the next driver.

The way a WMI consumer matches up to your driver in your driver's role as a
WMI provider is based on the GUID(s) you supply in the context structure. When a
consumer wants to retrieve data, it (indirectly) accesses the data dictionary in the WMI
repository to translate a symbolic object name into a GUID. The GUID is part of the
MOF syntax I showed you earlier. You specify the same Gum in your context struc
ture, and WMILIB takes care of the matching.

459

Programming the Microsoft Windows Driver Model

460

WMILIB will call routines in our driver to perform device-dependent or driver
dependent processing. Most of the time, the callback routines will perform the requested
operation synchronously. However, except in the case of IRP _MN_REGINFO, we can
defer processing by returning STATUS_PENDING and completing the request later.
If a callback routine will pend the operation, it should call IoAcquireRemoveLock
an extra time. Whoever completes the request should make the balancing call to
IoReleaseRemoveLock.

The QueryReglnfo Callback
The first system control IRP we'll receive after making our registration call has the
minor function code IRP _MN_REGINFO. When we pass this IRP to WmiSystem
Control, it turns around and calls the QueryRegInfo function-it finds the function's
address in our WMILIB_CONTEXT structure. Here's how WMI42.SYS handles this
callback:

NTSTATUS OueryRegInfo(PDEVICE_OBJECT fdo. PULONG flags.
PUNICODE_STRING instname. PUNICODE_STRING* regpath.
PUNICODE_STRING resname. PDEVICE_OBJECT* pdo)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
*flags = WMIREG_FLAG_INSTANCE_PDO;
*regpath = &servkey;
RtlInitUnicodeString(resname. L"MofResource");
*pdo = pdx->Pdo;
return STATUS_SUCCESS;
}

We set regpath to the address of a UNICODE_STRING structure that contains
the name of the service registry key describing our driver. This key is the one below
... \ System \ CurrentControISet\Services. Our DriverEntry routine received the name
of this key as an argument and saved it in the global variable servkey. We set
resname to the name we chose to give our schema in our resource script. Here's
the resource file for WMI42.SYS so that you can see where this name cpmes from:

#include <windows.h>

LANGUAGE LANG_ENGLISH. SUBLANG_NEUTRAL
MofResource MOFDATA wmi42.bmf

WMI42.BMF is where our build script puts the compiled MOF file. You can name
this resource anything you want to, but MotResource is traditional (in a tradition

Chapter 10 Windows Management Instrumentation

stretching back to, uh, last Tuesday). All that matters about the name is that you specify
the same name when you service the QueryRegInfo call.

How we set the remaining values depends on how our driver wants to handle
instance naming. I'll come back to the subject of instance naming later in the chapter
(in "Instance Naming"). The simplest choice, and the one Microsoft strongly recom
mends, is the one I adopted in WMI42.SYS: have the system automatically generate
names that are static based on the name the bus driver gave to the physical device
object (PDO). When we make this choice of naming method, we do the following
tasks in QueryRegInfo:

• Set the WMIREG]LAG_INSTANCE]DO flag in the Gum list that's part
of the context structure. Setting the flag in the Gum list means that the
instance names for data blocks of the associated WMI class will use the
PD~ name.

• Set the WMIREG_FLAG_INSTANCE_PDO flag in the flags value we're
returning to WMILIB. Setting the flag here tells WMILIB that at least one
of our objects uses PD~ naming.

• Set the pdo value we're returning to WMILIB. In my sample drivers, my
device extension has a field named Pdo that I set at AddDevice time to
make it available at times like this.

Apart from making your life easier, basing your instance names on the PD~
allows viewer applications to automatically determine your device's friendly name
and other properties without you doing anything more in your driver.

When you return a successful status from QueryRegInfo, WMILIB goes on to
create a complicated structure called a WMIREGINFO that includes your GUID list,
your registry key, your resource name, and information about your instance names.
It returns to your dispatch function, which then completes the IRP and returns. Fig
ure 10-3 diagrams this process.

The QueryDataBlock Callback
The information you provide in your answer to the initial registration query allows
the system to route relevant data operations to you. User-mode code can use vari
ous COM interfaces to get and set data values at several levels of aggregation.
Table 10-2 summarizes the four possibilities.

461

Programming the Microsoft Windows Driver Model

1. System sends system control
IRP (IRP _MN_REGINFO)

5. Driver cornDhetel) ~
IRP and returns

Figure 10-3. Control flow for IRP _MN_REGINFO.

3. WMILIB calls QueryReglnfo
to get schema-dependent
information

IRP Minor Function WMILIB Callback Description

IRP _MN_QUERY_ALL_DATA QueryDataBlock

QueryDataBlock

SetDataBlock

SetDataItem

Get all items of all instances

Get all items of one instance

Set all items of one instance

Set one item in one instance

IRP _MN_QUERY_SINGLE_INSTANCE

IRP _MN_CHANGE_SINGLE_INSTANCE

IRP _MN_CHANGE_SINGLE_ITEM

Table 10-2. Forms of data queries.

462

When someone wants to learn the value(s) of the data you're keeping, they send
you a system control IRP with one of the minor function codes IRP _MN_QUERY_
ALL_DATA or IRP_MN_QUERY_SINGLE_INSTANCE. If you're using WMILIB, you'll
d~legate the IRP to WmiSystemControl, which will then call your QueryDataBlock
callback routine. You'll provide the requested data, call another WMILIB routine
named WmiCompleteRequest to complete the IRP, and then return to WMILIB to
unwind the process. In this situation, WmiSystemControl will return the IrpProcessed
disposition code because you've already completed the IRP. Refer to Figure 10-4 for
a diagram of the overall control flow.

Chapter 10 Windows Management Instrumentation

1. System sends system control

5. Driver retums

IRP (IRP _MN_QUERY .-ALL_DATA
or IRP _MN_QUERY _SINGLE_INSTANCE)

4. Driver builds value structure,
calls WMILIB to complete the IRP

Figure 10-4. Control flow for data queries.

Your QueryDa:taBlock callback can end up being a relatively complex function
if your driver is maintaining multiple instances of a data block that varies in size from
one instance to the next. I'll discuss the complications later in "Dealing with Multiple
Instances." The WMI42 sample shows how to handle a Simpler case in which your
driver maintains only one instance of the WMI class:

NTSTATUS QueryDataBlock(PDEVICE_OBJECT fdo. PIRP Irp.
ULONG guidindex. ULONG instindex. ULONG instcount.
PULONG instlength. ULONG bufstze. PUCHAR buffer)
{

if (!instlength II bufsize < sizeof(ULONG»
return WmiCompleteRequest(fdo. Irp. STATUS_BUFFER-TOO_SMALL.

sizeof(ULONG). IO_NO_INCREMENT):

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
(continued)

463

Programming the Microsoft Windows Driver Model

PULONG pvalue = (PULONG) buffer:
*pvalue = pdx->TheAnswer:
instlength[0] = sizeof(ULONG):

return WmiCompleteRequest(fdo. Irp. STATUS_SUCCESS. sizeof(ULONG).
IO_NO_INCREMENT):

}

1. We're obliged to make this check to verify that the buffer area is large
enough to accommodate the data and data length values we're going to
put there. The first part of the test-is there an insdength array?-is
boilerplate. The second part of the test-is the buffer big enough for a
ULONG?-is where we verify that all of our data values will fit. In this
Simple driver, we're proViding only a Single ULONG value.

2. The buffer parameter points to a memory area where we can put our data.
The insdength parameter points to an array where we're supposed. to
place the length of each data instance we're returning. Here, we install
the single ULONG data value our schema calls for-the value of the
TbeAnswer property-and its length. Figuring out what TheAnswer ac
tually is numerically is left as an exercise for the reader.

3. The WMILIB specification requires us to complete the IRP by calling the
WmiCompleteRequest helper routine. The fourth argument indicates
how much of the buffer area we used for data values. By now, the other
arguments should be self-explanatory.

You'll notice that I didn't discuss the purpose of the guidindex, instindex, and
instcount arguments to QueryDataBlock. I'll come back to those a bit further on in
"Dealing with Multiple Instances" when I discuss some of the more complicated
features of WMI. In WMI42.SYS, you should expect these values to be 0, 0, and 1,
respectively.

The SetDataBlock Callback
The system might ask you to change an entire instance of one of your classes by
sending you an IRP _MN_CHANGE_SINGLE_INSTANCE request. WmiSystemControl
processes this IRP by calling your SetDataBlock callback routine. A simple version
of this routine might look like this:

NTSTATUS SetDataBlock(PDEVICE_OBJECT fdo. PIRP Irp. ULONG guidindex.
ULONG instindex. ULONG bufsize. PUCHAR buffer)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
~ if (bufsize == sizeof(ULONG)

464

{

pdx->TheAnswer = *(PULONG) buffer:
status = STATUS_SUCCESS:

Chapter 10 Windows Management Instrumentation

info = sizeof(ULONG):
}

else
status = STATUS_INFO_LENGTH_MISMATCH. info = 0:

return WmiCompleteRequest(fdo. Irp. status. info. IO_NO_INCREMENT):
}

1. The system should already know-based on the MOF declaration-how
big an instance of each class is and should give us a buffer tpat's exactly
the right size. If it doesn't, we'll end up failing thiS IRP. Otherwise, we'll
copy a new value for the data block into the place where we keep our
copy of that value.

2. We're responsible for completing the IRP by calling WmiComplete
Request.

The Set Data Item Callback
Sometimes consumers want to change just one field in one of the WMI objects we
support. Each field has an identifying number that appears in the WmiDatald prop
erty of the field's MOF declaration. (The Active and InstanceName properties are
not changeable and don't have identifiers. Furthermore, they're implemented by the
system and don't even appear in the data blocks we work with.) To change the one
field, the consumer references the field's ID. We then receive an IRP _MN_
CHANGE_SINGLE_ITEM request, which WrniSystemControl processes by calling our
SetDataltem callback routine:

NTSTATUS SetDataltem(PDEVICE_OBJECT fdo. PIRP Irp. ULONG guidindex.
ULONG instindex. ULONG id. ULONG bufsize. PUCHAR buffer)
{

PDEVICLEXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension:
NTSTATUS status:'
ULONG info:

if (bufsize == sizeof(ULONG»
{

pdx->TheAnswer = *(PULONG) buffer:
status = STATUS_SUCCESS:
info = sizeof(ULONG):
}

else
status = STATUS_INFO_LENGTH_MISMATCH. info = 0:

return WmiCompleteRequest(fdo. Irp. status. info. IO_NO_INCREMENT):
}

In my WMI42.SYS sample, you'll notice that this SetDataItem routine is identi
cal to SetDataBlock because my class has only a single item.

465

Programming the Microsoft Windows Driver Model

NOTIE The WMI system code that generates calls to the SetDataltem routine
was apparently not complete in the beta version of Windows 2000 with which I
tested my sample drivers. The only way I was able to invoke this routine was by
using an internal Microsoft testing tool, and I always ended up with an item 10 of
o instead of the 1 that's declared in the MOF schema. I don't know whether there
was a bug in this internal tool, in the operating system, or in my own understand
ing of how this was supposed to work. I advise that you fail calls to this routine
with STATUS_WMLNOT_SUPPORTEO until you're sure the item 10 means
what you think it should.

Advanced Features

466

The preceding discussion covers much of what you need to know to provide mean
ingful performance information for metering applications. Use your imagination here:
instead of providing just a single statistic (TheAnswer), you could accumulate and
return any number of performance measures that are relevant to your specific de
vice. You can support, however, some additional WMI features for more specialized
purposes. I'll discuss these features now.

Dealing with Multiple Instances
WMI allows you to create multiple instances of a particular class data block for a single
device object. You might want to provide multiple instances if your device is a con
troller or some other device into which other devices plug; each instance might rep
resent data about one of the child devices. Mechanically, you specify the number of
instances of a class in the WMIGillDREGINFO structure for the GUID associated with
the class. IfWMI42 had thi:ee different instances of its standard data block, for example,
it would have used the following GUID list in its WMIUB_CONTEXT structure:

WMIGUIDREGINFO guidlist[] = {
{&GUID_WMI4LSCHEMA, 3, WMIREG_FLAG_INSTANCE_PD01,
} :

The only difference between this Gum list and the one I showed you earlier
is the instance count here is 3 instead of 1. This list declares that there will be three
instances of the WMI42 data block, each with its own value for the three properties
(that is, InstanceName, Active, and TheAnswer) that belong in that block.

If the number of instances changes over time, you can call loWmiRegistration
Control with the action code WMlREG_ACTION_UPDATE_GillD to cause the system
to send you another registration request, which you'll process using an updated copy
of your WMIUB_CONTEXT structure. If you're going to be changing your registra
tion information, you should probably allocate the WMIUB_CONTEXT structure and
GillD list from the free pool rather than use static variables, by the way . .

Chapter 10 Windows Management Instrumentation

If user-mode code were to enumerate all instances of GUID_ WMI42_SCHEMA,
it would ftnd three instances. This result might present a confusing picture to user
mode code, though. It's impossible to tell a priori that the three instances disclosed
by the enumeration belong to a single device, as opposed to a situation in which three
WMI42 devices each expose a single instance of the same class. To allow WMI cli
ents to sort out the difference between the two situations, your schema should m
clude a property (such as a device name or the like) that can function as a key.

Once you allow for the possibility of multiple instances, several of your WMIUB
callbacks will require changes from the simple examples I showed you earlier. In
particular:

• QueryDataBlock should be able to return the data block for a single in
stance or for any number of instances beginning at a specific index.

• SetDataBlock should interpret its instance number argument to decide
which instance to change.

• SetDataltem should likewise interpret its instance number argument to
locate the instance within which the affected data item will be found.

Figure lO-j illustt:ates how your QueryDataBlock function uses the output buffer
when it's asked to provide more than one instance of a data block. Imagine that you
were asked to provide data for two instances beginning at instance number 2. You'll
copy the data values, which I've shown as being of different sizes, into the data buffer.
You start each instance on an 8-byte boundary. You indicate the total number of bytes
you consume when you complete the query, and you indicate the lengths of each
individual instance by filling in the insdength array, as shown in the figure. . .

Instance Naming
Each instance of a WMI class has a unique name. Consumers that know the name of
an instance can perform queries and invoke method routines. Consumers that don't
know the names of the instance(s) you provide can learn them by enumerating the
class. In any case, you're responsible for generating the names that consumers use
or discover.

I showed you the simplest way-from the driver's perspective, that is-,--of nam
ing instances of a custom data block, which is to request that WMI automatically gen
erate a static, unique name based on the name of the PD~ for your device. If your
PD~ has the name Root*WCOOA01\0000, for example, a PDO-based name for a
single instance of some data block would be Root\ *WCOOAOI \0000_0, The _0 at
the end is what makes this name unique. The name is static in that it persists until
you deregister or update your registration information.

467

Programming. the Microsoft Windows Driver Model

468

Data Block Instances

°

instindex=2
3

4

Buffer

Figure 10-5. Getting multiple data block instances.

Basing instance names on the PD~ name is obviously convenient because all
you need to do in the driver is set the WMIREG_FLAG_INSTANCE]DO flag in .each
WMIGUIDREGINFO structure and in the flags variable that WMILIB passes to your
QueryRegInfo callback routine. The author of a consumer application can't know what
this name will be, however, because the name will vary depending on how your
device was installed. To make the instance names slightly more predictable, you can
elect to use a constant base name for object instances instead. You indicate this choice
by omitting the WMIREG_FLAG_INSTANCE_PDO flag from your WMIGUIDREGINFO
structures and by responding in the' following way to the registration query:

NTSTATUS QueryRegInfo(PDEVICE_OBJECT fdo. PULONG fl ags.
PUNICODE_STRING instname. PUNICDDE_STRING* regpath.
PUNICODE_STRING resname. PDEVICE_OBJECT* pdo)
{

*flags = WMIREG-FLAG-INSTANCE-BASENAME;
*regpath = &servkey;
RtlInitUnicodeString(resname. L"MofResource");
stat1 c WCHAR basename[] = L "WMIEXTRA";
1nstname-)Buffer = (PWCHAR) ExAllocatePool(PagedPool.

s1zeof(basename»;
1f (11nstname-)Buffer)

return STATUS_INSUFFICIENT_RESOURCES:
1nstname-)MaxfmumLength = sizeof(basename);
1nstname-)Length = s1zeof(basename) - 2;
RtlCopyMemory(1nstname-)Buffer. basename. sfzeof(basename»;
}

Chapter 10 Windows Management Instrumentation

The parts of this function that differ from the previous example of QueryRegInfo
are in boldface. In the WMIEXTRA sample, only one instance of each data block exists,
and each receives the instance name WMIEXTRA with no additional decoration.

If you elect to use a base name, try to avoid generic names such as Toaster
because of the confusion that can ensue. The purpose of this feature is to let you use
specific names like AcmeWaffleToaster.

In some circumstances, static instance names won't suit your needs. If you
maintain a population of data blocks that changes frequently, using static names means
that you have to request a registration update each time the population changes. The
update is relatively expensive, and you should avoid requesting one often. You can
assign dynamic instance names to the instances of your data blocks instead of static
names. The instance names then become part of the queries and replies that you deal
with in your driver. Unfortunately, WMIUB doesn't support the use of dynamic in
,stance names. To use this feature, therefore, you'll have to fully implement support,
for the IRP _MLSYSTEM_CONTROL requests that WMIUB would otherwise interpret
for you. Describing how to handle these IRPs yourself is beyond the scope of this
book, but the DDK documentation contains detailed information about how to go
about it.

Dealing with Multiple Classes
WMI42 deals with only one class of data block. If you want to support more than
one class, you need to have a bigger array of GUID information structures, as
WMIEXlRA does:

WMIGUIDREGINFOguidlist[] = {
{&GUID_WMIEXTRA-EVENT, I,
WMIRE~FLAG_INSTANCE_PDO I WMIREG_FLAG_EVENT_ONLY_GUID},

{&GUID_WMIEXTRA-EXPENSIVE, I,
WMIRE~FLAG_EXPENSIVE I WMIREG_FLAG_INSTANCE_PDO},

{&GUID_WMIEXTRA-METHOD, I,
WMIRE~FLAG_INSTANCE_PDO}.

} ;

Before calling one of your callback routines, WMIUB looks up the GUID ac
companying the IRP in your list. If the GUID isn't in the list, WMIUB fails the IRP. If
it's in the list, WMIUB calls your callback routine with the guidindex parameter set
equal to the index of the Gum in your list. By inspecting this parameter, you can
tell which data block you're being asked to work with.

You can use the special flag WMIREG_FLAG_REMOVE_Gum in a Gum in
formation structure. The purpose of this flag is to remove a particular GUID from
the list of supported GUIDs during a registration update. Using this flag also pre
vents WMIUB from calling you to perform an operation on a Gum that you're trying
to remove.

469

Progralllling the Microsoft Windows Driver Model

470

Expensive Statistics
It can sometimes be burdensome to collect all of the statistics that are potentially useful
to an end user or administrator. For example, it would be possible for a disk driver
(or, more likely, a filter driver sitting in the same stack as a disk driver) to collect
histogram data showing how often I/O requests reference a particular sector of the
disk. This data would be useful to a disk-defragmenting program because it would
allow the most frequently accessed sectors to be placed in the middle of a disk for
optimal seek time. You wouldn't want to routinely collect this data, though, because
of the amount of memory needed for the collection. That memory would have to be
nonpaged, too, because of the possibility that a particular I/O request would be for
page swapping.

WMI allows you to declare a particular data block as being expensive so that
you don't need to collect it except on demand, as shown in this excerpt from the
WMIEXTRA sample program:

WMIGUIDREGINFO guidlist[] =. {

}:

{&GUID_WMIEXTRA-EXPENSIVE, I,
WMIREG_FLA~EXPENSIVE},

The WMIREG_FLAG_EXPENSIVE flag indicates that the data block identified by
GUID_ WMIEXTRA_EXPENSIVE has this expensive characteristic. .

When an application expresses interest in retrieving values from an expensive
data block, WMI sends you a system. control IRP with the minor function code IRP_
MN_ENABLE_COLLECTION. When no applications are interested in an expensive data
block anymore, WMI sends you another IRP with the minor function code IRP_
MN_DISABLE_COLLECTION. !fyou delegate these IRPs to WMIUB, it will turn around
and call your FunctionControl callback routine to either enable or disable collec
tion of the values in the data block:

NTSTATUS FunctionControl(PDEVICE_OBJECT fdo, PIRP Irp,
ULONG guidindex, WMIENABLEDISABLECONTROL fcn, BOOLEAN enable)
{

return WmiCompleteRequest(fdo, Irp, STATUS_SUCCESS, 0,
IO_NO_INCREMENT):

}

In these arguments, guidindex is the index of the GUID for the expensive data block
in your list of GUIDs, fen will equal the enumeration value WmiDataBlockControl
to indicate that collection of an expensive statistic is being either enabled or disabled,
and enable will be TRUE or FALSE to indicate whether you should or should not
collect the statistic, respectively. As shown in this fragment, you call WmiComplete
Request prior to returning from this function.

Chapter 10 Windows Management Instrumentation

An application "expresses interest" in a data block, by the way, by retrieving
an IWbemClassObject interface pointer bound to a particular instance of your data
block's WMI class. Notwithstanding the fact that an application has to discover an
instance of the class, no instance index appears in the call to your FunctionControl
callback. The instruction to collect or not collect the expensive statistic therefore
applies to all instances of your class.

WMI Events
WMI provides a way for providers to notify consumers of interesting or alarming
events. A device driver might use this facility to alert a user to some facet of device
operation that requires user intervention. For example, a disk driver might notice that
an unusually large number of bad sectors have accumulated on a disk. Logging such
an event as described in Chapter 9, "Specialized TopicS," is one way to inform the
human world of this fact, but an administrator has to actively look at the event log
to see the entry. If someone were to write an event-mortitoring applet, however, and
if you were to fire a WMI event when you noticed the degradation, the event could
be brought immediately to the user's attention.

WMI events are just regular WMI classes used in a special way. In MOF syn
tax, you must derive the data block from the abstract WMIEvent class, as illustrated
in this excerpt from WMIEX'fRA's MOF me:

[Dynamic, Provider("WMIProv"),
WMI,
Description("Eve~t Info from WMIExtra"),
gUid("c4b678f6-b6e9-11d2-bb87-00c04fa330a6"),
locale("MS\\0x409")]

class wmiextra_event WMIEvent
{

[key, read]
string InstanceName;

[read] boolean Active;

[WmiDataId(l). read] uint32 EventInfo:

} ;

Although events can be normal data blocks, you might not want to allow ap
plications to read and write them separately. If not, use the EVENT_ONLY flag in your
declaration of the GUID:

WMIGUIDREGINFO guidlist[] = {

{&GUID_WMIEXTRA_EVENT, I,
WMIRE~FLAG_INSTANCE_PDO I WMIRE~FLA~EVENT_ONLY_GUID},

} :

471

Programming the Microsoft Windows Driver Model

472

When an application expresses interest in knowing about a particular event,
WMI sends your driver a system control IRP with the minor function code IRP _MN_ .
ENABLE_EVENTS. When no application is interested in an event anymore, WMI sends
you another IRP with the minor function code IRP _MN_DISABLE_EVENTS. If you
delegate these IRPs to WMIUB, you'll receive a call in your FunctionControl callback
to specify the Gum index in your list of GUIDs, a fen code of WmiEventControl,
and a Boolean· enable flag.

To fIre an event, construct an inst;mce of the event class in nonpaged memory
and call WmiFireEvent. For example:

PULONG junk = (PULONG) ExA 11 ocatePool(NonPagedPool. si zeof(ULONG» :
*junk = 42:
WmiFireEvent(fdo. (LPGUIO) &GUIO_WMIEXTRA-EVENT. 0. sizeof(ULONG). junk):

The WMI subsystem will release the memory that's occupied by the event object in
due course.

WMI Method Routines
In addition to defIning mechanisms for transferring data and signalling events, WMI
prescribes a way for consumers to invoke method routines implemented by provid
ers. WMIEXTRA defInes the following class that includes a method routine:

[Oynamic. Provider("WMIProv").
WMI.
Oescription("WMIExtra class with method").
guid("cd7ec27d-b6e9~11d2-bb87-00c04fa330a6").

locale("MS\\0x409")]

class wmiextra_method
{

} :

[key. read]
string InstanceName:

[read] boolean Active:

[Implemented. WmiMethodId(l)] uint32
AnswerMethod([in.out] uint32 TheAnswer):

This declaration indicates that Answer Method accepts an input! output argu
ment named TheAnswer (a 32-bit unsigned integer) and returns a 32-bit unsigned
integer as its result.

When you delegate system control IRPs to WMIUB, a method routine call
manifests itself in a call to your ExecuteMethod callback routine:

Chapter 10 Windows Management Instrumentation

NTSTATUS ExecuteMethod(PDEVICE_OBJECT fdo. PIRP Irp.
ULONG guidindex. ULONG instindex. ULONG id.
ULONG cblnbuf. ULONG cbOutbuf. PUCHAR buffer)
{

NSTATUS status = STATUS_SUCCESS;
ULONG bufused = 0;

return WmiCompleteRequest(fdo. Irp. status. bufused.
IO_NO_INCREMENT);

}

The buffer area contains an image of the input class, whose length is cbInbuf. Your
job is to perform the method and overstore the buffer area with an image of the output
class. You complete the request with the byte size (bufused) of the output class. In
the WMIEXTRA case, I put the following code in place of the ellipsis. (I've omitted
the error checking.)

switch (guidindex)
{

case 2:
bufused = sizeof(ULONG);
(*(PULONG) buffer)++;
break;

default:
status = STATUS_WMI_GUID_NOT_FOUND;
break;
}

,
This particular method routine simply adds 1 to its input argument.

Some of the details surrounding method routine calls were still ambiguous when
I was writing this chapter. Here are some issues for you to think about:

• There is no way for a driver to return a value from a method call. You can
return only an output argument class instance.

• You specify the input and output arguments in your schema as though
you were describing a function. The system translates the argument de
scriptions into two WMI classes: one for the input arguments and another
for the output arguments. It's easy enough for a user-mode consumer to
learn the c:ontents of these classes, but you have to guess the memory
layout of the corresponding structures when you program your driver. I
guessed correctly that a single 32-bit unsigned integer argument would
occupy a ULONG location in the input/output buffer, but no great intel
lectual effort was involved in this simple case.

473

Programming the Microsoft Windows Driver Model

• Simply enumerating an instance of a class like wmiexlra_method trig
gers a request for the data block. You must succeed the data query even
if the class that contains the method routine has no data members. In such
a case, you can just complete the query with a 0 data length.

Standard Data Blocks
Microsoft has defined some standardized data blocks for various types of devices. If
your device belongs to a class for which standardited data blocks are defined, you
should support those blocks in your driver. Consult WMICORE.MOF in the DDK to
see the class definitions, and see Table 10-3.

Device Type Standard Class DescrlpUon

Keyboard MSKeyboard_PortInformation

Mouse MSMouse_PortInformation

Disk MSDiskDrivecGeometry

MSDiskDrivecPerformance

Storage MSStorageDrivecFailurePredictStatus

Configuration and performance
information

Configuration and performance
information

Format information

Performance information

Determine whether drive is
predicting a failure

MSStorageDriver]ailurePredictData Failure prediction data

MSStorageDriver]ailurePredictEvent Event fired when failure is
predicted

MSStorageDrivecFailurePredictFunction Methods related to failure
prediction

Serial MSSeriaCPortName

MSSeriaCCommInfo

MSSerial_HardwareConfiguration

MSSeriaCPerformanceInformation

MSSeriaCCommProperties

Name of port

Communication parameters

va resource information

Performance information

Communication parameters

Parallel MSParallel_AllocFreeCounts Counts of allocation and free
operations

MSParalleCDeviceBytesTransferred Transfer counts

Table 10-3. Standard data blocks.

474

To implement your support for a standard data block, include the correspond
ing GUID in the list you report back from the registration query. Implement supporting
code for getting and putting data, enabling and disabling events, and so on, using

Chapter 10 Windows Management Instrumentation

the techniques I've already discussed. Don't include definitions of the standard data
blocks in your own schema; those class definitions are already in the repository, and
you don't want to override them.

In many cases, by the way, a Microsoft class driver will be providing the actual
WMI support for these standard classes-you might not have any work to do.

Standard Controls
Windows 2000 will someday employ WMI as a method of sending certain common
commands to drivers. In particular, management applications will be able to send
commands related to power management by means ofWMI. At the present time, only
two such commands are defined. See Table 10-4.

WMI Class (WMICORE.MOF) GUID Name (WDMGUID.H) Purpose

MSPowecDeviceEnable GUID_POWER_DEVICE_ Should device dynami-
ENABLE cally power on and off

while the system is
working?

MSPowecDeviceWakeEnable GUID]OWER_DEVICE_ Should device arm its
wake-up feature?

Table 10-4. Standard WMl commands.

If you refer toWMICORE.MOF, you'll see that the DeviceEnable and Device
WakeEnable classes include only a Boolean member named Enable that a WMI client
can either read or write. To support these two classes in your driver, include the two
GUIDs in the list of GUIDs you pass to WMILIB and use code to get and set instances
of this class. The code to handle these details is so similar to WMI42 that I won't show
it to you here.

If you trace back through the beta releases of Windows 2000, it looks like
Microsoft originally planned to implement another WMI class (probably with the name
MSPowecDeviceTimeouts) that would query and set the two timeout values you use
when you register with the Power Manager for idle detection. That plan appears
to have fallen by the wayside. ,!he Gum definition (GUID_POWER_DEVlCE_
TIMEOUTS) still appears in WDMGUID.H"though.

USER-MODE APPLICATIONS AND WMI
User-mode support for WMI relies on the facilities of COM. To summarize a very
complicated situation, the Windows Management Service acts as the clearinghouse
for information flowing between consumers and providers by implementing several
COM interfaces. Providers register their existence with Windows Management via
certain interfaces. Consumers indirectly communicate with providers via interfaces.

475

Programming the Microsoft Windows Driver Model

All of these interfaces are documented in the Platform SDK, so I'm going to illustrate
only the important method routines a consumer uses. I'll start, though, by explain
ing the basic mechanics of using COM for those readers who have little or no expe
rience with COM.

Just Enough COM

476

As I said, this section is for readers who don't know the basics of using COM inter
faces. I spent years deliberately avoiding COM because its unique terminology made
me think it was too intricate to understand. I won't say that COM aficionados want
it that way, but I will say that I was once roundly criticized for presenting the fol
lowing simplified overview to a conference audience.

You'll encounter three crucial terms when you hear about COM. In COM, an
object is a software entity that implements the methods belonging to an interface.
(People in my generation will be imagining Bill Cosby saying, "R-i-g-h-t! What's an
interface?" just about now.) The key element you deal with when acting as a COM
client is a pointer to an interface, which you can dereference to invoke the method
routines. You get an interface pointer either because someone gives it to you or
because you call an API that returns it to you. From the perspective of a client pro
gram, some mysterious "them". takes care of creating and destrOying objects.

What's an Interface?
Now let's go through these three concepts more slowly, starting with the last one.
An interface is nothing more than a G++ class that has a bunch of virtual member
functions but no data members and no nonvirtual member functions. You can imple
ment or use a COM interface in many languages, not just C++. But because C++ gives
us a common ground for understanding the concept, I'll forge ahead as if C++ were
the only language you'd ever use. Here's the declaration of a simple interface as it
might look before being translated into the language of COM:

cl ass !Unknown
{

public:
virtual long __ stdcall Querylnterface(const GUID& riid.

void** ppvObject):
vi rtua 1 unsi gned long __ stdca 11 AddRef():
virtual unsigned long __ stdca11 Release():

}:

Instances ofrunknown (objects in COM) implement three public, virtual func
tions (methods) named QueryInterface, AddRef, and Release. AddRef and Release
are part of the mechanism by which COM makes sure that objects persist long enough
for clients to make use of them. Querylnterface is how client programs obtain pointers
to additional interfaces that an object supports.

Chapter 10 Windows Management Instrumentation

In the Interface Definition Language (IDL) of COM, this· interface description
would look like this:

interface IUnknown
{

} ;

HRESULT Querylnterface(REFIID riid, void** ppvObject);
ULONG AddRef();
ULONG Release();

Apart from the syntactic differences, I think it's obvious how the IDL description of
this interface relates to a C++ class declaration. An IDL compiler can be used that
translates an interface declaration like this into syntax understandable by C and C++
compilers. Some programming languages understand the IDL sYntax without a trans
lation, even.

Just like C++ classes, interfaces can be derived from other interfaces. In COM,
one doesn't declare interfaces with more than one base class. In addition, every COM
interface derives ultimately from !Unknown-meaning that every COM object sup
ports the Querylnterface, AddRef, and Release methods. Here's art example from the
WMI world that we'll be using later on:

interface IWbemLocator : IUnknown
{

} ;

HRESULT ConnectServer(BSTR strNetworkResource,
BSTR strUser, BSTR strPassword, BSTR strLocale,
long lSecurityFlags, BSTR strAuthority,
IWbemContext* pCtx, IWbemServ;ces** ppNameSpace);

So, an object that implements IWbemLocator has four method routines:
Querylnterface, AddRef, Release, and ConnectServer.

Creating and Destroying Objects
Getting an interface pointer that you can use to talk to an object is possible in many
ways. Calling CoCreateInstance is a common way:

IWbemlocator* locator;
HRESULT hr = CoCreatelnstance(CLSID_WbemLocator, NULL,

CLSCTX_INPROC_SERVER, IID_IWbemLocator, (PVOID*) &locator);

CoCreatelnstance consults the registry to locate a server that can instantiate a
CISID _ WbemLocator class of object. CLsm _ WbemLocator is a 128-bit GUm of the
same kind I mentioned in Chapter 2 ("Basic Structure of a WDM Driver") in connec
tion with registered device interfaces. It's called a class identifier because it identi
fies a kind, or class, of COM object. The HKEY _CLASSES_ROOT branch of the registry
contains a key named CISID, the subkeys of which are the ASCII represeniationsof

477

Programming the Microsoft Windows Driver Model

478

all the class identifiers that COM knows anything about. In the example we're con
sidering, CLSID_ WbemLocator would be conventionally represented as {4590f811-
Id3a-lldO-89lf-00aa004b2e241, and the CLSID key includes a subkey named exactly
that in the registry. A subkey named InProcServer32 designates a DLL (named
WBEMPROX.DLL, a part of the WMI core) as the server that implements this class
of object.

Having located the class key in the registry, CoCreateInstance loads the desig
nated server into your address space and uses magic we don't need to discuss here
to instantiate a WbemLocator object and develop a pointer to the IWbemLocator
interface that the object supports. (nD_IWbemLocator is another GUID declared in
WBEMCLI.H, which you'll #include in your consumer project flIes.)

FollOWing a successful call to CoCreateInstance, you'll have" an interface pointer
that you can use like any pointer to a C++ class to call the method functions associ
ated with the interface. Somewhere in the world (maybe not even on the same com
puter) a concrete object eXists that implements those method functions. The object
occupies storage and the executable program whose instructions comprise the
implementation also occupies storage. At some point in time, presumably, you'll be
done using your interface pointer and will be prepared to destroy the object and,
maybe, unload the program. The question is, when? That's where AddRef and Re
lease come in.

Each COM object has a reference count. Whenever someone obtains a pointer
to an interface on the object, the program that implements the object increments the
reference count. So, CoCreateInstance will always return a referenced interface
pointer, and you can be sure that the pointer will remain valid for the time being.
You can increase the reference count on an object explicitly by calling AddRef. When
you're done using an interface pointer, you call the Release method. The implemen
tation of Release decrements the reference count. If the count drops to 0, the imple
mentation deletes the object. When a server doesn't own any more objects, it can be
unloaded.

Your job as a COM client is Simply to release your reference to an interface when
you no longer need the underlying object. The follOwing stylized coding sequence
is pretty typical:

IWbemLocator* locator:
HRESULT hr = CoCreatelnstance(...):
if (SUCCEEDED(hr»

{

locator->Release():
}

Chapter 10 Windows Management Instrumentation

Accessing WMI Information
When you want to access WMI facilities in user mode, you need to first establish a
connection to a particular namespace. Within the context of the namespace, you can
then find instances of WMI classes. You can query and set the data blocks associated
with class instances, invoke their method routines, and monitor the events that they
generate.

Connecting to a Namespace
When you connect to a WMI namespace, you obtain a pointer to an IWbemServices
interface that Windows Management implements. The following code-based on the
TEST program in the WMI42 sample-shows how to do this:

HRESULT hr = Colnitialize~x(NULL. 0):
if (!SUCCEEDED(hr»

return:
hr = ColnitializeSecurity(NULL. -1. NULL. NULL.

RPC_C_AUTHN_LEVEL_NONE. RPC_C_IMP_LEVEL_IMPERSONATE.
NULL. 0. 0):

if (!SUCCEEDED(hr»
{

CoUninitialize():
return:
}

IWbemLocator* locator:
hr = CoCreatelnstance(CLSID_WbemLocator. NULL.

CLSCTX_INPROC_SERVER. IID_IWbemLocator. (PVOID*) &locator);
if (SUCCEEDED(hr»

{

IWbemServices* services:
BSTR pnamespace = SysAllocString(L"root\\CIMV2");
hr = locator-)ConnectServer(pnamespace. NULL. NULL. 0. 0

&serv;ces);
SysFreeString(pnamespace):
if (SUCCEEDED(hr»

{

IClientSecurity* security;
hr = services-)Querylnterface(IID_IClientSecurity.

(PVOID*) &security):
if (SUCCEEDED(hr»

{

(continued)

479

Programming the Microsoft Windows Driver Model

security-)SetBlanket(services, RPCCAUTHN_WINNT,
RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL-CONNECT,
RPC_C_IMP_LEVEL-IMPERSONATE, NULL, EOAC_NONE);

security-)Release();
}

II use the services interface
services-)Release();
}

locator-)Release();
}

CoUninitialize();

1. Every program that uses COM calls CoInitialize or CoInitializeEx to ini
tialize the COM library and calls CoUninitialize to close the COM library.

2. Never mind why you need to do this.

3. Here's where we instantiate a WbemLocator object and get a pointer to
its IWbemLocator interface. If this call succeeds, we'll eventually release
our reference to the interface.

4. We use the IWbemLocator interface to connect to the CIMV2 namespace.
(In beta releases, this should be the WMI namespace.) One of the quirks
of using the ConnectServer method is that you must make a copy of the
Unicode name of the namespace by calling SysAllocString.

5. Really never mind! I spent a couple of days figuring out that a call to
IClientSecurity::SetBlanket was needed here, because at the time I was
writing this chapter the SDK documentation hadn't caught up to the imple
mentation. (@#$!)

6. This is the point at which you can use the IWbemServices interface
pointer to locate WMI class instances and access other WMI services.

Enumerating Class Instances
Using an IWbemServices interface, you can enumerate all the instances of a particu
lar WMI class. WMI42's test program, for example, enumerates all the WMI42 class
instances with the following code:

~ IEnumWbemClassObject* enumerator = NULL;
BSTR bs = SysAllocString(L"WMI42");

480

HRESULT hr = services-)CreateInstanceEnum(bs,
WBEM_FLAG_SHALLOW I WBEM_FLA~RETURN_IMMEDIATELY
WBEM_FLAG_FORWARD_ONLY, NULL, &enumerator);

SysFreeString(bs);
if (SUCCEEDED(hr»

{

Chapter 10 Windows Management Instrumentation

while (TRUE)
{

ULONG junk;
IWbemClassObject* cop = NULL;
hr = Enumerator-)Next(INFINITE. 1. &cop. &junk);
if (hr == WBEM_S_FALSE)

break;
if (!SUCCEEDED(hr»

break;
II Use IWbemClassObject interface
cop-)Release();
}

enumerator-)Release();
}

1. IWbemServices::CreateInstanceEnunl will create an enumerator for all
instances of a named WMI class. This interface has two quirks that I dis
covered the hard way. First, the class name must be passed in a separately
allocated BSTR. Also, you must initialize the target interface pointer to
NULL even though it's supposedly only an output argument-a crash
ensues if the pointer is invalid to start with.

2. The instance enumerator's Next method delivers pointers to successive
instances of the class in the form of an IWbemClassObject interface
pointer. The Next method returns WBEM_S_FALSE when there are no more
instances of the class. Initializing the supposed output argument to NULL
is required to avoid a crash with this interface, too.

Getting and Setting Item Values
The IWbemClassObject interface is the key that unlocks the WMI functionality of
your driver. With a pointer to this interface, you can easily get or set the values of
items in a data block:

IWbemClassObject* cop;
VARIANT answer;
BSTR propname = SysAllocString(L"TheAnswer");
cop-)Get(propname. e. &answer. NULL. NULL);
VariantClear(&answer);

answer.vt = VT_I4;
answer.1Val = 6 * 9; II should be done in base 13!
cop-)Put(propname. e. &answer. e);
VariantClear(&answer);

SysFreeString(propname);

481

Programming the Microsoft Windows Driver Model

482

In these fragments, we use a system string to name the property (that is, the
item within our schema) we want to get or put, and we use an OLE VARIANT struc
ture (which can hold any type of data) as the data value. Calling the Get method on
this interface results in our driver getting a QUERY_ALL_DATA or QUERY_SINGLE_
INSTANCE. Calling the Put method results in a CHANGE_SINGLE_INSTANCE or
CHANGE_SINGLE_ITEM. You can observe for yourself what happens by loading the
WMI42 sample driver and invoking the test program a time or two. You shouldn't try
to predict exactly which type of IRP will be used to support a Get or Put call because
the WMI provider is free 'to package data requests to drivers in any convenient way.

Receiving Event Notifications
To receive notifications that WMI events have occurred, an application has to regis
ter interest in specific events. To register interest, you must formulate a query in the
so-called WMI Query Language (WQL). WQL is a great deal like the Structured Query
Language (SQL) one uses in the world of relational databases. For example, to sign
up to receive WMIEXTRA_EVENT notifications, you could submit the following query:

IWbemServices* services;
BSTR query = SysAllocString(L"select * from WMIEXTRA_EVENT");
BSTR language = SysAllocString(L"WQL");
IEnumWbemClassObject* en~merator = NULL;
HRESULT hr = services->ExecNotificationQuery(language. query.

WBEM_FLAG_FORWARD_ONLY I WBEM_FLAG_RETURN_IMMEDIATELY.
NULL. &enumerator);

SysFreeString(language);
SysFreeString(query);
if (SUCCEEDED(hr»

{

enumerator->Release();
}

The flag arguments to ExecNotificationQuery must be specified exactly as shown,
by the way.

