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Foreword 

The Windows Driver Model traces its roots several years back to an OS called Windows for 
Workgroups 3.10. At that time we were struggling with support for the myriad of different 
SCSI controllers, and I was gazing longingly at the assortment of mini ports that the 
Windows NT team had created. It didn't take long to realize that it would take less effort to 
re-create the necessary image loader and execution environment that the miniports expected 
than it would to rewrite and debug all of those miniports in some sort of VxD form. 

Unfortunately Windows for Workgroups 3.10 ended up shipping without support for 
SCSI miniports, due mainly to peripheral issues such as solid ASPI (Advanced SCSI Pro
gramming Interface) compatibility. However, the groundwork to share the same execut
able driver images across the Windows and Windows NT operating systems was in place 
and would see the light of day in Windows 95, which could share both SCSI and NDIS 
miniport binaries with Windows NT. 

The potential benefits of a shared driver model are significant. For driver developers 
interested in supporting both platforms, a shared driver model can cut the driver develop
ment and testing costs almost in half. For Microsoft, a shared model means easier migra
tion from Windows 9x to Windows 2000 and future releases of this platform. And for the 
end user, a larger variety of more stable drivers would be available for both platform families. 

The next logical step, then, was to create a driver model with the ability to share 
general purpose drivers across both platforms. But what form should it take? Three require
ments were immediately obvious: it must be multiprocessor-capable, it must be proces
sor-independent, and it must support Plug and Play (PnP). Fortunately, the Windows NT 4.0 
driver modet met the first two requirements, and it seemed clear that the next major re
lease of Windows NT would support PnP as well. As a result, WDM can be considered a 
proper subset of what is now the Windows NT driver model. 

The potential benefitsCof a shared driver model can be realized today for many classes 
of devices, and choosing the WDM driver model will continue to pay dividends in the future. 
For example, a correctly written WDM driver requires only a recompile before function
ing in an NT 64-bit environment prototype. 

WDM will continue to evolve as new platforms and device classes are supported. Future 
versions of Windows 9x and Windows 2000 will contain upwardly revised WDM execu
tion environments. Fortunately, WDM is designed to be "backward compatible," meaning 
that WDM drivers written according to the Windows 2000 DDK and designed to work for 
the intended environment will continue to work in subsequent WDM environments. 

There is a lot to WDM, and in this book Walter does an excellent job of offering an 
in-depth tour of every aspect as well as the philosophy of the Windows Driver Model. 

Forrest Foltz 
Architect, Windows Development 
Microsoft Corporation 
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Chapter 1 

. Introduction 

Souvenir shops in many of the cities I visit sell posters depicting the world from the 
local perspective. Landmarks and famous watering holes appear prominently in the 
foreground. The background features the rest of the planet in progressively less detail, 
conftrming that the natives are less impressed by, say, the pyramids in Giza or the 
Great Wall of China than by some busy downtown street corner. From the same sort 
of insular perspective, a Microsoft Windows 2000 or Microsoft Windows 98 system 
consists of an operating system and a collection of device drivers for whatever hard
ware the end user chooses to populate the system with from one moment to the next. 
This book is all about the drivers and the nearby detail. 

AN OVERVIEW OF THE OPERATING SYSTEMS 
The Windows Driver Model (WDM) provides a framework for device drivers that 
operate in two operating systems-Windows 98 and Windows 2000. Although to the 
end user these two systems are very similar, they work very differently on the inside. 
In this section, I'll present a brief overview of the two systems. 

Windows 2000 Overview 
Figure 1-1 is my perspective poster of the Windows 2000 operating system, wherein 
I emphasize the features that are important to people who write device drivers. Soft
ware executes either in user mode (untrusted and restricted to authorized activities 
only) orin kernel mode (fully trusted and able to do anything). Auser-mode program 
that wants to, say, read some data from a device would call an application program
ming interface (API) such as ReadFne. A subsystem module such as KERNEL32.DLL 
implements this API by invoking some sori of platform-dependent system service in
terface to reach a kernel-mode support routine. In the case of a call to ReadFile, the 
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mechanism involves making a user-mode call to an entry point named NtReadFile 
in a system dynamic-link library (DLL) named-redundantly, I've always thought
NTDLL.DLL. The user-mode NtReadFile function uses the system service interface to 
reach a kernel-mode routine that's also named NtReadFile. 

~ 
Win32 API calls 

User Mode 

Kernel Mode 

IRP passed to driver dispatch routine 

Figure 1-1. The Windows 2000 architecture. 

We often say that NtReadFile is part of a system component that we call the I/O 
Manager. The term I/O Manager is perhaps a little misleading because there isn't any 
Single executable module with that name. We need a name to use when discussing 
the "cloud" of operating system services that surrounds our own driver, though, and 
this name is the one we usually pick. 

Many routines serve a purpose similar to NtReadFile. They operate in kernel 
mode to service an application's request to interact with a device in some way. They 
all validate their parameters, thereby ensuring that they don't inadvertently allow a 
security breach by performing an operation or accessing some data that the user-mode 
program wouldn't have beeh able to perform or access by itself. They then create a 
data structure called an I/O request packet (IRP) that they pass to an entry point in 
some device driver. In the case of an original ReadFile call, NtReadFile would create 
an IRP with a major function code of IRP _MLREAD (a· constant in a DDK [Device 
Driver Kit] header file). Processing details at this point can differ; but a likely scenario 
is for a routine like NtReadFile to return to the user-mode caller with an indication that 
the operation described by the IRP hasn't finished yet. The user-mode program might 
continue about its business and then wait for the operation to finish, or it might wait 



Chapter 1 Introduction 

immediately. Either way, the device driver proceeds independently of the applica- . 
tion to service the request. 

A device driver might eventually need to actually access its hardware to per
form an IRP. In the case of an IRP _MJ_READ to a programmed I/O (PIO) sort of 
device, the access might take the form of a read operation directed to an I/O port or 
a memory register implemented by the device. Drivers,even though they execute in 
kernel mode and can therefore talk directly to their hardware, use facilities provided 
by the hardware abstraction layer (HAL) to access hardware. A read operation might 
involve calling READ_PORT_UCHAR to read a single data byte from an I/O port. The 
HAL routine uses a platform-dependent method to actually perform the operation. 
On an Intel x86 computer, the HAL would use the IN instruction; on an Alpha, it would 
perform a memory fetch. 

After a driver has fInished with an I/O operation, it completes the IRP by call
ing. a particular kernel-mode service routine. Completion is the last act in process
ing an IRP, and it allows the waiting application to resume execution. 

Windows 98 Overview 
Figure 1-2 shows one way of thinking about Windows 98. The operating system kernel 
is called the Virtual Machine Manager (VMM) because its main job is to create one 
or more "virtual" machines that share the hardware of a single physical machine. The 
original purpose of a virtual device driver (VxD) in Microsoft Windows 3.0 was to 
virtualize a speciftc device to help the VMM create the fiction that each virtual ma
chine had a full complement of hardware. The· same VMM architecture introduced 
with Windows 3.0 is in Windows 98 today but with a bunch of accretions to handle 
new hardware and 32-bit applications. 

System Virtual Machine DOS Virtual Machine 

User Mode 

Kernel Mode 

-Figure 1-2. The Windows 98 architecture. 
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Windows 98 doesn't handle I/O operations in quite as orderly a way as Win
dows 2000. There are major differences in how Windows 98 handles operations di
rected to disks, to communication ports, to keyboards, and so on. Windows 98 also 
services 32-bit and 16-bit applications in fundamentally different ways. See Figure 1-3. 

System Virtual Machine DOS Virtual Machine 
r-----------------, 

User Mode 

Kernel Mode 

Figure 1-3. I/O requests in Windows 98. 

The left column of Figure 1-3 shows how 32-bit applications get I/O done for 
them. An application calls a Win32 API such as ReadFile, which a system DLL like 
KERNEL32.DLL services. But applications can only use ReadFile for reading disk files, 
communication ports, and devices that have WDM drivers. For any other kind of 
device, an application must use some ad hoc mechanism based on DeviceloControl. 
The system DLL contains different code than its Windows 2000 counterpart, too. The 
user-mode implementation of ReadFile, for example, validates parameters-a step 
done in kernel mode on Windows 2000-and uses one or another special mecha
nism to reach a kernel-mode driver. There's one special mechanism for disk files, 
another for serial ports, another for WDM devices, and so on. The mechanisms all 
use software interrupt 30h to make the transition from user mode to kernel mode, 
but they're otherwise completely different. 

The middle column of Figure 1-3 shows how 16-bit Windows-based applica
tions (Win16 applications) perform I/O. The right column illustrates the control flow 
for DOS-based applications. In both cases, the user-mode program calls directly or 
indirectly on the services of a user-mode driver that, in principle, could stand 
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alone by itself on a bare machine. Win16 programs perform serial port I/O by in
directly calling a 16-bit DLL named COMM.DRV, for example. (Up until Microsoft 
Windows 95, COMM.DRV was a stand-alone driver that hooked IRQ 3 and 4 and 
issued IN and OUT instructions to talk directly to the serial chip.) A virtual commu
nications device (VCD) driver intercepts the port I/O operations to guard against 
having two different virtual machines access the same port simultaneously. In a weird 
way of thinking about the process, you might say that these user-mode drivers use 
an "API" interface based on interception of I/O operations. "Virtualizing" drivers like 
VCD service these pseudo-API calls by Simulating the operation of hardware. 

Whereas all kernel-mode I/O operations in Windows 2000 use a common 
data structure (the IRP), no such uniformity exists in Windows 98 even once an 
application's request reaches kernel mode. Drivers of serial ports conform to a port 
driver function-calling paradigm orchestrated by VCOMM.VXD. Disk drivers, on the 
other hand, participate in a packet-driven layered architecture implemented by 
IOS.VXD. Other device classes use still other means. 

When it comes to WDM drivers, however, the interior architecture of Win
dows 98 is necessarily very similar to that of Windows 2000. A system module 
(NTKERN.VXD) contains Windows-specific implementations of a great many Microsoft 
Windows NT kernel support functions. NTKERN.VXD creates IRPs and sends them 
to WDM drivers in just about the same way as Windows 2000. WDM drivers almost 
cannot tell the difference between the two environments, in fact. 

WINDOWS 2000 DRIVERS 
Many kinds of drivers form a complete Windows 2000 system. Figure 1-4 diagrams 
several of them. 

Figure 1-4. Types of device drivers in Windows 2000. 
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• A virtual device driver (VDD) is a user-mode component that allows DOS
based applications to access hardware on x86 platforms. A VDD relies on 
the I/O permission mask to trap port access, and it essentially simulates 
the operation of hardware for the benefit of applications that were origi
nally programmed to talk directly to hardware on a bare machine. Al
though this kind of driver shares a name and a purpose with a kind of 
driver used in Windows 98, it's a different animal altogether. We use the 
acronym VDD for this kind of driver and the acronym VxD for the Win
dows 98 driver to distinguish the two. 

• The category of kernel-mode drivers includes many subcategories. A PnP 
driver is a kernel-mode driver that understands the Plug and Play (PnP) 
protocols of Windows 2000. To be perfectly accurate, this book concerns 
PnP drivers and nothing else. 

• A WDM driver is a PnP driver that also understands power management 
protocols and is source-compatible with both Windows 98 and Win
dows 2000. Within the category of WDM drivers, you can also distinguish 
between class drivers, which manage a device belonging to some well
defined class of device, and minidrivers, which supply vendor-specific 
help to a class driver. 

• Video drivers are kernel-mode drivers for displays and printers--devices 
whose primary characteristic is that they render visual data. 

• File system drivers implement the standard PC file system model (which 
includes the concept of a hierarchical directory structure containing 
named files) on local hard disks or over network connections. 

• Legacy device drivers are kernel-mode drivers that directly control a hard
ware device without help from other drivers. This category essentially 
includes drivers for earlier versions of Windows NT that are running with
out change in Windows 2000. 

Not all the distinctions implied by this classification scheme are important all of 
the time. As I remarked in my previous book, Systems Programmingfor Windows 95 
(Microsoft Press, 1996), you have not stumbled into a nest of pedants by buying my 
book. In particular, I'm not always going to carefully distinguish between WDM drivers 
and PnP drivers in the rigorous way implied by the preceding taxonomy. The dis
tinction is a phenomenological one based on whether a given driver runs both in 
Windows 2000 and Windows 98. Without necessarily using the technically exact term, 
I'll be very careful to discuss system dependencies when they come up hereafter. 
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Attributes of Kernel-Mode Drivers 
Kernel-mode drivers share a number of general attributes, as suggested by the list 
of attributes (drawn from the introductory chapters of the Windows 2000 Device Driver 
Kit) that I describe in the following sections. (Note that throughout this book, I'll often 
refer to just the "DDK," meaning the Windows 2000 DDK. If I need to discuss an
other DDK, I'll give its specific name.) 

Portable 
Kernel-mode drivers should be source-portable across all Windows NT platforms. 
WDM drivers are, by definition, source-portable between Windows 98 and Win
dows 2000 as well. To achieve portability, you should write your driver entirely in C, 
using language elements specified by the ANSI C standard. You should avoid us
ing implementation-defined or vendor-specific features of the language, and you 
should avoid using run-time library functions that aren't already exported by the 
operating system kernel (concerning which, see Chapter 3). If you can't avoid plat
form dependencies in your code, you should isolate them with conditional compi
lation directives. If you follow all of these guidelines, you'll be able to recompile and 
relink your source code to produce a driver that will "just work" on any new Win
dows NT platform. 

In many cases, it will be possible to achieve binary compatibility for a WDM 
driver between Windows 98 and the 32-bit Intel x86 Windows 2000 operating sys
tem. You achieve source compatibility merely by restricting yourself to using the subset 
of kernel-mode support functions declared in WDM.H. There are some areas in which 
the two operating systems behave differendy in a way that matters to a device driver, 
however, and I'll discuss these areas in various parts of the book. 

Configurable 
A kernel~mode driver should avoid hard-coded assumptions about device character
istics or system settings that can differ from one platform to another. It's easiest to 
illustrate this abstract and lofty goal with a couple of examples. On an x86-based PC, 
a standard serial port uses a particular interrupt request line and set of eight I/O ports 
whose numeric values haven't changed in over 20 years. Hard-coding these values 
into a driver makes it not configurable. In Chapter 8, I'll discuss two power manage
ment features-idle detection and system wake-up--that an end user should be able 
to control; a driver that always uses particular idle timeout constants or that· always 
arms its device's wake-up feature would not allow for that kind of control. The driver 
would therefore not be configurable in the sense we're discussing. 

Achieving configurability requires, first of all, that you avoid coding direct ref
erences to hardware, even within platform-specific conditional compilation blocks. 
Call on the facilities of the HAL or of a lower-level bus driver instead. You can also 
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implement a standard or custom control interface to allow control-panel applications 
. to communicate end user wishes. Better yet, you can support Web-Based Enterprise 
Management (WBEM) controls that allow users and administrators to configure hard
ware features in a distributed enterprise environment. (See Chapter 10.) Finally, you 
can use the registry database as a repository for configuration information that ought 
to persist from one session to the next. 

Preemptible and Interruptible 
Windows 2000 and Windows 98 are multitasking operating systems that apportion 
use of a CPU among an arbitrary number of threads. Much of the time, driver sub
routines execute in an environment in which they can be preempted to allow another 
thread to execute on the same cpu. Thread preemption depends on a thread prior
ity scheme and on using the system clock to allocate CPU time in slices to threads 
having the same priority. 

Windows 2000 also incorporates an interrupt prioritization concept known as 
interrupt request level QRQL). I'll discuss IRQL in detail in Chapter 4, but the following 
summary will be useful for now. You can think of a CPU as having an IRQL register 
that records the level at which the CPU is currently executing. Three IRQL values have 
major significance for device drivers: PASSIVE_LEVEL (numerically equal to 0), 
DISPATCH_LEVEL (numerically equal to 2), and the so-called device IRQL (or 
DIRQL, numerically equal to a value higher than 2) at which a particular device's 
interrupt service routine exeCutes. Most of the time, a CPU executes at PASSIVE_LEVEL. 
All user-mode code runs at PASSIVE_LEVEL, and many of the activities a driver 
performs also occur at PASSIVE_LEVEL. While a CPU is at PASSIVE_LEVEL, the 
current thread can be preempted by any other thread that has a higher thread prior
ity or by expiration of its own time slice. Once a CPU's IRQL is above PASSIVE_LEVEL, 
however, thread preemption no longer occurs. The CPU executes in the context 
of whatever thread was current when the IRQL was most recently raised above 
PASSIVE_LEVEL. 

You can think of the IRQ levels above PASSIVE_LEVEL as a priority scheme for 
interrupts. This is a different sort of priority than that which governs thread preemp
tion because, as I just remarked, no thread preemption occurs above PASSIVE_LEVEL. 
But an activity running at any IRQL can be interrupted to perform an activity at a 
higher IRQL. Consequently, a driver must anticipate that it might lose control at any 
moment while the system performs some more essential task. 

Multiprocessor-Safe 
Windows 2000 can run on computers with one or more than one CPU. Win
dows 2000 uses a symmetric multiprocessor model, in which all CPUs are considered 
equal. System tasks and user-mode programs can execute on any CPU, and all CPUs 
have equal access to memory. The existence of multiple CPUs poses a difficult 
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synchronization problem for device drivers because code executing on two or more 
CPUs might simultaneously need to access shared data or shared hardware resources. 
The Windows 2000 kernel provides a synchronization object called a spin lock that 
drivers can use to avoid destructive interference in such situations; (See Chapter 4.) 

Object-Based 
The Windows 2000 kernel is ohject-based in the sense that many of the data struc
tures used by device drivers and kernel routines have common features that a cen
tralized Object Manager component controls. These features include names, reference 
counts, security attributes, and so on. Internally, the kernel contains method routines 
for performing common object management tasks such as opening and closing ob
jects or parsing object names. 

Kernel components export service routines that drivers use to manipulate cer
tain kinds of object or certain fields within objects. Some kernel objects-the kernel 
interrupt object, for example-are completely opaque in that the DDK headers don't 
declare the members of the data structure. Other kernel objec~such as the device 
object or the driver object-are partially opaque: the DDK headers declare all the 
members of the structure, but documentation describes only certain accessible mem
bers anc~ cautions driver writers not to access or modify other members directly. 
Support routines exist to access and modify those opaque fields that must be indi
rectly available to drivers. Partially opaque objects are analogous to c++ classes, which 
can have public members accessible to anyone and private or protected members 
accessible only via method functions. 

Packet-Driven 
The I/O Manager and device drivers use the I/O request packet to manage the de
tails of I/O operations. Some kernel-mode component creates an IRP· to perform an 
operation on a device or to send an instruction or query to a driver. The I/O Man
ager sends the IRP to one or more of the subroutines that a driver exports. Gener
ally, each driver subroutine performs a discrete amount of work on the IRP and returns 
back to the I/O Manager. Eventually, some driver subroutine completes the IRP, 
whereupon the I/O Manager destroys the IRP and reports the ending status backJo 
the originator of the request. 

Asynchronous 
Windows 2000 allows applications and drivers to initiate operations and continue 
processing while the operations progress. Consequently, drivers ordinarily process 
time-consuming operations in an asynchronous way. That is, a driver accepts an IRP, 
initializes whatever state information it requires to manage the operation, and then 
returns to its caller after arranging for the IRP to be performed and completed in the 
future. The caller can then decide whether or not to wait for the IRP to finish. 

9 
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As a multitasking operating system, Windows 2000 schedules threads for ex
ecution on the available processors according to eligibility and priority. The asynchro
nous operations a driver needs to perform for handling an I/O request often occur 
in the context of some unpredictable thread, the identification of which can differ 
from one invocation of the driver's asynchronous processing routines to the next. We 
use the term arbitrary thread context to describe the situation in which a driver doesn't 
know (or care) which thread happens to be current as it performs its work. Drivers 
should avoid blocking arbitrary threads, and this stricture generally results in a driver 
architecture that responds to hardware events by performing discrete operations and 
then returning. 

The Windows Driver Model 

10 

In the Windows Driver Model, each hardware device has at least two device drivers. 
One of these drivers, which we call the function driver, is what you've always thought 
of as being "the" device driver. It understands all the details about how to make the 
hardware work. It's responsible for initiating I/O operations, for handling the inter
rupts that occur when those operations finish, and for providing a way for the end 
user to exercise whatever control over the device might be appropriate. 

We call the other of the two drivers that every device has the bus driver. It's 
responsible for managing the connection between the hardware and the computer. 
For example, the bus driver for the PCI (Peripheral Component Interconnect) bus is 
the software component that actually detects that your card is plugged in to a PCI slot 
and determines what requirements your card has for I/O-mapped or memory-mapped 
connections with the host. It's also the software that turns the flow of electrical cur
rent to your card's slot on or off. 

Some devices have more than two drivers. We use the generic termfllter driver 
to describe these other drivers. Some fllter drivers simply watch as the function driver 
performs I/O. More often, a software or hardware vendor supplies a fllter driver to 
modify the behavior of an existing function driver in some way. "Upper" fllter driv
ers see IRPs before the function driver, and they have the chance to support addi
tional features that the function driver doesn't know about. Sometimes an upper fllter 
can perform a workaround for a bug or other deficiency in the function driver or the 
hardware. "Lower" fllter drivers see IRPs that the function driver is trying to send to 
the bus driver. In some cases, such as when the device is attached to a universal serial 
bus (USB), a lower fllter can modify the stream of bus operations that the function 
driver is trying to perform. 

A WDM function driver is often composed of two separate executable flles. One 
flle, the class driver, understands how to handle all of the WDM protocols that the 
operating system uses (and some of them can be very complicated) and how to 
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manage the basic features of an entire class of devices. A class driver for the class of 
USB cameras is one example. The other file, called the minidriver, contains functions 
that the class driver uses to manage the vendor-specific features of a particular in
stance of that class. The combination of class plus minidriver adds up to a complete 
function driver. 

A useful way to think of a complete driver is as a container for a collection of 
subroutines that the operating system calls to perform various operations on an 
IRP. Figure 1-5 illustrates this concept. Some routines, such as the DriverEntry and 
AddDevice routines, as well as dispatch functions for a few types of IRP, will be 
present in every such container. Drivers that need to queue requests-and most do-
might have a StartIo routine. Drivers that perform direct memory access (DMA) trans
fers will have an AdapterControl routine. Drivers for devices that generate hardware 
interrupts-again, most do--will have an interrupt service routine (ISR) and a deferred 
procedure call (Ope) routine. Most drivers will have dispatch functions for several 
types of IRP besides the three that are required. One of your jobs as the author of a 
WDM driver, therefore, is to select the functions that need to be included in your 
particular container. 

Basic Driver Routines 110 Control Routines 

DriverEntry 

Add Device 

D Required driver routines 

III Include Startlo to handle request queuing 

Dispatch Routines 

DispatchPnp 

DispatchPower 

DispatchWml 

DispatchRead 

DispatchWrite 

III Include interrupt and DPC routines if device interrupts 

III Include AdapterControl routine for DMA 

III Optional IRP dispatch routines 

Figure 1-5. ContentsoJ a WVM driver executable "package." 
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SAMPLE CODE 
The companion disc contains a great many sample drivers and test programs. I crafted 
each sample with a view toward illustrating a particular issue or technique that the 
text discusses. Each of the samples is, therefore, a "toy" that you can't just ship after 
changing a few lines of code. I wrote the samples this way on purpose. Over the years, 
I've observed that programmer-authors tend to build samples that illustrate their 
prowess at overcoming complexity rather than samples that teach beginners how to 
solve basic problems, so I won't do that to you. Chapters 7 and 11 have some driv
ers that work with "real" hardware, namely development boards from the makers of 
a PCI chip set and a USB chip set. Apart from that, however, all the drivers are for 
nonexistent hardware. 

In nearly every case, I built a simple user-mode test program that you can use 
to explore the operation of the sample driver. These test programs are truly tiny: they 
contain just a few lines of code and are concerned only with whatever point the driver 
sample attempts to illustrate. Once again, I think it's better to give you a simple way 
to exercise the driver code that I assume you're really interested in instead of trying 
to show off every MFC programming trick I ever learned. 

You're free to use all of the sample code in this book in your own projects 
without paying me or anyone else a royalty. (Of course, you must consult the de
tailed license agreement at the end of the book-this paraphrase is not intended to 
override that agreement in any way.) There are few cases in which I ask that you get 
my permission before redistributing one of my sample modules as a freestanding piece 
of software, however; these include GENERIC.SYS (discussed in Appendix B) and 
WDMSTUB.VXD (discussed in Appendix A). I'll gladly give permission, but I will need 
to ask your company to agree to some conditions designed to ensure that if a bunch 
of readers all decide to ship copies of these modules along with their production 
drivers, end users receive up-to-date and reliable versions. See the companion disc 
for more information on redistribution. 

The Companion Disc 
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The CD-ROM that comes with this book contains the complete source code and an 
executable copy of each sample. It also contains a few utility programs that you might 
find useful in your own work. Open the me WDMBOOK.HTM in your Web browser 
for an index to the samples and an explanation of how to use these tools. 

The setup program on the disc gives you the option to install all of the samples 
on your own disk or to leave them on the CD-ROM. However, setup will not install 
any kernel-mode components on your system. Setup will ask your permission to 
add some environment variables to your AUTOEXEC.BAT me. The build procedure 
for the samples relies on these environment variables. They will be correctly set the 
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next time you reboot your Windows 2000 or Windows 98 computer. Setup will also 
install the necessary registry entries to define a SAMPLE class of device, to which each 
of the sample drivers belongs. 

If your computer runs both Windows 2000 and Windows 98, I recommend 
performing a full install under one OS and a compact install under the other. Addi
tionally, I recommend allowing the setup program to modify your AUTOEXEC.BAT 
under just one OS. If you follow these suggestions, setup will be able to make nec
essary changes in both registry databases but will copy the sample code only one 
time. (Note that Windows 2000 interprets your AUTOEXEC.BAT file at startup time 
to set environment variables. That's why the setup program needs to modify this file.) 

Each sample includes an HTML file that explains (very briefly) what the sample 
does, how to build it, and how to test it. I recommend that you read the file before 
trying to install the sample, because some of the samples have unusual installation 
requirements. Once you've installed a sample driver, you'll find that the Device 
Manager has an extra property page from which you can view the same HTML file. 
(See Figure 1-6.) 

Figure 1-6. A custom Device Manager property page for sample drivers. 

How the Samples Were Created 
There's a good reason why my sample drivers look like they all came out of a cookie 
cutter: they did. Faced with so many samples to write, I decided to write a custom 
application wizard. The wizard functionality in Microsoft Visual C++ version 6.0 is 
almost up to snuff for building a WDM driver project, so I elected to depend on it. 

13 
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The wizard is named WDMWIZ.AWX, and you'll find it on the companion disc. I've 
documented how to use it in Appendix C. Use it, if you wish, to construct the skel
etons for your own· drivers. But be wary that this wizard is not of product grade
it's intended to help you learn about writing drivers rather than to replace or compete 
with a commercial toolkit. Be aware, too, that you need to change a few project set
tings by hand because the wizard support is only almost what's needed. Refer to the 
WDMBOOK.HTM in the root directory of the companion disc for more information. 

Installing the Windows 2000 Device Driver Kit provides you with Start menu 
commands for opening a "checked build" environment and a "free build" environ
ment. Each environment is a command prompt with a collection· of environment 
variables set in a particular way to dovetail with a command line-based method of 
building drivers. This method relies on a utility named BUILD.EXE that comes with 
the DDK and on the existence of a me named SOURCES that describes a driver project. 
I've provided a SOURCES file for each project so that you can use this method for 
building a driver if you want to. 

I personally prefer using the Microsoft Visual Studio environment for driver 
projects. I used to advocate using BUILD.EXE because I was afraid that Microsoft might 
change some important compile or link option in such a way that any approach based 
on an integrated development environment (IDE) would break. Something like this 
happened during the Windows 2000 beta period, in fact. (Somebody decided to 
change the decade-old structure of library files, and I had to change a slew of project 
settings.) I guess I think the productivity improvement I gain by using modern IDE
based tools is significant enough that I'll run the risk of having to make similar changes 
in the future. 

GENERIC.SYS 
A WDM driver contains a great deal of code that you could call boilerplate for han
dling Plug and Play and power management. This code is long. It's boring. It's easy 
to get wrong. My samples all rely on what amounts to a kernel-mode DLL named 
GENERlC.SYS. WDMWIZ.AWX will build a project that uses GENERlC.SYS or that 
doesn't, as you specify. Appendix B details the support functions that GENERlC.SYS 
exports in case you want to use them yourself. 

ORGANIZATION OF THIS BOOK 
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After teaching driver programming seminars to hundreds of students over· the past 
several years, I've come to understand that people learn things in fundamentally 
different ways. Some people like to learn a great deal of theory about something and 
then learn how to apply that theory to practical problems. Other people like to learn 
practical things first and then learn the general theory. I'd call the former approach 
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deductive and the latter approach inductive. I personally prefer an inductive approach, 
and I've organized this book to suit that style of learning. 

My aim is to explain how to write device drivers. Broadly speaking, I wanted 
to provide the minimum background you'll need to write an actual driver and then 
move on to more specialized topics. That "minimum background" is pretty extensive, 
however; it consumes six chapters. Once past Chapter 7, you'll be reading about topics 
that are important but not necessarily on the fall line that leads straight downhill to 
a working driver. 

Chapter 2, "Basic Structure of a WDM Driver," explains the basic data structures 
that Windows 2000 uses to manage I/O devices and the basic way your driver re
lates to those data structures. I'll discuss the driver object and the device object. I'll 
also discuss how you write two of the subroutines-the DriverEntry and AddDevice 
routines-that every WDM driver package contains. 

Chapter 3, "Basic Programming Techniques," describes the most important 
service functions you can call on to perform mundane programming tasks. In that 
chapter, I'll discuss error handling, memory management, and a few other miscella
neous tasks. 

Chapter 4, "Synchronization," discusses how your driver can synchronize ac
cess to shared data in the multitasking, multiprocessor world of Windows 2000. You'll 
learn the details about IRQL and about various synchronization primitives that the 
operating system offers for your use. 

Chapter 5, "The I/O Request Packet," introduces the subject of input/output 
programming, which of course is the real reason for this book. I'll explain where I/O 
request packets come from, andTll give an overview of what drivers do with them 
when they follow what I call the "standard model" for IRP processing. I'll also discuss 
the knotty subject of IRP cancellation, wherein accurate reasoning about synchroni
zation problems becomes crucial. 

Chapter 6, "Plug and Play," concerns just one type ofI/O request packet, namely 
IRP _MLPNP. The Plug and Play Manager component of the operating system sends 
you this IRP to give you details about your device's configuration and to notify you 
of important events in the life of your device. Being a good PnP citizen implies that 
many drivers can't use the "standard model" for IRP processing. I'll therefore describe 
an object I named a DEVQUEUE that you can use to queue and dequeue IRPs ap
propriately when PnP events are occurring all around you. 

Chapter 7, "Reading and Writing Data," is where we finally get to write driver 
code that performs I/O operations. I'll discuss how you obtain configuration infor
mation from the PnP Manager and how you use that information t~ prepare your 
driver for "substantive" IRPs that read and write data. I'll present two simple driver 
sample programs as well: one for dealing with a PIa device and one for dealing with 
a bus-mastering DMA device. 

15 
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Chapter 8, "Power Management," describes how your driver participates in 
power management. I think you'll find, as I did, that power management is pretty 
complicated. Unfortunately, you have to participate in the system's power manage
ment protocols or else the system as a whole won't work right. Worse yet, the sys
tem will sometimes present a dialog box that identifies you as the culprit if you don't 
do the right things. Luckily, the community of driver writers already has a grand tra
dition of cutting and pasting, and that will save you. 

Chapter 9, "Specialized Topics," contains a discussion of filter drivers, error 
logging, I/O control operations, and system threads. 

Chapter 10, "Windows Management Instrumentation," concerns a scheme for 
enterprisewide computer management in which your driver can and should partici
pate. I'll explain how you can provide statistical and performance data for use by 
monitoring applications, how you can respond to standard WBEM controls, and how 
you can alert controlling applications of important events when they occur. 

Chapter 11, "The Universal Serial Bus," describes how to write drivers for 
USB devices. 

Chapter 12, "Installing Device Drivers," tells you how to arrange for your driver 
to get installed onto end user systems. You'Ulearn the basics of writing an INF file 
to control installation, and you'll also learn some interesting and useful things to do 
with the system registry. 

Appendix A, "Coping with Windows 98 Incompatibilities," explains a VxD-based 
scheme that will allow you to deploy the same driver binary on both Windows 2000 
and Windows 98 platforms. The basic problem you now have to solve-and the basic 
reason a distinction exists between PnP drivers and WDM drivers-is that Win
dows 2000 was finished after Windows 98 and predictably exports some service 
routine that Windows 98 either doesn't export or doesn't implement in quite the same 
way. You can solve this problem with a short VxD that I'll show you. 

Appendix B, "Using GENERIC.SYS," describes the public interface to my 
GENERIC.SYS library. Most of my sample drivers use GENERIC.SYS, and you might 
need to consult this documentation to fully understand how the samples work. 

Appendix C, "Using WDMWIZ.AWX," describes how to use my Visual C++ 
application wizard to build a driver. I repeat that WDMWlZ.AWX is not intended to 
take the place of a commercial toolkit. Among other things, that means that it's not 
easy enough to use that you can dispense with documentation. 

Note on Errors 
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This book is as accurate as I could make it. Let's face it, though: when writing about 
a complex technology with many new elements, it's impossible to be 100 percent right. 
In addition, WDM will in~vitably change over the next few months as the Win
dows 2000 beta period winds down to a retail release, My publisher and I have a plan 
to deal with this. To deal with errors, I'll publish an errata page at my Web site 
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(http://www.oneysojt.com). I hope friendly readers will email me comments that I can 
post there. 

OTHER RESOURCES 
This book should not be the only source of information you use to learn about driver 
programming. It emphasizes the features that I think are important; but you might 
need information I don't provide, or you might have a different way of learning than 
I do. I don't explain how the operating system works except insofar as it bears on 
what I think one needs to know to effectively write drivers. If you're a deductive 
learner, or if you simply want more theoretical background, you might want to con
sult one of the additional resources listed below. If you're standing in a bookstore 
right now trying to decide which book to buy, my advice is to buy all of them: a wise 
craftsperson never skimps on his or her tools. Besides, books on specialized subjects 
like driver writing often go out of print before their useful life expires. 

Books Specifically About Driver Development 

Art Baker, The Windows NT Device Driver Book: A Guide for Programmers (Prentice 
Hall, 1997). 

Chris Cant, Writing Windows W'DM Device Drivers (R&D Press, 1999). 

Edward N. Dekker and Joseph M. Newcomer, Developing Windows NT Device Drivers: 
A Programmer's Handbook (Addison-Wesley, 1999). 

Rajeev Nagar, Windows NT File System Internals: A Developer'S Guide (O'Reilly & 
Associates, 1997). 

Peter G. Viscarola and W. Anthony Mason, Windows NT Device Driver Development 
(Macmillan, 1998). 

Dekker and Newcomer's book went to press as the Beta 2 release of Windows 2000 
appeared and contains just two chapters on WDM drivers. My publishing schedule 
was such that I wasn't able to look at Chris Cant's book. Nagar's book, while nomi
nally concerned with file system drivers, contains a great deal of material that's gen
erally applicable to writing kernel-mode drivers of any kind. I don't believe in trying 
to evaluate another book on the same subject as my own, inasmuch as you'd have 
a perfect right to doubt my objectivity, so I simply present this list for you to use as 
you wish. 

Another Useful Book 

David A. Solomon, Inside Windows NT, Second Edition (Microsoft Press, 1998). 

17 
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Magazines 
Microsoft Systems Journal occasionally has articles of interest to driver developers. 
Windows Developer Journal usually has at least one relevant article in each issue. 

Newsgroup 
The comp.os.ms-windowsprogrammer.nt.kernel-mode newsgroup provides a forum 
for technical discussion on kernel-mode programming issues. This is the place to go 
. for support from your peers. 

Seminars 
I conduct public and on-site seminars on WDM programming. Visit my Web site at 
http://www.oneysoft.com for more information and schedules. Most other authors in 
this subject area conduct seminars as well. This is how we pay our bills. Once again, 
I won't presume to offer any evaluation. And I'm sure you'll forgive me for not giv
ing explicit pointers to information about my competition! 

WARNING 
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For expository purposes, this book presents fragments of driver code without error 
checking and without all of the special case checks that are necessary in a working 
driver. I'm follOWing the precept that it's better to explain complicated subjects in a 
step-by-step manner without inundating you with too much detail too soon. I promise 
not to lie to you, but I won't always be telling the whole, ugly truth either. 

The sample drivers on the companion disc, on the other hand, do have all of 
the error checking and other stuff that production drivers need. Please refer to the 
disc, therefore, before incorporating something in your own code. 



Chapter 2 

Basic Structure 
of a WDM Driver 

In the ftrst chapter, I described the basic architecture of the Microsoft Windows 2000 
and Microsoft Windows 98 operating systems. I introduced the idea that a device driver 
is a container for a collection of subroutines that the operating system can call upon 
,to carry out various activities related to a hardware device, This chapter is about the 
basic contents of one of those driver containers. I'll discuss how device drivers are 
layered and how that layering comes about. I'll also discuss the DriverEntry and 
AddDevice functions that every WDM driver includes. In later chapters, I'll tell you 
about the other types of subroutines that will be part of the driver for your device. 

DEVICE AND DRIVER LAYERING 
The Windows Driver Model formalizes a layering of drivers, as illustrated in Figure 2-1. 
A stack of device objects appears at the left of the ftgure. The device objects are data 
structures that the system creates to help software manage hardware. Many of these 
data structures can exist for a single piece of physical hardware. The lowest-level de
vice object in a stack is called the physical device object,· or PD~ for short. Somewhere 
in the middle of a device object stack is an object called the junctional device ob
ject, or FDO. Above and below the FDO there might be a collection of filter device 
objects. Filter device objects above the FDO are called upper filters, whereas filter de
vice objects below the FDO (but still above the PD~) are called lower filters; 
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Figure 2-1. Layering of device objects and drivers in the WDM. 

AN ACRONYM FOR FILTER DEVICE OBJECTS? 

In an industry known for its prolific use of acronyms, it seems odd that the term 
filter device object has no official abbreviation. FDa is taken-as I've said, it 
refers to the functional device . object that belongs to the real driver for the de
vice. Once upon a time, Microsoft was using the acronym Filla to describe these 
objects. This acronym suffers from a slight lack of specificity in that you can't 
immediately tell whether you're talking about an upper or a lower filter. There 
may have been other reasons why the term fell into disfavor as something ap
propriate to sober discussion about a serious new technology, however. My 
seminar students have been quick to point out, for example, that the FiDO at 
the top of any given stack is, of course, the "top dog." 

Being a sometime cat owner and thus unoffended by canine allusions, and 
not being a total slave to prevailing convention, I'll use the acronym Filla in 
this book as a generic way of describing filter device objects. I guess driver 
programming (or at least this book) is going to the dogs. 

The Plug and Play (PnP) Manager component of the operating system constructs 
the stack of device objects at the behest of device drivers. For our purposes in this 
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book, we can use the generic term bus to describe a piece of hardware to which 
devices connect electronically. This is a pretty broad definition. Not only does it 
include things like the PCI (Peripheral Component Interconnect) bus, but it also 
includes a SCSI (Small Computer System Interface) adapter, a parallel port, a serial 
port, a USB (universal serial bus) hub, and so on-anything, in fact, that can have 
multiple devices plugged into it. One responsibility of the driver for a bus is to enu
merate the devices attached to the bus and to create PDOs for each of them. The PnP 
Manager begins painting the picture in Figure 2-1, then, by creating a PDO because 
some bus driver has detected some actual hardware. 

Having created a PDO, the PnP Manager consults the registry database to find 
the filter and function drivers that occupy the middle of the figure. The setup pro
gram is responsible for many of these registry entries, and the INF files that control 
hardware installation are responsible for others. The registry entries define the or
der in which the drivers will appear in the stack, so the PnP Manager begins by loading 
the lowest-level filter driver and calling its AddDevice function. This function creates 
a FiDO, thus establishing the horizontal link between a FiDO and a driver. AddDevice 
then connects the PDO to the FiDO; that's where the line connecting the two device 
objects comes from. The PnP Manager proceeds upward, loading and calling each 
lower filter, the function driver, and each upper filter, until the stack is complete. 

The purpose for the layering becomes apparent when you consider the flow 
of I/O requests diagrammed on the right-hand side of Figure 2-1. Each request for 
an operation affecting a device uses an I/O request packet (IRP). IRPs are normally 
sent to the topmost driver for the device and can percolate down the stack to the other 
drivers. At each level, the driver decides what to do with the IRP. Sometimes, a driver 
will do nothing except pass the IRP down. Other times, a driver might completely 
handle the IRP without passing it down. Still other times, a driver might process the 
IRP and pass it down, or vice versa. It all depends on the device and the exact se
mantics of the IRP. I'll explain in a later sidebar how it comes to pass that drivers can 
send IRPs down even though device objects are linked upward from the PDO. 

The various drivers that occupy the stack for a single piece of hardware per
form different roles. The function driver manages the device, represented by the FDa. 
The bus driver manages the connection between the device and the computer, rep
resented by the PDO. Because of the close relationship between driver software and 
device object, I'll sometimes use the term FDO driver to mean the function driver 
and the term PD~ driver to refer to the bus driver. The filter drivers, if they even 
exist, monitor or modify the stream of IRPs. 
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One of my seminar students, on seeing a diagram similar to Figure 2-1, was 
misled (I won't say by which teacher, who also wrote this book) into thinking of C++ 
and class inheritance. A perfectly reasonable way of designing an architecture for 
device drivers would be to define base classes from which programmers could derive 
progressively more specialized classes. In such a scheme, you could have a set of 
abstract classes that manage different sorts of PDOs, and you could derive 'FDO drivers 
from them. The system would send IRPs to virtual functions, some of which would 
be handled by the base class in the PD~ driver and some of which would be handled 
by the derived class in the FDO driver. WDM doesn't work this way, though. The PD~ 
driver performs completely different jobs from the FDO driver. The FDO driver "dele
gates" certain work to the PD~ driver by passing IRPs down to it, but the relation
ship is more like being peers in a bucket brigade (and we won't discuss the contents 
of the metaphOrical buckets!) than like being hierarchically related. 

How the System Loads Drivers 
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Having presented this much deSCription of device layering in the WDM, it's time for 
me to be a bit more precise. To begin with, there's an obvious chicken-and-egg 
problem with what I've described. I said that the bus driver creates the PD~, but I 
also said that the PnP Manager loads drivers based on registry entries for a PD~ that 
already exists. So where does the bus driver come from? I'll explain that in the next 
section. The registry database plays a crucial role in the process of loading drivers 
and configuring devices, so I'll explain which registry keys are relevant and what they 
contain. 

Recursive Enumeration 
In the first instance, the PnP Manager has a built-in "driver" for a "root" bus that doesn't 
actually exist. The root bus conceptually connects the computer to all hardware that 
can't electronically announce its presence-including the primary hardware bus (such 
as PCl). The root bus driver gets information about the computer from the registry, 
which was initialized by the Windows 2000 Setup program. Setup got the informa
tion by running an elaborate hardware detection program and by asking the end user 
suitable questions. Consequently, the root bus driver knows enough to create a PD~ 
for the primary bus. 

The function driver for the primary bus can then enumerate its own hardware 
electronically. The PCI bus, for example, provides a way of accessing a special con
figuration space for each attached device, and the configuration space contains a 
deSCription of the device and its resource requirements. When a bus driver enumerates 
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hardware, it acts in the guise of an ordinary function driver. Having detected a piece 
of hardware, however, the driver switches roles: it becomes a bus driver and creates 
a new PDQ for the detected hardware. The PnP Manager then loads drivers for this 
device PDQ, as previously discussed. It might happen that the function driver for the 
device enumerates still more hardware, in which case the whole process repeats 
recursively. The end result will be a tree like that shown in Figure 2-2, wherein a bus 
device stack branches into other device stacks for the hardware attached to that bus. 

Figure 2-2. Layering of recursively enumerated devices. 
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The Role of the Registry 
lbree different registry keys bear on configuration. These are called the hardware 
key, the class key, and the service key. To be clear, these are not the proper names of 
specific subkeys: they are generic names of three keys whose pathnames depend on 
the device to which they belong. Broadly speaking, the hardware key contains in
formation about a single device, the class key concerns all devices of the same type, 
and the service keys contains information about drivers. People sometimes use the 
name "instance key" to refer to the hardware key and "software key" to refer to the 
service key. The multiplicity of names derives from the fact that Windows 95/98 and 
Windows 2000 were written (mostly) by different people. 

The Hardware (Instance) Keys Device hardware keys appear in the \System\ 
CurrentControlSet\Enum subkey of the local machine branch of the registry. You 
normally can't look inside this key because the system grants access to the System 
account only. In other words, kernel-mode programs and user-mode services run
ning in the System account can read from and write to the Enum key and its subkeys, 
but not even an administrator can do so. To see what's inside Enum, you can run 
REGEDT32.EXE from an administrator-privilege account and change the security set
tings. Figure 2-3 illustrates the hardware key for one of the sample devices that ac
companies this book (namely, the USB42 sample I'll discuss in Chapter 11, "The 
Universal Serial Bus"). 

Figure 2-3. A hardware key in the registry. 

{894A71&1-A!J33.11D2-e21E-<l4155354OOOJI
IJSB\OasS~JlQN'rotJIIUSB\a....ff6SIjICIessJlOUSII\CIas5Jf 
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HOw REGISTRY KEYS ARE NAMED 

The naming of the very top level of the registry key hierarchy is confusing for 
the fIrst-time visitor. When you use Win32 API functions to access the registry 
in user mode, you identify the top level with one of the predefined handle 
constants, such as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_ 
LOCAL_MACHINE, and a few others. The REGEDIT.EXE registry editor applet 
uses these same names, as shown in Figure 2-3. Sometimes, in writing about 
registry access, the length of these keywords induces one to use abbreviations 
like HKCR, HKCU, HKLM, and so on. 

In point of fact, HKCR is an alias for HKLM\Software\Classes, and HKCU 
is an alias for one of the subkeys of HKEY _USERS. The targets of these two 
aliases depend on which session context you're dealing with. 

In kernel mode, however, you use a different naming scheme, based on 
the kernel namespace. (I'll discuss this namespace a bit further on in this chap
ter.) The top levels are named \Registry\User and \Registry\Machine. The 
Machine branch, which is the same branch that user mode knows as HKLM, is 
where you can fInd all information relevant to device drivers. Unless otherwise 
indicated, therefore, you should assume that a particular registry key referred 
to in the text can be found in \Registry\Machine. 

The subkeys on the fIrst level below the Enum key correspond to the different 
bus enumerators in the system. The deSCription of all past or present USB devices is 
in the ... \Enum \ USB subkey. I've expanded the key for the USB42 sample to show 
you how the device's hardware ID (vendor 0574, product 102A) has turned into the 
name of a key (Vid_0547&Pid_102A) and how a particular instance of the device that 
has that ID appears as a further subkey named 7&2. The 7&2 key is the hardware, 
or instance, key for this device. 

Some of the values in the hardware key provide descriptive information that 
user-mode components such as the Device Manager can use. (You reach the Device 
Manager from the Management Console or, more easily, from the Hardware tab of 
the property sheet you get when you right-click the My Computer desktop icon and 
select Properties.) Figure 2-4 shows how the Device Manager portrays the proper
ties of USB42. Refer to the sidebar "Accessing Device Keys from User Mode" for an 
indication of how the Device Manager can gather this information even though it can't, 
by itself, get past the normal security block to the Enum key. 
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Figure 2·4. The Device Manager properties display for a device. 

ACCESSING DEVICE KEYS FROM USER MODE 

Applications often need to access information about hardware devices. To make 
this possible without tempting fate by exposing the crucial Enum key to inad
vertent (or not-so-inadvertent) tampering, Microsoft provides the CFGMGR32 
set of APIs. The header file and library for this API is part of the Windows 2000 
DDK, and the functions in the API set work both in Windows 2000 and Win
dows 98. The API is currently documented in a DOC file that's part of the 
Microsoft Windows NT version 4.0 (0 DDK. 

To give you one example, let's suppose you knew the name of a device's 
hardware key somehow. One of the ways you could know is by enumerat
ing all "device instances" starting from the device root by recursively calling 
CM_Locate_DevNode, CM_GeCChild, and CM_GeCSibling. Here's a short 
fragment of code illustrating how to read the Manufacturer value from the cor
responding hardware key: 

#include <cfgmgr32.h> 

LPTSTR lpszDevnodeName; 

(continued) 
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continued 

DEVNODE dn; 
CONFIGRET cr = CM_Locate_DevNode(&dn. lpszDevnodeName. 

CM_LOCATE_DEVNODE_NORMAL); 
if (cr 1= CR-SUCCESS) 

<handle error> 
TCHAR buffer[_MAX_PATH]; 
DWORD size = sizeof(buffer); 
cr = CM_Get_DevlnstRegistry_Property(dn. CM_DRP_MFG. NULL. 

buffer. size. 0); 

The IpszDevnodeName is a string like "USB\ Vid_0547&Pid_102A \7&2" 
whose relationship to the hardware key name should now be obvious. I use 
code just like this fragment to gather some of the information in the DEVVIEW 
applet I'll tell you about presently. 

The hardware key also contains several values that identify the class of device 
to which the device belongs and the drivers for the device. ClassGUID is the ASCII 
representation of a globally unique identifier (GUID) that uniquely identifies a de
vice class; in effect, it's a pointer to the class key for this device. Service is a pointer 
to the service key. Optional values (which USB42 doesn't have) named LowerFilters 
and UpperFilters, if present, would identify the service names for any lower or up
per filter drivers, respectively. 

Finally, a hardware key might have overriding values named Security, Exclu
sive, DeviceType, and DeviceCharacteristics that force the device object the driver 
will create to have certain attributes. I'll discuss the importance of these overrides later 
on when I tell you how to create a device object. 

Most of the values in the hardware key get there automatically as part of the 
setup process or because the system recognizes new hardware (or gets told it about 
via the Hardware Wizard) sometime after initial setup. Some of the values get there 
because the INF file that's used to install the hardware directs that they be put there. 
I'll discuss INF files when I talk about how to plan for installation in Chapter 12, 
"Installing Device Drivers." 

The Class Keys The class keys for all classes of device appear in the HKLM\ 
System\CurrentControISet\Control\Class key. Their key names are GUIDs assigned 
by Microsoft. Figure 2-5 illustrates the class key for SAMPLE devices, which is the class 
to which the USB42 sample and all the other sample drivers in this book belong. 
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Figure 2-5. A class key in the registry. 

The USB class isn't particularly interesting as it lacks some of the optional val
ues that might be there, such as these: 

• LowerFllters and UpperFllters, if present, specify filter drivers for all 
devices of this class. 

• Security, Exclusive, DeviceType, and DeviceCharacteristics, if present 
in a Properties subkey of the class key, specify values that override de
fault settings of certain device object parameters for all devices of this class. 
These overrides have less precedence than the ones (if any) in the hard
ware key. System administrators will eventually be able to set up these 
overrides through the Management Console. 

Each device also has its own subkey below the class key. The name of this key 
is the Driver value in the device's hardware key. Refer to Figure 2-6 for an illustra
tion of the contents of this subkey, the purpose of which is to correlate all these 
registry entries with the INF file used to install the device. 

The AnsWer Device 
oem2.inf 

DriverlnstaU 

.NT 
usb\vi<C0547&pkU02a 

Figure 2-6. A device-specific subkey a/the device's class key in the registry. 

The Service (Software) Keys The last key that's important for a device driver 
is the service key. It indicates where the driver's executable file is on disk and contains 
some other parameters that govern the way the driver is loaded. Service keys appear 
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in the HKLM\System \ CurrentControlSet\Services key. Refer to Figure 2-7 for USB42's 
service key. 

Figure 2-7. A service key in the registry. 

It's not my purpose to rehash all the possible settings in the service key, which 
is splendidly documented in several places,. including under the heading "Service 
Install" in the Platform Software Development Kit (SDK). In this particular case, the 
values have the following significance: 

• ImagePath indicates that the executable file for the driver is named 
USB42.SYS and can be found in O/oSystemRoot%\system32\drivers. Note 
that the registty setting in this case is a relative pathname starting from the 
system root directory. 

• Type (1) indicates that this entty describes a kernel-mode driver. 

• Start (3) indicates that the system should load this driver when it's needed 
to support a newly arrived device. (This numeric value corresponds to the 
SERVICE_DEMAND_START constant in a call to CreateService. When 
applied to a kernel-mode driver, it has the meaning I just described-it's 
not necessary to explicitly call StartService or issue a NET START command 
to start the driver.) 

• ErrorControl (1) indicates that a failure to load this driver should cause 
the system to log the error and display a message box. 
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Order of Driver Loading 
When the PnP Manager encounters a new device, it opens the hardware and class 
keys and proceeds to load drivers in the following order: 

1. Any lower filter drivers specified in the hardware key for the device. Since 
the LowerFilters value is of type REG_MULTI_SZ, it can specify more than 
one driver. They're loaded in the order in which they appear in the value's 
data string. 

2. Any lower filter drivers specified in the class key. Again, these are loaded 
in the order in which they appear in the LowerFilters value's data string. 

3. The driver specified by the Service value in the hardware key. 

4. Any upper fJ1,ter drivers specified in the hardware key, in the order in which 
they appear in the UpperFilters data string. 

5. Any upper filter drivers specified in the class key, in the order in which 
they appear in the UpperFilters data string. 

When I say the system "loads" a driver, I mean that it maps the driver's image 
into virtual memory, fixes up relocatable reference~, and calls the driver's main entry 
point. The main entry point is usually named DriverEntry. I'll describe the DriverEntry 
function a bit further on in this chapter. It might turn out that a particular driver is 
already present in memory, in which case nothing happens at the load stage except 
incrementing a reference count that will preserve the image in memory for however 
long some device needs it. 

You might have noticed that the loading of upper and lower filters belonging 
to the class and to the device instance isn't nearly nested as you might have expected. 
Before I knew the facts, I guessed that device-level filters would be closer to the 
function driver than class-level filters. As we'll see later on, it's not very important in 
what order the loading occurs. However, the system calls the drivers' AddDevice 
functions (another topic I'll discuss in considerable detail shortly) in the same order 
in which the PnP Manager loads the drivers. Consequenrly, the device object stack 
will mirror this order, with possibly unexpected results. 

How Device Objects Interrelate 
The tree of device object stacks shown in Figure 2-2 doesn't imply that IRPs necessari
ly flow from a PD~ to the top FiDO for the next lower branch of the tree. In fact, the 
driver for one stack's PD~ is the FDO driver for the next lower branch, as illustrated 
by the shading in the figure. When the driver receives an IRP in its PD~ role, it will 
do something to perform the IRP, but that might not involve sending the same, or even 
any other, IRP to the devices in the stack it occupies while performing its FDO role. 
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Conversely, when a bus driver receives an IRP in its FDO role, it might or might not 
need to send some IRPs to one or more of the devices for which it acts as PD~. 

A few examples should clarify the relationship between FiDOs, FDOs, and 
PDOs. The first example concerns a read operation directed to a device that happens 
to be on a secondary PCI bus that itself attaches to the main bus through a PCI-to
PCI bridge chip. To keep things simple, let's suppose that there's one FiDO for this 
device, as illustrated in Figure 2-8. You'll learn in later chapters that a read request 
turns into an IRP with a major function code of IRP _MLREAD. Such a request would 
flow first to the upper FiDO and then to the function driver for the device. (That driver 
is the one for the device object marked FDOdev in the figure.) The function driver calls 
the hardware abstraction layer (HAL) directly to perform its work, so none of the other 
drivers in the figure will see the IRP. 

Device Secondary Bus Main Bus 

Figure 2-8. The flow of a read request for a device on a secondary bus. 

A variation on the first example is shown in Figure 2~9. Here we have a read 
request for a device plugged into a USB hub that itself is plugged into the host con
troller. The complete device tree therefore contains stacks for the device, for the hub, 
and for the host controller. The IRP _MLREAD flows through the FiDO to the func
tion driver, which then sends one or more IRPs of a different kind downward to its 
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own PD~. The PD~ driver for a USB device is USBHUB.SYS, and it forwards the IRPs 
to the topmost driver in the host controller device stack, skipping the two-driver stack 
for the USB hub in the middle of the figure. 

Device USB Hub Host Controller 

Figure 2-9. The flow of a read request for a USB device. 

The third example is similar to the first, except that the IRP in question is a 
notification concerning whether a disk drive on a PCI bus will or will not be used as 
the repository for a system paging file. You'll learn in Chapter 6, "Plug and Play," that 
this notification takes the form of an IRP jiLPNP request with the minor function 
code IRP _MN_DEVICE_USAGE_NOTIFlCATION. In this case, the FiDO driver will 
pass the request to th~ FDOdev driver, which will take note of it and pass it further 
down the stack to the PDOdev driver. This particular notification has implications about 
how other VO requests that concern the PnP system or power management will be 
handled, so the PDOdev driver sends an identical notification to the stack within which 
it's the FDOoo., as illustrated in Figure 2-10. (Not all bus drivers work this way, but 
the PCI bus does.) 
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Device Secondary Bus Main Bus 

Figure 2-10. Tbeflow of a device usage notification. 

Examining the Device Stack 
To better visualize the way device objects and drivers are layered, it helps to have a 
tool. I wrote the DEVVIEW utility, which you'll find on the companion disc, for this 
purpose. I'll be describing other uses for DEVVIEW in this chapter, but the feature 
that concerns us now is its ability to display the device objects that are used to manage 
hardware devices. With the so-called Answer device plugged into my USB hub, I ran 
DEVVIEW and generated the two screen shots shown in Figure 2-11 and Figure 2-12. 

This particular device uses only two device objects. The PD~ is managed by 
USBHUB.SYS, whereas the FDO is managed by USB42.SYS (the image for the An

swer deVice). In the first of these screen shots, you can see other information about 
the PD~. Based on our exploration of the registry keys associated with USB42, it 
should now be clear where that information came from. 

It's worth experimenting with DEVVIEW on your own system to see how vari
ous drivers are layered for the hardware you own. 
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Figure 2-11. DEVV7EWtnjormation about USB42's PD~. 

Figure 2-12. DEVVlEWtnjormatton about USB42's FDO. 
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Driver Objects 
The I/O Manager uses a driver object data structure to represent each device driver. 
See Figure 2-13. Like many of the data structures we'll be discussing, the driver ob
ject is partially opaque. This means that you and I ·are only supposed to directly ac
cess or change certain fields in the structure, even though the DDK headers declare 
the entire structure. I've shown the opaque fields of the driver object in the figure 
with a gray background. These opaque fields are analogous to the private and protected 
members of a C++ class, and the accessible fields are analogous to public members. 

HardwareDatabase 

FastloDispatch 

Driverlnit 

DrlverStartlo 

DrlverUnload 

MajorFunction 

Figure 2-13. The DRIVER_OBJECT data structure. 
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The DDK headers declare the driver object, and all other kernel-mode data 
structures for that matter, in a stylized way, as this excerpt from WDM.H illustrates: 

typedef struct _DRIVER-OBJECT { 
CSHORT Type: 
CSHORT Size: 

} DRIVER-OBJECT, *PDRIVER-OBJECT: 

That is, the header declares a structure with a type name of DRIVER_OBJECT. It also 
declares a pointer type (PDRIVER_OBJECT) and assigns a structure tag CDRIVER_ 
OBJECT). This declaration pattern appears many places in the DDK, and I won't 
mention it again. The headers also declare a small set of type names (like CSHORT) 
to describe the atomic data types used in kernel mode. Table 2-1 lists some of these 
names. CSHORT, for example, means "signed short integer used as a cardinal number." 

Type Name 

PVOID, PVOID64 

NTAPI 

VOID 

CHAR,PCHAR 

UCHAR, PUCHAR 

SCHAR, PSCHAR 

SHORT, PSHORT 

USHORT, PUSHORT 

LONG, PLONG 

ULONG, PULONG 

WCHAR, PWSTR 

PCWSTR 

NTSTATUS 

LARGE_INTEGER 

ULARGE_INTEGER 

PSZ, PCSZ 

BOOLEAN, PBOOLEAN 

. Descrlption 

Generic pointers (default precision and 64-bit 
precision) 

Used with service function declarations to force use 
of __ stdcall calling convention on x86 architectures 

Equivalent to "void" 

8-bit character, pointer to same (signed or not 
according to compiler default) 

Unsigned 8-bit character, pointer to same 

Signed 8-bit character, pointer to same 

Signed 16-bit integer, pointer to same 

Unsigned 16-bit integer, pointer to same 

Signed 32-bit integer, pointer to same 

Unsigned 32-bit integer, pointer to same 

Wide (Unicode) character or string 

Pointer to constant Unicode string 

Status code (typed as signed long integer) 

Signed 64-bit integer 

Unsigned 64-bit integer 

Pointer to ASCIIZ (single-byte) string or 
constant string 

TRUE or FALSE (equivalent to UCHAR) 

Table 2-1. Common type names for kernel-mode drivers. 
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NOTE ON 64·BIT TYPES 

The DDK headers contain type names that will make it relatively painless for 
driver authors to compile the same source code for either 32-bit or 64-bit Intel 
platforms. For example, instead of blithely assuming that a long integer and a 
pointer are the same size, you should declare variables that might be either a 
LONG_PTR or a ULONG_PTR. Such a variable can hold either a long (or un
signed long) or a pointer to something. Also, for example, declare an integer 
that can count as high as a pointer might span as a SIZE_T-you'll get a 64-bit 
integer on a 64-bit platform. These and other 32/64 typedefs are in the DDK 
header file named BASETSD.H. 

I'll briefly discuss the accessible fields of the driver object structure now. 
DeviceObject (PDEVICE_OBJECT) anchors a list of device object data struc

tures, one for each of the devices managed by the driver. The I/O Manager links the 
device objects together and maintains this field. The DriverUnload function of a non
WDMdriver would use this field to traverse the list of device objects in order to delete 
them. A WDM driver probably doesn't have any particular need to use this field. 

DriverExtension (PDRIVER_EXTENSION) points to a small substructure within 
which only the AddDevice (PDRIVER_ADD_DEVICE) member is accessible to the 
likes of us. (See Figure 2-14.) AddDevice is a pointer to a function within the driver 
that creates device objects; this function is rather a big deal, and I'll discuss it at length 
later in this chapter. 

Figure 2-14. The DRIVER_EXTENSION data structure. 
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HardwareDatabase (PUNIC ODE_STRING) describes a string that names a 
hardware database registry key for the device. This is a name like "\Registry\Machine \ 
Hardware\Description\System" and names the registry key within which resource 
allocation information resides. WDM drivers have no need to access the information 
below this key because the PnP Manager performs resource allocation automatically. 
The name is stored in Unicode. (In fact, all kernel-mode s1:[ing data uses Unicode.) 
I'll discuss the format and the use of the UNICODE_STRING data structure in the 
next chapter. 

FastIoDispatch (PFAST_IO_DISPATCH) points to a table of function pointers 
that me system and network drivers export. How these functions are used is beyond 
the scope of this book. If you're interested in learning more about me system driv
ers, consult Rajeev Nagar's Windows NT File System Internals: A Developer's Guide 
(O'Reilly & Associates, 1997). 

DriverStartIo (PDRIVER_STARTIO) points to a function in your driver that 
processes I/O requests that the I/O Manager has serialized for you. I'll discuss request 
queuing in general and the use of this routine in particular in Chapter 5, "The I/O 
Request Packet." 

DriverUnload (PDRIVER_UNLOAD) points to a cleanup function in your driver. 
I'll discuss this function a bit further on in connection with DriverEntry, but you might 
as well know now that a WDM driver probably doesn't have any significant cleanup 
to do anyway. 

MajorFunction (array of PDRIVER_DISPATCH) is a table of pointers to func
tions in your driver that handle each of the roughly two dozen types of I/O request. 
This table is also something of a big deal, as you might guess, because it defines how 
I/O requests make it into your code. 

Device Objects 
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Figure 2-15 illustrates the format of a device object and uses the same shading con
vention for opaque fields that I used in the preceding discussion of driver objects. 
As the author of a WDM driver, you will create some of these objects by calling 
IoCreateDevice, but the I/O Manager will be responsible for managing them. 

DriverObject (PDRIVER_OBJECT) points to the object describing the driver 
associated with this device object, usually the one that called 10CreateDevice to cre~ 
ate it. Filter drivers sometimes need to use this pointer to find the driver object for a 
device they're mtering so that they can inspect entries in the MajorFunction table. 

NextDevice (PDEVICE_OBJECT) points to the next device object that belongs 
to the same driver as this one. This field is the one that links device objects together 
starting from the driver object's DeviceObject member. There's probably no reason 
for a WDM driver to use this field. 



Chapter 2 Basic Structure of a WDM Driver 

Figure 2-15. The DEVICE_OBJECT data structure. 

CurrentIrp (PIRP) points to the I/O request packet most recently sent to the 
corresponding driver's Startlo function. I'll have more to say about the CurrentIrp field 
in Chapter 5 when I discuss cancel routines. 
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Flags (ULONG) contains a collection of flag bits. Table 2-2 lists the bits that are 
accessible to driver writers. 

Flag DescrlpUon 

Reads and writes use the buffered method 
(system copy buffer) for accessing user-mode 
data 

Only one thread at a time allowed to open 
a handle 

Reads and writes use the direct method 
(memory descriptor list) for accessing 
user-mode data 

DO_DEVlCE_INITIALIZING Device object not initialized yet 

DO_POWER_PAGABLE IRP _MJ]NP must be handled at 
PASSIVE_LEVEL 

DO_POWER_INRUSH Device requires large in-rush of current 
during power-on 

DO_POWER_NOOP Device doesn't participate in power 
management 

Table 2-2. Accessibleflags in a DEVICE_OBJECT data structure. 

Characteristics (ULONG) is another collection of flag bits describing various 
optional characteristics of the device. (See Table 2-3.) The I/O Manager initializes these 
flags based on an argument to 10CreateDevice. Filter drivers propagate them upward 
in the device stack. 

Flag 

FILE_REMOV ABLE_MEDIA 

FILE_READ_ONLY_DEVICE 

FILE_FLOPPY _DISKETI'E 

FILE_ WRITE_ONCE-.MEDIA 

FILE_REMOTE_DEVICE 

FILE_DEVlCE_IS_MOUNTED 

FILE_DEVlCE_SECURE_OPEN 

DescrlpUon 

Media can be removed from device 

Media can only be read, not written 

Device is a floppy disk drive 

Media can be written once 

Device accessible through network connection 

Physical media is present in device 

Check security on device object during open 
operations 

Table 2-3. Cbaracteristicsjlags in a DEVICE_OBJECT data structure. 

DeviceExtension (PVOID) points to a data structure you define that will hold 
per-instance information about the device. The I/O Manager allocates space for the 
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structure, but its name and contents are entirely up to you. A common convention 
is to declare a structure with the type name DEVICE_EXTENSION. To access 'it given 
a pointer (for example, fdo) to the device object, use a statement like this one: 

PDEVICE_EXTENSION pdx = (PDEVICE-EXTENSION) fdo->DeviceExtension; 

It happens to be true (now, anyway) that the device extension immediately 
follows the device object in memory. It would be a bad idea to rely on this always 
being true, though, especially when the documented method of following the 
DeviceExtension pointer will always work. 

DeviceType (DEVICE_1YPE) is an enumeration constant describing what type 
of device this is. The I/O Manager initializes this member based on an argument to 
IoCreateDevice. Filter drivers might conceivably need to inspect it. At the date of this 
writing, there are roughly 50 possible values for this member. (See Table 2-4.) 

Device Type DefauU Security 

FILE_DEVICE_BEEP Public Open Unrestricted 

FILE_DEVlCE_CD_ROM Modified Public Default Unrestricted 

FILE_DEVlCE_CD_ROM_FILE_SYSTEM Public Default Uruestricted 

FILE_DEVICE_CONTROLLER Public Open Unrestricted 

FILE_DEVlCE_DATALINK Public Open Unrestricted 

FILE_DEVICE_DFS Public' Open Unrestricted 

FILE_DEVICE_DISK Modified Public Default' Unrestricted 

FILE_DEVlCE_DISK_FILE_SYSTEM Public Default Unrestricted 

FILE_DEVlCE]ILE_SYSTEM Public Default Unrestricted 

FILE_DEVlCE_INPORT_PORT Public Open Unrestricted 

FILE_DEVlCE'_KEYBOARD Public Open Unrestricted 

FILE_DEVlCE_MAILSLOT Public Open Unrestricted 

FILE_DEVlCE_MIDI_IN Public Open Unrestricted 

FILE_DEVlCE_MIDCOUT Public Open Unrestricted 

FILE_DEVICE_MOUSE Public Open Unrestricted 

FILE_DEVlCE_MVLTCUNC]ROVlDER Public Open Unrestricted 

FILE_DEVlCE_NAMED]IPE Public Open Unrestricted 

FILE_DEVICE_NETWORK Modified Public Default Unrestricted 

FILE_DEVICE_NETWORK_BROWSER Public Open Unrestricted 

Table 2-4. Device type codes and d~ault security. (continued) 
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continued 

Device Type 

FILE_DEVICE_NETWORK]ILE_SYSTEM 

FILE_DEVICE_NULL 

FILE_DEVICE] ARALLEL_PORT 

FILE_DEVICE_PHYSICAL_NETCARD 

FILE_DEVICE_PRINTER 

FILE_DEVICE_SCANNER 

FILE_DEVICE_SERIAL_MOUSE_PORT 

FILE_DEVICE_SERIAL_PORT 

FILE_DEVICE_SCREEN 

FILE_DEVICE_SOUND 

FILE_DEVICE_STREAMS 

FILE_DEVICE_TAPE 

FILE_DEVICE3APE_FILE_SYSTEM 

FILE_DEVICE_TRANSPORT 

FILE_DEVICE_UNKNOWN 

FILE_DEVICE_ VIDEO 

FILE_DEVICE_ VIRTUAL_DISK 

FILE_DEVICE_ WAVE_IN 

FILE_DEVICE_ WAVE_OUT 

FILE_DEVICE_B042_PORT 

FILE_DEVICE_NETWORK_REDIRECTOR 

FILE_DEVICE~BATTERY 

FILE_DEVICE_BUS_EXTENDER 

FILE_DEVICE_MODEM 

FILE_DEVICE_ VDM 

FILE_DEVICE_MASS_STORAGE 

FILE_DEVICE_SMB 

. FILE_DEVICE_KS 

FILE_DEVICE_CHANGER 

FILE_DEVICE_SMARTCARD 

FILE_DEVICE_ACPI 

FILE_DEVICE_DVD 

FILE_DEVICE_FULLSCREEN_ VIDEO 

Default Security 

Modified Public Default Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Default Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Modified Public Default Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Modified Public Default Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

(continued) 
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continued 

DevtceType 

FILE_DEVICE_DFS]ILE_SYSTEM 

FILE_DEVICE_DFS_ VOLUME 

FILE_DEVICE_SERENUM 

FILE_DEVICE_TERMSRV 

FILE_DEVICE_KSEC 

Default Security 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

Public Open Unrestricted 

StackSize (CCHAR) counts the number of device objects starting from this one 
and descending all the way to the PDO. The purpose of this field is to inform inter
ested parties about how many stack locations should be created for an IRP that will 
be sent first to this device's driver. WDM drivers don't normally need to modify this 
value, however, because the support routines they use for building the device stack 
do so automatically. . 

How THE DEVICE STACK IS IMPLEMENTED 

In the textual discussion of the DEVICE_OBJECT, I indicated that there's a 
NextDevice field that horizontally links together all the devices belonging to a 
particular driver, but I didn't describe the method that links device objects into 
a vertical stack from the uppermost Filla through the FDa and from the lower 
FiDOs to the PDO. The opaque field AttachedDevice performs this office. 
Starting with the PDO, each device object points to the object immediately above 
it. There is no documented downward pointer-drivers must keep track on their 
own of what's underneath them. (In fact, IoAttachDeviceToDeviceStack does 
set up a downward pointer in a structure for which the DDK doesn't have a 
complete declaration. It would be unwise to try to reverse-engineer that struc
ture because it's subject to change at any time.) 

The AttachedDevice field is purposely not documented because its proper 
use requires synchronization with code that might be deleting device objects 
from memory. You and I are allowed to call IoGetAttachedDeviceReference 
to find the topmost device object in a given stack and to increment a reference 
count that will prevent that object from being prematurely removed from memory. 
If you wanted to work your way down to the PDO, you could send your own 
device an IRP _MLPNP request with the minor function code IRP _MN_ 
QUERY _DEVICE_RELATIONS and a Type parameter of TaigetDeviceRe1ation. 

(con'tinued) 
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continued 

The PDO's driver will answer by returning the address of the PDO. This IRP is 
supposedly reserved for use by the operating system, though, so you really 
shouldn't be issuing it on your own. Instead, you need to remember the PDO 
address when you first create the device object. 

Similarly, to know what device object is immediately underneath you, you 
need to save a pointer when you first add your object to the stack. . Since each 
of the drivers in a stack will have its own unknowable way of implementing 
the downward pointers used for IRP dispatching, it's not practical to alter the 
device stack once the stack has been created. 

THE DRIVERENTRY ROUTINE 

44 

In the preceding section, I said that the PnP Manager loads the drivers needed for 
hardware and calls their AddDevice functions. A given driver might be used for more 
than one piece of similar hardware, and there's some global initialization that the driver 
needs to perform only once when it's loaded for the first time. That global initializa
tion is the responsibility of the DriverEntry routine. 

DriverEntry . is the name conventionally given to the main entry point to a 
kernel-mode driver. The I/O Manager calls the routine as follows: 

extern "C" NTSTATUS DriverEntry(IN PDRIVEILOBJECT DriverObject. 
IN PUNICODE~STRING RegistryPath) 
{ 

} 

NOTE You call the main entry point to a kernel-mode driver "DriverEntry" be
cause the build script-if you use standard procedures-will instruct the linker 
that DriverEntry is the entry point, and it's best to make your code match this 
assumption (or else to change the build script, but why bother?). 

Before I describe the code you'd write inside DriverEntry, I want to mention a 
few things about the function prototype itself. Unbeknownst to you and I (unless we 
look carefully at the compiler options used in the build script), kernel-mode func
tions and the functions in your driver use the __ stdcall calling convention when 
compiled for an x86 computer. This shouldn't affect any of your programming, but 
it's something to bear in mind when you're debugging. I used the extern "C" direc
tive because, as a rule, I package my code in a C++ compilation unit-mostly to gain 
the freedom to declare variables wherever I please instead of only immediately af
ter left braces. This directive suppresses the normal C++ decoration of the external 
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name so that the linker can Hnd this function. Thus, an x86 compile produces a func
tion whose external name is _DriverEntry@8. 

Another point about the prototype of DriverEntry is those "IN" keywords. IN, 
OUT, and INOUT are all noise words that the DDK defines as empty strings. By 
original intention, they perform a documentation function. That is, when you see an 
IN parameter, you're supposed to infer that it's purely input to your function. An OUT 
parameter is output by your function, while an INOUT parameter is used for both 
input and output. As it happens, the DDK headers don't really use these keywords 
intuitively, and there's not a great deal of point to them. To give you just one example 
out of many: DriverEntry claims that the DriverObject pointer is IN; indeed, you don't 
change the pointer, but you will assuredly change the object to which it points. 

The last general thing I want you to notice about the prototype is that it declares 
this function as returning an NTSTATUS value. NTSTATUS is actually just a long in
teger, but you want to use the typedef name NTSTATUS instead of LONG so that 
people understand your code better. A great many kernel-mode support routines 
return NTSTATUS status codes, and you'll Hnd a list of them in the DDK header 
NTSTATUS.H. I'll have a bit more to say about status codes in the next chapter; for 
now, just be aware that your DriverEntry function will be returning a status code 
when it Hnishes. 

Overview of DriverEntry 
The fust argument to DriverEntry is a pointer to a barely initialized driver object that 
represents your driver. A WDM driver's DriverEntry function will fUlish initializing this 
object and return. Non-WDM drivers have a great deal of extra work to do-they must 
also detect the hardware for which they're responsible, create device objects to rep
resent the hardware, and do all the configuration and initialization required to make 
the hardware fully functional. The relatively arduous detection and conflguration steps 
are handled automatically for WDM drivers by the PnP Manager, as I'll discuss in 
Chapter 6. If you want to know how a non-WDM driver initializes itself, consult Art 

Baker's The Windows NT Device Driver Book (Prentice !fall, 1997) and Viscarola and 
Mason's Windows NT Device Driver Development (Macmillan, 1998). 

The second argument to DriverEntry is the name of the service key in the reg
istry. This string is not persistent-you must copy it if you plan to use it later. 

A WDM driver's main job in DriverEntry is to fill in the various function point
ers in the driver object. These pointers indicate to the operating system where to Hnd 
the subroutines you've decided to place in your driver container. They include these 
pointer members of the driver object: 

• DriverUnload Set this to point to whatever cleanup routine you create. 
The I/O Manager will call this routine just prior to unloading the driver. 

45 



Programming the·Mlcrosoft Windows Driver Model 

46 

Most of the time, a WDM driver doesn't allocate any resources during 
DriverEntry, so it doesn't need to clean anything up. 

• DriverExtension->AddDevice Set this to point to your AddDevice 
function. The PnP Manager will can AddDevice once for each hardware 
instance you're responsible for. Since AddDevice is so important to the way 
WDM drivers work, I've devoted the next main section ("The AddDevice 
Routine") of this chapter to explaining what it does. 

• DriverStartlo If your driver uses the standard method of queuing I/O 
requests, you'd set this member of the driver object to point to your StartIo 
routine. Don't worry (yet, that is) if you don't understand what I mean by 
the "standard" queuing method; 'all will become clear in Chapter 5, where 
you'll discover that many drivers do use it. 

• MajorFunction The I/O Manager initializes this vector of function pointers 
to point to a dummy dispatch function that fails every request. You're pre
sumably going to be handling certain types of IRPs-otherwise, your driver 
is basically going to be deaf and dumb--so you'd set at least some of these 
pointers to your own dispatch functions. Chapter 5 discusses IRPs and 
dispatch functions in detail. For now, all you need to know is that you 
must handle three kinds of IRPs and that you'll probably be handling sev
eral other kinds as well. 

A nearly complete DriverEntry routine would, then, look like this: 

extern "c" NTSTATUS DriverEntry(lN PDRIVEILOBJECT DriverObject. 
IN PUNICODE_STRING RegistryPath) 
{ 

DriverObject-)DriverUnload = DriverUnload; 
DriverObject-)DriverExtension-)AddDevice = AddDevice; 
DriverObject-)DriverStartlo = Startlo; 
DriverObject-)MajorFunction[IRP_MJ_PNP] = DispatchPnp: 
DriverObject-)MajorFunction[IRP_MJ_POWER~ = DispatchPower: 
DriverObject-)MajorFunction[IRP_MJ_SYSTEM_CONTROL] = DispatchWmi: 

servkey.Buffer.= (PWSTR) ExAllocatePool(PagedPool. 
RegistryPath-)Length + sizeof(WCHAR»: 

if (lservkey.Buffer) 
return STATUS_INSUFFICIENT_RESOURCES: 

servkey.MaximumLength = RegistryPath-)Length + size~f(WCHAR): 
RtlCopyUnicodeString(&servkey. RegistryPath): 
return STATUS_SUCCESS: 
} 
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1. These three statements set the function pointers for entry points elsewhere 
in the driver. I elected to give them simple names indicative of their func
tion: DriverUnload, AddDevice, and StartIo. 

2. Every WDM driver must handle PNP, POWER, and SYSTEM_CONTROL I/O 
requests; this is where you'd specify your dispatch functions for these 
requests. What's now IRP _MLSYSTEM_CONTROL was called IRP_ 
ML WMI in some early beta releases of the Windows 2000 DDK, which 
is why I called my dispatch function DispatchWmi. 

3. In place of this ellipsis, you'd have code to set several additional 
MajorFunction pointers. 

4. If you ever need to access the service registry key elsewhere in your driver, 
it's a good idea to make a copy of the RegistryPath string here. If you're 
going to be acting as a WMI (Windows Management Instrumentation) 
proVider (as I discuss in Chapter 10, "Windows Management Instrumen
tation"), you'll need to have this string around, for example. I've assumed 
that you declared a global variable named servkey as a UNICODE_ 
STRING elsewhere. I'll explain the mechanics of working with Unicode 
strings in the next chapter. 

5. Returning STATUS_SUCCESS is how you indicate success. If you were to 
discover something wrong, you'd rerurn an error code chosen from the 
standard set in NTSTATUS.H or from a set of error codes that you define 
yourself. STATUS_SUCCESS happens to be numerically O. 

DriverUnload 
The purpose of a WDM driver's DriverUnload function is to clean up after any glo
bal initialization that DriverEntry might have done. There's almost nothing to do. If 
you made a copy of the RegistryPath string in DriverEntry, though, DriverUnload 
would be the place to release the memory used for the copy: 

VOID DriverUnload(PDRIVER-OBJECT DriverObject) 
{ 

RtlFreeUnicodeString(&servkey); 
} 

If your DriverEntry routine returns a failure status, the system does not call your 
DriverUnload routine. Therefore, if DriverEntry generates any side effects that need 
cleaning up prior to returning an error status, DriverEntry has to perform the cleanup. 
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Driver Reinitialization Routine 
The I/O Manager provides a service function, IoRegisterDriverReinitialization, 
that solves a peculiar problem for non-WDM drivers, and I want to explain what it 
does so you'll know why you don't need to worry about it. Non-WDM drivers need 
to enumerate their hardware at DriverEntry time. It might happen that a non-WDM 
driver must load and initialize before all possible instances of its own hardware have 
been identified. This is true for mouse and keyboard devices, for example. But, if 
DriverEntry is supposed to enumerate all the mice or keyboards and create device 
objects for them, these drivers can't do their work properly if their DriverEntry rou
tine runs too soon. They use IoRegisterDriverReinitialization to register a routine that 
the I/O Manager will call back the next time someone detects new hardware. The 
reinitialization routine can then try again and, potentially, register itself for even 
later callbacks. 

WDM drivers shouldn't nee<;l to register reinitialization routines because they 
don't rely on their own resources to detect hardware. The PnP Manager will auto
matically match up newly arrived hardware to the right WDM driver and call that 
driver's AddDevice routine (the subject of the next section) to do all the necessary 
initialization work. 

THE ADDDEVICE ROUTINE 
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In the preceding main section, I showed how you initialize a WDM driver when it's 
first loaded. In general, though, a driver might be called upon to manage more than 
one actual device. In the WDM architecture, a driver has a special AddDevice func
tion that the PnP Manager can call for each such device. The function has the fol
lowing prototype: 

NTSTATUS AddDevice(PDRIVER-OBJECT DriverObject. PDEVICE_OBJECT pdo) 
{ 

} 

The DriverObject argument points to the same driver object that you initial
ized in your DriverEntry routine. The pdo argument is the address of the physical 
device object at the bottom of the device stack, even if there. are already filter driv
ers below. 

The basic responsibility of AddDevice in a function driver is to create a device 
object and link it into the stack rooted in this PDO. The steps involved are as follows: 
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1. Call 10CreateDevice to create a device object and an instance of your own 
device extension object. 

2. Register one or more device interfaces so that applications know about 
the existence of your device. Alternatively, give the device object a name 
and then create a symbolic link. 

3. Next initialize your device extension and the Flags member of the device 
object. 

4. Call 10AttachDeviceToDeviceStack to put your new device object into the 
stack. 

Now I'll explain these steps in more detail. 

Creating a Device Object 
You create a device object by calling IoCreateDevice. For example: 

PDEVICE_OBJECT fdo; 
NTSTATUS status = IoCreateDevice(DriverObject. 

sizeof(DEVICE_EXTENSION). NULL, 
FILE_DEVICE_UNKNOWN. FILE_DEVICE_SECURE_OPEN. FALSE. &fdo); 

The first argument (DrlverObject) is the same value supplied to AddDevice as 
the first argument. This argument establishes the connection between your driver and 
the new device object, thereby allowing the I/O Manager to send you IRPs intended 
for the device. The second argument is the size of your device extension structure. 
As I discussed earlier in this chapter, the I/O Manager allocates this much additional 
memory and sets the DeviceExtension pointer in the device object to point to it. 

The third argument, which is NULL in this example, can be the address of a 
UNICODE_STRING providing a name for the device object. Deciding whether to name 
your device object and which name to give it requires some thought, and I'll describe 
these surprisingly complex considerations a bit further on in the section, "Should I 
Name My Device Object?" 

The fourth argument (FILE_DEVICE_UNKNOWN) is one of the device types 
listed in Table 2-4. Whatever value you specify here can be overridden by an entry 
in the device's hardware key or class key. If both keys have an override, the hard
ware key has precedence. For devices that fit into one of the established categories, 
specify the right value in one of these places because some details about the inter
action between your driver and the surrounding system depend on it. In addition, 
the default security settings for your device object depend on this device type. 
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The fIfth argument (0) provides the Characteristics flag for the device object. 
(See Table 2-3 on page 40.) These flags are relevant mostly for mass storage devices. 
The undocumented flag bit FILE-:-AUTOGENERATED_DEVICE~AME is for internal 
use only-the DDK documenters didn't simply forget to mention it. Whatever value 
you specify here can be overridden by an entry in the device's hardware key or class 
key. If both keys have an override, the hardware key has precedence. 

The sixth argument to IoCreateDevice (FAlSE in my example) indicates whether 
the device is exclusive. The I/O Manager allows only one handle to be opened by 
normal means to an exclusive device. Whatever value you specify here can be over
ridden by an entry in the device's hardware key or class key. If both keys have an 
override, the hardware key has precedence. 

NOTE The exclusivity attribute matters only for whatever named device ob
ject is the target of an open request. If you follow Microsoft's recommended 
guidelines for WDM drivers, you won't give your device object a name. Open 
requests will then target the PD~, but the PD~ will not usually be marked ex
clusive because the bus driver usually has no way of knowing whether you need 
your device to be exclusive. The only time the PD~ will be marked exclusive is 
when there's an Exclusive override in the device's hardware key or class key's 
Properties subkey. You're best advised, therefore, to avoid relying on the ex
clusive attribute altogether. Instead, make your IRP _MJ_CREATE handler re
ject open requests that would violate whatever restriction you require. 

The last argument (&£do) points to a location where IoCreateDevice will store 
the address of the device object it creates. 

If IoCreateDevice fails for some reason, it returns a status code and does not 
alter the PDEVICE_OBJECT described by the last argument. If it succeeds, it returns 
a successful status code and sets the PDEVICE_OBJECT pointer. You can then pro
ceed to initialize your device extension and do the other work associated with cre
ating a new device object. Should you discover an error after this point, you should 
release the device object and return a status code. The code to accomplish these tasks 
would be something like this: 

NTSTATUS status = IoCreateDevice( ... ): 
if (INT_SUCCESS(status» 

return status: 

if «some other error discovered» 
{ 

IoDeleteDevice(fdo): 
return status: 
} 
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I'll explain the NTSTATUS status codes and the NT_SUCCESS macro in the next 
chapter. 

Naming Devices 
Windows NT uses a centralized Object Manager to manage many of its internal data 
structures, including the driver and device objects I've been talking about. David 
Solomon presents a fairly complete explanation of the Windows NT Object Manager 
and namespace in Chapter 3, "System Mechanisms," of Inside Windows NT, Second 
Edition (Microsoft Press, 1998). Objects have names, which the Object Manager 
maintains in a hierarchical namespace. Figure 2-16 is a screen shot of my DEVVIEW 
application showing the top level of the name hierarchy. The objects displayed as 
folders in this screen shot are directory objects, which can contain subdirectories and 
"regular" objects. The objects displayed with other icons are examples of these regular 
objects. (In this respect, DEVVIEW is similar to the WINOB] utility that you'll find in 
the BIN\ WINNT directory of the Platform SDK. WINOB] can't give you informa
tion about device objects and drivers, though, which is why I wrote DEVVIEW in 
the first place.) 
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Figure 2-16. Using DEVVIEWto view the names pace. 
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Device objects can have names that conventionally live in the \Device direc
tory. Names for devices serve two purposes in Windows 2000. Giving your device 
object a name allows other kernel-mode components to find it by calling service 
functions like IoGetDeviceObjectPointer. Having found your device object, they 
can send you IRPs. 

The other purpose of naming a device object is to allow applications to open 
handles to the device so they can send you IRPs. An application uses the standard 
CreateFile API to open a handle, whereupon it can use ReadFile, WrlteFile, and 
DeviceIoControl to talk to you. The pathname an application uses to open a de
vice handle begins with the prefix \ \. \ rather than with a standard Universal Nam
ing Convention (UNC) name such as C:\MYFILE.CPP or \ \FRED\C-Drive\HISFII.E.CPP. 
Internally, the I/O Manager converts this prefix into \??\ before commencing a name 
search. To provide a mechanism for connecting names in the \?? directory to objects 
whose names are elsewhere (such as in the \Device directory), the Object Manager 
implements an object called a symbolic link. 

Symbolic Links 
A symbolic link is a little bit like a desktop shortcut in that it points to some other 
entity that's the real object of attention. Symbolic links are mainly used in Windows 
NT to connect the leading portion of DOS-style names to devices. Figure 2-17 shows 
a portion of the \?? directory, which includes a number of symbolic links. Notice, for 
example, that C: and other drive letters in the DOS file-naming scheme are actually 
links to objects whose names are in the \Device directory. These links allow the Object 
Manager to "jump" somewhere else in the namespace as it parses through a name. 
So, if I call CreateFile with the name C:\MYFILE.CPP, the Object Manager will take 
this path to open the file: 

1. Kernel-mode code initially sees the name \??\C:\MYFILE.CPP. The Object 
Manager looks up "??" in the root directory and finds a directory object 
with that name. 

2. The Object Manager now looks up "C:" in the \?? directory. It finds a 
symbolic link by that name, so it forms the new kernel-mode pathname 
\Device\HarddiskVolume1 \MYFILE.CPP and parses that. 

3. Working with the new pathname, the Object Manager looks up "Device" 
in the root directory and finds a directory object. 

4. The Object Manager looks up "HarddiskVolume1" in the \Device direc
tory. It finds a device object by that name. 
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Figure 2-17. The \1? directory with several symbolic links. 

At this point in the process, the Object Manager will create an IRP that it will 
send to the driver(s) for HarddiskVolume1. The IRP will eventually cause some file 
system driver or another to locate and open a disk file. Describing how a file system 
driver works is beyond the scope of this book. If we were dealing with a device 
name like COM1, the driver that ends up receiving the IRP would be the driver for 
\Device\SerialO. How a device driver handles an open request is definitely within 
the scope of this book, and I'll be discussing it in this chapter (in the section "Should 
I Name My Device Object?") and in Chapter 5 when I'll talk about IRP processing 
in general. 

A user-mode program can create a symbolic link by calling DefineDosDevice, 
as in this example: 

BOOl okay = DefineDosDeviceCDDD_RAW_TARGET_PATH, 
"barf", "\\Device\\SECTESL0"); 

You can see the aftermath of a call like this one in Figure 2-17, by the way. 
You can create a symbolic link in a WDM driver by calling IoCreate

SymboUcIJnk, 

IoCreateSymboliclinkClinkname, targname); 

where linkname is the name of the symbolic link you want to create and targname 
is the name to which you're linking. Incidentally, the Object Manager doesn't care 
whether targname is the name of any existing object: someone who tries to access 
an object by using a link that points to an undefmed name simply receives an error. 
If you want to allow user-mode programs to override your link and point it some
where else, you should call IoCreateUnprotectedSymboUcllnk instead. 
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ARC NAMES 

In the Advanced RISC Computing (ARC) architecture, there is a concept known 
as ARC naming that Windows 2000 relies on. You can see ARC names at work 
in the BOOT.lNI file in the root directory of your boot drive; Here's what my 
c()py of that file looked like at one point in the development of this book: 

[boot loader] 
timeout=30 
default=c:\ 
[operating systems] 
C:\="Microsoft Windows 98" 
scsi(0)disk(1)rdtsk(0)partition(1)\BETA2F="Win2k Beta-2 (Free Build)" 

Ifastdetect Inoguiboot 
scsi(0)disk(1)rdisk(0)part1tion(1)\WINNT="Win2K Beta-3 (Free Build)" 

Ifastdetect Inoguiboot 

On an Intel platform, ARC names like scsiCO)disk(l)rdisk(O)partition(l) are 
symbolic links within the kernel's \ArcName direCtory that point---eventually, 
that is, if you resolve all the links inthe way-to regular device objects. DEVVIEW 
will show you these links on your own system. 

Drivers for mass-storage devices other than hard disks should call 
IoAssignArcName during initialization to set up one of these links. The I/O 
Manager automatically creates the ARC names for hard disk devices, since these 
are needed to boot the system in the first place. 

Should I Name My Device Object? 
Deciding whether to give your device object a name requires, as I said earlier, a little 
thought. If you give your object a name, it will be possible for any kernel-mode 
program to try to open a handle to your device. Furthermore, it will be possible for 
any kernel-mode or user-mode program to create a symbolic link to your device object 
and to use the symbolic link to try to open a handle. You might or might not want 
to allow these actions. 

The primary consideration in deciding whether to name your device object is 
security. When someone opens a handle to a named object, the Object Manager 
verifies that they have permission to do so. When IoCreateDevice creates a device 
object for you, it assigns a default security deSCriptor based on the device type you 
specify as the fourth argument. There are three basic categories that the I/O Man
ager uses to select a security deSCriptor. (Refer to the second column in Table 2-4 on 
pages 41-43.) 
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• Most file system device objects (that is, disk, CD-ROM, file, and tape) 
receive the "public default unrestricted" access control list (ACL). TIli$ list 
gives just SYNCHRONIZE, READ_CONTROL, FlLE_READ_AlTRIBUTES, 
and FILE_TRAVERSE access to everyone except the System account and 
all administrators. File system device objects, by the way, exist only so that 
there Can be a target for a CreateFile call that will open a handle to a file 
managed by the file system. 

• Disk devices and network file system objects receive the same ACL as the 
file system objects with some modifications. For example, everyone gets 
full access to a named floppy disk device object, and administrators get 
sufficient rights to run ScanDisk. (User-mode network provider DLLs need 
greater access to the device object for their corresponding file system 
driver, which is why network file systems are treated differently than other 
file systems.) 

• All other device objects receive the "public open unrestricted" ACL, which 
allows anyone with a handle to the device to do pretty much anything. 

You can see that anyone will be able to access a nondisk device for both read
ing and writin~ if the driver gives the device object a name at the time when it calls 
10CreateDevice. This is because the default security allows nearly full access and 
because there is no. security check at all associated with creating a symbolic linh
the security checks happen at open time, based on the named object's security de
scriptor. This is true even if other device objects in the same sta~k have more 
restrictive security. 

DEVVIEW will show you the security attributes of the device objects it displays. 
You can see the operation of the default rules I just described by examining a file 
system, a disk device, and any other random device. 

The PDO also receives a default security descriptor, but it's possible to over
ride it with a security descriptor stored in the hardware key or in the Properties subkey 
of the class key. (The hardware key has precedence if both keys specify a descrip
tor.) Even lacking a specific security override, if either the hardware key or the class 
key's Properties subkey overrides the device type or characteristics specification, the 
I/O Manager constructs a new default security deSCriptor based on the new type. The 
I/O Manager does not, however, override the security setting for any of the other 
device objects above the PDO. Consequently, for the overrides (and the administra
tive actions that set them up) to have any effect, you should not name your device 
object. Don't despair though-applications can still access your device by means of 
a registered interface, which I'll discuss very shortly. 
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You need to know about one last security concern. As the Object Manager parses 
its way through an object name, it needs only FILE_TRAVERSE access to the inter
mediate components of the name. It only performs a full security check on the ob
ject named by the ftnal component. So, suppose you had a device object reachable 
under the name \Device\SECTEST_O or by the symbolic link \??\SecurityTescO. A 
user-mode application that tries to open \ \.\SecurityTescO for writing will be blocked 
if the object security has been set up to deny write access. But if the application tries 
to open a name like \ \.\SecurityTesCO\ExtraStuff that has additional name qualifi
cations, the open request will make it all the way to the device driver (in the form 
of an IRP _MLCREATE I/O request) if the user merely has FILE_TRAVERSE permis
sion, which is routinely granted. The I/O Manager expects the device driver to deal 
with the additional name components and to perform any required security checks 
with regard to them. 

To avoid the security concern I just described, you can supply the flag FILE_ 
DEVICE_SECURE_OPEN in the device characteristics argument to 10CreateDevice. This 
flag causes Windows 2000 to verify that someone has the right to open a handle to 
a device even if additional name components are present. 

