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Foreword

The Windows Driver Model traces its roots several years back to an OS called Windows for
Workgroups 3.10. At that time we were struggling with support for the myriad of different
SCSI controllers, and I was gazing longingly at the assortment of miniports that the
Windows NT team had created. It didn’t take long to realize that it would take less effort to
re-create the necessary image loader and execution environment that the miniports expected
than it would to rewrite and debug all of those miniports in some sort of VXD form.

Unfortunately Windows for Workgroups 3.10 ended up shipping without support for
SCSI miniports, due mainly to peripheral issues such as solid ASPI (Advanced SCSI Pro-
gramming Interface) compatibility. However, the groundwork to share the same execut-
able driver images across the Windows and Windows NT operating systems was in place
and would see the light of day in Windows 95, which could share both SCSI and NDIS
miniport binaries with Windows NT.

The potential benefits of a shared driver model are significant. For driver developers
interested in supporting both platforms, a shared driver model can cut the driver develop-
ment and testing costs almost in half. For Microsoft, a shared model means easier migra-
tion from Windows 9x to Windows 2000 and future releases of this platform. And for the
end user, a larger variety of more stable drivers would be available for both platform families.

The next logical step, then, was to create a driver model with the ability to share
general purpose drivers across both platforms. But what form should it take? Three require-
ments were immediately obvious: it must be multiprocessor-capable, it must be proces-
sor-independent, and it must support Plug and Play (PnP). Fortunately, the Windows NT 4.0
driver model met the first two requirements, and it seemed clear that the next major re-
lease of Windows NT would support PnP as well. As a result, WDM can be considered a
proper subset of what is now the Windows NT driver model.

The potential benefits of a shared driver model can be realized today for many classes
of devices, and choosing the WDM driver model will continue to pay dividends in the future.
For example, a correctly written WDM driver requires only a recompile before function-
ing in an NT 64-bit environment prototype.

WDM will continue to evolve as new platforms and device classes are supported. Future
versions of Windows 9x and Windows 2000 will contain upwardly revised WDM execu-
tion environments. Fortunately, WDM is designed to be “backward compatible,” meaning
that WDM drivers written according to the Windows 2000 DDK and designed to work for
the intended environment will continue to work in subsequent WDM environments.

There is a lot to WDM, and in this book Walter does an excellent job of offering an
in-depth tour of every aspect as well as the philosophy of the Windows Driver Model.

Forrest Foltz
Architect, Windows Development
Microsoft Corporation
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Chapter 1

Introduction

Souvenir shops in many of the cities I visit sell posters depicting the world from the
local perspective. Landmarks and famous watering holes appear prominently in the
foreground. The background features the rest of the planet in progressively less detail,
confirming that the natives are less impressed by, say, the pyramids in Giza or the
Great Wall of China than by some busy downtown street corner. From the same sort
of insular perspective, a Microsoft Windows 2000 or Microsoft Windows 98 system
consists of an operating system and a collection of device drivers for whatever hard-
ware the end user chooses to populate the system with from one moment to the next.
This book is all about the drivers and the nearby detail.

AN OVERVIEW OF THE OPERATING SYSTEMS

The Windows Driver Model (WDM) provides a framework for device drivers that
operate in two operating systems—Windows 98 and Windows 2000. Although to the
end user these two systems are very similar, they work very differently on the inside.
In this section, I'll present a brief overview of the two systems.

Windows 2000 Overview

Figure 1-1 is my perspective poster of the Windows 2000 operating system, wherein
I emphasize the features that are important to people who write device drivers. Soft-
ware executes either in user mode (untrusted and restricted to authorized activities
only) or in kernel mode (fully trusted and able to do anything). A user-mode program
that wants to, say, read some data from a device would call an application program-
ming interface (APD such as ReadFile. A subsystem module such as KERNEL32.DLL
implements this API by invoking some sort of platform-dependent system service in-
terface to reach a kernel-mode support routine. In the case of a call to ReadFile, the
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mechanism involves making a user-mode call to an entry point named NtReadFile
in a system dynamic-link library (DLL) named—redundantly, I've always thought—
NTDLL.DLL. The user-mode NtReadFile function uses the system service interface to
reach a kernel-mode routine that’s also named NtReadFile.

Win32 API calls

User Mode

Kernel Mode
System service interface

-«

IRP passed to driver dispatch routine

HAL calls

Platform-specific operations

Figure 1-1. The Windows 2000 architecture.

We often say that NtReadFile is part of a system component that we call the I/O
Manager. The term I/O Manager is perhaps a little misleading because there isn’t any
single executable module with that name. We need a name to use when discussing
the “cloud” of operating system services that surrounds our own driver, though, and
this name is the one we usually pick.

Many routines serve a purpose similar to NtReadFile. They operate in kernel
mode to service an application’s request to interact with a device in some way. They
all validate their parameters, thereby ensuring that they don’t inadvertently allow a
security breach by performing an operation or accessing some data that the user-mode
program wouldn’t have been able to perform or access by itself. They then create a
data structure called an I/O request packet (IRP) that they pass to an entry point in
some device driver. In the case of an original ReadFile call, NtReadFile would create
an IRP with a major function code of IRP_MJ_READ (a constant in a DDK [Device
Driver Kit] header file). Processing details at this point can differ; but a likely scenario
is for a routine like NtReadFile to return to the user-mode caller with an indication that
the operation described by the IRP hasn’t finished yet. The user-mode program might
continue about its business and then wait for the operation to finish, or it might wait
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immediately. Either way, the device driver proceeds independently of the applica-
tion to service the request.

A device driver might eventually need to actually access its hardware to per-
form an IRP. In the case of an IRP_MJ_READ to a programmed I/O (PIO) sort of
device, the access might take the form of a read operation directed to an 1/O port or
a memory register implemented by the device. Drivers, even though they execute in
kernel mode and can therefore talk directly to their hardware, use facilities provided
by the hardware abstraction layer (HAL) to access hardware. A read operation might
involve calling READ_PORT_UCHAR to read a single data byte from an I/O port. The
HAL routine uses a platform-dependent method to actually perform the operation.
On an Intel x86 computer, the HAL would use the IN instruction; on an Alpha, it would
perform a memory fetch.

After a driver has finished with an 1/O operation, it completes the IRP by call-
ing.a particular kernel-mode service routine. Completion is the last act in process-
ing an IRP, and it allows the waiting application to resume execution.

Windows 98 Overview

Figure 1-2 shows one way of thinking about Windows 98. The operating system kernel
is called the Virtual Machine Manager (VMM) because its main job is to create one
or more “virtual” machines that share the hardware of a single physical machine. The
original purpose of a virtual device driver (VxD) in Microsoft Windows 3.0 was to
virtualize a specific device to help the VMM create the fiction that each virtual ma-
chine had a full complement of hardware. The same VMM architecture introduced
with Windows 3.0 is in Windows 98 today but with a bunch of accretions to handle
new hardware and 32-bit applications.

System Virtual Machine DOS Virtual Machine

User Mode

Kernel Mode

Figure 1-2. The Windows 98 architecture.
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Windows 98 doesn’t handle 1/O operations in quite as orderly a way as Win-
dows 2000. There are major differences in how Windows 98 handles operations di-
rected to disks, to communication potts, to keyboards, and so on. Windows 98 also
services 32-bit and 16-bit applications in fundamentally different ways. See Figure 1-3.

System Virtual Machine DOS Virtual Machine

User Mode

Kernel Mode

Figure 1-3. 1/O requests in Windows 98.

The left column of Figure 1-3 shows how 32-bit applications get 1/O done for
them. An application calls a Win32 API such as ReadFile, which a system DLL like
KERNEL32.DLL services. But applications can only use ReadFile for reading disk files,
communication ports, and devices that have WDM drivers. For any other kind of
device, an application must use some ad hoc mechanism based on DeviceloControl.
The system DLL contains different code than its Windows 2000 counterpart, too. The
user-mode implementation of ReadFile, for example, validates parameters—a step
done in kernel mode on Windows 2000—and uses one or another special mecha-
nism to reach a kernel-mode driver. There’s one special mechanism for disk files,
another for serial ports, another for WDM devices, and so on. The mechanisms all
use software interrupt 30h to make the transition from user mode to kernel mode,
but they’re otherwise completely different. '

The middle column of Figure 1-3 shows how 16-bit Windows-based applica-
tions (Win16 applications) perform I/O. The right column illustrates the control flow
for DOS-based applications. In both cases, the user-mode program calls directly or
indirectly on the services of a user-mode driver that, in principle, could stand



Chapter 1 Introduction

alone by itself on a bare machine. Winl6 programs perform serial port I/O by in-
directly calling a 16-bit DLL named COMM.DRYV, for example. (Up until Microsoft
Windows 95, COMM.DRV was a stand-alone driver that hooked IRQ 3 and 4 and
issued IN and OUT instructions to talk directly to the serial chip.) A virtual commu-
nications device (VCD) driver intercepts the port I/O operations to guard against
having two different virtual machines access the same port simultaneously. In a weird
way of thinking about the process, you might say that these user-mode drivers use
an “API” interface based on interception of I/O operations. “Virtualizing” drivers like
VCD service these pseudo-API calls by simulating the operation of hardware.

Whereas all kernel-mode I/O operations in Windows 2000 use a common
data structure (the IRP), no such uniformity exists in Windows 98 even once an
application’s request reaches kernel mode. Drivers of serial ports conform to a port
driver function-calling paradigm orchestrated by VCOMM.VXD. Disk drivers, on the
other hand, participate in a packet-driven layered architecture implemented by
IOS.VXD. Other device classes use still other means.

When it comes to WDM drivers, however, the interior architecture of Win-
dows 98 is necessarily very similar to that of Windows 2000. A system module
(NTKERN.VXD) contains Windows-specific implementations of a great many Microsoft
Windows NT kernel support functions. NTKERN.VXD creates IRPs and sends them
to WDM drivers in just about the same way as Windows 2000. WDM drivers almost
cannot tell the difference between the two environments, in fact.

WINDOWS 2000 DRIVERS

Many kinds of drivers form a complete Windows 2000 system. Figure 1-4 diagrams
several of them.

Figure 1-4. Types of device drivers in Windows 2000.
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B A vintual device driver (VDD) is a user-mode component that allows DOS-
based applications to access hardware on x86 platforms. A VDD relies on
the I/O permission mask to trap port access, and it essentially simulates
the operation of hardware for the benefit of applications that were origi-
nally programmed to talk directly to hardware on a bare machine. Al-
though this kind of driver shares a name and a purpose with a kind of
driver used in Windows 98, it’s a different animal altogether. We use the
acronym VDD for this kind of driver and the acronym VxD for the Win-
dows 98 driver to distinguish the two.

B The category of kernel-mode drivers includes many subcategories. A PnP
driver is a kernel-mode driver that understands the Plug and Play (PnP)
protocols of Windows 2000. To be perfectly accurate, this book concerns
PnP drivers and nothing else.

B A WDM driver is a PnP driver that also understands power management
protocols and is source-compatible with both Windows 98 and Win-
dows 2000. Within the category of WDM drivers, you can also distinguish
between class drivers, which manage a device belonging to some well-
defined class of device, and minidrivers, which supply vendor-specific
help to a class driver.

B Video drivers are kernel-mode drivers for displays and printers—devices
whose primary characteristic is that they render visual data.

B File system drivers implement the standard PC file system model (which
includes the concept of a hierarchical directory structure containing
named files) on local hard disks or over network connections.

B ILegacy device drivers are kernel-mode drivers that directly control a hard-
ware device without help from other drivers. This category essentially
includes drivers for earlier versions of Windows NT that are running with-
out change in Windows 2000.

Not all the distinctions implied by this classification scheme are important all of
the time. As I remarked in my previous book, Systems Programming for Windows 95
(Microsoft Press, 1996), you have not stumbled into a nest of pedants by buying my
book. In particular, I'm not always going to carefully distinguish between WDM drivers
and PnP drivers in the rigorous way implied by the preceding taxonomy. The dis-
tinction is a phenomenological one based on whether a given driver runs both in
Windows 2000 and Windows 98. Without necessarily using the technically exact term,
I'll be very careful to discuss system dependencies when they come up hereafter.
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Attributes of Kernel-Mode Drivers

Kernel-mode drivers share a number of general attributes, as suggested by the list
of attributes (drawn from the introductory chapters of the Windows 2000 Device Driver
Kit) that I describe in the following sections. (Note that throughout this book, I'll often
refer to just the “DDK,” meaning the Windows 2000 DDK. If I need to discuss an-
other DDK, I'll give its specific name.)

Portable

Kernel-mode drivers should be source-portable across all Windows NT platforms.
WDM drivers are, by definition, source-portable between Windows 98 and Win-
dows 2000 as well. To achieve portability, you should write your driver entirely in C,
using language elements specified by the ANSI C standard. You should avoid us-
ing implementation-defined or vendor-specific features of the language, and you
should avoid using run-time library functions that aren’t already exported by the
operating system kernel (concerning which, see Chapter 3). If you can’t avoid plat-
form dependencies in your code, you should isolate them with conditional compi-
lation directives. If you follow all of these guidelines, you’ll be able to recompile and
relink your source code to produce a driver that will “just work” on any new Win-
dows NT platform.

In many cases, it will be possible to achieve binary compatibility for a WDM
driver between Windows 98 and the 32-bit Intel x86 Windows 2000 operating sys-
tem. You achieve source compatibility merely by restricting yourself to using the subset
of kernel-mode support functions declared in WDM.H. There are some areas in which
the two operating systems behave differently in a way that matters to a device driver,
however, and I'll discuss these areas in various parts of the book.

Configurable )
A kernel-mode driver should avoid hard-coded assumptions about device character-
istics or system settings that can differ from one platform to another. It’s easiest to
illustrate this abstract and lofty goal with a couple of examples. On an x86-based PC,
a standard serial port uses a particular interrupt request line and set of eight I/O ports
whose numeric values haven’t changed in over 20 years. Hard-coding these values
into a driver makes it not configurable. In Chapter 8, I'll discuss two power manage-
ment features—idle detection and system wake-up—that an end user should be able
to control; a driver that always uses particular idle timeout constants or that always
arms its device’s wake-up feature would not allow for that kind of control. The driver
would therefore not be configurable in the sense we’re discussing.

Achieving configurability requires, first of all, that you avoid coding direct ref-
erences to hardware, even within platform-specific conditional compilation blocks.
Call on the facilities of the HAL or of a lower-level bus driver instead. You can also
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implement a standard or custom control interface to allow control-panel applications
"to communicate end user wishes. Better yet, you can support Web-Based Enterprise
Management (WBEM) controls that allow users and administrators to configure hard-
ware features in a distributed enterprise environment. (See Chapter 10.) Finally, you
can use the registry database as a repository for configuration information that ought
to persist from one session to the next.

Preemptible and Interruptible

Windows 2000 and Windows 98 are multitasking operating systems that apportion
use of a CPU among an arbitrary number of threads. Much of the time, driver sub-
routines execute in an environment in which they can be preempted to allow another
thread to execute on the same CPU. Thread preemption depends on a thread prior-
ity scheme and on using the system clock to allocate CPU time in slices to threads
having the same priority.

Windows 2000 also incorporates an interrupt prioritization concept known as
interrupt request level IRQL). I'll discuss IRQL in detail in Chapter 4, but the following
summary will be useful for now. You can think of a CPU as having an IRQL register
that records the level at which the CPU is currently executing. Three IRQL values have
major significance for device drivers: PASSIVE_LEVEL (numerically equal to 0),
DISPATCH_LEVEL (numerically equal to 2), and the so-called device IRQL (or
DIRQL, numerically equal to a value higher than 2) at which a particular device’s
interrupt service routine executes. Most of the time, a CPU executes at PASSIVE_LEVEL.
All user-mode code runs at PASSIVE_LEVEL, and many of the activities a driver
performs also occur at PASSIVE_LEVEL. While a CPU is at PASSIVE_LEVEL, the
current thread can be preempted by any other thread that has a higher thread prior-
ity or by expiration of its own time slice. Once a CPU’s IRQL is above PASSIVE_LEVEL,
however, thread preemption no longer occurs. The CPU executes in the context
of whatever thread was current when the IRQL was most recently raised above
PASSIVE_LEVEL.

You can think of the IRQ levels above PASSIVE_LEVEL as a priority scheme for
interrupts. This is a different sort of priority than that which governs thread preemp-
tion because, as I just remarked, no thread preemption occurs above PASSIVE_LEVEL.
But an activity running at any IRQL can be interrupted to perform an activity at a
higher IRQL. Consequently, a driver must anticipate that it might lose control at any
moment while the system performs some more essential task.

Multiprocessor-Safe

Windows 2000 can run on computers with one or more than one CPU. Win-
dows 2000 uses a symmetric multiprocessor model, in which all CPUs are considered
equal. System tasks and user-mode programs can execute on any CPU, and all CPUs
have equal access to memory. The existence of multiple CPUs poses a difficult
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synchronization problem for device drivers because code executing on two or more
CPUs might simultaneously need to access shared data or shared hardware resources.
The Windows 2000 kernel provides a synchronization object called a spin lock that
drivers can use to avoid destructive interference in such situations. (See Chapter 4.)

Object-Based

The Windows 2000 kernel is object-based in the sense that many of the data struc-
tures used by device drivers and kernel routines have common features that a cen-
tralized Object Manager component controls. These features include names, reference
counts, security attributes, and so on. Internally, the kernel contains method routines
for performing common object management tasks such as opening and closing ob-
jects or parsing object names.

Kernel components export service routines that drivers use to manipulate cer-
tain kinds of object or certain fields within objects. Some kernel objects—the kernel
interrupt object, for example—are completely opaque in that the DDK headers don’t
declare the members of the data structure. Other kernel objects—such as the device
object or the driver object—are partially opaque: the DDK headers declare all the
members of the structure, but documentation describes only certain accessible mem-
bers and cautions driver writers not to access or modify other members directly.
Support routines exist to access and modify those opaque fields that must be indi-
rectly available to drivers. Partially opaque objects are analogous to C++ classes, which
can have public members accessible to anyone and private or protected members
accessible only via method functions.

Packet-Driven ‘

The I/O Manager and device drivers use the I/O request packet to manage the de-
tails of I/O operations. Some kernel-mode component creates an IRP to perform an
operation on a device or to send an instruction or query to a driver. The I/O Man-
ager sends the IRP to one or more of the subroutines that a driver exports. Gener-
ally, each driver subroutine performs a discrete amount of work on the IRP and returns
back to the I/O Manager. Eventually, some driver subroutine completes the IRP,
whereupon the I/O Manager destroys the IRP and reports the ending status back to
the originator of the request.

Asynchronous

Windows 2000 allows applications and drivers to initiate operations and continue
processing while the operations progress. Consequently, drivers ordinarily process
time-consuming operations in an asynchronous way. That is, a driver accepts an IRP,
initjializes whatever state information it requires to manage the operation, and then
returns to its caller after arranging for the IRP to be performed and completed in the
future. The caller can then decide whether or not to wait for the IRP to finish.
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As a multitasking operating system, Windows 2000 schedules threads for ex-
ecution on the available processors according to eligibility and priority. The asynchro-
nous operations a driver needs to perform for handling an I/O request often occur
in the context of some unpredictable thread, the identification of which can differ
from one invocation of the driver’s asynchronous processing routines to the next. We
use the term arbitrary thread context to describe the situation in which a driver doesn’t
know (or care) which thread happens to be current as it performs its work. Drivers
should avoid blocking arbitrary threads, and this stricture generally results in a driver
architecture that responds to hardware events by performing discrete operations and
then returning.

The Windows Driver Model

10

In the Windows Driver Model, each hardware device has at least two device drivers.
One of these drivers, which we call the function driver, is what you’ve always thought
of as being “the” device driver. It understands all the details about how to make the
hardware work. It’s responsible for initiating I/O operations, for handling the inter-
rupts that occur when those operations finish, and for providing a way for the end
user to exercise whatever control over the device might be appropriate.

We call the other of the two drivers that every device has the bus driver. It’s
responsible for managing the connection between the hardware and the computer.
For example, the bus driver for the PCI (Peripheral Component Interconnect) bus is
the software component that actually detects that your card is plugged in to a PCI slot
and determines what requirements your card has for I/O-mapped or memory-mapped
connections with the host. It’s also the software that turns the flow of electrical cur-
rent to your card’s slot on or off.

Some devices have more than two drivers. We use the generic term filter driver
to describe these other drivers. Some filter drivers simply watch as the function driver
performs I/O. More often, a software or hardware vendor supplies a filter driver to
modify the behavior of an existing function driver in some way. “Upper” filter driv-
ers see IRPs before the function driver, and they have the chance to support addi-
tional features that the function driver doesn’t know about. Sometimes an upper filter
can perform a workaround for a bug or other deficiency in the function driver or the
hardware. “Lower” filter drivers see IRPs that the function driver is trying to send to
the bus driver. In some cases, such as when the device is attached to a universal serial
bus (USB), a lower filter can modify the stream of bus operations that the function
driver is trying to perform.

A WDM function driver is often composed of two separate executable files. One
file, the class driver, understands how to handle all of the WDM protocols that the
operating system uses (and some of them can be very complicated) and how to
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manage the basic features of an entire class of devices. A class driver for the class of
USB cameras is one example. The other file, called the minidriver, contains functions
that the class driver uses to manage the vendor-specific features of a particular in-
stance of that class. The combination of class plus minidriver adds up to a complete
function driver.

A useful way to think of a complete driver is as a container for a collection of
subroutines that the operating system calls to perform various operations on an
IRP. Figure 1-5 illustrates this concept. Some routines, such as the DriverEntry and
AddDevice routines, as well as dispatch functions for a few types of IRP, will be
present in every such container. Drivers that need to queue requests—and most do—
might have a Startlo routine. Drivers that perform direct memory access (DMA) trans-
fers will have an AdapterControl routine. Drivers for devices that generate hardware
interrupts—again, most do—will have an interrupt service routine (ISR) and a deferred
procedure call (DPC) routine. Most drivers will have dispatch functions for several
types of IRP besides the three that are required. One of your jobs as the author of a
WDM driver, therefore, is to select the functions that need to be included in your
particular container.

Basic Driﬁer Routines 1/0 Control Routines Dispatch Routines
DriverEntry DispatchPnp
AddDevice DispatchPower

DispatchWmi

DispatchRead

oo DispatchWrite

] Required driver routines

Include Startlo to handle request queuing

[ include interrupt and DPC routines if device interrupts
B Include AdapterControl routine for DMA

B Optional IRP dispatch routines

Figure 1-5. Contents of a WDM driver executable “package.”

11
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SAMPLE CODE

The companion disc contains a great many sample drivers and test programs. I crafted
each sample with a view toward illustrating a particular issue or technique that the
text discusses. Each of the samples is, therefore, a “toy” that you can’t just ship after
changing a few lines of code. I wrote the samples this way on purpose. Over the years,
I've observed that programmer-authors tend to build samples that illustrate their
prowess at overcoming complexity rather than samples that teach beginners how to
solve basic problems, so I won't do that to you. Chapters 7 and 11 have some driv-
ers that work with “real” hardware, namely development boards from the makers of
a PCI chip set and a USB chip set. Apart from that, however, all the drivers are for
nonexistent hardware.

In nearly every case, I built a simple user-mode test program that you can use
to explore the operation of the sample driver. These test programs are truly tiny: they
contain just a few lines of code and are concerned only with whatever point the driver
sample attempts to illustrate. Once again, I think it’s better to give you a simple way
to exercise the driver code that I assume you’re really interested in instead of trying
to show off every MFC programming trick I ever learned.

You're free to use all of the sample code in this book in your own projects
without paying me or anyone else a royalty. (Of course, you must consult the de-
tailed license agreement at the end of the book—this paraphrase is not intended to
override that agreement in any way.) There are few cases in which I ask that you get
my permission before redistributing one of my sample modules as a freestanding piece
of software, however; these include GENERIC.SYS (discussed in Appendix B) and
WDMSTUB.VXD (discussed in Appendix A). I'll gladly give permission, but I will need
to ask your company to agree to some conditions designed to ensure that if a bunch
of readers all decide to ship copies of these modules along with their production
drivers, end users receive up-to-date and reliable versions. See the companion disc
for more information on redistribution.

The Companion Disc
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The CD-ROM that comes with this book contains the complete source code and an
executable copy of each sample. It also contains a few utility programs that you might
find useful in your own work. Open the file WDMBOOK.HTM in your Web browser
for an index to the samples and an explanation of how to use these tools.

The setup program on the disc gives you the option to install all of the samples
on your own disk or to leave them on the CD-ROM. However, setup will not install
any kernel-mode components on your system. Setup will ask your permission to
add some environment variables to your AUTOEXEC.BAT file. The build procedure
for the samples relies on these environment variables. They will be correctly set the
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next time you reboot your Windows 2000 or Windows 98 computer. Setup will also
install the necessary registry entries to define a SAMPLE class of device, to which each
of the sample drivers belongs.

If your computer runs both Windows 2000 and Windows 98, I recommend
performing a full install under one OS and a compact install under the other. Addi-
tionally, I recommend allowing the setup program to modify your AUTOEXEC.BAT
under just one OS. If you follow these suggestions, setup will be able to make nec-
essary changes in both registry databases but will copy the sample code only one
time. (Note that Windows 2000 interprets your AUTOEXEC.BAT file at startup time
to set environment variables. That’'s why the setup program needs to modify this file.)

Each sample includes an HTML file that explains (very briefly) what the sample
does, how to build it, and how to test it. I recommend that you read the file before
trying to install the sample, because some of the samples have unusual installation
requirements. Once you’ve installed a sample driver, you’ll find that the Device
Manager has an extra property page from which you can view the same HTML file.
(See Figure 1-6.)

Figure 1-6. A custom Device Manager property page for sample drivers.

How the Samples Were Created

There’s a good reason why my sample drivers look like they all came out of a cookie
cutter: they did. Faced with so many samples to write, I decided to write a custom
application wizard. The wizard functionality in Microsoft Visual C++ version 6.0 is
almost up to snuff for building a WDM driver project, so I elected to depend on it:

13
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The wizard is named WDMWIZ.AWX, and you’ll find it on the companion disc. I've
documented how to use it in Appendix C. Use it, if you wish, to construct the skel-
etons for your own. drivers. But be wary that this wizard is not of product grade—
it’s intended to help you learn about writing drivers rather than to replace or compete
with a commercial toolkit. Be aware, too, that you need to change a few project set-
tings by hand because the wizard support is only almost what’s needed. Refer to the
WDMBOOK.HTM in the root directory of the companion disc for more information.

Installing the Windows 2000 Device Driver Kit provides you with Start menu
commands for opening a “checked build” environment and a “free build” environ-
ment. Each environment is a command prompt with a collection of environment
variables set in a particular way to dovetail with a command line-based method of
building drivers. This method relies on a utility named BUILD.EXE that comes with
the DDK and on the existence of a file named SOURCES that describes a driver project.
I've provided a SOURCES file for each project so that you can use this method for
building a driver if you want to.

I personally prefer using the Microsoft Visual Studio environment for driver
projects. I used to advocate using BUILD.EXE because I was afraid that Microsoft might
change some important compile or link option in such a way that any approach based
on an integrated development environment (IDE) would break. Something like this
happened during the Windows 2000 beta period, in fact. (Somebody decided to
change the decade-old structure of library files, and I had to change a slew of project
settings.) I guess I think the productivity improvement I gain by using modern IDE-
based tools is significant enough that I'll run the risk of having to make similar changes
in the future.

GENERIC.SYS

A WDM driver contains a great deal of code that you could call boilerplate for han-
dling Plug and Play and power management. This code is long. It’s boring. It’s easy
to get wrong. My samples all rely on what amounts to a kernel-mode DLL named
GENERIC.SYS. WDMWIZ.AWX will build a project that uses GENERIC.SYS or that
doesn’t, as you specify. Appendix B details the support functions that GENERIC.SYS
exports in case you want to use them yourself:

ORGANIZATION OF THIS BOOK
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After teaching driver programming seminars to hundreds of students over the past
several years, I've come to understand that people learn things in fundamentally
different ways. Some people like to learn a great deal of theory about something and
then learn how to apply that theory to practical problems. Other people like to learn
practical things first and then learn the general theory. I'd call the former approach
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deductive and the latter approach inductive. I personally prefer an inductive approach,
and I've organized this book to suit that style of learning.

My aim is to explain how to write device drivers. Broadly speaking, I wanted
to provide the minimum background you’ll need to write an actual driver and then
move on to more specialized topics. That “minimum background” is pretty extensive,
however; it consumes six chapters. Once past Chapter 7, you’ll be reading about topics
that are important but not necessarily on the fall line that leads straight downhill to
a working driver.

Chapter 2, “Basic Structure of a WDM Driver,” explains the basic data structures
that Windows 2000 uses to manage I/O devices and the basic way your driver re-
lates to those data structures. I'll discuss the driver object and the device object. T'll
also discuss how you write two of the subroutines—the DriverEntry and AddDevice
routines—that every WDM driver package contains.

Chapter 3, “Basic Programming Techniques,” describes the most important
service functions you can call on to perform mundane programming tasks. In that
chapter, I'll discuss error handling, memory management, and a few other miscella-
neous tasks.

Chapter 4, “Synchronization,” discusses how your driver can synchronize ac-
cess to shared data in the multitasking, multiprocessor world of Windows 2000. You’ll
learn the details about IRQL and about various synchronization primitives that the
operating system offers for your use.

Chapter 5, “The I/O Request Packet,” introduces the subject of input/output
programming, which of course is the real reason for this book. I'll explain where I/O
request packets come from, and I'll give an overview of what drivers do with them
when they follow what I call the “standard model” for IRP processing. I'll also discuss
the knotty subject of IRP cancellation, wherein accurate reasoning about synchroni-
zation problems becomes crucial.

Chapter 6, “Plug and Play,” concerns just one type of I/O request packet, namely
IRP_MJ_PNP. The Plug and Play Manager component of the operating system sends
you this IRP to give you details about your device’s configuration and to notify you
of important events in the life of your device. Being a good PnP citizen implies that
many drivers can’t use the “standard model” for IRP processing. I'll therefore describe
an object I named a DEVQUEUE that you can use to queue and dequeue IRPs ap-
propriately when PnP events are occurring all around you.

Chapter 7, “Reading and Writing Data,” is where we finally get to write driver
code that performs I/O operations. I'll discuss how you obtain configuration infor-
mation from the PnP Manager and how you use that information to prepare your
driver for “substantive” IRPs that read and write data. I'll present two simple driver
sample programs as well: one for dealing with a PIO device and one for dealing with
a bus-mastering DMA device.

15
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Chapter 8, “Power Management,” describes how your driver participates in
power management. I think you'll find, as I did, that power management is pretty
complicated. Unfortunately, you have to participate in the system’s power manage-
ment protocols or else the system as a whole won’t work right. Worse yet, the sys-
tem will sometimes present a dialog box that identifies you as the culprit if you don’t
do the right things. Luckily, the community of driver writers already has a grand tra-
dition of cutting and pasting, and that will save you.

Chapter 9, “Specialized Topics,” contains a discussion of filter drivers, error
logging, I/O control operations, and system threads.

Chapter 10, “Windows Management Instrumentation,” concerns a scheme for
enterprisewide computer management in which your driver can and should partici-
pate. I'll explain how you can provide statistical and performance data for use by
monitoring applications, how you can respond to standard WBEM controls, and how
you can alert controlling applications of important events when they occur.

Chapter 11, “The Universal Serial Bus,” describes how to write drivers for
USB devices.

Chapter 12, “Installing Device Drivers,” tells you how to arrange for your driver
to get installed onto end user systems. You'll learn the basics of writing an INF file
to control installation, and you’ll also learn some interesting and useful things to do
with the system registry. : ‘

Appendix A, “Coping with Windows 98 Incompatibilities,” explains a VxD-based
scheme that will allow you to deploy the same driver binary on both Windows 2000
and Windows 98 platforms. The basic problem you now have to solve—and the basic
reason a distinction exists between PnP drivers and WDM drivers—is that Win-
dows 2000 was finished after Windows 98 and predictably exports some service
routine that Windows 98 either doesn’t export or doesn’t implement in quite the same
way. You can solve this problem with a short VXD that I'll show you.

Appendix B, “Using GENERIC.SYS,” describes the public interface to my
GENERIC.SYS library. Most of my sample drivers use GENERIC.SYS, and you might
need to consult this documentation to fully understand how the samples work.