Once you have the enumeration interface, you can call its Next method to poll
for events. For example:

IWbemClassObject* cop = NULL;
DWORD junk;
hr = enumerator->Next(1000. 1. &cop. &junk);

In this call, we specify that we will wait up to 1000 milliseconds to obtain one event.
If an event is already pending or fires within this timeout period, Next will return us
a (referenced) IWbemClassObject pointer. Recall from the previous discussion of how
a driver fires an event that the event is represented by an instance of a WMI class.
We can therefore call the object's Get method to interrogate properties of the event.

Chapter 10 Windows Management Instrumentation

In a real-world application, you should use ExecNotificationQueryAsync
instead of ExecNotificationQuery. The asynchronous form of the query allows you
to provide an IWbemObjectSink interface that WMI can call when events occur.
Please refer to the Platform SDK for additional information.

Calling Method Routines
Invoking a method routine requires just a few deceptively simple statements, as shown
in the following excerpt from WMIEXTRA's test program:

IWbemServices* services; II ~ developed as shown earlier
IWbemClassObject* result = NULL;
BSTR pmethod = SysAllocString(L"AnswerMethod");
BSTR objpath; /I ~ more about thi slater
IWbemClassObject* inarg; II ~ ditto

HRESULT h~ = services-)ExecMethod(objpath. pmethod. 0. NULL.
inarg. &result. NULL);

result-)Release();
SysFreeString(pmethod);
<more c7eanup>

Calling ExecMethod invokes the method routine. You supply values for the input
arguments in the inarg object. The result of the call appears as the result object.

Invoking a method in this way would be almost trivial if it weren't for two
complicating factors. First, you have to come up with the full pathname (that is, the
objpath argument to ExecMethod) to the object you want to address. And you must
construct and initialize a WMI object to contain the input arguments (if any) for the
method call. I found the first of these tasks to be a gigantic pain in the neck, as shown
by the follOwing snippet from WMIEXTRA's test program:

IWbemServices* services; . II ~ someone gives me this
BSTR pclass = SysAllocString(L"wmiextrLmethod");
BSTR objpath = NULL;
HRESULT hr;

IEnumWbemClassObject* enumerator = NULL;
hr = services-)CreateInstanceEnum(pclass. <etc.»;
if (SUCCEEDED(hr»

{

IWbemClassObject* instance = NULL;
ULONG junk;
hr = enumerator-)Next(INFINITE. 1. &instance. &junk):
if (SUCCEEDED(hr»

{

(continued)

483

Programming the Microsoft Windows Driver Model

484

VARIANT instname;
BSTR propname = SysAllocString(L"InstanceName");
hr = instance->Get(propname, 0, &instname, NULL, NULL);
SysFreeString(propname);
if (SUCCEEDED(hr»

{

WCHAR fullpath[256];
WCHAR escapedname[256];
<code to double backslashes in instname>
swprintf(fullpath, L"%ws.InstanceName=\"%s\"",

pclass, escapedname);
objpath = SysAllocString(fullpath);
VariantClear(&instname);
}

instance->Release();
}

enumerator->Release();
}

Ugh. Especially the part (which I omitted here in the text) that goes through
the instance name and changes each backslash to two backslashes. In my opinion,
there should be a method on the IWbemClassObject interface that you can call to get
the full pathname of an object. Such a method would prevent our needing to dis
cover the algorithm that some other system component has used to construct the
instance name. But, as I frequently find to be the case, no one asked me for my
opinion.

The Platform SDK documentation describes how to build the input arguments
(that is, the inarg argument to ExecMethod). Here's how I did it for WMIEX'fRA:

IWbemClassObject* cop = NULL; II ~ the class, not an iRstance
hr = services->GetObject(pclass, 0, NULL, &cop, NULL);
if (SUCCEEDED(hr»

{

IWbemClassObject* iop = NULL; II ~ another class
hr = cop->GetMethod(pmethod~ 0, &iop, NULL);
if (SUCCEEDED(hr»

{

IWbemClassObject* inarg = NULL; II ~ an instance of iop
hr = iop->Spawninstance(0, &inarg);
if (SUCCEEDED(hr»

{

BSTR argname = SysA 11 ocStri ng (L"TheAnswer") ;
VARIANT argval;
argval.vt = VT_I4;
argval.1Val = 41;
hr = inarg->Put(argname, 0, &argval, 0);

Chapter 10 Windows Management Instrumentation

SysFreeString(argname);

<the actua7 ca77 to ExecMethod>

inarg-)Release();
}

iop-)Release();
}

cop-)Release();
}

This code uses the data dictionary to obtain a description of the input argument class
(the lop variable). It then creates and initializes an instance of the input argument
class (the inarg variable) for use as an argument to the method routine.

I didn't check, but I assume that MFC provides a streamlined way to do all of this.

WINDOWS 98 COMPATIBILITY NOTES
Since a well-crafted driver should support WMI, and since WMILIB isn't available in
the original Windows 98, you might need to provide a virtual device driver (VxD)
stub for the WMIUB functions so that your driver will load. Consult Appendix A, "Cop
ing with Windows 98 Incompatibilities," for more information about writing a VxD
stub. (The WDMSTUB VxD discussed in the appendix doesn't include the WMIUB
functions, but the appendix describes how you might invent them.)

A number of bugs afflicted the WMI support in the original retail release of
Windows 98. The updates to Windows 98 (Second Edition and Service Pack 1) fixed
these bugs. (Or some of them, anyway. I have a laptop that runs Windows 2000 and
WMI just fine, but WMI won't initialize under Windows 98 Second Edition on this
computer.) Even so, the standard setup procedure doesn't install WMI by default.
To install it yourself, open Add/Remove Programs in the Control Panel, select the
Windows Setup tab, and request installation of Web-Based Enterprise Mgmt within
the Internet Tools category.

485

Chapter 11

The Universal
Serial Bus

End user convenience is the keynote of the universal serial bus (USB). The Plug and
Play (PnP) concept has simplified the process of installing certain types of hardware
on existing PCs. However, configuration issues continue to plague end users with
respect to legacy devices such as serial and parallel ports, keyboards, and mice. The
USB specification also identifies port availability as one of the factors limiting prolif
eration of low-speed to medium-speed peripherals, including modems, answering
machines, scanners, and personal digital assistants. USB helps solve these problems
by providing a uniform method of connecting a potentially large number of self
identifying low-to-medium-speed devices-that is, devices that require less than a
1.5-megabyte-per-second data rate and that can electronically identify themselves to
system software-through a single PC port.

Although this book concerns software, some of the electrical and mechanical
aspects of USB are important to software developers. From the end user's point of
view, USB's main feature is the use by every device of an identical4-conductor wire
with a standardized plug that fits into a socket on the back of the PC or on a hub
device plugged into the PC. Furthermore, you can attach or remove USB devices at
will without explicitly opening or closing the applications that use them and with
out worrying about electrical damage.

This chapter covers two broad topics. In the first part of the chapter, I'll describe
the programming architecture of USB. This architecture encompasses several ideas,

487

Programming the Microsoft Windows Driver Model

488

including a hierarchical method for attaching devices to a computer, a generic scheme
for power management, and a standard for self-identification that relies on a hierar
chy of descriptors on board the hardware. TheUSB architecture also employs a
scheme for subdividing fixed-duration frames into packets that convey data to and
from devices. Finally, USB allows for four different ways of transporting data between
the host computer and endpoints on devices. One method, named isochronous,
permits a fixed amount of data to be moved without error correction every millisec
ond (ms). The other methods, named control, bulk, and interrupt, allow relatively
small amounts of data (64 bytes or less) to be moved with error correction.

In the second part of this chapter, I'll describe the additional features of a Win
dows Driver Model driver for a USB device over and above the features you already
know about. Rather than communicate directly with hardware by using hardware
abstraction layer (HAL) function calls, a USB driver relies heavily on the bus driver
CUSBD.syS). To send a request to its device, the driver creates a USB request block
CURB), which it submits to the bus driver. Configuring a USB device, for example,
requires the driver to submit several URBs for reading descriptors and sending com
mands. USBD.SYS in turn schedules requests onto the bus according to demand and
available bandwidth.

The ultimate source for information about USB is the official specification, which
was at revision level 1.1 when this book went to press. The specification and vari
ous other documents produced by the USB committee and its working groups were
available on line at http://www.usb.org/developersl. Don Anderson's Universal Serial
Bus System Architecture (Addison-Wesley, 1997) recapitulates much of the specifi
cation in useful form.

NOTE ON SAMPLE PROGRAMS

Anchor Chips, Incorporated (http.//www.anchorchips.com). kindly prOvided me
one of their EZ-USB development kits. The Anchor Chips USB chip set revolves
around a modified 8051 microprocessor and additional core logic to perform
some of the low-level protocol functions mandated by the. USB specification.
The development board also contains additional external memory, a UART and
serial connector, a set of push buttons, and an LED readout to facilitate devel
opment and debugging of 8051 firmware using Anchor Chips' software frame
work. One of the key features of the Anchor Chips chip set is that you can
download firmware over the USB connection easily. For a programmer like me
with a phobia for hardware in general and EEPROM programming in particu
lar, that feature is a godsend.

(continued)

Chapter 11 The Universal Serial Bus

continued

The USB sample drivers on the companion disc illustrate the simplest
possible USB devices and stand alone as examples of how to perform various
tasks. If you happen to have an Anchor Chips development kit, however, you
can also try out these samples with real firmware. Each sample contains a WDM
driver in a SYS subdirectory, a Microsoft Win32 test program in a TEST subdi
rectory, and a firmware program in an EZUSB directory. You can follow the
directions in the HTM files included with each sample to build these compo
nents or to simply install the prebuilt versions that are on the disc.

A word of caution is in order here. Anchor Chips provides a reduced
function version of 8051 development tools authored by Keil Elektronik GmbH.
You'll need an unlimited version of those tools (which you must license separately
from Keil) to develop real firmware and even to build some of my samples. You
might also need some perseverance to get past the rather dated interface offered
by these 16-bit programming tools. But, by the time you read this, Keil will have
introduced new, considerably improved 32-bit tools for the 8051 called uVision2.

PROGRAMMING ARCHITECTURE
The authors of the USB specification anticipated that programmers would need to
understand how to write host and device software without necessarily needing or
wanting to understand the electrical characteristics of the bus. Chapter 5, "USB Data
Flow Model," and Chapter 9, "USB Device Framework," of the specification describe
the features most useful to driver authors. In this section, I'll summarize those chapters.

Device Hierarchy

Figure 11-1 illustrates the topology of a simple USB setup. A host controller unit
connects to the system bus like other I/O devices might. The operating system com
municates with the host controller by means of I/O ports or memory registers, and
it receives event notifications from the host controller through an ordinary interrupt
signal. The host controller in turn connects to a tree of USB devices. One kind of
device, called a hub, serves as a connection point for other devices. Hubs can be daisy
chained together to a maximum depth defined by the USB specification. Other kinds
of devices, such as cameras, mice, keyboards, and so on, plug into hubs. For the sake
of precision, USB uses the term/unction to describe a device that isn't a hub.

489

ProgralRlRing the Microsoft Windows Driver Modal

490

Figure 11-1. Hierarcby of USB devices.

High-Speed and Low-Speed Devices
The USB specification provides for high-speed and low-speed devices. A low-speed
device communicates at 1.5 megabits per second, whereas a high-speed device com
municates eight times faster, at 12 megabits per second. A hub can tell the difference
between high-speed and low-speed devices by electrical means. Communication
normally occurs on the bus at the high speed, and hubs normally don't send data to
low-speed devices. The operating system prefaces any message destined for a low
speed device with a special preamble packet that causes the hubs to temporarily
enable the low-speed devices.

Power
The USB cable carries power as well as-data signals. Each hub can supply electrical
power to the devices attached to it and, in the case of subsidiary hubs, to downstream
devices as well. USB imposes limits on how much power a bus-powered device can
consume. These limits vary depending on whether the device is plugged in to a
powered hub, how far the device is from the nearest powered hub, and so on. In
addition, USB allows devices to operate in a low-power state and consume very little
power-just enough to support wake-up and configuration signalling. Instead of
relying on bus power, you can build independently powered hubs and devices.

Chapter 11 The Universal Serial Bus

USB devices are able to wake up the system from a low-power state. When the
system goes to low power, the operating system places the USB in the low-power
state as well. A device possessing an enabled remote wake-up feature can later sig
nal upstream to wake up upstream hubs, the USB host controller, and eventually the
entire system.

USB device designers should be aware of some limitations on wake-up signal
ling. First, remote system wake-up works only on a computer with an Advanced
Configuration and Power Interface (ACPI) enabled BIOS. Older systems support ei
ther Advanced Power Management (APM) or no power management standard at all.
Another limitation has to do with driver notification. WDM provides a method-the
IRP _MN_ WAIT_WAKE flavor of a power I/O request packet (IRP)-to notify a driver
when its device wakes up the system. No notification occurs, however, if a device
comes out of its low-power state when the system is already in the wotking state.

What's in a Device?
In general, each USB device can have one or more configurations that govern how
it behaves. See Figure 11-2. A common reason to use more than one configuration
relates to operating system support. You might, for example, have a simple configu
ration ~t the system BIOS uses and a more complex configuration that your Windows
driver uses.

Endpoints

Figure 11-2, Device configurations, inteifaces, and endpoints.

491

Programming the Mici'oSOft Windows Driver Model

492

Each configuration of a device embodies one or more interfaces that prescribe
how software should access the hardware. This concept of an interface is similar to
the concept I discussed in Chapter 2 ("Basic Structure of a WDM Driver") in connec
tion with naming devices. That is, devices that support the same interface are es
sentially interchangeable in terms of software because they respond to the same
commands in the same specified way. Also, interfaces frequently have alternate set
tings that correspond to different bandwidth requirements.

A device interface exposes one or more endpoints, each of which serves as a
terminus for a communications pipe. Figure 11-3 diagrams a layered communication
model that illustrates the role of a pipe and an endpoint. At the lowest level, the USB
wire connects the host bus controller to the bus interface on a device. At the second
level, a control pipe connects system software to a logical device. At the third and
highest level, a bundle of pipes connects client software with the collection of inter
faces that constitutes the device's function. Information actually flows vertically up
and down both sides of the diagram, but it's useful to think of the pipes as carrying
information horizontally between the corresponding layers.

Host Computer USB Device r----------
I I

~------------~~
Data Pipes r----------

Control Pipe

Cables and Hubs

Figure 11-3. Layered model for USB communication.

A set of drivers provided by Microsoft occupies the lower edge of the sys
tem software box in the figure. These drivers include a host controller driver
(OPENHCI.SYS or UHCD.SYS), a hub driver (USBHUB.SYS), and a class driver used
by the controller driver (USBD.SYS). For convenience, I'll lump all of these drivers
together under the name USED because that's the component our drivers primarily

Chapter 11 The Universal Serial Bus

interact with. Collectively, they manage the hardware connection and the mechan
ics of communicating over the various pipes. WDM drivers, such as the ones you and
I might write, occupy the upper edge of the system software box. Broadly speaking,
the job of a WDM driver is to translate requests from client software into transactions
that USBD can carry out. Client software deals with the actual functionality of the
device. For example, an image-rendering application might occupy the client soft
ware slot opposite a still-image function such as that of a digital camera.

Information Flow
USB defines four methods of transferring data, as summarized in Table 11-1. The
methods differ in the amount of data that can be moved in a single transaction-see
the next section for an explanation of the term transaction-in whether any particular
periodicity or latency can be guaranteed, and in whether errors will be automatically
corrected. Each method corresponds to a particular type of endpoint. In fact, end
points of a given type (that is, control, bulk, interrupt, or isochronous) always com
municate with the host by using the corresponding transfer type.

Transfer
Type

Control

Bulk

Description Lossless?

Used to send and Yes
receive structured
infonnation of a control
nature

Used to send or receive Yes
small blocks of
unstructured data

Interrupt Like a bulk pipe, but Yes
includes ao maximum
latency

Isochronous Used to send or receive No
large blocks of
unstructured data with
guaranteed periodicity

Table 11-1. Data transfer types.

Size(s)

~ 8,16,32,
or 64 bytes

~ 8,16,32,
or 64 bytes

~ 64 bytes

~ 1023 bytes

Latency
Guarantee?

Best effort

No

Polled at
guaranteed
minimum
rate

Fixed
portion of
every I-ms
frame

Endpoints have several attributes in addition to their type. One endpoint attribute
is the maximum amount of data that the endpoint can provide or consume in a single
transaction. Control and bulk endpoints must specify one of a few discrete values,
whereas interrupt and isochronous endpoints can specify any value less than or equal
to an overall maximum. In general, any single transfer can involve less than the

493

Programming the Microsoft Windows Driver Model

494

maximum amount of data that the endpoint is capable of handling. Another attribute
of an endpoint is its direction, described as either input (information moves from the
device to the host) or output (information moves from the host to the device). Finally,
each endpoint has a number that functions along with the input/output direction
indicator as the address of the endpoint.

USB uses a polling protocol in which the host requests the device to carry out
some function on a more or less regular basis. When a device needs to send data to
the host, the host must somehow note this and issue a request to the device to send
the data. In particular, USB devices don't interrupt the host computer in the traditional
sense. In place of an asynchronous interrupt, USB provides interrupt endpoints that
the host polls periodically.

Information· Packaging
When a client program sends or receives data over a USB pipe, it first calls a Win32
API that ultimately causes the function driver (that's us) to receive an IRP. The driver's
job is to direct the client request into a pipe ending at the appropriate endpoint on
the device. It submits the requests to the bus driver, which breaks the requests into

. transactions. The bus driver schedules the transactions for presentation to the hard
ware. Information flows on the bus inframes that occur once every millisecond. The
bus driver must correlate the duration of all outstanding transactions so as to fit them
into frames. Figure 11-4 illustrates the result of this process .

.... 1II(1f------Applications-----~.~

Requests

Transactions

Frames

Figure 11-4. Transaction andframe modelfor informationflow.

In USB, a transaction has one or more phases. A phase is a token, data, or
handshake packet. Depending on the type, a transaction consists of a token phase,
an optional data phase, and an optional handshake phase, as shown in Figure 11-5.
During the token phase, the host transmits a packet of data to all currently config
ured devices. The token packet includes a device address and (often) an endpoint

Chapter 11 The Universal Serial Bus

number. Only the addressed device will process the transaction; devices neither read
nor write data on the bus for the duration of transactions addressed to other devices.
During the data phase, data is placed on the bus. For output transactions, the host
puts data on the bus and the addressed device consumes it. For input transactions,
the roles are reversed and the device places data onto the bus for consumption by
the host. During the handshake phase, either the device or the host places a packet
onto the bus that provides status information. When a device provides the hand
shake packet, it can send an ACK packet to indicate successful receipt of informa
tion, a NAK packet to indicate that it's busy and didn't attempt to receive information,
or a STALL packet to indicate that the transaction was correctly received but logically
invalid in some way. When the host proVides the handshake, it can send only an ACK
packet .

........ ---One Transaction ----...

Figure 11-5. Phases of a bus transaction.

You'll notice that there's no handshake packet that means, "I found a transmis
sion error in this transaction." Whoever is waiting for an acknowledgment is expected
to realize that lack of acknowledgment implies an error and to retry the transaction.
The USB designers believe that errors will be infrequent, by the way, which means
that any occasional delay because of retries won't have a big effect on throughput.

MORE ABOUT DEVICE ADDRESSING

The previous text says that all configured devices receive the electrical signals
associated with every transaction. This is almost true, but a true renaissance
programmer should know two more details. When a USB device first comes on
line, it responds to a default address (which happens to be numerically zero,
but you don't need to know that). Certain electrical signalling occurs tb alert
the host bus driver that a new device has arrived on the scene, whereupon the
bus driver assigns a device address and sends a control transaction to tell "device
number zero" what its real address is. From then on, the device answers only
to the real address.

(continued)

495

Programming the Microsoft Windows Driver Model

496

continued

The other detail concerns low-speed devices. The electronics of a low
speed device might misinterpret data arriving eight times faster than it expects.
Furthermore, the cable connecting a low-speed device to the hub is not shielded
and might generate undesirable electromagnetic interference if driven at high
speed. Consequently, low-speed devices are not connected most of the time.
That is, a hub keeps low-speed devices electrically isolated while high-speed
transactions are occurring. When the host wants to communicate with a low
speed device, it sends a special preamble packet to switch the bus to low-speed
operation for the duration of a single packet that begins shortly after the pre-

. amble. Thus, low-speed devices get an opportunity to see only low-speed trans
actions, but high':speed devices see all transactions.

States of an Endpoint
In general, an endpoint can be in any of the states illustrated in Figure 11-6. In the
Idle state, the endpoint is ready to process a new transaction initiated by the host.
In the Busy state, the endpoint is busy processing a transaction and can't handle a
new one. If the host tries to initiate a transaction to a busy endpoint (other than a control
endpoint, as described in the next section), the device will respond with a NAK
handshake packet to cause the host to retry later. Errors that the device detects in its
own functionality (not including transmission errors) cause the device to send a STALL
handshake packet for its current transaction and to enter the Stalled state. Control
endpoints automatically unstall when they get a new transaction, but the host must
send a clear feature control request to any other kind of endpoint before addressing
another request to a stalled endpoint.

Figure 11-6. States of an endpoint.

Control Transfers
A control transfer conveys control information to or from a control endpoint on a
device. For example, one part of the overall process by which the operating system
configures a USB device is performing input control transfers to read various descriptor

Chapter 11 The Universal Serial Bus

structures kept onboard the device. Another part of the configuration process involves
an output control transfer to establish one of the many possible configurations as
current and to enable one or more interfaces. Control transfers are lossless in that
the bus driver retries erroneous transfers up to three times before giving up and
reporting an error status to upstream software. As indicated in Table 11-1, control
endpoints must specify a maximum data transfer length of 8, 16,32, or 64 bytes. An
individual transaction can involve less data than the indicated maximum but not more.

Control transactions are a high priority in USB. A device isn't allowed to claim
business as an excuse to avoid handling a control transaction. Moreover, the bus driver
reserves up to 10 percent of each frame time for control transactions. Assuming a light
enough load, therefore, the host can be sure of completing a control transaction within
one millisecond. A heavier load, however, might force a pending control transaction
into a later frame, with the result that higher latencies are possible.

Every device has at least one control endpoint numbered 0 that responds to
input and output control transactions. Strictly speaking, endpOints belong to configu
rations, but endpoint 0 is an exception in that it terminates the default control pipe
for a device. Endpoint 0 is active even before the device receives its configuration
and no matter what other endpoints (if any) are available. A device need not have
additional control endpoints besides endpoint 0 (although the USB specification al
lows for the possibility) because endpoint 0 can service most control requests per
fectly well. If you define a vendor-specific request that can't complete within the frame,
however, you should create an additional control endpoint to forestall having your
onboard handler preempted by a new transaction.

Each control transaction includes a SETUP token, which can be followed by an
optional data phase in which additional data moves to or from the device and a
handshake phase in which the device responds with an ACK packet, a STALL packet,
or not at all. See Figure 11-7. Devices are required to accept control transfers at all
times and can therefore not respond with NAK to indicate a busy endpoint. Send
ing an invalid request to a control endpOint elicits a STALL response, but the de
vice automatically clears the stall condition when it receives the next SETUP packet.
This special case of stalling is called protocol stall in the USB specification-see
Section 8.5.2.4.

The SETUP token that prefaces a control transfer consists of eight data bytes,
as illustrated in Figure 11-8. In this and other data layout figures, I'm showing data
bytes in the order in which they're transmitted over the USB wire, but I'm showing
bits within individual bytes starting with the high-order bit. Bits are transmitted over
the wire starting with the least-significant bit, but host software and device firmware
typically work with data after the bits have been reversed. Intel computers and the
USB bus protocols employ the little-endian data representation in which the least
significant byte of a multibyte data item occupies the lowest address. The 8051 mi
croprocessor used in several USB chip sets, including the Anchor Chips chip set, is

497

Programming the Microsoft Windows Driver Model

actually a big-endian computer. Firmware must therefore take care to reverse data
bytes appropriately.

Token
Phase

Data
Phase

Handshake
Phase

• Hostsends

• Device sends

Figure 11-7. Phases of a control transfer.

x•. Direction of transfer:
o Host to device

.xx

•.. x xxxx

1 Device to host

Request type:
o Standard
1 Class
2 Vendor
3 Reserved

Recipient:
o Device
1 Interface
2 Endpoint
3 Other 4} , : Reserved

31

Figure 11-8. Contents of a SETUP token.

498

Notice in the figure that the first byte of a SETUP token indicates the direction
of information flow, a request type, and the type of entity that is the target of the
control transfer. The request types are standard (defined as part of the USB specifi
cation), class (defined by the USB working group responsible for a given class of
device), and vendor (defmed by the maker of the device). Control requests can be
addressed to the device as a whole, to a specified interface, to a specified endpoint,
or to some other vendor-specific entity on the device. The second byte of the SETUP

Chapter 11 The Universal Serial Bus

token indicates which request of the type indicated in the fIrst byte is being made.
Table 11-2 lists the standard requests that are currently defmed. For information about
class-specmc requests, consult the appropriate device class specmcation. (See the fIrst
URL I gave you at the beginning of this chapter for information on how to fmd these
specifications.) Device manufacturers are free to define their own vendor-specmc
request codes. For example, Anchor Chips uses the request code AOh to download
fIrmware from the host.

NOTE Note that control requests that affect the state of some particular end
point are sent to a control endpoint and not to the endpoint whose state is
affected.

Request Possible
Code Symbolic Name Description Recipients

0 GET_STATUS Gets status information Any

1 CLEAR_FEATURE Clears a two-state feature Any

2 (Reserved)

3 SET_FEATURE Sets a two-state feature Any

4 (Reserved)

5 SET-ADDRESS Sets device address Device

6 GET_DESCRIPTOR Gets device, configura- Device
tion, or string descriptor

7 SET_DESCRIPTOR Sets a descriptor Device
(optional)

8 GET_CONFIGURATION Gets current configura- Device
tion index

9 SET_CONFIGURATION Sets new current config- Device
uration

10 GET_INTERFACE Gets current alternate Interface
setting index

11 SET_INTERFACE Enables alternate setting Interface

12 SYNCH_FRAME Reports synchronization (Isochronous)
frame number Endpoint

Table 11-2. Standard device requests.

The remainder of the SETUP packet contains a value code whose meaning
depends on which request is being made, an index value with similarly mutable
meaning, and a length fIeld that indicates how many bytes of data are to be transferred
during the data phase of the control transaction. The index field contains the end
point or interface number when a control request addresses an endpoint or interface.
A 0 value for the data length implies that this particular transaction has no data phase.

499

Programming the Microsoft Windows Driver Model

500

I'm not going to exhaustively describe all of the details of the various standard
control requests; you should consult Section 9.4 of the USB specification for full
information. I do want to briefly discuss the concept of a device feature, however.
USB envisages that any of the addressable entities belonging to a device can have
features that can be represented by the state of a single bit. Two such features are
standardized for all devices.

The DEVICE_REMOTE_ WAKEUP feature-a feature belonging to the device
as a whole-indicates whether or not the device should use its ability (if any) to re
motely wake up the computer when external events occur. Host software (specifi
cally, the bus driver) enables or disables this feature by addressing a SET_FEATURE
or CLEAR-FEATURE command, respectively, to the device and specifying a value
code of 1 to designate the wake-up feature. The DDK uses the symbolic name
USB_FEATURE_REMOTE_ WAKEUP for this feature code.

The ENDPOINT_HALT feature-a feature belonging to an endpoint-indicates
whether or not the endpoint is in the functional stall state. Host software can force
an endpoint to stall by sending the endpoint a SET]EATURE command with a value
code of 0 to deSignate ENDPOINT_HALT. The firmware that manages the endpOint
might independently decide to stall, too. Host software (once again, the bus driver)
clears the stall condition by sending a CLEAR_FEATURE command with a value code
of O. The DDK uses the symbolic name USB_FEATURE_ENDPOINT_STALL for this
feature code.

The USB specification does not prescribe ranges of device or endpoint feature
codes for vendor use. To avoid possible standardization issues later, you should avoid
defining device-level or endpOint-level features. Instead, define your own vendor
type control transactions. Notwithstanding this advice, later in this chapter I'll show
you a sample driver (FEATURE) that controls the 7-segment LED display on the Anchor
Chips development board. For purposes of that sample, I defmed an interface-level
feature numbered 42. (USB currently defines a few interface-level features for power
management, so you would not want to emulate my example except for learning
about how features work.)

Bulk Transfers
A bulk transfer conveys up to 64 bytes of data to or from a bulk endpoint. Like control
transfers, bulk transfers are lossless. Unlike control transfers, bulk transfers don't have
any particular guaranteed latency. If the host has room left over in a fraille after
accommodating other bandwidth reservations; it will schedule pending bulk transfers.

Figure 11-9 illustrates the phases that make up a bulk transfer. The transfer be
gins with either an IN or an OUT token that .addresses the device and endpoint. In
the case of an output transaction, a data phase follows in which data moves from the
host to the device and then a handshake phase in which the device provides status
feedback. If the endpoint is busy and unable to accept new data, it generates a NAK
packet during the handshake phase-the host will retry the output transaction later.

Chapter 11 The Universal Serial Bus

If the endpoint is stalled, it generates a STALL packet during the handshake phase
the host must later clear the halt condition before retrying the transmission. If the end
point receives and processes the data correctly, it generates an ACK packet in the
handshake phase. The only remaining case is the one in which the endpoint doesn't
correctly receive the data for some reason and simply doesn't generate a handshake
the host will detect the absence of any acknowledgment and automatically retry up
to three times.

FollOwing the IN token that introduces an input bulk transfer, the device per
forms one of two operations. If it can, it sends data to the host, whereupon the host
either generates an ACK handshake packet to indicate error-free receipt of the data
or stays mute to indicate some sort of error .. If the host detects an error,· the absence
of an ACK to the device causes the data to remain available-the host will retry the
input operation later on. If the endpoint is busy or halted, however, the device gen
erates a NAK or STALL handshake instead of sending data. The NAK indicates that
the host should retry the input operation later, and the STALL requires the host to
eventually send a clear feature command to reset the halt condition. .

Token
Phase

• Host sends

• Device sends

Data
Phase

Handshake
Phase

Figure 11-9. Phases of a bulk or interrupt transfer.

501

Programming the Microsoft Windows Driver Model

502

Interrupt Transfers
An inte'ITUpt transfer is practically identical to a bulk transfer insofar as the opera
tion of the bus and the device are concerned. It moves up to 64 bytes of data losslessly
to or from an interrupt endpoint. The only difference between interrupt and bulk trans
fers has to do with latency. An interrupt endpoint specifies a polling interval in the
range 1-255 milliseconds. The host reserves sufficient bandwidth to make sure of per
forming an IN or OUT transaction directed toward the endpoint at least as frequently
as the polling interval.

NOTE Note that USB devices don't generate asynchronous interrupts: they
always respond to a poll. You might need to know that the Microsoft host
controller drivers effectively round the polling interval specified in an interrupt
endpoint descriptor down to a power of 2 no greater than 32. For example, an
endpoint that specifies a polling interval of 31 milliseconds will actually be polled
every 16 milliseconds. A specified polling interval between 32 and 255 millisec
onds results in an actual polling interval of 32 milliseconds.

Isochronous Transfers
An isochronous transfer moves up to 1023 data bytes to or from an isochronous
endpoint during every bus frame. Because of the guaranteed periodicity of isochro
nous transfers, they are ideal for time-sensitive data such as audio signals. The guar
antee of periodicity comes at a price, however: isochronous transfers that fail because
of data corruption don't get retried automatically. The USB deSigners assumed that
isochronous data streams can tolerate occasional small losses.

An isochronous transaction consists of an IN or OUT token followed by a data
phase in which data moves to or from the host. No handshake phase occurs because
no errors are retried. See Figure 11-10.

Token
Phase

• Host sends

• Device sends

Data
Phase

Figure 11-10. Phasesof an isochronous transfer.

The host reserves up to 90 percent of the bus bandwidth for isochronous and
interrupt transfers. In fact, system software needs to reserve bandwidth in advance
to make sure that all active devices can be accommodated.

Chapter 11 The Universal Serial Bus

Descriptors
USB devices maintain onboard data structures known as descriptors to allow for self
identification to host software. Table 11-3 lists the different descriptor types. Each
descriptor begins with a two-byte header containing the byte count of the entire
descriptor (including the header) and a type code. As a matter of fact, if you ignore
the special case of a string descriptor--concerning which, see "String Descriptors" a
bit further on-the length of a descriptor is implied by its type because all descrip
tors of a given type have the same length. The explicit length is nonetheless present
in the header to provide for future extensibility. Additional, type-specific data follows
the fixed header.

In the remainder of this section, I'll describe the layout of each type of descriptor
by using the data structures defined in the DDK (specifically, in USBlOO.H). The
official rendition of this information is in Section 9.6 of the USB specification.

Descriptor Type Description

Describes an entire device

Describes one of the configurations of a device

Device

Configuration

Interface

Endpoint

String

Describes one of the interfaces that's part of a configuration

Describes one of the endpoints belonging to an interface

Contains a human-readable Unicode string describing the
device, a configuration, an interface, or an endpoint

Configuration
power

Interface power

Describes power-management capabilities of a device
configuration

Describes power-management capabilities of a device
function

Table 11-3. Descriptor types.

Device Descriptors
Each device has a single device deSCriptor that identifies the device to host software.
The host uses a GET_DESCRIPTOR control transaction directed to endpoint 0 to read
this descriptor. The device descriptor has the following definition in the DDK:

typedef struct _USB_DEVICE_DESCRIPTOR {
UCHAR bLength;
UCHAR bDescriptorType;
USHORT bcdUSB;
UCHAR·bDeviceClass;
UCHAR bDeviceSubClass;
UCHAR bDeviceProtocol;
UCHAR bMaxPacketSize0;
USHORT idVendor;

(conttnued)

503

Programming the Microsoft Windows Driver Model

504

USHORT idProduct;
USHORT bcdDevice;
UCHAR iManufacturer;
UCHAR iProduct;
UCHAR iSerialNumber;
UCHAR bNumConfigurations;

} USB_DEVICE_DESCRIPTOR. *PUSB_DEVICE_DESCRIPTOR;

The bLength field in a device descriptor will equal 18, and the bDescriptor
Type field will equal 1 to indicate that it's a device descriptor. The bcduSB field
contains a version code (in binary-coded decimal) indicating the version of the USB
specification to which this descriptor conforms. Current devices use the value OxOlOO
or Ox0110 here to indicate conformance with the 1.0 or 1.1 specifications, respectively.

The values bDeviceCJass, bDeviceSubClass, and bDeviceProtocol identify
the type of device. Possible device class codes are defined by the USB specification
and at the time of this writing include the codes listed in Table 11-4. Individual de
vice class working groups within the USB committee define subclass and protocol
codes for each device class. For example, the audio class has subclass codes for
control, streaming, and MIDI streaming interfaces. And the mass storage class defines
protocol codes for various methods of using endpoints for data transfer.

You can specify a class for an entire device or at the interface level, but in
practice the device class, subclass, and protocol codes are often in an interface descriptor
rather than in the device descriptor. (The device descriptor contains 0 for these codes
in such cases.) USB also provides an escape valve for unusual types of devices in the
form of the device class code 255. A vendor can use this type code to designate a
nonstandard device for which the subclass and protocol codes provide the vendor
specific description. For example, a device built around the Anchor Chips chip set comes
on line with a device descriptor having class, subclass, and protocol codes all equal to
255 to indicate an Anchor Chips default device. That device is primarily capable of
accepting a vendor-specific control request to download firmware that will change the
personality of the device to something else having its own (new) set of descriptors.

The bMaxPacketSizeO field of the device descriptor gives the maximum size
of a data packet for a control transfer over endpoint O. There isn't a separate end
point descriptor for this endpoint (which every device has to implement), so this field
is the only place where the number can be presented. Since this field is at offset 7
within the deSCriptor, the host can always read enough of the descriptor to retrieve
this value even if endpoint 0 is capable only of the minimum size transfer (eight bytes).
Once the host knows how big endpoint 0 transfers can be, it can structure subse
quent requests appropriately.

The idVendorand idProduct fields specify a vendor code and a vendor
specific product identifier for the device. bcdDevice specifies a release number (such
as Ox0100 for version 1.0) for the device. These three fields determine which driver
the host software will load when it detects the device. The USB organization assigns
vendor codes, and each vendor assigns its own product codes.

Chapter 11 The Universal Serial Bus

Class
SymhoUc Name Code Description

USB_DEV1CE_CLASS_RESERVED 0 Indicates that class codes are
in the interface descriptors

USB_DEV1CE_Q.ASS_AUDIO 1 Devices used to manipulate
'.

analog or digital audio, voice,
and other sound-related data
(but not including transport
mechanisms)

USB_DEV1CE_CLASS_COMMUNICATIONS 2 Telecommunications devices
such as modems, telephones,
answering machines, and
so on

USB_DEV1CE_CLASS_HUMAN_INTERF ACE 3 Human interface. devices such
as keyboards, mice, and so on

USB_DEV1CE_CLASS~ONITOR 4(Display monitors

USB_DEV1CE_CLASS_PHYSICAL_INTERFACE 5 HID devices involving real-
time physical feedback, such
as force-feedback joysticks

USB_DEV1CE_CLASS_PO~R 6 HID devices that perform
power management, such as
batteries, chargers, and so on

USB_DEV1CE_CLASS]RINTER 7 Printers

USB_DEV1CE_CLASS_STORAGE 8 Mass storage devices, such as
disk and CD-ROM

USB_DEV1CE_CLASS_HUB 9 USB hubs

USB_DEV1CE_CLASS_ VENDOR-SPECIFIC 255 Vendor-defined device class

Table 11-4. USB device class codes.

DEVICE VERSION NUMBERING

Microsoft strongly encourages vendors to increment the device version number
for each revision of hardware or firmware to facilitate downstream software
updates. Often, a vendor releases a new version of hardware along with a revised
driver. Also, hardware updates sometimes invalidate software patches or f1lter
drivers that were present so as to address earlier hardware bugs. An automatic
update mechanism might therefore have trouble updating a system if it can't
determine which revision of the hardware it's working with.

505

Programming the Microsoft Windows Driver Model

506

The iManufacturer, iProduct, and iSeria1Number fields identify string de
scriptors that provide a human-readable description of the manufacturer, the prod
uct, and the unit serial number. These strings are optional, and a 0 value in one of
these fields indicates the absence of the descriptor. If you put a serial number on a
device, Microsoft recommends that you make it unique for each physical device.

Lastly, the bNumConfigurations field indicates how many configurations the
device is capable of. Microsoft drivers work only with the first configuration (num
ber 1, that is) of a device. I'll explain later, in "Configuration," what you might do for
a device that has multiple configurations.

Configuration Descriptors
Each device has one or more configuration descriptors that describe the various
configurations of which the device is capable. System software reads a configuration
descriptor by performing a GET_DESCRIPTOR control transaction addressed to end
pOint O. The DDK defmes the configuration descriptor structure as follows:

typedef struct _USB_CONFIGURATION_DESCRIPTOR {
UCHAR bLength:
UCHAR bDescr1ptorType:
USHORT wTotalLength:
UCHAR bNumInterfaces:
UCHAR bConfigurationValue:
UCHAR 1Configuration:
UCHAR bmAttributes:
UCHAR MaxPower:

} USB_CONFIGURATION_DESCRIPTOR, *PUSB_CONFIGURATION_DESCRIPTOR:

, The bLength and bDescriptorType fields will be 9 and 2, respectively, to
indicate a configuration descriptor nine bytes in length. The wTotalLength field
contains the total length of this configuration descriptor plus the interface and end
point deSCriptors that are part of the configuration. In general, the host performs one
GET_DESCRIPTOR request to retrieve the nine-byte configuration descriptor proper
and then another GET_DESCRIPTOR request specifying this total length. The second
request, therefore, transfers the grand unifwd descriptor. (It's impossible to retrieve
interface and endpoint descriptors except as part of a configuration descriptor.)

The bNumInterfaces field indicates how many interfaces are part of the con
figuration. The count includes just the interfaces themselves, not each alternate set
ting of an interface. The purpose of this field is to allow for multifunction devices
such as keyboards that have embedded locator (mouse and the like) functionality.

The bConfigurationValue field is an index that identifies the configuration ..
You use this value in a SET_CONFIGURATION control request to select the con
figuration. The first configuration descriptor for a device has a 1 here. (Selecting
configuration 0 puts the device in an unconfigured state in which only endpoint 0
is active.)

Chapter 11 The Universal Serial Bus

The iConfiguration field is an optional string descriptor index pointing to a
Unicode description of the configuration. Zero indicates the absence of a string
description.

The bmAttributes byte contains a bit mask describing power and perhaps other
characteristics of this configuration. See Table 11-5. The unmentioned bits are reserved
for future standardization. A configuration supporting remote wake-up would have
the remote wake-up attribute set. The high-order two bits interact with the MaxPower
field of the configuration deSCriptor to describe the power characteristics of the con
figuration. Basically, every configuration sets the high-order bit (which used to mean
the device was powered from the bus) and also sets MaxPower to the maximum
number of two milliamp power units that it will draw from the bus. A configuration
that uses some local power will also set the self-powered attribute bit.

Bit
mask

80h

40h

20h

Symbolic Name

USB_CONFIG_BUS]OWERED

USB_CONFIG_SELF _POWERED

USB_CONFIG_REMOTE_ WAKEUP

Table 11-5. Configuration attribute bits.

Interface Descriptors

Description

Obsolete-should always be set to 1

Configuration is self-powered

Configuration has a remote wake-up
feature

Each configuration has one or more interface deSCriptors that describe the interface(s)
that provide device functionality. System software can fetch an interface descriptor
only as part of a GET_DESCRIPTOR control request that retrieves the entire configu
ration deSCriptor of which the interface descriptor is a part. The DDK defines the
interface descriptor structure as follows:

typedef struct _USB_INTERFACE_DESCRIPTOR {
UCHAR bLength;
UCHAR bDescriptorType;
UCHAR blnterfaceNumber;
UCHAR bAlternateSetting;
UCHAR bNumEndpoints;
UCHAR blnterfaceClass;
UCHAR blnterfaceSubClass;
UCHAR blnterfaceProtocol;
UCHAR ilnterface;

} USB_I NTERFACCDESCRI PTOR. *PUSB_I NTERFACE_DESCRI PTOR;

The bLength and bDescriptorType fields will be 9 and 4, respectively, to
indicate an interface descriptor nine bytes in length. blnterfaceNumber and

507

Programming the Microsoft Windows Driver Model

508

, bAlternateSetting are index values that can be used in a SET_INTERFACE control
transaction to specify activation of the interface. These numbers are essentially arbi

'trary, but it's customary to number the interfaces within a configUration starting with
zero and to number the alternate settings of each interface starting with zero, too.

The bNumEndpoints field indicates how many endpoints---other than 0, which
is assumed to always be present-are part of the interface.