The Device Name 
If you decide to name the device object, you would normally put the name in the 
\Device branch of the namespace. To give it a name, you have to create a UNICODE_ 
STRING structure to hold the name, and you have to specify that string a1! an argument 
to loCreateDevice: 

UNICODE_STRING devname; 
RtlIriitUnicodeStr1ng(&devname. L"\\Device\\Simple0"): 
IoCreateDevice(Dr1verObject. sizeof(DEVICE_EXTENSION). &devname •... ); 

I'll discuss the usage of RtlInitUnicodeString in the next chapter. 
Conventionally, drivers assign their device objects a name by concatenating a 

string naming their device type ("Simple" in this fragment) with a zero-based inte-
ger denoting an instance of that type. In general, you don't want to hard-code a name 
like I. just did-you want to compose it dynamically using string-manipulation func
tions like the following: 

UNICODE_STRING devname; 
static LONG lastindex = -1: 
LONG devindex = InterlockedIncrement(&lastindex): 
WCHAR name[32]; 
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_snwprintf(name, arraysize(name)~ L"\\Device\\SIMPLE%2.2d", devindex); 
RtllnitUnicodeString(&devname, name); 
IoCreateDevice( ... ); 

I'll explain the various service functions used in this fragment in the next couple 
of chapters. The instance number you derive for private device types might as well 
be a static variable, as shown in the previous fragment. 

NOTES ON DEVICE NAMING 

If all you wanted to do was to provide a quick-and-dirty way for an applica
tion to open a handle to your device during development, you could perfectly 
well assign the device object a name in the \?? branch. For a production driver, 
however, you're better advised to do what the text suggests and name the device 
object with a \Device directory name. 

The \?? directory used to be named \DosDevices. In fact, \DosDevices 
will still work, but it itself is a symbolic link to \?? The change was made to 
move the often-searched directory of user-mode names to the front of the al
phabeticallist of directories. See the "Windows 98 Compatihility Notes" section 
at the end of this chapter for an important caution about using \?? in your 
names. 

In previous versions of Windows NT, drivers for certain classes of devices 
\ 

(notably disks, tapes, serial ports, and parallel ports) called IoGetConflgura-
tionInformation to obtain a pointer to a global table containing counts of 
devices in each of these special classes. A driver would use the current value 
of the counter to compose a name like HarddiskO, Tapel, and so on, and would 
also increment the counter. WDM drivers. don't need to use this service func
tion or the table it returns, however. Constructing names for the devices in these 
classes is now the responsibility of a Microsoft type-specific class driver (such 
as DISKSYS). 

Device Interfaces 
The older method of naming I just discussed-naming your device object and creat
ing a symbolic link name that applications can use-has two major problems. We've 
already discussed the security implications of giving your device object a name. In 
addition, the author of an application that wants to access your device has to know 
the scheme. you adopted to name your devices. If you're the only one writing the 
applications that will be accessing your hardware, that's not much of a problem. But 
if many different companies will be writing applications for your hardware, and 
especially if many hardware companies are making similar devices, <;levising a suitable 
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naming scheme is difficult. Finally, many naming schemes rely on the language spo
ken by the programmer, which isn't necessarily a good choice in an increasingly global 
economy. (My favorite example involves an American chef who tells a German diner 
he's eating a "gift" [poison], whereupon the diner, only incompletely realizing the 
linguistic difficulty, calls the chef a "schmuck" [jewelry].) 

To solve these problems, WDM introduces a new naming scheme for devices 
that is language-neutral, easily extensible, usable in an environment with many hard
ware and software vendors, and easily documented. The scheme relies on the con
cept of a device interface, which is baSically a specification for how software can 
access hardware. A device interface is uniquely identified by a 128-bit GUID. You can 
generate GUIDs by running the Platform SDK utilities UUIDGEN or GUIDGEN-both 
utilities generate the same kind of number, but they output the result in different 
formats. The idea is that some industry group gets together to define a standard way 
of accessing a certain kind of hardware. As part of the standard-making process, 
someone runs GUIDGEN and publishes the resulting GUID as the identifier that will 
be forever after associated with that interface standard. 

MORE ABOUT GUIDS 

The GUIDs used to identify software interfaces are the same kind of unique 
identifier that's used in the Component Object Model (COM) to identify COM 
interfaces and in the Open Software Foundation (OSF) Distributed Computing 
Environment (DCE) to identify the target of a remote procedure call (RPC). For 
an explanation of how GUIDs are generated so as to be statistically unique, 
see page 66 of Kraig Brockschmidt's Inside OLE, Second Edition (Microsoft 
Press, 1995), which contains a further reference to the original algorithm speci
fication by the OSF. I found the relevant portion of the OSF specification online 
at http://www.opengroup.org/onlinepubs/9629399/apdxa.htm. 

The mechanics of creating a GUID for use in a device driver involve run
ning either UUIDGEN or GUIDGEN and then capturing the resulting identifier 
in a header file. GUIDGEN is easier to use because it allows you to choose to 
format the GUID for use with the DEFINE_GUID macro and to copy the resulting 
string onto the clipboard. ~igure 2-18 shows the GUIDGEN window. You can 
paste its output into a header file to end up with this: 

II {CAF53C68-A94C-lld2-BB4A-00C04FA330A6} 
DEFINE_GUID«<name», 
0xcaf53c68. 0xa94c. 0xlld2. 0xbb, 0x4a, 0x0. 0xc0. 0x4f, 0xa3. 0x30. 0xa6); 

You then replace the «name» with something more mnemonic like 
GUID_SIMPLE and include the definition in your driver and applications. 
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Figure 2-18. Using GUIDGEN to generate a GUID. 

I think of an interface as being analogous to the protein markers that populate 
the surface of living cells. An application desiring to access a particular kind of de
vice has its own protein markers that fit like a key into the markers exhibited by 
conforming device drivers. See Figure 2-19. 

Application 

~ .........•.... ~ 
· · 

· · \ ............... ~ 

"I need an X" 

Figure 2-19. Using device interfaces to match up applications and devices. 

Registering a Device Interface A function driver's AddDevice function should 
register one or more device interfaces by calling IoRegisterDeviceInterface, as 
shown here: 

#include <initguid.h> 
#include "guids.h" 

(continued) 
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NTSTATUS AddDevice( ... ) 
{ 

IoRegisterDev1celnterface(pdo. &GUID_SIMPLE. NULL. &pdx->ifname): 

} 

1. We're about to include a header (GUIDS.H) that contains one or more 
DEFINE_GUID macros. DEFINE_GUID normally declares an external 
variable. Somewhere in the driver, though, we have to actually reserve 
initialized storage for every GUID we're going to reference. The system 
header file INITGUID.H works some preprocessor magic to make DEFINE_ 
GUID reserve the storage even if the definition of the DEFINE_GUID 
macro happens to be in one of the precompiled header files. 

2. I'm assuming here that I put the GUID deftnitions I want to reference into 
a separate header file. This would be a good idea, inasmuch as user-mode 
code will also need to include these deftnitions and will not want to in
clude a bunch of extraneous kernel-mode declarations relevant only to 
our driver. 

3. The fust argument to loRegisterDeviceInterface must be the address of the 
PDO for your device. The second argument identifies the GUID associ
ated with your interface, and the third argument specifies additional 
qualified names that further subdivide your interface. Only Microsoft 
code uses this name subdivision scheme. The last argument is the address 
of a UNICODE_STRING structure that will receive the name of a symbolic 
link that resolves to this device object. 

The return value from loRegisterDevicelnterface is a Unicode string that appli
cations will be able to detemiine without knowing anything special about how you 
coded your driver and will then be able to use in opening a handle to the device. 
The name is pretty ugly, by the way; here's an example that I generated for one of 
my sample devices in Windows 98: \DosDevices\0000000000000007#{CAF53 
C68-A94C-lld2-BB4A-OOC04FA330A61. (You can call it 007 once you get to know it 
better.) 

All that registration actually does is create the symbolic link name and save 
it in the registry. Later on, in response to the IRP _MN_START_DEVICE Plug and 
Play request we'll discuss in Chapter 6, you'll make the following call to IoSet
DeviceInterlaceState to "enable" the interface: 

IoSetDevicelnterfaceState(&pdx->1fname. TRUE): 

In response to this call, the I/O Manager creates an actual symbolic link object 
pointing to th~ PDO for your device. You'll make a matching call to disable the inter
face at a still later time (just call loSetDevicelnterfaceState with a FALSE argument), 
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whereupon the I/O Manager will delete the symbolic link object while preserving the 
registry entry that contains the name. In other words, the name persists and will always 
be associated with this particular instance of your device; the symbolic link object 
comes and goes with the hardware. 

Since the interface name ends up pointing to the PDO, the PDO's security 
descriptor ends up controlling whether people can access your device. That's good, 
because it's the PDO's security that an administrator can control through the Man
agement Console. 

Enumerating Device Interfaces Both kernel-mode and user-mode code can 
locate all the devices that happen to support an interface in which they're interested. 
I'm going to explain how to enumerate all the devices for a particular interface in 
user mode. The enumeration code is so tedious to write that I eventually wrote a C++ 
class to make my own life simpler. You'll fmd this code in the DEVICELIST.CPP and 
DEVICELIST.H files that are part of the WDMIDLE sample in Chapter 8, "Power Manage
ment." These files declare and implement a CDeviceList class, which contains an array 
of CDeviceListEntryobjects. These two classes have the follOwing declaration: 

class CDeviceListEntry 
{ 

public: 

} ; 

CDeviceListEntry(LPCTSTR linkname. LPCTSTR friendlyname); 
CDeviceListEntry(){} 
CString m-linkname; 
CString m-friendlyname; 

class CDeviceList 
{ . 

public: 

} ; 

CDeviceList(const GUID& guid); 
-CDevi ceL i st(); 
GUID m-guid; 
CArray<CDeviceListEntry. CDeviceListEntry&> m-list; 
int Initialize(); 

The classes rely on the CString class and CArray template class that are part 
of the Microsoft Foundation Classes (MFC) framework. The constructors for these two 
classes simply copy their arguments into the obvious data members: 

CDeviceList::CDeviceList(const GUID& guid) 
{ 

m-guid = guid; 
} 

continued 
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CDevicelistEntry::CDevicelistEntry(LPCTSTR l1nkname, 
lPCTSTR friendlyname) 
{ 

m-11nkname = linkname: 
m-friendlyname = friendlyname: 
} 

All the interesting work occ;:urs in the CDeviceUst::Initialize function. The 
executive overview of what it does is this: it will enumerate all of the devices that 
expose the interface whose GUID was supplied to the constructor. For each such 
device, it will determine a "friendly" name that we're willing to show to an unsus
pecting end user. Finally, it will return the number of devices it found. Here's the code 
for this function: 

int CDevicelist::Initialize() 
{ 

HDEVINFO info = SetupDiGetClassDevs(&m-guid, NUll, NUll, 
DIGCF_PRESENT I DIGCF~INTERFACEDEVICE): 

if (info == INVALID_HANDLE_VALUE) 
return 0: 

SP_INTERFACE-DEVICE_DATA ifdata: 
ifdata.cbSize = sizeof(ifdata): 
DWORD devindex: 
for (devindex = 0: 

SetupDiEnumDeviceInterfaces(info, NUll, &m-guid, 
devindex, &1fdata): ++devindex) 
{ 

DWORD needed: 
SetupDiGetDeviceInterfaceDetail(info, &ifdata, NUll, 0, 

&needed, NULl): 

PSP_INTERFACE_DEVICE_DETAIL-DATA detail 
(PSP _INTERFACE-DEVICE-DETAI L_DATA) mall oc(neede,d) : 

detail->cbSize = sizeof(SP_INTERFACE_DEVICE_DETAIL-DATA): 
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}: 
SetupDiGetDevicelnterfaceDetail(info, &ifdata, detail, 

needed, NUll, &did»: 

TCHAR fname[256]: 
if (!SetupDiGetDeviceRegistryProperty(info, &did, SPDRP_FRIENDlYNAME, 

NULL, (PBYTE) fname, sizeof(fname), NULL) 
&& ISetupDiGetDeviceRegistryPropertY(info, &did, SPDRP_DEVICEOESC, 

NULL, (PBYTE) fname. sizeof(fname), NUll» 
_tcsncpy(fname, detail->Oev1cePath, 256): 
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CDeviceListEntry e(detail->DevicePath. fname); 
free«PVOID) detail); 

nLl i st.Add(e); 
} 

SetupDiDestroyDeviceInfoList(info); 
return m-list.GetSize(); 
} 

1. 1his statement opens an enumeration handle that we can use to fmd all 
devices that have registered an interface that uses the same GUID. 

2. Here we call SetupDiEnumDeviceInterfaces in a loop to find each 
device. 

3. 1he only two items of information we need are the "detail" information 
about the interface and information about the device instance. 1he detail 
is just the symbolic name for the device. Since it's variable in length, we 
make two calls to SetupDiGetDeviceInterfaceDetail. 1he first call de
termines the length. 1he second call retrieves the name. 

4. We obtain a "friendly" name for the device from the registry by asking for 
either the FrlendlyName or the DeviceDesc. 

5. We create a temporary instance named e of the CDeviceListEntry class, using 
the device's symbolic name as both the link name and the friendly name. 

FRIENDLY NAMES 

You might be wondering how the registry comes to have a FriendlyName for 
a device. 1he INF file you use to install your device driver-see Chapter 12-
can have an HW section that specifies registry parameters for the device. You 
should normally provide a FriendlyName as one of these parameters. 

Other Global Device Initialization 
You need to take some other steps during AddDevice to initialize your device ob
ject. I'm going to describe these steps in the order you should do them, which isn't 
exactly the same order as their respective logical importance. I want to emphasize· 
that the code snippets in this section are even more fragmented than usual-I'm going 
to show only enough of the entire AddDevice routine to establish the surrounding 
context for the small pieces I'm trying to illustrate. 
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Initializing the Device Extension 
The content and management of the device extension are entirely up to you. The data 
members you place in this structure will obviously depend on the details of your 
hardware and on how you go about programming the device. Most drivers would 
need a few items placed there, however, as illustrated in the following fragment of 
a declaration: 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObject: 
PDEVICE_OBJECT LowerDeviceObject: 
PDEVICE_OBJECT Pdo: 
UNICODE_STRING ifname: 
IO_REMOVE_LOCK RemoveLock: 
DEVSTATE devstate: 
DEVSTATE prevstate: 
POWERSTATE powerstate: 
DEVICE_POWER-STATE devpower: 
SYSTEM_POWER-STATE syspower: 
DEVICE_CAPABILITIES devcaps: 

} DEVICE_EXTENSION, *PDEVICE_EXTENSION: 

1. I find it easiest to mimic the pattern of structure declaration used in the 
official DDK, so I declared this device extension as a structure with a tag 
as well as a type and pointer-to-type name. 

2. You already know that you locate your device extension by following the 
DeviceExtension pointer from the device object. It's also useful in sev
eral situations to be able to go the other way-to find the device object 
given a pointer to the extension. The reason is that the logical argument 
to certain functions is the device extension itself (since that's where all of 
the per-instance information about your device resides). Hence, I find it 
useful to have this DeviceObject pointer. 

3. I'll mention in a few paragraphs that you need to record the address of 
the device object immediately below yours when you call IoAttachDevice
ToDeviceStack, and LowerDeviceObject is the place to do that. 

4. A few service routines require the address of the PDQ instead of some 
higher device object in the same stack. It's very difficult to locate the PDQ, 
so the easiest way to satisfy the requirement of those functions is to record 
the PDQ address in a member of the device extension that you initialize 
during AddDevice. 



Chapter 2 Basic Structure of a WDM Driver 

5. Whichever method (symbolic link or device interface) you use to name 
your device, you'll want an easy way to remember the name you assign. 
In this fragment, I've declared a Unicode string member named ifname 
to record a device interface name. If you were going to use a symbolic 
link name instead of a device interface, it would make sense to give this 
member a more mnemonic name, such as "linkname." 

6. I'll discuss in Chapter 6 a synchronization problem affecting how you de
cide when it's safe to remove this device object by calling IoDe1eteDevice. 
The solution to that problem involves using an IO_REMOVE_LOCK ob
ject that needs to be allocated in your device extension as shown here. 
AddDevice needs to initialize that object. 

7. You'll probably need a device extension variable to keep track of the cur
rent Plug and Play state and current power states of your device. DEVSTATE 
and POWERSTATE are enumerations that I'm assuming you've declared 
elsewhere in your own header file. I'll discuss the use of all these state 
variables in later chapters. 

8. Another part of power management involves remembering some capability 
settings that the system initializes by means of an IRP. The devcaps struc
ture in the device extension is where I save those settings in my sample 
drivers. 

The initialization statements in AddDevice (with emphasis on the parts involv
ing the device extension) would be as follows: 

NTSTATUS AddDevice( ... ) 
{ 

PDEVICE_OBJECT fdo; 
IoCreateDevice( ...• s1zeof(DEVICE_EXTENSION) •.... &fdo); 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
pdx->DeviceObject = fdo; 
pdx->Pdo = pdo; 
IoInitia11zeRemoveLock(&pdx->RemoveLock •... ); 
pdx->devstate = STOPPED; 
pdx->powerstate = POWERON; 
pdx->devpower = PowerDeviceD0; 
pdx->syspower = PowerSystemWorking; 
IoRegisterDevicelnterface( ..•• &pdx->ifname); 
pdx->LowerDev1ceObject = IoAttachDeviceToDeviceStack( ... ); 
} 
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Initializing the Default DPC Object 
Many devices signal completion of operations by means of an interrupt. As you'llleam 
when I discuss interrupt handling in Chapter 7, "Reading and Writing Data," there are 
strict limits on what your interrupt service routine (ISR) can do. In particular, an ISR 
isn't allowed to call the routine (IoCompleteRequest) that signals completion of an 
IRP, but that's exactly one of the steps you're likely to want to take. You utilize a 
deferred procedure call (DPC) to get around the limitations. Your device object con
tains a subsidiary DPC object that can be used for scheduling your particular DPC 
routine, and you need to initialize it shortly after creating the device object: 

NTSTATUS AddDevice( ... ) 
{ 

IoCreateDevice( ... ); 
IoInitializeDpcRequest(fdo. DpcForIsr); 
} 

Setting the Buffer Alignment Mask 
Devices which perform direct memory access (DMA) transfers work directly with data 
buffers in memory. The HAL might require that buffers used for DMA be aligned to 
some particular boundary, and your device might require still more stringent align
ment. The AlignmentRequirement field of the device object expresses the restric
tion-it is a bit mask equal to one less that the required address boundary. You can 
round an arbitrary address down to this boundary with this statement: 

PYOID address = ••. ; 
SIZE_T ar = fdo->AlignmentRequirement; 
address = (PVOID) ((SIZE_T) address & -ar); 

You round an arbitrary address up to the next alignment boundary like this: 

PYOID address = ... ; 
SIZE_T ar = fdo->AlignmentRequirement; 
address = (PVOID) (( (SIZLT) address + ar) & -ar); 

In these two code fragments, I used SIZE_T casts to transform the pointer (which 
may be 32 bits or 64 bits wide, depending on the platform for which you're compil
ing) into an integer wide enough to span the same range as the pointer. 

10CreateDevice sets the AlignmentRequirement field of the new device object 
equal to whatever the HAL requires. For example, the HAL for Intel x86 chips has 
no alignment requirement, so AlignmentRequirement is 0 initially. If your device 
requires a more stringent alignment for the data buffers it works with (say, because 
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you have bus-mastering DMA capability with a special alignment requirement), you 
want to override the default setting. For example: 

if (MYDEVICE_ALIGNMENT - 1 > fdo->AlignmentRequirement) 
fdo->AlignmentRequirement = MYDEVICE_ALIGNMENT - 1: 

I've assumed here that elsewhere in your driver is a manifest constant named 
MYDEVICE_ALIGNMENT that equals a power of two and represents the required 
alignment of your device's data buffers. 

Miscellaneous Objects 
Your device might well use other objects that need to be initialized during AddDevice. 
Such objects might include a controller object, various synchronization objects, vari
ous queue anchors, scatter/gather list buffers, and so on. I'll discuss these objects, 
and the fact that initialization during AddDevice would be appropriate, in various other 
parts of the book. 

Initializing the Device Flags 
Two of the flag bits in your device object need to be initialized during AddDevice 
and never changed thereafter: the DO_BUFFERED_IO and DO_DIRECT_10 flags. You 
can set one (but only one) of these bits to declare once and for all how you want to 
handle memory buffers coming from user mode as part of read and write requests. 
(I'll explain in Chapter 7 what the difference between these two buffering methods 
is and why you'd want to pick one or the other.) The reason you have to make this 
important choice during AddDevice is that any upper filter drivers that load after you 
will be copying your flag settings and it's the setting of the bits in the topmost de
vice object that's actually important. Were you to change your mind after the filter 
drivers load, they probably wouldn't know about the change. 

Three of the flag bits in the device object pertain to power management. In 
contrast to the two buffering flags, these three can be changed at any time. I'll dis
cuss them in greater detail in Chapter 8, but here's a preview. DO_POWER_PAGABLE 
means that the Power Manager must send you IRP "':MLPOWER requests at interrupt 
request level (IRQL) DISPATCH_LEVEL. (If you don't understand all of the concepts 
in the preceding sentence, don't worry-I'll completely explain all of them in later 
chapters.) DO_POWER_INRUSH means that your device draws a large amount of 
current when powering on, such that the Power Manager should make sure that no 
other in-rush device is powering up simultaneously. DO_POWER_NOOP means that 
you don't participate in power management in the ftrst place and is only an appro
priate setting for WDM driv~rs that don't manage any hardware. 
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Setting the Initial Power State 
Most devices start life in the fully powered state. If you know the initial state of your 
device, you should tell the Power Manager: 

POWER-STATE state; 
state.DeviceState = PowerDeviceD0; 
PoSetPowerState(fdo. DevicePowerState. state); 

See Chapter 8 for much more detail about power management. 

Building the Device Stack 
Each filter and function driver has the responsibility of building up the stack of de
vice objects, starting from the PDO and working upward. You accomplish your part 
of this work with a call to IoAttachDeviceToDeviceStack: 

NTSTATUS AddDevice( ...• PDEVICE_OBJECT pdo) 
{ 

PDEVICE_OBJECT fdo; 
IoCreateDevice( ...• &fdo); 
pdx->LowerDeviceObject ~ IoAttachDeviceTo~eviceStack(fdo. pdo); 
} 

The first argument to IoAttachDeviceToDeviceStack (fdo) is the address of your 
oWn newly created device object. The second argument is the address of the PDO. 
The second argumentto AddDevice is this address. The return value is the address 
of whatever device object is immediately underneath yours, which can be the PDO 
or the address of some lower filter device object. 

Clear DO_DEVICE_INITIALIZING 
Pretty much the last thing you do in AddDevice should be to clear the DO_ 
DEVICE_INITIALIZING flag in your driver object: 

fdo->Flags &~ -DO_DEVICE_INITIALIZING; 

While this flag is set, the I/O Manager will refuse to attach other device objects 
to yours or to open a handle to your device. You have to clear the flag because your 
device object initially ap1ves in the world with the flag set. In previous releases of Win
dows NT, most drivers created all of their device objects during DriverEntry. When 
DriverEntry returns, the I/O Manager automatically traverses the list of device objects 
linked from the driver object and clears this flag. Since you're creating your device 
object long after DriverEntry returns, however, this automatic flag clearing won't occur, 
and you must do it yourself. 
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WINDOWS 98 COMPATIBILITY NOTES 
Windows 98 handles some of the details surrounding device object creation and driver 
loading differently than Windows 98. This section explains the differences that might 
affect your driver. 

Differences in DriverEntry Can 
As I indicated earlier, the DriverEntry routine receives a UNICODE_STRING argument 
naming the service key for the driver. In Windows 2000, the string is a full registry path 
of the form "\Registry\Machine \ System \CurrentControlSet\Services\xxx" (where "xxx" 
is the name of the service entry for your driver). In Windows 98, however, the string 
1sof the form "System \ CurrentControlSet\Services \ <classname>\ <instance-#>" 
(where <ciassname> is the class name of your device and <instance-#> is an instance 
number like 0000 indicating which device of that class you happen to be). You can 
open the key in either environment by calling ZwOpenKey, however. 

Differences in Registry Organization 
Windows 98 uses a slightly different scheme for organizing the registry entries for 
devices thim Windows 2000 does. The following short explanation will make bet
ter sense if you come back to it after reading the material on driver installation in 
Chapter 12. ' 

• The hardware key is below HKLM\Enum and isn't protected in any way 
(because Windows 98 doesn't have a security system). There is no Ser
vice value; instead, there's a Driver value that supplies the final two 
components of the name of the service key. The LowerFUters and 
UpperFUters values are treated as binary because the Windows 98 reg
istry doesn't have a MULTCSZ type, and the values use 8-bit characters 
to name driver image files (with the .SYS extension) rather than services. 

• The class key is below HKLM\System\CurrentControISet\Services\Class. 

• The service key is a child of the class key. The entries in the service key 
include a DevLoader value pointing'to NTKERN.VXD and an NTMPDriver 
value naming your driver image (with the .SYS extension), which must 
reside in %SystemRoot<>Al \System32\Drivers. 
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The \?? Directory 
Windows 98 doesn't understand the directory name \?? Consequently, you need to 
put symbolic link names in the \DosDevices directory. You can use \DosDevices in 
Windows NT also, because it is a symbolic link to the \?? directory. 

Unimplemented Device Types 
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Original Windows 98 doesn't support creating device objects for mass storage devices. 
These are devices with types FILE_DEVICE_DISK, FILE_DEVICE_TAPE, FILE_ 
DEVlCE_CD_ROM, and FlLE_DEVlCE_ VlRTIJAL_DISK. You can call IoCreateDevice, 
and it will even return with a status code of STATUS_SUCCESS, but it won't have 
actually created a device object or modified the PDEVlCE_OBJECT variable whose 
address you gave as the last argument. 

The reason this functionality isn't available is that Windows 98 disk drivers must 
use the I/O Supervisor architecture invented for Windows 95. Why IoCreateDevice 
fails so silently is a bit of a puzzle, though. 
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Basic Programming 
Techniques 

Writing a WDM driver is fundamentally an exercise in software engir).eering. What
ever the requirements of your particular hardware, you will combine various elements 
to form a program. In the previous chapter, I described the basic structure of a WDM 
driver, and I showed you two of its elements-DriverEntry and AddDevice--in de
tail. In this chapter, I'll focus on the even more basic topic of how you call upon the 
large body of kernel-mode support routines that the operating system exposes for 
your use. I'll discuss error handling, memory and data structure management, regis
try and file access, and a few other topics. I'll round out the chapter with a short 
discussion of the steps you can take to help debug your driver. 

THE KERNEL-MODE 
PROGRAMMING ENVIRONMENT 

Figure 3-1 (on page 73) illustrates some of the components that make up the Microsoft 
Windows NT operating system. Each component exports service functions whose 
names begin with a particular two-letter prefix: 

• The I/O Manager (prefix 10) contains many service functions that drivers 
use, and I'll be discussing them all throughout this book. 
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• The Process Structure module (preftx Ps) creates and manages kernel
mode threads. An ordinary WDM driver might use an independent thread 
to repeatedly poll a device incapable of generating interrupts. 

• The Memory Manager (preftx Mm.) controls the page tables that defme the 
mapping of virtual addresses onto physical memory. 

• The executive (preftx Ex) supplies heap management and synchroniza
tion services. I'll discuss the heap management service functions in this 
chapter. The next chapter covers the synchronization services. 

• The Object Manager (preftx Ob) provides centralized control over the many 
data objects with which Windows NT works. WDM drivers rely on the Ob
ject Manager only for keeping a reference count that prevents an object 
from disappearing while someone is still using it. 

• The Security Reference Monitor (prefix Se) allows file system drivers to 
perform security checks. Someone else has usually dealt with security 
concerns by the time an I/O request reaches a WDM driver, so I won't be 
discussing these functions in this book. 

• The so-called run-time library component (prefIX Rd) contains utility rou
tines, such as list and string management routines, that kernel-mode drivers 
can use instead of regular ANSI standard library routines. For the most part, 
the operation of these functions is obvious from their names, and you 
would pretty much know how to use them in a program if you just were 
aware of them. I'll describe a few of them in this chapter. 

• Windows NT implements user-mode calls to the Win32 subsystem in 
kernel ,mode with routines whose names begin with the Zw prefIX. The 
Microsoft Windows 2000 DDK exposes just a few of these functions for 
use by drivets;induding functions for accessing files and the registry. I'll 
discuss those functions in this chapter. 

• The Windows NT kernel (prefix Ke) is where all the low-level synchro
ni?ati?n of activities between threads and processors occurs. I'll discuss 
the KeXxX, functions in the next chapter. 

• The very bottom layer of the operating system, on which the support 
sandwich rests, is the hardware abstraction layer (or HAL, prefix Hal). All 
the <>perating system's knowledge of how the computer is actually wired 
together reposes in the HAL. The HAL understands how interrupts work 
on a particular platform, how to implement spin locks, how to address 
I/O' and memory-mapped devices, and so on. Instead of talking directly 
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to their hardware, WDM drivers call functions in the HAL to do it. The 
driver ends up being platform-independent and bus-independent. 

Figure 3-1. Overview of kernel-mode support routines. 

Using Standard Run-Time Library Functions 
Historically, the Windows NT architects have preferred that drivers not use the run
time libraries supplied by vendors of C compilers. In part, the initial disapproval arose 
from simple timing. Windows NT was designed at a time when there was no ANSI 
standard for what functions belonged in a standard library and when many compiler 
vendors existed, each with its own idea of what might be cool to include and its own 
unique quality standards. Another factor is that standard run-time library routines 
sometimes rely on initialization that can only happen in a user-mode application and 
are sometimes implemented in a thread-unsafe or multiprocessor-unsafe way. 

Until now, the official rule has been that kernel-mode drivers should call only 
functions specifically documented in the DDK. Rather than call wcscmp, for example, 
one should call RdCompareUnicodeString. It's been a pretty open secret, however, 
that the standard import library that one uses to build a driver (NTOSKRNL.LIB) 
defines many of the functions declared by application header mes such as STRING.H, 
STDIO.H, STDLIB.H, and CfYPES.H. So why not call them? In fact, there's no rea
son not to call them, provided you understand all the implications. Don't, for example, 
switch to always calling memcpy instead of RdCopyBytes, because there's a subtle 
difference between the two. (RtlCopyBytes is guaranteed to proceed byte by byte 
instead of in larger chunks, which can matter on particular RISC [reduced instruction 
set computing] platforms.) 
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A Caution About Side Effects 
Many of the support "functions" that you use in a driver are defined as macros in the 
DDK header files. We were all taught to avoid using expressions that have side effects 
(that is, expressions that alter the state of the computer in some persistent way) as 
arguments to macros for the obvious reason that the macro can invoke the argument 
more or less than exactly once. Consider, for example, the following code: 

int a = 2. b = 42. c; 
c = min(a++. b); 

What's the value of a afterward? (For that matter, what's the value of c?) Take a look 
at a plausible implementation of min as a macro: 

#define min(x.y) «(x) < (y» ? (x) : (y» 

If you substitute a++ for x, you can see that a will equal 4 because the expression 
a++ gets executed twice. The value of the "function" min will be 3 instead of the 
expected 2 because the second invocation of a++ delivers the value. 

You basically can't tell when the DDK will use a macro and when it will declare 
a real external function. Sometimes, a particular service function will be a macro for 
some platforms and a function call for other platforms. Furthermore, Microsoft is free 
to change its mind in the future. Consequently, you should follow this rule when 
programming a WDM driver: 

Never use an expression that has side effects as an argument to a kernel-mode 
service function. 

ERROR HANDLING 
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To err is human, to recover is part of software engineering. Exceptional conditions 
are always arising in programs. Some of them start with program bugs, either in our 
own code or in the user-mode applications that invoke our code. Some of them relate 
to system load or the instantaneous state of hardware. Whatever the cause, unusual 
circumstances demand a flexible response from our code. In this section, I'll describe 
three aspects of error handling: status codes, structured exception handling, and bug 
checks. In general, kernel-mode support routines report unexpected errors by return
ing a status code, whereas they report expected variations in normal flow by returning 
a Boolean or numeric value other than a formal status code. Structured exception 
handling offers a standardized way to clean up after really unexpected events, such 
as dividing by zero or dereferencing an invalid pointer, or to avoid the system crash 
that normally ensues after such an event. A bug check is the internal name for a 
catastrophic failure for which a system shutdown is the only cure. 
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Status Codes 
Kernel-mode support routines (and your code too, for that matter) indicate success 
or failure by returning a status code to their caller. An NTSTATUS value is a 32-bit 
integer composed of several subfields, as illustrated in Figure 3-2. The high-order 
two bits denote the severity of the condition being reported-success, information, 
warning, or error. The customer bit is, I believe, a vestige of the 1960s when IBM 
reserved customer fields for local modification of its mainframe operating systems. I 
can't think of a current use for a customer field. The facility code indicates which 
system component originated the message and basically serves to decouple devel
opment groups from each other when it comes to assigning numbers to codes. The 
remainder of the status code-16 bits' worth-indicates the exact condition being 
reported. 

....--~~ Customer 

.... --~~ Severity 

Figure 3-2. Format of an NTSTATVS code. 

You should always check the status returns from routines that provide them. 
I'm going to break this rule frequently in some of the code fragments I show you 
because including all the necessary error handling code often obscures the expository 
purpose of the fragment. But don't you emulate this sloppy practice! 

If the high-order bit of a status code is zero, any number of the remaining bits 
could be set and the code would still indicate success. Consequently, never just 
compare status codes to zero to see if you're dealing with success-instead, use the 
NT_SUCCESS macro: 

NTSTATUS status = SomeFunction( ... ); 
if (INT_SUCCESS(status» 

{ 

<handle error> 
} 

Not only do you want to test the status codes you receive from routines you 
call, but you also want to return status codes to the routines that call you. In the pre
ceding chapter, I dealt with two driver subroutines-DriverEntry and AddDevice
that are both defmed as returning NTSTATUS codes. As I discussed, you want to return 
NT_SUCCESS as the success indicator from these routines. If something goes wrong, 
you often want to return an appropriate status code, which is sometimes the same 
value that a routine returned to you. 
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As an example, here are some initial steps in· the AddDevice function, with all 
the error checking left in: 

NTSTATUS AddDevice(PDRIVER-OBJECT DriverObject, PDEVICE-OBJECT pdo) 
{ 

NTSTATUS status: 
PDEVICE_OBJECT fdo: 
status = IoCreateDevice(DriverObject, sizeof(DEVICE-EXTENSION), 

NULL, FILE-DEVICE_UNKNOWN, 0, FALSE, &fdo): 
if (INT_SUCCESS(status» 

{ 

KdPrint«"IoCreateDevice failed - n\n", status»: 
return status: 
} 

PDEVICE-EXTENSION pdx = (PDEVICE-EXTENSION) fdo-)DeviceExtension: 
pdx-)DeviceObject = fdo: 
pdx-)Pdo = pdo: 
pdx-)state = STOPPED: 
IoInitializeRemoveLock(&pdx-)RemoveLock, 0, 0, 255): 
status = IoRegisterDeviceInterface(pdo, &GUID_SIMPLE, NULL, 

&pdx-)ifname): 
if (INT_SUCCESS(status» 

{ 

} 

KdPrint( ("IoRegisterDeviceInterface failed - n\n", status»: 
IoDeleteDevice(fdo): 
return status: 
} 

1. If IoCreate1)evice fails, we'll simply return the same status code it gave 
us. Note the use of the NT_SUCCESS macro as described in the text. 

2. It's sometimes a good idea, especially while debugging a driver, to print 
any error status you discover. I'll discuss the exact usage of KdPrlnt later 
in this chapter (in the "Making Debugging Easier" section). 

3. IoInitializeRemoveLock, discussed in Chapter 6, "Plug and Play," is a 
VOID function, meaning that it can't fail. Consequently, there's no need 
to check a status code. 

4. Should IoKegisterDeviceInterface fail, we have some cleanup to do 
before we return to our caller; namely, we must call IoDeleteDevice to 
destroy the device object we just created. 

You don't always have to fail calls that lead to errors in the routines you call, 
of course. Sometimes you can ignore an error. For example, in Chapter 8, "Power 
Management," I'll tell you about a power management I/O request with the subtype 
IRP ~_POWER_SEQUENCE that you can use as an optimization to avoid unneces-
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sary state restoration during a power-up operation. Not only is it optional whether 
you use this request, but it's also optional for the bus driver to implement it. There
fore, if that request should fail, you should just go about your business. Similarly, you 
can ignore an error from IoAllocateErrorLogEntry because the inability to add an 
entry to the error log isn't at all critical. 

Structured Exception Handling 
Windows NT provides a method of handling exceptional conditions that helps you 
avoid potential system crashes. Closely integrated with the compiler's code genera
tor, structured exception handling lets you easily place a guard on sections of your 
code and invoke exception handlers when something goes wrong in the guarded 
section. Structured exception handling also lets you easily provide cleanup statements 
that you can be sure will always execute no matter how control leaves a guarded sec
tion of code. 

Very few of my seminar students have been familiar with structured excep
tions, so I'm going to explain some of the basics here. You can write better, more 
bulletproof code if you use these facilities. In many situations, the parameters that 
you receive in a WDM driver have been thoroughly vetted by other code and won't 
cause you to generate inadvertent exceptions. Good taste may, therefore, be the only 
impetus for you to use the stuff I'm describing in this section. As a general rule, though, 
you always want to protect direct references to user-mode virtual memory with a struc
tured exception frame. Such references occur when you call MmProbeAndLockPages, 
ProbeForRead, and ProbeForWrite, and perhaps at other times. 

NOTE The structured exception mechanism will let you avoid a system crash 
when kernel-mode code accesses an invalid user-mode address. It will not catch 
other processor exceptions, such as division by zero or attempts to access in
valid kernel-mode addresses. In this respect, the whole facility is less universal 
in kernel mode than in user mode. 

Kernel-mode programs use structured exceptions by establishing exception 
fr4mes on the same stack that's used for argument passing, subroutine calling, and 
automatic variables. I'm not going to describe the mechanics of this process in detail 
because it differs from one Windows NT platform to another. The mechanism is the 
same as the one that user-mode programs use, though, and there are a couple of 
places you can look for implementation details. See, for example, Matt Pietrek's article 
"A Crash Course on the Depths ofWin32 Structured Exception Handling" in Microsoft 
Systems Journal (January 1997). And Jeff Richter discusses the subject in Program
ming Applications for Microsoft Windows, Fourth Edition (Microsoft Press, 1999). 

When an exception arises, the operating system scans the stack of exception 
frames looking for a haridler. Refer to Figure 3-3 for a flowchart depicting the logic. 
In effect, each exception frame designates a filter function that the system calls to 
answer the question, "Can you handle this exception?" When the system finds a 
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handler, it unwinds the exception and execution stacks in parallel to restore the 
context of the handler. The unwinding process involves calling the same set of filter 
functions with an argument that indicates, in effect, "We're unwinding now; if you 
answered yes the last time, take over now!" There's always a default handler in place 
that crashes the system if no one else fields the exception. 

Figure 3-3. Logic of structured exception handling. 
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When you use the Microsoft compiler, you can use Microsoft extensions to the 
C/C++ language that hide some of the complexities of working with the raw oper
ating system primitives.· In particular, you use the __ try statement to designate a 
compound statement as the guarded body for an exception frame, and you use either 
the __ finally statement to establish a termination handler or the __ except state
ment to establish an exception handler. Run-time library routines interact with the 
operating system's raw exception mechanisms to produce the effects that I'll describe 
in the following sections. 

NOTE It's better to always spell the words __ try, __ finally, and __ except with 
leading underscores. In C compilation units, the DDK header file WARNING.H 
defines macros spelled try, finally, and except to be the words with underscores. 
DDK sample programs use those macro names rather than the underscored 
names. The problem this can create for you is that in a C++ compilation unit try 
is a statement verb that pairs with catch to invoke a completely different excep
tion mechanism that's part of the C++ language. C++ exceptions don't work in a 
driver unless you manage to duplicate some infrastructure from the run-time library. 
Microsoft would prefer you not do that because of the increased size of your driver 
and the memory pool overhead associated with handling the throw verb. 

Try-Finally Blocks 
It's easiest to begin explaining structured exception handling by describing the try
finally block, which you can use to provide cleanup code: 

__ try 

{ 

<guarded body> 
} 

__ finally 
{ 

<termination hand7er> 
} 

In this fragment of pseudocode, the guarded body is a series of statements and 
subroutine calls that expresses some main idea in your program. In general, these 
statements have side effects. If there are no side effects, there's no particular point 
to using a try-finally block because there's nothing to clean up. The termination 
handler contains statements that undo some or all of the side effects that the guarded 
body might leave behind. 

Semantically, the try-finally block works as follows. First, the computer executes 
the guarded body. When control leaves the guarded body jor any reason, the com
puter executes the termination handler. See Figure 3-4. 
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Normal ending, 
_leave, goto, 
return 

Figure 3·4. Flow of control in a try-finally block. 

Here's one simple illustration: 

LONG counter = 0; 
__ try 

{ 

++counter; 
} 

__ finally 
{ 

--counter; 
} 

KdPrint«"%d\n", counter»; 

<unwind> 

First, the guarded body executes and increments the counter variable from 0 
to 1. When control "drops through" the right-brace at the end of the guarded body, 
the termination handler executes and decrements counter back to O. The value 
printed will therefore be O. 

Here's a slightly more complicated variation: 

VOID RandomFunction(PLONG pcounter) 
{ 
__ try 

{ 

++*pcounter; 
return; 
} 

__ finally 

} 

{ 

--*pcounter; 
} 
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The net result of this function is no change to the integer at the end of the 
pcounter pointer: whenever control leaves the guarded body for any reason, includ
ing a return statement or a goto, the termination handler executes. Here the guarded 
body increments the counter and performs a return. Next the cleanup code exe~utes 
and decrements the counter. Then the subroutine actually returns. 

One final example should cement the idea of a try-finally block: 

static LONG counter = 0; 
__ try 

{ 

++counter; 
BadActor(); 
} 

__ finally 
{ 

--counter; 
} 

Here I'm supposing that we call a function, BadActor, that will raise some sort 
of exception that triggers a stack unWind. As part of the process of unwinding the 
execution and exception stacks, the operating system will invoke our cleanup code 
to restore the counter to its previous value. The system then continues unwinding 
the stack, so whatever code we have after the __ finally block won't get executed. 

Try-Except Blocks 
The other way to use structured exception handling involves a try-except block: 

__ try 
{ 

<guarded body> 
} 

__ except«filter expression» 
{ 

<exception handler> 
} 

The guarded body in a try-except block is code that might fail by generating 
an exception. Perhaps you're going to call a kernel-mode service function like 
MrnProbeAndLockPages that uses pointers derived from user mode without explicit 
validity checking. Perhaps you have other reasons. In any case, if you manage to get 
all the way through the guarded body without an error, control continues after the 
exception handler code. You'll think of this case as being the normal one. If an exception 
arises in your code or in any of the subroutines you call, however, the operating 
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system will unwind the execution stack, evaluating the filter expressions in __ except 
statements. These expressions yield one of the following values: 

• EXCEPTlON_EXECUTE_HANDLER is numerically equal to 1 and tells the 
operating system to transfer control to your exception handler. If your 
handler falls through the ending right-brace, control continues within your 
program at the statement immediately following that right-brace. (I've seen 
Platform SDK documentation to the effect that control returns to the point 
of the exception, but that's not correct.) 

• EXCEPTION_CONTINUE_SEARCH is numerically equal to 0 and tells the 
operating system that you can't handle the exception. The system keeps 
scanning up the stack looking for another handler. If no one has provided 
a handler for the exception, a system crash will occur. 

• EXCEPTION_ CONTINUE_EXECUTION is numerically equal to -1 and tells 
the operating system to return to the point where the exception was raised. 
I'll have a bit more to say about this expression value a little further on. 

Take a look at Figure 3-5 for the possible control paths within and around a 
try-except block. -

Normal ending, 
_leave. goto. 
return 

_<;II(lJ" handler:> 

----<unwind to handler:> 

Figure 3-5. Flow of control in a try-except block. 

For example, you could protect yourself from receiving an invalid pointer by 
using code like the following. (See the SEHTEST sample on the companion disc.) 

PVOID p = (PVOID) 1; 
__ try 

{ 

KdPrint«"About to generate exception\n"»; 
ProbeForWrite(p, 4, 4); 
KdPrint«"You shouldn't see this message\n"»; 
} 
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__ except(EXCEPTION_EXECUTE_HANDLER) 
{ 

KdPrint«"Exception was caught\n"»; 
} 

KdPrint«"Program kept control after exception\n"»; 

ProbeForWrite tests a data area for validity. In this example, it will raise an 
exception because the pointer argument we supply is not aligned to a 4-byte bound
ary. The exception handler gains control. Control then flows to the next statement 
after the exception handler and continues within your program. 

In the preceding example, had you returned the value EXCEPTION_CONTINUE_ 
SEARCH, the operating system would have continued unwinding the stack looking 
for an exception handler. Neither your exception handler code nor the code fol
lowing it would have been executed: either the system would have crashed or some 
higher-level handler would have taken over. 

You should not return EXCEPTION_CONTINUE_EXECUTION in kernel mode 
because you have no way to alter the conditions that caused the exception in order 
to allow a retry to occur. 

Note that you cannot trap arithmetic exceptions, page faults, actual references 
through invalid pointers, and the like by using structured exceptions. You just have 
to write your code so as not to generate such exceptions. 

Exception Filter Expressions 
You might be wondering how to perform any sort of involved error detection or 
correction when all you're allowed to do is evaluate an expression that yields one of 
three integer values. You could use the C/C++ comma operator to string expressions 
together: 

__ except(expr-l •... EXCEPTION_CONTINUE_SEARCH){} 

RAW EXCEPTION HANDLING VS. MICROSOFT SYNTAX 

The statements __ tty, __ except, and __ finally are Microsoft extensions to the 
C language that simplify use of the underlying raw exception handling mecha
nism that the operating system provides. In the flowchart in Figure 3-3 on page 
78, I illustrated two calls to each filter function--one for locating the exception 
handler and the other for stack unwinding. The run-time library contains the ac
tual filter function that the operating system calls. When you use __ try, __ ex
cept, and __ finally, you're talking to other run~time library functions that work 
with that filter function and the operating system to yield the simpler model I've 
been describing. In particular, the filter expression that you use in an __ except 
clause gets evaluated only once per exception. 
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The comma operator basically discards whatever value is on its left side and 
evaluates its right side. The value that's left over after this computational game of 
musical chairs (with just one chair!) is the value of the expression. 

You could use the C/C++ conditional operator to perform some more involved 
calculation: 

__ except (some-expr> 
? EXCEPTION_EXECUTE_HANDLER 
: EXCEPTION_CONTINUE_SEARCH) 

If the some_expr expression is TRUE, you execute your own handler. Other
wise, you tell the operating system to keep looking for another handler above you 
in the stack. 

Finally, it should be obvious that you could just write a subroutine whose return 
value is one of the EXCEPTION_Xxx values: 

LONG EvaluateException() 
{ 

if (some-expr» 
return EXCEPTION_EXECUTE_HANDLER; 

else 
return EXCEPTION_CONTINUE_SEARCH; 

} 

__ except(EvaluateException(» 

For any of these expression formats to do you any good, you need access to 
more information about the exception. There are two functions you can call when 
evaluating an __ except expression that will supply the information you need. Both 
functions actually have intrinsic implementations in the Microsoft compiler and can 
be used only at the specific times indicated: 

• GetExceptionCodeO returns the numeric code for the current exception. 
This value is an NTSTATUS value that you can compare with manifest 
constants in NTSTATUS.H if you want to. This function is available in an 
__ except expression and within the exception handler code that follows 
the __ except clause. 

• GetExceptionInformationO returns the address of an EXCEPTION_ 
POINTERS structure that, in tum, allows you to learn all the details about 
the exception, such as where it occurred, what the machine registers 
contained at the time, and so on. This function is available only within an 
__ except expression. 
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NOTE The scope rules for names that appear in try-except andtry~finaUy 
blocks are the same as elsewhere in the C/C++ language. In particular, if you 
declare variables within the scope of the compound statement that 101l0ws _try, 
those names are not visible in a filter expression, exception handler, or termi
nation handler. Documentation to the contrary that you might have seen in the 
Platform SDK or on MSDN is incorrect. For what it's worth, the stack frame cOil
taining any local variables declared within the scope of the guarded. I:>odystill 
exists at the time the filter expression is evaluated. So, if you had a pointer (pre
sumably declared at some outer scope) to a variable declared within the guarded 
body, you could safely dereference it in a filter expression. 

Because of the restrictions on how you can use these.two expressions in your 
program, you'd probably want to use them in a function call tosotne filter function, 
like this: 

LONG EvaluateExceptionCNTSTATUS status, PEXCfPT!ON __ POINTERS xp) 
{ 

} 

__ exceptC Eva 1 uateExcepti on C GetExcepti onCode() ,. 
GetExceptionlnformationC») 

Raising Exceptions 
Program bugs are one way you can (inadvertently) raise exceptions·thatirtvoke the 
structured exception handling mechanism. Application prognunmers are familiar with 
the Win32 API function RaiseException, which allows you togenerate.an arbitrary 
exception ort your own. In WDM drivers, you cart call the routirteslisted in Table3-1. 
I'm not going to give you a specific example of calling these functions because of 
the following rule: 

Only raise an exception in nonarbitrary thread context when you know there's an 
exception handler above you and you otherwise reallY know what you're doing. 

Service Function 

ExRaiseStatus 

ExRaiseAccessViolation 

ExRaiseDatatypeMisalignment 

Description 

Raise exception with specified status code 

Raise STATUS_ACCESS_ VIOLATION 

Raise STATUS_DATATYPE....:MISALIGNMENT 

Table 3-1. Service functions for raising exceptions. 

In particular, raising exceptions is not a good way to tell your callers informa
tion that you discover in the ordinary course of executing. It's far better to return a 
status code, even though that leads to apparently more unreadable code. Youshould 
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eschew exceptions because the stack-unwinding mechanism is very expensive. Even 
the cost of establishing exception frames is significant and something to avoid when 
you can. 

Some Real-World Examples 
Notwithstanding the expense of setting up and tearing down exception frames, you 
have to use structured exception syntax in an ordinary driver in particular situations. 
And on some other occasions when time isn't of the essence, you might as well use 
this mechanism because you'll end up with a better program. 

One of the times you must set up an exception handler is when you call 
MmProbeAndLockPages to lock the pages for a memory descriptor list (MDL) 
you've created. This wouldn't be a frequent problem for a WDM driver, because you 
typically deal with MDLs for which someone else has already done the probe-and
lock step. But you're allowed to define I/O control (IOCTL) operations that use the 
METHOD_NEITHER buffering method, and you might therefore need to write code 
like the following: 

PMDL mdl = MmCreateMdl( ... ); 
__ try 

{ 

MmProbeAndLockPages(mdl, ... ); 
} 

__ except(EXCEPTION_EXECUTE_HANDLER) 
{ 

NTSTATUS status = GetExceptionCode(); 
ExFreePool((PVOID) mdl); 
return CompleteRequest(Irp, status, 0); 
} 

(CompleteRequest is a helper function I use to handle the mechanics of com
pleting I/O requests. Chapter 5, "The I/O Request Packet," explains all about I/O 
requests and what it means to complete one. ExFreePool is a kernel-mode service 
routine that releases a memory block, such as the one that MmCreateMdl creates. 
I'll discuss ExFreePoollater in this chapter in "Releasing a Memory Block.") 

For another real-world example, consider the code I showed you earlier in this 
chapter for dealing with errors in your AddDevice function. As you progress through 
the function, you keep accumulating side effects that all have to be undone if you 
discover an error. You could use structured exception handling to make the function 
more maintainable. I'm omitting a bunch of stuff in this example to emphasize the 
error-handling aspects: 

NTSTATUS AddDevice( ... ) 
{ 

NTSTATUS status = STATUS_UNSUCCESSFUL; 
PDEVICE_OBJECT fdo; 
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PDEVICE_EXTENSION pdx; 
status = IoCreateDevice( ...• &fdo); 
if (!NT_SUCCESS(status» 

return status; 
__ try 

{ 

pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 

IoInitializeRemoveLock(&pdx->RemoveLock .... ); 
status = IoRegisterDevicelnterface( ...• &pdx->ifname); 
if (INT_SUCCESS(status» 

return status; 

} 

__ finally 
{ 

if (!NT_SUCCESS(status» 
{ 

} 

if (pdx->ifname.Buffer) 
RtlFreeUnicodeString(&pdx->ifname); 

IoDeleteDevice(fdo); 
} 

return status; 
} 

The key idea here is that whenever we discover an error status from some ser
vice function, we just execute a return status statement. (See the next sidebar for a 
description of a more efficient technique.) The return status statement triggers exe
cution of the termination handler, which undoes each of the side effects that have 
accumulated so far. For this technique to work properly, you have to do two things. 
Since the termination handler is always executed, even by the normal ending of the 
guarded body, you have to know when to undo side effects and when not to undo 
them. Here we test the status variable. If it's a success code of some kind, we don't 
do any cleanup. Otherwise, we undo everything. The second thing you have to do 
is provide a way to know which side effects need to be cleaned up. We dealt with 
that concern by initializing all the side-effect variables to NULL. If we never succeed 
in registering a device interface, there won't be a string in pdx->ifname to release. 
And so on. 

The biggest advantage of a try-finally block in a situation like that I just showed 
you is that your code is easier to modify. You can put any statement at all--even one 
which returns a status code and leaves behind a side effect if it succeeds-in between, 
say, the call to IoCreateDevice and the call to IoRegiSterDeviceInterface. All you 
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need do to ensure proper cleanup is add a compensating statement inside the termi
nation handler. The alternative-having explicit cleanup code after every test of the 
status code-is prone to error because you must remember to add a new cleanup 
statement in every place where you might exit the subroutine. 

THE __ LEAVE STATEMENT 

Microsoft added the __ leave statement to the C/C++ language to deal with an 
efficiency problem that arises in routines like the AddDevice example in the text. 
If you issue a normal return inside a __ try block, you trigger the expensive 
unwinding mechanism that the operating system uses for exception handling. 
The __ leave statement, however, just transfers control to the termination han
dler and, thereafter, to the statement following the termination handler. It's much 
faster than return because it doesn't cause any unwinding. In this case, we 
always want to execute the termination handler and then return a status code. 
Since the code we want to execute in both success and failure cases is the same 
(namely, return status), we should use __ leave instead of return. 

So, suppose we needed to allocate a block of memory for some auxiliary pur
pose. We could just insert a few statements in AddDevice like so (with the new parts 
in boldface): 

NTSTATUS AddDevice( ... ) 
{ 

NTSTATUS status = STATUS_UNSUCCESSFUL; 
PDEVICE_OBJECT fdo; 
PDEVICE_EXTENSION pdx; 
status = IoCreateDevice( ...• &fdo); 
if (!NT_SUCCESS(status» 

return status; 
__ try 

{ 

pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 

pdx-)DeviceDescriptor = (PUSB_DEVICE_DESCRIPTOR) 
ExAllocatePool(NonPagedPool. s;zeof(USB_DEVICE_DESCRIPTOR»; 

if (lpdx-)DeviceDescriptor) 
return STATUS_INSUFFICIENT_RESOURCES; 

IoInitializeRemoveLock(&pdx->RemoveLock •... ); 
status = IoRegisterDevicelnterface( ...• &pdx->ifname); 
if (!NT_SUCCESS(status» 

return status; 

} 
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_3inally 
{ 

if (!NT_SUCCESS(status» 
{ 

} 

if (pdx->ifname.Buffer) 
RtlFreeUnicodeString(&pdx->ifname): 

if (pdx->DeviceDescriptor) 
ExFreePool«PVOID) pdx->DeviceDescriptor): 

IoDeleteDevice(fdo): 
} 

return status: 
} 

Without using structured exceptions, you'd need to go through the rest of the 
program and add a call to ExFreePool to every code sequence that returns an error. 

Bug Checks 
Unrecoverable errors in kernel mode manifest themselves in the so-called blue screen 
of death (BSOD) that's all too familiar to driver programmers. Figure 3-6 is an example 
(hand-painted because there's no screen capture software running when one of these 
occurs!). Internally, these errors are called bug checks after the service function you 
use to diagnose their occurrence: KeBugCheckEx. The main feature of a bug check 
is that the system shuts itself down in as orderly a way as possible and presents the 
BSOD. Once the BSOD appears, the system is dead and must be rebooted. 

Figure 3·6. The "blue screen of death." 
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You call KeBugCheckEx like this: 

KeBugCheckEx(bugcode. infol. info2. info3. info4); 

where bugcode is a numeric value identifying the cause of the error, and infol, info2, 
and so on are integer parameters that will appear in the BSOD display to help some 
programmer understand the details of the error. This function does not return (0. 

I'm not going to describe here how to interpret the information in a BSOD or 
in a crash dump. Section 17.3 in Art Baker's The Windows NT Device Driver Book 
(Prentice Hall, 1997) is one place you can go for more information. Microsoft's own 
bugcheck codes appear in BUGCODES.H (one of the DDK headers); a fuller explana
tion of the codes and their various parameters can be found in Knowledge Base article 
QI03059, "Descriptions of Bug Codes for Windows NT," which is available on MSDN, 
among other places. 

You can certainly create your own bugcheck codes if you want. The Microsoft 
values are simple integers beginning with 1 (APC_INDEX_MISMATCH) and (currently) 
extending through OxDE (POOL_CORRUPTION_IN_FILE_AREA) along with a few 
others. To create your own bugcheck code, define an integer constant as if it were 
STATUS_SEVERITY_SUCCESS status code, but supply either the customer flag or a 
nonzero facility code. For example: 

#define MY_BUGCHECK-CODE 0x002A0001 

KeBugCheckEx(MY_BUGCHECK-CODE. 0. 0, 0, 0); 

You use a nonzero facility code (42 in this example) or the customer flag (which 
I left zero in this example) so that you can tell your own codes from the ones Micro
soft uses. 

Now that I've told you how to generate your own BSOD, let me tell you when 
to do it: never. Or, at most, in the checked build of your driver for use during your 
own internal debugging. You and I are unlikely to write a driver that will discover 
an error so serious that taking down the system is the only solution. It would be far 
better to log the error (using the error-logging facilities I'll describe in Chapter 9, 
"Specialized Topics") and return a status code. 

MEMORY MANAGEMENT 
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In this section, I'll discuss the topic of memory management. Windows 2000 divides 
the available virtual address space in several ways. One division-a very firm one 
based on security and integrity concerns-is between user-mode addresses and 
kernel-mode addresses. Another division, which is almost but not quite coextensive 
with the first, is between paged and nonpaged memory. All user-mode addresses and 
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some kernel-mode addresses reference page frames that the Memory Manager swaps 
to and from the disk over time, while some kernel-mode addresses always refer
ence the same page frames in physical memory. Since Windows 2000 allows por
tions of drivers to be paged, I'll explain how you control the pagability of your driver 
at the time you build your driver and at run time. 

Windows 2000 provides several methods for managing memory. I'll describe two 
basic service functions-ExAllocatePool and ExFreePool-that you use for allocating 
and releasing randomly sized blocks from a heap. I'll also describe the primitives that 
you use for organizing memory blocks into linked lists of structures. Finally, I'll describe 
the concept of a lookaside list, which allows you to efficiently allocate and release 
blocks that are all the same size. 

User-Mode and Kernel·ModeAddress Spaces 
Windows NT and Microsoft Windows 98 run on computers that support a virtual 
address space, wherein virtual addresses are mapped either to physical memory or 
(conceptually, anyway) to page frames within a swap file on disk. To grossly simplify 
matters, you can think of the virtual address space as being divided into two parts: 
a kernel-mode part and a user-mode part. See Figure 3-7. 

o 

Figure 3-7. User-mode and kernel-mode portions a/the address space. 

Each user-mode process has its own address context, which maps the user-mode 
virtual addresses to a unique collection of physical page frames. In other words, the 
meaning of any particular virtual address changes from one moment to the next as 
the Windows NT scheduler switches from a thread in one process to a thread in 
another process. Part of the work in switching threads is to change the page tables 
used by a processor so that they refer to the incoming thread's process context. 
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NOTE If you're familiar with the Alpha and you're a stickler for accuracy, you'll 
know that Alphas don't have page tables. They have something different called 
translation buffers that map virtual page addresses to physical page addresses. 
To me, this is a distinction without a difference-on a par with saying that The 
Odysseywa$ written by a different Homer than the one historians used to think 
wrote it. But someone would have sent me an email pointing this out if I didn't 
say it first. 

It's generally unlikely that a WDM driver will execute in the same thread context 
as the initiator of the I/O requests it handles. We say that we're running "in arbitrary 
thread context" if we don't know for sure to which process the current user-mode 
address context belongs. In arbitrary thread context, we simply can't use a virtual 
address that belongs to user mode because we can't have any idea to what physical 
memory it might point. In view of this uncertainty, we generally obey the following 
rule inside a driver program: 

Never (well, hardly ever) directly reference user-mode memory. 

In other words, don't take an address that a user-mode application provides and 
treat that address as a pointer that we can directly dereference. I'll discuss in later 
chapters a few techniques for accessing data buffers that originate in user mode. All 
we need to know right now, though, is that we're (nearly) always going to be using 
kernel-mode virtual addresses whenever we want to access the computer's memory. 

How Big Is a Page? 
In a virtual memory system, the operating system organizes physical memory and the 
swap file into like-sized page frames. In a WDM driver, you can use the manifest 
constant PAGE_SIZE to tell you how big a page is. In some Windows NT computers, 
a page is 4096 bytes long; in others, it's 8192 bytes long. There's a related constant 
named PAGE_SHIFf that equals the page size as a power of two. That is: 

PAGE_SIZE == 1 « PAGE_SHIFT 

For your convenience, you can use a few preprocessor macros in your code 
when you're working with the size of a page: 

• ROUND_TO]AGES rounds a size in bytes to the next higher page bound
ary. For example, ROUND_TO_PAGES(1) is 4096 on a 4 KB-page computer. 

• BYTES_TO_PAGES determines how many pages are required to hold a 
given number of bytes beginning at the start of a page. For example, 
BYTES_TO]AGES(42) would be 1 on all platforms, and BYTES_TO_ 
P AGES(SOOO) would be 2 on some platforms and 1 on others. 
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• BYTE_OFFSET returns the byte offset portion of a virtual address. That is, 
it calculates the starting offset within some page frame of a given address. 
On a 4 KB-page computer, BYTE_OFFSET(Ox12345678) would be Ox678. 

• PAGE_AliGN rounds a virtual address down to a page boundary. On a 4 
KB-page computer, PAGE_ALIGN(Ox12345678) would be Ox12345000. 

• ADDRESS_AND_SIZE.,...TO_SPAN_PAGES returns the number of page 
frames occupied by a specified number of bytes beginning at a speci
fied virtual address. For example, ADDRESS_AND_SIZE_TO_SPAN_ 
PAGES(Ox12345FFF, 2) is 2 on a 4 KB-page machine because the two bytes 
span a page boundary. 

Paged and Nonpaged Memory 
The whole point of a virtual memory system is that you can have a virtual address 
space that's much bigger than the amount of physical memory on the computer. To 
accomplish this feat, the Memory Manager needs to swap page frames in and out of 
physical memory. Certain parts of the operating system can't be paged, though, 
because they're needed to support the Memory Manager itself. The most obvious 
example of something that must always be resident in memory is the code that handles 
page faults (the exceptions that occur when a page frame isn't physically present when 
needed) and the data structures used by the page fault handler. But the category of 
"must be resident" stuff is much broader than that. 

Windows NT divides the kernel-mode address space into paged and nonpaged 
memory pools. (The user-mode address space is always pagable.) Things that must 
always be resident are in the nonpaged pool; things that can come and go on demand 
are in the paged pool. Windows NT provides a simple rule for deciding whether your 
code and the data it uses must be resident. I'll elaborate on the rule in the next chapter, 
but here it is anyway: 

Code executing at or above interrupt request level (IRQL) DISPATCH...., 
LEVEL cannot cause page faults. 

You can use the PAGED_CODE preprocessor macro (declared in WDM.H) to help 
you discover violations of this rule in the checked build of your driver. For example: 

NTSTATUS DjspatchPawer(PDEVICE_OBJECT fda, PIRP Irp) 
{ 

PAGED_CODE() 

} 
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PAGED_CODE contains conditional compilation. In the checked-build environ
ment, it prints a message and generates an assertion failure if the current IRQL is too 
high. In the free-build environment, it doesn't do anything. If you were to test your 
driver in a situation where the page containing DispatchPower happened fortuitously 
to be in memory, you would never discover that it had been called at an elevated IRQL. 
PAGED_CODE will detect the problem even so. A bug check would occur if the page 
happened to not be present, so you would certainly learn about the problem then! 

THE DRIVER VERIFIER 

The Driver Verifier feature of Windows 2000 helps you debug many features 
of your driver, including the placement of programs into sections, your use of 
the memory heap, and so on. This feature was still in flux at press time, so I 
can't say much more about it here. But notice that the PAGED_CODE macro 
spots a problem only in the checked build of your driver that exists at the point 
where you invoke it. The Driver Verifier can diagnose a problem arising any
where in a function, even with the free build of the driver. 

Compile-Time Control of Pagability 
Given that some parts of your driver must always be resident and some parts can be 
paged, you need a way to control the assignment of your code and data to the paged 
and nonpaged pools. You accomplish part of this job by instructing the compiler how 
to apportion your code and data among various sections. The run-time loader uses 
the names of the sections to put parts of your driver in the places you intend. You 
can also accomplish parts of this job at run time by calling various Memory Manager 
routines that I'll discuss in the next section. 

NOTE Win32 executable files, including kernel-mode drivers, are internally 
composed of one or more sections. A section can contain code or data and, 
generally speaking, has additional attributes such as being readable, writable, 
sharable, executable, and so on. A section is also the smallest unit that you can 
deSignate when you're specifying pagability. When loading a driver image, the 
system puts sections whose literal names begin with "page" or ".eda" (the start 
of ".edata") into the paged pool unless the DlsablePaglngExecutive value in 
the HKLM\System\CurrentControISet\ControI\Session Manager\Memory Manage
ment key happens to be set (in which case no driver paging occurs). In one of 
the little twists of fate that affect us all from time to time, running Soft-Ice/W on 
Windows 2000 requires you to disable kernel paging in this way. This certainly 
makes it harder to find bugs caused by misplacement of driver code or data into 
the paged pool! If you use this debugger, I recommend that you religiously use 
the PAGED_CODE macro andthe Driver Verifier. 
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The traditional way of telling the compiler to put code into a particular section 
is to use the alloc_text pragma. Since not every compiler will necessarily support 
the pragma, the DDK headers either define or don't define the constant ALLOC_ 
PRAGMA to tell you whether to use the pragma. You can then invoke the pragma to 
specify the section placement of individual subroutines in your driver, as follows: 

#ifdef ALLOC_P,RAGMA 
#pragma alloc_text(PAGE. AddDev;ce) 
#pragma alloc_text(PAGE. DispatchPnp) 

flendi f 

These statements serve to place the AddDevice and DispatchPnp functions into the 
paged pool. 

The Microsoft C/C++ compiler places two annoying restrictions on using alloc_text: 

• The pragma must follow the declaration of a function but precede the 
definition. One way to obey this rule is to declare all the functions in your 
driver in a standard header file and invoke alloc_text at the start of the 
source file that contains a given function but after you include that header. 

• The pragma can be used only with functions that have C-linkage. In other 
words, it won't work for class member functions or for functions in a C++ 
source file that you didn't declare using extern "C". 

To control the placement of data variables, you use a different pragma under 
control of a different preprocessor macro symbol: 

#ifdef ALLOC_DATA-PRAGMA 
#pragma data_seg("PAGE") 

Ilendif 

The data_seg pragma causes all static data variables declared in a source module after 
. the appearance of the pragma to go into the paged pool. You'll notice that this pragma 
differs in a fundamental way from alloc_text. A pagable section starts where #pragma 
data_seg("PAGE") appears and ends where a countervailing #pragma data_seg() 
appears. Alloc_text, on the other hand, applies to a specific function. 

Think twice before putting some of your data into a pagable section, because 
you might actually be making things worse. The smallest unit that can be paged is 
PAGE_SIZE long. It's probably silly to put just a few bytes into a pagable section. You'll 
end up using an entire page worth of memory. Consider, too, that a data page is often 
"dirty" (that is, changed since it was fetched from disk) and would need to be rewritten 
to disk before its physical page frame could be reused for another purpose. 
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MORE ABOUT SECTION PLACEMENT 

In general, I fmd it more convenient to specify the section placement of whole 
blocks of code by using the Microsoft code_seg pragma, which works the same 
way as data_seg, only for code. That is, you can tell the Microsoft compiler to 
start putting functions into the paged pool like this: 

Ilpragma code_seg("PAGE") 
NTSTATUS AddDev;ce( ... ){ ... } 
NTSTATUS D;spatchPnp( ... ){ ... } 

The AddDevice and DispatchPnp functions would both end up in the paged 
pool. You can check to see whether you're compiling with the Microsoft com
piler by testing the existence of the predefmed preprocessor macro _MSC_ VER. 

To revert to the default code section, just code #pragma code_seg with 
no argument: 

#pragma code_seg() 

Similarly, to revert to the regular nonpaged data section, code #pragma 
data_seg with no argument: 

#pragma data_seg() 

This sidebar is also the logical place to mention that you can also direct 
code into the INIT section if it's not needed once your driver finishes initializ
ing. For example: 

#pragma alloc_text(INIT, DriverEntry) 

This statement forces the DriverEntry function into the INIT section. The 
system will release the memory it occupies when it refilrns. This small savings 
is not very important in the grand scheme of things because a WDM driver's 
DriverEntry function doesn't do much work. Previous Windows NT drivers had 
large DriverEntry functions that had to create device objects, locate resources, 
configure devices, and so on. For them, using this feature offered significant 
memory savings. 

You can use the DUMPBIN utility that comes with Microsoft Visual C++ 
to easily see how much of your driver is initially pagable. Your marketing de
'partment might even want to crow about how much less nonpaged memory 
you use than your competitors. 
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Run-Time Control of Pagability 
Table 3-2 lists the service functions you can use at run time to fine-tune the pagability 
of your driver in various situations. The purpose of these routines is to let you release 
the physical memory that would otherwise be tied up by your code and data during 
periods when it won't be needed. In Chapter 8, for example, I'll discuss how you can 
register your device with the Power Manager so that.you're automatically powered 
down after a period of inactivity. Powering down might be a good time to release 
your locked pages. 

Service Function 

MmLockPagableCodeSection 

MmLockPagableDataSection 

MmLockPagableSectionByHandle 

MmPageEntireDriver 

MmResetDriverPaging 

MmUnlockPagablelmageSection 

Description 

Lock a code section given an address inside it 

Lock a data section given an address inside it 

Lock a code section by using a handle from a 
previous MmLockPagableCodeSection call 
(Windows 2000 only) 

Unlock all pages belonging to driver 

Restore compile-time pagability attributes for 
entire driver . 

Unlock a locked code or data section 

Table 3-2. Routines for dynamically locking and unlocking driver pages. 

I'm going to describe one way to use these functions to control the pagability 
of code in your driver. You might want to read the DDK descriptions to learn about 
other ways to use them. First distribute subroutines in your driver into separately 
named code sections, like this: 

#pragma alloc_text(PAGEIDLE. DispatchRead) 
#pragma alloc_text(PAGEIDLE. DispatchWrite) 

That is, defme a section name beginning with "PAGE" and ending in any four
character suffix you please. Then use the alloc_text pragma to place some group of 
your own routines into that special section. You can have as many special pagable 
sections as you want, but your logistical problems will grow as you subdivide your 
driver in this way. 

During initialization (say, in DriverEntry), lock your pagable sections like this: 

PYOID hPageldleSection; 
NTSTATUS DriverEntry( ... ) 

{ 

hPageldleSection = MmLockPagableCodeSection«PVOID) DispatchRead); 
} 
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When you call MmLockPagableCodeSection, you specify any address at all within 
the section you're trying to lock. The real purpose of making this call during DriverEntry 
is to obtain the handle value it returns, which I've shown you saving in a global 
variable named hPageIdleSection. You'll use that handle much later on, when you 
decide you don't need a particular section in memory for a while: 

MmUnlockPagableImageSect1on(hPageIdleSect1on): 

This call will unlock the pages containing the PAGEIDLE section and allow them to 
move in and out of memory on demand. If you later discover that you need those 
pages back again, you make this call: 

MmLockPagableSectionByHandle(hPageIdleSection): 

Following this call, the PAGEIDLE section will once again be in nonpaged 
memory (but not necessarily the same physical memory as previously). Note that 
this junction call is available to you only in Windows 2000, and then only if you've 
included NTDDK.H instead oj WDM.H. In other situations, you will have to call 
MmLockPagableCodeSection again. 

You can do something similar to place data objects into pagable sections: 

PYOID hPageDataSect1on: 

#pragma data_seg("PAGE") 
ULONG ulSomething: 
#pragma data_seg() 

hPageDataSection = MmLockPagableDataSection«PVOID) &ulSomething): 

MmUnlockPagableImageSect1on(hPageDataSect1on): 

MmLockPagableSect1onByHandle(hPageDataSection): 

I've played fast and loose with my syntax here-these statements would appear in 
widely disparate parts of your driver. 

The key idea behind the Memory Manager service functions I just described is 
that you initially lock a section containing one or more pages and obtain a handle 
for use in subsequent calls. You can then unlock the pages in a particular section by 
calling MmUnlockPagableImageSection and passing the corresponding handle. 
Relocking the section later on requires a call to MmLockPagableSectionByHandle. 

A quick shortcut is available if you're sure that none of your driver will need 
to be resident for a while. MmPageEntireDrlver will mark all the sections in a 
driver's image as being pagable. Conversely, MmResetDriverPaging will restore the 
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compile-time pagability attributes for the entire driver. To call these routines, you just 
need the address of some piece of code or data in the driver. For example: 

MmPageEntireDriver«PVOID) DriverEntry): 

MmResetDriverPaging«PVOID) DriverEntry): 

You need to exercise care when using any of the Memory Manager routines I've 
just described if your device uses an interrupt. Spurious interrupts have been known 
to happen, and it will be very difficult for anyone to discover that the reason for some 
random crash is that the system tried to call your missing interrupt service routine 
(ISR) to handle one. The rule stated in the DDK is that you Simply mustn't page your 
ISR or any deferred procedure call (DPC) routine it might schedule after connecting 
your interrupt. 

Heap Allocator 
The basic heap allocation service function in kernel mode used to be ExAllocatePool. 
This service is still the one referred to in most discussions of heap allocation and used 
by sample drivers. You call it like this: 

PYOID p = ExAllocatePool(type. nbytes): 

The type argument is one of the POOL_TYPE enumeration constants described in 
Table 3-3, and nbytes is the number of bytes you want to allocate. The return value 
is a kernel-mode virtual address pointer to the allocated memory block. Unless you 
specify either NonPaged.PoolMustSucceed or NonPagedPoolCacheAlignedMustS 
for the pool type, you can receive back a NULL pointer if enough memory isn't avail
able to satisfy your request. If you specify either of those two must-succeed types, lack 
of memory will cause a bug check with the code MUST_SUCCEED_POOL_EMPIT. 

NOTE Drivers should not allocate memory using one of the "must succeed" 
specifiers. This is because they can fail whatever operation is underway with a 
status code if memory is unavailable. Causing a system crash in a low-memory 
situation is not something a driver should do. Furthermore, only a limited pool 
of "must succeed" memory exists in the entire system, and the operating sys
tem might not be able to allocate memory needed to keep the computer running 
if drivers tie up some. In fact, Microsoft wishes they had never documented the 
must-succeed options in the DDK to begin with. 
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Pool Type 

NonPagedPool 

PagedPool 

NonPagedPoolMustSucceed 

NOnPagedPoolCacheAligned 

NonPagedPoolCacheAlignedMustS 

PagedPoolCacheAligned 

Description 

Allocate from the nonpaged pool of memory 

Allocate from the paged pool of memory 

Allocate from the nonpaged pool; bugcheck 
if unable to do so 

Allocate from the nonpaged pool and ensure 
that memory is aligned with the CPU cache 

Like NonPagedPooICacheA1igned, but 
bugcheck if unable to allocate 

Allocate from the paged pool of memory 
and ensure that memory is aligned with the 
CPU cache 

Table 3-3. Pool type arguments for ExAllocatePool. 

The most basic decision you must make when you call ExAllocatePool is 
whether the allocated memory block should be swapped out of memory. That choice 
depends simply on which parts of your driver will need to access the memory block. 
If you will be using a memory block at or above DISPATCH_LEVEL, you must allocate 
it from the nonpaged pool. If you'll always use the memory block below DISPATCH_ 
LEVEL, you can allocate from the paged or nonpaged pool as you choose. 

The memory block you receive will be aligned to at least an 8-byte boundary. 
If you place an instance of some structure into the allocated memory, members to 
which the compiler assigns an offset divisible by 4 or 8 will therefore occupy an 
address divisible by 4 or 8, too. On some RISC platforms, of course, you must have 
doubleword and quadword values aligned in th~ way. For performance reasons, you 
might want to be sure that the memory block will fit in the fewest possible number 
of processor cache lines. You can specify one of the XXxCacheAligned type codes 
to achieve that result. If you ask for at least a page's worth of memory, the block will 
start on a page boundary. 

Releasing a Memory Block 
To release a memory block you previously allocated with ExAllocatePool, you call 
ExFreePool: 

ExFreePool«PVOID) p); 

You do need to keep track somehow of the memory you've allocated from the 
pool in order to release it when it's nO longer needed. No one else will do that for 
you. You must sometimes closely read the DDK documentation of the functions you 
call with an eye toward memory ownership. For example, in the AddDevice func
tion I showed you in the previous chapter, there's a call to IoRegisterDevicelnterface. 
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That function has a side effect: it allocates a memory block to hold the string that 
names the interface. You are responsible for releasing that memory later on. 

It should go without saying that you need to be extra careful when accessing 
memory you've allocated from the free storage pools in kernel mode. Since driver 
code executes in the most privileged mode possible for the processor, there's almost 
no protection from wild stores. 

ExAllocatePoolWithTag 
I said that ExAllocatePooI used to be the standard way to allocate memory from a 
kernel-mode heap. For some time, there has been a variant of ExAllocatePool named 
ExAllocatePoolWithTag that provides a useful extra feature. For reasons I'll explain 
presently, you should prefer to use this variant in new drivers even though neither 
I nor the authors of the DDK samples currently do. This is a clear case of "do as I 
[actually the people inside Microsoft who make wishes about how programmers use 
the DDKJ say, not as I do." 

When you use ExAllocatePoolWithTag, the system allocates 4 more bytes of 
memory than you asked for and returns you a pointer that's 4 bytes into that block. 
The tag occupies the initial 4 bytes and therefore prec~ges the pointer you receive. 
The tag will be visible to you when you examine memory blocks while debugging 
or while poring over a crash dump, and it can help you identify the source of a 
memory block that's involved in some problem or another. For example: 

PYOID p = ExAllocatePoolWithTag(PagedPool. -42. 'KNUJ'); 

Here, I used a 32-bit integer constant as the tag value. On a little-endian computer 
like ari x86, the bytes that compose this value will be reversed in memory to spell 
out a common word in the English language. 

Pool tags are also useful as a way of controlling certain features of the Driver 
Verifier. Please consult the DDK documentation for more information. 

It turns out that you're using ExAllocatePoolWithTag even when you think you're 
calling ExAllocatePool. The declarations of memory allocation functions in wdm.h 
are under control of a preprocessor macro named POOL_TAGGING. WDM.H (and 
NTDDK.H too, for that matter) unconditionally defines POOL_TAGGING, with the 
result that the without-tag functions are actually macro'ed to the equivalent With-tag 
functions with a tag value of ' mdW' (that is, a space followed by the mirror image 
of "Wdm"). If POOL_TAGGING were not to be defIned in some future release of the 
DDK, the with-tag functions would be macro'ed to the without-tag versions. Microsoft 
has no current plans to Change the setting of POOL_TAGGING. 

Because of the POOL_TAGGING macros, when you write a call to ExAllocate
Pool in your program, you end up calling ExAll6catePoolWithTag, but the tag you 
specify is too generic to be of much help. As it turns out, even if you managed to 
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call ExAllocatePool by some subterfuge or another, ExAllocatePool internally calls 
ExAllocatePoolWithTag with a tag value of 'enoN' (that is, "None"). Since you can't 
get away from memory tagging, you might as well explicitly call ExAllocatePool
WithTag and specify a usefully unique tag of your own devising. In fact, Microsoft 
strongly encourages you to do this. 

Variations on ExAliocatePool 
Although ExAllocatePoolWithTag is the function you should use for heap allocation, 
you would use some variations in special circumstances: 

• ExAllocatePoolWithQuota allocates a memory block and charges the 
current thread's scheduling quota. This function is for use by file system 
drivers and other drivers running in a nonarbitrary thread context for allo
cating memory that belongs to the current thread. 

• ExAllocatePooIWithQuotaTag allocates a block with a tag and charges 
the current thread's quota. 

Linked Lists 
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Windows NT makes extensive use of linked lists as a way of organizing collections 
of similar data structures. In this chapter, I'll discuss the basic service functions you use 
to manage doubly-linked and Singly-linked lists. Separate service functions allow you 
to share linked lists between threads and across multiple processors; I'll describe those 
functions in the next chapter after I've explained the synchronization primitives on 
which they depend. 

Whether you organize data structures into a doubly-linked or a Singly-linked 
list, you normally embed a linking substructure-either a LIST_ENTRY or a SINGLE_ 
LIST_ENTRY-into your own data structure. You also reserve a list head element 
somewhere that uses the same structure as the linking element. For example: 

typedef struct _TWOWAY 
{ 

LIST_ENTRY linkfield; 

} TWOWAY. *PTWOWAY; 

LIST_ENTRY DoubleHead; 

typedef struct _ONEWAY 
{ 

SINGLE_LISLENTRY 1 inkfield; 

} ONEWAY. *PONEWAY; 
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SINGLE_LIST_ENTRY SingleHead; 

When you call one of the list-management service functions, you always work 
with the linking field or the list head-never directly with the containing structures 
themselves. So, suppose you've got a pointer (pdElement) to one of your TWOWAY 
structures. To put that structure onto a list, you'd reference the embedded linking field 
like this: 

InsertTailListC&DoubleHead. &pdElement->linkfield); 

Similarly, when you retrieve an element from a list, you're really getting the 
address of the embedded linking field. To recover the address of the containing 
structure, you can use the CONTAINING_RECORD macro. (See Figure 3-8.) 

(PIRP) CONTAINING_RECORD(p, IRP, ListEntry) 

Figure 3-8. The CONTAINING_RECORD macro. 

So, if you wanted to process and discard all the elements in a singly-linked list, 
your code would look something like this: 

PSINGLE_LIST_ENTRY psLink = PopEntryListC&SingleHead); 
while CpsLink) 

{ 
PONEWAY psElement = CPONEWAY) CONTAINING_RECORDCpsLink. 

ONEWAY. linkfield); 

ExFreePool(psElement); 
psLink = PopEntryListC&SingleHead); 
} 

Just before the start of this loop, and again after every iteration, you retrieve the current 
first element of the list by calling PopEntryUst. PopEntryList returns the address of 
the linking field within a ONEWAY structure, or else it returns NULL to signify that 
the list is empty. Don't just indiscriminately use CONTAINING_RECORD to develop 
an element address that you then test for NULL-you need to test the link field ad
dress that PopEntryList returns! 
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Doubly.Linked Lists 
A doubly-linked list links its elements both backward and forward in a circular fash
ion. See Figure 3-9. That is, startmg with any element, you can proceed forward or 
backward in a circle and get back to the same element. The key feature of a doubly
linked list is that you can add or remove elements anywhere in the list. 

Figure 3-9. Topology of a doubly-linked list. 

Table 3-4 lists the service functions you use to manage a doubly-linked list. 

Service Function or Macro 

InitializeListHead 

InsertHeadList 

InsertT ailList 

IsListEmpty 

RemoveEntryList 

RemoveHeadList 

RemoveTailList 

Description 

Initialize the LIST_ENTRY at the head of the list 

Insert element at the beginning 

Insert element at the end 

Is list empty? 

Remove element 

Remove first element 

Remove last element 

Table 3-4. Service functions for use with doubly-linked lists. 

Here is a fragment of a fictitious program to illustrate how to use some of these 
functions: 

typedef struct _TWOWAY { 

LIST_ENTRY linkfield; 

} TWOWAY. *PTWOWAY; 
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LIST_ENTRY DoubleHead; 
InitializeListHead(&DoubleHead); 
ASSERT(IsListEmpty(&DoubleHead»; 

PTWOWAY pdElement = (PTWOWAY) ExAllocatePool(PagedPool. 
sizeof(TWOWAY»; 

InsertTailList(&DoubleHead. &IPElement->linkfield); 

if (!IsListEmpty(&DoubleHead» 
{ 

PLIST_ENTRY pdLink = RemoveHeadList(&DoubleHead); 
pdElement = CONTAINING_RECORD(pdLink. TWOWAY. linkfield); 

ExFreePool(pdElement); 
} 

1. InitializeListHead initializes a UST _ENTRY to point (both backward and 
forward) to itself. That configuration indicates that the list is empty. 

2. InsertTailList puts an element at the end of the list. Notice that you 
specify the address of the embedded linking field instead of your own 
TWOWAY structure. You could call InsertHeadList to put the element at 
the beginning of the list instead of the end. By supplying the address of 
the link field in some existing TWOWAY structure, you could put the new 
element either just before or just after the existing one. 

3. Recall that an empty doubly-linked list has the list head pointing to itself, 
both backward and forward. Use IsListEmpty to simplify making this 
check. The return value from RemoveXxxList will never be NULL! 

4. RemoveHeadList removes the element at the head of the list and gives 
you back the address of the linking field inside it. RemoveTailList does 
the same thing, just with· the element at the end of the list instead. 

It's important to know the exact way RemoveHeadList and RemoveTailList are 
implemented if you want to avoid errors. For example, consider the following inno
cent looking statement. 

if (some-expr» 
pdLink = RemoveHeadList(&DoubleHead); 

What I obviously intended with this construction was to conditionally extract 
the first element from a list. C'est raisonnable, n 'est-ce pas? But no, when you debug 
this later on, you find that elements keep mysteriously disappearing from the list. You 
discover that pdLink gets updated only when the if expression is TRUE but that 
RemoveHeadList seems to get called even when the expression is FALSE. 
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Mon dieu! What's going on here? Well, RemoveHeadList is really a macro that 
expands into multiple statements. Here's what the compiler really sees in the above 
statement: 

if «some-expr» 
pdLink = (&DoubleHead)->Flink; 

{{ 
PLIST_ENTRY _EX_Blink: 
PLIST_ENTRY _EX_Flink; 
_EX_Flink = «&DoubleHead)->Flink)->Flink: 
_EX_Blink = «&DoubleHead)->Flink)->Blink; 
_EX_Blink->Flink = _EX_Flink: 
_EX_Flink->Blink = _EX_Blink; 
}} 

Aha! Now the reason for the mysterious disappearance of list elements becomes 
clear. The TRUE branch of the if statement consists of just the single statement pdlink 
= (&DoubleHead)~>Flink that stores a pointer to the first element. The logic that 
removes a list element stands alone outside the scope of the if statement and is there
fore always executed. Both RemoveHeadList and RemoveTailList amount to an ex
pression plus a compound statement, and you dare not use either of them in a spot 
where the syntax requires an expression or statement alone. Zut alors! 

The other list-manipulation macros don't have this problem, by the way. The 
difficulty with RemoveHeadList and RemoveTailList arises because they have to return 
a value and do some list manipulation. The other macros do only one or the other, 
and they're syntactically safe when used as intended. 

Singly-Linked Lists 
A singly-linked list links its elements in only one direction, as illustrated in Figure 3-10. 
WindQws NT uses Singly-linked lists to implement pushdown stacks, as suggested by 
the names of the service routines in Table 3-5. Just as was true for doubly-linked lists, 
these "functions" are actually implemented as macros in WDM.H, and similar cau
tions apply. PushEntryUst and PopEntryUst generate multiple statements, so you 
can use them only on the right side of an equal sign in a context where the com
piler is expecting multiple statements. 

. Service Function or Macro 

PushEntryList 

PopEntryList 

Description 

Add element to top of list 

Remove topmost element 

Table 3-5. Service functions for use with singly-linked lists. 
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Figure 3-10. Topology of a singly-linked list. 

The following pseudofunction illustrates how to manipulate a singly-linked list: 

typedef struct _ONEWAY { 

SINGLE_LIST_ENTRY linkfield; 
} ONEWAY. *PONEWAY; 

SINGLE_LIST_ENTRY SingleHead; 
SingleHead.Next = NULL; 

PONEWAY psElement = (PONEWAY) ExAllocatePool(PagedPool. 
sizeof(ONEWAY»; 

PushEntryList(&SingleHead. &psElement->linkfield); 

SINGLE_LIST_ENTRY psLink = PopEntryList(&SingleHead); 
if (psLink) 

{ 

psElement = CONTAINING_RECORD(psLink. ONEWAY, linkfield); 

ExFreePool(psElement); 
} 

1. Instead of invoking a service function to initialize the head of a singly
linked list, just set the Next field to NULL. Note also the absence of a ser
vice function for testing whether this list is empty; just test Next yourself. 
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2. PushEntryUst puts an element at the head of the list, which is the only 
part of the list that's directly accessible. Notice that you specify the address 
of the embedded linking field instead of your own ONEWAY structure. 

3. PopEntryUst removes the first entry from the list and gives you back a 
pointer to the link field inside it. Unlike doubly-linked lists, a NULL value 
indicates that the list is empty. In fact, there's no counterpart to IsListEmpty 
for use with a Singly-linked list. 

Lookaside Lists 
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Even employing the best possible algorithms, a heap manager that deals with ran
domly sized blocks of memory will require some scarce processor time to coalesce 
adjacent free blocks from time to time. Figure 3-11 illustrates how, when something 
returns block B to the heap at a time when blocks A and C are already free, the heap 
manager can combine blocks A, B, and C to form a single large block. The large block 
is then available to satisfy some later request for a block bigger than any of the original 
three components. 

Large combined block 

Figure 3-11. Coalescing adjacentfree blocks in a heap. 

If you know you're always going to be working with fixed-size blocks of memory, 
you can craft a much more efficient scheme for managing a heap. You could, for 
example, preallocate a large block of memory that you subdivide into pieces of the 
given fixed size. Then you could devise some scheme for knowing which blocks are 
free and which are in use, as suggested by Figure 3-12. Returning a block to such a 
heap merely involves marking it as free-you don't need to coalesce it with adjacent 
blocks because you never need to satisfy randomly sized requests. 

Merely allocating a large block that you subdivide might not be the best way 
to implement a fixed-size heap, though. In general, it's hard to guess how much 
memory to preallocate. If you guess too high, you'll be wasting memory. If you guess 
too low, your algOrithm will either fail when it runs out (bad!) or make too frequent 
trips to a surrounding random heap manager to get space for more blocks (better). 
Microsoft has created the lookaside list object and a set of adaptive algorithms to deal 
with these shortcomings. 
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Figure 3-12. A heap containingftxed-size blocks. 

Figure 3-13 illustrates the concept of a lookaside list. Imagine that you had a 
glass that you could (somehow-the laws of physics don't exactly make this easy!) 
balance upright in a swimming pool. The glass represents the lookaside list object. When 
you initialize the object, you tell the system how big the memory blocks (water drops, 
in this analogy) are that you'll be working with. In earlier versions of Windows NT, you 
could also specify the capacity of the glass, but the operating system now determines 
that adaptively. To allocate a memory block, the system first tries to remove one from 
the list (remove a water drop from the glass). If there are no more, the system dips 
into the surrounding memory pool. Conversely, to return a memory block, the sys
tem first tries to put it back onto the list (add a water drop to the glass). But if the 
list is full, the block goes back into the pool using the regular heap manager routine 
(the drop slops over into the swimming pool). 

Paged or nonpaged 
memory pool __ _ 

Figure 3-13. Lookaside lists. 

Glass containing fixed-size 
memory blocks 

109 



Programming the Microsoft Windows Driver Model 

110 

The system periodically adjusts the depths of all lookaside lists based on actual 
usage. The details of the algorithm aren't really important, and they're subject to 
change in any case. Basically (in the current release, anyway), the system will reduce 
the depth of lookaside lists that haven't been accessed recently or that aren't forcing 
pool access at least 5 percent of the time. The depth never goes below 4, however, 
which is also the initial depth of a new list. 

Table 3~6 lists the eight service functions that you use when you work with a 
lookaside list. There are really two sets of four functions, one set for a lookaside list 
that manages paged memory (the ExXXxPagedLookasideUst set) and another for 
a lookaside list that manages nonpaged memory (the ExXxxNPagedLookasideUst 
set). The first thing you must do is reserve nonpaged memory for a PAGED_ 
LOOKASIDE_LIST or an NPAGED_LOOKASIDE_LIST object. These objects are simi
lar. The paged variety uses a FAST_MUTEX for synchronization, whereas the nonpaged 
variety uses a spin lock. (See the next chapter for a discussion of both of these syn
chronization objects.) Even the paged variety of object needs to be in nonpaged 
memory because the system might access it at an elevated IRQL. 

Service Function 

ExInitializeNPagedLookasideList 
ExInitializePagedLookasideList 

ExAllocateFromNPagedLookasideList 
ExAllocateFromPagedLookasideList 

ExFreeToNPagedLookasideList 
ExFreeToPagedLookasideList 

ExDeleteNPagedLookasideList 
ExDeletePagedLookasideList 

Table 3-6. Service functions for lookaside lists. 

Description 

Initialize a lookaside list 

Allocate a fixed-size block 

Release a block back to a lookaside list 

Destroy a lookaside list 

After reserving storage for the lookaside list object somewhere, you call the 
appropriate initialization routine: 

PPAGED_LOOKASIDE_LIST pagedlist; 
PNPAGED_LOOKASIDE_LIST nonpagedlist; 

ExlnitializePagedLookasideList(pagedlist, Allocate, Free, 
0, blocksize, tag, 0); 

ExlnitializeNPagedLookasideList(nonpagedlist, Allocate, Free, 
0, blocksize, tag, 0); 

(The only difference between the two examples is the spelling of the function name 
and the first argument.) 
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The first argument to either of these functions points to the [N]PAGED_ 
LOOKASIDE_LIST object for which you've already reserved space. Allocate and Free 
are pointers to routines you can write to allocate or release memory from a random 
heap. You can use NULL for either or both of these parameters, in which case 
ExAllocatePoolWithTag and ExFreePool will be used, respectively. The blocksize 
parameter is the size of the memory blocks you will be allocating from the list, and tag 
is the 32-bit tag value you want placed in front of each such block. (Look back to the 
section entitled "Variations on ExAllocatePool" for an explanation of the tagging con
cept.) The two zero arguments are placeholders for values that you supplied in previ
ous versions of Windows NT but which the system now determines on its own; these 
values are flags to control the type of allocation and the depth of the lookaside list. 

To allocate a memory block from the list, call the appropriate AllocateFrom 
function: 

PVOID P = ExAllocateFromPagedLookasideList(pagedlist); 
PVOID q = ExAllocateFromNPagedLookasideList(nonpagedlist); 

To put a block back onto the list, call the appropriate FreeTo function: 

ExFreeToPagedLookasideList(pagedlist. pI; 
ExFreeToNPagedLookasideList(nonpagedlist. q); 

Finally, to destroy a list, call the appropriate Delete function: 

ExDeletePagedLookasidelist(pagedlist); 
ExDeleteNPagedLookasideList(nonpagedlist); 

It's a common mistake to forget to delete a lookaside list. You won't be mak
ing such a mistake of course, but you might need to advise one of your coworkers 
about how to avoid itO). You can tell him or her, "Be sure to do that before your 
lookaside list passes out of scope. If you created a lookaside list during AddDevice, 
for example, you probably put the object into your device object and want to delete 
the list before you call IoDeleteDevice. If you created a lookaside list during 
DriverEntry, you probably put the object into a global variable and want to delete 
the list before you return from your DriverUnload routine." 

STRING HANDLING 
WDM drivers can work with string data in any of four formats: 

• A Unicode string, normally described by a UNICODE_STRING structure, 
contains 16-bit characters. Unicode has sufficient code points to accom
modate the language scripts used on this planet (and on at least one 
other-see http://www.indigo.ie/egt/standards!csur/klingon.htmf). 
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• An ANSI string, normally described by an ANSCSTRING structure, contains 
8-bit characters. A variant is an OEM_STRING, which also describes a string 
of 8-bit characters. The difference between the two is that an OEM string 
has characters whose graphic depends on the current code page, whereas 
an ANSI string has characters whose graphic is independent of code page. 
WDM drivers would not normally deal with OEM strings because they 
would have to originate in user mode, and some other kernel-mode com
ponent will have already translated them into Unicode strings by the time 
the driver sees them. 

• A null-terminated string of characters. You can express constants u~ing 
normal C syntax, such as "Hello, world!" Strings employ 8-bit characters 
of type CHAR, which are assumed to be from the ANSI character set. The 
characters in string constants originate in whatever editor you used to cre
ate your source code. If you use an editor that relies on the then-current 
code page to display graphics in the editing window, be aware that some 
characters might have a different meaning when treated as part of the Win
dows ANSI character set. 