Appendix C, “Using WDMWIZ.AWX,” describes how to use my Visual C++
application wizard to build a driver. I repeat that WDMWIZ.AWX is not intended to
take the place of a commercial toolkit. Among other things, that means that it’s not
easy enough to use that you can dispense with documentation.
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This book is as accurate as I could make it. Let’s face it, though: when writing about
a complex technology with many new elements, it’s impossible to be 100 percent right.
In addition, WDM will inevitably change over the next few months as the Win-
dows 2000 beta period winds down to a retail release. My publisher and I have a plan
to deal with this. To deal with errors, I'll publish an errata page at my Web site
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(bttp://www.oneysoft.com). 1 hope friendly readers will email me comments that I can
post there.

OTHER RESOURCES

This book should not be the only source of information you use to learn about driver
programming. It emphasizes the features that I think are important; but you might
need information I don’t provide, or you might have a different way of learning than
I do. I don’t explain how the operating system works except insofar as it bears on
what I think one needs to know to effectively write drivers. If you're a deductive
learner, or if you simply want more theoretical background, you might want to con-
sult one of the additional resources listed below. If you’re standing in a bookstore
right now trying to decide which book to buy, my advice is to buy all of them: a wise
craftsperson never skimps on his or her tools. Besides, books on specializéd subjects
like driver writing often go out of print before their useful life expires.

Books Specifically About Driver Development

Art Baker, The Windows NT Device Driver Book: A Guide for Programmers (Prentice
Hall, 1997).

Chris Cant, Writing Windows WDM Device Drivers (R&D Press, 1999).

Edward N. Dekker and Joseph M. Newcomer, Developing Windows NT Device Drivers:
A Programmer’s Handbook (Addison-Wesley, 1999).

Rajeev Nagar, Windows NT File System Internals: A Developer’s Guide (O’Reilly &
Associates, 1997).

Peter G. Viscarola and W. Anthony Mason, Windows NT Device Driver Development
(Macmillan, 1998).

Dekker and Newcomer’s book went to press as the Beta 2 release of Windows 2000
appeared and contains just two chapters on WDM drivers. My publishing schedule
was such that I wasn’t able to look at Chris Cant’s book. Nagar’s book, while nomi-
nally concerned with file system drivers, contains a great deal of material that’s gen-
erally applicable to writing kernel-mode drivers of any kind. I don't believe in trying
to evaluate another book on the same subject as my own, inasmuch as youw’d have
a perfect right to doubt my objectivity, so I simply present this list for you to use as
you wish.

Another Useful Book
David A. Solomon, Inside Windows NT, Second Edition (Microsoft Press, 1998).

17
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Magazines

Microsoft Systems Journal occasionally has articles of interest to driver developers.
Windows Developer Journal usually has at least one relevant article in each issue.

Newsgroup

The comp.os.ms-windows programmer.nt.kernel-mode newsgroup provides a forum
for technical discussion on kernel-mode programming issues. This is the place to go
for support from your peers.

Seminars

I conduct public and on-site seminars on WDM programming. Visit my Web site at
bitp.//www.oneysoft.com for more information and schedules. Most other authors in
this subject area conduct seminars as well. This is how we pay our bills. Once again,
I won’t presume to offer any evaluation. And I'm sure you'll forgive me for not giv-
ing explicit pointers to information about my competition!

WARNING
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For expository purposes, this book presents fragments of driver code without error
checking and without all of the special case checks that are necessary in a working
driver. 'm following the precept that it’s better to explain complicated subjects in a
step-by-step manner without inundating you with too much detail too soon. I promise
not to lie to you, but I won'’t always be telling the whole, ugly truth either.

The sample drivers on the companion disc, on the other hand, do have all of
the error checking and other stuff that production drivers need. Please refer to the
disc, therefore, before incorporating something in your own code.



Chapter 2

Basic Structure
‘of a WDM Driver

In the first chapter, I described the basic architecture of the Microsoft Windows 2000
and Microsoft Windows 98 operating systems. I introduced the idea that a device driver
is a container for a collection of subroutines that the operating system can call upon
to carry out various activities related to a hardware device. This chapter is about the
basic contents of one of those driver containers. I'll discuss how device drivers are
layered and how that layering comes about. I'll also discuss the DriverEntry and
AddDevice functions that every WDM driver includes. In later chapters, I'll tell you
about the other types of subroutines that will be part of the driver for your device.

DEVICE AND DRIVER LAYERING

The Windows Driver Model formalizes a layering of drivers, as illustrated in Figure 2-1.
A stack of device objects appears at the left of the figure. The device objects are data
structures that the system creates to help software manage hardware. Many of these
data structures can exist for a single piece of physical hardware. The lowest-level de-
vice object in a stack is called the physical device object, or PDO for short. Somewhere
in the middle of a device object stack is an object called the functional device ob-
Ject, or FDO. Above and below the FDO there might be a collection of filter device
objects. Filter device objects above the FDO are called upper filters, whereas filter de-
vice objects below the FDO (but still above the PDO) are called lower filters:
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Figure 2-1. Layering of device objects and drivers in the WDM.

AN ACRONYM FOR FILTER DEVICE OBJECTS?

In an industry known for its prolific use of acronyms, it seems odd that the term
filter device object has no official abbreviation. FDO is taken—as I've said, it
refers to the functional device object that belongs to the real driver for the de-
vice. Once upon a time, Microsoft was using the acronym FiDO to describe these
objects. This acronym suffers from a slight lack of specificity in that you can’t
immediately tell whether you're talking about an upper or a lower filter. There
may have been other reasons why the term fell into disfavor as something ap-
propriate to sober discussion about a serious new technology, however. My
seminar students have been quick to point out, for example, that the FiDO at
the top of any given stack is, of course, the “top dog.”

Being a sometime cat owner and thus unoffended by canine allusions, and
not being a total slave to prevailing convention, I'll use the acronym FiDO in
this book as a generic way of describing filter device objects. I guess driver
programming (or at least this book) is going to the dogs.

The Plug and Play (PnP) Manager component of the operating system constructs
the stack of device objects at the behest of device drivers. For our purposes in this
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book, we can use the generic term bus to describe a piece of hardware to which
devices connect electronically. This is a pretty broad definition. Not only does it
include things like the PCI (Peripheral Component Interconnect) bus, but it also
includes a SCSI (Small Computer System Interface) adapter, a parallel port, a serial
port, a USB (universal serial bus) hub, and so on—anything, in fact, that can have
multiple devices plugged into it. One responsibility of the driver for a bus is to enu-
merate the devices attached to the bus and to create PDOs for each of them. The PnP
Manager begins painting the picture in Figure 2-1, then, by creating a PDO because
some bus driver has detected some actual hardware.

Having created a PDO, the PnP Manager consults the registry database to find
the filter and function drivers that occupy the middle of the figure. The setup pro-
gram is responsible for many of these registry entries, and the INF files that control
hardware installation are responsible for others. The registry entries define the or-
der in which the drivers will appear in the stack, so the PnP Manager begins by loading
the lowest-level filter driver and calling its AddDevice function. This function creates
a FiDO, thus establishing the horizontal link between a FiDO and a driver. AddDevice
then connects the PDO to the FiDO; that's where the line connecting the two device
objects comes from. The PnP Manager proceeds upward, loading and calling each
lower filter, the function driver, and each upper filter, until the stack is complete.

The purpose for the layering becomes apparent when you consider the flow
of I/O requests diagrammed on the right-hand side of Figure 2-1. Each request for
an operation affecting a device uses an I/O request packet (IRP). IRPs are normally
sent to the topmost driver for the device and can percolate down the stack to the other
drivers. At each level, the driver decides what to do with the IRP. Sometimes, a driver
will do nothing except pass the IRP down. Other times, a driver might completely
handle the IRP without passing it down. Still other times, a driver might process the
IRP and pass it down, or vice versa. It all depends on the device and the exact se-
mantics of the IRP. I'll explain in a later sidebar how it comes to pass that drivers can
send IRPs down even though device objects are linked upward from the PDO.

The various drivers that occupy the stack for a single piece of hardware per-
form different roles. The function driver manages the device, represented by the FDO.
The bus driver manages the connection between the device and the computer, rep-
resented by the PDO. Because of the close relationship between driver software and
device object, I'll sometimes use the term FDO driver to mean the function driver
and the term PDO driver to refer to the bus driver. The filter drivers, if they even
exist, monitor or modify the stream of IRPs.
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One of my seminar students, on seeing a diagram similar to Figure 2-1, was
misled (I won'’t say by which teacher, who also wrote this book) into thinking of C++
and class inheritance. A perfectly reasonable way of designing an architecture for
device drivers would be to define base classes from which programmers could derive
progressively more specialized classes. In such a scheme, you could have a set of
abstract classes that manage different sorts of PDOs, and you could derive FDO drivers
from them. The system would send IRPs to virtual functions, some of which would
be handled by the base class in the PDO driver and some of which would be handled
by the derived class in the FDO driver. WDM doesn’t work this way, though. The PDO
driver performs completely different jobs from the FDO driver. The FDO driver “dele-
gates” certain work to the PDO driver by passing IRPs down to it, but the relation-
ship is more like being peers in a bucket brigade (and we won'’t discuss the contents
of the metaphorical buckets!) than like being hierarchically related.

How the System Loads Drivers

Having presented this much description of device layering in the WDM, it’s time for
me to be a bit more precise. To begin with, there’s an obvious chicken-and-egg
problem with what I've described. I said that the bus driver creates the PDO, but I
also said that the PnP Manager loads drivers based on registry entries for a PDO that
already exists. So where does the bus driver come from? I'll explain that in the next
section. The registry database plays a crucial role in the process of loading drivers
and configuring devices, so I'll explain which registry keys are relevant and what they
contain.

Recursive Enumeration

In the first instance, the PnP Manager has a built-in “driver” for a “root” bus that doesn’t
actually exist. The root bus conceptually connects the computer to all hardware that
can’t electronically announce its presence—including the primary hardware bus (such
as PCD. The root bus driver gets information about the computer from the registry,
which was initialized by the Windows 2000 Setup program. Setup got the informa-
tion by running an elaborate hardware detection program and by asking the end user
suitable questions. Consequently, the root bus driver knows enough to create a PDO
for the primary bus.

The function driver for the primary bus can then enumerate its own hardware
electronically. The PCI bus, for example, provides a way of accessing a special con-
figuration space for each attached device, and the configuration space contains a
description of the device and its resource requirements. When a bus driver enumerates
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hardware, it acts in the guise of an ordinary function driver. Having detected a piece
of hardware, however, the driver switches roles: it becomes a bus driver and creates
a new PDO for the detected hardware. The PnP Manager then loads drivers for this
device PDO, as previously discussed. It might happen that the function driver for the
device enumerates still more hardware, in which case the whole process repeats
recursively. The end result will be a tree like that shown in Figure 2-2, wherein a bus
device stack branches into other device stacks for the hardware attached to that bus.

coe cee eee

Figure 2-2. Layering of recursively enumerated devices.
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The Role of the Registry v

Three different registry keys bear on configuration. These are called the hardware
key, the class key, and the service key. To be clear, these are not the proper names of
specific subkeys: they are generic names of three keys whose pathnames depend on
the device to which they belong. Broadly speaking, the hardware key contains in-
formation about a single device, the class key concerns all devices of the same type,
and the service keys contains information about drivers. People sometimes use the
name “instance key” to refer to the hardware key and “software key” to refer to the
service key. The multiplicity of names derives from the fact that Windows 95/98 and
Windows 2000 were written (mostly) by different people.

The Hardware (Instance) Keys Device hardware keys appear in the \System\
CurrentControlSet\Enum subkey of the local machine branch of the registry. You
normally can’t look inside this key because the system grants access to the System
account only. In other words, kernel-mode programs and user-mode services run-
ning in the System account can read from and write to the Enum key and its subkeys,
but not even an administrator can do so. To see what’s inside Enum, you can run
REGEDT?32.EXE from an administrator-privilege account and change the security set-
tings. Figure 2-3 illustrates the hardware key for one of the sample devices that ac-
companies this book (namely, the USB42 sample I'll discuss in Chapter 11, “The
Universal Serial Bus”).

(value ot set)
0x00000004 (4)

Sample

{B94A7460-A033-11D2-621E-444553540000}
USB!Class_ffSubClass_008Frok_00 USB\Class_ffasubClass_00 UsBiClass. ff
0x00000000 (0)

The Answer Device

{BI4A7460-A033-1102-821E-44455354000010000
USB\Vid_05478Pid_10228Rev_0001 USBIVid_054787id_102a

Walter Oney Software

usB42

Figure 2-3. A hardware key in the registry.
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How REGISTRY KEYS ARE NAMED

The naming of the very top level of the registry key hierarchy is confusing for
the first-time visitor. When you use Win32 API functions to access the registry
in user mode, you identify the top level with one of the predefined handle
constants, such as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_
LOCAL_MACHINE, and a few others. The REGEDIT.EXE registry editor applet
uses these same names, as shown in Figure 2-3. Sometimes, in writing about
registry access, the length of these keywords induces one to use abbreviations
like HKCR, HKCU, HKLM, and so on.

In point of fact, HKCR is an alias for HKLM\Software\Classes, and HKCU
is an alias for one of the subkeys of HKEY_USERS. The targets of these two
aliases depend on which session' context you’re dealing with.

In kernel mode, however, you use a different naming scheme, based on
the kernel namespace. (I'll discuss this namespace a bit further on in this chap-
ter.) The top levels are named \Registry\User and \Registry\Machine. The
Machine branch, which is the same branch that user mode knows as HKLM, is
where you can find all information relevant to device drivers. Unless otherwise
indicated, therefore, you should assume that a particular registry key referred
to in the text can be found in \Registry\Machine.

The subkeys on the first level below the Enum key correspond to the different
bus enumerators in the system. The description of all past or present USB devices is
in the ...\Enum\USB subkey. I've expanded the key for the USB42 sample to show
you how the device’s hardware ID (vendor 0574, product 102A) has turned into the
name of a key (Vid_0547&Pid_102A) and how a particular instance of the device that
has that ID appears as a further subkey named 7&2. The 7&2 key is the hardware,
or instance, key for this device.

Some of the values in the hardware key provide descriptive information that
user-mode components such as the Device Manager can use. (You reach the Device
Manager from the Management Console or, more easily, from the Hardware tab of
the property sheet you get when you right-click the My Computer desktop icon and
select Properties.) Figure 2-4 shows how the Device Manager portrays the proper-
ties of USB42. Refer to the sidebar “Accessing Device Keys from User Mode” for an
indication of how the Device Manager can gather this information even though it can’t,
by itself, get past the normal security block to the Enum key.
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Figure 2-4. The Device Manager properties display for a device.

ACCESSING DEVICE KEYS FROM USER MODE

Applications often need to access information about hardware devices. To make
this possible without tempting fate by exposing the crucial Enum key to inad-
vertent (or not-so-inadvertent) tampering, Microsoft provides the CFGMGR32
set of APIs. The header file and library for this API is part of the Windows 2000
DDK, and the functions in the API set work both in Windows 2000 and Win-
dows 98. The API is currently documented in a DOC file that’s part of the
Microsoft Windows NT version 4.0 (!) DDK.

To give you one example, let’s suppose you knew the name of a device’s
hardware key somehow. One of the ways you could know is by enumerat-
ing all “device instances” starting from the device root by recursively calling
CM_Locate_DevNode, CM_Get_Child, and CM_Get_Sibling. Here’s a short
fragment of code illustrating how to read the Manufacturer value from the cor-
responding hardware key:

#include <cfgmgr32.h>

LPTSTR TpszDevnodeName;

(continued)
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continued

DEVNODE dn;

CONFIGRET cr = CM_Locate_DevNode(&dn, 1pszDevnodeName,
CM_LOCATE_DEVNODE_NORMAL) ;

if (cr != CR_SUCCESS)
<handle error>

TCHAR buffer[_MAX_PATH];

DWORD size = sizeof(buffer); :

cr = CM_Get_DevInstRegistry_Property(dn, CM_DRP_MFG, NULL,
buffer, size, 0);

The lpszDevnodeName is a string like “USB\Vid_0547&Pid_102A\7&2”
whose relationship to the hardware key name should now be obvious. I use

code just like this fragment to gather some of the information in the DEVVIEW
applet I'll tell you about presently.

The hardware key also contains several values that identify the class of device
to which the device belongs and the drivers for the device. ClassGUID is the ASCII
representation of a globally unique identifier (GUID) that uniquely identifies a de-
vice class; in effect, it's a pointer to the class key for this device. Service is a pointer
to the service key. Optional values (which USB42 doesn’t have) named LowerFilters
and UpperFilters, if present, would identify the service names for any lower or up-
per filter drivers, respectively.

Finally, a hardware key might have overriding values named Security, Exclu-
sive, DeviceType, and DeviceCharacteristics that force the device object the driver
will create to have certain attributes. I'll discuss the importance of these overrides later
on when I tell you how to create a device object.

Most of the values in the hardware key get there automatically as part of the
setup process or because the system recognizes new hardware (or gets told it about
via the Hardware Wizard) sometime after initial setup. Some of the values get there
because the INF file that’s used to install the hardware directs that they be put there.
I'll discuss INF files when I talk about how to plan for installation in Chapter 12,
“Installing Device Drivers.”

The Class Keys The class keys for all classes of device appear in the HKLM\
System\CurrentControlSet\Control\Class key. Their key names are GUIDs assigned
by Microsoft. Figure 2-5 illustrates the class key for SAMPLE devices, which is the class
to which the USB42 sample and all the other sample drivers in this book belong.
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+ {6D807884-7D21-11CF-801C-08002BE10318}
B33 {71A27CDD-812A-11D0-BEC7-08002BE2092F} REG_SZ  WDM Book Samples
REG_S52 Sample
REG_SZ samclass.dll
REGSZ -5

() {CES939AE-EBDE-11D0-B181-0000F8753EC4}
[1-170{D45B1C18-C8FA-11D1-9F77-0000F80SF530}

Figure 2-5. A class key in the registry.

The USB class isn’t particularly interesting as it lacks some of the optional val-
ues that might be there, such as these:

B LowerFilters and UpperFilters, if present, specify filter drivers for all
devices of this class.

B  Security, Exclusive, DeviceType, and DeviceCharacteristics, if present
in a Properties subkey of the class key, specify values that override de-
fault settings of certain device object parameters for all devices of this class.
These overrides have less precedence than the ones (if any) in the hard-
ware key. System administrators will eventually be able to set up these
overrides through the Management Console.

Each device also has its own subkey below the class key. The name of this key
is the Driver value in the device’s hardware key. Refer to Figure 2-6 for an illustra-
tion of the contents of this subkey, the purpose of which is to correlate all these
registry entries with the INF file used to install the device.

'Registry Editor

11-(17) {6D807884-7D21-11CF-801C-08002BE 10318}

B2 {71427CDD-8124-11D0-BEC7-08002BE2092F}
{23 {72631E54-78A4-11D0-BCF7-00AAN0B7B32A}
(&1 {74517A0-74D3-11D0-B6FE-00ADCIOFS7DA}
{3 {894A7460-A033-11D2-621E-444553540000}

REG_SZ (value nat set)
REG_SZ The Answer Device
REG_SZ oem2.inf

REG_SZ  DriverInstal
REG_S5Z  .NT
(aBjMatchingDeviceld REG_SZ  usbivid_0S5478pid_102a
[aBJProviderame REG_SZ  Walter Oney Software

{3 {BECCOS5D-047F-11D1-AS37-0000F8753ED1}
{3 {CE5939AE-EBDE-11D0-B181-0000F8753EC4}
{2 {p45B1C18-C8FA-11D1-9F 77-0000FBOSFS30}
{2 {D7F9BA40-EB63-11D1-AASA-0004ACBEAEDT}

Figure 2-6. A device-specific subkey of the device’s class key in the registry.

The Service (Software) Keys The last key that’s important for a device driver
is the service key. It indicates where the driver’s executable file is on disk and contains
some other parameters that govern the way the driver is loaded. Service keys appear
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in the HKLM\System\ CurrentControlSet\Services key. Refer to Figure 2-7 for USB42’s
service key.

Figure 2-7. A service key in the registry.

It's not my purpose to rehash all the possible settings in the service key, which
is splendidly documented in several places, including under the heading “Service
Install” in the Platform Software Development Kit (SDK). In this particular case, the
values have the following significance:

B ImagePath indicates that the executable file for the driver is named
USB42.SYS and can be found in %SystemRoot%\system32\drivers. Note
that the registry setting in this case is a relative pathname starting from the
system root directory.

B Type (D) indicates that this entry describes a kernel-mode driver.

B Start (3) indicates that the system should load this driver when it's needed
to support a newly arrived device. (This numeric value corresponds to the
SERVICE_DEMAND_START constant in a call to CreateService. When
applied to a kernel-mode driver, it has the meaning I just described—it’s
not necessary to explicitly call StartService or issue a NET START command
to start the driver.)

B  ErrorControl (1) indicates that a failure to load this driver should cause
the system to log the error and display a message box.
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Order of Driver Loading
When the PnP Manager encounters a new device, it opens the hardware and class
keys and proceeds to load drivers in the following order:

1. Any lower filter drivers specified in the hardware key for the device. Since
the LowerFilters value is of type REG_MULTI_SZ, it can specify more than
one driver. They're loaded in the order in which they appear in the value’s
data string.

2. Any lower filter drivers specified in the class key. Again, these are loaded
in the order in which they appear in the LowerFilters value’s data string.

3. The driver specified by the Service value in the hardware key.

4. Any upper filter drivers specified in the hardware key, in the order in which
they appear in the UpperFilters data string.

5. Any upper filter drivers specified in the class key, in the order in which
they appear in the UpperFilters data string.

When I say the system “loads” a driver, I mean that it maps the driver’s image
into virtual memory, fixes up relocatable references, and calls the driver’s main entry
point. The main entry point is usually named DriverEntry. I'll describe the DriverEntry
function a bit further on in this chapter. It might turn out that a particular driver is
already present in memory, in which case nothing happens at the load stage except
incrementing a reference count that will preserve the image in memory for however
long some device needs it. _

You might have noticed that the loading of upper and lower filters belonging
to the class and to the device instance isn’t neatly nested as you might have expected.
Before I knew the facts, I guessed that device-level filters would be closer to the
function driver than class-level filters. As we’ll see later on, it’s not very important in
what order the loading occurs. However, the system calls the drivers’ AddDevice
functions (another topic I'll discuss in considerable detail shortly) in the same order
in which the PnP Manager loads the drivers. Consequently, the device object stack
will mirror this order, with possibly unexpected results.

How Device Objects Interrelate

The tree of device object stacks shown in Figure 2-2 doesn’t imply that IRPs necessari-
ly flow from a PDO to the top FiDO for the next lower branch of the tree. In fact, the
driver for one stack’s PDO is the FDO driver for the next lower branch, as illustrated
by the shading in the figure. When the driver receives an IRP in its PDO role, it will
do something to perform the IRP, but that might not involve sending the same, or even
any other, IRP to the devices in the stack it occupies while performing its FDO role.
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Conversely, when a bus driver receives an IRP in its FDO role, it might or might not
need to send some IRPs to one or more of the devices for which it acts as PDO.

A few examples should clarify the relationship between FiDOs, FDOs, and
PDOs. The first example concerns a read operation directed to a device that happens
to be on a secondary PCI bus that itself attaches to the main bus through a PCI-to-
PCI bridge chip. To keep things simple, let’s suppose that there’s one FiDO for this
device, as illustrated in Figure 2-8. You'll learn in later chapters that a read request
turns into an IRP with a major function code of IRP_MJ_READ. Such a request would
flow first to the upper FiDO and then to the function driver for the device. (That driver
is the one for the device object marked FDOqe, in the figure.) The function driver calls
the hardware abstraction layer (HAL) directly to perform its work, so none of the other
drivers in the figure will see the IRP.

Device Secondary Bus Main Bus

Figure 2-8. 7The flow of a read request for a device on a secondary bus.

A variation on the first example is shown in Figure 2-9. Here we have a read
request for a device plugged into a USB hub that itself is plugged into the host con-
troller. The complete device tree therefore contains stacks for the device, for the hub,
and for the host controller. The IRP_MJ_READ flows through the FiDO to the func-
tion driver, which then sends one or more IRPs of a different kind downward to its
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own PDO. The PDO driver for a USB device is USBHUB.SYS, and it forwards the IRPs
to the topmost driver in the host controller device stack, skipping the two-driver stack
for the USB hub in the middle of the figure.

m—

IRP

with URB

Device USB Hub Host Controller
Figure 2-9. The flow of a read request for a USB device.

The third example is similar to the first, except that the IRP in question is a
notification concerning whether a disk drive on a PCI bus will or will not be used as
the repository for a system paging file. You'll learn in Chapter 6, “Plug and Play,” that
this notification takes the form of an IRP_MJ_PNP request with the minor function
code IRP_MN_DEVICE_USAGE_NOTIFICATION. In this case, the FiDO driver will
pass the request to the FDOge, driver, which will take note of it and pass it further
down the stack to the PDOg.y driver. This particular notification has implications about
how other I/O requests that concern the PnP system or power management will be
handled, so the PDOqe, driver sends an identical notification to the stack within which
it's the FDOpys, as illustrated in Figure 2-10. (Not all bus drivers work this way, but
the PCI bus does.)
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Repeater
IRP

Repeater
IRP

Device Secondary Bus Main Bus

Figure 2-10. The flow of a device usage notification.

Examining the Device Stack
To better visualize the way device objects and drivers are layered, it helps to have a
tool. I wrote the DEVVIEW utility, which you’ll find on the companion disc, for this
purpose. I'll be describing other uses for DEVVIEW in this chapter, but the feature
that concerns us now is its ability to display the device objects that are used to manage
hardware devices. With the so-called Answer device plugged into my USB hub, I ran
DEVVIEW and generated the two screen shots shown in Figure 2-11 and Figure 2-12.

This particular device uses only two device objects. The PDO is managed by
USBHUB.SYS, whereas the FDO is managed by USB42.SYS (the image for the An-
swer device). In the first of these screen shots, you can see other information about
the PDO. Based on our exploration of the registry keys associated with USB42, it
should now be clear where that information came from.

It's worth experimenting with DEVVIEW on your own system to see how vari-
ous drivers are layered for the hardware you own.
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e Details

EAD_CONTROL
LE_WRITE_ATTRIBUTES
LE_READ_ATTRIBUTES
LE_TRAVERSE
LE_WRITE_EA
LE_READ.

Figure 2-12. DEVVIEW information about USB42’s FDO.
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Driver Objects

The 1/O Manager uses a driver object data structure to represent each device driver.
See Figure 2-13. Like many of the data structures we’ll be discussing, the driver ob-
ject is partially opaque. This means that you and I are only supposed to directly ac-
cess or change certain fields in the structure, even though the DDK headers declare
the entire structure. I've shown the opaque fields of the driver object in the figure
with a gray background. These opaque fields are analogous to the private and protected
members of a C++ class, and the accessible fields are analogous to public members.

DeviceObject

DriverExtension

HardwareDatabase

FastloDispatch

Driverinit

DriverStartlo

DriverUnioad

MajorFunction

Figure 2-13. The DRIVER_OBJECT data structure.
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The DDK headers declare the driver object, and all other kernel-mode data
structures for that matter, in a stylized way, as this excerpt from WDM.H illustrates:

typedef struct _DRIVER_OBJECT {
CSHORT Type;
CSHORT Size;

} DRIVER_OBJECT, *PDRIVER_OBJECT;

That is, the header declares a structure with a type name of DRIVER_OBJECT. It also
declares a pointer type (PDRIVER_OBJECT) and assigns a structure tag (_DRIVER_
OBJECT). This declaration pattern appears many places in the DDK, and I won'’t
mention it again. The headers also declare a small set of type names (like CSHORT)
to describe the atomic data types used in kernel mode. Table 2-1 lists some of these
names. CSHORT, for example, means “signed short integer used as a cardinal number.”

Type Name " Description

PVOID, PVOIDG64 Generic pointers (default precision and 64-bit

precision)
NTAPI Used with service function declarations to force use
of __stdcall calling convention on x86 architectures
VOID Equivalent to “void”
CHAR, PCHAR 8-bit character, pointer to same (signed or not

according to compiler default)

UCHAR, PUCHAR
SCHAR, PSCHAR
SHORT, PSHORT
USHORT, PUSHORT
LONG, PLONG
ULONG, PULONG
WCHAR, PWSTR
PCWSTR

NTSTATUS
LARGE_INTEGER
ULARGE_INTEGER
PSZ, PCSZ

BOOLEAN, PBOOLEAN

Unsigned 8-bit character, pointer to same
Signed 8-bit character, pointer to same
Signed 16-bit integer, pointer to same
Unsigned 16-bit integer, pointer to same
Signed 32-bit integer, pointer to same
Unsigned 32-bit integer, pointer to same
Wide (Unicode) character or string
Pointer to constant Unicode string

Status code (typed as signed long integer)
Signed 64-bit integer

Unsigned 64-bit integer

Pointer to ASCIIZ (single-byte) string or
constant string

TRUE or FALSE (equivalent to UCHAR)

Table 2-1. Common type names for kernel-mode drivers.
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NOTE ON 64-BIT TYPES

The DDK headers contain type names that will make it relatively painless for
driver authors to compile the same source code for either 32-bit or 64-bit Intel
platforms. For example, instead of blithely assuming that a long integer and a
pointer are the same size, you should declare variables that might be either a
LONG_PTR or a ULONG_PTR. Such a variable can hold either a long (or un-
signed long) or a pointer to something. Also, for example, declare an integer
that can count as high as a pointer might span as a SIZE_T—you’ll get a 64-bit
integer on a 64-bit platform. These and other 32/64 typedefs are in the DDK
header file named BASETSD.H.

I'll briefly discuss the accessible fields of the driver object structure now.

DeviceObject (PDEVICE_OBJECT) anchors a list of device object data struc-
tures, one for each of the devices managed by the driver. The I/O Manager links the
device objects together and maintains this field. The DriverUnload function of a non-
WDM driver would use this field to traverse the list of device objects in order to delete
them. A WDM driver probably doesn’t have any particular need to use this field.

DriverExtension (PDRIVER_EXTENSION) points to a small substructure within
which only the AddDevice (PDRIVER_ADD_DEVICE) member is accessible to the
likes of us. (See Figure 2-14.) AddDevice is a pointer to a function within the driver
that creates device objects; this function is rather a big deal, and I'll discuss it at length
later in this chapter.

AddDevice

Figure 2-14. The DRIVER_EXTENSION data structure.
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HardwareDatabase (PUNICODE_STRING) describes a string that names a
hardware database registry key for the device. This is a name like “\Registry\Machine\
Hardware\Description\System” and names the registry key within which resource
allocation information resides. WDM drivers have no need to access the information
below this key because the PnP Manager performs resource allocation automatically.
The name is stored in Unicode. (In fact, all kernel-mode string data uses Unicode.)
I'll discuss the format and the use of the UNICODE_STRING data structure in the
next chapter.

FastIoDispatch (PFAST_IO_DISPATCH) points to a table of function pointers
that file system and network drivers export. How these functions are used is beyond
the scope of this book. If you're interested in learning more about file system driv-
ers, consult Rajeev Nagar’s Windows NT File System Internals: A Developer’s Guide
(O'Reilly & Associates, 1997).

DriverStartlo (PDRIVER_STARTIO) points to a function in your driver that
processes I/0 requests that the I/O Manager has serialized for you. I'll discuss request
queuing in general and the use of this routine in particular in Chapter 5, “The I/O
Request Packet.”

DriverUnload (PDRIVER_UNLOAD) points to a cleanup function in your driver.
I'll discuss this function a bit further on in connection with DriverEntry, but you might
as well know now that a WDM driver probably doesn’t have any significant cleanup
to do anyway.

MajorFunction (array of PDRIVER_DISPATCH) is a table of pointers to func-
tions in your driver that handle each of the roughly two dozen types of I/O request.

~ This table is also something of a big deal, as you might guess, because it defines how

I/O requests make it into your code.

Device Objects
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Figure 2-15 illustrates the format of a device object and uses the same shading con-
vention for opaque fields that I used in the preceding discussion of driver objects.
As the author of a WDM driver, you will create some of these objects by calling
IoCreateDevice, but the I/O Manager will be responsible for managing them.

DriverObject (PDRIVER_OBJECT) points to the object describing the driver
associated with this device object, usually the one that called IoCreateDevice to cre-
ate it. Filter drivers sometimes need to use this pointer to find the driver object for a
device they’re filtering so that they can inspect entries in the MajorFunction table.

NextDevice (PDEVICE_OBJECT) points to the next device object that belongs
to the same driver as this one. This field is the one that links device objects together
starting from the driver object’s DeviceObject member. There’s probably no reason
for a WDM driver to use this field.