The bInterfaceClass, bInterfaceSubClass, and bInterfaceProtocol fields
describe the functionality provided by the interface. A nonzero class code should be
one of the device class codes I discussed earlier, in which case the subclass and
protocol codes would have the same meaning as well. Zero values in these fields are
not allowed at the present time--zero is reserved for future standardization.

Finally, llnterface is the index of a string descriptor containing a Unicode
description of the interface. Zero indicates that no string is present.

Endpoint Descriptors
Each interface has zero or more endpoint descriptors that describe the endpoint(s)
that handle transactions with the host. System software can fetch an endpoint descrip
tor only as part of a GET_DESCru;PTOR control request that retrieves the entire con
figUration descriptor of which the endpoint descriptor is a part. The DDK defines the
endpoint descriptor structure as follows:

typedef struct _USB_ENDPOINT_DESCRIPTOR {
UCHAR bLength:
UCHAR bDescriptorType:
UCHAR bEndpointAddress:
UCHAR bmAttributes:
USHORT wMaxPacketSize:
UCHAR blnterval:

} USB_ENDPOINT_DESCRIPTOR. *PUSB_ENDPOINT_DESCRIPTOR:

The bLength and bDescriptorType fields will be 7 and 5, respectively, to
indicate an endpoint descriptor of length seven bytes. bEndpointAddress encodes
the directionality and number of the endpoint, as illustrated in FigUre 11-11. For
example, an address value of Ox82 denotes an IN endpoint numbered 2, and an
address of Ox02 denotes an OUT endpoint that's also numbered 2. Except for end
point 0, you can have two different endpoints that share the same number but per
form transfers in the opposite direction.

3 bits

..... ~~1=lnput
0= Output

4 bits

Figure 11-11. Bit assignments within an endpoint descriptor's address fwld.

Chapter 11 The Universal Serial Bus

The low-order two bits of bmAttributes indicate the type of the endpoint. See
Table 11-6. The remaining bits are reserved for future standardization and should
currently be set to O.

Symbolic Name Value

USB_ENDPOINT_TYPE_CONTROL 0

USB_ENDPOINLTYPE_ISOCHRONOUS 1

USB_ENDPOINT_1YPE_BULK 2

USB_ENDPOINT_1YPE_INTERRUPT 3

Table 11-6. Type codes for endpoints.

Endpoint Type

Control endpoint

Isochronous endpoint

Bulk transfer endpoint

Interrupt endpoint

The wMaxPacketSize value indicates the largest amount of data the endpoint
can transfer during one transaction. Table 11-1 (on page 493) lists the possible val
ues for this field for each type of endpoint. (Even though Table 11-1 explicitly con
cerns transfer types, note that endpoint types map one to one with transfer types.)
For example, a control or bulk endpoint would specify one of the values 8, 16, 32,
or 64. An interrupt endpoint would specify a value in the range 0-64, inclusive. An
isochronous endpoint would specify a number less than 1024.

Interrupt. and isochronous endpoint descriptors also specify a polling interval
measure in milliseconds in the bInterval field. This number indicates how often the
host should poll the endpoint for a possible data transfer. For an interrupt endpoint,
it can range from 1 to 255 and represents the maximum period between polls. An
isochronous endpoint should specify 1 because it's polled during every frame--once
per millisecond, in other words.

String Descriptors
A device, configuration, or endpoint descriptor contains optional string indices that
identify human-readable strings. The strings themselves are stored on the device in
Unicode in the form of USB string deSCriptors. System software can read a string
deSCriptor by addressing a GET_DESCRIPTOR control request to endpoint O. The DDK
declares the string descriptor structure as follows:

typedef struct _USB_STRING_DESCRIPTOR {
UCHAR bLength;
UCHAR bDescriptorType;
WCHAR bString[l];

} USB_STRING_DESCRIPTOR. *PUSB_STRING_DESCRIPTOR;

The bLength value is variable, depending on how long the string data is. The
bDescriptorType field will be 3 to indicate that this is a string descriptor. The bString
data contains the string data itself. Any null terminator would be included in the
descriptor length.

509

Programming the Microsoft Windows Driver Model

USB devices can support strings in multiple languages. String number 0 is an
array of supported language identifiers rather than a character string. (A string index
of 0 used in another descriptor denotes the absence of a string reference. Thus, in
dex number 0 is available for this special use.) The language identifiers are of the
same LANGID type that Win32 programs use. For example, Ox0409 is the code for
American English. The USB specification doesn't prescribe what happens if you ask
a device to return a string descriptor for a language that the device doesn't advertise
supporting, so you should read the string-zero array before issuing requests for string
descriptors. Consult Section 9.6.5 of the USB specification for more information about
language identifiers.

Other Descriptors
USB is an evolving specification, and I can present only a snapshot of its evolution
at the time of writing. A USB working group recently finalized a specification for
interface-level power management, for example. You can read about it at the USB
Web site, and the DDK header file USBlOO.H contains definitions for it. Time doesn't
permit us (me and the publisher, that is) to explore the ramifications of this new
facility. Luckily, it would appear that WDM driver writers don't need to know about
them-interpreting Interface Feature descriptors is the province of the hub driver
rather than a WDM function or filter driver.

WORKING WITH THE BUS DRIVER
In contrast to drivers for devices that attach to traditional PC buses such as PCI (Peri
pheral Component Interconnect), a USB device driver never talks directly to its hard
ware. Instead, it creates an instance of the data structure known as the USB request
block that it then submits to the bus driver.

Think of USBD.SYS as the entity to which you submit URBs. The call to USBD
takes the form of an IRP with the major function code IRP _MLINTERNAL_
DEVICE_CONTROL. USBD in turn schedules bus time in some frame or another to
carry out the operation encoded in the URB.

In this section, I'll describe the mechanics of working with USBD to carry out
the typical operations a USB function driver performs. I'll first describe how to build
and submit a URB. Then I'll discuss the mechanics of configuring and reconfiguring
your device. Finally, I'll outline how your driver can manage each of the four types
of communication pipes.

Initiating Requests

510

To create a URB, you allocate memory for the URB structure and invoke an initial
ization routine to fill in the appropriate fields for the. type of request you're about to
send. Suppose, for example, that you were beginning to configure your device in
response to an IRP _MN_START_DEVICE request. One of your first tasks might be to

Chapter 11 The Universal Serial Bus

read the device descriptor. You might use the following snippet of code to accom
plish this task:

USB_DEVICE_DESCRIPTOR dd;
URB urb;
UsbBuildGetDescriptorRequest(&urb,

sizeof(_URB_CONTROL-DESCRIPTOR-REOUEST),
USB_DEVICE_DESCRIPTOR-TYPE, 0, 0, &dd, NULL,
sizeof(dd), NULL);

We first declare a local variable (named urb) to hold a URB data structure. The
URB is declared (in USBDI.H) as a union of several substructures, one for each of
the requests you might want to make of a USB device. We're going to be using the
UrbControJDescriptorRequest substructure of the URB union, which is declared
as an instance of struct _URB_CONTROL_DESCRIPfOR_REQUEST. Using an au
tomatic variable like this is fine if you know the stack has enough room to hold the
largest possible URB and if you'll await completion of the URB before allowing the
variable to pass out of scope.

You can, of course, dynamically allocate the memory for a URB from the heap
if you want:

PURB urb = (PURB) ExAllocatePool(NonPagedPool,
sizeof(_URB_CONTROL_DESCRIPTOR-REOUEST»;

if (!urb)
return STATUS_INSUFFICIENT_RESOURCES;

UsbBuildGetDescriptorRequest(urb, ...);

ExFreePool(urb);

UsbBuildGetDescriptorRequest is documented like a normal service routine, but
it's actually a macro (declared in USBDLIB.H) that generates inline statements to
initialize the fields of the get descriptor request substructure. The DDK headers de
fine one of these macros for most types of URBs you might want to build. See
Table 11-7. As is true of preprocessor macros in general, you should avoid using ex
pressions that have side effects in the arguments to this macro.

Helper Macro 1}pe ofTransactton

UsbBuildInterruptOrBulkTransferRequest Input or output to an interrupt or bulk
endpoint

UsbBuildGetDescriptorRequest GET_DESCRIPTOR control request for
endpoint 0

UsbBuildGetStatusRequest GET_STATUS request for a device, an
interface, or an endpoint

Table 11-7. Helper macros for building URBs. (continued)

511

Programming the Microsoft Windows Driver Model

512

continued

Helper Macro

UsbBuildFeatureRequest

U sbBuildSe1ectConfigurationRequest

UsbBuildSe1ectInterfaceRequest

UsbBuildVendorRequest

Type of Transaction

SET_FEATURE or CLEAR]EATURE re
quest for a device, an interface, or an
endpoint

SET_CONFIGURATION

SET _INTERFACE

Any vendor-defined control request

In the previous code fragment, we specify that we want to retrieve the device
descriptor information into a local variable (dd) whose address and length we supply.
URBs that involve data transfer allow you to specify a nonpaged data buffer in either
of two ways. You can specify the virtual address and length of the buffer, as I did in
the fragment. Alternatively, you can supply a memory descriptor list (MDL) for which
you've already done the probe-and-Iock step by calling MmProbeAndLockPages.

MORE ABOUT URBs

Internally, the bus driver always uses an MDL to describe data buffers. If you
specify a buffer address, USBD creates the MDL itself. If you happen to already
have an MDL, it would be counterproductive to call MmGetSystemAddress
ForMdl and pass the resulting virtual address to USBD: USBD will turn around
and create another MDL to describe the same buffer!

The URB also has a chaining field named urblink that USBD uses inter
nally to submit a series of URBs all at once to the host controller driver. The
various macro functions for initializing URBs also have an argument in which
you could theoretically supply a value for this linking field. You and I should
always supply NULL because the concept of linked URBs hasn't been fully
implemented-trying to link data transfer URBs will lead to system crashes,
in fact.

Sending a URB
Having created a URB, you need to create and send an internal I/O control (IOCTL)
request to the USBD driver, which is sitting somewhere lower in the driver hierar
chy for your device. In many cases, you'll want to wait for the device's answer and
you'll use a helper routine like this one:

NTSTATUS SendAwaitUrb(PDEVICE_OBJECT fda. PURB urb)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fda->DeviceExtensian;

Chapter 11 The Universal Serial Bus '

KEVENT event:
KeInitializeEvent(&event, NotificationEvent, FALSE):
IO_STATUS_BLOCK iostatus:
PIRP Irp = IoBuildDeviceIoControlRequest

(IOCTL-INTERNAL_USB_SUBMIT_URB, pdx->LowerDeviceObject,
NULL, 0, NULL, 0, TRUE, &event, &iostatus):

PIO_STACK-LOCATION stack = IoGetNextIrpStackLocation(Irp):
stack->Parameters.Others.Argumentl = (PVOID) urb:
NTSTATUS status = IoCallDriver(pdx->LowerDeviceObject, Irp):
if (status == STATUS_PENDING)

{

KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL):
status = iostatus.Status:
}

return status:
}

1. We're going to wait for the URB to complete, so we need to create a kernel
event object on which to wait. This technique is very similar to the one I
used in the ForwardAndWait helper routine in Chapter 6, "Plug and Play."

2. The easiest way to build the internal IOCTL IRP we need is to call IoBulld
DeviceloControlRequest, which does it for us. The first argument
(IOCTL_INTERNAL_USB_SUBMfCURB) specifies the I/O control code
of the control request and indicates to USBD that we're submitting a URB.
The second argument (pdx->LowerDeviceObject) specifies the device
object that will initially receive the request; 10BuildDeviceloControiRequest
uses this pointer to decide how many stack locations to reserve when it
builds the IRP. The neXt four parameters, which are NULL or 0 in this
example, describe input and output buffers that we don't need when we're .
submitting a URB. The seventh parameter is TRUE to indicate that we're
creating an IRP _MLINTERNAL_DEVICE_CONTROL request instead of an
IRP _MLDEVICE_CONTROL request. The last two parameters designate
the event on which we'll await completion of the URB and an IO_STATUS_
BLOCK that will receive the ending status from the operation.

3. The address of the URB we're submitting goes in the Argumentl field
of the Parameters.Others substructure within the top stack location. This
field occupies the same offset in the stack location as the OutputBuffer
Length parameter for a normal IOCTL request.

4. We send the request to the next driver in the usual way-by calling IoCall
Driver. USBD will now process the request to completion, whereupon
the I/O Manager will delete the IRP and signal our event. Since we haven't
provided our own completion routine, we can't be certain that the I/O
Manager will signal our event in all possible completion cases. Hence, we
wait for the event only if the return value from the lower level dispatch
outine is STATUS_PENDING.

513

Programming the Microsoft Windows Driver Model

NOTE It bears emphasizing that drivers package URBs into normallRPs with
the major function code IRP _MJ_INTERNAL_DEVICE_CONTROL. To provide
for an upper filter driver to send its own URBs, every driver for a USB device
should have a dispatch function that passes this IRP down to the next layer.

Status Returns from URBs
When you submit a URB to the USB bus driver, you eventually receive back an
NTSTATUS code that describes the result of the operation. Internally, the bus driver
uses another set of status codes with the typedef name USBD_STATUS. These codes
are not NTSTATUS codes.

When USBD completes a URB, it sets the URB's UrbHeader.Status field to one
of these USBD_STATUS values. You can examine this value in your driver to glean
more information about how your URB fared. The URB_STATUS macro in the DDK
simplifies accessing:

NTSTATUS status = SendAwaitUrb(fdo, &urb);
USBD_STATUS ustatus = URB_STATUS(&urb);

There's no particular protocol for preserving this status and passing it back to an
application, however. You're pretty much free to do what you will with it.

Configuration

514

The USB bus driver automatically detects attachment of a new USB device. It then
reads the device descriptor structure to determine what sort of device has suddenly
appeared. The vendor and product identifier fields of the deSCriptor, together with
other deSCriptors, determine which driver needs to be loaded.

The Configuration Manager calls the driver's AddDevice function in the normal
way. AddDevice does all the tasks you've already heard about: it creates a device
object, links the device object into the driver hierarchy, and so on. The Configura
tion Manager eventually sends the driver an IRP _MN_START_DEVICE Plug and Play
request. Back in Chapter 6, I showed you how to handle that request by calling a
helper function named StartDevice with arguments describing the translated and
untranslated resource assignments for the device. One piece of good news is that you
needn't worry about I/O resources at all in a USB driver, because you have none.
So you could write a StartDevice helper function with the following skeletal form:

NTSTATUS StartDevice(PDEVICE_OBJECT fdo)
{

PDEVICLEXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
<configure device>
return STATUS_SUCCESS;
}

I glibly said configure device where you'll write rather a lot of code to config
ure the hardware. But, as I said, you needn't concern yourself with I/O ports,

Chapter 11 The Universal Serial Bus

interrupts, direct memory access (DMA) adapter objects, or any of the other resource
oriented elements I described in Chapter 7.

WHERE'S THE DRIVER?

I'll discuss the mechanics of installing WDM drivers in Chapter 12, "Installing
Device Drivers." It will help to understand some of those details right now, how
ever. Let's suppose that your device has a vendor ID of Ox0547 and a product
ID of Ox102A. I've borrowed .the vendor ID belonging to Anchor Chips (with
their permission) for purposes of this illustration. rIP using the product ID for
the USB42 sample (the Answer Device) that you'll find on the ~ompanion disc.

USB describes many methods for the operating system to locate a device
driver (or set of drivers) based ort the device, corifiguration, and interface de
scriptors on a device. See Universal Serial Bus Common Class Specification
(Rev. 1.0, December 16, 1997), Section 3.10. My samples all rely on the second
highest priority method, whereby the vendor and product identifiers alone
determine the driver.

Confronted with a device having the vendor and product identifiers I just
mentioned, the Configuration Manager will look for a registry entry that con
tains information about a device named USB\ VID_0547&PID_I02A. If no such
entry exists in the registry, the Configuration Manager will trigger the new
hardware wizard to locate an INF me describing such a device. The wizard might
prompt the end user for a disk, or it might find the INF me already present on
the computer. The wizard will then install the driver and populate the registry.
Once the Configuration Manager locates the registry entries, it can dynamically
load the driver. That's where we come in.

The executive overview of what you need to accomplish in StartDevice is as
follows. First you'll select a configuration for the device. If your device is like most
devices, it has just one configuration. Refer to the sidebar "Multifunction Devices" for
advice about what to do if your device has more than one configuration. Once you
select the configuration, you choose. one or more of the interfaces that are part of
that configuration. It's not uncommon for a device to support multiple interfaces, by
the way. Having chosen a configuration and.a set of interfaces, you send a select con
figuration URB to the bus driver. ·The bus driver in turn issues commands to the
device to enable the configuration and interfaces. The bus driver creates pipes that
allow you to communicate with the endpoints in the selected interfaces and provides
handles by which you can access the pipes. It also creates handles for the configu
ration and the interfaces. You extract the handles from the completed URB and save
them for future use. That accomplished, you're done with the configuration process.

515

Programming the Microsoft Windows Driver Model

516

MULTIFUNCTION DEVICES

If your device has one configuration and multiple interfaces, the Microsoft bus
driver will handle it automatically as a composite, or multifunction, device. You
supply function drivers for each of the interfaces on the device by using INF
flles that specify the interface class and subclass instead of a vendor and prod
uct ID. The bus driver creates a physical device object (PDO) for each inter
face, whereupon the PnP Manager loads the separate function drivers you've
provided. When one of these function drivers reads a configuration descrip
tor, the bus driver provides an edited version of the descriptor that describes
just one interface.

If your device has more than one configuration, however, the bus driver
doesn't perform the magic that allows you to just furnish separate function
drivers. Your driver needs to decide which configuration to select and needs
to manage all of the interfaces in the configuration you choose. You will also
need to deal with all of the interfaces on your device if your INF file uses the
vendor and product ID method for specifying a device identifier.

Refer to Chapter 12 for more information about the possible forms of
device identifier in an INF file.

Reading a Configuration Descriptor
It's best to think of a fixed-size configuration descriptor as the header for a variable
length structure that describes a configuration, all its interfaces, and all the interfaces'
endpoints. See Figure 11-12.

"Grand unified descriptor"
to be read in a single
control transfer

Figure 11·12. Structure of a configuration descriptor.

Chapter 11 The Universal Serial Bus

You must read the entire variable-length structure into a contiguous area of
memory because the hardware won't allow you to directly access the interface and
endpoint descriptors. Unfortunately, you don't initially know how long the combined
structure is .. The following fragment of code shows how you can use two URBs to
read a configuration descriptor:

ULONG ieonfig = 1;
URB urb;
USB_CONFIGURATION_DESCRIPTOR ted;
UsbBuildGetDeseriptorRequest(&urb.

sizeof(_URB_CONTROL_DESCRIPTOR-REQUEST).
USB_CONFI GURATIOLDESCRI PTOR-TYPE.
ieonfig. 0. &ted. NULL. sizeof(ted). NULL);

SendAwaitUrb(fdo. &urb);
ULONG size = ted.wTotalLength;
PUSB_CONFIGURATION_DESCRIPTOR ped

(PUSB_CONFIGURATION_DESCRIPTOR) ExAlloeatePool(
NonPagedPool. size);

UsbBuildGetDeseriptorRequest(&urb.
s izeofCU RB_CONTROL_DESCRI PTOR-REQUEST) •
USB_CONFIGURATION_DESCRIPTOR-TYPE.
ieonfig. 0. ped. NULL, size. NULL);

SendAwaitUrb(fdo. &urb);

ExFreePool(ped);

In this fragment, we issue one URB to read a configuration descriptor-I speci
fied configuration number 1, which is the first one-into a temporary deSCriptor area
named ted. This descriptor contains the length (~otalLength) of the combined
structure that includes configuration, interface, and endpoint deSCriptors. We allocate
that much memory and issue a second URB to read the entire descriptor. At the end
of the process, the pcd variable points to the whole shebang. (Don't leave out the
error checking as I just did-see the code samples on the companion disc for ex
amples of how to handle the many errors that might arise in this short sequence.)

If your device has a single configuration, go ahead to the next step using the
descriptor set you've just read. Otherwise, you'll need to enumerate the configu
rations (that is, step the iconfig variable from 1 to the bNumConfigurations value
in the device descriptor) and apply some· sort of algorithm to pick between them.

Selecting the Configuration
You eventually have to select a configuration by sending a series of control commands
to the device to set the configuration and enable the desired interfaces. We'll be using
a function named USBD _ CreateConfigurationRequestEx to create the URB for this
series of commands. One of its arguments is an array of pointers to descriptors for
the interfaces you intend to enable. Your next step in configuration after settling on
the configuration you want to use, therefore, is to prepare this array.

517

Programming the Microsoft Windows Driver Model

518

READING A STRING DESCRIPTOR

For reporting or other purposes, you might want to retrieve some of the string
descriptors that your device might provide. In the USB42 sample, for example,
the device contains English-language descriptors for the vendor, product, and
serial number as well as for the single configuration and interface supported by
the device. I wrote the following helper function for reading string descriptors:

NTSTATUS GetStringDescriptor(PDEVICE_OBJECT fdo, UCHAR istring,
PUNICODE_STRING s)
{

NTSTATUS status;
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
URB urb;

UCHAR data[256];

if (!pdx->langid)
{

UsbBuildGetDescriptorRequest(&urb,
sizeof(_URB_CONTROL-DESCRIPTOR-REQUEST),
USB_STRING_DESCRIPTOR-TYPE,
0, 0, dBta, NULL, sizeof(data), NULL);

status = SendAwaitUrb(fdo, &urb);
if (!NT_SUCCESS(status»

return status;
pdx->langid = *(LANGID*)(data + 2);
}

UsbBuildGetDescriptorRequest(&urb,
sizeof(_URB_CONTROL_DESCRIPTOR-REQUEST),
USB_STRING_DESCRIPTOR-TYPE,
istring, pdx->langid, data, NULL, sizeof(data), NULL);

status = SendAwaitUrb(fdo, &urb);
if (!NT_SUCCESS(status»

return status;

ULONG nchars = (data[0] - 2) / 2;
PWSTR p = (PWSTR) ExAllocatePool(PagedPool, data[0]);
if (!p)

return STATUS_INSUFFICIENT_RESOURCES;
memcpy(p, data + 2, nchars*2);
p[nchars] = 0;

(continued)

Chapter 11 The Universal Serial Bus

continued

s-)Length = (USHORT) (2 * nchars);
s-)MaximumLength = (USHORT) «2 * nchars) + 2);
s-)Buffer = p;

return STATUS_SUCCESS;
}

The new and interesting part of this function-given that you already know
a lot about kernel-mode programming if you've been reading this book sequen
tially-is the initialization of the URB to fetch a string descriptor. In addition to
supplying the index of the string we want to get, we also supply a standard
LANGID language identifier. This is the same kind of language identifier that
you use in a Win32 application. As I mentioned earlier, devices can provide
strings in multiple languages, and string descriptor 0 contains a list of the sup
ported language identifiers. To make sure to always ask for a supported lan
guage, I read string 0 the ftrst time this routine executes and arbitrarily choose
the ftrst language as the one to ask for. In the actual sample drivers, the iden
tifIer will always be 0x0409, which identifIes American English. USBD.SYS passes
this language identifier along with the string index as a parameter for the get
descriptor request it sends to the device. The device itself is responsible for
deciding which string to return.

The output from my GetStringDescriptor function is a UNICODE_
STRING that you use in the normal way. You would eventually call RtlFree
UnicodeString to release the string buffer.

I used GetStringDescriptor in the USB42 sample to generate extra debug
ging output about the device, For example, StartDevice contains code similar
to this fragment:

UNICODE_STRING sd;
if (pcd-)iConfiguration

&& NT_SUCCESS(GetStringDescriptor(fdo.
pcd-)iConfiguration. &sd»)
{

KdPrint«"USB42 - Selecting configuration named %ws\n".
sd.Buffer»;

RtlFreeUnicodeString(&sd);
}

I actually used a macro so that I wouldn't have to type this same code a
bunch of times, but you get the idea.

519

Programming the Microsoft Windows Driver Model

520

Recall that when we read the configuration descriptor, we also read all of its
interface descriptors into adjacent memory. This memory therefore contains a series
of descriptors: a configuration descriptor, an interface descriptor followed by all of
its endpoints, another interface descriptor followed by all of its endpoints, and so on.
One way of choosing interfaces is to parse through this collection of descriptors and
remember the addresses of the interface descriptors you're interested in. The bus
driver provides a routine named USBD _ParseConfigurationDescriptorEx to sim
plify that task:

PUSB_INTERFACE_DESCRIPTOR pid;
pid = USBD_ParseConfigurationDescriptorEx(pcd. StartPosition.

InterfaceNumber. AlternateSetting. InterfaceClass.
InterfaceSubclass. InterfaceProtocol);

In this function, pcd is the address of the grand unified configuration descrip
tor. StartPosition is either the address of the configuration descriptor (the first time
you make this call) or the address of a deSCriptor at which you want to begin search
ing. The remaining parameters specify criteria for a descriptor search. The value -1
indicates that you don't want the corresponding criterion to be employed in the search.
You can look for the next interface deSCriptor that has zero or more of these attributes:

• The given InterfaceNumber

• The given AlternateSetting index

• The given InterfaceClass index

• The given InterfaceSubclass index

• The given InterfaceProtocol index

When USBD_ParseConfigurationDescriptorEx returns an interface descriptor to
you, you save it as the InterfaceDescriptor member of an element in an array of
USBD_INTERFACE_LlST_ENTRY structures, and then you advance past the interface
descriptor so that you can parse the next one. The array of interface list entries will
be one of the parameters to the eventual call to USBD _ CreateConfigurationRequestEx,
so I need to say a little more about it. Each entry in the array is an instance of the
following structure:

typedef struct _USBD_INTERFACE_LIST_ENTRY {
PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor;
PUSBD_INTERFACE_INFORMATION Interface;

} USBD_INTERFACE_LIST_ENTRY. *PUSBD_INTERFACE_LIST_ENTRY;

When you initialize an entry in the array, you set the InterfaceDescriptor
member equal to the address of an interface descriptor that you want to enable and

Chapter 11 The Universal Serial Bus

you set the Interface member to NULL. You define one entry for each interface, and
then you add an additional entry whose InterfaceDescriptor is NULL to mark the end.
For example, in my USB42 sample, I know in advance that only one interface ex
ists, so I use the following code to create the interface list:

PUSB_INTERFACE_DESCRIPTOR pid =
USBD_ParseConfigurationDescriptorEx(pcd. pcd. -1. -1. -1. -1. -I);

USBD_INTERFACE_LIST_ENTRY interfaces[2] = {
{pid. NULL}.
{NULL. NULL}.
} ;

That is, I parse the configuration descriptor to locate the first (and only) interface
descriptor. Then I defme a 2-element array to describe that one interface.

If you need to enable more than one interface because you're providing your own
multifunction device support, you'll repeat the parsing call in a loop. For ex:unple:

ULONG size = (pcd-)bNumInterfaces + 1) *
sizeof(USBD_INTERFACE-LIST_ENTRY);

PUSBD_INTERFACE_LIST_ENTRY interfaces =
(PUSBD_INTERFACE_LIST_ENTRY) ExAllocatePool(NonPagedPool. size);

RtlZeroMemory(interfaces. size);
ULONG i = 0;
PUSB_INTERFACE_DESCRIPTOR pid = (PUSB_INTERFACE_DESCRIPTOR) pcd;
while ((pid = USBD_ParseConfigurationDescriptorEx(pcd. pid •... »)

interfaces[i++].InterfaceDescriptor = pid++;

1. We first allocate memory to hold as many interface list entries as there are
interfaces in this configuration, plus one. We zero the entire array. Wher
ever we leave off in filling the array during the subseque~t loop, the next
entry will be NUll to mark the end 'of the array.

2. The parsing call includes whatever criteria are relevant to your device. In
the first iteration of the loop, pid points to the configuration descriptor.
In later iterations, it points just past the interface descriptor returned by
the preceding call.

3. Here, we initialize the pointer to an interface descriptor. The postincrement
of i causes the next iteration to initialize the next element in the array.
The postincrement of pid advances past the current interface descrip
tor so that the next iteration parses the next interface. (If you call USBD_
ParseConfigurationDescrlptorEx with the second argument pointing
to an interface descriptor that meets your criteria, you'll get back a pointer
to that same deSCriptor. If you don't advance past that descriptor before
making the next call, you're doomed to repeat the loop forever.)

521

Programming the Microsoft Windows Driver Model

522

The next step in the configuration process is to create a URB that we'll submit
soon, I promise-to configure the device:

PURB selurb = USBD_CreateConfigurationRequestEx(pcd. interfaces);

In addition to creating a URB (to which selurb points at this moment), USBD_
CreateConfigurationRequestEx also initializes the Interface members of your USBD_
INTERFACE_LIST entries to point to USBD_INTERFACE_INFORMATION structures.
These information structures are physically located in the same memory block as the
URB and will, therefore, be released back to the heap when you eventually call
ExFreePool to return the URB. An interface information structure has the following
declaration:

typedef struct _USBD_INTERFACE_INFORMATION {
USHORT Length;
UCHAR InterfaceNumber;
UCHAR AlternateSetting;
UCHAR Class;
UCHAR SubClass;
UCHAR P rotoco 1 ;
UCHAR Reserved;
USBD_INTERFACE_HANDLE InterfaceHandle;
ULONG NumberOfPipes;
USBD_PIPE_INFORMATION Pipes[l];
} USBD_INTERFACE_INFORMATION. *PUSBD_INTERFACE_INFORMATION;

The array of pipe information structures is what we're really interested in at this
point, since the other fields of the structure will be filled in by USBD when we sub
mit this URB. Each of them looks like this:

typedef struct _USBD_PIPE_INFORMATION {
USHORT MaximumPacketSize;
UCHAR EndpointAddress;
UCHAR Interval;
USBD_PIPE_TYPE PipeType;
USBD_PIPE_HANDLE PipeHandle;
ULONG MaximumTransferSize;
ULONG PipeFlags;
} USBD_PIPE_INFORMATION. *PUSBD_PIPE_INFORMATION;

So, we have an array of USBD_INTERFACE_L1ST entries, each of which points
to a USBD_INTERFACE_INFORMATION structure that contains an array of USBD_
PIPE_INFORMATION structures. Our immediate task is to fill in the Maximum
TransferSize member of each of those pipe information structures if we don't want
to accept the default value chosen by USBD. The default value is USBD_DEFAULT_
MAXIMUM_TRANSFER_SIZE, which was equal to PAGE_SIZE in the DDK I was using
at the time I wrote this book. The value we specify isn't directly related either to the

Chapter 11 The Universal Serial Bus

maximum transfer size for the endpoint (which governs how many bytes can be
moved in a single bus transaction) or to the amount of data the endpoint can absorb
in a series of transactions (which is determined by the amount of memory available
on the device). Instead, it represents the largest amount of data we will attempt to
move with a single URB. This can be less than the largest amount of data that an
application might send to the device or receive from the device, in which case our
driver must be prepared to break application requests into pieces no bigger than this
maximum size. I'll discuss how that task can be accomplished later in "Managing Bulk
Transfer Pipes."

The reason that we have to supply a maximum transfer size is rooted in the
scheduling algorithm that the host controller drivers use to divide URB requests into
transactions within bus frames. If we send a large amount of data, it's possible for
our data to hog a frame to the exclusion of other devices. We therefore want to
moderate our demands on the bus by specifying a reasonable maximum size for the
URBs that we'll send at once.

The code needed to initialize the pipe information structures is something
like this:

for (ULONG ii = 0; ii < <number of interfaces>; ++ii)
{

PUSBD_INTERFACE_INFORMATION pii = interfaces[ii].Interface:
for (ULONG ip = 0: ip < pii->NumberOfPipes: ++ip)

}
pi i ->Pi pes [i p] . MaximumTrans ferSi ze= <some constant>:

NOTE The USBD_CreateConfigurationRequestEx function initializes the
MaximumTransferSize member of each pipe information structure to USBD_
DEFAULT _MAXIMUM_ TRANSFER_SIZE and the PipeFlags member to O.
Bear this in mind when you look at older driver samples and when you write
your own driver.

Once you've initialized the pipe information structures, you're finally ready to
submit the configuration URB:

SendAwaitUrb(fdo. selurb):

Finding the Handles
Successful completion of the select configuration URB leaves behind various handle
values that you should record for later use:

• The UrbSelectConfiguration.C()nfigurationHandle member of the
URB is a handle for the configuration.

• The InterfaceHandle member of each USBD_INTERFACE_INFORMATION
structure contains a handle for the interface.

523

Programming the Microsoft Windows Driver Model

• Each of the USBD _PIPE_INFORMA nON structures has a PipeHandle for
the pipe ending in the corresponding endpoint.

For example, the USB42 sample records two handle values (in the device
extension):

typedef struct _DEVICE-EXTENSION {

USBD_CONFIGURATION_HANDLE hconfig:
USBD_PIPE_HANDLE hplpe:
} DEVICE_EXTENSION. *PDEVICE_EXTENSION:

pdx->hconfig = selurb->UrbSelectConfiguration.ConfigurationHandle:
pdx->hplpe = lnterfaces[0].lnterface->Pipes[0].PipeHandle:
ExFreePool(selurb):

At this point in the program, the select configuration URB is no longer needed
and can be discarded.

Shutting Down the Device
When your driver receives an IRP _MN_STOP _DEVICE request, you should place the
device into its unconfigured state by creating and submitting a select configuration
request with a NUll configuration pointer:

URB urb:
UsbBuildSelectConfigurationRequest(&urb.

slzeof(_URB_SELECT_CONFIGURATION). NULL):
SendAwaitUrb(fdo. &urb):

Managing Bulk Transfer Pipes

524

The companion disc has two sample programs that illustrate bulk transfers. The ftrst
and simplest is named USB42. It has an input bulk endpoint that delivers back the
constant value 42 each time you read it. (I call· this the Answer device because the
number 42 is Douglas Adams's answer to the Ultimate Question of Life, the Universe
and Everything in The Hitchhiker's Guide to the Galaxy. Most readers probably al
ready knew that, actually, given our common afftnity for science fiction.) The code
to do the reading is as follows:

URB urb:
UsbBul1dlnterruptOrBulkTransferRequest(&urb.

slzeof(_URB_BULK-OR-INTERRUPT_TRANSFER).
pdx->hpipe. Irp->Associatedlrp.SystemBuffer. NULL. cbout.
USBD_TRANSFER-DIRECTION_IN I USBD_SHORLTRANSFER-OK. NULl):

status = SendAwaitUrb(fdo. &urb):

Chapter 11 The Universal Serial Bus

This code runs in the context of the handler for a DeviceIoControl call that
uses the buffered method for data access, so the SystemBuffer field of the IRP points
to the place to which data should be delivered. The chout variable is the size of the
data buffer we're trying to fill.

There's not much to explain about this request. You indicate with a flag whether
you're reading (USBD_TRANSFER_DIRECTION_IN) or writing (no such flag) the
endpoint. You can optionally indicate with another flag bit (USBD_SHORT_
TRANSFER_OK) whether you're willing to tolerate having the device provide or
consume less data than the maximum for the endpoint. The pipe handle is something
you capture at IRP _MN_START_DEVICE time in the manner already illustrated.

The LOOPBACK sample is considerably more complicated than USB42. The
device it manages has two bulk transfer endpoints, one for input and another for
output. You can feed up to 16,384 bytes into the output pipe, and you can retrieve
what you put in from the input pipe. The driver itself uses standard IRP _MLREAD
and IRP _ML WRITE requests for data movement. Handling read and write requests
is so similar that the dispatch routines simply delegate these requests to a helper
function named ReadWrite:

NTSTATUS DispatchRead(PDEVICE_OBJECT fdo. PIRP Irp)
{

return ReadWrite(fdo. Irp. TRUE);
}

NTSTATUS DispatchWrite(PDEVICLOBJECT fdo. PIRP Irp)
{

return ReadWrite(fdo. Irp. FALSE);
}

NTSTATUS ReadWrite(PDEVICE_OBJECT fdo. PIRP Irp. BOOLEAN read)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx-)RemoveLock. Irp);
if (!NLSUCCESS(status»

return CompleteRequest(Irp. status. 0);

IoMarklrpPending(Irp);
IoSetCompletionRoutine(Irp. (PIO_COMPLETION_ROUTINE)

OnReadWriteComplete •...);
IoCallDriver(...);
return STATUS_PENDING;
}

525

Programming the Microsoft Windows Driver Model

526

In summary, ReadWrite acquires the remove lock, creates a URB to do a bulk
transfer, installs a completion routine, and submits the URB to the bus driver. The
function deals with the two complications that make this sample more informative
than USB42: the I/O operation might result in an error, and the request might need
to be broken up to be handled in stages.

LOOPBACK's overall strategy for submitting requests to the bus driver is to
change the personality of the read or write IRP into an IRP _MLINTERNAL_
DEVICE_CONTROL containing a URB and send this altered IRP down the stack. To
us and every driver above us, the IRP looks like an IRP _MLREAD or IRP _ML WRITE
because one of those two values will be in the MajorFunction field of the corre
sponding stack location. To the drivers below us, however, the IRP looks like an
internal control request. The completion routine will resubmit this same IRP to per
form the second and subsequent stages of a large transfer. Both features of this strategy
are perfectly legal but will probably seem novel if you're seeing them for the first time.
Without the error checking that's in the real LOOPBACK sample, here's ReadWrite
and its associated completion routine in all their glory:

struct _RWCONTEXT : public _URB
{

ULONG_PTR va;
ULONG length;
PMDL mdl:
ULONG numxfer;
} ;

NTSTATUS ReadWrite(PDEVICE_OBJECT fdo. PIRP Irp. BOOLEAN read)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp);
if (!NT_SUCCESS(status»

return CompleteRequest(Irp. status. 0);
USBD_PIPE_HANDLE hpipe = read? pdx->hinpipe pdx->houtpipe;

LONG haderr;
if (read)

haderr = InterlockedExchange(&pdx->inerror. 0);
else

haderr = InterlockedExchange(&pdx->outerror. 0);
if (haderr && !NLSUCCESS(ResetPipe(fdo. hpipe»)

ResetDevice(fdo);

PRWCONTEXT ctx = (PRWCONTEXT) ExAllocatePool(NonPagedPool.
s1zeof(RWCONTEXT»;

Chapter 11 The Universal Serial Bus

RtlZeroMemory(ctx, sizeof(RWCONTEXT»;

ULONG length = Irp->MdlAddress
7 MmGetMdlByteCount(Irp->MdlAddress) 0;

if (!length)
{

IoReleaseRemoveLock(&pdx->RemoveLock, Irp);
return CompleteRequest(Irp, STATUS_SUCCESS, 0);
}

ULONG_PTR va = (ULONG_PTR) MmGetMdlVirtualAddress(Irp->MdlAddress);

ULONG urbflags = (read 7 USBD_TRANSFER-DIRECTION_IN
USBD_TRANSFER-DIRECTION_OUT);

ULONG seglen = length;
if (seglen > MAXTRANSFER)

seglen (ULONG_PTR) PAGE-ALIGN(va) + PAGE_SIZE - va;

PMDL mdl IoAllocateMdl«PVOID) va, PAGE_SIZE, FALSE, FALSE, NULL);
IoBuildPartialMdl(Irp->MdlAddress, mdl, (PVOID) va, seglen);

UsbBuildlnterruptOrBulkTransferRequest(ctx,
sizeof(_URB_BULK-OR-INTERRUPT_TRANSFER),
hpipe, NULL, mdl, seglen, urbflags, NULL);

ctx->va = va + seglen;
ctx->length = length - seglen;
ctx->mdl = mdl;
ctx->numxfer = 0;

PIO_STACK-LOCATION stack = IoGetNextlrpStackLocation(Irp);
stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;
stack->Parameters.Others.Argumentl = (PVOID) (PURB) ctx;
stack->Parameters.DeviceloControl.loControlCode =

IOCTL_INTERNAL_USB_SUBMIT_URB;

IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE)
OnReadWriteComplete, (PVOID) ctx, TRUE, TRUE, TRUE):

IoMarklrpPending(Irp);
status = loCal 1 Driver(pdx->LowerDeviceObject, Irp);
return STATUS_PENDING;
}

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, PIRP Irp, PRWCONTEXT ctx)
{

(continued)

527

Programming the Microsoft Windows Driver Model

528

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->Dev1ceExtension;
BOOLEAN read =

(ctx->UrbBulkOrInterruptTransfer.TransferFlags &
USBD_TRANSFER-DIRECTION_IN) != 0;

ctx->nurnxfer +=
ctx->UrbBulkOrInterruptTransfer.TransferBufferLength;

NTSTATUS status = Irp->IoStatus.Status;
if (NT_SUCCESS(status) && ctx->length)

{

ULONG seglen = ctx->length;
if (seglen > MAXTRANSFER)

seglen = (ULON~PTR) PAGE-ALIGN(ctx->va) +
PAGE_SIZE - ctx->va;

IoBuildPart1alMdl(Irp->MdlAddress. ctx->rndl.
(PVOID) ctx->va. seglen);

ctx->UrbBulkOrInterruptTransfer.TransferBufferLength = seglen;

PIO_STACK-LOCATION stack = IoGetNextIrpStackLocation(Irp);
stack->MajorFunction = IRP_MJ_INTERNAL-DEVICE_CONTROL;
stack->Pararneters.Others.Argurnentl = (PVOID) (PURB) ctx;
stack->Pararneters.DeviceloControl.loControlCode =

IOCTL_INTERNAL_USB_SUBMIT_URB;
IoSetCornpletionRoutine(Irp. (PIO_COMPLETION_ROUTINE)

OnReadWriteCornplete. (PVOID) ctx. TRUE. TRUE. TRUE);

ctx->va += seglen;
ctx->length -= seglen;

IoCallDriver(pdx->LowerDeviceObject. Irp);
return STATUS_MORE_PROCESSING_REQUIRED;
}

if (NT_SUCCESS(status»
Irp->IoStatus.Inforrnation = ctx->nurnxfer;

else
{

if (read)
InterlockedIncrernent(&pdx->1nerror):

else
InterlockedIncrernent(&pdx->outerror);

Chapter 11 The Universal Serial Bus

ExFreePool(ctx-)mdl);
ExFreePool(ctx);
IoReleaseRemoveLock(&pdx-)RemoveLock. Irp);

return status;
}

1. ReadWrite needs to create a URB that it will share with OnReadWrite
Complete, and it needs to provide some additional context information
to keep track of the ongoing progress of the operation. This RWCONfEXT
structure encompasses both purposes. (Deriving one structure from another
as shown here is a C++ stratagem for declaring a structure that begins with
the members of the base structure.) In addition to the URB, this structure
includes va, the virtual address of the current portion of the user-mode
buffer; length, the residual count for this operation; mdl, a partial memory
descriptor list describing the current segment of the transfer; and numxfer,
the cumulative number of bytes transferred.