• A null-terminated string of wide Characters (type WCHAR). You can express 
wide string constants using normal C syntax, such as L"Goodbye, cruel 
world!" Such strings look like Unicode constants, but, being ultimately 
derived from some text editor or another, actually use only the ASCII and 
LatinI code points (0020-007F and OOAO-OOFF) that correspond to the 
Windows ANSI set. 

The UNICODE_STRING and ANSI_STRING data structures both have the layout 
depicted in Figure 3-14. The Buffer field of either structure points to a data area 
elsewhere in memory that contains the string data. MaximUmLength gives the length 
of the buffer area, and Length provides the (current) length of the string without 
regard to any null terminator that might be present. Both length fields are in bytes, 
even for the UNICODE_STRING structure. 

Figure 3·14. The UMCODE_STRING and ANSI_STRING structures. 
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Table 3-7 lists the service functions that you can use for working with Unicode 
and ANSI strings. I've listed them side by side because there's a fair amount of dupli
cation. I've also listed some functions from the standard C run-time library that are 
available in kernel mode for manipulating regular C-style strings. The standard DDK 
headers include declarations of these functions, and the libraries with which you link 
drivers contain them, so there's no particular reason not to use them even though 
they've never been documented in the DDK as being available. 

operation 

Length 

Concatenate 

Copy 

Reverse 

Compare 

Initialize 

Search 

Upper/ 
lowercase 

Character 

Format 

String 
conversion 

Type 
conversion 

Memory 
release 

ANSI String Function 

strlen 

strcat, strncat 

strcpy, stmcpy, 
RtlCopyString 

_strrev 

strcmp, stmcmp, 
_stricmp, _strnicmp, 
RtlCompareString, 
RtlEqualString 

_strset, _stmset, 
RtlInitAnsiString, 
RtlInitString 

strchr, strrchr, 
strspn, strstr 

_strlwr, _strupr, 
RtlUpperString 

isdigit, islower, isprint, 
isspace, isupper, 
isxdigit, tolower, 
toupper, 
RtlUpperChar 

Unicode String Function 

wcslen 

wcscat, wcsncat, 
RtlAppendUnicodeStringToString, 
RtlAppendUnicodeToString 

wcscpy, wcsncpy, 
RtlCopyUnicodeString 

_wcsrev 

wcscmp, wcsncmp, _ wcsicmp, 
_wcsnicmp, 
RtlCompareUnicodeString, 
RtlEqualUnicodeString, 
RtlPrefixUnicodeString 

_wcsnset, 
RtlInitUnicodeString 

wcschr, wcsrchr, wcsspn, wcsstr 

_ wcslwr, _ wcsupr, 
Rtl Upcase UnicodeString 

towlower, towupper, 
RtiUpcase UnicodeChar 

sprintf, vsprintf, swprintf, _snwprintf 
_snprintf, _ vsnprintf 

atoi, atol, _itoa _itow, 
RtlIntegerToUnicodeString, 
RtiUnicodeStringToInteger 

RtlAnsiStringToUnicodeSize, RtlUnicodeStringToAnsiString 
RtlAnsiStringToUnicodeString 

RtlFreeAnsiString RtlFreeUnicodeString 

Table 3-7. Functions for string manipulation. 
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Many more RtlXx:x functions are exported by the system DLLs, but I've listed 
the ones for which the DDK header files (and the SDK headers they include) define 
prototypes. These are the only ones we should use in drivers. 

Allocating and Releasing String Buffers 
I'm not going to describe the string manipulation functions in detail because the DDK 
documentation does this perfectly well and you already know, based on your gen
eral programming experience, how to put functions like this together to get your work 
done. But I do want to discuss a problem that can rear up and bite you if you don't 
look out for it. 

You often define UNICODE_STRING (or ANSCSTRING) structures as automatic 
variables or as parts of your own device extension. The string buffers to which these 
structures point usually occupy dynamically allocated memory, but you'll sometimes 
want to work with string constants, too. Keeping track of who owns the memory to 
which a particular UNICODE_STRING or ANSCSTRING structure points can be a bit 
of a problem. Consider the following fragment of a function: 

UNICODE_STRING foo; 
if (bArriving) 

RtlInitUnicodeString(&foo, L"Hello, world!"); 
else 

RtlAnsiStringToUnicodeString(&foo, "Goodbye, cruel world!", TRUE); 

RtlFreeUnicodeString(&foo); II ~ don't do this! 

In one case, we initialize foo.Length, foo.MaximumLength, and foo.Buffer 
to describe a wide character string constant in our driver. In another case, we ask the 
system (by means of the TRUE third argument to Rt1AnsiStringToUnicodeString) to 
allocate memory for the Unicode translation of an ANSI string. In the first case, it's a 
mistake to call RtlFreeUnicodeString because it will unconditionally try to release 
a memory block that's part of our code or data. In the second case, it's mandatory to 
call RtlFreeUniGodeString eventUally if we want to avoid a memory leak. 

Data Blobs 
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I've borrowed the term data blob from the world of database management to describe 
a random collection of bytes that you want to manipulate somehow. Table 3-8 lists 
the functions (including some from the standard run-time library) that you can call 
in kernel mode for that purpose. Once again, I'm going to assume that you can fig
ure out how to use these functions (based on their largely mnemonic names). I need 
to point out a few nonobvious facts, however: 
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• The difference between a memory "copy" and a memory "move" is whether 
the implementation can tolerate an overlap between the target and source. 
A move- operation is more gen,eral in that· it works correctly whether or 
not there's an overlap. The copy operation is faster because it assumes it 
can perform a left-to-right copy (which won't work if the target overlaps 
the right portion of the source). 

• The difference between a "byte" and a "memory" operation is in the granu
larity of the operation. A byte operation is guaranteed to proceed byte by 
byte. A memory operation can use larger chunks internally, provided all 
the chunks add up to the specified number of bytes. If this distinction is 
meaningless on a particular platform (as is true for x86 computers), the 
byte operations are actually macro'ed to the corresponding memory opera
tions. Thus, RdCopyBytes is a different function than RdCopyMemory on 
an Alpha but is #define'dequal to RtlCopyMemory on a 32-bit Intel. 

SenJice Function or Macro 

memchr 

memcpy, RtlCopyBytes, 
RtlCopyMemory 

memmove, RtlMoveMemory 

memset, RtlFillBytes, 
RtlFillMemory 

memcmp, RtlCompareMemory, 
RtlEqualMemory 

memset, RtlZeroBytes, 
RtlZeroMemory 

Description 

Find a byte in a blob 

Copy bytes, assuming no overlap 

Copy bytes when there might be an 
overlap 

Fill blob with given value 

Compare one blob to another 

Zero-fill a blob 

Table 3-8. Service functions for working with blobs of data. 

MISCELLANEOUS PROGRAMMING TECHNIQUES 
In the remainder of this chapter, I'm going to discuss some miscellaneous topics that 
might be useful in various parts of your driver. I'll begin by describing how you access 
the registry database, which is where you can fmd various configuration and con
trol information that might affect your code or your hardware. I'll go on to describe 
how you access disk files and other named devices. A few words will suffice to 
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describe how you can perform floating-point calculations in a WDM driver. Finally, 
I'll describe a few of the features you can embed 'in your driver to make it easier to 
debug your driver in the unlikely event (©) it shouldn't work correctly the first time 
you try it out. 

Accessing the Registry 
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Windows NT and Windows 98 record configuration and other important information 
in a database called the registry. WDM drivers can call the functions listed in Table 3-9 
to access the registry. If you've done user-mode programming involving registry 
access, you might be able to guess how to use these functions in a driver. I found 
the kernel-mode support functions sufficiently different, however, that I think it's 
worth describing how you might use them. 

Service Function 

IoOpenDeviceRegistryKey 

IoOpenDeviceInterfaceRegistryKey 

RtiDeleteRegistryValue 

RtiQueryRegistryValues 

RtlWriteRegistryValue 

ZwClose 

ZwCreateKey 

ZwDeleteKey 

ZwEnumerateKey 

ZwEnumerateValueKey 

ZwFlushKey 

ZwOpenKey 

ZwQueryKey 

ZwQueryValueKey 

ZwSetValueKey 

Description 

Open special key associated with a PDO 

Open a registry key associated with a 
registered device interface 

Delete a registry value 

Read several values from the registry 

Write a value to the registry 

Close handle to a registry key 

Create a registry key 

Delete a registry key 

Enumerate subkeys 

Enumerate values within a registry key 

Commit registry changes to disk 

Open a registry key 

Get information about a registry key 

Get a value within a registry key 

Set a value within a registry key 

Table 3-9. Service functions for registry access. 

In this section, I'll discuss, among other things, the ZwXxx family of routines 
and RtlDeleteRegistryValue, which provide the basic registry functionality that suf
fices for most WDM drivers. 

Opening a Registry Key 
Before you can interrogate values in the registry, you need to open the key that 
contains them. You use ZwOpenKey to open an existing key. You use ZwCreateKey 
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either to open an existing key or to create a new key. Either function requires you 
to first initialize an OBJECT_ATTRIBUTES structure with the name of the key and 
(perhaps) other information. The OBJECT_ATTRIBUTES structure has the following 
declaration: 

typedef struct _OBJECT_ATTRIBUTES 
ULONG Length; 
HANDLE RootDirectory; 
PUNICOOE_STRING ObjectName; 
ULONG Attributes; 
PYOID SecurityDescriptor; 
PYOID SecurityOualityOfService; 
} OBJECT_ATTRIBUTES; 

Rather than initialize an instance of this structure by hand, it's easiest to use the 
macro InitializeObjectAttrlbutes, which I'm about to show you. 

Suppose, for example, that we wanted to open the service key for our driver. 
The I/O Manager gives us the name of this key as a parameter to DriverEntry. So, 
we could write code like the following: 

NTSTATUS DriverEntry(PDRIVER-OBJECT DriverObject. 
PUNICODE_STRING RegistryPath) 
{ 

OBJECT_ATTRIBUTES oa; 
InitializeObjectAttributes(&oa, RegistryPath. 0. NULL. NULL); 
HANDLE hkey; 
status = ZwOpenKey(&hkey. KEY_READ. &oa); 
if (NT_SUCCESS(status» 

{ 

3, ZwCl ose(hkey); 
} 

} 

1. We're initializing the object attributes structure with the registry pathname 
supplied to us by the I/O Manager and with a NULL security descriptor. 
ZwOpenKey will ignore the security descriptor anyway-you can specify 
security attributes only when you create a key for the first time. 

2. ZwOpenKey will open the key for reading and store the resulting handle 
in our hkey variable. 

3. ZwClose is a generic routine for closing a handle to a kernel-mode ob
ject. Here, we use it to close the handle we have to the registry key. 
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Even though we often refer to the registry as being a database, it doesn't have 
all of the attributes that have come to be associated with real databases. It doesn't 
allow for committing or rolling back changes, for example. Furthermore, the access 
rights you specify when you open a key (KEY_READ in the previous example) are 
for security checking rather than for the prevention of incompatible sharing. That is, 
two different processes can have the same key open after specifying write access (for 
example). The system does guard against destructive writes that occur simultaneously 
with reads, however, and it does guarantee that a key won't be deleted while some
one has an open handle to it. 

Other Ways to Open Registry Keys 
In addition to ZwOpenKey, Windows 2000 provides two other functions for opening 
registry keys. 

IoOpenDeviceRegistryKey allows you to open one of the special registry keys 
associated with a device object: 

HANDl.:E hkey; 
status = IoOpenDeviceRegistryKey(pdo, flag, access, &hkey); 

where pdo is the address of the physical device object (PDO) at the bottom of your 
particular driver stack, flag is an indicator for which special key you want to open 
(see Table 3-10), and access is an access mask such as KEY_READ. 

Flag Value Selected Registry Key 

The hardware (instance) subkey of the 
Enum key 

The software (service) key 

Table 3-10. Registry key codes/or !oOpenDeviceRegistryKey. 

IoOpenDevicelnterfaceRegistryKey opens the key associated with an in
stance of a registered device interface: 

HANDLE hkey; 
status = IoOpenDevicelnterfaceRegistryKey(linkname, access, &hkey); 

where linkname is the symbolic link name of the registered interface and access is 
an access mask like KEY_READ. 

The interface registry key is a subkey of HKLM\System\CurrentControlSet\ 
Control\DeviceClasses that persists from one session to the next. It's a good place 
to store parameter information that you want to share with user-mode programs, 
because user-mode code can call SetupDiOpenDevicelnterfaceRegKey to gain 
access to the same key. 
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In Chapter 12, "Installing Device Drivers," I'll discuss how your installation script 
can insert values into the hardware and interface keys, and how application programs 
can access these values. 

Getting and Setting Values 
Usually, you open a registry key because you want to retrieve a value from the data
base. The basic function you use for that purpose is ZwQueryValueKey. For example, 
to retrieve the Im.agePath value in the driver's service key-I don't actually know 
why you'd want to know this, but that's not my department-you could use the fol
lowing code: 

UNICODE_STRING val name; 
RtlInitUnicodeString(&valname. L"ImagePath"); 
size = 0; 
status = ZwQueryValueKey(hkey. &valname. KeyValuePartialInformation. 

NULL. 0. &size); 
if (status == STATUS_OBJECT_NOT_FOUND I I size == 0) 

<handle error>; 
PKEY_VALUE_PARTIAL_INFORMATION vpip = (PKEY_VALUE_PARTIAL_INFORMATION) 

ExAllocatePool{PagedPool. size); 
if (!vpip) 

<handle error>; 
status = ZwQueryValueKey(hkey. &valname. KeyValuePartiallnformation. 

vpip. size. &size); 
if (!NT_SUCCESS(status» 

<handle error>; 
<do something with vpip->Data> 
ExFreePool(vpip); 

Here, we make two calls to ZwQueryValueKey. The purpose of the first call is 
to determine how much space we need to allocate for the KEY _ VALUE_PARTIAL_ 
INFORMATION structure we're trying to retrieve. The second call retrieves the infor
mation. I left the error checking in this code fragment because the errors didn't work 
out in practice the way I expected them to. In particular, I initially guessed that the 
ftrst call to ZwQueryValueKey would return STATUS_BUFFER_TOO_SMALL if I passed 
it a NULL buffer pointer. It didn't do that, though. The important failure code is 
STATUS_OBJECT_NAME_NOT]OUND, which indicates that the value doesn't actu
ally exist. Hence, I test for that value only. If there's some other error that prevents 
ZwQueryValueKey from working, the second call will uncover it. 

The so-called "partial" information structure you retrieve in this way contains 
the value's data and a description of its data type: 

typedef struct _KEY_VALUE_PARTIAL-INFORMATION { 
ULONG Titlelndex; 
ULONG Type; 

(continued) 
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ULONG DataLength; 
UCHAR Data [1] ; 

} KEY_VALUE_PARTIAL_INFORMATION. 
*PKEY_VALUE_PARTIAL_INFORMATION; 

Type is one of the registry data types listed in Table 3-11. (Additional data types are 
possible but not interesting to device drivers.) DataLength is the length of the data 
value, and Data is the data itself. Tidelndex has no relevance to drivers. Here are 
some useful facts to know about the various data types: 

• REG_DWORD is a 32-bit unsigned integer in whatever format (big-endian 
or little-endian) is natural for the platform. 

• REG_SZ describes a null-terminated Unicode string value. The null termi
nator is included in the DataLength count. 

• To expand a REG_EXPAND_SZ value by substituting environment variables, 
you should use RdQueryRegistryValues as your method of interrogat
ing the registry. The internal routines for accessing environment variables 
aren't documented or exposed for use by drivers. 

• RtlQueryRegistryValues is also a good way to interrogate REG~ULTI_SZ 
values, in'that it will call your designated callback routine once for each 
of the potentially many strings. 

NOTE RtlQueryRegistryValues is a complex routine for which I'm not provid
ing an example here. The DDK samples contain several drivers that use it. 

Data Type Constant 

REG_BINARY 

REG_DWORD 

REG_DWORD_BIG_ENDIAN 

REG_EXPAND _SZ 

Description 

Variable-length binary data 

Unsigned long integer in natural format for 
the platform 

Unsigned long integer in big-endian format 

Null-terminated Unicode string containing 
o/o-escapes for environment variable names 

One or more null-terminated Unicode strings, 
followed by an extra null 

Null-terminated Unicode string 

Table 3-11. Types of registry values useful to WVM drivers. 

To set a registry value, you must have KEY_SET_VALUE access to the parent 
key. I used KEY_READ earlier, which wouldn't give you such access. You could use 
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KEY_WRITE or KEY_All_ACCESS, although you thereby gain more than the neces
sary permission. Then call ZwSetValueKey. For example: 

RtllnftUn1codeStr1ng(&valname. L"TheAnswer"): 
ULONG value = 42: 
ZwSetValueKey(hkey. &valn~me. 0. REfLDWORD. &value. s1zeof(value»: 

Deleting Subkey. or Value. 
To delete a value in an open key, you can use RtIDe1eteRegistryValue in the fol
lowing special way: 

RtlDeleteRegistryValue(RTLREGISTRLHANDLE. (PCWSTR) hkey. L"TheAnswer"): 

RtlDeleteRegistryValue is a general service function whose ftrst argument .can 
designate one of several special places in the registry. When you use R~REGISTRY_ 
HANDLE, as I did in this example, you indicate that you've already got an open handle 
to the key within which you want to delete a value. You specify the key (with a cast 
to make the compiler happy) as the second argument. The third and ftnal argument 
is the null-terminated Unicode name of the value you want to delete. This is one time 
when you don't have to create a UNICODE_STRING structure to describe the string. 

You can delete only those keys that you've opened with at least DELETE permis
sion (which you get with KEY_All_ACCESS), You call ZwDe1eteKey: 

ZwDeleteKey(hkey): 

The key lives on until all handles are closed, but subsequent attempts to open 
a new handle to the. key or to access the key by using any currently open handle 
will fail with STATUS_KEY _DELETED. Since you have an open handle at this pOint, 
you must be sure to call ZwClose sometime. (The DDK documentation entry for 
ZwDeleteKey says the handle becomes invalid. It doesn't-you must still close it by 
calling ZwClose.) 

Enumerating Subkey. or Value. 
A complicated activity you can carry out with an open registry key is to enumerate 
the elements (subkeys and values) that the key contains. To do this, you'll ftrst call 
ZwQueryKey to determine a few facts about the subkeys and values, such as their 
number, the length of the largest name, and so on. ZwQueryKey has an argument 
that indicates which of three types of information you want to retrieve about the key. 
These types are named baSiC, node, and full. To prepare for an enumeration, you'd 
be interested ftrst in the full information: 

typedef struct _KEY_FULLINFORMATION { 
LARGE~INTEGER LastWr1teT1me: 
ULONG T1tlelndex: 
ULONG ClassOffset: 

(continued) 
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ULONG ClassLength; 
ULONG SubKeys; 
ULONG MaxNameLen; 
ULONG MaxClassLen; 
ULONG Values; 
ULONG MaxValueNameLen; 
ULONG MaxValueDataLen; 
WCHAR Class[l]; 

} KEY_FULL_INFORMATION, *PKEY_FULL-INFORMATION; 

This structure is actually of variable length, since Ciass[O] is just the first char
acter of the class name. It's customary to make one call to find out how big a buffer 
you need to allocate and a second call to get the data, as follows: 

ULONG size; 
ZwQueryKey(hkey, KeyFullInformation, NULL, 0, &size); 
PKEY_FULL_INFORMATION fip = (PKEY_FULL_INFORMATION) 

ExAllocatePool(PagedPool, size); 
ZwQueryKey(hkey, 0, KeyFullInformation, bip, size, &size); 

Were you now interested in the subkeys of your registry key, you could perform 
the following loop calling ZwEnumerateKey: 

for (ULONG i = 0; i < fip->SubKeys; ++i) 
{ 

ZwEnumerateKey(hkey, i, KeyBasicInformation, NULL, 0, &size); 
PKEY_BASIC_INFORMATION bip = (PKEY_BASIC_INFORMATION) 

ExAllocatePool(PagedPool, size); 
ZwEnumerateKey(hkey, i, KeyBasicInformation, bip, size, &size); 
<do something with bip->Name> 
ExFreePool(bip); 
} 

The key fact you discover about each subkey is its name, which shows up as 
a counted Unicode string in the KEY_BASIC_INFORMATION structure you retrieve 
inside the loop: 

typedef struct _KEY_BASIC_INFORMATION { 
LARGE_INTEGER LastWriteTime; 
ULONG Type; 
ULONG NameLength; 
WCHAR Name[l]; 

} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION; 

The name isn't null-terminated; you must use the NameLength member of the struc
ture to determine its length. Don't forget that the length is in bytes! The name isn't 
the full registry path either: it's the just the name of the subkey within whatever key 
contains it. This is actually lucky, because you can easily open a subkey given its name 
and an open handle to its parent key. 
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To accomplish an enumeration of the values in an open key, employ the fol
lowing method: 

ULONG maxlen = fip->MaxValueNameLen + 
sizeof(KEY_VALUE_BASIC_INFORMATION); 

PKEY_VALUE_BASIC_INFORMATION vip = (PKEY_VALUE_BASIC_INFORMATION) 
ExAllocatePool(PagedPool. maxlen); . 

for (ULONG i = 0; i < fip->Values; ++i) 
{ 

ZwEnumerateValueKey(hkey. i. KeyValueBasicInformation. vip, 
maxlen, &size); 

(do something with vip->Name> 
} 

ExFreePool(vip); 

Allocate space for the largest possible KEY _ VALUE_BASIC_INFORMATION struc
ture that you'll ever retrieve based on the MaxValueNameLen member of the 
KEY_FULL_INFORMATION structure. Inside the loop, you'll want to do something 
with the name of the value, which comes to you as a counted Unicode string in this 
structure: 

typedef struct _KEY_VALUE_BASIC_INFORMATION { 
ULONG TitleIndex; 
ULONG Type; 
ULONG NameLength; 
WCHAR Name[1] ; 

} KEY_VALUE_BASIC_INFORMATION. *PKEY_VALUE_BASIC_INFORMATION; 

Once again, having the name of the value and an open handle to its parent key is 
just what you need to retrieve the value, as shown in the previous section. 

There are variations on ZwQueryKey and on these two enumeration functions 
that I haven't discussed. You can, for example, obtain full information about a 
subkey when you call ZwEnumerateKey. I showed you only how to get the basic 
information that includes the name. You can retrieve data values only, or names 
plus data values, from ZwEnumerateValueKey. I showed you only how to get the 
name of a value. 

Accessing Files 
It's sometimes useful to be able to read and write regular disk files from inside a WDM 
driver. Perhaps you need to download a large amount of microcode to your hard
ware, or perhaps you need to create your own extensive log of information for some 
purpose. There's a set of ZwXxx routines to help you do these things. 

The first step in accessing a disk file is to open a handle by calling ZwCreateFile. 
The full deSCription of this function in the DDK is relatively complex because of all the 
ways in which it can be used. I'm going to show you two simple scenarios, however, 
that are useful if you just want to read or write a file whose name you already know. 
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Opening an Existing File for Reading 
To open an existing file so that you can read it, follow this example: 

NTSTATUS status; 
OBJECT-ATTRIBUTES oa; 
IO_STATUS_BLOCK iostatus; 
HANDLE hfile; 
PUNICODE_STRING pathname; 

II ~ the output from this process 
II ~ you've been given this 

InitializeObjectAttributes(&oa. pathname. OBJ_CASE_INSENSITIVE. 
NULL. NULL); 

status = ZwCreateFile(&hfile. GENERIC_READ. &oa. &iostatus. 
NULL. 0. FILE_SHARE_READ. FILE_OPEN. 
FILE_SYNCHRONOUS_IO_NONALERT. NULL. 0); 

Creating or Rewriting a File 
To create a new file, or to open and truncate to zero length an existing file, replace 
the call to ZwCreateFile in the previous fragment with this one: 

status = ZwCreateFll e(&hfll e. GENERILWRITE. &oa. &i ostatus. 
NULL. FILE-ATTRIBUTE_NORMAL. 0. FILE_OVERWRITE_IF. 
FILE_SYNCHRONOUS_IO_NONALERT. NULL. 0); 

In these fragments, we set up an Object Attributes structure whose main pur
pose is to point to the full pathname of the file we're about to open. We specify the 
OBJ_CASEJNSENSITIVE attribute because the Win32 file system model does not treat 
case as significant in a pathname. Then we call ZwCreateFile to open the handle. 

The first argument to ZwCreateFile (&hflle) is the address of the HANDLE 
variable where ZwCreateFile will return the handle;: it creates. The second argument 
(GENERIC_READ or GENERIC_WRITE) specifies the access we need to the handle 
to perform either reading or writing. The third argument (&oa) is the address of the 
OBJECT_ATfRIBUfES structure containing the name of the file. The fourth argument 
points to an IO_STATIJS_BLOCK that will receive a disposition code indicating how 
ZwCreateFile actually implemented the operation we asked it to perform. When we 
open a read-only handle to an existing file, we expect the Status field of this struc
ture to end up equal to FILE_OPENED. When we open a write-only handle, we expect 
it to end up equal to FILE_OVERWRITTEN or FILE_CREATED, depending on whether 
the file did or did not already exist. The fifth argument (NUll.) can be a pointer to 
a 64-bit integer that specifies the initial allocation size for the file. This argument 
matters only when you create or overwrite a file, and omitting it as I did here means 
that the file grows from zero length as you write data. The sixth argument (0 or 
FILE...ATfRIBUTE_NORMAL) specifies file attribute flags for any new file that you 
happen to create. The seventh argument (FILE_SHAKE_READ or 0) specifies how 
the file can be shared by other threads. If you're opening for input, you can probably 
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tolerate having other threads read the file simultaneously. If you're opening for sequen
tial output, you probably don't want other threads trying to access the file at all. 

The eighth argument (Fll.E_OPEN or Fll.E_OVERWRITE_IF) indicates how to 
proceed if the fIle either already exists or doesn't. In the read-only case, I specified 
FILE_OPEN because I expected to open an existing file and wanted a failure if the 
file didn't exist. In the write-only case, I specilled FILE_OVER WRITE_IF because I 
wanted to overwrite any existing file by the same name or create a brand new file 
as necessary. The ninth argument (Fll.E_SYNOIRONOUS_IO_NONALERT) specifIes 
additional flag bits to govern the open operation and the subsequent use of the handle. 
In this case, I indicated that I'm going to be doing synchronous I/O operations 
(wherein I expect the read or write function not to return until the I/O is complete). 
The tenth and eleventh arguments (MJU. and 0) are, respectively, an optional pointer 
to a buffer for extended attributes and the length of that buffer. 

You expect ZwCreateFile to return STATUS_SUCCESS and to set the handle vari
able. You can then carry out whatever read or write operations you please by calling 
ZwReadFlle or ZwWriteFll.e, and then you close the handle by calling ZwClose: 

ZwCl ose( hfll e) : 

You can perform synchronous or asynchronous reads and writes, depending 
on the flags you specifIed to ZwCreateFile. In the simple scenarios I've outlined, you 
would do synchronous operations that don't return until they've completed. For 
example: 

PYOID buffer: 
ULONG bufsize: 
status = ZwReadFile(hfile. NULL. NULL. NULL. &1ostatus. buffer. 

bufsize. NULL: NULL): 

-or-

status = ZwWriteFile(hf11e. NULL. NULL. NULL. &iostatus. buffer. 
bufs1ze. NULL. NULL): 

These calls are analogous to a nonoverlapped ReadFlle or WriteFlle call from user 
mode. When the function returns, you might be interested in iostatus.blformation, 
which will hold the number of bytes transferred by the operation. 

If you plan to read an entire file into a memory buffer, you would probably want 
to call ZwQueryInformationFlle to determine the total length of the file: 

FILE_STANDARD_INFORMATION s1: 
ZwOuerylnformat1onF1le(hf1le. &1ostatus. &si. s1zeof(si). 

FileStandardInformation): 
ULONG length = si.EndOfF1le.LowPart: 
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TIMING OF FILE OPERATIONS 

You'll be likely to want to read a disk file in a WDM driver while you're initializing 
your device in response to an IRP _MN_START_DEVICE request. (See Chapter 6.) 
Depending on where your device falls in the initialization sequence, you might 
or might not have access to files using normal pathnames like \??\C:\dir\file.ext. 
To be safe, put your data files into some directory below the system root di
rectory and use a filename like \SystemRoot\dir\file.ext. The SystemRoot branch 
of the namespace is always accessible, since the operating system has to be able 
to read disk files to start up. 

Floating.Point Calculations 
There are times when integer arithmetic just isn't sufficient to get your job done and 
you need to perform floating-point calculations. On an Intel processor, the math co
processor is also where Multimedia Extensions (MMX) instructions execute. His
torically, there have been two problems with drivers carrying out floating-point 
calculations. The operating system will emulate a missing coprocessor, but the emu
lation is expensive and normally requires a processor exception to trigger it. Handling 
exceptions, especially at elevated IRQLs, can be difficult in kernel mode. Additionally, 
on computers that have hardware coprocessors, the CPU architecture might require 
a separate, expensive operation to save and restore the coprocessor state during con
text switches. Therefore, conventional wisdom has forbidden kernel-mode drivers 
from using floating-point calculations. 

Windows 2000 and Windows 98 provide a way around past difficulties. First of 
all, a system thread-see Chapter 9--running at or below DISPATCH_LEVEL is free to 
use the math coprocessor all it wants. In addition, a driver running in an arbitrary 
thread context at or below DISPATCH_LEVEL can use these two system calls to bracket 
its use of the math coprocessor: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KFLOATING_SAVE FloatSave; 
NTSTATUS status = KeSaveFloatingPointState(&FloatSave); 
if (NT_SUCCESS(status» 

{ 

KeRestoreFloatingPointState(&FloatSave); 
} 

These calls, which must be paired as shown here, save and restore the "nonvola
tile" state of the math coprocessor for the current CPU-that is, all the state informa
tion that persists beyond a single operation. This state information includes registers, 
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control words, and so on. In some CPU architectures, no actual work might occur 
because the architecture inherently allows any process to perform floating-point 
operations. In other architectures, the work involved in saving and restoring state 
information can be quite substantial. For this reason, Microsoft recommends that you 
avoid using floating-point calculations in a kernel-mode driver unless necessary. 

What happens when you call KeSaveFloatingPointState depends, as I said, 
on the CPU architecture. To give you an idea, on an Intel-architecture processor, this 
function saves the entire floating-point state by executing an FSAVE instruction. It can 
save the state information either in a context block associated :with the current thread 
or in an area of dynamically allocated memory. It uses the opaque FloatSave area to 
record "meta" information about the saved state to allow KeRestoreF1oatingPointState 
to correctly restore the state later. 

KeSaveFloatingPointState will fail with STATUS_ILLEGAL_FLOAT_CONTEXT if 
there's no real coprocessor present. (All CPUs of a multi-CPU computer must have 
coprocessors, or else none of them may, by the way.) Your driver will therefore need 
alternative code to carry out whatever calculations you had in mind, or else you'll 
want to decline to load (by failing DriverEntry) if the computer doesn't have a 
coprocessor. 

Making Debugging Easier 
My drivers always have bugs. Maybe you're as unlucky as I am. If so, you'll find 
yourself spending lots of time with a debugger trying to figure out what your code 
is doing or not doing correctly or incorrectly. I won't discuss the potentially divisive 
subject of which debugger is best or the noncontroversial but artistic subject of how 
to debug a driver. But you can do some things in your driver code that will make 
your life easier. 

When you build your driver, you select either the "checked" or the "free" build 
environment. (Readers may now thank me for not making a bad joke about how the 
opposite of "checked" ought really to be named "striped" or something like that.) In 
the checked build environment, the preprocessor symbol DBG equals 1, whereas it 
equals 0 in the free build environment. So, one of the things you can do in your own 
code is to provide additional code that will take effect only in the checked build: 

IIi f DBG 
<extra debugging code> 

Ilend; f 

One of the most useful debugging techniques ever invented is to simply print 
messages from time to time. I used to do this when I was first learning to program 
(in FORTRAN on a computer made out of vacuum tubes, no less), and I still do it 
today. DbgPrint is a kernel-mode service routine you can call to display a formatted 
message in whatever output window your debugger provides. Another way to see 
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the output from DbgPrint calls is to download the DbgView utility from http:// 
www.systnternals.com.InsteadofdirectlyreferencingDbgPrintinyourcode.it·s often 
easier to use the macro named KdPrint,which calls DbgPrint if DBG is true and 
generates no code at all if DBG is false: 

KdPri nt« "KeReadProgrammersMi nd fail ed wi th code %X\n". status»; 

You use two sets of parentheses with KdPrint because of the way it's defined. The first 
argument is a string with o/o-escapes where you want to substitute values. The second, 
third, and following arguments provide the values to go with the o/o-escapes. The 
macro expands into a call to DbgPrint, which internally uses the standard run-time 
library routine _vsnprintf to format the string. You can, therefore, use the same set 
of o/o-escape codes that are available to application programs that call this routine. 

Another useful debugging technique relies on the ASSERT macro: 

ASSERT(1 + 1 == 2); 

In the checked build of your driver, ASSERT generates code to evaluate the Boolean 
expression. If the expression is false, ASSERT will try to halt execution in the debugger 
so that you can see what's going on. If the expression is true, your program continues 
executing normally. 

If you debug with Soft-Ice/W from Compuware (formerly Nu-Mega Technologies, 
Inc.), the ASSERT macro in the DDK isn't as useful as it might be. First of all, it relies 
on calling RtlAssert, which does nothing in the free version of the operating sys
tem. (You should test your driver in the checked build, but you can debug it perfectly 
well in the free build.) Second, if it does generate a debug exception, it does so inside 
RtlAssert rather than in the execution context of your code, which makes it more 
difficult for you to inspect local variables. You can replace the DDK ASSERT macro 
(for x86 only, which is the only place Soft-Ice/W currently runs anyway) to overcome 
these problems as follows: 

Hif DBG && defined(_X86_) 
ffundef ASSERT 
ffdefine ASSERT(e) if(!(e»{DbgPrint("Assertion failure in "\ 

__ )FILE_) ". 1 ine %d: " ffe "\n". __ LINE_);\ 
_asm int 1\ 
} 

ffend; f 

Also remember to issue the Soft-Ice/W command ilhere on so that the INT 1 
traps from your ASSERT macros actually cause the debugger to halt. A possible dis
advantage to replacing ASSERT like this is that you will bugcheck even in the free 
build of the operating system if you're not running a debugger when one of these 
ASSERTs fails. 
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WINDOWS 98 COMPATIBILITY NOTES 
The ZwXxx routines for accessing disk mes don't work in the retail release of Win
dows 98 because of two basic problems-one from the architecture of Windows and 
the other from what looks like an ordinary bug. 

The fIrst problem with me access has to do with the order in which Windows 98 
initializes various virtual device drivers. The ConfIguration Manager (CONFIGMG.VXD) 
initializes before the Installable File System Manager (IFSMGR.VXD). WDM drivers for 
devices that exist at startup time receive their IRP _MN_START_DEVICE requests during 
CONFIGMG's initialization phase. But, since IFSMGR hasn't initialized at that point, 
it's not possible to perform me I/O operations by using ZwCreateFile and the other 
functions discussed earlier in the chapter. Furthermore, there's no way for a WDM 
driver to defer handling IRP _MN_START_DEVICE until me system functionality becomes 
available. If you don't have a debugger like Soft-IceIW running, the symptom you will 
§ee is a blue screen complaining of a Windows Protection Error while initializing 
CONFIGMG. 

The second and mote crippling problem with me access has to do with the 
validity checking that ZwReadFile, ZwWriteFile, and ZwQueryInformationFile do on 
their arguments. If you supply an IO_STATUS_BLOCK in kernel-mode memory (and 
there's basically no way to do anything else), these functions probe a virtual address 
that doesn't exist. The resulting page fault gets caught by a structured exception 
handler and results in you getting back STATUS_ACCESS_ VIOLATION even when 
you've done everything right. There is no workaround for this 'problem in the 
July 1998 retail release of Windows 98. 

The FILEIO sample on the companion disc illustrates a way past these Windows 98 
diffIculties. FILEIO makes a run-time decision whether to call the ZwXxx functions 
or instead to call VxD selVices to perform me operations. 
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Synchronization 

Microsoft Windows 2000 is a multitasking operating system that can run in a sym
metric multiprocessor environment. It's not my purpose here to provide a rigorous 
description of the multitasking capabilities of Microsoft Windows NT; one good place 
to get more information is David Solomon's Inside Windows NT, Second Edition 
(Microsoft Press, 1998). All we need to understand as driver writers is that our code 
executes in the context of one thread or another (and the thread context can change 
from one invocation of our code to another) and that the exigencies of multitasking 
can yank control away from us at practically any moment. Furthermore, true simul
taneous execution of multiple threads is possible on a multiprocessor machine. In 
general, we need to assume two worst-case scenarios: 

• The operating system can preempt any subroutine at any moment for an 
arbitrarily long period of time, so we cannot be sure of completing criti
cal tasks without interference or delay. 

• Even if we take steps to prevent preemption, code executing simulta
neously on another CPU in the same computer can interfere with our 
code-it's even possible that the exact same set of instructions belonging 
to one of our programs could be executing in parallel in the context of 
two· different threads. 

Windows NT allows you to solve these general synchronization problems by 
usfug the interrupt request level (IRQL) priority scheme and by claiming and releas
ing spin locks around critical code sections. IRQL avoids destructive preemption on 
a single CPU, while spin locks forestall interference among CPUs. 

131 



Pngralllllnl the Microsoft Windows Driver Modal 

AN ARCHETYPAL SYNCHRONIZATION PROBLEM 

132 

A hackneyed example will motivate this discussion. Suppose your driver had a static 
integer variable that you used for some purpose, say to count the number of I/O 
requests that were currently outstanding: 

static LONG lActiveRequests; 

Suppose further that you increment this variable when you receive a request 
and decrement it when you later complete the request: 

NTSTATUS DispatchPnp(PDEVICE-OBJECT fdo. PIRP Irp) 
{ 

++lActiveRequests; 
... II process PNP request 
--lActiveRequests; 
} 

I'm sure you recognize already that a counter like this one ought not to be a 
static variable: it should be a member of your device extension so that each device 
object has its own unique counter. Bear with me and pretend that your driver only 
ever manages a single device. To make the example more meaningful, suppose fi
nally that a function in your driver would be called when it was time to delete your 
device object. You might want to defer the operation until no more requests were 
outstanding, so you might insert a test of the counter: 

NTSTATUS HandleRemoveDevice(PDEVICE-OBJECT fdo. PIRP Irp) 
{ 

if (lActiveRequests) 
<wait for a77 requests to comp7ete> 

IoDeleteDevice(fdo); 
} 

1his example describes a real problem, by the way, which we'll tackle in Chajr 
ter 6, "Plug and Play," in our discussion of Plug and Play (PnP) requests. The I/O Manager 
can try to remove one of our devices at a time when requests are active, and we need 
to guard against that by keeping some sort of counter. I'll show you in Chapter' 6 how 
to use IoAcquireRemoveL and some related functions to solve the problem. 

A horrible synchronization problem lurks in the code fragments I just showed 
you, but it becomes apparent only if you look behind the increment and decrement 
operations inside DispatchPnp. On an x86 processor, the compiler might implement 
them using these instructions: 

++lActiveRequests; 
mov ea·x. lActiveRequests 
add eax. 1 
mov lActiveRequests. eax 



--lActiveRequests; 
mov eax. lActiveRequests 
sub eax. 1 
mov lActiveRequests. eax 
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To expose the synchronization problem, let's consider ftrst what might go wrong 
on a single CPU. Imagine two threads that are both trying to advance through 
DispatchPnp at roughly the same time. We know they're not both executing truly si
multaneously because we have only a single CPU for them to share. But imagine that 
one of the threads is executing near the end of the function and manages to load the 
current contents of lA~equests into the EAX register just before it gets preempted 
by the other thread. Suppose that lActiveRequests equals 2 at that instant. As part of 
the thread switch, the operating system saves the EAX register (containing the value 
2) as part of the outgoing thread's context image somewhere in main memory. 

Now imagine that the other thread manages to get past the incrementing code 
at the beginning of DispatchPnp. It will increment lActiveRequests from 2 to 3 (be
cause the ftrst thread never got to update the variable). If this other thread gets pre
empted by the ftrst thread, the operating system will restore the first thread's context, 
which includes the value 2 in the EAX register. The first thread now proceeds to 
subtract one from EAX and store the result back into lActiveRequests. At this point, 
lActiveRequests contains the value 1, which is incorrect. Somewhere down the road, 
we may prematurely delete our device object because we've effectively lost track of 
one I/O request. 

Solving this particular problem is very easy on an x86 computer-we just re
place the load/add/store and load/subtract/store instruction sequences with atomic 
instructions: 

++lActiveRequests; 
inc lActiveRequests 

--lActiveRequests; 
dec lActiveRequests 

On an Intel x~6, the INC and DEC instructions cannot be interrupted, so there 
will never be a case where a thread could be preempted in the middle of updating 
the counter. As it stands, though, this code still isn't safe in a multiprocessor environ
ment because INC and DEC are implemented in several microcode steps. It's pos
sible for two different CPUs to be executing their microcode just slightly out of step 
such that one of them ends up updating a stale value. The multi-CPU problem can 
also be avoided in the x86 architecture by using a LOCK preftx: 

++lActiveRequests; 
lock inc lActiveRequests 

--lActiveRequests; 
lock dec lActiveRequests 
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The LOCK instruction preftx locks out all other CPUs while the microcode for 
the current instruction executes, thereby guaranteeing data integrity. 

Not all synchronization problems have such an easy solution, unfortunately. The 
point of this example isn't to demonstrate how to solve one simple problem on one 
of the platforms where Windows NT runs, but rather to illustrate the two sources of 
difficulty: preemption of one thread by another in the middle of a state change and 
simultaneous execution of conflicting state-change operations. As we'll see in the 
remainder of this chapter, we can avoid preemption by using the IRQL priority 
scheme, and we can prevent simultaneous execution by judiciously using spin locks. 

INTERRUPT REQUEST LEVEL 
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Windows NT assigns a priority level known as the interrupt request level to each 
hardware interrupt and to a select few software events. IRQLs provide a synchroni
zation method for activities on a single CPU based on the following rule: 

Once a CPU is executing at an IRQL above PASSIVE_LEVEL, an activity on that 
CPU can be preempted only by an activity that executes at a higher IRQL. 

Figure 4-1 illustrates the range of IRQL values for the xs6 platform. (In general, 
the numeric values of IRQL depend on which platform you're talking about.) User
mode programs execute at PASSIVE_LEVEL and are therefore preemptable by any 
activity that executes at an elevated IRQL. Many of the functions in a. device driver 
also execute at PASSIVE_LEVEL. The DriverEntry and AddDevice routines discussed 
in Chapter 2, "Basic Structure of a WDM Driver," are in this category, as are most of 
the I/O request packet (IRP) dispatch routines that I'll discuss in ensuing chapters. 

Certain common driver routines execute at DISPATCH_LEVEL, which is higher 
than PASSIVE_LEVEL. These include the StartIo routine, deferred procedure call 
(DPC) routines, and many others. What they have in common is a need to access ftelds 
in the device object and device extension without interference from driver dispatch 
routines and each other. When one of these routines is running, the rule stated ear
lier guarantees that no thread can preempt it to execute a driver dispatch routine 
because the dispatch routine runs at a lower IRQL. Furthermore, no thread could 
preempt it to run another of these special routines because that other routine would 
run at the same IRQL. The rule, once again, is that preemption is allowed to run only 
an activity at a higher IRQL. 

NOTE Dispatch routine and DISPATCH_LEVEL have unfortunately similar 
names. Dispatch routines are so called because the 1/0 Manager dispatches 1/0 
requests to them. DISPATCH_LEVEL is so called because it's the IRQL at which 
the kernel's thread dispatcher originally ran when deciding which thread to run 
next. (The thread dispatchernow usually runs at SYNCHJ-EVEL, if you care.) 
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Figure 4-1. Intemtpt request levels. 

Between DISPATCH_LEVEL and PROFILE_LEVEL is room for various hardware 
interrupt levels. In general, each device that generates interrupts has an IRQL that 
defines its interrupt priority vis-a.-vis other devices. A WDM driver discovers the IRQL 
for its interrupt when it receives an IRP _:.MLPNP request with the minor function code 
IRP _MN_START_DEVICE. The device's interrupt level is one of the many items of con
figuration information passed as a parameter to this request. We often refer to this 
level as the device IRQL, or DIRQL for short. DIRQL is not a single request level. Rather, 
it is the IRQL for the interrupt associated with whichever device is under discussion 
at the time. 

The other IRQL levels have meanings that sometimes depend on the particular 
CPU architecture. Since those levels are used internally by the Windows NT kernel, 
their meanings aren't especially germane to the job of writing a device driver. The 
purpose of APC_LEVEL, for example, is to allow the system to schedule an asynchro
nous procedure call (APC), which I'll describe in detail later in this chapter, for a 
particular thread without interference from some other thread on the same cpu. 
Operations that occur at HIGH_LEVEL include taking a memory snapshot just prior 
to hibernating the computer, processing a bug check, handling a totally spurious 
interrupt, and others. I'm not going to attempt to provide an exhaustive list here 
because, as I said, you and I don't really need to know all the details. 
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IRQL in Operation 
To illustrate the importance of IRQL, refer to Figure 4-2, which illustrates a possible time 
sequence of events on a single CPU. At the beginning of the sequence, the CPU is 
executing at PASSIVE_LEVEL. At time tl' an interrupt arrives whose service routine 
executes at IRQL-l, one of the levels between DISPATCH_LEVEL and PROFILE_LEVEL. 
Then, at time t2, another interrupt arrives whose service routine executes at IRQL-2, 
which is less than IRQL-l. Because of the preemption rule already discussed, the CPU 
continues servicing the first interrupt. When the first interrupt service routine com
pletes at time t3, it might request a DPC. DPC routines execute at DISPATCH_LEVEL. 
Consequently, the highest priority pending activity is the service routine for the sec
ond interrupt, which therefore executes next. When it finishes at t4, assuming noth
ing else has occurred in the meantime, the DPC will run at DISPATCH_LEVEL. When 
the DPC routine finishes at ts, IRQL can drop back to PASSIVE_LEVEL. 

IRQL-1 . . .. · ............ · .... ·T ............ r .. ·;:~~~~ .... · .. 
........... ···············r-·.... ··········l···~,:~~:~:~Eva 
............................ [" ......... [" .................. .. 

PASSIVE_LEVEL I ................ r ........ r .... · ............ · .. r .. · .... · .. .. 
Figure 4-2. Interrupt priority in action. 

The Basic Synchronization Rule 
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You can take advantage of IRQL's synchronizing effects by following this rule: 

Always access shared data at the same elevated I ROL. 

In other words, whenever and wherever your code will access a data object that 
it shares with some other code, make sure that you execute at some specified IRQL 
above PASSIVE_LEVEL. Once above PASSIVE_LEVEL, the operating system won't 
allow preemption by another activity at the same IRQL, so you thereby forestall 
potential interference. Following this rule isn't sufficient to protect data on a multi
processor machine, however, so you often need to take the additional precaution of 
acquiring a spin lock, as described in "Spin Locks" later in this chapter. If you only 
had to worry about operations on a single CPU, IRQL might be the only synchro
nizing concept you'd need to use, but the reality is that all WDM drivers must be 
designed to run on multiprocessor systems. 
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IRQL Compared with Thread Priorities 
Thread priority is a very different concept than IRQL. Thread priority controls the ac
tions of the scheduler in deciding when to preempt running threads and what thread 
to start running next. No thread switching occurs at or above DISPATCH_LEVEL, 
however. Whatever thread is active at the time IRQL rises to DISPATCH_LEVEL re
mains active at least until IRQL drops below DISPATCH_LEVEL. The only "priority" 
that means anything at elevated IRQL is IRQL itself, and it controls which programs 
can execute rather than the thread context within which they execute. 

IRQL and Paging 
One consequence of running at elevated IRQL is that the system becomes incapable 
of servicing page faults. The rule this fact implies is Simply stated: 

Code executing at or above DISPATCH_LEVEL must not cause page faults. 

One implication of this rule is that any of the subroutines in your driver that exe
cute at or above DISPATCH_LEVEL must be in nonpaged memory. Furthermore,. all the 
data you access in such a subroutine must also be in nonpaged memory. Finally, as IRQL 
rises, fewer and fewer kernel-mode support routines are available for your use. 

The DDK documentation explicitly states the IRQL restrictions on support rou
tines. For example, the entry for KeWaitForSingleObject indicates two restrictions: 

1. The caller must be running at or below DISPATCH_LEVEL. 

2. If a nonzero timeout period is specified in the call, the caller must be run
ning strictly below· DISPATCH_LEVEL. 

Reading between the lines, what is being said here is this: if the call to 
KeWaitForSingleObject might conceivably block for any period of time (that is, you've 
specified a nonzero timeout), you must be below DISPATCH_LEVEL, where thread 
blocking is permitted. If all you want to do is check to see if an event has been sig
nalled, however, you can be at DISPATCH_LEVEL. You cannot call this routine at all 
from an interrupt service routine or other routine runriing above DISPATCH_LEVEL. 

Implicitly Controlling IRQL 
Most of the time, the system calls the routines in your driver at the correct IRQL for 
the activities you're supposed to carry out. Although I haven't discussed many of these 
routines in detail, I want to give you an example of what I mean. Your first encoun
ter with a new I/O request is when the I/O Manager calls one of your dispatch rou
tines to process an IRP. The call occurs at PASSIVE_LEVEL because you might need 
to block the calling thread and you might need to call any support routine at all. You 
can't block a thread at a higher IRQL, of course, and PASSIVE_LEVEL is the only level 
at which there are no restrictions on the support routines you can call. 
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If your dispatch routine queues the IRP by calling IoStartPacket, your next en
counter with the request will be when the I/O Manager calls your Startlo routine. This 
call occurs at DISPATCH_LEVEL because the system needs to access the queue of 
I/O requests without interference from the other routines that are inserting and re
moving IRPs from the queue. Remember the rule stated earlier: always access shared 
data objects at the same (elevated) IRQL. Since every routine that accesses the IRP 
queue does so at DISPATCH_LEVEL, it's not possible (on a single CPU, that is) for 
anyone to be interrupted in the middle of an operation on the queue. 

Later on, your device might generate an interrupt, whereupon your interrupt 
service routine will be called at DIRQL. It's likely that some registers in your de
vice can't safely be shared. If you only access those registers at DIRQL, you can 
be sure that no one can interfere with your interrupt service routine (ISR) on a single
CPU computer. If other parts of your driver need to access these crucial hardware 
registers, you would guarantee that those other parts execute only at DIRQL. The 
K.eSynchronJzeExecution service function helps you enforce that rule, and I'll dis
cuss it in Chapter 7, "Reading and Writing Data," in connection with interrupt handling. 

Still later, you might arrange to have a DPC routine called. DPC routines exe
cute at DISPATCH_LEVEL because, among other things, they need to access your IRP 
queue to remove the next request from a queue and pass it to your Startlo routine. 
You call the IoStartNextPacket service routine to extract the next request from the 
queue, and it must be called at DISPATCH_LEVEL. It might call your Startlo routine 
before returning. Notice how neatly the IRQL requirements dovetail here: queue access, 
the call to IoStartNextPacket, and the possible call to StartIo are all required to occur 
at DISPATCH_LEVEL, and that's the level at which the system calls the DPC routine. 

Although it's possible for you to explicitly control IRQL (and I'll explain how 
in the next section), there's seldom any reason to do so because of the correspondence 
between your needs and the level at which the system calls you. Consequently, you 
don't need to get hung up on which IRQL you're executing at from moment to mo
ment: it's almost surely the correct level for the work you're supposed to do right then. 

Explicitly Controlling IRQL 
When necessary, you can raise and subsequently lower the IRQL on the current pro
cessor by calling KeRaiseIrql and KeLowerIrql. For example, from within a rou
tine running at PASSIVE_LEVEL: 

KIRQL oldirql; 
ASSERT(KeGetCurrentlrql() <= DISPATCH_LEVEL); 
KeRaiseIrql(DISPATCH_LEVEL. &oldirql); 

~ KeLowerIrql(oldirql); 
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1. KIRQL is the typedef name for an integer that holds an IRQL value. We'll 
need a variable to hold the current IRQL, so we declare it this way. 

2. This ASSERT expresses a necessary condition for calling KeRaiseIrql: the 
new IRQL must be greater than or equal to the current level. If this rela
tion isn't true, KeRaiseIrql will bugcheck (that is, report a fatal error via a 
blue screen of death). 

3. KeRaiselrql raises the current IRQL to the level specified by the first ar
gument. It also saves the current IRQL at the location pointed to by the 
second argument. In this example, we're raising IRQL to DISPATCH_LEVEL 
and saving the current level in oldirql. 

4. After executing whatever code we desired to execute at elevated IRQL, we 
lower the request level back to its previous value by calling KeLowerIrql 
and specifying the oldirql value previously returned by KeRaiseIrql. 

The DDK documentation says that you must call KeLowerIrql with the same 
value returned by the immediately preceding call to KeRaiseIrql. This is true in the 
larger sense that you should restore IRQL to what it was before you raisetl it. Other
wise, various assumptions made by code you call later or by the code which called 
you can later turn out to be incorrect. This statement in the documentation isn't true 
in the exact sense, however, because the only rule that KeLowerIrql actually applies 
is that the new IRQLmust be less than or equal to the current one. 

It's a mistake (and a big one!) to lower IRQL below whatever it was when some 
system routine called your driver, even if you raise it back before returning. Such a 
break in synchronization might allow some activity to preempt you and interfere with 
a data object that your caller assumed would remain inviolate. 

, You can use a special routine if you want to raise theIRQL to DISPATCH_LEVEL: 

KIROL oldirql = KeRaiselrqlToDpcLevel(); 

KeLowerlrql(oldirql); 

The advantage of using this service call is that you don't need to know or re
member that DISPATCH_LEVEL is the level you're aiming for. In addition, since 
KeRaiseIrqlToDpcLevel returns the current IRQL as its value, this function is slightly 
more convenient to use than KeRaiseIrql. 

SPIN LOCKS 
Since IRQL is a per-CPU concept, it doesn't help you safeguard data against interfer
ence by code running on another processor in the same multiprocessor computer. 
A primitive object known as a spin lock serves that purpose. To acquire a spin lock, 
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code on one CPU executes an atomic operation that tests and then sets some memory 
variable in such a way that no other CPU can access the variable until the operation 
completes. If the test indicates that the lock was previously free, the program con
tinues. If the test indicates that the lock was previously busy, the program repeats 
the test-and-set in a tight loop: it "spins." Eventually the owner releases the lock by 
resetting the variable, whereupon one of the waiting CPUs' test-and-set operations 
will report the lock as free. 

Two facts about spin locks are probably obvious but still worth stating. First of 
all, if a CPU already owns a spin lock and tries to obtain it a second time, the CPU 
will deadlock. No usage counter or owner identifier is associated with a spin lock; 
the lock is either owned by somebody or not. If you try to acquire it when it's owned, 
you will wait until the owner releases it. If your CPU happens to already be the owner, 
the code which would release the lock can never execute because you're spinning 
in a tight loop testing and setting the lock variable. 

The second fact about spin locks is that no useful work occurs on a CPU that's 
, waiting for a spin lock. Therefore, to avoid harming performance, you need to mini

mize the amount of work you do while holding a spin lock that some other CPU is 

likely to want. 
There's another important fact about spin locks that's not obvious but still pretty 

important: you can only request a spin lock when you're running at or below 
DISPATCH_LEVEL, and the kernel will raise the IRQL to DISPATCH_LEVEL for the du
ration of your ownership of the lock. Internally, the kernel is able to acquire spin locks 
at an IRQL higher than DISPATCH_LEVEL, but you and I are unable to accomplish 
that feat. 

Working with Spin Locks 
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To use a spin lock explicitly, allocate storage for a KSPIN_LOCK object in nonpaged 
memory. Then call KeInitia1izeSpinLock to initialize the object. Later, while run
ning at or below DISPATCH_LEVEL, acquire the lock, perform the work that needs 
to be protected from interference, and then release the lock. For example, suppose 
that your device extension contains a spin lock named QLOck that you use for guard
ing access to a special IRP queue you've set up. You'd initialize this lock in your 
AddDevice function: 

typedef struct _DEVICE_EXTENSION { 

KSPIN_lOCK Qlock; 
} DEVICE-EXTENSION. *PDEVICE_EXTENSION; 
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NTSTATUS AddDevice( ... ) 
{ 

PDEVICE-EXTENSION pdx = .... 
KelnitializeSpinLock(&pdx->OLock): 

} 

Elsewhere in your driver, say in the dispatch function for some type of IRP, you 
could claim (and quickly release) the lock around some queue manipulation that you 
needed to perform. Note that this function must be in nonpaged memory because it 
executes for some period of time at an elevated IRQL. 

NTSTATUS DispatchSomething( ... ) 
{ 

KIROL oldirql: 
PDEVICE_EXTENSION pdx = •••• 

~ KeAcquireSpinLock(&pdx->OLock. &oldirql): 

~ KeReleaseSp1nLock(&pdx->QLock. old1rql): 
} 

1. When KeAcquireSpinLock acquires the spin lock, it also raises IRQL to 
DISPATCH_LEVEL and returns the current (that is, preacquisition) levelto 
us wherever the second argument points. 

2. When KeRe1easeSpinLock releases the spin lock, it also lowers IRQL 
back to the value specified in the second· argument. 

If you know you're already executing at DISPATCH_LEVEL, you can save a little 
time by calling two special routines. This technique is appropriate, for example, in 
DPC, Startlo, and other driver routines that execute at DISPATCH_LEVEL: 

KeAcqujreSpinLockAtDpcLevel(&pdx->OLock): 

KeReleaseSpinLockFromDpcLevel(&pdx->OLock): 

KERNEL DISPATCHER OSdECTS 
The Windows NT kernel provides five types of synchronization objects that you can 
use to control the flow of nonarbitrary threads. See Table 4-1 fora summary of these 
kernel dispatcher object types and their uses. At any moment, .one of these objects 
is in one of two states: signalled or not-Signalled. At times when it's permissible 
for you to block a thread in whose context you're running, you can wait for one 
or more objects too reach the Signalled state by calling KeWaitForSingleObject or 
KeWaitForMultipleObjects. The kernel also provides routines for initializing and 
controlling the state of each of these objects. 
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Object Data Type Description 

Event KEVENT Blocks a thread until some other thread 
detects that an event has occurred 

Semaphore KSEMAPHORE Used instead of an event"when an arbi-
trary number of wait calls can be satisfied 

Mutex KMUTEX Excludes other threads- from executing a 
particular section of code 

Timer KTIMER Delays execution of a thread for some 
period of time 

Thread KTHREAD Blocks one thread until another thread 
terminates 

Table 4-1. Kernel dispatcher objects. 

In the next few sections, I'll describe how to use the kernel dispatcher objects. 
I'll start by explaining when you can block a thread by calling one of the wait primi
tives, and then I'll discuss the support routines that you use with each of the object 
types. I'll fmish this section by discussing the related concepts of thread alerts· and 
asynchronous procedure call delivery. 

How and When You Can Block 
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To understand when and how it's permissible for a WDM driver to block a thread 
on a kernel dispatcher object, you have to know some basic facts about threads. In 
general, whatever thread was executing at the time of a software or hardware inter
rupt continues to be the "current" thread while the kernel processes the interrupt. 
We speak of executing kernel-mode code "in the context" of this current thread. In 
response to interrupts of various kinds, the Windows NT scheduler might decide to 
switch threads, of course, in which case a new thread becomes "current." 

We use the terms arbitrary thread context and nonarbitrary thread context to 
describe the precision with which we can know the thread in whose context we're 
currently operating in a driver subroutine. If we know that we're in the context of 
the thread which initiated an I/O request, the context is not arbitrary. Most of the time, 
however, a WDM driver can't know this' fact because chance usually controls which 
thread is active when the interrupt occurs that results in the driver being called. When 
applications issue I/O requests, they cause a transition from user mode to kernel 
mode. The I/O Manager routines that create an IRP and send it to a driver dispatch 
routine continue to operate in this nonarbitrary thread context, as does the first dis
patch routine to see the IRP. We use the term highest-level driver to describe the driver 
whose dispatch routine first receives the IRP. 

As a general rule, only the highest-level driver for a given device can know for 
sure that it's operating in a nonarbitrarythread context. This is because driver dispatch 
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routines often put requests ontd queues and return back to their callers. Queued re
quests are then removed from their queues and forwarded to lower-level drivers from 
within callback routines that execute later. Once a dispatch routine pends a request, 
all subsequent processing of that request must occur in arbitrary thread context. 

Having explained these facts about thread context, we can state a Simple rule 
about when it's okay to block a thread: 

Block only the thread that originated the request you're working on. 

To follow this rule, you generally have to be the highest-level driver for the 
device that's getting sent the IRP. One important exception occurs for requests like 
IRP _MN_START_DEVICE-see Chapter 6-that all drivers process in a synchronous 
way. That is, drivers don't queue or pend certain requests. When you receive one of 
these requests, you can trace the call/return stack directly back to the originator of 
the request. As we'll see in Chapter 6, it's not only okay for you to block the thread 
in which you process these requests, but blocking and waiting is the prescribed way 
to handle them. 

One more rule should be obvious from the fact that thread switching doesn't 
occur at elevated IRQL: 

You can't block a thread if you're executing at or above DISPATCH_LEVEL. 

As a practical matter, this rule means that you must be in your DriverEntry or 
AddDevice function to block the current thread, or else in a driver dispatch function. 
All of these functions execute at PASSNE_LEVEL. I'm hard-pressed to think of why 
you might need to block to finish DriverEntry or AddDevice, even, because those 
functions merely initialize data structures for downstream use. 

Waiting on a Single Dispatcher Object 
You call KeWaitForSingleObject as illustrated in the following example: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER timeout; 
NTSTATUS status = KeWaitForSingleObject(object. WaitReason. 

WaitMode. Alertable. &timeout); 

As suggested by the ASSERT, you must be executing at or below DISPATCH_LEVEL 
to even call this service routine. 

In this call, object points to the object on which you wish to wait. While this 
argument is typed as a PYOID, it should be a pointer to one of the dispatcher ob
jects listed in Table 4-1. The object must be in nonpaged memory-for example, in 
a device extension structure or other data area allocated from the nonpaged pool. 
For most purposes, the execution stack can be considered nonpaged. 
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WaitReason is a purely advisory value chosen from the KWAIT_REASON enu
meration. No code in the kernel actually cares what value you supply here, so long 
as you don't specify WrQueue. (Internally, scheduler code bases some decisions on 
whether a thread is currently blocked for this "reason.") The reason a thread is blocked 
is saved in an opaque data structure, though. If you knew more about that data struc
ture and were trying to debug a deadlock of some kind, you could perhaps gain clues 
from the reason code. The bottom line: always specify Executive for this parameter; 
there's no reason tosay anything else. 

WaitMode is one of the two values of the MODE enumeration: KernelMode 
or UserMode. Alertable is a simple Boolean value. Unlike WaitReason, these param
eters do make a difference to the way the system behaves, by controlling whether 
the wait can be terminated early in order to deliver asynchronous procedure calls of 
various kinds. I'll explain these interactions in more detail in "Thread Alerts and APes" 
later in this chapter. Waiting in user mode also authorizes the Memory Manager to 
swap your thread's kernel-mode stack out. You'll see examples in this book and else
where where drivers create event objects, for instance, as automatic variables. A bug 
check would result if some other thread were to call KeSetEvent at elevated IRQL 
at a time when the event object was absent from memory. The bottom line: you should 
probably always wait in KernelMode and specify FALSE for the alertable parameter. 

The last parameter to KeWaitForSingleObject is the address of a 64-bit timeout 
value, expressed in 100-nanosecond units. A positive number for the timeout is an 
absolute timestamp relative to the same January 1, 1601, epoch of the system clock. 
You can determine the current time by calling KeQuerySystemTime. A negative 
number is an interval relative to the current time. If you specify an absolute time, a 
subsequent change to the system clock alters the duration of the timeout you might 
experience. That is, the timeout doesn't expire until the system clock equals or exceeds 
whatever absolute value you specify. In contrast, if you specify a relative timeout, the 
duration of the timeout you experience is unaffected by changes in the system clock. 

WHY JANUARY 1, 1601? 

Years ago when I was first learning the Win32 API, I was bemused by the choice 
of January 1, 1601, as the origin for the timestamps in Windows NT. I under
stood the reason for this choice when I had occasion to write a set of conver
sion routines. Everyone knows that years divisible by four are leap years. Many 
people know that century years (such as 1900) are exceptions-they're not leap 
years even though they're divisible by 4. A few people know that every fourth 
century year (such as 1600 and 2000) is an exception to the exception-theyare 
leap years. January 1, 1601 was the start of a 400-year cycle that ends in a leap 
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continued 

year. If you base timestamps on this origin, it's possible to write programs that 
convert a Windows NT timestamp into a conventional representation of the date 
(and vice versa) without doing any jumps. 

Specifying a zero timeout causes KeWaitForSingleObject to return immediately 
with a status code indicating whether the object is in the signalled state. g you're exe
cuting at DISPATCH_lEVEL, you must specify a zero timeout because blocking is not 
allowed. Each kernel dispatcher object offers a KeReadStateXxx service function that 
allows you to determine the state of the object. Reading the state is not completely 
equivalent to waiting for zero time, however: when KeWaitForSingleObject discovers 
that the wait is satisfied, it performs the side effects that the particular object requires. 
In contrast, reading the state of the object does not perform the side effects, even if the 
object is already Signalled and a wait would be satisfied if it were requested right now. 

Specifying a NULL pointer for the timeout parameter is okay and indicates an 
infinite wait. 

The return value indicates one of several possible results. STATUS_SUCCESS is 
the result you expect and indicates that the wait was satisfied. Tharis, either the object 
was in the Signalled state when you made the call to KeWaitForSingleObject, or else 
the object was in the not-signalled state and later became signalled. When the wait 
is satisfied in this way, there may be side effects that need to be performed on the 
object. The nature of these side effects depends on the type of the object, and I'll 
explain them later in this chapter in connection with discussing each type of object. 
(For example, a synchronization type of event will be reset after your wait is satisfied.) 

A return value of STATUS_TIMEOUT indicates that the specified timeout oc
curred without the object reaching the signalled state. If you specify a zero timeout, 
KeWaitForSingleObject returns immediately with either this code (indicating that the 
object is not-signalled) or STATUS_SUCCESS (indicating that the object is signalled). 
This return value is not possible if you specify a NULL timeout parameter pointer, 
because you thereby request an infinite wait. 

Two other return values are possible. STATUS_ALERTED and STATUS_USER_APC 
mean that the wait has terminated without the object having been signalled because 
the thread has received an alert or a user-mode APC, respectively. I'll' discuss these 
concepts a bit further on in "Thread Alerts and APCs." 

Waiting on Multiple Dispatcher Objects 
KeWaitForMultipleObjects is a companion function to KeWaitForSingleObject that 
you use when you want to wait for one or all of several dispatcher objects simulta
neously. Call this function as in the example at the top of the follOwing page. 
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ASSERT(KeGetCurrentlrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER timeout; 
NTSTATUS status = KeWaitForMultipleObjects(count, objects, 

WaitType. WaitReason. WaitMode, Alertable. &timeout,waitblocks); 

Here, objects is the address of an array of pointers to dispatcher objects, and 
count is the number of pointers in the array. The count must be less than or equal 
to the value MAXIMUM_ WAIT_OBJECTS, which currently equals 64. The array, as well 
as each of the objects to which the elements of the array point, must be in nonpaged 
memory. WaitType is one of the enumeration values WaitAl1 or WaitAny and specifies 
whether you want to wait until all of the objects are simultaneously in the signalled 
state or whether, instead, you want to wait until anyone of the objects is signalled. 

The waitblocks argument points to an array of KWAIT_BLOCK structures that 
the kernel will use to administer the wait operation. You don't need to initialize these 
structures in any way-the kernel just needs to know where the storage is for the 
group of wait blocks that it will use to record the status of each of the objects during 
the pendency of the wait. If you're waiting for a small number of objects (specifically, 
a number no bigger than THREAD_ WAIT_OBJECTS, which currently equals 3), you 
can supply NULL for this parameter. If you supply NULL, KeWaitForMultipleObjects 
uses a preallocated array of wait blocks that lives in the thread object. If you're waiting 
for more objects than this, you must provide nonpaged memory that's at least count 
* sizeof(KWAfCBLOCK) bytes in length. 

The remaining arguments to KeWaitForMultipleObjects are the same as the cor
responding arguments to KeWaitForSingleObject, and most return codes have the 
same meaning. 

If you specify WaitAll, the return value STATUS_SUCCESS indicates that all the 
objects managed to reach the signalled state simultaneously. If you specify WaitAny, 
the return value is numerically equal to the objects array index of the single object 
that satisfied the wait. If more than one of the objects happens to be signalled, you'll 
be told about one of them-maybe the lowest numbered of all the ones that are 
Signalled at that moment, but maybe some other one. You can think of this value being 
STATUS_ WAIT_O plus the array index. You can perform the usual NT_SUCCESS test 
of the returned status before extracting the array index from the status code: 

NTSTATUS status = KeWaitForMultipleObjects( ... ); 
if (NT_SUCCESS(status)) 

{ 

ULONG iSignalled = (ULONG) status - (ULONG) STATUS_WAIT_0; 

} 

When KeWaitForMultipleObjects returns a success code, it also performs the side 
effects required by the object(s) that satisfied the wait. If more than one object is 
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signalled but you specified WaitAny, only the one that's deemed to satisfy the wait 
has its side effects performed. 

Kernel Events 
You use the service functions listed in Table 4-2 to work with kernel event objects. 
To initialize an event object, first reserve nonpaged storage for an object of type 
KEVENT and then call KeInitializeEvent: 

ASSERT(KeGetCurrentIrql() ==>PASSIVE_LEVEL: 
KeInitializeEvent(event. EventType. initialstate); 

Event is the address of the event object. EventType is one of the enumeration 
values Noti8cationEvent or SynchronizationEvent. A notification event has the 
characteristic that, when it is set to the Signalled state, it stays signalled until it is 
e,xplic~tly reset to the not-Signalled state. Furthermore, all threads that wait on a no
tification event are released when the event is signalled. This is like a manual-reset 
event in user mode. A synchronization event, on the other hand, gets reset to the not
signalled state as soon as a single thread gets released. This is what happens in user • 
mode when someone calls SetEvent on an auto-reset event object. The only side 
effect performed on an event object by KeWaitXxx is to reset a synchronization event 
to not-signalled. Finally, initialstate is mUE to specify that the initial state of the event 
is to be Signalled and FALSE to specify that the initial state is to be not-Signalled. 

Service Function 

KeClearEvent 

KeInitializeEvertt 

KeReadStateEvent 

KeResetEvent 

KeSetEvent 

Description 

Sets event to not-signalled, don't report previous state 

Initializes event object 

Determines current state of event 

Sets event to not-Signalled, return previous state 

Sets event to signalled, return previous state 

Table 4-2. Service functions for use with kernel event o.bjects. 

NOTE In this series of sections on synchronization primitives, I'm repeating the 
IROL restrictions that the DDK documentation describes. In the current release 
of Microsoft Windows 2000, the DDK is sometimes more restrictive than the as 
actually is. For example, KeClearEvent can be called at any IROL, not just at or 
below DISPATCH_LEVEL. KelnitializeEvent can be called at any IROL, not just 
at PASSIVE_LEVEL. However, you should regard the statements in the DDK as 
being tantamount to saying that Microsoft might someday impose the docu
mented restriction, which is why I haven't tried to report the true state of affairs. 
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You can call KeSetEvent to place an event into the signalled state: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG wassignalled = KeSetEvent(event. boost. wait); 

As implied by the ASSERT, you must be running at or below DISPATCH_LEVEL to call 
this function. The event argument is a pointer to the event object in question, and boost 
is a value to be added to a waiting thread's priority if setting the event results in satis
fying someone's wait. See the sidebar ("That Pesky Third Argument to KeSetEvent") 

. for an explanation of the Boolean wait argument, which a WDM driver would almost 
never want to specify as TRUE. The return value is nonzero if the event was already 
in the signalled state before the call and 0 if the event was in the not-signalled state. 

A multitasking scheduler needs to artificially boost the priority of a thread that 
waits for I/O operations or synchronization objects in order to avoid starving threads 
that spend lots of time waiting. This is because a thread that blocks for some reason 
generally relinquishes its time slice and won't regain the CPU until either it has a rela
tively higher priority than other eligible threads or other threads that have the same 
priority finish their time slices. A thread that never blocks, however, gets to complete 
its time slices. Unless a boost is applied to the thread that repeatedly blocks, therefore, 
it will spend a lot of time waiting for CPU-bound threads to finish their time slices. 

You and I won't always have a good idea of what value to use for a priority boost. 
A good rule of thumb to follow is to specify IO_NO_INCREMENT unless you have a 
good reason not to. If setting the event is going to wake up a thread that's dealing with 
a time-sensitive data flow (such as a sound driver), supply the boost that's appropri
ate to that kind of device (such as IO_SOUND_INCREMENT). The important thing is 

to not boost the waiter for a silly reason. For example, if you're trying to handle an 
IRP _MLPNP request synchronously-see Chapter 6--you'1l be waiting for lower-level 
drivers to handle the IRP before you proceed and your completion routine will be calling 
KeSetEvent. Since Plug and Play requests have no special claim on the processor and 
occur only infrequently, specify IO_NO_INCREMENT even for a sound card. 

THAT PESKY THIRD ARGUMENT TO KESETEvENT 

The purpose of the wait argument to KeSetEvent is to allow internal code to 
hand off control from one thread to another very quickly. System components 
other than device drivers can, for example, create paired event objects that 
are used by client and server threads to gate their communication. When the 
server wants to wake up its paired client, it will call KeSetEvent with the wait 
argument set to TRUE and then immediately call KeWaitXxx to put itself to sleep. 
The use of wait allows these two operations to be done atomically so that no 
other thread can be awakened in between and possibly wrest control away from 
the client and the server. 

(continued) 
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continued 

The DDK has always sort of described what happens internally, but I've 
found the explanation confusing. I'll try to explain it in a different way so that 
you can see why you should always say FALSE for this parameter. Internally, 
the kernel uses a "dispatcher database lock" to guard operations related to thread 
blocking, waking, and scheduling. KeSetEvent needs to acquire this lock, and 
so do the KeWaitXxx routines. If you say TRUE for this argument, KeSetEvent 
sets a flag so that KeWaitXxx will know you did so, and it returns to you with
out releasing this lock. When you turn around and (immediately, please-you're 
running at a higher IRQL than every hardware device and you own a spin lock 
that's very frequently in contention) call KeWaitXxx, it needn't acquire the lock 
all over again. The net effect is that you'll wake up the waiting thread and put 
yourself to sleep without giving any other thread a chance to start running. 

You can see, first of all, that a function which calls KeSetEvent with wait 
set to TRUE has to be in nonpaged memory because it will execute briefly at 
elevated IRQL. But it's hard to imagine why an ordinary device driver would 
even need to use this mechanism because it would almost never know better 
than the kernel which thread ought to be scheduled next. The bottom line: 
always say FALSE for this parameter. In fact, it's not clear why the parameter 
has even been exposed to tempt us. 

You. can determine the current state of an event (at any IRQL) by calling 
KeReadStateEvent: 

LONG signalled = KeReadStateEvent(event); 

The return value is nonzero if the event is signalled, 0 if it's not-signalled. 

NOTE KeReadStateEvent is not supported in Microsoft Windows 98 even 
though the other KeReadStateXxx functions described here are. The absence 
of support has to do with how events and other synchronization primitives are 
implemented in Windows 98. 

You can determine the current state of an event and, immediately thereafter, 
place it in the not-Signalled state by calling the KeResetEvent function (at or below 
DISPATCH_LEVEL): 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG signalled = KeResetEvent(event); 

If you're not interested in the previous state of the event, you can save a little 
time by calling KeC1earEvent instead, as shown at the top of the next page. 
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ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KeClearEvent(event); 

KeClearEvent is faster because it doesn't need to capture the current state of the event 
before setting it to not-signalled. 

Kernel Semaphores 

150 

A kernel semaphore is an integer counter with associated synchronization semantics. 
The semaphore is considered signalled when the counter is positive and not-signalled 
when the counter is 0. The counter cannot take on a negative value. ReleaSing a 
semaphore increases the counter, whereas successfully waiting on a semaphore decre
ments the counter. If the decrement makes the count 0, the semaphore is then 
considered not-signalled, with the consequence that other KeWaitXx:x callers who in
sist on finding it signalled will block. Note that if more threads are waiting for a sema
phore than the value of the counter, not all of the waiting threads will be unblocked. 

The kernel provides three service functions to control the state of a semaphore 
object. (See Table 4-3.) You initialize a semaphore by making the following function 
call at PASSIVE_LEVEL: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KeInitializeSemaphore(semaphore. count. limit); 

In this call, semaphore points to a KSEMAPHORE object in nonpaged memory. 
Count is the initial value of the counter, and limit is the maximum value that the 
counter will be allowed to take on, which must be as large as the initial count. 

Service Function 

KeInitializeSemaphore 

KeReadStateSemaphore 

KeReieaseSemaphore 

Description 

Initializes semaphore object 

Determines current state of semaphore 

Sets semaphore object to the signalled state 

Table 4-3. Service functions for use with kernel semaphore objects. 

If you create a semaphore with a limit of 1, the object is somewhat similar to a 
mutex in that only one thread at a time will be able to claim it. A kernel mutex has 
some features that a semaphore lacks, however, to help prevent deadlocks. Accord
ingly, there's almost no point in creating a semaphore with a limit of 1. 

If you create a semaphore with a limit bigger than 1, you have an object that 
allows multiple threads to access some resource. A familiar theorem in queuing theory 
dictates that proViding a single queue for multiple servers is more fair (that is, results 
in less variation in waiting times) than providing a separate queue for each of sev
eral servers. The average waiting time is the same in both cases, but the variation in 
waiting times is smaller. (This is why queues in stores are increasingly organized so 
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that customers wait in a single line for the next available clerk.) This kind of sema
phore allows you to organize a set of software or hardware servers to take advan
tage of that theorem. 

The owner (or one of the owners) of a semaphore releases its claim to the sema
phore by calling KeReleaseSemaphore: 

ASSERT( KeGetCurrent I rql ( )<= DISPATCH_LEVEL); 
LONG wassignalled = KeReleaseSemaphore(semaphore, boost, delta, wait); 

This operation adds delta, which must be positive, to the counter associated with 
semaphore, thereby putting the semaphore into the Signalled state and allowing other 
threads to be released. In most cases, you would specify 1 for this parameter to 
indicate that one claimant of the semaphore is releasing its claim. The boost and wait 
parameters have the same import as the corresponding parameters to KeSetEvent, 
discussed earlier. The return value is 0 if the previous state of the semaphore was 
not-signalled and nonzero if the previous state was Signalled. 

KeReleaseSemaphore doesn't allow you to increase the counter beyond the 
limit specified when you initialized the semaphore. If you try, it does not adjust the 
counter at all, and it raises an exception with the code STATUS_SEMAPHORE_ 
LIMIT_EXCEEDED. Unless someone has a structured exception handler to trap the 
exception, a bug check will eventuate. 

You can also interrogate the current state of a semaphore with this call: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG signalled = KeReadStateSemaphore(semaphore); 

The return value is nonzero if the semaphore is signalled and 0 if the semaphore 
is not-signalled. You shouldn't assume that the return value is the current value of 
the counter-it could be any nonzero value if the counter is positive. 

Kernel Mutexes 
The word mutex is a contraction of mutual exclusion. A kernel mutex object pro
vides one method (and not necessarily the best one) to serialize access by com
peting threads to some shared resource. The mutex is signalled if no thread owns 
it and not-signalled if some thread currently does own it. When a thread gains 
control of a mutex after calling one of the KeWaitXxx routines, the kernel also takes 
some steps to help avoid possible deadlocks. These are the side effects referred to 
in the earlier discussion of KeWaitForSingleObject (in the section "Waiting on a 
Single Dispatcher Object"). The kernel ensures that the thread can't be paged out, 
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and it forestalls all but the delivery of "special" kernel APCs (such as the one that 
IoCompleteRequest uses to complete I/O requests). 

It's generally better to use an executive fast mutex rather than a kernel mutex, 
as I'll explain in more detail later in "Fast Mutex Objects." The main difference be
tween the two is that a kernel mutex can be acquired recursively, whereas an ex
ecutive fast mutex cannot. That is, the owner of a kernel mutex can make a subsequent 
call to KeWaitXxx specifying the same mutex and have the wait immediately satis
fied. A thread that does this must release the mutex an equal number of times be
fore the mutex will be considered free. 

The reason you would use a mutex in the first place (instead of relying on ele
vated IRQL and a spin lock) is that you need to serialize access to an object for a long 
tinie or in pagable code. By gating access to a resource through a mutex, you allow 
other threads to run on the other CPUs of a multiprocessor system, and you also al-

. low your code to cause page faults while still locking out other threads. Table 4-4 lists 
the service functions you use with mutex objects. 

Service Function 

KeInitializeMutex 

KeReadStateMutex 

KeReleaseMutex 

Description 

Initializes mutex object 

Determines current state of mutex 

Sets mutex object to the signalled state 

Table 4-4. Seroice junctions for use with kernel mute,x objects. 

To create a mutex, you reserve nonpaged memory for a KMUTEX object and 
make the following initialization call: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL): 
KeIn1tializeMutex(mutex. level): 

where mutex is the address of the KMUTEX object, and level is a parameter origi
nally intended to help avoid deadlocks when your own code uses more than one 
mutex. Since the kernel currently ignores the level parameter, I'm not going to at
tempt to describe what it used to mean. 

The mutex begins life in the signalled-that is, unowned-state. Anirnmediate 
call to KeWait:X%xwould take control of the mutex and put it into the not-signalled state. 

You can interrogate the current state of a mutex with this function call: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL): 
LONG signalled = KeReadStateMutex(mutex): 

The return value is 0 if the mutex is currently owned, nonzero if it's currently unowned. 
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The thread that owns a mutex can release ownership and return the mutex to 
the signalled state with this function call: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LONG wassignalled = KeReleaseMutex(mutex. wait); 

The wait parameter means the same thing as the corresponding argument to 
KeSetEvent. The return value is always 0 to indicate that the mutex was previously 
owned because, if this were not the case, KeReleaseMutex would have bugchecked 
(it being an error for anyone but the owner to release a mutex). 

Just for the sake of completeness, I want to mention a macro in the DDK named 
KeWaitForMutexObject. CSeeWDM.H.) It is defined simply as follows: 

#define KeWaitForMutexObject KeWaitForSingleObject 

Using this special name offers no benefit at all. You don't even get the benefit of having 
the compiler insist that the first argument be a pointer to a KMUTEX instead of any 
random pointer type. 

Kernel Timers 

The kernel provides a timer object that functions something like an event that auto
matically signals itself at a specified absolute time or after a specified interval. It's also 
possible to create a timer that signals itself repeatedly and to arrange for a DPC call
back following the expiration of the timer. Table 4-5 lists the service functions you 
use with timer objects. With so many different ways of using timers, it will be easi
est to describe the use of these functions in several different scenarios. 

Service Function 

KeCancelTimer 

KeInitializeTimer 

KeInitializeTimerEx 

KeReadStateTimer 

KeSetTimer 

KeSetTimerEx 

Description 

Cancels an active timer 

Initializes a one-time notification timer 

Initializes a one-time or repetitive notification or 
synchronization timer 

Determines current state of a timer 

(Re)specifies expiration time for a notification timer 

(Re)specifies expiration time and other properties of 
a timer 

Table 4-5. Service functions for use with kernel timer objects. 

Notification Timers Used like Events 
In this scenario, we'll create a notification timer object and wait until it expires. 
First allocate a KTIMER object in nonpaged memory. Then, running at or below 
DISPATCH_LEVEL, initialize the timer object, as at the top of the next page. 
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PKTIMER timer; II 4" someone gives you this 
ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KeInitializeTimer(timer); 

At this point, the timer is in the not-signalled state and isn't counting down-a wait 
on the timer would never be satisfied. To start the timer counting, call KeSeffimer 
as follows: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
BOOLEAN wascountihg = KeSetTimer(timer, &duetime, NULL); 

The duetime value is a 64-bit time value expressed in lOa-nanosecond units. If the 
value is positive, it is an absolute time relative to the same January 1, 1601, epoch 
used for the system timer. If the value is negative, it is an interval relative to the current 
time. If you specify an absolute time, a subsequent change to the system clock al
ters the duration of the timeout you experience. That is, the timer doesn't expire until 
the system clock equals or exceeds whatever absolute value you specify. In contrast, 
if you specify a relative timeout, the duration of the timeout you experience is unaf
fected by changes in the system clock. These are the same rules that apply to the 
timeout parameter to KeWaitXXx. 

The return value from KeSetTimer, if TRUE, indicates that the timer was already 
counting down (in which case our call to KeSetTimer would have cancelled it and 
started the count all over again). 

At any time, you can determine the current state of a timer: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
BOOLEAN counting = KeReadStateTimer(timer); 

KeInitializeTimer and KeSetTimer are actually older service functions that have been 
superseded by newer functions. We could have initialized the timer with this call: 

ASSERT(KeGetCurrentIqrl() <= DISPATCH_LEVEL); 
KeInitializeTimerEx(timer, NotificationTimer); 

We could also have used the extended version of the set timer function, 
KeSetTimerEx: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
BOOLEAN wascounting = KeSetTimerEx(timer, &duetime, 0, NULL); 

I'll explain a bit further on in this chapter the purpose of extra parameters in 
these extended versions of the service functions. 

Once the timer is counting down, it's still considered to be not-signalled until 
the specified due time arrives. At that point, the object becomes signalled, and all 
waiting threads are released. The system guarantees only that the expiration of the 
timer will be noticed no sooner than the due time you specify. If you specify a due 
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time with a precision finer than the granularity of the system timer (which you can't 
control), the timeout will be noticed later than the exact instant you specify. 

Notification Timers Used with a DPC 
In this scenario, we want expiration of the timer to trigger a DPC. You would choose 
this method of operation if you wanted to be sure that you could service the timeout 
no matter what priority level your thread had. (Since you can only wait at 
PASSIVE_LEVEL, regaining control of the CPU after the timer expires is subject to the 
normal vagaries of thread scheduling. The DPC, however, executes at elevated IRQL 
and thereby effectively preempts all t?reads.) 

We initialize the timer object in the same way. We also have to initialize a KDPC 
object for which we allocate nonpaged memory. For example: 

PKDPC dpc; II ~ points to KDPC you've allocated 
ASSERT(KeGetCurrentlrql() == PASSIVE_LEVEL); 
KelnitializeTimer(timer); 
KelnitializeDpc(dpc, DpcRoutine, context); 

You can initialize the timer object by using either KelnitializeTimer or 
KeInitializeTimerEx, as you please. DpcRoutine is the address of a deferred proce
dure call routine, which must be in nonpaged memory. The context parameter is 
an arbitrary 32-bit value (typed as a PYOID) that will be passed as an argument to 
the DPC routine. The dpc argument is a pointer to a KDPC object for which you 
provide nonpaged storage. (It might be in your device extension, for example.) 

When we want to start the timer counting down, we specify the DPC object as 
one of the arguments to KeSetTimer or KeSetTimerEx: 

ASSERT(KeGetCurrentlrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duetime; 
BOOLEAN wascounting = KeSetTimer(timer, &duetime, dpc); 

You could also use the extended form KeSetTimerEx if you wanted to. The only 
difference between this call and the one we examined in the previous section is that 
we've specified the DPC object address as an argument. When the timer expires, the 
system will queue the DPC for execution as soon as conditions permit. This would 
be at least as soon as you'd be able to wake up from a wait at PASSIVE_LEVEL. Your 
DPC routine would have the following skeletal appearance: 

VOID DpcRoutine(PKDPC dpc, PVOID context, PVOID junkl. PVOID junk2) 
{ 

} 

For what it's worth, even when you supply a DPC argument to KeSetTimer or 
KeSetTimerEx, you can still call KeWaitXx:x to wait at PASSIVE_LEVEL if you want. 
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On a single-CPU system, the DPC would occur before the wait could finish because 
it executes at higher IRQL. 

Synchronization Timers 
Like event objects, timer objects come in both notification and synchronization fla
vors. A notification timer allows any number of waiting threads to proceed once it 
expires. A synchronization timer, by contrast, allows only a single thread to proceed. 
Once some thread's wait is satisfied, the timer switches to the not-signalled state. To 
create a synchronization timer, you must use the extended form of the initialization 
service function: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
KeIn1tia11zeT1merEx(timer. Synchron1zationT1mer); 

SynchronizationTimer is one of the values of the TIMER_TYPE enumeration. The 
other value is NotificationTimer. 

If you use a DPC with a synchronization timer, think of queuing the DPC as 
being an extra thing that happens when the timer expires. That is, expiration puts 
the timer into the Signalled state and queues a DPC. One thread can be released as 
a result of the timer being Signalled. 

Periodic Timers 
So far, I've discussed only timers that expire exactly once. By using the extended set 
timer function, you can also request a periodic timeout: 

ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
LARGE_INTEGER duet1me; 
BOOLEAN wascount1ng = KeSetTimerEx(timer. &duet1me. period. dpc); 

Here, period is a periodic timeout, expressed in milliseconds (ms), and dpc 
is an optional pointer to a KDPC object. A timer of this kind expires once at the due 
time and periodically thereafter. To achieve exactly periodic expiration, specify the 
same relative due time as the interval. Specifying a zero due time causes the timer 
to immediately expire, whereupon the periodic behavior takes over. It often makes 
sense to start a periodic timer in conjunction with a DPC object, by the way, because 
doing so allows you to be notified without having to repeatedly wait for the timeout. 

An Example 
One use for kernel timers is to conduct a polling loop in a system thread dedicated 
to the task of repeatedly checking a device for activity. Not many devices nowadays 
need to be served by a polling loop, but yours may be one of the few exceptions. 
I'll discuss this subject in Chapter 9, "Specialized Topics," and the companion disc 
includes a sample driver (POLLING) that illustrates all of the concepts involved. Part 
of that sample is the follOWing loop that polls the device at fixed intervals. The logic 
of the driver is such that the loop can be broken by setting a kill event. Consequently, 
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the driver uses KeWaitForMultipleObjects. The code is actually a bit more complicated 
than the following fragment, which I've edited to concentrate on the part related to 
the timer: 

VOID PollingThreadRoutine(PDEVICE_EXTENSION pdx) 
{ 

NTSTATUS status; 
KTIMER timer; 
KelnitializeTimerEx(&timer, SynchronizationTimer); 
PYOID pollevents[] = { 

(PVOID) &pdx->evKill, 
(PVOID) &timer, 
} ; 

ASSERT(arraysize(pollevents) <= THREAD_WAIT_OBJECTS); 

LARGE_INTEGER duetime = {0}: 
#define POLLIN~INTERVAL 500 
KeSetTimerEx(&timer, duetime, POLLlN~INTERVAL, NULL); 
whi 1 e (TRUE) 

{ 

status = KeWaitForMultipleObjectsCarraysize(pollevents), 
pollevents, WaitAny, Executive, KernelMode, FALSE, NULL, NULL); 

if (status == STATUS_WAlT_0) 
break; 

if «device needs attention» 
<do something>; 

} 

KeCancelTimerC&timer); 
PsTerminateSystemThread(STATUS_SUCCESS); 
} 

1. Here we initialize a kernel timer object to act as a synchronization timer. 
It would have worked just as well to initialize it as a notification timer 
because only one thread-this one-will ever wait on the timer. 

2. We'll need to supply an array of dispatcher object pointers as one of the 
arguments to KeWaitForMultipleObjects, and this is where we set that up. 
The first element of the array is the kill event that some other part of the 
driver might set when it's time for this system thread to exit. The second 
element is the timer object. The ASSERT statement that follows this array 
verifies that we have few enough objects in our array such that we can 
implicitly use the default array of wait blocks in our thread object. 

3. The KeSetTimerEx statement starts a periodic timer running. The duetime ' 
is 0, so the timer goes immediately into the signalled state. It will expire 
every 500 rns thereafter. 
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4. Within our polling loop, we wait for the timer to expire or for the kill event 
to be set. If the wait terminates because of the kill event, we leave the loop, 
clean up, and exit this system thread. If the wait terminates because the 
timer has expired, we go on to the next step. 

S. This is where our device driver would do something related to our hardware. 

Alternatives to Kernel Timers 
Rather than using a kernel timer object, you can use two other timing functions that 
might be more appropriate. First of all, you can call K.eDelayExecutionThread to 
wait at PASSIVE_LEVEL for a given interval. This function is obviously less cumber
some than creating, initializing, setting, and awaiting a timer by using separate func
tion calls: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
LARGE_INTEGER duet1me; 
NSTATUS status = KeDelayExecutionThread(WaitMode, Alertable, &duetime); 

Here, WaitMode, Alertable, and the returned status code have the same meaning 
as the corresponding parameters to KeWaitXxx, and duetime is the same kind of 
timestamp that I discussed previously in connection with kernel timers. 

If your requirement is to delay for a very brief period of time (less than 50 mi
croseconds), you can call KeStallExecutionProcessor at any IRQL: 

KeStallExecutionProcessor(nM1croSeconds); 

The purpose of this delay is to allow your hardware time to prepare for its next 
operation before your program continues executing. The delay might end up being 
significantly longer than you request because KeStallExecutionProcessor can be pre
empted by activities that occur at a higher IRQL than that which the caller is using. 

Using Threads for Synchroniza~ion 
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The Process Structure component of the operating system provides a few routines 
that WDM drivers can use for creating and controlling system threads. I'll be discussing 
these routines later on in Chapter 9 from the perspective of how you can use these 
functions to help you manage a device that requires periodic polling. For the sake 
of thoroughness, I want to mention here that you can use a pointer to a kernel thread 
opject in a call to KeWaitXxx to wait for the thread to complete. The thread termi
nates itself by calling PsTerminateSystemThread. 

Before you can wait for a thread to terminate, you need to first obtain a pointer 
to the opaque KTIIREAD object that internally represents that thread, which poses 
a bit of a problem. While running in the context of a thread, you can determine your 
own K1HREAD easily: 



ASSERT(KeGetCurrentIrql() <= DISPATCH_LEVEL); 
PKTHREAD thread = KeGetCurrentThread(); 
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Unfortunately, when you call PsCreateSystem.Thread to create a new thread, 
you can retrieve only an opaque HANDLE for the thread. To get the KTIIREAD pointer, 
you use an Object Manager service function: 

HANDLE hthread; 
PKTHREAD thread; 
PsCreateSystemThread(&hthread •... ); 
ObReferenceObjectByHandle(hthread. THREAD-ALL-ACCESS. NULL. KernelMode. 

(PVOID*) &thread. NULL); 
ZwClose(hthread); 

ObR.eferenceObjectByHandle converts your handle into a pointer to the underlying 
kernel object. Once you have the pointer, Y9u can discard the handle by calling 
ZwClose. At some point, you need to release your reference to the thread object by 
making a call to ObDereferenceObject: 

ObDereferenceObject(thread); 

Thread Alerts and APCs 
Internally, the Windows NT kernel uses thread alerts as a way of waking threads. It 
uses an asynchronous procedure call as a way of waking a thread to execute some 
particular subroutine in that thread's context. The support routines that generate alerts 
or APes are not exposed for use by WDM driver writers. But, since the DDK documen
tation and header files contain a great many references to these concepts, I want to 
finish this discussion of kernel dispatcher objects by explaining them. 

I'll start by describing the "plumbing"-how these two mechanis~ work. When 
someone blocks a thread by calling one of the KeWaitXxx routines, they specify by 
means of a Boolean argument whether the wait is to be "alertable." An alertable wait 
might fInish early-that is, without any of the wait conditions or the timeout being 
satisfIed-because of a thread alert. Thread alerts originate in user mode when some
one calls the native API function NtA1ertThread. The kernel returns the special sta
tus value STATUS_ALERTED when a wait terminates early because of an alert. 

An APe is a mechanism whereby the operating system can execute a function 
in the context of a particular thread. The asynchronous part of an APe sterns from 
the fact that the system effectively interrupts the target thread to execute an out-of
line subroutine. The action of an APe is somewhat similar to what happens when a 
hardware interrupt causes a processor to suddenly and, from the point of view of 
whatever code happens to be running at the time, unpredictably execute an inter-' 
rupt service routine. 

APes come in three flavors: user-mode, kernel-mode, and special kernel-mode. 
User-mode code requests a user-mode APe by calling the Win32 API QueueUserAPC. 
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Kernel-mode code requests an APC by calling an undocumented function for which 
the DDK headers have no prototype. Diligent reverse engineers probably already 
know the name of this routine and something about how to call it, but it's really just 
for internal use and I'm not going to say any more about it. The system queues APCs 
to a specific thread until appropriate execution conditions exist. Appropriate execu
tion conditions depend on the type of APC, as follows: 

• Special kernel APCs execute as soon as possible-that is, as soon as an 
activity at APC_LEVEL can be scheduled. A special kernel APC can even 
awaken a blocked thread in many circumstances. 