DriverObject

Chapter 2

NextDevice

Currentirp

Flags

Characteristics

DeviceExtension

DeviceType

StackSize

Figure 2-15. The DEVICE_OBJECT data structure.

AlignmentRequirement

Basic Structure of a WDM Driver

CurrentIrp (PIRP) points to the I/O request packet most recently sent to the
corresponding driver’s Startlo function. I'll have more to say about the Currentlrp field
in Chapter 5 when I discuss cancel routines.
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Flags (ULONG) contains a collection of flag bits. Table 2-2 lists the bits that are
accessible to driver writers.

Flag Description

DO_BUFFERED_IO Reads and writes use the buffered method
(system copy buffer) for accessing user-mode
data

DO_EXCLUSIVE Only one thread at a time allowed to open
a handle

DO_DIRECT_IO Reads and writes use the direct method

(memory descriptor list) for accessing
user-mode data

DO_DEVICE_INITIALIZING  Device object not initialized yet

DO_POWER_PAGABLE IRP_MJ_PNP must be handled at
PASSIVE_LEVEL

DO_POWER_INRUSH Device requires large in-rush of current
during power-on

DO_POWER_NOOP ' Device doesn’t participate in power
management

Table 2-2. Accessible flags in a DEVICE_OBJECT data structure.

Characteristics (ULONG) is another collection of flag bits describing various
optional characteristics of the device. (See Table 2-3.) The I/O Manager initializes these
flags based on an argument to IoCreateDevice. Filter drivers propagate them upward
in the device stack.

Flag Description

FILE_REMOVABLE_MEDIA Media can be removed from device
FILE_READ_ONLY_DEVICE Media can only be read, not written

FILE_FLOPPY_DISKETTE Device is a floppy disk drive
FILE_WRITE_ONCE_MEDIA Media can be written once
FILE_REMOTE_DEVICE Device accessible through network connection

FILE_DEVICE_IS_MOUNTED Physical media is present in device

FILE_DEVICE_SECURE_OPEN Check security on device object during open
operations

Table 2-3. Characteristics flags in a DEVICE_OBJECT data structure.

DeviceExtension (PVOID) points to a data structure you define that will hold
per-instance information about the device. The I/O Manager allocates space for the
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structure, but its name and contents are entirely up to you. A common convention
is to declare a structure with the type name DEVICE_EXTENSION. To access it given
a pointer (for example, fdo) to the device object, use a statement like this one:

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;

It happens to be true (now, anyway) that the device extension immediately
follows the device object in memory. It would be a bad idea to rely on this always
being true, though, especially when the documented method of following the
DeviceExtension pointer will always work.

DeviceType (DEVICE_TYPE) is an enumeration constant describing what type
of device this is. The I/O Manager initializes this member based on an argument to
IoCreateDevice. Filter drivers might conceivably need to inspect it. At the date of this
writing, there are roughly 50 possible values for this member. (See Table 2-4.)

Device Type Default Security
FILE_DEVICE_BEEP Public Open Unrestricted
FILE_DEVICE_CD_ROM Modified Public Default Unrestricted
FILE_DEVICE_CD_ROM_FILE_SYSTEM Public Default Unrestricted
FILE_DEVICE_CONTROLLER Public Open Unrestricted
FILE_DEVICE_DATALINK Public Open Unrestricted
FILE_DEVICE_DFS Public Open Unrestricted
FILE_DEVICE_DISK Modified Public Default Unrestricted
FILE_DEVICE_DISK_FILE_SYSTEM Public Default Unrestricted
FILE_DEVICE_FILE_SYSTEM Public Default Unrestricted
FILE_DEVICE_INPORT_PORT Public Open Unrestricted
FILE_DEVICE_KEYBOARD Public Open Unrestricted
FILE_DEVICE_MAILSLOT Public Open Unrestricted
FILE_DEVICE_MIDI_IN Public Open Unrestricted
FILE_DEVICE_MIDI_OUT Public Open Unrestricted
FILE_DEVICE_MOUSE Public Open Unrestricted
FILE_DEVICE_MULTI_UNC_PROVIDER Public Open Unrestricted
FILE_DEVICE_NAMED_PIPE Public Open Unrestricted
FILE_DEVICE_NETWORK : Modified Public Default Unrestricted
FILE_DEVICE_NETWORK_BROWSER Public Open Unrestricted

Table 2-4. Device type codes and default security. (continued)
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continued

Device Type

Default Security

FILE_DEVICE_NETWORK_FILE_SYSTEM
FILE_DEVICE_NULL
FILE_DEVICE_PARALLEL_PORT
FILE_DEVICE_PHYSICAL_NETCARD
FILE_DEVICE_PRINTER
FILE_DEVICE_SCANNER
FILE_DEVICE_SERIAL_MOUSE_PORT
FILE_DEVICE_SERIAL_PORT
FILE_DEVICE_SCREEN
FILE_DEVICE_SOUND
FILE_DEVICE_STREAMS
FILE_DEVICE_TAPE
FILE_DEVICE_TAPE_FILE_éYSTEM
FILE_DEVICE_TRANSPORT
FILE_DEVICE_UNKNOWN
FILE_DEVICE_VIDEO
FILE_DEVICE_VIRTUAL_DISK
FILE_DEVICE_WAVE_IN
FILE_DEVICE_WAVE_OUT
FILE_DEVICE_8042_PORT
FILE_DEVICE_NETWORK_REDIRECTOR
FILE_DEVICE_BATTERY
FILE_DEVICE_BUS_EXTENDER
FILE_DEVICE_MODEM
FILE_DEVICE_VDM
FILE_DEVICE_MASS_STORAGE
FILE_DEVICE_SMB

- FILE_DEVICE_KS

FILE_DEVICE_CHANGER
FILE_DEVICE_SMARTCARD
FILE_DEVICE_ACPI
FILE_DEVICE_DVD
FILE_DEVICE_FULLSCREEN_VIDEO

Modified Public Default Unrestricted

Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted

" Public Open Unrestricted

Public Open Unrestricted

Public Default Unrestricted

Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted

Modified Public Default Unrestricted

Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted

‘Public Open Unrestricted

Public Open Unrestricted
Public Open Unrestricted

Modified Public Default Unrestricted

Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted
Public Open Unrestricted

(continued)
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continued
Device Type Default Security
FILE_DEVICE_DFS_FILE_SYSTEM Public Open Unrestricted
FILE_DEVICE_DFS_VOLUME Public Open Unrestricted
FILE_DEVICE_SERENUM Public Open Unrestricted
FILE_DEVICE_TERMSRV Public Open Unrestricted
FILE_DEVICE_KSEC Public Open Unrestricted

StackSize (CCHAR) counts the number of device objects starting from this one
and descending all the way to the PDO. The purpose of this field is to inform inter-
ested parties about how many stack locations should be created for an IRP that will
be sent first to this device’s driver. WDM drivers don’t normally need to modify this
value, however, because the support routines they use for building the device stack

do so automatically.

HOW THE DEVICE STACK IS IMPLEMENTED

In the textual discussion of the DEVICE_OBJECT, I indicated that there’s a
NextDevice field that horizontally links together all the devices belonging to a
particular driver, but I didn’t describe the method that links device objects into
a vertical stack from the uppermost FiDO through the FDO and from the lower
FiDOs to the PDO. The opaque field AttachedDevice performs this office.
Starting with the PDO, each device object points to the object immediately above
it. There is no documented downward pointer—drivers must keep track on their
own of what’s underneath them. (In fact, IoAttachDeviceToDeviceStack does
set up a downward pointer in a structure for which the DDK doesn’t have a
complete declaration. It would be unwise to try to reverse-engineer that struc-
ture because it’s subject to change at any time.)

The AttachedDevice field is purposely not documented because its proper
use requires synchronization with code that might be deleting device objects
from memory. You and I are allowed to call IoGetAttachedDeviceReference
to find the topmost device object in a given stack and to increment a reference
count that will prevent that object from being prematurely removed from memory.
If you wanted to work your way down to the PDO, you could send your own
device an IRP_MJ_PNP request with the minor function code IRP_MN_
QUERY_DEVICE_RELATIONS and a Type parameter of TargetDeviceRelation.

(continued)
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continued

The PDO’s driver will answer by returning the address of the PDO. This IRP is
supposedly reserved for use by the operating system, though, so you really
shouldn’t be issuing it on your own. Instead, you need to remember the PDO
address when you first create the device object.

Similarly, to know what device object is immediately underneath you, you
need to save a pointer when you first add your object to the stack. Since each
of the drivers in a stack will have its own unknowable way of implementing
the downward pointers used for IRP dispatching, it’s not practical to alter the
device stack once the stack has been created.

THE DRIVERENTRY ROUTINE

44

In the preceding section, I said that the PnP Manager loads the drivers needed for
hardware and calls their AddDevice functions. A given driver might be used for more
than one piece of similar hardware, and there’s some global initialization that the driver
needs to perform only once when it’s loaded for the first time. That global initializa-
tion is the responsibility of the DriverEntry routine.

DriverEntry is the name conventionally given to the main entry point to a
kernel-mode driver. The I/O Manager calls the routine as follows:

extern "C" NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath)
{

oo

MOTE You call the main entry point to a kernel-mode driver “DriverEntry” be-
cause the build script—if you use standard procedures—will instruct the linker
that DriverEntry is the entry point, and it's best to make your code match this
assumption (or else to change the build script, but why bother?).

Before I describe the code you'd write inside DriverEntry, I want to mention a
few things about the function prototype itself. Unbeknownst to you and I (unless we
look carefully at the compiler options used in the build script), kernel-mode func-
tions and the functions in your driver use the __stdcall calling convention when
compiled for an x86 computer. This shouldn’t affect any of your programming, but
it’s something to bear in mind when you’re debugging. I used the extern "C" direc-
tive because, as a rule, I package my code in a C++ compilation unit—mostly to gain
the freedom to declare variables wherever I please instead of only immediately af-
ter left braces. This directive suppresses the normal C++ decoration of the external
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name so that the linker can find this function. Thus, an x86 compile produces a func-
tion whose external name is _DriverEntry@8.

Another point about the prototype of DriverEntry is those “IN” keywords. IN,
OUT, and INOUT are all noise words that the DDK defines as empty strings. By
original intention, they perform a documentation function. That is, when you see an
IN parameter, you’re supposed to infer that it’s purely input to your function. An OUT
parameter is output by your function, while an INOUT parameter is used for both
input and output. As it happens, the DDK headers don’t really use these keywords
intuitively, and there’s not a great deal of point to them. To give you just one example
out of many: DriverEntry claims that the DriverObject pointer is IN; indeed, you don’t
change the pointer, but you will assuredly change the object to which it points.

The last general thing I want you to notice about the prototype is that it declares
this function as returning an NTSTATUS value. NTSTATUS is actually just a long in-
teger, but you want to use the typedef name NTSTATUS instead of LONG so that
people understand your code better. A great many kernel-mode support routines
return NTSTATUS status codes, and you’ll find a list of them in the DDK header
NTSTATUS.H. I'll have a bit more to say about status codes in the next chapter; for
now, just be aware that your DriverEntry function will be returning a status code
when it finishes.

Overview of DriverEntry

The first argument to DriverEntry is a pointer to a barely initialized driver object that
represents your driver. A WDM driver’s DriverEntry function will finish initializing this
object and return. Non-WDM drivers have a great deal of extra work to do—they must
also detect the hardware for which they’re responsible, create device objects to rep-
resent the hardware, and do all the configuration and initialization required to make
the hardware fully functional. The relatively arduous detection and configuration steps
are handled automatically for WDM drivers by the PnP Manager, as I'll discuss in
Chapter 6. If you want to know how a non-WDM driver initializes itself, consult Art
Baker’s The Windows NT Device Driver Book (Prentice Hall, 1997) and Viscarola and
Mason’s Windows NT Device Driver Development (Macmillan, 1998).

The second argument to DriverEntry is the name of the service key in the reg-
istry. This string is not persistent—you must copy it if you plan to use it later.

A WDM driver’s main job in DriverEntry is to fill in the various function point-
ers in the driver object. These pointers indicate to the operating system where to find
the subroutines you’ve decided to place in your driver container. They include these
pointer members of the driver object:

B DriverUnload Set this to point to whatever cleanup routine you create.
The I/O Manager will call this routine just prior to unloading the driver.
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Most of the time, a WDM driver doesn’t allocate any resources during
DriverEntry, so it doesn’t need to clean anything up.

B DriverExtension->AddDevice Set this to point to your AddDevice
function. The PnP Manager will call AddDevice once for each hardware
instance you’re responsible for. Since AddDevice is so important to the way
WDM drivers work, I've devoted the next main section (“The AddDevice
Routine”) of this chapter to explaining what it does.

B DriverStartlo If your driver uses the standard method of queuing I/O
requests, you’d set this member of the driver object to point to your Startlo
routine. Don’t worry (yet, that is) if you don’t understand what I mean by
the “standard” queuing method;all will become clear in Chapter 5, where
you’ll discover that many drivers do use it.

B MajorFunction The I/O Manager initializes this vector of function pointers
to point to a dummy dispatch function that fails every request. You're pre-
sumably going to be handling certain types of IRPs—otherwise, your driver
is basically going to be deaf and dumb—so you’d set at least some of these
pointers to your own dispatch functions. Chapter 5 discusses IRPs and
dispatch functions in detail. For now, all you need to know is that you
must handle three kinds of IRPs and that you’ll probably be handling sev-
eral other kinds as well.

A nearly complete DriverEntry routine would, then, look like this:

extern "C" NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath)
{
DriverObject->DriverUnload = DriverUnload;
DriverObject->DriverExtension->AddDevice = AddDevice;
DriverObject->DriverStartlo = Startlo;
DriverObject->MajorFunction[IRP_MJ_PNP] = DispatchPnp;
DriverObject->MajorFunction[IRP_MJ_POWER] = DispatchPower;
DriverObject->MajorFunction[IRP_MJ_SYSTEM_CONTROL] = DispatchWmi;

servkey.Buffer = (PWSTR) ExAllocatePool(PagedPool,
RegistryPath->Length + sizeof(WCHAR));

if (lservkey.Buffer) i
return STATUS_INSUFFICIENT_RESOURCES;

servkey.MaximumLength = RegistryPath->Length + sizeof(WCHAR);

Rt1CopyUnicodeString(&servkey, RegistryPath);

return STATUS_SUCCESS;

}
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1. These three statements set the function pointers for entry points elsewhere
in the driver. I elected to give them simple names indicative of their func-
tion: DriverUnload, AddDevice, and Startlo..

2. Every WDM driver must handle PNP, POWER, and SYSTEM_CONTROL I/O
requests; this is where you’d specify your dispatch functions for these
requests. What’s now IRP_MJ_SYSTEM_CONTROL was called IRP_
MJ_WMI in some early beta releases of the Windows 2000 DDK, which
is why I called my dispatch function DispatchWmi.

3. In place of this ellipsis, you’d have code to set several additional
MajorFunction pointers. ‘

4. Ifyou ever need to access the service registry key elsewhere in your driver,
it’s a good idea to make a copy of the RegistryPath string here. If you're
going to be acting as a WMI (Windows Management Instrumentation)
provider (as I discuss in Chapter 10, “Windows Management Instrumen-
tation”), you'll need to have this string around, for example. I've assumed
that you declared a global variable named servkey as a UNICODE_
STRING elsewhere. I'll explain the mechanics of working with Unicode
strings in the next chapter.

5. Returning STATUS_SUCCESS is how you indicate success. If you were to
discover something wrong, you'd return an error code chosen from the
standard set in NTSTATUS.H or from a set of error codes that you define
yourself. STATUS_SUCCESS happens to be numerically 0.

DriverUnload

The purpose of a WDM driver’s DriverUnload function is to clean up after any glo-
bal initialization that DriverEntry might have done. There’s almost nothing to do. If
you made a copy of the RegistryPath string in DriverEntry, though, DriverUnload
would be the place to release the memory used for the copy:

VOID DriverUnload(PDRIVER_OBJECT DriverObject)
{
Rt1FreeUnicodeString(&servkey);
}

- If your DriverEntry routine returns a failure status, the system does not call your
DriverUnload routine. Therefore, if DriverEntry generates any side effects that need
cleaning up prior to returning an error status, DriverEntry has to perform the cleanup.
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Driver Reinitialization Routine

The I/O Manager provides a service function, IoRegisterDriverReinitialization,
that solves a peculiar problem for non-WDM drivers, and I want to explain what it
does so you’ll know why you don’t need to worry about it. Non-WDM drivers need
to enumerate their hardware at DriverEntry time. It might happen that a non-WDM
driver must load and initialize before all possible instances of its own hardware have
been identified. This is true for mouse and keyboard devices, for example. But, if
DriverEntry is supposed to enumerate all the mice or keyboards and create device
objects for them, these drivers can’t do their work properly if their DriverEntry rou-
tine runs too soon. They use IoRegisterDriverReinitialization to register a routine that
the I/O Manager will call back the next time someone detects new hardware. The
reinitialization routine can then try again and, potentially, register itself for even
later callbacks.

WDM drivers shouldn’t need to register reinitialization routines because they
don’t rely on their own resources to detect hardware. The PnP Manager will auto-
matically match up newly arrived hardware to the right WDM driver and call that
driver’s AddDevice routine (the subject of the next section) to do all the necessary
initialization work.

THE ADDDEVICE ROUTINE
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In the preceding main section, I showed how you initialize a WDM driver when it’s
first loaded. In general, though, a driver might be called upon to manage more than
one actual device. In the WDM architecture, a driver has a special AddDevice func-
tion that the PnP Manager can call for each such device. The function has the fol-
lowing prototype:

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo)
{ .
}

The DriverObject argument points to the same driver object that you initial-
ized in your DriverEntry routine. The pdo argument is the address of the physical
device object at the bottom of the device stack, even if there are already filter driv-
ers below.

The basic responsibility of AddDevice in a function driver is to create a device
object and link it into the stack rooted in this PDO. The steps involved are as follows:



Chapter 2 Basic Structure of a WDM Driver

1. Call IoCreateDevice to create a device object and an instance of your own
device extension object.

2. Register one or more device interfaces so that applications know about
the existence of your device. Alternatively, give the device object a name
and then create a symbolic link.

3. Next initialize your device extension and the Flags member of the device
object.

4, Call IoAttachDeviceToDeviceStack to put your new device object into the
stack.

Now I'll explain these steps in more detail.

Creating a Device Object
You create a device object by calling IoCreateDevice. For example:

PDEVICE_OBJECT fdo;
NTSTATUS status = IoCreateDevice(DriverObject,
sizeof (DEVICE_EXTENSION), NULL,
FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, &fdo);

The first argument (DriverObject) is the same value supplied to AddDevice as
the first argument. This argument establishes the connection between your driver and
the new device object, thereby allowing the I/O Manager to send you IRPs intended
for the device. The second argument is the size of your device extension structure.
As I discussed earlier in this chapter, the I/O Manager allocates this much additional
memory and sets the DeviceExtension pointer in the device object to point to it.

The third argument, which is NULL in this example, can be the address of a
UNICODE_STRING providing a name for the device object. Deciding whether to name
your device object and which name to give it requires some thought, and I'll describe
these surprisingly complex considerations a bit further on in the section, “Should I
Name My Device Object?”

The fourth argument (FILE_DEVICE_UNKNOWN) is one of the device types
listed in Table 2-4. Whatever value you specify here can be overridden by an entry
in the device’s hardware key or class key. If both keys have an override, the hard-
ware key has precedence. For devices that fit into one of the established categories,
specify the right value in one of these places because some details about the inter-
action between your driver and the surrounding system depend on it. In addition,
the default security settings for your device object depend on this device type.
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The fifth argument (0) provides the Characteristics flag for the device object.
(See Table 2-3 on page 40.) These flags are relevant mostly for mass storage devices.
The undocumented flag bit FILE_AUTOGENERATED_DEVICE_NAME is for internal
use only—the DDK documenters didn’t simply forget to mention it. Whatever value
you specify here can be overridden by an entry in the device’s hardware key or class
key. If both keys have an override, the hardware key has precedence.

The sixth argument to IoCreateDevice (FALSE in my example) indicates whether
the device is exclusive. The I/O Manager allows only one handle to be opened by
normal means to an exclusive device. Whatever value you specify here can be over-
ridden by an entry in the device’s hardware key or class key. If both keys have an
override, the hardware key has precedence.

NOTE The exclusivity attribute matters only for whatever named device ob-
ject is the target of an open request. If you follow Microsoft’s recommended
guidelines for WDM drivers, you won’t give your device object a name. Open
requests will then target the PDO, but the PDO will not usually be marked ex-
clusive because the bus driver usually has no way of knowing whether you need
your device to be exclusive. The only time the PDO will be marked exclusive is
when there’s an Exclusive override in the device’s hardware key or class key's
Properties subkey. You're best advised, therefore, to avoid relying on the ex-
clusive attribute altogether. Instead, make your IRP_MJ_CREATE handler re-
ject open requests that would violate whatever restriction you require.

The last argument (&fdo) points to a location where IoCreateDevice will store
the address of the device object it creates.

If IoCreateDevice fails for some reason, it returns a status code and does not
alter the PDEVICE_OBJECT described by the last argument. If it succeeds, it returns
a successful status code and sets the PDEVICE_OBJECT pointer. You can then pro-
ceed to initialize your device extension and do the other work associated with cre-
ating a new device object. Should you discover an error after this point, you should
release the device object and return a status code. The code to accomplish these tasks
would be something like this:

NTSTATUS status = IoCreateDevice(...);
if (INT_SUCCESS(status))
return status;

if (<some other error discovered>)
{
IoDeleteDevice(fdo);
return status;
}
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I'll explain the NTSTATUS status codes and the NT_SUCCESS macro in the next
chapter.

Naming Devices

Windows NT uses a centralized Object Manager to manage many of its internal data
structures, including the driver and device objects I've been talking about. David
Solomon presents a fairly complete explanation of the Windows NT Object Manager
and namespace in Chapter 3, “System Mechanisms,” of Inside Windows NT, Second
Edition (Microsoft Press, 1998). Objects have names, which the Object Manager
maintains in a hierarchical namespace. Figure 2-16 is a screen shot of my DEVVIEW
application showing the top level of the name hierarchy. The objects displayed as
folders in this screen shot are directory objects, which can contain subdirectories and
“regular” objects. The objects displayed with other icons are examples of these regular
objects. (In this respect, DEVVIEW is similar to the WINOBJ utility that you’ll find in
the BIN\WINNT directory of the Platform SDK. WINOB]J can’t give you informa-
tion about device objects and drivers, though, which is why I wrote DEVVIEW in
the first place.)

| LanmanServerAnnounceEvent  Event

| LsaAuthenticationPort Port.
NisCacheMutaptd Mutant
REGISTRY Key
SAM_SERVICE_STARTED Event
SelsaCommandPort Port
SeLsalntEvent Event
SeRmCommandPort Port
SmApiPort Port.
SystemRoot SymbolicLink  \Device\Harddisk1\Partiion1 \WINNT
UniqueSessionIdEvent Event
XactSrvLpcPort Port

Figure 2-16. Using DEVVIEW to view the namespace.
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Device objects can have names that conventionally live in the \Device direc-
tory. Names for devices serve two purposes in Windows 2000. Giving your device
object a name allows other kernel-mode components to find it by calling service
functions like IoGetDeviceObjectPointer. Having found your device object, they
can send you IRPs.

The other purpose of naming a device object is to allow applications to open
handles to the device so they can send you IRPs. An application uses the standard
CreateFile API to open a handle, whereupon it can use ReadFile, WriteFile, and
DeviceloControl to talk to you. The pathname an application uses to open a de-
vice handle begins with the prefix \\.\ rather than with a standard Universal Nam-
ing Convention (UNC) name such as C:\MYFILE.CPP or \\FRED\C-Drive\HISFILE.CPP.
Internally, the I/O Manager converts this prefix into \??\ before commencing a name
search. To provide a mechanism for connecting names in the \?? directory to objects
whose names are elsewhere (such as in the \Device directory), the Object Manager
implements an object called a symbolic link.

Symbolic Links

A symbolic link is a little bit like a desktop shortcut in that it points to some other
entity that’s the real object of attention. Symbolic links are mainly used in Windows
NT to connect the leading portion of DOS-style names to devices. Figure 2-17 shows
a portion of the \?? directory, which includes a number of symbolic links. Notice, for
example, that C: and other drive letters in the DOS file-naming scheme are actually
links to objects whose names are in the \Device directory. These links allow the Object
Manager to “jump” somewhere else in the namespace as it parses through a name.
So, if I call CreateFile with the name C:\MYFILE.CPP, the Object Manager will take
this path to open the file:

1. Kernel-mode code initially sees the name \??\C:\MYFILE.CPP. The Object
Manager looks up “??” in the root directory and finds a directory object
with that name.

2. The Object Manager now looks up “C:” in the \?? directory. It finds a
symbolic link by that name, so it forms the new kernel-mode pathname
\Device\HarddiskVolumel\MYFILE.CPP and parses that.

3. Working with the new pathname, the Object Manager looks up “Device”
in the root directory and finds a directory object.

4. The Object Manager looks up “HarddiskVolumel” in the \Device direc-
tory. It finds a device object by that name.
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. G2l GLOBALROOT SymbolicLink
- $VDMLPT1 SymbolicLink  \Device\Parallelvdmd
(0 BaseNamedObjects llela: SymbolcLink  {Device{Floppy0
-0 Calback AUX SymbolicLink  {DosDevices\COM1
Elg e s BeRF SymbolicLink  {Device|SECTEST_0
53 Driver C SymbolicLink  \Device\Harddiskvolume1
) FleSystem CdRomd SymbolicLink  |Device\CdRom0
€7 KnownDlls o lajcomt SymbolicLink  \Device\Serial0
NS | E!conz Symbolictink  \Device\Serial1
£33 ObjectTypes AlejD: SymbolicLink - {Device{Harddiskvolume3
-0 RPC Control DEVVIEW Device
.gsﬂm DISPLAY1 SymbolicLink  {Device(¥ideod
@-E3 Sessions DISPLAY2 SymbolicLink  {Devicetvideot
-9 Windows DISPLAY3 SymbolicLink  \Device\Video2
-2 WiGuid SymbolicLink  {Device!
E: SymbolicLink  {Device\Harddiskvolume2

3 F: SymbolicLink  \Device\CdRom0

| le]rswrap SymbolicLink  {Device\FsWrap

i [a]Ftcontrol Symbolictink {Device\FtControl

SymbolicLink - \Device{HCDO
SymbolicLink  {Device\lp

Figure 2-17. The \?? directory with several symbolic links.

At this point in the process, the Object Manager will create an IRP that it will
send to the driver(s) for HarddiskVolumel. The IRP will eventually cause some file
system driver or another to locate and open a disk file. Describing how a file system
driver works is beyond the scope of this book. If we were dealing with a device
name like COM1, the driver that ends up receiving the IRP would be the driver for
\Device\Serial0. How a device driver handles an open request is definitely within
the scope of this book, and I'll be discussing it in this chapter (in the section “Should
I Name My Device Object?”) and in Chapter 5 when I'll talk about IRP processing
in general.

A user-mode program can create a symbolic link by calling DefineDosDevice,
as in this example:

BOOL okay = DefineDosDevice(DDD_RAW_TARGET_PATH,
"barf", "\\Device\\SECTEST_0");

You can see the aftermath of a call like this one in Figure 2-17, by the way.
You can create a symbolic link in a WDM driver by calling IoCreate-
SymbolicLink,

IoCreateSymbolicLink(1linkname, targname);

where linkname is the name of the symbolic link you want to create and targname
is the name to which you’re linking. Incidentally, the Object Manager doesn’t care
whether targname is the name of any existing object: someone who tries to access
an object by using a link that points to an undefined name simply receives an error.
If you want to allow user-mode programs to override your link and point it some-
where else, you should call IoCreateUnprotectedSymbolicLink instead.
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ARC NAMES

In the Advanced RISC Computing (ARC) architecture, there is a concept known -
as ARC naming that Windows 2000 relies on. You can see ARC names at work
in the BOOT.INI file in the root directory of your boot drive. Here’s what my
copy of that file looked like at one point in the development of this book:

[boot loader]

timeout=30

default=c:\

[operating systems]

C:\="Microsoft Windows 98"

scsi(@)disk(l)rdisk(@)partition(1)\BETA2F="Win2k Beta-2 (Free Build)"
/fastdetect /noguiboot

scsi(@)disk(l)rdisk(@)partition(1)\WINNT="Win2K Beta-3 (Free Build)"
/fastdetect /noguiboot

On an Intel platform, ARC names like scsi(0)disk(Drdisk(0)partition(1) are
symbolic links within the kernel’s \ArcName directory that point—eventually,
that is, if you resolve all the links in the way—to regular device objects. DEVVIEW
will show you these links on your own system.

Drivers for mass-storage devices other than hard disks should call
IoAssignArcName during initialization to set up one of these links. The I/O
Manager automatically creates the ARC names for hard disk devices, since these
are needed to boot the system in the first place.

Should | Name My Device Object?

Deciding whether to give your device object a name requires, as I said earlier, a little
thought. If you give your object a name, it will be possible for any kernel-mode
program to try to open a handle to your device. Furthermore, it will be possible for
any kernel-mode or user-mode program to create a symbolic link to your device object
and to use the symbolic link to try to open a handle. You might or might not want

to allow these actions.

The primary consideration in deciding whether to name your device object is
security. When someone opens a handle to a named object, the Object Manager
verifies that they have permission to do so. When IoCreateDevice creates a device
object for you, it assigns a default security descriptor based on the device type you
specify as the fourth argument. There are three basic categories that the I/O Man-
ager uses to select a security descriptor. (Refer to the second column in Table 2-4 on

pages 41-43.)
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B Most file system device objects (that is, disk, CD-ROM, file, and tape)
receive the “public default unrestricted” access control list (ACL). This list
gives just SYNCHRONIZE, READ_CONTROL, FILE_READ_ATTRIBUTES,
and FILE_TRAVERSE access to everyone except the System account and
all administrators. File system device objects, by the way, exist only so that
there can be a target for a CreateFile call that will open a handle to a file
managed by the file system.

B Disk devices and network file system objects receive the same ACL as the
file system objects with some modifications. For example, everyone gets
full access to a named floppy disk device object, and administrators get
sufficient rights to run ScanDisk. (User-mode network provider DLLs need
greater access to the device object for their corresponding file system
driver, which is why network file systems are treated differently than other
file systems.)

B All other device objects receive the “public open unrestricted” ACL, which
allows anyone with a handle to the device to do pretty much anything.

You can see that anyone will be able to access a nondisk device for both read-
ing and writing if the driver gives the device object a name at the time when it calls
IoCreateDevice. This is because the default security allows nearly full access and
because there is no security check at all associated with creating a symbolic link—
the security checks happen at open time, based on the named object’s security de-
scriptor. This is true even if other device objects in the same stack have more
restrictive security.

DEVVIEW will show you the security attributes of the device objects it displays.
You can see the operation of the default rules I just described by examining a file
system, a disk device, and any other random device.

The PDO also receives a default security descriptor, but it’s possible to over-
ride it with a security descriptor stored in the hardware key or in the Properties subkey
of the class key. (The hardware key has precedence if both keys specify a descrip-
tor.) Even lacking a specific security override, if either the hardware key or the class
key’s Properties subkey overrides the device type or characteristics specification, the
I/O Manager constructs a new default security descriptor based on the new type. The
I/O Manager does not, however, override the security setting for any of the other
device objects above the PDO. Consequently, for the overrides (and the administra-
tive actions that set them up) to have any effect, you should not name your device
object. Don’t despair though—applications can still access your device by means of
a registered interface, which I'll discuss very shortly.
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You need to know about one last security concern. As the Object Manager parses
its way through an object name, it needs only FILE_TRAVERSE access to the inter-
mediate components of the name. It only performs a full security check on the ob-
ject named by the final component. So, suppose you had a device object reachable
under the name \Device\SECTEST_0 or by the symbolic link \?\SecurityTest_0. A
user-mode application that tries to open \\.\SecurityTest_0 for writing will be blocked
if the object security has been set up to deny write access. But if the application tries
to open a name like \\.\SecurityTest_O\ExtraStuff that has additional name qualifi-
cations, the open request will make it all the way to the device driver (in the form
of an IRP_MJ_CREATE I/O request) if the user merely has FILE_TRAVERSE permis-
sion, which is routinely granted. The I/O Manager expects the device driver to deal
with the additional name components and to perform any required security checks
with regard to them.

To avoid the security concern I just described, you can supply the flag FILE_
DEVICE_SECURE_OPEN in the device characteristics argument to IoCreateDevice. This
flag causes Windows 2000 to verify that someone has the right to open a handle to
a device even if additional name components are present.