2. We acquire the remove lock here. The balancing call to IoRelease
RemoveLock occurs in the completion routine.

3. This is one of a few places where ReadWrite needs to distinguish between
read and write requests. Here, we're obtaining the handle of the pipe
through which we'll move data.

4. Either the input or the output pipe might have had an error the last time
we tried to use it, in which case either inerror or outerror will be set
in the device extension. Before launching a new operation, we try to reset
the pipe that had the error. If that doesn't work, we reset the entire de
vice. I'll explain the ResetPipe and ResetDevice helper functions in the
next section.

5. This driver declared itself as using the DO_DlRECT_IO buffering method
at AddDevice time, so the IRP has a pointer to a memory descriptor list
describing the Clocked) pages containing the user-mode buffer. It's cus
tomary to obtain the transfer length from the MDL, as shown here, rather
than from the stack location.

6. We'll be performing the operation in blocks no bigger than a page. The
choice of PAGE_SIZE as a maximum transfer size was a design choice, and
you might pick a different value as preViously described. To gain what
ever benefits might flow from processing a page-aligned buffer, I also
decided to make the first transfer short, if necessary, so that later trans
fers would be page-aligned.

529

Programming the Microsoft Windows Driver Model

530

7. We'll be using a partial memory descriptor list for each segment of the
transfer. We need an MDL that has the capacity to describe the largest
number of pages we'll transfer in a single segment. This number is either
one or two, depending on the alignment of the buffer. After allocating the
MDL, we call IoBulldPartialMdl to map the initial segment.

8. We're ready at this point to build and submit a URB for the first segment
of the read or write. The key task here is our initialization of the next
driver's stack entry to describe an internal control operation instead of a
read or write. The main advantage of doing this is that we don't need extra,
fairly involved logic to handle cancellation of a subsidiary IRP when the
main read/write IRP gets cancell€d.

9. When one stage in the transfer completes successfully, the bus driver calls
IoCompleteRequest and our completion routine gains control. If the
request isn't finished yet, we'll resubmit the URB with a new buffer ad
dress and length. Otherwise, we'll allow the completion process to run
its course. Don't forget that the IRP we're dealing with originally came to
us with a major function code of IRP _MLREAD or IRP _ML WRITE.

10. Here we set up the partial MDL for the next segment of the transfer. The
user-mode virtual address is pretty useless per se because this completion
routine executes in an arbitrary thread context. IoBuildPartialMdl is
mapping a subset of a master MDL that's already been probed and locked,
however. Since it merely copies physical page numbers from the master
MDL, it doesn't depend on executing in any particular memory context.

11. Here we set up the URB and I/O stack for the next stage. The only field
in the URB that requires change is the byte count. The URB's MDL pointer,
flags, and so on, are as ReadWrite left them. (The MDL itself changed, but
its location in memory didn't.) We need to completely reinitialize the next
stack location, however, because 10CompieteRequest set most of it to o.

12. We reissue this IRP to the bus driver and return the status code STATUS_
MORE_PROCESSING_REQUIRED to hal~ the completion process inside
10CompleteRequest. When this new stage finishes, this completion rou
tine will regain control.

13. Beginning here we handle the final completion of the read/write request.
We set the IoStatus.Information field to be the total number of bytes
we'Ve successfully transferred and clean up the memory we allocated in
ReadWrite. We also release the remove lock to balance the acquisition that
ReadWrite did.

Chapter 11 The Universal Serial Bus

You might notice that the completion routine in this sample doesn't contain the
standard boilerplate code to conditionally call IoMarkIrpPending. That's not nec
essary in this case because we made that call in ReadWrite.

You'll also notice that when the completion routine calls IoCallDriver to re
submit the URB, it then unconditionally returns STATUS_MORE]ROCESSING_
REQUIRED. There's an important but subtle reason for this behavior. If the bus driver
accepts the new URB normally, it will return STATUS_PENDING to us. (This is just
how USBD works-it's not a general characteristic of bus drivers.) In this case, we
certainly should return STATUS_MORE_PROCESSING_REQUIRED because we want
IoCompleteRequest to stop processing the IRP for the time being. The bus driver
will complete it again later. If the bus driver were to fail the new submission, how
ever, or if it were for some reason to complete it in the dispatch routine, it will have
called IoCompleteRequest before returning. We've already processed that completion
event in a recursive call! We shouldn't, therefore, do anything more with this IRP or
allow the initial invocation of IoCompleteRequest to do anything with it either. Re
turning STATUS_MORE]ROCESSING_REQUIRED is always the right thing to do here.

Error Recovery
I can't say much of a general nature about recovering from errors in USB operations.
When you send or receive data to a bulk transfer endpoint, the bus and bus driver
take care of retrying garbled tr~nsmissions. Consequently, if your URB appears to
complete successfully, you can be confident that the data you intended to transfer
has in fact been transferred correctly. When an error occurs, however, your driver
needs to attempt some sort of recovery. The first line of defense is generally to unstall
the endpoint with which you've been trying to communicate so that you can try again.
Here's a helper routine named ResetFipe that will do that:

NTSTATUS ResetPipe(PDEVICE_OBJECT fdo. USBD_PIPE_HANDLE hpipe)
{

URB urb;
urb.UrbHeader.Length = (USHORT) sizeof(_URB_PIPE_REQUEST);
urb.UrbHeader.Function = URB_FUNCTION_RESET_PIPE;
urb.UrbPipeRequest.PipeHandle = hpipe;

NTSTATUS status = SendAwaitUrb(fdo. &urb);
return status;
}

As you can see, all that's required is to submit a URB with the RESET_PIPE
function code. Since this helper routine indirectly waits for the URB to complete, you
must be running at PASSIVE_LEVEL to call it. What this URB does, in USB terms, is
clear the ENDPOINT ~HAL T feature. If the endpoint was stalled, it then becomes ready
for the next transaction.

531

Prograllmlng the Microsoft Windows Driver Model

If you're unable to reset the pipe, you can then try to reset the entire device
by using this ResetDevice function:

VOID ResetDevice(PDEVICE_OBJECT fdo)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension;

KEVENT event;
KelnitializeEvent(&event. NotificationEvent. FALSE);
IO_STATUS_BLOCK iostatus;

PIRP Irp = IoBuildDeviceloControlRequest
(IOCTL-INTERNAL_USB_RESET_PORT. pdx-)LowerDeviceObject.
NULL. 0. NULL. 0. TRUE. &event. &iostatus);

if (! I rp)
return;

NTSTATUS status = (IoCallDriver(pdx-)LowerDeviceObject. Irp);
if (status == STATUS_PENDING)

KeWaitForSingleObject(&event. Executive. KernelMode.
FALSE. NULL);

}

The port-reset command causes the hub driver to reinitialize the device while pre
serving the existing configuration. This process might fail somewhere along the way,
in which case the command will complete with an error status. If the device turns
out to be missing, for example, the hub driver fails the request with STATUS_
UNSUCCESSFUL.

Managing Interrupt Pipes

532

From the device side of the bus, an intelTIlpt pipe is practically identical to a bulk transfer
pipe. The only important difference from that perspective is that the host will be poll
ing an intelTIlpt endpoint with some guaranteed frequency. The device will respond
with NAK except at instants when it will present an intelTIlpt to the host. To report
an intelTIlpt event, the device ACKs the host after providing whatever morsel of data
is supposed to accompany the intelTIlpt.

From the driver's perspective, managing an interrupt pipe is quite a bit more
complicated than managing a bulk pipe. When the driver needs to read or write data
to a bulk pipe, it just creates an appropriate URB and sends it to the bus driver. But
for an intelTIlpt pipe to serve its intended purpose of notifying the host of interest
ing hardware events, the driver basically needs to keep a read request outstanding
at all times. I don't recommend using a system-polling thread in this case because
power management greatly complicates the management of the separate thread. The
best way to keep a read request active is to use the same idea I showed you in
LOOPBACK, where we have a completion routine that keeps recycling a URB.

Chapter 11 The Universal Serial Bus

The USBINT sample illustrates how to manage an interrupt pipe with a URB
that's always active. I wrote a few helper rou~es to assist in the job. I won't describe
all of these functions in detail; please refer to the READWRITE.CPP file with the
USBINT sample on the companion disc.

CreatelnterruptUrb CreatelnterruptUrb creates the URB and an associated IRP.
The device extension has fields named PoIlingUrb and PolIingIrp that point to these
two structures. We call this function during our processing of IRP _MN_START_
DEVICE.

DeletelnterruptUrb DeleteinterruptUrb is the counterpart of CreatelnterruptUrb.
Whenever we're shutting the device down, we call this function to release the IRP
and URB memory blocks.

StartlnterruptUrb StartinterruptUrb launches a URB to poll the device's interrupt
endpoint. We call this function whenever we activate the device, which we do when
we open the first handle after a period in which no handles were open. (We also
power the device on at the same time. We can't have a URB outstanding when the
device is powered down, but we want one outstanding when the device is powered
up in order to service an application.)

Onlnterrupt Oninterrupt is a standard I/O completion routine that functions as
an interrupt routine for the device. It looks like this:

NTSTATUS Onlnterrupt(PDEVICE_OBJECT junk. PIRP Irp.
PDEVICE_EXTENSION pdx)
{

if (NT_SUCCESS(Irp-)IoStatus.Status»
{

KdPri nt(("USBI NT - Interrupt! \n"» :
StartInterruptUrb(pdx-)DeviceObject):
}

return STATUS_MORE_PROCESSING_REQUIRED:
}

1. This is where you would do whatever interrupt processing is required by
your device. In the USBINT sample, there's code at this point to increment
a count of pending interrupts or complete a pending 10CTL that an ap
plication is using as a means of knowing when interrupts occur.

2. Here, we initiate another poll for an interrupt using the same URB.

3. We return STATUS_MORE]ROCESSING_REQUIRED beqLUse we don't
want IoCompleteRequest to do anything else with the IRP.

533

Programming the Microsoft Windows Driver Model

MORE ABOUT THE USBINT SAMPLE

The USBINT sample on the companion disc illustrates how to manage a device
with an interrupt pipe. The device firmware (in the EZUSB subdirectory) de
fines a device with a single input interrupt endpoint. Each time you press and
release the FI button on the Anchor Chips development board, the firmware

> r

increments the integer being displayed in the 7-segment LED and arms the
endpoint to deliver four bytes of data on the next IN transaction. The driver (in
the SYS subdirectory) continuously tries to read the endpoint. The test program
(in the TEST subdirectory) issues DeviceloControl calls to count and display the
interrupts that occur. Terminate the test program with Ctrl+Break. The number
displayed by the device should match the low-order digit displayed by the test

. program.

Control Requests

534

If you refer back to Table 11-2 on page 499, you'll notice that there are 11 standard
types of control requests. You and I will never explicitly issue SET_ADDRESS requests.

. The bus driver does that when a new device initially comes on line; by the time we
ever get control in a WDM driver, the bus driver has assigned an address to the device
and read the device deSCriptor to learn that we're the device driver. I've already dis
cussed how to create the URBs that cause the bus driver to send control requests for
getting descriptors or for setting a configuration or interface in the "Initiating Requests"
and "Configuration" sections. In this section, I'll fill in the blanks related to the re
maining kinds of control transactions.

Controlling Features
If we want to set or clear a feature of a device, an interface, or an endpoint, we submit
a feature URB. For example, the following code (which appears in the FEATURE
sample driver on the companion disc) sets a vendor-defined interface feature:

URB urb;
UsbBuildFeatureRequest(&urb.

URB_FUNCTION_SET_FEATURE_TO_INTERFACE.
FEATURE_LEO_DISPLAY. 1. NULL);

status = SendAwaitUrb(fdo. &urb);

The second argument to UsbBulldFeatureRequest indicates whether we want
to set or clear a feature belonging to the device, an interface, an endpOint, or another
vendor-specific entity on the device. This parameter takes eight possible values, and
you could guess without me telling you that they're formed according to the follow
ing formula:

Chapter 11 The Universal Serial Bus

URB_FUNCTION_ [SET I CLEAR] _FEATURE_TO_
[DEVICE I INTERFACE I ENDPOINT I OTHER]

The third argument to UsbBuildFeatureRequest identifies the feature in ques
tion. In the FEATURE sample, I invented a feature called FEATURE_LED_DISPLAY.
The fourth argument identifies a particular entity of whatever type is being addressed.
In this example, I wanted to address interface 1, so I coded 1.

USB defines two standard features that you might be tempted to control your
self using a feature URB: the remote wake-up feature and the endpoint stall feature.
You don't, however, need to set or clear these features yourself because the bus driver
does so automatically. When you issue an IRP _MN_ WAIT_WAKE request-see Chapter
8, "Power Management"-the bus driver ensures that the device's configuration al
lows for remote wake-up, and it also automatically enables the remote wake-up
feature for the device. The bus driver issues a clear feature request to unstall a de
vice when you issue a RESET_PIPE URB.

ABOUT THE FEATURE SAMPLE

The FEATURE sample on the companion disc illustrates how to set or clear a
feature. The device frrmwate (in the EZUSB subdirectory) defmes a device with
no endpoints. The device supports an interface-level feature numbered 42,
which is the FEATURE_LED_DISPLAY referenced symbolically in the driver.
When the feature is set, the Anchor Chips development board's 7-segment LED
display becomes illuminated and shows how many times the feature has been
set since the device was attached (modulo ~O). When the feature is clear, the
LED display shows only the decimal point.

The FEATURE device driver (in the SYS subdirectory) contains code to set
and clear the feature and to exercise a few other control commands in response
to IOCTL requests. Refer to CONTROL.CPP to see this code, which isn't much
more complicated than the code fragments displayed in the text.

The test program (in the TEST subdirectory) is a Win32 console applica
tion that performs a DeviceloControl to set the custom feature; issues additional
DeviceloControl calls to obtain status masks, the configuration number, and the
alternate setting for the single interface; waits five seconds; and then 'performs
another DeviceIoControl to clear the feature. Each time you run the test, you
should see the development board's display light up for five seconds, show
ing successively larger decimal integers.

535

Programming the Microsoft Windows Driver Model

536

Determining Status
If you want to obtain the current status of the device, an interface, or an endpoint,
you formulate a get status URB. For example:

URB urb;
USHORT epstatus;
UsbBuildGetStatusRequest(&urb. URB_FUNCTION_GET_STATUS_FROM_ENDPOINT.

<index>. &epstatus. NULL. NULL);
SendAwaitUrb(fdo. &urb);

You can use four different URB functions in a get status request, and theyal
low you to retrieve the current status mask for the device as a whole, for a specified
interface, for a specified endpoint, or for a vendor-specific entity. See Table 11-8.

The status mask for a device indicates whether the device is self-powered and
whether or not its remote wake-up feature is enabled. See Figure 11-13. The mask
for an endpoint indicates whether or not the endpoint is currently stalled. See Fig
ure 11-14. USB now defines interface-level status bits related to power management.
Refer to the "USB Feature Specification: Interface Power Management" document on
line at the USB Web site, which at press time was available at bttp;//www.usb.orgl
developersidevclass.btml. USB should never prescribe vendor-specific status bits since
they're, by definition, up to vendors to specify.

Operation Code

URB_FUNCTION_GET_STATUS_FROM_DEVICE

URB_FUNCTION_GET_STATUS]ROM_INTERFACE

URB_FUNCTION_GELSTATUS_FROM_ENDPOINT

URB_FUNCTION_GET_STATUS_FROM_OTIIER

Table 11-8. URB function codes used for getting status.

Retrieve Status From •..

Device as a whole

Specified interface

Specified endpoint

Vendor-specific object

_ ~ 1 = Self-powered
0= Bus-powered

1= Enabled
..... -t~O= Disabled

Figure 11-13. Bits in device status.

15 bits

Figure 11-14. Bits in endpoint status.

Managing Isochronous Pipes

Chapter 11 The Universal Sarlal Bus

"'-I~1 = Endpoint stalled
0= Not stalled

The purpose of an isochronous pipe is to allow the host and the device to exchange
time-critical data with guaranteed regularity. The bus driver will devote up to 90
percent of ~e bus bandwidth to isochronous and interrupt transfers. What this means
is that every 1-ms frame will include reserved time slots long enough to accommodate
maximum-sized transfers to or from each of the isochronous and interrupt endpoints
that are currently active. Figure 11-15 illustrates this concept for three different de
vices. Devices A and B each have an isochronous endpoint, for which a fixed and
relatively large amount of time is reserved in every frame. Device C has an interrupt
endpoint whose polling frequency is once every two frames; it has a reservation for
a small portion of every second frame. During frames that don't include a poll of
Device C's interrupt endpoint, additional bandwidth would be available, perhaps for
bulk transfers or other purposes.

Time

Framen Frame n+1 Frame n+2

Interrupt Endpoint
(Polled every 2d frame)

Figure 11-15. Allocation of bandwidth to isochronous and interrupt endpoints.

537

Pragl'8lllllllng the Microsoft Windows Driver Model

538

Re.erving Bandwidth
The bus driver reserves bandwidth for you when you enable an interface by exam
ining the endpoint descriptors that are part of the interface. Reserving bandwidth is
just like buying a theater ticket, though: you don't get a refund if you don't use the
space. Consequently, it's important to enable an interface that contains an isochro
nous endpoint only when you'll be using the bandwidth you thereby reserve, and
it's important that the endpoint's declared maximum transfer size be approximately
the amount you intend to use. Normally, a device with isochronous capability has a
default interface that doesn't have any isochronous or interrupt endpoints. When you
know you're about to access that capability, you enable an alternate setting of the
same interface that does have the isochronous or interrupt endpoints.

An example will clarify the mechanics of reserving bandwidth. The USBISO
sample on the companion disc has an interface with a default and an alternate set
ting. The default setting has no endpoints. The alternate setting has an isochronous
endpoint with a maximum transfer size of 256 bytes. See Figure 11-16.

r------------::=:;;;;::--=l-Isochronous
Endpoint

Figure 11-16. DesCriptor structure/or the USBISO device.

At StartDevice time, we select a configuration based on the default interface. Since
the default interface doesn't have an isochronous or interrupt endpoint in it, we don't
reserve any bandwidth just yet. When someone opens a handle to the device, how
ever, we invoke the follOwing SelectAlternateterface helper function to switch to
the alternate setting for our interface. (Again, I've omitted the error checking.)

NTSTATUS SelectAlternatelnterface(PDEVICLOBJECT fdo)
{

PDEVICLEXTENSION pdx = (PDEVICLEXTENSION) fdo->DeviceExtension;
PUSB_INTERFACLDESCRIPTOR pid =

USBD_ParseConfigurationDescriptorEx(pdx->pcd. pdx->pcd.
0. 1. -1. -1. -1);

ULONG npipes = pid->bNumEndpoints;
ULONG size = GET_SELECT_INTERFACLREQUEST_SIZE(npipes);
PURB urb = (PURB) ExAl1ocatePool(NonPagedPool. size);
RtlZeroMemory(urb. size);

Chapter 11 The Universal Serial Bus

UsbBufl dSel ectInterfaceRequest(urb. si ze. pdx- >hconfi g. 0. 1);
urb->UrbSelectInterface.lnterface.Length =

GET_USBD_INTERFACE-SIZE(npipes);
urb->UrbSelectInterface.lnterface.Pipes[0].MaximumTransferSize =

PAGE-SIZE;
NTSTATUS status = SendAwaitUrb(fdo. &urb);
if (NT_SUCCESS(status»

{

pdx->hinpipe =
urb.UrbSelectInterface.Interface.Pipes[0].PipeHandle;

status = STATUS_SUCCESS;
}

ExFreePool(urb);
return status;
}

1. Before we can allocate space for the. URB, we need to know how many
pipe descriptors it Will contain. '!he most common way to find this num
ber is to go back to the grand unified configuration descriptor and find
the descriptor for interface 0, alternate setting 1. '!hat descriptor contains
a count of endpoints, which is the same as the number of pipes that we're
about to open.

2. GET_SELECT_INTERFACE_REQUEST_SIZE calculates the number of bytes .
needed to hold a select interface request that will open the specified
number of pipes. We can then allocate memory for the URB and initial
ize it to O. '!he real code sample on the companion disc checks to make
sure that the call to ExAIlocatePooI succeeded, by the way.

3. Here, we build a URB to select alternate setting- 1 (the last argument) of
interface number 0 (the next-to-last argument).

4. We must do these two additional initialization steps to finish setting up the
URB. Failing to set the interface information structure's length earns you
a STATIJS_BDFFER_TOO_SMALL failure right away. Failing to set the
MaximumTraosferSize fields of the pipe descriptors earns you a STATUS_
INVAliD_PARAMETER when you try to read or write the,pipe.

5. When we submit this URB, USBD automatically closes the current setting
of this interface, including all of its endpoints. '!hen USBD tells the de
vice to enable the alternate setting, and it .creates pipe descriptors for the
endpoints that are·part of the. alternate setting. If opening the new inter
face fails for some reason, USBD reopens the previous interface, and all
your previous interface and pipe handles remain valid.

6. My SendAwaitUrb helper function simply returns an error if it's unable
to select the one-and-only alternate setting for this interface. I'll have a bit
more to say about how you should handle errors after this numbered list.

539

Programming the Microsoft Windows Driver Model

540

7. In addition to selecting the new interface at the device level, USBD also
creates an attay of pipe descriptors from which we can extract handles
for later use ..

The select interface call might fail because not enough free bandwidth exists
to accommodate our endpoint. We would fmd out about the failure by examining
the URB status:

Dealing with lack of bandwidth poses a bit of a problem. The operating sys
tem doesn't currently provide a convenient way for competing drivers to negotiate
a fair allocation. Neither does it provide for any sort of notification that some other
driver has failed to acquire needed bandwidth so that we might give up some of ours.
In this state of affairs, therefore, you have two basic choices. One choice is to pro
vide multiple alternate interface settings, each of which has a different maximum
transfer size for its isochronous endpoint(s). When you detect an allocation failure,
you can try to select progressively less-demanding settings until you finally succeed.

A savvy end user who's able to launch the Windows 2000 Device Manager applet
can display a property page for the USB host controller-see Figure 11-17-that
displays information about the current allocation of bandwidth. Double-clicking one
of the devices listed in the page brings up the property display for the device in
question. A well-crafted page could perhaps communicate with the associated device
driver in order to scale back its demand for bandwidth. This whole area seems ripe
for a more automatic Microsoft-driven solution, though.

Figure 11-17. A property page for the USB host controller.

Chapter 11 The Universal Serial Bus

Your other choice for handling lack of bandwidth is to allow an IRP to fail in
such a way that an application can alert the end user to the problem. Perhaps the
end user can unplug something so that your device can be accommodated. This is
the option I chose in the USBISO sample except I didn't bother to put code into the
test application that would respond to a bandwidth allocation failure-TEST.EXE will
just fail. To adopt this option, you need to know how the failure shows up back in
user mode. If the URB fails with USBD_STATUS_NO_BANDWIDTII, the NTSTATUS
code you get back from the internal control IRP is STATUS_DEVICILDATA_ERROR,
which isn't very specific. An application call to GetLastError would retrieve ERROR_
CRC' as the error code. There's no easy way for an application to discover that the
real cause of the error is a lack of bandwidth, unfortunately. If you're interested in
diving down this particular rat hole to reach a conclusion, read the sidebar.

How AN ApPLICATION

DISCOVERS YOU'RE OUT OF BANDWIDTH

Suppose you do what USBISO does and try to select the high-bandwidth alter
nate interface when you receive an IRP,-MLCREATE. Further suppose you
complete the IRP with the status code you get back when there's not enough
bandwidth-namely, STATUS_DEVICE_DATA_ERROR. Your application caller
will eventually see ERROR_CRC, as I said in the main text. What now? The
application can't send you an IOCTL to find out the real cause of the error
because it doesn't have a handle to your device. You failed the IRP _MLCREATE,
remember? So maybe you need to have a way for people to open handles to
your device that doesn't try to reserve bandwidth. Then you need some other
way for an application to ask for bandwidth, perhaps by means of an IOCTL
operation. Or perhaps your application just interprets ERROR_CRC from a call
to CreateFile as meaning there's no bandwidth. Actual data errors are pretty
unlikely, after all, so that interpretation would be correct much of the time.

But the best solution would be a specific NTSTATUS code and matching
Win32 error code that means "no bandwidth." Keep your eyes on NTSTATUS.H
and WINERROR.H for future developments.

USBISO performs the converse operation of selecting the original default inter
face when it receives the IRP _MLCLOSE for the last remaining open handle. That
operation entails issuing another select interface URB, but with the value 0 for the
alternate interface index.

541

Programming the Microsoft Windows Driver Model

542

Initiating a Series of Isochronous Transfers
You can use an isochronous pipe either to read or write data in discrete chunks or
to provide or consume data in a continuous stream. Data streaming is probably the
most frequent occupation for an isochronous pipe, actually. But, in addition to under
standing the mechanics of working with the USB bus driver, you must understand and
solve additional problems related to data buffering, rate matching, and so on, if you
want to operate a streaming pipe. The kernel-streaming component of the operating
system deals with all these additional problems. Unfortunately, we didn't have time
to include a chapter on kernel streaming in this book. I'm therefore going to show
you only how to program a discrete transfer over an isochronous pipe.

To read from or write to an isochronous pipe, you'll of course use a URB with
the appropriate function code. But there are a few wrinkles that you haven't seen
yet associated with creating and submitting the isochronous URB. First, you must be
aware of how the device will break up a transfer into packets. In general, the device
is free to accept or deliver any amount of data less than the endpoint's declared
maximum. (Any leftover bandwidth on the bus simply won't be used.) The packet
size the device will use doesn't have any other necessary relation with the endpoint
maximum, with the maximum amount of data you said you'd transfer in a URB, or
with the amount of data the device and application can exchange in a series of trans
actions. The firmware for the USBISO device, for example, works with 16-byte packets
even though the isochronous endpOint in question can handle up to 256 bytes per
frame according to its descriptor. You must have a priori· knowledge of how big these
packets will be before you construct a URB because the URB must include an array
of descriptors for each packet that will be exchanged and each of these deSCriptors
must indicate how big the packet will be.

In an impractical simple situation, you could allocate an isochronous URB in
the following way:

ULONG length = MmGetMdlByteCount(Irp-)MdlAddress);
ULONG packsize ~ 16; II a constant in USBISO
ULONG npackets = (length + packsize - 1) I packsize;
ASSERT(npackets <= 255);
ULONG size = GET_ISO_URB_SIZE(npackets);
PURB urb = (PURB) ExAllocatePool(NonPagedPool. size);
RtlZeroMemory(urb. size);

The key step in this fragment is the use of the GET_ISO_URB_SIZE macro to calcu
late the total size needed for an isochronous URB to transfer a given number of data
packets. A single URB can accommodate a maximum of 255 isochronous packets,
by the way, which is why I put the ASSERT statement into this code. Limiting the
application to just 255 packets is not practical, as I said, so we will do something more

Chapter 11 The Universal Serial Bus

complex in the real USBISO sample driver. For the time being, though, I just want
to describe the mechanics of building a single URB for an isochronous (ISO) transfer.

There being no UsbBuiIdXXxRequest macro for building an isochronous URB,
we go on to initialize the new URB by hand:

urb->UrbIsochronousTransfer.Hdr.Length = (USHORT) size;
urb->UrbIsochronousTransfer.Hdr.Function =

URB_FUNCTION_ISOCH_TRANSFER;
urb->UrbIsochronousTransfer.PipeHandle = pdx->hinpipe;
urb->UrbIsochronousTransfer.TransferFlags =

USBD_TRANSFER-DIRECTION_IN I USBD_SHORT_TRANSFER-OK I
USBD_START_ISO_TRANSFER-ASAP;

urb->UrbIsochronousTransfer.TransferBufferLength = length;
urb->UrbIsochronousTransfer.TransferBufferMDL

Irp->MdlAddress;
urb->UrbIsochronousTransfer.NumberOfPackets npackets;

for (ULONG i = 0; i < npackets; ++i. length -= packsize)
{

urb->UrbIsochronousTransfer.IsoPacket[i].Offset = i * packsize;
}

The array of packet descriptors collectively describes the entire data buffer that we'll
read in to or write out from. This buffer has to be contiguous in virtual memory, which
basically means that you need a single MDL to describe it. It would be pretty hard
to violate this rule. Reinforcing the idea of contiguity, each packet descriptor con
tains just the offset and length for a portion of the entire buffer and not an actual
pointer. The host controller driver is responsible for setting the length; you're respon
sible for setting the offset.

The second wrinkle with starting an isochronous transfer involves timing. USB
uniquely identifies each 1-ms frame with an ever-increasing number. It's sometimes
important that a transfer begin in a specific frame. USBD allows you to indicate this
fact by explicitly setting the StartFrame field of the URB. I'll discuss how and why
you might need to be explicit about the starting frame number in the next section.
USBISO doesn't depend on timing, however. It therefore sets the USBD_START_
ISO _TRANSFER_ASAP flag to indicate that the transfer should be started as soon as
possible.

The final wrinkle in isochronous processing has to do with how the transfer
ends. The URB itself will succeed overall even though one or more packets had data
errors. The URB has a field named ErrorCount that indicates how many packets
encountered errors. If this ends up nonzero, you could loop through the packet
descriptors to examine their individual status fields.

543

Programming the Microsoft Windows Driver Model

544

Achieving Acceptable Performance
To achieve acceptable performance for an isochronous transfer that requires more
than one URB, you need to program your driver in a more complex way than any of
the samples I've shown you so far. As soon as one URB finishes, you want the bus
driver to immediately start processing the next one. Interposing a completion rou
tine (as in the LOOPBACK sample) won't be fast enough. The least complex strat
egy to keep data moving is the one employed by the USBISO sample: create a set of
subsidiary IRP/URB pairs and submit them all at once.

NOTE The need to create multiple IRPs, and the consequent enormous com
plication of cancellation logic, arises because you can currently submit only
one URB with an IRP. If it were possible to use the UrbLink field to chain a series
of URBs from a single IRP, you wouldn't need all the complication I'm about to
describe.

The basic idea behind USBISO's read/write logic is to have the completion
routine for subsidiary IRPs complete the main read/write IRP when the last sub
sidiary IRP finishes. To make this idea work, I declared the following special-purpose
context structure:

typedef struct _RWCONTEXT {
PDEVICE_EXTENSION pdx;
PIRP mainirp;
NTSTATUS status;
ULONG numxfer;
ULONG numirps;
LONG numpending;
LONG refcnt;
struct {

PIRP i rp;
PURB urb;
PMDL mdl;
} sub[1];

} RWCONTEXT. *PRWCONTEXT;

The dispatch routine for IRP _MLREAD-USBISO doesn't handle IRP _ML WRITE
requests-calculates the number of subsidiary IRPs required for the complete trans
fer and allocates one of these context structures, as follows:

ULONG packsize = 16;
ULONG segsize = USBD_DEFAULT_MAXIMUM_TRANSFER-SIZE;
if (segsize / packsize > 255)

segsize = 255 * packsize;
ULONG numirps = (length + segsize - 1);

Chapter 11 The Universal Serial Bus

ULONG ctxsize = sizeof(RWCONTEXT) +
(numirps - 1) * sizeof«(PRWCONTEXT) 0)->sub);

PRWCONTEXT ctx = (PRWCONTEXT) ExAllocatePool(NonPagedPool. ctxsize);
RtlZeroMemory(ctx. ctxsize);
ctx->numirps = ctx->numpending = numirps;
ctx->pdx = pdx;
ctx->mainirp = Irp;
ctx->refcnt = 2;
Irp->Tail.Overlay.DriverContext[0] = (PVOID) ctx;

I'll explain the purpose of the last two statements in this sequence when I dis
cuss USBISO's cancellation logic. We now perform a loop to construct numirps IRP _
MLINTERNAL_DEVICE_CONTROL requests. At each iteration of the loop, we call
IoAllocateIrp to create an IRP with one more stack location than is required by the
device object immediately under us. We also allocate a URB to control one stage of
the transfer and a partial MDL to describe the current stage's portion of the main I/O
buffer. We record the address of the IRP, the URB, and the partial MDL in an element
of the RWCONTEXT structure's sub array. We initialize the URB in the same way as
I showed you earlier. Then we initialize the subsidiary IRP's first two I/O stack loca
tions, as follows:

IoSetNextIrpStackLocation(subirp);
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(subirp);
stack->DeviceObject = fdo;
stack->Parameters.Others.Argumentl = (PVOID) urb;
stack->Parameters.Others.Argument2 = (PVOID) mdl;

stack = IoGetNextIrpStackLocation(subirp);
stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;
stack->Parameters.Others.Argumentl = (PVOID) urb;
stack->Parameters.DeviceIoControl.IoControlCode =

IOCTL-INTERNAL_USB_SUBMIT_URB;

IoSetCompletionRoutine(subirp. (PIO_COMPLETION_ROUTINE)
OnStageComplete. (PVOID) ctx. TRUE. TRUE. TRUE);

The first stack location is for use by the OnStageComplete completion routine we
install. The second is for use by the lower-level driver.

Once we've built all the IRPs and URBs, it's time to submit them to the bus driver.
Before we do so, however, it's prudent to check whether the main IRP has been
cancelled, and it's necessary to install a completion routine for the main IRP. The logic
at the end of the dispatch routine looks like the code on the following page.

545

PrograRllling the Microsoft Windows Driver Mode.

546

IoSetCancelRoutine(Irp. OnCancelReadWrite);
if (Irp-)Cancel)

{

status = STATUS_CANCELLED;
if (IoSetCancelRout1ne(Irp. NULL»

--ctx-)refcnt;
}

else
status = STATUS_SUCCESS;

IoSetCompletionRoutine(Irp.· (PIO_COMPLETION_ROUTINE) OnReadWriteComplete.
(PYOID) ctx. TRUE. TRUE. TRUE);

IoMarkIrpPending(Irp);
IoSetNextIrpStackLocat1on(Irp);

if (INT_SUCCESS(status»
{

for (i = 0; i < numirps; ++i)
{

if (ctx-)sub[i] .urb)
ExFreePool(ctx-)sub[i].urb);

if (ctx-)sub[i].mdl)
IoFreeMdl(ctx-)sub[i].mdl);

}

CompleteRequest(Irp. status. 0);
return STATUS_PENDING;
}

for (i = 0; i < numirps; ++i)
IoCallDriver(pdx-)LowerDeviceObject. ctx-)sub[i].irp):

return STATUS_PENDING;

Handling Cancellation of the Main IRP
To explain the two completion routines that I'm using in this example--that is,

OnReadWriteComplete for the main IRP and OnStageComplete for each subsidi
ary IRP-I need to explain how USBISO handles cancellation of the main IRP. Can
cellation is a concern because we've submitted a potentially large number of subsidiary
IRPs that might take some time to finish. We can't complete the main IRP until all of
the subsidiary IRPs complete. We should, therefore, provide a way to cancel the main
IRP and all outstanding subsidiary IRPs.

Chapter 11 The Universal Serial Bus

I'm sure you recall from Chapter 5, "The I/O Request Packet," that IRP cancel
lation implicates a number of knotty synchronization issues. If anything, the situation
in this driver is worse than usual.

USBISO's cancellation logic is complicated by the fact that we Can't control the
timing of calls to the subsidiaty IRP's completion routine-those IRPs are owned by
the bus driver once we submit them. Suppose you wrote the follOwing cancel routine:

VOID OnCancelReadWrite(PDEVICE-OBJECT fdo. PIRP Irp)
{

IoReleaseCancelSpinLock(Irp-)Cancellrql):
PRWCONTEXT ctx = (PRWCONTEXT)

Irp-)Tail.Overlay.DriverContext[0]:
for (ULONG i = 0: i < ctx-)numirps: ++i)

IoCancellrp(ctx-)sub[i].irp):
(additional steps>

}

1. We saved the address of the RWCONTEXT structure in the DriverContext
area of the IRP precisely so that we could retrieve it here. DriverContext
is ours to use so long as we own the IRP. Since we returned STATUS_
PENDING from the dispatch routine, we never relinquished ownership.

2. Here, we cancel all the subsidiary IRPs. If a subsidiary IRP has already
completed or is currently active on the device, the corresponding call to
IoCanceUrp won't do anything. If a subsidiary IRP is still in the host
controller driver's queue, the host controller driver's cancel routine will
run and complete the subsidiaty IRP. In all three cases, therefore, we can
be sure that all subsidiary IRPs will be completed sometime soon.

This version of OncanceJReadWrite is almost complete, by the way, but it
needs an additional step that I'll show you after I've explained the synchronization
problem we need to solve. I can illustrate the problem by shOwing the completion
routines we'll use with two naive mistakes built in. Here's the completion routine for
one stage of the total transfer:

NTSTATUS OnStageComplete(PDEVICE-OBJECT fdo. PIRP subirp.
PRWCONTEXT ctx)
{

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp):
PIRP mainirp = ctx-)mainirp:
PURB urb = (PURB) stack-)Parameters.Others.Argument1:

(continued)

547

ProgralllDlng the Microsoft Windows Driver Model

548

if (NT_SUCCESS(Irp->IoStatus.Status»
ctx->numxfer += urb->UrbIsochronousTransfer

.TransferBufferLength:
else

ctx->status = Irp->IoStatus.Status:
ExFreePool(urb):
IoFreeMdl«PMDL) stack->Parameters.Others.Argument2):
IoFreelrp(subirp): II ~ don't do this
if (InterlockedDecrement(&ctx->numpending) == 0)

{

IoSetCancelRoutine(mainirp. NULL): II ~ also needs some work
mainirp->IoSiatus.Status = ctx->status:
IoCompleteRequest(mainirp. IO_NO_INCREMENT):
}

return STATUS-MORE-PROCESSIN~REQUIRED:
}

1. This stack location is the extra one that the dispatch routine allocated. We
need the address of the URB for this stage, and the stack was the most
convenient place to save that address.

2. When a stage completes normally, we update the cumulative transfer count
for the main IRP here. The ftnal value of numxfer will end up in the main
IRP's IoStatus.Information field.

3. We initialized status to STATUS_SUCCESS by zeroing the entire context
structure. If any stage completes with an error, this statement will record
the error status. The final value will end up in the main IRP's
IoStatus.Status field.

4. We no longer need the URB or the partial MOL for this stage, so we re
lease the memory they occupied here.

S. This call to IoFreeIrp is the naive part of this completion routine, as I'll
explain shortly.

6. When the last stage completes, we'll also complete the main IRP. Once
we've submitted the subsidiary IRPs, this is the only place where we
complete the main IRP, so we can be sure that the main IRPpointer is valid.

Here's the naive version of the completion routine for the main IRP:

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo. PIRP Irp.
PRWCONTEXT ctx)
{

PDEVICE_EXTENSION pdx = (PDEVICE-EXTENSION) ctx->pdx:

· Chapter 11 The Universal Serial Bus

if (lrp->Cancel)
Irp->IoStatus.Status = STATUS_CANCELLED;

else if (NT_SUCCESS(Irp->IoStatus.Status»
Irp->IoStatus.Information = ctx->numxfer:

ExFreePool(ctx): II ~ don't do this

IoReleaseRemoveLock(&pdx->RemoveLock. Irp):
return STATUS_SUCCESS:
}

1. If someone tried to cancel the' main IRP, this statement will set the corre
sponding ending status.

2. Releasing the context structure's memory is a problem, as I'll explain.

3. This call to IoReleaseRemoveLock balances the acquisition we did in the
dispatch function.

4. If we return any value at all besides' STATUS_MORE_PROCESSING_
REQUIRED, 10CompieteRequest will continue its work without altering the
completion status of the IRP.

I've been building up to a big and dramatic expose of a syhchronization prob
lem associated with IRP cancellation, and here it fmally is: suppose our cancel routine
gets called after one or more of the calls to IoFreeIrp has already happened inside
OnStageComplete? You can see that we might call IoCanceJIrp with an invalid pointer
in such a case. Or, suppose that the cancel routine gets called more or less simulta
neously with OnReadWriteComplete. In that case, we might have the cancel routine
accessing the context structure after it gets deleted.

You might attempt to solve these problems with various subterfuges. Could
OnStageComplete nullify the appropriate subsidiary IRP pointer in the context struc
ture, and could OnCancelReadWrite check before calling 10CancelIrp? (Yes, but
there's still no way to guarantee that the call to 10Freelrp doesn't squeeze in between
whatever test OnCancelReadWrite makes and the moment when 10CancelIrp is finally
done modifying the cancel-related fields of the IRP.) Could you protect the various
cleanup steps with a spin lock? (That's a horrible idea, because you'd be holding the
spin lock across calls to time-consuming functions.) Could you take advantage of
knowing that the current telease of Windows 2000 always cleans up completed IRPs
in an APC routine? (No, for the reasons I discussed back in Chapter 5.)

I struggled long and hard with this problem before inspiration finally struck.
Why not, I finally realized, protect the context structure and subsidiary IRP pointers with
a reference count so that both the cancel routine and the main completion routines could

549

Programming the Microsoft Windows Driver Model

550

share responsibility for cleaning them up? That's what I ended up doing. I put a
reference count field (refent) into the context structure and initialized it to the value
2. One reference is for the cancel routine; the other is for the main completion rou
tine. I wrote the following helper function to release the memory objects that are the
source of the problem:

BOOLEAN DestroyContextStructure(PRWCONTEXT ctx)
{

if (InterlockedDecrement(&ctx->refcnt) > 0)
return FALSE;

for (ULONG i = 0; i < ctx->numirps; ++i)
if (ctx->sub[i].irp)

IoFreeIrp(ctx->sub[i].irp);
ExFreePool(ctx);
return TRUE;
}

I call this routine at the end of the cancel routine:

VOID OnCancelReadWrite(PDEVICE_OBJECT fdo. PIRP Irp)
{

IoReleaseCancelSpinLock(Irp->CancelIrql);
PRWCONTEXT ctx = (PRWCONTEXT)

Irp->Tail.Overlay.DriverContext[0];
for (ULONG i = 0; i < ctx->numirps; ++i)

IoCancelIrp(ctx->sub[i].irp);
PDEVICE_EXTENSION pdx = ctx->pdx;
if (DestroyContextStructure(ctx»

}

{

CompleteRequest(Irp. STATUS_CANCELLED. 0);
IoReleaseRemoveLock(&pdx->RemoveLock. Irp);

}

I omitted the call to IoFreelrp in the stage completion routine and added one
more line of code to decrement the reference count once it's certain that the cancel
routine hasn't been, and can no longer, be called:

NTSTATUS OnStageComplete(PDEVICE_OBJECT fdo. PIRP subirp.
PRWCONTEXT ctx)
{

PIO~STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp);
PIRP mainirp = ctx->mainirp;
PURB urb = (PURB) stack->Parameters.Others.Argumentl;

Chapter 11 The Universal Serial Bus

if (NT_SUCCESS(Irp->IoStatus.Status»
ctx->numxfer += urb->UrbIsochronousTransfer.TransferBufferLength;

else
ctx->status = Irp->IoStatus.Status;

ExFreePool(urb);
IoFreeMdl((PMDL) stack->Parameters.Others.Argument2);
if (InterlockedDecrement(&ctx->numpending) == 0)

{

if (IoSetCancelRoutine(mainirp, NULL»
InterlockedDecrement(&ctx->refcnt);

mainirp->IoStatus.Status = ctx->status;
IoCompleteRequest(mainirp, IO_NO_INCREMENT);

}

return STATUS_MORE_PROCESSING_REQUIRED;
}

Recall that IoSetCancelRoutine returns the previous value of the cancel pointer. If
that's NULL, the cancel routine has already been called and will call DestroyContext
Structure. If that's not NULL, however, it will no longer be possible for the cancel
routine to ever be called, and we must use up the cancel routine's claim on the context
structure.