• Normal kernel APCs execute after all special APCs have been executed 
but only when the target thread is running and no other kernel-mode APC 
is executing in this thread. 

• User-modeAPCs execute after both flavors of kernel-mode APC for the 
target thread have been executed but only if the thread has previously been 
in an alertable wait in user mode. Execution actually occurs the next time 
the thread is dispatched for execution in user mode. 

If the system awakens a thread to deliver an APC, the wait primitive on which 
the thread was previously blocked returns with one of the special status values 
STATUS_KERNEL_APC or STATUS_USER_APC. 

How APCs Work with I/O Requests 
The kernel uses the APC concept for several purposes. We're concerned in this book 
just with writing device drivers, though, so I'm only going to explain how APCs re
late to the process of performing an I/O operation. In one of many possible scenarios, 
when a user-mode program performs a synchronous ReadFlle operation on a handle, 
the Win32 subsystem calls a kernel-mode routine named (as is widely known despite 
its being undocumented) NtReadFlle. NtReadFile creates and submits an IRP to the 
appropriate device driver, which often returns STATUS_PENDING to indicate that it 
hasn't fInished the operation. NtReadFile returns this status code to ReadFile, which 
thereupon calls NtWaitForSingleObject to wait on the me object to which the user
mode handle pOints. NtWaitForSingleObject, in tum, calls KeWaitForSingleObject to 
perform a nonalertable, user-mode wait on an event object within the me object. 

When the device driver eventually finishes the read operation, it calls 
IoCompleteRequest, which, in turn, queues a special kernel-mode APe. The APC rou
tine calls KeSetEvent to signal the me object, thereby releasing the application to con
tinue execution. Some sort of APC is required because some of the tasks that need. 
to be performed when an I/O request is completed (such as buffer copying) must 
occur in the address context of the requesting thread. A kernel-mode APC is required 
because the thread in question is not in an alertable wait state. A special APC is 
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required because the thread is actually ineligible to run at the time we need to de
liver the APC. In fact, the APC· routine is the mechanism for awakening the thread. 

Kernel-mode routines can also call NtReadFile. Drivers should call ZwReadFlle 
instead, which uses the same system service interface to reach NtReadFile that user
mode programs use. (Note that NtReadFile is not documented for use by device drivers.) 
If you obey the injunctions in the DDK documentation when you call ZWReadFile, your 
call to NtReadFile will look almost like a user-mode call and will be processed in 
almost the same way, with just two differences. The fIrst, which is quite minor, is that 
any waiting will be done in kernel mode. The other difference is that if you speci
fIed in your call to ZwCreateFlle that you wanted to do synchronous operations, the 
I/O Manager will automatically wait for your read to fmish. The wait will be alertable 
or not, depending on the exact option you specify to ZwCreateFile. 

How to Specify Alertabr. and WaitMode Parameters 
Now you have enough background to understand the ramillcations of the Alertable 
and WaitMode parameters in the calls to the various wait primitives. AF, a general 
rule, you'll never be writing code that responds synchronously to requests from user 
mode. You could do so for, say, certain I/O control requests. Generally speaking, 
however, it's better to pend any operations that take a long time to fmish (by return
ing STATUS_PENDING from your dispatch routine) and to fInish them asynchronously. 
So, to continue speaking generally, you don't often call a wait primitive in the fIrst 
place. Thread blocking is appropriate in a device driver in only a few scenarios, which 
I'll describe in the following sections. 

Kemel Threads Sometimes you'll create your own kernel-mode thread-when your 
device needs to be polled periodically, for example. In this scenario, any waits 
performed will be in kernel mode because the thread runs exclUSively in kernel mode. 

Handling Plug and Play Requests I'll show you in Chapter 6 how to handle the 
I/O requests that the PnP Manager sends your way. Several such requests require syn
chronous handling on your part. In other words, you pass them down the driver stack 
to lower levels and wait for them to complete. You'll be calling KeWaitForSingleObject 
to wait in kernel mode because the PnP Manager calls you within the context of a 
kernel-mode thread. In addition, if you needed to perform subsidiary requests as part 
of handling a PnP request-for example, to talk to a universal serial bus (USB) 
device-you'd be waiting in kernel mode. 

Handling Other I/O Requests When you're handling other sorts of I/O requests 
and you know that you're running in the context of a nonarbitrary thread that must get 
the results of your deliberations before proceeding, it might conceivably be appropri
ate to block that thread by calling a wait primitive. In such a case, you want to wait in 
the same processor mode as the entity that called you. Most of the time, you can 
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simply rely on the RequestorMode in the IRP you're currently processing. If you some
how gained control by means other than an IRP, you could call ExGetPreviousMode 

to determine the previous processor mode. If you wait in user mode, and if the be
havior you want to achieve is that user-mode programs should be able to terminate 
the wait early by calling QueueUserAPC, you should perform an alertable wait. 

The last situation I mentioned-you're waiting in user mode and need to allow 
user-mode APCs to break in-is the only one I know of in which you'd want to al
low alerts when waiting. 

The bottom line: perform nonalertable waits unless you know you shouldn't. 

OTHER KERNEL·MODE 
SYNCHRONIZATION PRIMITIVES 

The Windows 2000 kernel offers some additional methods for synchronizing execu
tion between threads or for guarding access to shared ot>jects. In this section, I'll 
discuss the fast mutex, which is a mutual exclusion object that offers faster perfor
mance than a kernel mutex because it's optimized for the case where no contention 
is actually occurring. I'll also describe the category of support functions that include 
the word Interlocked in their name somewhere. These functions carry out certain 
common operations---such as incrementing or decrementing an integer or inserting 
or removing an entry from a linked list-in an atomic way that prevents multitasking 
or multiprocessing interference. 

Fast Mutex Objects 
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Compared to kernel mutexes, fast mutexes have the strengths and weaknesses sum
marized in Table 4-6. On the plus side, a fast mutex is much faster to acquire and 
release if there's no actual contention for it. On the minus side, you must avoid try
ing to recursively acquire a fast mutex, and that can mean preventing the delivery 
of APCs while you own it. Preventing APCs means raising IRQL to APC_LEVEL or 
above, which effectively negates thread priority and gains you the assurance that your 
code will execute except while the processor handles a higher-priority interrupt. 

Kernel Mutex 

Can be acquired recursively by a single 
thread (system maintains a claim counter) 

Relatively slower 

Owner won't receive any but "special" 
kernel APCs 

Fast Mutex 

Cannot be acquired recursively 

Relatively faster 

Owner won't receive any APCs 

Table 4-6. Comparison of kernel and fast mutex objects. (continued) 
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continued 

Kernel Mutex Fast Mutex 

Owner can't be removed from "balance 
set" (that is, can't be paged out) 

No automatic priority boost (if you 
run at or above APC_LEVEL) 

Can be part of a multiple object wait Cannot be used as an argument to 
Ke WaitForMultipleObjects 

Incidentally, the DDK documentation about kernel mutex objects has long said 
that the kernel gives a priority boost to a thread that claims a mutex. I'm reliably 
informed that this hasn't actually been true since 1992 (the year, that is, not the 
Windows 2000 build number). 

Table 4-7 summarizes the service functions you use to work with fast mutexes. 

Service Function 

ExAcquireFastMutex 

ExAcquireFastMutexUnsafe 

ExInitializeFastMutex 

ExReleaseFastMutex 

ExReleaseFastMutexUnsafe 

ExTryTbAcquireFastMutex 

Description 

Acquires ownership of mutex, waiting if 
necessary 

Acquires ownership of mutex, waiting if 
necessary, in circumstance where caller has 
already disabled receipt of APCs 

Initializes mutex object 

Releases mutex 

Releases mutex without reenabling APC 
delivery 

Acquires mutex if possible to do so without 
waiting 

Table 4-7. Service functions for use with executive fast mutexes. 

To create a fast mutex, you must first allocate a FAST_MUTEX data structure in 
nonpaged memory. Then you initialize the object by "calling" ExInitializeFastMutex, 
which is really a macro in WDM.H: -

ASSERTCKeGetCurrentIrql() <= DISPATCH_LEVEL); 
ExInitializeFastMutex(FastMutex); 

where FastMutex is the address of your FAST_MUTEX object. The mutex begins life 
in the unowned state. To acquire ownership later on, call one of these functions: 

ASSERTCKeGetCurrentIrqlC) < DISPATCH_LEVEL); 
ExAcquireFastMutexCFastMutex); 

or 

ASSERTCKeGetCurrentIrqlO < DISPATCH_LEVEL); 
ExAcquireFastMutexUnsafeCFastMutex); 
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The first of these functions waits for the mutex to become available, assigns own
ership to the calling thread, and then raises the current processor IRQL to APC_LEVEL. 
Raising the IRQL has the effect of blocking delivery of all APCs. The second of these 
functions doesn't change IRQL. You need to think about potential deadlocks if you 
use the "unsafe" function to acquire a fast mutex. The situation you must avoid is an 
APC routine that is running in the same thread context to acquire the same mutex 
or any other object that can't be recursively locked. Otherwise, you'll run the risk of 
instantly deadlocking that thread. 

If you don't want to wait if the mutex isn't immediately available, use the "try 
to acquire" function: 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
BOOLEAN acquired = ExTryToAcquireFastMutex(FastMutex); 

If the return value is TRUE, you now own the mutex. If it's FALSE, someone else owns 
the mutex and has prevented you from acquiring it. 

To release control of a fast mutex and allow some other thread to claim it, call 
the release function corresponding to the way you acquired the fast mutex: 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
ExReleaseFastMutex(FastMutex); 

or 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); 
ExReleaseFastMutexUnsafe(FastMutex); 

A fast mutex is fast because the acquisition and release steps are optimized for 
the usual case when there's no contention for themutex. The critical step in acquir
ing the mutex is to atomically decrement and test an integer counter that indicates 
how many threads either own or are waiting for the mutex. If the test indicates that 
no other thread owns the mutex, no additional work is required. If the test indicates 
that another thread does own the mutex, the current thread blocks on a synchroni
zation event that's part of the FAST_MUTEX object. Releasing the mutex entails atomi
cally incrementing and testing the counter. If the test indicates that no thread is 
currently waiting, no additional work is required. If another thread is waiting, how
ever, the owner calls KeSetEvent to release one of the waiters. 

Interlocked Arithmetic 
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You can call several service functions in a WDM driver to perform arithmetic in a way 
that's thread-safe and multiprocessor-safe. See Table 4-8. These routines come in two 
flavors. The first type of routine has a name beginning with Interlocked and per
forms an atomic operati~n in such a way that no other thread or CPU can interfere. 
The other flavor has a name beginning with Exlnterlocked and uses a spin lock. 
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Service Function 

InterlockedCompareExchange 

InterlockedDecrement 

InterlockedExchange 

InterlockedExchangeAdd 

Interlockedlncrement 

ExInterlockedAddLargelnteger 

ExlnterlockedAddLargeStatistic 

ExInterlockedAddUlong 

ExInterlockedCompareExchange64 

Description 

Compares and conditionally exchanges 

Subtracts one from an integer 

Exchanges two values 

Adds two values and retums sum 

Adds one to an integer 

Adds value to 64-bit integer 

Adds value to ULONG 

Adds value to ULONG and returns 
initial value 

Exchanges two 64-bit values 

Table 4-8. Seroice functions for interlocked arithmetic. 

The InterlockedXxx functions can be called at any IRQL; they can also handle 
pagable data at PASSIVE_LEVEL because they don't require a spin lock. Although the 
ExInterlocked.Xx:x routines can be called at any IRQL, they operate on the target 
data at or above DISPATCH_LEVEL and therefore require a nonpaged argument. The 
only reason to use an ExInterlockecL\Xx function is if you have a data variable that 
you sometimes. need to increment or decrement and sometimes need to access 
throughout some series of instructions . .You would explicitly claim the spin lock 
around the multi-instruction accesses and use the ExInterlockecL\Xx function to 
perform the simple increments or decrements. 

InterlockedXxx Functions 
InterlockedIncrement adds one to a long integer in memory and returns the post
increment value to you: 

LONG result = Interlockedlncrement(pLong); 

where pLong is the address of a variable typed as a LONG (that is, a long integer). 
Conceptually, the operation of the function is equivalent to the statement return 

++*pLong in C, but the implementation differs from that Simple statement in order to 
provide thread safety and multiprocessor safety. InterlockedIncrement guarantees that 
the integer is successfully incremented even if code on other CPUs or in other eligible 
threads on the same CPU is simultaneously trying to alter the same variable. In the 
nature of the operation, it cannot guarantee that the value it returns is still the value 
of the variable even one machine cycle later, because other threads or CPUs will be 
able to modify the variable as soon as the atomic increment operation completes. 

InterlockedDecrement, shown at the top of the following page, is similar to 
InterlockedIncrement, but it subtracts one from the target variable and returns the 
postdecrement value, just like the C statement return --*pLong but with thread safety 
and multiprocessor safety. 
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LONG result = InterlockedOecrement(pLong); 

You call InterlockedCompareExchange like this: 

LONG target; 
LONG result = InterlockedCompareExchange(&target. newval. oldval); 

Here, target is a LONG integer used both as input and output to the function, oldval 
is your guess about the current contents of the target, and newval is the new value 
that you want installed into the target if your guess is correct. The function performs 
an operation similar to that indicated in the following C code, but does so via an 
atomic operation that's both thread-safe and multiprocessor-safe: 

LONG CompareExchange(PLONG ptarget. LONG newval. LONG oldval) 
{ 

LONG value = *ptarget; 
if (value == oldval) 

*ptarget = newval; 
return value; 
} 

In other words, the function always returns the previous value of the target vari
able to you. In addition, if that previous value equals oldval, it sets the target equal 
to the newval you specify. The function uses an atomic operation to do the com
pare and exchange so that the replacement happens only if you're correct in your 
guess about the previous contents. 

You can also call the InterlockedCompareExchangePointer function to per
form a similar sort of compare and exchange operation with a pointer. This function 
is either defined as a compiler intrinsic (that is, a function for which the compiler 
supplies an inline implementation) or a real function call, depending on how wide 
pointers are on the platform for which you're compiling and on the ability of the 
compiler to generate inline code. You could use the pointer version of the function, 
as shown in the following example, to add a structure to the head of a singly-linked 
list without needing to acquire a spin lock or raise IRQL: 

typedef struct _SOMESTRUCTURE { 
struct _SOMESTRUCTURE* next; 
... } SOMESTRUCTURE. *PSOMESTRUCTURE; 

void InsertElement(PSOMESTRUCTURE p. PSOMESTRUCTURE anchor) 
{ 

PSOMESTRUCTURE next. first; 
do 

{ 

p->next = first = *anchor; 
next = I~terlockedCompareExchangePointer(anchor. P. first); 
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} 

while (next != first); 
} 

Each time through the loop, we make the assumption that the new element will 
end up being chained to the current head of the list, the address of which we save 
in the variable named first. Then we call InterlockedCompareExchangePointer to see 
whether the anchor still points to first even these few nanoseconds later. If so, 
InterlockedCompareExchangePointer will set the anchor to point our new element 
p. The fact that the return value from InterlockedCompareExchangePointer is the same 
as our assumption causes the loop to terminate. If, for some reason, the anchor no 
longer points to the same first element, we'll discover that fact and repeat the loop. 

The last function in this class is InterlockedExchange, which simply uses an 
atomic operation to replace the value of an integer variable and to return the previ
ous value: 

LONG value; 
LONG oldval = InterlockedExchange(&value. newval); 

As you might have guessed, there's also an InterlockedExcbangePointer that 
exchanges a pointer value C64-bit or 32-bit, depending on the platform). 

ExlnterlockedXxx Functions 
Each of the ExInterlockedXXx functions requires that you create and initialize a spin 
lock before you call it. Note that the operands of these functions must all be in 
nonpaged memory because the functions operate on the data at elevated IRQL. 

ExInterlockedAddLargeInteger adds two 64-bit integers and returns the pre
vious value of the target: 

LARGE-INTEGER value. increment; 
KSPIN_LOCK spinlock; 
LARGE_INTEGER prey = ExInterlockedAddLargeInteger(&value. 

increment. &spinlock); 

Value is the target of the addition and one of the operands. Increment is an inte
ger operand that's added to the target. Spinlock is a spin lock that you previously 
initialized. The return value is the target's value before the addition. In other words, 
the operation of this function is similar to the following function except that it oc
curs under protection of the spin lock: 

__ int64 AddLargeInteger( __ int64* pvalue. __ int64 increment) 
{ 

__ int64 prey = *pvalue; 
*pvalue += increment; 
return prey; 
} 
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Note that the return value is the preaddition value, which contrasts with the 
postincrement return from InterlockedExchange and similar functions. (Also, not all 
compilers support the __ int64 integer data type, and not all computers can perform 
a 64-bit addition operation using atomic instructions.) 

ExInterlockedAddUlong is analogous to ExlnterlockedAddLargelnteger ex
cept that it works with 32-bit unsigned integers: 

ULONG value. increment; 
KSPIN_LOCK spinlock; 
ULONG prey = ExInterlockedAddUlong(&value. increment. &spinlock); 

This function likewise returns the preaddition value of the target of the operation. 
ExInterlockedAddLargeStatistic is similar to ExInterlockedAddUlong in that 

it adds a 32-bit value to a 64-bit value. It hadn't been documented in the DDK at press 
time, so I'll show you its prototype here: 

VOID ExInterlockedAddLargeStat1stic(PLARGE_INTEGER Addend. 
ULONG Increment); 

This new function is faster than ExInterlockedAddUlong because it doesn't need 
to return the preincrement value of the Addend variable. It therefore doesn't need to 
employ a spin lock for synchronization. The atomicity provided by this function is, 
however, only with respect to other callers of the same function. In other words, if you 
had code on one CPU calling ExInterlockedAddLargeStatistic at the same time as code 
on another CPU was accessing the Addend variable for either reading or writing, you 
could get inconsistent results. I can explain why this is so by showing you .this para
phrase of the Intel x86 implementation of the function (not the actual source code} 

mov eax. Addend 
mov ecx. Increment 
lock add [eax]. ecx 
lock adc [eax+4]. 0 

This code works correctly for purposes of incrementing the Addend because the 
lock prefixes guarantee atomicity of each addition operation and because no carries 
from the low-order 32 bits can ever get lost. The instantaneous value of the 64-bit 
Addend isn't always consistent, however, because an incrementer might be poised 
between the ADD and the ADC just at the instant someone makes a copy of the com
plete 64-bit value. Therefore, even a caller of ExInterlockedCompareExchange64 
on another CPU could obtain an inconsistent value. 

Interlocked List Access 
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The Windows NT executive offers three sets of support functions for dealing with 
linked lists in a thread-safe and multiprocessor-safe way. These functions support 
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doubly-linked lists, singly-linked lists, and a special kind of singly-linked list called 
an S-List. I discussed noninterlocked doubly-linked and singly-linked lists in the pre
ceding chapter. To close this chapter on synchronization within WDM drivers, I'll 
explain how to use these interlocked accessing primitives. 

If you need the functionality of a FIFO queue, you should use a doubly-linked 
list. If you need the functionality of a thread-safe and multiprocessor-safe pushdown 
stack, you should use an S-List. In both cases, to achieve thread safety and multipro
cessor safety, you will allocate and initialize a spin lock. The S-List might not actually 
use the spin lock, however, because the presence of a sequence number might allow 
the kernel to implement it using just atomic compare-exchange sorts of operations, 

The support functions for performing interlocked access to list objects are very 
similar, so I've organized this section along functional lines. I'll explain how to ini
tialize all three kinds of list. Then I'll explain how to insert an item into all three kinds. 
After that, I'll explain how to remove items. 

Initialization 
You can initialize these lists as shown here: 

LISLENTRY Doubl eHead: 
SINGLE-LIST_ENTRY SingleHead: 
SLIST_HEADER SListHead: 

InitializeListHead(&DoubleHead): 

SingleHead.Next = NULL: 

ExInitializeSListHead(&SListHead): 

Don't forget that you must also allocate and initialize a spin lock for each list. 
Furthermore, the storage for the list heads and all the items you put into the lists must 
. come from nonpaged memory because the support routines perform their accesses 
at elevated IRQL. Note that the spin lock isn't used during initialization of the. list head 
because it doesn't make any sense to allow contention for list access before the list 
has been initialized. 

Inserting Items 
You can insert items at the head and tail of a doubly-linked list and at the head (only) 
of a singly-linked list or an S-List: 

PLIST_ENTRY pdElement. pdPrevHead. pdPrevTail: 
PSINGLE_LIST_ENTRY psElement. psPrevHead: 
PKSPIN_LOCK spinlock: 

(continued) 
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pdPrevHead = ExlnterlockedlnsertHeadList(&DoubleHead. pdElement. spinlock); 
pdPrevTail = ExlnterlockedlnsertTailList(&DoubleHead. pdElement. spinlock); 

psPrevHead = ExlnterlockedPushEntryList(&SingleHead. psElement. spinlock); 

psPrevHead = ExlnterlockedPushEntrySList(&SListHead. psElement. spinlock); 

The return values are the addresses of the elements previously at the head (or 
tail) of the list in question. Note that the element addresses you use with these func
tions are the addresses of list entry structures that are usually embedded in larger 
structures of some kind, and you will need to use the CONTAINING_RECORD macro 
to recover the address of the surrounding structure. 

Removing Items 
You can remove items from the head of any of these lists: 

pdElement = ExlnterlockedRemoveHeadList(&DoubleHead. spinlock); 

psElement = ExlnterlockedPopEntryList(&SingleHead. spinlock); 

psElement = ExlnterlockedPopEntrySList(&SListHead. spinlock); 

The return values are NULL if the respective lists are empty. Be sure to test the 
return value for NULL before applying the CONTAINING_RECORD macro to recover 
a containing structure pointer. 

IRQL Restrictions 
You can call the S-List functions only while running at or below DISPATCH_LEVEL. 
The ExInterlockedXxx functions for accessing doubly-linked or singly-linked lists can 
be called at any IRQL so long as all references to the list use an ExInterlockedXxx 
call. The reason for no IRQL restrictions is that the implementations of these func
tions disable interrupts, which is tantamount to raising IRQL to the highest possible 
level. Once interrupts are disabled, these functions then acquire the spin lock you've 
specified. Since no other code can gain control on the same CPU, and since no code 
on another CPU can acquire the spin lock, your lists are protected. 

NOTE The DDK documentation states this rule in an overly restrictive way for 
at least some of the ExlnteriockedXXxfunctions. It says that all callers must be 
running at some single IROL less than or equal to the DIROL of your interrupt 
object. There is, in fact, no requirement that all callers be at the same IROL, 
because you can call the functions at any IROL. Likewise, no restriction to <= 
DIROL exists either, but there's also no reason for the code you and I write to 
raise IROL higher than that. 

It's perfectly okay for you to use ExInterlockedXxx calls to access a singly
linked or doubly-linked list (but not an S-List) in some parts of your code and to 
use the noninterlocked functions (InsertHeadList and so on) in other parts of your 
code if you follow a simple rule. Before using a noninterlocked primitive, acquire 
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the same spin lock that your interlocked calls use. Furthermore, restrict list access to 
code running at or below DISPATCH_LEVEL. For example: 

II Access list using noninterlocked calls: 

VOID FunctionlC) 
{ 

ASSERTCKeGetCurrentIrqlC) <= DISPATCH_LEVEL); 
KIRQL oldirql; 
KeAcquireSpinLockCspinlock. &oldirql); 
InsertHeadListC ... ); 
RemoveTailListC ... ); 

KeReleaseSp1nLockCspinlock. oldirql); 
} 

II Access list using interlocked calls: 

VOID Function2() 
{ 

ASSERTCKeGetCurrentIrqlC) <= DISPATCH_LEVEL); 
ExInterlockedInsertTailListC ..•• spinlock); 
} 

The first function must be running at or below DISPATCH_LEVEL because that's 
a requirement of calling KeAcquireSpinLock. The reason for the IRQL restriction on 
the interlocked calls in the second function is as follows: Suppose that Function! 
acquires the spin lock in preparation for performing some list accesses. Acquiring the 
spin lock raises IRQL to DISPATCH_LEVEL. Now suppose that an interrupt occurs on 
the same CPU at a higher IRQL and that Function2 gains control to use one of the 
ExInterlockedXxx routines. The kernel will now attempt to acquire the same spin lock, 
and the CPU will deadlock. This problem arises from allowing code running at two 
different IRQLs to use the same spin lock: Functionl is at DISPATCH_LEVEL, and 
Function2 is-practically speaking, anyway-at HIGH_LEVEL when it tries to recur
sively acquire the lock. 
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Chapter 5 

The I/O 
Request Packet 

The operating system uses a data structure known. as an I/O request packet, or IRP, 
to communicate with a kernel-mode device driver. In this chapter, I'll discuss this 
important data struCture and the means by which it's created, sent, processed, and 
ultimately destroyed. I'll end with a discussion of the relatively complex subject of 
IRP cancellation. This chapter is rather abstract, I'm afraid, because I haven't yet talked 
about any of the concepts that surround specific types of IRPs. You might, therefore, 
want to skim this chapter and refer back to it while you're reading later chapters. 

DATA STRUCTURES 
Two data structures are crucial to the handling of I/O requests: the I/O request 
packet itself and the 10_STAC~LOCATION structure. I'll describe both structures in 
this section. 

Structure of an IRP 
Figure 5-1 illustrates the IRP data structure, with opaque fields shaded in the usual 
convention of this book. A brief description of the important fields follows. 

MdlAddress (PMDL) is the address of a memory descriptor list (MDL) describing 
the user-mode buffer associated with this request. The I/O Manager creates this 
MDL for IRP _MLREAD and IRP _ML WRITE requests if the topmost device .object's 
flags indicate DO_DlRECT_IO. It creates an MDL for the output buffer used with an 
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IRP _MLDEVICE_CONTROL request if the control code indicates METHOD_IN_ 
DIRECT or METHOD_OlIT_DIRECT. The MDL itself describes the user~mode virtual 
buffer and also contains the physical addresses of locked pages containing that buffer. 
A driver has to do additional work, which can be quite minimal, to actually access 
the user-mode buffer. 

MdlAddress 

Flags 

Assoclatedlrp 

Cancel Routine 

UserBuffer 

Tall 

Figure 5-1. I/O request packet data structure. 

Flags (ULONG) contains flags that a device driver can read but not directly alter. 
None of these flags are relevant to a Windows Driver Model driver. 

Assoclatedlrp (union) is a union of three possible pointers. The alternative that 
a typical WDM driver might want to access is named Associatedlrp.SystemBuffer. 
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The SystemBuffer pointer holds the address of a data buffer in nonpaged kernel-mode 
memory. For IRP _MLREAD and IRP _ML WRITE operations, the I/O Manager creates 
this data buffer if the topmost device object's flags specify DO_BVFFERED_IO. For 
IRP _MLDEVICE_CONTROL operations, the I/O Manager creates this buffer if the 
I/O control function code indicates that it should. (See Chapter 9, "Specialized Top
ics.") The I/O Manager copies data sent by user-mode code to the driver into this 
buffer as part of the process of creating the IRP. Such data includes the data involved 
in a WriteFile call or the so-called input data for a call to DeviceIoControl. For read 
requests, the device driver fills this buffer with data; the I/O Manager later copies the 
buffer back to the user-mode buffer. For control operations that specify ME1HOD_ 
BUFFERED, the driver places the so-called output data in this buffer, and the I/O 
Manager copies it to the user-mode output buffer. 

, IoStatus (IO_STATUS_BLOCK) is a structure containing two fields that driv
ers set when they ultimately complete a request. IoStatus.Status will receive an 
NTSTATUS code, while IoStatus.Information is a ULONGYTR that will receive 
an information value whose exact content depends on the type of IRP and the comple
tion status. A common use of the Information field is to hold the total number of bytes 
transferred by an operation like IRP _MLREAD that transfers data. Certain Plug and 
Play (PnP) requests use this field as a pointer to a structure that you can think of as 
the answer to a query. 

RequestorMode will equal one of the enumeration constants UserMode or 
KernelMode, depending on where the original I/O request originated. Drivers some
times inspect this value. to know whether to trust some parameters. 

PendingReturned (BOOLEAN) is 1RUE if the lowest-level dispatch routine to 
process this IRP returned STATUS_PENDING. Completion routines reference this field 
to avoid a potential race condition between completion and dispatch routines. 

Cancel (BOOLEAN) is 1RUE if IoCancellrp has been called to cancel this re
quest and FALSE if it hasn't (yet) been called. IRP cancellation is a relatively com
plex topic that I'll discuss fully later on in this chapter (in "Cancelling I/O Requests"). 

Cance1Irq1 (KIRQL) is the interrupt request level (IRQL) at which the special 
cancel spin lock was acquired. You reference this field in a cancel routine when you 
release the spin lock. 

CancelRoutine (PDRIVER_CANCEL) is the address of an IRP cancellation rou
tine in your driver. You use IoSetCanceIRoutine to set this field instead of modify
ing it directly. 

UserBuffer (PVOID) contains the user-mode virtual address of the output buffer 
for an IRP _MLDEVICE_CONTROL request for which the control code specifies 
ME1HOD_NEI1HER. It also holds the user-mode virtual address of the buffer for read 
and write requests, but a driver should usually specify one of the device flags 
DO_BVFFERED.:JO or DO_DlRECT_IO and should therefore not usually need to 
access the field for reads or writes. When handling a METHOD_NEITHER control 
operation, the driver can create its own MDL using this address. 
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Tail. Overlay is a structure within a union that contains several members po
tentially useful to a WDM driver. Refer to Figure 5-2 for a map of the Tail union. In 
the figure, items at the same level as you read left to right are alternatives within a 
union, while the vertical dimension portrays successive locations within a structure. 
TailOverlay.DeviceQueueEntry (KDEVlCE_QUEUE_ENTRY) and Tall.Overlay.
DriverContext (PVOID[4]) are alternatives within an unnamed union within 
Tail. Overlay. The I/O Manager uses DeviceQueueEntry as a linking field within the 
standard queue of requests for a device. At moments when the IRP is not on some 
queue that uses this field and when you own the IRP, you can use the four pointers 
in DriverContext in any way you please. Tail.Overlay.IlstEntry (LIST_ENTRY) is 
available for you to use as a linking field for IRPs on any private queue you choose 
to implement. 

Tail.Overlay Tail.Ape Tail.CompletionKey 

_---A ..... --_ 
{ Y 

A __ y __ A. __ , 

Completion Key 

DeviceQueueEntry 

DriverContext 

Thread 

AuxiliaryBuffer 
Ape 

ListEntry 

CurrentStackLocation PacketType 

OriginalFileObject 

Figure 5·2. Map of the Tail union in an IRP. 
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CurrentLocation (CHAR) and Tall.Overlay.CurrentStackLocation (PIO_ 
STACK_LOCATION) are not documented for use by drivers because support func
tions like IoGetCurrentIrpStackLocation can be used instead. During debugging, 
however, it might help you to realize that CurrentLocation is the index of the cur
rent I/O stack location and CurrentStackLocation is a pointer to it. 

The 1/0 Stack 
Whenever any kernel-mode program creates an IRP, it also creates an associated array 
of IO_STACK_LOCATION structures: one stack location for each of the drivers that will 
process the IRP and often one more stack location for the use of the originator of the 
IRP. (See Figure 5-3.) A stack location contains type codes and parameter information 
for the IRP as well as the address of a completion routine. Refer to Figure 5-4 for an 
illustration of the stack structure . 

..... ~ ...... ~ 

..... ~ ...... ~ 

..... ~ ..... ---

Figure 5·3. Parallelism between driver and I/O stacks. 

NOTE I'll discuss the mechanics of creating IRPs a bit further on in this chap
ter. It helps to know right now that the StackCourit field of a DEVICE_OBJECT 
indicates how many locations to reserve for an IRP sent to that device's driver. 
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MaJorFunction I MlnorFunctlon I Flags I Control 

Parameters 

DeviceObJ8Ct 

FlleObject 

CompletionRoutine 

Context 

Figure 5-4. I/O stack location data structure. 

MajorFunction (UCHAR) is the major function code associated with this IRP. 
This would be a value like IRP _MLREAD that corresponds to one of the dispatch 
function pointers in the MajorFunction table of a driver object. Since this code is in 
the I/O stack location for a particular driver, it's conceivable that an IRP could start 
life as an IRP;.,.MLREAD (for example) and be transformed into something else as it 
progresses down the stack of drivers. I'll show you examples in Chapter 11, "The 
Universal Serial Bus," of how a USB driver changes the personality of a read or write 
request into an internal control operation in order to submit the request to the USB 
bus driver. 

MinorFunction (UCHAR) is a minor function code that further identifies an 
IRP belonging to a few major function classes. IRP J1LPNP requests, for example, 
are divided into a dozen or so subtypes with minor function codes such as 
IRP _MN_START_DEVICE, IRP _MN_REMOVE_DEVICE, and so on. 

Parameters (union) is a union of substructures, one for each type of request 
that has specific parameters. The substructures include, for example, Create (for 
IRP _MLCREATE requests), Read (for IRP _MLREAD requests), and StartDevice (for 
the IRP _MN_START_DEVICE subtype of IRP _MLPNP). 

DeviceObject (PDEVICE_OBJECT) is the address of the device object that 
corresponds to this stack entry. IoCallDriver fills in this field. 

FlleObject (PFILE_OBJECT) is the address of the kernel file object to which the 
IRP is directed. Drivers often use the FileObject pointer to correlate IRPs in a queUe 
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with a request (in the form of an IRP _MLCLEANUP) to cancel all queued IRPs in 
preparation for closing the file object. 

CompletionRoutine (PIO_COMPLETION_ROUTINE) is the address of an I/O 
completion routine installed by the driver above the one to which this stack location 
corresponds. You never set this field directly-instead, you call IoSetCompletion
Routine, which knows to reference the stack location below the one that your driver 
owns. The lowest-level driver in the hierarchy of drivers for a given device never needs 
a completion routine because it must complete the request. The originator of a re
quest, however, sometimes does need a completion routine but doesn't usually have 
its own stack location. That's why each level in the hierarchy uses the next lower stack 
location to hold its own completion routine pointer. 

Context (PVOID) is an arbitrary context value that will be passed as an argu
ment to the completion routine. You never set this field directly; it's set automatically 
from one of the arguments to IoSetCompletionRoutine. 

THE "STANDARD MODEL" FOR IRP PROCESSING 
Particle physics has its "standard model" for the universe, and so does WDM. 
Figure 5-5 illustrates a typical flow of ownership for an IRP as it progresses through 
various stages in its life. Not every type of IRP would go through these steps, and 
some of the steps might be missing or altered depending on the type of device and 
the type of IRP. Notwithstanding the possible variability, however, the picture pro
vides a useful starting point for discussion. 

Figure 5-5. The ''standard model" for IRP processing. 
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IT'S EVEN MORE COMPLICATED THAN YOU THOUGHT ••• 

The first time you encounter the concepts that make up the standard model for 
IRP processing, they'll probably seem pretty complicated. Unfortunately, the stan
dard model is also not quite sufficient to handle all the problems that can arise 
in a regime that includes hot pluggable devices, dynamic resource reconfiguration, 
and power management. In later chapters, I'll describe another way of queuing 
and cancelling IRPs that deals with these extra problems. The standard model will 
seem like a model of clarity when you're done reading about that! 

Despite the problems that some devices present, many devices can still 
employ the standard model (which is, of course, why I'm bothering to explain 
it here). If your device cannot be removed or reconfigured while the system is 
running and can reject I/O requests while in a low-power state, you can use 
the standard model. 

Creating an IRP 
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The IRP begins life when some entity calls an I/O Manager function to create it. In 
the figure, I used the term I/O Manager to describe this entity, as though there were 
a single system component responsible for creating IRPs. In reality, no such single 
actor in the population of operating system routines exists, and it would have been 
more accurate to just say that something creates the IRP. Your own driver will be 
creating IRPs from time to time, for example, and you will occupy the initial owner
ship box for those particular IRPs. 

You can use any of four functions to create a new IRP: 

• IoBulldAsynchronousFsdRequest builds an IRPon whose completion 
you don't plan to wait. This function and the next are appropriate for 
building only certain types of IRP. 

• IoBuUdSynchronousFsdRequest builds an IRP on whose completion 
you do plan to wait. 

• IoBulldDeviceIoControJRequest builds a synchronous IRP _MLDEVICE_ 
CONfROL or.IRP _MLINTERNAL_DEVICE_CONTROL request. 

• IoAllocateIrp builds an IRP that is not one of the types supported by the 
preceding three functions. 

The Fsd in the first two of these function names stands for file system driver 
(FSD). Although FSDs are the primary users of the functions, any driver is allowed 
to call them. The DDK also documents a function named IoMakeAssociatedirp for 
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building an IRP that's subordinate to some other IRP. WDM drivers should not call 
this function. Indeed, completion of associated IRPs doesn't work correctly in 
Microsoft Windows 98 anyway. 

Deciding which of these functions to call and determining what additional 
initialization you need to perform on an IRP is a rather complicated matter. I'll come 
back to this subject, therefore, at the end of this chapter. 

Forwarding to a Dispatch Routine 

After you create an IRP, you call IoGetNextlrpStackLocation to obtain a pointer to 
the first stack location. Then you initialize just that first location. At the very least, 
you need to fill in the MajorFunction code. Having initialized the stack, you call 
IoCallDriver to send the IRP to a device driver: 

PDEVICE_OBJECT DeviceObject; II + something gives you this 
PIO_STACK-LOCATION stack = IoGetNextIrpStackLocation(Irp); 
stack-)MajorFunction = I RP_MJ_Xxx; 
<other initialization of "stack"> 
NTSTATUS status = IoCallDriver(DeviceObject. Irp); 

The first argument to loCallDriver is the address of a device object that you've ob
tained somehow. I'll describe two common ways of getting a device object pointer 
at the very end of this chapter in "Where Do Device Object Pointers Come From?" 
For the time being, imagine that these pointers just come to you out of the blue. 

The initial stack location pointer in the IRP gets initialized to one before the actual 
first location. Since the I/O stack is an array of IO_STACK_LOCATION structures, you 
could think of the stack pointer as being initialized to point to the "-1" element, which 
doesn't exist. (In fact, the stack "grows" from high toward low addresses, but that detail 
shouldn't obscure the concept I'm trying to describe here.) We therefore ask for the 
"next" stack location when we want to initialize the first one. IoCallDriver will ad
vance the stack pointer to the 0 entry and extract the major function code that we 
left there. That's the made-up value IRP _MLXXx in this example. Then, loCallDriver 
will follow the DriverObject pointer inside the device object to the MajorFunction table 
belonging to the top-level driver. Recall that the driver's DriverEntry function filled 
that table in with pointers to dispatch functions in the driver. IoCallDriver will use 
the major function code to index the table, and it will then call the function whose 
address it finds. 

You can imagine IoCallDriver as looking something like this (but I hasten to 
add that this is not a copy of the actual source code): 

NTSTATUS IoCallDriver(PDEVICE_OBJECT device. PIRP Irp) 
{ 

IoSetNextlrpStackLocation(Irp); 
(continued) 
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PIO_STACK-LOCATION stack = loGetCurrentlrpStackLocation(lrp): 
stack-)DeviceObject = device: 
ULONG fcn = stack-)MajorFunction: 
PDRIVER-OBJECT driver = device-)DriverObject: 
return (*driver-)MajorFunction[fcn])(device. lrp): 
} 

Duties of a Dispatch Routine 
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An archetypal IRP dispatch routine would look similar to this example: 

NTSTATUS DispatchXxx(PDEVICE_OBJECT device. PIRP lrp) 
{ 

PIO_STACK-LOCATION stack = loGetCurrentlrpStackLocation(Irp): 
POEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) device-)DeviceExtension: 

return STATUS_Xxx: 
} 

1. You generally need to access the current stack location to determine 
parameters or to examine the minor function code. 

2. You also generally need to access the device extension you created and 
initialized during AddDevice. 

3. You'll be returning some NTSTATUS code to IoCallDriver, which will 
propagate the code back to its caller. 

In this book, I'll be using names of the form DispatchX.xx (for example, 
DispatchRead, DispatchPnp, and so forth) for the dispatch functions in my sample 
drivers. Other authors use different conventions for these names. Microsoft rec
ommends, for example, that you use a name like RandomDispatchRead for the 
IRP _MLREAD dispatch function in a driver named RANDOM.SYS. Conventions like 
this make it easier to understand debugger traces in some situations, but they also 
require you to do more typing. Since these names aren't visible outside the name space 
of your own driver, it's up to you whether you use very specific names as Microsoft 
recommends or names such as Fred that have meaning to you. 

Where I used an ellipsis in the prototypical dispatch function above, a dispatch 
function has to choose between three courses of action. It can complete the request 
immediately, pass the request down to a lower~level driver in the same driver stack, 
or queue the request for later processing by other routines in this driver. I'm going 
to discuss each of these alternatives fully in this chapter, but I'm going to talk about 
only the queuing possibility now because that's what comes next in the standard 
model for IRP processing. You see, the largest number of requests that come into a 
device involves reading or writing data, and you usually need to put these requests 
into a queue to serialize access to your hardware. 
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Every device object gets a request queue object "for free," and there's a stan
dard way of using this queue: 

NTSTATUS DispatchXxx( ... ) 
{ 

IoMarkIrpPending(Irp); 
IoStartPacket(device. Irp. NULL. NULL); 
return STATUS_PENDING; 
} 

1. Whenever we return STATUS_PENDING from a dispatch routine (as we're 
about to do here), we make this call to help the I/O Manager avoid an 
internal race condition. We must do this before we relinquish ownership 
of the IRP. 

2. If our device is currently busy, IoStartPacket puts the request onto a 
queue. If our device is idle, loStartPacket marks the device as being busy 
and calls our StartIo routine. I'll describe the Startio routine in the next 
section. The third argument to loStartPacket is the address of a ULONG 
key used for sorting the queue. Disk drivers, for example, might specify 
a cylinder address here to provide for ordered-seek queuing. If you sup
ply NULL, as here, this request is added to the tail of the queue. The last 
argument is the address of a cancel routine. I'll discuss cancel routines later 
in this chapter-they're complicated! 

3. We return STATUS_PENDING to tell our caller that we're not done with 
this IRP yet. 

It's very important not to touch the IRP once we call loStartPacket. By the time 
that function returns, the IRP may have been completed and the memory it occupies 
released. The pointer we have might, therefore, now be invalid. 

The Startlo Routine 

The I/O Manager calls your StartIo routine to process one IRP at a time: 

VOID StartIo(PDEVICE_OBJECT device. PIRP Irp) 
{ 

PIO_STACICLOCATION stack = IoGetCurrentI rpStackLocat i on (I rp) ; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) device-)DeviceExtension; 

} 

Your Startio routine receives control at DISPATCH_LEVEL, meaning that it must 
not generate any page faults. In addition, the CurrentIrp field of the device object 

183 



Programming the Microsoft Windows Driver Model 

and the Irp argument will both point to the IRP that's being submitted to you 
for processing. 

Your job in Startlo is to commence the IRP you've been handed. How you do 
this depends entirely on your device. Often you will need to access hardware regis
ters that are also used by your interrupt service routine (ISR) and, perhaps, by other 
routines in your driver. In fact, sometimes the easiest way to commence a new oper
ation is to store some state information in your device extension and then fake an 
interrupt. Since either of these approaches needs to be carried out under protection 
of the same spin lock that protects your ISR, the correct way to proceed is to call 
KeSyncbronizeExecution. For example: 

VOID Startlo( ... ) 
{ 

KeSynchron1zeExecution(pdx->InterruptObject. 
TransferF1rst. (PVOID) pdx): 

} 

BOOLEAN TransferFirst(PVOID context) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) context: 

return TRUE: 
} 

The TransferFirst routine shown here is an example of the generic class of 
SynchCritSection routines, so called because they are synchronized with the ISR. I'll 
discuss the SynchCritSection concept in more detail in Chapter 7, "Reading and Writ
ing Data." 

Once Startlo gets the device busy handling the new request, it returns. You'll 
see the request next when your device interrupts to signal that it's done with what
ever transfer you started. 

The Interrupt Service Routine 
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When your device is ftnished transferring data, it might signal a hardware interrupt. In 
Chapter 7, I'll show you how to use IoConnectlnterrupt to "hook" the interrupt. 
One of the arguments to 10Connectlnterrupt is the address of your ISR. When the inter
rupt occurs, the hardware abstraction layer (HAL) calls your ISR. The ISR runs at the 
device IRQL (DIRQL) of your particular device and under the protection of a spin 
lock associated speciftcally with your ISR. The ISR has the following prototype: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject. PYOID context) 
{ 

} 
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The first argument of your ISR is the address of the interrupt object created by 
IoConnectInterrupt, but you're unlikely to use this argument. The second argument 
is whatever context value you specified in your original call to IoConnectInterrupt; 
it will probably be the address of your device object or of your device extension, 
depending on your preference. 

I'll discuss the duties of your ISR in detail in Chapter 7 in connection with reading 
and writing data, the subject to which interrupt handling is most relevant. To carry 
on with this discussion of the standard model, I need to tell you that one of the likely 
things for the ISR to do is to schedule a deferred procedure call (DPC). The purpose 
of the DPC is to let you do things, like calling IoCompleteRequest, that can't be done 
at the rarified DIRQL at which your ISR runs. So, supposing you develop a pointer 
named device to your device object inside the ISR, you'd have a line of code like 
this one: 

IoRequestDpc(device. device->CurrentIrp. NULL); 

You'll next see the IRP in the DPC routine you registered inside AddDevice with 
your call to IoInitializeDpcRequest. The traditional name for that routine is 
DpcForIsr because it's the DPC routine your ISR requests. 

Deferred Procedure Can Routine 
The DpcForIsr routine requested by your ISR receives control at DISPATCH_LEVEL. 
Generally, its job is to finish up the processing of the IRP that caused the most re
cent interrupt. Often that job entails calling IoCompleteRequest to complete this IRP 
and IoStartNextPacket to remove the next IRP from your device queue for forward
ing to Startlo. 

VOID DpcForlsr(PKDPC Dpc PDEVICE_OBJECT device. PIRP Irp. PVOID context) 
{ 

IoStartNextPacket(device. FALSE); 
IoCompleteRequest(Irp. boost); 
} 

1. IoStartNextPacket removes the next IRP from your queue and sends it to 
StartIo. The FALSE argument indicates that this IRP can't be cancelled in the 
normal way. By the time you finish this chapter, you'll know how to handle 
the more normal case in which you specify TRUE for the second argument. 

2. IoCompleteRequest completes the IRP you specify as the first argument. 
The second argument specifies a priority boost for the thread that has been 
waiting for this IRP. You'll also fill in the IoStatus block within the IRP 
before calling IoCompleteRequest, as I'll explain later in the section 
"Completion Mechanics." 
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The call to IoCompleteRequest is the end of this standard way of handling an 
I/O request. After that call, the I/O Manager (or whatever created the IRP in the first 
place) owns the IRP once more. That entity will destroy the IRP and might unblock 
a thread that has been waiting for the request to complete. 

Custom Queues 
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Some devices operate in such a way that it makes sense to have more than one queue 
of requests. A common example is a serial port, which can handle independent 
streams of input and output requests simultaneously. Both IoStartPacket and IoStart
NextPacket (and their key-sorting equivalents) work with a queue that you get "for 
free" as part of the device object. It's relatively easy to create additional queues that 
work the same way as the standard queue managed by those routines. 

To make it easier to discuss things, let's suppose that you need a separate queue 
to manage IRP ->1LSPECIAL requests. (There's no such major function code-I made 
it up just so that we'd have a concrete topic for the discussion.) You would write two 
helper functions that would do for these special IRPs pretty much the same thing as 
the Startlo and DpcForIsr routines I mentioned earlier: 

• A Startlo-like function-let's call it StartIoSpecial-that starts the next 
IRP _MLSPECIAL request. 

• A DPC function-let's call it DpcSpecial-that handles completing an 
IRP _MLSPECIAL request. 

You'll also create a KDEVICE_QUEUE object in your device extension. You'd 
initialize this object during AddDevice: 

NTSTATUS AddDevice( ... ) 
{ 

KelnitializeDeviceQueue(&pdx->dqSpecial); 

} 

where dqSpecial is the name of the KDEVICE_ OBJECT we'll use for IRP _MLSPECIAL 
requests. A device queue object is a three-state object. (See Figure 5-6.) These states 
influence how the support routines for device queues operate: 

• The idle state occurs when the device isn't busy handling any requests 
and the queue is empty. KeInsertDeviceQueue and KeInsertByKey
DeviceQueue mark the queue busy but empty (the next state) and return 
FALSE. You shouldn't call KeRemoveDeviceQueue or KeRemoveBy
KeyDeviceQueue when the queue is idle. 
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• The busy but empty state occurs when the device· is busy but no IRPs 
are on the queue. KeInsertDeviceQueue and KeInsertByKeyDeviceQueue 
add an IRP to the end of the queue, put the queue into the busy but not 
empty state, and return TRUE. KeRemoveDeviceQueue or KeRemoveBy
KeyDeviceQueue return NULL and put the queue into the idle state. 

• The busy but not empty state occurs when the device is busy and there's 
at least one IRP on the queue: KeInsertDeviceQueue and KeInsertByKey
DeviceQueue add an IRP to the end of the queue, leave the queue in this 
same state, and return TRUE. (This is like what happens in the busy but 
empty state, except that no state transition occurs.) KeRemoveDevice
Queue or KeRemoveByKeyDeviceQueue remove the first entry from the 
queue and return its address. In addition, if the queue becomes empty, 
they put the queue into the busy but empty state. 

Insert 

,-----/sert 

Figure 5-6. States of a KDEVlCE-.QUEUE queue. 

We use these support routines and the special device queue in our dispatch and 
DPC routines, as follows: 

NTSTATUS 01 spatchSpeci al( POEVICLOBJECT fdo. PI RP I rp) 
{ 

IoMarklrpPend1ng(Irp); 
KIRQL old1rql; 
KeRaiselrql(OISPATCH_LEVEL. &old1rql); 
POEVICE_EXTENSION pdx = (PDEVICE~EXTENSION) fdo->Oev1ceExtens1on; 
if (IKeInsertOeviceQueue(&pdx->dqSpec1al. 

&Irp->Ta11.0verlay.Dev1ceQueueEntry» 
StartIoSpecial(fdo. Irp); 

(continued) 
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KeLowerlrql(old1rql); 
return STATUS_PENDING; 
} 

VOID DpcSpec1al(.~.) 
{ 

PKDEVICLQUEULENTRY qep = KeRemoveDeviceQueue(&pdx-)dqSpecial); 
if (qep) 

StartloSpecial(fdo. CONTAINING_RECORD(qep. IRP. 
Tail.Overlay.DeviceQueueEntry»; 

} 

1. As with a "regular" dispatch routine, we mark this IRP as pending because 
we're going to queue it and return STATUS_PENDING. 

2. KeInsertDeviceQueue and our own StartloSpecial expect to be called at 
DISPATCH_LEVEL. Hence, we explicitly raise IRQL to that level. We'll use 
K.eLowerIrql shortly to lower IRQL back to what it currently is (probably 
PASSIVE_LEVEL). 

3. This call to KeInsertDeviceQueue might add the IRP to the queue, in 
which case the return value will be TRUE and we won't do anything more 
with the IRP. If the device is currently idle, however, the return value will 
be FALSE and the IRP will not have been placed on the queue. We there
fore call StartIoSpecial directly. 

4. This call to KeRemoveDeviceQueue from the DPC routine will have one 
of two results. If the queue is currently empty, the return value will be 
NULL and we won't do anything more about starting a new request (as 
there aren't any!). Otherwise, the return value will be the address of the 
queue linking field within the IRP. We use CONTAINING_RECORD to 
recover the address of the IRP, which we then pass to StartloSpecial. Note 
that this DPC routine is already running at DISPATCH_LEVEL, so we don't 
need to adjust IRQL before removing an entry from the queue or calling 
the Startlo routine. 

It's no coincidence that my earlier descriptions of StartPacket and StartNextPacket 
sound so similar to what I've just described. Those functions work with a 
KDEVICE_QUEUE object named DeviceQueue that's one of the opaque fields of a 
device object, and their logic is the same as your logic when you manage your own 
device queue. 
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COMPLETING 1/0 REQUESTS 
Every IRP has an urge toward completion. In the standard processing model, you 
might complete an IRP in at least two circumstances. The DpcForIsr routine would 
generally complete the request that's responsible for the most recent interrupt. A 
dispatch function might also complete an IRP in situations like these: 

• If the request is erroneous in some easily determined way (such as a re
quest to rewind a printer or to eject the keyboard), the dispatch routine 
should fail the request by completing it with an appropriate statUs code. 

• If the request calls for information that the dispatch function can easily 
determine (such as a control request asking for the driver's version num
ber), the dispatch routine should provide the answer and complete the 
request with a successful status code. 

Completion Mechanics 
Mechanically, completing an IRP entails mling in the Status and Information mem
bers within the IRP's IoStatus block and calling IoCompleteRequest. The Status 
value is one of the codes defined by manifest constants in the DDK header file 
NTSTATUS.H. Refer to Table 5-1 for an abbreviated list of status codes for common 
situations. The Information value depends on what type of IRP you're completing and 
on whether you're succeeding or failing the IRP. Most of the time, when you're fail
ing an IRP (that is, completing it with an error status of some kind), you'll set Infor
mation to zero. When you succeed an IRPthatinvolves data transfer, you ordinarily 
set the Information field equal to the number of bytes transferred. 

Status Code Description 

STATUS_SUCCESS Normal completion 

STATUS_UNSUCCESSFUL Request failed, but no other status 
code describes the reason specifically 

STATUS_NOT_IMPLEMENTED A function hasn't been implemented 

STATUS_INVALID_HANDLE An invalid handle was supplied for 
an operation 

STATUS_INVALID_PARAMETER A parameter is in error 

STATUS_INVALID_DEVICE_REQUEST The request is invalid for this device 

STATUS_END_OF_FILE End-of-file marker reached 

STATUS_DELETE_PENDING The device is in the process of being 
removed from the system 

Not enough system resources (often 
memory) to perform an operation 

Table 5-1. Some commonly used Nl'STAWS codes. 
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NOTE Always be sure to consult the DDK documentation for the correct set
ting of 10Status.lnformation for the IRP you're dealing with. In some flavors of 
IRP _MJ_PNP, for example, this field is used as a pOinter to a data structure that 
the PnP Manager is responsible for releasing. If you were to overstore the Infor
mation field with zero when failing the request, you would unwittingly cause a 
resource leak. 

Since completing a request is something you do so often, I find it useful to have 
a helper routine to carry out the mechanics: 

NTSTATUS CompleteRequest(PIRP Irp. NTSTATUS status. ULONILPTR Information) 
{ 

Irp->IoStatus.Status = status: 
Irp->IoStatus.Information = Information: 
IoCompleteRequest(Irp. IO_NO_INCREMENT): 
return status: 
} 

I defmed this routine in such a way that it returns whatever status value you 
supply as its second argument. That's because I'm such a lazy typist: the return value 
allows me to use this helper whenever I want to complete a request and then im
mediately return a status code. For example: 

NTSTATUS DispatchControl(PDEVICE_OBJECT device, PIRP Irp) 
{ 

PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocat1on(Irp): 
ULONG code = stack->Parameters.Dev1ceIoControl.loControlCode: 
if (code == IOCTL-TOASTER-BOGUS) 

return CompleteRequest(Irp, STATUS_INVALID_DEVrCE_REQUEST. 0): 

} 

You might notice that the Information argument to the CompleteRequest 
function is typed as a ULONG_PTR. In other words, this value can be either a ULONG 
or a pointer to something (and therefore potentially 64 bits wide). 

When you call 10CompleteRequest, you supply a priority boost value to be 
applied to whatever thread is currently waiting for this request to complete. You 
normally choose a boost value that depends on the type of device, as suggested by 
the manifest constant names listed in Table 5-2. The priority adjustment improves the 
throughput of threads that frequently wait for I/O operations to complete. Events for 
which the end user is directly responsible, such as keyboard or mouse operations, 
result in greater priority boosts in order to give preference to interactive tasks. Con
sequently, you want to choose the boost value with at least some care. Don't use 
10_SOUND_INCREMENT for absolutely every operation a sound card driver fmishes, 
for example-it's not necessary to apply this extraordinary priority increment to a get
driver-version control request. 
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Manifest Constant 

10_NO_INCREMENT 

10_CD_ROM_INCREMENT 

10_DlSK_INCREMENT 

10_KEYBOARD_INCREMENT 

IO_MAILSLOT_INCREMENT 

10_MOUSE_INCREMENT 

10_NAMED]IPE_INCREMENT 

10_NETWORK_INCREMENT 

10_P ARALLEL_INCREMENT 

IO_SERIAL~INCREMENT 

10_SOUND_INCREMENT 

10_VIDEO_INCREMENT 

Numeric Priority Boost 

o 
1 

1 

6 
2 

6 
2 

2 

1 

2 

8 

1 

Table 5-2. Priority boost values for IoCompleteRequest. 

Don't, by the way, complete an IRP with the special status code STATUS_ 
PENDING. Dispatch routines often return STATUS_PENDING as their return value, 
but you should never set IoStatus.Status to this value. Just to make sure, the checked 
build of IoCompleteRequest generates an ASSERT failure if it sees STATUS_PENDING 
in the ending status. Another popular value for people to use by mistake is appar
ently "-I", which doesn't have any meaning as an NTSTATUS code at all. There's a 
checked-build ASSERT to catch that mistake, too. 

Using Completion Routines 
You often need to know the results of I/O requests that you pass down to lower levels 
of the driver hierarchy or that you originate. To find out what happened to a request, 
you install a completion routine by calling IoSetCompletionRoutine: 

loSetCompletionRoutine(Irp. CompletionRoutine. context. 
InvokeOnSuccess. InvokeOnError. InvokeOnCancel); 

Irp is the request whose completion you want to know about. Completion
Routine is the address of the completion routine you want called, and context is 
an arbitrary pointer-sized value you want passed as an argument to the completion 
routine. The InvokeOnXxx arguments are Boolean values indicating whether you 
want the completion routine called in three different circumstances: 

• InvokeOnSuccess means you want the completion routine called when 
something completes the IRP with a status code that passes the NT_ 
SUCCESS test. 
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• InvokeOnError means you want the completion routine called when 
something completes the IRP with a status code that does not pass the 
NT_SUCCESS test. 

• InvokeOnCancel means you want the completion routine called when 
something calls 10CanceUrp before completing the IRP. I worded this quite 
delicately: IoCancelIrp will set the Cancel flag in the IRP, and that's the 
condition that gets tested if you specify this argument. A cancelled IRP 
might end up being completed with STATUS_CANCELLED (which would 
fail the NT_SUCCESS test) or with any other status at all. If the IRP gets . 
completed with an error and you specified InvokeOnError, InvokeOnError 
by itself would cause your completion routine to be called. Conversely, 
if the IRP gets completed without error and you specified Invoke
OnSuccess, InvokeOnSuccess by itself would cause your completion rou
tine to be called. In these cases, InvokeOnCancel would be redundant. 
But if you left out one or the other (or both) of InvokeOnSuccess or 
InvokeOnError, the InvokeOnCancel flag would let you see the eventual 
completion of an IRP whose Cancel flag had been set no matter what status 
is used for the completion. 

At least one of these three flags must be TRUE. Note that IoSetCompletion
Routine is a macro, so you want to avoid arguments that generate side effects. The 
three flag arguments and the function pointer, in particular, are each referenced twke 
by the macro. 

10SetCompletionRoutine installs the completion routine address and context 
argument in the next IO_STACK_LOCATION-that is, in the stack location in which 
the next lower driver will fmd its parameters. Consequently, the lowest-level driver 
in a particular stack of drivers does not dare attempt to install a completion routine. 
Doing so would be pretty futile, of course, because-by defmition of what it means 
to be the lowest-level driver-there's no driver left to pass the request on to. 

A completion routine looks like this: 

NTSTATUS CompletionRoutine(PDEVICLOBJECT device. PIRP Irp. PYOID context) 
{ 

if (Irp->PendingReturned) 
IoMarkIrpPending(Irp); 

return <some status code>; 
} 

It receives pointers to the device object and the IRP, and it also receives what
ever context value you specified in the call to loSetC6mpletionRoutine. Completion 
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routines are usually called at DISPATCH_LEVEL and in an arbitrary thread context, 
but can be called at PASSIVE_LEVEL or APC_LEVEL. To accommodate the usual case 
(DISPATCH_LEVEL), completion routines therefore need to be in nonpaged memory 
and must call only service functions that are callable at DISPATCH_LEVEL. To accom
modate the possibility of being called at a lower IRQL, however, a completion rou
tine shouldn't call functions like K.eA.cquireSpinLockAtDpcLevel that assume they're 
at DISPATCH_LEVEL to start with. 

NOTE The device object pointer argument to a completion routine is the value 
left in the 1/0 stack location's DeviceObject pOinter. 10CaliDriver ordinarily sets 
this value. People sometimes create an IRP with an extra stack location so that 
they can pass parameters to a completion routine without creating an extra con
text structure. Such a completion routine gets a NULL device object pOinter 
unless the creator sets the DeviceObject field. 

How Completion Routines Get Called 
IoCompleteRequest is responsible for calling all of the completion routines that drivers 
installed in their respective stack locations. The way the process works, as shown in 
the flowchart in Figure 5-7, is this: Something calls IoCompleteRequest to signal the 
end of processing for the IRP. IoCompleteRequest then consults the current stack 
location to see whether the driver above the current level installed a completion 
routine. If not, it moves the stack pointer up one level and repeats the test. This 
process repeats until a stack location is found that does specify a completion routine 
or until IoCompleteRequest reaches the top of the stack. Then IoCompleteRequest 
takes steps that eventually result in something releasing the memory occupied by the 
IRP (among other things). 

When IoCompleteRequest fmds a stack frame with a completion routine pointer, 
it calls that routine and examines the return code. If the return code is anything other 
than STATUS_MORE_PROCESSING_REQUIRED, IoCompleteRequest moves the stack 
pointer up one level and continues as before. If the return code is STATUS_MORE_ 
PROCESSING_REQUIRED, however, IoCompleteRequest stops dead in its tracks and 
returns to its caller. The IRP will then be in a sort of limbo state. The driver whose 
completion routine halted the stack unwinding process is expected to do more work 
with the IRP. 

Within a completion routine, a call to IoGetCurrentirpStackLocation will retrieve 
the same stack pointer as was current when something called IoSetCompletionRoutine 
to install the completion routine pointer. In other words, it returns the stack location 
above the one which contains the actual pointer to this completion routine. You 
should not rely in a completion routine on the contents of any lower stack location. 
To reinforce this rule, IoCompleteRequest zeroes most of the next location just be
fore calling a completion routine. 
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Yes 

Done 

Figure 5-7. Logic of IoCompleteRequest. 

Why Completion Routine. Call loMarklrpPending 
You may have noticed these two lines at the beginning of the skeleton completion 
routine I just showed you: 

if (Irp->PendingReturned) 
IoMarklrpPending(Irp); 

This particular piece of boilerplate is required in any completion routine that 
doesn't return STATUS_MORE_PROCESSING_REQUIRED. If you'd like to know why, 
read the rest of this section. However, be aware that you should not develop drivers 
that rely on the information related to how the I/O Manager processes pending IRPs
that process is likely to change in future versions of Windows. 

~:: This explanalion Is compllcatedl 

To maximize system throughput, the I/O Manager expects drivers to defer the 
completion ofIRPs that take a long time to complete. A driver indicates that completion 
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will be deferred by calling IoMarkIrpPending and returning STATUSYENDING from 
the dispatch routine. Often, though, the original caller of the I/O Manager wants to wait 
until the operation finishes before proceeding. The I/O Manager will therefore have 
logic similar to this (not the actual source code of any particular Microsoft Windows NT 
function) to deal with the deferred completion: 

Irp->UserEvent = pEvent; II ~ don't do this yourself 
status = IoCallDriver( ... ); 
if (status == STATUS_PENDING) 

KeWaitForSingleObject(pEvent •... ): 

In other words, if IoCallDriver returns STATUS_PENDING, this code will wait 
on a kernel event. IoCompleteRequest is responsible for setting this event when the 
IRP finally completes. The address of the event (User Event) is in one of the opaque 
fields of the IRP so that IoCompleteRequest can fmd it. But there's more to the story 
than that. 

To keep things Simple for the moment, suppose that there were just one driver 
involved in processing this request. Its dispatch function does the· two things we've 
discussed: it calls IoMarkIrpPending, and it returns STATUSYENDING. That status code 
will be the return value from IoCallDriver as well, so you can see that something is now 
going to wait on an event. The eventual call to IoCompleteRequest occurs in an arbi
trary thread context, so IoCompleteRequest will schedule a special kernel APC to 
execute in the context of the original thread (which is currendy blocked). The APe (asyn
chronous procedure call) routine will set the event, thereby releasing whatever is waiting 
for the operation to fmish. There are reasons we don't need to go into right now for 
why an APC is used for this purpose instead of a simple call to KeSetEvent. 

But queuing an APC is relatively expensive. Suppose that, instead of returning 
STATUS_PENDING, the dispatch routine were to call IoCompleteRequest and return 
some other status. In this case, the call to IoCompleteRequest is in the same thread 
context as the caller of IoCallDriver. It's not necessary to queue an APC, therefore. 
Furthermore, it's not even necessary to call KeSetEvent since the I/O Manager isn't 
going to be waiting on an event if it doesn't get STATUS_PENDING back from the 
dispatch routine. If IoCompleteRequest just had a way to know this case were oc
curring, it could optimize its processing to avoid the APC, couldn't it? That's where 
IoMarkIrpPending comes in. 

What IoMarkIrpPending does-it's a macro in WOM.H, so you can see this for 
yourself-is set a flag named SL_PENDING_RETURNED in the current stack location. 
IoCompleteRequest will set the IRP's PendingRewrned flag equal to whatever value 
it finds in the topmost stack location. Later on, it inspects this flag to see whether the 
dispatch routine has returned or will return STATUS_PENDING. If you do your job 
correcdy, it won't matter whether the return from the dispatch routine happens be
fore or after IoCompleteRequest makes this determination. "Doing your job correcdy," 

195 



Programming Ibe Microsoft Windows Driver Model 

196 

in this particular case, means calling IoMarkIrpPending before you do anything that 
might result in the IRP getting completed. 

So, anyway, IoCompleteRequest looks at the PendingReturned flag. If it's set, 
and if the IRP in question is of the kind that normally gets completed asynchronously, 
IoCompleteRequest simply returns to its caller without queuing the APe. It assumes 
that it's running in the originator's thread context and that some dispatch routine is 
shortly going to return a nonpending status code to the originator. The originator, in 
turn, avoids waiting for the event, which is just as well because no one is ever going· 
to signal that event. So far, so good. 

Now let's put some additional drivers into the picture. The top-level driver has 
no clue what will happen below it. It simply passes the request down using code such 
as the following. (See the next section, "Passing Requests Down to Lower Levels.") 

IoCopyCurrentlrpStackLocationToNext(Irp); 
IoSetCompletionRoutine(Irp •... ); 
return IoCallDriver( ... ); 

In other words, the top-level driver installs a completion routine, calls IoCallDriver, 
and then returns whatever status code IoCallDriver happens to return. This process 
might now repeat additional times as other drivers pass the request· down to whatever 
is really destined to service it. When the request reaches that level, the dispatch rou
tine calls IoMarkIrpPending and returns STATUS_PENDING. The STATUS_PENDING 
value then percolates all the way back up to the top and out into the originator of the 
IRP, which will promptly decide to wait for something to signal the event. 

But notice that the driver that called IoMarkIrpPending only managed to set 
SL_PENDING_RETURNEO in its own stack location. The drivers above it actually re
turned STATUS_PENDING, but they didn't call IoMarkIrpPending on their own behalf 
because they didn't know they'd end up returning STATUS_PENDING as proxies for 
the guy at the bottom of the stack. Sorting this out is where the boilerplate code in the 
completion routine comes in, as follows. As IoCompleteRequest walks up the I/O stack, 
it pauses at each level to set the IRP's PendingReturned flag to the value of the current 
stack's SL_PENDING_RETURNED flag. If there's no completion routine at this level, it 
then sets the next higher stack's SL_PENDING_RETURNED if PendingReturned is set 
and repeats its loop. It doesn't change SL_PENDING_RETURNED if PendingReturned 
is clear. In this way, SL_PENDING_RETURNED gets propagated from the bottom to the 
top of the stack, and the lRP's PendingReturned flag ends up TRUE if any of the driv
ers ever called IoMarkIrpPending. 

IoCompleteRequest does not automatically propagate SL_PENDING_RETURNED 
across a completion routine, however. The completion routine must do this itself 
by testing the IRP's PendingReturned flag (that is, did the driver below me return 
STATUS_PENDING?) and then calling IOMarkIrpPending. If every completion routine 
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does its job, the SL_PENDING_RETURNED flag makes its way to the top of the stack 
just as if IoCompleteRequest had done all of its work. 

Now that I've explained these intricacies, you can see why it's important for 
dispatch routines to c~ll IoMarkIrpPending if they're going to explicitly return 
STATUS_PENDING and why completion routines should conditionally do so. If a 
completion routine were to break the chain, you'd end up with a thread waiting in 
vain on an event that's destined never to be signalled. Failing to see PendingReturned, 
IoCompleteRequest would act as if it were dealing with a same-context completion 
and therefore would not queue the APC that's supposed to signal the event. The same 
thing would happen if a dispatch routine were to omit the IoMarkIrpPending call and 
then return STATUS_PENDING. 

On the other hand, it's okay, albeit slightly inefficient, to call IoMarkIrpPending 
and then complete the IRP synchronously. All that will happen is that IoComplete
Request will queue an APC to signal an event on which no one will ever wait. (Logic 
is in place to make sure that the event object can't cease to exist before the call to 
KeSetEvent, too.) This is slower than need be, but it's not harmful. 

Do not, by the way, be tempted, in the hope of avoiding the boilerplate call to 
IoMarkIrpPending inside your completion routine, to code like this: 

status = IoCallDriver( ... ); 
if (status == STATUS_PENDING) 

IoMarklrpPending( ... ); II ~ DON'T DO THIS! 

The reason this is a bad idea is that you must treat the IRP pointer as poison 
after you give it away by calling IoCallDriver. Whatever receives the IRP can com
plete it, allowing something to call IoFreeIrp, which will render your pointer invalid 
long before you regain control from IoCallDriver. 

PASSING REQUESTS DOWN TO LOWER LEVELS 
The whole goal of the layering of device objects which WDM facilitates is that you 
want to be able to easily pass IRPs from one layer down to the next. Back in Chap
ter 2, "Basic Structure of a WDM Driver," I discussed how your AddDevice routine 
would contribute its portion of the effort required to create a stack of device objects 
with a statement like this one: 

pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo. pdo); 

where fdo is the address of your own device object and pdo is the address of 
the physical device object (PDO) at the bottom of the device stack. IoAttachDevice
ToDeviceStack returns to you the address of the device object immediately under
neath yours. When you decide to forward an IRP that you received from above, this 
is the device object you'll specify in the eventual call to IoCallDriver. 
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When you pass an IRP down, you have the additional responsibility of initial
izing the 10_STACK_LOCATION that the next driver will use to obtain its parameters. 
One way of doing this is to perform a physical copy, like this: 

IoCopyCurrentlrpStackLocationToNext(Irp); 
status = IoCallDriver(pdx->LowerDeviceObject. Irp); 

IoCopyCurrentIrpStackLocationToNext is a macro in WDM.H that copies 
all the fields in an 10_STACK_LOCATION-except for the ones that pertain to the I/O 
completion routines-from the current stack location to the next one. In previous 
versions of Windows NT, kernel-mode driver writers sometimes copied the entire stack 
location, which would cause the caller's completion routine to be called twice. (Re
call that your completion routine pointer goes in the stack location underneath yours.) 
For an explanation of how this particular trap could bite the unwary developer, see 
"Secrets of the Universe Revealed! How NT Handles I/O Completion" in The NT In
sider (May 1997, vol. 4, no. 3). The loCopyCurrentIrpStackLocationToNext macro, 
which is new with the WDM, avoids the problem. 

Driver writers that don't care what happens to the IRP after they pass it down often 
use a shortcut to get around actually copying a stack location. In such a situation, they 
won't be installing a completion routine-I just said they don't care what happens to 
the IRP. Refer to Figure 5-8 for an illustration of the timing of events in this case. 

r------------

I I 

I We call1oCallDriver u: 

___ ,....: We return a status code 
I 

I/O Manager calls 
next driver's dispatch routine 

V 
Dispatch routine returns 

pretty soon with status code 

,,------------

Time passes ... 

! 
Something calls 

10CompieteRequest 

Figure 5·8. Passing an IRP down and ignoring its ending status. 
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There's no reason to spend the machine cycles to copy your stack location to 
the next location-the one you already have contains the parameters you want the 
next driver to see as well as whatever completion pointer the driver above you might 
have specified. You therefore use the following shortcut: 

NTSTATUS ForwardAndForget(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = CPDEVICE_EXTENSION) fdo->DeviceExtension; 
IoSkipCurrentlrpStackLocation(Irp); 
return IoCallDriver(pdx->LowerDeviceObject. Irp); 
} 

The shortcut is in the function (actually a macro) misleadingly named IoSkip
CurrentlrpStackLocation. What this macro does is retard the IRP's stack pointer 
by one position. 10CallDriver will immediately advance the stack pointer. The net 
effect is to not change the stack pointer. When the next driver's dispatch routine calls 
10GetCurrentirpStackLocation, it will retrieve exacdy the same IO_STACK_LOCATION 
pointer that we were working with, and it will thereby process exacdy the same 
request (same major and minor function codes) with the same parameters. 

You'll notice that the array of IO_STACK_LOCATIONs contains an entry at the 
very bottom that won't be used in this scenario. In fact, if drivers underneath us play 
the same trick, there might be more than one location that won't be used. That's not 
a problem, though-it just means that something allocated more stack locations than 
it needed to. It's not a problem that the stack gets unwound a little bit quicker dur
ing completion processing, either. 10CompleteRequest doesn't use any absolute in
dices or pointers when it unwinds the stack. It just starts at whatever the current 
location is when it gains control and works its way upward calling completion rou
tines. All the completion routines that got installed will get called, and the then-current 
stack locations will be the ones that their drivers were expecting to work with. 

The explanation of why 10SkipCurrentirpStackLocation works is so tricky that 
I thought an illustration might help. Figure 5-9 illustrates a situation in which three 
drivers are in a particular stack: yours (the functional device object [FDO]) and two 
others (an upper filter device object [FiOO] and the PO~). In the ftrst picture (a), you 
see the relationship between stack locations, parameters, and completion routines 
when we do the copy step with 10CopyCurrentirpStackLocationToNext. In the sec
ond picture (b), you see the same relationships when we use the IoSkipCurrent
IrpStackLocation shortcut. In the second picture, the third an'd last stack location is 
fallow, but nobody gets confused by that fact. 
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Figure 5·9. Comparison of copying vs. skipping I/O stack locations. 

CANCELLING 1/0 REQUESTS 

200 

Just as happens with people in real life, programs sometimes change their mind about 
the I/O requests they've asked you to perform for them. We're not talking about simple 
fickleness here. Applications might issue requests that will take a long time to com
plete and then terminate, leaving the request outstanding. Such an occurrence is 
especially likely in the WDM world, where the insertion of new hardware might 
require us to stall requests while the Configuration Manager rebalances resources or 
where you might be told at any moment to power down your device. 

To cancel a request in kernel mode, the creator of the IRP calls IoCancelIrp. 
The operating system automatically calls IoCanceUrp for every IRP that Qelongs to a 
thread that's terminating with requests still outstanding. A user-mode application can 
call Cancello to cancel all outstanding asynchronous operations issued by a given 
thread on a file handle. IoCancelIrp would like to simply complete the IRP it's given 



Chapter 5 The 110 Request Packet 

with STATUS_CANCELLED, but there's a hitch: it doesn't know where you have salted 
away pointers to the IRP, and it doesn't know for sure whether you're currently pro
cessing the IRP. So it relies on a cancel routine you provide to do most of the work 
of cancelling an IRP. 

It turns out that a call to 10CancelIrp is more of a suggestion than a mandate. 
It would be nice if every IRP that something tried to cancel really got completed with 
STATUS_CANCELLED. But it's okay if a driver wants to go ahead and Hnish the IRP 
normally if that can be done relatively quickly. You should provide a way to cancel 
I/O requests that might spend significant time waiting in a queue between a dispatch 
routine and a Startlo routine. How long is signiflcant is a matter for your own sound 
judgment; my advice is to err on the side of providing for cancellation because it's 
not that hard to do and makes your driver Ht better into the operating system. 

fii Nerd 
[iAlert 

The explanation of how to put cancellation logic into your 
driver is unusually intricate, even for kernel-mode program
ming. You might want to simply cut to the chase and read the 
code samples without worrying overmuch about how they work. 

If It Weren't for Multitasking ••• 
There's an intricate synchronization problem associated with cancelling IRPs. Before 
I explain the problem and the solution, I want to describe the way cancellation would 
work in a world where there was no multitasking and no concern with multiproces
sor computers. In that Utopia, several pieces of the I/O Manager would Ht together 
with your Startlo routine and with a cancel routine you'd provide, as follows: 

• When you call 10StartPacket, you specify the address of a cancel routine 
that gets saved in the IRP. When you call 10StartNextPacket (from your 
DPC routine), you specify TRUE for the Boolean argument that indicates 
that you're going to use the standard cancellation mechanism. Before 
10StartPacket or 10StartNextPacket calls your Startlo routine, it sets the 
CurrentIrp Held of your device object to point to the IRP it's about to send. 
10StartNextPacket sets CurrentIrp to NULL if there are no more requests 
in the queue. 

• One of the first things your Startlo routine does is set the cancel routine 
pointer in the IRP to NULL. 

• 10CancelIrp unconditionally sets the Cancel flag in the IRP. Then it checks 
to see whether the IRP specffies a cancel routine. In between the time you 
call 10StartPacket and the time your Startlo routine gets control, the can
cel routine pointer in the IRP will be non-NULL. In this case, 10CancelIrp 
calls your cancel routine. You remove the IRP from the queue where 
it currently resides-this is the DeviceQueue member of the device 
object-and complete the IRP with STATUS_CANCELLED. After Startlo 
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starts processing the IRP, however, the cancel routine pointer will be NUll 
and IoCancelIrp won't do anything more. 

Synchronizing Cancellation 

202 

Unfortunately for us as programmers, we write code for a multiprocessing, multitask
ing environment in which effects can sometimes appear to precede causes. There are 
at least three race conditions in the logic I just described. Figure 5-10 illustrates these 
race conditions, and I'll explain them here: 

• Suppose IoCancelIrp gets as far as setting the Cancel flag and then (on 
another CPU) IoStartNextPacket dequeues the IRP and sends it to Startlo. 
Since IoCancelIrp will soon send the same IRP to your cancel routine, your 
Startlo routine shouldn't do anything else with it. 

• It's possible for two actors (your cancel routine and IoStartNextPacket) to 
both try, more or less simul~eously, to remove the same IRP from the 
request queue. That obviously won't work. 

• It's possible for Startlo to get past the test for the Cancel flag, the one that 
you're going to put in because of the first race, and for IoCancelIrp to sneak 
in to test the cancel routine pointer before Startlo can manage to nullify that 
pointer. Now you've got a cancel routine that will complete a request that 
something (probably your OPC routine) will also try to complete. Oops! 

The standard way of preventing these races relies on a systemwide spin lock 
called the cancel spin lock. A thread that wants to cancel an IRP acquires the spin 
lock once inside IoCancelIrp and releases it inside the driver cancel routine. A thread 
that wants to start an IRP acquires and releases the spin lock twice: once just before 
calling Startlo and again inside Startlo. The code in your driver will be as follows: 

VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

KIRQL oldirql; 
IoAcquireCancelSpinLock(&oldirql); 
if (lrp 1= fdo->CurrentIrp II Irp->Cancel) 

{ 

IoReleaseCancelSpinLock(oldirql); 
return; 
} 

else 
{ 

} 

IoSetCancelRoutine(Irp. NULL); 
IoReleaseCancelSpinLock(oldirql); 
} 
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VOID OnCancelCPDEVICE_OBJECT fdo. PIRP Irp) 
{ 

if Cfdo->CurrentIrp == Irp) 
{ 

IoReleaseCancelSpinLock(Irp->CancelIrql); 
IoStartNextPacketCfdo. TRUE); 
} 

else 
{ 

KeRemoveEntryDeviceQueueC&fdo->DeviceQueue. 
&Irp->Tail.Overlay.DeviceQueueEntry); 

IoReleaseCancelSpinLockCIrp->CancelIrql); 
} 

CompleteRequestCIrp. STATUS_CANCELLED. 0); 
} 

CPU A 

----------------------
1 loCancelirp 
1 

1 1 loStartNextPacket 
1 

I. I 1 

Oops! 
Figure 5·10. Race conditions during IRP cancellation. 

CPUB 
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AVOIDING THE GLOBAL CANCEL SPIN LOCK 

Microsoft has identified the global cancel spin lock as a significant bottleneck in 
multiple CPU systems. You can see why it would be so. Every driver is poten
tially acquiring and releasing this lock several times for each IRP it processes, and 
no work can occur on a CPU while it's waiting for the lock. Microsoft Windows 
2000 now implements IoSetCancelRoutine as an atomic (that is, interlocked) 
exchange operation, and IoCancelIrp follows a precise sequence that allows some 
drivers to avoid using the global cancel spin lock altogether. Ervin Peretz's article 
"The Windows Driver Model Simplifies Management of Device Driver I/O Re
quests" (Microsoft SystemsJournal, January 1999), explains a way to support 
cancellation without using the cancel spin lock. I built on his ideas when I crafted 
the DEVQUEUE object described in the next chapter, "Plug and Play." 

Notwithstanding that it's a bad idea to rely on the global cancel spin lock 
if you can avoid it, sometimes you can't avoid it. Namely, when you're using 
the standard model for IRP processing. That's why I'm explaining the whole gory 
mess in this chapter. Plus, it's good for your character. 

Behind. the scenes, the system routines that are calling your code will be do
, ing something like the following. (This is not a copy of the actual Windows 2000 

source codeO 

VOID IoStartPacket(PDEVICE_OBJECT device. PIRP Irp. 
PULONG key. PDRIVER-CANCEL cancel) 
{ 

KIRQL oldirql: 
IoAcquireCancelSpinLock(&oldirql): 
IoSetCancelRout1ne(Irp. cancel): 
device-)CurrentIrp = Irp: 
IoReleaseCancelSpinLock(oldirql): 
device-)Dr1verObject-)DriverStartIo(device. Irp): 
} 

VOID IoStartNextPacket(PDEVICE_OBJECT device. BOOLEAN cancancel) 
{ 

KIRQL old1rql; 
if (cancancel) 

IoAcquireCancelSpinLock(&oldirql): 
PKDEVICE_QUEUE_ENTRY p = KeRemoveDeviceQueue(&device-)DeviceQueue»: 
PIRP Irp = CONTAININ~RECORD(p. IRP. Tail.Overlay.DeviceQueueEntry): 
device-)CurrentIrp = Irp; , 
if (cancancel) 

IoReleaseCancelSp1nLock(oldirql): 
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device->DriverObject->DriverStartlo(device. Irp); 
} 

BOOLEAN IoCancellrp(PIRP Irp) 
{ 

IoAcquireCancelSpinLock(&Irp->Cancellrql); 
Irp->Cancel ~ TRUE; 
PDRIVER-CANCEL cancel = IoSetCancelRoutine(Irp, NULL); 
if (cancel) 

{ 

(*cancel)(device. Irp); 
return TRUE; 
} 

IoReleaseCancelSpinLock(&Irp->Cancellrql); 
return FALSE; 
} 

It should be obvious that the real system routines do more than these sketches 
suggest. For example, IoStartNextPacket will be testing the return value from the 
KeRemoveDeviceQueue pointer to see whether it's NULL before just uncritically 
developing the IRP pointer with CONTAINING_RECORD. I've also left out the IoStart
NextPacketByKey routine, a sister routine to IoStartNextPacket that selects a request 
based on a sorting key. 

To prove that this code works, we need to consider three cases. Figure 5-11 on 
page 207 will help you follow this discussion. We're going to assume that code run
ning on CPU A of a multi-CPU computer wants to cancel a particular IRP and that 
code running on CPU B wants to start it. Since only two activities are going on with 
respect to this IRP Simultaneously, we don't need to worry about what might hap
pen if there were more than two CPUs. 

Case 1: CPU A Oets the Spin Lock First 
Suppose that CPU A gets past point 1 by acquiring the spin lock. It sets the Cancel 
flag and then tests to see whether there's a CancelRoutine for this IRP. The answer is 
Yes because the code that would nullify the pointer can't run yet without getting past 
the two acquisitions of the spin lock. So CPU A calls the cancel routine, dequeues 
the IRP, and then releases the spin lock. CPU B is now able to a~quire the spin lock 
at point 2 and proceeds to remove an IRP from the queue. But this isn't the same 
IRP-it's whatever IRP was next in the· queue. So CPU A will complete the IRP with 
STATUS_CANCELLED while CPU B goes ahead and initiates the next queued request. 

Case 2: CPU B Oets the Spin Lock Just Before CPU A Tries 
Now suppose that CPU B manages to get past point 2 and owns the spin lock just 
before CPU A tries to acquire the lock. CPU B will dequeue the IRP and set the device 
object's CurrentIrp to point to this IRP. Then it releases the spin lock (briefly) while 
it calls Startlo. In the meantime, CPU A grabs the spin lock at 1, which will keep CPU B 
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from advancing past 3. CPU A sets the Cancel flag and calls the cancel routine. The . 
. cancel routine sees that this is the current IRP, so it releases the spin lock. CPU B is 
now free to advance past point 3 inside the StartIo routine. It will see that the Can
cel flag is set in this IRP, so it will release the lock and just return. At this exact point, 
the device is idle. CPU A continues executing the cancel routine, however, which calls 
IoStartNextPacket and then completes the cancelled request. 

It's very important not to call IoStartNextPacket while still owning the cancel spin 
lock because, as you can see by looking at the sketch of that function, it will acquire 
the lock on its own behalf. If we made the call to IoStartNextPacket while owning the 
lock, our CPU would deadlock because spin locks can't be recursively acquired. 

The code in StartIo also guards against another subtle race condition. You might 
have wondered why StartIo tests the CurrentIrp field before testing the Cancel flag. 
(It's part of the C language specification, by the way, that a Boolean operation be 
evaluated left-to-right with a short circuit when the result is known. If the first part 
of the if test-Irp !- Currentlrp-is TRUE, the generated code won't go on to evalu
ate the second part: Irp->Cancel.) Suppose that CPU A manages to completely fin
isb completing this IRP before CPU B makes it to point 3. Something on CPU A would 
call IoFreeIrp to release the IRP's storage. CPU B's Irp pointer would then become 
stale, and it would be unsafe to dereference the pointer. 

Take another look at the previous code for IoStartNextPacket, and notice that 
it alters the device object's CurrentIrp pointer under the umbrella of the cancel spin 
lock. Our cancel routine calls IoStartNextPacket before it completes the IRP. There
fore, it's certain that one of the following two situations· will occur: either CPU B's 
StartIo will get the spin lock before CPU A's IoStartNextPacket, in which case the IRP 
pointer is safe and the Cancel flag will be found set, or CPU B's StartIo will get the 
spin lock after· CPU A's IoStartNextPacket, in which case the Irp variable won't be 
equal to CurrentIrp anymore-IoStartNextPacket changed it-and CPU B won't 
dereference the pointer. 

The close reasoning of the preceding two paragraphs illustrates ~t, if you don't 
want to call IoStartNextPacket (or IoStartNextPacketByKey) from the cancel routine, 
you must be sure to set CurrentIrp to NULL while owning the cancel spin lock. 

Whew! No wonder we cut and paste sample code so much! 

Case 3: CPU B Gets the Spin Lock Twice 
The third and last case to consider is the one in which CPU B manages to get all the 
way past point 3 and therefore owns the spin lock inside StartIo before CPU A ever 
tries to acquire the spin lock at point 1. In this case, StartIo will nullify the 
CancelRoutine pointer in the IRP before releasing the spin lock. CPU A could get as 
far as setting the Cancel flag in the IRP, but it will never call the cancel routine be
cause the pointer is now NULL. Mind you, CPU B now goes ahead and processes the 
IRP to completion even though the Cancel flag is set, but this will be okay if it can 
be done rapidly. 
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CPUB 

Figure 5-11. Using the cancel spin lock to guard cancellation logic. 

Closely allied to the subject of IRP cancellation is the I/O request with the major 
function code IRP_ML CLEANUP. To explain how you should process this request, I 
need to give you a little additional background. 
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When applications and other drivers want to access your device, they first open 
a handle to the device. Applications call CreateFile to do this; drivers call 
ZwCreateFile. Internally, these functions create a kernel file object and send it to 
your driver in an IRP _MLCREATE request. When whatever opened the handle is done 
accessing your driver, it will call another function, such as CloseHandle or ZwClose. 
Internally, these functions send your driver an IRP _MLCLOSE request. Just before 
sending you the IRP _MLCLOSE, however, the I/O Manager sends you an 
IRP _ML CLEANUP so that you can cancel any IRPs that belong to the same file ob
ject but which are still Sitting in one of your queues. From the perspective· of your 
driver, the one thing all the requests have in common is that the stack location you 
receive points to the Same file object in every instance. 

Figure 5-12 illustrates your responsibility when you receive IRP _MLCLEANUP. 

VO Manager 
is closing this, 

.'eobject ~ 

• 

Queued 
IRPs 

Figure 5-12. Driver responsibility for IRP _MLCLEANUP. 

If you're using the standard model, your dispatch function might look some
thing like this: 

NTSTATUS DispatchCleanup(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PIO_STACICLOCAHON stack = IoGetCurrentlrpStackLocation(Irp); 
PFILE_OBJECT fop = stack->FileObject; 
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LIST_ENTRY cancellist; 
InitializeListHead(&cancellist); 

KIRQL oldirql; 
IoAcquireCancelSpinLock(&oldirql); 
KeAcquireSpinLockAtDpcLevel(&fdo->DeviceQueue.Lock); 

PLIST_ENTRY first = &fdo->DeviceQueue.DeviceListHead; 
PLIST_ENTRY next; 

for (next = first->Flink; next != first; ) 
{ 

PIRP QueuedIrp = CONTAININ~RECORD(next, 
IRP, Tail.0verlay.ListEntry); 

PIO_STACK-LOCATION QueuedIrpStack = 
IoGetCurrentIrpStackLocation(QueuedIrp); 

PLIST_ENTRY current = next; 
next = next->Flink; 

if (QueuedIrpStack->FileObject != fop) 
continue; 

IoSetCancelRoutine(QueuedIrp, NULL); 
RemoveEntryList(current); 
InsertTailList(&cancellist, current); 
} 

KeReleaseSpinLockFromDpcLevel(&fdo->DeviceQueue.Lock); 
IoReleaseCancelSpinLock(oldirql)~ 

while (!IsListEmpty(&cancellist» 
{ 

next = RemoveHeadList(&cancellist); 
PIRP CancelIrp = CONTAINING_RECORD(next, IRP, Tail.Overlay.ListEntry); 
CompleteRequest(CancelIrp, STATUS_CANCELLED, 0); 
} 

return CompleteRequest(Irp, STATUS_SUCCESS, 0); 
} 

1. We're going to look for queued IRPs that belong to the same me object 
as the one that this IRP _MLCLEANUP belongs to. The me object is men
tioned in the stack location. 

2. Our strategy will be to pull the IRPs we're going to cancel off the main 
device queue while holding two spin locks. Since there might be more 
than one IRP, it's convenient to construct another (temporary) list of them, 
so we initialize a list head here. 

209 



Programming the Microsoft Windows Driver Model 

210 

3. We need to hold two spin locks to safely extract IRPs from our queue. We 
acquire the global cancel spin lock to prevent interference by IoCancelIrp. 
We also acquire the spin lock associated with the devic~ queue to prevent 
interference by ExInterlockedXxxUst operations on the same queue. 

4. This loop allows us to examine each IRP that's on our device queue. We 
know that no one can be adding or removing IRPs from the queue be
cause we own the spin lock that guards the queue. We can therefore use 
regular (noninterlocked) list primitives to access the list. 

5. When we fmd an IRP belonging to the same file object, we remove it from 
the device queue and add it to the temporary cancellist queue. We also 
nullify the cancel routine. pointer to render the IRP noncancellable. Notice 
that we examine the stack for the queued IRP to see which file object the 
IRP belongs to. It would be a mistake to look at the queued IRP's opaque· 
TaiLOverlay.OriginalFlleObject field-the I/O Manager uses that field to 
tell it when to dereference a file object during IRP completion. It can some
times be NULL, even when the IRP belongs to a particular file object. The 
stack location, on the other hand, should hold the right file object pointer 
if whatever created the IRP did its job properly. 

6. We release our spin locks at the end of the loop. 

7. This loop actually cancels the IRPs we selected during the first loop. At 
this point, we no longer hold any spin locks, and it will therefore be 
perfectly okay to call time-consuming and lock-grabbing routines like 
IoCompleteRequest. 

8. This final call to IoCompleteRequest pertains to the IRP _MLCLEANUP 
request itself, which we always succeed. 

FILE OBJECTS 

Ordinarily, just one driver (the function driver, in fact) in a device stack imple
ments all three of the following requests: IRP _MLCREATE, IRP _MLCLOSE, and 
IRP _MLCLEANUP. The I/O Manager creates a file object (a regular kernel object) 
and passes it in the I/O stack to the dispatch routines for all three of these IRPs. 
Anything that sends an IRP to a device should have a pointer to the same file 
object and should insert that pointer into the I/O stack as well. The driver that 
handles these three IRPs acts as the "owner" of the file object in some sense, 
in that it's the driver that's entitled to use the FsContext and FsContext2 fields 
of the object. So, your DispatchCreate routine could put something into one 
of these context fields for use by other dispatch routines and for eventual 
cleanup by your DispatchOose routine. 
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The real point of the code I just showed you is the first loop, where we remove 
the IRPs we want to cancel from the device queue. Owning the 'device queue's spin 
lock guarantees the integrity of the queue itself. We also need to hold the global cancel 
spin lock. If we didn't hold it, something could call 10Cancelirp for the same IRP we're 
removing from the queue, and 10Cancelirp could go on to call our cancel routine. 
Our cancel routine would block while trying to dequeue the IRP. (Refer to the ear
lier example of a cancel routine in the "Synchronizing Cancellation" section.) As soon 
as we release the queue lock, our cancel routine would go on to incorrectly attempt 
to remove the IRP from the queue and complete it. Both of those steps would be 
incorrect because we're doing exactly the same two things in this dispatch routine. 
The solution is to prevent 10CancelIrp from even starting down this road by taking 
the global spin lock. By the time 10CancelIrp is able to proceed past its own acqui
sition of the global spin lock, the IRP will appear noncancellable. 

You might notice that we acquire the global cancel spin lock Hrst and then the 
device queue. Acquiring these locks in the other order might lead to a deadlock: our 
cancel routine and routines in the I/O Manager (such as 10StartPacket) acquire the 
global lock and then call KeXxxDeviceQueue routines that acquire the queue lock. 
We don't want there to be a situation in which we acquire the queue lock and then 
block, waiting for the global lock to be released by something that's waiting for the 
queue lock. 

In an earlier Sidebar, "Avoiding the Global Cancel Spin Lock," I mentioned that 
the global cancel spin lock is a signiftcant system bottleneck. The fact that your 
IRP _MLCLEANUP routine needs to hold that spin lock long enough to examine the 
entire IRP queue only makes the bottleneck worse. Imagine every driver needing 
to claim this lock for every call to 10StartPacket, 10StartNextPacket, Startlo, and 
DispatchCleanup--even when no one is trying to perform the relatively unusual 
activity of actually cancelling an IRP! Furthermore, as the system becomes more slug
gish, IRP queues will tend to build and cleanup dispatch routines will take longer to 
examine their queues, thereby increasing contention for the global cancel spin lock 
and slowing the system even further. 

Because of the performance bottleneck, you really want to avoid using the glo
bal cancel spin lock if you can. Doing so requires you to manage your own IRP 
queues. How to do that will be one of the subjects of the next chapter. 

MANAGING YOUR OWN IRPS 
Now that I've explained all of the infrastructure for handling IRPs, I can return to the 
subject of how to create IRPs in your own driver. I already mentioned that there are 
four different service functions you can call to create an IRP,but I had to defer until 
now a discussion of how you'd choose among them. The factors that bear on your 
choice appear at the top of the following page. 
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• IoBuildAsynchronousFsdRequest and IoBuildSynchronousFsdRequest 
can be used to build IRPs with only the major function codes listed in 
Table 5-3. 

• IoBuildDeviceIoControlRequest can be used to build IRPs with only one 
of the major function codes IRP _MLDEVlCE_CONTROL and IRP _ML 
INTERNAL_DEVICE_CONTROL. 