The Device Name

If you decide to name the device object, you would normally put the name in the
\Device branch of the namespace. To give it a name, you have to create a UNICODE _
STRING structure to hold the name, and you have to specify that string as an argument
to IoCreateDevice:

UNICODE_STRING devname;
Rt1InitUnicodeString(&devname, L"\\Device\\Simple@");
IoCreateDevice(DriverObject, sizeof(DEVICE_EXTENSION), &devname, ...);

I'll discuss the usage of RtllnitUnicodeString in the next chapter.

Conventionally, drivers assign their device objects a name by concatenating a
string naming their device type (“Simple” in this fragment) with a zero-based inte-
ger denoting an instance of that type. In general, you don’t want to hard-code a name
like I just did—you want to compose it dynamically using string-manipulation func-
tions like the following:

UNICODE_STRING devname;

static LONG lastindex = -1;

LONG devindex = InterlockedIncrement(&lastindex);
WCHAR name[32];
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_snwprintf(name, arraysize(name), L"\\Device\\SIMPLE%2.2d", devindex);
Rt1InitUnicodeString(&devname, name);
IoCreateDevice(...);

I'll explain the various service functions used in this fragment in the next couple
of chapters. The instance number you derive for private device types might as well
be a static variable, as shown in the previous fragment.

NOTES ON DEVICE NAMING

If all you wanted to do was to provide a quick-and-dirty way for an applica-
tion to open a handle to your device during development, you could perfectly
well assign the device object a name in the \? branch. For a production driver,
however, you're better advised to do what the text suggests and name the device
object with a \Device directory name.

The \?? directory used to be named \DosDevices. In fact, \DosDevices
will still work, but it itself is a symbolic link to \??. The change was made to
move the often-searched directory of user-mode names to the front of the al-
phabetical list of directories. See the “Windows 98 Compatibility Notes” section
at the end of this chapter for an important caution about using \?? in your
names. '

In previous versions of Windows NT, drivers for certain classes of devices
(notably disks, tapes, serial ports, and parallel ports) called IoGetConfigura-
tionInformation to obtain a pointer to a global table containing counts of
devices in each of these special classes. A driver would use the current value
of the counter to compose a name like Harddisk0, Tapel, and so on, and would
also increment the counter. WDM drivers don’t need to use this service func-
tion or the table it returns, however. Constructing names for the devices in these
classes is now the responsibility of a Microsoft type-specific class driver (such
as DISK.SYS).

Device Interfaces

The older method of naming I just discussed—naming your device object and creat-
ing a symbolic link name that applications can use—has two major problems. We’ve
already discussed the security implications of giving your device object a name. In
addition, the author of an application that wants to access your device has to know
the scheme you adopted to name your devices. If you're the only one writing the
applications that will be accessing your hardware, that’s not much of a problem. But
if many different companies will be writing applications for your hardware, and
especially if many hardware companies are making similar devices, devising a suitable
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naming scheme is difficult. Finally, many naming schemes rely on the language spo-
ken by the programmer, which isn’t necessarily a good choice in an increasingly global
economy. (My favorite example involves an American chef who tells a German diner
he’s eating a “gift” [poison], whereupon the diner, only incompletely realizing the
linguistic difficulty, calls the chef a “schmuck” [jewelryl.)

To solve these problems, WDM introduces a new naming scheme for devices
that is language-neutral, easily extensible, usable in an environment with many hard-
ware and software vendors, and easily documented. The scheme relies on the con-
cept of a device interface, which is basically a specification for how software can
access hardware. A device interface is uniquely identified by a 128-bit GUID. You can
generate GUIDs by running the Platform SDK utilities UUIDGEN or GUIDGEN—both
utilities generate the same kind of number, but they output the result in different
formats. The idea is that some industry group gets together to define a standard way
of accessing a certain kind of hardware. As part of the standard-making process,
someone runs GUIDGEN and publishes the resulting GUID as the identifier that will
be forever after associated with that interface standard.

MORE ABOUT GUIDS

The GUIDs used to identify software interfaces are the same kind of unique
identifier that’s used in the Component Object Model (COM) to identify COM
interfaces and in the Open Software Foundation (OSF) Distributed Computing
Environment (DCE) to identify the target of a remote procedure call (RPC). For
an explanation of how GUIDs are generated so as to be statistically unique,
see page 66 of Kraig Brockschmidt’s Inside OLE, Second Edition (Microsoft
Press, 1995), which contains a further reference to the original algorithm speci-
fication by the OSF. I found the relevant portion of the OSF specification online
at bttp.//www.opengroup.org/onlinepubs/9629399/ apdxa.bim.

The mechanics of creating a GUID for use in a device driver involve run-
ning either UUIDGEN or GUIDGEN and then capturing the resulting identifier
in a header file. GUIDGEN is easier to use because it allows you to choose to
format the GUID for use with the DEFINE_GUID macro and to copy the resulting
string onto the clipboard. Figure 2-18 shows the GUIDGEN window. You can
paste its output into a header file to end up with this:

// {CAF53C68-A94C-11d2-BB4A-00CQ4FA330A6}
DEFINE_GUID(<<name>>,
Oxcaf53c68, 0Oxa%4c, 0x11d2, Oxbb, Ox4a, 0x0, 0xcO, Ox4f, 0xa3, 0x30, Oxab6);

You then replace the <<name>> with something more mnemonic like
GUID_SIMPLE and include the definition in your driver and applications.
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> GUID

Figure 2-18. Using GUIDGEN to generate a GUID.

I think of an interface as being analogous to the protein markers that populate
the surface of living cells. An application desiring to access a particular kind of de-
vice has its own protein markers that fit like a key into the markers exhibited by
conforming device drivers. See Figure 2-19.

IIIIIIIIIIIIII*

Device 1

sessssmmnn

Application e “] @M N X"

A

:IIIIIIIIIIIIIIII>

“I need an X”

Figure 2-19. Using device interfaces to match up applications and devices.

Registering a Device Interface A function driver’'s AddDevice function should
register one or more device interfaces by calling IoRegisterDeviceIlnterface, as
shown here:

~ #include <initguid.h>
#include "guids.h"

(continued)
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NTSTATUS AddDevice(...)
{

IoRegisterDevicelnterface(pdo, &GUID_SIMPLE, NULL, &pdx->ifname);

}

1. We’re about to include a header (GUIDS.H) that contains one or more
DEFINE_GUID macros. DEFINE_GUID normally declares an external
variable. Somewhere in the driver, though, we have to actually reserve
initialized storage for every GUID we’re going to reference. The system
header file INITGUID.H works some preprocessor magic to make DEFINE_
GUID reserve the storage even if the definition of the DEFINE_GUID
macro happens to be in one of the precompiled header files.

2. I'm assuming here that I put the GUID definitions I want to reference into
a separate header file. This would be a good idea, inasmuch as user-mode
code will also need to include these definitions and will #ot want to in-
clude a bunch of extraneous kernel-mode declarations relevant only to
our driver.

3. The first argument to IoRegisterDevicelnterface must be the address of the
PDO for your device. The second argument identifies the GUID associ-
ated with your interface, and the third argument specifies additional
qualified names that further subdivide your interface. Only Microsoft
code uses this name subdivision scheme. The last argument is the address
of a UNICODE_STRING structure that will receive the name of a symbolic
link that resolves to this device object.

The return value from IoRegisterDevicelnterface is a Unicode string that appli-
cations will be able to determine without knowing anything special about how you
coded your driver and will then be able to use in opening a handle to the device.
The name is pretty ugly, by the way; here’s an example that I generated for one of
my sample devices in Windows 98: \DosDevices\0000000000000007#{CAF53
C68-A94C-11d2-BB4A-00C04FA330A6}. (You can call it 007 once you get to know it
better.)

All that registration actually does is create the symbolic link name and save
it in the registry. Later on, in response to the IRP_MN_START_DEVICE Plug and
Play request we'll discuss in Chapter 6, you'll make the following call to IoSet-
DevicelnterfaceState to “enable” the interface:

IoSetDevicelnterfaceState(&pdx->ifname, TRUE);

In response to this call, the I/O Manager creates an actual symbolic link object
pointing to the PDO for your device. You'll make a matching call to disable the inter-
face at a still later time (just call IoSetDevicelnterfaceState with a FALSE argument),
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whereupon the I/O Manager will delete the symbolic link object while preserving the
registry entry that contains the name. In other words, the name persists and will always
be associated with this particular instance of your device; the symbolic link object
comes and goes with the hardware.

Since the interface name ends up pointing to the PDO, the PDO’s security
descriptor ends up controlling whether people can access your device. That’s good,
because it’s the PDO’s security that an administrator can control through the Man-
agement Console.

Enumerating Device Interfaces Both kernel-mode and user-mode code can
locate all the devices that happen to support an interface in which they’re interested.
I'm going to explain how to enumerate all the devices for a particular interface in
user mode. The enumeration code is so tedious to write that I eventually wrote a C++
class to make my own life simpler. You'll find this code in the DEVICELIST.CPP and
DEVICELIST H files that are part of the WDMIDLE sample in Chapter 8, “Power Manage-
ment.” These files declare and implement a CDeviceList class, which contains an array
of CDeviceListEntry objects. These two classes have the following declaration:

class CDevicelistEntry
{
public:
CDevicelListEntry(LPCTSTR linkname, LPCTSTR friendlyname);
CDevicelListEntry(){}
CString m_linkname;
CString m_friendlyname;
};

class CDevicelist

¢

public:
CDevicelist(const GUID& guid);
~CDevicelist();
GUID m_guid; :
CArray<CDevicelistEntry, CDevicelistEntry&> m_list;
int Initialize();

};

The classes rely on the CString class and CArray template class that are part

of the Microsoft Foundation Classes (MFC) framework. The constructors for these two
classes simply copy their arguments into the obvious data members:

CDevicelList::CDeviceList(const GUID& guid)
{
m_guid = guid;
}

continued
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CDevicelListEntry::CDeviceListEntry(LPCTSTR 1inkname,
LPCTSTR friendlyname)
{
m_linkname = Tinkname;
m_friendlyname = friendlyname;
}

All the interesting work occurs in the CDeviceList::Initialize function. The
executive overview of what it does is this: it will enumerate all of the devices that
expose the interface whose GUID was supplied to the constructor. For each such
device, it will determine a “friendly” name that we’re willing to show to an unsus-
pecting end user. Finally, it will return the number of devices it found. Here’s the code

for this function:

int CDevicelist::Initialize()

{

HDEVINFO info = SetupDiGetClassDevs(&m_guid, NULL, NULL,
DIGCF_PRESENT | DIGCF_INTERFACEDEVICE);

if (info == INVALID_HANDLE_VALUE)
return 0;

SP_INTERFACE_DEVICE_DATA ifdata;

ifdata.cbSize = sizeof(ifdata);

DWORD devindex;

for (devindex = 0;
SetupDiEnumDevicelInterfaces(info, NULL, &m_guid,
devindex, &ifdata); ++devindex)
{
DWORD needed;
SetupDiGetDeviceInterfaceDetail(info, &ifdata, NULL, O,

&needed, NULL);

PSP_INTERFACE_DEVICE_DETAIL_DATA detail =
(PSP_INTERFACE_DEVICE_DETAIL_DATA) malloc(needed);

detail->cbSize = sizeof(SP_INTERFACE_DEVICE_DETAIL_DATA);

SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)};

SetupDiGetDevicelInterfaceDetail(info, &ifdata, detail,
needed, NULL, &did));

TCHAR fname[256];

if (1SetupDiGetDeviceRegistryProperty(info, &did, SPDRP_FRIENDLYNAME,

NULL, (PBYTE) fname, sizeof(fname), NULL)

&& !SetupDiGetDeviceRegistryProperty(info, &did, SPDRP_DEVICEDESC,

NULL, (PBYTE) fname, sizeof(fname), NULL))
_tcsncpy(fname, detail->DevicePath, 256);
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CDevicelListEntry e(detail->DevicePath, fname);
free((PVOID) detail);

m_list.Add(e);
}

SetupDiDestroyDevicelnfoList(info);
return m_1ist.GetSize();
}

1. This statement opens an enumeration handle that we can use to find all
devices that have registered an interface that uses the same GUID.

2. Here we call SetupDiEnumDeviceInterfaces in a loop to find each
device.

3. The only two items of information we need are the “detail” information
about the interface and information about the device instance. The detail
is just the symbolic name for the device. Since it’s variable in length, we
make two calls to SetupDiGetDevicelnterfaceDetail. The first call de-
termines the length. The second call retrieves the name.

4. We obtain a “friendly” name for the device from the registry by asking for
either the FriendlyName or the DeviceDesc.

5. We create a temporary instance named e of the CDeviceListEntry class, using
the device’s symbolic name as both the link name and the friendly name.

FRIENDLY NAMES

You might be wondering how the registry comes to have a FriendlyName for
a device. The INF file you use to install your device driver—see Chapter 12—
can have an HW section that specifies registry parameters for the device. You
should normally provide a FriendlyName as one of these parameters.

Other Global Device Initialization

You need to take some other steps during AddDevice to initialize your device ob-
ject. 'm going to describe these steps in the order you should do them, which isn’t
exactly the same order as their respective logical importance. I want to emphasize
that the code snippets in this section are even more fragmented than usual—I'm going
to show only enough of the entire AddDevice routine to establish the surrounding
context for the small pieces I'm trying to illustrate.
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Initializing the Device Extension

The content and management of the device extension are entirely up to you. The data
members you place in this structure will obviously depend on the details of your
hardware and on how you go about programming the device. Most drivers would
need a few items placed there, however, as illustrated in the following fragment of
a declaration:

typedef struct _DEVICE_EXTENSION {
PDEVICE_OBJECT DeviceObject;
PDEVICE_OBJECT LowerDeviceObject;
PDEVICE_OBJECT Pdo;
UNICODE_STRING ifname;
T0_REMOVE_LOCK Removelock;
DEVSTATE devstate;
DEVSTATE prevstate;
POWERSTATE powerstate; .
DEVICE_POWER_STATE devpower;
SYSTEM_POWER_STATE syspower;
DEVICE_CAPABILITIES devcaps;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

1. I find it easiest to mimic the pattern of structure declaration used in the
official DDK, so I declared this device extension as a structure with a tag
as well as a type and pointer-to-type name.

2. You already know that you locate your device extension by following the
DeviceExtension pointer from the device object. It's also useful in sev-
eral situations to be able to go the other way—to find the device object
given a pointer to the extension. The reason is that the logical argument
to certain functions is the device extension itself (since that’s where all of
the per-instance information about your device resides). Hence, I find it
useful to have this DeviceObject pointer.

3. TI'll mention in a few paragraphs that you need to record the address of
the device object immediately below yours when you call IoAttachDevice-
ToDeviceStack, and LowerDeviceObject is the place to do that.

4. A few service routines require the address of the PDO instead of some
higher device object in the same stack. It’s very difficult to locate the PDO,
so the easiest way to satisfy the requirement of those functions is to record
the PDO address in a member of the device extension that you initialize
during AddDevice.
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Whichever method (symbolic link or device interface) you use to name
your device, you’ll want an easy way to remember the name you assign.
In this fragment, I've declared a Unicode string member named ifname
to record a device interface name. If you were going to use a symbolic
link name instead of a device interface, it would make sense to give this
member a more mnemonic name, such as “linkname.”

I'll discuss in Chapter 6 a synchronization problem affecting how you de-
cide when it’s safe to remove this device object by calling IoDeleteDevice.
The solution to that problem involves using an IO_REMOVE_LOCK ob-
ject that needs to be allocated in your device extension as shown here.
AddDevice needs to initialize that object.

You'll probably need a device extension variable to keep track of the cur-
rent Plug and Play state and current power states of your device. DEVSTATE
and POWERSTATE are enumerations that I'm assuming you’ve declared
elsewhere in your own header file. I'll discuss the use of all these state
variables in later chapters.

Another part of power management involves remembering some capability
settings that the system initializes by means of an IRP. The devcaps struc-
ture in the device extension is where I save those settings in my sample
drivers.

The initialization statements in AddDevice (with emphasis on the parts involv-
ing the device extension) would be as follows:

NTSTATUS AddDevice(...)

{

PDEVICE_OBJECT fdo;

IoCreateDevice(..., sizeof (DEVICE_EXTENSION), ..., &fdo);
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
pdx->DeviceObject = fdo;

pdx->Pdo = pdo;

IoInitializeRemovelock(&pdx->RemovelLock, ...);
pdx->devstate = STOPPED;

pdx->powerstate = POWERON;

pdx->devpower = PowerDeviceDO;

pdx->syspower = PowerSystemWorking;
IoRegisterDevicelnterface(..., &pdx->ifname);
pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(...);

}
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Initializing the Default DPC Object

Many devices signal completion of operations by means of an interrupt. As you'll learn
when I discuss interrupt handling in Chapter 7, “Reading and Writing Data,” there are
strict limits on what your interrupt service routine (ISR) can do. In particular, an ISR
isn’t allowed to call the routine loCompleteRequest) that signals completion of an
IRP, but that’s exactly one of the steps you’re likely to want to take. You utilize a
deferred procedure call (DPC) to get around the limitations. Your device object con-
tains a subsidiary DPC object that can be used for scheduling your particular DPC
routine, and you need to initialize it shortly after creating the device object:

NTSTATUS AddDevice(...)
{
IoCreateDevice(...);
IoInitializeDpcRequest(fdo, DpcForlsr);
}

Setting the Buffer Alignment Mask

Devices which perform direct memory access (DMA) transfers work directly with data
buffers in memory. The HAL might require that buffers used for DMA be aligned to
some particular boundary, and your device might require still more stringent align-
ment. The AlignmentRequirement field of the device object expresses the restric-
tion—it is a bit mask equal to one less that the required address boundary. You can
round an arbitrary address down to this boundary with this statement:

PVOID address = ...;
SIZE_T ar = fdo->AlignmentRequirement;
address = (PVOID) ((SIZE_T) address & ~ar);

You round an arbitrary address up to the next alignment boundary like this:

PVOID address = ...;
SIZE_T ar = fdo->AlignmentRequirement;
address = (PVOID) (((SIZE_T) address + ar) & ~ar);

In these two code fragments, I used SIZE_T casts to transform the pointer (which
may be 32 bits or 64 bits wide, depending on the platform for which you’re compil-
ing) into an integer wide enough to span the same range as the pointer.

IoCreateDevice sets the AlignmentRequirement field of the new device object
equal to whatever the HAL requires. For example, the HAL for Intel x86 chips has
no alignment requirement, so AlignmentRequirement is 0 initially. If your device
requires a more stringent alignment for the data buffers it works with (say, because
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you have bus-mastering DMA capability with a special alignment requirement), you
want to override the default setting. For example:

if (MYDEVICE_ALIGNMENT - 1 > fdo->AlignmentRequirement)
fdo->AlignmentRequirement = MYDEVICE_ALIGNMENT - 1;

I've assumed here that elsewhere in your driver is a manifest constant named
MYDEVICE_ALIGNMENT that equals a power of two and represents the required
alignment of your device’s data buffers.

Miscellaneous Objects

Your device might well use other objects that need to be initialized during AddDevice.
Such objects might include a controller object, various synchronization objects, vari-
ous queue anchors, scatter/gather list buffers, and so on. I'll discuss these objects,
and the fact that initialization during AddDevice would be appropriate, in various other
- parts of the book.

Initializing the Device Flags

Two of the flag bits in your device object need to be initialized during AddDevice
and never changed thereafter: the DO_BUFFERED_IO and DO_DIRECT_IO flags. You
can set one (but only one) of these bits to declare once and for all how you want to
handle memory buffers coming from user mode as part of read and write requests.
(I'll explain in Chapter 7 what the difference between these two buffering methods
is and why you’d want to pick one or the other.) The reason you have to make this
important choice during AddDevice is that any upper filter drivers that load after you
will be copying your flag settings and it’s the setting of the bits in the topmost de-
vice object that’s actually important. Were you to change your mind after the filter
drivers load, they probably wouldn’t know about the change.

Three of the flag bits in the device object pertain to power management. In
contrast to the two buffering flags, these three can be changed at any time. T'll dis-
cuss them in greater detail in Chapter 8, but here’s a preview. DO_POWER_PAGABLE
means that the Power Manager must send you IRP_MJ_POWER requests at interrupt
request level JRQL) DISPATCH_LEVEL. (If you don’t understand all of the concepts
in the preceding sentence, don’t worry—TI'll completely explain all of them in later
chapters.) DO_POWER_INRUSH means that your device draws a large amount of
current when powering on, such that the Power Manager should make sure that no
other in-rush device is powering up simultaneously. DO_POWER_NOOP means that
you don’t participate in power management in the first place and is only an appro-
priate setting for WDM drivers that don’t manage any hardware.
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Setting the Initial Power State
Most devices start life in the fully powered state. If you know the initial state of your
device, you should tell the Power Manager:

POWER_STATE state;
state.DeviceState = PowerDeviceD0;
PoSetPowerState(fdo, DevicePowerState, state);

See Chapter 8 for much more detail about power management.

Building the Device Stack

Each filter and function driver has the responsibility of building up the stack of de-
vice objects, starting from the PDO and working upward. You accomplish your part
of this work with a call to IoAttachDeviceToDeviceStack:

NTSTATUS AddDevice(..., PDEVICE_OBJECT pdo)
{
PDEVICE_OBJECT fdo;
IoCreateDevice(..., &fdo);
pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo, pdo);
}

The first argument to IoAttachDeviceToDeviceStack (fdo) is the address of your
own newly created device object. The second argument is the address of the PDO.
The second argument to AddDevice is this address. The return value is the address
of whatever device object is immediately underneath yours, which can be the PDO
or the address of some lower filter device object.

Clear DO_DEVICE_INITIALIZING
Pretty much the last thing you do in AddDevice should be to clear the DO_
DEVICE_INITIALIZING flag in your driver object:

fdo->Flags &= ~DO_DEVICE_INITIALIZING;

While this flag is set, the I/O Manager will refuse to attach other device objects
to yours or to open a handle to your device. You have to clear the flag because your
device object initially arrives in the world with the flag set. In previous releases of Win-
dows NT, most drivers created all of their device objects during DriverEntry. When
DriverEntry returns, the I/O Manager automatically traverses the list of device objects
linked from the driver object and clears this flag. Since you’re creating your device
object long after DriverEntry returns, however, this automatic flag clearing won’t occur,
and you must do it yourself.
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WINDOWS 98 COMPATIBILITY NOTES

“Windows 98 handles some of the details surrounding device object creation and driver
loading differently than Windows 98. This section explains the differences that might
affect your driver.

Differences in DriverEntry Call

As I indicated earlier, the DriverEntry routine receives a UNICODE_STRING argument
naming the service key for the driver. In Windows 2000, the string is a full registry path
of the form “\Registry\Machine\System\CurrentControlSet\Services\xx” (where “xxx”
is the name of the service entry for your driver). In Windows 98, however, the string
is of the form “System\CurrentControlSet\Services\ <classname>\<instance-#>"
(where <classname> is the class name of your device and <instance-#> is an instance
number like 0000 indicating which device of that class you happen to be). You can
open the key in either environment by calling ZwOpenKey, however.

Differences in Registry Organization

Windows 98 uses a slightly different scheme for organizing the registry entries for
devices than Windows 2000 does. The following short explanation will make bet-
ter sense if you come back to it after reading the material on driver installation in
Chapter 12. )

B  The hardware key is below HKLM\Enum and isn’t protected in any way
(because Windows 98 doesn’t have a security system). There is no Ser-
vice value; instead, there’s a Driver value that supplies the final two
components of the name of the service key. The LowerFilters and
UpperfFilters values are treated as binary because the Windows 98 reg-
istry doesn’t have a MULTI_SZ type, and the values use 8-bit characters
to name driver image files (with the .SYS extension) rather than services.

M The class key is below HKLM\System\CurrentControlSet\Services\Class.

B  The service key is a child of the class key. The entries in the service key
include a DevLoader value pointing to NTKERN.VXD and an NTMPDriver
value naming your driver image (with the .SYS extension), which must
reside in %SystemRoot%\System32\Drivers.
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The \?? Directory

Windows 98 doesn’t understand the directory name \??. Consequently, you need to
put symbolic link names in the \DosDevices directory. You can use \DosDevices in
Windows NT also, because it is a symbolic link to the \?? directory.

Unimplemented Device Types

Original Windows 98 doesn’t support creating device objects for mass storage devices.
These are devices with types FILE_DEVICE_DISK, FILE_DEVICE_TAPE, FILE_
DEVICE_CD_ROM, and FILE_DEVICE_VIRTUAL_DISK. You can call IoCreateDevice,
and it will even return with a status code of STATUS_SUCCESS, but it won’t have
actually created a device object or modified the PDEVICE_OBJECT variable whose
address you gave as the last argument.

The reason this functionality isn’t available is that Windows 98 disk drivers must
use the I/O Supervisor architecture invented for Windows 95. Why IoCreateDevice
fails so silently is a bit of a puzzle, though.
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~Basic Programming
Techniques

Writing a WDM driver is fundamentally an exercise in software engineering. What-
ever the requirements of your particular hardware, you will combine various elements
to form a program. In the previous chapter, I described the basic structure of a WDM
driver, and I showed you two of its elements—DriverEntry and AddDevice—in de-
tail. In this chapter, I'll focus on the even more basic topic of how you call upon the
large body of kernel-mode support routines that the operating system exposes for
your use. I'll discuss error handling, memory and data structure management, regis-
try and file access, and a few other topics. I'll round out the chapter with a short
discussion of the steps you can take to help debug your driver.

THE KERNEL-MODE
PROGRAMMING ENVIRONMENT

Figure 3-1 (on page 73) illustrates some of the components that make up the Microsoft
Windows NT operating system. Each component exports service functions whose
names begin with a particular two-letter prefix:

B The I/O Manager (prefix Io) contains many service functions that drivers
use, and I'll be discussing them all throughout this book.
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The Process Structure module (prefix Ps) creates and manages kernel-
mode threads. An ordinary WDM driver might use an independent thread
to repeatedly poll a device incapable of generating interrupts.

The Memory Manager (prefix Mm) controls the page tables that define the
mapping of virtual addresses onto physical memory.

The executive (prefix Ex) supplies heap management and synchroniza-
tion services. I'll discuss the heap management service functions in this
chapter. The next chapter covers the synchronization services.

The Object Manager (prefix Ob) provides centralized control over the many
data objects with which Windows NT works. WDM drivers rely on the Ob-
ject Manager only for keeping a reference count that prevents an object
from disappearing while someone is still using it.

The Security Reference Monitor (prefix Se) allows file system drivers to
perform security checks. Someone else has usually dealt with security
concerns by the time an I/O request reaches a WDM driver, so I won’t be
discussing these functions in this book.

The so-called run-time library component (prefix Rtl) contains utility rou-
tines, such as list and string management routines, that kernel-mode drivers
can use instead of regular ANSI standard library routines. For the most part,
the operation of these functions is obvious from their names, and you
would pretty much know how to use them in a program if you just were
aware of them. I'll describe a few of them in this chapter.

Windows NT implements user-mode calls to the Win32 subsystem in .
kernel mode with routines whose names begin with the Zw prefix. The
Microsoft Windows 2000 DDK exposes just a few of these functions for
use by drivers, including functions for accessing files and the registry. I'll
discuss those functions in this chapter.

The Windows NT kernel (prefix Ke) is where all the low-level synchro-
nization of activities between threads and processors occurs. I'll discuss
the KeXxx functions in the next chapter.

The very bottom layer of the operating system, on which the support
sandwich rests, is the hardware abstraction layer (or HAL, prefix Hal). All
the operating system’s knowledge of how the computer is actually wired
together reposes in the HAL. The HAL understands how interrupts work
on a particular platform, how to implement spin locks, how to address
I/O and memory-mapped devices, and so on. Instead of talking directly
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to their hardware, WDM drivers call functions in the HAL to do it. The
driver ends up being platform-independent and bus-independent.

System Services

Figure 3-1. Overview of kernel-mode support routines.

Using Standard Run-Time Library Functions

Historically, the Windows NT architects have preferred that drivers not use the run-
time libraries supplied by vendors of C compilers. In part, the initial disapproval arose
from simple timing. Windows NT was designed at a time when there was no ANSI
standard for what functions belonged in a standard library and when many compiler
vendors existed, each with its own idea of what might be cool to include and its own
unique quality standards. Another factor is that standard run-time library routines
sometimes rely on initialization that can only happen in a user-mode application and
are sometimes implemented in a thread-unsafe or multiprocessor-unsafe way.

Until now, the official rule has been that kernel-mode drivers should call only
functions specifically documented in the DDK. Rather than call wesemp, for example,
one should call RtlICompareUnicodeString. It’s been a pretty open secret, however,
that the standard import library that one uses to build a driver (NTOSKRNL.LIB)
defines many of the functions declared by application header files such as STRING.H,
STDIO.H, STDLIB.H, and CTYPES.H. So why not call them? In fact, there’s no rea-
son not to call them, provided you understand all the implications. Don’t, for example,
switch to always calling memcpy instead of RtlCopyBytes, because there’s a subtle
difference between the two. (RtlICopyBytes is guaranteed to proceed byte by byte
instead of in larger chunks, which can matter on particular RISC [reduced instruction
set computing] platforms.)
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A Caution About Side Effects

Many of the support “functions” that you use in a driver are defined as macros in the
DDK header files. We were all taught to avoid using expressions that have side effects
(that is, expressions that alter the state of the computer in some persistent way) as
arguments to macros for the obvious reason that the macro can invoke the argument
more or less than exactly once. Consider, for example, the following code:

int a =2, b=42, c;
¢ = min(a++, b);

What's the value of a afterward? (For that matter, what’s the value of ¢?) Take a look
at a plausible implementation of min as a macro:

fidefine min(x,y) (((x) < (¥)) ?2 (x) : (y))

If you substitute a++ for X, you can see that a will equal 4 because the expression
a++ gets executed twice. The value of the “function” min will be 3 instead of the
expected 2 because the second invocation of a++ delivers the value.

You basically can’t tell when the DDK will use a macro and when it will declare
a real external function. Sometimes, a particular service function will be a macro for
some platforms and a function call for other platforms. Furthermore, Microsoft is free
to change its mind in the future. Consequently, you should follow this rule when
programming a WDM driver: ‘

Never use an expression that has side effects as an argument to a kernel-mode
service function.

ERROR HANDLING

74

To err is human, to recover is part of software engineering. Exceptional conditions
are always arising in programs. Some of them start with program bugs, either in our
own code or in the user-mode applications that invoke our code. Some of them relate
to system load or the instantaneous state of hardware. Whatever the cause, unusual
circumstances demand a flexible response from our code. In this section, I'll describe
three aspects of error handling: status codes, structured exception handling, and bug
checks. In general, kernel-mode support routines report unexpected errors by return-
ing a status code, whereas they report expected variations in normal flow by returning
a Boolean or numeric value other than a formal status code. Structured exception

_ handling offers a standardized way to clean up after really unexpected events, such

as dividing by zero or dereferencing an invalid pointer, or to avoid the system crash
that normally ensues after such an event. A bug check is the internal name for a
catastrophic failure for which a system shutdown is the only cure.
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Status COQes

Kernel-mode support routines (and your code too, for that matter) indicate success
or failure by returning a status code to their caller. An NTSTATUS value is a 32-bit
integer composed of several subfields, as illustrated in Figure 3-2. The high-order
two bits denote the severity of the condition being reported—success, information,
warning, or error. The customer bit is, I believe, a vestige of the 1960s when IBM
reserved customer fields for local modification of its mainframe operating systems. I
can’t think of a current use for a customer field. The facility code indicates which
system component originated the message and basically serves to decouple devel-
opment groups from each other when it comes to assigning numbers to codes. The
remainder of the status code—16 bits’ worth—indicates the exact condition being
reported.

Reserved
Customer
Severity

Figure 3-2. Format of an NTSTATUS code.

You should always check the status returns from routines that provide them.
I'm going to break this rule frequently in some of the code fragments I show you
because including all the necessary error handling code often obscures the expository
purpose of the fragment. But don’t you emulate this sloppy practice!