I also replaced the unconditional call to ExFreePool in the main completion
routine with a call to DestroyContextStructure:

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, PIRP Irp,
PRWCONTEXT ctx)
{

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) ctx->pdx;
if (Irp->Cancel)

Irp->IoStatus.Status = STATUS_CANCELLED;
else if (NT_SUCCESS(Irp->IoStatus.Status»

Irp->IoStatus.lnformation = ctx->numxfer;

if (DestroyContextStructure(ctx»
{

IoReleaseRemoveLock(&pdx->RemoveLock, Irp);
return STATUS_SUCCESS;
}

else
return STATUS_MORE_PROCESSING_REQUIRED;

}

551

Programming the Microsoft Windows Driver Model

552

Here's how this extra logic works. If the cancel routine ever gets called, it will
run through the context structure calling IOCancelIrp for each of the subsidiary IRPs.
Even if all of them have already completed, these calls will still be safe because we
won't have called IoFreeIrp yet. The reference to the context structure will also be
safe because we won't have called ExFreePool yet. The cancel routine finishes up
by calling DestroyContextStructure, which will decrement the reference counter. If
the main completion routine hasn't run yet, DestroyContextStructure will return FALSE,
whereupon the cancel routine will return. The context structure still exists at this point,
which is good because the main completion routine will reference it soon. The comple
tion routine's eventual call to DestroyContextStructure will release the subsidiary IRPs
and the context structure itself. The completion routine will then give up the remove
lock that we acquired in the dispatch routine and return STATUS_SUCCESS in order
to allow the main IRP to finish completing.

Suppose that calls to the cancel and main completion routines happen in the
other order. In that case, OnReadWriteComplete's call to DestroyContextStructure will
simply decrement the reference count and return FALSE, whereupon OnReadWrite
Complete will return STATUS_MORE]ROCESSING_REQUIRED. The context structure
still exists. We can also be sure that we still own the IRP and the DriverContext field
from which the cancel routine will fetch the context pointer. The cancel routine's
call to DestroyContextStructure will, however, reduce the reference count to 0,
release the memory, and return TRUE. The cancel routine will then release the
remove lock and call IoCompleteRequest for the main IRP. That adds up to two calls
to IoCompleteRequest for the same IRP. You know that you're not allowed to complete
the same IRP twice, but the prohibition is not against calling IoCompleteRequest twice
per se. If the first invocation of IoCompleteRequest results in calling a completion routine
that returns STATUS_MORE_PROCESSING_REQUIRED, a subsequent, duplicate call is
perfectly okay.

The only remaining case in this analysis is when the cancel routine never gets
called at all. This is, of course, the normal case because IRPs don't usually get cancelled.
We discover this fact when we call IoSetCancelRoutine in preparation for completing
the main IRP. If IoSetCancelRoutine returns a non-NULL value, we know that IoCancelIrp
has not yet been called for the main IRP. (Had it been, the cancel pointer would
already be NULL, and IoSetCancelRoutine would have returned NULL.) Furthermore,
we know that our own cancel routine can now never be called and will therefore
not have a chance to reduce the reference count. Consequently, we reduce the ref
erence count by hand so that OnReadWriteComplete's call to DestroyContextStructure
will release the memory.

Chapter 11 The Universal Serial Bus

WHERE'S THE SYNCHRONIZATION?

You'll notice that I didn't use a spin lock to guard the code I just showed you
earlier for testing for cancellation inside the dispatch routine. Synchronization
between that code and some hypothetical caller of IoCancelIrp is implicit in the
facts that IoSetCancelRoutine is an interlocked exchange operation and that
IoCancelIrp sets the Cancel flag before calling IoSetCancelRoutine. Refer to the
discussion in Chapter 5 for a sketch of how IoCancelIrp works.

Our dispatch routine's first call to IoSetCancelRoutine might occur after
IoCancelIrp sets the Cancel flag but before IoCancelIrp does its own call to
IoSetCancelRoutine. Our dispatch routine will see that the Cancel flag is set and
make a second call to IoSetCancelRoutine. If this second call happens to pre
cede IoCancelIrp's call to IoSetCancelRoutine, the cancel routine will not be
called. We will also decrement the reference count on the context structure so ,..
that it gets released on the first call to DestroyContextStructure.

If our dispatch routine's second call to IoSetCancelRoutine follows
IoCancelIrp's, we will not decrement the reference count. One or the other of
the cancel routine or the completion routine will end up releasing the context
structure.

If our dispatch routine tests the Cancel flag before IoCancelIrp sets it, or
if IoCancelIrp has never even been called for this IRP, we'll go ahead and start
the subsidiary IRPs. If IoCancelIrp was called in the distant past before we
installed a cancel routine, it will have simply set the Cancel flag and returned.
What happens after that is just the same as when our dispatch routine nullifies
the cancel pointer before IoCancelIrp calls IoSetCancelRoutine.

So, you see, you don't always need a spin.,lock to give you multiprocessor
safety: sometimes an atomic interlocked operation will do the trick by itself.

553

Programming the Microsoft Windows Driver Model

554

ASSOCIATED IRPS?

At first blush, IoMakeAssociatedIrp looks like an alternative way to create the
subsidiary IRPs that USBISO needs. The idea behind IoMakeAssociatedIrp is that
you could create a number of associated IRPs to fulfill a master IRP. When the
last associated IRP completes, the VO Manager automatically creates the mas
ter IRP.

Unfortunately, associated IRPs are not a good way to solve any of the
problems that USBISO grapples with. Most important, WDM drivers aren't sup
posed to use IOMakeAssociatedIrp. Indeed, the completion logic for associated
IRPs is incorrect in Windows 98-it doesn't call any completion routines for the
master IRP when the last associated IRP ftnishes. Even in Windows 2000, how
ever, the I/O Manager won't cancel associated IRPs when the master IRP is
cancelled. Furthermore, the call to IoFreeIrp for an associated IRP occurs in
side I6CompleteRequest, in whatever thread context happens to be current. This
fact makes it harder to safely cancel the associated IRPs.

Streaming Isochronous Transfers
In the preceding section, I described a technique for performing a single long trans
fer over an isochronous pipe. You might need to arrange to transmit a continuous
stream of data instead. I'll provide a quick sketch here of how you might do that.

In a streaming driver, you need to provide one or more data buffers that you
can continuously transfer to or from the device without missing any frames. You
also need to allocate at least two IRP/URB pairs that you use for the transfers. In
this situation, the ability to chain URBs wouldn't help you even if it worked: you need
to know when each URB finishes, and the only way to ftnd out is when the associa
ted IRP's completion routine gets called.

You initially submit all the IRPs to the bus driver. When one IRP completes, you
immediately (in a completion routine) recycle it. The idea is to always have a URB
queued in the host controller driver ready to run as soon as the current URB ftnishes.
You might need to tune the size or number of data buffers and the number of IRP/
URB pairs to avoid buffer overruns caused by temporary failures of your consumer
or provider to keep up with the device.

Synchronizing Isochronous Transfers
Synchronicity is an important attribute of many types of isochronous data streams.
To give a simple example, suppose you have two speakers and a microphone attached
to a computer. You want the audio data rendered by the speakers to be synchrOnized
with the data coming from the microphone in the sense that audible sound keeps

Chapter 11 The Universal Serial Bus

up with the microphone input. You also want the sound coming out of one speaker
to be synchronized with the other speaker.

Achieving acceptable synchronicity can be hard for seveml reasons. Section 5.10
of the USB specification describes these reasons and the hardware bases for their
resolution in detail. I'm only going to summarize the challenges so that I can point
you to the support USBD provides for drivers.

The sources and sinks of data might have different sample sizes and rates. A
microphone, for example, might generate 8,000 one-byte samples every second, and
a speaker might consume 44,100 32-bit samples every second. (This is the same
example carried through Section 5.10 of the USB specification.) Some hardware or
software agent must employ a scaling and interpolation process to match the source
and sink.

Devices have 'inherent internal delays, too. A data source might need time to
capture and encode data before sending it to the host, and a data sink might need
time to decode and render data. In the simple example I gave of a single source with
two similar sinks, these delays wouldn't be important. But imagine a situation in which
multiple input devices, each with its own delay characteristics, were trying to cap
ture different aspects of the same series of external events. (For example, a collec
tion of microphones and MIDI devices.) Some agent needs to understand the delays
that were intrOduced by the various source devices so as to "line up" the data streams
received by the host. Some agent also needs to understand the delays that the sink
devices will introduce so as to cause the actual output signals to reach the external
environment at the right times. Since USB requires device delays to be measured in
fmme units, a driver deals with delay by explicitly setting the StartFrame member of
the isochronous transfer URBs it generates. To set this field, you perform a calcula
tion starting either with the frame number during which some input data arrived
which you can retrieve from the completed URB's StartFrame member-Dr with the
current frame number.

Finally, devices must provide some way to synchronize their internal clocks with
the rest of the system. Synchronization is required in the first place because clocks
can drift over time (that is, they can become progressively less synchronized because
of slight differences in oscillator frequency) or they can jitter (that is, their rate can
vary up and down because of thermal or other fluctuations). USB identifies three
alternative methods for an endpoint to synchronize its clock: asynchronous, synchro
nous, and adaptive.

An asynchronous endpoint can't synchronize its operation with any external
source. A source endpoint implicitly informs the host of its data rate by the amount
of data it provides. A sink endpoint would need to have access to an auxiliary syn
chronization endpoint, such as an interrupt endpOint, to report back its progress in
consuming data.

555

Programming the Microsoft Windows Driver Model

556

A synchronous endpoint ties its operation to the I-kHz frame rate of the bus.
It does so either by slaving its own clock to the start-of-frame (SOF) packet that begins
every frame or by forcing the bus frame rate to match its own clock. USB allows any
one device to be the frame master and to alter the duration of frames to be more or
less than the standard one millisecond. On the driver side, you issue a URB with the
function code URB_FUNCTION3AKE_FRAME_LENGTH_CONTROL to become the
frame master, and you issue another URB with the function code URB]UNCTION_
RELEASE_FRAME_LENGTH_CONTROL to relinquish your status as frame master.
While you are the master, you can issue URBs with the function codes URB_
FUNCTION_GET_FRAME_LENGTH and URB_FUNCTION_SET]RAME_LENGTH to
get and set the frame length, respectively.

An adaptive source endpoint has some way (a control pipe, for example) of
receiving feedback from a data sink that allows it to generate samples that are already
matched to the sink. An adaptive sink endpoint simply adapts to the rate informa
tion that's implicit in the data stream it receives.

Chapter 12

Installing
Device Drivers

Early in the device driver development process, it is important to devote some thought
to how an end user will install your driver and install the hardware it serves. Microsoft
Windows 2000 and Microsoft Windows 98 use a text file with the file extension INF
to control most of the activities associated with installing drivers. You provide the INF
file. It either goes on a diskette or on a disc that you package with the hardware, or
else Microsoft puts it on the Windows 2000 installation disc. In the INF file, you tell
the operating system which file(s) to copy onto the end user's hard disk, which reg
istry entries to add or modify, and so on.

In this chapter, I'll discuss several aspects of installing your driver. I'll lead you
through the important parts of a simple INF file to help you tie together the DDK
documentation about INF file syntax. I'll explain in detail the format of device iden
tifiers used for various types of devices-this information is hard to come by right
now, as it happens. I'll discuss how to initialize property values in a device's hard
ware registry key and how to access those properties later from drivers and applica
tions. Since I had to define a custom device class for all the sample "devices" used
in this book, I thought it would help you to see how I did that. To round out this
chapter (and, in fact, the entire book), I'll discuss a method you can use to cause an
application to start automatically when the PnP Manager starts one of your devices.

557

Programming the Microsoft Windows Driver Model

THE INF FILE

558

An INF file contains a collection of sections introduced by a section name in brack
ets. Most sections contain a series of directives of the form "keyword = value". The
INF file begins with a Version section that identifies the type of device described by
entries in the file:

[Version]
Signature=$CHICAGO$
Class=Sample
ClassGuid={894A7460-A033-11d2-821E-444553540000}

Signature can be one of the three magic values $Chicago$, $Windows NT$
(with one space), or $Windows 95$ (also with one space). Class identifies the class
of device. Table 12-1 lists the predefmed classes that Windows 2000 already supports.
ClassGuid uniquely identifies the device class. The DDK header file DEVGUID.H
defines the globally unique identifiers (GUIDs) for standard device classes, and the
DDK documentation entry for the Version section documents them as well.

In a production INF file, you will also need to have DriverVer and CatalogFlle
statements in the Version section. You should also have a comment (that is, any line
that starts with a semicolon) containing the word "copyright" to satisfy the CHKINF
utility I'll describe in the section ''Tools for INF Files" later in this chapter. The operating
systems will accept INF files that lack these details, but Microsoft won't certify your
driver package without them. Refer to the DDK documentation for more details about
the required INF syntax.

I fmd it useful to think of the bulk of an INF file as the linear description of a
tree structure. Each section is a node in the tree, and each directive is a pointer to
another section. Figure 12-1 illustrates the concept.

Figure 12-1. Tree strncture of an 1NF file.

INF Class Name

1394

Battery

CDROM

DiskDrive

Display

FDC

FloppyDisk

HDC

HIDClass

Image

Infrared

Keyboard

MediumChanger

Media

Modem

Monitor

Mouse

MTD
Multifunction

MultiportSerial

Net

NetClient

NetService

NetTrans

PCMCIA

Ports

Printer

SCSIAdapter

SmartCardReader

System

TapeDrive

USB

Volume

Chapter 12 Installing Device Drivers

Description

IEEE 1394 host bus controllers (but not peripherals)

Battery devices

CD-ROM drives, including SCSI and IDE

Hard disk drives

Video adapters

Floppy disk controllers

Floppy disk drives

Hard disk controllers

Human input devices

Still-image capture devices, including cameras and scanners

NDIS miniport drivers for Serial-IR and Fast-IR ports

Keyboards

SCSI media changer devices

Multimedia deVices, including audio, DVD, joysticks, and
full-motion video capture devices

Modems

Display monitors

Mouse and other pointing devices

Memory technology driver for memory devices

Combination devices

Intelligent multiport serial cards

Network adapter cards

Network file system and print providers (client side)

Server-side support for network file systems

Network protocol drivers

PCMCIA and CardBus host controllers (but not peripherals)

Serial and parallel ports

Printers

SCSI and RAID controllers, host bus adapter miniports, and
disk array controllers

Smart card readers

System devices

Tape drives

USB host controllers and hubs (but not peripherals)

Logical storage volume drivers

Table 12·1. Device classes for INF files.

559

Programming the Microsoft Windows Driver Model

560

At the apex of the tree is a Manufacturer section that lists all the companies
with hardware described in the file. For example:

[manufacturer]
"Walter Oney Software"=DeviceList
"Finest Organization On Earth Yet"=FOOEY

[DeviceList]

[FOOEy]

Each individual manufacturer's model section (DeviceList and FOOEY in the
example) describes one or more devices:

[DeviceList]
Description=Insta77SectionName,Deviceld

where Description is a human-readable description of the device and DeviceId
identifies a hardware device. The InstallSectionName parameter identifies (or points
to, in my tree metaphor) another section of the INF file that contains instructions for
installing the software for a particular device. An example of an entry for a single type
of device might be this (drawn from the PKTDMA sample in Chapter 7, "Reading and
Writing Data"):

[DeviceList]
"AMCC S5933 Development Board (DMA)"=Driverlnstall,PCI\VEN_10E8&DEL4750

The information in the Manufacturer section and in the model section(s) for indi
vidual manufacturers comes into play when the system needs to install a driver for a
piece of hardware. A Plug and Play (PnP) device announces its presence and identity
electronically. A bus driver detects it automatically and constructs a device identifier
using onboard data. The system then attempts to locate preinstalled INF files that de
scribe that particular device. INF files reside in the INF subdirectory of the Windows
directory. If the system can't find a suitable INF file, it asks the end user to specify one.

A legacy device can't announce its own presence or identity. The end user
therefore launches the add hardware wizard to install a legacy device and helps the
wizard locate the right INF file. Key steps in this process include specifying the type
of device being installed and the name of the manufacturer. See Figure 12-2.

The hardware wizard constructs dialogs such as Figure 12-2 by enumerating all
the INF files for a particular type of device, all of the statements in their Manufac
turer sections, and all of the model statements for each of the manufacturers. You
can guess that the manufacturer names that appear in the left pane of the dialog come
from the left sides of Manufacturer statements and that the device types that appear
in the right pane come from the left sides of model statements.

Chapter 12 Installing Device Drivers

Select Network Adapter
Which network adapler do you want to install?

Figure 12-2. Selecting a device during installation.

MORE ABOUT HARDWARE WIZARD DIALOGS

Once the wizard is past the stage of looking for PnP devices, it builds a list of
device classes and uses various SetupDiXxx routines from SETUPAPI.DLL to
retrieve icons and descriptions. The information that SETUP API uses to imple
ment these routines ultimately comes from the registry, where it was placed by
entries in Classlnstall32 sections. Not every device class will be represented
in the list-the wizard will suppress information about classes that have the
NolnstallClass attribute.

After the end user selects a device class, the wizard calls SETUP API func
tions to construct lists of manufacturers and devices as described in the text.
Devices mentioned in ExcludeFromSelect statements will be absent from
these lists.

Install Sections
An install section contains the actual instructions that the installer needs to install soft
ware for a device. We've been considering the PKTDMA sample. For that device, the
DeviceList model section specifies the name DriverInstall. I find it useful to think of
this name as identifying an array of sections, one for each Windows platform. The "zero"
element in this array has the base name of the section (DriverInstall). You can have
platform-specific array elements whose names start with the base name and contain
one of the sufflxes listed in Table 12-2. The device installer looks for the install section

561

Programming tbe Microsoft Windows Driver Model

562

having the most specialized suffix. Suppose, for example, that you have install sections
with no suffix, with the .NT suffIX, and with the .NTx86 suffix. If you're installing into
Windows 2000 on an Intel x86 platform, the installer will use the .NTx86 section. If
you're installing into Windows 2000 on a non-Intel platform, it would use the .NT
section. If you're installing into Windows 98, it would use the section without a suffIX.

Platform

Any platform including Windows 98

Any Windows 2000 platform

Windows 2000 on Intel x86

Install Section Suffix

[none]

.NT

.NTx86

Table 12-2. Install section SUffixes for each platform.

Because of the search rules I just outlined, all of the INF files for my sample
drivers have the no-suffix and .NT-suffIX install sections. That makes the INF files work
fine on any Intel platform. (As you probably know by now, Microsoft and Compaq
dropped support for the current 32-bit version of Windows 2000 on the Alpha plat
form just as this book was going to press. We therefore made no provision for test
ing my samples on the Alpha.)

Further along in this chapter, I'll be discussing other INF sections whose names
begin with the name of the install section. If you have multiple install sections in your
"array," these other sections have to include the platform-dependent suffIX in their
names, too. For example, I'll be discussing a Services section that you use to install
a description of the driver into the registry. You would form the name of this sec
tion by taking the base name of the install section (for example, DriverInstall) plus
the platform suffix (for example, NT) and adding the word Services, ending up with
[DriverInstaILNT.Services].

A typical Windows 2000 install section would contain a CopyFlles directive and
nothing else:

[DriverInstall.nt]
CopyFiles=DriverCopyFiles

This CopyFiles directive indicates that we want the installer to use the information
in another INF section for copying files onto the end user hard disk. For the PK1DMA
sample, the other section is named DriverCopyFiles:

[DriverCopyFiles]
pktdma.sys ••• 2

This section directs the installer to copy PKTDMA.SYS to the end user's hard disk.
The statements in a CopyFiles section have this general form:

Destination.Source.Temporary.Flags

Chapter 12 Installing Device Drivers

Destination is the name (without any directory name) of the me as it will eventu
ally exist on the end user system. Source is the name of the me as it exists on the
distribution media, if that name is different from the Destination name; otherwise,
it's just blank as in the example. In Windows 98, if you might be installing a me that
will be in use at the time of installation, you specify a temporary name in the Tem
porary parameter. Windows 98 will rename the temporary me to the Destination
name on the next reboot. It's not necessary to use this parameter for Windows 2000
installs because the system automatically generates temporary names.

The Flags parameter contains a bit mask that governs whether the system will
decompress a me and how the system deals with situations in which a me by the same
name already exists. The interpretation of the flags depends in part on whether the
INF and driver are part of a package that Microsoft has digitally signed after certifi
cation. Table 12-3 on the following page is a list of all these flag bits. The italicized
flags in the table are ignored in a digitally signed package. I used a double line to
delimit groups of mutually exclusive flags. Thus, in an unsigned package, you could
specify one or the other of the NOSKIP or WARN_IF_SKIP flags, but not both.

The file name by itself is not sufficient to tell the installer what it needs to know
to copy a me. It also needs to know which directory you want the me copied to. In
addition, if you have multiple diskettes in the installation set, it needs to know which
diskette contains the source me. These pieces of information come from other sec
tions of the INF me, as suggested by Figure 12-3. In the PKTDMA example, these
sections are as follows:

[OestinationOirs]
OefaultOestOir=10.System32\Orivers

[SourceOisksFiles]
pktdma.sys=l

[SourceOisksNames]
l="WOM Book Companion Oisc",diskl

Figure 12-3. Source and destination information/or file copies.

563

Programming the Microsoft Windows Driver Model

Numeric
SymboUc Name Value Description

COPYFLG_REPLACEONLY OxOOOOO400 Copy only if destination file al-
ready exists

COPYFLG_NODECOMP OxOOOOO800 Don't decompress file

COPYFLG_FORCE_FILE_IN_USE OxOOOOOOO8 Always copy under temporary
name and rename on next boot

COPYFLG_NO_OVER~TE OxOOOOOOlO Don't overwrite an existing me
(other flags can't be used with
this flag)

COPYFLG_REPLACE_BOOT_FILE OxOOOOlOOO Replace boot me needed by the
loader, which will prompt user to
reboot

COPYFLG_NOPRUNE OxOOOO2000 Copy this me even if Setup thinks
it's already present

COPYFLGflOVERSIONCHECK OXOOOOOOO4 Overwrite a me even if it's a
newer version than the source me

COPYFLG_NO_ VERSION_DIALOG OxOOOOOO20 Don't present the dialog that al-
lows the user to decide whether
to overwrite a newer me

COPYFLG_OVERWRITE_OLDER_ONLY OxOOOOOO40 Only overwrite an older version
of the me

COPYFLGflOSKlP OxOOOOOOO2 Don't allow the user to skip this
me

COPYFLG_ WARNjF_SKlP OxOOOOOOOl Allow the user to skip this me and
provide a warning

Table 12-3. Flags in a CopyFile section directive.

The SourceDisksFlles section indicates that the installer can fmd PKIDMA.SYS
on disk number 1 of the set. The SourceDisksNames section indicates that disk
n}lmber 1 has a human-readable label of "WDM Book Companion Disc" and con
tains a file named "diskl" that the installer can look for to verify that the correct
diskette is in the drive. Note that these section names have an interior "s" that's very
easy to miss.

The DestinationDirs section specifies the target directories for copy operations.
DefaultDestDir is the target direct0rx,to use for any file whose target directory isn't
otherwise specified. You use a numeric code to specify the target directory because the
end user might choose to install Windows 2000 to a directory with a nonstandard
name. Please refer to the DDK documentation entry for the DestinationDirs section
for a complete list of the codes--only a few of them are in common use, as follows: .

Chapter 12 Installing Device Drivers

• Directory 10 is the Windows directory (for example, "\ Windows" or
"\ Winnt").

• Directory 11 is the System directory (for example, "\ Windows \ System" or
"\ Winnt\System32").

• Directory 12 is the Drivers directory on a Windows 2000. system (for
example, "\ Winnt\System32\Drivers"). Unfortunately, this number has
a different meaning on a Windows 98 system (for example, "\ Windows \
System \Iosubsys").

WDM drivers reside in the Drivers directory. If your CopyFiles section applies
only to a Windows 2000 installation, you can just specify directory number 12. If you
want to share a CopyFiles section between Windows 98 and Windows 2000 installs,
however, I recommend that you specify "10,System32\Drivers" instead because it
identifies the Drivers directory in both cases.

Defining the Driver Service
The INF syntax I've described so far is sufficient for your driver file(s) to be copied
onto the end user's hard disk. You must also arrange for the PnP Manager to know
which files to load. A .Services section accomplishes that goal, as in this example:

[Oriverlnstall.NT.Services]
AddService=PKTDMA.2.DriverService

[OriverService]
ServiceType=l
StartType=3
ErrorControl=l
ServiceBinary=%10%\system32\drivers\pktdma.sys

The 2 in the AddService directive indicates that the PKTDMA service will be the
function driver for the device. You form the name of this section by appending the
word "Services" to the name of the install section to which it applies.

The end result of these directives will be a key in the HKEY _LOCAL_
MACHlNE\System\CurrentControlSet\Services branch of the registry named PKTDMA
(the first parameter in the AddService directive). It will define the service entry for
the driver as a kernel-mode driver (ServiceType equal to 1) that should be demand
loaded by the PnP Manager (StartType equal to 3). Errors that occur during loading
should be logged but should not by themselves prevent the system from starting
(ErrorControl equal to 1). The executable image can be found in \ Winnt\System32\
Drivers \ pktdma.sys (the value of ServiceBlnary). By the way, when you look in the
registry, you'll see that the name of the executable file is stored under the name
ImagePath rather than ServiceBinary.

It's a good idea to make the name of the service (PKTDMA in this example) the
same as the filename (PKTDMA.SYS in this example) of your driver binary file. Not

565

Programming the Microsoft Windows Driver Model

only does this make it obvious which service name corresponds to which driver, but
it also avoids a problem that can arise when two different service keys point to the
same driver: any device that uses the same driver as a then-started device but under
a different service name can't itself start.

Device Identifiers

566

For true Plug and Play devices, the device identifier that appears in a manufacturer's
model section of an INF is very important. Plug and Play devices are those that can
electronically announce their presence and identity. A bus enumerator can ftnd these
devices automatically, and it can read some sort of onboard information to find out
what kind each device is. Universal serial bus (USB) devices, for example, include
vendor and product identiftcation codes in their device descriptors, and the configu
ration space of Peripheral Component Interconnect (PCI) devices includes vendor and
product codes.

When an enumerator detects a device, it constructs a list of device identifica
tion strings. One entry in the list is a complete identification of the device. This en
try will end up naming the hardware key in the registry. Additional entries in the list
are "compatible" identifters. The PnP Manager uses all of the identifters in the list when
it tries to match a device to an INF me. Enumerators place more specific identifters
ahead of less specific identifiers so that vendors can supply specific drivers that will
be found in preference to more general drivers. The algorithm for constructing the
strings depends on the enumerator, as follows:

PC. Devices
The full device identifter has the form

PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr

where vvvv is the vendor identifier that the PCI Special Interest Group assigned to
the manufacturer of the card, dddd is the device identifier that the manufacturer
assigned to the card, ssssssss is the subsystem id (often zero) reported by the card,
and rr is the revision number.

For example, the display adapter on my current laptop computer (based on the
Chips and Technologies 65550 chip) has this identifier:

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000&REV_04

A device can also match an INF model with any of these identifiers:

PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss
PCI\VEN_vvvv&DEV_dddd&REV_rr
PC'I \V EN_vvvv&DELdddd
PCI\VEN_vvvv&DEV_dddd&REV_rr&CC_ccss
PCI\VEN_vvvv&DEV_dddd&CC_ccsspp
PCI\VEN_vvvv&DEV_dddd&CC_ccss

PCI\VEN_vvvv&CC_ccsspp
PCI\VEN_vvvv&CC_ccss
PCI \vEN_ vvvv
PCI\CCccsspp
PCI\CCccss

Chapter 12 Installing Device Drivers

in which ee is the base class code from the configuration space, ss is the subclass
code, and pp is the programming interface. For example, the following additional
identifiers for my laptop's display adapter would have matched the information in
an INF file:

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000
PCI\VEN_102C&DEV_00E0&REV_04
PCI\VEN_102C&DEV_00E0
PCI\VEN_102C&DEV_00E0&REV_04&CC_0300
PCI\VEN_102C&DEV_00E0&CC_030000
PCI\VEN_102C&DEL00E0&CC...:0300
PCI\VEN_102C&CC_030000
PCI\VEN_102C&CC_0300
PC I \vEN_102C
PCI\CC030000
PCI\CC0300

The INF that the system actually used for driver installation was the third one,
which includes just the vendor and device identifiers.

PCMCIA Devices
The device identifier for a simple device has the form

PCMCIA\Manufacturer-Product-Crc

For example, the device identifier for the 3Com network card on my current laptop
computer is

PCMCIA\MEGAHERTZ-CC10BT/2-BF05

For an individual function on a multifunction device, the identifier has the form

PCMCIA\Manufacturer-Product-DEVdddd-Crc

where Manufacturer is the name of the manufacturer and Product is the name of
the product. The PCMCIA enumerator retrieves these strings directly from tuples on
the card. Cre is the 4-digit hexadecimal CRC checksum for the card. The child func
tion number (dddd in the template) is a decimal number without leading zeros.

If the card doesn't have a manufacturer name, the identifier will have one of
these three forms:

PCMCIA\UNKNOWN_MANUFACTURER-Crc
PCMCIA\UNKNOWN_MANUFACTURER-DEVdddd-Crc
PCMCIA\MTD-0002

567

Programming the Microsoft Windows Driver Model

568

(The last· of these three alternatives is for a flash memory card with no manufacturer
identifier on the card.)

In addition to the device identifier just described, an INF file's model section
can also contain an identifier composed by replacing the 4-digit hexadecimal CRC

with a string containing the 4-digit hexadecimal manufacturer code, a hyphen, and
the 4-digit hexadecimal manufacturer information code (both from onboard tuples).
For example:

PCMCIA\MEGAHERTZ-CC10BT/2-0128-0103

SCSI Devices
The complete device identifier is

SCSI\ttttvvvvvvvvpppppppppppppppprrrr

where tttt is a device type code, vvvvvvvv is an 8-character vendor identifier,
pppppppppppppppp is a 16-character product identifier, and rrrr is a 4-
character revision level value. The device type code is the only one of theidenti
fier components that doesn't have a fixed length. The bus driver determines this
portion of the device identifier by indexing an internal string table with the device
type code from the device's inquiry data, as shown in Table 12-4. The remaining
components are just the strings that appear in the device's inquiry data but with special
characters' (including space, comma, and any nonprinting graphic) replaced with an
underscore.

Device Generic
SCSI Type Code Type Type

DIRECT_ACCESS_DEVICE (0) Disk GenDisk

SEQUENTIAL_ACCESS_DEVICE (1) Sequential

PRINTER_DEVICE (2) Printer GenPrinter

PROCESSOR_DEVICE (3) Processor

WRITE_ONCE_READ_MULTIPLE_DEVICE (4) Worm GenWorm

READ_ONLY _DIRECT_ACCESS_DEVICE (5) CciRom GenCdRom

SCANNER_DEVICE (6) Scanner GenScanner

OPTICAL_DEVICE (7) Optical GenOptical

MEDIUM_CHANGER (8) Changer ScsiChanger

COMMUNICATION_DEVICE (9) , Net ScsiNet

Other ScsiOther

Table 12-4. Type names/or SCSI devices.

For example, a disk drive on one of my workstations has this identifier:

SCSI\OiskSEAGATE_ST39102LW 0004

Chapter 12 Installing Device Drivers

The bus driver also creates these additional identifiers:

SCSI\ttttvvvvvvvvpppppppppppppppp
SCSI\ttttvvvvvvvv
SCSI \ vvvvvvvvppppppppppppppppr
vvvvvvvvppppppppppppppppr
gggg

In the third and fourth of these additional identifiers, r represents just the first char
acter of the revision identifier. In the last identifier, gggg is the generic type code from
Table 12-4.

To carry forward the example of my disk drive, the bus driver generated these
additional device identifiers:

ScSI\Oi skSEAGATLST39102LW __ _
ScSI\OiskSEAGATE_
ScSI\OiskSEAGATE_ST39102LW 0
SEAGATE_ST39102LW 0
GenOisk

The last of these (GenDisk) is the one that appeared as the device identifier in the
INF file that the PnP Manager actually used to install a driver for this disk. In fact,
the generic identifier is usually the one that's in the INF file because SCSI drivers tend
to be generic.

IDE Devices
IDE devices receive device identifiers that are very similar to SCSI identifiers:

IOE\ttttvpvprrrrrrrr
IOE\vpvprrrrrrrr
IOE\ ttttvpvp
vpvprrrrrrrr
gggg

Here, tttt is a device type name (same as SCSI); vpvp is a string containing the ven
dor name, an underscore, the vendor's product name, and enough underscores to
bring the total to 40 characters; Huun is an 8-character revision number; and gggg
is a generic type name (almost the same as SCSI type names in Table 12-4). For IDE
changer devices, the generic type name is GenChanger instead of ScsiChanger;
other IDE generic names are the same as SCSI.

For example, here are the device identifiers generated for an IDE hard drive on
one of my desktop systems:

IOE\Oi skMaxtor _9100008, ___________ SASX1B18
IOE\Maxtor_9100008 SASX1B18
I OE\Oi skMaxtor _9100008, __________ _
Maxtor _9100008, __________ SASX1B18
GenOisk

569

Programming the Microsoft Windows Driver Model

570

ISAPNP Devices
The ISAPNP enumerator constructs two hardware identifiers:

ISAPNP\fd
*a1tfd

where id and altid are EISA-style identifiers for the device-three letters to identify
the manufacturer and 4 hexadecimal digits to identify the particular device. If the
device in question is one function of a multifunction card, the first identifier in the
list takes this form:

ISAPNP\id_DEVnnnn

where nnnn is the decimal index (with leading zeros) of the function.
For example, the codec function of the Crystal Semiconductor audio card on

one of my desktop machines has these two hardware identifiers:

ISAPNP\CSC6835_DEV0000
*CSC0000

The second of these identifiers is the one that matched the actual INF file.

USB Devices
The complete device identifier ~

USB\VID_vvvv&PID~dddd&REV_rrrr

where vvvv is the 4-digit hexadecimal vendor code assigned by the USB committee
to the vendor, dddd is the 4-digit hexadecimal. product code assigned to the device
by the vendor, and rrrr is the revision code. All three of these values appear in the
device descriptor or interface descriptor for the device.

An INF model section can also specify these alternatives:

USB\VID_vvvv&PID_dddd
. USB \CLASLcc&SUBCLASLss&PROT _pp
USB\CLASS_cc&SUBCLASS_ss
USB\CLASS_cc
USB \COMPOS ITE

where cc is the class code from the device or interface deSCriptor, ss is the subclass
code, and pp is the protocol code. These values are in 2-digit hexadecimal format.

1394 Devices
The 1394 bus driver constructs these identifiers for a device:

1394\VendorName&Mode1Name
1394\UnitSpecld&UnitSwVersfon

Chapter 12 Installing Device Drivers

where VendorName is the name of the hardware vendor,ModelName identifies
the device, UnitSpecId identifies the software specification authority, and UnitSw
Version identifies the software specification. The information used to construct these
identifiers comes from the device's configuration ROM.

If a device has vendor and model name strings, the 1394 bus driver uses the
first identifier as the hardware ID and the second identifier as the one and only com
patible ID. If a device lacks a vendor or model name string, the bus driver uses the
second identifier as the hardware ID.

Since I don't have a 1394 bus on any of my computers, I relied on fellow driver
writer Jeff Kellam to provide me with two examples. The first example is for a Sony
camera, for which the device identifier is

1394\SONY&CCM-DS250_1.08

The second example is for the 1394 bus itself operating in diagnostic mode; this
device identifier is

1394\031887&040892

Identifiers for Generic Devices
The PnP Manager also works with device identifiers for generic devices that can
appear on many different buses. These identifiers are of the form

*PNPdddd

where dddd is a 4-digit hexadecimal type identifier. At press time, the official list of
these identifiers was at http://www.microsoft.comlhwdev/downloadlrespecldevids.txt.

The Hardware Registry Key
The hardware registry key records information about a particular hardware instance
your driver manages. Each enumerator of devices has its own registry key below
HKEY _LOCAL_MACHINE\System \ CurrentControISet\Enum. When the enumerator
fmds a device with a particular identifier, it creates a key for the identifier and a subkey
for each instance of the same device. For example, the PKTDMA device has the
identifier PCI\ VEN_10E8&DEV _ 4750. The first instance of this device in your system
might have a hardware key named like this:

\Registry\Machine\System\CurrentControlSet\Enum\
PCI\VEN_10E8&OEL4750\BUS_00&OEL04&FUNC00

Standard Properties
The PnP Manager stores certain standard information about the device in the hard
ware key. You can retrieve this information in a WDM driver by calling IoGetDevice
Property with one of the property codes listed in Table 12-5.

571

Programming the Microsoft Windows Driver Model

Property Name Value Name

DevicePropertyDeviceDescription DeviceDesc

DevicePropertyHardwareId HardwareID

DevicePropertyCompatibleIDs CompatibleIDs

DevicePropertyClassName Class

DevicePropertyClassGuid ClassGUID

DevicePropertyDriverKeyName Driver

DevicePropertyManufacturer Mfg

DevicePropertyFriendlyName FriendlyName

Source Description

First parameter in Description of device
model statement

Third parameter Identifies device
in model statement

Created by bus Device types that can
driver during be considered to
detection match

Class parameter Name of device class
in Version section
ofINF

ClassGuid para- Unique identifier of
meter in Version device class
section of INF

Created automati- Name of service
cally as part of in- (software) key that
stallation process specifies driver

Manufacturer in Name of hardware
whose model manufacturer
section device
was found

Explicit AddReg "Friendly" name suit-
in INF file, or able for presentation
class installer to the user

Table 12-5. Standard device properties in the hardware key.

572

For example, to retrieve the description of a device, use the following code. (See
the AddDevice function in the DEVPROP sample.)

WCHAR name[256];
ULONG junk;
status = IoGetDeviceProperty(pdo.

DevicePropertyDeviceDescription. sizeof(name). name. &junk);
KdPrint«DRIVERNAME

" - AddDevi ce has succeeded for • %ws' devi ce\n". name»;

Notice from Table 12-5 that the PnP Manager and bus driver together manage
to create all of the standard device properties automatically except for the friendly
name. You can supply a friendly name by an explicit statement in your INF me if
you want:

Chapter 12 Installing Device Drivers

[Driverlnstall.NT.hw]
AddReg=DriverHwAddReg

[DriverHwAddReg]
HKR •• FriendlyName •• "Packet DMA Demonstration Device"

Mind you, every device of this particular type that is installed on a particular machine
will end up with the same friendly name if you adopt this approach. The end user
will obviously be confused if more than one device has the same friendly name. If
you anticipate that there might be duplicate friendly names, you should provide a
co-installer DLL to compute unique names.

User-mode applications can retrieve the standard device properties with
SetupDiGetDeviceRegistryProperty. Use the following method within the context
of an enumeration of registered interfaces using the setup APIs:

HDEVINFO info = SetupDiGetClassDevs(...);
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)};
SetupDiGetDevicelnterfaceDetail(info •...• &did);
TCHAR fname[256]: '
SetupDiGetDeviceRegistryProperty(info. &did.

SPDRP_FRIENDLYNAME. NULL. (PBYTE) fname.
sizeof(fname). NULL);

Refer to the DDK documentation of SetupDiGetDeviceRegistryProperty for a list
of the SPDRP _XXX values you can specify to retrieve the various properties.

As you can see, you must supply a device information set handle (an HDEVINFO)
and an, SP _DEVINFO _DATA structure as arguments to SetupDiGetDeviceRegistry
Property. That's easy to do if you're in the middle of a loop enumerating instances
of a device interface. But suppose all you have is the symbolic name of the device?
You can use the follOwing trick, which I found to be pretty obscure when one of the
Microsoft developers showed it to me, to construct these two crucial parameters:

LPCTSTR devname; II ~ someone gives you this
HDEVINFO info = SetupDiCreateDevicelnfoList(NULL. NULl);
SP_DEVICE_INTERFACE_DATA ifdata = {sizeof(SP_DEVICE_INTERFACE_DATA)};
SetupDiOpenDevicelnterface(info. devname. 0. &ifdata);
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)};
SetupDiGetDevicelnterfaceDetail(info. &ifdata. NULL. 0. NULL. &did);

You can go on to call routines such as SetupDiGetDeviceRegistryProperty in the nor
mal way at this point.

573

Programming the Microsoft Windows Driver Model

NOTE In Windows 98 and Windows NT version 4, application programs used
the CFGMGR32 set of APls to obtain information about devices and to interact
with the PnP Manager. These APls continue to be supported for purposes of com
patibility in Windows 98 and Windows 2000, but Microsoft discourages their use
in new code. For that reason, I'm not even showing you examples of calling them.
You might be tempted-as I initially was-to use them because they seem to
be better documented. If you know where to look for the documentation, that is.
Have patience: Microsoft will get around to documenting the SetupDiXxx func
tions in enough detail for us mortals to use them effectively.

Nonstandard Properties
The PnP Manager creates a subkey of the hardware key named Device Parameters.
This subkey contains nonstandard properties of the device. You can initialize ,non
standard properties in a hardware add registry section in your INF:

[DriverInstall.nt.hw]
AddReg=DriverHwAddReg

[DriverHwAddReg]
~KR •• SampleInfo •• "%wdmbook%\chap7\pktdma\pktdma.htm"

WDM drivers can easily open a handle to the device parameter key by calling
IoOpenDeviceRegistryKey. Applications can access the key by using SetupDi
OpenDevRegKey.

Tools for INF Files

574

If you look in the TOOLS subdirectory of the Windows 2000 DDK, you'll find two
useful utilities for working with INF files, GENINF will help you build a new INF file,
and CHKINF will help you validate an INF file. At the time I'm writing this, I'm us
ing the RCI release of the DDK, in which GENINF is still pretty rudimentary. By the
time you read this, GENINF will either have grown to a robust tool with a completely
different user interface than it now has, or else it will have been dropped from the
kit. Either way, I can't give you any useful information about how to use it.