• You need to be sure that something will release the memory occupied 
by the IRP and by its various hangers-on when something finally calls 
IoCompleteRequest. 

• You might need to plan ahead so that it will be possible for you to can
cel the IRP by calling IoCancelIrp. 

Major Function Code 

IRP_MLREAD 

IRP _ML WRITE 

IRP _MLFLUSH_BUFFERS 

IRP _MLSHlITDOWN 

IRP_MLPNP 

IRP _MLPOWER 

Table 5-3. IRP tYPes for IoBuildXxxFsdRequest. 

Using loBuildSynchronousFsdRequest 

212 

The easiest scenario to explain is the one involving IoBuildSynchronousFsdRequest. 
You call this function like this: 

PIRP Irp ~ IoBuildSynchronousFsdRequest(MajorFunction, DeviceObject, 
Buffer, Length, StartingOffset, Event, IoStatusBlock); 

MajorFunction (ULONG) is the major function code for the new IRP. (See 
Table 5-3.) DeviceObject (PDEVlCE_OBJECT) is the address of the device object to 
which you'll initially send the IRP. (See the last section of this chapter, "Where Do Device 
Object Pointers Come From?" for more information about this parameter.) For read and 
write requests, you must supply the Buffer (PYOID), Length (ULONG), and 
StartingOffset (PLARGE_INTEGER) parameters. Buffer is the address of a kernel-mode 
data buffer, Length is the number of bytes you want to read or write, and StartingOffset 
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is the byte location within the target me where the read or write operation should 
commence. For the other requests that you can build with this function, these three 
parameters are ignored. (That's why the function prototype in WDM.H classifies them 
as "optional," but they're not optional for reads and writes.) The I/O Manager assumes 
that the buff~r address you supply is valid in the current process context. It's up to you 
to make sure that it is valid. 

Event (PKEVENT) is the address of an event object that 10CompieteRequest 
should set when the operation completes, and IoStatusBlock (PIO_STATUS_BLOCK) 
is the address of a status block in which the ending status and information will be 
saved. The event object and status block need to be in memory that will persist at 
least until the operation completes. 

If you've created a read or write IRP, you don't need to do anything else before 
submitting the IRP. If you've created another type of IRP, you'll need to complete 
the first stack location with additional parameter information; MajorFunction 
has, however, already been set. You should not set the undocumented field 
Tail.Overlay.OriginaIFileObject-cioing so will cause a file object to be incorrectly 
dereferenced on completion. There's probably no reason to set RequestorMode, be
cause it's already been initialized to KernelMode and you've already validated any 
parameters you're passing in the IRP. (I'm mentioning t;hese two minor points only 
because I recall reading a pUblished discussion of this service function once upon a 
time that said you should do the two things I just told you not to do.) You can now 
submit the IRP and wait for it to finish: 

PIRP Irp. = IoBuildSynchronousFsdRequest( .•. ); 
NTSTATUS status = IoCallDriver(DeviceObject, Irp); 
if (status == STATUS_PENDING) 

KeWaitForSingleObject(Event. Executive, Kernel Mode. FALSE. NULL); 

Once the IRP finishes, you can inspect the ending status and inforlll4tion val
ues in your I/O status block. 

It's obvious, isn't it, that you must be running at PASSIVE_LEVEL in a nonarbitrary 
thread context before you wait for the operation to complete? 

Cleaning Up 
I said earlier that you needed to plan for how the memory occupied by the IRP would 
get released and that you might have to plan for cancelling an IRP. The first of these 
two problems is quite easy to solve when you use 10BuildSynchronousFsdRequest 
to build the IRP: the I/O Manager will release memory for you automatically as part 
of completing the IRP. In fact, if the request is for a read or write and needs a sys
tem buffer or a memory descriptor list-see Chapter 7-the I/O Manager will auto
matically clean those up, too .. The overall convenience. of this function is a major 
reason why you might want to call it. 
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Although cleanup from a synchonous IRP is easy (because you needn't do 
anything about it), planning for cancellation is anything but. Read on ... 

Cancelling a Synchronous IRP 
Only two entities in the system are allowed to cancel IRPs. One entity is the I/O Man
ager code that implements so-called thread rundown when a thread terminates while 
I/O requests are still outstanding. The other entity is the driver that originated the 
IRP in the fIrst place. But great care is required to avoid an obscure, low-probability 
problem. Just for the sake of illustration, suppose that you wanted to impose an 
overall 5-second timeout on an I/O operation. If the time period elapses, you want 
to cancel the operation. Here is some naive code that, you might suppose, would 
execute this plan: 

SomeFunct1on() 
{ 

KEVENT event: 
IoInitializeEvent(&~vent •... ): 
PIRP Irp = IoBuildSynchronousFsdRequest( ... ): 
NTSTATUS status = IoCallDriver(DeviceObject. Irp): 
if (status == STATUS_PENDING) 

} 

{ 

LARGE_INTEGER timeout: 
timeout.QuadPart = -5 * 10000000: 
if (KeWaitForSingleObject(&event. Executive. KernelMode. 

} 

FALSE. &timeout) == STATUS_TIMEOUT) 
{ 

IoCancelIrp(Irp): 1/ + don't do thisl 
KeWaitForSingleObject(&event. Executive. KernelMode. FALSE. NULL): 
} 

The second call to KeWaitForSingleObject makes sure that the event object doesn't 
pass out of scope before the I/O Manager is done using it. Whoever owns the IRP is 
supposed to complete it quickly, so any inordinate delay that might happen at this 
point is somebody else's bug. (Easy for you and me to say, huh?) 

The problem with the preceding code is truly miniscule. Imagine that someone 
manages to call 10CompieteRequest for this IRP right around the same time we de
cide to cancel it by calling 10CancelIrp. Maybe the operation finishes shortly after 
the 5-second timeout terminates the first KeWaitForSingleObject, for example. 
10CompieteRequest initiates a process that fmishes with a call to 10FreeIrp. If the call 
to 10Freelrp were to happen before 10CancelIrp is done mucking about with the IRP, 
you can see that 10CancelIrp could inadvertently corrupt memory when it touches 
the CancelIrql, Cancel, and CancelRoutine fields of the IRP. It's also possible, depend
ing on the exact sequence of events, for 10CancelIrp to call a cancel routine, just before 
someone clears the CancelRoutine pointer in preparation for completing the IRP, and 
for the cancel routine to be in a race with the completion process. 
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It's very unlikely that the scenario I just described will happen. But, as James 
Thurber once said in connection with the chances of being eaten by a tiger on Main 
Street (one in a million, as I recall), "Once is enough." This kind of bug is almost 
impossible to find, so you want to prevent it if you can. In current releases of 
Windows 98 and Windows 2000, a common technique relies on the fact that the call 
to 10Freelrp happens in the context of an APC in the thread that originates the IRP. 
You make sure you're in that same thread, raise IRQL to APC_LEVEL, check whether 
the IRP has been completed yet, and (if not) call loCancellrp. In current systems, you 
can be sure of blocking the APC arid the problematic call to loFreelrp. See the 
USBCAMD sample in the DDK, for example. I've also seen this technique discussed 
extensively on line and in a technical note on Compuware Numega's Web site. 

You should notrely on future releases of Windows always using an APC to 
perform the cleanup for an IRP. Consequently, you should not rely on boosting IRQL 
to APC_LEVEL as a way to avoid a race between 10CancelIrp and 10FreeIrp. By "should 
not" here, I really mean to say that the operating system might conceivably change 
in some hypothetical future release in such a way that this technique will no longer 
suffice to guard against the race. Wink, wink, if you get my drift. So, I'll show you 
another approach. 

The key thing we need to accomplish in a solution to the race is to prevent the 
call to 10Freelrp from happening until after any possible call to loCancellrp. We do 
this by means of a completion routine that returns STATUS_MORE_PROCESSING_ 
REQUIRED, as follows: 

SomeFuncti on() 
{ 

KEVENT event: 
Iolnit1alizeEvent(&event, ... ): 
PIRP Irp = IoBuildSynchronousFsdRequest( .. ,): 
IoSetCompletfonRoutfne(Irp. OnComplete. (PVOID) &event. TRUE. TRUE. 

TRUE) : 
NTSTATUS status = IoCallDriver( ... ): 
if (status == STATUS_PENDING) 

{ 

LARGE_INTEGER timeout: 
timeout.QuadPart = -5 * 10000000: 
if (KeWaitForSingleObject(&event, Executive, KernelMode, 

FALSE, &timeout) == STATUS_TIMEOUT) 
{ 

IoCancelIrp(Irp): II ~ okay in this context 
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL): 

} 

} 

(conttnued) 
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KeClearEvent(levent): 
IoCompleteRequest(Irp. IO_NO_INCREMENT): 
KeWa1.tForS1 ngl eObject(levent. Executive. Kernel Mode. FALSE. NULL): 
} 

NTSTATUS OnComplete(PDEVICE-OBJECT junk. PIRP Irp. PYOID pev) 
{ 

KeSetEvent«PKEVENT) pev. IO_NO_INCREMENT. FALSE): 
return STATUS-HORE-PROCESSIN~REOUIRED: 
} 

The new code in boldface prevents the race. Suppose IoCallDriver returns STATUS_ 
PENDING. In a normal case, the operation will complete normally, and some lower
level driver will call IoCompleteRequest. Our completion routine gains control and 
signals the event on which our mainline is waiting. Since the completion routine 
returns STATUS_MORE_PROCESSING~REQUIRED, IoCompleteRequest will then 
stop working on this IRP. We eventually regain control in our SomeFunction and 
notice that our wait terminated normally. The IRP hasn't yet been cleaned up, 
though, so we need to call IoCompleteRequest a second time to trigger the nor
mal cleanup mechanism. We still need to make sure that our event object doesn't 
pass out of scope too soon, though, so we need to perform a second wait on our 
event object . 

. Now suppose we decide we want to cancel the IRP and that Thurber's tiger is 
loose so we have to worry about the IRP being IoFreeIrp'ed out from under us. Our 
completion routine will prevent the cleanup mechanism from running by returning 
STATUS_MORE_PROCESSING_REQUIRED. IoCancelIrp can stomp away to its heart's 
content on our hapless IRP without causing any harm. The IRP can't be released 
until the second call to IoCompleteRequest from our mainline, and that can't hap
pen until IoCancelIrp has safely returned. 

Using lo411ocatelrp 
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If you're willing to work a little harder, you can use IoAllocateIrp to build an IRP 
of any type: 

PIRP Irp = IoAllocatelrp(StackS;ze. ChargeQuota): 

where StackSize (CCHAR) is the nu~ber of I/O stack locations to allocate with the 
IRP, and Chal'geQuota (BOOLEAN) indicates whether the process quota should be 
charged for the memory allocation. Normally, you get the StackSize parameter from 
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the device object to which you're going to send the IRP, and you specify FALSE for 
the ChargeQuota argument. For example: 

PDEVICE_OBJECT DeviceObject: 
PIRP Irp = IoAllocateIrp(DeviceObject->StackSize. FALSE): 

When you use IoAllocateIrp, you must install a completion routine, and it must 
return STATUS_MORE_PROCESSING_REQUIRED. Furthermore, you're responsible for 
releasing the IRP and any associated objects. If you don't plan to cancel the IRP, your 
completion routine might look like this: 

NTSTATUS OnComplete(PDEVICE_OBJECT DeviceObject. PIRP Irp. PVOID Context) 
{ 

IoFreeIrp(lrp) : 
return STATUS_MORE_PROCESSING_REQUIRED: 
} 

An IRP created by IoAllocateIrp won't be cancelled automatically if the origi
nating thread terminates. 

LOOSE ENDS 
I'll close this chapter by describing some other things you need to know that I didn't 
cover earlier. These include two more ways of building IRPs and a word or two about 
how to locate a device object to use as a target for IoCallDriver. 

Using loBuildDeviceloControlRequest 
I'll discuss IoBulldDeviceIoControlRequest in Chapter 9 when I discuss how to 
perform I/O control operations. As far as cleanup and cancellation are concerned, IRPs 
created with this function are like ones created by IoBuildSynchronousFsdRequest. 

Using loBuildAsynchronousFsdRequest 
IoBulldAsynchronousFsdRequest is another routine that you can use to build one 
of the IRPs listed in Table 5-3. The prototype of the function is as follows: 

PIRP IoBuildAsynchronousFsdRequest(ULONG MajorFunction. 
PDEVICE_OBJECT DeviceObject. PVOID Buffer. ULONG Length, 
PLARGE_INTEGER StartingOffset. PIO_STATUS_BLOCK IoStatusBlock): 

This prototype differs from that for IoBuildSynchronousFsdRequest in that there's 
no Event argument and the IoStatusBlock pointer can be NULL. The DDK goes on 
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to tell you to install a completion routine whose job will be to call 10Freelrp on this 
IRP and return STATUS_MORE_PROCESSING_REQUIRED. 

I wondered about the different treatment for IRPs built with the two 10Build
XxxFsdRequest functions, so I dug a little deeper. The code for these two functions 
is essentially identical. In fact, 10BuildSynchronousFsdRequest calls 10BuildAsynchro
nous FsdRequest as a subroutine. I'm not telling you anything here that you couldn't 
find out on your own after five minutes with a kernel debugger. 10BuildSynchronous
FsdRequest's only additional actions are saving your event pointer in the IRP (rea
sonable, since that's how the I/O Manager can find it to signal it) and putting the IRP 
on the queue of IRPs for the current thread, wliich allows the IRP to be cancelled 
when the thread dies. 

I've been able to discern only two situations in which you'd want to call 10Build
AsynchronousFsdRequest. The first situation is when you find yourself executing in 
an arbitrary thread context and need to create an IRP. 10BuildAsynchronousFsdRequest . 
is ideal for this purpose, since termination of the current (arbitrary) thread should 
not result in cancelling the new IRP. The other situation is when you're running at 
APC_LEVEL in a nonarbitrary thread and need to synchronously-yes, syncbro
nousry-execute an IRP. 10BuildSynchronousFsdRequest won't work for this purpose 
because the IRQL blocks the APC that would normally set the event. So you call 
10BuildAsynchronousFsdRequest and wait on an event that your completion routine 
will set. This second case won't come up often, if ever, for a device driver. 

In a general case, the completion routine you use with 10BuildAsynchronous
FsdRequest has to do quite a bit more work than just call 10Freelrp. In fact, you need 
to duplicate the functionality of the internal routine (IopCompleteRequest) that the 
I/O Manager uses to clean up completed IRPs. You can't just create an IRP with 
10BuildAsynchronousFsdRequest and launch it into the void, relying on the I/O 
Manager to clean up. Since the cleanup requires an APC in the current releases of 
Windows 98 and Windows 2000, and since it would be incorrect to depend on exe
cuting an APC in an arbitrary thread, the I/O Manager doesn't do the cleanup for you. 
You must do all the cleanup yourself. 

If the device object to which you send the IRP has the DO_DIRECLIO flag set, 
10BuildAsynchronousFsdRequest will create an MDL that you must release with code 
like the following: 

NTSTATUS· CompletionRoutine( ... ) 
{ 

PMDL mdl: 
while ((mdl = Irp->MdlAddress» 

{ 

Irp->MdlAddress = mdl~>Next: 
IoFreeMdl (mdl): 
} 

IoFreelrp(Irp): 
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return STATUS_MORE_PROCESSIN~REQUIRED: 
} 

If the device object to which you send the IRP has the DO_BUFFERED_IO flag 
set, 10BuildAsynchronousFsdRequest will allocate a system buffer that you need to 
release. If you're doing an input operation, you also have to copy the input data from 
the system buffer to your real input buffer-before releasing the memory! If you need 
to do this copy, you need to be sure that the real buffer is in nonpaged memory 
because completion routines might run at DISPATCH_LEVEL. You also need to be sure 
that you've got a kernel address for the buffer, because completion routines run in 
arbitrary thread context. If these restrictions aren't enough to discourage you from 
using 10BuildAsynchronousFsdRequest with a DO_BUFFERED_IO device, consider 
that you must also test the undocumented flag bits IRP _BUFFERED_10, IRP_ 
INPUT_OPERATION, and IRP _DEALLOCATE_BUFFER to discover what to do in your 
completion routine. I'm not going to show you the code to do this because I took a 
solemn pledge to avoid undocumented tricks in this book. 

My advice is to use 10BuildAsynchronousFsdRequest only when you know that 
the device you're sending the IRP to doesn't use DO_BUFFERED_IO. 

Where Do Device Object Pointers Come From? 
The call to 10CallDriver requires a PDEVICE_OBJECT as its first argument. You might 
be wondering where you get a pointer to a device object so that you can send an 
IRP to something. 

One of the obvious ways to get a pointer to a device object is by calling 
IoAttachDeviceToDeviceStack, which is something that every WDM driver's 
AddDevice function does. In all of the sample drivers in this book, you'll see a line 
of code like this one: 

pdx->LowerDeviceObject = IoAttachDeviceToDeviceStack(fdo. pdo): 

We use this device object pointer whenever we want to pass an IRP down the driv
er stack. 

Another common way to locate a device object is to start with an object name 
that you happen to know about: 

PUNICODE_STRING DeviceName; II 4" something gives you this 
PDEVICLOBJECT Devi ceObject: /I 4" an output from thi s process 
PFILE_OBJECT FileObject: II 4" another output 
NTSTATUS status = IoGetDeviceObjectPointer(DeviceName. 

<access mask>. &FileObject. &DeviceObject); 

You get back a pointer to the device object having the name you specify and 
a pointer to a file object. A file object is the thing a file handle points to. Eventually, 
you'll need to dereference the file object, as at the top of the next page. 
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ObDereferenceObject(FileObject): II ~ DeviceObject now poisonl 

As soon as you dereference the me object, you also release your implicit refer
ence to the device object. If you want to continue using the device object, be sure 
to reference it fIrst: 

ObReferenceObject(DeviceObject): 
ObDereferenceObject(FileObject): /1 ~ DeviceObject still okay 

You shouldn't automatically put the preceding two lines of code in your driver, 
however. In fact, when you send an IRP to a device object whose address you ob
tained by calling IoGetDeviceObjectPointer, you should send the address of the 
me object along: 

PIRP Irp = IoBuildXxxRequest( ... ): 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp): 
stack->FileObject = FileObject: 
IoCallDriver(DeviceObject. Irp): 

Here's the explanation for this extra statement. loGetDeviceObjectPointer inter
nally opens a regular handle to the device object, which causes the driver to receive 
an IRP _MLCREATE request with a pointer to the same me object you'll later be getting 
as a return value. The driver might create some auxiliary data structure that it asso
ciates with the me object, and it might require access to that structure to handle later 
IRPs. It will destroy that structure when it processes the IRP _MLCLOSE operation that 
occurs when the last reference to the me object disappears. For this to work right, 
you need to set the FlleObject pointer in the fIrst stack location for each IRP you 
send the driver. 

You don't always set the me object pointer in a new IRP you create, by the way. 
If you're the driver that owns the fue object by virtue of being the real implementor 
of IRP J1LCREATE, no one below you has any business looking at the me object. 
In the case I just described, however, the owner of the me object is the driver for the 
device object you found by calling 10GetDeviceObjectPointer. In that situation, you 
must set the fue object pointer. 
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Plug and Play 

The Plug and Play (PnP) Manager communicates information and requests to device 
drivers via I/O request packets (IRPs) with a major function code of IRP _MLPNP. This 
type of request is new with Microsoft Windows 2000 and the Windows Driver Model: 
previous versions of Microsoft Windows NT required device drivers to do most of 
the work of detecting and configuring their devices. Happily, WDM drivers can let 
thePnP Manager do that work. To work with the· PnP Manager, driver authors will . 
have to understand a few relatively complicated IRPs. 

Plug and Play requests play two roles in the WDM. In their first role, these 
. requests instruct the driver when and how to configure or deconfigure itself and the 

hardware. Table 6-1 lists the roughly two dozen minor functions that a PnP request 
can designate. Ortly the bus driver handles the nine minor functions shown with an 
asterisk; a filter driver or function driver would simply pass theseIRPs down the stack. 
Of the remaining minor functions, three have special importance to a typical filter 
driver or function driver. The PnP Manager uses IRP _MN_START_DEVICE to inform 
the function driver what I/O resources it has assigned to the hardware and to instruct 
the function driver to do any necessary hardware and software setup so that the device 
can function. IRP _MN_STOP _DEVICE tells the function driver to shut down the de
vice. IRP _MN_REMOVE_DEVICE tells the function driver to shut down the device and 
release the associated device object. I'll discuss these three minor functions in detail 
in this chapter and the next; along the way, I'll also describe the purpose for the other 
unstarred minor functions that a filter driver or function driver might need to handle. 
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IRP Minor Function Code 

IRP _MN_STARLDEVICE 

IRP _MN_QUERY _REMOVE_DEVICE 

IRP _MN_REMOVE_DEVICE 

IRP ~N_CANCEL_REMOVE_DEVICE 

IRP _MN_STOP _DEVICE 

IRP ~N_QUERY_STOP _DEVICE 

IRP _MN_CANCEL_STOP _DEVICE 

IRP _MN_QUERY _DEVICE_RELATIONS 

IRP _MN_QUERYJNTERFACE 

IRP _MN_QUERY_CAPABILITIES 

IRP _MN_QUERY _RESOURCES· 

IRP _MN_QUERY _RESOURCE_REQUIREMENTS· 

IRP _MN_QUERY _DEVICE_TEXT* 

IRP _MN_FIL TER_RESOURCE_REQUIREMENTS 

IRP _MN_READ_CONFIG· 

IRP _MN_ WRITE_CONFIG* 

IRP _MN_EJECT* 

IRP _MN_SET_LOCK· 

IRP _MN_QUERY_ID* 

IRP _MN_QUERY _PNP _DEVICE_STATE 

IRP _MN_QUERY_BUS_INFORMATION* 

IRP _MN_DEVICE_USAGE_NOTIFlCATION 

Description 

Configures and initializes device 

Can device be removed safely? 

Shuts down and removes device 

Ignores previous QUERY_REMOVE 

Shuts down device 

Can device be shut down safely? 

Ignores previous QUERY_STOP 

Gets list of devices which are related in 
some specified way 

Obtains direct-call function 
addresses 

Determines capabilities of device 

Determines boot configuration 

Determines I/O resource 
requJrements 

Obtains description or location string 

Modifies I/O resource requirements list 

Reads configuration space 

Writes configuration space 

Ejects the device 

Locks/unlocks device agai~t ejection 

Determines hardware ID of device 

Determines state of device 

Determines parent bus type 

Notes creation or deletion of paging, 
dump, or hibernate fIle 

Notes fact that device has been 
removed 

Table 6-1. Minor function codes for IRP _MLPNP. (* indicates handled only by bus drivers.) 
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A second and more complicated purpose of PnP requests is to guide the driver 
through a series of state transitions, as illustrated in Figure 6-1. WORKING and 
STOPPED are the two fundamental states of the device. The STOPPED state is the 
initial state of a device immediately after you create the device object. The WORK
ING state indicates that the device is fully operational. Two of the intermediate states
PENDINGSTOP and PENDINGREMOVE-arise because of queries that all drivers 
for a device must process before making the transition from WORKING. SURPRISE
REMOVED occurs after the sudden and unexpected removal of the physical hardware. 
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Figure 6-1. State.diagramJora device. 

When I described the standard model for IRP processing in the previous chap
ter, I indicated that Plug and Play would impose additional requirements on IRP 
queuing and cancellation. I'll describe a DEVQUEUE object in this chapter that sat
isfies those requirements and helps you manage the state transitions. 

In Chapter 5, "The I/O Request Packet," I explained the mechanics of passing IRPs 
down the driver stack in two situations: one in which you care about the result and 
therefore need a completion routine, and the other in which you don't care about 
the result and therefore don't install a completion routine. Many of the PnP requests 
fit into the second of these categories-you're receiving the IRP and passing it down, 
but you don't care what happens to it afterward. To begin with, then, I suggest writ
ing a helper function that you can use to pass a request down in the "don't care" 
scenario--see the code at the top of the following page. 
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NTSTATUS DefaultPnpHandler(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

IoSkipCurrentIrpStackLocat1on(Irp): 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension: 
return IoCallDr1ver(pdx-)LowerDeviceObject. Irp): 
} 

A simplified version of the dispatch function for IRP _MLPNP might look like 
the following: 

NTSTATUS D1spatchPnp(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocat1on(Irp): 
ULONG fcn = stack-)M1norFunction: . 

static NTSTATUS (*fcntab[])(PDEVICE_OBJECT. PIRP) = { 
HandleStartDevice. II IRP_MN_START_DEVICE 
HandleQueryRemove. II IRP_MN_QUERY_REMOVE_DEVICE 
<etc.>. 
} : 

...,. if (fcn )= arraysize(fcntab» 
return DefaultPnpHandler(fdo. Irp): 

~ return (*fcntab[fcn] )(fdo. irp): . 
} 
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1. All the parameters for the IRP, including the all-important minor function 
code, are in the stack location. Hence, we obtain a pointer to it by call
ing IoGetCurrentIrpStackLocation. 

2. We expect the IRP's minor function code to be one of those listed in 
Table 6-1. 

3. A method of handling the two dozen possible minor function codes is to 
write a subdispatch function for each one we're going to handle and then 
to define a table of pointers to those subdispatch functions. Many of the 
entries in the table will be DefaultPnpHandier. Subdispatch functions 
like HandleStartDevice will take pointers to a device object and an IRP 
as parameters and will return an NTSTAruS code. 

4. If we get a minor function code we don't recognize, it's probably because 
Microsoft defined a new one in a release of the DDK after the DDK with 
which we built our driver. The right thing to do is to pass the minor 
function code down the stack by calling the default handler. By the way, 
arraysize ,is a macro that returns the number of elements in an array. It's 
defined as #define arraysize(p) (sizeof{p)/sizeot{(p)[OD). 
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5. This is the operative statement in the dispatch routine, with which we 
index the table of sUbdispatch functions and call the right one. 

USING A FUNCTION POINTER TABLE 

Using a table of function pointers to dispatch handlers for minor function codes 
as I'm showing you in DispatchPnp entails some danger. A future version of 
the operating system might change the meaning of some of the codes. That's 
not a practical worry except during the beta test phase of a system, though, 
because a later change would invalidate an unknown number of existing driv
ers. I like using a table of pointers to subdispatch functions because having 
separate functions for the minor function codes seems like the right engineer
ing solution to me. Ifl were designing a C++ class library, for instance, I'd defIne 
a base class that used virtual functions for each of the minor function codes. 

Most programmers would probably place a switch statement in their 
DispatchPnp routine. You can Simply recompile your driver to conform to any 
reassignment of minor function codes. Recompilation will also highlight-by 
producing compilation errors!-name changes that might signal functionality 
shifts. That happened a time or two during the Microsoft Windows 98 and 
Windows 2000 betas, in fact. Furthermore, an optimizing compiler should be 
able to use a jump table to produce slightly faster code for a switch statement 
than for calls to subdispatch functions. 

I think the choice between a switch statement and a table of function 
pointers is mostly a matter of taste, with readability and modularity winning 
over efficiency in my own evaluation. You can avoid uncertainty during a beta 
test by placing appropriate assertions into your code. For example, the 
HandleStartDevice function could assert that stack->MinorFunction -- IRP_ 
MN_START_DEVICE. If you recompile your driver with each new beta DDK, 
you'll catch any number reassignments or name changes. 

STARTING AND STOPPING YOUR DEVICE 
Working with the bus driver, the PnP Manager automatically detects hardware and 
assigns I/O resources in Windows 2000 and Windows 98. Most modem devices have 
Plug and Play features that allow system software to detect them automatically and 
to electronically determine which I/O . resources they require. In the case of legacy 
devices that have no electronic means of identifying themselves to the operating 
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system or of expressing their resource requirements, the registry database contains 
the information needed for the detection and assignment operations. 

NOTE I find it hard to give an abstract definition of the term I/O resource that 
isn't circular (for example, a resource used for 1/0), so I'll give a concrete one 
instead. The WOM encompasses four standard 1/0 resource types: 1/0 ports, 
memory registers, direct memory access (OMA) channels, and interrupt requests. 

When the PnP Manager detects hardware, it consults the registry to learn which 
filter drivers and function drivers will manage the hardware. As I discussed in Chap
ter 2, "Basic Structure of a WDM Driver," it loads these drivers (if necessary-one 
or more of them might already be present, having been called into memory on be
half of some other hardware) and calls their AddDevice functions. The AddDevice 
functions, in tum, create device objects and link them into a stack. At this pOint, the 
stage is set for the PnP Manager, working with all of the device drivers, to assign I/O 
resources. 

The PnP Manager initially creates a list of resource requirements for each device 
and allows the drivers to filter that list. I'm going to ignore the filtering step for now 
because not every driver will need to take this step. Given a list of requirements, the 
PnP Manager can then assign resources so as to harmonize the potentially conflict
ing requirements of all the hardware present on the system. Figure 6-2 illustrates how 

--"'~. 

the PnP Manager can arbitrate between two different devices that have overlapping, .', 
requirements for an interrupt request number, for example. 

Interrupt Request 

Figure 6-2. Arbitration of conflicting I/O resource requirements. 
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Once the resource assignments are known, the PnP Manager notifies each device 
by sending it a PnP request with the minor function code IRP _MN_START_DEVICE. 
Filter drivers are typically not interested in this IRP, so they usually pass the request down 
the stack by using the DefaultPnpHandler technique I showed you in "IRP _MLPNP 
Dispatch Function." Function drivers, on the other hand, need to do a great deal of work 
on the IRP to allocate and configure additional software resources and to prepare the 
device for operation. This work needs to be done, furthermore, at PASSIVE_LEVEL after 
the lower layers in the device hierarchy have processed this IRP. 

Forwarding and Awaiting the IRP 
To regain control of the IRP _MN_START_DEVICE request after passing it down, the 
dispatch routine needs to wait for a kernel event that will be signalled by the even
tual completion of the IRP in the lower layers. In Chapter 4, "Synchronization," 
I cautioned you not to block an arbitrary thread. PnP IRPs are sent to you in the con
text of a system thread that you are allowed to block, so that caution is unnecessary. 
Since forwarding and awaiting an IRP is a potentially useful function in other contexts, 
I suggest writing a helper routine to perform the mechanics: 

NTSTATUS ForwardAndWait(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

KEVENT event; 
KeInitializeEvent(&event, NotificationEvent, FALSE); 
IoCopyCurrentIrpStack~ocationToNext(Irp); 

IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
OnRequestComplete, (PVOID) &event, TRUE, TRUE, TRUE); 

PO£VICE_EXTENSION pdx = (PDEVICE_EXTENSION) 
fdo->DeviceExtension; 

loCal 1 Driver(pdx->LowerDeviceObject, Irp); 
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); 
return Irp->IoStatus.Status; 
} 

1. We create a kernel event object as an automatic variable. KeInitialize
Event must be called at PASSIVE_LEVEL. Luckily, PnP requests are always 
sent at PASSIVE_LEVEL, so this particular requirement is met. The event 
object itself must occupy nonpaged memory, too. For most purposes, in
cluding this one, you can treat the execution stack as being nonpaged. 

2. We must make a copy of the stack parameters for the next driver because 
we're going to install a completion routine. 
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3. We specify a completion routine so that we'll know when something un
derneath us completes this IRP. We might wait for the completion to oc
cur, so wt: must be sure that our completion routine is called. That's why 
we specify TRUE for the three flag arguments to indicate that we want 
OnRequestComplete called when the IRP completes normally, completes 
with an error, or is cancelled. The context argument for the completion 
routine is the address of our event object. 

4. IoCaIlDriver calls the next lower driver, which can be a lower ftlter or 
the physical device object (PDO) driver itself. The PDO driver will per
form some processing and either complete the request immediately or 
return STATUS_PENDING. 

5. No matter what 10CaliDriver returns, we call KeWaitForSingleObject to 
wait forever on the kernel event we created earlier. Our completion rou
tine will gain control when the IRP completes to signal this event. 

6. Here, we capture the ending status of the IRP and return it to our caller. 

Once we call 10CallDriver, we relinquish control of the IRP until something 
running in some arbitrary thread context calls IoCompleteRequest to signal comple
tion of the IRP. 10CompieteRequest will then call our completion routine. Refer to 
Figure 6-3 for an illustration of the timing involved. The completion routine is par
ticularly simple: 

NTSTATUS OnRequestComplete(PDEVICE_OBJECT fdo. PIRP Irp. PKEVENT pev) 
{ 

KeSetEvent(pev. 0. FALSE): 
return STATUS-MORE_PROCESSIN~REQUIRED: 
} 

1. We set the event on which ForwardAndWait can currently be blocked. 

2. By returning STATUS_MORE_PROCESSING_REQUIRED, we halt the un
winding process through the I/O stack. None of the completion routines 
installed by upper ftlter drivers will be called at the present time, and the 
I/O Manager will cease its work on this IRP. The situation is just as if 
loCompleteRequest has not been called at all-except, of course, that some 
lower-level completion routines might have been called. At this instant, 
the IRP is in limbo, but our ForwardAndWait routine will presently retake 
ownership. 



Chapter 6 Plug and Play 

,------------------1 
___ ---We caliloCaliDriver 

VO Manager calls 
next driver's dispatch routine 

V 
Dispatch routine returns 

pretty soon with status code 

We walt for event to be signalled 

We return a status code __ ..... .., 
L __________________ ~ 

Completion routine 
calls KeSetEvent 

TimepaSHS ... 

S 
iaCom 

~ 
va Manager calls .J 

completion routine 

Figure 6-3. Timing of ForwardAndWait. 

NOTES ON FORWARDANDWAIT 

I glossed over two subtleties when I described how ForwardAndWait and 
OnRequestComplete work together. It's sometimes possible for a thread's ker
nel stack to be swapped out of physical memory, but only while the thread is 
blocked in user mode. See David Solomon's Inside Windows N/', Second Edi
tion (Microsoft Press, 1998) at page 194 for a state diagram illustrating this 
possibility. All the calls inside ForwardAndWait that deal with the event object 
will certainly fulftll the requirement that the event object be resident in memory. 
Since we specified a kernel mode wait, our stack can't be swapped out, so 
KeSetEvent will also find the event resident. 

Secondly, you might have noticed the absence of the boilerplate code if 
(Irp->PendingReturned) IoMarkIrpPending(lrp) at the beginning of the 
completion routine. You don't need that statement in a completion routine that 
will return STATUS_MORE]ROCESSING_REQUIRED. The call can't hurt, of 
course, and is required in most standard completion routines. That's why all the 
DDK samples include the code even when it's not strictly necessary. 
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In the preceding section, I showed you how to use the ForwardAndWait helper rou
tine to send an IRP _MN_START_DEVICErequest down the device stack and wait for 
it to complete. You call ForwardAndWait from a subdispatch routine-reached from 
the DispatchPnp dispatch routine shown earlier-that has the following skeletal form: 

NTSTATUS HandleStartDevice(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS: 
NTSTATUS ~tatus = ForwardAndWait(fdo. Irp): 
if (INT_SUCCESS(status» 

return CompleteRequest(Irp. status. Irp->IoStatus.Information): 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp): 
status = StartDevice(fdo. <additiona7 args»; 
return CompleteRequest(Irp. status. Irp->IoStatus.Information): 
} 

1. The bus driver uses the incoming setting of IoStatus.Status to determine 
whether upper-level drivers have handled this IRP. The bus driver makes a 
similar determination for several other minor functions of IRP _MLPNP. We 
therefore need to initialize the Status field of the IRP to STATljS_SUCCESS 
before passing it down. 

2. ForwardAndWait returns a status code. If it denotes some sort of failure 
in the lower layers, we propagate it back to our own caller. Because our 
completion routine returned STATUS_MORE_PROCESSING_REQUIRED, 
we halted the completion process inside IoCompleteRequest. Therefore, 
we have to complete the request all over again, as shown here. 

3. Our configuration information is buried inside the stack parameters. I'll 
show you where a bit further on. 

4. StartDevice is a helper routine you write to handle the details of extracting 
and dealing with configuration information. In my s4mple drivers, I've 
placed it in a separate source module named READWRITE.CPP. I'll explain 
shortly what arguments you would pass to this routine besides . the address 
of the device object. 

You might guess (correctly!) that the IRP _MN_START_DEVICE handler has work 
to do that concerns the transition from the initial STOPPED state to the WORKING 
state. I can't explain that yet because I need to first explain the ramifications of other 
Plug and Play requests on state transitions, IRP queuing, and IRP cancellation. So, 
I'm going to concentrate for a while on the configuration aspects of the PnP requests. 

The I/O stack location's Parameters union has a substructure named 
StartDevice that contains the configuration information you pass to the StartDevice 
helper function. See Table 6-2. 
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Field Name . Description 

AllocatedResources Contains raw resource assignments 
AllocatedResourcesTranslated Contains translated resource assignments 

Table 6-2. Fields in the Parameters.StartDevice substructure of an IO_STACK_LOCA110N. 

Both AllocatedResources and AllocatedResourcesTranslated are instances 
of the same kind of data structure, called a CM_RESOURCE_LIST. This seems like a 
very complicated data structure if you judge only by its declaration in WDM.H. As 
used in a start device IRP, however, all that remains of the complication is a great deal 
of typing. The "lists" will have just one entry, a CM_PARTIAL_RESOURCE_LIST that 
describes all of the I/O resources assigned to the device. You could use statements 
like the following to access the two lists: 

PCM_PARTIAL-RESOURCE_LIST raw. translated; 
raw = stack->Parameters.StartDevice 

.AllocatedResources->List[0].PartialResourceList; 
translated = stack->Parameters.StartDevice . 

. AllocatedResourcesTranslated->List[0].PartialResourceList; 

The only difference between the last two statements is the reference to either the 
AllocatedResources or AllocatedResourcesTranslated member of the parameters 
structure. 

The raw and translated resource lists are the logical arguments to send to the 
StartDevice helper function, by the way: 

status = StartDevice(fdo. raw. translated); 

There are two different lists of resources because I/O buses and the CPU can 
address the same physical hardware in different ways. The raw resources contain num
bers that are bus-relative, whereas the translated resources contain numbers that are 
system-relative. Prior to the WDM, a kernel-mode driver might expect to retrieve raw 
resource values from the registry, the PCI (Peripheral Component Interconnect) 
configuration space, or some other source, and to translate them by calling routines 
such as HalTranslateBusAd.d.ress or HalGetInterruptVector. See, for example, Art 

Baker's The Windows NT Device Driver Book: A GUide/or Programmers (Prentice Hall, 
1997), at pages 122-62. Both the retrieval and translation steps are done by the PnP 
Manager now, and all a WDM driver needs to do is access the parameters of a start 
device IRP as I'm now describing. 

What you actually do with the resource descriptions inside your StartDevice 
function is a subject for the next chapter, "Reading and Writing Data." 
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The stop device request tells you to shut your device down so that the PnP Manager 
can reassign I/O resources. At the hardware level, shutting down involves pausing 
or halting current activity and preventing further interrupts. At the software level, it 
involves releasing the I/O resources you configured at start device time. Within the 
framework of the dispatchlsubdispatch architecture I've been illustrating, you might 
have a subdispatch function like this one: 

NTSTATUS HandleStopDev;ce(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

<complicated stuff> 
StopDevice(fdo. oktouch): 
Irp">IoStatus.Status = STATUS_SUCCESS: 
return DefaultPnpHandler(fdo. Irp): 
} 

1. Right about here, you need to insert some more or less complicated code 
that concerns IRP queuing and cancellation. I'll show you the code that 
belongs in this spot further on in this chapter in "While the Device Is 
Stopped." 

2. In contrast to the start device case, in which we passed the request down 
and then did device-dependent work, here we do our device-dependent 
stuff first and then pass the request down. The idea is that our hardware 
will be quiescent by the time the lower layers see this request. I wrote a 
helper function named StopDevice to do the shutdown work. The sec
ond argument indicates whether it will be okay for StopDevice to touch 
the hardware if it needs to. Refer to the sidebar "Touching the Hardware 
When Stopping the Device" for an explanation of how to set this argument. 

3. We always pass PnP requests down the stack. In this case, we don't care 
what the lower layers do with the request, so we can simply use the 
DefaultPnpHandler code to perform the mechanics. 

The StopDevice helper function called in the preceding example is code you 
write that essentially reverses the configuration steps you took in StartDevice. I'll show 
you that function in the next chapter. One important fact about the function is that you 
should code it in such a way that it can be called more than once for a single call to 
StartDevice. It's not always easy for a PnP IRP handler to know whether you've already 
called StopDevice, but it is easy to make StopDevice proof against..duplicative calls. 
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TOUCHING THE HARDWARE WHEN STOPPING THE DEVICE 

In the skeleton of HandleStopDevice, I used an oktouch variable that I didn't 
show you how to initialize. In the scheme I'm teaching you in this book for 
writing a driver, the StopDevice function gets a BOOLEAN argument that indi
cates whether or not it should be safe to address actual I/O operations to the 
hardware. The idea behind this argument is that you may want to send certain 
instructions to your device as part of your shutdown protocol, but there might 
be some reason why you can't. You might want to tell your PCMCIA modem 
to hang up the phone, for example, but there's no point in trying if the end user 
has already removed the modem card from the computer. 

There's no certain way to know whether your hardware is physically 
connected to the computer except. by trying to access it. Mierosoft recommends, 
however, that if you succeeded in processing a START_DEVICE request, you 
should go ahead and try to access your hardware when you process 
STOP_DEVICE and certain other PnP requests. When I discuss how you track 
PnP state changes later in this chapter, I'll honor this recommendation by set
ting the oktouch argument TRUE if we believe that the device is currently 
working and FALSE otherwise. 

Recall that the PnP Manager calls the AddDevice function in your driver to notify you 
about an instance of the hardware you manage and to give you an opportunity to 
create a device object. Instead of calling a function to do the complementary opera
tion, however, the PnP Manager sends you a Plug and Play IRP with the minor func
tion code IRP _MN_REMOVE_DEVICE. In response to that, you'll do the same things 
you did for IRP ~N_STOP _DEVICE to shutdown your device, and then you'll de
lete the device object: 

NTSTATUS HandleRemoveDev;ce(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
<complicated stuff> 
DeregisterAlllnterfaces(pdx); 
StopDevice(fdo. oktouch); 
Irp->IoStatus.Status = STATUS_SUCCESS; 
NTSTATUS status = DefaultPnpHandler(fdo. Irp); 
RemoveDevice(fdo); 
return status; 
} 
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This fragment looks very similar to HandleStopDevice, with a couple of additions. 
DeregisterAlllnterfaces will disable any device interfaces you registered (probably 
in AddDevice) and enabled (probably in StartDevice), and it will release the memory 
occupied by their symbolic link names. RemoveDevice will undo all the work you 
did inside AddDevice. For example: 

VOID RemoveDevice(PDEVICE_OBJECT fdo) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
IoDetachDevice(pdx->LowerDeviceObject); 
IoDeleteDevice(fdo); 
} 

1. This call to IoDetachDevice balances the call AddDevice made to 
IoAttachDeviceToDeviceStack. 

2. This call to IoDeleteDevice balances the call AddDevice made to 
IoCreateDevice. Once this function returns, the device object will no 
longer exist. If your driver isn't managing any other devices, your driver 
will shortly be unloaded from memory, too. 

You might be troubled by the fact that you call IoDeleteDevice at a time when 
the lower levels of the device hierarchy might still be processing the IRP _MN_ 
REMOVE_DEVICE request. No harm can come from that, however, because the Object 
Manager maintains a reference count on your device object to prevent it from dis
appearing while anything has an active pointer to it. 

Note, by the way, that you don't get a stop device request followed by a re
m.ove device request. The remove device request implies a shutdown, so you do both 
pieces of work in reply. 

Sometimes the end user has the physical ability to remove a device without going 
through any user interface elements ftrst. If the system detects that such a surprise 
removal has occurred, it sends the driver a PnP request with the minor function code 
IRP _MN_SURPRISE_REMOVAL. It will later send an IRP _MN_REMOVE_DEVICE. 
Unless you previously set the SurpriseRemovalOK flag while processing IRP _MN_ 
QUERY_CAPABILITIES (as I'll discuss in Chapter 8, "Power Management"), the 
system also posts a dialog box to inform the user that it's potentially dangerous to 
yank hardware out of the computer. 
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In response to the surprise removal request, a device driver should disable any 
registered interfaces. This will give applications a chance to close handles to your 
device if they're on the lookout for the notifications I discuss later in "PnP Notifica
tions." Then the driver should release I/O resources and pass the request down: 

NTSTATUS HandleSurpriseRemoval(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
<comp7icated stuff> 
EnableAllInterfaces(pdx, FALSE); 
StopDevice(fdo. oktouch); 
Irp->IoStatus.Status = STATUS_SUCCESS; 
return DefaultPnpHandler(fdo. Irp); 
} 

FROM WHENCE IRP MN SURPRISE REMOVAL? 

The surprise removal PnP notification doesn't happen as a simple and direct 
result of the end user yanking the device from the computer. Some bus drivers 
can know when a device disappears. For example, removing a universal serial 
bus (USB) device generates an electronic signal that the bus driver notices. For 
many other buses, however, there isn't any signal to alert the bus driver. The 
PnP Manager therefore relies on other methods to deCide that a device has 
disappeared. 

A function driver can signal the disappearance of its device (if it knows) 
by calling IoInvalidateDeviceState and then returning any of the values 
PNP _DEVICE_FAILED, PNP _DEVICE_REMOVED, or PNP _DEVICE_DISABLED 
from the ensuing IRP _MN_QVERY_PNP _DEVICE_STATE. You might want to do 
this in your own driver if-{o give one example of many-your interrupt service 
routines (ISRs) read all I-bits from a status port that normally returns a mixture 
of Is and Os. More commonly, a bus driver calls IoInvalidateDeviceRelations 
to trigger a reenumeration and then fails to report the newly missing device. 
It's worth knowing that when the end user removes a device while the system 
is hibernating or in another low-power state, the driver receives a series of 
power management IRPs hefore it receives the IRP _MN_SURPRISE_REMOVAL 
request. 

What these facts mean, practically speaking, is that your driver should be 
able to cope with errors that might arise from having your device suddenly not 
present. 
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As I said at the outset of this chapter, WDM drivers need to track their devices through 
the state transitions diagrammed in Figure 6-1 on page 223. This state tracking also ties 
in with how you queue and cancel I/O requests. Cancellation in tum implicates the 
global cancel spin lock, which is a performance bottleneck in a multi-CPU system. The 
standard model of IRP processing can't solve all these interrelated problems. In this 
section, therefore, I'll present a new type of object--called a DEVQUEUE-that you 
can use in your PnP request handlers and in place of the standard model routines 
StartPacket and StartNextPacket. DEVQUEUE is my own invention, but it's based 
on sample drivers, especially PNPPOWER and CANCEL, that used to be in the DDK. 
See also the discussion of IRP cancellation in Ervin Peretz's "The Windows Driver 
Model Simplifies Management of DeviCe Driver I/O Requests," (Microsoft Systems 
Journal, January 1999). A portion of the IRP cancellation logiC I'm describing also 
derives from work by Peretz and other MiCrosoft employees and by Jamie Hanrahan 
that had not been published at the time I was writing this book. 

I described the KDEVICE_QUEUE queue object in the previous chapter as 
encompassing an idle state, a busy but empty state, and a busy but not empty state. 
The support routines you use to manipulate a KDEVICE_QUEUE assume that if the 
deviCe is not currently busy, all you want to do is start any new request running on 
the deviCe. It's precisely this behavior that we need to overcome to successfully man
age PnP states. Figure 6-4 illustrates the states of a DEVQUEUE. 

AbortRequests 

A1IowRequests 

StalIRequests ) 

Figure 6-4. States of a DEVQUEUE object. 
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In the READY state, the queue operates much like a KDEVICE_QUEUE, accept
ing and forwarding requests to your Startlo routine in such a way that the device 
stays busy. In the STALLED state, however, the queue does not forward IRPs to Startlo 
even when the device is idle. In the REJECTING state, the queue doesn't even ac
cept new IRPs. Figure 6-5 illustrates the flow of IRPs through the queue. 

IRPs 

Figure 6-5. Flow of lRPs through a DEVQUEUE. 

Startlo 
routine 

Using DEVQUEUE for IRP Queuing and Cancellation 
You define a DEVQUEUE object for each queue of requests you'll manage in the 
driver. For example, if your device manages reads and writes in a single queue, you'd 
define one DEVQUEUE: 

typedef struct _DEVICE-EXTENSION { 

DEVQUEUE dqReadWrite: 

} DEVICE_EXTENSION, *PDEVICE_EXTENSION: 

Table 6-3 lists the support functions you can use with a DEVQUEUE. 
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support Function 

AbortRequests 

AllowRequests 

AreRequestsBeingAborted 

CancelRequest 

CheckBusyAndStall 

CleanupRequests 

GetCurrentIrp 

InitializeQueue 

RestartRequests 

StallRequests 

StartNextPacket 

StartPacket 

WaitForCurrentirp 

Description 

Aborts current and future requests 

Undoes effect of previous AbortRequests 

Are we currently aborting new requests? 

Generic cancel routine 

Checks for idle device and stalls requests in one 
atomic operation 

Cancels all requests for a given ftle object in order 
to service IRP _MLCLEANUP 

Determines which IRP is currently being pro
cessed by associated Startlo routine 

Initializes DEVQUEUE object 

Restarts a stalled queue 

Stalls the queue 

Dequeues and starts the next request 

Starts or queues a new request 

Waits for current IRP to fmish 

Table 6-3. DEVQUEUE service routines. 

For the moment, I'll just discuss the support functions that replace furictions like 
Sta.rtPacket and StartNextPacket in the standard IRP processing model. For each 
queue, you provide a separate Startlo routine. Your DriverEntry routine would not 
store anything in the DriverStartlo pointer field of the driver ·object. Instead, dur
ing AddDevice, you'd initialize your queue object(s) like.so: 

NTSTATUS AddDevice( ... ) 
{ 

PDEVICE_EXTENSION pdx = .... 
InitializeQueue(&pdx->dqReadWrite. Startlo): 

} 

The dispatch function for an IRP that uses a DEVQUEUE would follow the 
following pattern: 

NTSTATUS DispatchWrite(PDEVICE_OBJECT fdo. PIRP lrp) 
{ 

<some power management stuff you haven't heard about yet> 
IoMarkIrpPending(Irp): 
StartPacket(&pdx->dqReadWrite. fdo. Irp. OnCancel): 
return STATUS_PENDING: 
} 
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That is; instead of calling IoStartPacket, you call the queue's StartPacket function 
with· the address of the queue object, the device object, the IRP, and your cancel 
routine. At the start of a dispatch routine, you'll also have a small bit of code to handle 
restoring power after a period of disuse; I'll discuss that code in Chapter 8. 

Here's a sketch of the new kind of Startlo routine you use with a DEVQUEUE: 

VOID Startlo(PDEVICE_OpJECT fdo, PIRP Irp) 
{ 

<some PnP stuff you haven't heard about yet> 
II start request on device 
} 

StartIo doesn't worry about IRP cancellation. The cancel routine you use in this scheme 
is different from a. standard one--.-it simply delegates all work to the DEVQUEUE: 

VOID OnCancel(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
Cancel Request(&pdx->dqReadWrite. Irp); 
} 

CancelRequest will release the global cancel spin lock, which your cancel routine owns 
when it gets control, and will then cancel the IRP in a thread-safe and multiprocessor
safe way. 

The deferred procedure call (DPC) routine you use when the request fInishes 
also looks a little different from the standard-model one I showed you in Chapter 5, 
as you can see here: 

VOID DpcForIsr(PKDPC Dpc. PDEVICE_OBJECT device. PIRP junk. PYOID context) 
{ 

PIRP Irp = GetCurrentlrp(&pdx->dqReadWr1te); 

StartNextPacket(&pdx->dqReadWrite. device); 
<some PnP stuff you haven't heard about yet> 
CompleteRequest(Irp •... ); 
} 

Like IoStartNextPacket, the StartNextPacket function removes the next IRP from 
the queue and sends it to your (queue-specllc) StartIo routine. It also returns the ad
dress of the IRP you were processing or NULL to indicate that your device was not 
processing an IRP. A NUll return value indicates that the IRP was cancelled or aborted 
for some reason, so it would be incorrect for you to try to complete it. Since you'll 
obtain the address of the finishing IRP by calling GetCurrentlrp,don't use the IRP 
pointer that comes to you as the third argument to the DPC routine. I named it junk 
to reinforce the point. " 
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The DEVQUEUE also simplifies the handling of an IRP _MLCLEANVP. In fact, 
the code is almost trivial: 

NTSTATUS DispatchCleanup(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocat1on(Irp); 
CleanupRequests(&pdx->dqReadWrite. stack->FileObject. 

STATUS_CANCELLED); 
return CompleteRequest(Irp. STATUS_SUCCESS. 0); 
} 

Using DEVQUEUE with PnP Requests 
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The real point of using a DEVQUEUE instead of a KDEVlCE_QUEUE is that a 
DEVQUEUE makes it easier to manage the transitions between PnP states. In all of 
my sample drivers, the device extension contains a state variable with the imagina
tive name state. I also deftne an enumeration named DEVSTATE whose values cor
respond to the PnP states. When you initialize your device object in AddDevice, you'll 
call InitializeQueue for each of your device queues and also indicate that the de
vice is in the STOPPED state: 

NTSTATUS AddDevice( ... ) 
{ 

PDEVICLEXTENSIONpdx = .... 
Init1alizeQueue(&pdx->dqRead. StartloReadWrite); 
pdx->state = STOPPED; 

} 

After AddDevice returns, the system sends IRP _MLPNP requests to direct you 
through the variousPnP states the device can assume. 

Starting the Device 
A newly initialized DEVQUEUE is in a STAllED state, such that a call to StartPacket 
will queue a request even when the device is idle. You'll keep the queue(s) in the 
STALLED state until you successfully process IRP _MN_START .... DEVICE, whereupon 
you'll execute code like the following: 

NTSTATUS HandleStartDevice( ... ) 
{ 

s~atus = StartDevice( •.• ); 
if (NT_SUCCESS(status» 

} 

{ 

pdx->state = WORKING; 
RestartRequests(&pdx->dqReadWr1te. fdo); 
} 
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You record WORKING as the current state of your device, and you call 
RestartRequests for each of your queues to release any IRPs that might have arrived 
between the time AddDevice ran and the time you received the IRP _MN_ 
START_DEVICE request. 

Is It Okay to Stop the Device? 
The PnP Manager always asks your permission before sending you an IRP _MN_ 
STOP _DEVICE. The query takes the form of an IRP _MN_QUERY _STOP _DEVICE 
request that you can succeed or fail as you choose. The query basically means, "Would 
you be able to immediately stop your device if the system were to send you an 
IRP _MN_STOP _DEVICE in a few nanoseconds?" You can handle this query in two 
slightly different ways. Here's the first way, which is appropriate when your device 
might be busy with an IRP that either finishes quickly or can be easily terminated in 
the middle: 

NTSTATUS HandleQueryStop(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS: 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
if (pdx~>state !~ WORKING) 

return DefaultPnpHandler(fdo, Irp); 
if (!OkayToStop(pdx» 

return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0): 
StallRequests(&pdx->dqReadWr1te): 
WaitForCurrentlrp(&pdx->dqReadWrite): 
pdx->state = PENDINGSTOP: 
return DefaultPnpHandler(fdo. Irp): 
} 

1. This statement handles a peculiar situation that can arise for a boot de
vice: the PnP Manager might send you a QUERY_STOP when you haven't 
initialized yet. You want to ignore such a query, which is tantamount to 
saying "yes." 

2. At this point, you perform some sort of investigation to see if it will be 
okay to revert to the STOPPED state. I'll discuss factors bearing on the in
vestigation immediately below. 

3. StalJRequests puts the DEVQUEUE into the STALLED state so that any 
new IRP just goes into the queue. WaitForCurrentlrp waits until the 
current request, if there is one, finishes on the device. These two steps 
make the device quiescent until we know whether the device is really 
going to stop or not. 

4. At this point, we have no reason to demur. We therefore record Our state 
as PENDINGSTOP. Then we pass the request down the stack so that other 
drivers ·can have a chance to accept or decline this query. 
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The other basic way of handling QUERY_STOP is appropriate when your device 
might be busy with a request that will take a long time and can't be stopped in the 
middle, such as a tape retension operation that can't be stopped without potentially 
breaking the tape. In this case, you can use the DEVQUEUE's CheckBusyAndStall 
function. That function returns TRUE if the device is busy, whereupon you'd fail the 
QUERY_STOP with STATUS_UNSUCCESSFUL. The function returns FALSE if the device 
is idle, in which case it also stalls the queue. (The operations of checking the state 
of the device and stalling the queue need to be protected by a spin lock, which is 
why I wrote this function in the first place.) 

You can fail a stop query for many reasons. Disk devices that are used for paging, 
for example, cannot be stopped. Neither can devices that are used for storing hiber
nation or crash dump meso (You'll know about these characteristics as a result of an 
IRP _MN_DEVICE_USAGE_NOTIFICATION request, which I'll discuss later in "Other 
Configuration Functionality.") Other reasons may also apply to your device. 

Even if you succeed the query, one of the drivers underneath you might fail it 
for some reason. Even if all the drivers succeed the query, the PnP Manager might decide 
not to shut you down. In any of these cases, you'll receive another PnP request with 
the minor code IRP _MN_CANCEL_STOP _DEVICE to tell you that your device won't be 
shut down. You should then clear whatever state you set during the initial query: 

NTSTATUS HandleCancelStop(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
if (pdx->state 1= PENDINGSTOP) 

return DefaultPnpHandler(fdo. Irp); 
NTSTATUS status = ForwardAndWait(fdo. Irp); 
if (NT_SUCCESS(status» 

{ 

pdx->state = WORKING; 
RestartRequests(&pdx->dqReadWrite. fdo); 
} 

return CompleteRequest(Irp. status. Irp->IoStatus.lnformation); 
} 

We first check to see whether a stop operation is even pending. Some higher
level driver might have vetoed a query that we never saw, so we'd still be in the 
WORKING state. If we're not in the PENDINGSTOP state, we simply forward the IRP. 
Otherwise, we send the CANCEL_STOP IRP synchronously to the lower-level drivers. 
That is, we use our ForwardAndWait helper function to send the IRP down the stack 
and await its completion. We wait for low-level drivers because we're about to resume 
processing IRPs, and the drivers might have work to do before we send them an IRP. If 
the lower layers successfully handle this IRP _MN_CANCEL_STOP _DEVICE, we change 
our state variable to indicate that we're back in the WORKING state, and we call 
RestartRequests to unstall the queues we stalled when we succeeded the query. 
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While the Device Is Stopped 
If, on the other hand, all device drivers succeed the query and the PnP Manager 
decides to go ahead with the shutdown, you'll get an IRP _MN_STOP _DEVICE next. 
Your subdispatch function would look like this one: 

NTSTATUS HandleStopDeviceCPDEVICE_OBJECT fdo, PIRP Irp) 
{ 

Irp-)IoStatus~Status = STATUS_SUCCESS; 
PDEVICE_EXTENSION pdx = CPDEVICE_EXTENSION) fdo-)DeviceExtension; 
if Cpdx-)state != PENDINGSTOP); 

{ 

<complicated stuff> 
} 

StopDeviceCfdo, pdx-)state == WORKING); 
pdx-)state = STOPPED; 
return DefaultPnpHandlerCfdo, Irp); 
} 

1. We expect the system to send us a QUERY_STOP before it sends us a 
STOP, so we should already be in the PENDINGSTOP state with all of our 
queues stalled. There is, however, a bug in Windows 98 such that we can 
sometimes get a STOP (without a QUERY_STOP) instead of a, REMOVE. 
You need to take some action at this point that causes you to reject any 
new IRPs, but you mustn't really remove your device object or do the other 
things you do when you really receive a REMOVE request. 

2. StopDevice is the helper function I've already discussed that deconfigures 
the device. 

3. We now enter the STOPPED state. We're in almost the same situation as 
we were when AddDevice was done. That is, all queues are stalled, and 
the device has no I/O resources. The only difference is that we've left our 
registered interfaces enabled, which means that applications Will not have 
received removal notifications and will leave their handles open. Appli
cations can also open new handles in this situation. Both aspects are just 
as they should be, because the stop condition won't last long. 

4. As I previously discussed, the last thing we do to handle IRP _MN_ 
STOP_DEVICE is pass the request down to the lower layers of the driver 
hierarchy. 

Is It Okay to Remove the Device? 
Just as the PnP Manager asks your permission before shutting your device down with 
a stop device request, it also might ask your permission before removing your device. 
This query takes the form of an IRP _MN_QVERY_REMOVE_DEVICE request that you 
can, once again, succeed or fail as you choose. And, just as with the stop query, the 
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PnP Manager will.use an IRP _MN_CANCEL_REMOVE_DEVICE request if it changes its 
mind about removing the device. 

NTSTATUS HandleQueryRemove(PDEVICLOBJECT fdo, PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
if (OkayToRemove(fdo» 

{ 

StallRequests(&pdx->dqReadWrite); 
WaitForCurrentIrp(&pdx->dqReadWrite); 
pdx->prevstate = pdx->state; 
pdx->state = PENDINGREMOVE; 
return DefaultPnpHandler(fdo, Irp); 
} 

return CompleteRequest(Irp, STATUS_UNSUCCESSFUL, 0); 
} 

NTSTATUS HandleCancelRemove(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
if (pdx->state 1= PENDINGREMOVE) 

return DefaultPnpHandler(fdo, Irp); 
NTSTATUS status = ForwardAndWait(fdo, Irp); 
if (NT_SUCCESS(status» 

{ 

pdx->state = pdx->prevstate; 
if (pdx->state == WORKING) 

RestartRequests(&pdx->dqReadWrite, fdo); 
} 

return CompleteRequest(Irp, status, Irp->IoStatus.Information); 
} 

1. This OkayToRemove helper function provides the answer to the ques
tion, "Is it okay to remove this device?" In general, this answer includes 
some device-specific ingredients, such as whether the device holds a 
paging or hibernation me, and so on. 

2. Just as I showed you for IRP _MN_QUERY _STOP _DEVICE, you want to stall 
the request queue and wait for a short period, if necessary, until the cur
rent request finishes. 

3. If you look at Figure 6-1 on page 223 carefully, you'll notice that it's pos
sible to get a QUERY_REMOVE when you're in either the WORKING or 
STOPPED state. The right thing to do if the current query is later cancelled 
is to return to the original state. Hence, I have a prevstate variable in the 
device extension to record the prequery state. 
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4. We get the CANCEL_REMOVE request when something either above or 
below us vetoes a QUERY_REMOVE. If we never saw the query, we'll still 
be in the WORKING state and don't need to do anything with this IRP. 
Otherwise, we need to forward it to the lower levels before we process 
it because we want the lower levels to be ready to process the IRPs we're 
about to release from our queues. 

5. Here, we undo the steps we took when we succeeded the QUERY_ 
REMOVE. We revert to. the previous state. If the previous state was 
WORKING, we stalled the queues when we handled the query and need 
to unstall them now. 

Synchronizing Removal 
It turns out that the I/O Manager can send you PnP requests simultaneously with other 
substantive I/O requests, such as requests that involve reading or writing. It's entirely 
possible, therefore, for you to receive an IRP _MN_REMOVE_DEVICE at a time when 
you're still processing another IRP. It's up to you to prevent untoward consequences, 
and the standard way to do that involves using an 10_REMOVE_LOCK object and 
several associated kernel-mode support routines .. 

The basic idea behind the standard scheme for preventing premature removal 
is that you acquire the remove lock each time you start processing a request and you 
release the lock when you're done. Before you remove your device object, you make . 
sure that the lock is free. If not, you wait until all references to the lock are released. 
Figure 6-6 illustrates the process. 

Figure 6-6. Operation of an lO_REMOVE_LOCK. 

To handle the mechanics of this process, you define a variable in the device 
extension: 

struct DEVICE_EXTENSION { 

IO_REMOVE_LOCK RemoveLock; 

} ; 
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You initialize the lock object during AddDevice: 

NTSTATUS AddDevice(PDRIVER-OBJECT DriverObject, PDEVICE_OBJECT pdo) 
{ 

IoInitializeR~moveLock(&pdx->RemoveLock, 0, 0, 256); 

} 

The last three parameters to IoInitiaUzeRemoveLock are, respectively, a tag value, 
an expected maximum lifetime for a lock, and a maximum lock count, none of which 
are used in the free build of the operating system. 

These preliminaries set the stage for what you do during the lifetime of the de
vice object. Whenever you receive an I/O request, you call IoAcquireRemoveLock. 
10AcquireRemoveLock will return STATIJS_DELET'E_PENDING if a removal operation 
is underway. Otherwise, it will acquire the lock and return STATIJS_SUCCESS. When
ever you finish an I/O operation, you call IoReleaseRemoveLock, which will re
lease the lock and might unleash a heretofore pending removal operation. In the 
context of some purely hypothetical dispatch function that completes the IRP it's 
handed, the code might look like this: 

NTSTATUS DispatchSomething(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
if (!NT_SUCCESS(status» 

return CompleteRequest(Irp, status, 0); 

IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
return CompleteRequest(Irp, <some code>, <info value»; 
} 

The second argument to 10AcquireRemoveLock and 10ReleaseRemoveLock is just a 
tag value that a checked build of the OS can use to match up acquisition and release 
calls, by the way. 

The calls to acquire· and release the remove lock dovetail with additional logic 
in the PnP dispatch function and the remove device subdispatch function. First, 
DispatchPnp has to obey the rule about locking and unlocking the device, so it 
will contain the following code that I didn't show you earlier in "IRP _MLPNP 
Dispatch Function": 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx-)RemoveLock, Irp); 
if (!NT_SUCCESS(status» 

return CompleteRequest(Irp, status, 0); 
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status = (*fcntab[fcn](fdo. Irp); 
if (fen 1= IRP_MN_REMOVE_DEVICE) 

IoReleaseRemovelock(&pdx->Removelock. Irp); 
return status; 
} 

In other words, DispatchPnp locks the device, calls the subdispatch routine, and 
then (usually) unlocks the device afterward. The subdispatch routine for IRP _MN_ 
REMOVE_DEVICE has additional special logic that you also haven't seen yet: 

NTSTATUS HandleRemoveDevice(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
AbortRequests(&pdx->dqReadWrite. STATUS_DELETE_PENDING); 
DeregisterAllInterfaces(pdx); 
StopDevice(fdo. pdx->state == WORKING); 
pdx->state = REMOVED; 
NTSTATUS status = DefaultPnpHandler(pdx->lowerDeviceObject. Irp); 
IoReleaseRemovelockAndWait(&pdx->Removelock. Irp); 
RemoveDevice(fdo); 
return status; 
} 

1. Wmdows 98 doesn't send the SURPRISE_REMOVAL request, so this REMOVE 
IRP may be the first indication you have that the device has disappeared. 
Calling StopDevice allows you to release all your I/O resources in case 
you didn't get an earlier IRP that caused you to release them. Calling 
AbortRequests causes you to complete any queued IRPs and to start 
rejecting any new IRPs. 

2. We pass this request to the lower layers now that we've done our work. 

3. The PnP dispatch routine acquired the remove lock. We now call the 
special function IoReleaseRemoveLockAndWait to release that lock 
reference and wait until all references to the lock are released. Once the 
IoReleaseRemoveLockAndWait routine returns, any subsequent call to 
IoAcquireRemoveLock will elicit a STATUS_DELETE_PENDING status to 
indicate that device removal is under way. 

NOTE You'll notice that the IRP _MN_REMOVE_DEVICE handler might block 
while some IRP finishes. This is certainly okay in Windows 98and Windows 2000, 
which were designed with this possibility in minc!-the IRP gets sent in the con
text of a system thread that is allowed to block. Some WDM functionality (a 
Microsoft developer even called it "embryonic") is present in OEM releases of 
Microsoft Windows 95, but you can't block a remove device request there. Con
sequently, if your driver needs to run in Windows 95, you need to discover that 
fact and avoid blocking. That discovery process is left as an exercise for you. 
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These are the mechanics of locking and unlocking the device to forestall re
moving the device while it's still in use. You still need to know when to invoke 
IoAcquireRemoveLock and IoReleaseRemoveLock to bring that mechanism into play. 
BaSically, an IRP dispatch function that will complete the request quickly should 
acquire and release the lock. 

A dispatch routine that queues an IRP should not acquire the remove lock, 
however. For a queued IRP, you acquire the lock inside Startlo and release it inside 
your DPC routine. So, we can expand the earlier skeleton of StartIo and DpcForisr 
as follows: 

VOID Startlo(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx =(PDEVICE_EXTENSION) fdo->DeviceExtension; 
~ NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp); 

if (INT_SUCCESS(status» 
{ 

~ CompleteRequest(Irp. status. 0); 
return; 
} 

II start request on device 
} 

VOID DpcForlsr(PKDPC Dpc. PDEVICLOBJECT device. PIRP junk. 
PYOID context) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite); 

StartNextPacket(&pdx->dqReadWr1te. device); 
~ IoReleaseRemoveLock(&pdx->RemoveLock. Irp); 

Compl eteRequest(lrp •... ); 
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} 

1. We acquire the lock here rather than in the dispatch routine. We don't want 
the fact that we've got an IRP sitting in our queue to prevent the PhP. 
Manager from shutting us down. It's also better to not have to worry about 
the remove lock in our cancel routine. 

2. IoAcquireRem.oveLock fails only if a delete operation is pending. Its re
turn value can be either STATIJS_SUCCESS or STATIJS_DELETE_PENDING. 
In the failure ,case, don't call StartNextPacket-there's no point in try

ing to start a new operation when the device is about to disappear. Were 
we to call StartNextPacket, it would recursively call this routine, which 
would try to acquire the remove lock and fail, whereupon it would call 
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StartNextPacket, which would call Startlo, which would ... <BSOD due to 
stack overflow>. You get the idea. 

3. This call to IoRe1easeRemoveLock balances the call inside Startlo. 

You should also acquire the remove lock when you successfully process an 
IRP _MLCREATE. In contrast to the other situations we've considered, you don't re
lease the lock before returning from the DispatchCreate routine. The balancing call 
to 10ReleaseRemoveLock occurs instead in the dispatch routine for IRP _MLCLOSE. 
In other words, you hold the remove lock for the entire time something has a handle 
open to your device. Here's a sketch of what I mean: 

NTSTATUS DispatchCreate( ... ) 
{ 

IoAcquireRemoveLock(&pdx->RemoveLock, stack->FileObject); 
return CompleteRequest( ... ); 
} 

NTSTATUS DispatchClose( ... ) 
{ 

IoReleaseRemoveLock(&pdx->RemoveLock, stack->FileObject); 
return CompleteRequest( ... ); 
} 

For debugging purposes, the balancing calls to loAcquireRemoveLock and 
10ReleaseRemoveLock should use the same value for the second argument. You 
wouldn't use the IRP pointer as I've done in my other examples because the CRE
ATE and CLOSE requests are different IRPs. The me object will be the same in both 
requests, though, which is why I used the me object in this example. 

If the end user uses the Device Manager to remove a device when some ap
plication has an open handle, the operating system declines to remove the device 
and so informs the user. In that situation, the fact that you've also claimed the re
move lock won't influence the course of events because you'll never get the 
IRP _MN_REMOVE_DEVICE that would cause you to wait for all holders of the lock 
to release it. If it's possible for the device to be physically removed from the com
puter without first going through the Device Manager, however, a correctly written 
application will be looking for a WM_DEVICECHANGE message that signals depar
ture of the device. (See the discussion of user-mode notifications near the end of this 
chapter in "PnP Notifications".) The application will then close its handles. You should 
delay IRP _MN_REMOVE_DEVICE until the handles are actually closed, and the locking 
logic I've just described allows you to do that. 
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COMPATIBILITY NOTE FOR IO_REMOVE_LOCK 

It turns out that the IO_REMOVE_LOCK object and associated service functions 
are technically not part of the WDM. The declarations your C code needs are 
actually in WDM.H, and WDM.llB contains import deftnitions for the remove-lock 
functions. But Windows 98 doesn't actually export the functions. A driver that ref
erences these functions therefore won't load in Windows 98. This state of affairs 
is very unfortunate because every WDM driver needs to interlock device removal. 

DDK sample programs cope with this incompatibility in one of two ways. 
Some samples use a custom-built mechanism instead of an IO_REMOVE_LOCK. 
Others provide functions with names like XxxAcquireRem.oveLock, and so on, 
that mimic the names of the standard remove lock functions. 

My sample drivers use a variation on the second of these approaches. 
By means of #define statements, I substitute my own declarations of the 
IO_REMOVE_LOCK object and support functions for the official ones. Thus, my 
sample code calls 10AcquireRemoveLock, and so on. In the samples that use 
GENERIC.SYS, preprocessor trickery actually routes these calls to functions with 
names like GenericAcquireRem.oveLock that reside in GENERIC.SYS. In the 
samples that don't use GENERIC.SYS, the preprocessor trickery routes the 
calls to functions with names like AcquireRem.oveLock that are located in 

a me named REMOVELOCK.CPP. 
I could have written my samples in such a way that they would call the 

standard remove lock functions instead of my own in Windows 2000. To make 
any of the samples work in Windows 98, I'd have needed to write stub imple
mentations of the remove lock functions and required you to install a stub vir
tual device driver (YxD) before you could run any of the samples. (See Appendix 
A, "Coping with Windows 98 Incompatibilities.") I didn't think this was a good 
way to explain WDM· programming. 

How DEVQUEUE Works 
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In contrast to other examples in this book, I'm going to show you the full implemen
tation of the DEVQUEUE object even though the source code is on the companion 
disc. I'm making an exception in this case because I think an annotated listing of the 
functions will make it easier for you to understand how to use it. 
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Initializing a DEVQUEUE 
The DEVQUEUE object has this declaration in my DEVQUEUE.H header file: 

typedef struct _DEVQUEUE { 
LIST_ENTRY head; 
KSPIN_LOCK lock; 
PDRIVER-START Startlo; 
LONG stallcount; 
PIRP Currentlrp; 
KEVENT evStop; 
NTSTATUS abortstatus; 
} DEVQUEUE. *PDEVQUEUE; 

InitializeQueue initializes one of these objects like this: 

VOID NTAPI InitializeQueue(PDEVQUEUE pdq, PDRIVER-STARTIO Startlo) 
{ 

InitializeListHead(&pdq-)head); 
KelnitializeSpinLock(&pdq-)lock); 
pdq-)Startlo = Startlo; 
pdq-)stallcount = 1; 
pdq-)Currentlrp = NULL; 
KelnitializeEvent(&pdq-)evStop. NotificationEvent. FALSE); 
pdq-)abortstatus = (NTSTATUS) 0; 
} 

1. We use an ordinary Cnoninterlocked) doubly-linked list to queue IRPs. We 
don't need to use an interlocked list because we'll always access it within 
the protection of our own spin lock. 

2. This spin lock guards access to the queue and other fields in the 
DEVQUEUE structure. It also takes the place of the global cancel spin lock 
for guarding nearly all of the cancellation process, thereby improving 
system performance. 

3. Each queue has its own associated StartIo function that we call automati
cally in the appropriate places. 

4. The stall counter indicates how many times something has requested that 
IRP delivery to StartIo be stalled. Initializing the counter to 1 means that 
the IRP _MN_START_DEVICE handler must call RestartRequests to release 
an IRP. 

5. The Currentlrp field records the IRP most recently sent to the Startlo rou
tine. Initializing this field to NULL indicates that the device is initially idle. 

6. We use this event to block WaitForCurrentirp when necessary. We'll set 
this event inside StartNextPacket, which should always be called when the 
current IRP completes. 
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7. We reject incoming IRPs in two situations. The first situation is after we 
irrevocably commit to removing the device, when we must start failing new 
IRPs with STATUS_DELETE_PENDING. The second situation is during a 
period of low power, when, depending on the type of device we're man
aging, we might choose to fail new IRPs with the STATUS_DEVICE_ 
POWERED_OFF code. The abortstatus field records the status code we 
should use in rejecting IRPs in these situations. 

Stalling the Queue 
stalling the IRP queue involves two DEVQUEUE functions: 

VOID NTAPI StallRequests(POEVOUEur pdq) 
{ 

InterlockedIncrement(&pdq->stallcount); 
} 

BOOLEAN NTAPI CheckBusyAndStall(POEVOUEUE pdq) 
{ 

KIROL oldirql: 
KeAcquireSpinLock(&pdq->lock. &oldirql); 
BOOLEAN busy = pdq->CurrentIrp 1= NULL; 
if (Ibusy) 

InterlockedIncrement(&pdq->stallcount): 
KeReleaseSpinLock(&pdq->lock. oldirql): 
return busy; 
} 

1. To stall requests, we just need to set the stall counter to a nonzero value. 
It's unnecessary to protect the increment with a spin lock because any de
vice that might be racing with us to change the value will also be using 
an interlocked increment or decrement. 

2. Since CheckBusyAndStall needs to operate as an atomic function, we first 
take the queue's spin lock. 

3. CurrentIrp being non-NUll. is the signal that the device is busy handling 
one of the requests from this queue. 

4. If the device is currently idle, this statement starts stalling the queue, 
thereby preventing the device from becoming busy later on. 

Queuing IRPs 
IRPs get added to the queue when a dispatch function calls StartPacket: 

VOID NTAPI StartPacket(POEVOUEUE pdq. POEVICE_OBJECT fdo. 
PIRP Irp. PORIVER-CANCEL cancel) 
{ 

KIROL oldirql: 
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KeAcquireSpinLock(&pdq->lock. &oldirql): 
if (pdq->abortstatus) 

{ 

KeReleaseSpinLock(&pdq->lock. oldirql): 
Irp->IoStatus.Statu$ = pdq->abortstatus: 
IoCompleteRequest(Irp. IO_NO_INCREMENT): 
} 

else if (pdq->Currentlrp I I pdq->stallcount) 
{ 

IoSetCancelRoutine(Irp. cancel): 
if (Irp->Cancel && IoSetCancelRoutine(Irp. NULL» 

{ 

KeReleaseSpinLock(&pdq->lock. oldirq1): 
Irp->IoStatus.Status = STATULCANCELLED: 
IoCompleteRequest(Irp. IO_NO_INCREMENT): 
} 

else 
{ 

InsertTaillist(&pdq->head. &Irp->Tail.Overlay.ListEntry): 
KeReleaseSpinLock(&pdq->lock. oldirql): 
} 

else 
{ 

} 

pdq->Currentlrp = lrp: 
KeReleaseSpi nLock(&pdq->l ock. DISPATCH_LEVEL); 
(*pdq->Startlo)(fdo. Irp): 
KeLowerlrql(oldirql): 
} 

1. Acquiring the spin lock allows us to access fields in the DEVQUEUE 
without interference from the other support routines-principally 
StartNextPacket-that might be trying to access the same queue. 

2. As I described earlier, we sometimes need to reject IRPs on arrival. If 
abortstatus is nonzero, we just complete the request. Our caller will be 
returning STATUS_PENDING, so it's up to us to do the completion. 

3. If the device is currently busy, or if some other part of the driver has stalled 
this queue, we need to queue the IRP for later processing. 

4. We might be in race with an instance of IoCancelirp that is trying to can
cel this very IRP. We first install our own cancel routine in the IRP by using 
IoSetCa11ceJRoutine, which performs an (atomic) interlocked exchange. 
Then we test the Cancel flag. If we find the Cancel flag set, our cancel 
routine might or might not have been called by now, depending on the exact 
order in which our code and IoCanceUrp executed their program steps. If 
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our cancel routine was called, a second call to IoSetCancelRoutine will return 
NULL; we can then enqueue the IRP and rely on the cancel routine to 
immediately dequeue the IRP and complete it. If our cancel routine has 
not yet been called, it won't be possible for it to ever be called after the 
second invocation of IoSetCancelRoutine; we will complete the IRP now 
in this case. 

5. This is where we actually queue the IRP. The Tai1.Overlay.llstEntry field 
of an IRP was designed for uses like this one. 

6. The last case is when the queue is in the READY state and the device is 
not currently busy. We set the CurrentIrp pointer in the DEVQUEUE, re
lease the spin lock, and call the Startlo routine at DISPATCH_LEVEL. 

I'd like to discuss a pesky nonproblem in the above code. Programs that change 
CurrentIrp do so while owning our spin lock, so we can be sure there's no ambigu
ity in our test of CurrentIrp. The stall counter, on the other hand, can be incremented 
without the spin lock inside StallRequests. It should be obvious that the only poten
tial problem occurs when the counter is being incremented from ° to 1 more or less 
simultaneously with us, because we behave the same way no matter what nonzero value 
the counter might have. Consider the potential race with a call to StallRequests that will 
increment the counter from ° to 1. If we beat the increment and find the counter 0, 
we'll go ahead and start a request. That's okay, because the caller of StallRequests is 
willing to have the device be busy. (If the caller weren't willing, it would have used 
CheckBusy AndStall instead.) If we find the counter already incremented, we'll queue 
the IRP, which is also consistent with what the caller of StallRequests intended. 

Dequeuing IRPs 
The function that dequeues most IRPs is StartNextPacket, which is called from a 
DPC, routine: 

PIRP NTAPI StartNextPacket(PDEVQUEUE pdq, PDEVICE_OBJECT fdo) 
{ 

KIRQL oldirql; 
KeAcquireSpinLock(&pdq->lock, &oldirql»; 
PIRP CurrentIrp = (PIRP) InterlockedExchangePointer 

(&pdq->CurrentIrp, NULL); 
if (CurrentIrp) 

KeSetEvent(&pdq->evStop, 0, FALSE); 
while (!pdq->stallcount 

&& !pdq->abortstatus 
&& !IsListEmpty(&pdq->head» 
{ 

PLIST_ENTRY next = RemoveHeadList(&pdq->head); 
PIRP Irp = CONTAINING_RECORD(next, IRP, Tail.Overlay.ListEntry); 
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if (!IoSetCancelRoutine(Irp. NULL» 
{ 

InitializeListHead(&Irp-)Tail.Overlay.ListEntry); 
continue; 
} 

pdq-)Currentlrp = Irp; 
KeReleaseSpinLockFromDpcLevel(&pdq-)lock); 
(*pdq-)Startlo)(fdo. Irp); 
KeLowerlrql(oldirql); 
return Currentlrp; 
} 

KeReleaseSpinLock(&pdq-)lock. oldirql); 
return Currentlrp; 
} 

1. We first acquire the queue's spin lock so that we can muck about with the 
internal structure of the object without interference. 

2. We'll be returning the address of the current IRP as our return value, and 
we also want to set the CurrentIrp pointer to NULL. Because of the spin 
lock, we don't need to use an atomic operation to extract and nullify 
CurrentIrp, but doing so can't hurt either. 

3. Some rou,tine might be waiting inside WaitForCurrentIrp for the current 
request to finish. This call to KeSetEvent will satisfy that wait. 

4. This series of tests determines whether we can and should dequeue a re
quest. The queue must not be stalled. Neither can we be in the REJECT
ING state, in which we're rejecting new IRPs. Finally, the queue must 
contain a request before it makes sense to call RemoveHeadUst. 

5. This code removes the oldest entry in our IRP queue. 

6. NUllifying the cancel routine pointer in the IRP will prevent IoCancelIrp 
from trying to cancel the IRP. It's possible that IoCanceUrp is in the process 
of trying to cancel this IRP on another CPU at this very I)1oment, in which 
case we should get NUll as the return value from IoSetCancelRoutine. When 
CancelRequest gains control, it will need to acquire the queue's spin lock 
before proceeding further. At that point, it will blindly try to remove this IRP 
from whatever queue it happens to be on. Calling InitializeListHead on 
the IRP's own chaining field will make it safe for CancelRequest to do this 
when it eventually gains control of the spin lock and proceeds. 

7. This is where we finally pass the newly dequeued IRP to the StartIo 
routine for processing. 
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The RestartRequests function balances a call to StallRequests or CheckBusy
AndStall. It's complicated-very slightly-by the need to send the first IRP to the 
Startlo routine. Luckily, it can just call StartNextPacket: 

VOID NTAPI RestartRequestsCPDEVQUEUE pdq. PDEVICE_OBJECT fdo) 
{ 

if ClnterlockedDecrementC&pdq->stallcount) > 0) 
return; 

StartNextPacketCpdq. fdo); 
} 

Cancelling IRPs 
StartPacket registers a cancel routine supplied by its caller, which in turn simply 
delegates the work to the queue's CancelRequest function: 

VOID NTAPI CancelRequestCPDEVQUEUE pdq. PIRP Irp) 
{ 

KIRQL oldirql = Irp->Cancellrql; 
IoReleaseCancelSpinLockCDISPATCH_LEVEL); 
KeAcquireSpinLockAtDpcLevelC&pdq->lock); 
RemoveEntryL1stC&Irp->Tail.Overlay.ListEntry); 
KeReleaseSpinLockC&pdq->lock. oldirql); 
Irp->IoStatus.Status = STATULCANCELLED; 
IoCompleteRequestClrp. IO_NO_INCREMENT); 
} 

We're called while we own the global cancel spin lock, which we release al
most immediately. After this everything is protected by the queue's spin lock instead. 
When IoCanceilrp called loAcquireCancelSpinLock, it saved the previous interrupt 
request level (IRQL) value in the CancelIrql field of the IRP, and we need to even
tually revert to that same IRQL; hence, we save it in the oldJrql variable. 

NOTE The caller of 10Cancelirp is responsible for making sure that the IRP 
has not already been completed. 
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IRPs can also be cancelled as a result of an IRP _MLCLEANUP, which we'll 
receive prior to an IRP .-MLCLOSE. The DEVQUEUE CleanupRequests function is 
almost identical to the standard-modell>ispatchCleanup routine I showed you in 
the previous chapter. The only substantive difference between the two is that we only 
need to acquire the queue's spin lock: 

VOID NTAPI CleanupRequests(PDEVQUEUE pdq. PFILE.-OBJECT fop. 
NTSTATUS status) 
{ 

LISLENTRY cancell i st; 
InitializeListhead(&cancellist); 
KIRQL oldirql; 
KeAcquireSpinLock(&pdq->lock. &oldirql); 
PLIST_ENTRY first = &pdq->head; 
PLIST_ENTRY next; 
for (next = first->Flink; next 1= first; 

{ 

PIRP Irp = CONTAINING-RECORD(next. IRP. Tail.Overlay.ListEntry); 
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp); 
next = next->Flink; 
if (fop && stack->FileObject 1= fop) 

continue; 
if (IIoSetCancelRoutine(Irp. NULL» 

continue; 
RemoveEntryList(next); 
InsertTailList(&cancellist. next); 
} 

KeReleaseSpinLock(&pdq->lock. oldirql); 
while (IIsListEmpty(&cancellist» 

} 

{ 

next = RemoveHeadList(&cancellist); 
PIRP Irp = CONTAINING-RECORD(next. IRP. Tail.Overlay.ListEntry); 
Irp->IoStatus.Status = status; 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
} 

1. Our strategy will be to move the IRPs that need to be cancelled into a pri
vate queue under protection of the queue's spin lock. Hence, we initial
ize the private queue and acquire the spin lock before doing anything else. 
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2. This loop traverses the entire queue until we return to the list head. Note 
the absence of a loop increment step-the third clause in the for state
ment. I'll explain why none is desirable in a moment. 

3. If we're being called to help out with IRP _ML CLEANUP, the fop argument 
is the address of a file object that is about to be closed. We're supposed 
to isolate the IRPs that pertaln to the same file object, which requires us 
to first find the stack location. 

4. If we decide to remove this IRP from the queue, we won't thereafter have 
an easy way to find the next IRP in the main queue. We therefore perform 
the loop increment step here. 

5. This especially clever statement is due to Jamie Hanrahan. We need to 
worry that someone might be trying to cancel the IRP that we're currently 
looking at during this iteration. They could get only as far as the point 
where CancelRequest tries to acquire the spin lock. Before getting that far, 
however, they necessarily had to execute the statement inside loCancelIrp 
that nullifies the cancel routine pointer. If we find that pointer NULL when 
we call IOSetCancelRoutine, therefore, we can be sure that someone re
ally is trying to cancel this IRP. By simply skipping this IRP during this 
iteration, we allow the cancel routine to complete it later on. 

6. Here's where we take the IRP out of the main queue and put it in the 
private queue instead. 

7. Once we finish moving IRPs into the private queue, we can release our 
spin lock. Then we go ahead and cancel all the IRPs we moved. 

CleanupRequests can be called from elsewhere in the driver, by the way. For 
example, earlier I showed you a call from the IRP _MN_REMOVE_DEVICE handler, 
which supplied a NULL file object pointer (in order to select all IRPs) and a status 
code of STATUS_DELETE_PENDING. 

Awaiting the Current IRP 
The handler for IRP _MN_STOP _DEVICE might need to wait for the current IRP, if any, 
to finish by calling WaitForCurrentlrp: 

VOID NTAPI WaitForCurrentlrp(PDEVQUEUE pdq) 
{ 

KeClearEvent(&pdq->evStop); 



Chapter 6 Plug and Play 

ASSERT(pdq->stallcount 1= 0): 
KIRQL oldirql: 
KeAcquireSpinLock(&pdq->lock, &oldirql): 
BOOLEAN mustwait = pdq~>Currentlrp 1= NULL: 
KeReleaseSpinLock(&pdq->lock, oldirql): 
if (mustwai t) 

} 

KeWaitForSingleObject(&pdq->evStop, Executive, KernelMode, 
FALSE, NULl): 

1. StartNextPacket signals the evStop event each time it's called. We want 
to be sure that the wait we're about to perform doesn't complete because 
of a now stale signal, so we clear the event before doing anything else. 

2. It doesn't make sense to call this routine without ftrst stalling the queue. 
Otherwise, StartNextPacket would just start the next packet if there were 
one, and the device would become busy again. 

3. If the device is currently busy, we'll wait on the evStop event until some
thing calls StartNextPacket to signal that event. We need to protect our in
spection of Currentlrp with the spin lock because, in general, testing a 
pointer for NULL isn't an atomic event. If the pointer is NULL now, it can't 
change later because we've assumed that the queue is stalled. 

Aborting Requests 
Surprise removal of the device demands that we immediately halt every outstanding 
IRP that might try to touch the hardware. In addition, we want to make sure that all 
further IRPs get rejected. The AbortRequests function helps with these tasks: 

VOID NTAPI AbortRequests(POEVQUEUE pdq, NTSTATUS status) 
{ 

pdq->abortstatus = status: 
CleanupRequests(pdq, NULL, status): 
} 

Setting abortstatus puts the queue into the REJECTING state so that all fu
ture IRPs will be rejected with whatever status value our caller supplied. Calling 
CleanupRequests at this point---:with a NULL file object pointer so that Cleanup
Requests will process the entire queue-empties the queue. 

We don't dare try to do anything with the IRP, if any, that's currently active on 
the hardware. Drivers that don't use the hardware abstraction layer (HAL) to access the 
hardware-USB drivers, for example, which rely on the hub and host-controllerdriv
ers--can count on another driver to fail the current IRP. Drivers that use the HAL might, 
however, need to worry about hanging the system or, at the very least, leaving an IRP 
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in limbo because the nonexistent hardware can't generate the interrupt that would let 
the IRP finish. To deal with situations like this, you call AreRequestsBeingAborted: 

NTSTATUS AreRequestsBeingAborted(PDEVQUEUE pdq) 
{ 

return pdq->abortstatus: 
} 

It would be silly, by the way, to use the queue spin lock in this routine. Sup
pose that we were to capture the instantaneous value of abortstatus in a thread-safe 
and multiprocessor-safe way. The value we return could become obsolete as soon 
as we release the spin lock. 

NOTE If your device might be removed in such a way that an outstanding re
quest simply hangs, you should also have a watchdog timer of some sort run
ning that will let you kill the IRP after some period of time. See the "Watchdog 
Timers" section in Chapter 9, "Specialized Topics." 

Sometimes we need to undo the effect of a previous call to AbortRequest. 
AllowRequests lets us do that: 

VOID NTAPI AllowRequests(PDEVQUEUE pdq) 
{ 

pdq->abortstatus = (NTSTATUS) 0: 
} 

OTHER CONFIGURATION FUNCTIONALITY 

260 

Up to this point I've talked about the important concepts you need to know to write 
a hardware device driver. To close the chapter, I'll discuss two less important minor 
function codes-IRP _MN_FILTER_RESOURCE_REQUIREMENTS and IRP _MN_ 
DEVICE_USAGE_NOTIFICATION-that you might need to process in a practical 
driver. Then I'll discuss how to write a miniature bus driver to support nonstandard 
controller or multifunction devices. Finally, I'll mention how you can register to re
ceive notifications about PnP events that affect other devices besides your own. 

NOTE Other flavors of PnP requests exist that I haven't discussed in this chap
ter because it's not my purpose to simply reiterate the DDK reference manuals. 
For example, it's potentially useful to be able to export a direct call interface to 
other drivers, but you probably don't need to in any garden-variety situation. I'm 
therefore not going to provide a sample or an explanation of IRP _MN_ 
QUERY_INTERFACE. I'll mention IRP _MN_QUERY _CAPABILITIES in Chap
ter 8, on power management, to which it's most relevant. 
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Filtering Resource Requirements 
Sometimes the PnP Manager is misinformed about the resource requirements of your 
driver. This can occur because of hardware and firmware bugs, mistakes in the INF 
file for a legacy device, or other reasons. The system provides an escape valve in the 
form of the IRP _MN_FIL TER_RESOURCE_REQUIREMENTS request, which affords you 
a chance to examine and possibly alter the list of resources before the PnP Manager 
embarks on the arbitration and assignment process that culminates in your receiv
ing a start device IRP. 

When you receive a filter request, the FilterResourceRequirements substruc
ture of the Parameters union in your stack location points to an IO_RESOURCE_ 
REQUIREMENTS_LIST data structure that lists the resource requirements for your 
device. In addition, if any of the drivers above you have processed the IRP and 
modified the resource requirements, the IoStatus.Information field of the IRP will 
point to a second IO_RESOURCE_REQUIREMENTS_LIST, which is the one from which 
you should work. Your overall strategy will be as follows: If you wish to add a re
source to the current list of requirements, you do so in your dispatch routine. Then 
you pass the IRP down the stack synchronously-that is, by using the ForwardAndWait 
method you use with a start device request. When you regain control, you can modify 
any of the resource descriptions that appear in the list. 

Here is a brief and not very useful example that illustrates the mechanics of the 
filtering process: 

NTSTATUS HandleFilterResources(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension; 
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp); 
PIO_RESOURCE_REQUIREMENTS_LIST original = stack-)Parameters 

.FilterResourceRequirements.loResourceRequirementList; 
PIO_RESOURCE_REQUIREMENTS_LIST filtered = 

(PIO_RESOURCE_REQUIREMENTS_LIST) Irp-)IoStatus.lnformation; 
PIO_RESOURCE_REQUIREMENTS_LIST source 

filtered? filtered: original; 
if (source-)AlternativeLists 1= 1) 

return DefaultPnpHandler(fdo, Irp); 
ULONG sizelist = source-)ListSize; 
PIO_RESOURCE_REQUIREMENTS_LIST newlist 

(PIO_RESOURCE_REQUIREMENTS_LIST) ExAllocatePool(PagedPool, 
sizelist + sizeof(IO_RESOURCE_DESCRIPTOR»; 

if (Inewlist) 
return DefaultPnpHandler(fdo, Irp); 

RtlCopyMemoryCnewlist, source, sizelist); 
newlist-)ListSize += sizeof(IO_RESOURCE_DESCRIPTOR); 

(continued) 

261 



Programming the Microsoft Windows Driver Model 

262 

PIO_RESOURCE_DESCRIPTOR resource = 
&newlist->List[0].Descriptors[newlist->List[0].Count++]; 

RtlZeroMemory(resource. sizeof(IO_RESOURCE_DESCRIPTOR)); 
resource->Type = CmResourceTypeDevicePrivate; 
resource->ShareDisposition = CmResourceShareDeviceExclusive; 
resource->u.DevicePrivate.Data[0] = 42; 
Irp->IoStatus.Information = (ULONG_PTR) newlist; 
if (filtered) 

ExFreePool(filtered); 
NTSTATUS status = ForwardAndWait(fdo. Irp); 
if (NT_SUCCESS(status)) 

{ 

II stuff 
} 

Irp->IoStatus.Status status; 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
return status; 
} 

1. The parameters for this request include a list of I/O resource requirements. 
These would be derived from the device's configuration space, the regis
try, or wherever the bus driver happens to find them. 

2. Higher-level drivers might have already filtered the resources by adding 
additional ones to the original list. If so, they set the IoStatus.Information 
field to point to the expanded requirements list structure. 

3. If there's no filtered list, we will extend the original list. If there's a filtered 
list, we'll extend that. 

4. Theoretically, several alternative lists of requirements could exist, but deal
ing with that situation is beyond the scope of this simple example. 

5. We need to add any resources before we pass the request down the stack. 
First we allocate a new requirements list and copy the old requirements 
into it. 

6. Taking care to preserve the preexisting order of the descriptors, we add 
our own resource description. In this example, we're adding a resource 
that's private to the driver. 