If the high-order bit of a status code is zero, any number of the remaining bits
could be set and the code would still indicate success. Consequently, never just
compare status codes to zero to see if you're dealing with success—instead, use the
NT_SUCCESS macro:

NTSTATUS status = SomeFunction(...);
if (INT_SUCCESS(status))

{

<handle error>

}

Not only do you want to test the status codes you receive from routines you
call, but you also want to return status codes to the routines that call you. In the pre-
ceding chapter, I dealt with two driver subroutines—DriverEntry and AddDevice—
that are both defined as returning NTSTATUS codes. As I discussed, you want to return
NT_SUCCESS as the success indicator from these routines. If something goes wrong,
you often want to return an appropriate status code, which is sometimes the same
value that a routine returned to you.
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As an example, here are some initial steps in the AddDevice function, with all
the error checking left in:

NTSTATUS AddDevice(PDRIVER_OBJECT DriverObject, PDEVICE_OBJECT pdo)
{
NTSTATUS status;
PDEVICE_OBJECT fdo;
status = IoCreateDevice(DriverObject, sizeof (DEVICE_EXTENSION),
NULL, FILE_DEVICE_UNKNOWN, @, FALSE, &fdo);
if (INT_SUCCESS(status))
{
KdPrint(("IoCreateDevice failed - %X\n", status));
return status;
}
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;
pdx->DeviceObject = fdo;
pdx->Pdo = pdo;
pdx->state = STOPPED;
ToInitializeRemoveLock(&pdx->RemoveLock, @, @, 255);
status = IoRegisterDevicelnterface(pdo, &GUID_SIMPLE, NULL,
&pdx->ifname);
if (INT_SUCCESS(status))
{
KdPrint(("IoRegisterDevicelnterface failed - %X\n", status));
IoDeleteDevice(fdo);
return status;

}

1. If IoCreateDevice fails, we’ll simply return the same status code it gave
us. Note the use of the NT_SUCCESS macro as described in the text.

2. 1It's sometimes a good idea, especially while debugging a driver, to print
any error status you discover. I'll discuss the exact usage of KdPrint later
in this chapter (in the “Making Debugging Easier” section).

3. IolnitializeRemoveLock, discussed in Chapter 6, “Plug and Play,” is a
VOID function, meaning that it can’t fail. Consequently, there’s no need
to check a status code.

4. Should IoRegisterDeviceInterface fail, we have some cleanup to do
before we return to our caller; namely, we must call IoDeleteDevice to
destroy the device object we just created.

You don’t always have to fail calls that lead to errors in the routines you call,
of course. Sometimes you can ignore an error. For example, in Chapter 8, “Power
Management,” I'll tell you about a power management I/O request with the subtype
IRP_MN_POWER_SEQUENCE that you can use as an optimization to avoid unneces-
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sary state restoration during a power-up operation. Not only is it optional whether
you use this request, but it’s also optional for the bus driver to implement it. There-
fore, if that request should fail, you should just go about your business. Similarly, you
can ignore an error from IoAllocateErrorLogEntry because the inability to add an
entry to the error log isn’t at all critical.

Structured Exception Handling

Windows NT provides a method of handling exceptional conditions that helps you
avoid potential system crashes. Closely integrated with the compiler’s code genera-
tor, structured exception bandling lets you easily place a guard on sections of your
code and invoke exception handlers when something goes wrong in the guarded
section. Structured exception handling also lets you easily provide cleanup statements
that you can be sure will always execute no matter how control leaves a guarded sec-
tion of code.

Very few of my seminar students have been familiar with structured excep-
tions, so 'm going to explain some of the basics here. You can write better, more
bulletproof code if you use these facilities. In many situations, the parameters that
you receive in a WDM driver have been thoroughly vetted by other code and won’t
cause you to generate inadvertent exceptions. Good taste may, therefore, be the only
impetus for you to use the stuff 'm describing in this section. As a general rule, though,
you always want to protect direct references to user-mode virtual memory with a struc-
tured exception frame. Such references occur when you call MmProbeAndLockPages,
ProbeForRead, and ProbeForWrite, and perhaps at other times.

NoTE The structured exception mechanism will let you avoid a system crash
when kernel-mode code accesses an invalid user-mode address. It will not catch
other processor exceptions, such as division by zero or attempts to access in-
valid kernel-mode addresses. In this respect, the whole facility is less universal
in kernel mode than in user mode.

Kernel-mode programs use structured exceptions by establishing exception
Jrames on the same stack that's used for argument passing, subroutine calling, and
automatic variables. I'm not going to describe the mechanics of this process in detail
because it differs from one Windows NT platform to another. The mechanism is the
same as the one that user-mode programs use, though, and there are a couple of
places you can look for implementation details. See, for example, Matt Pietrek’s article
“A Crash Course on the Depths of Win32 Structured Exception Handling” in Microsoft
Systems Journal (January 1997). And Jeff Richter discusses the subject in Program-
ming Applications for Microsoft Windows, Fourth Edition (Microsoft Press, 1999).

When an exception arises, the operating system scans the stack of exception
frames looking for a handler. Refer to Figure 3-3 for a flowchart depicting the logic.
In effect, each exception frame designates a filter function that the system calls to
answer the question, “Can you handle this exception?” When the system finds a
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handler, it unwinds the exception and execution stacks in parallel to restore the
context of the handler. The unwinding process involves calling the same set of filter
functions with an argument that indicates, in effect, “We’re unwinding now; if you
answered yes the last time, take over now!” There’s always a default handler in place
that crashes the system if no one else fields the exception.

Figure 3-3. Logic of structured exception bandling.
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When you use the Microsoft compiler, you can use Microsoft extensions to the
C/C++ language that hide some of the complexities of working with the raw oper-
ating system primitives. In particular, you use the __try statement to designate a
compound statement as the guarded body for an exception frame, and you use either
the __finally statement to establish a termination handler or the __except state-
ment to establish an exception handler. Run-time library routines interact with the
operating system’s raw exception mechanisms to produce the effects that I'll describe
in the following sections. '

NOTE It's betterto always spell the words __try, __finally, and __except with
leading underscores. In C compilation units, the DDK header file WARNING.H
defines macros spelled try, finally, and except to be the words with underscores.
DDK sample programs use those macro names rather than the underscored
names. The problem this can create for you is that in a C++ compilation unit try
is a statement verb that pairs with catch to invoke a completely different excep-
tion mechanism that’s part of the C++ language. C++ exceptions don’t work in a
driver unless you manage to duplicate some infrastructure from the run-time library.
Microsoft would prefer you not do that because of the increased size of your driver
and the memory pool overhead associated with handling the throw verb.

Try-Finally Blocks
It’s easiest to begin explaining structured exception handling by describing the #ry-
finally block, which you can use to provide cleanup code:

—_try
{
<guarded body>
}
__finally
{
<termination handler>
}

In this fragment of pseudocode, the guarded body is a series of statements and
subroutine calls that expresses some main idea in your program. In general, these
statements have side effects. If there are no side effects, there’s no particular point
to using a try-finally block because there’s nothing to clean up. The termination
handler contains statements that undo some or all of the side effects that the guarded
body might leave behind.

Semantically, the try-finally block works as follows. First, the computer executes
the guarded body. When control leaves the guarded body for any reason, the com-
puter executes the termination handler. See Figure 3-4.
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<unwind>

Normal ending, |
__leave, goto,
return

Figure 3-4. Flow of control in a try-finally block.
Here’s one simple illustration:

LONG counter = 0;
__try
{
++counter;
}
__finally
{
——counter;
}
KdPrint(("%d\n", counter));

First, the guarded body executes and increments the counter variable from 0
to 1. When control “drops through” the right-brace at the end of the guarded body,
the termination handler executes and decrements counter back to 0. The value
printed will therefore be 0.

Here’s a slightly more complicated variation:

VOID RandomFunction(PLONG pcounter)

{

__try
{
++xpcounter;
return;
}

__finally
{
——*pcounter;
}

}
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The net result of this function is no change to the integer at the end of the
pcounter pointer: whenever control leaves the guarded body for any reason, includ-
ing a return statement or a goto, the termination handler executes. Here the guarded
body increments the counter and performs a return. Next the cleanup code executes
and decrements the counter. Then the subroutine actually returns.

One final example should cement the idea of a try-finally block:

static LONG counter = 0;
—_try

{

++counter;

BadActor();

}
__finally

{

——counter;

}

Here I'm supposing that we call a function, BadActor, that will raise some sort
of exception that triggers a stack unwind. As part of the process of unwinding the
execution and exception stacks, the operating system will invoke our cleanup code
to restore the counter to its previous value. The system then continues unwinding
the stack, so whatever code we have after the __finally block won’t get executed.

Try-Except Blocks
The other way to use structured exception handling involves a try-except block:

—_try
{
<guarded body>

}
__except(<filter expression>)
{
<exception handler>
}

The guarded body in a try-except block is code that might fail by generating
an exception. Perhaps you’re going to call a kernel-mode service function like
MmProbeAndLockPages that uses pointers derived from user mode without explicit
validity checking. Perhaps you have other reasons. In any case, if you manage to get
all the way through the guarded body without an error, control continues after the
exception handler code. You'll think of this case as being the normal one. If an exception
arises in your code or in any of the subroutines you call, however, the operating
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system will unwind the execution stack, evaluating the filter expressions in __except
statements. These expressions yield one of the following values:

B EXCEPTION_EXECUTE_HANDLER is numerically equal to 1 and tells the
operating system to transfer control to your exception handler. If your
handler falls through the ending right-brace, control continues within your
program at the statement immediately following that right-brace. (I've seen
Platform SDK documentation to the effect that control returns to the point
of the exception, but that’s not correct.)

B EXCEPTION_CONTINUE_SEARCH is numerically equal to 0 and tells the
operating system that you can’t handle the exception. The system keeps
scanning up the stack looking for another handler. If no one has provided
a handler for the exception, a system crash will occur.

B  EXCEPTION_CONTINUE_EXECUTION is numerically equal to —1 and tells
the operating system to return to the point where the exception was raised.
I'll have a bit more to say about this expression value a little further on.

Take a look at Figure 3-5 for the possible control paths within and around a
try-except block.

xception <find handler>

Normal ending, s
__leave, goto,
return

<unwind to handler>

Figure 3-5. Flow of control in a try-except block.

For example, you could protect yourself from receiving an invalid pointer by
using code like the following. (See the SEHTEST sample on the companion disc.)

PVOID p = (PVOID) 1;

__try
{
KdPrint (("About to generate exception\n"));
ProbeForWrite(p, 4, 4);
KdPrint(("You shouldn't see this message\n"));
}
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__except(EXCEPTION_EXECUTE_HANDLER)
{
KdPrint(("Exception was caught\n"));
}
KdPrint(("Program kept control after exception\n"));

ProbeForWrite tests a data area for validity. In this example, it will raise an
exception because the pointer argument we supply is not aligned to a 4-byte bound-
ary. The exception handler gains control. Control then flows to the next statement
after the exception handler and continues within your program.

In the preceding example, had you returned the value EXCEPTION_CONTINUE_
SEARCH, the operating system would have continued unwinding the stack looking
for an exception handler. Neither your exception handler code nor the code fol-
lowing it would have been executed: either the system would have crashed or some
higher-level handler would have taken over. )

You should not return EXCEPTION_CONTINUE_EXECUTION in kernel mode
because you have no way to alter the conditions that caused the exception in order
to allow a retry to occur.

Note that you cannot trap arithmetic exceptions, page faults, actual references
through invalid pointers, and the like by using structured exceptions. You just have
to write your code so as not to generate such exceptions.

Exception Filter Expressions

You might be wondering how to perform any sort of involved error detection or
correction when all you're allowed to do is evaluate an expression that yields one of
three integer values. You could use the C/C++ comma operator to string expressions
together:

__except(expr-1, ... EXCEPTION_CONTINUE_SEARCH){}

RAW EXCEPTION HANDLING VS. MICROSOFT SYNTAX

The statements __try, __except, and __finally are Microsoft extensions to the
C language that simplify use of the underlying raw exception handling mecha-
nism that the operating system provides. In the flowchart in Figure 3-3 on page
78, 1 illustrated two calls to each filter function—one for locating the exception
handler and the other for stack unwinding. The run-time library contains the ac-
tual filter function that the operating system calls. When you use __try, __ex-
cept, and __finally, you're talking to other run-time library functions that work
with that filter function and the operating system to yield the simpler model I've
been describing. In particular, the filter expression that you use in an __except
clause gets evaluated only once per exception.
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The comma operator basically discards whatever value is on its left side and
evaluates its right side. The value that’s left over after this computational game of
musical chairs (with just one chair!) is the value of the expression.

You could use the C/C++ conditional operator to perform some more involved
calculation:

_——except (<some-expr> :
? EXCEPTION_EXECUTE_HANDLER
: EXCEPTION_CONTINUE_SEARCH)

If the some_expr expression is TRUE, you execute your own handler. Other-
wise, you tell the operating system to keep looking for another handler above you
in the stack.

Finally, it should be obvious that you could just write a subroutine whose return
value is one of the EXCEPTION_Xxx values:

LONG EvaluateException()
{
if (<some-expr>)
return EXCEPTION_EXECUTE_HANDLER;
else
return EXCEPTION_CONTINUE_SEARCH;
}

__except(EvaluateException())

For any of these expression formats to do you any good, you need access to
more information about the exception. There are two functions you can call when
evaluating an __except expression that will supply the information you need. Both
functions actually have intrinsic implementations in the Microsoft compiler and can
be used only at the specific times indicated:

B GetExceptionCode() returns the numeric code for the current exception.
This value is an NTSTATUS value that you can compare with manifest
constants in NTSTATUS.H if you want to. This function is available in an
__except expression and within the exception handler code that follows
the __except clause.

B GetExceptionIlnformation() returns the address of an EXCEPTION_
POINTERS structure that, in turn, allows you to learn all the details about
the exception, such as where it occurred, what the machine registers
contained at the time, and so on. This function is available only within an
__except expression.
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NOTE The scope rules for names that appear in try-except and try-finally
blocks are the same as elsewhere in the C/C++ language. In particular, if you
declare variables within the scope of the compound statement that follows ___try,
those names are not visible in a filter expression, exception handler, or termi-
nation handler. Documentation to the contrary that you might have seen in the
Platform SDK or on MSDN is incorrect. For what it's worth, the stack frame con-
taining any local variables declared within the scope of the guarded body still
exists at the time the filter expression is evaluated. So, if you had a pointer (pre-
sumably declared at some outer scope) to a variable declared within the guarded
body, you could safely dereference it in a filter expression.

Because of the restrictions on how you can use these two epressions in your
program, you’d probably want to use them in a function call to some filter function,
like this:

LONG EvaluateException(NTSTATUS status, PEXCEPTION_POINTERS xp)
{ . : '

}

__except(EvaluateException(GetExceptionCode(),
GetExceptionInformation()))

Raising Exceptions ,

Program bugs are one way you can (inadvertently) raise exceptions that invoke the
structured exception handling mechanism. Application programmers are familiar with
the Win32 API function RaiseException, which allows you to generate an arbitrary
exception on your own. In WDM drivers, you can call the routines listed in Table 3-1.
I’'m not going to give you a specific example of calling these functions because of
the following rule: '

Only raise an exception in nonarbitrary thread context when you know there’s an
exception handler above you and you otherwise really know what you’re doing.

Service Function Description
ExRaiseStatus Raise exception with specified status code
ExRaiseAccessViolation - Raise STATUS_ACCESS_VIOLATION

ExRaiseDatatypeMisalignment Raise STATUS_DATATYPE_MISALIGNMENT

Table 3-1. Service functions for raising exceptions.

In particular, raising exceptions is not a good way to tell your callers informa-
tion that you discover in the ordinary course of executing. It’s far better to return a
status code, even though that leads to apparently more unreadable code. You should
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eschew exceptions because the stack-unwinding mechanism is very expensive. Even
the cost of establishing exception frames is significant and something to avoid when
you can.

Some Real-World Examples

Notwithstanding the expense of setting up and tearing down exception frames, you
have to use structured exception syntax in an ordinary driver in particular situations.
And on some other occasions when time isn’t of the essence, you might as well use
this mechanism because you’ll end up with a better program.

One of the times you must set up an exception handler is when you call
MmProbeAndLockPages to lock the pages for a memory descriptor list (MDL)
you've created. This wouldn’t be a frequent problem for a WDM driver, because you
typically deal with MDLs for which someone else has already done the probe-and-
lock step. But you’re allowed to define I/O control (IOCTL) operations that use the
METHOD_NEITHER buffering method, and you might therefore need to write code
like the following:

PMDL md1 = MmCreateMd1(...);
__try
{
MmProbeAndLockPages(mdl, ...);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
NTSTATUS status = GetExceptionCode();
ExFreePool((PVOID) mdl1);
return CompleteRequest(Irp, status, 0);
}

(CompleteRequest is a helper function I use to handle the mechanics of com-
pleting 1/O requests. Chapter 5, “The I/O Request Packet,” explains all about I/O
requests and what it means to complete one. ExFreePool is a kernel-mode service
routine that releases a memory block, such as the one that MmCreateMdl creates.
I'll discuss ExFreePool later in this chapter in “Releasing a Memory Block.”)

For another real-world example, consider the code I showed you earlier in this
chapter for dealing with errors in your AddDevice function. As you progress through
the function, you keep accumulating side effects that all have to be undone if you
discover an error. You could use structured exception handling to make the function
more maintainable. 'm omitting a bunch of stuff in this example to emphasize the
error-handling aspects:

NTSTATUS AddDevice(...)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
PDEVICE_OBJECT fdo;
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PDEVICE_EXTENSION pdx;
status = IoCreateDevice(..., &fdo);
if (INT_SUCCESS(status))
return status;
__try
{
pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;

IoInitializeRemovelock(&pdx->Removelock, ...);
status = IoRegisterDevicelnterface(..., &pdx->ifname);
if (INT_SUCCESS(status))

return status;

}
__finally
{
if (INT_SUCCESS(status))
{

if (pdx->ifname.Buffer)
Rt1FreeUnicodeString(&pdx->ifname);
IoDeleteDevice(fdo);
}
}
return status;
}

The key idea here is that whenever we discover an error status from some ser-
vice function, we just execute a return status statement. (See the next sidebar for a
description of a more efficient technique.) The return status statement triggers exe-
cution of the termination handler, which undoes each of the side effects that have
accumulated so far. For this technique to work properly, you have to do two things.
Since the termination handler is always executed, even by the normal ending of the
guarded body, you have to know when to undo side effects and when not to undo
them. Here we test the status variable. If it’s a success code of some kind, we don’t
do any cleanup. Otherwise, we undo everything. The second thing you have to do
is provide a way to know which side effects need to be cleaned up. We dealt with
that concern by initializing all the side-effect variables to NULL. If we never succeed
in registering a device interface, there won't be a string in pdx->ifname to release.
And so on.

The biggest advantage of a try-finally block in a situation like that I just showed
you is that your code is easier to modify. You can put any statement at all—even one
which returns a status code and leaves behind a side effect if it succeeds—in between,
say, the call to ToCreateDevice and the call to IoRegisterDeviceInterface. All you
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need do to ensure proper cleanup is add a compensating statement inside the termi-
nation handler. The alternative—having explicit cleanup code after every test of the
status code—is prone to error because you must remember to add a new cleanup

statement in every place where you might exit the subroutine.

THE __LEAVE STATEMENT

Microsoft added the __leave statement to the C/C++ language to deal with an
efficiency problem that arises in routines like the AddDevice example in the text.
If you issue a normal return inside a __try block, you trigger the expensive
unwinding mechanism that the operating system uses for exception handling.
The __leave statement, however, just transfers control to the termination han-
dler and, thereafter, to the statement following the termination handler. It's much
faster than return because it doesn’t cause any unwinding. In this case, we
always want to execute the termination handler and then return a status code.
Since the code we want to execute in both success and failure cases is the same
(namely, return status), we should use __leave instead of return.

So, suppose we needed to allocate a block of memory for some auxiliary pur-
pose. We could just insert a few statements in AddDevice like so (with the new parts

in boldface):

NTSTATUS AddDevice(...)
{
NTSTATUS status = STATUS_UNSUCCESSFUL;
PDEVICE_OBJECT fdo;
PDEVICE_EXTENSION pdx;
status = IoCreateDevice(..., &fdo);
if (INT_SUCCESS(status))
return status;
__try
{ .
pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension;

pdx->DeviceDescriptor = (PUSB_DEVICE_DESCRIPTOR)
ExAllocatePool(NonPagedPool, sizeof(USB_DEVICE_DESCRIPTOR));
if (lpdx->DeviceDescriptor)
return STATUS_INSUFFICIENT_RESOURCES;
IoInitializeRemovelock(&pdx->RemovelLock, ...);
status = IoRegisterDevicelnterface(..., &pdx->ifname);
if (INT_SUCCESS(status))
return status;
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__finally
{
if (INT_SUCCESS(status))
{

oo

if (pdx->ifname.Buffer)
Rt1FreeUnicodeString(&pdx->ifname);

if (pdx->DeviceDescriptor)
ExFreePoo1((PVOID) pdx->DeviceDescriptor);

IoDeleteDevice(fdo);

}

}
return status;

}

Without using structured exceptions, you'd need to go through the rest of the
program and add a call to ExFreePool to every code sequence that returns an error.

Bug Checks

Unrecoverable errors in kernel mode manifest themselves in the so-called blue screen
of death (BSOD) that’s all too familiar to driver programmers. Figure 3-6 is an example
(hand-painted because there’s no screen capture software running when one of these
occurs!). Internally, these errors are called bug checks after the service function you
use to diagnose their occurrence: KeBugCheckEx. The main feature of a bug check
is that the system shuts itself down in as orderly a way as possible and presents the
BSOD. Once the BSOD appears, the system is dead and must be rebooted.

*xx STOP: Ox080006BE (0<FBB6D8Y8,Hx083E34121,0x000080860,0x00000008)
An attempt was made to write to read-only memory.

*xx fiddress 7BB6D898 base at FBB620888, DateStamp 361etfad8 - junkola.sys

If this is the First time you’ seen this Stoep ervor screen,
restart your computer. If this ‘een appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
1f this is a new in ation, k your hardware or software manufacturer
for any Windous NT updates you might need.

If problems continue, disable or remove any newly installed harduare
or software. Disable BIOS memory options ing or shadowing.
If you need to use 2 ode to remove ot sable components, art
your computer, press F8 te select Advanced Startup Options, and then
select Safe Hode.

Refer to your Getting arted manual for more information on
troubleshooting Stop ors.

Figure 3-6. The “blue screen of death.”
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You call KeBugCheckEx like this:
KeBugCheckEx(bugcode, infol, info2, info3, info4);

where bugcode is a numeric value identifying the cause of the error, and infol, info2,
and so on are integer parameters that will appear in the BSOD display to help some
programmer understand the details of the error. This function does not return ().

I'm not going to describe here how to interpret the information in a BSOD or
in a crash dump. Section 17.3 in Art Baker’s The Windows NT Device Driver Book
(Prentice Hall, 1997) is one place you can go for more information. Microsoft’s own
bugcheck codes appear in BUGCODES.H (one of the DDK headers); a fuller explana-
tion of the codes and their various parameters can be found in Knowledge Base article
Q103059, “Descriptions of Bug Codes for Windows NT,” which is available on MSDN,
among other places. ’

You can certainly create your own bugcheck codes if you want. The Microsoft
values are simple integers beginning with 1 (APC_INDEX_MISMATCH) and (currently)
extending through 0xDE (POOL_CORRUPTION_IN_FILE_AREA) along with a few
others. To create your own bugcheck code, define an integer constant as if it were
STATUS_SEVERITY_SUCCESS status code, but supply either the customer flag or a
nonzero facility code. For example:

ftdefine MY_BUGCHECK_CODE 0x002A0001

KeBugCheckEx(MY_BUGCHECK_CODE, @, @, 0, 0);

You use a nonzero facility code (42 in this example) or the customer flag (which
I left zero in this example) so that you can tell your own codes from the ones Micro-
soft uses. ‘

Now that I've told you how to generate your own BSOD, let me tell you when
to do it: never. Or, at most, in the checked build of your driver for use during your
own internal debugging. You and I are unlikely to write a driver that will discover
an error so serious that taking down the system is the only solution. It would be far
better to log the error (using the error-logging facilities I'll describe in Chapter 9,
“Specialized Topics”) and return a status code.

MEMORY MANAGEMENT

In this section, I'll discuss the topic of memory management. Windows 2000 divides

the available virtual address space in several ways. One division—a very firm one

based on security and integrity concerns—is between user-mode addresses and
kernel-mode addresses. Another division, which is almost but not quite coextensive
with the first, is between paged and nonpaged memory. All user-mode addresses and
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some kernel-mode addresses reference page frames that the Memory Manager swaps
to and from the disk over time, while some kernel-mode addresses always refer-
ence the same page frames in physical memory. Since Windows 2000 allows por-
tions of drivers to be paged, I'll explain how you control the pagability of your driver
at the time you build your driver and at run time.

Windows 2000 provides several methods for managing memory. I'll describe two
basic service functions—ExAllocatePool and ExFreePool—that you use for allocating
and releasing randomly sized blocks from a heap. I'll also describe the primitives that
you use for organizing memory blocks into linked lists of structures. Finally, I'll describe
the concept of a lookaside list, which allows you to efficiently allocate and release
blocks that are all the same size.

User-Mode and Kernel-Mode Address Spaces

Windows NT and Microsoft Windows 98 run on computers that support a virtual
address space, wherein ‘virtual addresses are mapped either to physical memory or
(conceptually, anyway) to page frames within a swap file on disk. To grossly simplify
matters, you can think of the virtual address space as being divided into two parts:
a kernel-mode part and a user-mode part. See Figure 3-7.

Figure 3-7. User-mode and kernel-mode portions of the address space.

Each user-mode process has its own address context, which maps the user-mode
virtual addresses to a unique collection of physical page frames. In other words, the
meaning of any particular virtual address changes from one moment to the next as
the Windows NT scheduler switches from a thread in one process to a thread in
another process. Part of the work in switching threads is to change the page tables
used by a processor so that they refer to the incoming thread’s process context.
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NOTE If you're familiar with the Alpha and you're a stickler for accuracy, you'll
know that Alphas don’t have page tables. They have something different called
translation buffers that map virtual page addresses to physical page addresses.
To me, this is a distinction without a difference—on a par with saying that The
Odyssey was written by a different Homer than the one historians used to think
wrote it. But someone would have sent me an email pointing this out if | didn’t
say it first.

It’s generally unlikely that a WDM driver will execute in the same thread context
as the initiator of the I/O requests it handles. We say that we’re running “in arbitrary
thread context” if we don’t know for sure to which process the current user-mode
address context belongs. In arbitrary thread context, we simply can’t use a virtual
address that belongs to user mode because we can’t have any idea to what physical
memory it might point. In view of this uncertainty, we generally obey the following
rule inside a driver program:

Never (well, hardly ever) directly reference user-mode memory.

In other words, don’t take an address that a user-mode application provides and
treat that address as a pointer that we can directly dereference. I'll discuss in later
chapters a few techniques for accessing data buffers that originate in user mode. All
we need to know right now, though, is that we're (nearly) always going to be using
kernel-mode virtual addresses whenever we want to access the computer’s memory.

How Big Is a Page?

In a virtual memory system, the operating system organizes physical memory and the
swap file into like-sized page frames. In a WDM driver, you can use the manifest
constant PAGE_SIZE to tell you how big a page is. In some Windows NT computers,
a page is 4096 bytes long; in others, it’s 8192 bytes long. There’s a related constant
named PAGE_SHIFT that equals the page size as a power of two. That is:

PAGE_SIZE == 1 << PAGE_SHIFT

For your convenience, you can use a few preprocessor macros in your code
when you’re working with the size of a page:

B ROUND_TO_PAGES rounds a size in bytes to the next higher page bound-
ary. For example, ROUND_TO_PAGES(1) is 4096 on a 4 KB—page computer.

M BYTES_TO_PAGES determines how many pages are required to hold a
given number of bytes beginning at the start of a page. For example,
BYTES_TO_PAGES(42) would be 1 on all platforms, and BYTES_TO_
PAGES(5000) would be 2 on some platforms and 1 on others.
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B BYTE_OFFSET returns the byte offset portion of a virtual address. That is,
it calculates the starting offset within some page frame of a given address.
On a 4 KB—page computer, BYTE_OFFSET(0x12345678) would be 0x678.

B PAGE_ALIGN rounds a virtual address down to a page boundary. On a 4
KB-page computer, PAGE_ALIGN(0x12345678) would be 0x12345000.

B ADDRESS_AND_SIZE_TO_SPAN_PAGES returns the number of page
frames occupied by a specified number of bytes beginning at a speci-
fied virtual address. For example, ADDRESS_AND_SIZE_TO_SPAN_
PAGES(0x12345FFF, 2) is 2 on a 4 KB—page machine because the two bytes
span a page boundary.

Paged and Nonpaged Memory

The whole point of a virtual memory system is that you can have a virtual address
space that’s much bigger than the amount of physical memory on the computer. To
accomplish this feat, the Memory Manager needs to swap page frames in and out of
physical memory. Certain parts of the operating system can’t be paged, though,
because they’re needed to support the Memory Manager itself. The most obvious
example of something that must always be resident in memory is the code that handles
page faults (the exceptions that occur when a page frame isn’t physically present when
needed) and the data structures used by the page fault handler. But the category of
“must be resident” stuff is much broader than that.

Windows NT divides the kernel-mode address space into paged and nonpaged
memory pools. (The user-mode address space is always pagable.) Things that must
always be resident are in the nonpaged pool; things that can come and go on demand
are in the paged pool. Windows NT provides a simple rule for deciding whether your
code and the data it uses must be resident. I'll elaborate on the rule in the next chapter,
but here it is anyway:

Code executing at or above interrupt request level (IRQL) DISPATCH_
LEVEL cannot cause page faults.

You can use the PAGED_CODE preprocessor macro (declared in WDM.H) to help
you discover violations of this rule in the checked build of your driver. For example:

NTSTATUS DispatchPower(PDEVICE_OBJECT fdo, PIRP Irp)
{
PAGED_CODE()

}
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PAGED_CODE contains conditional compilation. In the checked-build environ-
ment, it prints a message and generates an assertion failure if the current IRQL is too
high. In the free-build environment, it doesn’t do anything. If you were to test your
driver in a situation where the page containing DispatchPower happened fortuitously
to be in memory, you would never discover that it had been called at an elevated IRQL.
PAGED_CODE will detect the problem even so. A bug check would occur if the page
happened to not be present, so you would certainly learn about the problem then!

THE DRIVER VERIFIER

The Driver Verifier feature of Windows 2000 helps you debug many features
of your driver, including the placement of programs into sections, your use of
the memory heap, and so on. This feature was still in flux at press time, so I
can’t say much more about it here. But notice that the PAGED_CODE macro
spots a problem only in the checked build of your driver that exists at the point
where you invoke it. The Driver Verifier can diagnose a problem arising any-
where in a function, even with the free build of the driver.
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Compile-Time Control of Pagability

Given that some parts of your driver must always be resident and some parts can be
paged, you need a way to control the assignment of your code and data to the paged
and nonpaged pools. You accomplish part of this job by instructing the compiler how
to apportion your code and data among various sections. The run-time loader uses
the names of the sections to put parts of your driver in the places you intend. You
can also accomplish parts of this job at run time by calling various Memory Manager
routines that I'll discuss in the next section.

NOTE Win32 executable files, including kernel-mode drivers, are internally
composed of one or more sections. A section can contain code or data and,
generally speaking, has additional attributes such as being readable, writable,
sharable, executable, and so on. A section is also the smallest unit that you can
designate when you're specifying pagability. When loading a driver image, the
system puts sections whose literal names begin with “page” or “.eda” (the start
of “.edata”) into the paged pool uniess the DisablePagingExecutive value in
the HKLM\System\CurrentControlSet\Control\Session Manager\Memory Manage-
ment key happens to be set (in which case no driver paging occurs). In one of
the little twists of fate that affect us all from time to time, running Soft-lce/W on
Windows 2000 requires you to disable kernel paging in this way. This certainly
makes it harder to find bugs caused by misplacement of driver code or data into
the paged pool! If you use this debugger, | recommend that you religiously use
the PAGED_CODE macro and the Driver Verifier.
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The traditional way of telling the compiler to put code into a particular section
is to use the alloc_text pragma. Since not every compiler will necessarily support
the pragma, the DDK headers either define or don’t define the constant ALLOC_
PRAGMA to tell you whether to use the pragma. You can then invoke the pragma to
specify the section placement of individual subroutines in your driver, as follows:

JHi fdef ALLOC_PRAGMA
#fpragma alloc_text(PAGE, AddDevice)
fipragma alloc_text(PAGE, DispatchPnp)

fendif
These statements serve to place the AddDevice and DispatchPnp functions into the

paged pool.
The Microsoft C/C++ compiler places two annoying restrictions on using alloc_text:

B The pragma must follow the declaration of a function but precede the
definition. One way to obey this rule is to declare all the functions in your
driver in a standard header file and invoke alloc_text at the start of the
source file that contains a given function but after you include that header.