CHKINF is actually a BAT file that runs a PERL script to examine and validate
an INF file. You'll obviously need a PERL implementation to use this tool. I got a copy
from bttp;//www.perl.com.

You can run CHKINF most easily from a command prompt. For example:

E:\Ntddk\tools\chkinf>chkinf C:\wdmbook\chap12\devprop\sys\device.inf

CHKINF generates HTML output files in an HTM subdirectory. Figure 12-4 shows the
output I received when checking DEVICE.lNF for DEVPROP sample.

Chapter 12 Installing Device Drivers

Summary of "c:\wdmbook\chap12
\devprop\sys\device.inf"
Total Wamincs: 2
Total Errors: 5

• Line I: (W2073) No Copyrightinfonnation found
• ~: (W2019) Clas, SAMPLE (Cl.ssGUID (894A7460-A033-11D2-821E-444553540000)) ~ unrecognized.

Errors:

• Line 1: (El080) Directive: DriverVer required in section [Version]
• Line 1: (E10B1) Directive: CatalogFile required in section [Version]
• Line 13: (EI083) Section [SOURCEDISKFlLES] not referenced
• Line 16 (EIOS3) Section [SOURCEDlSKNAMES] not referenced
• Line 74: (£1056) Section [SourceDisksNames J not found. Microsoftmternal mrs using the LayoutFile directive can ignore
(EI056)

Figure 12-4. Example of CHKINF output.

In Windows 2000, the device installer logs various information about the opera
tions it performs in a disk me named SETUPAPLLOG in the Windows NT directory. You
can control the verboSity of the log and the name of the log file by manually changing
entries in the registry key named HKEY _LOCAL_MACHINE\Software \Microsoft\
Windows \ CurrentVersion \Setup. Please consult the DDK documentation for detailed
information about these settings.

DEFINING A DEVICE CLASS
Let's suppose you have a device that doesn't fit into one of the device classes Microsoft
has already defined. When you're initially testing your device and your driver, you
can get away with using the Unknown class in your INF me. Production devices are
not supposed to be in the Unknown class, however. You should instead place your
custom device into a new device class that you define in the INF file. I'll explain how
to create a custom class in this section.

The INF example I showed you earlier relied on a custom device class:

[Version]
Signature=$CHICAGO$
Class=Sample
ClassGuid={894A7460-A033-11d2-821E-444553540000}

In fact, all of the samples in this book use the Sample class.

575

Programming the Microsoft Windows Driver Model

When you want to define a new class of device, you only need to do one task:
run GUIDGEN to create a unique GUID for the class. You can add polish to the user
interface for your device class by doing some additional tasks, such as writing a
property page provider for use with the Device Manager and putting some special
entries into the registry key your class uses. You can also provide filter drivers and
parameter overrides that will be used for every device of your class. You control each
of these additional features by statements in your INF file. For example:

[Classlnstal132]
AddReg=SamclassAddReg
CopyFiles=SamclassCopyFiles

[SamclassAddReg]
HKR •••• "WDM Book Sample"

[SamclassCopyFiles]

The illustrated registry entry turns into the "friendly name" for the device class
in the Device Manager and in the list of device types displayed by the add hardware
wizard. I'll explain some of the additional registry entries you might want to add to
the class key in the following sections.

NOTE None of my INF files has a Classlnstall32 section. None is needed be
cause the setup program for the sample disc puts the necessary class informa
tion directly into the registry. If you define your own device class as part of a
production driver package, however, you will need this section. Note also that
Microsoft discourages installing a new class without using an INF.

A Property Page Provider

576

Way back in Chapter 1, "Introduction"-in Figure 1-6 on page 13, to be precise-I
showed you a screen shot of the property page I invented for use with the Sample
device class. The SAMCLASS sample on the companion disc is the source code for
the property page provider that produced that page, and I'm now going to explain
how it works.

A property page provider for a device class is a 32-bit DLL with the following
contents:

• An exported entry point for each class for which the DLL supplies prop
erty pages

• Dialog resources for each property page

• A dialog procedure for each property page

Chapter 12 Installing DlVlce Drivers

In general, a single DLL can provide property pages for several device classes.
Microsoft supplies some DLLs with the operating system that do this, for example.
SAMCLASS, however, provides only a single page for a single class of device. Its only
exported entry point is the following function:

extern "C" BOOl CAllBACK EnumPropPages
(PSP_PROPSHEETPAGE_REQUEST p.
lPFNADDPROPSHEETPAGE AddPage. lPARAM lParam)
{

PROPSHEETPAGE page;
HPROPSHEETPAGE hpage;
memset(&page. 0. sizeof(page»;
page.dwSize = sizeof(PROPSHEETPAGE);
page.hlnstance = hlnst;
page. pszTempl ate = MAKEINTRESOURCE(IDD_SAMPAGE);
page.pfnDlgProc = PageDlgProc;
<some more stuff>
hpage = CreatePropertySheetPage(&page);
if (!hpage)

return TRUE;
if (!(*AddPage)(hpage. lParam»

DestroyPropertySheetPage(hpage);
return TRUE;
}

When the Device Manager is about to construct the property sheet for a device,
it consults the class registry key to see if there's a property page provider. You can
designate a provider with a line like the following in your INF file:

[SamclassAddReg]
HKR •• EnumPropPages32 •• "samclass.dll.EnumPropPages"

The Device Manager loads the DLL you specify (SAMCLASS.DLL) and calls the
deSignated entry point (EnumPropPages). If the function returns TRUE, the Device
Manager will display the property page; otherwise, it won't. The function can add zero
or more pages by calling the AddPage function as shown in the preceding example.

Inside the SP _PROPSHEETPAGE_REQUEST structure your enumeration function
rec~ives as an argument, you'll fmd two very useful pieces of information: a handle
to a device information set, and the address of an SP _DEVINFO_DATA structure that
pertains to the device you're concerned with. These data items (but not, unfortunately,
the SP]ROPSHEETPAGE_REQUEST structure that contains them) remain valid for
as long as the property page is visible, and it wbuld be useful for you to be able
to access them inside the dialog procedure you write for your property page.
Windows SDK Programming 101 (well, maybe 102, because this is a little obscure)
taught you how to do this. First create an auxiliary structure whose address you

577

-Programming the Microsoft Windows Driver Model

578

pass to CreatePropertySheetPage as the IParam member of the PROPSHEETPAGE
structure:

struct SETUPSTUFF {
HDEVINFO info:
PSP_DEVINFO_DATA did:
} :

BOOl EnumPropPages(...)
{

PROPSHEETPAGE page:

SETUPSTUFF* stuff = new SETUPSTUFF:
stuff->info = p->DevicelnfoSet:
stuff->did = p->DevicelnfoData:
page.1Param = (LPARAM) stuff:

page.pfnCallback = PageCallbackProc:
page.dwFlags = PSP_USECALLBACK:

}

UINT CALLBACK PageCallbackProc(HWND junk. UINT msg. LPPROPSHEETPAGE p)
{

if (msg == PSPCB_RELEASE && p->lParam)
delete (SETUPSTUFF*) p->lParam:

return TRUE:
}

The WM_INITDIALOG message that Windows sends to your dialog procedure
gets an IParam value that's a pointer to the same PROPSHEETPAGE structure, so
you can retrieve the stuff pointer there. You can then use SetWindowLong and
GetWindowLong to save any desired information in the DWL_USER slot associated
with the dialog object. In SAMCLASS, I chose to determine the name of a readme file
that would describe the sample driver. I'll show you the code for doing that in a couple
of paragraphs.

You also need to provide a way to delete the SETUPSTUFF structure when it's
no longer needed. The easiest way, which works whether or not you ever get a
WM_INITDIALOG message-you won't if there's an error constructing your prop
erty page-is to use a property page callback function as shown in the preceding
fragment.

You can do all sorts of things in a custom property page. For the sample class,
I wanted to provide a button that would bring up an explanation for each sample
device. To keep things as general as possible, I decided to put a SampleInfo value
naming the explanation file in the device's hardware registry key. To invoke a viewer

Chapter 12 Installing Device Drivers

for the explanation file, it suffices to call ShelJExecute, which will interpret the file
extension and locate an appropriate viewer application. For my book samples, the
explanation files are HTML files, so the viewer in question will be your Web browser.

Most of the work in SAMCLASS occurs in the WM_INITDIALOG handler. (Er
ror checking is again omitted.)

case WM_INITDIALOG:
{

SETUPSTUFF* stuff = (SETUPSTUFF*) «LPPROPSHEETPAGE) lParam)->lParam;
BOOL okay = FALSE;
TCHAR name[256];
SetupDiGetDeviceRegistryProperty(stuff->info, stuff->did,

SPDRP_FRIENDLYNAME, NULL, (PBYTE) name, sizeof(name), NULL);
SetDlgItemText(hdlg, IDC~SAMNAME, name);

HKEY hkey = SetupD10penDevRegKey(stuff->info, stuff->d1d,
DICS_FLAG_GLOBAL, 0, DIREG_DEV, KEY_READ);

DWORD length = sizeof(name);
RegQueryValueEx(hkey, "SampleInfo", NULL, NULL,

(LPBYTE) name, &length);
LPSTR infofile;
DoEnvironmentSubst(name, sizeof(name»;
infofile = (LPSTR) GlobalAlloc(GMEM_FIXED, strlen(name)+l):
strcpy(infofile, name);
SetWindowLong(hdlg, DWLUSER, (LONG) infoflle);
RegCloseKey(hkey);
break;
}

1. Here, we determine the FriendlyName f0r the device and put it into a
static text control. The actual code sample receives the device description
if there's no friendly name.

2. The next few statements determine the SampleIttfo filename from the
hardware key's parameter subkey.

3. The strings I put in the registry are of the form %wdmbookOAl\chap12\
devprop\devprop.htm, in which %wdmbook% indicates substitution
by the value of the WDMBOOK environment variable. The call to Do
EnvironmentSubst, a standardWin32 API, expands the environment
variable.

4. I need to remember the name of the Samplelnfo file somewhere, and
SetWindowLong provides a convenient way to do that.

When the end user-that would be you in this particular situation, I think
presses the More Information button on the property page, the dialog procedure
receives a WM_COMMAND message, which it processes as on the next page.

579

Programming the Microsoft Windows Drivar Model

case WM_COMMANO:
switch (LOWORO(wParam»

{

case IDB_MOREINFO:
{

LPSTR infofile = (LPSTR) GetWindowLong(hdlg, OWL-USER);
ShellExecute(hdlg, NULL, infofile, NULL, NULL, SW_SHOWNORMAL);
return TRUE;
}

}

break;

ShellExecute will launch the application associated with the Samplelnfo file
namely, your Web browser-whereupon you can view the file and fmd all sorts of
interesting information.

Other Class-Specific Information

580

In the preceding section, I showed you how an EnumPropPages32 registry entry
controls the display of property pages for devices belonging to your custom class.
Here are some other registry entries that you can use to tailor features of the class:

• Installer32 designates a DLL that performs installation functions for
devices belonging to the class. Writing a class installer is a huge under
taking, not least because the DDK documentation hasn't caught up to
the software in this area. I didn't attempt to write a class installer for the
Sample class.

• Class is the class name as it should be spelled in INF file Class- state
ments.

• Icon designates an icon to use in user interface displays about the class.
This value is a string containing a decimal integer. A positive value des
ignates an icon in the Installer32 DLL; documentation says that the sys
tem will find the icon in your EnumPropPages32 DLL if you don't have
a class installer, but I didn't fmd that to be the case. A negative number
designates an icon (whose index is the absolute value) in SETIJPAPI.DLL.
If you don't specify an icon, the system uses a nondescript gray diamond.
I decided to use the value -5 for the Sample class, which designates an
icon that looks vaguely like a PCI card. In fact, the system uses the same
icon for network cards, but I liked this choice better than the others.

• NoInstallClass, if present and not equal to 0, indicates that some enu
merator will automatically detect any device belonging to this class. If the
class has this attribute, the hardware wizard won't include this class in the
list of device classes it presents to the end user.

Chapter 12 Installing Device Drivers

• SllentInstall, if present and not equal to 0, causes the PnP manager to
install devices of this class without presenting any dialogs to the end user.

• UpperFllters and LowerFllters specify service names for ftlter drivers;
lhe PnP Manager loads these ftlters for every device belonging to the class.
(You specify filter drivers that apply to just one device in the device's
hardware key.)

• NoDisplayClass, if present and not equal to 0, suppresses devices of this
class from the Device Manager display.

A class key may also specify DeviceCharacteristics, DeviceType, and/or
Security properties that contain overriding values for certain device attributes. I dis
cussed these values in Chapter 2, "Basic Structure of a WDM Driver," in the section
"lhe Role of the Registry." The PnP Manager applies these overrides when it creates
a physical device object (PDO). I'm guessing here, but I suspect that someday a system
administrator will somehow be able to examine and change these properties.

LAUNCHING AN APPLICATION
You can enhance the end user experience of your hardware by providing an appli
cation that starts whenever one of your devices exists. Microsoft provides a special
purpose mechanism for still-image cameras but hasn't provided a general-purpose
mechanism that other devices can use. I'll describe just such a mechanism, named
AutoLaunch, in this section.

The AutoLaunch Service
Windows 98 and Windows 2000 both provide for notifications to applications when
hardware events occur. Microsoft Windows 95 introduced the WM_DEVICECHANGE
message. As originally conceived for Windows 95, the system broadcasts this mes
sage in user mode to all top-level windows for each of several possible device events.

Building on WM_DEVICECHANGE, Windows 2000 generates notifications to
interested service applications whenever a device driver enables or disables a regis
tered device interface. I wrote an AutoLaunch service to take advantage of these·
notifications. The service subscribes for notifications about a special interface GUID
by calling a new user-mode API named RegisterDeviceNotiflcation:

#include <dbt.h>

DEV_BROADCAST_DEVICEINTERFACE filter = {0};
fi lter. dbccs i ze =s i zeof(fi lter) ;
fil ter .dbccdevi cetype = DBLDEVTYP _DEVICEINTERFACE;
filter.dbcc_classguid = GUID_AUTOLAUNCH_NOTIFY;

(continued)

581

Programming the Microsoft Windows Driver Model

HDEVNOTIFY hNotification = RegisterDeviceNotification(hService,
(PVOID) &filter, DEVICE_NOTIFY_SERVICE_HANDLE);

To receive the interface notifications, the service must initialize by calling
RegisterServiceCtrffiandlerEx instead of RegisterServlceCtrffiandler in its
ServiceMain function:

hService = RegisterServiceCtrlHandlerEx«svcname>,
HandlerEx, (context»;

When you call RegisterServiceCtrlHandlerEx, you specify a HandierEx event
handler function that receives three more parameters than a standard service Han
dler function:

DWORD __ stdcall HandlerEx(DWORD ctlcode, DWORD evtype,
PYOID evdata, PYOID context)
{

}

In the situation we're concerned with here, ctlcode will equal SERVICE_CONTROL_
DEVICEEVENT, evtype will equal DBT_DEVICEARRIVAL, and evdata will be the
address of a device interface broadcast structure. The context parameter will be
whatever value you specified as the third argument to RegisterServiceCtrlHandlerEx.

The device interface broadcast structure looks like this:

struct _DEV_BROADCAST_DEVICEINTERFACE_W {
DWORD dbcc_size;
DWORD dbcc_devicetype;
DWORD dbcc_reserved;
GUID dbcc_classguid;
WCHAR dbcc_name[l];
} ;

The dbcc_devicetype value will be DBT_DEVfYP _DEVICEINTERFACE. The dbcc_
classguid will be the 128-bit interface GUID that some device driver enabled or
disabled, and the dbcc_name will be the symbolic link name you can use to open
a handle to the device. This particular structure comes in both ANSI and Unicode
versions. The service notification always uses the Unicode version, even if your ser
vice happens to have been built, as AutoLaunch is, using ANSI.

Triggering AutoLaunch

582

To trigger a device interface arrival notification to AutoLaunch, a driver simply has
to register and enable an interface by using the AutoLaunch GUID:

typedef struct _DEVICE_EXTENSION {

UNICODE_STRING AutoLaunchInterfaceName;
} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

Chapter 12 Installing Device Drivers

NTSTATUS AddDevice(...)
{

IoRegisterDevicelnterface(pdo. &GUID_AUTOLAUNCH_NOTIFY.
NULL. &pdx->AutoLaunchlnterfaceName);

}

NTSTATUS StartDevi ce(PDEVICE_OBJECT fdo •...)
{

IoSetDevicelnterfaceState(&pdx->AutoLaunchlnterfaceName. TRUE);

}

I discussed device interfaces in Chapter 2 as a method of giving a name to a
device so that an application could find the device and open a handle to it. A single
device can register as many interfaces as make sense. In this particular situation, you
would register an AutoLaunch interface in addition to any interfaces that you might
support. The only purpose of the AutoLaunch interface is to generate the notifica
tion for which the service is waiting.

When your driver enables its GUID_AUTOLAUNCH_NOTIFY interface, the
system sends the AutoLaunch service a device arrival notification, which the service
processes in this function:

DWORD CAutoLaunch::HandleDeviceChange(DWORD evtype.
_DEV_BROADCAST_HEADER* dbhdr)
{

if (ldbhdr
I I evtype l= DBT_DEVICEARRIVAL
I I dbhdr->dbcd_devicetype l= DBT_DEVTYP_DEVICEINTERFACE)
return 0;

PDEV_BROADCAST_DEVICEINTERFACE_W p =
(PDEV_BROADCAST_DEVICEINTERFACE_W) dbhdr;

CString devname = p->dbcc_name;
HDEVINFO info = SetupDiCreateDevicelnfoList(NULL. NULL);
SP_DEVICE_INTERFACE_DATA ifdata =

{sizeof(SP_DEVICE_INTERFACE_DATA)};
SP_DEVINFO_DATA devdata = {sizeof(SP_DEVINFO_DATA)};
SetupDiOpenDevicelnterfaceCinfo. devname. 0. &ifdata);
SetupDiGetDevicelnterfaceDetail(info. &ifdata. NULL. 0. NULL.

&devdata);
OnNewDevice(devname. info. &devdata);
SetupDiDestroyDevicelnfoList(info);
return 0;
}

583

Programming the Microsoft Windows Driver Model

584

1. There are other notifications besides the ones we're interested in. Some
of them are queries. Returning 0 is how we indicate success or acqui
escence to some query we don't specifically process. In fact, the real
AUfOLAUNCH sample on the disc handles the DBT_DEVICEREMOVE
COMPLETE notification too so that it can keep track of which arrival
notifications it's already processed and avoid duplication during system
startup. I left that detail out here to avoid clutter.

2. I built the AutoLaunch sample without UNICODE. This statement there
fore converts the UNICODE linkname'in the notification structure to ANSI.

My OnNewDevice function is going to spawn a new process to perform what
ever command line it finds in the registry. It was most convenient to use the device's
hardware key as a repository for the command line. The code to do this is as follows:

void CAutoLaunch::OnNewDevice(const CString& devname,
HDEVINFO info, PSP_DEVINFO_DATA devdata)
{

HKEY hkey = SetupDiOpenDevRegKey(info, devdata, DICS_FLA~GLOBAL,
0, DIREG_DEV, KEY_READ);

DWORD junk;
TCHAR buffer[-MAX_PATH];
DWORD size = sizeof(buffer);
CString Command;
RegOueryValueEx(hkey, "AutoLaunch", NULL, &junk,

(LPBYTE) buffer, &size);
Command = buffer;

CString FriendlyName;
SetupDiGetDeviceRegistryProperty(info, devdata,

SPDRP_FRIENDLYNAME, NULL, (PBYTE) buffer, sizeof(buffer), NULL);
Fri endl yName. FormatCT("\ "%5\""), buffer);

RegCloseKey(hkey);

ExpandEnvironmentStrings(Command, buffer, arraysize(buffer»;
CString name;
name. FormatCT("\ "%5 \""), (LPCTSTR) devname);
Command.Format(buffer, (LPCTSTR) name, (LPCTSTR) FriendlyName);

STARTUPINFO si = {sizeof(STARTUPINFO)};
si.lpDesktop = "WinSta0\\Default";
si.wShowWindow = SW_SHOW;

Chapter 12 Installing Device 'Drivers

PROCESS_INFORMATION pi;
CreateProcess(NULL, (LPTSTR) (LPCTSTR) Command, NULL, NULL,

FALSE, 0, NULL, NULL, &si, &pi);
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
}

1. This statement opens the Device Parameters subkey of the device's hard
ware registry key.

2. The INF file put an AutoLaunch value in the registry. We read that value
here.

3. Here we fetch the FriendlyName of the device for use as a command line
argument. There might be blanks in the name, so we want to put quotes
around it before submitting the command.

4. I wanted to allow the command line template in the registry to ioclude
environment variables surrounded by % characters. This statement ex
pands the environment strings.

5. I also wanted the command line template to use a %s escape to indicate
where the device name and friendly name belong. This statement produces
a command line with the substitution taken care of.

6. We're about to call CreateProcess to execute the command. Unless we're
careful, the command will use the same hidden desktop as our own ser
vice process, which is not going to be very useful to the end user! So we
create a STARTUPINFO structure that specifies the interactive session
desktop.

7. Here's where we actually launch the application whose name we found
in the registry. CreateProcess returns right away; the application lives ort
until someone closes it.

8. CreateProcess also gives us handles to the process and its initial thread.
We need to close those handles, or else the process and thread will never
go away.

Chickens and Eggs

The process I just described works great in a steady-state situation, where the
. AutoLaunch service is already up and running on a computer when a device comes
along and tries to launch a special application. Two other situations need to be dealt
with, though. .

First, devices that are already plugged in when the system is bootstrapped will
manage to register their GUID_AUTOLAUNCH_NOTIFY interfaces before the service

585

Programming the Microsoft Windows Driver Model

manager starts up the AutoLaunch service. Yet, you still (presumably) want the
AutoLaunch applications to start too.

AutoLaunch deals with this startup issue by enumerating all instances of the
interface when it first starts:

VOID CAutoLaunch::EnumerateExist1ngDev1ces(const GUID* guid)
{

HDEVINFO info = SetupDiGetClassDevs(guid, NULL, NULL,
DIGCF_PRESENT I DIGCF_INTERFACEDEVICE);

SP_INTERFACE_DEVICE_DATA ifdata;
ifdata.cbSize = sizeof(ifdata);
DWORD devindex;
for (devindex = 0;

}

SetupDiEnumDeviceInterfaces(info, NULL, guid, devindex, &ifdata);
++devindex)
{

DWORD needed;
SetupDiGetDeviceInterfaceDetail(info, &ifdata, NULL, 0,

&needed, NULL);
PSP_INTERFACE_DEVICE_DETAIl-DATA detail =

(PSP_INTERFACE_DEVICE-DETAIl-DATA) malloc(needed);
detail-)cbSize = sizeof(SP_INTERFACE_DEVICE-DETAIl-DATA);
SP_DEVINFO_DATA devdata = {sizeof(SP_DEVINFO_DATA)};
SetupDiGetDevicelnterfaceDetail(info, &ifdata, detail,

needed, NULL, &devdata):
CString devname = detail-)DevicePath:
free((PVOID) detail);
OnNewDevice(devname, guid);
}

The only interesting lines of code in this whole function are the ones in bold face,
where we obtain the necessary SP _DEVINFO_DATA structure and symbolic link name.
We then call OnNewDevice (the function you've already seen) to deal with this pre
existing device.

Getting the Service Running

586

The second startup situation you have to deal with is when your device is being
installed for the first time onto a machine that's never seen the AutoLaunch service
before. Your INF file needs to defme the AutoLaunch service and copy the service
binary file onto the end user computer. It can add a registry entry to the so-called
RunOnce key to trigger the service. For example:

[DestinationDirs]
AutoLaunchCopyFiles=10
[etc.]

Chapter 12 Installing Device Drivers

[Driverlnstall.NT]
CopyFiles=DriverCopyFiles.AutoLaunchCopyFiles
AddReg=DriverAddReg.NT

[DriverAddReg.NT]
HKLM.%RUNONCEKEYNAME%.AutoLaunchStart •• \

"rundl132 StartService.StartService AutoLaunch"

[DriverInstall.NT.Services]
AddService=AutoLaunch •• AutoLaunchService
[etc.]

[AutoLaunchCopyFiles]
AutoLaunch.exe ••• 0x60
StartService.exe ••• 0x60

[AutoLaunchService]
ServiceType=16
StartType=2
DisplayName="AutoLaunch Service"
ErrorControl=l
ServiceBinary=%10%\AutoLaunch.exe

[Strings]
RUNONCEKEYNAME="Software\Microsoft\Windows\CurrentVersion\RunOnce"

Refer to the DEVICE.INF in the SYS subdirectory of the AUTOLAUNCH sample for
the full picture.

After the installation of your device finishes, the system executes any commands
that are within the RunOnce registry key. The command we put there starts the
Autotaunch service if it's not already running. Note that STARTSERVICE.DLL is a tiny
DLL I wrote that starts a service without displaying any user interface or popping up
a dialog box. You'll want to use RUNDLL32 as the command verb in the RunOnce
value so that it will work correctly with a remote install of your driver package.

Non: Microsoft Knowledge Base article Q173039 suggests that the immedi
ate-processing behavior of entries in the RunOnce key is essentially a side ef
fect of a call to RUNDLL32. One of the Microsoft developers responsible for the
device installer has assured me that the RunOnce values are always processed
at the conclusion of installing a new device, regardless of what this article says.

WINDOWS 98 COMPATIBILITY NOTES
Windows 98 uses completely different technology for installing and maintaining
devices than Windows 2000. In this section, I'll describe some of the ways this might
affect you.

587

Programming the Microsoft Windows Driver Model

Property Page Providers
A property page provider for a new device class must be a 16-bit OLL. Look at
SAMCLS16 on the companion disc if you want to see an example, and don't discard
your 16-bit compiler just yet!

Registry Usage
Windows 98 uses a software registry key to locate device drivers. To initialize this
key, your Windows 98 install section should have an AddReg directive similar to this
example:

[Driverlnstall]
AddReg=DriverAddReg
<other install directives>

[DriverAddReg]
HKR •• DevLoader •• *ntkern
HKR •• NTMPDriver •• pktdma.sys

That is, you designate NTKERN.VXD as the device loader for your device, and you
designate your WDM driver as the NTMPDriver for which NTKERN looks. In addi
tion, you omit a .Services section because Windows 98 doesn't use it.

In contrast to Windows 2000, Windows 98 puts standard and nonstandard device
properties in the hardware key instead of separating the nonstandard properties
into a Device Parameters subkey. This turns out to be lucky, since you can't use
IoGetDeviceProperty to retrieve standard properties in Windows 98. (See the next
section for the reason.)

Getting Device Properties
Windows 98 (including Windows 98 Second Edition) incorrectly implements IoGet
OeviceProperty for the standard properties in a device's hardware key. To retrieve
these properties in a WDM driver, you should use IoOpenDeviceRegistryKey and
interrogate the property by name. The OEVPROP sample illustrates how to do this
for the standard device deSCription property.

Application Launching

588

Windows 98 doesn't have a service manager, so you can't run AutoLaunch as a ser
vice. The next best thing is an executable named in the registry's Run keyword. Part
of the AutoLaunch package is an ALNCH98.EXE applet that can be executed in this
way. It proVides a tray icon that you can use if you want it to halt.

Appendix A

Coping with Windows 98
Incompatibil ities

I closed many of the chapters in this book with a series of Microsoft Windows 98 compatibil
ity notes. While Microsoft originally planned that you'd be able to ship a single driver binary
file for both Windows 98 and Microsoft Windows 2000, the sad fact is that so lofty a goal might
prove elusive in practice. Not surprisingly, Windows 2000 continued to evolve long after
Windows 98 was up and running on millions of pes, and it supports several kernel-mode
service functions that Windows 98 does not. If a WDM driver calls one of these functions,
Windows 98 simply won't load the driver because it can't resolve the reference to the sym
bol. In this appendix, I'll describe a static virtual device driver eVxD)-the WDMSTUB sample
on the companion disc-that resolves a few of these symbols. Once you have the ability to load
a driver that calls functions that Windows 98 doesn't normally support, you might find that you
need a way to determine at run time whether you're running under Windows 98 or
Windows 2000; I'll also describe a heuristic that you can use to make this determination.

DEFINING STUBS FOR KERNEL-MODE ROUTINES
The stub technique used in WDMSTUB.VXD relies on the same basic trick that Microsoft crafted
to port several hundred kernel-mode support functions from Microsoft Windows NT to
Windows 98--that is, extending the symbol tables that the run-time loader uses when it re
solves import references. To extend the symbol tables, you first define three data tables that
will persist in memory:

• A name table that gives the names of the functions you're defining

• An address table that gives the addresses of the functions

• An ordinal table that correlates the name and address tables

589

Programming the Microsoft Windows Driver Model

590

Here are some of the table entries from WDMSTUB:

static char* names[] = {
"PoRegisterSystemState",

" ExSystemTi meTolocalTi me" ,

} :

static WORD ordinals[] {
0,

6,

} :

static PFN addresses[] = {
(PFN) PoRegisterSystemState,

(PFN) ExSystemTimeTolocalTime,

} :

The purpose of the ordinal table is to provide the index within addresses of the entry for
a given names entry. That is, the function named by wunes[iJ is address[ordinals[i]].

If it weren't for a version compatibility problem I'll describe in a moment, you could
call _PEIDR_AddExportTable as follows:

HPEEXPORTTABlE hExportTable = 0:

extern "C" BOOl OnDeviceInit(DWORD dwRefData)
{

_PElDR-AddExportTable(&hExportTable,
"ntoskrnl.exe",
arraysize(addresses). II ~ don't do it this way!
arraysize(names). 0.
(PVOID*) names.
ordinals. addresses. NUll):

return TRUE:
}

The call to _PELDR_AddExportTable extends the table of symbols that the loader uses when
it tries to resolve import references from NTOSKRNL.EXE, which is of course the Wmdows 2000
kernel. NTKERN.VXD, the main support module for WDM drivers in Windows 98, initializes
this table with the addresses of the several hundred functions it supports. WDMSTUB.VXD is
a static VxD with an initialization order later than NTKERN and earlier than the Windows 98
Configuration Manager. Consequently, WDMSTUB's export defmitions will be in place by the
time the system loads any WDM drivers. In effect, then, WDMSTUB is an extension to NTKERN.

Appendix A Coping with Windows 98 Incompatibilities.

Version Compatibility
The version compatibility problem to which I alluded earlier is this: Windows 98 supports a
particular subset of the Windows 2000 functions used by WDM drivers. Windows 98, Sec
ond Edition, supports a larger subset. The next version of Windows, code-named Millen
nium, will support a still larger subset (maybe even a superset, given that it will be released
after Windows 2000). You would not want your stub VxD to duplicate one of the functions
that the OS supports. What WDMSTIlB actually does during initialization, therefore, is dynami-

, cally construct the tables that it passes to _PELDR_AddExportTable:

HPEEXPORTTABlE hExportTable = 0;

extern "e" BOOl OnDevicelnit(DWORD dwRefData)
{

char**stubnames = (char**) _HeapA 11 ocate(si zeof(names), HEAPZEROINIT);
PFN* stubaddresses = (PFN*) _HeapA11ocate(sizeof(addresses),

HEAPZEROINIT); ,
WORD* ordinals = (WORD*) _HeapA11ocate(arraysize(names) * sizeof(WORD).

HEAPZEROINIT) ;
inti,istub;
for (i = 0, istub = 0; i < arraysize(names); ++i)

{

if (_PElDR-GetProcAddress«HPEMODULE) "ntoskrnl.exe", names[i]. NULL)
= 9)

}

{

stubnames[istub] = names[i];
ordinals[istub] = istub;
stubaddresses[istub] = addresses[i];
++istub;
}

_PElDUddExportTable(&hExportTable, "ntoskrnl.exe", istub,
istub. 0, (PVOID*) stubnames, ordinals, stubaddresses. NUll);

return TRUE;
}

The line appearing in bold face is the crucial step here-it makes sure that we don't inad
vertently replace a function that already exists in NTKERN or another system VxD.

There's one annoying glitch in the version compatibility solution I just outlined.
Windows 98, Second Edition, exports just three of the four support functions for managing
the IO_REMOYE_LOCK object. The missing function is I~RemoveLockAndWaitEx, if you
care. My WDMSTIlB.VXD driver compensates for this omission by stubbing either all or none
of the remove lock functions based on whether or not this function is missing.

591

Programming the Microsoft Windows Driver Model

Stub Functions

592

The main purpose of WDMSTIJB.VXD is to resolve symbols that your driver might reference
but not actually call. For some functions, such as PoRegisterSystemState, WDMSTUB.VXD
simply contains a stub that will return an error indication if it is ever called:

PYOID PoRegisterSystemState(PVOID hstate. ULONG flags)
{

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL):
return NULL:
}

BUILDING WDMSTUB

To get WDMSTIJB to build correctly, I needed to incorporate a couple of nonstandard
features. Each stub function must use the __ stdcall calling convention, whereas VxDs
normally use __ cdecl.

I wanted to call KeGetCurrentIrql and maybe other WDM service functions
from the stub VxD. A standard way to do this is to include WDM.H or NTDDK.H before
all of the VxD header files and link with the WDMVXD.LIB import library.
WDMVXD.LIB assumes that the functions you're trying to import are declared with the
__ declspec(dllimport) directive, which is normally true when you include either
WDM.H or NTDDK.H. This is because they're all declared using a preprocessor macro
named NTKERNALAPI, which normally gets #defined as __ declspec(dllimport). Unfortu
nately, if you try to define a function that's marked as dllimport, the compiler assumes
you meant to export the function. A VxD's first export must be the device description
block (DDB) that defines the driver, though, and not some random exported stub func
tion. I guessed that specifying ordinal number 1 for the DDB in my module defmition
file would force the DDB to be the first export, but I was mistaken. At the end of this
rather sad story, I ended up with a VxD that wouldn't load.

To get past all of these problems with import vs. export declarations, I had to
coerce NTDDK.H not to defme NTKERNELAPI in the normal way. (See STDVXD.H in
the WDMSTIJB project.) That leaves the module with unresolved references to symbols
like _KeGetCurrentIrql@O because of the limited vocabulary of WDMVXD.LIB. In the
particular case of KeGet<;:urrentIrql, one can issue a standard VxDCall to a service
named ObsoleteKeGetCurrentIrql and reach the right function in the Windows 98
kernel. Alternatively, one could defme a function (with a name like MyGetCurrentIrql)
that calls KeGetCurrentIrql and place it in a source module that you compile with the
normal setting for NTKERNELAPI.

Sometimes, though, you don't need to write a stub that fails the function call-you can
actually implement the function, as in this example:

Appendix A Coping with Windows 98 Incompatibilities

VOID ExLocalTimeToSystemTime(PLARGE_INTEGER localtime.
PLARGE_INTEGER systime)
{

systime->QuadPart = localtime->QuadPart + GetZoneBias();
}

where GetZoneBias is a helper routine that determines the time zone bias--that is, the number
of units by which local time differs from Greenwich mean time-by interrogating the
ActiveTimeBias value in the TimeZoneInformation registry key.

Table A-I lists the kernel-mode support functions that WDMSTUB.VXD exports.

Support Function

ExLocalTimeToSystemTime

ExSystemTimeToLocalTime

IoAcquireRemoveLockEx

IoAllocateWorkItem

IoFreeWorkItem

IoInitializeRemoveLockEx

IoQueueWorkItem

IoReleaseRemoveLockEx

IoReleaseRemoveLockAndWaitEx

IoCreateNotificationEvent

IoCreateSynchronizationEvent

IoReportTargetDeviceChangeAsynchronous

KdDebuggerEnabled

KeEnterCriticalRegion

KeLeaveCriticalRegion

KeNumberProcessors

KeSetTargetProcessorDpc

PoCancelDeviceN otify

PoRegisterDeviceNotify

PoRegisterSystemState

PoSetSystemState

PoUnregisterSystemState

PsGetVersion

RtlInt64ToUnicodeString

RtiUlongByteSwap

RtlUlonglongByteSwap

RtlUshortByteSwap

Table A-1. Functions exported by WDMSTUB. VXD.

Remarks

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented

Implemented

Stub--always fails

Stub--always fails

Stub--always fails

Implemented

Implemented

Implemented

Always returns 1

Implemented

Stub--always fails

Stub--always fails

Stub--always fails

Stub--always fails

Stub--always fails

Implemented

Stub--always fails

Implemented

Implemented

Implemented

593

Programming the Microsoft Windows Driver Model

DETERMINING THE
OPERATING SYSTEM VERSION

594

Once you've managed to get your device driver loaded-a feat that might require, as I've just
discussed, arranging to define Windows 98 stubs for certain support routines-you may need
to base run-time decisions on which version of the operating system happens to be in charge
of the computer. You might want, for example, to call functions that aren't, strictly speaking,
part of the WDM. IoReportTargetDeviceChangeAsynchronous, which I used in the
PNPEVENT sample, is such a function.

It's very easy for an application to learn the operation system platform by calling
GetVersionEx. The closest equivalent function in kernel mode is IOIsWdmVersionAvailable:

BOO LEAN 101 sWdmVers i onAva il ab 1 e (Maj orVers ion. Mi no rVers ion) :

Windows 2000 supports WDM version 1.10, which corresponds to the WDM
MA)ORVERSION (1) and WDM_MINORVERSION (10) constants in the file WDM.H. Windows 98
(including Windows 98, Second Edition) supports WDM version 1.0 only. You can use this
difference in support level to tell which platform you happen to be running on.

OTHER HEURISTICS FOR OPERATING SYSTEM VERSION

I used to rely on different heuristics for determining the operating system version until
experience and changes in the operating system made them obsolete. In the original
retail release of Windows 98, for example, the DriverExtension of your driver object
had a ServiceKeyName with zero length when the system invoked your DriverEntry
in a normal way. Windows 2000, on the other hand, supplies a nonempty string for this
parameter. So do later editions of Windows 98, which makes this heuristic useful only
for detecting the Original Windows 98.

Vireo Software used to suggest using the presence of a registry key named
\Registry\Machine\SAM as an indicator for Windows 2000. This test isn't reliable for
drivers that load during Windows 2000 startup, though, so you shouldn't rely on this
test either. The company currently recommends a test based on the facts that the reg
istry key HKLM\System\CurrentControlSet\Control\Class will exist in Windows 2000
but not Windows 98 and that the key HKLM\System\CurrentControlSet\Services\Class
will exist in Windows 98 but not Windows 2000.

AppendixB

Using GENERIC.SYS

This appendix explains the public interface to the GENERIC.SYS support library that most of
the sample drivers in this book use. I need to explain a few things about GENERIC first.

I built GENERIC for the simple reason that I kept needing to change the Plug and Play
(PnP) and power support for my sample drivers while I was writing this book. I'll probably
have to change that support after this book is published, too. Rather than try to change over
20 sample drivers each time I learned some new fact about PnP and power management, I
decided to build GENERIC and let it handle all the IRP _MLPNP and IRP _MLPOWER requests
that came my way.

I kept WDMWIZ.AWX (the subject of the next appendix) and GENERIC in synchrony.
That is, if you build a driver using WDMWIZ, you'll end with the same functionality whether
or not you elect to use GENERIC. If you decide to use GENERIC, your driver will call GE
NERIC to handle some of the more complicated things that WDM drivers do. If you decide
not to use it, your driver will include all that code.

I designed GENERIC to be redistributed as part of WDM driver packages, but only
under a royalty-free license agreement that will protect end users from inconsistency. Please
consult the sample program license agreement for more details about this.

Finally, I used Microsoft's AUTODUCK tool to automatically generate documentation
for the functions GENERIC exports. AUTODUCK takes specially formatted comments in source
code and turns them into documentation. If you remember to update the comments, you can
keep your documentation up-to-date fairly painlessly. You'll find the documentation in the
GENERIC directory on the companion disc under the name GENERIC.RTF. I could lie and tell
you we put it there for your convenience or so that I could change it up until the last minute-
which I did!-but the truth is that we printed the covers before we knew exactly how many
pages were in the book, and there turned out to be too many. So much for any illusions you
may have treasured about the intellectual purity of the publishing process.

595

Appendix C

Using WDMWIZ.AWX

This appendix describes how to use the WDMWIZ.AWX custom wizard to build a driver project
for use with Microsoft Visual C++ version 6.0. I built this wizard because I wanted an easy
and reproducible way to generate the sample drivers for this book. I've included it on the
companion disc because I knew you'd want an easy way to generate drivers as you read
through the book.

The WDMBOOK.HTM file on the companion disc tells you how to install this wizard
on your system. Once you've installed it, you'll find a WDM Driver Wizard item on the Projects
tab of the New dialog box that Visual C++ presents when you create a new project.

WDMWIZ.AWX is not a product and never will be. I would like to know about situa
tions in which it generates incorrect code, but I'm not planning to make any changes to the
admittedly clunky user interface. Furthermore, you're on your own as far as quality assurance
for your finished driver goes.

BASIC DRIVER INFORMATION
The initial page (shown in Figure C-l) asks you for basic information about the driver you
want to build.

For Type Of Driver, you can specify these choices:

• Generic Function Driver Builds a function driver for a generic device. (Note that
use of the word generic here is unfortunate because it has nothing to do with
GENERIC.SYS.)

• Generic Filter Driver Builds a filter driver with default handling for all types
of IRP.

• USB Function Driver Builds a function driver for a USB device.

• Empty Driver Project Builds a project with no files but with options set up for
building a WDM driver.

597

Programming the Microsoft Windows Driver Model

598

Figure C-1. Page for entering basic driver information.

You can select the following options:

• Verbose Debugging Trace If you check this option, the driver project files will
include many KdPrint macro calls to trace important operations in the driver.

• Use Buffered Method For Reads And Writes Set this option if you want to use
the DO_BUFFERED_IO method for read and write operations. Clear this option if
you want to use DO_DIRECT_10 instead.

• Use Old-Style For Device Naming Set this option to generate named device ob
jects. Clear this option to generate a driver that uses a device interface instead. The
second choice (device interface) is the one Microsoft prefers for WDM drivers.

• Replace ASSERT For i86 Platforms The DDK's ASSERT macro calls a kernel
mode support routine (RtlAssert) that's a no-operation in the free build of Microsoft
Windows 2000. The checked build of your driver will therefore not stop in the free
build of the operating system. Set this option to redefine ASSERT so that the checked
build of your driver halts even in the free build of the operating system.

• Use GENERlC.SYS Library Set this option to make use of the standardized driver
code in GENERIC.SYS. Clear this option to put all that standardized code in your own
driver.