7. We store the address of the expanded list of requirements in the IRP's 
IoStatus.Information field, which is where lower-level drivers and the 
PnP system will be looking for it. If we just extended an already filtered 
list, we need to release the memory occupied by the old list. 
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8. We pass the request down using the same ForwardAndWait helper func
tion that we used for IRP _MN_START_DEVICE. If we weren't going to 
modify any resource descriptors on the IRP's way back up the stack, we 
could just call DefaultPnpHandler here and propagate the returned status. 

9. When we complete this IRP, whether we indicate success or failure, we 
must take care not to modify the Information field of the I/O status block: 
it might hold a pointer to a resource requirements list that some driver
maybe even ours!-installed on the way down. The PnP Manager will 
release the memory occupied by that structure when it's no longer needed. 

Device Usage Notifications 
Disk drivers (and the drivers for disk controllers) in particular sometimes need to know 
extrinsic facts about how they're being used by the operating system, and the 
IRP _MN_DEVICE_USAGE_NOTIFICATION request provides a means to gain that 
knowledge. The I/O stack location for the IRP contains two parameters in the 
Parameters.UsageNotification substructure. See Table 6-4. The InPath value 
(a Boolean) indicates whether the device is in the device path required to support 
that usage, and the Type value indicates one of several possible special usages. 

Parameter Description 

InPath TRUE if device is in the path of the Type usage; FALSE if not 

Type Type of usage to which the IRP applies 

Table 6-4. Fields in the Parameters.UsageNotification substructure of an I/O stack location. 

In the subdispatch routine for the notification, you should have a switch state
ment (or other logic) that differentiates among the notifications you know about. 
In most cases you'll pass the IRP down the stack. Consequently, a skeleton for the 
subdispatch function is as follows: 

NTSTATUS HandleUsageNotification(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp): 
DEVICE_USAGE_NOTIFICATION_TYPE type = 

stack->Parameters.UsageNotification.Type: 
BOOLEAN inpath = stack->Parameters.UsageNotification.lnPath: 
switch (type) 

{ 

case DeviceUsageTypeHibernation: 

(continued) 
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Irp->IoStatus.Status = STATUS_SUCCESS: 
break: 

case DeviceUsageTypeDumpFile: 

Irp->IoStatus.Status = STATUS_SUCCESS: 
break: 

case DeviceUsageTypePaging: 

Irp->IoStatus.Status = STATUS_SUCCESS: 
break: 

default: 
break: 
} 

return DefaultPnpHandler(fdo. Irp): 
} 

Set the Status field of the IRP to STATUS_SUCCESS for only the notifications 
that you explicitly recognize as a signal to the bus driver that you've processed them. 
The bus driver will assume that you didn't know about-and therefore didn't pro
cess-a notification for which you don't set STATUS_SUCCESS. 

You may know that your device can't support a certain kind of usage. Suppose, 
for example, that some fact that only you know prevents your disk device from being 
used to store a hibernation file. In such a case, you should fail the IRP if it specifies 
the InPath value: 

case DeviceUsageTypeHibernation: 
if (inpath) 

return CompleteRequest(Irp. STATUS_UNSUCCESSFUL. 0): 

In the remainder of this section, I'll briefly describe each of the current us
age types. 

DeviceUsageTypePaging 
The InPath TRUE notification indicates that a paging file will be opened on the de
vice. The InPath FALSE notification indicates that a paging file has been closed. 
Generally, you should maintain a counter of the number of paging fUes you've been 
notified about. While any paging fUe remains active, you'll fail queries for STOP and 
REMOVE functions. In addition, when you receive the ftrst paging notification, make 
sure that your dispatch routines for READ, WRITE, DEVICE_CONTROL, PNP, and 
POWER requests are locked into memory. (Refer to the information on driver pag
ing in "User and Kernel Mode Address Spaces" in Chapter 3, "Basic Programming 
Techniques," for more information.) You should also clear the DO_POWER-PAGABLE 
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flag in your device object to force the Power Manager to send you power IRPs at 
DISPATCH_LEVEL. To be safe,I'd also suggest nullifying any idle-notification regis
tration you might have made. (See Chapter 8 for a discussion of idle detection.) 

NOTE In Chapter 8, "Power Management," I'll discuss how to set the DO_ 
POWER_PAGABLE flag in a device object. You need to be sure that you never 
clear this flag while a device object under yours has the flag set. You would want 
to clear the flag only in a completion routine, after the lower-level drivers have 
cleared their own flags. You need a completion routine anyway because you must 

. undo anything you did in your dispatch routine if the IRP fails in the lower layers. 

DeviceUsageTypeDumpFile 
The InPath TRUE notification indicates that the device has been chosen as the reposi
tory for a crash dump file should one be necessary. The InPath FALSE notification 
cancels that. Maintain a counter of TRUE minus FALSE notifications. While the counter 
is nonzero: 

• Make sure that your power management code-see Chapter 8--will never 
take the device out of the DO, or fully on, state. 

• Avoid registering the device for idle detection, and nullify any outstand
ing registration. 

• Make sure that your driver fails stop and remove queries. 

DeviceUsageTypeHibernation 
The InPath TRUE notification indicates that the device has been chosen to hold the 
hibernation state file should one be written. The InPath FALSE notification cancels 
that. You should maintain a counter of TRUE minus FALSE notifications. Your response 
to system power IRPs that specify the PowerSystemHibernate state will be differ
ent than normal because your device will be used momentarily to record the hiber
nate file. Elaboration of this particular feature of disk drivers is beyond the scope of 
this book. 

Controller and Multifunction Devices 
Two categories of devices don't fit nearly into the PnP framework I've described so 
far. These categories are controller devices, which manage a collection of child de
vices, and multifunction devices, which have several functions on one card. These 
kinds of devices are similar in that their correct management entails the creation of 
multiple device objects with independent I/O resources. 
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It's very easy in Windows 2000 to support PCI, PCMCIA (Personal Computer 
Memory Card International Association), and USB devices that conform to their re
spective bus standards for multifunction devices. The PCI bus driver automatically 
recognizes PCI multifunction cards. For PCMCIA multifunction devices, you can follow 
the detailed instructions in the DDK for designating MF.SYS as the function driver for 
your multifunction card; MF.SYS will enumerate the functions on your card and thereby 
cause the PnP Manager to load individual function drivers. The USB hub driver will 
normally load separate function drivers for each interface on a one-configuration device. 

Except for USB, the original release of Windows 98 lacks the multifunction sup
port that Windows 2000 provides. In Windows 98, to deal with controller or multi
function devices, or to deal with nonstandard devices, you'll need to resort to more 
heroic means. You'll supply a function driver for your main device and supply sepa
rate function drivers for the child devices that connect to the main device. The main 
device's function driver will act like a miniature bus driver by enumerating the child 
devices and providing default handling for PnP and power requests. Writing a full
fledged bus driver is a large undertaking, and I don't intend to attempt a description 
of the process here. I will, however, describe the basic mechanisms you use for 
enumerating child devices. This information will allow you to write drivers for con
troller or multifunction devices that don't fit the standard molds provided by Microsoft. 

Overall Architecture 
In Chapter 2, Figure 2-2 (on page 23) illustrates the topology of device objects when 
a parent device, such as bus driver, has children. Controller and multifunction de
vices use a similar topology. The parent device plugs into a standard bus. The driver 
for the standard bus detects the parent, and the PnP Manager configures it just like 
any ordinary device-up to a point. Mter it starts the parent device, the PnP Man
ager sends a Plug and Play request with the minor function code IRP _MN_ 
QUERY _DEVICE_RELATIONS to learn the so-called bus relations of the parent de
vice. This query occurs for all devices, actually, because the PnP Manager doesn't 
know yet whether the device has children. 

In response to the bus relations query, the parent device's function driver lo
cates or creates additional device objects. Each of these objects becomes the PD~ 
at the bottom of the stack for one of the child devices. The PnP Manager will go on 
to load the function and filter drivers for the child devices, whereupon you end up 
with a picture like that in Figure 2-2. 

The driver for the parent device has to play two roles. In one role, it's the func
tional device object (FDO) driver for the controller or multifunction device. In the 
other role, it's the PD~ driver for its child devices. In its FDO role, it handles PnP 
and power requests in the way function drivers normally handle them. In its PD~ 
role, however, it acts as the driver of last resort for PnP and power requests. 
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Creating Child Device Objects 
Somewhere along the way, perhaps at the time it processes IRP _MN_START_DEVICE, 
the parent driver, in its FDO role, needs to create one or more physical device ob
jects for its children, and it needs to keep track of them for later. The only major 
complication at this early stage is this: both the FDO and all the PDOs belong to the 
same driver object, which means that IRPs directed to any of these device objects will 
come to one set of dispatch routines. The driver needs to handle PnP and power IRPs 
differently for FDOs and PDOs. Consequently, you need to provide a way for a dis
patch function to easily distinguish between an FDO and one of the child PDOs. I 
dealt with this complication by defining two device extension structures with a com
mon beginning, as follows: 

II The FDO extension: 

typedef struct _DEVICE_EXTENSION { 
ULONG flags; 

} DEVICE_EXTENSION. *PDEVICE_EXTENSION; 

II The PD~ extension: 

typedef struct _PDO_EXTENSION { 
ULONG flags; 

} PDO_EXTENSION. *PPDO_EXTENSION; 

II The common part: 

typedef struct _COMMON_EXTENSION { 
ULONG flags; 
} COMMON_EXTENSION. *PCOMMON_EXTENSION; 

#deflne ISPDO 0x00000001 

The dispatch routine for IRP _MLPNP then looks like this: 

NTSTATUS DispatchPnp(PDEVICE~OBJECT DeviceObject. PIRP Irp) 
{ 

PCOMMON_EXTENSION pcx.= 
(PCOMMON_EXTENSION) DeviceObject->DeviceExtension; 

if (pcx->flags & ISPDO) 
return DlspatchPnpPdo{DevtceObject. Irp); 

else 
return DispatchPnpFdo(DeviceObject. Irp): 

} 

267 



Programming the Microsoft Windows Driver Model 

268 

MULFUNC, which is available on the companion disc, is a very lame multifunc
tion device: it has just two children, and we always know what they are. I just called 
them A and B. MULFUNC executes the following code-with more error checking 
than what I'm showing you here-at IRP _MN_START_DEVICE time to create PDOs 
for A and B: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo •... ) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
CreateChild(pdx. CHILDTYPEA. &pdx->ChildA); 
CreateChild(pdx. CHILDTYPEB. &pdx->ChildB); 
return STATUS_SUCCESS; 

NTSTATUS CreateChild(PDEVICE_EXTENSION pdx. ULONG flags. 
PDEVICE_OBJECT* ppdo) 
{ 

PDEVICE_OBJECT child; 
IoCreateDevice(pdx->DriverObject. sizeof(PDO_EXTENSION). 

NULL. FILE_DEVICE_UNKNOWN. FILE_AUTOGENERATED_DEVICE_NAME. 
FALSE. &child); 

PPDO_EXTENSION px = (PPDO_EXTENSION) child->DeviceExtension; 
px->flags = ISPDO I flags; 
px->DeviceObject = child; 
px->Fdo = pdx->DeviceObject; 
child->Flags &= -DO_DEVICE_INITIALIZING; 
*ppdo = chil d; 
return STATUS_SUCCESS; 
} 

1. CHILDTYPEA and CHILDTYPEB are additional flag bits for the flags 
member that begins the common device extension. If you were writing a 
true bus driver, you wouldn't create the child PDOs here-you'd enu
merate your actual hardware in response to an IRP _MN_QUERY_ 
DEVICE_RELATIONS and create the PDOs then. 

2. We're creating a named device object here, but we're asking the system 
to automatically generate the name by supplying the FILE_ 
AUTOGENERATED_DEVICE_NAME flag in the DeviceCharacteristics 
argument slot. 

The end result of the creation process is two pointers to device objects (ChildA 
and ChildB) in the device extension for the parent device's FDO. 

Telling the PnP Manager About Our Children 
The PnP Manager inquires about the children of every device by sending an IRP _MN_ 
QUERY_DEVICE_RELATIONS request with a type code of BusRelations. Wearing its 
FDO hat, the parent driver responds to this request with code like the following: 
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NTSTATUS HandleQueryRelations(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = ..• ; 
PIO_STACK-LOCATION stack = ... ; 
if (stack->Parameters.QueryDeviceRelations.Type 1= BusRelations) 

return DefaultPnpHandler(fdo, Irp); 
PDEVICE_RELATIONS newrel = (PDEVICE_RELATIONS) 

ExAllocatePool(PagedPool, sizeof(DEVICE_RELATIONS) 
+ sizeof(PDEVICE_OBJECT»; 

newrel->Count = 2; 
newrel->Objects[0] = pdx->ChildA; 
newrel->Objects[l] = pdx->ChildB; 
ObReferenceObject(pdx->ChildA); 
ObReferenceObject(pdx->ChildB); 
Irp->IoStatus.Information = (ULONG_PTR) newrel; 
Irp->IoStatus.Status = STATUS_SUCCESS; 
return DefaultPnpHandler(fdo, Irp); 
} 

1. This IRP can concern several types of relations besides the bus relations 
we're interested in here. We simply delegate these other queries to the bus 
driver for the underlying hardware bus. 

2. Here, we allocate a structure that will contain two device object pointers. 
The DEVICE_RELATIONS structure ends in an array with a dimension of 
1, so we need only add on the size of an additional pointer when we 
calculate the amount of memory to allocate. 

3. We call ObReferenceObject to increment the reference counts associated 
with each of the device objects we put into the DEVICE_RELATIONS ar
ray. The PnP Manager will dereference the objects at an appropriate time. 

4. We need to pass this request down to the real bus driver in case it or some 
lower filter knows additional facts that we didn't know. This IRP uses an 
unusual protocol for pass-down and completion. You set the IoStatus as 
shown here if you actually handle the IRP; otherwise, you leave the 
10Status alone. Note the use of the Information field to contain a pointer 
to the DEVICE_RELATIONS structure. In other situations we've encoun
tered in this book, the Information field has always held a number. 

I glossed over an additional complication in the preceding code fragment that 
you'll notice in the code sample. An upper filter might have already installed a list 
of device objects in the 10Status.lnformation field of the IRP. We must not lose that 
list. Rather, we must extend it by adding our own two device object pointers. 
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The PnP Manager automatically sends a query for bus relations at start time. You 
can force the query to be sent by calling this service function: 

IoInvalidateDeviceRelations(pdx->Pdo. BusRelations); 

You would make this call if you detected the arrival or departure of one of your child 
devices, for example. 

PDO Handling of PnP Requests 
Wearing its PD~ driver hat, the parent driver must handle Plug and Play IRPs in a 
way that's very different from how a function driver would handle them. Table 6-5 
summarizes the requirements using a shorthand to describe the actions to be taken. 

PnPRequest 

IRP _MN_START_DEVICE 

IRP _MN_ QUERY _REMOVE_DEVICE 

IRP _MN_REMOVE_DEVICE 

IRP _MN_ CANCEL_REMOVE_DEVICE 

IRP _MN_STOP _DEVICE 

IRP _MN_QUERY _STOP _DEVICE 

IRP _MN_CANCEL_STOP _DEVICE 

IRP _MN_ QUERY_DEVICE_RELATIONS 

IRP _MN_QUERY _INTERFACE 

IRP_MN_QUERY_CAPABILITIES 

IRP _MN_QUERY_RESOURCES 

IRP _MN_ QUERY _RESOURCE_REQUIREMENTS 

IRP _MN_QUERY _DEVICE3EXT 

IRP _MN]ILTER_RESOURCE_REQUIREMENTS 

IRP _MN_READ_CONFIG 

IRP _MN_ WRITE_CONFIG 

IRP _MN_EJECT 

IRP _MN_SET_LOCK 

IRP _MN_ QUERY_ID 

IRP _MN_QUERY_PNP _DEVICE_STATE 

IRP _MN_QUERY_BUS_INFORMATION 

IRP _MN_DEVICE_USAGE_NOTIFICATION 

IRP _MN_SURPRISE_REMOVAL 

Any other 

Table 6-5. PD~ driver handling of PnP requests. 

How Handled 

Succeed 

Succeed 

Succeed 

Succeed 

Succeed 

Succeed 

Succeed 

Special processing 

Ignore 

Delegate 

Succeed 

Succeed 

Succeed 

Succeed 

Delegate 

Delegate 

Delegate 

Delegate 

Special processing 

Delegate 

Delegate 

Delegate 

Succeed 

Ignore 
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The parent should simply succeed many PnP IRPs without doing any particu
lar processing: 

NTSTATUS SucceedRequest(PDEVICE_OBJECT pdo. PIRP Irp) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
return STATUS_SUCCESS; 
} 

The only remarkable feature of this short subroutine is that it doesn't change the 
loStatus.Information field of the IRP. The PnP Manager always initializes this field in 
some way before launching an IRP. In some cases, the field might be altered by a 
ftlter driver or the function driver to point to some data structure or another. It would 
be incorrect for the PDO driver to alter the field. 

The parent driver can ignore certain IRPs. Ignoring an IRP is similar to failing 
it with an error code, except that the driver doesn't change the IRP's status fields: 

NTSTATUS IgnoreRequest(PDEVICE_OBJECT pdo. PIRP Irp) 
{ 

NTSTATUS status = Irp->IoStatus.Status; 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
return status; 
} 

A miniature bus driver such as the one I'm discussing can simply delegate some 
PnP requests to the real bus driver that lies underneath the parent device's FDO. Del
egation in this case is not quite as simple as just calling loCallDriver because by the 
time we receive an IRP as a PDO driver, the I/O stack is generally exhausted. We must 
therefore create what I call a repeater IRP that we can send to the driver stack we 
occupy as FDO driver: 

NTSTATUS RepeatRequest(PDEVICE_OBJECT pdo. PIRP Irp) 
{ . 

PPDO_EXTENSION pdx = (PPDO_EXTENSION) pdo->DeviceExtension; 
PDEVICE_OBJECT fdo = pdx->Fdo; 
PDEVICE_EXTENSION pfx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 

PDEVICE_OBJECT tdo = IoGetAttachedDeviceReference(fdo); 
PIRP subirp = IoAllocateIrp(tdo->StackSize + 1. FALSE); 

PIO_STACK-LOCATION substack = IoGetNextI rpStackLocati on (subi rp) ; 
substack->DeviceObject = tdo; 
substack->Parameters.Others.Argumentl = (PVOID) Irp; 

(continued) 
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IOSetNextIrpStacklocation(subirp); 
substack = IoGetNextIrpStacklocat1on(sub1rp); 
RtlCopyMemory(substack. stack. 

FI ElD_OFFSET( I O_STAClLlOCATI ON • Compl eti onRouti ne» ; 
substack->Control = 0; 
BOOLEAN needs vote = <1'77 exp7ain 7ater>; 
IoSetComplet1onRout1ne(subirp. OnRepeaterComplete. (PVOID) needsvote. 

TRUE. TRUE. TRUE); 
subirp->IoStatus.Status = STATUS_NOT_SUPPORTED; 
IoMarkIrpPending(Irp); 
IoCallDriver(tdo. subirp); 
return STATUS_PENDING 
} 

NTSTATUS OnRepeaterComplete(PDEVICE-OBJECT tdo. PIRP subirp. PYOID need$vote) 
{ 

ObDereferenceObject(tdo); 
PIO_STAClLlOCATION substack = IoGetCurrentIrpStacklocation(subirp); 
PIRP Irp = (PIRP) substack->Parameters.Others.Argumentl; 
if (subirp->IoStatu-s.Status == STATUS_NOLSUPPORTED) 

{ 

if (needsvote) 
Irp-)IoStatus.Status = STATUS_UNSUCCESSFUL; 

} 

else 
Irp->IoStatus = subirp->IoStatus; 

IoFreelrp(subirp); 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
return STATUS_MORE_PROCESSING_REQUIRED; 
} 

1. We're going to send the repeater IRP to the topmost fllter driver in the stack 
to which our FDa belongs. This service routine returns the address of the 
topmost device object, and it also adds a reference to the object to pre
vent the Object Manager from deleting the object for the time being. 

2. When we allocate the IRP, we create an extra stack location in which we 
can record some context information for the completion routine we're 
going to install. The DeviceObject pointer we place in this extra location 
becomes the first argument to the completion routine. 

,3. Here, we initialize the first real stack location, which is the one that the 
topmost driver in the FDa stack will receive. Then we install our comple
tion routine. This is an instance in which we cannot use the standard 
IoCopyCurrentIrpStackLocationToNext macro to copy a stack location: 
we're dealing with two separate I/O stacks. 
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4. We need to plan ahead for how we're going to deal with the possibility 
that the parent device stack doesn't actually handle this repeater IRP. Our 
later treatment will depend on exactly which minor function of IRP we're 
repeating in a way I'll describe later on. Mechanically, what we do is cal
culate a Boolean value-I called it needsvote-and pass it as the con
text argument to our completion routine. 

5. You always initialize the status field of a new PnP IRP to hold the special 
value S~ATUS_NOT_SUPPORTED. The Driver Verifier will bugcheck if 
you don't. 

6. This statement is how we release our reference to the topmost device 
object in the FDO stack. 

7. We save the address of the original IRP here. 

8. This short section sets the completion status for the original IRP. Refer to 
the following main text for an explanation of what's going on here. 

9. We allocated the repeater IRP, so we need to delete it. 

10. We can complete the original IRP now that the FDO driver stack has ser
viced its clone. 

11. We must return STATUS_MORE_PROCESSING_REQUIRED because the IRP 
whose completion we dealt with-the repeater IRP-has now been deleted. 

The preceding code deals with a rather complex problem that afflicts the vari
ous PnP IRPs that MULFUNC is repeating on the parent device stack. The PnP Man
ager initializes PnP IRPs to contain STATUS_NOT_SUPPORTED. It can tell whether 
any driver actually handled one of these IRPs by examining the ending status. If the 
IRP completes with STATUS_NOT_SUPPORTED, the PnP Manager can deduce that 
no driver did anything with the IRP. If the IRP completes with any other status, the 
PnP Manager knows that some driver deliberately either failed or succeeded the IRP 
but didn't simply ignore it. 

A driver like MULFUNC that creates a PnP IRP must follow the same convention 
by initializingJoStatus.Status to STATUS_NOT_SUPPORTED. As I remarked, the Driver 
Verifier will bugcheck if you forget to do this. But this initialization gives rise to the 
following problem: suppose one of the devices in the· child stack (that is, above 
the PD~ for the child device) changes IpStatus.Status to another value before pass
ing a particular IRP down to us in our role as PD~ driver. We will create a repeater 
IRP, pre-initialized with STATUS_NOT_SUPPORTED, and pass it down the parent stack 
(that is, the stack to which we belong in our role as FDO driver). If the repeater IRP 
completes with STATUS_NOT_SUPPORTED, what status should we use in completing 
the original IRP? It shouldn't be STATUS_NOT_SUPPORTED, because that would imply 
that none of the child-stack drivers processed the IRP (but one did, and changed the 
main IRP's status). That's where the needsvote flag comes in. 
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For some of the IRPs we repeat, we don't care whether a parent driver actually 
processes the IRP. We say (actually, the Microsoft developers say) that the parent driv
ers don't need to "vote" on the IRP. If you look carefully at OnJlepeaterComplete, 
you'll see that we don't change the main IRP's ending status in this case. For· other 
of the IRPs we repeat, we can't provide a real answer if the parent stack drivers ignore 
the IRP. For these IRPs, on which the parent must "vote," we fail the main IRP with 
STATUS_UNSUCCESSFUL. To see which IRPs belong to the "needs vote" class and 
which IRPs don't, take a look at RepeatRequest in the MULFUNC sample (specifi
cally, in PlugPlayPdo.cpp). 

If one of the parent drivers actually does process the repeater IRP, however, we 
copy the entire 10Status field, which includes both the Status and Information values, 
into the main IRP. The Information field might contain the answer to a query, and 
this copy step is how we pass the answer upwards. 

I did one other slightly subtle thing in RepeatRequest, and that is that I marked 
the IRP pending and returned STATUS]ENDING. Most PnP IRPs complete synchro
nously so that the call to 10CallDriver will most likely cause immediate completion 
of the IRP. So why mark the IRP pending and cause the I/O Manager unnecessary 
pain in the form of needing to schedule an APC as part of completing the main IRP? 
The reason is that if we don't return STATUS_PENDING from our dispatch function
recall that RepeatRequest is running as a subroutine below the dispatch function for 
IRP _MLPNP-we must return the exact same value that we use when we complete 
the IRP. Only our completion routine knows which value this will actually be after 
checking for STATUS_NOT_SUPPORTED and checking the needsvote flag. 

Handling Device Removal 
The PnP Manager is aware of the parent-child relationship between a parent's FDO 
and its children PDOs. Consequently, when the user removes the parent device, the 
PnP Manager automatically removes all the children. Oddly enough, though, the 
parent driver should not normally delete a child PDO when it receives an IRP _MN_ 
REMOVE_DEVICE. The PnP Manager expects PDOs to persist until the underlying 
hardware is gone. A multifunction driver would therefore not delete the children PDOs 
until it's told to delete the parent FDO. A bus driver, however, would delete a child 
PDO when it receives IRP _MN_REMOVE_DEVICE after failing to report the device 
during an enumeration. 

MULFUNC deletes the children PDOs when it processes the remove device event 
for its own FDO. 

If you're trying to provide for a controller-type device (as opposed to the non
standard multifunction device I provided an example 00, your controller driver needs 
some additional logic to actually enumerate devices. I've omitted that logic because 
my sample device's children are always present if the main device is.present. And 
don't forget to restore power to your controller before trying to do the enumeration. 
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Handling IRP _MN_QUERY _ID 
The most important of the PnP requests that a parent driver handles is IRP _MN_ 
QUERY_ID. The PnP Manager issues this request in several forms to determine which 
device identifiers it will use to locate the INF file for a child device. You respond by 
returning On IoStatus.Information) a MULTCSZ value containing the requisite device 
identifiers. The MULFUNC device has two children with the (bogus) device identifi
ers *wco0604 and ·wC00605-the fourth and fifth drivers for Chapter 6, you see. 
It handles the query in the following way: 

NTSTATUS HandleQueryld(PDEVICE_OBJECT pdo. PIRP Irp) 
{ 

PPDO_EXTENSION pdx = (PPDO_EXTENSION) pdo->DeviceExtension; 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
PWCHAR idstring; 
switch (stack->Parameters.QueryId.IdType) 

{ 

case BusQueryInstanceID: 
idstring = L"0000"; 
break; 

case BusQueryDeviceID: 
if (pdx->flags & CHILDTYPEA) 

idstring LDRIVERNAME L"\\*WC00604"; 
else 

idstring LDRIVERNAME L"\\*WC00605"; 
break; 

case BusQueryHardwareIDs: 
if (pdx->flags & CHILDTYPEA) 

idstring L"*WC00604"; 
else 

idstring L"*WC00605"; 
break; 

default: 
return CompleteRequest(Irp. STATUS_NOT_SUPPORTED. 0); 
} 

ULONG nchars = wcslen(idstring); 
ULONG size = (nchars + 2) * sizeof(WCHAR); 
PWCHAR id = (PWCHAR) ExAllocatePool(PagedPool, size); 
wcscpy(id, idstring); 
id[nchars + 1] = 0; 
return CompleteRequest(Irp. STATUS_SUCCESS, (ULONG_PTR) id); 
} 

1. The instance identifier is a single string value that uniquely identifies 
a device of a particular type on a bus. Using a constant such as "0000" 
will not work if more than one device of the parent type can appear in 
the computer. 
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2. The device identifier is a single string of the form "enumerator\type" and 
basically supplies two components in the name of the hardware registry 
key. Our ChildA device's hardware key will be in ... \Enum\Mulfunc\ 
*WC00604\0000, for example. 

3. The hardware identifiers are strings that uniquely identify a type of de
vice. In this case, I just made up the pseudO-EISA (Extended Industry Stan
dard Architecture) identifiers *Wco0604 and *Wco0605. 

NOTE Be sure to use your own name in place of MULFUNC if you construct a 
device identifier in the manner I showed you here. To emphasize that you 
shouldn't just copy my sample program's name in a hard-coded constant, I wrote 
the code to use the manifest constant LDRIVERNAME, which is defined in the 
DRIVER.H file in the MULFUNC project. 

The Windows 98 PnP Manager will tolerate your supplying the same string for 
a device identifier as you do for a hardware identifier, but the Windows 2000 PnP 
Manager won't. I learned the hard way to supply a made-up enumerator name in the 
device ID. Calling IoGetDeviceProperty to get the PD~'s enumerator name leads 
to a bug check because the PnP Manager ends up working with a NULL string pointer. 
Using the parent's enumerator name-ROOT in the case of the MULFUNC sample
leads to the bizarre result that the PnP Manager brings the child devices back after 
you delete the parent! 

Handling IRP _MN_QUERY _DEVICE_RELATIONS 
The last PnP request to consider is IRP _MN_QDERY_DEVICE_RELATIONS. Recall that 
the FDO driver answers this request by providing a list of child PDOs for a bus re
lations query. Wearing its PD~ hat, however, the parent driver need only answer a 
request for the so-called target device relation by providing the address of the PD~: 

NTSTATUS HandleQueryRelations(PDEVICE_OBJECT pdo. PIRP Irp) 
{ 

PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp); 
NTSTATUS status = Irp->IoStatus.Status; 
if (stack->Parameters.QueryDeviceRelations.Type == 

TargetDeviceRelation) 
{ 

PDEVICE_RELATIONS newrel = (PDEVICE_RELATIONS) 
ExAllocatePool(PagedPool. sizeof(DEVICE_RELATIONS»; 

newrel->Count = 1; 
newrel->Objects[0] = pdo; 
ObReferenceObject(pdo); 
status = STATUS_SUCCESS; 
Irp->IoStatui.Information = (ULONG_PTR) newrel; 
} 

Irp->IoStatus.Status = status; 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
return 
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Handling Child. Device Resources 
If your device is a controller type, the child devices that plug into it presumably claim 
their own I/O resources. If you have an automated way to discover the devices' 
resource requirements, you can return a list of them in response to an IRP _MN_ 
QUERY _RESOURCE_REQUIREMENTS request. If there is no automated way to dis
cover the resource requirements, the child device's INF file should have a LogConfig 
section to establish them. 

If you're dealing with a multifunction device, chances are that the parent de
vice claims all the va resources that the child functions use. If the child functions 
have separate WDM drivers, you have to devise a way to separate the resources by 
function and let each function driver know which ones belong to it. This is not simple. 
The PnP Manager normally tells a function driver about its resource assignments in 
an IRP _MN_START_DEVICE request. (See the detailed discussion in the next chap
ter.) There's no normal way for you to force the PnP Manager to use some of your 
resources instead of the ones it assigns, though. Note that responding to a require
ments query or a filter request doesn't help because those requests deal with require
ments that the PnP Manager will then go on to satisfy using new resources. 

Microsoft's MF.SYS driver deals with resource subdivision by using some inter
nal interfaces with the system's resource arbitrators that aren't accessible to us as third
party developers. There are two different ways of subdividing resources: one that 
works in Windows 2000 and another one that works in Windows 98. Smce we can't 
do what MF.SYS does, we need to find some other way to suballocate resources 
owned by the parent device. I haven't actually tried to implement either of the two 
suggestions I'm about to float, but I'm interested in hearing from any reader who 
carries these ideas further. 

If you can control all of the child device function drivers, your parent driver 
could export a direct-call interface. Child drivers would obtain a pointer to the inter
face descriptor by sending an IRP _MN_QUERY_INTERFACE request to the parent 
driver. They would call functions in the parent driver at start device and stop device 
time to obtain and release resources that the parent actually owns. 

If you can't modify the function drivers for your child devices, I believe you 
could solve the resource subdivision problem by installing a tiny upper filter-see 
Chapter 9-above each of the child device's FDOs. The only purpose of the filter is 
to plug in a list of assigned resources to each IRP _MN_START_DEVICE. The filter could 
communicate via a direct-call interface with the parent driver. 

PnP Notifications 
Wmdows 2000 and Windows 98 provide a way to rtotify both user-mode and kernel
mode components of particular Plug and Play events. Windows 95 has a WM_ 
DEVICECHANGE message that user-mode programs could process to monitor, and 
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sometiffies control, hardware and power changes in the system. The newer operating 
systems build on WM_DEVICECHANGE to allow user-mode programs to easily detect 
when some driver enables or disables a registered device interface. Kernel-mode drivers 
can also register for similar notifications. 

NOTE Refer to the documentation for WM..:.DEVICECHANGE, Register
DeviceNotification, and UnregisterDeviceNotification in the Platform SDK. I'll give 
you examples of using this message and these APls, but I won't explain all 
possible uses of them. Some of the illustrations that follow also assume you're 
comfortable programming with Microsoft Foundation Classes. 

Extensions to WM_DEVICECHANGE 
An application with a window can subscribe for WM_DEVICECHANGE messages 
related to a specific interface GUID (globally unique identifier). Here's an example, 
drawn from the AUTOIAUNCH sample described in Chapter 12, "Installing Device 
Drivers," of how to do this: 

int CAutoLaunch::OnCreate(LPCREATESTRUCT csp) 
{ 

DEV_BROADCAST_DEVICEINTERFACE filter = {0}; 
filter.dbcc_size = sizeof(filter); 
filter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE; 
filter.dbcc_classguid = GUID-AUTOLAUNCH_NOTIFY; 
HDEVNOTIFY hNotification = RegisterDeviceNotification(m_hWnd. 

(PVOID) &filter. DEVICE_NOTIFY_WINDOW_HANDLE); 

} 

The key statement here is the call to RegisterDeviceNotification, which asks the PnP 
Manager to send our window a WM_DEVICECHANGE message whenever anyone 
enables or disables a GUID_AUTOIAUNCH_NOTIFY interface. So, suppose a device 
driver calls IoRegisterDeviceInterface with this interface GUID during its AddDevice 
function. We're asking to be notified when that driver calls IoSetDeviceInterfaceState 
to either enable or disable that registered interface. 

NOTE The Platform SDK documentation tells you to call UnregisterDevice
Notification to unregister the notification handle you get back from Register
DeviceNotification. You should certainly do so in Windows 2000, but not in 
Windows 98. Although Windows 98 supports RegisterDeviceNotification as a 
way to subscribe for WM_DEVICECHANGE messages pertaining to a specific 
device interface, UnregisterDeviceNotification seems to destabilize the system. 
Just calling this function led to a number of random crashes during my own test
ing. I eventually just stopped calling UnregisterDeviceNotification and nothing 
bad seemed to happen as a result. 
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The handler for WM_DEVICECHANGE messages would be something like this: 

BOOl CAutolaunch::OnDeviceChange(UINT evtype, DWORD dwData) 
{ 

_DEV_BROADCAST_HEADER* dbhdr = (_DEV_BROADCAST_HEADER*) dwData; 
if (!dbhdr I I dbhdr->dbcd_devicetype != DBT_DEVTYP_DEVICEINTERFACE) 

return TRUE; 
PDEV_BROADCAST_DEVICEINTERFACE p = 

(PDEV_BROADCAST_DEVICEINTERFACE) dbhdr; 
CString devname = p->dbcc_name; 
if (evtype == DBLDEVICEARRIVAL) 

<handle arrival> 
else if (evtype == DBT_DEVICEREMOVECOMPlETE) 

<handle removal> 
return TRUE; 
} 

This handler ignores all messages that don't pertain to device interfaces. The devname 
variable will be the symbolic link name for the device that's arriving or departing. 
(This is the same name you obtain with SetupDlGetDeviceInterfaceDetall and 
pass to CreateFne.) Refer to Chapter 12 for details about how you can use various 
SetupDiXxx APIs to learn interesting information about the new device. 

Knowing When to Close a Device Handle 
The PnP Manager won't be able to remove your device object while an application 
has a handle open. To permit removal to occur, your driver has to somehow induce 
applications with open handles to close them. A variation on the device interface 
notification change message considered in the previous section comes to your res
cue here. 

Once the application has a handle to your device, it should call RegisterDevice
Notification to register for handle notifications. (See TESTDLG.CPP in the TEST sub
directory of the PNPEVENT. sample on the companion disc.) 

DEV_BROADCAST_HANDlE filter = {0}; 
filter.dbch_size = sizeof(filter); 
filter.dbch_devicetype = DBT_DEVTYP_HANDlE; 
filter.dbch_handle = ffi-hDevice; II C the device handle 
HDEVNOTIFY hNotify = RegisterDev;ceNotification(ffi-hWnd, 

&filter, DEVICE_NOTIFY_WINDOW_HANDlE); 

Now the application can be on the lookout for a WM_DEVICECHANGE with 
an event code (wParam) equal to DBT_DEVICEQUERYREMOVE and a d.evicetype 
of DBT_DEVfYP ...:.HANDLE. That message means that the interface is about to be 

279 



Programming the Microsoft Windows Driver Model 

280 

disabled, and you should therefore close your handles. You should also uncondi
tionally return TRUE from your message handler. 

NOTE According to the Platform SDK documentation, you can return 
BROADCAST _QUERY _DENY in response to a DBT _DEVICEQUERYREMOVE 
message. This special retum value supposedly means you don't want the de
vice removed or disabled after all. I've encountered wildly different results from 
attempting this in various versions of Windows 98 and Windows 2000. I would 
recommend that you program applications to always succeed this query. 

THE PNPEVENT SAMPLE 

The PNPEVENT sample driver (or, more properly, the TEST program that's part 
of the sample) illustrates how to use WM_DEVICECHANGE for detecting the 
arrival and departure of a registered interface and how to know when you must 
close a handle to allow a device to be disabled or removed. You can launch 
the TEST program either before or after you install the PNPEVENT "device" via 
the hardware wizard. 

You'll notice a Send Event button in the test program dialog. Clicking that 
button causes the driver to signal a custom PnP event. I'll discuss custom events 
a bit further on. I've never succeeded in getting a user-mode notification about 
a custom event, though,so nothing will appear to happen when you click this 
button unless you also happen to be running PNPMON's test program. (See the 
PNPMON sample on the companion disc.) 

Notiflcatioils to Windows 2000 Services 
Windows 2000 service programs can also subscribe for PnP notifications. The service 
shol.l1tl call RegisterServiceCtrlHandlerEx to register an extended control handler 
function. Then it can register for service control notifications about device interface 
changes. For example, take a look at the follOWing code (and see the AUTOLAUNCH 
sample). 

DEV_BROADCAST_DEVICEINTERFACE filter = {0}; 
filter.dbcc_size = sizeof(filter); 
filter.dbcc_devicetype = DBT_DEVTYPE_DEVICEINTERFACE; 
filter.dbcc_classguid = GUID_AUTOLAUNCH_NOTIFY; 
ffi-hNotification = RegisterDeviceNotification(ffi-hService. 

(PVOID) &filter. DEVICLNOTIFLSERVICLHANDLE); 
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Here, m_hService is a service handle provided by the service manager when it starts 
your service, and DEVICE_NOTIFY _SERVICE_HANDLE indicates that you're register
ing for service control notifications instead of window messages. After receiving a 
SERVICE_CONTROL_STOP command, you want to unregister the notification handle: 

UnregisterDeviceNotification(m_hNotification); 

When a PnP event involving the interface GUID occurs, the system calls your 
extended service control handler function: 

DWORD __ stdcall HandlerEx(DWORD ctlcode. DWORD evtype. 
PVOID evdata. PVOID context) 
{ 

} 

where ctlcode will equal SERVICE_CONTROL_DEVICEEVENT, evtype will equal 
DBT_DEVICEARRIVAL or one of the other DBT_XXx codes, evdata will be the ad
dress of a Unicode version of the DEV _BROADCAST_DEVICEINTERFACE structure, 
and context will be whatever context value you specified in your call to the 
RegisterServiceCtrlHandlerEx function. 

Kernel-Mode Notifications 
WDM drivers can use IoRegisterPlugPlayNotification to subscribe for interface and 
handle notifications. Here's an exemplary statement from the PNPMON sample driver 
that registers for notifications about the arrival and departure of an interface GUID 
deSignated by an application-PNPMON's TEST.EXE in this case--via an I/O control 
(IOCTL) operation: 

status = IoRegisterPlugPlayNotification 
(EventCategoryDevicelnterfaceChange. 
PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES. 
&p->guid. pdx->DriverObject. 
(PDRIVEILNOTI FICATION_CALLBACICROUTI NE) OnPnpNoti fy. 
reg. &reg->InterfaceNotificationEntry); 

The first argument indicates that we want to receive notifications whenever 
something enables or disables a specific interface GUID. The second argument is a 
flag indicating that we want to receive callbacks right away for all instances of the 
interface GUm that are already enabled. This flag allows us to start after some or all 
of the drivers that export the interface in question and still receive notification call
backs about those interfaces. The third argument is the interface GUID in question. 
In this case, it comes to us via an IOCTL from an application. The fourth argument 
is the address of our driver object. The PnP Manager adds a reference to the object 
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so that we can't be unloaded while we have· any notification handles outstanding. 
The fifth argument is the address of a notification callback routine. The sixth argument 
is a context parameter for the callback routine. In this case, I specified the address of 
a structure (reg) that contains information relative to this registration call. The seventh 
and final argument gives the address of a variable where the PnP Manager should record 
a notification handle. We will eventually call IoUnregisterPlugPlayNotification with 
the notification handle. 

You need to call 10UnregisterPlugPIayNotification to close the registration 
handle. Since 10RegisterPlugPIayNotification adds a reference to your driver object, 
it won't do you any particular good to put this call in your DriverUnload routine. 
DriverUnload won't be called until the reference count drops to 0, which will never 
happen if Driverunload itself has the unregistration calls. This problem isn't hard to 
solve-you just need to pick an appropriate time to unregister, such as when you 
notice the last interface of a particular type being removed or in response to an IOcn 
request from an application. 

Given a symbolic link name for an enabled interface, you can also request 
notifications about changes to the device named by the link. For example: 

PUNICODE_STRING SymbolicLinkName; II ~ input to this process 
PDEVICE_OBJECT DeviceObject; II ~ an output 
PFILE_OBJECT FileObject; II ~ another output 
IoGetDeviceObjectPointer(&SymbolicLinkName, 0, &FileObject, 

&Devi ceObject); 
IoRegisterPlugPlayNotification(EventCategoryTargetDeviceChange, 0, 

FileObject, pdx->DriverObject, 
(PDRIVER-NOTIFICATION_CALLBACK-ROUTINE) OnPnpNotify, 
reg, &reg->HandleNotificationEntry); 

You shouldn't put this code inside your PnP event handler, by the way. IoGet
DeviceObjectPointer internally performs an open operation for the named device 
object. A deadlock might occur if the target device were to perform certain kinds of 
PnP operations. You should instead schedule a work item by calling IoQueue
WorkItem. Chapter 9 has more information about work items. The PNPMON sample 
driver illustrates how to use a work item in this particular situation. 

The notifications that result from these registration calls take the form of a call 
to the callback routine you specified: 

NTSTATUS OnPnpNotify(PPLUGPLAY_NOTIFICATION_HEADER hdr, 
PYOID Context) 
{ 

return STATUS_SUCCESS: 
} 



Chapter 6 Plug and Play 

The PLUGPLAY _NOTIFICATION_HEADER structure is the common header for 
several different structures that the PnP Manager uses for notifications: 

typedef struct _PLUGPLALNOTIFICATION_HEADER { 
USHORT Version; 
USHORT Size; 
GUID Event; 
} PLUGPLAY_NOTIFICATION_HEADER. 
*PPLUGPLAY_NOTIFICATION_HEADER; 

The Event GUID indicates what sort of event is being reported to you. See Table 6-6. 
The DDK header file WDMGUID.H contains the definitions of these GUIDs. 

GUID Name Purpose of Notification 

GUID_HWPROFILE_QUERY_CHANGE Okay to change to a new hard
ware profile? 

GUID_HWPROFILE_CHANGE_CANCELLED . Change previously queried 
about has been cancelled 

GUID_HWPROFILE_CHANGE_COMPLETE Change previously queried 
about has been accomplished 

GUID_DEVICE_INTERFACE_ARRIVAL A device interface has just 
been enabled 

GUID_DEVICE_INTERFACE_REMOVAL A device interface has just 
been disabled 

GUID_TARGET_DEVICE_QUERY_REMOVE Okay to remove a device 
object? 

GUID_TARGET_DEVICE_REMOVE~CANCELLED Removal previously queried 
about has been cancelled 

GUID_TARGET_DEVICE_REMOVE_COMPLETE Removal previously queried 
about has been accomplished 

Table 6-6. PnP notification GUIDs. 

If you receive either of the DEVICE_INTERFACE notifications, you can cast the 
hdr argument to the callback function as a pointer to the following structure: 

typedef struct _DEVICLINTERFACE_CHANGE_NOTIFICATION { 
USHORT Version; 
USHORT Size; 
GUID Event; 
GUID InterfaceClassGuid; 
PUNICODE_STRING SymbolicLinkName; 
} DEVICE_I NTERFACE_CHANGE_NOTI FICATION. 
*PDEVICE_INTERFACE_CHANGE_NOTIFICATION; 
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In the interface change notification structure, InterfaceClassGuid is the interface 
GUID, and SymbolicUnkNrune is the name of an instance of the interface that's just 
been enabled or disabled. 

If you receive any of the TARGET_DEVICE notifications, you can cast the hdr 
argument as a pointer to this structure instead: 

typedef struct _TARGET_DEVICE_REMOVAL_NOTIFICATION { 
USHORT Version; 
USHORT Size; 
GUID Event; 
PFILE_OBJECT FileObject; 
} TARGET_DEVICE_REMOVAL_NOTIFICATION, 
*PTARGET_DEVICE_REMOVAL_NOTIFICATION; 

where FileObject is the file object for which you requested notifications. 
Finally, if you receive any of the HWPROFlLE_CHANGE notifications, hdr will 

really be a pointer to this structure: 

typedef struct _HWPROFILE_CHANGE_NOTIFICATION { 
USHORT Versi on; 
USHORT Size; 
GUID Event; 
} HWPROFILE_CHANGE_NOTIFICATION, 
*PHWPROFILE_CHANGE_NOTIFICATION; 

This doesn't have any more information than the header structure itself-just a dif
ferent typedef name. 

One way to use these notifications is to implement a filter driver for an entire 
class of device interfaces. (There is a standard way to implement filter drivers, either 
for a single driver or for a class of devices, based on setting entries in the registry. 
I'll discuss that subject in Chapter 9. Here, I'm talking about filtering all devices that 
register a particular interface, for which there's no other mechanism.) In your driver's 
DriverEntry routine, you'd register for PnP notifications about one or more interface 
GUIDs. When you receive the arrival notification, you use IoGetDeviceObjectPointer 
to open a file object and then register for target device notifications about the asso
ciated device. You also get a device object pointer from IoGetDeviceObjectPointer, 
and you can send IRPs to that device by calling IoCallDriver. Be on the lookout for 
the GUID_TARGET_DEVICE_QUERY_REMOVE notification because you have to 
dereference the file object before the removal can continue. 
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THE PNPMON SAMPLE 

The PNPMON sample illustrates how to register for and process PnP notifica
tions in kernel mode. To give you something you could run On your computer 
and actually see working, I designed PNPMON to simply pass notifications back 
to a user-mode application (named TEST-what else?). This is pretty silly, in 
that a user-mode application can get these notifications on its own by calling 
RegisterDeviceNotification. 

PNPMON is different from the other driver samples in this book. It's in
tended to be dynamically loaded as a helper for a user-mode application. The 
other drivers we look at are intended to manage hardware, real or imagined. 
The user-mode application uses service manager API calls to load PNPMON, 
which creates exactly one device object in its DriverEntry routine so that the 
application can use DeviceIoControl to get things done in kernel mode. When 
the application exits, it closes its handle and calls the service manager to ter
minate the driver. 

PNPMON also includes a Windows 98 VxD that the test application can 
dynamically load. It's possible to dynamically load a WDM driver in Windows 
98 by using an undocumented function LNtKernLoadDriver, if you care), but 
there's no way to unload a driver that you've loaded in this way. You don't need 
to resort to undocumented functions, though, because VxDs can call most of 
the WDM .support routines directly by means of the WDMVXD import library 
in the Windows 98 DDK. Just about the only extra things you need to do in 
your VxD project are include WDM.H ahead of the VxD header files and add 
WDMVXD.CLB to the list of inputs to the linker. So PNPMON.VXD simply reg
isters for PnP notifications as if it were a WDM driver and supports the same 
IOCTL interface that PNPMON.SYS supports. 

Custom Notifications 
I'll close this chapter by explaining how a WDM driver can generate custom PnP 
notifications. To signal a custom PnP event, create an instance of the custom notifi
cation structure and call one of IoReportTargetDeviceChange or IoReportTarget
DeviceChangeAsynchronous. The asynchronous flavor returns immediately. The 
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synchronous flavor waits-a long time, in my experience-until the notification has 
been sent. The notification structure has this declaration: 

typedef struct _TARGET_DEVICE_CUSTOM_NOTIFICATION { 
USHORT Versi on; 
USHORT Size; 
GUID Event; 
PFILE_OBJECT FileObject; 
LONG NameBufferOffset; 
UCHAR CustomDataBuffer[l]; 
} TARGET_DEVICE_CUSTOM_NOTIFICATION, 
*PTARGET_DEVICE_CUSTOM_NOTIFICATION; 

Event is the custom GUID you've defined for the notification. FileObject is NULL
the PnP Manager wilt be sending notifications to drivers who opened file objects for 
the same PD~ as you specify in the IoReport\Xx call. CustomDataBuffer contains 
whatever binary data you elect followed by Unicode string data. NameBufferOffset 
is -1 if you don't have any string data; otherwise, it's the length of the binary data 
that precedes the strings. You can tell how big the total data payload is by subtract
ing the field offset of CustomDataBuffer from the Size value. 

Here's how PNPEVENT generates a custom notification when you press the Send 
Event button in the associated test dialog: 

struct _RANDOM~NOTIFICATION 
: public _TARGELDEVICE_CUSTOM_NOTIFICATION { 
WCHAR text[14]; 
} ; 

_RANDOM_NOTIFICATION notify; 
notify.Version = 1; 
notify.Size = sizeof(notify); 
notify.Event = GUID_PNPEVENT_EVENT; 
notify.FileObject = NULL; 
notify.NameBufferOffset = FIELD_OFFSET(RANDOM_NOTIFICATION, text) 

- FI ELD_OFFSET( RANDOM_NOTI FICA TION, CustomDataBuffer); 
*(PULONG)(notify.CustomDataBuffer) = 42; 
wcscpy(notify.text, L"Hello, world!"); 
IoReportTargetDeviceChangeAsynchronous(pdx->Pdo, &notify, NULL, NULL); 

That is, PNPEVENT generates a custom notification whose data payload contains the 
number 42 followed by the string, Hello, world!. 

Incidentally, if you want to use the asynchronous reporting API, which I rec
ommend because it returns immediately, you must include NTDDK.H instead of 
WDM.H and you must link with both WDM.LIB and NTOSKRNL.LIB. 
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The notification shows up in any driver that registered for target device notifi
cations pertaining to a file object for the same PDO. If your notification callback 
routine gets a notification structure with a nonstandard Gum in the Event field, you 
can expect that it's somebody's custom notification GUID. You need to understand 
what the GUID means before you go mucking about in the CustomDataBuffer! 

User-mode applications are supposed to be able to receive custom event noti
fications, too, but I've not been able to get that to work. 

WINDOWS 98 COMPATIBILITY NOTES 
Windows 98 never sends an IRP _MN_SVRPRISE_REMOVAL request. Consequently, 
a WDM driver needs to treat an unexpected IRP .-MN_REMOVE_DEVICE as indicat
ing surprise removal. The code samples I showed you in this chapter accomplish that 
by calling AbortRequests and StopDevice when they get this IRP out of the blue. 

Windows 98 fails calls to the 10ReportTargetDeviceChange function with STATUS_ 
NOT_IMPLEMENTED. It doesn't export the symbol IoReportTargetDeviceChange
Asynchronous at all; a driver that calls that function will simply fail to load in Win
dows 98. Refer to Appendix A for information about how you can stub this and other 
missing support functions so as to be able to ship a single driver binary. 

The architecture of Windows 98 doesn't lend itself at all well to blocking in 
kernel mode while waiting for user-mode programs to do things. This fact bit me 
especially hard in connection with one of my USB sample drivers (USBINT). The test 
program for this sample opens a handle and issues an asynchronous DeviceloControl 
call. If you now unplug the device, what's supposed to happen is this: the driver 
receives an IRP _MN_SURPRISE_REMOVAL, whereupon it cancels the outstanding 
DeviceIoControl. The test program then closes its handle. Meanwhile, back in the 
driver, the REMOVE_DEVICE handler has blocked on a call to 10ReleaseRemove
LockAndWait. When the IRP _MLCLOSE arrives, the driver will release the last claim 
on the remove lock and allow the device removal to proceed. This works just fine 
in Windows 2000, but it hangs Windows 98 because the test program never gets a 
chance to run in order to close its handle. (We don't get the SURPRISE_REMOVAL in 
Windows 98, but we do get a REMOVE_DEVICE' that serves the same purpose.) A 
code path through QUERY_REMOVE does not hang the system, however. Moral: don't 
acquire the remove lock while a handle is open in Windows· 98 if your device can 
be removed by the user without going through the Device Manager API. 
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Reading and 
Writing Data 

All the infrastructure I've described so far in this book leads up to this chapter, where 
I fInally cover how to read and write data from a device. I'll discuss the service func
tions you call to perform these important operations on a device plugged in to one 
of the traditional buses, such as PCI (Peripheral Component Interconnect). Since many 
devices use a hardware interrupt to notify system software about I/O completion or 
exceptional events, I'll also discuss how to handle an interrupt. Interrupt processing 
normally requires you to schedule a deferred procedure call (DPC) , so I'll describe 
the DPC mechanism, too. Finally, I'll tell you how to arrange direct memory access 
(DMA) transfers between your device and main memory. 

CONFIGURING YOUR DEVICE 
In the previous chapter, I discussed the various IRP _MLPNP requests that the Plug 
and Play (PnP) Manager sends you. IRP YiN_START_DEVICE is the vehicle for giv
ing you information about the I/O resources that have been assigned by the PnP 
Manager for your use .. I showed you how to obtain parallel lists of raw and trans
lated resource descriptions and how to call a StartDevice helper function that would 
have the following prototype: 

NTSTATUS StartDev;ce(PDEVICE_OBJECT fda, 
PCM-PARTIAL-RESOURCE_LIST raw, 
PCM_PARTIAL-RESOURCE_LIST translated) 
{ 

} 
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The time has now come to explain what to do with these resource lists. In 
summary, you'll extract descriptions of your assigned resources from the translated 
list and use those descriptions to create additional kernel objects that give you ac
cess to your hardware. 

The CM_PARTIAL_RESOURCE_LIST structures contain a count and an array of 
CM_PARTIAL_RESOURCE_DESCRIPTOR structures, as illustrated in Figure 7-1. Each 
resource descriptor in the array has a Type member that indicates what type of re
source it describes and some additional members that supply the particulars about 
some allocated resource. You're not going to be surprised by what you find in this 
array, by the way: if your device uses an IRQ and a range of I/O ports, you'll get 
two resource descriptors in the array. One of the descriptors will be for your IRQ, 
and the other will be for your I/O port range. Unfortunately, you can't predict in 
advance the order in which these descriptors will happen to appear in the array. Con
sequently, your StartDevice helper function has to begin with a loop that "flattens" 
the array by extracting resource values into a collection of local variables. You can 
later use the local variables to deal with the assigned resources in whatever order you 
please (which, it goes without saying, can be different from the order in which the 
PnP Manager chose to present them to you). 

Version I Revision 

Count 

Is~~1 " Type Flags 

PartiaIDescriptors[O] 

u 

Type I~sposmonl Flags 

PartialDescriptors[1 ] 
u 

..I 

Figure 7-1. Structure of a partial resource list. 
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In sketch, then, your StartDevice function looks like this: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo. 
PCM_PARTIAL_RESOURCE_LIST raw. 
PCM_PARTIAL_RESOURCE_LIST translated) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PCM_PARTIAL_RESOURCE_DESCRIPTOR resource 

translated->PartialDescriptors; 
ULONG nres = translated->Count; 
<local variable declarations> 
for (ULONG i = 0; i < nres; ++i. ++resource) 

{ 

switch (resource->Type) 
{ 

case CmResourceTypePort: 
<save port info in local variables> 
break; 

case CmResourceTypelnterrupt: 
<save interrupt info in local variables> 
break; 

case CmResourceTypeMemory: 
<save memory info in local variables> 
break; 

case CmResourceTypeDma: 

} 

<save DNA info in local variables> 
break; 
} 

<use local variables to configure driver & hardware> 
IoSetDevicelnterfaceState(&pdx->ifname. TRUE); 
} 

1. I'll use the resource pointer to point to the current resource descriptor 
in the variable-length array. By the end of the upcoming loop, it will point 
past the last valid descriptor. 

2. The Count member of a resource list indicates how many resource de
scriptors are in the PartialDescriptors array. 

3. You should declare appropriate local variables for each of the I/O re
sources you expect to receive. I'll detail what these would be later on when 
I discuss how to deal with each of the standard I/O resources. 

4. Within the loop over resource descriptors, you use a switch statement 
to save resource description information into the appropriate local vari
ables. In the text, I posited a device that needed just an I/O port range 
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and an interrupt, and such a device would expect to find resource types 
CmResourceTypePort and CmResourceTypeInterrupt. I'm showing 
the other two standard resource types--CmResourceTypeMemory and 
CmResourceTypeDma-for thoroughness. 

5. Once outside the loop, the local variables you initialized in the various 
case labels will hold the resource information you need. 

6. If you registered a device interface during AddDevice, this is the time to 
enable that interface so that applications can find you and open handles 
to your device. 

If you have more than one resource of a particular type, you need to invent a 
way to tell the resource deSCriptors apart. To give a concrete (but entirely fictitious) 
example, suppose that your device uses one 4-KB range of memory for control 
purposes and a different 16-KB range of memory as a data capture buffer. You ex
pect to receive two CmResourceTypeMemory resources from the PnP Manager. The 
control memory is the block that's 4 KB long, whereas the data memory is the block 
that's 16 KB long. If your device's resources have a distinguishing characteristic such 
as the size difference in the example, you'll be able to tell which resource is which. 

When dealing with multiple resources of the same type, don't assume that the 
resource descriptors will be in the same order that your configuration space lists them 
in, and don't assume that the same bus driver will always construct resource descrip
tors in the same order on every platform or every release of the operating system. 
The first assumption is tantamount to assuming that the bus driver programmer 
adopted a particular algorithm, while the second is tantamount to assuming that all 
bus driver programmers think alike and will never change their minds. 

I'll explain how to deal with each of the four standard I/O resource types at 
appropriate places in the remainder of this chapter. Table 7-1 presents an overview 
of the critical step(s) for each type of resource. 

Resource Type 

Port 

Memory 

Dma 

Interrupt 

Overview 

Possibly maps port range; saves base port address in 
device extension 

Maps memory range; saves base address in device 
extension 

Calls IoGetDmaAdapter to create an adapter object 

Calls IoConnectInterrupt to create an interrupt object 
that points to your interrupt service routine (ISR) 

Table 7-1. Overview o/processing steps/or I/O resources. 
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ADDRESSING A DATA BUFFER 
When an application initiates a read or write operation, it provides a data buffer by 
giving the I/O Manager a user-mode virtual address and length. As I said back in 
Chapter 3, "Basic Programming Techniques," a kernel driver hardly ever accesses 
memory using a user-mode virtual address because, in general,You can't pin down 
the thread context with certainty. Microsoft Windows 2000 gives you three ways to 
access a user-mode data buffer: 

• In the huffered method, the I/O Manager creates a system buffer equal in 
size to the user-mode data buffer. You work with this system buffer. The 
I/O Manager takes care of copying data between the user-mode buffer and 
the system buffer. 

• In the direct method, the I/O Manager locks the physical pages containing 
the user-mode buffer and creates an auxiliary data structure called a memory 
descriptor list (MDL) to describe the locked pages. You ~ork with the MDt. 

• In the neither method, the I/O Manager simply passes the user-mode 
virtual address to you. You work-very carefully!-with the user-mode 
address. 

Figure 7-2 illustrates the first two methods. The last method, of course, is kind 
of a nonmethod in that the system doesn't do anything to help you reach your data. 

Figure 7-2. Accessing user-mode data buffers. 
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You specify your device's buffering method for reads and writes by setting certain 
flag bits in your device object shortly after you create it in your AddDevice function: 

NTSTATUS AddDevice( ... ) 
{ 

PDEVICE_OBJECT fdo; 
loCreateDevice( ...• &fdo); 
fdo->Flags 1= DO_BUFFERED_IO; 

<or> 
fdo->Flags 1= DO_DIRECT_IO; 

<or> 
fdo->Flags 1= 0; II i.e .• neither direct nor buffered 
} 

You can't change your mind about the buffering method afterward. Filter driv
ers might copy this flag setting and will have no way to know if you do change your 
mind and specify a different buffering method. 

The Buffered Method 
When the I/O Manager creates an IRP _MLREAD or IRP _ML WRITE request, it inspects 
the direct and buffered flags to decide how to describe the data buffer in the new 
I/O request packet (IRP). If DO_BUFFERED_IO is set, the I/O Manager allocates 
nonpaged memory equal in size to the user buffer. It saves the address and length 
of the buffer in two wildly different places, as shown in boldface in the following 
code fragment. You can imagine the I/O Manager code being something like this
this is not the actual Microsoft Windows NT source code. 

PVOID uva; 
ULONG length; 

II ~ user-mode virtual buffer address 
II ~ length of user-mode buffer 

PVOID sva; = ExAllocatePoolWithQuota(NonPagedPoolCacheAligned. length); 
if (writing) 

RtlCopyMemory(sva. uva. length); 

Irp->Assocfatedlrp.SystemBuffer = sva; 

PIO_STACK-LOCATION stack = loGetNextlrpStackLocation(lrp); 
if (reading) 

stack->Parameters.Read.Length = length; 
el se 

stack->Parameters.Wrfte.Length = length; 
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<code to send and await IRP> 

if (reading) 
RtlCopyMemory(uva. sva. length); 

ExFreePool(sva); 

In other words, the system (copy) buffer address is in the IRP's Associated
Irp.SystemBuffer field, and the request length is in the stack->Parameters union. 
This process includes additional details that you and I don't need to know to write 
drivers. For example, the copy that occurs after a successful read operation actually 
happens· during an asynchronous procedure call (APC) in the original thread con
text and in a different subroutine than the one that constructs the IRP. The I/O Man
ager saves the user-mode virtual address (my uva variable in the preceding fragment) 
in the IRP's UserBuffer field so that the copy step can find it. Don't count on either 
of these facts, though-they're subject to change at any time. 

The I/O Manager also takes care of releaSing the free storage obtained for the 
system copy buffer when something eventually completes the IRP. 

The Direct Method 
If you specified DO_DlRECT_IO in the device object, the I/O Manager creates a MDL 
to describe locked pages containing the user-mode data buffer. The MDL structure 
has the following declaration: 

typedef struct _MDL { 
struct _MOL *Next; 
CSHORT Size; 
CSHORT MdlFlags; 
struct _EPROCESS *Process; 
PYOID MappedSystemVa; 
PYOID StartVa; 
ULONG ByteCount; 
ULONG ByteOffset; 
} MOL. *PMDL; 

Figure 7-3 illustrates the role of the MDL. The StartVa member gives the vir
tual address-valid only in the context of the user-mode process that owns the data
of the buffer. ByteOffset is· the <?ffset of the beginning of the buffer within a page 
frame, and ByteCount is the size of the. buffer in bytes. The Pages array, which is 
not formally declared as part of the MDL structure, follows the MDL in memory and 
contains the numbers of the physical page frames to which the user-mode virtual 
addresses map. 
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ByteCount 

! ····-1-··· 
ByteOffset 
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Virtual addresses 
In user space 

Physical address 
space 

Figure 7-3. The memory descriptor list structure. 

We never, by the way, access members of an MDL structure directly. We use 
macros and support functions instead-see Table 7-2. 

Macro or Function 

IoAllocateMdl 

IoBuildPartialMdl 

IoFreeMdl 

MmBuildMdlForNonPagedPool 

MmGetMdlByteCount 

MmGetMdlByteOffset 

MmGetMdlVirtualAddress 

MmGetPhysicalAddress 

Description 

Creates an MDL 

Builds an MDL for a subset of an exist-
ing MoL . 

Destroys an MDL 

Modifies an MDL to describe a region of 
kernel-mode nonpaged memory 

Determines byte size of buffer 

Gets buffer offset within frrst page 

Gets virtual address 

Gets physical address corresponding to 
a virtual address within the MDL
described region 

Table 7-2. Macros and support functions for accessing an MDL. (continued) 
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continued 

Macro or Function 

MmGetSystemAddressForMdl 

MmGetSystemAddressForMdlSafe 

MmInitializeMdl 

MmPrepareMdlForReuse 

MmProbeAndLockPages 

MmSizeOfMdl 

MmUnlockPages 

Description 

Creates a kernel-mode virtual address 
that maps to the same locations in 
memory 

Same as MmGetSystemAddressForMdl 
but preferred in Windows 2000 

(Re)initializes an MDL to describe a 
given virtual buffer 

Reinitializes an MDL 

Locks pages after verifying address 
validity 

Determines how much memory would 
be needed to create an MDL to describe 
a given virtual buffer 

Unlocks the pages for this MDL 

You can imagine the I/O Manager executing code iike the following to perform 
a direct-method read or write: 

KPROCESSOR-MODE mode; II ~ either KernelMode or UserMode 
PMDL mdl = loAllocateMdl(uva, length, FALSE, TRUE, Irp): 
MmProbeAndLockPages(mdl, mode, 

read1ng 1 IOWr1teAccess : IoReadAccess): 

<code to send and await IRP> 

MmUnlockPages(mdl): 
ExFreePool(mdl): 

The I/O Manager first creates an MDL to describe the user buffer. The third argument 
to IoAllocateMdl (FALSE) indicates this is the primary data buffer. The fourth argu
ment (TRUE) indicates that the Memory Manager should charge the process quota. 
The last argument (Irp) specifies the IRP to which this MDL should be attached. 
Internally, IoAllocateMdl sets Irp->MdlAddress to the address of the newly created 
MDL, which is how you find it and how the I/O Manager eventually fmds it so as to 
clean up. 

The key event in this code sequence is the call to MmProbeAndLockPages, 
shown in boldface. This function verifies that the data buffer is valid and can be accessed 
in the appropriate mode. If we're writing to the device, we must be able to read 
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the buffer. If we're reading from the device, we must be able to write to the buffer. In 
addition, the function locks the physical pages containing the data buffer and fills in 
the array of page numbers that follows the MDL proper in memory. In effect, a locked 
page becomes part of the nonpaged pool until as many callers unlock it as locked it 
in the first place. 

The thing you'll most likely do with an MDL in a direct-method read or write 
is to pass it as an argument to something else. DMA transfers, for example, require 

. an MDL for the MapTransfer step you'll read about later in this chapter in "Performing 
DMA Transfers." Universal serial bus (USB) reads and writes, to give another example, 
always work internally with an MDL, so you might as well specify DO_DlRECT_IO 
and pass the resulting MDLs along to the USB bus driver. 

Incidentally, the I/O Manager does save the read or write request length in the 
stack->Parameters union. It's nonetheless customary for drivers to learn the request 
length directly from the MDL: 

ULONG length = MmGetMdlByteCount(mdl); 

The Neither Method 
If you omit both the DO_DlRECT_IO and DO_BUFFERED_IO flags in the device 
object, you get the neither method by default. The I/O Manager simply gives you a 
user-mode virtual address and a byte count (as shown in boldface) and leaves the 
rest to you: 

Irp->UserBuffer = uva; 
PIO_STACK-LOCATION stack = IoGetNextlrpStackLocation(Irp); 
if (reading) 

stack->Parameters.Read.Length = length; 
else 

stack->Parameters.Wr1te.Length = length; 

<code to send and await IRP> 

PORTS AND REGISTERS 
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Windows 2000 models driver access to many devices, as depicted in Figure 7-4. 
Generally, CPUs can have separate memory and I/O address spaces. To access a 
memory-mapped device, the CPU employs a memory-type reference such as a load 
or a store directed to a virtual address. The CPU translates the virtual address to a 
physical address by using a set of page tables. To access an I/O-mapped device, on 
the other hand, the CPU invokes some special mechanism such as the x86 IN and 
OUT instructions. 
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Figure 7-4. Accessing ports and registers. 

Devices have bus-specific ways of decoding memory and I/O addresses. In the 
case of the PCl bus, a host bridge maps CPU physical memory addresses and I/O 
addresses to a bus address space that's directly accessible to devices. Flag bits in the 
device's configuration space determine whether the bridge maps the device's regis
ters to a memory or an I/O address on CPUs that have both address spaces. 

As I've said, some CPUs have separate memory and I/O address spaces. Intel 
architecture CPUs have both, for example. Other CPUs, such as the Alpha, have just 
a memory address space. If your device is I/O-mapped, the PoP Manager will give 
you port resources. If your device is memory-mapped, it will give you memory 
resources instead. 

Rather than have you place reams of conditionally compiled code into your 
driver for all possible platforms, the Windows NT designers invented the hardware 
abstraction layer (HAL) to which I've alluded a few times in this book. The HAL pro
vides functions that you use to access port and memory resources. See Table 7-3. As 

the table indicates, you can READ/WRITE either a single UCHAR!USHORT/ULONG 
or an array of them from or to a PORT/REGISTER. That makes 24 HAL functions in 
all that are used for device access. Since a WDM driver doesn't directly rely on the 
HAL for anything else, you might as well think of these 24 functions as being the entire 
public interface to the HAL. 
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Access Width Functions for Port Access Functions for Memory Access 

8 bits READ]ORT_UCHAR READ_REGISTER_UCHAR 
~TE_PORT_UCHAR ~TE_REGISTER_UCHAR 

16 bits READ_PORLUSHORT READ_REGISTER_USHORT 
~TE_PORLUSHORT ~TE_REGISTER_USHORT 

32 bits READ]ORT_ULONG READ_REGISTER_ ULONG 
WRITE_PORT_ULONG WRITE_REGISTER_ ULONG 

string of READ_PORT_BUFFER-UCHAR READ_REGISTER_BUFFER_UCHAR 
8-bit bytes WRITE]ORT_BUFFER_UCHAR WRITE_REGISTER_BUFFER_UCHAR 

string of READ_PORT _BUFFER_USHORT READ_REGISTER_BUFFER_USHORT 
16-bit words ~TE_PORT_BUFFER_USHORT ~TE_REGISTER_BUFFER_USHORT 

string of 32-bit READ]ORLBUFFER_ULONG READ_REGISTER_BUFFER_ ULONG 
double words ~TE]ORT_BUFFER_ULONG ~TE_REGISTER_BUFFER_ULONG 

Table 7-3. HAL functions for accessing ports and memory registers. 

What goes on inside these access functions is (obviously!) highly dependent on 
the platform. The Intel x86 version of READ_PORT_CHAR, for example, performs an 
IN instruction to read one byte from the designated I/O port. The Microsoft Windows 98 
implementation goes so far as to overstore the driver's call instruction with an actual 
IN instruction in some situations. The Alpha version of this routine performs a memory 
fetch. The Intel x86 version of READ_REGISTER_UCHAR performs a memory fetch 
also; this function is macro'ed as a direct memory reference on the Alpha. The buff
ered version of this function (READ_REGISTER_BUFFER_UCHAR), on the other hand, 
does some extra work in the Intel x86 environment to be sure that all CPU caches 
get properly flushed when the operation finishes. 

The whole point of having the HAL in the first place is so that you don't have 
to worry about platform differences or about the sometimes arcane requirements for 
accessing devices in the multitasking, multiprocessor environment of Windows 2000. 
Your job is quite simple: use a PORT call to access what you think is a port resource, 
and use a REGISTER call to access what you think is a memory resource. 

Port Resources 
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I/O-mapped devices expose hardware registers that, on some CPU architectures (in
cluding Intel x86), are addressed by software using a special I/O address space. On 
other CPU architectures, no separate I/O address space exists and these registers are 
addressed using regular memory references. Luckily, you don't need to understand 
these addressing complexities. If your device requests a port resource, one iteration 
of your loop over the translated resource descriptors will find a CmResourceTypePort 
deSCriptor and you'll save three pieces of information. 



.. .. 

typedef struct _DEVICE-EXTENSION { 

PUCHAR portbase; 
ULONG nports: 
BOOLEAN mappedport; 
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•.. } DEVICE-EXTENSION, *PDEVICE_EXTENSION; 

PHYSICALADDRESS portbase; II base address of range 

for (ULONG 1 = 0; 1 < nres: ++1, ++resource) 
{ 

swi tch (res'ource- >Type) 
{ 

case CmResourceTypePort: 
portbase'= resource->u.Port.Start; 
pdx->nports = resource->u.Port.Length; 
pdx->mappedport = (resource->Flags & GM..,.RESOURCE-PORLIO) == 0; 
break; 

} 

1 f (mappedport) 
{ 
pdx->portbase = (PUCHAR) MmMapIoSpace( portbase, nports, MmNonCached);' , 
if (!pdx->portbase) 

return STATUS_NO-HEMORY; 
} 

else 
.. pdx-)portbase = (PUCHAR) portbase.OuadPart; 

1. The resource deScriptor contains a union named u that has substructures 
for each of the standard resource types. u.Port has information apQut ~ 
port resource. u.Port.Start is the beginning address of a,contigv.ous range 
ofI/O ports, and u.Port.Lengtb is the number of po$, in the range. The 
start address is a 64-bit PHYSICAL_ADDRESS value. 

2. The Flags member of the resource descriptor for a port reso1.J.rce ~s th~' 
CM_RESOURCE_PORT_IO flag set if the CPU architecture has a sep~te 
I/O address space to which the given port address belongs. 

3. If the CM_RESOURCE_PORT_IO flag was clear, as. it will be on an Alpha 
and perhaps other RISC platforms, you must call MmMaploSpace to . 
obtain a kernel-mode virtual address by which the port can be accessed,. 
The access will really employ a memory reference, but yOl.l'll still call 
the PORT flavor of HAL routines CREAD_PORT_UCHAR and soon}from 
Yol.lr driver. 

, ~01 
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4. If the CM_RESOURCE_PORT_IO flag was set, as it will be on an xs6 plat
form, you do not need to map the port address. You'll call the PORT fla
vor of HAL routines from your driver when you want to access one of your 
ports. The HAL routines demand a PUCHAR port address argument, which 
is why we cast the base address to that type. The QuadPart reference, 
by the way, results in your getting a 32-bit or 64-bit pointer, as appropri
ate to the platform for which you're compiling. 

Whether or not the port address needs to be mapped via MmMapIoSpace, you'll 
always call the HAL routines that deal with I/O port resources: READ_PORT_UCHAR, 
WRITE_PORT_UCHAR, and so on. On a CPU that requires you to map a port address, 
the HAL will be making memory references. On a CPU that doesn't require the 
mapping, the HAL will be making I/O references; on anxS6, this means using one 
of the IN and OUT instruction family. 

Your StopDevice helper routine has a small cleanup task to perform if you 
happen to have mapped your port resource: 

VOID StopDevice( ... ) 
{ 

if (pdx->portbase && pdx->mappedport) 
MmUnmapIoSpace(pdx->portbase. pdx->nports); 

pdx->portbase = NULL; 

} 

Memory Resources 
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Memory-mapped devices expose registers that software accesses using load and store 
instructions. The translated resource value you get from the PnP Manager is a physi
cal address, and you need to reserve virtual addresses to cover the physical memory. 
Later on, you'll be calling HAL routines that deal with memory registers, such as 
READ_REGISTER_UCHAR, WRITE_REGISTER_UCHAR, and so on. Your extraction 
and configuration code would look like this fragment: 

typedef struct _DEVICE_EXTENSION { 

PUCHAR membase; 
ULONG nbytes; 
... } DEVICE_EXTENSION. *PDEVICE_EXTENSION; 

PHYSICAL-ADDRESS membase; II base address of range 

for (ULONG i = 0; i < nres; ++i. ++resource) 
{ 

switch (resource~>Type) 
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{ 

case CmResourceTypeMemory: 
membase = resource->u.Memory.Start; 
pdx->nbytes = resource->u.Memory.Length; 
break; 

} 

pdx->membase = (PUCHAR) MmMaploSpace(membase. pdx->nbytes. 
MmNonCached) ; 

if (!pdx->membase) 
return STATUS_NO_MEMORY; 

1. Within the resource descriptor, u.Memory has information about a memory 
resource. u.Memory.Start is the beginning address of a contiguous range 
of memory locations, and u.Memory.Length is the number of bytes in 
the range. The start address is a 64-bit PHYSICAL_ADDRESS value. It's not 
an accident that the u.Port and u.Memory substructures are identical
it's on purpose, and you can rely on it being true if you want to. 

2. You must call MmMaploSpace to obtain a kernel-mode virtual address 
by which the memory range can be accessed. 

Your StopDevice function unconditionally unmaps your memory resources: 

VOID StopDevice( ... ) 
{ 

if (pdx->membase) 
MmUnmaploSpace(pdx->membase. pdX->nbytes); 

pdx->membase = NULL; 

} 

SERVICING AN INTERRUPT 
Many devices signal completion of I/O operations by asynchronously interrupting the 
processor. In this section, I'll discuss how you configure your driver for interrupt 
handling and how you service interrupts when they occur. 

Configuring an Interrupt 
You configure an interrupt resource in your StartDevice function by calling IoConnect
Interrupt using parameters that you can simply extract from a CmResourceType
Intetrupt descriptor. Your driver and device need to be entirely ready to work correctly 
when you call IoConnectInterrupt-you might even have to service an interrupt before 
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the function returns-so you normally make the call near the end of the configura
tion process. Some devices have a hardware feature that allows you to prevent them 
from interrupting. If your device has such a feature, disable interrupts before calling 
IoCol'l11ectlnterrupt and enable them afterward. The extraction and configuration code 
for an interrupt would look like this: 

typedef struct _DEVICE_EXTENSION { 

PKINTERRUPT InterruptObj~ct: 
.•• } DEVICE-EXTENSION. *PDEVICE_EXTENSION: 

ULONG vector: 
KIRQL irql: 
KINTERRUPT_MODE mode: 
KAFFINITY affinity; 
BOOLEAN irqshare: 

// interrupt vector 
/1 interrupt level 
// latching mode 
// processor affinity 
/1 shared interrupt? 

for (ULONG i = 0: < nres: ++i. ++resource) 
{ 

switch (resource->Type) 
{ 

case CmResourceTypelnterrupt: 

} 

irql = (KIRQL) resource->u.lnterrupt.Level: 
v~ctor = resource->u.Interrupt.Vector: 
affinity = resource->u.lnterrupt.Affinity: 
mode = (resource->Flags == CM_RESOURCE_INTERRUPT_LATCHED) 

? Latched : LevelSensitive: 
irqshare = resource->ShareDisposition == CmResourceShareShared: 
break: 

status = loConpectlnterrupt(&pdx->InterruptObject. 
(PKSERVICE_ROUTINE) OnInterrupt. (PVOID) pdx. NULL. 
vector. irql. irql. mode. irqshare. affinity. FALSE): 

1. The Le\te1 parameter specifies the interrupt request level (IRQL) for this 
interrupt. 

2. The Vector parameter specifies the hardware interrupt vector for this 
interrupt. We don't care what this number is, since we're just going to act 
as a conduit between the PnP Manager and IoConnectlnterrupt. All that 
matters is that the HAL understand what the number means. 

3. Affinity is a bit mask that indicates which CPUs will be allowed to handle 
this interrUpt. 
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4. We need to tell 10ConnectInterrupt whether our interrupt is edge-triggered 
or level-triggered. If the resource Flags are CM_RESOURCE_INTERRUPT_ 
LATCHED, we have an edge-triggered interrupt. Otherwise, we have a 
level-triggered interrupt. 

5. Use this statement to discover whether your interrupt is shared. 

In the call to 10ConnectInterrupt at the end of this sequence, we will simply 
regurgitate the values we pulled out of the interrupt resource descriptor. The first 
argument (&pdx->InterruptObject) indicates where to store the result of the con
nection operation-namely, a pointer to a kernel interrupt object that describes your 
interrupt. The second argument (OnInterrupt) is the name of your interrupt service 
routine; I'll discuss ISRs a bit further on in this chapter. The third argumerit (pdx) is 
a context value that will be passed as an argument to the ISR each time your device 
interrupts. I'll have more to say about-this context parameter later as well in "Select
ing an Appropriate Context Argument." 

The fifth and sixth arguments (vector and irqI) specify the interrupt vector 
number and interrupt request level, respectively, for the interrupt you're connecting. 
The eighth argument (mode) is either Latched or LevelSensitive to indicate whether 
the interrupt is edge-triggered or level-triggered. The ninth argument is TRUE if your 
interrupt is shared with other devices and FALSE otherwise. The tenth argument 
(affinity) is the processor affinity mask for this interrupt. The eleventh and final 
argument indicates whether the operating system needs to save the floating-point 
context when the device interrupts. Since you're not allowed to do floating-point cal
culations in an ISR on an x86 platform, a portable driver would always set this flag 
to FALSE. 

I haven't yet described two other arguments to 10Connectinterrupt. These become 
important when your device uses more than one interrupt. In such a case, you would 
create spin locks for your interrupts and initialize them by calling KeInitializeSpinLock. 
You would also calculate the largest IRQL needed by any of-your interrupts before 
connecting any of them. In each call to 10ConnectInterrupt, you'd specify the address 
of the appropriate spin lock for the fourth argument (which is NULL in my example) 
and you'd specify the maximum IRQL for the seventh argument (which is irqI in my 
~xample). This seventh argument indicates the IRQL used for synchronizing the in
terrupts, which you should make the maximum of all your interrupt IRQLs so that 
you're troubled ~y only one of your interrupts at a time. 

If, however, your device uses only a single interrupt, you won't need a special 
spin lock (because the I/O Manager automatically allocates one for you) and the 
synchronization level for your interrupt will be the same as the interrupt IRQL. 

305 



Programming the Microsoft Windows Driver Model 

Handling Interrupts 
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When your device generates an interrupt, the HAL selects a CPU to service the inter
rupt based on the CPU affinity mask you specified. It raises that CPU's IRQL to the 
appropriate synchronization level and claims the spin lock associated with your in
terrupt object. Then it calls your ISR, which would have the following skeletal form: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject. PYOID Context) 
{ 

if «device not interrupting» 
return FALSE: 

<handle interrupt> 
return TRUE: 
} 

Windows NT's interrupt-handling mechanism assumes that hardware interrupts 
can be shared by many devices. Thus your first job in the ISR is to determine whether 
your device is interrupting at the present moment. If not, you return FALSE right away 
so that the HAL can send the interrupt to another device driver. If yes, you clear the 
interrupt at the device level and return TRUE. Whether the HAL thenca11s other drivers' 
ISRs depends on whether the device interrupt is edge-triggered or level-triggered and 
on other platform details. 

Your main job in the ISR is to service your hardware to clear the interrupt. I'll 
have some general things to say about this job, but the details pretty much depend 
on how your hardware works. Once you've performed this major task, you return 
TRUE to indicate to the HAL that you've serviced a device interrupt. 

Programming Restrictions in the ISR 
ISRs execute at an IRQL higher than DISPATCH_LEVEL. All code and data used in 
an ISR must therefore be in nonpaged memory. Furthermore, the set of kernel-mode 
functions that an ISR can call is very limited. 

Since an ISR executes at elevated IRQL, it freezes out other activities on its CPU 
that require the same or a lower IRQL. For best system performance, therefore, your 
ISR should execute as quickly as possible. Basically, do the minimum amount of work 
required to service your hardware and return. If there is additional work to do (such 
as completing an IRP), schedule a DPC to handle that work. 

Despite the admonition you usually receive to do the smallest amount of work 
possible in yotir ISR, you don't want to carry that idea to an extreme. For example, 
if you're dealing with a device that interrupts to signal its readiness for the next output 
byte, go ahead and send the next byte directly from your ISR. It's fundamentally silly 
to schedule a DPC just to transfer a Single byte. Remember that the end user wants 
you to service your hardware (or else he or she wouldn't have the hardware installed 
on the computer), and you are entitled to your fair share of system resources to 
provide that service. 
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But don't go crazy calculating pi to a thousand decimal places in your ISR, either 
(unless your device requires you to do something that ridiculous, and it probably 
doesn't). Good sense should tell you what the right balance of work between an ISR 
and a DPC routine should be. 

Se.ecting an Appropriate Context Argument 
In the call to loConnectInterrupt, the third argument is an arbitrary context value that 
eventually shows up as the second argument to your ISR. You want to choose this 
argument so as to allow your ISR to execute as rapidly as possible; the address of 
your device object or of your device extension would be a good choice. The device 
extension is where you'll be storing items---such as your device's base port address-
that you'll use in testing whether your device is currently asserting an interrupt. To 
illustrate, suppose that your device, which is I/O-mapped, has a status port at its 
base address and that the low-order bit of the status value indicates whether the device 
is currently trying to interrupt. If you adopt my suggestion, the Brst few lines of your 
ISR would read like this: 

BOOLEAN Onlnterrupt(PKINTERRUPT InterruptObject. PDEVICE_EXTENSION pdx) 
{ 

UCHAR devstatus READ_PORT_UCHAR(pdx->portbase); 
if (!(devstatus & 1» 

return FALSE; 
<etc.> 
} 

The fully optimized code for this function will require only a few instructions 
to read the status port and test the low-order bit. 

If you elect to use the device extension as your context argument, be sure to 
supply a cast when you call 10ConnectInterrupt: 

IoConnectlnterrupt( ...• (PKSERVICE_ROUHNE) Onlnterrupt •... ); 

If you omit the cast, the compiler will generate an exceptionally obscure error mes
sage because the second argument to your OnInterrupt routine (a PDEVICE_ 
EXTENSION) won't match the prototype of the function pointer argument to IoConnect
Interrupt, which demands a PYOID. 

Synchronizing Operations with the ISR 
As a general rule, the ISR shares data and hardware resources with other parts of the 
driver. Anytime you hear the word share, you should immediately start thinking about 
synchronization problems. For example, a standard DART (universal asynchronous 
receiver-transmitter) device has a data port the driver uses for reading and writing 
data. You'd expect a serial port driver's ISR to access this port from time to time. 
Changing the baud rate also entails setting a control flag called the divisor latch, 
performing two single-byte write operations to this same data port, and then clearing 
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the divisor latch. If the UART were to interrupt in the middle of changing the baud 
rate, you can See that a data byte intended to be transmitted could easily end up in 
the baud-rate divisor register or that a byte intended for the divisor register could end 
up being transmitted as data. 

The system guards the ISR with a spin lock and with a relatively high IRQL
the device IRQL (DIRQL). To simplify the mechanics of obtaining the same spin lock 
and raising IRQL to the same level as an interrupt, the system provides this service 
function: 

BOOLEAN result = KeSynchronizeExecution(InterruptObject. 
SynchRoutine. Context); 

where InterruptObject (PKINTERRUPT) is a pointer to the interrupt object describing 
the interrupt we're trying to synchronize with, SynchRoutine (PKSYNCHRONIZE_ 
ROUTINE) is the address of a callback function in our driver, and Context (PVOID) 
is an arbitrary context parameter to be sent to the SynchRoutine as an argument. We 
use the generic term synch critical section routine to describe a subroutine that we 
call by means of KeSynchronizeExecution. The synch critical section routine has 
the following prototype: 

BOOLEAN SynchRoutine(PVOID Context); 

That is, it receives a single argument and returns a BOOLEAN result. When it 
gets control, the current CPU is running at the synchronization IRQL that the origi
nal call to IoConnectinterrupt specified, and it owns the spin lock associated with 
the interrupt. Consequently, interrupts from the device are temporarily blocked out, 
and the SynchRoutine can freely access data and hardware resources that it shares 
with the ISR. 

KeSynchronizeExecution returns whatever value SynchRoutine returns, by the 
way. This gives you a way of providing a little bit-actually 8 bits, since BOOLEAN 
is declared as an unsigned character-of feedback from SynchRoutine to whatever 
calls KeSynchronizeExecution. 

Deferred Procedure Calls 
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Completely servicing a device interrupt often requires you to perform operations that 
aren't legal inside an ISR or that are too expensive to carry out at the elevated IRQL 
of an ISR. To avoid these problems, the designers of Windows NT provided the de
ferred procedure call mechanism. The DPC is a general-purpose mechanism, but you 
use it mqst often.in connection with interrupt handling. In the most common sce
nario, your ISR decides that the current request is complete and r~quests a DPC . Later 
on, the kernel calls your DPC routine at DISPATCH_LEVEL. While restrictions on what 
service routines you can call and on paging still apply, fewer restrictions ;apply be
cause you're now running at a lower IRQL than inside the ISR. In particular, it's legal 
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to call routines like IoCompleteRequest or IoStartNextPacket that are logically nec
essary at the end of an I/O operation. 

Every device object gets a DPC object "for free." That is, the DEVICE_OBJECT 
has a OPC object-named, prosaically enough, Dpc-built in. You need to initialize 
this built-in OPC object shortly after you create your device object: 

NTSTATUS AddDevice( ... ) 
{ 

PDEVICE_OBJECT fdo; 
IoCreateDevice( ...• &fdo); 
IoInftf a11 zeDpcRequest(fdo. DpcForIsr): 

} 

IoInitializeDpcRequest is a macro in WDM.H that initializes the device object's built
in DPC object. The second argument is the address of the DPC procedure that I'll show 
you presently. 

With your initialized DPC object in place, your ISR can request a OPC by using 
the follOwing macro: 

BOOLEAN Onlnterrupt( ... ) 
{ 

IoRequestDpc(pdx->DeviceObject. NULL. NULL); 

} 

This call to IoRequestDpc places your device object's OPC object in a systemwide 
queue, as illustrated in Figure 7-5. 

IRQL 

DIRQL3 •••••..•••••..•••••••••••• - ...... ~ ••••..•••• ., .............................. ., ............ .. 

DIRQ~ 1 .... •• .... • .... __ ........ • .... 1.':;· .. •• .... ., .. • .. .,·· .. ·., .. • .... ·~, .. • ...... • .. 

DIRQL1 1 .. · ...... · .... ·I· ........ · .. · ............. __ .. r..~·~~l .... .,· .... · .. ·:::"""" ..... 

DISPATCH_LEVEL I .... · .... · .... ·,.,· .... · ................ · ...... · ........ ·t---...... · .. ~~ .... .. 

. PASSIVE_LEVEL "'--.... , .............................................. ~~ .... IIl ••• ---

Figure 7-5. Processing DPC requests. 
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The two NULL parameters are context values that don't really have a good use 
in this particular situation. Later on, when no other activity is occurring at DISPATCH_ 
LEVEL, the kernel removes your DPC object from the queue and calls your DPC 
routine, which has the following prototype: 

VOID DpeForIsr(PKDPC Dpe. PDEVICE_OBJECT fdo. PIRP junk. PVOID Context) 
{ 

} 

What you do inside the DPC routine depends in great measure on how your 
device works. A likely task would be to complete the current IRP and rel~ase the next 
IRP from the queue. If you use the "standard model" for IRP queuing, the code would 
be as follows: 

VOID DpeForIsr( ... ) 
{ 

PIRP Irp = fdo-)CurrentIrp; 
IoStartNextPaeket(fdo. TRUE); 
IoCompleteRequest(Irp. <boost value»; 
} 

The TRUE argument to IoStartNextPacket indicates that the next IRP is cancellable
meaning that the original call to IoStartPacket specified a cancel routine-and causes 
IoStartNextPacket to acquire and release the global cancel spin lock around its access 
to the device queue and CurrentIrp. 

In this code fragment, we rely on the fact that the I/O Manager sets the device 
object's CurrentIrp field to point to the IRP it sends to our Startlo routine. The IRP 
we want to complete is the one that's the CurrentIrp when we commence the DPC 
routine. It's customary to call IoStartNextPacket before IoCompleteRequest so that 
we can get our device busy with a new request before we start the potentially long 
process of completing the current IRP. 

If you use the DEVQUEUE object presented in the previous chapter for IRP 
queuing, the code would be similar: 

VOID DpeForIsr( ... ) 
{ 

PDEVICE_EXTENSION pdx = •••• 
PIRP Irp = GetCurrentIrp(&pdx-)dqRead); 
StartNextPaeket(&pdx-)dqRead. fdo); 
IoCompleteRequest(Irp. <boost value»; 
} 

DPC Scheduling 
I've glossed over two fairly important details and a minor one about DPCs until now. 
The first important detail is implicit in the fact that you have a DPC object that gets 
put onto a queue by IoRequestDpc. If your device generates an additional interrupt 
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before the OPC routine actually runs, and if your ISR requests another OPC, the kernel 
will simply ignore the second request. In other words, your OPC object will be on 
the queue one time no matter how many OPCs are requested by successive invoca
tions of your ISR, and the kernel will call your callback routine only one time. Dur
ing that one invocation, your OPC routine needs to accomplish all the work related 
to all the interrupts that have occurred since the last ope. 

As soon as the OPC dispatcher dequeues your OPC object, it's possible for some
thing to queue it again, even while your OPC routine executes. This won't cause you 
any grief if the object happens to be queued on the same CPU both times. The sec
ond important detail about OPC processing, therefore, has to do with CPU affmity. 
Normally, the kernel queues a OPC object for handling on the same processor that 
requests the OPC-for example, the processor that just handled an interrupt and called 
IoRequestDpc. As soon as the OPC dispatcher dequeues the OPC object and calls your 
callback routine on one CPU, it's theoretically possible for your device to interrupt 
on a different CPU, which might end up requesting a OPC that could execute simul
taneously on that different CPU. Whether simultaneous execution of your OPC 
routine poses a problem or not depends, obviously, on the details of your coding. 

You can avoid the potential problems that might come from having your OPC 
routine Simultaneously active on multiple CPUs in several ways. One way, which 
isn't the best, is to designate a particular CPU for running your OPC by calling 
KeSetTargetProcessorDpc. Also, you could theoretically restrict the CPU affmity of 
your interrupt when you first connect it; if you never queue the OPC except from 
your ISR, you'll never be executing the OPC on any different cpu. The real reason 
you're able to specify the CPU affmity of a OPC or an interrupt, however, is to improve 
performance by allowing the code and data accessed during your OPC or ISR rou
tines to remain in a cache. 

You can also use a spin lock or other synchronization primitive to prevent inter
ference between two instances of your OPC routine. Be careful of using a spin lock 
here: you often need to coordinate the hypothetical multiple instances of your OPC 
routine with your ISR, and an ISR runs at too high an IRQL to use an ordinary spin 
lock. An interlocked list-that is, one you manipulate by using support functions 
in the same family as ExInterlockedInsertHeadList-might help you, since (so 
long as you never explicitly acquire the same spin lock that you use to guard the 
list) you can use the list at any IRQL. Interlocked forms of the bitwise OR and AND 
operators also might help by allowing you to manage a bit mask (such as a mask 
indicating recent interrupt conditions) that controls what your OPC routine is sup
posed to accomplish; you can cobble these functions together with the help of 
InterlockedCompareExchange. 

Most simply, you can just make sure that your device won't interrupt in between 
the time you request a ope and the time your OPC routine finishes its work. ("Yo, 
hardware guys, stop flooding me with interrupts!") , 
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The third DPC detail, which I consider less crucial than the two I've just ex
plained, concerns the importance of the DPC. By calling KeSetImportanceOpe, you 
can designate one of three importance levels for your DPC: 

• MediumImportance is the default and indicates that the DPC should be 
queued after all currently queued DPCs. If the DPC is queued to another 
processor, that other processor won't necessarily be interrupted right away 
to service the DPC. If it's queued to the current processor, the kernel will 
request a DPC interrupt as soon as possible to begin servicing DPCs. 

• HighImportance causes the DPC to be queued Brst. Iftwo.or more high 
importance DPCs get requested at about the same time, the last one 
queued gets serviced first. 

• LowImportance causes the DPC to be queued last. In addition, the ker
nel won't necessarily request a DPC interrupt for whatever processor is 
destined to service' the DPC. 

The net effect of a DPC's importance level is to influence, but not necessarily 
control, how soon the DPC occurs. Even a DPC that has low importance might trig
ger a DPC interrupt on another CPU if that other CPU reaches some threshold for 
queued DPCs or if DPCs haven't been getting processed fast enough on it. If your 
device is capable of interrupting again before your DPC routine runs, changing your 
DPC to low importance will increase the likelihood that you'll have multiple work 
items to perform. If your DPC has an affinity for some CPU other than the one that 
requests the DPC, choosing high importance for your DPC will increase the likeli
hood that your ISR will still be active when your DPC routine begins to run. But neither 
of these possibilities is a certainty; conversely, altering or not altering your impor
tance can't prevent either of them from happening. 

Custom DPC Objects 
You can create other DPC objects besides the one named Ope in a device object. 
Simply reserve storage-in your device extension or some other persistent place that 
isn't paged-for a KDPC object, and initialize it: 

typedef struct _DEVICE_EXTENSION { 

KDPC CustomDpc: 
... }: 

KeIn1tializeDpc(&pdx->CustomDpc, (PKDEFERRED_ROUTINE) DpcRoutine, fdo): 

In the callto KeInitializeOpe, the second argument is the address of a DPC routine 
in nonpaged memory, and the third argument is an arbitrary context parameter that 
will be sent to the DPC routine as its second argument. 