B The pragma can be used only with functions that have C-linkage. In other
words, it won’t work for class member functions or for functions in a C++
source file that you didn’t declare using extern "C".

To control the placement of data variables, you use a different pragma under
control of a different preprocessor macro symbol:

Jifdef ALLOC_DATA_PRAGMA
J#pragma data_seg("PAGE™)
fendif

The data_seg pragma causes all static data variables declared in a source module after

. the appearance of the pragma to go into the paged pool. You'll notice that this pragma
differs in a fundamental way from alloc_text. A pagable section starts where #pragma
data_seg("PAGE") appears and ends where a countervailing #pragma data_seg()
appears. Alloc_text, on the other hand, applies to a specific function.

Think twice before putting some of your data into a pagable section, because
you might actually be making things worse. The smallest unit that can be paged is
PAGE_SIZE long. It’s probably silly to put just a few bytes into a pagable section. You’ll
end up using an entire page worth of memory. Consider, too, that a data page is often
“dirty” (that is, changed since it was fetched from disk) and would need to be rewritten
to disk before its physical page frame could be reused for another purpose.
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MORE ABOUT SECTION PLACEMENT

In general, I find it more convenient to specify the section placement of whole
blocks of code by using the Microsoft code_seg pragma, which works the same
way as data_seg, only for code. That is, you can tell the Microsoft compiler to
start putting functions into the paged pool like this:

f#ipragma code_seg("PAGE"™)
NTSTATUS AddDevice(...){...}
NTSTATUS DispatchPnp(...){...}

The AddDevice and DispatchPnp functions would both end up in the paged
pool. You can check to see whether you're compiling with the Microsoft com-
piler by testing the existence of the predefined preprocessor macro _MSC_VER.

To revert to the default code section, just code #pragma code_seg with
no argument:

ffpragma code_seg()

Similarly, to revert to the regular nonpaged data section, code #pragma
data_seg with no argument:

ffpragma data_seg()

This sidebar is also the logical place to mention that you can also direct
code into the INIT section if it’s not needed once your driver finishes initializ-
ing. For example:

f#fpragma alloc_text(INIT, DriverEntry)

This statement forces the DriverEntry function into the INIT section. The
system will release the memory it occupies when it returns. This small savings
is not very important in the grand scheme of things because a WDM driver’s
DriverEntry function doesn’t do much work. Previous Windows NT drivers had
large DriverEntry functions that had to create device objects, locate resources,
configure devices, and so on. For them, using this feature offered significant
memory savings. ‘

You can use the DUMPBIN utility that comes with Microsoft Visual C++

to easily see how much of your driver is initially pagable. Your marketing de-

partment might even want to crow about how much less nonpaged memory
you use than your competitors.
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Run-Time Control of Pagability

Table 3-2 lists the service functions you can use at run time to fine-tune the pagability
of your driver in various situations. The purpose of these routines is to let you release
the physical memory that would otherwise be tied up by your code and data during
periods when it won’t be needed. In Chapter 8, for example, I'll discuss how you can
register your device with the Power Manager so that you’re automatically powered
down after a period of inactivity. Powering down might be a good time to release
your locked pages.

Service Function Description
MmLockPagableCodeSection Lock a code section given an address inside it
MmLockPagableDataSection Lock a data section given an address inside it

MmlLockPagableSectionByHandle Lock a code section by using a handle from a
previous MmLockPagableCodeSection call
(Windows 2000 only)

MmPageEntireDriver Unlock all pages belonging to driver

MmResetDriverPaging Restore compile-time pagability attributes for
entire driver ‘

MmUnlockPagableImageSection Unlock a locked code or data section

Table 3-2. Routines for dynamically locking and unlocking driver pages.

I'm going to describe one way to use these functions to control the pagability
of code in your driver. You might want to read the DDK descriptions to learn about
other ways to use them. First distribute subroutines in your driver into separately
named code sections, like this:

fipragma alloc_text(PAGEIDLE, DispatchRead)
f#ipragma alloc_text(PAGEIDLE, DispatchWrite)

That is, define a section name beginning with “PAGE” and ending in any four-
character suffix you please. Then use the alloc_text pragma to place some group of
your own routines into that special section. You can have as many special pagable
sections as you want, but your logistical problems will grow as you subdivide your
driver in this way.

During initialization (say, in DriverEntry), lock your pagable sections like this:

PVOID hPageldleSection;

NTSTATUS DriverEntry(...)
t
hPageldleSection = MmLockPagableCodeSection((PVOID) DispatchRead);
}
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When you call MmLockPagableCodeSection, you specify any address at all within
the section you're trying to lock. The real purpose of making this call during DriverEntry
is to obtain the handle value it returns, which I've shown you saving in a global
variable named hPageldleSection. You'll use that handle much later on, when you
decide you don’t need a' particular section in memory for a while:

MmUnlockPagableImageSection(hPageldleSection);

This call will unlock the pages containing the PAGEIDLE section and allow them to
move in and out of memory on demand. If you later discover that you need those
pages back again, you make this call:

MmLockPagableSectionByHandle(hPageIdieSection);

Following this call, the PAGEIDLE section will once again be in nonpaged
memory (but not necessarily the same physical memory as previously). Note that
this function call is available to you only in Windows 2000, and then only if you've
included NTDDK.H instead of WDM.H. In other situations, you will bave to call
MmlLockPagableCodeSection again.

You can do something similar to place data objects into pagable sections:

PVOID hPageDataSection;

{#fpragma data_seg("PAGE"™)
ULONG ulSomething;
{fpragma data_seg()

hPageDataSection = MmLockPagableDataSection((PVOID) &ulSomething);
MmUnlockPagableImageSection(hPageDataSection);

MmLockPagableSectionByHandle(hPageDataSection);

I've played fast and loose with my syntax here—these statements would appear in
widely disparate parts of your driver.

The key idea behind the Memory Manager service functions I just described is
that you initially lock a section containing one or more pages and obtain a handle
for use in subsequent calls. You can then unlock the pages in a particular section by
calling MmUnlockPagableImageSection and passing the corresponding handle.
Relocking the section later on requires a call to MmLockPagableSectionByHandle.

A quick shortcut is available if you're sure that none of your driver will need
to be resident for a while. MmPageEntireDriver will mark all the sections in a
driver’s image as being pagable. Conversely, MmResetDriverPaging will restore the
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compile-time pagability attributes for the entire driver. To call these routines, you just
need the address of some piece of code or data in the driver. For example:

MmPageEntireDriver((PVOID) DriverEntry);

MmResetDriverPaging((PVOID) DriverEntry);

You need to exercise care when using any of the Memory Manager routines I've
just described if your device uses an interrupt. Spurious interrupts have been known
to happen, and it will be very difficult for anyone to discover that the reason for some
random crash is that the system tried to call your missing interrupt service routine
(ISR) to handle one. The rule stated in the DDK is that you simply mustn’t page your
ISR or any deferred procedure call (DPC) routine it might schedule after connecting
your interrupt.

Heap Alliocator

The basic heap allocation service function in kernel mode used to be ExAllocatePool.
This service is still the one referred to in most discussions of heap allocation and used
by sample drivers. You call it like this:

PVOID p = ExAllocatePool(type, nbytes);

The type argument is one of the POOL_TYPE enumeration constants described in
Table 3-3, and nbytes is the number of bytes you want to allocate. The return value
is a kernel-mode virtual address pointer to the allocated memory block. Unless you
specify either NonPagedPoolMustSucceed or NonPagedPoolCacheAlignedMustS
for the pool type, you can receive back a NULL pointer if enough memory isn’t avail-
able to satisfy your request. If you specify either of those two must-succeed types, lack
of memory will cause a bug check with the code MUST_SUCCEED_POOL_EMPTY.

NOTE Drivers should not allocate memory using one of the “must succeed”
specifiers. This is because they can fail whatever operation is underway with a
status code if memory is unavailable. Causing a system crash in a low-memory
situation is not something a driver should do. Furthermore, only a limited pool
of “must succeed” memory exists in the entire system, and the operating sys-
tem might not be able to allocate memory needed to keep the computer running
if drivers tie up some. In fact, Microsoft wishes they had never documented the
must-succeed options in the DDK to begin with.
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Pool Type Description

NonPagedPool Allocate from the nonpaged pool of memory
PagedPool Allocate from the paged pool of memory
NonPagedPoolMustSucceed Allocate from the nonpaged pool; bugcheck

if unable to do so

NonPagedPoolCacheAligned Allocate from the nonpaged pool and ensure
that memory is aligned with the CPU cache

NonPagedPoolCacheAlignedMustS  Like NonPagedPoolCacheAligned, but
bugcheck if unable to allocate

PagedPoolCacheAligned Allocate from the paged pool of memory
. and ensure that memory is aligned with the
CPU cache

Table 3-3. Pool type arguments for ExAllocatePool.

The most basic decision you must make when you call ExAllocatePool is
whether the allocated memory block should be swapped out of memory. That choice
depends simply on which parts of your driver will need to access the memory block.
If you will be using a memory block at or above DISPATCH_LEVEL, you must allocate
it from the nonpaged pool. If you'll always use the memory block below DISPATCH_
LEVEL, you can allocate from the paged or nonpaged pool as you choose.

The memory block you receive will be aligned to at least an 8-byte boundary.
If you place an instance of some structure into the allocated memory, members to
which the compiler assigns an offset divisible by 4 or 8 will therefore occupy an
address divisible by 4 or 8, too. On some RISC platforms, of course, you must have
doubleword and quadword values aligned in this way. For performance reasons, you
might want to be sure that the memory block will fit in the fewest possible number
of processor cache lines. You can specify one of the XxxCacheAligned type codes
to achieve that result. If you ask for at least a page’s worth of memory, the block will
start on a page boundary.

Releasing a Memory Block
To release a memory block you previously allocated with ExAllocatePool, you call
ExFreePool:

ExFreePool((PVOID) p);

You do need to keep track somehow of the memory you've allocated from the
pool in order to release it when it’s no longer needed. No one else will do that for
you. You must sometimes closely read the DDK documentation of the functions you
call with an eye toward memory ownership. For example, in the AddDevice func-
tion I showed you in the previous chapter, there’s a call to IoRegisterDevicelnterface.
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That function has a side effect: it allocates a memory block to hold the string that
names the interface. You are responsible for releasing that memory later on.

It should go without saying that you need to be extra careful when accessing
memory you've allocated from the free storage pools in kernel mode. Since driver
code executes in the most privileged mode possible for the processor, there’s almost
no protection from wild stores.

ExAllocatePoolWithTag

I said that ExAllocatePool used to be the standard way to allocate memory from a
kernel-mode heap. For some time, there has been a variant of ExAllocatePool named
ExAllocatePoolWithTag that provides a useful extra feature. For reasons I'll explain
presently, you should prefer to use this variant in new drivers even though neither
I nor the authors of the DDK samples currently do. This is a clear case of “do as I
[actually the people inside Microsoft who make wishes about how programmers use
the DDK] say, not as I do.”

When you use ExAllocatePoolWithTag, the system allocates 4 more bytes of
memory than you asked for and returns you a pointer that’s 4 bytes into that block.
The tag occupies the initial 4 bytes and therefore precedes the pointer you receive.
The tag will be visible to you when you examine memory blocks while debugging
or while poring over a crash dump, and it can help you identify the source of a
memory block that’s involved in some problem or another. For example:

PVOID p = ExAllocatePoolWithTag(PagedPool, 42, 'KNUJ');

Here, I used a 32-bit integer constant as the tag value. On a little-endian computer
like an x86, the bytes that compose this value will be reversed in memory to spell
out a common word in the English language.

Pool tags are also useful as a way of controlling certain features of the Driver
Verifier. Please consult the DDK documentation for more information.

It turns out that you’re using ExAllocatePoolWithTag even when you think you’re
calling ExAllocatePool. The declarations of memory allocation functions in wdm.h
are under control of a preprocessor macro named POOL_TAGGING. WDM.H (and
NTDDK.H too, for that matter) unconditionally defines POOL_TAGGING, with the
result that the without-tag functions are actually macro’ed to the equivalent with-tag
functions with a tag value of ' mdW" (that is, a space followed by the mirror image
of “Wdm”). If POOL_TAGGING were not to be defined in some future release of the
DDK, the with-tag functions would be macro’ed to the without-tag versions. Microsoft
has no current plans to change the setting of POOL_TAGGING.

Because of the POOL_TAGGING macros, when you write a call to ExAllocate-
Pool in your program, you end up calling ExAllocatePoolWithTag, but the tag you
specify is too generic to be of much help. As it turns out, even if you managed to
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call ExAllocatePool by some subterfuge or another, ExAllocatePool internally calls
ExAllocatePoolWithTag with a tag value of 'enoN' (that is, “None”). Since you can’t
get away from memory tagging, you might as well explicitly call ExAllocatePool-
WithTag and specify a usefully unique tag of your own devising. In fact, Microsoft
strongly encourages you to do this.

Variations on ExAllocatePool
Although ExAllocatePoolWithTag is the function you should use for heap allocation,
you would use some variations in special circumstances:

B ExAllocatePoolWithQuota allocates a memory block and charges the
current thread’s scheduling quota. This function is for use by file system
drivers and other drivers running in a nonarbitrary thread context for allo-
cating memory that belongs to the current thread.

B  ExAllocatePoolWithQuotaTag allocates a block with a tag and charges
the current thread’s quota.

Linked Lists
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Windows NT makes extensive use of linked lists as a way of organizing collections
of similar data structures. In this chapter, I'll discuss the basic service functions you use
to manage doubly-linked and singly-linked lists. Separate service functions allow you
to share linked lists between threads and across multiple processors; I'll describe those
functions in the next chapter after I've explained the synchronization primitives on
which they depend.

Whether you organize data structures into a doubly-linked or a singly-linked
list, you normally embed a linking substructure—either a LIST_ENTRY or a SINGLE_
LIST_ENTRY—into your own data structure. You also reserve a list head element
somewhere that uses the same structure as the linking element. For example:

typedef struct _TWOWAY
{

LIST_ENTRY Tlinkfield;
} TWOWAY, =PTWOWAY;
LIST_ENTRY DoubleHead;

typedef struct _ONEWAY
{

SINGLE_LIST_ENTRY Tlinkfield;

} ONEWAY, =PONEWAY;
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SINGLE_LIST_ENTRY SingleHead;

When you call one of the list-management service functions, you always work
with the linking field or the list head—never directly with the containing structures
themselves. So, suppose you've got a pointer (pdElement) to one of your TWOWAY
structures. To put that structure onto a list, you'd reference the embedded linking field
like this:

InsertTailList(&DoubleHead, &pdElement->1inkfield);

Similarly, when you retrieve an element from a list, you're really getting the
address of the embedded linking field. To recover the address of the containing
structure, you can use the CONTAINING_RECORD macro. (See Figure 3-8.)

IRP

ListEntry

(PIRP) CONTAINING_RECORD(p, IRP, ListEntry)
Figure 3-8. 7he CONTAINING_RECORD macro.

So, if you wanted to process and discard all the elements in a singly-linked list,
your code would look something like this:

PSINGLE_LIST_ENTRY psLink = PopEntryList(&SingleHead);
while (psLink)
{
PONEWAY psElement = (PONEWAY) CONTAINING_RECORD(psLink,
ONEWAY, Tinkfield);

ExFreePool(psElement);
psLink = PopEntrylList(&SingleHead);
}

Just before the start of this loop, and again after every iteration, you retrieve the current
first element of the list by calling PopEntryList. PopEntryList returns the address of
the linking field within a ONEWAY structure, or else it returns NULL to signify that
the list is empty. Don’t just indiscriminately use CONTAINING_RECORD to develop
an element address that you then test for NULL—you need to test the link field ad-
dress that PopEntryList returns!
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Doubly-Linked Lists

A doubly-linked list links its elements both backward and forward in a circular fash-
ion. See Figure 3-9. That is, starting with any element, you can proceed forward or
backward in a circle and get back to the same element. The key feature of a doubly-
linked list is that you can add or remove elements anywhere in the list.

Forward ™

|

Entry

o/

Figure 3-9. Topology of a doubly-linked list.

B

Table 3-4 lists the service functions you use to manage a doubly-linked list.

Service Function or Macro Description

InitializeListHead Initialize the LIST_ENTRY at the head of the list
InsertHeadList Insert element at the beginning

InsertTailList Insert element at the end

IsListEmpty Is list empty?

RemoveEntryList Remove element

RemoveHeadList Remove first element

RemoveTailList Remove last element

Table 3-4. Service functions for use with doubly-linked lists.

Here is a fragment of a fictitious program to illustrate how to use some of these
functions:

typedef struct _TWOWAY {
LIST_ENTRY 1inkfield;

} TWOWAY, *PTWOWAY;
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LIST_ENTRY DoubleHead;
InitializeListHead(&DoubleHead);
ASSERT(IsListEmpty(&DoubleHead));

PTWOWAY pdElement = (PTWOWAY) ExAllocatePool(PagedPool,
sizeof(TWOWAY));
InsertTaillList(&DoubleHead, &gdElement->1inkfield);

if (1IsListEmpty(&DoubleHead))
{
PLIST_ENTRY pdLink = RemoveHeadList(&DoubleHead):
pdElement = CONTAINING_RECORD(pdLink, TWOWAY, Tlinkfield);

ExFreePool(pdElement);
}

1. InitializeListHead initializes a LIST_ENTRY to point (both backward and
forward) to itself. That configuration indicates that the list is empty.

2. InsertTailList puts an element at the end of the list. Notice that you
specify the address of the embedded linking field instead of your own
TWOWAY structure. You could call InsertHeadList to put the element at
the beginning of the list instead of the end. By supplying the address of
the link field in some existing TWOWAY structure, you could put the new
element either just before or just after the existing one.

3. Recall that an empty doubly-linked list has the list head pointing to itself,
both backward and forward. Use IsListEmpty to simplify making this
check. The return value from RemoveXxxList will never be NULL!

4. RemoveHeadList removes the element at the head of the list and gives
you back the address of the linking field inside it. RemoveTailList does
the same thing, just with the element at the end of the list instead.

It's important to know the exact way RemoveHeadList and RemoveTailList are
implemented if you want to avoid errors. For example, consider the following inno-
cent looking statement.

if (<some-expr>)
pdLink = RemoveHeadList(&DoubleHead);

What I obviously intended with this construction was to conditionally extract
the first element from a list. C’est raisonnable, n’est-ce pas? But no, when you debug
this later on, you find that elements keep mysteriously disappearing from the list. You
discover that pdLink gets updated only when the if expression is TRUE but that
RemoveHeadList seems to get called even when the expression is FALSE.
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Mon diew! What's going.on here? Well, RemoveHeadList is really a macro that
expands into multiple statements. Here’s what the compiler really sees in the above
statement: ' '

if (<some-expr>)
pdLink = (&DoubleHead)->F1link;
{{
PLIST_ENTRY _EX_Blink;
PLIST_ENTRY _EX_Flink;
_EX_Flink = ((&DoubleHead)->F1ink)->Flink;
_EX_Blink = ((&DoubleHead)->F1ink)->Blink;
_EX_B1ink->F1link = _EX_Flink;

- _EX_F1ink->Blink = _EX_BT1ink;

1}

Aha! Now the reason for the mysterious disappearance of list elements becomes
clear. The TRUE branch of the if statement consists of just the single statement pdLink
= (&DoubleHead)->Flink that stores a pointer to the first element. The logic that
removes a list element stands alone outside the scope of the if statement and is there-
fore always executed. Both RemoveHeadList and RemoveTailList amount to an ex-
pression plus a compound statement, and you dare not use either of them in a spot
where the syntax requires an expression or statement alone. Zut alors!

The other list-manipulation macros don’t have this problem, by the way. The
difficulty with RemoveHeadList and RemoveTailList arises because they have to return
a value and do some list manipulation. The other macros do only one or the other,
and they’re syntactically safe when used as intended.

Singly-Linked Lists

A singly-linked list links its elements in only one direction, as illustrated in Figure 3-10.
Windows NT uses singly-linked lists to implement pushdown stacks, as suggested by
the names of the service routines in Table 3-5. Just as was true for doubly-linked lists,
these “functions” are actually implemented as macros in WDM.H, and similar cau-
tions apply. PushEntryList and PopEntryList generate multiple statements, so you
can use them only on the right side of an equal sign in a context where the com-
piler is expecting multiple statements.

" Service Function or Macro Description

PushEntryList Add element to top of list
PopEntryList Remove topmost element

Table 3-5. Service functions for use with singly-linked lists.
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Figure 3-10. Topology of a singly-linked list.

The following pseudofunction illustrates how to manipulate a singly-linked list:

typedef struct _ONEWAY {

SINGLE_LIST_ENTRY T1inkfield;
} ONEWAY, *PONEWAY;

SINGLE_LIST_ENTRY SingleHead;
SingleHead.Next = NULL;

PONEWAY psElement = (PONEWAY) ExAllocatePool(PagedPool,
sizeof (ONEWAY));
PushEntrylList(&SingleHead, &psElement->1inkfield);

SINGLE_LIST_ENTRY psLink = PopEntryList(&SingleHead);
if (psLink)
{
psElement = CONTAINING_RECORD(psLink, ONEWAY, linkfield);

ExFreePool(psElement);
}

1. Instead of invoking a service function to initialize the head of a singly-
linked list, just set the Next field to NULL. Note also the absence of a ser-
vice function for testing whether this list is empty; just test Next yourself.
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2. PushEntryList puts an element at the head of the list, which is the only
part of the list that’s directly accessible. Notice that you specify the address
of the embedded linking field instead of your own ONEWAY structure.

3. PopEntryList removes the first entry from the list and gives you back a
pointer to the link field inside it. Unlike doubly-linked lists, a NULL value
indicates that the list is empty. In fact, there’s no counterpart to IsListEmpty
for use with a singly-linked list.

Lookaside Lists
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Even employing the best possible algorithms, a heap manager that deals with ran-
domly sized blocks of memory will require some scarce processor time to coalesce
adjacent free blocks from time to time. Figure 3-11 illustrates how, when something
returns block B to the heap at a time when blocks A and C are already free, the heap
manager can combine blocks A, B, and C to form a single large block. The large block
is then available to satisfy some later request for a block bigger than any of the original
three components.

- >
Large combined block

Figure 3-11. Coalescing adjacent free blocks in a beap.

If you know you're always going to be working with fixed-size blocks of memory,
you can craft a much more efficient scheme for managing a heap. You could, for
example, preallocate a large block of memory that you subdivide into pieces of the
given fixed size. Then you could devise some scheme for knowing which blocks are
free and which are in use, as suggested by Figure 3-12. Returning a block to such a
heap merely involves marking it as free—you don’t need to coalesce it with adjacent
blocks because you never need to satisfy randomly sized requests.

Merely allocating a large block that you subdivide might not be the best way
to implement a fixed-size heap, though. In general, it’s hard to guess how much
memory to preallocate. If you guess too high, you’ll be wasting memory. If you guess
too low, your algorithm will either fail when it runs out (bad!) or make too frequent
trips to a surrounding random heap manager to get space for more blocks (better).
Microsoft has created the Jookaside list object and a set of adaptive algorithms to deal
with these shortcomings.
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[ Block in use
Block free

Figure 3-12. A4 beap containing fixed-size blocks.

Figure 3-13 illustrates the concept of a lookaside list. Imagine that you had a
glass that you could (somehow—the laws of physics don’t exactly make this easy!)
balance upright in a2 swimming pool. The glass represents the lookaside list object. When
you initialize the object, you tell the system how big the memory blocks (water drops,
in this analogy) are that you’ll be working with. In earlier versions of Windows NT, you
could also specify the capacity of the glass, but the operating system now determines
that adaptively. To allocate a memory block, the system first tries to remove one from
the list (remove a water drop from the glass). If there are no more, the system dips
into the surrounding memory pool. Conversely, to return a memory block, the sys-
tem first tries to put it back onto the list (add a water drop to the glass). But if the
list is full, the block goes back into the pool using the regular heap manager routine
(the drop slops over into the swimming pool).

Glass containing fixed-size
memory blocks

Paged or nonpaged
memory pool

Figure 3-13. Lookaside lists.
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The system periodically adjusts the depths of all lookaside lists based on actual
usage. The details of the algorithm aren’t really important, and they’re subject to
change in any case. Basically (in the current release, anyway), the system will reduce
the depth of lookaside lists that haven’t been accessed recently or that aren’t forcing
pool access at least 5 percent of the time. The depth never goes below 4, however,
which is also the initial depth of a new list.

Table 3-6 lists the eight service functions that you use when you work with a
lookaside list. There are really two sets of four functions, one set for a lookaside list
that manages paged memory (the ExXxxPagedLookasideList set) and another for
a lookaside list that manages nonpaged memory (the ExXxxNPagedLookasideList
set). The first thing you must do is reserve nonpaged memory for a PAGED_
LOOKASIDE_LIST or an NPAGED_LOOKASIDE_LIST object. These objects are simi-
lar. The paged variety uses a FAST_MUTEX for synchronization, whereas the nonpaged
variety uses a spin lock. (See the next chapter for a discussion of both of these syn-
chronization objects.) Even the paged variety of object needs to be in nonpaged
memory because the system might access it at an elevated IRQL.

Service Function Description

ExInitializeNPagedLookasideList Initialize a lookaside list
ExInitializePagedLookasideList

ExAllocateFromNPagedLookasideList Allocate a fixed-size block
ExAllocateFromPagedLookasideList

ExFreeToNPagedLookasideList Release a block back to a lookaside list
ExFreeToPagedLookasideList

ExDeleteNPagedLookasideList Destroy a lookaside list
ExDeletePagedLookasideList

Table 3-6. Service functions for lookaside lists.

After reserving storage for the lookaside list object somewhere, you call the
appropriate initialization routine:

PPAGED_LOOKASIDE_LIST pagedlist;
PNPAGED_LOOKASIDE_LIST nonpagedlist;

ExInitializePagedlLookasidelList(pagedlist, Allocate, Free,
0, blocksize, tag, 0);
ExInitializeNPagedLookasideList(nonpagedlist, Allocate, Free,
0, blocksize, tag, 0);

(The only difference between the two examples is the spelling of the function name
and the first argument.)
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The first argument to either of these functions points to the [NJPAGED_
LOOKASIDE_LIST object for which you've already reserved space. Allocate and Free
are pointers to routines you can write to allocate or release memory from a random
heap. You can use NULL for either or both of these parameters, in which case
ExAllocatePoolWithTag and ExFreePool will be used, respectively. The blocksize
parameter is the size of the memory blocks you will be allocating from the list, and tag
is the 32-bit tag value you want placed in front of each such block. (Look back to the
section entitled “Variations on ExAllocatePool” for an explanation of the tagging con-
cept.) The two zero arguments are placeholders for values that you supplied in previ-
ous versions of Windows NT but which the system now determines on its own; these
values are flags to control the type of allocation and the depth of the lookaside list.

To allocate a memory block from the list, call the appropriate AllocateFrom
function:

PVOID p = ExAllocateFromPagedLookasideList(pagedlist);
PVOID q = ExAllocateFromNPagedLookasideList(nonpagedlist);

To put a block back onto the list, call the appropriate FreeTo function:

ExFr‘eeToPagedLookasideLi st(pagedlist, p);
ExFreeToNPagedLookasideList(nonpagedlist, q);

Finally, to destroy a list, call the appropriate Delete function:

ExDeletePagedLookasidelist(pagedlist);
ExDeleteNPagedLookasidelist(nonpagedlist);

I’s a common mistake to forget to delete a lookaside list. You won’t be mak-
ing such a mistake of course, but you might need to advise one of your coworkers
about how to avoid it(1). You can tell him or her, “Be sure to do that before your
lookaside list passes out of scope. If you created a lookaside list during AddDevice,
for example, you probably put the object into your device object and want to delete
the list before you call IoDeleteDevice. If you created a lookaside list during
DriverEntry, you probably put the object into a global variable and want to delete
the list before you return from your DriverUnload routine.”

STRING HANDLING

WDM drivers can work with string data in any of four formats:

M A Unicode string, normally described by a UNICODE_STRING structure,
contains 16-bit characters. Unicode has sufficient code points to accom-
modate the language scripts used on this planet (and on at least one
other—see bitp.//www.indigo.ie/egt/standards/csur/klingon.btml).
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B An ANSI string, normally described by an ANSI_STRING structure, contains
8-bit characters. A variant is an OEM_STRING, which also describes a string
of 8-bit characters. The difference between the two is that an OEM string
has characters whose graphic depends on the current code page, whereas
an ANSI string has characters whose graphic is independent of code page.
WDM drivers would not normally deal with OEM strings because they
would have to originate in user mode, and some other kernel-mode com-
ponent will have already translated them into Unicode strings by the time
the driver sees them.

M A null-terminated string of characters. You can express constants using
normal C syntax, such as "Hello, world!" Strings employ 8-bit characters
of type CHAR, which are assumed to be from the ANSI character set. The
characters in string constants originate in whatever editor you used to cre-
ate your source code. If you use an editor that relies on the then-current
code page to display graphics in the editing window, be aware that some
characters might have a different meaning when treated as part of the Win-
dows ANSI character set.

B A null-terminated string of wide characters (type WCHAR). You can express
wide string constants using normal C syntax, such as L"Goodbye, cruel
world!" Such strings look like Unicode constants, but, being ultimately
derived from some text editor or another, actually use only the ASCII and
Latinl code points (0020-007F and 00A0-O0FF) that correspond to the
Windows ANSI set.

The UNICODE_STRING and ANSI_STRING data structures both have the layout
depicted in Figure 3-14. The Buffer field of either structure points to a data area
elsewhere in memory that contains the string data. MaximumLength gives the length
of the buffer area, and Length provides the (current) length of the string without
regard to any null terminator that might be present. Both length fields are i bytes,
even for the UNICODE_STRING structure.

Figure 3-14. The UNICODE_STRING and ANSI_STRING structures.
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Table 3-7 lists the service functions that you can use for working with Unicode
and ANSI strings. I've listed them side by side because there’s a fair amount of dupli-
cation. I've also listed some functions from the standard C run-time library that are
available in kernel mode for manipulating regular C-style strings. The standard DDK
headers include declarations of these functions, and the libraries with which you link
drivers contain them, so there’s no particular reason not to use them even though
they’ve never been documented in the DDK as being available.

Operation ANSI String Function Unicode String Function
Length  stden wcslen
Concatenate strcat, strncat wcscat, wesncat,
RtlAppendUnicodeStringToString,
RtlAppendUnicodeToString
Copy strcpy, strnepy, WCSCPY, Wesnepy,
RtlCopyString RtlCopyUnicodeString
Reverse _strrev _wcsrev
Compare strcmp, strnemp, wcsemp, wesnemp, _wcesicmp,
_stricmp, _strnicmp, _wcsnicmp,
RtlCompareString, RtlCompareUnicodeString,
RtlEqualString RtlEqualUnicodeString,
RtlPrefixUnicodeString
Initialize _strset, _strnset, _wcsnset,
RtlInitAnsiString, RtlInitUnicodeString
RtlInitString
Search strchr, strrchr, wcschr, wesrchr, wesspn, wesstr
strspn, strstr
Uppet/ _strlwr, _strupr, _wcslwr, _wcsupr,
lowercase RtlUpperString RtlUpcaseUnicodeString
Character isdigit, islower, isprint, towlower, towupper,
isspace, isupper, RtlUpcaseUnicodeChar
isxdigit, tolower,
toupper,
RtlUpperChar
Format sprintf, vsprintf, swprintf, _snwprintf
' _snprintf, _vsnprintf .
String atoi, atol, _itoa _itow,
conversion RtlIntegerToUnicodeString,
RtlUnicodeStringTolnteger
Type RtlAnsiStringToUnicodeSize, RtlUnicodeStringToAnsiString
conversion RtlAnsiStringToUnicodeString
Memory RtlFreeAnsiString RtlFreeUnicodeString
release

Table 3-7. Functions for string manipulation.
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Many more RtlXxx functions are exported by the system DLLs, but I've listed
the ones for which the DDK header files (and the SDK headers they include) define
prototypes. These are the only ones we should use in drivers.

Allocating and Releasing String Buffers

I'm not going to describe the string manipulation functions in detail because the DDK
documentation does this perfectly well and you already know, based on your gen-
eral programming experience, how to put functions like this together to get your work
done. But I do want to discuss a problem that can rear up and bite you if you don’t
look out for it.