• Windows 98 Detection Set this option to include a run-time check for whether
your driver is running under Windows 98 or Windows 2000. Clear this option to omit
the check.

You can also specify the base pathname where you've installed the Windows 2000 DDK
and the samples for this book. The default values-$(DDKPATH) and $(WDMBOOK)-rely
on the environment variables that the sample setup program creates.

Finally you can click the Dispatch Functions button to specify the types of IRP your driver
will handle, as Figure C-2 shows. The dialog box embodies some design decisions that you

Appendix C Using WDMWIZ.AWX

can't override: Your driver will include support for IRP _MLPN.P and IRP _MLPOWER. If you
specify handling for IRP _MLCREATE, youlll get support for I~ _MLCLOSE. If you specify
handling for IRP _MLREAD, IRP _ML WRITE, or IRP _MLDEVICE_C:0NTROL, you'll get sup
port for IRP _MLCREATE (and therefore IRP _MJ_CLOSE). WDMWIZ.AWX doesn't generate
skeleton dispatch functions for many types of IRP that are used only by me system drivers.

Figure C-2. Dialog box for specifying the IRP major function codes for which you
want dispatch functions .

DEVICEloCONTROL CODES
If you specified handling for IRP _MLDEVICE_CONTROL, the wizard will present a page
(depicted in Figure C-3) to allow you to specify information about the control operations you
support.

Figure C-3. Page for specifying suppprted I/O control operations.

599

Programming the Microsoft Windows Driver Model

Figure C-4 is an example of how you specify information about a particular
DeviceloControl operation. Most of the fields correspond directly to parameters in the
CTL_CODE preprocessor m~cro and should therefore require no explanation. Setting the
Asynchronous option generates support for an operation that you complete asynchronously,
after the dispatch function returns STATUS_PENDING.

Figure C-4. Dialog box for adding and editing an I/O control operation.

1/0 RESOURCES

600

If your device uses any I/O resources, you can fill in the third page with information about
them, as Figure C-5 shows.

Figure C-5. Page for specifying I/O resources.

Appendix C Using WDMWIZ.AWX

POWER CAPABILITIES
The fourth step in the wizard (shown in Figure C-6) allows you to specify some miscellaneous
power management capabilities. With the exception of the Idle Detection option, I haven't
debugged all the interactions between this page and the driver options on other pages. Be
prepared to sort this out yourself if you set any option other than Idle Detection.

Figure C-6. Page for specifying power management capabilities.

The capabilities in this page are as follows:

• Queue Reads And Writes While Power Is Off Set this option if your driver
will accept and queue read and write IRPs even while your device is powered
down. Clear this option if your driver will reject new read and write IRPs during
such periods.

• Device Supports System Wakeup Set this option if your device has system
wake-up capability. Otherwise, clear the option. Setting the option generates skeletal
support for generating IRP _MN_ WAIT_WAKE requests at appropriate points.

• Device Can Be Stopped While Busy With An IRP If your driver has some way
to halt an active read or write IRP when an IRP _MN_STOP _DEVICE comes along,
you can set this option if you want. Otherwise, leave the option clear.

• Idle Detection Set this option if you want your device to automatically power
down after a user-prescribed period of inactivity. If you're using GENERIC.SYS
with your driver, you'll automatically get support for a set of IOCTLs that my
POWCPL.DLL uses, thereby gaining a user interface for free.

• Power On Only While Handles Open This option is available for USB devices
only. Set it if you want your device powered on only while an application has
an open handle.

601

Programming the Microsoft Windows Driver Model

• Power Inrush During Power-On Set this option if your device is an inrush
device that demands a large spike of current when powering on.

USB ENDPOINTS

602

If you selected USB Function Driver in the first page, the wizard will present a page that allows
you to describe the endpoints of your device, as Figure C-7 shows. This page lists the names
of variables in your device extension that will hold pipe handles. The order of names corre
sponds to the order of endpoint descriptors on your device.

NOTE This page isn't sufficiently complex to let you describe a device with
multiple interfaces or with alternate settings for interfaces.

Figure C-7. Page for defining USB endpoints.

Refer to Figure C-8 for an illustration of the dialog box you can use to describe a single
endpoint. The Description Of Endpoint group relates to the description of the endpoint in
your device firmware and should be self-explanatory. Within the Resources In The Driver
group, complete the fields as follows:

• Name Of Pipe Handle In Device Extension Supply the name of a DEVICE_
EXTENSION member to hold the pipe handle you'll use for operations on this
endpoint.

• Maximum Transfer Per URB Specify here the maximum number of bytes
you'll transfer in a single URB. In general, this value is much larger than the
endpoint maximum.

Appendix C Using WDMWIZ.AWX

Figure CoS. Dialog box for adding and editing a USB endpoint.

WMI SUPPORT
If you've specified that you want to handle IRP _MLSYSTEM_CONTROL requests, the wizard
will present the page shown in Figure C-9 to allow you to specify the elements of your cus
tom WMI schema.

Figure C-9. Page for specifying W1\.[] options.

In this page, you should always leave the Use WMILIB option checked because the
generated code won't give you much help in handling WMI requests otherwise. The Block
Identifiers list names the class GUIDs in your custom schema in the order they'll appear in
the GUID list for WMILIB.

603

Programming the Microsoft Windows Driver Model

Figure C-lO illustrates how you can describe one class in your custom schema. The
topmost (unlabelled) control is the symbolic name of a GUID that the wizard will generate
for you automatically. You can specify the following attributes of this class:

• Number Of Instances Indicates how many instances of the class your driver
will create.

• Expensive Indicates an expensive class that must be specifically enabled.

• Event Only Indicates that the class is used only to fire an event.

• Traced Corresponds to a WMI option that I don't currently understand. But if
I ever do understand it, I'll be able to use this check box to influence its state.

You can choose between PDQ-based instance naming or instance naming using a base
name. Microsoft recommends you use PDQ-based naming.

Figure C-10. Dialog box for specifying a WM! class.

PARAMETERS FOR THE INF FILE

604

The last page in the wizard (shown in Figure C-ll) lets you specify information for the INF
file that becomes part of your driver project.

The fields in this page are as follows:

• Manufacturer Name Name of the hardware manufacturer.

• Device Class The standard device class to which your device belongs. Sample
is my own class for the driver samples in this book: you shouldn't use this class
for a production device.

Appendix C Using WDMWIZ.AWX

• Hardware ID The hardware identifier for this device. I made up 'WCOOC01 for
this example. You should specify the identifier that will match one of the iden
tifiers that the relevant bus driver will create. Refer to the section titled "Device
Identifiers" in Chapter 12, "Installing Device Drivers," for more information.

• Friendly Name For Device If you want to have a FriendlyName value in
serted into the device's hardware key, specify that name here.

• Auto-Launch Command If you want the AutoLaunch service to automatically
start an application when your device starts, specify the command line here. For
example, when I built the AutoLaunch sample for Chapter 12, I specified
%windirDlo\altest.exe %s %s in this field.

• Device Description Insert the description of your device here.

Figure C-11. Page for specifying INF file options.

NOW WHAT?
After you run through all the pages of the wizard, you'll have a project that you can use to
finish crafting your driver. Because of limitations on the custom wizard support in Visual C++,
you'll need to add some project settings by hand. Please refer to WDMBOOK.HTM on the
companion disc for a description of these settings.

The generated code will contain a number of TODO comments that highlight areas
where you need to write some code. I suggest you use the Find In Files command to locate
these items.

605

Index

Note: Page numbers in italics refer to figures or tables.

Special Characters
16-bit Windows applications, I/O operations

in, 4-5, 4
64-bit types, 37
1394 devices, 570-71
\?? directory, 52,53, 57, 70

A
AbortPendingJobs function, 434
AbortRequests function, 238, 259
accessible members, 9
ACPI (Advanced Configuration and Power

Interface), 491
. AcquireRemoveLock function, 250
AdapterControl routine, 11, 11, 329-30,

333-35,339
adapter object data structure, 321
AddDevice routine, 21, 48-49, 75, 95, 96, 219,

226, 246, 294, 333, 387-88, 387, 402,
403-6,446,456,514

creating device objects, 49-51
introduced, 11, 1.1
naming devices

deciding whether to name or not, 54-56
device interfaces and, 57-63, 59
introduced, 51-52, 51
name creation, 56-57
symbolic links, 52-54, 53

other global device initialization
building the device stack 68
c1earillg the DO_DEVICE_INITIALIZING

flag, 68
initializing default DPC objects, 66
initializing device extensions, 64-65
initializing device flags, 67
introduced, 63-64
miscellaneous objects, 67
setting buffer alignment masks, 66-67
setting initial power states, 68

status codes in, 75

AddPage function, 577
AddRef method, 476-77
Advanced Configuration and Power Interface

(ACPI),491
Advanced Power Management (APM), 491
Advanced RISC Computing (ARC)

architecture, 54
AllocateAdapterChannel function pointer, 321
AllocateAdapterChannel routine, 326-29,

335,341
AllocateCommonBuffer function pointer, 321
AllocateCommonBuffer routine, 340, 341-42
AllocateFrom functions, 110, 110, 111
alloc_text pragma, 95, 96
AllowRequests function, 238, 260
Anchor Chips USB set, 488--89
ANSCSTRING data structure, 112, 112, 114
ANSI strings, 112-14, 112,113
AnswerMethod routine, 472
APC_LEVEL IRQL, 135, 135, 162, 164, 192-93

215,218 '
APCs. See asynchronous procedure calls

(APCs)
APM (Advanced Power Management) 491
arbitrary thread context, 10, 142 '
ARC (Advanced RISC Computing)

architecture, 54
AreRe9uestsBeingAborted function, 238,

259-60,318
arithmetic

floating-point, 126-27
interlocked, 164-68, 165

ASSERT macros, 128
asynchronous kernel-mode drivers, 9-10
asynchronous procedure calls (APCs)

I/O requests and, ·160-61
IRQL and, 135
thread alerts and, 159-62

AutoLaunch setvice, 581-87, 588

607

Programming the Microsoft Windows Driver Model

B
blue screen of death (BSOD), 89-90, 89
books about driver development, 17
BSOD (blue screen of death), 89-90, 89
buffer alignment masks, 66--67
bug checks, 74, 89-90, 89
bulk transfer pipe management, 524-32
bulk transfers, 488, 493, 500-501,501
bus, defUled, 20-21
bus address, 340
bus drivers, 10 .
bus-master DMA operations, 342-44

C
CacheControlRequest function, 430, 431-34
CancelDeviceWakeupRequest API

function, 391
Cancello routine, 200, 430
CancelRequest function, 238, 239, 256-57
CDeviceList class, 61-63
CDeviceListEntry class, 61-63
CDeviceList::Initialize function, 62-63
CD-ROM, 12-13, 13. See also GENERIC.SYS

library; sample code; WDMWIZ.AWX
wizard

CFGMGR32 set of APIs, 574
CheckBusyAndStall function, 238, 242, 252,

254, 256
CheckTUnerroutine, 447, 448
rUVTl\T'P ,1 ~1~"'I' C:/A
"-' ~, ... '-"II..L.I..I.'"],.J/.I.

CIM (Common Information Model), 452
class drivers, 5, 6, 10-11
class keys, 24, 27-28, 28, 69
CleanupControlRequests function, 434
CleanupRequests function, 238, 257-58
CLOCK1_LEVEL IRQL, 135
CLOCK2_LEVEL IRQL, 135
CloseHandle routine, 415
CM_P ARTIAL_RESOURCE_DESCRIPTOR data

structure, 290, 290
CM_PARTIAL_RESOURCE_LIST data structure,

290,290
CM_RESOURCE_LIST data structure, 231, 231
CoCreateInstance routine, 477-78
code. See sample code
code_seg pragrna, 96
CoInitializeEx routine, 480
COM (Component Object Model) interfaces,

476-78
common buffer, 322, 339-42
Common Information Model (CIM), 452

608

companion disc, 12-13, 13. See also
GENERIC.SYS library; sample code;
WDMWIZ.A WX wizard

compatibility. See Microsoft Windows 98
compatibility notes

compile-tUne control of pagability, 94-96
CompleteMain routine, 360
CompleteRequest function, 86, 190
Component Object Model (COM) interfaces,

476-78
configuration descriptors, 503, 506-7,507
ConnectServer method, 477, 480
CONTAINING_RECORD macro, 103, 103, 170
controller and multifunction devices

creating child device objects, 267-68
handling child device resources, 277
handling device removal, 274
handling IRP_MN_QUERY_DEVICE_

RELATIONS minor function code, 276
handling IRP _MN_QUERY_ID minor

function code, 275-76
introduced, 265-66
overall architecture, 266
PDO handling of PnP requests, 270-74, 270
telling the PnP Manager about our

children, 268-70
control pipes, 492
control requests, 534-36,536, 537
controls, standard, 475, 475
control transfers, 488, 493, 496-500, 498, 499
CoUninitialize routine, 480
CreateEvent routine, 429
CreateFile routine, 208, 324, 415, 541
CreateInstanceEnum routine, 481
CreateInterruptUrb routine, 533
CreateProcess routine, 585
CreatePropertySheetPage routine, 577-78

o \.
DO, Dl, D2, and D3 states, 347-48, 347
data blobs, 114-15, 115
data blocks, st:atldard, 474-75, 474
data buffers, addressing

buffered method, 293, 294-95
direct method, 293, 295-98,296, 296-97
introduced, 293-94, 293
neither method, 293, 298

data phase, 494-95, 495
data_seg pragma, 95, 96
dates, tUnestamps and, 144-45
DbgPrint routine, ·127

DbgView utility, 127-28
debugging. See also errors

Driver Verifier for, 94
making debugging easier, 127-28

DefaultPnpHandler routine, 263
deferred procedure calls (DPCs), 11, 11,

185--86
custom DPC objects, 312-13
importance of, 312
initializing default DPC objects, 66
introduced, 308-10,309
notification timers used with, 155-56
scheduling, 310-12

DefmeDosDevice routine, 53
Delete functions, 110,110, 111
DeleteInterruptUrb routine, 533
DeregisterAllInterfaces routine, 234
DestroyContextStructure routine, 551
device and driver layering

device objects, 38-44, 39, 40, 41-43 (see
also filter device objects (FiDOs);
functional device objects (FDOs);
physical device objects (PDOs»

driver objects, 35-38, 35, 36, 37
introduced, 19-22, 20
system driver loading, 30

device object interrelations, 30-32, 31,
32,33

device stack examination, 33, 34
introduced, 22
recursive enumeration, 22-23, 23
role of the registry, 24-29, 24, 26, 28, 29

DEVICE_CAPABILITIES data structure, 367-
68,368

device descriptors, 503-6, 503, 505
DEVICE_EXTENSION data structure, 64-65
device extensions, initializing, 64-65
device flags, initializing, 67
device identifiers, 566-71,568
device initialization, global

building the device stack, 68
clearing the DO_DEVICE_INITIALIZING

flag, 68
initializing default DPC objects, 66
initialiZing device extensions, 64-65
initializing device flags, 67
introduced, 63-64
miscellaneous objects, 67
setting buffer alignment masks, 66-67
setting initial power states, 68

DEVICE_INTERF ACE_CHANGE-.NOTIFICATION
data structure, 283-84

device interfaces, 57-63, 59
enumerating, 61-63

Index

DeviceIoControl API function, 175, 285, 287,
415-18, 416, 525, 535

device IRQL (DIRQL), 8, 135, 170
device naming

deciding whether to name or not, 54-56
device interfaces and, 57-63, 59 .
introduced, 51-52, 51
name creation, 56-57
symbolic links, 52-54, 53

DEVICE_OBJECT data structure, 38-44,39,
40,41-43

device object pointers, 219-20
device objects, 38-44,39, 40, 41-43. See also

filter device objects (FiDOs); functional
device objects (FDOs); physical device
objects (PDOs)

creating, 49-51
device properties, 588
device stack

building, 68
examining with DevView, 33, 34
implementing, 43-44

device types, unimplemented, 70-
device version numbering, 505
DEVQUEUE object

aborting requests, 259-60
awaiting the current IRP, 258-59
cancelling IRPs, 256-58
dequeuingIRPs, 254-56
initializing, 251-52
introduced, 236-37, 236, 237
queuing IRPs, 252-54
stalling the IRP queue, 252
using for IRP queuing and cancellation,

237-40,238
using with PnP requests, 240-50, 245

DEVVIEW utility
introduced, 33, 34
viewing namespaces with, 51, 51

direct memory access (DMA)
bus-master operations, 342-44
introduced, 320-21,320, 321
packet-based, 323
performing DMA transfers

.introduced, 323-32, 325-26
using GetScatterGatherList routine,

335-37
using scatter/gather lists, 322, 332-35
using the system controller, 322,.337-39

simple bus-master device, 342-44

609

Programming the Microsoft Windows Driver Model

direct memory access (DMA), continued
slave, 322, 337-39, 340-41
transfer strategies, 321-23, 323
using a common buffer, 322, 339-42

DIRQL (device IRQL), 8, 135, 170
disc, 12-13, 13. See also GENERIC.SYS library;

sample code; WDMWIZ.A WX wizard
DispatchAny routine, 402
DispatchCleanup routine, 211, 257
DispatchClose routine, 210
DispatchControl function, 434
DispatchCreate routine, 210, 249
DISPATCH_LEVEL IRQL, 8, 93,100,126,134,

135, 135, 136, 136, 137, 138, 139, 140,
141, 143, 145, 147, 148, 149, 153, 165,
170, 171, 183, 188, 192-93, 219,
264-65,308,310,353,388,397,406,
427,442

DispatchPnP function, 95, 96, 132-33, 405
DispatchPower routine, 94
dispatch routines, IRP

duties of, 182-83
forwarding IRPs to, 181-82

DispatchXx:x functions, 182
Distributed Management Task Force

(DMTF),452
divisor latch, 307-8
DLLs. See dynamic-link libraries (DLLs)
DmaExecutionRoutine routine, 336
DmaOperations data structure, 321, 321
DIvI1'F (Distributed Management Task

Force),452
DO_DEVICE_INITIALIZING flag, 68
DoEnvironmentSubst API function, 579
DO_POWER_PAGABLE flag, 353, 396-97, 406
doubly-linked lists, 104-6, 104
DpcForIsr routine, 185, 248, 317, 319, 330-32,

336,339
DPCs. See deferred procedure calls (DPCs)
DpcSpecial function, 186
DriverEntry routine

differences in Windows 98 and
Windows 2000 call, 69

driver reinitialization routine, 48
DriverUnload function, 47
introduced, 11, 11, 44-45,402-3,460
IRPs and, 181
overview, 45-47
section placement and, 96
status codes in, 75

DRIVER EXTENSION data structure, 37, 37
driver layering. See device and driver layering

610

DRIVER_OBJECT data structure, 35-38, 35,
36, 37

driver objects, 35-38, 35, 36, 37
DriverUnload routine, 47, 111,282,402
Driver Verifier feature of Windows 2000, 94
DUMPBIN utility, 96
dynamic-link libraries (DLLs)

E

GENERIC.SYS, 14,354-55
WMILIB, 457, 459--{)0, 485

endpoint descriptors, 503, 508-9,508, 509
endpoints, 492, 496, 496
enumerating device interfaces, 61-63
enumeration, recursive, 22-23, 23
EnumPropPages routine, 577
error handling. See also structured exception

handling
bug checks, 74, 89-90, 89
introduced, 74
status codes, 45, 75-77, 75

errors. See also debugging
errata page for, 17
logging

creating error log packets, 406, 408-10,
408

creating message files, 406, 410-14, 411
introduced, 406-7, 407
Windows 98 compatibility notes, 449

EVENTLOG sample, 409, 411-13, 414
ExAcquireFastMutex function, 163, 163, 164
ExAcquireFastMutexUnsafe function, 163,

163, 164
ExAllocateFromNPagedLookasideList

function, 110, 110, 111
ExAllocateFromPagedLookasideList function,

110,110, 111
ExAllocatePool function, 91, 99-100, 100,

101, 539
ExAllocatePoolWithQuota function, 102
ExAllocatePoolWithQuotaTag function, 102
ExAllocatePoolWithTag function, 101-2
exception frames, 77, 79
exception handlers, 79
exceptions, raising, 85-86, 85
__ except statement, 79, 81-83, 82, 85
exclusive devices, 50
ExDeleteNPagedLookasideList function, 110,

. 110, 111
ExDeletePagedLookasideList function, 110,

110, 111
ExecMethod routine, 483

ExecNotificationQueryAsync routine, 483
ExecNotificationQuery routine, 482, 483
ExecuteMethod routine, 472-73
executive work items, 442-45
ExFreePoolroutine, 86, 91,100-101,444,522
ExFreeToNPagedLookasideList function, 110,

110, 111
ExFreeToPagedLookasideList function, 110,

110, 111
ExGetPreviousMode routine, 162
ExIhitializeFastMutex function, 163, 163
ExInitializeNPagedLookasideList function,

110,110
ExInitializePagedLookasideList function,

110,110
ExInitializeWorkItem function, 443
ExInterlockedAddLargeInteger function,

165, 167-68
ExInterlockedAddLargeStatistic function,

165, 168
ExInterlockedAddUlong function, 165, 168
ExInterlockedCompareExchange64 function,

165, 168
ExInterlockedInsertHeadList function, 311
ExInterlockedRemoveHeadList function, 435
ExInterlockeclXXx functions, 165, 167-68,

170-71,210
Ex prefix (executive), 72
ExQueueWorkItem function, 444
ExRaiseAccessViolation function, 85
ExRaiseDatatypeMisalignment function, 85
ExRaiseStatus function, 85
ExReleaseFastMutex function, 163, 164
ExReleaseFastMutexUnsafe function, 163, 164
extern "C" declaration, 95
ExTryToAcquireFastMutex function, 163, 164

F
fast mutex objects, 162-64, 162-63, ·163
FDO drivers, 21
FDOs. See functional device objects (FDOs)
FEATURE sample, 534-35
FiDOs. See filter device objects (FiDOs)
file objects, 210
files

accessing
creating or rewriting files, 124-25
introduced, 123
opening existing files for reading, 124
ZwXxx routine problems, 129

timing of file operations, 126
file system driver (FSD), 6, 180

filter device objects (FiDOs)
acronym for, 20
device object interrelations, 30-32, 31,

32,33
introduced, 19,20, 21

filter drivers
AddDevice routine, 403-6
DriverEntry routine, 402-3

Index

introduced, 10, 399-401, 400, 401, 402
lower, 400-401, 401, 402
upper, 400, 400

FilterResour<:eRequirements substructure, 261
__ finally statement, 79-81, 80, 83,85
floating-point calculations, 126-27
FlushAdapterBuffers function pointer, 321
FlushAdapterBuffers routine, 331, 341
ForwardAndWait function, 227-29, 229, 230,

242,263,513
frame master, 556
frames, 494-95, 494, 495
FreeAdapterChannel function pointer, 321
FreeAdapterChannel routine, 339, 341
FreeCommonBuffer function pointer, 321
FreeMapRegisters function pointer, 321
FreeMapRegisters routine, 339, 341
FreeTo functions, 110, 110, 111
friendly names, 63
FSD (file system driver), 6, 180
functional device objects (FDOs)

acronym for, 20
device object interrelations, 30-32, 31,

32,33
introduced, 19, 20, 21-22

functional stall, 500
FunctionControlroutine, 470,471
function drivers, 10
function pointer tables, 225
functions (devices), 489

G
GenericAcquireRemoveLock function, 250
GenericDispatchPower routine, 354, 366
GENERIC.SYS library, 14, 354-55
GENINF utility, 574
GetCurrentIrp function, 238, 239, 448
GetDmaAlignment function pointer, 321
GetExceptionCode function, 84
GetExceptionInforrnation function, 84
GetLastError function, 416, 541
Get method, 482
GetOverlappedResult API function, 418
GetScatterGatherList function pointer, 321
GetScatterGatherList routine, 335-37

611

Programming the Microsoft Windows Driver Model

GetStringDescriptor function, 518-19
GetWindowLong routine, 578
global cancel spin lock, 204
globally unique identifiers (GUIDs), 27,

58--60,59
grand unified descriptor, 506
guarded body for exception frames, 79
GUIDs (globally unique identifiers), 27,

58--60,59 '

H
HAL (hardware abstraction layer), 299-300,

300
HalGetAdapter function, 325
HalGetInterruptVector routine, 231
Hal prefix (hardware abstraction layer), 72-73
HalTranslateBusAddress routine, 231
HandleFilterResources function, 261-63
HandlePowerEvent function, 354-57,

356, 371
HandlerEx function, 582
Handler function, 582
HandleStartDevice function, 224
HandleUsageNotification function, 263-64
handshake phase, 494-95, 495
hardware abstraction layer (HAL), 299-300,

300
hardware (instance) keys, 24-27, 24, 26, 69,

571-74, 572, 588
hardware wizard. 560--61.561
heap allocator

ExAllocatePoolWithTag function, 101-2
introduced, 99-100, 100
releasing a memory block, 100-101

Hibernate state, 348,348
highest-level driver, 142-43
HIGH_LEVEL IRQL, 135, 135, 171
hubs, 489
HWPROFILE_CHANGE_NOTIFICATION data

structure, 284

IDE devices; 569
IDL (Interface Definition Language), 477
idle detection, 391-95, 393
ihere on Soft-Ice/W command, 128
INF files

device identifiers, 566-71,568
hardware registry key, 571-74, 572, 588
install sections, 561-66,562,563,564
introduced, 558--61, 558, 559, 561
tools for, 574-75, 575

612

InitializeListHead function, 104, 105, 255
InitializeObjectAttributes macro, 117
InitializeQueue function, 238, 240, 251-52
IN keyword, 45
INOUT keyword, 45
InsertHeadList function, 104, 105
InsertTailList function, 104, 105
installing device drivers

defining device classes
introduced, 575-76
other class-specific information, 580-81
property page providers, 576-80, 588

INF files
device identifiers, 566-71,568
hardware registry key, 571-74,572, 588
install sections, 561-66, 562, 563, 564
introduced, 558--61,558,559,561
tools for, 574-75, 575

introduced, 557
launching applications

AutoLaunch service, 581-87, 588
introduced, 581
Windows 98 compatibility notes, 588

Windows 98 compatibility notes
device properties, 588
launching applications, 588
property page providers, 588
registry usage, 588

install sections (INF files), 561-66, 562,
563,564

instance C'nardware) keys, 24-27, 24, 26, 69,
571-74, 572, 588

Interface Definition Language (IDL), 477
interface descriptors, 503, 507-8
interlocked arithmetic, 164-68, 165
InterlockedCompareExchange function, 165,

166,311
IntedockedCompareExchangePointer

function, 166-67
InterlockedDecrement, 165, 165
InterlockedExchangeAdd function, 165
InterlockedExchange function, 165, 167
InterlockedExchangePointer function, 167
InterlockedIncrement function, 165, 165
interlocked list access, 168-71
InterlockedOr routine, 344
InterlockedXXX' functions, 165-67, 165
interruptibility of kernel-mode drivers, 8
interrupt pipe management, 532-34
interrupt request level (IRQL)

APC_LEVEL, 135, 135, 162, 164, 192-93,
215, 218

basic synchronization rule, 136

interrupt request level (IRQL), continued
CLOCKCLEVEL, 135
CLOCK2_LEVEL, 135
compared with thread priorities, 137
device IRQL (DIRQL), 8, 135, 170
DISPATCH_LEVEL, 8, 93, 100, 126, 134,

. 135, 135, 136, 136, 137, 138, 139, 140,
141, 143, 145, 147, 148, 149, 153, 165,
170, 171, 183, 188, 192-93, 219,
264-65,308,310,353,388,397,406,
427, 442

explicitly controlling, 138-39
HIGH_LEVEL, 135, 135, 171
implicitly controlling, 137-38
interrupt priority in action, 136, 136
introduced, 131, 134-35, 135
IPCLEVEL, 135
of ISRs, 306
and paging, 137
PASSIVE_LEVEL, 8,134, 135, 136,136, 137,

138, 143, 147, 150, 155, 165, 192-93,
213,227,353,388,397,405,406,427,
442, 444

POWER_LEVEL, 135
PROFILE_LEVEL, 135, 136
SYNC_LEVEL, 134

interrupts
configuring, 303-5
handling, 306-8

interrupt service routines (ISRs), 11, 11,
184-85

IRQL of, 306
programming restrictions in, 306-7
synchronizing operations with, 307-8

interrupt transfers, 488, 493, 501, 502
IoAcquireCancelSpinLock routine, 256
IoAcquireRemoveLock function, 132, 246,

248,365,405,445,460
IoAllocateErrorLogEntry function, 409
IoAllocateIrp function, 180, 216-17, 370, 427
IoAllocateMdl function, 296, 297
IoAllocateWorkItem function, 445
IoAttachDeviceToDeviceStack routine, 43, 68,

197,219,234,403
IoBuildAsynchronousFsdRequest function,

180,212,212,217-19
IoBuildDeviceIoControlRequest function, 180,

217,426,513
IoBuildPartialMdl function, 296, 530
IoBuildSynchronousFsdRequest function, 180,

212-16,212, 218
IoCallDriver function, 181-82, 197, 216, 228,

351,397,427,513,531

Index

IoCancelIrp routine, 200-202, 210, 214, 215,
216, 253, 255, 256, 390, 430, 547, 549

IoCompleteRequest routine, 151-52, 185-86,
189, 190-91, 191, 193, 195-,97, 210,
214,216,228,308-9,310,365,435,
448,459,530,531,554

IoConnectInterrupt routine, 303-5, 307, 314
I/O control (IOCTI.) operations

deftning I/O control codes, 418-19, 418
DeviceIoControl API function, 415-,16, 416
handling IRP _MLDEVICE_CONTROL

internal I/O control operations, 426-28
introduced, 420-22, 420
METHOD_BUFFERED buffering method,

422-23, 422
METHOD_IN_DIRECT and

METHOD_OUT_DIRECT buffering
methods, 424-25, 424

METHOD_NEITHER buffering method,
425-26

introduced, 414-15
notifying applications of interesting events

helper routine operation, 431-35
introduced, 428-30
working with an asynchronous IOCTI.,

430-31
pending IOCTL operations, 450
synchronous and asynchronous calls to

DeviceIoControl,416-18
and Windows 98 virtual device drivers

(VxDs),449-50
IoCopyCurrentIrpStackLocationToNext macro,

198, 272
IoCreateDevice routine, 49-51, 70, 76, 87,

234, 387, 403
IoCreateNotiftcationEvent routine, 429
IoCreateSymbolicLink routine, 53
IoCreateSynchronizationEvent routine, 429
IoCreateUnprotectedSymbolicLink routine, 53
IOCTI. operations. See I/O control (IOCTI.)

operations
IoDeleteDevice routine, 65, 76, 234
IoDetachDevice routine, 234, 405
IO_ERROR_LOG_PACKET data structure,

408-9,408
IoFreeIrp routine, 197, 206, 214, 215, 390,

427, 548, 549, 554
IoFreeItem function, 445
IoFreeMdl function, 296
IoGetAttachedDeviceReference routine, 43,

405
IoGetCurrentIrpStackLocation function, 193,

199,224

613

Programming the Microsoft Windows Driver Model

10GetDeviceObjectPointer function, 52,
220, 282

10GetDeviceProperty routine, 276, 571, 588
10GetDmaAdapter routine, 321, 324, 325-26,

328, 335, 338, 340
10lnitializeDpcRequest macro or routine,

185,309
10lnitializeRemoveLock routine, 76, 246
10InvalidateDeviceReiations function, 235,

270
10InvaiidateDeviceState routine, 235
10MakeAssociatedIrp function, W0-81, 554
I/O Manager, 2
I/O-mapped devices, 298, 300-302
10MarkIrpPending routine, 194-97,434, 531
100penDevicelnterfaceRegistryKey function,

116, 118
100penDeviceRegistryKey function, 116,

118,588
10pCompieteRequest routine, 218
10 prefix (I/O Manager), 71
10QueueWorkItem function, 282, 445
10RegisterDevicelnterface function, 59-60, 76,

87, 278
10RegisterDriverReinitialization function, 48
10RegisterPlugPIayNotiftcation routine,

281-82
10ReleaseRemoveLockAndWait function, 247,

287, 405
10ReleaseRemoveLock routine, 246, 248, 249,

". - ..,./,. / /,,- /./""" ,. ,... ,.. /,.,.

~~/, ~OJ,~~J,~ov, J~~, J~~

10_REMOVE_LOCK object, 245-50, 245
10ReportTargetDeviceChangeAsynchronous

function, 285, 287
10ReportTargetDeviceChange function, 285,

287
10ReportXxx routines, 286
10RequestDpc routine, 309, 310
I/O request packets (IRPs)

awaiting current; 258--59
cancelling I/O requests, 200-211, 203, 207,

208, 256-58
completing I/O requests, 3, 189-97, 189,

191,194
delegating to WMILIB, 457-66, 462, 463
dequeuing, 254-56
device object pointers and, 219-20
device power, 375-87,376, 377, 378, 379,
, 382, 383, 386, 397

introduced, 2-3, 21
10_STACK_LOCATION data structure,

177-79,177, 178, 181,198,199

614

I/O request packets (IRPs), continued
managing

introduced, 211-12, 212
. using 10Allocatelrp, 180, 216-17
using 10BuildSynchronousFsdRequest,

180,212-16,212,218
passing requests down to lower levels,

197-99, 198, 200
queuing, 252-54
repeater, 271-74
stalling the IRP queue, 252
standard model for processing

creating IRPs, 180-81
custom queues, 186-88, 187
deferred procedure call routine, 185-86
duties of a dispatch routine, 182-83
forwarding to a dispatch routine, 181-82
interrupt service routine, 184-85
introduced, 179-80, 179
Startlo routine, 183-84

structure, 173-77, 174,176
system power

that decrease power, 372-75,373,374
that increase power, 361-72, 361,

362,368
using 10BuildAsynchronousFsdRequest,

180, 212, 212, 217-19
using 10BuildDeviceloControlRequest,

180, 217
I/O requests. See also I/O request packets

GRF:;)
APCs and, 160-61
in Windows 98, 4-5, 4
in Windows 2000, 2-3

IO_RESOURCE_REQUIREMENTS_LIST data
structure, 261

I/O resources, defined, 226
10SetCancelRoutine routine, 204, 253-54, 255,

, 258, 434, 551
10SetCompletionRoutine macro, 179, 191-92
10SetDevicelnterfaceState routine, 60-61, 278
10SetNextirpStackLocation routine, 434
10SkipCurrentIrpStackLocation routine,

199, 352
10_STACK_LOCATION data structure,

177-79,177, 178, 181,198,199
IoStartNextPacketByKey routine, 205, 206
10StartNextPacket routine, 138, 185, 201, 202,

205, 206, 211, 239, 308--9, 310
10StartPacket routine, 138, 183, 201, 211, 239
10StartTimer routine, 446
10_STATUS_BLOCK data structure, 174, 175,

189, 190

iostatus data structure, 427
IoStopTimer routine, 446
IoUnregisterPlugPlayNotification routine, 282
IoWMIRegistrationControl routine, 456
IoWriteErrorLogEntry function, 406, 449
IPCLEVEL IRQL, 135
IRP _MLCLEANUP major function code,

178-79,207,208,208, 209, 210, 211,
240,257,258,434

IRP _MLCLOSE major function code, 208, 210,
220,249,257,287,446,541

IRP _MLCREATE major function code, 50, 56,
208,210,220,249,446,450,541

IRP _MLDEVICE_CONTROL major function
code, 173-74, 175,212, 394,420-28,
420,422,424

IRP _MLFLUSH_BUFFERS major function
code,212

IRP _MLINTERNAL_DEVICE_CONTROL major
function code, 212, 401, 405, 426, 427,
510, 514, 526, 545

IRP _MLPNP major function code, 32, 148,
178, 190, 212, 221, 222, 223-25, 240,
405

IRP _MLPOWER major function code, 67,
212, 349-53, 350, 351, 352, 370, 388,
389

IRP _MLREAD major function code, 2, 3,
31-32, 175, 178, 182,212, 294, 525,
526, 530, 544

IRP _MLSHUTDOWN major function code,
212

IRP ->1LSPECIAL major function code, 186
IRP _MLSYSTEM_CONTROL major function

code, 456, 469
IRP _MLWRITE major function code, 175,

212,294,394,525,526,530
IRP _MN_CANCEL_REMOVE_DEVICE minor

function code, 222, 244, 270
IRP _MN_CANCEL_STOP _DEVICE minor

function code, 222, 242, 270
IRP _MN_CHANGE_SINGLE_INSTANCE minor

function code, 456, 462, 464
IRP _MN_CHANGE_SINGLE_lTEM minor

function code, 456, 462, 465
IRP _MN_DEVICE_USAGE_NOTIFlCATION

minor function code, 32, 222, 242,
263,270

IRP _MN_DISABLE_COLLECTION minor
function code, 456, 470

IRP _MN_DISABLE,-EVENTS minor function
code, 456, 472

IRP _MN_EJECT minor function code, 222,
270

IRP _MN_ENABLE_COLLECTION minor
function code, 456, 470

Index

IRP _MN_ENABLE_EVENTS minor function
code, 456, 472

IRP _MN...:.EXECUTE->1ETHOD minor function
code, 456

IRP _MN_FILTER_RESOURCE_REQUIREMENTS
minor function code, 222, 261,270

IRP _MN_POWER_SEQUENCE minor function
code, 76-77,35~ 370,396

IRP _MN_QUERY_ALL_DATA minor function
code,456, 462,462

IRP _MN_QUERY_BUS_INFORMATION minor
function code, 222, 270

IRP _MN_QUERY_CAPABILITIES minor
function code, 222, 234, 270, 367

IRP _MN_QUERY_DEVICE_RELATIONS minor
function code, 222, 266,268,270, 276

IRP _MN_QUERY_DEVICE_TEXT minor
function code, 222, 270 .