To request a deferred call to a custom DPC routine, call KeInsertQueueOpc: 

BOOLEAN inserted = KeInsertQueueDpc(&pdx->CustomDpc, argl, arg2): 
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Here, argl and arg2 are arbitrary context pointers that will be passed to the custom 
DPC routine. The return value is FALSE if the DPC object was already in a processor 
queue and TRUE otherwise. 

Also, you can also remove a DPC object from a processor queue by calling· 
KeRemoveQueueDpc. 

A Simple Interrupt-Driven Device 
I wrote the PCI42 sample driver (available on the companion disc) to illustrate how 
to write the various different driver routines that a typical interrupt-driven, non-DMA 
device might use. The method used to handle such a device is often called programmed 
I/O (PIO) because program intervention is required to transfer each unit of data. 

PCI42 is a dumbed-down driver for the S5933 PCI chip set from Applied Micro 
Circuits Corporation (AMCC). The S5933 acts a(> a matchmaker between the PCI bus 
and an add-on device that implements the actual function of a device. The S5933 is 
very flexible. In particular, you can program nonvolatile RAM so as to initialize the 
PCI configuration space for your device in any desired way. PCI42 uses the S5933 in 
its factory default state, however. 

To grossly oversimplify matters, a WDM driver communicates with the add-on 
device connected to an S5933 either by doing DMA (which I'll discuss in the next 
major section of this chapter) or by sending and receiving data through a set of mail
box registers. PCI42 will be using one byte in one of the mailbox registers to trans
fer data one byte at a time. 

The AMCC development kit for the S5933 (part number S5933DKl) includes two 
breadboard cards and an ISA (Industry Standard Architecture) interface card· that 
connects to the S5933 development board via a ribbon cable. The ISA card allows 
you to access the S5933. from the add-on device side in order to provide software 
simulation of the add-on function. One component of the PCI42 sample is a driver 
(S5933DK1.SYS) for the ISA card that exports an interface for use by test programs. 

Hardware people will snicker at the simplicity of the way PCI42 manages the 
device. The advantage of using such a trivial example is that you'll be able to see each 
step in the process of handling an I/O operation unfold at human speed. So chortle 
right back if your social dynamics allow it. 

Initializing PCI42 
The StartDevice function in PCI42 handles a port resource and an interrupt resource·. 
The port resource describes a collection of sixteen 32-bit operation registers in I/O 
space, and the interrupt resource describes the host manifestation of the device's 
INTA# interrupt capability. At the end of StartDevice, we have the following device
specific code: 

NTSTATUS StartDevice( ... ) 
{ 

(continued) 
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ResetDevice(pdx): 
status = loConnectInterrupt( ... ): 
KeSynchronizeExecution(pdx->InterruptObject. 

(PKSYNCHRONIZE_ROUTINE) SetupDevice. pdx): 
return STATUS_SUCCESS: 
} 

That is, we invoke a helper routine (ResetDevice) to reset the hardware. One 
of the tasks for ResetDevice is to prevent the device from generating any interrupts, 
insofar as that's possible. Then we call IoConnectInterrupt to connect the device 
interrupt to our ISR. Even before 10Connectlnterrupt returns, it's possible for our 
device to generate an interrupt, so everything about our driver and the hardware has 
to be ready to go beforehand. After connecting the interrupt, we invoke another helper 
routine named SetupDevice to program the device to act the way we want it to. We 
must synchronize this step with our ISR because it uses the same hardware registers 
as our ISR would use, and we don't want any possibility of sending the device in
consistent instructions. The SetupDevice call is the last step in PC142's StartDevice 
because-contrary to what I told you in Chapter 2, "Basic Structure of a WDM 
Driver"-PCI42 hasn't registered any device interfaces and therefore has none to 
enable at this point. 

ResetDevice is highly device-specific and reads as follows: 

VOID ResetDevice(PDEVICE_EXTENSION pdx) 
{ 

PAGED_CODE(): 

WRITE_PORT_ULONG«PULONG) (pdx->portbase + MCSR). MCSR-RESET): 

LARGE_INTEGER timeout: 
timeout.QuadPart = -10 * 10000: II i.e .• 10 milliseconds 

KeDelayExecutionThread(KernelMode. FALSE. &timeout): 
WRITE_PORT_ULONG«PULONG) (pdx->portbase + MCSR). 0): 

WRITE_PORT_ULONG«PULONG) (pdx->portbase + INTCSR). 
INTCSR-INTERRUPT_MASK): 

} 

1. The S5933 has a master controVstatus register (MCSR) that controls bus
mastering DMA transfers and other actions. Asserting four of these bits re
sets different features of the device. I defined the constant MCSR_RESET 
to be a mask containing all four of these reset flags. This and other mani
fest constants for S5933 features are in the S5933.H file that's part of the 
PCI42 project. 

2. Three of the re,set flags pertain to features internal to the S5933 and take 
effect immediately. Setting the fourth flag to 1 asserts a reset signal for the 
add-on function. To deassert the add-on reset, you have to explicitly reset 
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this flag to O. In general, you want to give the hardware a little bit of time 
to recognize a reset pulse. KeDelayExecutionThread, which I discussed 
in Chapter 4, "Synchronization," puts this thread to sleep for about 10 
milliseconds. You can raise or lower this constant if your hardware has 
different requirements, but don't forget that the timeout will never be 
less than the granularity of the system clock. Since we're blocking our 
thread, we need to be running at PASSIVE_LEVEL in a nonarbitrary thread 
context. Those conditions are met because our ultimate caller is the 
PnP Manager, which has sent us an IRP _MN_START_DEVICE in the full 
expectation that we'd be blocking the system thread we happen to be in. 

3. The last step in resetting the device is to clear any pending interrupts. The 
S5933 has six interrupt flags in an interrupt controVstatus register (INTCSR). 
Writing 1 bits in these six positions clears all pending interrupts. (If we 
write back a mask value that has a 0 bit in one of the interrupt flag posi
tions, the state of that interrupt is not affected. This kind of flag bit is called 
read/write-clear or just RlWC.) Other bits in the INTCSR enable interrupts 
of various kinds. By writing 0 bits in those locations, we're disabling the 
device to the maximum extent possible. 

Our SetupDevice function is quite simple: 

VOID SetupDevice(PDEVICE_EXTENSION pdx) 
{ 

WRITE_PORT_ULONG«PULONG) (pdx->portbase + INTCSR), 
INTCSR-IMBI_ENABLE 

} 

I (lNTCSR-MBl « INTCSR-IMBLREG_SELECLSHIFT) 
I (INTCSR-BYTE0 « INTCSR-IMBI_BYTE_SELECT_SHIFT) 
) ; 

This function reprograms the INTCSR to specify that we want an interrupt to occur 
when there's a change to byte 0 of inbound mailbox register 1. We could have speci
fied other interrupt conditions for this chip, including the emptying of a particular 
byte of a specified outbound mailbox register, the completion of a read DMA trans
fer, and the completion of a write DMA transfer. 

Starting a Read Operation 
PCI42's Startlo routine follows the pattern we've already studied: 

VOID StartIo(lN PDEVICE_OBJECT fdo, IN PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->OeviceExtension; 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
if (INT_SUCCESS(status» 

{ 

(continued) 
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CompleteRequest(Irp. status. O); 
return; 
} 

if (!stack->Parameter"s.Read.Length) 
{ 

StartNextPacket(&pdx->dqReadWrite. fdo); 
CompleteRequest(Irp. STATUS_SUCCESS. O); 
return; 
} 

pdx->buffer = (POCHAR) Irp->Assoclatedlrp.SystemBuffer; 
pdx->nbytes = stack->Parameters.Read.Length; 
pdx->numxfer = O; 

KeSynchronizeExecutlon(pdx->InterruptObject. 
(PKSYNCHRONIZE_ROUTINE) TransferFlrst. pdx); 

} 

1. Here, we save parameters in the device extension to describe the ongo
ing progress of the input operation we're about to undertake. PCI42 uses 
the DO_BUFFERED_IO method, which isn't typical but helps make this 
driver simple enough to be used as an example. 

2. Since our interrupt is connected, our device can interrupt at any time. The 
ISR will want to transfer data bytes when interrupts happen, but we want 
to be Sure that the ISR is never confused about which data buffer to use 
or about the number of bytes we're trying to read. To restrain our ISR's 
eagerness, we put a flag in the device extension named activerequest 
that's ordinarily FALSE. Now is the time to set that flag to TRUE. As usual 
when dealing with a shared resource, we need to synchronize the setting 
of tj:le flag with the code in the ISR that tests it, and we therefore need to 
invoke a SynchCritSection routine as I previously discussed. It might also 
happen that a data byte is already available, in which case the ftrst inter
rupt will never happen. TransferFirst is a helper routine that checks for 
this eventuality and reads the first byte. The add-on function has ways of 
knowing that we emptied themailbox.soit will presumably send the next 
byte in due course. Here's TransferFirst: 

VOID TransferFlrst(PDEVICE_EXTENSION pdx) 
{ 

pdx-)activerequest = TRUE; 
ULONG mbef = READ_PORT_ULONG«PULONG) (pdx->portbase + MBEF»; 
if (!(mbef & MBEF_INl_0» 

return; 

*pdx->buffer = READ_PORT_UCHAR(pdx->portbase + IMBl): 
++pdx->buffer; 
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++pdx-)numxfer; 
if (--pdx-)nbytes == 0) 

{ 

} 

pdx-)activerequest = FALSE; 
IoRequestDpc(pdx-)DeviceObject, NULL, NULL); 
} 

The S5933 has a mailbox empty/full register (MBEF) whose bits indicate the 
current status of each byte of each mailbox register. Here, we check whether the 
register byte we're using for input (inbound mailbox register 1, byte 0) is presently 
unread. If so, we read it. That might exhaust the transfer count. We already have a 
subroutine (DpcForIsr) that knows what to do with a complete request, so we re
quest a DPC if this first byte turns out to satisfy the request. (Recall that we're exe
cuting at DIRQL under protection of an interrupt spin lock because we've been 
invoked as a SynchCritSection routine, so we can't just complete the IRP right now.) 

Handling the Interrupt 
In normal operation with PCI42, the S5933 interrupts when a new data byte arrives 
in mailbox 1. The following ISR then gains control: 

BOOLEAN OnInterrupt(PKINTERRUPT InterruptObject, PDEVICE_EXTENSION pdx) 
{ 

ULONG intcsr = READ_PORT_ULONG«PULONG) (pdx-)portbase + INTCSR»; 
if (!(intcsr & INTCSR-INTERRUPLPENDING» 

return FALSE; 

BOOLEAN dpc = FALSE; 

PIRP Irp = GetCurrentIrp(&pdx-)dqReadWrite); 

if (!Irp . 
11 AreRequestsBeingAborted(&pdx-)dqReadWrite) 
11 Irp-)Cancel) 
{ 

pdx-)nbytes = 0; 
dpc = Irp != NULL; 
} 

while (intcsr & INTCSR-INTERRUPT_PENDING) 
{ 

if (intcsr & INTCSR-IMBI) 
{ 

if (pdx-)nbytes && pdx-)activerequest) 
{ 

*pdx-)buffer = READ_PORT_UCHAR(pdx-)portbase + IMBl); 
++pdx-)buffer; 

(continued) 
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} 

++pdx->numxfer; 
if (!--pdx->nbytes) 

dpc = TRUE; 
} 

WRITE_PORT_ULONG«PULONG) (pdx->portbase + INTCSR), intcsr); 

intcsr = READ_PORT_ULONG«PULONG) (pdx->portbase + INTCSR»; 
} 

if (dpc) 
{ 

pdx->activerequest = FALSE; 
IoRequestDpc(pdx->Dev1ceObj~ct, NULL, NULL); 
} 

return TRUE; 
} 

1. Our ftrst task is to discover whether our own device is trying to interrupt 
now. We read the S5933's INTCSR and test a bit (INTCSR_INTERRUPT_ 
PENDING) that summarizes all pending causes of interrupts. If this bit is 
clear, we return immediately. The reason I chose to use the device exten
sion pointer as the context argument to this routine-back when I called 
10Connectlnterrupt-should now be clear: we need immediate access to 
this structure to get the base port address. 

2. When we use a DEVQUEUE, we rely on the queue object to keep track 
of the current IRP. This interrupt might be one that we don't expect be
cause we're not currently servicing any IRP. In that case, we still have to 
clear the interrupt but shouldn't do anything else. 

3. It's also possible that a Plug and Play or power event has occurred that 
will cause any new IRPs to be rejected by the dispatch routine. The 
DEVQUEUE's AreRequestsBeingAborted function tells us that fact so 
that we can abort the current request right now. Aborting an active request 
is a reasonable thing to do with a device such as this that proceeds byte 
by byte. Similarly it's a good idea to check whether the IRP has been 
cancelled if it will take a long time to ftnish the IRP. If your device inter
rupts only when it's done with a long transfer, you could leave this test 
out of your ISR. 

4. We're now embarking on a loop that will terminate when all of our device's 
current interrupts have been cleared. At the end of the loop, we'll reread 
the INTCSR to determine whether any more interrupt conditions have 
arisen. If so, we'll repeat the loop. We're not being greedy with CPU time 
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here-we want to avoid letting interrupts cascade into the system because 
servicing an interrupt is by itself relatively expensive. 

5. If the S5933 has interrupted because of a mailbox event, we'll read a new 
data byte from the mailbox into the I/O buffer for the current IRP. If you 
were to look in the MBEF register immediately after the read, you'd see 
that the bit corresponding to inbound mailbox register 1, byte 0, gets 
cleared by the read. Note that we needn't test the MBEF to determine 
whether our byte has actually changed because we programmed the 
device to interrupt only upon a change to that single byte. 

6. Writing the INTCSR with its previous contents has the effect of clearing 
the six R/WC interrupt bits, not changing a few read-only bits, and pre
serving the original setting of all read/write control bits. 

7. Here, we read the INTCSR to determine whether additional interrupt 
conditions have arisen. If so, we'll repeat this loop to service them. 

8. As we progressed through the preceding code, we set the BOOLEAN dpc 
variable to TRUE if a DPC is now appropriate to complete the current IRP. 

The DPC routine for PCI42 is as follows: 

VOID DpeForlsr(PKDPC Dpe, PDEVICE_OBJECT fdo, PIRP junk, PYOID Context) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DevieeExtension; 
NTSTATUS status = STATUS_SUCCESS; 
PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite); 
ULONG info = pdx->numxfer; 
StartNextPaeket(&pdx->dqReadWrite, fdo); 
CompleteRequest(Irp, status, info); 
} 

Testing PCI42 
If you want to examine PCI42 in operation, you need to do several things. First obtain 
and install an S5933DKI development board, including the ISA add-in interface card. 
Use the Add Hardware wizard to install the S5933DK1.SYS driver and the PCI42.SYS 
driver. (I found that Windows 98 initially identified the development board as a 
nonworking sound card and that I had to remove it in the Device Manager before I 
could install PCI42 as its driver. Windows 2000 handled the board normally, but I did 
encounter an annoying setup freeze when trying to upgrade from one release can
didate to another during the beta phase.) 

Then run both the ADDONSIM and TEST programs, which are in the PCI42 
directory tree on the companion disc. ADDONSIM writes a data value to the mail
box via the ISA interface. TEST reads a data byte from PCI42. Determining the value 
of the data byte is left as an exercise for you. 
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Windows 2000 supports direct memory access transfers based on the abstract model 
of a computer depicted in Figure 7-6. In this model, the computer is considered to 
have a collection of map registers that translate between physical CPU address and 
bus addresses. Each map register holds the address of one physical page frame. 
Hardware accesses memory for reading or writing by means of a "logical," or bus
specific, address. The map registers play the same role as page table entries for soft
ware by allowing hardware to use different numeric values for their addresses than 
the CPU understands. 

Physical address 
space 

Adapter 
object 

Bus address 
space 

Figure 7-6. Abstract computermodelfor DMA transfers. 

Some CPUs, such as the Alpha, have actual hardware map registers. One of the 
steps in initializing a DMA transfer-specifically, the MapTransfer step I'll discuss 
presently-reserves some of these registers for your use. Other CPUs, such as the 
Intel x86, do not have map registers, but you write your driver as if they did. The 
MapTransfer step on such a computer might end up reserving use of physical memory 
buffers that belong to the system, in which case the DMA operation will proceed using 
the reserved buffer. Obviously, something has to copy data to or from the DMA buffer 
before or after the transfer. In certain cases--for example, when dealing with a bus
master device that has scatter/gather capability-the MapTransfer phase might do all 
of nothing on an architecture without map registers. 
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The Windows 2000 kernel uses a data structure known as an adapter object to 
. describe the DMA characteristics of a device and to control access to potentially 
shared resources, such as system DMA channels and map registers. You get a pointer 
to an adapter object by calling IoGetDmaAdapter during your StartDevice process
ing. The adapter object has a pointer to a structure named DmaOperations that, 
in turn, contains pointers to all the other functions you need to call. See Table 7-4. 
These functions take the place of global functions (such as IoAllocateAdapter, 
IoMapTransfer, and the like) that you would have used in previous versions of 
Windows NT. In fact, the global names are now macros that invoke the Dma
Operations functions. 

DmaOperativns Function Pointer 

PutDmaAciapter 

AllocateCommonBuffer 

FreeCommonBuffer 

AllocateAdapterChannel 

FlushAdapterBuffers 

FreeAdapterChannel 

FreeMapRegisters 

MapTransfer 

GetDmaAlignment 

ReadDmaCounter 

GetScatterGatherList 

PutScatterGatherList 

Description 

Destroys adapter object 

Allocates a common buffer 

Releases a common buffer 

Reserves adapter and map registers 

Flushes intermediate data buffers af
ter transfer 

Releases adapter object and map 
registers 

Releases map registers only 

Programs one stage of a transfer 

Gets address alignment required for 
adapter 

Determines residual count 

Reserves adapter and construct scat
ter/ gather list 

Releases scatter/gather list 

Table 7-4. DmaOperations function pointers for DMA helper routines. 

Transfer Strategies 
How you perform a DMA transfer depends on several factors: 

• If your device has bus-mastering capability, it has the necessary electronics 
to access main memory if you tell it a few basic facts, such as where to 
start, how many units of data to transfer, whether you're performing an 
input or an output operation, and so on. You'll consult withyour hardware 
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designers to sort out these details, or else you'll be working from a speci
fication that tells you what to do at the hardware level. 

• A device with scatter/gather capability can transfer large blocks of data 
to or from discontiguous areas of physical memory. Using scatter/gather 
is advantageous for software because it eliminates the need to acquire 
large blocks of contiguous page frames. Pages can simply be locked 
wherever they're found in physical memory, and the device can be told 
where they are. 

• If your device is not a bus master, you'll be using the system DMA con
troller on the motherboard of the computer. This style of DMA is some
times called slave DMA. The system DMA controller associated with the 
ISA bus has some limitations on what physical memory it can access and 
how large a transfer it can perform without reprogramming. The control
ler for an EISA bus lacks these limits. You won't have to know-at least, 
not in Windows 200O-which type of bus your hardware plugs in to because 
the operating system is able to take account of these different restrictions 
automatically. 

• Ordinarily, DMA operations involve programming hardware map registers 
or copying data either before or after the operation. If your device needs 
to read or write data continuously, you don't want to do either of these 
steps for each I/O request-they might slow down processing too much 
to be acceptable in your particular situation. You can, therefore, allocate 
what's known as a common buffer that your driver and your device can 
both Simultaneously access at any time. 

Notwithstanding the fact that many details will be different depending on how 
these four factors interplay, the steps you perform will have many common fea
tures. Figure 7-7 illustrates the overall operation of a transfer. You start the trans
fer in your Startlo routine by requesting ownership of your adapter object. Ownership 
has meaning only if you're sharing a system DMA channel with other devices, but 
the Windows 2000 DMA model demands that you perform this step anyway. When 
the I/O Manager is able to grant you ownership, it allocates some map registers for 
your temporary use and calls back to an adapter control routine you provide. In your 
adapter control routine, you perform a transfer mapping step to arrange the first 
(maybe the only) stage of the transfer. Multiple stages can be necessary if sufficient 
map registers aren't available; your device must be capable of handling any delay that 
might occur between stages. 
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Figure 7-7. Flow of ownership during D.MA. 

Once your adapter control routine has initialized the map registers for the first 
stage, you signal your device to begin operation. Your device will instigate an interrupt 
when this initial transfer completes, whereupon you'll schedule a DPC. The DPC rou
tine will initiate another staged transfer, if necessary, or else it will complete the request. 

Somewhere along the way, you'll release the map registers and the adapter 
object. The timing of these two events is one of the details that differs based on the 
factors I summarized earlier in this section. 

Performing DMA Transfers 
Now I'll go into detail about the mechanics of what's often called a packet-based DMA 
transfer, wherein you transfer a discrete amount of data by using the data buffer that 
accompanies an I/O request packet. Let's start simply and suppose that you face what 
will be a very common case nowadays: your device is a PCI bus master but does not 
have scatter/gather capability. 

To start with, when you create your device object, you'd ordinarily indicate that 
you want to use the direct method of data buffering by setting the DO_DIRECT_IO 
flag. You'd choose the direct method because you'll eventually be passing the ad
dress of a memory descriptor list as one of the arguments to the MapTransfer func-

. tion you'll be calling. This choice poses a bit of a problem with regard to buffer 
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alignment, though. Unless the application uses the FILE_FLAG_NO_BUFFERING flag 
in its call to CreateFlle, the I/O Manager won't enforce the device object's Alignm.ent
Requirement on user-mode data buffers. (It doesn't enforce the requirement for a 
kernel-mode caller at all except in the checked build.) If your device or the HAL 
requires DMA buffers to begin on some particular boundary, therefore, you might 
end up copying a small portion of the user data to a correctly aligned internal buffer 
to meet the alignment requirement-either that or fail any request that has a mis
aligned buffer. 

In your StartDevice function, you create an adapter object by using code like 
the following: 

INTERFACE_TYPE bustype; 
ULONG junk; 
IoGetDeviceProperty(pdx->Pdo. DevicePropertyLegacyBusType. 

sizeof(bustype). &bustype. &junk); 

DEVICE_DESCRIPTION dd; 
RtlZeroMemory(&dd. sizeof(dd»; 
dd.Version = DEVICE_DESCRIPTION_VERSION; 
dd.Master = TRUE; 
dd.InterfaceType = bustype; 
dd.MaximumLength = MAXTRANSFER; 
dd.Dma32BitAddresses = TRUE; 

pdx->AdapterObject = IoGetDmaAdapter(pdx->Pdo. &dd. &pdx->nMapRegisters); 

The last statement in this code fragment is the important one. IoGetDmaAdapter 
will communicate with the bus driver or the HAL to create an adapter object, whose 
address it returns to you. The first parameter (pdx->Pdo) identifies the physical de
vice object (PDO) for your device. The second parameter points to a DEVICE_ 
DESCRIPTION structure that you initialize to describe the DMA characteristics of your 
device. The last parameter indicates where the system should store the maximum 
number of map registers you'll ever be allowed to attempt to reserve during a single 
transfer. You'll notice that I reserved two fields in the device extension (AdapterObject 
and nMapRegisters) to receive the two outputs from this function. 

In your StopDevice function, you destroy the adapter object with this call: 

VOID StopDevice( ... ) 
{ 

if (pdx->AdapterObject) 
(*pdx->Ad~pterObject->DmaOperations->PutDmaAdapter) 

(pdx->AdapterObject): 
pdx->AdapterObject = NULL; 

} 



Chapter 7 Reading and Writing Data 

You won't expect to receive an official DMA resource when your device is a 
bus master. That is, your resource extraction loop won't need a CmResourceTypeDma 
case label. The PnP Manager doesn't assign you a DMA resource because your hardware 
itself contains all the necessary electronics for performing DMA transfers, so nothing 
additional needs to be assigned to you. 

Previous versions of Windows NT relied on a service function named HalGet
Adapter to acquire the DMA adapter object. That function still exists for compatibility, 
but newWDM drivers should call IoGetDmaAdapter instead. The difference between 
the two is that IoGetDmaAdapter first issues an IRP _MN_QUERY_INTERFACE Plug 
and Play IRP to determine whether the physical device object supports the GUID_ 
BUS_INTERFACE_STANDARD direct call interface. If so, IoGetDmaAdapter uses that 
interface to allocate the adapter object. If not, it simply calls HalGetAdapter. 

Table 7-5 summarizes the fields in the DEVICE_DESCRIPTION structure you pass 
to IoGetDmaAdapter. The only fields that are relevant for a bus-master device are 
those shown in the preceding StartDevice code fragment. The HAL might or might 
not need to know whether your device recognizes 32-bit or 64-bit addresses-the Intel 
x86 HAL uses this flag only when you allocate a common buffer, for example-but 
you should indicate that capability anyway to retain portability. By zeroing the en
tire structure, we set ScatterGather to FALSE. Since we won't be using a system 
DMA channel, none of DmaChannel, DmaPort, DmaWidth, DemandMode, 
AutoInitialize,IgnoreCount, and DmaSpeed will be examined by the routine that 
creates our adapter object. 

Field Name 

Version 

Master 

ScatterGather 

DemandMode 

AutoInitialize 

Dma32BitAddresses 

Relevant 
Description To Device 

Version number of structure- All 
initialize to DEVICE_ 
DESCRIPTION3ERSION 

Bus-master device-set based on All 
your knowledge of device 

Device supports scatter/gather All 
list-set based on your knowledge 
of device 

Use system DMA controller's Slave 
demand mode-set based on your 
knowledge of device 

Use system DMA controller's Slave 
autoinitialize mode-set based on 
your knowledge of device 

Can use 32-bit physical addresses Common buffer 

Table 7-5. Device desCription strncture used with !oGetDmaAdapter. (continued) 
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continued 

Field Name 

IgnoreCount 

Reservedl 

Dma64BitAddresses 

DoNotUse2 

DmaChannel 

InterfaceType 

DmaWidth 

DmaSpeed 

MaximumLength 

DmaPort 

Description 

Controller doesn't maintain an 
accurate transfer count-set based 
on your knowledge of device 

Reserved-must be FALSE 

Can use 64-bit physical addresses 

Reserved-must be 0 

DMA channel number-initialize 
from Channel attribute of resource 
descriptor 

Bus type-use result of 
IoGetDeviceProperty call to get 
DevicePropertyLegacyBusType 

Width of transfers-set based on 
your knowledge of device to 
Width8Bits, Widthl6Bits, or 
Width32Bits 

Speed of transfers-set based on 
your knowlecige of device to 
Compatible, TypeA, TypeB, 
TypeC, or TypeF 

Maximum length of a single 
transfer-set based on your 
knowledge of device (and round 
up to a multiple of PAGE_SIZE) 

Microchannel-type bus port 
number-initialize from Port 
attribute of resource descriptor 

Relevant 
To Device 

Slave 

Common buffer 

Slave 

All 

Slave 

Slave 

All 

Slave 

To initiate an I/O operation, your Startlo routine ftrst has to reserve the adapter 
object by calling the object's AIlocateAdapterChanne1 routine. One of the arguments 
to AllocateAdapterChannel is the address of an adapter control routine that the I/O 
Manager will call when the reservation lias been accomplished. Here's an example 
of code you would use to prepare and execute the call to AllocateAdapterChanne1: 

typedef struct _DEVICE_EXTENSION { 

PADAPTER-OBJECT AdapterObject; II device's adapter object 
ULONG nMapRegisters; II max * map registers 
ULONG,nMapRegistersAllocated; II * allocated for this xfer 
ULONG numxfer; II * bytes transferred so far 
ULONG xfer; II * bytes to transfer during this stage 
ULONG nbytes; II * bytes remaining to transfer 
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PVOID vaddr: II virtual address for current stage 
II map register bas~ for this stage PVOID regbase: 

} DEVICE_EXTENSION, *PDEVICE_EXTENSION: 

VOID StartIo(PDEVICLOBJECT fdo, PIRP Irp) 
{ 

PDEVICLEXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
. NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, I~p): 

if (!NT_SUCCESS(status» 
{ 

CompleteRequest(Irp, status, 0): 
return: 
} 

PMDL mdl = Irp->MdlAddress: 
pdx->numxfer = 0: 
pdx->xfer = pdx->nbytes = MmGetMdlByteCount(mdl): 
pdx->vaddr = MmGetMdlVirtualAddress(mdl): 

UlONG nregs = ADDRESS-AND_SIZE_TO_SPAN_PAGES(pdx->vaddr, 
pdx ->nbytes ) : 

if (nregs > pdx->nMapRegisters) 
{ 

nregs = pdx->nMapRegisters: 
pdx->xfer = nregs * PAGE_SIZE - MmGetMdlByteOffset(mdl): 
} 

pdx->nMapRegistersAllocated = nregs: 

status = (*pdx->AdapterObject->DmaOperations 
->AllocateAdapterChannel)(pdx->AdapterObject, fdo, nregs, 
(PDRIVER-CONTROL) AdapterControl, pdx): 

if (!NT_SUCCESS(status» 
{ 

} 

IoReleaseRemoveLock(&pdx->RemoveLock, Irp): 
CompleteRequest(Irp, status, 0): 
StartNextPacket(&pdx->dqReadWrite, fdo): 
} 

1. Your device extension needs several fields related to DMA transfers. The 
comments indicate the uses for these fields. 

2. This is the appropriate time to claim the remove lock to forestall PnP 
removal events during the pendency of the I/O operation, The balancing 
call to IoReleaseRemoveLock occurs in the DPC routine that ultimately 
completes this request. 

3. These few statements initialize fields in the device extension for the first 
stage of the transfer. 
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4. Here, we calculate how many map registers we'll ask the system to reserve 
for our use during this transfer. We begin by calculating the number re
quired for the whole transfer. The ADDRESS_AND_SIZE_TO_SPAN]AGES 
macro takes into account that the buffer might span a page boundary. The 
number we end up with might, however, exceed the maximum allowed 
us by the Original call to IoGetDmaAdapter. In that case, we need to 
perform the transfer in multiple stages. We therefore scale back the first 
stage so as to use only the allowable number of map registers. We also 
need to remember how many map registers we're allocating (in the 
nMapRegistersAllocated field of the device extension) so that we can 
release exactly the right number later on. 

5. In this call to AllocateAdapterChanne1, we specify the address of the 
adapter object, the address of our own device object, the calculated num
ber of map registers, and the address of our adapter control procedure. The 
last argument Cpdx) is a context parameter for the adapter control procedure. 

In general, several devices can share a Single adapte~ object. Adapter object 
sharing happens in real life only when you rely on the system DMA controller; bus
master devices own dedicated adapter objects. But, since you don't need to know 
how the system decides when to create adapter objects, you shouldn't make any 
assumptions about it. In general, then, the adapter object might be busy when you 
call AllocateAdapterChannel, and your request might therefore be put into a queue 
until the adapter object becomes available. Also, all DMA devices on the computer 
share a set of map registers. Further delay can ensue until the requested number of 
registers becomes available. Both of these delays occur inside AllocateAdapterChannel, 
which calls your adapter control procedure when the adapter object and all the map 
registers you asked for are available. 

Even though a PCI bus-mastering device owns its own adapter object, if the 
device doesn't have scatter/gather capability, it requires the use of map registers. On 
CPUs like Alpha that have map registers, AllocateAdapterChannel will reserve them 
for your use. On CPUs like Intel that don't have map registers, AllocateAdapterChannel 
will reserve use of a software surrogate, such as a contiguous area of physical memory. 

WHAT GETS QUEUED IN ALLOCATEADAPTERCHANNEL? 

The object that AllocateAdapterChannel puts into queues to wait for the adapter 
object or the necessary number of map registers is your device object. Some 
device architectures allow you to perform more than one DMA transfer simul
taneously. Since you can put only one device object into an adapter object queue 
at a time C without crashing the system, that is), you need to create dummy device 
objects to take advantage of that multiple-DMA capability. 
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As I've been discussing, AllocateAdapterChannel eventually calls your adapter 
control routine (at DISPATCH_LEVEL, just like your StartIo routine does). You have 
two tasks to accomplish. First, you should call the adapter object's MapTransfer rou
tine to prepare the map registers and other system resources for the first stage of your 
I/O operation. In the case of a bus-mastering device, MapTransfer will return a logi
cal address that represents the starting point for the first stage. This logical address 
might be the same as a CPU physical memory address, and it might not be. All you 
need to know about it is that it's the right address to program into your hardware. 
MapTransfer might also trim the length of your request to fit the map registers it's 
using, which is why you need to supply the address of the variable that contains the 
current stage length as an argument. 

Your second task is to perform whatever device-dependent steps are required 
to inform your device of the physical address and to start the operation on your 
hardware: 

IO_ALLOCATION_ACTION AdapterControl(PDEVICE_OBJECT fdo. 
PIRP junk. PVOID regbase. PDEVICE_EXTENSION pdx) 
{ 

PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 
PMDL mdl = Irp->MdlAddress; 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
BOOLEAN isread = stack->MajorFunction == IRP_MJ_READ; 
pdx->regbase = regbase; 
KeFlushIoBuffers(mdl. isread. TRUE); 
PHYSICAL_ADDRESS address = 

(*pdx->AdapterObject->DmaOperations->MapTransfer) 
(pdx->AdapterObject, mdl, regbase. pdx->vaddr. &pdx->xfer. 
!isread); 

return DeallocateObjectKeepRegisters; 
} 

1. The second argument-which I named junk-to AdapterControl is 
whatever was in the CurrentIrp field of the device object when you called 
AllocateAdapterChannel. When you use a DEVQUEUE for IRP queuing, 
you need to ask the DEVQUEUE object what IRP is current. If you use the 
standard model, wherein IoStartPacket and IoStartNextPacket manage the 
queue, junk would be the right IRP. In that case, I'd have named it Irp 
instead. 

2. There are few differences between code to handle input and output op
erations using DMA, so it's often convenient to handle both operations in 
a single subroutine. This line of code examines the major function code 
for the IRP to decide whether a read or write is occurring. 

3. The regbase argument to this function is an opaque handle that identi
fies the set of map registers that have been reserved for your use during 
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this operation. You'll need this value later, so you should save it in your 
device extension. 

4. . KeFlushIoBuffers makes sure that the contents of all processor memory 
caches for the memory buffer you're using are flushed to memory. The 
third argument (TRUE) indicates that you're flushing the cache in prepa
ration for a DMA operation. The CPU architecture might require this step 
because, in general, DMA operations proceed directly to or from memory 
without necessarily involving the caches. 

5. The MapTransfer routine programs the DMA hardware for one stage of 
a transfer and returns the physical address where the transfer should start. 
Notice that you supply the address of an MDL as the second argument to 
this function. Since you need an MDL at this point, you would ordinarily 
have opted for the DO_DIRECT_IO buffering method when you first cre
ated your device object, and the I/O Manager would therefore have au
tomatically created the MDL for you. You also pass along the map register 
base address (regbase). You indicate which portion of the MDL is involved 
in this stage of the operation by supplying a virtual address (pdx->vaddr) 
and a byte count (pdx->:xier). MapTransfer will use the virtual address 
argument to calculate an offset into the buffer area, from which it can 
determine the physical page numbers containing your data. 

6. This is the point at which you program your hardware in the device
specific way that is required. You might, for example, use one of the 
WRITE_XXx HAL routines to send the physical address and byte count 
values to registers on your card, and you might thereafter strobe some 
command register to begin transferring data. 

7. We return the constant DeallocateObjectKeepRegisters to indicate that 
we're done using the adapter object but are still using the map registers. 
In this particular example (PCI bus master), there will never be any con
tention for the adapter object in the first place, so it hardly matters that 
we've released the adapter object. In other bus-mastering situations, 
though, we might be sharing a DMA controller with other devices. Re
leasing the adapter object allows those other devices to begin transfers 
by using a disjoint set of map registers from the ones we're still using. 

An interrupt usually occurs shortly after you start the transfer, and the interrupt 
service routine usually requests a DPC to deal with completion of the first stage of 
the transfer. Your DPC routine would look something like this: 

VOID DpeForIsr(PKDPC Dpe, PDEVICE_OBJECT fdo, PIRP junk, PYOID Context) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
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PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite); 
PMDL mdl = Irp->MdlAddress; 
BOOLEAN isread = IoGetCurrentIrpStackLocation(Irp) 

->MajorFunction == I RP_MJ_READ; 
(*pdx->AdapterObject->DmaOperations->FlushAdapterBuffers) 

(pdx->AdapterObject. mdl. pdx->regbase. pdx->vaddr. 
pdx->xfer. !isread); 

pdx->nbytes -= pdx->xfer; 
pdx->numxfer += pdx->xfer; 
NTSTATUS status = STATUS_SUCCESS; 

if (pdx->nbytes && NT_SUCCESS(status» 
{ 

pdx->vaddr = (PVOID) «PUCHAR) pdx->vaddr + pdx->xfer); 
pdx->xfer = pdx->nbytes; 
ULONG nregs = ADDRESS_AND_SIZE_TO_SPAN_PAGES(pdx->vaddr. 

pdx->nbytes); 
if (nregs > pdx->nMapRegistersAllocated) 

{ 

nregs = pdx->nMapRegistersAllocated; 
pdx->xfer = nregs * PAGE_SIZE; 
} 

PHYSICAL_ADDRESS address = 
(*pdx->AdapterObject->DmaOperations->MapTransfer) 
(pdx->AdapterObject. mdl. pdx->regbase. pdx->vaddr. 
pdx->xfer. !isread); 

} 

else 
{ 

} 

ULONG numxfer = pdx->numxfer; 
(*pdx->AdapterObject->DmaOperations->FreeMapRegisters) 

(pdx->AdapterObject. pdx->regbase. 
pdx->nMapRegistersAllocated); 

IoReleaseRemoveLock(&pdx->RemoveLock. Irp); 
StartNextPacket(&pdx->dqReadWrite. fdo); 
CompleteRequest(Irp. status. numxfer); 
} 

1. When you use a DEVQUEUE for IRP queuing, you rely on the queue object 
to keep track of the current IRP. 

2. The FlushAdapterBuffers routine handles the situation in which the 
transfer required use of intermediate buffers owned by the system. If 
you've done an input operation that spanned a page boundary, the input 
data is now sitting in an intermediate buffer and needs to be copied to 
the user-mode buffer. 
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3. Here, we update the residual and cumulative data counts after the trans
fer stage that just completed. 

4. At this point, you determine whether the current stage of the transfer 
completed successfully or with an error. You might, for example, read a 
status port or inspect the results of a similar operation performed by your 
interrupt routine. In this example, I set the status variable to STATUS_ 
SUCCESS with the expectation that you'd change it if you discovered an 
error here. 

5. If the transfer hasn't finished yet, you need to program another stage. The 
first step in this process is to calculate the virtual address of the next 
portion of the user-mode buffer. Bear in mind that this calculation is 
merely working with a number-we're not actually trying to access 
memory by using this virtual address. Accessing the memory would be a 
bad idea, of course, because we're currently executing in an arbitrary 
thread context. 

6. The next few statements are almost identical to the ones we performed 
in the first stage for Startlo and AdapterControl. The end result will be a 
logical address that can be programmed into your device. It might or might 
not correspond to a physical address as understood by the cpu. One slight 
wrinkle is that we're constrained to use only as many map registers as were 
allocated by the .adapter control routine; Startlo saved that number in the 
nMapRegistersAllocated field of the device extension. 

7. If the entire transfer is now complete, we need to release the map regis
ters we've been using. 

8. The remaining few statements in the OPC routine handle the mechanics 
of completing the IRP that got us here in the first place. We release the 
remove lock to balance the acquisition that we did inside Startlo. 

Transfers Using Scatter/Gather Lists 
If your hardware has scatter/gather support, the system has a much easier ti'me doing 
OMA transfers to and from your device. The scatter/gather capability permits the device 
to perform a transfer involving pages that aren't contiguous in physical memory. 

Your StartDevice routine creates its adapter object in just about the same way I've 
already discussed, except Cof course) that you'll set the ScatterGather flag to TRUE. 

The traditional method-that is, the method you would have used in previous 
versions of Windows NT-to program a OMA transfer involving scatter/gather func
tionality is practically identical to the packet-based example considered in the pre
vious section, "Performing OMA Transfers." The only difference is that instead of 
making one call to MapTransfer for each stage of the transfer, you need to make 
multiple calls. Each call gives you the information you need for a single element in 
a scatter/gather list that contains a physical address and length. When you're done 
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with the loop, you can send the scatter/gather list to your device by using some 
device-specific method, and you can then initiate the transfer. 

I'm going to make some assumptions about the framework into which you'll 
fit the construction of a scatter/gather list. First, I'll assume that you've defined a 
manifest constant named MAXSG that represents the maximum number of scatter/ 
gather list elements your device can handle. To make life as simple as possible, I'm 
also going to assume that you dm just use the SCATTER_GATHER_UST structure 
defined in WDM.H to construct the list: 

typedef struct _SCATTER-GATHER-ELEMENT { 
PHYSICAL-ADDRESS Address: 
ULONG Length: 
ULONG_PTR Reserved: 
} SCATTER-GATHER-ELEMENT. *PSCATTER-GATHER-ELEMENT: 

typedef struct _SCATTER-GATHER-LIST { 
ULONG NumberOfElements: 
ULON~PTR Reserved: 
SCATTER-GATHER-ELEMENT Elements[]; 
} SCATTER-GATHER-LIST. *PSCATTER-GATHER-LIST; 

Finally, I'm going to suppose that you can simply allocate a maximum-sized 
scatter/gather list in your AddDevice function and leave it lying around for use 
whenever you need it: 

pdx->sgl ist = (PSCATTER-GATHER-LIST) 
ExAllocatePoolCNonPagedPool. sizeof(SCATTER-GATHER-LIST) + 
MAXSG * sizeof(SCATTER-GATHER-ELEMENT»: 

With this infrastructure in place, your AdapterControl procedure would look 
like this: 

IO_ALLOCATION-ACTION AdapterControl(PDEVICE_OBJECT fdo. 
PIRP junk. PYOID regbase. PDEVICE_EXTENSION pdx) 
{ 

PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite): 
PMDL mdl = Irp->MdlAddress; 
BOOLEAN isread = IoGetCurrentIrpStackLocation(Irp) 

->MajorFunction == IRP_MJ_READ: 
pdx->regbase = regbase: 
KeFl ush IoBuffers (mdl. is read. TRUE): 
PSCATTER-GATHER-LIST sglist = pdxc>sglist: 

ULONG xfer = pdx->xfer; 
PYOID vaddr =pdx->vaddr: 
pdx->xfer = 0; 
ULONG isg = 0: 

(continued) 
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while (xfer && isg < MAXSG) 
{ 

ULONG elen = xfer; 
sglist->Elements[isg].Address 

(*pdx->AdapterObject->DmaOperations->MapTransfer) 
(pdx->AdapterObject. mdl. regbase. pdx->vaddr. 
&el en. ! i sread); 

sglist->Elements[isg].Length = elen; 
xfer -= ele.n; 
pdx->xfer += elen; 
vaddr = (PVOID) «PUCHAR) vaddr + elen); 
++isg; 
} 

sglist->NumberOfElements isg; 

return DeallocateObjectKeepRegisters; 
} 

1. See the earlier discussion (in "Performing DMA Transfers") of how to get 
a pointer to the correct IRP in an adapter control procedure. 

2. We previously (in StartIo) calculated pdx->xfer based on the allowable 
number of map registers. We're going to try to transfer that much data now, 
but the allowable number of scatter/gather elements might further limit 
the amount we can transfer during this stage. During the follOwing loop, 
xfer will be the number of bytes that we haven't yet mapped and we'll 
recalculate pdx->xfer as we go. 

3. Here's the loop I promised you where we call MapTransfer to construct ( 
scatter/gather elements. We'll continue the loop until we've mapped the 
entire stage of this transfer or until we run out of scatter/gather elements, 
whichever happens first. 

4. When we call MapTransfer for a scatter/gather device, it will modify the 
length argument (elen) to indicate how much of the MDL starting at the 
given virtual address (vaddr) is physically contiguous and can therefore 
be mapped by a single scatter/gather list element. It will also return the 
physical address of the begihning of the contiguous region. 

5. Here's where we update the variables that describe the current stage of 
the transfer. When we leave the loop, xfer will be down to 0 (or else we'll 
have run out of scatter/gather elements), pdx->xfer will be up to the total 
of all the elements we were able to map, and vaddr will be up to the byte 
after the last one we mapped. We don't update the pdx->vaddr field in 
the device extension-we're doing that in our DPC routine. Just another 
one of those pesky details .... 
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6. Here's where we increment the scatter/gather element index to reflect the 
fact that we've just used one up. 

7. At this point, we have isg scatter/gather elements that we should program 
into our device in whatever hardware-dependent way is appropriate. Then 
we should start the device working on the request. 

8. Returning DeallocateObjectKeepRegisters is appropriate for a 'bus
mastering device. You can theoretically have a nonmaster device with 
scatter/gather capability, and it would return KeepObject instead. 

Your device now performs its DMA transfer and, presumably, interrupts to sig
nal completion. Your ISR requests a DPC, and your DPC routine initiates the next stage 
in the operation. The DPC routine would perform a MapTransfer loop like the one 
I just showed you as part of that initiation process. I'll leave the details of that code 
as an exercise for you. 

Using GetScatterGatherList 
Windows 2000 provides a shortcut to avoid the relatively cumbersome loop of calls 
to MapTransfer in the common case in which you can accomplish the entire transfer 
by using either no map registers or no more than the maximum number of map 
registers returned by IoGetDmaAdapter. The shortcut, which is illustrated in the 
SCATGATH sample on the companion disc, involves calling the GetScatte1'GatherList 
routine instead of AllocateAdapterChannel. Your Startlo routine looks like this: 

VOID StartIo(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
if (INT_SUCCESS(status» 

{ 

CompleteRequest(Irp, status, 0); 
return; 
} 

PMDL mdl = Irp->MdlAddress; 
ULONG nbytes = MmGetMdlByteCount(mdl); 
PYOID vaddr = MmGetMdlVirtualAddress(mdl); 
BOOLEAN isread = stackc>MajorFunction == I RP-MJ_READ; 
pdx->numxfer = 0; 
pdx->nbytes = nbytes; 
status = (*pdx->AdapterObject->DmaOperat1ons->GetScatterGatherL1st) 

(pdx->AdapterObject, fdo. mdl. vaddr. nbytes. 
(PDRIVER-LIST_CONTROL) DmaExecut1onRout1ne, pdx, 11sread); 

(continued) 
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if (INT_SUCCESS(status» 
{ 

} 

IoReleaseRemoveLoek(&pdx->RemoveLoek. Irp): 
CompleteRequest(Irp. status. 0): 
StartNextPaeket(&pdx->dqReadWrite. fdo): 
} 

The call to GetScatterGatherList, shown in bold in the previous code fragment, 
is the main difference between this Startlo routine and the one we looked at in the 
preceding section. GetScatterGatherList waits, if necessary, until you can be granted 
use of the adapter object and all the map registers you need. Then it builds a 
SCATTER_GATHER_LIST structure and passes it to the DmaExecutionRoutine. You 
can then program your device by using the physical addresses in the scatter/gather 
elements and initiate the transfer: 

VOID DmaExeeutionRoutine(PDEVICE_OBJECT fdo. PIRP junk. 
PSCATTER-GATHER-LIST sglist. PDEVICE_EXTENSION pdx) 
{ 

PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite): 
pdx->sglist = sglist: 

} 

1. You'll need the address of the scatter/gather list in the DPC routine, which 
will release it by calling PutScatterGatherUst. 

2. At this point, program your device to do a read or write using the address 
and length pairs in the scatter/gather list. If the list has more elements than 
your device can handle at one time, you'll need to perform the whole 
transfer in stages. If you can program a stage fairly quickly, I'd recommend 
adding logic to your interrupt service routirle to initiate the additional 
stages. If you think about it, your DmaExecutionRoutine is probably go
ing to be synchronizing with your ISR anyway to start the frrst stage, so 
this extra logic is probably not large. I programmed the SCATGATH sample 
with this idea in mind. 

When the transfer fInishes, call the adapter object's PutScatterGatherList to re
lease the list and the adapter: 

VOID DpeForIsr(PKDPC Dpe. PDEVICE_OBJECT fdo. PIRP junk. PYOID Context) 
{ 

(*pdx->AdapterObjeet->DmaOperations->PutSeatterGatherList) 
(pdx->AdapterObjeet. pdx-)sglist. lisread): 

} 
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To decide whether you can use GetScatterGatherList, you need to be able to 
predict whether you'll meet the preconditions for its use. On an Intel 32-bit platform, 
scatter/gather devices on a PCI or EISA bus can be sure of not needing any map 
registers. Even on an ISA bus, you'll be allowed to request up to 16 map register 
surrogates (eight if you're also a bus-mastering device) unless physical memory is so 
tight that the I/O system can't allocate its intermediate I/O buffers. In that case, you 
wouldn't be able to do DMA using the traditional method either, so there'd be no point 
in worrying about it. 

If you can't predict with certainty at the time you code your driver that you'll 
be able to use GetScatterGatherList, my advice is to just fall back on the traditional 
loop of MapTransfer calls. You'll need to put that cwe in place anyway to deal with 
cases in which GetScatterGatherList won't work, and having two pieces of logic in 
your driver is just unnecessary complication. 

Transfers Using the System Controller 
If your device is not a bus master, DMA capability requires that it use the system DMA 
controller. As I've said, people often use the phrase slave DMA, which emphasizes 
that such a device is not master of its own DMA fate. The system DMA controllers have 
several characteristics that affect the internal details of how DMA transfers proceed: 

• There are a limited number of DMA channels that all slave devices must 
share. AllocateAdapterChannel has real meaning in a sharing situation, 
since only one device can be using a particular channel at a time. 

• You can expect to fInd a CmResourceTypeDma resource in the list of I/O 
resources delivered to you by the Pnp· Manager. 

• Your hardware is wired, either physically or logically, to the partieular 
channel it uses. If you can confIgure the DMA channel connection, you'll 
need to send the appropriate commands at StartDevice time. 

• The system DMA controllers for an ISA bus computer are able to access 
data buffers in only the fIrst 16 megabytes of physical memory. Four chan
nels for transferring data 8 bits at a time and three channels for transfer
ring data 16 bits at a time exist. The controller for 8-bit channels doesn't 
correcdy handle a buffer that crosses a 64-KB boundary; the controller for 
16-bit channels doesn't correcdy handle a buffer that crosses a 128-KB 
boundary. 

Notwithstanding these factors, your driver code will be very similar to the bus
mastering code we've just discussed. Your StartDevice routine just works a little harder 
to set up its call to 10GetDmaAdapter, and your AdapterControl and DPC routines 
apportion the steps of releaSing the adapter object and map registers differendy. 
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In StartDevice, you have a little bit of additional code to determine which DMA 
channel the PnP Manager has assigned for you, and you also need to initialize more 
of the fields of the DEVICE_DESCRIPTION structure for IoGetDmaAdapter: 

NTSTATUS StartDevice( ... ) 
{ 

ULONG dmachannel: 
ULONG dmaport: 

for (ULONG i = 0: 
{ 

II system DMA channel # 
II MCA bus port number 

< nres: ++i. ++resource) 

switch (resource->Type) 
{ 

case CmResourceTypeDma: 

} 

dmachannel = resource->u.Dma.Channel: 
dmaport = resource->u.Dma.Port: 
break: 
} 

INTERFACCTYPE bustype: 
IoGetDeviceProperty( ... ): 

DEVICE_DESCRIPTION dd: 
RtlZeroMemory(&dd. sizeof(dd»: 
dd.Version = DEVICE_DESCRIPTION_VERSION: 
dd.InterfaceType = bustype: 
dd.MaximumLength = MAXTRANSFER: 

dd.DmaChannel = dma~hannel: 
dd.DmaPort = dmaport: 
dd.DemandMode = ??: 
dd.AutoInitialize = ??: 
dd.IgnoreCount = ??: 
dd.DmaWidth = ??: 
dd.DmaSpeed = ??: 

pdx->AdapterObject = IoGetDmaAdapter( ... ): 
} 

1. The I/O resource list will have a DMA resource, from which you need to 
extract the channel and port numbers. The channel number identifies one 

. of the DMA channels supported by a system DMA controller. The port 
number is relevant only on a Micro Channel Architecture (MCA)-bus 
machine. 

2. Refer to the previous discussion of how to determine the bus type (in 
"Performing DMA Transfers"). 



Chapter 7 Reading and Writing Data 

3. Beginning here, you have to initialize several fields of the DEVICE_ 
DESCRIPTION structure based on your knowledge of your device. See 
Table 7-5 on pages 325-26. 

Everything about your adapter control and DPC procedures will be identical to 
the code we looked at earlier for handling a bus-mastering device without scatter/ 
gather capability, except for two small details. First, AdapterControl returns a 
different value: 

IO-ALLOCATION-ACTION AdapterContro1( ... ) 
{ 

return KeepObject: 
} 

The return value KeepObject indicates that we want to retain control over the map 
registers and the DMA channel we're using. Second, since we didn't release the 
adapter object when AdapterControl returned, we have to do so in the DPC routine 
by calling FreeAdapterChannel instead of FreeMapRegisters: 

VOID DpcForIsr( ... ) 
{ 

(*pdx->AdapterObject->DmaOperations->FreeAdapterChanne1) 
(pdx->AdapterObject): 

} 

By the way, you don't need to remember how many map registers you were 
assigned-I previously showed you an nMapRegistersAllocated variable in the device 
extension to be used for this purpose-since you won't be calling FreeMapRegisters. 

Using a Common Buffer 
As I mentioned in "Transfer Strategies," you might want to allocate a common buffer 
for your device to use in performing DMA transfers. A common buffer is an area of 
nonpaged, physically contiguous memory. Your driver uses a fixed virtual address 
to access the buffer. Your device uses a ftxed logical address to access the same buffer. 

You can use the common buffer area in several ways. You can support a de
yice that continuously transfers data to or from memory by using the system DMA 
controller's autoinitialize mode. In this mode of operation, completion of one trans
fer triggers the controller to immediately reinitialize for another transfer. 

Another use for a common buffer area is as a means to avoid extra data copy
ing. The MapTransfer routine often copies the data you supply into auxiliary buffers 
owned by the I/O Manager and used for DMA. If you're stuck with doing slave DMA 
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on an ISA bus, it's especially likely that MapTransfer will copy data to conform to the 
16-MB address and buffer alignment requirements of the ISA DMA controller. But if 
you have a common buffer, you'll avoid the copy steps. 

Allocating a Common Buffer 
You'd normally allocate your common buffer at StartDevice time after creating your 
adapter object: 

typedef struct _DEVICE_EXTENSION { 

PVOID vaCommonBuffer; • 
PHYSICAL-ADDRESS paCommonBuffer; 

} DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

dd.Dma32BitAddresses = ??; 
dd.Dma64BitAddresses = ??; 
pdx->AdapterObject = IoGetDmaAdapter( ... ); 
pdx->vaCommonBuffer = 

(*pdx->AdapterObject->DmaOperations->AllocateCommonBuffer) 
(pdx->AdapterObject, <7ength>, &pdx->paCommonBuffer, FALSE); 

Prior to calling IoGetDmaAdapter, you set the Dma32BitAddresses and Dma64Bit
Addresses flags in the DEVICE_DESCRIPTION structure to state the truth about your 
device's addressing capabilities. That is, if your device can address a buffer using any 
32-bit physical address, set Dma32BitAddresses to 1RUE. If it can address a buffer 
using any 64-bit physical address, set Dma64BitAddresses to TRUE. 

In the call to AllocateCommonBuffer, the second argument is the byte length 
of the buffer you want to allocate. The fourth argument is a BOOLEAN value that 
indicates whether you want the allocated memory to be capable of entry into the CPU 
cache (1RUE) or not (FALSE). 

AllocateCommonBuffer returns a virtual address. This address is the one you 
use within your driver to access the allocated buffer area. AllocateCommonBuffer also 
sets the PHYSICAL_ADDRESS pointed to by the third argument to be the logical 
address used by your device for its own buffer access. 

NOTE The DDK carefully uses the term logical address to refer to the address 
value returned by MapTransfer and the address value returned by the third 
argument of AliocateCommonBuffer. On many CPU architectures, a logical 
address will be a physical memory address that the CPU understands. On other 
architectures, it might be an address that only the I/O bus understands. Perhaps 
bus address would have been a better term. 

Slave DMA with a .Common Buffer 
If you're going to be performing slave DMA, you must create an MDL to describe 
the virtual addresses you receive. The actual purpose of the MDL is to occupy an 
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argument slot in an eventual call to MapTransfer. MapTransfer won't end up doing 
any copying, but it requires the MDL to discover that it doesn't need to do any copying! 
You'd normally create the MDL in your StartDevice function just after allocating the 
common buffer: 

pdx->vaCommonBuffer = ••• ; 
pdx->mdlCommonBuffer = IoAllocateMdl(pdx->vaCommonBuffer. 

<1 ength>. FALSE. FALSE. NULL); 
MmBuildMdlForNonPagedPool(pdx->mdlCommonBuffer); 

To perform an output operation, first make sure by some means (such as an 
explicit memory copy) that the common buffer contains the data you want to send to 
the device. The other DMA logic in your driver will be essentially the same as I showed 
you earlier (in "Performing DMA Transfers"). You'll call AllocateAdapterChannel. It 
will call your adapter control routine, which will call KeFlushIoBuffers-if you allo
cated a cacheable buffer-and then call MapTransfer. Your DPC routine will call 
FlushAdapterBuffers and FreeAdapterChannel. In all of these calls, you'll specify the 
common buffer's MDL instead of the one that accompanied the read or write IRP 
you're processing. Some of the service routines you call won't do as much work when 
you have a common buffer as when you don't, but you must call them anyway. At 
the end of an input operation, you might need to copy data out of your common 
buffer to some other place. 

To fulfill a request to read or Write more data than fits in your common buffer, 
you might need to periodically refill or empty the buffer. The adapter object's 
ReadDmaCountet' function allows you to determine the progress of the ongoing 
transfer to help you decide what to do. 

Bus-Master DMA with a Common Buffer 
If your device is a bus master, allocating a common buffer allows you to dispense 
with calling AllocateAdapterChannel, MapTransfer, and FreeMapRegisters. You don't 
need to call those routines because AllocateCommonBuffer also reserves the map 
registers, if any, needed for your device to access the buffer. Each bus-master device 
has an adapter object that isn't shared with other devices and for which you there
fore need never wait. Since you have a virtual address you can use to access the buffer 
at any time, and since your device's bus-mastering capability allows it to access the buffer 
by using the physical address you've received back from AllocateCommonBuffer, no 
additional work is required. 

Cautions About Using Common Buffers 
A few cautions are in order with respect to common buffer allocation and usage. 
Physically contiguous memory is scarce in a running system-so scarce that you might 
not be able to allocate the buffer you want unless you stake your claim quite early 
in the life of a new session. The Memory Manager makes a limited effort to shuffle 
memory pages around to satisfy your request, and that process can delay the return 
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from AllocateCommonBuffer for a period of time. But the effort might fail, and you 
must be sure to handle the failure case. Not only does a common buffer tie up poten
tially scarce physical pages, but it can also tie up map registers that could otherwise 
be used by other devices. For both these reasons, you should use a common-buffer 
strategy advisedly. 

Another caution about common buffers arises from the fact that the Memory 
Manager necessarily gives you one or more full pages of memory. Allocating a com
mon buffer that's just a few bytes long is wasteful and should be avoided. On the 
other hand, it's also wasteful to allocate several pages of memory that don't actually 
need to be physically contiguous. As the DDK suggests, therefore, it's better to make 
several requests for smaller blocks if the blocks don't have to be contiguous. 

Releasing a Common Buffer 
You would ordinarily release the memory occupied by your common buffer in your 
StopDevice routine just before you destroy the adapter object: 

(*pdx->AdapterObject->DmaOperations->FreeCommonBuffer) 
(pdx->AdapterObject. <length>. pdx->paCommonBuffer. 
pdx->vaCommonBuffer. FALSE); 

The second parameter to FreeCommonBuffer is the same length value you used 
when you allocated the buffer. The last parameter indicates whether the memory is 
cacheable, and it should be the same as the last argument you used in the call to 
AllocateCommonBuffer. 

A Simple Bus .. Master Device 
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The PKTDMA sample driver on the companion disc illustrates how to perform bus
master DMA operations without scatter/gather support using the AMCC S5933 PCI 
matchmaker chip. I've already discussed details of how this driver initializes the device 
in StartDevice and how it initiates a DMA transfer in Startlo. I've also discussed nearly 
all of what happens in this driver's AdapterControl and DpcForIsr routines. I indicated 
earlier that these routines would have some deVice-dependent code for starting an 
operation on the device; I wrote a helper function named StartTransfer for that 
purpose: 

VOID StartTransfer(PDEVICE-EXTENSION pdx. PHYSICAL-ADDRESS address. 
BOOLEAN 1sread) 
{ 

ULONG mcsr = READ_PORT_ULONG«PULONG)(pdx->portbase + MCSR); 
ULONG intcsr = READ_PORT_ULONG«PULONG)(pdx->portbase + INTCSR); 
if (isread) 

{ 

mcsr 1= MCSR-WRITE_NEED4 1 MCSR-WRITE_ENABLE; 
intcsr 1= INTCSR-WTCI_ENABLE; 
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WRITE_PORT_ULONG«PULONG)(pdx->portbase + MWTC). pdx->xfer); 
WRITE_PORT_ULONG«PULONG)(pdx->portbase + MWAR). address.LowPart); 
} 

else 
{ 

mcsr 1= MCSR-READ_NEED4 1 MCSR-READ_ENABLE; 
intcsr 1= INTCSR-RTCI_ENABLE; 
WRITE_PORT~ULONG«PULONG)(pdx->portbase + MRTC). pdx->xfer); 
WRITE_PORT_ULONG«PULONG)(pdx->portbase + MRAR). address.LowPart); 
} 

WRITE_PORT_ULONG«PULONG)(pdx->portbase + INTCSR). intcsr); 
WRITE_PORLULONG( (PULONG)(pdx->portbase + MCSR). mcsr); 
} 

This routine sets up the S5933 operations registers for a DMA transfer and then 
starts the transfer running. The steps in the process are: 

1. Program the address (MxAR) and transfer count (MXfC) registers appro
priate to the direction of data flow. AMCC chose to use the term read to 
describe an operation in which data moves from memory to the device. 
Therefore, when we're implementing an IRP _ML WRITE, we prograIJ? a 
read operation at the chip level. The address we use is the logical address 
returned by MapTransfer. 

2. Enable an interrupt when the transfer count reaches 0 by writing to the 
INTCSR. 

3. Start the transfer by setting one of the transfer-enable bits in the MCSR. 

It's not obvious from this fragment of code, but the S5933 is actually capable 
of doing a DMA read and a DMA write at the same time. I wrote PKTDMA in such a 
way that only one operation (either a read or a write) can be occurring. To general
ize the driver to allow both kinds of operation to occur simultaneously, you would 
need to (a) implement separate queues for read and write IRPs, and (b) create two 
device objects and two adapter objects--one pair for reading and the other for writ
ing-so as to avoid the embarrassment of trying to queue the same object twice inside 
AllocateAdapterChannei. I thought putting that additional complication into the sample 
would end up confusing you. (I know I'm being pretty optimistic about my exposi
tory skills to imply that I haven't already confused you, but it could have been worse.) 

Handling Interrupts in PKTDMA 
PCI42 included an interrupt routine that did a small bit of work to move some data. 
PKTDMA's interrupt routine is a little simpler: 

BOOLEAN Onlnterrupt(PKINTERRUPT InterruptObject. PDEVICE_EXTENSION pdx) 
{ 

ULONG intcsr = READ_PORLULONG«PULONG) (pdx->portbase + INTCSR»; 
if (I(intcsr & INTCSR-INTERRUPT_PENDING» 

return FALSE; 
(conttnued) 
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ULONG mcsr = READ_PORT_ULONG«PULONG) (pdx->portbase + MCSR»; 
WRITE_PORT_ULONG«PULONG) (pdx->portbase + MCSR) , 

mcsr & -(MCSR-WRITE_ENABLE I MCSR-READ_ENABLE»; 

intcsr &= -(INTCSR-WTCI_ENABLE I INTCSR-WTCI_ENABLE); 

BOOLEAN dpc = GetCurrentIrp(&pdx->dqReadWrite) 1= NULL; 

while (intcsr & INTCSR-INTERRUPT_PENDING) 
{ 

InterlockedOr(&pdx->intcsr, intcsr); 
WRITE_PORLULONG( (PULONG) (pdx->portbase + INTCSR), intcsr); 
intcsr = READ_PORT_ULONG«PULONG) (pdx->portbase + INTCSR»; 
} 

if (dpc) 
IoRequestDpc(pdx->DeviceObject, NULL, NULL); 

return TRUE; 
} 

I'll only discuss the ways in which this ISR differs from the one in PC142: 

1. The S5933 will keep trying to transfer data-subject to the count register, 
that is-so long as the enable bits are set in the MCSR. This statement 
clears both bits. If your driver were handling simultaneous reads and 
writes, you'd determine which kind of operation had just finished by test
ing the interrupt flags in the INTCSR and then disable just the transfer in 
that direction. 

2. We'll shortly write back to the INTCSR to clear the interrupt. This state
ment ensures that we'll also disable the transfer-count-O interrupts so that 
they can't occur anymore. Once again, a driver that handles simultaneous 
reads and writes would disable only the interrupt that just occurred. 

3. InterlockedOr is a helper routine I wrote so that I wouldn't have to worry 
about racing with DpcForIsr in accumulating interrupt flags. 

Testing PKTDMA 
You can test PKTDMA if you have an S5933DK1 development board. If you ran the 
PCI42 test, you already installed the S5933DK1.SYS driver to handle the ISA add
on interface card. If not, you'll need to install that driver for this test. Then install 
PKTDMA.SYS as the driver for the S5933 development board itself. You can then run 
the TEST.EXE test program that's in the PKTDMA \ TEST\DEBUG directory. TEST will 
perform a write for 8192 bytes to PKTDMA. It will also issue a DeviceloControl to 
S5933DK1 to read the data back from the add-on side, and it will verify that it read 
the right values. 
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Power 
Management 

Technophobes may take solace in the fact that they retain ultimate control over their 
electronic servants so long as they control the power switch. Power is, of course, the 
sine qua non of computing, but personal computers haven't done an especially good 
job of managing it until quite recently. 

More effective power management is important for at least three reasons. First, 
as a matter of sound ecology, using less power helps to minimize the impact of 
computing on the environment. Not only do computers require power, but so do the 
air-conditioning systems for the rooms where the computers reside. A second rea
son better power management is needed is familiar to many travelers: battery tech
nology simply hasn't kept pace with the demand for mobile computing of all kinds. 
And, finally, greater consumer acceptance of PCs as home appliances depends on 
improving power management. Current machines have noisy fans and squealing disk 
drives when they're on, and they take a long time to start up from the power-off state. 
Decreasing the power-up latency and eliminating unnecessary noise-which also 
means minimizing power consumption so that less cooling is required-will be nec
essary before PCs can comfortably occupy consumer niches. 
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In this chapter, I'll discuss the role WDM drivers play in power management in 
the Microsoft Windows 2000 and Microsoft Windows 98 operating systems. The first 
major section of the chapter, "The WDM Power Model," presents an overview of the 
concepts you need to know about. The second section, "Managing Power Transitions," 
is the meat of the chapter: I'll describe there the very complicated tasks a typical 
function driver carries out. I'll finish the chapter with a discussion of some ancillary 
responsibilities a WDM function driver has with respect to power management. 

THE WDM POWER MODEL 
In Windows 2000 and Windows 98, the operating system takes over most of the job 
of managing power. This makes sense because only the operating system really knows 
what's going on, of course. A system BIOS charged with power management, for 
example, can't tell the difference between an application's use of the screen and a 
screen saver's. But the operating system can tell the difference and thus can deter
mine whether it's okay to turh off the display. 

As the global power policy oumer for the computer, the operating system supports 
user interface elements that give the end user ultimate control over power decisions. 
These elements include the control panel, commands in the Start menu, and APls for 
controlling device wake-up features. The Power Manager component of the kernel 
implements the operating system's power policies by sending I/O request packets 
(IRPs) to devices. WDM drivers have the primarily passive role of responding to these 
IRPs, although you'll probably find this passivity to incorporate a lot of active motion 
when I show you how much code is involved. 

The Roles of WDM Drivers 
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One of the drivers for a device acts as the power policy owner for the device. Since 
the function driver most often fills this role, I'll continue discussing power manage
ment as though thatwere invariably the case. Just bear in mind that your device might 
have unique requirements that mandate giving the responsibilities of policy owner 
to some filter driver or to the bus driver instead. 

The function driver receives IRPs (system IRPs) from the Power Manager that 
pertain to changes in the overall power state of the system. Acting as policy owner 
for the device, it translates these instructions into device terms and originates new 
IRPs (device IRPs). When responding to the device IRPs, the function driver worries 
about the details that pertain to the device. Devices might carry onboard context 
information that you don't want to lose during a period of low power. Keyboard 
drivers, for example, might hold the state of locking keys (such as CAPS-LOCK, NUM-
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LOCK, and SCROLL-LOCK), LEDs, and so on. The function driver is responsible for 
saving and restoring that context. Some devices have a wake-up feature that allows 
them to wake up a sleeping system when external events occur; the function driver 
works together with the end user to make sure that the wake-up feature is available 
when needed. Many function drivers manage queues of substantive IRPs--that is, IRPs 
that read or write data to the device, and they need to stall or release those queues 
as power wanes and waxes. 

The bus driver at the bottom of the device stack is responsible for controlling 
the flow of current to your device and for performing whatever electronic steps are 
necessary to arm or disarm your device's wake-up feature. 

A f1lter driver normally acts as a simple conduit for power requests, passing them 
down to lower-level drivers by using the special protocol I'll describe a bit further on. 

Device Power and System Power States 
The Windows Driver Model uses the same terms to describe power states as does 
the Advanced Configuration and Power Interface (ACPI) specification. (See http:// 
www.teleport.com/ .... acpilspec.htm.) Devices can assume the four states illustrated in 
Figure 8-1. In the DO state, the device is fully functional. In the D3 state, the device 
is using no (or very minimal) power and is therefore not functioning (or is func
tioning at a very low level). The intermediate Dl and D2 states denote two different 
somnolent states for the device. As a device moves from DO to D3, it consumes less 
and less power. In addition, it remembers less and less context information about its 
current state. Consequendy, the latency period needed for the device's transition back 
to DO increases. 

Fully on 

Almost on 

Almost off 

Fully off 

Figure 8-1. ACPI device power states. 
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Microsoft has formulated class-specific requirements for different types of devices. 
I found these requirements on line at http://www.microsojt.comlhwdevlspecsIPMnif!. 
The specifications mandate, for example, that every device support at least the DO 
and D3 states. Input devices (keyboards, mice, and so on) should also support the 
Dl state. Modem devices, on the other hand, should additionally support D2. These 
differences in specifications for device classes stem from likely usage scenarios and 
industry practice. 

The operating system doesn't deal directly with the power states of devices--
that's exclusively the province of device drivers. Rather, the system controls power 
by using a set of system power states that are analogous to the ACPI device states. 
See Figure 8-2. The Working state is the full-power, fully functional state of the com
puter. Programs are able to execute only when the system is in the Working state. 

----
-Figure 8-2. System power states. 

The other system power states correspond to reduced power configurations 
in which no instructions execute. The Shutdown state is the power-off state. (Dis
cussing the Shutdown state seems like discussing an unanswerable question such 
as "What's inside a black hole?" Like the event horizon surrounding a black hole, 
though, the transition to Shutdown is something you'll need to know about as your 
device spirals in.) The Hibernate state is a variant of Shutdown in which the entire 
state of the computer is recorded on disk so that a live session can be restarted when 
power comes back. The three sleeping states between Hibernate and Working encom
pass gradations in power consumption. 
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Power State Transitions 
The system initializes in the Working state. This almost goes without saying, be
cause the computer is, by definition, in the Working state whenever it's executing 
instructions. Most devices start out in the DO state, although the policy owner for 
the device might put it into a lower power state when it's not actually in use. After 
the system is up and running, then, it reaches a steady state in which the system 
power level is Working and devices are in various states depending on activity and 
capability. 

End user actions and external events cause subsequent transitions between 
power states. A common transition scenario arises when the user uses the Shut 
Down command on the Start menu to put the machine into standby. In response, 
the Power Manager first asks each driver whether the prospective loss of power will 
be okay by sending an IRP _MJ_POWER request with the minor function code 
IRP _MN_QUERY_POWER. If all drivers acquiesce, the Power Manager sends a sec
ond power IRP with the minor function code IRP _MN_SET_POWER. Drivers put their 
devices into lower power states in response to this second IRP. If any driver vetoes 
the query, the Power Manager still sends an IRP _MN_SET_POWER request; but it 
usually specifies the current power level instead of the one originally proposed. 

The system doesn't always send IRP _MR_QUERY]OWER requests, by the way. 
Some events (such as the end user unplugging the computer or the battery expiring) 
must be accepted without demur, and the operating system won't issue a query when 
they occur. But when a query is issued, and when a driver accepts the proposed 
state change by passing the request along, the driver undertakes that it won't start 
any operation that might interfere with the expected set-power request. A tape 
driver, for example, would make sure that it's not currently retensioning a tape
the interruption of which might break the tape-:-before succeeding a query for a low
power state. In addition, the driver would reject any subsequent retension command 
until (and unless) a countervailing set-power request arrives to signal abandonment 
of the state change. 

The Power Manager communicates with drivers by means of an IRP _MLPOWER I/O 
request packet. Four minor function codes are currently possible .. See Table 8-1. 

349 



Programming the Microsoft Windows Driver Model 

350 

Minor Function Code DescripUon 

Detennine if prospective change in power 
state can safely occur 

IRP _MN_SET_POWER 

IRP _MN_ W AIT_ WAKE 

Instructs driver to change power state 

Instructs bus driver to arm wake-up fea
ture; provides way for function driver to 
know when wake-up signal occurs 

Provides optimization for context saving 
and restoring 

Table 8-1. Minor function codesfor IRP_MLPOWER. 

The Power substructure in the IO_STACK_LOCATION's Parameters union has 
four parameters that describe the request, of which only two will be of interest to 
most WDM drivers. See Table 8-2. 

Field Name 

SystemContext 

Type 

State 

ShutdownType 

Description 

A context value used internally by the Power Manager 

DevicePowerState or SystemPowerState (values 
of POWER_STATE_1YPE enumeration) 

Power state-either a DEVICE]OWER_STATE 
enumeration value or a SYSTEM_POWER_STATE 
enumeration value 

A code indicating the reason for a transition to 
PowerSystemShutdown 

Table 8-2. Fields in the Parameters.Power substructure of an IO_STACKJ.OCA110N. 

All drivers-both filter drivers and the function driver-generally pass every 
power request down the stack to the driver underneath them. The only exceptions 
are an IRP _MN_QUERY_POWER request that the driver wants to fail and an IRP that 
arrives while the device is being deleted. 

Special rules govern how' you pass power requests down to lower-level driv
ers. Refer to Figure 8-3 for an overview of the process in the three possible varia
tions you might use. First, before releasing control of a power IRP, you must call 
PoStartNextPowerIrp. You do so even if you are completing the IRP with an error 
status. The reason for this call is that the Power Manager maintains its own queue of 
power requests and must be told when it will be okay to dequeue and send the next 
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request to your device. In addition to calling PoStartNextPowerIrp, you must call 
the special routine PoCaIlDriver (instead of IoCaIlDriver) to send the request to 
the next driver. 

loSkipCurrentlrpStackLocation 
PoStartNextPowerlrp 
PoCaliDriver 

(a) Pass down to next layer (b) Fallin the dispatch routine 

.............•......•.............•.•• 

. 
loCopyCurrentlrpStackLocationToNext 
loSetCompletionRoutine 
PoCaliDriver 

'~ .•...•..............•.........•.••.••••••......... ~ 
(c) Pass down with completion routine 

Figure 8-3. Handling /RP _MJ]OWER requests. 

NOTE Not only does the Power Manager maintain a queue of power IRPs for 
each device, but it maintains two such queues. One queue is for system power 
IRPs (that is, IRP _MN_SET _POWER requests that specify a system power state). 
The other queue is for device power IRPs (that is, IRP _MN_SET _POWER re
quests that specify a device power state). One IRP of each kind can be simulta
neously active. Your driver might also be handling a Plug and Play (PnP) request 
and any number of substantive IRPs at the same time, too, by the way. 

The following function illustrates the mechanical aspects of passing a power 
request down the stack: 

NTSTATUS DefaultPowerHandler(IN PDEVICE_OBJECT fdo, IN PIRP Irp) 
{ 

PoStartNextPowerIrp(Irp); 
IoSkipCurrentIrpStackLocation(Irp); 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
return PoCal1Driver(pdx->LowerDeviceObject. Irp); 
} 
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1. PoStartNextPowerlrp tells the Power Manager that it can dequeue and 
send the next power IRP. You must make this call for every power iRP 
you receive ata time when you own the IRP. In other words, the call must 
occur either in your dispatch routine before you send the request to 
PoCallDriver or in a completion routine. 

2. We use IoSkipCurrentlrpStackLocation to retard the IRP's stack pointer 
by one position in anticipation that PoCallDriver will immediately advance 
it. This is the same technique I've already discussed for passing a request 
down and ignoring what happens to it afterwards. 

3. You use PoCallDriver to forward power requests. Microsoft imple
mented this function to forestall the minimal, but nonetheless measur
able, impact on performance that might result from adding conditional 
logic to IoCallDriver to handle power management. 

The function dnver takes the two steps of passing the IRP down and performing 
its device-specific action in a neatly nested order, as shown in Figure 8-4: When 
removing power-that is, when changing to a lower power state-it performs the 
device-dependent step first and then passes the request down. When adding power
when changing to a higher power state-it passes the request down and performs 
the device-dependent step in a completion routine. This neat nesting of operations 
guarantees that the pathway leading to the hardware has power while the driver 
manipulates the hardware. 

Removing Adding 

Figure 8-4. Handling system power requests. 
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Power IRPs come to you in the context of a system thread that you must not 
block. You can't block the thread for any of several reasons. If your device has the 
INRUSH characteristic, or if you've cleared the DO_POWER_PAGABLE flag in your 
device object, the Power Manager will send you IRPs at DISPATCH_LEVEL. You re
member, of course, that you can't block a thread while executing at DISPATCH_LEVEL. 
Even if you've set DO_POWER_PAGABLE, however, so that you get power IRPs at 
PASSIVE_LEVEL, you can cause a deadlock by requesting a device power IRP while 
servicing a system IRP and then blocking: the Power Manager might not send you 
the device IRP until your system IRP dispatch routine returns, so you'll wait forever. 

The function driver normally needs to perform several steps that require time 
to finish as part of handling some power requests. The DDK points out that you can 
delay the completion of power IRPs by periods that the end user won't fmd percep
tible under the circumstances, but being able to delay doesn't mean being able to 
block. The requirement that you can't block while these operations fmish means lavish 
use of completion routines to make the steps asynchronous. 

Implicit in the notion that IRP _MN_QUERY_POWER poses a question for you 
to answer "Yes" or "No" is the fact that you can fail an IRP with that minor function 
code. Failing the IRP is how you say "No." You don't have any such freedom with 
IRP _MN_SET_POWER requests, however: you must carry out the instructions they 
convey. 

MANAGING POWER TRANSITIONS 
Performing power management tasks correctly requires very accurate coding, and 
there are many complicating factors. For example, your device might have the ability 
to wake up the system from a sleeping state. Deciding whether to succeed or fail a 
query, and deciding which device power state corresponds to a given new system 
power state, depends on whether your wake-up feature is currently armed. You may 
have powered down your own device jJecause of inactivity, and you need to pro
vide for restoring power when a substantive IRP comes along. Maybe your device is 
an "inrush" device that needs a large spike of current to power on, in which case the 
Power Manager treats you specially. And so on. 

When I thought about solving all the problems of handling query-power and set
power operations in a traditional way-that is, with normal-looking dispatch and 
completion routines-I was daunted by the sheer number of different subroutines 
that would be required and that would end up doing fairly similar things. I therefore 
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decided to build my power support around a ftnite state machine that could easily 
deal with the asynchronous nature of the activities. 

I'll explain this finite state machine as it appears in GENERIC.SYS, which is a 
support driver that most of the code samples on the companion disc use. Appendix 
B, "Using GENERIC.SYS," explains the client interface to GENERIC.syS in complete 
detail. GENERIC.SYS amounts to a kernel-modeDLL containing helper functions for 
WDM drivers. You could think of it as a generic class driver with broad applicability. 
Client drivers, including most of my own sample drivers, delegate handling of power 
IRPs to GENERIC.SYS by calling GenericDispatchPower. GENERIC.SYS also imple
ments the DEVQUEUE object I discussed in Chapter 6, "Plug and Play." 

Overview of the Finite State Machine 
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I wrote a function named HandlePowerEvent to implement the finite state machine 
that manages power IRPs. I call this function with two arguments: 

NTSTATUS HandlePowerEvent(PPOWCONTEXT ctx. enum POWEVENT event): 

The ftrst argument is a context structure that contains a state variable, among 
other things: 

typedef struct _POWCONTEXT { 
LONG id: 
LONG eventcount: 
PGENERIC_EXTENSION pdx: 
PIRP i rp: 
enum POWSTATE state: 
NTSTATUS status: 
PKEVENT pev: 
DEVICE_POWER-STATE devstate: 
UCHAR MinorFunction: 
BOOLEAN UnstallQueue: 

} POWCONTEXT. *PPOWCONTEXT: 

The id and eventcount fields are for debugging. If you compile POWER.CPP 
in the GENERIC project with the preprocessor macro VERBOSETRACE defined as 
a nonzero value, the POWTRACE macro will produce volumes of trace messages. 
I used this feature to debug the finite state machine. The prebuilt version of 
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GENERIC.SYS on the companion disc was built without VERBOSETRACE to cut down 
on the sheer number of trace messages you'd be confronted with when you began 
to try out my samples. 

The pdx member points to GENERIC's portion of the device extension for a 
given device. There are just a couple of members in the device extension that are 
important for power management, and I'll mention them later in "Initial Handling 
for a New IRP." The irp member points to the power IRP that the finite state ma
chine is currently working on; state is the state variable for the machine. The sta
tus member is the ending status of an IRP. In some situations, we want to wait while 
HandlePowerEvent originates and completes a device power IRP; we use the event 
pointed to by pev to await completion in those situations. The devstate member 
holds the device power state we want to use in a device IRP, and MinorFunction 
holds the minor function code (IRP _MN_QDERY_POWER or IRP _MN_SET_POWER) 
we want to use in that IRP. Finally, UnstallQueue indicates whether we want the 
state machine to unstall the substantive IRP queue when it finishes handling the 
current power IRP. 

The second argument to HandlePowerEvent is an event code that indicates why 
we're calling the function. There are just these few event codes: 

• NewIrp indicates that we are submitting a new power IRP to the ftnite 
state machine for processing. The context structure's irp member points 
to the IRP in question. 

• MainIrpComplete indicates that an IRP is complete. 

• AsyncNotify indicates that some other asynchronous activity has oc
curred. 

HandlePowerEvent uses the value of the state variable and the event code to 
determine an action to take. See Table 8-3. (In the table, by the way, an empty cell 
denotes an impossible situation that leads to an ASSERT failure in the checked build 
of GENERIC.SYS.) An action corresponds to a series of program steps that advance 
the power IRP along its processing path. 
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State Bvent 

NewIrp MainIrpCom.p1ete 

lnitialState TriageNewlrp 

SysPowerUpPending SysPowerUpComplete 

SubPowerUpPending SubPowerUpComplete 

SubPowerDownPending SubPowerDownComplete 

SysPowerDownPending SysPowerDownComplete 

DevPowerUpPending DevPowerUpComplete 

DevPowerDownPending CompleteMainlrp 

ContextSavePending ContextSaveComplete 

ContextRestorePending ContextRestoreComplete 

DevQueryUpPending DevQueryUpComplete 

DevQueryDownPending DevQueryDownComplete 

Que"ueStallPending QueueStallComplete 

Fina!State 

Table 8-3. Table giving initial action for each event and state. 

Since many of the events require multiple actions in some situations, I coded 
HandlePowerEvent in what may seem at first like a peculiar way, as follows: 

NTSTATUS HandlePowerEvent( ... ) 
{ 

NTSTATUS status; 
POWACTION action 
while (TRUE) 

{ 

switch (action) 
{ 

case <someaction>: 
action = <someotheraction>; 
continue; 
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case <anotheraction): 
break: 
} 

break: 
} 

return status: 
} 

That is, the function amounts to a switch on the action code imbedded Within an 
infinite loop. An action case that performs a continue statement repeats the loop; 
this is how I string together a series of actions during one call to the function. An 
action case that performs a break from the switch reaches another break statement 
that exits from the loop, whereupon the function returns. 

I adopted this coding style for the state machine because I really took to heart 
the structured programming precepts I learned in my youth. I wanted there to be just 
one return statement in this whole function to make it easier to prove that the func
tion worked correctly. To aid in the proof, I developed a couple of rules for myself 
that I could test either by inspection or with ASSERT statements at the end of the 
function. H~re are the rules: 

• Every code path eventually leads to a break statement and, hence, to a 
return from the function. Somewhere along the path, someone has to 
change the status variable (I initialize it to -1 and then test to be sure it 
got changed) and the state variable (I test to be sure it got changed). 

• Any continue statement should be preceded by a change in the action 
variable. 

• Any case that might generate a recursive call to HandlePowerEvent-for 
example, by calling PoCallDriver, which might cause a completion event 
to be signalled before it returns-must immediately break from the loop 
without touching the context structure or the IRP. 

Initial Handling for a New IRP 
When we receive a new query-power or set-power IRP, we create a context struc
ture to drive the fInite state· machine and call HandlePowerEvent: 

NTSTATUS GenericDispatchPower(PGENERIC_EXTENSION pdx. PIRP Irp) 
{ 

NTSTATUS status = IoAcquireRemoveLock(pdx->RemoveLock. Irp): 
(continued) 
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if (INT_SUCCESS(status» 
return CompleteRequest(Irp. status); 

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
ULONG fcn = stack-)MinorFunction; 
if (fcn == IRP_MN_SET_POWER I I fcn == IRP_MN_QUERY_POWER) 

{ 

PPOWCONTEXT ctx = (PPOWCONTEXT) ExAllocatePool(NonPagedPool. 
sizeof(POWCONTEXT»; 

RtlZeroMemory(ctx. sizeof(POWCONTEXT»; 
ctx-)pdx = pdx; 
ctx-)irp = Irp; 
status = HandlePowerEvent(ctx. NewIrp); 
} 

IoReleaseRemoveLock(pdx-)RemoveLock. Irp); 
return status; 
} 

1. The client driver provides a remove lock that both it and GENERIC use 
to guard against premature removal of the device object. The actual code 
in GENERIC is a little more complicated than I'm showing you here, in 
that the remove lock isn't required. The actual code therefore tests the 
RemoveLock pointer for NULL before using it. There are other unim
portant respects, including error checking, in which GENERIC differs from 
the simplified version I'm showing throughout this chapter. 

2. For set and query operations, we allocate nonpaged memory for the con
text structure and initialize it. The state variable gets initialized to Initial
State, which is numerically equal to 0, by the call to RtlZeroMemory. 

The initial state of the fInite state machine is InitialState. When we call Handle
PowerEvent for the NewIrp event, the fIrst action taken will be the following, which 
I named TriageNewIrp: 

case TriageNewIrp: 
{ 

status = STATUS_PENDING; 
IoMarkIrpPending(Irp); 
IoAcquireRemoveLock(pdx-)RemoveLock. Irp); 
if (stack-)Parameters.Power.Type == SystemPowerState) 

{ II system IRP 
if (stack-)Parameters.Power.State.SystemState < pdx-)syspower) 

{ 

action = ForwardMainIrp; 
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ctx->state SysPowerUpPending; 
} 

else 
{ 

action = SelectDState; 
ctx->state = SubPowerDownPending; 
} 

} II system IRP 
else 

{ II device IRP 
ctx->state = QueueStallPending; 
if (!pdx->StalledForPower) 

{ 

ctx->UnstallQueue = TRUE; 
pdx->StalledForPower = TRUE; 
NTSTATUS qstatus = StallRequestsAndNotify(pdx->dqReadWrite. 

GenericSaveRestoreComplete. ctx); 
if (qstatus == STATUS_PENDING) 

break; 
} 

action = QueueStallComplete; 
} II device IRP 

continue; 
} 

1 ~ We always pend the power IRPs that come to us. In nearly every case, we 
need to delay completing the IRP until after some asynchronous activity 
occurs. 

2. We acquire the remove lock an extra time beyond the acquisition that 
occurs in the dispatch routine. We'll release this instance of the lock when 
we finally complete the IRP. 

3. If the power state in the IRP is numerically less than the syspower value 
we carry around in the device extension, the IRP relates to a higher system 
power state. 

4. This statement illustrates how HandlePowerEvent can perform more than 
one action during a single invocation. Later on we'll execute a continue 
statement that repeats the infinite loop. The action value will be different, 
however, which will cause us to execute a different piece of code. 
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5. This statement illustrates how action cases can alter the state of the finite 
state machine. To simplify the conditional compilation I used for debug
ging print statements, the actual code in GENERIC uses a macro named 
SETSTATE to perform this assignment, by the way. 

6. We're about to call a function (StallRequestsAndNotify) that might 
cause recursion into this function. We're not allowed to touch the con
text structure afterwards, so we set this flag now. The flag means that 
CompleteMainIrp should call RestartRequests to unstall the queue. 

7. This statement illustrates how an action case can cause HandlePowerEvent 
to return. This break statement exits from the switch on action. Immedi
ately after the switch statement is another break, which exits from the 
while loop in which the switch is embedded. 

Basically, TriageNewlrp is distinguishing between system power IRPs (that is, 
IRPs whose Type is SystemPowerState) that increase the power level, system 
power IRPs that leave the power level alone or reduce it, and device power IRPs 
(that is, IRPs whose Type is DevicePowerState), regardless of whether they raise 
or lower the power level. The state machine doesn't distinguish at this stage be
tween QUERY_POWER and SET_POWER requests, so they end up being treated 
very similarly up to a point. 

For us to know whether power is rising or falling, our device extension needs 
two variables for keeping track of system power and device power states: 

typedef struct _GENERIC_EXTENSION { 

DEVICE_POWER-STATE devpower; II current dev power state 
SYSTEM_POWER-STATE syspower; II current sys power state 
} GENERIC_EXTENSION, *PGENERIC_EXTENSION; 

We initialize these values to PowerDeviceDO and PowerSystemWorking, 
respectively, when the client driver first registers with GENERIC.SYS. 

You can guess from context that the device extension also has a BOOLEAN 
member named StalledForPower. This flag, when set, indicates that the substantive 
IRP queue is presently stalled for purposes of power management. Incidentally, you'll 
notice Of you've got the right sort of nasty and suspicious mind to be doing device 
driver programming, that is) that I'm not explicitly synchronizing access to the power 



Chapter 8 Power Management 

state fields or this flag. No additional synchronization is required beyond the seriali
zation that the Power Manager already imposes. 

I'll discuss the three initial categories of IRPs separately now. 

System Power IRPs That Increase Power 
If a system power IRP implies an increase in the system power level, you'll forward 
it immediately to the next lower driver. In your completion routine for the system 
power IRP, you'll request the corresponding device power IRP and return STATUS_ 
MORE]ROCESSING_REQUIRED to temporarily halt the completion process. In a 
completion routine for the device power IRP, you'll finish the completion process
ing for the system power IRP. Figure 8-5 diagrams the flow of the IRP through all of 
the drivers. Figure 8-6 is a state diagram that shows how our finite state machine 
handles the IRP. 

System power IRP 

PoStartNextPowerl rp 
loCompleteRequest 

PoRequestPowerlrp 

Figure 8-S. IRP flow when increasing system power. 

PoStartNextPowerlrp 
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- State 

• ACtion 

--. Nonnal flow 

--. Error condition 

•••• ~ Asynchronous event 

Figure 8-6. State transitions when increasing system power. 
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In terms of how the code works, I showed you earlier that TriageNewlrp puts 
the machine into the SysPowerUpPending state and requests the ForwardMainIrp 
action, which is as follows: 

case ForwardMainIrp: 
{ 

IoCopyCurrentIrpStackLocationToNext(Irp); 
IoSetCompletionRoutine(Irp. (PIO_COMPLETION_ROUTINE) 

MainCompletionRoutine. (PVOID) ctx. TRUE. TRUE. TRUE); 
PoCa 11 Dri ver( pdx- )LowerDevi ceObje.ct. I rp) ; 
break; 
} 

HandlePowerEvent will now return STATUS]ENDING, as mandated by the 
code we already saw in TriageNewirp. This return value percolates back out through 
GenericDispatchPower and, presumably, the client driver's IRP _MLPOWER dispatch 
function. 

Our next contact with this IRP is when the bus driver completes it. Our own 
MainCompletionRoutine gets control as part of the completion process, saves the 
IRP;s ending status in the context structure's status field, and invokes the finite state 
machine: 

NTSTATUS MainCompletionRoutine(PDEVICE_OBJECT junk. PIRP Irp, 
PPOWCONTEXT ctx) 
{ 

ctx-)status = Irp-)IoStatus.Status; 
return HandlePowerEvent(ctx. MainIrpComplete); 
} 

Our initial action will be SysPowerUpComplete: 

case SysPowerUpComplete: 
{ 

if (!NT_SUCCESS(ctx-)status» 
action = CompleteMainIrp; 

else 
{ 

if (stack-)MinorFunction == IRP_MN_SET_POWER) 
pdx-)syspower = stack-)Parameters.Power.State.SystemState; 

action = SelectDState; 
ctx-)state = SubPowerUpPending; 
status = STATUS_MORE_PROCESSING_REQUIRED; 
} 

continue; 
} 
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1. If the IRP failed in the lower levels of the driver hierarchy, we're going 
to let it complete without doing any more work on this power event. I'll 
explain in the next section, "Dealing with Failure," what CompleteMainIrp 
does. 

2. This is where we record the new system power state. We use the syspower 
value when we check to see whether a new system IRP is raising or low
ering power. 

3. We've been called from MainCompletionRontine and now want to 
interrupt completion of the system IRP while we process the device IRP 
we're about to originate. Hence, we'll cause MainCompletionRoutine to 
return STATUS_MORE]ROCESSING_REQUIRED. 

Dealing with Failure 
If the IRP failed, you can see that we'll do the CompleteMainIrp action next: 

case CompleteMainlrp: 
{ 

PoStartNextPowerlrp(Irp); 
if (event == MainlrpComplete) 

status = ctx->status; 
else 

{ 

Irp->IoStatus.Status ctx->status; 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 
} 

IoReleaseRemoveLock(pdx->RemoveLock. Irp); 
if (ctx->UnstallQueue) 

{ 

pdx->StalledForPower = FALSE; 
RestartRequests(pdx->dqReadWrite. pdx->DeviceObject); 
} 

action = DestroyContext; 
continue; 
} 
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1. Here's the call to PoStartNextPowerIrp that we must make for each 
power IRP while we still own it. 

2.· If we were entered to handle a MainIrpComplete event, our caller must 
have been MainCompletionRoutine, and the first action routine will 
have set status equal to STATUS_MORE_PROCESSING_REQUIRED to 
short-circuit the completion proce~s. Since we've decided we want to 
complete this IRP after all-that's why we're at CompleteMainIrp-the 
right thing to do is to return a different status code and allow the comple
tion process to take its normal course. 

3. If we were entered for any other event, we need to explicitly complete 
the IRP. 

4. This IoReleaseRemoveLock call balances the call to IoAcquireRemove
Lock that we did during TriageNewIrp. 

5. I'll explain what this block of code is all about when I talk about device 
IRPs later in this chapter. 

When handling a system power IRP that increases power, the machine enters 
CompleteMainIrp after a MainIrpComplete event. CompleteMainIrp will therefore 
arrange to return the error status we originally fetched (inside MainCompletionRoutine) 
from the IRP. That will permit the completion process to continue. There are other code 
paths we haven't studied yet in which CompleteMainIrp calls IoCompleteRequest in
stead. CompleteMainIrp finishes by requesting yet another action: 

case DestroyContext: 
{ 

if (ctx->pev) 
KeSetEvent(ctx->pev. IO_NO_INCREMENT. FALSE); 

else 
ExFreePool(ctx); 

break; 
} 
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1. This branch is taken when SendDeviceSetPower calls the state machine 
engine to create and wait for a device IRP. 

2. This branch is taken when GenericDispatchPower calls the state machine 
engine to process an IRP. 

DestroyContext is, of course, the last action the finite state machine ever 
performs. 