You often define UNICODE_STRING (or ANSI_STRING) structures as automatic
variables or as parts of your own device extension. The string buffers to which these
structures point usually occupy dynamically allocated memory, but you’ll sometimes
want to work with string constants, too. Keeping track of who owns the memory to
which a particular UNICODE_STRING or ANSI_STRING structure points can be a bit
of a problem. Consider the following fragment of a function:

UNICODE_STRING foo;
if (bArriving)
Rt1InitUnicodeString(&foo, L"Hello, world!");
else
Rt1AnsiStringToUnicodeString(&foo, "Goodbye, cruel world!", TRUE);

Rt1FreeUnicodeString(&foo); // € don't do this!

In one case, we initialize foo.Length, foo.MaximumLength, and foo.Buffer
to describe a wide character string constant in our driver. In another case, we ask the
system (by means of the TRUE third argument to RtlAnsiStringToUnicodeString) to
allocate memory for the Unicode translation of an ANSI string. In the first case, it’s a
mistake to call RtIFreeUnicodeString because it will unconditionally try to release
a memory block that’s part of our code or data. In the second case, it's mandatory to
call RtlFreeUnicodeString eventually if we want to avoid a memory leak.
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I've borrowed the term data blob from the world of database management to describe
a random collection of bytes that you want to manipulate somehow. Table 3-8 lists
the functions (including some from the standard run-time library) that you can call
in kernel mode for that purpose. Once again, 'm going to assume that you can fig-
ure out how to use these functions (based on their largely mnemonic names). I need
to point out a few nonobvious facts, however: '
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B The difference between a memory “copy” and a memory “move” is whether
the implementation can tolerate an overlap between the target and source.
A move operation is more general in that it works correctly whether or
not there’s an overlap. The copy operation is faster because it assumes it
can perform a left-to-right copy (which won’t work if the target overlaps
the right portion of the source).

B  The difference between a “byte” and a “memory” operation is in the granu-
larity of the operation. A byte operation is guaranteed to proceed byte by
byte. A memory operation can use larger chunks internally, provided all
the chunks add up to the specified number of bytes. If this distinction is
meaningless on a particular platform (as is true for x86 computers), the
byte operations are actually macro’ed to the corresponding memory opera-
tions. Thus, RtlCopyBytes is a different function than RtiCopyMemory on
an Alpha but is #define’d equal to RtlCopyMemory on a 32-bit Intel.

Service Function or Macro Description

memchr Find a byte in a blob

memcpy, RtlCopyBytes, Copy bytes, assuming no overlap

RtlCopyMemory

memmove, RtIMoveMemory Copy bytes when there might be an
overlap

memset, RtlFillBytes, Fill blob with given value

RtlFillMemory

memcmp, RtlCompareMemory, Compare one blob to another

RtlEqualMemory

memset, RtlZeroBytes, Zero-fill a blob

RtlZeroMemory

Table 3-8. Service functions for working with blobs of data.

MISCELLANEOUS PROGRAMMING TECHNIQUES

In the remainder of this chapter, I'm going to discuss some miscellaneous topics that
might be useful in various parts of your driver. I'll begin by describing how you access
the registry database, which is where you can find various configuration and con-
trol information that might affect your code or your hardware. I'll go on to describe
how you access disk files and other named devices. A few words will suffice to
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describe how you can perform floating-point calculations in a WDM driver. Finally,
I'll describe a few of the features you can embed in your driver to make it easier to
debug your driver in the unlikely event (©) it shouldn’t work correctly the first time
you try it out.

Accessing the Registry
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Windows NT and Windows 98 record configuration and other important information
in a database called the registry. WDM drivers can call the functions listed in Table 3-9
to access the registry. If you've done user-mode programming involving registry
access, you might be able to guess how to use these functions in a driver. I found
the kernel-mode support functions sufficiently different, however, that I think it’s
worth describing how you might use them.

Service Function Description

IoOpenDeviceRegistryKey Open special key associated with a PDO

IoOpenDevicelnterfaceRegistryKey Open a registry key associated with a
registered device interface

RtlDeleteRegistryValue Delete a registry value
RtlQueryRegistryValues Read several values from the registry
RtlWriteRegistryValue Write a value to the registry
ZwClose Close handle to a Vregistry key
ZwCreateKey Create a registry key

ZwDeleteKey Delete a registry key
ZwEnumerateKey Enumerate subkeys
ZwEnumerateValueKey Enumerate values within a registry key
ZwFlushKey Commit registry changes to disk
ZwOpenKey Open a registry key

ZwQueryKey Get information about a registry key
ZwQueryValueKey Get a value within a registry key
ZwSetValueKey Set a value within a registry key

Table 3-9. Service functions for registry access.

In this section, I'll discuss, among other things, the ZwXxx family of routines
and RtlDeleteRegistryValue, which provide the basic registry functionality that suf-
fices for most WDM drivers.

Opening a Registry Key
Before you can interrogate values in the registry, you need to open the key that
contains them. You use ZwOpenKey to open an existing key. You use ZwCreateKey
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either to open an existing key or to create a new key. Either function requires you
to first initialize an OBJECT_ATTRIBUTES structure with the name of the key and
(perhaps) other information. The OBJECT_ATTRIBUTES structure has the following
declaration:

typedef struct _OBJECT_ATTRIBUTES {
ULONG Length;
HANDLE RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;
PVOID SecurityDescriptor;
PVOID SecurityQualityOfService;
} OBJECT_ATTRIBUTES;

Rather than initialize an instance of this structure by hand, it’s easiest to use the
macro InitializeObjectAttributes, which 'm about to show you.

Suppose, for example, that we wanted to open the service key for our driver.
The I/O Manager gives us the name of this key as a parameter to DriverEntry. So,
we could write code like the following:

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath)
{

OBJECT_ATTRIBUTES oa;
InitializeObjectAttributes(&oa, RegistryPath, @, NULL, NULL);
HANDLE hkey;
status = ZwOpenKey(&hkey, KEY_READ, &oa);
if (NT_SUCCESS(status))
{

ZwClose(hkey);
}

}

1. We're initializing the object attributes structure with the registry pathname
supplied to us by the I/O Manager and with a NULL security descriptor.
ZwOpenKey will ignore the security descriptor anyway—you can specify
security attributes only when you create a key for the first time.

2. ZwOpenKey will open the key for reading and store the resulting handle
in our hkey variable.

3. ZwcClose is a generic routine for closing a handle to a kernel-mode ob-
ject. Here, we use it to close the handle we have to the registry key.
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Even though we often refer to the registry as being a database, it doesn’t have
all of the attributes that have come to be associated with real databases. It doesn’t
allow for committing or rolling back changes, for example. Furthermore, the access
rights you specify when you open a key (KEY_READ in the previous example) are
for security checking rather than for the prevention of incompatible sharing. That is,
two different processes can have the same key open after specifying write access (for
example). The system does guard against destructive writes that occur simultaneously
with reads, however, and it does guarantee that a key won’t be deleted while some-
one has an open handle to it.

Other Ways to Open Registry Keys
In addition to ZwOpenKey, Windows 2000 provides two other functions for opening
registry keys.

IoOpenDeviceRegistryKey allows you to open one of the special registry keys
associated with a device object:

HANDLE hkey;
status = IoOpenDeviceRegistryKey(pdo, flag, access, &hkey);

where pdo is the address of the physical device object (PDO) at the bottom of your
particular driver stack, flag is an indicator for which special key you want to open
(see Table 3-10), and access is an access mask such as KEY_READ.

Flag Value Selected Registry Key

PLUGPLAY_REGKEY_DEVICE  The hardware (instance) subkey of the
Enum key

PLUGPLAY_REGKEY_DRIVER  The software (service) key

Table 3-10. Registry key codes for ToOpenDeviceRegistryKey.

IoOpenDevicelnterfaceRegistryKey opens the key associated with an in-
stance of a registered device interface:

HANDLE hkey;
status = IoOpenDevicelnterfaceRegistryKey(linkname, access, &hkey);

where linkname is the symbolic link name of the registered interface and access is
an access mask like KEY_READ.

The interface registry key is a subkey of HKLM\System\ CurrentControlSet\
Control\DeviceClasses that persists from one session to the next. It's a good place
to store parameter information that you want to share with user-mode programs,
because user-mode code can call SetupDiOpenDevicelnterfaceRegKey to gain
access to the same key.
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In Chapter 12, “Installing Device Drivers,” I'll discuss how your installation script
can insert values into the hardware and interface keys, and how application programs
can access these values. '

Getting and Setting Values

Usually, you open a registry key because you want to retrieve a value from the data-
base. The basic function you use for that purpose is ZwQueryValueKey. For example,
to retrieve the ImagePath value in the driver’s service key—I don’t actually know
why you’d want to know this, but that’s not my department—you could use the fol-
lowing code: '

UNICODE_STRING valname;
"Rt1InitUnicodeString(&valname, L"ImagePath");

size = 0;

status = ZwQueryValueKey(hkey, &valname, KeyValuePartiallnformation,
NULL, 0, &size);

if (status == STATUS_OBJECT_NOT_FOUND || size == @)
<handle error>;

PKEY_VALUE_PARTIAL_INFORMATION vpip = (PKEY_VALUE_PARTIAL_INFORMATION)
ExAllocatePool(PagedPool, size);

if (lvpip)
<handle error>;

status = ZwQueryValueKey(hkey, &valname, KeyValuePartialInformation,
vpip, size, &size);

if (INT_SUCCESS(status))
<handle error>;

<do something with vpip->Data>

ExFreePool(vpip);

Here, we make two calls to ZwQueryValueKey. The purpose of the first call is
to determine how much space we need to allocate for the KEY_VALUE_PARTIAL_
INFORMATION structure we're trying to retrieve. The second call retrieves the infor-
mation. I left the error checking in this code fragment because the errors didn’t work
out in practice the way I expected them to. In particular, I initially guessed that the
first call to ZwQueryValueKey would return STATUS_BUFFER_TOO_SMALL if I passed
it a NULL buffer pointer. It didn’t do that, though. The important failure code is
STATUS_OBJECT_NAME_NOT_FOUND, which indicates that the value doesn’t actu-
ally exist. Hence, I test for that value only. If there’s some other error that prevents
ZwQueryValueKey from working, the second call will uncover it.

The so-called “partial” information structure you retrieve in this way contains
the value’s data and a description of its data type:

typedef struct _KEY_VALUE_PARTIAL_INFORMATION {
ULONG  Titlelndex;
ULONG  Type;

(continued)
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ULONG Datalength;
UCHAR  Data[l];
} KEY_VALUE_PARTIAL_INFORMATION,
#*PKEY_VALUE_PARTIAL_INFORMATION;

Type is one of the registry data types listed in Table 3-11. (Additional data types are
possible but not interesting to device drivers.) DataLength is the length of the data
value, and Data is the data itself. TitleIndex has no relevance to drivers. Here are
some useful facts to know about the various data types:

B REG_DWORD is a 32-bit unsigned integer in whatever format (big-endian
or little-endian) is natural for the platform.

B REG_SZ describes a null-terminated Unicode string value. The null termi-
nator is included in the DataLength count.

B Toexpand a REG_EXPAND_SZ value by substituting environment variables,
you should use RtlQueryRegistryValues as your method of interrogat-
ing the registry. The internal routines for accessing environment variables
aren’t documented or exposed for use by drivers.

B RtQueryRegistryValues is also a good way to interrogate REG_MULTI_SZ
values, inr that it will call your designated callback routine once for each
of the potentially many strings.

NoTe RtlQueryRegistryValues is a complex routine for which I'm not provid-
ing an example here. The DDK samples contain several drivers that use it.

Data Type Constant Description
REG_BINARY Variable-length binary data
REG_DWORD Unsigned long integer in natural format for

the platform
REG_DWORD_BIG_ENDIAN Unsigned long integer in big-endian format

REG_EXPAND_SZ Null-terminated Unicode string containing
‘ %-escapes for environment variable names

REG_MULTI_SZ One or more null-terminated Unicode strings,
followed by an extra null
REG_SZ Null-terminated Unicode string

Table 3-11. Dypes of registry values useful to WDM drivers.

To set a registry value, you must have KEY_SET_VALUE access to the parent
key. I used KEY_READ earlier, which wouldn’t give you such access. You could use
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KEY_WRITE or KEY_ALL_ACCESS, although you thereby gain more than the neces-
sary permission. Then call ZwSetValueKey. For example:

Rt1InitUnicodeString(&valname, L"TheAnswer"); '
ULONG value = 42;
ZwSetValueKey(hkey, &valname, 0, REG_DWORD, &value, sizeof(value)):;

Deleting Subkeys or Values
To delete a value in an open key, you can use RtlDeleteRegistryValue in the fol-
lowing special way:

Rt1DeleteRegistryValue(RTL_REGISTRY_HANDLE, (PCWSTR) hkey, L"TheAnswer");

RtlDeleteRegistryValue is a general service function whose first argument can
designate one of several special places in the registry. When you use RTL_REGISTRY_
HANDILE, as I did in this example, you indicate that you've already got an open handle
to the key within which you want to delete a value. You specify the key (with a cast
to make the compiler happy) as the second argument. The third and final argument
is the null-terminated Unicode name of the value you want to delete. This is one time
when you don’t have to create a UNICODE_STRING structure to describe the string.

You can delete only those keys that you’ve opened with at least DELETE permis-
sion (which you get with KEY_ALL_ACCESS). You call ZwDeleteKey:

ZwDeleteKey(hkey):

The key lives on until all handles are closed, but subsequent attempts to open
a new handle to the key or to access the key by using any currently open handle
will fail with STATUS_KEY_DELETED. Since you have an open handle at this point,
you must be sure to call ZwClose sometime. (The DDK documentation entry for
ZwDeleteKey says the handle becomes invalid. It doesn’t—you must still close it by
calling ZwClose.)

Enumerating Subkeys or Values

A complicated activity you can carry out with an open registry key is to enumerate
the elements (subkeys and values) that the key contains. To do this, you’ll first call
ZwQueryKey to determine a few facts about the subkeys and values, such as their
number, the length of the largest name, and so on. ZwQueryKey has an argument
that indicates which of three types of information you want to retrieve about the key.
These types are named basic, node, and full. To prepare for an enumeration, you’d
be interested first in the full information:

typedef struct _KEY_FULL_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG Titlelndex;
ULONG ClassOffset;

(continued)
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ULONG Classlength;
ULONG  SubKeys;
ULONG MaxNamelen;
ULONG MaxClasslen;
ULONG  Values;
ULONG MaxValueNamelLen;
ULONG MaxValueDatalen;
WCHAR  Class[1];
} KEY_FULL_INFORMATION, #*PKEY_FULL_INFORMATION;

This structure is actually of variable length, since Class[0] is just the first char-
acter of the class name. It’s customary to make one call to find out how big a buffer
you need to allocate and a second call to get the data, as follows:

ULONG size;

ZwQueryKey(hkey, KeyFullInformation, NULL, @, &size);

PKEY_FULL_INFORMATION fip = (PKEY_FULL_INFORMATION)
ExAllocatePool(PagedPool, size);

ZwQueryKey(hkey, 0, KeyFullInformation, bip, size, &size);

~ Were you now interested in the subkeys of your registry key, you could perform
the following loop calling ZwEnumerateKey:

for (ULONG i = 0; i < fip->SubKeys; ++i)
{
ZwEnumerateKey(hkey, i, KeyBasicInformation, NULL, O, &size):;
PKEY_BASIC_INFORMATION bip = (PKEY_BASIC_INFORMATION)
ExAllocatePool(PagedPool, size);
ZwEnumerateKey(hkey, i, KeyBasicInformation, bip, size, &size);
<do something with bip->Name>
ExFreePool(bip);
}

The key fact you discover about each subkey is its name, which shows up as
a counted Unicode string in the KEY_BASIC_INFORMATION structure you retrieve
inside the loop:

typedef struct _KEY_BASIC_INFORMATION {
LARGE_INTEGER LastWriteTime;
ULONG  Type;
ULONG  Namelength;
WCHAR  Name[1];
} KEY_BASIC_INFORMATION, #PKEY_BASIC_INFORMATION;

The name isn’t null-terminated; you must use the NameLength member of the struc-
ture to determine its length. Don’t forget that the length is in bytes! The name isn’t
the full registry path either: it’s the just the name of the subkey within whatever key
contains it. This is actually lucky, because you can easily open a subkey given its name
and an open handle to its parent key.
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To accomplish an enumeration of the values in an open key, employ the fol-
lowing method: ’

ULONG maxlen = fip->MaxValueNameLen +
sizeof (KEY_VALUE_BASIC_INFORMATION);
PKEY_VALUE_BASIC_INFORMATION vip = (PKEY_VALUE_BASIC_INFORMATION)
ExAllocatePool(PagedPool, maxlen);
for (ULONG i = 0; i < fip->Values; ++i)
{
ZwEnumerateValueKey(hkey, i, KeyValueBasicInformation, vip,
maxlen, &size);
<do something with vip->Name>
}
ExFreePool(vip);

Allocate space for the largest possible KEY_VALUE_BASIC_INFORMATION struc-
ture that you’ll ever retrieve based on the MaxValueNameLen member of the
KEY_FULL_INFORMATION structure. Inside the loop, you’ll want to do something
with the name of the value, which comes to you as a counted Unicode string in this
structure:

typedef struct _KEY_VALUE_BASIC_INFORMATION {
ULONG  Titlelndex;
ULONG  Type;
ULONG Namelength;
WCHAR = Name[1l];
} KEY_VALUE_BASIC_INFORMATION, *PKEY_VALUE_BASIC_INFORMATION;

Once again, having the name of the value and an open handle to its parent key is
just what you need to retrieve the value, as shown in the previous section.

There are variations on ZwQueryKey and on these two enumeration functions
that I haven’t discussed. You can, for example, obtain full information about a
subkey when you call ZwEnumerateKey. I showed you only how to get the basic
information that includes the name. You can retrieve data values only, or names
Pplus data values, from ZwEnumerateValueKey. I showed you only how to get the
name of a value.

Accessing Files

It's sometimes useful to be able to read and write regular disk files from inside a WDM
driver. Perhaps you need to download a large amount of microcode to your hard-
ware, or perhaps you need to create your own extensive log of information for some
purpose. There’s a set of ZwXxx routines to help you do these things.

The first step in accessing a disk file is to open a handle by calling ZwCreateFile. -
The full description of this function in the DDK is relatively complex because of all the
ways in which it can be used. 'm going to show you two simple scenarios, however,
that are useful if you just want to read or write a file whose name you already know.
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Opening an Existing File for Reading
To open an existing file so that you can read it, follow this example:

NTSTATUS status;

OBJECT_ATTRIBUTES oa;

I0_STATUS_BLOCK iostatus;

HANDLE hfile; // € the output from this process
PUNICODE_STRING pathname; // € you've been given this

InitializeObjectAttributes(&oa, pathname, OBJ_CASE_INSENSITIVE,
NULL, NULL);

status = ZwCreateFile(&hfile, GENERIC_READ, &oa, &iostatus,
NULL, O, FILE_SHARE_READ, FILE_OPEN,
FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0);

Creating or Rewriting a File
To create a new file, or to open and truncate to zero length an existing file, replace
the call to ZwCreateFile in the previous fragment with this one:

status = ZwCreateFile(&hfile, GENERIC_WRITE, &oa, &iostatus,
NULL, FILE_ATTRIBUTE_NORMAL, @, FILE_OVERWRITE_IF,
FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0);

In these fragments, we set up an Object Attributes structure whose main pur-
pose is to point to the full pathname of the file we’re about to open. We specify the
OBJ_CASE_INSENSITIVE attribute because the Win32 file system model does not treat
case as significant in a pathname. Then we call ZwCreateFile to open the handle.

The first argument to ZwCreateFile (&hfile) is the address of the HANDLE

~ variable where ZwCreateFile will return the handle it creates. The second argument
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(GENERIC_READ or GENERIC_WRITE) specifies the access we need to the handle
to perform either reading or writing. The third argument (&oa) is the address of the
OBJECT_ATTRIBUTES structure containing the name of the file. The fourth argument
points to an IO_STATUS_BLOCK that will receive a disposition code indicating how
ZwCreateFile actually implemented the operation we asked it to perform. When we
open a read-only handle to an existing file, we expect the Status field of this struc-
ture to end up equal to FILE_OPENED. When we open a write-only handle, we expect
it to end up equal to FILE_OVERWRITTEN or FILE_CREATED, depending on whether
the file did or did not already exist. The fifth argument (NULL) can be a pointer to
a 64-bit integer that specifies the initial allocation size for the file. This argument
matters only when you create or overwrite a file, and omitting it as I did here means
that the file grows from zero length as you write data. The sixth argument (0 or
FILE_ATTRIBUTE_NORMAL) specifies file attribute flags for any new file that you
happen to create. The seventh argument (FILE_SHARE_READ or 0) specifies how
the file can be shared by other threads. If you're opening for input, you can probably
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tolerate having other threads read the file simultaneously. If you're opening for sequen-
tial output, you probably don’t want other threads trying to access the file at all.

The eighth argument (FILE_OPEN or FILE_OVERWRITE_IF) indicates how to
proceed if the file either already exists or doesn't. In the read-only case, I specified
FILE_OPEN because I expected to open an existing file and wanted a failure if the
file didn’t exist. In the write-only case, I specified FILE_OVERWRITE_IF because I
wanted to overwrite any existing file by the same name or create a brand new file
as necessary. The ninth argument (FILE_SYNCHRONOUS_IO_NONALERT) specifies
additional flag bits to govern the open operation and the subsequent use of the handle.
In this case, I indicated that I'm going to be doing synchronous I/O operations
(wherein I expect the read or write function not to return until the I/O is complete).
The tenth and eleventh arguments (NULL and 0) are, respectively, an optional pointer
to a buffer for extended attributes and the length of that buffer.

You expect ZwCreateFile to return STATUS_SUCCESS and to set the handle vari-
able. You can then carry out whatever read or write operations you please by calling
ZwReadFile or ZwWriteFile, and then you close the handle by calling ZwClose:

ZwClose(hfile);

You can perform synchronous or asynchronous reads and writes, depending
on the flags you specified to ZwCreateFile. In the simple scenarios I've outlined, you
would do synchronous operations that don’t return until they’ve completed. For
example:

PVOID buffer;

ULONG bufsize;

status = ZwReadFile(hfile, NULL, NULL, NULL, &iostatus, buffer,
bufsize, NULL, NULL);

-or-

status = ZwWriteFile(hfile, NULL, NULL, NULL, &iostatus, buffer,
bufsize, NULL, NULL);

These calls are analogous to a nonoverlapped ReadFile or WriteFile call from user
mode. When the function returns, you might be interested in iostatus.Information,
which will hold the number of bytes transferred by the operation.

If you plan to read an entire file into a memory buffer, you would probably want
to call ZwQueryInformationFile to determine the total length of the file:

FILE_STANDARD_INFORMATION si;

ZwQueryInformationFile(hfile, &iostatus, &si, sizeof(si),
FileStandardInformation);

ULONG length = si.EndOfFile.LowPart;
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TIMING OF FILE OPERATIONS

You'll be likely to want to read a disk file in a WDM driver while you’re initializing
your device in response to an IRP_MN_START_DEVICE request. (See Chapter 6.)
Depending on where your device falls in the initialization sequence, you might
or might not have access to files using normal pathnames like \??\C:\dir\file.ext.
To be safe, put your data files into some directory below the system root di-
rectory and use a filename like \SystemRoot\dir\file.ext. The SystemRoot branch
of the namespace is always accessible, since the operating system has to be able
to read disk files to start up.

Floating-Point Calculations

126

There are times when integer arithmetic just isn’t sufficient to get your job done and
you need to perform floating-point calculations. On an Intel processor, the math co-
processor is also where Multimedia Extensions (MMX) instructions execute. His-
torically, there have been two problems with drivers carrying out floating-point
calculations. The operating system will emulate a missing coprocessor, but the emu-
lation is expensive and normally requires a processor exception to trigger it. Handling
exceptions, especially at elevated IRQLS, can be difficult in kernel mode. Additionally,
on computers that have hardware coprocessors, the CPU architecture might require
a separate, expensive operation to save and restore the coprocessor state during con-
text switches. Therefore, conventional wisdom has forbidden kernel-mode drivers
from using floating-point calculations.

Windows 2000 and Windows 98 provide a way around past dlfﬁcultles First of
all, a system thread—see Chapter 9—running at or below DISPATCH_LEVEL is free to
use the math coprocessor all it wants. In addition, a driver running in an arbitrary
thread context at or below DISPATCH_LEVEL can use these two system calls to bracket
its use of the math coprocessor:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);
KFLOATING_SAVE FloatSave;
NTSTATUS status = KeSaveFloatingPointState(&FloatSave);
if (NT_SUCCESS(status))

{

KeRestoreFloatingPointState(&FloatSave);
}

These calls, which must be paired as shown here, save and restore the “nonvola-
tile” state of the math coprocessor for the current CPU—that is, all the state informa-
tion that persists beyond a single operation. This state information includes registers,
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control words, and so on. In some CPU architectures, no actual work might occur
because the architecture inherently allows any process to perform floating-point
operations. In other architectures, the work involved in saving and restoring state
information can be quite substantial. For this reason, Microsoft recommends that you
avoid using floating-point calculations in a kernel-mode driver unless necessary.

What happens when you call KeSaveFloatingPointState depends, as I said,
on the CPU architecture. To give you an idea, on an Intel-architecture processor, this
function saves the entire floating-point state by executing an FSAVE instruction. It can
save the state information either in a context block associated with the current thread
or in an area of dynamically allocated memory. It uses the opaque FloatSave area to
record “meta” information about the saved state to allow KeRestoreFloatingPointState
to correctly restore the state later.

KeSaveFloatingPointState will fail with STATUS_ILLEGAL_FLOAT CONTEXT if
there’s no real coprocessor present. (All CPUs of a multi-CPU computer must have
coprocessors, or else none of them may, by the way.) Your driver will therefore need
alternative code to carry out whatever calculations you had in mind, or else you’ll
want to decline to load (by failing DriverEntry) if the computer doesn’t have a
COProCessor.

Making Debugging Easier

My drivers always have bugs. Maybe you’re as unlucky as I am. If so, you’'ll find
yourself spending lots of time with a debugger trying to figure out what your code
is doing or not doing correctly or incorrectly. I won’t discuss the potentially divisive
subject of which debugger is best or the noncontroversial but artistic subject of how
to debug a driver. But you can do some things in your driver code that will make
your life easier.

When you build your driver, you select either the “checked” or the “free” build
environment. (Readers may now thank me for not making a bad joke about how the
opposite of “checked” ought really to be named “striped” or something like that.) In
the checked build environment, the preprocessor symbol DBG equals 1, whereas it
equals 0 in the free build environment. So, one of the things you can do in your own
code is to provide additional code that will take effect only in the checked build:

#if DBG
<extra debugging code>
ffendif

One of the most useful debugging techniques ever invented is to simply print
messages from time to time. I used to do this when I was first learning to program
(in FORTRAN on a computer made out of vacuum tubes, no less), and I still do it
today. DbgPrint is a kernel-mode service routine you can call to display a formatted
message in whatever output window your debugger provides. Another way to see
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the output from DbgPrint calls is to download the DbgView utility from bttp://
www.sysinternals.com. Instead of directly referencing DbgPrint in your code, it’s often
easier to use the macro named KdPrint, which calls DbgPrint if DBG is true and
generates no code at all if DBG is false:

KdPrint(("KeReadProgrammersMind failed with code %X\n", status));

You use two sets of parentheses with KdPrint because of the way it’s defined. The first

argument is a string with %-escapes where you want to substitute values. The second,

third, and following arguments provide the values to go with the %-escapes. The

macro expands into a call to DbgPrint, which internally uses the standard run-time

library routine _vsnprintf to format the string. You can, therefore, use the same set

of %-escape codes that are available to application programs that call this routine.
Another useful debugging technique relies on the ASSERT macro:

ASSERT(1 + 1 == 2);

In the checked build of your driver, ASSERT generates code to evaluate the Boolean
expression. If the expression is false, ASSERT will try to halt execution in the debugger
so that you can see what’s going on. If the expression is true, your program continues
executing normally.

If you debug with Soft-Ice/W from Compuware (formerly Nu-Mega Technologies,
Inc.), the ASSERT macro in the DDK isn’t as useful as it might be. First of all, it relies
on calling RtlAssert, which does nothing in the free version of the operating sys-
tem. (You should test your driver in the checked build, but you can debug it perfectly
well in the free build.) Second, if it does generate a debug exception, it does so inside
RtlAssert rather than in the execution context of your code, which makes it more
difficult for you to inspect local variables. You can replace the DDK ASSERT macro
(for x86 only, which is the only place Soft-Ice/W currently runs anyway) to overcome
these problems as follows:

f#if DBG && defined(_X86_)

#undef ASSERT
ffdefine ASSERT(e) if(!(e)){DbgPrint("Assertion failure in "\

__J)FILE__) ", line %d: " #e "\n", __LINE__);\
_asm int 1\
}

f#endif

Also remember to issue the Soft-Ice/W command ilhere on so that the INT 1
traps from your ASSERT macros actually cause the debugger to halt. A possible dis-
advantage to replacing ASSERT like this is that you will bugcheck even in the free
build of the operating system if you’re not running a debugger when one of these
ASSERTS fails.
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WINDOWS 98 COMPATIBILITY NOTES

The ZwXxx routines for accessing disk files don’t work in the retail release of Win-
dows 98 because of two basic problems—one from the architecture of Windows and
the other from what looks like an ordinary bug.

The first problem with file access has to do with the order in which Windows 98
initializes various virtual device drivers. The Configuration Manager (CONFIGMG.VXD)
initializes before the Installable File System Manager (IFSMGR.VXD). WDM drivers for
devices that exist at startup time receive their IRP_MN_START_DEVICE requests during
CONFIGMG?s initialization phase. But, since IFSMGR hasn't initialized at that point,
it’s not possible to perform file I/O operations by using ZwCreateFile and the other
functions discussed earlier in the chapter. Furthermore, there’s no way for a WDM
driver to defer handling IRP_MN_START_DEVICE until file system functionality becomes
available. If you don’t have a debugger like Soft-Ice/W running, the symptom you will
see is a blue screen complaining of a Windows Protection Error while initializing
CONFIGMG.

The second and more crippling problem with file access has to do with the
validity checking that ZwReadFile, ZwWriteFile, and ZwQueryInformationFile do on
their arguments. If you supply an IO_STATUS_BLOCK in kernel-mode memory (and
there’s basically no way to do anything else), these functions probe a virtual address
that doesn’t exist. The resulting page fault gets caught by a structured exception
handler and results in you getting back STATUS_ACCESS_VIOLATION even when
you've done everything right. There is no workaround for this ‘problem in the
July 1998 retail release of Windows 98.

The FILEIO sample on the companion disc illustrates a way past these Windows 98
difficulties. FILEIO makes a run-time decision whether to call the ZwXxx functions
or instead to call VxD services to perform file operations.
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Synchronization

Microsoft Windows 2000 is a multitasking operating system that can run in a sym-
metric multiprocessor environment. It’s not my purpose here to provide a rigorous
description of the multitasking capabilities of Microsoft Windows NT; one good place
to get more information is David Solomon’s Inside Windows NT, Second Edition
(Microsoft Press, 1998). All we need to understand as driver writers is that our code
executes in the context of one thread or another (and the thread context can change
from one invocation of our code to another) and that the exigencies of multitasking
can yank control away from us at practically any moment. Furthermore, true simul-
taneous execution of multiple threads is possible on a multiprocessor machine. In
general, we need to assume two worst-case scenarios:

B The operating system can preempt any subroutine at any moment for an
arbitrarily long period of time, so we cannot be sure of completing criti-
cal tasks without interference or delay.

B Even if we take steps to prevent preemption, code executing simulta-
neously on another CPU in the same computer can interfere with our
code—it’s even possible that the exact same set of instructions belonging
to one of our programs could be executing in parallel in the context of
two different threads.