IRP _MN_QUERY_ID minor function code,
222,270, 275-76

IRP _MN_QUERY_INTERFACE minor function
code, 222, 270, 277

IRP _MN_QUERY]NP _DEVICE_STATE minor
function code, 222, 270

IRP _MN_QUERY]OWER minor function
code, 349, 350,350, 353,378, 381,
385, 389

IRP _MN_QUERY_REMOVE_DEVICE minor
function code, 222, 243,270

IRP _MN_QUERY...;RESOURCE_REQUIREMENTS
minor function code, 222, 270, 277

IRP _MN_QUERY_RESOURCES minor function
code,222,270

IRP _MN_QUERY_SINGLE_INSTANCE minor
function code, 456, 462, 462

IRP _MN_QUERY _STOP _DEVICE minor
function code, 222, 241,270

IRP _MN_READ_CONFIG minor function
code, 222, 270

IRP _MN_REGINFO minor function code, 456,
460,462

IRP ~N_REMOVE __ DEVICE minor function
code, 178, 221,222,233-34, 245, 247,
249, 258, 270, 274, 287, 439, 450

IRP _MN_SET_LOCK minor function code,
222,270

IRP _MN_SET_POWER minor function code,
349, 350, 351, 353, 378,378, 381, 382

615

Programming the Microsoft Windows Driver Model

IRP _MN_START_DEVICE minor function
code, 126, 129, 143, 178, 221, 222,
227, 230, 240, 251, 263, 267, 268, 270,
277, 315, 439, 510

IRP _MN_STOP _DEVICE minor function code,
221, 222, 232-33, 241, 243, 258, 270,
439, 524

IRP _MN_SURPRISE_REMOV AL minor
function code, 32, 222, 234-35,270,
287

IRP_MN_WAIT_WAKE minor function code,
35~ 389-91, 491, 535

IRP _MN_ WRITE_CONFIG minor function
code,222,270

IRPs. See I/O request packets (IRPs)
IRQL. See interrupt request level (IRQL)
ISAPNP devices, 570
IShellExtInit COM interface, 393
IShellPropSheetExt COM interface, 393
IsListEmpty function, 104, 105
isochronous pipe management

achieving acceptable performance, 544-46
handling cancellation of the main IRP,

546-54
initiating a series of isochronous transfers,

542-43
introduced, 537, 537
reserving bandwidth, 538-41,538,540
streaming isochronous transfers, 554
synchronizing isochronous transfers,

5;4-56
isochronous transfers, 488, 493, 502, 502
ISRs. See interrupt service routines (ISRs)
IUnknown objects in COM, 476-77
IWbemClassObject interface, 471, 481-82, 484
IWbemLocator interface, 477-78, 480
IWbemObjectSink interface, 483
IWbemServices interface, 479-84

K
KDEVICE_QUEUE object, 186-88, 187,

236,237
KdPrint macro, 76, 128
KeAcquireSpin:LockAtDpcLevel function, 193
KeAcquireSpinLock routine, 141, 171
KeBugcheckEx function, 89-90
KeCancelTirner function, 153
KeClearEvent function, 147, 147, 149-50
KeDelayExecutionThread routine, 158, 315
KeFlushIoBuffers routine, 330, 341
KelnitiaHzeDpc routine, 312
KeInitializeEvent function, 147, 147, 227, 426
KelnitializeMutex function, 152, 152

616

KelnitializeSemaphore function, 150, 150
KeInitiaHzeSpinLock function, 140-41, 305
KelnitializeTirnerEx function, 153, 155, 157
KeInitializeTirner function, 153, 154, 155
KelnsertByKeyDeviceQueue, function, 186-87
KelnsertDeviceQueue function, 186-87, 188
KelnsertQueueDpc routine, 312-13
KeLowerIrql routine, 138-39, 188
Ke preftx (Windows NT kernel), 72
KeQuerySystemTime routine, 144
KeRaiselrql routine, 138-39
KeRaiselrqlToDpcLevel function, 139
KeReadStateEvent function, 147, 149
KeReadStateMutex function, 152, 152
KeReadStateSemaphore function, 150, 151
KeReadStateTimer function, 153
KeReadStateXxx functions, 145, 149
KeReleaseMutex function, 152, 153
KeReleaseSemaphore function, 150, 151
KeReleaseSpin:Lock routine, 141
KeRemoveByKeyDeviceQueue function,

186-87
KeRemoveDeviceQueue function, 186-87,

188
KeResetEvent function, 147, 149
KeRestoreFloatingPointState routine, 127
kemel dispatcher objects

blocking threads, 142-43
introduced, 141-42, 142
kernel events, 147-50, 147
kernei mu[exes, 151-53, 152
kernel semaphores, 150-51, 150
kernel timers, 153-58, 153
thread alerts and APCs, 159-62
using threads for synchronization, 158-59
waiting on multiple dispatcher objects,

145-47
waiting on single dispatcher objects,

143-45
kernel events, 147-50, 147
kernel mode, 1-2
kernel-mode address spaces. See user-mode

and kernel-mode address spaces
kernel-mode drivers

attributes
asynchronous, 9-10
conftgurability, 7-8
interruptibility, 8
introduced, 7
multiprocessor-safe, 8-9
object-based, 9
packet-driven, 9

kernel-mode drivers, attributes, continued
portability, 7
preemptibility, 8

introduced, 5, 6
kernel-mode programming environment

introduced,71-73, 73
side effects, 74
using standard run-time library functions,

73
kernel mutexes, 151-53, 152
kernel semaphores, 150-51, 150
kernel streaming, 542
kernel timers, 153-58, 153
KeSaveFloatingPointState function, 127
KeSetEvent function, 144, 147, 148-49, 160,

195, 229, 255, 429
KeSetImportanceDpc routine, 312
KeSetTargetProcessorDpc routine, 311
KeSetTimerEx function, 153, 154, 155, 441
KeSetTimer function, 153, 154, 155
KeStallExecutionProcessor routine, 158
KeSynchronizeExecution function, 138, 184,

308, 447
KeWaitForMultipleObjects routine, 141,

145-47, 156-57, 438, 441, 450
KeWaitForMutexObject macro, 153
KeWaitForSingleObject routine, 137, 141, 143,

151,160,161,214,228,450
KeWaitXxx functions, 148-49, 151, 152, 154,

155, 158
KeXXxDeviceQueue routines, 211
KEY_BASIC_INFORMATION data structure,

122
KEY]Ull_INFORMATION .data structure,

121-22, 123
KEY_VALUE_BASIC_INFORMATION data

structure, 123
KEY_VALUE]ARTIAL_INFORMATION data

structure, 119-20

L
latency period, 347
launching applications

AutoLaunch service, 581-87, 588
introduced, 581
Windows 98 compatibility notes, 588

leap years, 144-45
__ leave statement, 88
legacy device drivers, 5, 6
linked lists

doubly-linked lists, 104-6, 104
interlocked access, 168-71

linked lists, continued
introduced, 102-3, 103
singly-linked lists, 106-8, 106, 107
S-Lists, 168-70

LIST_ENTRY data structure, 102
LOCeK instruction prefIx, 133~--34
LogEventfunction, 409
logging errors

Index

creating error log packets, 406, 408-10, 408
creating message files, 406, 410-14, 411
introduced, 406-7, 407
Windows 98 compatibility notes, 449

logical address, 340
lookaside lists, 108-11, 108, 109, 110
LOOPBACK sample, 525-31
lower mter drivers, 400-401, 401, 402
lower mters, 19, 20

M
magazines about driver development, 18
MainCompletionRoutine routine, 363-64, 365
major function code, defined, 2
Managed Object Format (MOF), 453, 454-55
Manufacturer section (INF mes), 560
map registers, 320, 320
MapTransfer function pointer, 321
MapTransfer routine, 330, 334, 337, 339-41,

343
MDL (memory descriptor list) data structure,

293, 295-98, 296, 296-97
memcpy function, 73
memory descriptor list (MDL) data structure,

293,295-98,296, 296-97
memory management

heap allocator
ExAllocatePoolWithTag function, 101-2
introduced,99-100, 100
releasing a memory block, 100-101

introduced, 90-91
linked lists

doubly-linked lists, 104-6, 104
interlocked access, 168-71
introduced, 102-3, 103
singly-linked lists, 106-8, 106, 107
S-Lists, 168-70

lookaside lists, 108-11, 108, 109, 110
user-mode and kernel-mode address

spaces
compile-time control of pagability, 94-96
introduced, 91-92, 91
paged and nonpaged memory, 93-94
page size, 92-93
run-time control of pagability, 97-99, 97

617

Programming Iba Microsoft Windows Driver Modal

memory-mapped devices, 298, 302-3
memory resources, 298, 302-3
message files, 406, 410-14, 411
method routines, 9
Microsoft Windows 98

architecture, 3
I/O requests in, 4-5, 4
overview, 3-5, 3, 4
system threads, 450

Microsoft Windows 98 compatibility notes
\?? directory, 70
DeviceIoControl function, 287
device properties, 588
differences in DriverEntry call, 69
differences in registry organization, 69
error logging, 449
importance of DO_POWER_PAGABLE,

396-97
I/O controls and Windows 98 virtual device

drivers (VxDs), 449-50
IoReleaseRemoveLockAndWait function,

287
IoReportTargetDeviceChangeAsynchronous

function, 287
IoReportTargetDeviceChange function, 287
IRP _MLCLOSE major function code, 287
IRP _MN_REMOVE_DEVICE minor function

code, 287
IRP _MN_SURPRISE_REMOV AL minor

function code, 287
iaunching appiications, 588
pending IOCTL operations, 450
PoCallDriver function, 397
PoCancelDeviceNotify function, 398
PO_POWER_NOOP flag, 398
PoRegisterDeviceForIdleDetection routine,

398
PoRegisterDeviceNotify function, 398
PoRegisterSystemState function, 398
PoSetPowerState routine, 398
PoSetSystemState function, 398
PoStartNextPowerIrp routine, 398
PoUnregisterSystemState function, 398
property page providers, 588
registry usage, 588
requesting device power IRPs, 397
unimplemented device types, 70
virtual device drivers (VxDs) and I/O

controls, 449-50
Windows Management Instrumentation

(WMI),485
ZwXxx routine problems, 129

618

Microsoft Windows 2000
architecture, 2
driver types, 5-6,5
Driver Verifier feature, 94
I/O requests in, 2-3
overview, 1-3,2

Microsoft Windows NT components, 71-73,
73

min function, 74
minidrivers, 5, 6, 11
MmBuildMdlForNonPagedPool function, 296
MmCreateMdl routine, 86
MmGetMdlByteCount function, 296
MmGetMdlByteOffset function, 296
MmGetMdlVirtualAddress function, 296
MmGetPhysicalAddress function, 296
MmGetSystemAddressForMdl function, 297,

425,512
MmGetSystemAddressForMdlSafe function,

297
MmInitializeMdl function, 297
MmLockPagableCodeSection function, 97, 98
MmLockPagableDataSection function, 97, 98
MmLockPagableSectionByHandle function,

97, 98
MmMapIoSpace routine, 301, 303
MmPageEntireDriver function, 97, 98
Mm preftx (Memory Manager), 72
MmPrepareMdlForReuse function, 297
MmProbeAndLockPages function, 77, 86,

297-98,297, 512
MmResetDriverPaging function, 97, 98-99
MmSizeOfMdl function, 297
MmUnlockPagableImagesSection function,

97, 98
MmUnlockPages function, 297
MOF (Managed Object Format), 453, 454-55
multifunction devices. See controller and

multifunction devices
multiprocessor-safe kernel-mode drivers, 8-9
mutexes, kernel, 151-53, 152
mutex objects, fast, 162-64, 162-63, 163

N
newsgroup about driver development, 18
Next method, 481, 482
nonarbitrary thread context, 142
nonpaged memory, paged memory and,
93-94

notifications
device usage, 263-65, 263
PnP

custom, 285-87
extensions to WM_DEVICECHANGE

message, 278-79
introduced, 277-78
kernel-mode, 281-85, 283
knowing when to close a device handle,

279-80
to Windows 2000 services, 280-81

notification timers
used like events, 153-55
used with DPCs, 155-56

NOTIFY sample, 431-35
NtAlertThread API function, 159
NtReadFile function, 1-2, 160, 161
NTSTATUS codes, 45, 75-77, 75, 189
NtWaitForSingleObject function, 160
null-terminated strings, 112

o
ObDereferenceObject routine, 159, 429, 438
OBJECT_ATTRIBUTES data structure, 117
object-based kernel-mode drivers, 9
Object Manager, kernel-mode drivers and, 9
Ob prefix (Object Manager), 72
ObReferenceObjectByHandle routine,

159, 437
ObReferenceObject routine, 269
OkayToRemove function, 244
OnCancelReadWrite routine, 547, 549
OnInterrupt routine, 307, 317-19, 343-44, 533
OnNewDevice function, 584-85, 586
OnReadWriteComplete routine, 529, 546
OnRequestComplete routine, 228, 229
OnStageComplete routine, 545, 546, 547-48
OnTimer routine, 446
OpenDevRegKey routine, 574
OpenEvent routine, 429
OUT keyword, 45

p
packet-based DMA, 323
packet-driven kernel-mode drivers, 9
pagability

compile-time control of, 94-96
run-time control of, 97-99, 97

paged and nonpaged memory, 93-94
page faults, 93, 129
page size, 92-93
page tables, 92

Index

paging, IRQL and, 137
Parameters. UsageN otification substructure,

263,263
partially opaque objects, 9, 35
PASSIVE_LEVEL IRQL, 8, 134, 135, 136, 136,

137, 138, 143, 147, 150, 155, 165,
192-93, 213, 227, 353, 388, 397, 405,
406, 427, 442, 444

PCI42 sample
handling the interrupt, 317-19
initializing, 313-15
introduced, 313
starting a read operation, 315-17
testing, 319

PCI devices, 566--67
PCMCIA devices, 568
PD~ drivers, 21
PDOs. See phYSical device objects (PDOs)
periodic timers, 156
physical device objects (PDOs)

device object interrelations, 30-32, 31,
32,33

introduced, 19, 20, 21-22
PIO (programmed I/O). See PCI42 sample;

PIOFAKE sample
PIOFAKE sample, 446-49
PKTDMA sample, 342-44
Plug and Play (PnP)

controller and multifunction devices
creating child device objects, 267-68
handling child device resources, 277
handling device removal, 274
handling

IRP _MN_QUERY_DEVICE_RELATIONS
minor function code, 276

handling IRP_MN_QUERY_ID minor
function code, 275-76

introduced, 265-66
overall architecture, 266
PD~ handling of PnP requests, 270-74,

270
telling the PnP Manager about our

children, 268-70
device usage notifications, 263-65, 263
flltering resource requirements, 261-63
introduced, 221-23,222, 223
IRP _MLPNP dispatch function, 223-25
managing PnP state transitions

DEVQUEUE implementation, 250-60
introduced, 236-37,236, 237
using DEVQUEUE for IRP queuing and

cancellation, 237-40, 238
using DEVQUEUE with PnP requests,

240-50, 245

619

Programming the Microsoft Windows Driver Model

Plug and Play (PnP), continued
Microsoft Windows 98 compatibility notes

DeviceloControl function, 287
IoReleaseRemoveLockAndWait function,

287
IoReportTargetDeviceChangeAsynchronous

function, 287
IOReportTargetDeviceChange function,

287
IRP _MLCLOSE major function code, 287
IRP _MN_REMOVE_DEVICE minor

function code, 287
IRP _MN_SURPRISE_REMOV AL minor

function code, 287
notifications

custom, 285-87
extensions to WM_DEVICECHANGE

message, 278-79
introduced, 277-78
kernel-mode, 281-85, 283
knowing when to close a device handle,

279-80
to Windows 2000 services, 280-81

PnP Manager, 20-21
starting and stopping devices

extracting resource assignments, 230-31,
231

forwarding and awaiting the IRP, 227-29,
229

introduced, 225-27,226
IRP _MN_REMOVE_DEVICE minor

function code, 233-34
IRP _MN_STOP _DEVICE minor function

code, 232-33
IRP _MN_SURPRISE_REMOV AL minor

function code, 234-35
PLUGPLAY_NOTIFlCATION_HEADER da1:<l

structure, 283, 283
PnP. See Plug and Play (PnP)
-PnP drivers, 5, 6
PNPEVENT sample, 280
PnP Manager, 20-21
PNPMON sample, 285
PoCallDriverroutine, 351, 352, 397
PoCancelDeviceNotify function, 398
PoCompletionRoutine routine, 372
polling devices, 436, 438-42
POLLING sample, 438-42
PopEntryList function, 103, 106, 106, 108
PO]OWER_NOOP flag,- 398
PoRegisterDeviceForIdleDetection function,

391, 398
PoRegisterDeviceNotify function, 398

620

PoRegisterSystemState function, 392, 398
PoRequestPowerlrp function, 370-72, 395
portability of kernel-mode drivers, 7
port resources, 298, 300-302
PoSetDeviceBusy function, 391, 394
PoSetPowerState routine, 398
PoSetSystemState function, 398
PoStartNextPowerirp routine, 350, 352,

365, 398
POUnregisterSystemState function, 398
POWCONTEXT data structure, 354
POWER_LEVEL IRQL, 135
power management

flags to set in AddDevice, 387-88,387
idle detection, 391-95, 393
introduced, 345-46
managing power transitions

device power IRPs, 375-87, 376, 377,
378, 379, 382, 383, 386

initial handling for new IRPs, 357--61
introduced, 353-54
overview of the finite state machine,

354-57,356
system power IRPs that decrease power,

372-75,373,374
system power IRPs that increase power,

361-72, 361, 362, 368
Microsoft Windows 98 compatibility notes

importance of DO_POWER_PAGABLE,
396-97

PoCaHVrtver function, 397
POCancelDeviceNotify function, 398
PO]OWER_NOOP flag, 398
PoRegisterDeviceForidleDetection

routine, 398
PoRegisterDeviceNotify function, 398
PoRegisterSystemState function, 398
PoSetPowerState routine, 398
PoSetSystemState function, 398
PoStartNextPowerirp routine, 398
PoUnregisterSystemState function, 398
requesting device power IRPs, 397

using sequence numbers.to optimize state
changes, 395-96

wake-up features, 388-91,389
WDM power model

device power and system power states,
347-48, 347, 348

handling IRP _MLPOWER requests,
349-53, 350, 351, 352

introduced, 346
power state transitions, 349
roles of WDM drivers, 346-47

WMI commands for, 475, 475

power relation, 395
power states, initial, setting, 68
Power substructure, 350, 350
preamble packet, 490, 496
preemptibility of kernel-mode drivers, 8
ProbeForRead routine, 77, 425-26
ProbeForWrite routine, 77, 83, 425-26
PROFILE_LEVEL IRQL, 135, 136
programmed I/O (PIO). See PCI42 sample;

PIOFAKE sample
property page providers, 576--80, 588
protocol stall, 497
PsCreateSystemThread routine, 159, 436
Ps prefIx (Process Structure module), 72
PsTerminateSystemThread routine, 158, 436,

438,450
PushEntryList function, 106, 106, 108
PutDmaAdapter function pointer, 321
Put method, 482
PutScatterGatherList function pointer, 321
PutScatterGatherList routine, 336

Q
QueryDataBlock routine, 461-64, 462, 463,

467, 468 .
Querylnterface method, 476-77
QueryPower function, 381
QueryReglnfo routine, 460-61, 468-69

. queues, custom, 186-88, 187
QueueUserAPC API function, 159, 162

R
RaiseException API function, 85
raising exceptions, 85-86, 85
RANDOMJUNK data structure, 443, 444, 445
ReadDmaCounter function, 341

, ReadDmaCounter function pointer, 321
ReadFile function, 1-2, 4, 160, 415
reading and writing data. See also direct

memory access (DMA)
addressing data buffers

buffered method, 293, 294-95
direct method, 293, 295-98, 296, 296-97
introduced,' 293-94, 293
neither method, 293, 298

conflguring devices, 289-92, 290, 292
ports and registers

introduced, 298-300, 299, 300
memory resources, 298, 302-3
port resources, 298, 300-302

Index

reading and writing data, continued
servicing interrupts (see also deferred

procedure calls (DPCs); PCI42 sample)
configuring interrupts, 303-5
handling interrupts, 306--8

ReadWrite function, 525-31
recursive enumeration, 22-23, 23
RegisterDeviceNotification routine, 278, 279,

581-82
RegisterServiceCtrlHandlerEx routine,

280, 582
RegisterServiceCtrlHandler routine, 582
registry

accessing
accessing device keys from user mode,

26-27
deleting subkeys or values, 121
enumerating subkeys or values, 121-23
getting and setting values, 119-21, 120
introduced, 116, 116
opening registry keys, 116-19, 118

class keys, 24, 27-28, 28, 69
differences in Windows 98 and Windows

2000 organization, 69
hardware (instance) keys, 24-27, 24, 26,

69, 571-74, 572, 588
key naming scheme, 25
role in system driver loading, 24-29,24,

26, 28, 29
service (software) ,keys, 24, 28-29, 29, 69
values useful to WDM drivers, 120
Windows 98 compatibility notes, 588

Release method, 476-77
RemoveDevice function, 234, 456
RemoveEntryList function, 104, 105
RemoveHeadList function, 104, 105, 255
RemoveTailList function, 104, 105
repeater IRPs, 271-74
repository, 453
RequestDeviceWakeup API function, 391
ResetDevice routine, 314-15, 529, 532
ResetPipe routine, 529, 531
RestartRequests function, 238, 241,242,

256, 360
RtlAssert function, 128
RtlCompareMemory function, 115
RtlCompareUnicodeString function, 73
RtlCopyBytes function, 73, 115, 115
RtlCopyMemory function, 115, 115
RtlDeleteRegistryValue function, 116,

116, 121

621

Programming the Microsoft Windows Driver Model

RtlEqualMemory function, 115
RtiFillBytes function, 115
RtiFillMemory function, 115
RtiFreeUnicodeString function, 519
RtlMoveMemory function, 115
Rtl prefix (run-time library), 72
RtiQueryRegistryValues function, 116, 120
RtlWriteRegistryValue function, J.J6
Rt:lXxx functions, 113-14, 113, 115,115
RtiZeroBytes function, 115
RtiZeroMemory function, 115, 358
RunOnce key, 586--87
run-time control of pagability, 97-99, 97
RWCONTEXT data structure, 544-45

S
S5933 PCI chip set (Applied Micro Circuits

Corporation (AMCC». See PCl42
sample; PKTDMA sample

SAMCLASS sample, 576--80
sample code. See also GENERIC.SYS library;

PCl42 sample; WDMWIZ.A WX wizard
companion disc and, 12-13, 13
EVENTLOG sample, 409, 411-13, 414
FEATURE sample, 534-35
introduced, 12
LOOPBACK sample, 525-31
method used for creating samples, 13-14
NOTIFY sample, 431-35
PIOFAI<..E sa...T..ple, 446-49
PKTDMA sample, 342-44
PNPEVENT sample, 280
PNPMON sample, 285
POllING sample, 438-42
SAMCLASS sample, 576--80
USB42 sample, 524-25
USBINT sample, 533-34
USBISO sample, 538-47
WMI42.SYS sample, 454, 461, 463-64, 465,

466, 467, 469, 479-82
WMIEXTRA sample, 469, 470, 472, 473,

482-85
WORKITEM sample, 442-45

SCATTER_GATHER_UST data structure, 336
scatter/gather lists, 322, 332-35
SCSI devices, 568--69,568
section placement, 96
sections, 94"
security, device names and, 54-56
SelectAlternateInterface function, 538-40
semaphoresI' kernel, 150-51, 150
seminars about driver development, 18

622

SendAwaitUrb function, 539
SendDeviceSetPower function, 366, 394, 395
Se preftx (Security Reference Monitor), 72
service (software) keys, 24, 28-29, 29, 69
ServiceMain function, 582
SetBlanket routine, 480
SetDataBlock routine, 464-65, 467
SetDataltem routine, 465-66, 467
SetEvent function, 147
SetupDevice function, 314, 315
SetupDiEnumDeviceInterfaces routine, 63
SetupDiGetDevicelnterfaceDetail routine, 63
SetupDiGetDeviceRegistryProperty

routine, 573
SetupDiOpenDeviceInterfaceRegKey

routine, 118
SetupDiOpenDeviceRegistryKey routine, 574
SetupDiXXx routines, 561
SETUP token, 497-99, 498
SetWindowLong routine, 578, 579
ShellExecute routine, 578-79, 580
Shutdown state, 348, 348
SINGLE_UST_ENTRY data structure, 102-3
singly-linked lists, 106--8, 106, 107
slave DMA, 322, 337-39, 340-41
Sleeping1, Sleeping2, and Sleeping3 states,

348,348
S-Lists, 168-70
Soft-Ice/W (Compuware), 128
software (service) keys, 24, 28-29, 29, 69
SP _DEVINFO_DATA data structure, 577, 5M6
spin locks, 9, 131, 139-41, 553

global cancel, 204
SP _PROPSHEETPAGE_REQUEST data

" structure, 577
StallRequestsAndNotify routine, 360, 377
StallRequests function, 238, 241, 252, 254, 256
standard controls, 475, 475
standard data blocks, 474-75, 474
StartDevice function, 230, 232, 290-92,

313-14, 324,338-39, 514-15
StartInterruptUrb routine, 533
StartIo routine, 183-84, 201-2, 206, 211, 239,

248-49, 251, 254, 255, 315-16, 332,
335-36, 392, 439

StartIoSpecial function, "186
StartNextPacket function, 238,238, 239,

248-49, 254-56, 259, 377-78
StartPacket function, 238, 238, 239, 252-54
StartTransfer function, 342-43
STARTUPINFO data structure, 585
STATUS_ACCESS_ VIOLATION code, 129
status codes, 45, 75-77, 75

StopDevice function, 232, 243, 302, 324, 438
StopThread routine, 438
string descriptors, 503, 509-10, 518-19
string handling

allocating and releasing string buffers, 114
data blobs, 114-15, 115
introduced, 111-14, 112, 113

structured exception handling
examples, 86-89
exception filter expressions, 83-85
introduced,77-79, 78
raising exceptions, 85-86, 85
try-except blocks, 79, 81--83, 82
try-finally blocks, 79--81, 80

symbolic links, 52-54, 53
sync critical section routine, 308
SynchCritSection routines, 184
synchronization

archetypal problem, 132-34
fast mutex objects, 162-64, 162-63, 163
interlocked arithmetic, 164-68, 165
interlocked list access, 168-71
introduced, 131
IRQL

APC_LEVEL, 135, 135, 162, 164, 192-93,
215, 218

basic synchronization rule, 136
CLOCKCLEVEL, 135
CLOCK2~LEVEL, 135
compared with thread priorities, 137
device IRQL (DffiQL), 8,135,170
DISPATCH_LEVEL, 8, 93, 100, 126, 134,

135, 135, 136, 136, 137, 138, 139, 140,
141, 143, 145, 147, 148, 149, 153, 165,
170,171,183,188,192-93,219,264-
65,308,310,353,388,397,406,427,
442

explicitly controlling, 138-39
HiGH_LEVEL, 135, 135, 171
implicitly controlling, 137-38
interrupt priority in action, 136, 136
introduced, 131, 134-35, 135
IPCLEVEL, 135
of ISRs, 306
and paging, 137
PASSIVE_LEVEL,8, 134, 135, 136, 136,

137, 138, 143, 147, 150, 155, 165,
192-93, 213, 227, 353, 388, 397, 405,
406,427,442,444

POWER_LEVEL, 135
PROFILE_LEVEL, 135, 136
SYNC_LEVEL, 134

Index

synchronization, continued
kernel dispatcher objects

blocking threads, 142-43
introduced, 141-42, 142
kernel events, 147-50, 147

•

kernel mutexes, 151-53, 152
kernel semaphores, 150-51, 150
kernel timers, 153-58, 153
thread alerts and APCs, 159-62
using threads for synchronization,

158-59
waiting on multiple dispatcher objects,

145-47
waiting on single dispatcher objects,

143-45
spin locks, 9,131,139-41

synchronization objects, 9, 131, 1~9-41
synchronization problems with multiple

CPUs,8-9
synchronization timers, 156
SYNC_LEVEL IRQL, 134
SysAllocateString routine, 480
system controller, 322, 337-39
system threads

T

creating and terminating, 436-38
introduced, 436
using for device polling, 438-42
waiting for threads to fmish, 450

Tail.Overlay data structure, 176, 176
TARGELDEVICE_CUSTOM_NOTIFICATION

data structure, 286
thread alerts and APCs, 159-62
'thread context

arbitrary, 10, 142
nonarbitrary, 142

thread priorities compared with ffiQL, 137
thread rundown, 214
threads

blocking, on kernel dispatcher objects,
142-43

system
creating and terminating, 436-38
introduced, 436
using for device polling, 438-42
waiting for threads to fmish, 450

using for synchronization, 158-59
timers

kernel, 153-58, 153
watchdog, 446-49

timestamps and dates, 144-45

623

Programming the Microsoft Windows Driver Model

timing of file operations, 126
token phase, 494-95, 495
transactions, 494-95, 494, 495
TransferFirst routine, 184, 316-17
translation buffers, 92
try-except blocks, 79, 81~3, 82
try-finally blocks, 79~1, 80
__ try statement, 79~3, 80, 82, 85

U
UncacheControlRequest function, 430, 431-34
UNICODE_STRING data structure, 56-57, 111,

112,112, 114
Unicode strings, 111, 112-14, 112, 113
universal serial bus (USB)

bulk transfer pipe management, 524-32
bulk transfers, 488, 493, 500-501, 501
configuration

finding handles, 523-24
introduced, 514-16
reading configuration descriptors,

516-17,516
selecting the configuration, 517-23
shutting down the device, 524

control requests, 534-36,536, 537
control transfers, 488, 493, 496-500, 498,

499
descriptors

configuration, 503, 506-7,507
devicc, 503-6, 503, 505
endpoint, 503, 508-9,508,509
interface, 503, 507~
introduced, 503,503
other, 503, 510
string, 503, 509-10, 518-19

device contents, 491-93, 491, 492
device hierarchy

high-speed and low-speed devices, 490
introduced, 489, 490
power, 490-91

device version numbering, 505
information flow

624

bulk transfers, 488, 493, 500-501, 501
control transfers, 488, 493, 496-500, 498,

499
information packaging, 494-96, 494, 495
interrupt transfers, 488, 493, 501, 502
introduced, 493-94, 493
isochronous transfers, 488, 493, 502, 502
states of an endpoint, 496, 496

initiating requests
introduced, 510-12,511-12
sending URBs, 512-14
status returns from URBs, 514

interrupt pipe management, 532-34
interrupt transfers, 488, 493, 501, 502
introduced, 487~9
isochronous pipe management

achieving acceptable performance,
544-46

handling cancellation of the main IRP
546-54 '

initiating a series of isochronous
transfers, 542-43

introduced, 537, 537
reserving bandwidth, 538-41,538,540
streaming isochronous transfers, 554
synchronizing isochronous transfers

554-56 '
isochronous transfers, 488, 493, 502, 502

UnregisterDeviceNotification routine 278
upper filter drivers, 400, 400 '
upper filters, 19, 20
UrbControlDescriptorRequest substructure,

511
URBs (USB request blocks), 488, 510-14,

511-12
USB. See universal serial bus (USB)
USB42 sample, 524-25
UsbBuildFeatureRequest macro, 512, 534-35
UsbBuildGetDescriptorRequest macro, 511,

511
UsbBuildGetStatusRequest macro, 511
UsbBuildInterruptOrBulkTransferRequest

macro, 511
UsbBuildSelectConfigurationRequest macro,

512
UsbBuildSelectInterfaceRequest macro, 512
UsbBuildVendorRequest macro, 512
USBD _ CreateConfigurationRequestEx

function, 517, 523
USBD drivers, 492-93
USB devices, 570
USBD_INTERFACE_INFORMATION data

structure, 522, 523
USBD_INTERFACE_LIST_ENTRY data

structure, 520
USBD _ParseConfigurationDescriptorEx

routine, 520, 521
USBD_PIPE_INFORMATION data structure,

522, 524

USBINT sample, 533-34
USBISO sample, 538-47
USB request blocks (URBs), 488, 510-14,

511-12
user mode

accessing device keys from, 26-27
defined, 1
introduced, 1-2

user-mode and kernel-mode address spaces
compile-time control of pagability, 94--96
introduced, 91-92, 91

V

paged and nonpaged memory, 93-94
page size, 92-93
run-time control of pagability, 97-99,97

VDDs (virtual device drivers, Windows 2000),
5, 6

Version section (INF files), 558
video drivers, 5, 6
virtual device drivers (VxDs, Windows 98)

introduced, 5, 6
I/O controls and, 449--50

virtual device drivers (VDDs, Windows 2000),
5, 6

VirtualFree routine, 426
Virtual Machine Manager (VMM), 3,3
VxDs. See virtual device drivers (VxDs,

Windows 98)
VMM (Virtual Machine Manager), 3,3

W
WaitForCurrentIrp function, 238, 241, 258--59
WaitForSingleObject API function, 418
WaitWakeCallback routine, 390
wake-up features, 388--91,389
watchdog timers, 446-49
WBEM (Web-Based Enterprise Management).

See Windows Management
Instrumentation (WMI)

wcscmp function, 73
WDM drivers introduced, 5, 6
WDM (Windows Driver Model) introduced,

10-11, 11
WDMWIZ.AWX wizard, 13-14
Web-Based Enterprise Management (WBEM).

See Windows Management
Instrumentation (WMI)

Web site of author, 17
Win16 applications, I/O operations in, 4--5, 4
Windows. See Microsoft Windows entries

Index

Windows Driver Model (WDM) introduced,
10-11, 11

Windows Management Instrumentation
(WMI)

calling method routines, 483-85
concepts

introduced, 452-53, 453
sample schema, 454--55

connecting to namespaces, 479-80
dealing with multiple classes, 469
dealing with multiple instances, 466-67
enumerating class instances, 480-81
events, 471-72
expensive statistics, 470-71
getting and setting item values, 481-82
instance naming, 467-69, 468
introduced, 451, 452
method routines, 472-74
power management commands, 475, 475
receiving event notifications,482-83
standard controls, 475, 475
standard data blocks, 474--75, 474
user-mode applications and

accessing WMI information, 479-85
Component Object Model (COM)

interfaces, 476-78
introduced, 475-76

WDM drivers and
advanced features, 466-75, 468, 474, 475
delegating IRPs to WMILIB, 457-66, 462,

463
introduced, 456-57, 456

Windows 98 compatibility notes, 485
WMI and WBEM names, 452

wizards
hardware, 560-61,561
WDMWIZ.AWX, 13-14

WM_COMMAND message, 579-80
WM_DEVICECHANGE message, 249, 277-80,

581
WMI. See Windows Management

Instrumentation (WMI)
WMI42.SYS sample, 454, 461, 463--64, 465,

466, 467, 469, 479-82
WmiCompleteRequest routine, 462, 464, 465,

470
WMIEvent class, 471
WMIEXTRA sample, 469, 470, 472, 473,

482-85
WmiFireEvent routine, 472
WMIGUIDREGINFO data structure, 468
WMILlB_CONTEXT data structure, 458,

460, 466

625

Programming the Microsoft Windows Driver Model

WMIUB DLL, 457, 459-60, 485
WM_INITDIALOG message, 578-79
WMlREGINFO data structure, 461, 462, 466
WMI substructure, 457
WmiSystemControl routine, 459
Working state, 348,348, 349
WORKITEM sample, 442-45
WORK_QUEUE_lTEM data structure, 442-43
WriteFile function, 175,415
writing data. See reading and writing data

Z
ZwClose function, 116, 117, 125,438
ZwCreateFile function, 123-25, 129, 161, 208
ZwCreateKey function, 116-17, 116
ZwDeleteKey function, 116, 121
ZwEnumerateKey function, 116, 122, 123
ZwEnumerateValueKey function, 116, 123
ZwFlushKey function, 116
ZwOpenKey function, 69, 116, 116, 117
Zw prefix (Win32 kernel mode), 72
ZwQuerylnformationFile function, 125, 129
ZwQueryKey function, 116, 121, 122, 123
ZwQueryValueKey function, 116, 119
ZwReadFile function, 125, 129, 161
ZwSetValueKey function, 116, 121
ZwWriteFile function, 125, 129
ZwX:xx function problems, 129

626

WALTER ONEY

Walter Oney is a freelance software consultant based in Boston, Massachusetts. A
member of the class of 1968, he holds S.B. and S.M. degrees in Electrical Engineering
from the Massachusetts Institute of Technology. When not teaching programming semi
nars, he enjoys running, cycling, watching ballet, and playing the oboe.

About the Companion Disc

The companion disc for Programming the Microsoft Windows Driver Model contains
more than 20 sample drivers and test programs to illustrate the topics covered by the
book. Each sample also has an HTML file that describes the overall purpose of the
sample and contains brief instructions about how to build and test the sample.

The companion disc also includes a wizard to help learn about creating driv
ers (WDMWIZ.AWX), a library to help handle Plug and Play and power management
details (GENERIC.SYS), a utility to qUickly install drivers in Windows 2000 (FASTINST),
and a fully searchable electronic version of the book.

SYSTEM REQUIREMENTS
To test the samples, you must have either (preferably both) of the following operat
ing systems:

• Microsoft Windows 98. (Some samples require Windows 98, Second
Edition.)

• Microsoft Windows 2000. (The samples were tested with Windows 2000
RCL)

To build the samples, you must have the following software installed:

• Microsoft Visual C++ 6.0, Professional or Enterprise Edition.

• Microsoft Platform Software Development Kit (SDK). (The samples were
built and tested with the version that accompanied the RCI release of
Windows 2000.)

• Microsoft Windows 2000 Driver Development Kit (DDK). (The samples
were built and tested with the version that accompanied the RCI release
of Windows 2000.)

• Microsoft Windows 98 Driver Development Kit (DDK). (Only some of the
samples require this DDK.)

For information about Microsoft's SDKs, see http://msdn.microsojt.com/developerlsdkl.
For information about Microsoft's DDKs, see http://www.microsojt.com/ddkl.

628

MICROSOFT LICENSE AGREEMENT
Book Companion CD

IMPORTANT-READ CAREFULLY: This Microsoft End-User Ucense Agreement ("EULA") is a legal agreement between you (either
an individual or an entity) and Microsoft Corporation for the Microsoft product identified above, which includes computer software and
may include associated media, printed materials, and "on-line" or electronic documentation ("SOFTWARE PRODUCT'). Any compo
nent included within the SOFTWARE PRODUCT that is accompanied by a separate End-User Ucense Agreement shall be governed
by such agreement and not the terms set forth below. By installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree
to be bound by the terms of this EULA.lf you do not agree to the terms of this EULA, you are not authorized to install, copy, or otherwise
use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PRODUCT, along with all printed materials and other items
that form a part of the Microsoft product that includes the SOFTWARE PRODUCT, to the place you obtained them for a full refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by United States copyright laws and international copyrigbt treaties, as well as other intellectual
property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the following rights:

a. Software Product. You may install and use one copy of the SOFTWARE PRODUCT on a single computer. The primary user of the
computer on which the SOFfW ARE PRODUCT is installed may make a second copy for his or her exclusive use on a portable
computer.

b. StoragelNetwork Use. You may also store or install a copy of the SOFTWARE PRODUCT on a storage device, such as a network
server, used only to install or run the SOFfW ARE PRODUCT on your other computers over an internal network; however, you must
acquire and dedicate a license for each separate computer on which the SOFTWARE PRODUCT is installed or run from the storage
device. A license for the SOFfW ARE PRODUCT may not be shared or used concurrently on different computers.

c. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may make the number of additional copies of the
computer software portion of the SOFTWARE PRODUCT authorized on the printed copy of this EULA, and you may use each copy in
the manner specified above. You are also entitled to make a corresponding number of secondary copies for portable computer use as
specified above.

d. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT that are identified within the SOFTWARE
PRODUCT as sample code (the "SAMPLE CODE"):

i. Use and Modification.· Microsoft grants you the right to use and modify the source code version of the SAMPLE CODE, provided
you comply with subsection (d)(iii) below. You may not distribute the SAMPLE CODE, or any modified version of the SAMPLE
CODE, in source code form.

ii. Redistributable Files. Provided you comply with subsection (d)(iii) below, Microsoft grants you a nonexclusive, royalty-free right
to reproduce and distribute the object code version of the SAMPLE CODE and of any modified SAMPLE CODE, other than
SAMPLE CODE (or any modified version thereof) designated as not redistributable in the Readme file that forms a part of the
SOFTWARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other than the Non-Redistributable
Sample Code is collectively referred to as the "REDISTRlBUTABLES."

iii. Redistribution Requirements. If you redistribute the REDISTRIBUT ABLES, you agree to: (i) distribute the
REDISTRIBUTABLES in object code form only in conjunction with and as a part of your software application product; (ii) not use
Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid copyright notice on your
software application product; (iv) indemnify, hold harmless, and defend Microsoft from and against any claims or lawsuits,
including attorney's fees, that arise or result from the use or distribution of your software application product; and (v) not permit
further distribution of the REDISTRIBUTABLES by your end user. Contact Microsoft for the applicable royalties due and other
licensing terms for all other uses and/or distribution of the REDISTRIBUTABLES.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or disassemble
the SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding
this limitation.

• Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated
for use on more than one· computer.

• Rental. You may not rent, lease, or lend the SOFfW ARE PRODUCT.

• Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFTWARE PRODUCT
("Support Services"). Use of Support Services is governed by the Microsoft policies and programs described in the user manual, in
"on-line" documentation, and/or in other Microsoft-provided materials. Any supplemental software code provided to you as part of the
Support Services shall be considered part of the SOFTWARE PRODUCT and subject to the terms and conditions of this EULA. With
respect to technical information you provide to Microsoft as part of the Support Services, Microsoft may use such information for its
business purposes, including for product support and development. Microsoft will not utilize such technical information in a form that
personally identifies you.

• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no copies, you transfer all
of the SOFTWARE PRODUCT (including all component parts, the media and printed materials, any upgrades, this EULA, and, if
applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this EULA.

• Termination. Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with the terms and
conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

3. COPYRIGHT. A1l title and copyrights in and to the SOFfWARE PRODUCT (including but not limited to any images, photographs,
animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUTABLES, and "applets" incorporated into the SOFTWARE
PRODUCT) and any copies of the SOFfW ARE PRODUCT are owned by Microsoft or its suppliers. The SOFTWARE PRODUCT is
protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE PRODUCT like any other
copyrighted material except that you may install the SOFTWARE PRODUCT on a single computer provided you keep the original solely
for backup or archival purposes. You may not copy the printed materials accompanying the SOFTWARE PRODUCT.

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with RESTRICTED
RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii) ofthe Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software--Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Microsoft Corporation/One Microsoft WaylRedmond,
W A 98052-6399.

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereof, or any
process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing co1lectively referred to as the "Restricted
Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifica1ly agree not to export or re
export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted the export of goods or services,
which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria, or to any national of
any such country, wherever located, who intends to transmit or transport the Restricted Components back to such country; (ii) to any end
user who you know or have reason to know will utilize the Restricted Components in the design, development, or production of nuclear,
chemical, or biological weapons; or (iii) to any end user who has been prohibited from participating in U.S. export transactions by any
federal agency of the U.S. government. You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended,
revoked, or denied your export privileges. .

6. NOTE ON JAVA SUPPORT. THE SOFTWARE PRODUCT MAY CONTAIN SUPPORT FOR PROGRAMS WRITTEN IN JAVA.
JAVA TECHNOLOGY IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED, OR INTENDED FOR USE OR
RESALE AS ON-LINE CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE,
SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFf NAVIGATION OR COMMUNICATION SYSTEMS, AIR
TRAFFIC CONTROL, DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF JAVA
TECHNOLOGY COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL
DAMAGE. SUN MICROSYSTEMS, INC. HAS CONTRACTUALLY OBLIGATED MICROSOFT TO MAKE TillS DISCLAIMER.

DISCLAIMER OF WARRANTY

NO WARRANTIES OR CONDmONS. MICROSOFf EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDmON FOR THE
SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OR CONDmON OF ANY KIND, ElTHER EXPRESS OR IMPLlED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. THE ENTIRE RISK
ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS WITH YOU.

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
MICROSOFf OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MICROSOFf HAS
BEEN ADVISED OF THE POSSmILITY OF SUCH DAMAGES. IN ANY CASE, MICROSOFf'S ENTIRE LIABILITY UNDER ANY
PROVISION OF TIllS EULA SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE
SOFTWARE PRODUCT OR US$5.00; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A MICROSOFf SUPPORT SERVICES
AGREEMENT, MICROSOFf'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF
THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

MISCELLANEOUS

This EULA is govemed by the laws of the State of Washington USA, except and only to the extent that applicable law mandates governing law
of a different jurisdiction.

Should you have any questions conceming this EULA, or if you desire to contact Microsoft for any reason, please contact the Microsoft subsidiary
serving your country, or write: Microsoft Sales Information Center/One Microsoft WaylRedmond, WA 98052-6399.

PN 097·0002297

CUSTOMER NAME

Proof of Purchase

mspress.microsoft.com

0-7356-0588-2

promotion or
must be used in conjunction

offer details.

Model

Microsoft Press, PO Box 97017, Redmond, WA 98073-9830

OWNER REGISTRATION CARD Register Todayl 0-7356-0588-2

Return the bottom portion of this card to register today

Programming the Microsoft® Windows® Driver Model

FIRST NAME MIDDLE INITIAL LAST NAME

INSTITUTION OR COMPANY NAME

ADDRESS

CITY STATE ZIP

()
E-MAIL AODRESS PHONE NUMBER

U.S. and Canada addresses only. Fill in information above and mail postage·free.
Please mail only the bottom half of this page.

For information about Microsoft Press®

products, visit our Web site at

mspress.microsoft.com

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 108 REDMOND WA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT PRESS
PO BOX 97017
REDMOND, WA 98073-9830

11.1 •• 1 .. 1.1111.111.11111.1.1 •• 1111'1111.11"".11.1

Programming

1Vindows
Driver Model

Learn to write drivers the easy
way-with help from a Windows
Driver Model authority.
The Windows Driver Model (WDM) is Microsoft's new commo
driver model for the Windows 98 and Windows 2000 operating
systems. The Windows Driver Model supports Plug and Play,
provides power management capabilities, and expands on the
driverjminidriver approach. Written by device-<:lriver programming
expert Walter Oney in close cooperation with the Microsoft
Windows DDK team, PROGRAMMING THE MICROSOFT WINDOWS
DRIVER MODEL provides extensive practical examples,
illustrations, advice, and line-by-line analysis of code
samples to clarify real-world driver-programming issues.
Topics covered include:

• An introduction to the Windows Driver Model architecture

• Programming techniques, including error handling, memory
and data-structure management, and registry and file access

• Synchronization and driver development in a multitasking,
multiprocessor environment

• Creating and processing I/O request packets

• Taking advantage of Windows 98 and Windows 2000 Plug
and Play support

• Techniques for reading from and writing to devices .

• Installation and power management

• Creating filter drivers, controlling hardware, and logging errors

• Windows Management Instrumentation (WMI)

• Developing device drivers for the new universal serial bus
(USB) architecture

• Installing WDM drivers
• Understanding Windows 98 compatibility

This is the book you need if you want to write device drivers
for the new Windows common driver model. It provides the
background you need to write an actual driver and then moves on
to specialized topics. And it includes many practical samples
to illustrate specific programming issues and techniques.

ISBN 0-7356-0588-2

90000

7 90145 05882 9 9 780735 605886

U.S.A. $49.99
U.K. £32.99 [VAT. included]

Canada $74.99
[Recommended]

Progrlmming/Microsoft Windows

AficTOSo1t~