Windows NT allows you to solve these general synchronization problems by
using the interrupt request level IRQL) priority scheme and by claiming and releas-
ing spin locks around critical code sections. IRQL avoids destructive preemption on
a single CPU, while spin locks forestall interference among CPUs.
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AN ARCHETYPAL SYNCHRONIZATION PROBLEM
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A hackneyed example will motivate this discussion. Suppose your driver had a static
integer variable that you used for some purpose, say to count the number of 1/O
requests that were currently outstanding:

static LONG TActiveRequests;

Suppose further that you increment this variable when you receive a request
and decrement it when you later complete the request:

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp)
{
++1ActiveRequests;
... // process PNP request
--TActiveRequests;
}

I'm sure you recognize already that a counter like this one ought not to be a
static variable: it should be a member of your device extension so that each device
object has its own unique counter. Bear with me and pretend that your driver only
ever manages a single device. To make the example more meaningful, suppose fi-
nally that a function in your driver would be called when it was time to delete your
device object. You might want to defer the operation until no more requests were
outstanding, so you might insert a test of the counter:

NTSTATUS HandleRemoveDevice(PDEVICE_OBJECT fdo, PIRP Irp)
{
if (1ActiveRequests)
<wait for all requests to complete>
IoDeleteDevice(fdo);
}

This example describes a real problem, by the way, which we’ll tackle in Chap-
ter 6, “Plug and Play,” in our discussion of Plug and Play (PnP) requests. The I/O Manager
can try to remove one of our devices at a time when requests are active, and we need
to guard against that by keeping some sort of counter. I'll show you in Chapter 6 how
to use IoAcquireRemoveLock and some related functions to solve the problem.

A horrible synchronization problem lurks in the code fragments I just showed
you, but it becomes apparent only if you look behind the increment and decrement
operations inside DispatchPnp. On an x86 processor, the compiler might implement
them using these instructions:

‘s ++1ActiveRequests;

mov eax, 1ActiveRequests
add eax, 1
mov TActiveRequests, eax
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; --1ActiveRequests;
mov eax, 1ActiveRequests
sub eax, 1

mov TActiveRequests, eax

To expose the synchronization problem, let’s consider first what might go wrong
on a single CPU. Imagine two threads that are both trying to advance through
DispatchPnp at roughly the same time. We know they’re not both executing truly si-
multaneously because we have only a single CPU for them to share. But imagine that
one of the threads is executing near the end of the function and manages to load the
current contents of JActiveRequests into the EAX register just before it gets preempted
by the other thread. Suppose that lActiveRequests equals 2 at that instant. As part of
the thread switch, the operating system saves the EAX register (containing the value
2) as part of the outgoing thread’s context image somewhere in main memory.

Now imagine that the other thread manages to get past the incrementing code
at the beginning of DispatchPnp. It will increment lActiveRequests from 2 to- 3 (be-
cause the first thread never got to update the variable). If this other thread gets pre-
empted by the first thread, the operating system will restore the first thread’s context,
which includes the value 2 in the EAX register. The first thread now proceeds to
subtract one from EAX and store the result back into lActiveRequests. At this point,
lActiveRequests contains the value 1, which is incorrect. Somewhere down the road,
we may prematurely delete our device object because we've effectively lost track of
one I/O request.

Solving this particular problem is very easy on an x86 computer—we just re-
place the load/add/store and load/subtract/store instruction sequences with atomic
instructions:

; ++1ActiveRequests;
inc TActiveRequests

; --TActiveRequests;
dec TActiveRequests

On an Intel x86, the INC and DEC instructions cannot be interrupted, so there
will never be a case where a thread could be preempted in the middle of updating
the counter. As it stands, though, this code still isn’t safe in a multiprocessor environ-
ment because INC and DEC are implemented in several microcode steps. It's pos-
sible for two different CPUs to be executing their microcode just slightly out of step
such that one of them ends up updating a stale value. The multi-CPU problem can
also be avoided in the x86 architecture by using a LOCK prefix:

; ++1ActiveRequests;
lTock inc TActiveRequests

; --1ActiveRequests;
lTock dec 1ActiveRequests
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The LOCK instruction prefix locks out all other CPUs while the microcode for
the current instruction executes, thereby guaranteeing data integrity.

Not all synchronization problems have such an easy solution, unfortunately. The
point of this example isn’t to demonstrate how to solve one simple problem on one
of the platforms where Windows NT runs, but rather to illustrate the two sources of
difficulty: preemption of one thread by another in the middle of a state change and
simultaneous execution of conflicting state-change operations. As we’ll see in the
remainder of this chapter, we can avoid preemption by using the IRQL priority
scheme, and we can prevent simultaneous execution by judiciously using spin locks.

INTERRUPT REQUEST LEVEL
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Windows NT assigns a priority level known as the interrupt request level to each
hardware interrupt and to a select few software events. IRQLs provide a synchroni-
zation method for activities on a single CPU based on the following rule:

Once a CPU is executing at an IRQL above PASSIVE_LEVEL, an activity on that
CPU can be preempted only by an activity that executes at a higher IRQL.

Figure 4-1 illustrates the range of IRQL values for the x86 platform. (In general,
the numeric values of IRQL depend on which platform you’re talking about.) User-
mode programs execute at PASSIVE_LEVEL and are therefore preemptable by any
activity that executes at an elevated IRQL. Many of the functions in a device driver
also execute at PASSIVE_LEVEL. The DriverEntry and AddDevice routines discussed
in Chapter 2, “Basic Structure of a WDM Driver,” are in this category, as are most of
the I/O request packet (IRP) dispatch routines that I'll discuss in ensuing chapters.

Certain common driver routines execute at DISPATCH_LEVEL, which is higher
than PASSIVE_LEVEL. These include the StartIo routine, deferred procedure call
(DPO) routines, and many others. What they have in common is a need to access fields
in the device object and device extension without interference from driver dispatch
routines and each other. When one of these routines is running, the rule stated ear-
lier guarantees that no thread can preempt it to execute a driver dispatch routine
because the dispatch routine runs at a lower IRQL. Furthermore, no thread could
preempt it to run another of these special routines because that other routine would
run at the same IRQL. The rule, once again, is that preemption is allowed to run only
an activity at a higher IRQL.

MoTe Dispatch routine and DISPATCH_LEVEL have unfortunately similar
names. Dispatch routines are so called because the I/O Manager dispatches I/O
requests to them. DISPATCH_LEVEL is so called because it's the IRQL at which
the kernel's thread dispatcher originally ran when deciding which thread to run
next. (The thread dispatcher now usually runs at SYNCH_LEVEL, if you care.)
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Figure 4-1. Interrupt request levels.

Between DISPATCH_LEVEL and PROFILE_LEVEL is room for various hardware
interrupt levels. In general, each device that generates interrupts has an IRQL that
defines its interrupt priority vis-a-vis other devices. A WDM driver discovers the IRQL
for its interrupt when it receives an IRP_MJ_PNP request with the minor function code
IRP_MN_START_DEVICE. The device’s interrupt level is one of the many items of con-
figuration information passed as a parameter to this request. We often refer to this
level as the device IRQL, or DIRQL for short. DIRQL is not a single request level. Rather,
it is the IRQL for the interrupt associated with whichever device is under discussion
at the time.

The other IRQL levels have meanings that sometimes depend on the particular
CPU architecture. Since those levels are used internally by the Windows NT kernel,
their meanings aren’t especially germane to the job of writing a device driver. The
purpose of APC_LEVEL, for example, is to allow the system to schedule an asynchro-
nous procedure call (APC), which I'll describe in detail later in this chapter, for a
particular thread without interference from some other thread on the same CPU.

Operations that occur at HIGH_LEVEL include taking a memory snapshot just prior
" to hibernating the computer, processing a bug check, handling a totally spurious
interrupt, and others. I'm not going to attempt to provide an exhaustive list here
because, as I said, you and I don'’t really need to know all the details.
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IRQL in Operation

To illustrate the importance of IRQL, refer to Figure 4-2, which illustrates a possible time
sequence of events on a single CPU. At the beginning of the sequence, the CPU is
executing at PASSIVE_LEVEL. At time t;, an interrupt arrives whose service routine
executes at IRQL—1, one of the levels between DISPATCH_LEVEL and PROFILE_LEVEL.
Then, at time t,, another interrupt arrives whose service routine executes at IRQL-2,
which is less than IRQL-1. Because of the preemption rule already discussed, the CPU
continues servicing the first interrupt. When the first interrupt service routine com-
pletes at time t,, it might request a DPC. DPC routines execute at DISPATCH_LEVEL.
Consequently, the highest priority pending activity is the service routine for the sec-
ond interrupt, which therefore executes next. When it finishes at t,, assuming noth-
ing else has occurred in the meantime, the DPC will run at DISPATCH_LEVEL. When
the DPC routine finishes at t;, IRQL can drop back to PASSIVE_LEVEL.

t1 12 t3 t 4 t5

IRQL-1

IRQL-2

DISPATCH_LEVEL

PASSIVE_LEVEL

Figure 4-2. Interrupt priority in action.

The Basic Synchronization Rule
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You can take advantage of IRQL’s synchronizing effects by following this rule:
Always access shared data at the same elevated IRQL.

In other words, whenever and wherever your code will access a data object that
it shares with some other code, make sure that you execute at some specified IRQL
above PASSIVE_LEVEL. Once above PASSIVE_LEVEL, the operating system won’t
allow preemption by another activity at the same IRQL, so you thereby forestall
potential interference. Following this rule isn’t sufficient to protect data on a multi-
processor machine, however, so you often need to take the additional precaution of
acquiring a spin lock, as described in “Spin Locks” later in this chapter. If you only
had to worry about operations on a single CPU, IRQL might be the only synchro-
nizing concept you’d need to use, but the reality is that all WDM drivers must be
designed to run on multiprocessor systems.
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IRQL Compared with Thread Priorities

Thread priority is a very different concept than IRQL. Thread priority controls the ac-
tions of the scheduler in deciding when to preempt running threads and what thread
to start running next. No thread switching occurs at or above DISPATCH_LEVEL,
however. Whatever thread is active at the time IRQL rises to DISPATCH_LEVEL re-
mains active at least until IRQL drops below DISPATCH_LEVEL. The only “priority”
that means anything at elevated IRQL is IRQL itself, and it controls which programs
can execute rather than the thread context within which they execute.

IRQL and Paging

One consequence of running at elevated IRQL is that the system becomes incapable
of servicing page faults. The rule this fact implies is simply stated:

Code executing at or above DISPATCH_LEVEL must not cause page faults.

One implication of this rule is that any of the subroutines in your driver that exe-
cute at or above DISPATCH_LEVEL must be in nonpaged memory. Furthermore, all the
data you access in such a subroutine must also be in nonpaged memory. Finally, as IRQL
rises, fewer and fewer kernel-mode support routines are available for your use.

The DDK documentation explicitly states the IRQL restrictions on support rou-
tines. For example, the entry for KeWaitForSingleObject indicates two restrictions:

1. The caller must be running at or below DISPATCH_LEVEL.

2. If a nonzero timeout period is specified in the call, the caller must be run-
ning strictly below DISPATCH_LEVEL.

Reading between the lines, what is being said here is this: if the call to
KeWaitForSingleObject might conceivably block for any period of time (that is, you've
specified a nonzero timeout), you must be below DISPATCH_LEVEL, where thread
blocking is permitted. If all you want to do is check to see if an event has been sig-
nalled, however, you can be at DISPATCH_LEVEL. You cannot call this routine at all
from an interrupt service routine or other routine running above DISPATCH_LEVEL.

Implicitly Controlling IRQL

Most of the time, the system calls the routines in your driver at the correct IRQL for
the activities you’re supposed to carry out. Although I haven’t discussed many of these
routines in detail, I want to give you an example of what I mean. Your first encoun-
ter with a new I/O request is when the I/O Manager calls one of your dispatch rou-
tines to process an IRP. The call occurs at PASSIVE_LEVEL because you might need
to block the calling thread and you might need to call any support routine at all. You
can’t block a thread at a higher IRQL, of course, and PASSIVE_LEVEL is the only level
at which there are no restrictions on the support routines you can call.
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If your dispatch routine queues the IRP by calling IoStartPacket, your next en-
counter with the request will be when the I/O Manager calls your Startlo routine. This
call occurs at DISPATCH_LEVEL because the system needs to access the queue of
I/O requests without interference from the other routines that are inserting and re-
moving IRPs from the queue. Remember the rule stated earlier: always access shared
data objects at the same (elevated) IRQL. Since every routine that accesses the IRP
queue does so at DISPATCH_LEVEL, it’s not possible (on a single CPU, that is) for
anyone to be interrupted in the middle of an operation on the queue.

Later on, your device might generate an interrupt, whereupon your interrupt
service routine will be called at DIRQL. It’s likely that some registers in your de-
vice can’t safely be shared. If you only access those registers at DIRQL, you can
be sure that no one can interfere with your interrupt service routine (ISR) on a single-
CPU computer. If other parts of your driver need to access these crucial hardware
registers, you would guarantee that those other parts execute only at DIRQL. The
KeSynchronizeExecution service function helps you enforce that rule, and I'll dis-
cuss it in Chapter 7, “Reading and Writing Data,” in connection with interrupt handling.

Still later, you might arrange to have a DPC routine called. DPC routines exe-
cute at DISPATCH_LEVEL because, among other things, they need to access your IRP
queue to remove the next request from a queue and pass it to your Startlo routine.
You call the IoStartNextPacket service routine to extract the next request from the
queue, and it must be called at DISPATCH_LEVEL. It might call your Startlo routine
before returning. Notice how neatly the IRQL requirements dovetail here: queue access,
the call to IoStartNextPacket, and the possible call to Startlo are all required to occur
at DISPATCH_LEVEL, and that’s the level at which the system calls the DPC routine.

Although it’s possible for you to explicitly control IRQL (and I'll explain how
in the next section), there’s seldom any reason to do so because of the correspondence
between your needs and the level at which the system calls you. Consequently, you
don’t need to get hung up on which IRQL you’re executing at from moment to mo-
ment: it’s almost surely the correct level for the work you’re supposed to do right then.

Explicitly Controlling IRQL
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When necessary, you can raise and subsequently lower the IRQL on the current pro-
cessor by calling KeRaiselrql and KeLowerlIrql. For example, from within a rou-
tine running at PASSIVE_LEVEL:

KIRQL oldirql; i
ASSERT (KeGetCurrentIrql() <= DISPATCH_LEVEL);
KeRaiseIrql(DISPATCH_LEVEL, &oldirql);

KeLowerIrql(oldirql);
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1. KIRQL is the typedef name for an integer that holds an IRQL value. We'll
need a variable to hold the current IRQL, so we declare it this way.

2. This ASSERT expresses a necessary condition for calling KeRaiselrql: the
new IRQL must be greater than or equal to the current level. If this rela-
tion isn’t true, KeRaiselrql will bugcheck (that is, report a fatal error via a
blue screen of death).

3. KeRaiselrql raises the current IRQL to the level specified by the first ar-
gument. It also saves the current IRQL at the location pointed to by the
second argument. In this example, we're raising IRQL to DISPATCH_LEVEL
and saving the current level in oldirql.

4. After executing whatever code we desired to execute at elevated IRQL, we
lower the request level back to its previous value by calling KeLowerlrql
and specifying the oldirgl value previously returned by KeRaiselrql.

The DDK documentation says that you must call KeLowerlrgl with the same
value returned by the immediately preceding call to KeRaiselrql. This is true in the
larger sense that you should restore IRQL to what it was before you raised it. Other-
wise, various assumptions made by code you call later or by the code which called
you can later turn out to be incorrect. This statement in the documentation isn’t true
in the exact sense, however, because the only rule that KeLowerlrql actually applies
is that the new IRQL must be less than or equal to the current one.

It’s a mistake (and a big one!) to lower IRQL below whatever it was when some
system routine called your driver, even if you raise it back before returning. Such a
break in synchronization might allow some activity to preempt you and interfere with
a data object that your caller assumed would remain inviolate.

' You can use a special routine if you want to raise the IRQL to DISPATCH_LEVEL:

KIRQL oldirql = KeRaiselrqlToDpclLevel();

KeLowerlIrql(oldirql);

The advantage of using this service call is that you don’t need to know or re-
member that DISPATCH_LEVEL is the level you're aiming for. In addition, since
KeRaiselrqlToDpcLevel returns the current IRQL as its value, this function is slightly
more convenient to use than KeRaiselrgl.

SPIN LOCKS

Since IRQL is a per-CPU concept, it doesn’t help you safeguard data against interfer-
ence by code running on another processor in the same multiprocessor computer.
A primitive object known as a spin lock serves that purpose. To acquire a spin lock,
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code on one CPU executes an atomic operation that tests and then sets some memory
variable in such a way that no other CPU can access the variable until the operation
completes. If the test indicates that the lock was previously free, the program con-
tinues. If the test indicates that the lock was previously busy, the program repeats
the test-and-set in a tight loop: it “spins.” Eventually the owner releases the lock by
resetting the variable, whereupon one of the waiting CPUSs’ test-and-set operations
will report the lock as free.

Two facts about spin locks are probably obvious but still worth stating. First of
all, if a CPU already owns a spin lock and tries to obtain it a second time, the CPU
will deadlock. No usage counter or owner identifier is associated with a spin lock;
the lock is either owned by somebody or not. If you try to acquire it when it’s owned,
you will wait until the owner releases it. If your CPU happens to already be the owner,
the code which would release the lock can never execute because you’re spinning
in a tight loop testing and setting the lock variable.

The second fact about spin locks is that no useful work occurs on a CPU that’s

* waiting for a spin lock. Therefore, to avoid harming performance, you need to mini-

mize the amount of work you do while holding a spin lock that some other CPU is
likely to want.

There’s another important fact about spin locks that’s not obvious but still pretty
important: you can only request a spin lock when you’re running at or below
DISPATCH_LEVEL, and the kernel will raise the IRQL to DISPATCH_LEVEL for the du-
ration of your ownership of the lock. Internally, the kernel is able to acquire spin locks
at an IRQL higher than DISPATCH_LEVEL, but you and I are unable to accomplish
that feat.

Working with Spin Locks
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To use a spin lock explicitly, allocate storage for a KSPIN_LOCK object in nonpaged
memory. Then call KelnitializeSpinLock to initialize the object. Later, while run-
ning at or below DISPATCH_LEVEL, acquire the lock, perform the work that needs
to be protected from interference, and then release the lock. For example, suppose
that your device extension contains a spin lock named QLock that you use for guard-
ing access to a special IRP queue you've set up. You’d initialize this lock in your
AddDevice function:

typedef struct _DEVICE_EXTENSION {

KSPIN_LOCK QLock;
} DEVICE_EXTENSION, #*PDEVICE_EXTENSION;
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NTSTATUS AddDevice(...)
{

PDEVICE_EXTENSION pdx = ...:
KeInitializeSpinLock(&pdx->QLock);

}

Elsewhere in your driver, say in the dispatch function for some type of IRP, you
could claim (and quickly release) the lock around some queue manipulation that you
needed to perform. Note that this function must be in nonpaged memory because it
executes for some period of time at an elevated IRQL.

NTSTATUS DispatchSomething(...)
{
KIRQL oldirql;
PDEVICE_EXTENSION pdx = ...;
KeAcquireSpinLock(&pdx->QLock, &oldirql);

KeReleaseSpinLock(&pdx->QLock, oldirql);
}

1. When KeAcquireSpinLock acquires the spin lock, it also raises IRQL to
DISPATCH_LEVEL and returns the current (that is, preacquisition) level to
us wherever the second argument points.

2. When KeReleaseSpinLock releases the spin lock, it also lowers IRQL
back to the value specified in the second argument.

If you know you’re already executing at DISPATCH_LEVEL, you can save a little
time by calling two special routines. This technique is appropriate, for example, in
DPC, Startlo, and other driver routines that execute at DISPATCH_LEVEL:

KeAcquireSpinLockAtDpcLevel (&pdx->QLock);

KeReleaseSpinLockFromDpcLevel (&pdx->QLock);

KERNEL DISPATCHER OBJECTS

The Windows NT kernel provides five types of synchronization objects that you can
use to control the flow of nonarbitrary threads. See Table 4-1 for a summary of these
kernel dispatcher object types and their uses. At any moment, one of these objects
is in one of two states: signalled or not-signalled. At times when it’s permissible
for you to block a thread in whose context you’re running, you can wait for one
or more objects to reach the signalled state by calling KeWaitForSingleObject or
KeWaitForMultipleObjects. The kernel also provides routines for initializing and
controlling the state of each of these objects.
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Object Data Type Description

Event KEVENT Blocks a thread until some other thread
detects that an event has occurred

Semaphore KSEMAPHORE Used instead of an event when an arbi-
trary number of wait calls can be satisfied

Mutex KMUTEX Excludes other threads. from executing a
particular section of code

Timer KTIMER Delays execution of a thread for some
period of time

Thread KTHREAD Blocks one thread until another thread
terminates

Table 4-1. Kernel dispatcher objects.

In the next few sections, I'll describe how to use the kernel dispatcher objects.
I'll start by explaining when you can block a thread by calling one of the wait primi-
tives, and then I'll discuss the support routines that you use with each of the object
types. I'll finish this section by discussing the related concepts of thread alerts and
asynchronous procedure call delivery. .

How and When You Can Block
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To understand when and how it’s permissible for a WDM driver to block a thread
on a kernel dispatcher object, you have to know some basic facts about threads. In
general, whatever thread was executing at the time of a software or hardware inter-
rupt continues to be the “current” thread while the kernel processes the interrupt.
We speak of executing kernel-mode code “in the context” of this current thread. In
response to interrupts of various kinds, the Windows NT scheduler might decide to
switch threads, of course, in which case a new thread becomes “current.”

We use the terms arbitrary thread context and nonarbitrary thread context to
describe the precision with which we can know the thread in whose context we’re
currently operating in a driver subroutine. If we know that we’re in the context of
the thread which initiated an I/O request, the context is not arbitrary. Most of the time,
however, a WDM driver can’t know this fact because chance usually controls which
thread is active when the interrupt occurs that results in the driver being called. When
applications issue I/O requests, they cause a transition from user mode to kernel
mode. The I/O Manager routines that create an IRP and send it to a driver dispatch
routine continue to operate in this nonarbitrary thread context, as does the first dis-
patch routine to see the IRP. We use the term bighest-level driver to describe the driver
whose dispatch routine first receives the IRP.

As a general rule, only the highest-level driver for a given device can know for
sure that it’s operating in a nonarbitrary thread context. This is because driver dispatch
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routines often put requests onto queues and return back to their callers. Queued re-
quests are then removed from their queues and forwarded to lower-level drivers from
within callback routines that execute later. Once a dispatch routine pends a request,
all subsequent processing of that request must occur in arbitrary thread context.

Having explained these facts about thread context, we can state a simple rule
about when it's okay to block a thread:

Block only the thread that originated the request you’re working on.

To follow this rule, you generally have to be the highest-level driver for the
device that’s getting sent the IRP. One important exception occurs for requests like
IRP_MN_START_DEVICE—see Chapter 6—that all drivers process in a synchronous
way. That is, drivers don’t queue or pend certain requests. When you receive one of
these requests, you can trace the call/return stack directly back to the originator of
the request. As we’'ll see in Chapter 6, it’s not only okay for you to block the thread
in which you process these requests, but blockmg and waiting is the prescribed way
to handle them.

One more rule should be obvious from the fact that thread switching doesn’t
occur at elevated IRQL:

You can'’t block a thread if you're executing at or above DISPATCH_LEVEL.

As a practical matter, this rule means that you must be in your DriverEntry or
AddDevice function to block the current thread, or else in a driver dispatch function.
All of ‘these functions execute at PASSIVE_LEVEL. I'm hard-pressed to think of why
you might need to block to finish DriverEntry or AddDevice, even, because those
functions merely initialize data structures for downstream use.

Waiting on a Single Dispatcher Object
You call KeWaitForSingleObject as illustrated in the following example:

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL);

LARGE_INTEGER timeout;

NTSTATUS status = KeWaitForSingleObject(object, WaitReason,
WaitMode, Alertable, &timeout);

As suggested by the ASSERT, you must be executmg at or below DISPATCH_LEVEL
to even call this service routine.

In this call, object points to the object on which you wish to wait. While this
argument is typed as a PVOID, it should be a pointer to one of the dispatcher ob-
jects listed in Table 4-1. The object must be in nonpaged memory—for example, in
a device extension structure or other data area allocated from the nonpaged pool.
For most purposes, the execution stack can be considered nonpaged.
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WaitReason is a purely advisory value chosen from the KWAIT_REASON enu-

- meration. No code in the kernel actually cares what value you supply here, so long

as you don’t specify WrQueue. (Internally, scheduler code bases some decisions on
whether a thread is currently blocked for this “reason.”) The reason a thread is blocked
is saved in an opaque data structure, though. If you knew more about that data struc-
ture and were trying to debug a deadlock of some kind, you could perhaps gain clues
from the reason code. The bottom line: always specify Executive for this parameter;
there’s no reason to say anything else.

WaitMode is one of the two values of the MODE enumeration: KernelMode
or UserMode. Alertable is a simple Boolean value. Unlike WaitReason, these param-
eters do make a difference to the way the system behaves, by controlling whether
the wait can be terminated early in order to deliver asynchronous procedure calls of
various kinds. I'll explain these interactions in more detail in “Thread Alerts and APCs”
later in this chapter. Waiting in user mode also authorizes the Memory Manager to
swap your thread’s kernel-mode stack out. You'll see examples in this book and else-
where where drivers create event objects, for instance, as automatic variables. A bug
check would result if some other thread were to call KeSetEvent at elevated IRQL
at a time when the event object was absent from memory. The bottom line: you should
probably always wait in KernelMode and specify FALSE for the alertable parameter.

The last parameter to KeWaitForSingleObject is the address of a 64-bit timeout
value, expressed in 100-nanosecond units. A positive number for the timeout is an
absolute timestamp relative to the same January 1, 1601, epoch of the system clock.
You can determine the current time by calling KeQuerySystemTime. A negative
number is an interval relative to the current time. If you specify an absolute time, a
subsequent change to the system clock alters the duration of the timeout you might
experience. That is, the timeout doesn’t expire until the system clock equals or exceeds
whatever absolute value you specify. In contrast, if you specify a relative timeout, the
duration of the timeout you experience is unaffected by changes in the system clock.

WHY JANUARY 1, 1601?

Years ago when I was first learning the Win32 AP, I was bemused by the choice
of January 1, 1601, as the origin for the timestamps in Windows NT. I under-
stood the reason for this choice when I had occasion to write a set of conver-
sion routines. Everyone knows that years divisible by four are leap years. Many
people know that century years (such as 1900) are exceptions—they’re not leap
years even though they’re divisible by 4. A few people know that every fourth
century year (such as 1600 and 2000) is an exception to the exception—they are
leap years. January 1, 1601 was the start of a 400-year cycle that ends in a leap

(continued)
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continued

year. If you base timestamps on this origin, it’s possible to write programs that
convert a Windows NT timestamp into a conventional representation of the date
(and vice versa) without doing any jumps.

Specifying a zero timeout causes KeWaitForSingleObject to return immediately
with a status code indicating whether the object is in the signalled state. If you re exe-
cuting at DISPATCH_LEVEL, you must specify a zero timeout because blocking is not
allowed. Each kernel dispatcher object offers a KeReadStateXxx service function that
allows you to determine the state of the object. Reading the state is not completely
equivalent to waiting for zero time, however: when KeWaitForSingleObject discovers
that the wait is satisfied, it performs the side effects that the particular object requires.
In contrast, reading the state of the object does not perform the side effects, even if the
object is already signalled and a wait would be satisfied if it were requested right now.

Specifying a NULL pointer for the timeout parameter is okay and indicates an
infinite wait.

The return value indicates one of several possible results. STATUS_SUCCESS is
the result you expect and indicates that the wait was satisfied. That'is, either the object
was in the signalled state when you made the call to KeWaitForSingleObject, or else
the object was in the not-signalled state and later became signalled. When the wait
is satisfied in this way, there may be side effects that need to be performed on the
object. The nature of these side effects depends on the type of the object, and I'll
explain them later in this chapter in connection with discussing each type of object.
(For example, a synchronization type of event will be reset after your wait is satisfied.)

A return value of STATUS_TIMEOUT indicates that the specified timeout oc-
curred without the object reaching the signalled state. If you specify a zero timeout,
KeWaitForSingleObject returns immediately with either this code (indicating that the
object is not-signalled) or STATUS_SUCCESS (indicating that the object is signalled).
This return value is not possible if you specify a NULL timeout parameter pointer,
because you thereby request an infinite wait.

Two other return values are possible. STATUS_ALERTED and STATUS_USER_APC
mean that the wait has terminated without the object having been signalled because
the thread has received an alert or a user-mode APC, respectively. I'll discuss these
concepts a bit further on in “Thread Alerts and APCs.”

Waiting on Multiple Dispatcher Objects

KeWaitForMultipleObjects is a companion function to KeWaitForSingleObject that
you use when you want to wait for one or all of several dispatcher objects simulta-
neously. Call this function as in the example at the top of the following page.
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ASSERT (KeGetCurrentIrql() <= DISPATCH_LEVEL);

LARGE_INTEGER timeout;

NTSTATUS status = KeWaitForMultipleObjects(count, objects,
WaitType, WaitReason, WaitMode, Alertable, &timeout,waitblocks);

Here, objects is the address of an array of pointers to dispatcher objects, and
count is the number of pointers in the array. The count must be less than or equal
to the value MAXIMUM_WAIT_OBJECTS, which currently equals 64. The array, as well
as each of the objects to which the elements of the array point, must be in nonpaged
memory. WaitType is one of the enumeration values WaitAll or WaitAny and specifies
whether you want to wait until all of the objects are simultaneously in the signalled
state or whether, instead, you want to wait until any one of the objects is signalled.

The waitblocks argument points to an array of KWAIT_BLOCK structures that
the kernel will use to administer the wait operation. You don’t need to initialize these
structures in any way—the kernel just needs to know where the storage is for the
group of wait blocks that it will use to record the status of each of the objects during
the pendency of the wait. If you're waiting for a small number of objects (specifically,
a number no bigger than THREAD_WAIT_OBJECTS, which currently equals 3), you
can supply NULL for this parameter. If you supply NULL, KeWaitForMultipleObjects
uses a preallocated array of wait blocks that lives in the thread object. If you’re waiting
for more objects than this, you must provide nonpaged memory that’s at least count
* sizeof(KWAIT_BLOCK) bytes in length.

The remaining arguments to KeWaitForMultipleObjects are the same as the cor-
responding arguments to KeWaitForSingleObject, and most return codes have the
same meaning.

If you specify WaitAll, the return value STATUS_SUCCESS indicates that all the
objects managed to reach the signalled state simultaneously. If you specify WaitAny,
the return value is numerically equal to the objects array index of the single object
that satisfied the wait. If more than one of the objects happens to be signalled, you’ll
be told about one of them—maybe the lowest numbered of all the ones that are
signalled at that moment, but maybe some other one. You can think of this value being
STATUS_WAIT_O plus the array index. You can perform the usual NT_SUCCESS test
of the returned status before extracting the array index from the status code:

NTSTATUS status = KeWaitForMultipleObjects(...);
if (NT_SUCCESS(status))
-
ULONG iSignalled = (ULONG) status - (ULONG) STATUS_WAIT_O;

}

When KeWaitForMultipleObjects returns a success code, it also performs the side
effects required by the object(s) that satisfied the wait. If more than one object is
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signalled but you specified WaitAny, only the one that’s deemed to satisfy the wait
has its side effects performed.

Kernel Events

You use the service functions listed in Table 4-2 to work with kernel event objects.
To initialize an event object, first reserve nonpaged storage for an object of type
KEVENT and then call KelnitializeEvent:

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL;
KeInitializeEvent(event, EventType, initialstate);

Event is the address of the event object. EventType is one of the enumeration
values NotificationEvent or SynchronizationEvent. A notification event has the
characteristic that, when it is set to the signalled state, it stays signalled until it is
explicitly reset to the not-signalled state. Furthermore, all threads that wait on a no-
tification event are released when the event is signalled. This is like a manual-reset
event in user mode. A synchronization event, on the other hand, gets reset to the not-
signalled state as soon as a single thread gets released. This is what happens in user -
mode when someone calls SetEvent on an auto-reset event object. The only side
effect performed on an event object by KeWaitXxx is to reset a synchronization event
to not-signalled. Finally, initialstate is TRUE to specify that the initial state of the event
is to be signalled and FALSE to specify that the initial state is to be not-signalled.

Service Function Description

KeClearEvent Sets event to not-signalled, don’t report previous state
KelnitializeEvent Initializes event object

KeReadStateEvent Determines current state of event

KeResetEvent Sets event to not-signalled, return previous state
KeSetEvent Sets event to signalled, return previous state

Table 4-2. Service functions for use with kernel event objects.

NOTE Inthis series of sections on synchronization primitives, I'm repeating the
IRQL restrictions that the DDK documentation describes. In the current release
of Microsoft Windows 2000, the DDK is sometimes more restrictive than the OS
actually is. For example, KeClearEvent can be called at any IRQL, not just at or
below DISPATCH_LEVEL. KelnitializeEvent can be called at any IRQL, not just
at PASSIVE_LEVEL. However, you should regard the statements in the DDK a