Mapping the System State to a Device State 
The other possible path out of SysPowerUpComplete generates a device power IRP 
with a power state that corresponds to the system power state. We perform the 
mapping of system to device states in the SelectDState action: 

case SelectDState: 
{ 

SYSTEM_POWER-STATE sysstate = 
stack-)Parameters.Power.State.SystemState; 

if (sysstate == PowerSystemWorking) 
ctx->devstate = PowerDeviceD0; 

else 
{ 

DEVICE_POWER-STATE maxstate = 
pdx-)devcaps.DeviceState[sysstate]; 

DEVICE_POWER-STATE minstate = pdx->WakeupEnabled ? 
pdx-)devcaps.DeviceWake : PowerDeviceD3; 

ctx-)devstate = minstate > maxstate ? minstate maxsstate; 
} 

ctx-)MinorFunction = stack->MinorFunction; 
action = SendDevicelrp; 
continue; 
} 

By the way, the Power Manager never transitions directly from one low system 
power state to another: it always moves via PowerSystemWorking. That's why I coded 
Se1ectDState to choose one mapping for PowerSystemWorking and a different map
ping for all other system power states. 

In general, we always want to put our device into the lowest power state that's 
consistent with current device activity, with our own wake-up feature (if any), with 
device capabilities, and with the impending state of the system. These factors can 
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interplay in a relatively complex way. To explain them fully, I need to digress briefly 
and talk about a Plug and Play IRP that I avoided discussing in Chapter 6: IRP _MN_ 
QUERY_CAPABILITIES. 

The PnP Manager sends a capabilities query shortly after starting your device 
and perhaps at other times. The parameter for the request is a DEVICE_CAPABILITIES 
structure that contains several fields relevant to power management. Since this is the 
only time in this book I'm going to discuss this structure, I'm shOWing you the entire 
declaration: 

typedef struct _DEVICE_CAPABILITIES { 
USHORT Size; 
USHORT Version; 
ULONG DeviceDl:l: 
ULONG DeviceD2:1; 
ULONG LockSupported:l; 
ULONG EjectSupported:l; 
ULONG Removable:l; 
ULONG DockDevice:l; 
ULONG UniqueID:l; 
ULONG SilentInstall:l; 
ULONG RawDeviceOK:l; 
ULONG SurpriseRemovalOK:l; 
ULONG WakeFromD0:1: 
ULONG WakeFromDl:l; 
ULONG WakeFromD2:1; 
ULONG WakeFromD3:1; 
ULONG HardwareDi~abled:l; 
ULONG NonDynamic:l; 
ULONG Reserved:16; 

ULONG Address; 
ULONG UINumber; 

DEVICE_POWER-STATE DeviceState[PowerSystemMax1mum]; 
SYSTEM_POWER-STATE SystemWake; 
DEVICE_POWER-STATE DeviceWake; 
ULONG DILatency; 
ULONG D2Latency; 
ULONG D3Latency; 

} DEVICE-CAPABILITIES. *PDEVICE_CAPABILITIES; 
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Table 8-4 describes the fields· in this structure that relate to power management. 

Field 

DeviceState 

SystemWake 

DeviceWake 

DlLatency 

D2Latency 

D3Latency 

WakeFromDO 

WakeFromDl 

WakeFromD2 

WakeFromD3 

Description 

Array of highest device s~tes possible for each system state 

Lowest system power state from which the device can 
generate a wake-up signal for the system-PowerSystem
Unspecified indicates that device can't wake up the system 

Lowest power state from which the device can generate a 
wake-up signal-PowerDeviceUnspecified indicates that 
device can't generate a wake-up signal 

Approximate worst-case time (in 100-microsecond units) 
required for device to switch from Dl to DO states 

Approximate worst-case time (in lOO-microsecond units) 
required for device to switch from D2 to DO states 

Approximate worst-case time (in 100-microsecond units) 
required for device to switch from D3 to DO states 

Flag indicating whether device's system wake-up feature is 
operative when the device is in the indicated state 

Same as above 

Same as above 

Same as above 

Table 8·4. Power-management fields in DEVICE_CAPABILI11ES structure. 

You normally handle the query capabilities IRP synchronously by passing it 
down and waiting for the lower layers to complete it. After the pass-down, you'll make 
any desired changes to the capabilities recorded by the bus driver. Your subdispatch 
routine would look like this one: 

NTSTATUS HandleQueryCapabilities(lN PDEVICE_OBJECT fdo, 
IN PIRP Irp) 
{ 

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
PDEVICE_CAPABILITIES pdc = stack-> 

Parameters.DeviceCapabilities.Capabilities; 
if (pdc->Version < 1) 

return DefaultPnpHandler(fdo, Irp); 
NTSTATUS status = ForwardAndWait(fdo, Irp); 
if (NT_SUCCESS(status» 

{ 

stack = IoGetCurrentIrpStackLocation(Irp); 
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pdc = stack-)Parameters.DeviceCapabilities.Capabilities; 
<stuff> 
pdx-)devcaps = *pdc; 
} 

return CompleteRequest(Irp. status); 
} 

1. The device capabilities structure has a version number member, which is 
currently always equal to 1. The structure is designed to always be up
ward compatible, so you'll be able to work with the version defined in 
theDDK that you build your driver with and with any later incarnation 
of the structure. If, however, you're confronted with a structure that's older 
than you're able to work with, you should just ignore this IRP by passing 
it along. 

2. Here's where you can override any capabilities that were set by the bus 
driver. 

3. It's a good idea to make a copy of the capabilities structure. I already 
described how you'll use the DeviceState map when you receive a sys
tem power IRP. You might have occasion to consult other fields in the 
structure, too. 

Don't bother altering the characteristics structure before you pass this IRP down: 
the bus driver will completely reinitialize it. When you regain control, you can modify 
SystemWake and DeviceWake to specify a higher power state than the bus driver 
thought was appropriate. You can't specify a lower power state for the wake-up 
fields, and you can't override the bus driver's decision that your device is incapable 
of waking the system. If your device is ACPI-compliant, the ACPI filter will set the 
LockSupported, EjectSupported, and Removable flags automatically based on 
the ACPI Source Language (ASL) deSCription of the device-you won't need to worry 
about these capabilities. 

You might want to set the SUl"priseRemovalQK flag at point "2" in the capa
bilities handler. Setting the flag suppresses the dialog box that Windows 2000 nor
mally presents when it detects the sudden and unexpected removal of a device. It's 
normally okay for the end user to remove a universal serial bus (USB) or 1394 device 
without first telling the system, and the function driver should set this flag to avoid 
annoying the user. 

To return to our discussion of SelectDState, suppose we're dealing with a set
power request that will take the computer from Working to Sleepingl; we'll there
fore execute the second branch of the if statement in SelectDState. Let's suppose that 
the bus driver knows that our device can be in any of the states DO, Dl, D2, or D3 
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when the system is in Sleeping!. When it answered the PnP capabilities query it would 
therefore have filled in DeviceState [PowerSystemSleepingl] in the device capa
bilities structure with the value PowerDeviceDO because DO is the highest power state 
our device can occupy for this system state. We'll initially record PowerDeviceDO, then, 
as the value of maxstate. 

Our device might also have a wake-up feature. I'll say more about wake-up later 
on. If so, the bus driver will have set the DeviceWake member of the capabilities 
structure equal to the lowest power state from which wake-up can occur. Let's sup
pose that value is PowerDeviceDl. If our wake-up feature happens to be enabled 
right now, we'll set minstate to PowerDeviceDl. 

If we don't have a wake-up feature, however, or if we have one and it's not 
currently enabled, we're free to choose any device power state lower than the 
maxstate value we derived from the device capabilities stn]cture. We could blindly 
choose D3, but that wouldn't be right for every type of device because generally 
speaking it takes longer to resume from D3 to DO than from D2 or Dl. The choice 
you make in this case therefore depends on factors for which I can't give you cut
and-dried guidance. If your device is capable of the D2 state, for example, you might 
decide to enter D2 for any of the system sleeping states and reserve D3 for the hiber
nate and shutdown states. 

It seems reasonable to leave your device in a low power state when the sys
tem resumes from a sleeping state. The DDK suggests you do this, and so does good 
sense. There are two situations in which you would need to restore your device to 
DO when the system goes to Working. The fIrst situation is when your device has the 
INRUSH characteristic. In this case, the Power Manager won't send power IRPs to any 
other INRUSH device until you've powered on your device. The second situation is 
when you've got substantive IRPs queued and waiting to run once power is back. 
Notwithstanding what a good idea it seems to be to just leave your device in a low 
power state, you'll notice that the code fragment I just showed you for SelectDState 
unconditionally picks the DO state. In my testing, Windows 2000 seemed to hang 
coming out of standby if I didn't do that. Maybe there's a mistake in my code or in 
the operating system. Stay tuned to my errata page for more information about this. 

Requesting a Device Power IRP 
In Chapter 5, "The I/O Request Packet," I discussed support functions such as 
IoAllocateIrp that you can use to build IRPs. You don't use those functions when you 
want to create power IRPs, though. (Actually, you would use one of those functions 
for an IRP _MN_POWER_SEQUENCE request, but not for the other IRP _MLPOWER 
requests.) Instead, you use PoRequestPowerIrp, as shown here in the code for the 
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SendDeviceIrp action we'd perform after SelectDState: 

case SendDeviceIrp: 
{ 

if (wing8 && ctx->devstate == pdx->devpower) 
{ 

ctx->status = STATUS_SUCCESS; 
action = actiontable[ctx->state][AsyncNotify]; 
continue; 
} 

POWER-STATE powstate; 
powstate.DeviceState = ctx->devstate; 
NTSTATUS postatus = PoRequestPowerIrp(pdx->Pdo. 

ctx->MinorFunction. powstate. (PREQUEST_POWER-COMPLETE) 
, PoCompletionRoutine. ctx. NULL); 

if (NT_SUCCESS(postatus» 
break; 

action = CompleteMainIrp; 
ctx->status = postatus; 
continue; 
} 

1. Refer to "Windows 98 Compatibility Notes" at the end of this chapter for 
an explanation of what this section of code is all about. 

2. The first argument to PoRequestPowerIrp is the address of the physi
cal device object (PDO) for our device. Note that the IRP we're requesting 
will actually get sent to the topmost fIlter device object (FiDO) anyway. The 
second argument is the minor function code for the IRP we want to send. 
This will either be IRP _MN_QUERY]OWER or IRP _MN_SET]OWER in 
our case. The third argument is a POWER_STATE that should contain a 
device power state value when we're requesting a query or set operation. 
The fourth and ftfth arguments are, respectively, the address of a callback 
routine for when the IRP finishes and a context parameter for that func
tion. The last argument is an optional address of a PIRP variable to receive 
the address of the IRP that PoRequestPowerIrp creates. 

3. PoRequestPowerIrp normally returns STATUS_PENDING after creating 
and launching the power IRP you've requested. This, and any success 
code, in fact, mean that our callback function will eventually be called. It 
will generate another call to HandlePowerEvent, so we're done with this 
invocation of the engine. . 
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4. If PoRequestPowerIrp fails, it never created the IRP and our callback 
function will never be called. We therefore want to fail the system IRP with 
whatever status code we've gotten. 

In the system power-up scenario I'm currently discussing; our state machine will 
be in the SubPowerUpPending state when we get to SendDeviceIrp. The status 
variable will be STATUS_MORE_PROCESSING_REQUIRED, which is the right value 
for MainCompletionRoutine to return if we're going to wait for the device IRP to 
finish. Normally, then j when we break from SendDeviceIrp, we'll interrupt the 
completion processing for the system power IRP for the time being. 

I'll discuss what happens to the device IRP we request via PoRequestPowerIrp 
later on. 

Finishing the System IRP 
Eventually, the device IRP that SendDeviceIrp requests will finish, whereupon the Power 
Manager will call the PoCompletionRoutine callback routine. It in turn calls Handle
PowerEvent with the event code AsyncNotify. Our first action in the SubPower
UpPending state will be SubPowerUpComplete: 

case SubPowerUpComplete: 
{ 

if (status == -1) 
status = STATUS_SUCCESS: 

action = CompleteMainIrp: 
continue: 
} 

The only job performed by this action routine is to alter the status variable. The 
reason we do that is that we have an ASSERT statement at the end of HandlePowerEvent 
to make sure someone changes status. In this exact scenario, it doesn't matter what 
status value we return because PoCompletionRoutine is a void function. But you don't 
want to trigger an ASSERT and a BSOD unless something is really wrong. 

The next action after SubPowerUpComplete is CompleteMainIrp, which leads 
to DestroyContext. You've already seen what those action routines do. 

System Power IRPs That Decrease Power 
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If the system power IRP implies no change or a reduction in the system power level, 
you'll request a device power IRP with the same minor function code (set or query) 
and a device power state that corresponds to the system state. When the device 
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power IRP completes, you'll forward the system power IRP to the next lower driver. 
You'll need a completion routine for the system power IRP so that you can make 
the requisite call to PoStartNextPowerIrp and so that you can perform some addi
tional cleanup. See Figure 8-7 for an illustration of how the IRPs flow through the 
system in this case. 

System power IRP 

PoRequestPowerlrp 

Figure 8-7. IRP flow when decreasing system power. 

PoStartNextPowerlrp 

........•.• 

PoStartNeJdPowerlrp 
loCompleteRequest 

Figure 8-8 diagrams how our finite state machine handles this type of IRP. 
TriageNewIrp puts the state machine into the SubPowerDownPending state and 
jumps to the SeiectDState action. You already saw that SelectDState selects a device 
power state and leads to a SendDeviceIrp action to request a device power IRP. In 
the system power-down scenario, we'll be specifying a lower power state in this 
device IRP. 
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Figure 8-8. State transitions when decreasing system power. 
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When the device IRP finishes, we execute SubPowerDownComplete: 

case SubPowerDownComplete: 
{ 

if (status == -1) 
status = STATUS_SUCCESS: 

if (NT_SUCCESS(ctx->status» 
{ 

ctx->state = SysPowerDownPending: 
action = ForwardMainIrp: 
} 

else 
action = CompleteMainIrp: 

continue: 
} 

As you can see, if the device IRP fails, we fail the system IRP too. If the device IRP 
succeeds, we enter the SysPowerDownPending state and exit via ForwardMainItp. 
When the system IRP finishes, and MainCompletionRoutine runs, we'll execute 
SysPowerDownComplete: 

case SysPowerDownComplete: 
{ 

if (stack->MinorFunction == IRP-HN_SET_POWER) 
pdx->syspower = stack->Parameters.Power.State.SystemState: 

action = CompleteMa1nIrp: 
continue: 
} 

The only putpose of this action is to record the new system power state in our device 
extension and then to exit via CompleteMainItp and DestroyContext. 

Device Power IRPs 
All we actually do with system power IRPs is act as a conduit for them and request 
a device IRP either as the system IRP travels down the driver stack or as it travels back 
up. We have more work to do with device power IRPs, however. 

To begin with, we don't want our device occupied by any substantive I/O 
operations while a change in the device power state is under way. As early as we 
can in a sequence that leads to powering down our device, therefore, we wait for 
any outstanding operation to finish, and we stop processing new operations. Since 
we're not allowed to block the system thread in which we receive power IRPs, an 
asynchronous mechanism is required. Once the current IRP finishes, we'll continue 
processing the device IRP. 
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If the device power IRP implies an increase in the device power level, we'll 
forward it to the next lower driver. Refer to Figure 8-9 for an illustration of how 
the IRP flows through the system. The bus driver will process a device set-power 
IRP by, for example, using whatever bus-specific mechanism is appropriate to turn 
on the flow of electrons to your device, and it will complete the IRP. Your comple
tion routine will initiate whatever operations are required to restore context infor
mation to the device, and it will return STATUS_MORE_PROCESSING_REQUIRED 
to interrupt the completion process for the device IRP. When the context restore 
operation finishes, you'll resume processing substantive IRPs and finish complet
ing the device IRP. 

Device power IRP 

PoStartNextPowerlrp 
loCompleteRequest 

PoStartNextPowerlrp 

(Asynchronous 
••• • device-dependent •••• 

operations) 

Figure 8-9. IRP flow when increasing device power. 
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If the device power IRP implies no change or a reduction in the device power 
level, you perform any device-specific processing (asynchronously, as we've discussed) 
and then forward the device IRP to the next lower driver. See Figure 8-10. The "device
specific processing" for a set operation includes saving device context information, 
if any, in memory so that you can restore it later. There probably isn't any device
specific processing for a query operation beyond deciding whether to succeed or fail 
the query. The bus driver completes the request. In the case of a query operation, 
you can expect the bus driver to complete the request with STATUS_SUCCESS to 
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indicate acquiescence in the proposed power change. In the case of a set operation, 
you can expect the bus driver to take whatever bus-dependent steps are required to 
put your device into the specified device power state. Your completion routine cleans 
up by calling PoStartNextPowerIrp, among other things. 

Device power IRP 

(Asynchronous 
• •• devlce-clependent •••• 

operations) 

Figure 8-10. IRP flow when decreasing device power. 

PoStartNextPowerlrp 

PoStartNextPowerlrp 
loCompleteRequest 

I invented StaIlRequestsAndNotify for use in TriageNewIrp. (It's so new that 
Chapter 6, where all the other DEVQUEUE functions are described, was already 
beyond my reach when I created it.) The first step it performs is to stall the request 
queue. If the device is currendy busy, it records a callback routine addres&-il). this case, 
GenericSaveRestoreComplete, which I'm overloading for purposes of receiving a 
notification-and returns STATUS_PENDING. TriageNewIrp will then exit in the 
QueueStallPending state. 

If the device isn't busy, StallRequestsAndNotify returns STATUS_SUCCESS with
out arranging any callback; the device can't become busy now because the queue is 
stalled. TriageNewIrp will then go direcdy to the QueueStallComplete action. 

We reach the QueueStallComplete routine either directly from TriageNewIrp 
(when the device is idle or if the queue was previously stalled for some other power
related reason) or when the client driver calls StartNextPacketto indicate that it's 
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finished processing the current IRP. StartNextPacket calls the notification routine we 
gave to StallRequestsAndNotify, and that routine signals an AsyncNotify event to the 
state machine. QueueStallComplete now separates the device IRP into one of four 
categories, as follows: 

case QueueStallComplete: 
{ 

if (stack->MinorFunction == IRP_MN_SET_POWER) 
{ 

if (stack->Parameters.Power.State.DeviceState < pdx->devpower) 
{ 

action = ForwardMainlrp: 
SETSTATE(DevPowerUpPending): 
} 

else 

} 

else 
{ 

action = SaveContext: 

if (stack->Parameters.Power.State.DeviceState < pdx->devpower) 
{ 

action = ForwardMainlrp: 
SETSTATE(DevQueryUpPending); 
} 

else 
action = DevQueryDown: 

} 

continue: 
} 

The upshot of QueueStaliComplete is that we perform the next action indicated 
in Table 8-5 for the type of IRP we're dealing with. 

Minor Function More or Less Power? 

More power 

Less or same power 

More power 

Less or same power 

Table 8-5. Next action for device IRPs. 

Setting a Higher Device Power State 

Next Actio" 

ForwardMainIrp 

DevQueryDown 

ForwardMainIrp 

SaveContext 

Figure 8-11 diagrams the state transitions that occur for an IRP _MN_SET]OWER that 
specifies a higher device power state than that which is current. 
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MainlrpComplete event 

• State 

• Action ..... Normal flow ..... Error condition 

•••• )11. Asynchronous event 

Figure 8-11. State transitions when setting a higher device power state. 
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ForwardMainIrp will install a completion routine and send the IRP down the 
driver stack. When MainCompletionRoutine eventually gains control, it signals a 
MainIrpComplete event. We will be in the DevPowerUpPending state, so we'll 
execute the DevPowerUpComplete action: 

case DevPowerUpComplete: 
{ 

if (!NLSUCCESS(ctx->status) II stack->MinorFunction != 
I RP_MN_SET_POWER) 
{ 

action = CompleteMainIrp; 
continue; 
} 

status = STATUS-MORE~PROCESSIN~REQUIRED; 
DEVICE_POWER-STATE oldpower = pdx->devpower; 
pdx->devpower = stack->Parameters.Power.State.DeviceState; 
if (pdx->RestoreContext) 

{ 

ctx->state = ContextRestorePending; 
(*pdx->RestoreDeviceContext) (pdx->DeviceObject. oldpower. 

pdx->devpower. ctx); 
break; 
} 

action = ContextRestoreComplete; 
continue; 
} 

The main task we need to accomplish is restoring any device context that was 
lost during the previous power-doWn transition. Since we're not allowed to block our 
thread, we initiate whatever operations are required and return STATUS_MORE_ 
PROCESSING_REQUIRED to interrupt the completion of the device IRP. When the 
restore operations fInish, the client driver calls GenericSaveRestoreComplete, which 
signals an AsyncNotify event. We'll be in the ContextRestorePending state at that 
point, so we'll perform the ContextRestoreComplete action: 
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case ContextRestoreComplete: 
{ 

if (event == AsyncNotify) 
status = STATUS_SUCCESS; 

action = CompleteMainIrp; 
if (!NT_SUCCESS(ctx-)status) I I pdx-)devpower != PowerDev;ceD0) 

continue; 
ctx-)UnstallQueue = TRUE; 
continue; 
} 

The main result of this action routine is that we unstall the queue of substan
tive IRPs at the conclusion of an IRP _MN_SET_POWER to the DO state. We exit via 
CompleteMainlrp and DestroyContext. 

Querying for a Higher Device Power State 
You shouldn't expect to receive an IRP _MN_QUERY:...POWER that refers to a higher 
power state than your device is already in, but you shouldn't crash the system if 
you happen to receive one. The following code shows what GENERIC does when 
such a query completes in the lower level drivers. (Refer to Figure 8-12 for a state 
diagram.) 

case DevQueryUpComplete: 
{ 

if (NT_SUCCESS(ctx-)status) && pdx-)QueryPower) 
if (!(*pdx-)QueryPower)(pdx-)DeviceObject. pdx-)devpower. 

stack-)Parameters.Power.State.DeviceState» 
ctx-)status = STATUS_UNSUCCESSFUL; 

action = CompleteMainIrp; 
continue; 
} 

That is, GENERIC allows the client driver to accept or veto the query by calling its 

Query-Power function, and then it exits via CompleteMainIrp and DestroyContext. 
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• State 

• Action 

--. Nonnalflow 

--. Error condition 

.... ~ Asynchronous event 

Figure 8·12. State transitions for a query about a higher device power state. 

Setting a Lower Device Power State 
If the IRP is an IRP _MN_SET_POWER for the same or a lower device power state than 
current, the finite state machine goes through the state transitions diagrammed in 
Figure 8-13. 
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• State 

Action ... Normal flow ... Error condition 

... ->- Asynchronous event 

Figure 8-13. State transitions when setting a lower device power state. 
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SaveContext will initiate an asynchronous process to save any device context 
that will be lost when the device loses power: 

case SaveContext: 
{ 

DEVICE_POWER-STATE devpower = 
stack->Parameters.Power.State.DeviceState; 

if (pdx->SaveDeviceContext && devpower > pdx->devpower) 
{ 

ctx->state = ContextSavePending; 
(*pdx->SaveDeviceContext)(pdx->DeviceObject. pdx->devpower. 

devpower. ctx); 
break; 
} 

action = ContextSaveComplete; 
} 

When the save operations finish, the client driver calls GenericSaveRestore
Complete, which signals an AsyncNotify event. We'll be in the ContextSavePending 
state at that point, so we'll perform the ContextSaveComplete action: 

case ContextSaveComplete: 
{ 

if (event == AsyncNotify) 
status = STATUS_SUCCESS; 

ctx->state = DevPowerDownPending; 
action = ForwardMainlrp; 
DEVICE_POWER-STATE devpower = 

stack->Parameters.Power.State.DeviceState; 
if (devpower <= pdx->devpower) 

continue; 
pdx->devpower = devpower; 
if (devpower > PowerDeviceD0) 

ctx->UnstallQueue = FALSE; 
continue; 
} 

1. We'll come directly here from GenericSaveRestoreComplete, and we 
need to change status to prevent an ASSERT failure (but not for any other 
reason). 

2. If we didn't actually change power, there's no more work to do here. 
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3. This is where we record the new device power state when we're pow
ering down. 

4. If the device is now in a low-power or no-power state, we want to leave 
the substantive IRP queue stalled. 

The next action, ForwardMainIrp, sends the device IRP down the driver stack. 
The bus driver will turn the physical flow of current off and complete the IRP. We'll 
see it next when MainCompletionRoutine signals a MainIrpComplete event, which 
takes us directly to CompleteMainIrp and thence to DestroyContext. 

Querying for a Lower Device Power State 
An IRP _MN_QUERY_POWER that specifies the same or a lower device power state 
than current is the basic vehicle by which a function driver gets to vote on changes 
in power levels. Although the DDK doesn't specifically say you should create one 
of these requests when you handle a system query, it's a good idea to do so. You 
have to handle device queries anyway and might as well put all the query logic in 

one place. Figure 8-14 shows how our state machine will handle such a query. 
The DevQueryDown action follows QueueStallComplete for this kind of IRP: 

case DevQueryDown: 
{ 

DEVICE_POWER-STATE devpower = 
stack->Parameters.Power.State.DeviceState; 

if (devpower > pdx->devpower 
&& pdx->QueryPower 
&& !(*pdx->QueryPower)(pdx->DeviceObject. 
pdx->devpower. devpower» 
{ 

ctx->status = STATUS_UNSUCCESSFUL; 
action = DevQueryDownComplete; 
continue; 
} 

ctx->state = DevQueryDownPending); 
action = ForwardMainlrp; 
continue; 
} 
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MainlrpComplete event 

- State 

til Action ..... Normal flow ..... Error condition 

.... >- Asynchronous event 

Figure 8-14. State transitions for a query about a lower device power state. 
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GENERIC basically lets the client driver decide whether the query should succeed. 
If the client driver says "Yes," we enter the DevQueryDownPending state and exit 
via ForwardMainIrp to send the query down the driver stack. Completion of the IRP 
sends us to the DevQueryDownComplete action: 

case DevQueryDownComplete: 
{ 

if (NLSUCCESS(ctx->status» 
ctx->UnstallQueue = FALSE: 

action = CompleteMainIrp: 
continue: 
} 

The basic action we take is to leave the substantive IRP queue stalled if the query 
succeeds. (CompleteMainIrp will unstall the queue if it sees the UnstallQueue flag 
set in the context structure. Clearing the flag causes this step to be skipped.) Recall 
that we first stalled the queue when we received the query. We'll leave it stalled until 
someone eventually sends us a set-power IRP to put the device into DO. 

ADDITIONAL POWER MANAGEMENT DETAILS 
In this section, I'll describe some additional details about power management, includ
ing flags you might need to set in your device object, controlling your device's wake
up feature, arranging for power-down requests after your device has been idle for a 
predetermined time, and optimizing context restore operations. 

Flags to Set in AddDevice 
Three flag bits in a device object-see Table 8-6---control various aspects of power 
management. After you call IoCreateDevice in your AddDevice function, all three 
of these bits will be set to 0, and you can set one or more of them depending on 
circumstances. 

Flag Brief Description 

DO_POWER_PAGABLE Driver's IRP_MLPOWER dispatch routine must run 
at PASSIVE_LEVEL 

DO_POWER_INRUSH Powering on this device requires a large amount of 
current 

Device doesn't participate in power management 

Table 8-6. Power-management flags in DEVICE_OBJECT. 
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Set the DO_POWER_PAGABLE flag if your dispatch function for IRP _MLPOWER 
requests must run at PASSIVE_LEVEL. The flag has the name it does because, as you 
know, paging is allowed at PASSIVE_LEVEL only. If you leave this flag set to 0, the 
Power Manager is free to send you power requests at DISPATCH_LEVEL. In fact, it 
always will do so in the current release of Windows 2000. 

Set the DO_POWER_INRUSH flag if your device draws so much current when 
powering up that other devices should not be allowed to power up simultaneously. 
The problem solved by this flag is familiar to people who've experienced multiple 
simultaneous spikes of electricity demand at the end of a power outage-having all 
your appliances trying to cycle on at the same time can blow the main breaker. The 
Power Manager guarantees that only one inrush device at a time will be powered up. 
Furthermore, it sends power requests to inrush devices at DISPATCH_LEVEL, which 
implies that you may not also set the DO_POWER_PAGABLE flag. 

The system's ACPI filter driver will set the INRUSH flag in the PD~ automatically 
if the ASL description of the device so indicates. All that's required for the system to 
properly serialize inrush power is that some device object in the stack have the INRUSH 
flag set, so you won't need to set the flag in your own device object too. If the system 
can't automatically determine that you require inrush treatment, however, you would 
need to set the flag yourself. 

Set the DO_POWER_NOOP flag if your driver isn't managing hardware and 
needn't participate in power management. When PoCallDriver sees this flag set in a 
device object, it simply completes the IRP with STATUS_SUCCESS without even calling 
the corresponding driver's dispatch routine. 

The settings of the PAGABLE and INRUSH flags need to be consistent in all the 
device objects for a particular device. If the PD~ has the PAGABLE flag set, every 
device object should also have PAGABLE set. Otherwise, a bug check with the code 
DRIVER]OWER_STATE]AILURE may occur. (It's legal for a PAGABLE device to be 
layered on top of a non-PAGABLE device, just not the other way around.) If a device 
object has the INRUSH flag set, neither it nor any lower device objects should be 
PAGABLE, or else an INTERNAL_POWER_ERROR bug check will occur. If you're 
writing a disk driver, don't forget that you may change back and forth from time to 
time between pagable and nonpagable status in response to device usage PnP noti
fications about paging meso 

Device Wake-Up Features 
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Some devices have a hardware wake-up feature, which allows them to wake up a 
sleeping computer when an external event occurs. See Figure 8-15. The power switch 
on the current crop of PCs is such a device. So are many modems and network cards, 
which are able to listen for incoming calls and packets, respectively. 
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Network card 

Figure 8-15. Examples of devices that wakethe system. 

If your device has a wake-up feature, your function driver has additional power 
management responsibilities beyond the ones we've already discussed. The first 
additional responsibility is to handle the IRP _MN_ WAIT_WAKE flavor of IRP _ML 
POWER. Most devices don't need to do any processing in their dispatch functions 
for WAIT_WAKE requests beyond installing a standard I/O completion routine and 
passing the IRP down the driver stack. The bus drivers for the USB and Peripheral 
Component Interconnect (PCI) bus, for example, implement the bus specifications 
for arming, disarming, and detecting wake-up. More explicitly, if your device doesn't 
have additional features related to device wake-up beyond the ones prescribed by 
the relevant bus specification, you don't need any special processing. 

You want to fail IRP _MN_QUERY_POWER requests that specify a power state 
incompatible with your wake-up feature. If the query is for a system state, compare 
the proposed new state with the SystemWake field in the device capabilities structure, 
which gives the lowest system state from which your device can wake up the system. 
If the query is for a device state, compare the proposed new state with the DeviceWake 
field, which gives the lowest device state from which your device can issue the wake
up signal. If the result of the comparison shows that the proposed power state is too 
low, fail the query with STATUS_INVALID_DEVICE_STATE. Otherwise, process the 
query in the way I've already discussed. 

You need to originate an IRP _MN_ WAIT_WAKE at appropriate times. To do this, 
call PoRequestPowerIrp as illustrated by this code fragment: 

typedef struct _DEVICE_EXTENSION { 
PIRP WaitWakeIrp; 
} ; 

NTSTATUS SomeFunction( ... ) 
{ 

(continued) 
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POWER-STATE junk; 
junk.SystemState = pdx-)devcaps.SystemWake; 
status = PoRequestPowerlrp(pdx-)Pdo. IRP~MN_WAIT_WAKE. 

junk. (PREQUEST_POWER-COMPLETE) WaitWakeCallback. 
pdx. &pdx-)WaitWakelrp); 

} 

The last extra responsibility related to wake-up is to cancel the WAIT_WAKE 
IRP when it's no longer needed using code like this: 

PIRP Irp = (PIRP) InterlockedExchangePointer(&pdx-)WaitWakelrp. NULL); 
if (Irp) 

IoC~ncellrp(Irp); 

For most devices, you need to perform three tasks when the WAIT_WAKE com
pletes. You should nullify the member of the device extension structure that points 
to the active WAIT_WAKE IRP. That will prevent some other part of your driver from 
thinking that the WAIT_WAKE is still active. You should initiate a device set-power 
IRP to restore power to your device. Some devices might need to perform some 
sort of device-specific operation to disarm the device's wake-up feature at this point, 
too. Finally, you might want to automatically reissue a WAIT_WAKE so that your 
device's wake-up feature remains armed for the future. The first of these tasks
nullifying the WAIT_WAKE IRP pointer-ought to be done in a standard I/O comple
tion routine that your dispatch routine installs.- The other two tasks-repowering 
your device and requesting a new WAIT_WAKE IRP-should be done in the call
back routine CWaitWakeCaIlback in my fragment) that you specify in your. call to 
PoRequestPowerIrp. 

NOTE It looks to me as though it's very difficult to be 100 percent sure that 
you're calling loCancelirp for your WAIT_WAKE request with a valid pointer. 
You could decide to cancel the IRP a nanosecond before your I/O completion 
routine nullifies your cached pointer to the IRP. The completion process could 
run its course, ending with a call to 10Freeirp from inside the Power Manager as 
soon as your callback routine returns. Thereafter, 10Cancelirp or the bus driver's 
cancel routine could try to work with the now-invalid IRP. This is the same "tiger 
on Main Street" problem that I discussed in Chapter 5. Between us, I and one of 
the Microsoft developers who reviewed this code came up with an elegant solu
tion that's unfortunately too big to fit in the margin. Please refer to the GENERIC 
sample on the companion disc. 

When to Launch WAIT _W~KE 
In the preceding section, I showed you how to launch a WAIT_WAKE IRP, how to 
cancel one, and what to do when one completes. You should be wondering when 
you should launch this IRP in the first place. 
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The first part of the answer to "when?" is that you need a way to know whether 
the end user wants your device's wake-up feature to be armed. Your driver should 
arm the wake-up feature unless the end user says not to. The end user will interact 
with some sort of user interface element (such as a control panel applet similar to 
POWCPL.DLL) to indicate whether your wake-up feature should be armed when the 
system po~ers down. The user interface element communicates in turn with your 
driver, either by using a private IOCTL interface or by setting a WMI control. You 
then remember the arm/disarm setting. At some point in the evolution of Windows 
2000, user-mode programs will perhaps be able to use the so far unimplemented 
RequestDeviceWakeup and CanceIDeviceWakeupRequest APIs to trigger WMI 
calls to your driver. 

The second part of the answer concerns when you invoke PoRequestPowerIrp 
to request the WAIT_WAKE. The DDK indicates that you may request a WAIT_WAKE 
at any time when your device is in the DO state and a device power transition is not 
in progress. Good times are when you're told by the end user to enable your wake
up feature and when you process a system power query that will reduce the device 
power state. 

You should disable wake-up (and cancel an outstanding WAIT_WAKE) whenever 
you're told to do so by the end user and also when you process an IRP _MN_ 
STOP_DEVICE request. 

Idle Detection 
As a general matter, the end user would prefer that your device not draw any power 
if it isn't being used. You can register with the Power Manager to be sent a low-power 
device IRP when your device remains idle for a specified period. The mechanics of 
the idle detection scheme involve two service functions: PoRegisterDeviceForIdie
Detection and PoSetDeviceBusy. 

To register for idle detection, make this service function call: 

pdx->idlecount = PoRegisterDeviceForldleDetection(pdx->Pdo. 
ulConservationTimeout. ulPerformanceTimeout. PowerDeviceD3); 

The first argument to PoRegisterDeviceForIdleDetection is the address of the PD~ 
for your device. The second and third arguments specify timeout periods measured 
in seconds. The conservation period will apply when the system is trying to con
serve power, such as when running on battery power. The performance period will 
apply when the system is trying to maximize performance, such as when running 
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on AC power. The fourth argument specifies the device power state into which you 
want your device to be forced if it's idle for longer than whichever of the timeout 
periods applies. 

Indicating That You're Not Idle 
The return value from PoRegisterDeviceForIdleDetection is the address of a long 
integer that the system uses as a counter. Every second, the Power Manager increments 
that integer. If it reaches the appropriate timeout value, the Power Manager sends 
you a device set-power IRP indicating the power state you registered. At various places 
in your driver, YOli'll reset this counter to 0 to restart the idle detection period: 

if (pdx-)idlecount) 
PoSetDeviceBusy(pdx-)idlecount); 

PoSetDeviceBusy is a macro in the WDM.H header file that uncritically derefer
ences its pointer argument to store a O. It turns out that PoRegisterDeviceForIdle
Detection can return a NULL pointer, so you should check for NULL before calling 
PoSetDeviceBusy. 

Now that I've described what PoSetDeviceBusy does, you can see that its name 
is slightly misleading. It doesn't tell the Power Manager that your device is "busy," 
in which case you'd expect to have to make another call later to indicate that your 
device is no longer "busy." Rather, it indicates that, at the particular instant you use 
the macro, your device is not idle. I'm not making this point as a mere semantic 
quibble. If your device is busy with some sort of active request, you'll want to have 
logic that forestalls idle detection. So, you might want to call PoSetDeviceBusy from 
many places in your driver: from various dispatch routines, from your StartIo routine, 
and so on. Basically, you want to make sure that the detection period is longer than 
the longest time that can elapse betWeen the calls to PoSetDeviceBusy that you make 
during the normal processing of a request. 

NOTE PoRegisterSystemState allows you to prevent the Power Manager 
from changing the system power state, but you can't use it to forestall idle timeouts. 
Besides, it isn't implemented in Windows 98, so calling it is contraindicated for 
drivers that need to be portable between Windows 2000 and Windows 98. 

Choosing Idle Timeouts 
Picking the idle timeout values isn't necessarily simple. Certaih kinds of devices can 
specify -1 to indicate the standard power policy timeout for their class of device. At 
the time of this writing, only FILE_DEVICE_DISK and FILE_DEVlCE_MASS_STORAGE 
devices are in this category. While you'll probably want to have default values for 
the timeout constants, their values should ultimately be under end user control. 
underlying the method by which a user gives you these values is a tale of consider
able complexity. 
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Unless your device is one for which the system designers planned a generic idle 
detection scheme, you'll need to provide a user-mode component that allows the end 
user to specify timeout values. To fit in best with the rest of die operating system, that 
piece should be a property page extension to the Power control panel applet. That is, 
you should provide a user-mode DLL that implements the IShellPropSheetExt and 
IShellExtInit COM interfaces. This DLL would fit the general description of a shell 
extension DLL, which is the topic you would research if you wanted to learn all the 
ins and outs of writing this particular piece of user interface software. 

Learning about COM in general and shell extension DLLs in particular seems 
to me like a case of the tail wagging the dog insofar as driver programming goes. 
So the WDMIDLE sample on the companion disc includes a shell extension DLL 
(POWCPL.DLL) that you can copy and adapt. If you install this sample, you'll start 
noticing a new property page in the Power Options property sheet. See Figure 8-16. 
POWCPL.DLL uses the user-mode functions we discussed in Chapter 2, "Basic Struc
ture of a WDM Driver," to enumerate all the devices that have registered a GUID_ 
WDMIDLE interface, and it presents their "friendly" names in a list box. It uses a private 
I/O control (IOCTL) scheme-see Chapter 9, "Specialized Topics"- to query and alter 
the idle timeout constants used by WDMIDLE.syS. Using 10CTLs for this purpose gives 
you a workable scheme for both Windows 2000 and Windows 98. Another possible 
method uses the COM interfaces that are part of WMI. (See Chapter 10, "Windows 
Management Instrumentation. ") This method is a great deal more cumbersome and 
doesn't work in the original release of Windows 98, which is why I didn't code 
POWCPL.DLL to use it. 

Figure 8-16. The property page/or idle devices. 
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On the driver side of the user interface is a handler for IRP _MLDEVICE_ 
CONTROL to answer queries and honor requests to alter power management settings. 
The end user expects that settings, once specified, will remain in effect in subsequent 
sessions. The driver therefore needs to record the current values of the constants in 
the registry by using the functions I discussed in Chapter 3, "Basic Programming Tech~ 
niques." Furthermore, at StartDevice time, the driver needs to read those persistent 
settings from the registry to initialize the driver according to the user's expectations. 

All of these details, though important to delivering a polished product, are rather 
tangential to the issues of power management that I'm discussing in this chapter, so 
I won't discuss the code here. 

Waking Up from an Idle State 
If you implement idle detection, you'll also have to provide a way to restore power 
to your device at some later time-no one else will do it for you. I wrote a function 
named SendDeviceSetPower to deal with this detail. You would have code like this 
in the dispatch function for an IRP that needs power: 

NTSTATUS DispatchWrite(IN PDEVICE_OBJECT fdo. IN PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = 
(PDEVICE_EXTENSION) fdo->DeviceExtension; 

if (pdx->idlecount) 
PoSetDeviceBusy(pdx->idlecount); 

if (pdx->powerstate > PowerDeviceD0) 
{ 

NTSTATUS status = SendDeviceSetPower(fdo. PowerD~viceD0. FALSE); 
if (!NT~SUCCESS(status» 

return CompleteRequest(Irp. status. 0); 
} 

IoMarkIrpPending(Irp); 
StartPacket(&pdx->dqReadWrite. fdo. Irp. OnCancel); 
return STATUS_PENDING; 
} 

1. This is the dispatch routine for IRP _ML WRITE requests in some driver. 
At the beginning of the routine is one of the places you should call 
PoSetDeviceBusy to reset the idle countdown that's occurring once each 
second. 
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2. You might have powered down your device after a period of inactivity, 
or you might simply have left it off when the system resumed from 
standby. Whatever the reason, no one else in the system will realize that 
your device needs power right now, and so you have to initiate the power
on sequence. 

3. If the device set-power request should fail for some reason, you should 
fail the write request. 

4, The rest of this dispatch routine is the same as I've discussed in earlier 
chapters. We mark the IRP pending, put it into the queue of write requests, 
and return STATUS_PENDING to tell our caller that we didn't finish the 
IRP in our dispatch routine. 

In general, we get read and write requests in an arbitrary thread context, so we 
should not block that thread. When we power ourselves back on, therefore, we return 
without waiting for the power-up operation to finish. The DEVQUEUE takes care of 
starting the request when power is finally back. 

The SendDeviceSetPower helper routine calls PoRequestPowerlrp directly. The 
resulting device IRP gets handled in the same way as we've already discussed. 

Using Sequence Numbers to Optimize State Changes 
You might want to use an optimization technique in connection with removing and 
restoring power to your device. Two background facts will help you make sense of 
the optimization technique. First, the bus driver doesn't always power down a device 
even when it receives a device set-power IRP. This particular bit of intransigence arises 
because of the way computers are wired together. There might be one or more power 
channels, and there might be any random collection of devices wired to any given 
channel. These devices are said to share a power relation. A particular device can't 
be powered down unless all the other devices on the same power channel are pow
ered down as well. So, to use the macabre example that I sometimes give my semi
nar students, suppose the modem you want to power down happens to share a power 
channel with your computer's heart-lung machine-the system can't power down your 
modem until the bypass operation is over. 
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The second background fact is that some devices require a great deal of time 
to change power. To return to the previous example, suppose that your modem were 
such a device. At some point, you received and passed along a device set-power 
request to put your modem to sleep. Unbeknownst to you, however, the bus driver 
didn't actually power down the modem. When the time comes to restore power, you 
could save some time if you knew that your modem hadn't lost power. That's where 
this particular optimization comes into play. 

At the time you remove power, you can create and send a power request with 
the minor function code IRP _MN_POWER_SEQUENCE to the drivers underneath 
yours. Even though this IRP is technically an IRP _MLPOWER, you use 10Allocatelrp 
instead of PoRequestPowerIrp to create it. You still use PoStartNextPowerIrp and 
PoCallDriver when you handle it, though. The request completes after the bus driver 
stores three sequence numbers in an array you provide. The sequence numbers indi
cate how many times your device has been put into the D1, D2, and D3 states. When 
you're later called upon to restore· power, you create and send another IRP _MN_ 
POWER_SEQUENCE request to obtain a new set of sequence numbers. If the new 
set is the same as the set you captured at power-down time, you know that no state 
change has occurred and that you can bypass whatever expensive process would be 
required to restore power. 

Since IRP _MN]OWER_SEQUENCE simply optimizes a process that will work 
without the optimization, you needn't use it. Furthermore, the bus driver needn't 
support it, and you shouldn't treat failure of a power-sequence request as indicative 
of any sort of error. The GENERIC sample on disc actually includes code to use the 
optimization, but I didn't want to further complicate the textual discussion of the state 
machine by showing it here. 

WINDOWS 98 COMPATIBILITY NOTES 
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Windows 98 incompletely implements many power management features. Conse
quently, the Windows 98 environment will forgive your mistakes more readily than 
Windows 2000 will, facilitating the initial development of a driver. But, since Wmdows 98 
tolerates mistakes that Windows 2000 won't tolerate, you must be sure to test all of 
your driver's power functionality under Windows 2000. 

The DO_POWER_PAGABLE flag has additional and unexpected significance in 
Windows 98. Unless every device object, including the PD~ and all filter devices, 
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in your particular stack has this flag set, the I/O Manager tells the Windows 98 Con
figuration Manager that the device only supports the DO power state and is inca
pable of waking the system. Thus, an additional consequence of not setting the 
DO_POWER]AGABLE flag is that any idle notification request you make by calling 
PoRegisterDeviceForIdleDetection is effectively ignored-that is, you'll never receive 
a power IRP as a result of being idle too long. Another consequence is that your 
device's wake-up feature, if any, won't be used. 

Requesting Device Power IRPs 
Windows 98 appears to have a bug whereby PoRequestPowerIrp can appear to suc
ceed-that is, it returns STATUS_PENDING-without actually causing you to receive 
a device set-power IRP. The problem arises when you ask for a set-power IRP that 
specifies the same device state that your device is already in-the Windows 98 Con
figuration Manager "knows" that there's no news to report by sending a configuration 
event to the configuration function that NTKERN operates on your behalf. Mind you, 
if you're waiting for a device IRP to complete, your device will simply stop responding 
at this point. 

I used an obvious workaround to overcome this problem: if we're running under 
Windows 98 and detect that we're about to request a device power IRP for the same 
power state as the device already occupies, I simply pretend that the device IRP 
succeeded. lri terms of the state transitions that HandlePowerEvent goes through, I 
jump from SendDevicelrp directly to whatever action (SubPowerUpComplete or 
SubPowerDownComplete) is appropriate. 

PoCaliDriver 
PoCallDriver just calls 10CallDriver in Windows 98. Consequently, it would be easy 
for you to make the mistake of using 10CallDriver to forward power IRPs. There is, 
however, an even worse problem in Windows 98. 

The Windows 2000 version of PoCallDriver makes sure that it sends power IRPs 
to DO]OWER_PAGABLE drivers at PASSIVE_LEVEL and to INRUSH or nonpaged 
drivers at DISPATCH_LEVEL. I took advantage of that fact in GENERIC to forward 
power IRPs in situations where HandlePowerEvent is called at DISPATCH_LEVEL from 
an I/O completion routine. The Windows 98 version, since it's just 10CallDriver un
der a different name, doesn't switch IRQL. As it happens, all power IRPs in Windows 
98 should be sent at PASSIVE_LEVEL. So I wrote a helper routine named 
SafePoCallDriver for use in GENERIC that queues an executive work item-refer to 
Chapter 9-to send the IRP at PASSIVE_LEVEL. 
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You should know about a few other differences between the way Windows 98 and 
Wmdows 2000 handle power management features. I'll describe them briefly and indi
cate how they might affect the development of your drivers. 

When you call PoRegisterDeviceForIdleDetection, you must supply the address 
of the PDO rather than your own device object. That's because, internally, the sys
tem needs to find the address of the DEVNODE that the Windows 98 Configuration 
Manager workS with, and that's accessible only from the PDO. You can also use the 
PDO as the argument in Windows 2000, so you might as well write your code that 
way in the fIrst place. 

The PoSetPowerState support routine is a no-operation in Windows 98. further
more, although it's documented as returning the previous device or system power 
state, the Windows 98 version returns whatever state argument you happen to supply. 
This is the new state rather than the old state-or maybe just a random number that 
occupies an uninitialized variable that you happened to use as an argument to the 
function: no one checks. 

PoStartNextPowerIrp is a no-operation in Windows 98, so it would be easy for 
you to forget to call it if you do your development in Windows 98. 

As best I can tell, the PO_POWER_NOOP flag in a device object doesn't do 
anything in Windows 98. Accordingly, there's no point in setting it in the hope of 
avoiding the need to handle power IRPs. 

The service routines having to do with device power relations (PoRegister
DeviceNotify and PoCancelDeviceNotify) are not defIned in Windows 98. As far 
as I can tell, Windows 98 also doesn't issue a PowerRelations query to gather the 
information needed to support the callbackS in the fIrst place. The service routines 
PoRegisterSystemState, PoSetSystemState, and PoUnregisterSystemState are 
also not implemented in Windows 98. To load a driver in Windows 98 that calls these 
or other undefined service functions, you'll need to supply a virtual device driver with 
stubs, as I'll describe in Appendix A, "Coping with Windows 98 Incompatibilities." 
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Specialized Topics 

In the preceding eight chapters, I've described most of the features of a full-blown 
WDM driver suitable for any random sort of hardware device. But you should un
derstand a few more general-purpose techniques, and I'll describe them in this chapter. 
In the chapter's first section, I'll explain how to create a filter driver that sits above 
or below the function driver and modifies the standard behavior evoked by the func
tion driver. Then I'll describe how to log errors for eventual viewing by a system 
administrator. After that, I'll discuss the very important subject of how you use I/O 
control (IOCTL) operations to allow an application to control your hardware or fea
tures of your driver. That discussion includes an explanation of how a WDM driver 
can alert an application to "interesting" events. I'll wrap up the chapter with instruc
tions about how to create your own system threads, how to queue work items for 
execution within the context of existing system threads, and how to set up watch
dog timers for unresponsive devices. 

FILTER DRIVERS 
The Windows Driver Model assumes that a hardware device can have several driv
ers that each contribute in some way to the successful management of the device. 
The WDM accomplishes the layering of drivers by means of a stack of device objects. 
I discussed this concept in Chapter 2, "Basic Structure of a WDM Driver." Up until 
now, I've been talking exclUSively about the function driver that manages the main 
functionality of a device. In this section, I'll describe how you write a filter driver that 
resides above or below the function driver and modifies the behavior of the device 
in some way by filtering the I/O request packets (IRPs) that flow through it. 
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A filter driver that's above the function driver is called an upper filter driver; a 
filter driver tha(s below the function driver (but still above the bus driver) is called 
a lower filter driver. The mechanics of building either type of filter are exactly the same, 
even though the drivers themselves serve different purposes. In fact, you build a filter 
driver just as you build any other WDM driver-with a DriverEntry routine, an 
AddDevice routine, a bunch of dispatch functions, and so on. 

The intended purpose of an upper filter driver is to facilitate supporting a de
vice that behaves in most respects like a generic device of its class but that has some 
additional functionality. You can rely, perhaps, on a generic function driver to sup
port the generic behavior. To deal with the extra functionality, you write an upper 
filter driver to intervene in the flow of I/O requests. To give a silly example, suppose 
there existed a standard class of toaster device for which someone had written a 
standard driver. And suppose that your particular, toaster had an Advanced Waffle 
Eject feature that caused your toaster to pop toasted waffles two feet into the air. Con
trolling this AWEsome feature would be a natural job for an upper filter driver. See 
Figure 9-1. 

IRPs 

Figure 9-1. Role of an upper filter driver. 

Another use for upper filter drivers is to compensate for bugs in the hardware 
or in the function driver. If you're going to deploy a filter driver for this purpose, 
Microsoft implores you to version-stamp the driver and, insofar as it's under your 
control, to change the version number of whatever component you're compensat
ing for when the bug someday gets fixed. Otherwise, it will be harder for Microsoft 
to install automatic updates. 

Lower filter drivers can't intervene in the normal operation of a device with 
which the function driver communicates directly. That's because the function driver 
will implement most substantive requests by making hardware abstraction layer (HAL) 
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calls that directly access the hardware. The filter driver, of course, sees only those 
IRPs that something above chooses to pass down to it, and it never knows about the 
HAL calls. 

A lower filter driver might fmd employment in the stack of drivers for a USB 
(universal serial bus) device, however. For such devices, the function driver uses 
internal control IRPs as containers for USB request blocks (URBs). A lower ftlter driver 
could monitor and modify these IRPs, perhaps. See Figure 9-2. 

Figure 9·2. Role of a lower filter driver. 

Another possible use for a lower ftlter driver, suggested by one of my seminar 
students, is to help you write a bus-independent driver. Imagine a device packaged 
as a PCI (Peripheral Component Interconnect) expansion card, a PCMCIA (Personal 
Computer Memory Card International Association) card, a USB device, and so on. You 
could write a function driver that is totally independent of the bus architecture, ex
cept that it wouldn't be able to talk to the device. You'd also write several lower fil
ter drivers, one for each possible bus architecture, as illustrated in Figure 9-3. You'd 
install the appropriate one of these for a particular instance of the hardware. When 
your function driver needed to talk to the hardware, it would send an IRP (perhaps 
an IRP _MLINTERNAL_DEVICE_CONTROL) down to the filter. 
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Figure 9-3. Using lower filter drivers to acbieve bus independence. 

DriverEntry Routine 
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The DrlverEntry routine for a filter driver is very similar to that for a function driver. 
The major difference is that a filter driver must install dispatch routines for every type 
of IRP, not just for the types of IRP it expects to handle: 

extern "c" NTSTATUS DriverEntry(PDRIVEILOBJECT DriverObject. 
PUNICODE_STRING RegistryPath) 
{ 

DriverObject->DriverUnload = DriverUnload; 
DriverObject->DriverExtension->AddDevfce = AddDevice; 
for (int i = 0; i < arraysize(DriverObject->MajorFunctfon); ++i) 

DriverObject->MajorFunction[i] = DispatchAny; 
DriverObject->MajorFunction[IRP_MJ_POWER] = DfspatchPower; 
DriverObject->MajorFunction[IRP_MJ_PNP]= DispatchPnp; 
return STATUS_SUCCESS; 
} 

A filter driver has a DrlverUnload and an AddDevice function just as any other 
driver does. I filled the major function table with the address of a routine named 
DispatchAny that would pass any. random request down the stack. I specified spe
cific dispatch routines for power and Plug and Play (PnP) requests. 

The reason that a filter driver has to handle every conceivable type of IRP has 
to do with the order in which driver AddDevice functions get called vis-a-vis 
DriverEntry. In general, a filter driver has to support all the same IRP types that the 
driver immediately underneath it supports. If a filter were to leave a particular 
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MajorFunction table entry in its default state, IRPs of that type would get failed with 
STATUS_INVALID_DEVICE_REQUEST. (The I/O Manager includes a default dispatch 
function that simply completes a request with this status. The driver object initially 
comes to you with all the MajorFunction table entries pointing to that default rou
tine.) But you won't know until AddDevice time which device object(s) are under
neath you. You could investigate the dispatch table for each lower device driver inside 
AddDevice and plug in the needed dispatch pointers in your own MajorFunction table, 
but remember that you might be in multiple device stacks, so you might get multiple 
AddDevice calls. It's easier to just declare support for all IRPs at DriverEntry time. 

AddDevice Routine 
Filter drivers have AddDevice functions that get called for each appropriate piece 
of hardware. You'll be calling IoCreateDevice to create an unnamed device object 
and IoAttachDeviceToDeviceStack to plug in to the driver stack. In addition, you'll 
need to copy a few settings from the device object underneath you: 

NTSTATUS AddDev1ce(PDRIVER-OBJECT DriverObject. PDEVICE_OBJECT pdo} 
{ 

PDEVICE_OBJECT fido; 
NTSTATUS status = IoCreateDevice(DriverObject. 

sizeof(DEVICLEXTENSION}. NULL. FILE_DEVICLUNKNOWN. 
0. FALSE. &fido); 

if( !NLSUCCESS(status» 
return status; 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtens1on; 
__ try 

{ 

pdx->DeviceObject = fido; 
pdx->Pdo = pdo; 
PDEVICE_OBJECT fdo = IoAttachDev1ceToDev1ceStack(fido. pdo); 
pdx->LowerDeviceObject = fdo; 
f1do-)Flags 1= fdo-)Flags & 

(DO-DIRECT_IO I DO_BUFFERED_IO I DO_POWER-PAGABLE 
I DO_POWER-INRUSH); 

f1do-)Dev1ceType = fdo-)Dev1ceType: 
f1do-)Character1st1cs = fdo-)Character1st1cs: 
fido->Flags &= -DO_DEVICE_INITIALIZING; 
} 

__ finally 
{ 

if (!NT_SUCCESS(status» 
IoDeleteDevice(fido); 

} 

return status; 
} 
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The part that's different from a function driver is shown in boldface. Basically, 
we're propagating a few flag bits, the DeviceType value, and the Characteristics 
value from the device object next beneath us. We need to make these copies because 
the I/O Manager bases some of its decisions on what it sees in the topmost device 
object. In particular, whether a read or write IRP gets a memory descriptor list (MDL) 
or a system copy buffer depends on what the top object's DO_DlRECT_IO and 
DO_BUFFERED_IO flags are. We don't need to copy the SectorSize or Alignment
Requirement members of the lower device object-IoAttachDeviceToDeviceStack 
will do that automatically. 

NOTE The reason I told you that you have to declare your choice of buffered 
versus direct I/O in AddDevice and that you can't change you mind afterward 
should now be clear: a filter driver might copy your settings at Add Device time 
and won't have any way to know about a later change. 

There's ordinarily no need for a ftlter device object (FiDO) to have its own name. 
If the function driver names its device· object and creates a symbolic link, or if the 
function driver registers a device interface for its device object, an application will 
be able to open a handle for the device. Every IRP sent to the device gets sent ftrst 
to the topmost FiDO driver, whether or not that FiDO has its own name. 

Do not use the FILE_DEVICE_SECURE_OPEN characteristics flag when you cre
ate a FiDO object. The PnP Manager propagates this flag, and a few others, up and 
down the device object stack. It's not your decision whether to enforce security 
checking on file opens-it's the function driver's and maybe the bus driver's. 

Dispatch Routines 
You write a ftlter driver in the first place because you want to modify the behavior 
of a device in some way. Therefore, you'll have dispatch functions that db something 
with some of the IRPs that come your way. But you'll be passing most of the IRPs 
down the stack, and you pretty much know how to do this already: 

NTSTATUS DispatchAny(PDEVICE_OBJECT fido. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension: 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp): 
if (INT_SUCCESS(status» 

return CompleteRequest(Irp. status. 0): 
IoSk1pCurrentlrpStackLocation(Irp): 
status = IoCallDriver(pdx->LowerDeviceObject. Irp): 
IoReleaseRemoveLock(&pdx->RemoveLock. Irp): 
return status: 
} 

NTSTATUS DispatchPnp(PDEVICE_OBJECT fido. PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension: 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp): 
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if (INT_SUCCESS(status» 
return CompleteRequest(Irp. status. 0); 

PIO_STACILLOCATION stack = IoGetCurrentlrpStackLo'cation<Irp); 
ULONG fen = stack->MinorFunction; 
IoSkipCurrentlrpStackLocation(Irp); 
status = IoCallDriver(pdx->LowerDeviceObject. Irp); 
if (fen == IRP_MN_REMOVE_DEVICE) 

{ 

IoReleaseRemoveLockAndWait(&pdx->RemoveLock. Irp); 
IoDetachDevice(pdx->LowerDeviceObject); 
IoDeleteDevice(fido); 
} 

else 
IoReleaseRemoveLock(&pdx->RemoveLock. Irp); 

return status; 
} 

NTSTATUS DispatchPower(PDEVICE_OBJECT fido. PIRP Irp) 
{ 

PoStartNextPowerlrp(Irp); 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fido->DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp); 
if (INT_SUCCESS(status» 

return CompleteRequest(Irp. status. ~); 
IoSkipCurrentlrpStackLocation(Irp); 
status = PoCallDriver(pdx->LowerDeviceObject. Irp);' 
IoReleaseRemoveLock(&pdx->RemoveLock. Irp); 
return status; 
} 

It's necessary, by the way, to acquire and release the remove lock for a filter 
driver's device object, as shown in these examples. The initial call to IoAcquire
RemoveLock checks whether a device removal is currently pending for the FillO. 
If so, the dispatch function fails the IRP immediately with STATUS_DELETE]ENDING, 
the only nonsuccess value that IoAcquireRemoveLock ever returns. While the filter 
owns its remove lock in one ,dispatch function, another thread that might be trying 
to process an IRP _MN_REMOVE_DEVICE inside DispatchPnp will block inside 
IoReleaseRemoveLockAndWait. What's thereby prevented is the call to IoDetach
Device, which might allow the lower device object to disappear. Our own device 
object is protected from deletion by a reference that,was obtained by the caller be
fore sending us this IRP-by using IoGetAttachedDeviceReference, for example. 

Except for IRP _MLPNP, all dispatch functions in a filter driver need to be in 
nonpaged memory,and none sh.ould assume they're being called at PASSIVE_LEVEL. 
Here are two real-world examples of why this might matter. First, a lower filter fora 
USB device will be receiving and passing ,along IRP _MLINTERNAL_DEVlCE_ 
CONTROL requests that contain URBs. (See Chapter 11, "The Universal Serial Bus.") 
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Some of these IRPs arrive at PASSIVE_LEVEL. Others might arrive at DISPATCH_LEVEL 
because they're coming from an I/O completion routine. The second example involves 
a disk driver, which might start out handling power requests at PASSIVE_LEVEL 
because it's set the DO_POWER_PAGABLE flag. The disk driver might subsequently 
learn that its device is being used to hold a paging file or some other special file, 
whereupon it will lock down its power handler and clear the DO_POWER_PAGABLE 
flag. All of a sudden, any filter driver in the same stack will start getting power re
quests at DISPATCH_LEVEL. 

NOTE You should follow this guideline when you program a filter driver: First, 
do no harm. In other words, don't cause drivers above or below you to fail be
cause you perturbed anything at all in their environment or in the flow of IRPs. 

LOGGING ERRORS 
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In the discussions of error handling up until now, I've been concerned only with de
tecting (and propagating) status codes and with doing various things in the checked 
build to help debug problems that show up as errors. Even in the free build of a driver, 
however, some errors are serious enough that we want to be sure the system admin
istrator knows about them. For example, maybe a disk driver discovers that the disk's 
physical surface has an-unusually large number of bad sectors. Or maybe a driver is 
encountering unexpectedly frequent data errors or some sort of difficulty configur
ing or starting the device. 

To deal with these types of situations, a driver can write an entry to the system 
error log. The Event Viewer applet-one of the administrative tools on a Microsoft 
Windows 2000 system----can later display this entry so that an administrator can learn 
about the problem. See Figure 9-4 for an illustration of the Event Viewer. Another 
way to indicate sudden errors is by signaling a Windows Management Instrumenta
tion (WMI) event. I'll discuss event logging in this section; WMI is the subject of 
Chapter 10, "Windows Management Instrumentation." 

Production of an administrative report from the error log involves the steps 
diagrammed in Figure 9-5. A driver uses the kernel-mode service function IoWrite
ErrorLogEntry to send an error log packet data structure to the event logger service; 
The packet contains a· numeric code instead of message text. As time permits, the 
event logger writes packets to a logging file on disk. Later, the Event Viewer com
bines the packets in the log file with message text drawn from a collection of mes
sageflles to produce the report. The message files are ordinary 32-bit DLLs containing 
text appropriate to all possible logged events in the local language. 
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Figure 9-4. The Windows 2000 Event Viewer. 

Figure 9-5. Overview of event logging and reporting. 

Your job as a driver author is to create appropriate error log packets when 
noteworthy events occur. As a practical matter, you'll probably also be the person 
who has to build the message me in at least one natural language. I'll describe both 
aspects of error logging in the next two sections. 
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Creating an Error Log Packet 
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To log an error, a driver creates an IO_ERROR_LOG_PACKET data structure and 
sends it to the kernel-mode logger. The packet is a variable-length structure-see 
Figure 9-6-with a ftxed-size header containing general information about the event 
you're logging. ErrorCode indicates what event you're logging; it correlates with the 
message text file I'll describe shortly. After the fixed header comes an array of 
doublewords called DumpData, which contains DumpDataSize bytes of data that 
the Event Viewer will display in hexadecimal notation when asked for detailed in
formation about this event. The size is in bytes even though the array is declared as 
consisting of 32-bit integers. After the DumpData, the packet can contain zero or more 
null-terminated Unicode strings that will end up being substituted into the format
ted message text by the Event Viewer. The string area begins StrlngOffset bytes from 
the start of the packet and contains NumberOfStrings strings. 

o 
Major- _I DumpDataSize FunctlonCode RetryCount 

4 
NumberOfStrlngs StringOffset 

8 
EventCategory 

C 
ErrorCode 

10 
UnlqueErrorValue 

14 
FlnalStatus 

18 
SequenceNumber 

1C 
loControlCode 

20 

DevlceOffset 

28 

DumpData[DumpDataSlze] 

<string data> 
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You don't have to fill in any of the fixed-header members besides the ones I 
just mentioned. But they add, perhaps, diagnostic utility to the log entries, which might 
help you track down problems. 

Since the logging packet is of variable length, your first job is to determine how 
much memory is needed for the packet you want to create. Add the size of the fixed 
header to the number of bytes of DumpData to the number of bytes occupied by the 
substitution strings (including their null terminators). For example, the following code 
fragment, taken from the EVENnOG sample on the companion disc, allocates an error 
log packet big enough to hold 4 bytes of dump data plus a single string: 

VOID LogEvent(NTSTATUS code. POEVICE_OBJECT fdo) 
{ 

PWSTR rnyname = L"EventLog": 
ULONG packetlen = (wcslen(myname) + 1) * sizeof(WCHAR) 

+ si'zeof(lO_ERROR-LOG_PACKET) + 4; 
if (packetlen > ERROR-LOG_MAXIMUM_SIZE) 

return; 
PIO_ERROR-LOG_PACKET p = (PIO_ERROR-LO~PACKET) 

IoAllocateErrorLogEntry(fdo. (UCHAR) packetlen); 
if (!p) 

return; 

} 

One trap for the unwary in this sequence is that error log packets have a maxi
mum length of152 bytes, the value of ERROR_LOG_MAXIMUM_SlZE. Furthermore, 
the size argument to IoAllocateErrorLogEntry is a UCHAR, which is only 8 bits 
wide. It would be very easy to ask for a packet that was, say, 400 bytes long and be 
embarrassed when only 144 bytes get allocated. (400 is Ox190; 144 is Ox90, which is 
what you'd get after the truncation to 8 bits.) 

Notice that the first argument to 10AlIocateErrorLogEntry is the address of a 
device object. The name, if any, of that device object will appear in eventual log entries 
in place of the %1 substitution escape, which I will discuss more in the next section. 

This code fragment also illustrates the action you should take in response to a 
problem allocating a log entry: none. It's not considered an error if you can't log some 
other error, so you don't want to fail any IRP, generate a bug check, or do anything 
else that will cause your processing to terminate. In fact, you'll notice that this 
LogEvent helper function is VOID because no programmer should be concerned 
enough,about whether it succeeds or fails to have put a check into his or her code. 

409 



Programming the Microsoft Windows Driver Model 

After successfully allocating the log packet, your next job is to initialize the 
structure and hand off control of it to the logger. For example: 

memset(p, 0, sizeof(IO_ERROR-LOG_PACKET»: 
p->ErrorCode = code: 

p->DumpDataSize = 4: 
p->DumpData[0] = <whatever>: 

p->StringOffset = sizeof(IO_ERROR-LOG_PACKET) + p->DumpDataSize: 
p->NumberOfStrings = 1: 
wcscpy«PWSTR) «PUCHAR) p + p->StringOffset), myname): 

IoWriteErrorLogEntry(p): 
} 

When logging a device error, you'd fIll in more of the fIelds in the header than 
just the error code. For information about these other fIelds, consult the IoAllocate
ErrorLogEntry function in the OOK documentation. 

Creating a Message File 
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The Event Viewer uses the ErrorCode in an error packet to locate the text of an 
appropriate message in one of the message files associated with your driver. A mes
sage file is just a 011 with a message resource containing text in one or more natu
rallanguages. Since a WDM driver uses the same executable file format as a OLL, the 
message file for your private messages could just be your driver file itself. I'll give 
you an introduction here to building a message file. You can find additional infor
mation on MSON and in James O. Murray's Windows NT Event Logging (O'Reilly & 

Associates, 1998) at pages 125-57. 
Figure 9-7 illustrates the process by which you attach message text to your driver. 

You begin by creating a message source file with the file extension Me. Your build 
script uses the message compiler (MC.EXE) to translate the messages. One of the 
outputs of the message compiler is a header file containing symbolic constants for 
your messages; you include that file in your driver, and the constants end up being 
the ErrorCode values for the events you log. The other outputs from the message 
compiler are a set of intermediate files containing message text in one or more natural 
languages and a resource script file (.RC) that lists those intermediate files. Your build 
script goes on to compile the resource file and to specify the translated resources as 
input to the linkage editor. At the end of the build, your driver contains the message 
resources required to support the Event Viewer. 
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Figure 9-7. Creating a messageJile. 

The following is an example of a simple message source file. (This is part of 
the EVENTLOG sample program.) 

MessageldTypedef = NTSTATUS 

SeverityNames = 
Success 
Informational 
Warning 
Error 
) 

FacilityNames = 

( 

= 0x0:STATUS_SEVERITY_SUCCESS 
= 0xl:STATUS_SEVERITY_INFORMATIONAL 
= 0x2:STATUS_SEVERITY_WARNING 
= 0x3:STATUS_SEVERITY_ERROR 

System = 0x0 
Eventlog = 0x2A:FACILITY_EVENTLOG_ERROR-CODE . 
) 

LanguageNames = 
English = 0xe409:msg00001 
German = 0x0407:msg00002 

. French = 0x040C: msg00003 
) 

Messageld = 0x0001 
Facility = Eventlog 
Severity = Informational 
SymbolicName = EVENTLOG_MSG_TEST 

(continued) 
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Language = English 
%2 said. "Hello. world!" 

Language = German 
%2 hat gesagt. «Wir sind nicht mehr im Kansasl» 

Language = French 
%2 a dit. «Mon chien a mange mon devoir!» 

1. The MessageIdTypedef statement allows you to specify a symbol that will 
appear as a cast operator in the definition of each of the message iden
tifier constants generated by this message file. For example, later we'll 
define a message with the symbolic name EVEN'ILOG_MSG_TEST. The 
presence of the MessageIdTypedef statement causes the header file 
generated by the message compiler to define this symbol as 
«NTSTATUS)Ox602AOOOlL). 

2. The SeverityNames statement allows you to define your own names for 
the four possible severity codes. The names on the left side of the equal 
signs (Success, Informational, and so on) appear in the definition of 
messages elsewhere in this very file. The symbol after the colon ends up 
being defined-in the header output file-as equal to the number before 
the colon. For example, #define STATUS_SEVERITY_SUCCESS OXO. 

3. The Faci1ityNames statement allows you to defme your own names for 
the facility codes that will be included in the message identifier definitions. 
Here, we've said we'll use the name Evendog in Facility statements later. 
The message compiler generates the statement #define FACIIlTY_ 
EVENTLOG_ERROR_CODE Ox2A as a result of the third line of the 
FacilityNames statement. 

4. The LanguageNames statement allows you to define your own names 
for the languages into which you've translated your messages. Here, 
we've said we'll use the name English elsewhere in the file when we 
mean to specify LANGID 0x0409, which is Standard English in the normal 
Microsoft Windows NT scheme of languages. The name after the colon 
is the name of the intermediate binary file that receives the compiled 

( 

messages for this particular language. : 

5. Each individual message definition contains some header statements 
followed by the text of the message in each of the languages supported 
by this message source file. The MessageId statement can specify an 
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absolute number, as in this example, or it can specify a delta from the last 
message (such as Messageld - +1). You specify the facility code and 
severity by using names defined at the start of the message source file. You 
also specify, with the SymboUcName statement, a symbolic name for this 
message. The message compiler will define this symbol in the header file 
it generates. 

6. For each language you specified in the LanguageNames statement, you 
have a message text definition like this one. It begins with a Language 
statement that uses one of the language names you defined. Text for the 
message follows. Each message text definition ends with a line contain-
ing just a period. (With respect to the German and French nontranslations 
of the phrase "Hello, world!" it will help you to know that at the time I 
wrote this chapter I was in the process of studying the passe compose in my 
French class and a revival of The Wizard of Oz was underway in theaters.) 

Within the message texts, yOu can indicate by means of a percent sign followed 
by an integer the places where you want string substitution to occur. %1 refers to 
the name of the device object that generated the message. That name is an implicit 
parameter when you create an error log entry; you don't have to specify it directly. 
%2, %3, and so on, correspond to the first, second, and so on, Unicode strings you 
append to the log entry. In the example we've been following, %2 will be replaced 
by EventLog because we put that string into our error packet. 

This way of indicating substitution is especially useful in that you're free to put 
strings into the text in whatever order is appropriate for the language you're dealing 
with. So, if your message text read "The %1%2 fox jumped over the %3 dog" in En
glish, it might read "Der %3 Bund wurde vom %1 %2 Fuchs iibergesprungen" in Ger
man. (This is a silly example, of course. If the driver supplied "quick", "brown", and 
"lazy" for the substitution strings, they'd appear in English in all displayed versions 
of the message. But I think you get the point I'm trying to make about word order.) 

The Event Viewer can't find your message file without a little bit of help in 
the form of some registry entries. A key named EventLog resides in the services 
branch of the Windows NT registry-that is, the collection of sub keys below 
HKLM\System\CurrentControISet\Services. Each driver or other service that logs 
events has its own subkey below that.. Each serVice-specmc subkey has values named 
EventMessageFlle and TypesSupported. The EventMessageFile value is a REG_SZ 
or REG_EXPAND_SZ type that names all of the message files that the Event Viewer 
might need to access to format the messages your driver generates. This value would 
have a data string like "%SystemRoot%\System32\iologmsg.dll; %SystemRoot% 
\System32\Drivers\EventLog.sys". IOLOGMSG.DLL contains the text of all the 
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standard NTSTATUS.H codes, by the way. Consult the sidebar below for some tan
talizing hints about how to automatically set these registry entries when you install 
your driver. The TypesSupported value should just be a REG_DWORD type equal
ling "7" to indicate that your driver can generate all possible events-that is, errors, 
warnings, and informational messages. (The fact that you even need to specify this 
value seems like a historical artifact of some kind.) 

A PRACTICAL NOTE ABOUT MESSAGE FILES 

Two practical facts about putting message resources into your driver are diffi
cult to discover: how precisely you make your build script compile your mes
sages, and how you convince the system's hardware installer to put the 
necessary entries into the registry so the Event Viewer will fmd your messages. 
Art Baker's The Windows NT Device Driver Book: A Guide for Programmers 
(Prentice Hall, 1997) alludes to a solution to the first problem on page 308. The 
DDK's discussion of INF files explains how to solve the second problem with 
syntax in an AddService statement. . 

Like the other sample programs in this book, the. EVENTLOG sample is 
based on a Microsoft Visual C++ 6.0 project file. I modified the project defini
tion to include a custom build step for EVENTLOG.MC and to include the re
sulting .RC file in the build. If you open the project settings, you'll see what I 
mean; 

Later in this book (in Chapter 12, "Installing Device Drivers"), I'll discuss 
the general topic of how you use an INF file to install drivers. To see how you 
specify your message file in an INF file, take a look at DEVICE.INF in the 
EVENTLOG project directory and, specifically, at its AddService statement. You'll 
see that the AddService line points to an EventLogLogging section that, in turn, 
uses the AddReg statement to point to an EventLogAddReg section. The lat
ter section adds EventMessageFile and TypesSupported values to the service
specific subkey of the event logger service. 

1/0 CONTROL OPERATIONS 
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If you look at the various types of requests that come to a device, most of them 
involve reading or writing data. On occasion, however, an application needs to per
form an IOCTL operation on a device. An application uses the standard Microsoft 
Win32 API function DeviceIoControl to perform such an operation. On the driver 
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side, an application's call to DeviceloControl turns into an IRP with the major function 
code IRP _MLDEVICE_CONTROL. 

The DeviceloControl API 
The user-mode DeviceloControl API has the following prototype: 

result = DeviceIoControl(Handle. Code. InputData. InputLength. 
OutputData. OutputLength. &Feedback. &Overlapped): 

Handle (HANDLE) is an open handle open to the device. You obtain this handle by 
calling CreateFlle in the following manner: 

Handl e = CreateFil e( '" \\,. \\IOCn". GENERICREAD I qENERICWRITE. 
0. NULL. OPEN_EXISTING. flags. NULL): 

if (Handle == INVALID_HANDLE_VALUE) 
<error> 

CloseHandle(Handle): 

The flags argument to CreateFile is either FlLE_FLAG_OVERLAPPEDor zero 
to indicate whether or not you'll be performing asynchronous operations with this 
file handle. While you have the handle open, you can make calls to ReadFlle, 
WriteFlle, or DeviceloControl. When you're done accessing the device, you should 
explicitly close the handle by calling CloseHandle. Bear in mind, though, that the 
operating system automatically closes any handles that are left open when your pro
cess terminates. 

The Code (DWORD) argument to DeviceIoControl is a control code that indi
cates what control operation you want to perform. I'll discuss how you define these 
codes a bit further on (in "Defining I/O Control Codes"). The InputData (PVOID) 
and InputLength (DWORD) arguments describe a data area that you are sending 
to the device driver. (That is, this data is input from the perspective of the driver.) 
The OutputData (PVOID) and OutputLength (DWORD) arguments describe a data 
area that the driver can completely or partially fill with information that it wants to 
send back to you. (That is, this data is output from the perspective of the driver.) The 
driver will update the Feedback variable (a DWORD) to indicate how many bytes 
of output data it gave you back. Figure 9-8 illustrates the relationship of these buff
ers with the application and driver. The Overlapped (OVERLAPPED) structure is used 
to help control an asynchronous operation, which is the subject of the next section. 
If you specified FlLE_FLAG_OVERLAPPED in the call to CreateFile, you must specify 
the OVERLAPPED structure pointer. If you didn't specify FILE_FLAG_OVERLAPPED, 
you might as well supply NULL for this last argument because the system is going to 
ignore it anyway. 
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User Mode Kernel Mode 

Figure 9-8. Input and output buffers/or DeviceIoControl. 

Whether a particular control operation requires an input buffer or an output 
buffer depends on the function being performed. For example, an IOCTL that retrieves 
the driver's version number would probably require an output buffer only. An IOCTI 
that merely notifies the driver of some fact pertaining to the application would prob
ably require only an input buffer. You can imagine still other operations that would 
require either both or neither of the input and output buffers-it all depends on what 
the control operation does. 

The return value from DeviceIoControl is a Boolean value that indicates suc
cess (if TRUE) or failure (if FALSE). In a failure situation, the application can call 
GetLastError to find out why the call failed. 

Synchrono~s and Asynchronous Calls to DeviceloControl 
When you make a synchronous call to DeviceIoControl, the calling thread blocks until 
the control operation completes. For example: 
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HANDLE Handle = CreateFile("\\\\.\\IOCTL" •...• 0. NULL); 
DWORD version, junk; 
if (DeviceIoControl(Handle, IOCTL-GET_VERSION_BUFFERED, 

NULL, 0, &version, sizeof(version), &junk, NULL» 
printf("IOCTL.SYS version %d.%2d\n", HIWORD(version), 

LOWORD(version»: 
else 

printf("Error %d in IOCTL-GELVERSION_BUFFERED call\n", 
GetLastError(»; 
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Here, we open the device handle without the FILE_FLAG_OVERLAPPED flag. Our 
subsequent call to DeviceIoControl therefore doesn't return until the driver supplies 
the answer we're asking for. 

When you make an asynchronous call to DeviceIoControl, the calling thread 
does not block immediately. Instead, it continues processing until it reaches the point 
where it requires the result of the control operation. At that point, it calls some API 
that will block the thread until the driver completes the operation. For example: 

HANDLE Handle = CreateFile("\\\\.\\IOCTL". 
FILE_FLAG_OVERLAPPED. NULL); 

DWORD version. junk; 
OVERLAPPED Overlapped; 

Overlapped.hEvent = CreateEvent(NULL. TRUE. FALSE. NULL); 
DWORD code; 

if (DeviceIoControl(Handle •...• &Overlapped» 
code = 0; 

else 
code = GetLastError(); 

<continue processing> 

if (code == ERROR-IO_PENDIN~) 
{ 

if (GetOverlappedResult(Handle. &Overlapped. &junk. TRUE» 
code = 0; 

else 
~ode = GetLastErrQr(); 

} 

CloseHandle(Overlapped.hEvent); 
if (code != 0) 

<error> 

Two major differences exist between this asynchronous example and the ear
lier synchronous example. First, we specify the FILE_FLAG_OYERLAPPED flag in 
the call to CreateFile. Second, the call to DeviceIoControl specifies the address of 
an OVERLAPPED structure, within which we've initialized the hEvent event handle 
to describe a manual reset event. (For more information about events and thread 
synchronization in general, see Jeffrey Richter'S Programming Applications for 
Microsoft Windows, Fourth Edition [Microsoft Press, 1999].) 

The asynchronous call to DeviceloControl will have one of three results. First, 
it might return TRUE, meaning that the device driver's dispatch routine was able to 
complete the request right away. Second, it might return FALSE, and GetLastError 
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might retrieve the special error codeERROR_IO_PENDING. This result indicates that 
the driver's dispatch routine returned STATUS_PENDING and will complete the control 
operation later. Note that ERROR_IO_PENDING isn't really an error-it's one of the 
two ways in which the system indicates that everything is proceeding normally. The 
third possible result from the asynchronous call to DeviceloControl is a FALSE return 
value coupled with a GetLastError value other than ERROR. . .IO_PENDING. Such a 
result would be a real error. 

At the point at which the application needs the result of the control 0I>eration, 
it calls one of the Win32 synchronization primitives, such as GetOverlappedResult, 
WaltForSingleObject, or the like. GetOverlappedResult, the synchronization primi
tive I use in this example, is especially convenient because it also retrieves the bytes
transferred feedback value and sets the GetLastError result to indicate the result of 
the I/O operation. Although you could call WaitForSingleObject or a related API
passing the Overlapped.bEvent event handle as an argument-you wouldn't be able 
to learn the results of the DeviceloControl operation; you'd just learn that the operation 
had finished. 

Defining 1/0 Control Codes 
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The Code argument to DeviceloControl is a 32-bit numeric constant that you defme 
using the CTI._CODEpreprocessor macro that's part of both the DDK and the Plat
form SDK. Figure 9-9 illustrates the way in which the operating system partitions one 
of these 32-bit codes into subfields. 

Figure 9-9. Fields in an I/O control code. 

The fields have the follOwing interpretation: 

• The device type (16 bits, first argument to CTI._CODE) is supposed to 
indicate what type of device. implements this control operation. I'm un
aware of any "IOCTI police" inside either Microsoft Windows 98 or 
Microsoft Windows 2000, however, and I believe that the content of the 
field is actually pretty arbitrary. It is customary, though, to use the same 
value (for example, FILE_DEVICE_UNKNOWN) that you use in the driver 
when you call loCreateDevice. 

• The access code (2 bits, fourth argument to CTI_CODE) indicates the 
access rights an application needs to its device handle to issue this con
trol operation. 
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• The function code (12 bits, second argument to CTL_CODE) indicates 
precisely which control operation this code describes. Microsoft reserves 
the first half of the range of this field-that is, values 0 through 2047. You 
and I therefore assign values in the range 2048 through 4095. I'm pretty 
sure I'll never feel cramped by being able to defme only 2048 10CTLs for 
one of my devices. 

• The buffering method (2 bits, third argument to CTL_CODE) indicates how 
the I/O Manager is to handle the input and output buffers supplied by the 
application. I'll have a great deal to say about this field in the next sec
tion when I describe how to implement IRP _MLDEVICE_CONTROL in a 
driver. 

I want to clarify one point of possible confusion. When you create your driver, 
you're free to design a series of 10CTL operations that applications can use in talk
ing to your driver. Although some other driver author might craft a set of 10CTL 
operations that uses exactly the same numeric values for control codes, the system 
will never be confused by the overlap because IOCTL codes are interpreted by only 
the driver to which they're addressed. Mind you, if you opened a handle to a device 
belonging to that hypothetical other driver and then tried to send what you thought 
was one of your own 10CTLs to it, confusion would definitely ensue. 

Mechanically, your life and the life of application programmers who need to 
call your driver will be easier if you place all of your 10CTL definitions in a dedi
cated header file. In the samples on the companion disc, the projects each have a 
header named 10CTLS.H that contains these defmitions. For example: 

#ifndef CTL-CODE 
flpragma message ("CTL-CODE undefined. Include winioctl.h or wdm.h") 

flendi f 

#define IOCTL-GET_VERSION_BUFFERED \ 
CTL_CODE(FILE_DEVICE_UNKNOWN. 0x800. METHOD_BUFFERED. FILE-ANY-ACCESS) 

#define IOCT.L-GET_VERSION_DIRECT \ 
CTL_CODE(FILE_DEVICE_UNKNOWN. 0x801. METHOD_OUT_DIRECT. FILE-ANY-ACCESS) 

/Idefine IOCTL-GELVERSION_NEITHER \ 
CTL_CODE(FILE_DEVICE_UNKNOWN. 0x802. METHOD_NEITHER. FILE-ANY-ACCESS) 

The reason for the message #pragma, by the way, is that I'm forever forgetting 
to include the header file (WINIOCTL.H) that defines CTL_CODE for user-mode 
programs, and I also tend to forget the name. Better a message that will tell me what 
I'm doing wrong than a few minutes grep'ing through the include directory, I al
ways say. 
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Each user-mode call to DeviceIoControl causes the I/O Manager to create .an IRP with 
the major function code IRP _MLDEVICE_CONIROL and to send that IRP to the driver 
dispatch routine at the top of the stack for the addressed device. The top stack loca
tion contains the parameters listed in Table 9-1. Filter drivers might interpret some 
private codes themselves but will-if correctly coded, that is-pass all others down 
the stack. A dispatch function that understands how to handle the IOCTL will reside 
somewhere in the driver stack-most likely in the function driver, in fact. 

Parameters.DevtceIoCcmtrolfteld 

OutputBufferLength 

InputBufferLength 

IoControlCode 

Type3InputBuffer 

Description 

Length of the output buffer-sixth 
argument to DeviceloControl 

Length of the input buffer-fourth 
argument to DeviceloControl 

Control code-second argument to 
DeviceloControl 

User-mode virtual address of input 
buffer for ME1HOD_NEITHER 

Table 9-1. Stack location parameters jor IRP j'vfLDEVICE_CONI'ROL. 

A skeletal dispatch function for control operations looks like this: 

#pragma PAGEDCODE 

NTSTATUS D1spatchControl(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

PAGED_CODE() ; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx-)RemoveLock. Irp); 
if (INT_SUCCESS(status» 

return CompleteRequest(Irp. status. 0); 
ULONG info = 0; 

PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp); 
ULONG cbin = stack-)Parameters.DeviceloControl.lnputBufferLength; 
ULONG cbout = stack~)Parameters.DeviceloControl.OutputBufferLength; 
ULONG code = stack-)Parameters.DeviceloControl.loControlCode; 

switch (code) 
{ 
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default: 
status STATUS_INVALID_DEVICE_REQUEST; 
break; 

} 

IoReleaseRemoveLockC&pdx->RemoveLock. Irp); 
return CompleteRequestClrp. status. info); 
} 

1. You can be sure of being called at PASSIVE_LEVEL, so there's no particu
lar reason for a simple dispatch function to be anywhere but paged 
memory. 

2. Like other dispatch functions, this one needs to claim the remove lock 
while it does its work. That prevents the device object frorb. disappear
ing out from underneath us because of a PnP event. 

3. The next few statements extract the function code and buffer sizes from 
the parameters union in the I/O stack. You often need these values no 
matter which specific 10CTI you're processing, so I find it easier to always 
include these statements in the function. 

4. This is where you get to exercise your own creativity by inserting case 
labels for the various 10CTI operations you support. 

5. It's a good idea to return a meaningful status code if you're given an IOCTI 
operation you don't understand. 

The way you handle each 10CTI depends on two factors. The first, and most 
important, of these is the actual purpose of the 10CTI in your scheme of things. (Duh.) 
The second factor, which is critically important to the mechanics of your code, is the 
method you selected for buffering user-mode data. 

In Chapter 7, "Reading and Writing Data," I discussed how you work with a user
mode program sending you a buffer load of data for output to your device or ftlling 
a buffer with input from your device. As I indicated there, when it comes to read and 
write requests, you have to make up your mind at AddDevice time whether you're 
going to use the so-called buffered method or direct method (or neither of them) for 
accessing user-mode buffers in all read and write requests. Control requests also 
utilize· one of these addressing methods, but they work a little differently. Rather 
than specify a global addressing method via device-object flags, you specify the ad
dressing method for each 10CTI by means of the two low-order bits of the func
tion code. Consequently, you can have some IOCTLs that use the buffered method, 
some that use a direct method, and some that use neither method. Moreover, the 
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methods you pick for IOCTLs don't affect in any way how you address buffers for 
read and write IRPs. 

You choose one or the other buffering method based on several factors. Most 
IOcn operations transfer much less than a page worth of data in either direction and 
therefore use the MElHOD_BUFFERED method. Operations that will transfer more 
than a page of data should use one of the direct methods. The names of the direct 
methods seem to oppose common sense: you use MElHOD_IN_DIRECT if the ap
plication is sending data to the driver and MElHOD_OUT_DIRECT if it's the other 
way around. If you know that you'll get control in the same thread context as the 
application-usually true for IOCTL operations because no filter driver above you 
should be pending these and calling you later in an arbitrary thread context-you 
could use MElHOD_NEITHER and qecide on the fly how to access user-mode data. 

METHOD_BUFFERED 
With MElHOD_BUFFERED, the I/O Manager creates a kernel-mode copy buffer big 
enough for the larger of the user-mode input and output buffers. When your dis
patch routine gets control, the user-mode input data is sitting in the copy buffer. 
Before completing the IRP, you fill the copy buffer with the output data you want 
to send back to the application. When you complete the IRP, you set the 
IoStatus.Information field equal to the number of output bytes you put into the 
copy buffer. The I/O Manager then copies that many bytes of data back to user mode 
and sets the feedback variable equal to that same count. Figure 9-10 illustrates these 
copy operations. 

User Mode Kernel Mode 

. Figure 9-10. Buffer management with METIlOD_BUFFERED. 
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Inside the driver, you access both buffers at the same address-namely, the 
AssociatedIrp.SystemBuffer pointer in the IRP. Once again, this is a kernel-mode 
virtual address that points to a copy of the input data. It obviously behooves you to 
finish processing the input data before you overwrite this buffer with output data. (I 
hardly need to tell you-it's the kind of mistake you'll make only once.) 

Here's a simple example, drawn from the locn sample program, of the code
specific handling for a METHOD_BUFFERED operation: 

case IOCTL-GET_VERSION_BUFFERED: 
{ 

if (cbout < sizeof(ULONG» 
{ 

status = STATUS_INVALID_BUFFER-SIZE; 
break; 
} 

PULONG pversion = (PULONG) Irp->Associatedlrp.SystemBuffer; 
*pversion = 0x0004000A; 
info = sizeof(ULONG); 
break; 
} 

We first verify that we've been given an output buffer at least long enough to hold 
the doubleword we're going to store there. Then we use the SystemBuffer pointer 
to address the system copy buffer, into which we store the result of this simple op
eration. The info local variable ends up as the 10Status.lnformation field when the 
surrounding dispatch routine completes this IRP. The I/O Manager copies that much 
data from the system copy buffer back to the user~mode buffer. 

A SECURITY HOLE? 

I always get a slight nervous feeling when I think about the importance of the 
buffering and access-control flags in an 10CTL function code. Suppose some 
malicious application were to submit an 10CTL that used flag values other than 
the ones I intended. Would that cause a driver to crash or do something else it 
shouldn't? Well, usually not. 

Most of the time, you code the dispatch function for 10CTL requests with 
a switch statement. The case labels reference numeric constants that must match 
exactly with all 32 bits of whatever code the application supplies. So, if an 
application were to change any of the bits in an 10CTL code, none of the case 
labels in the driver would match and some (presumably benign) default action 
would occur. 
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The DIRECT Buffering Methods 
Both ME1BOD_IN_DIRECT and ME1BOD_OUT_DIRECT are handled the same way 
in the driver. They differ only in the access rights required for the user-mode buffer. 
ME1BOD_IN_DIRECT needs read access; ME1BOD_OUT_DIRECT needs read and 
write access. With both of these methods, the I/O Manager provides a kernel-mode 
copy buffer (at AssociatedIrp.SystemBuffer) for the input data and an MDL for the 
output data buffer. Refer to Chapter 7 for all the gory details about MDLs and to 
Figure 9-11 for an illustration of this method of managing the buffers. 

User Mode Kernel Mode 

Figure 9-11. Buffer management with METHOD_X1QCDIREcr. 

Here's an example of a simple handler for a ME1BOD_XXX_DIRECT request: 

case IOCTl-GET_VERSION_DIRECT: 
{ 

if (cbout < sizeof(ULONG» 
{ 

status = STATUS_INVALID_BUFFER-SIZE: 
break: 
} 

PULONG pversion = (PULONG) 
MmGetSystemAddressForMdlCIrp->MdlAddress): 

*pversion = 0x0004000B: 
info = sizeof(ULONG): 
break: 
} 

The only substantive difference between this example and the previous one is 
the bold line. (I also altered the reported version number so that I could easily know 
I was invoking the correct IOCTL from the test program.) With either DIRECT-method 
request, we use the MDL pointed to by the MdlAddress field of the IRP to access 
the user-mode output buffer. You c~n do direct memory access (DMA) using this 
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address. In this example, I just called MmGetSystemAddressForMdl to get a kernel
mode alias address pointing to the physical memory described by the MDt. 

METHOD_NEITHER 
With METHOD_NEITHER, the 1/0 Manager doesn't try to translate the user-mode 
virtual addresses in any way. You get (in the Type3InputBuffer parameter in the 
stack location) the user-mode virtual address of the input buffer, and you get (in 
the UserBuffer field of the IRP) the user-mode virtual address of the output buffer. 
Neither address is of any use unless you know you're running in the same process 
context as the user-mode caller. If you do know you're in the right process context, 
you can just directly dereference the pointers: 

case IOCTL_GET_VERSION_NEITHER: 
{ 

if (cbout < sizeof(ULONG)) 
{ 

status = STATUS_INVALID_BUFFER-SIZE; 
break; 
} 

PULONG pversion = (PULONG) Irp->UserBuffer; 
if (Irp->RequestorMode 1= KernelMode) 

{ 

_try 
{ 

ProbeForWrite(pversion, sizeof(ULONG), 1): 
*pversion = 9x9994999A: 
} 

__ except(EXCEPTION_EXECUTE-HANDLER) 
{ 

status = GetExcept1onCode(): 
break: 
} 

} 

else 
*pversion = 0x0004000A; 

info = sizeof(ULONG); 
break; 
} 

As shown in the previous code in boldface, the only real glitch here is that you 
want to make sure that it's .OK to write into any buffer you get from an untrusted 
source. Refer to Chapter 3 ("Basic Programming Techniques") if you're rusty about 
structured exceptions. ProbeForWrite is a standard kernel-mode service routine for 
testing whether a given user-mode virtual address can be written. The second argu
ment indicates the length of the data area you want to probe, and the third argument 
indicates the alignment you require for the data area. In this example, we want to 
be sure that we can access four bytes for writing, but we're willing to tolerate single
byte alignment for the data area itself. What ProbeForWrite (and its companion 
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function ProbeForRead) actually tests is whether the given address range has the 
correct alignment and occupies the user-mode portion of the address space-it doesn't 
actually try to write to (or read from) the memory in question. 

Conventional wisdom holds that you should never access user-mode memory 
directly in the way I just showed you for fear that some other thread in the same pro
cess might call VirtualFree to release memory in between the time of the ProbeForXXx 
call and the time you make the access. According to this conventional wisdom, you 
should therefore always create an MDL and call MmGetSystemAddressForMdl to 
obtain a safe virtual address. In fact, however, it's perfecdy safe to direcdy access the 
user-mode pointer if three things are true: First, you must be running in the process 
context to which the buffer belongs. Second, you must have done a ProbeForXXx. 
Finally, you must perform the access within a structured exception frame. If any por
tion of the buffer happens to belong to non-existent pages at the time of the access, 
the memory manager will raise an exception instead of immediately bug-checking. Your 
exception handler will backstop the exception and prevent the system from crashing. 

Interrial 1/0 Control Operations 
The system uses IRP _MLDEVICE_CONIROL to implement a DeviceloControl call from 
user mode. Drivers sometimes need to talk to each other too, and they use the related 
IRP _MLINfERNAL_DEVICE_CONIROL to do so. A typical code sequence is as follows: 

ASSERT(KeGetCurrentIrql() == PASSIVE_LEVEL); 
KEVENT event; 
KeInitializeEvent(&event, NotificationEvent, FALSE); 
IO_STATUS_BLOCK iostatus; 
PIRP Irp = IoBuildDeviceIoControlRequest(IoControlCode, 

DeviceObject, pInBuffer, cbInBuffer, pOutBuffer, cbOutBuffer, 
TRUE, &event, &iostatus); 

if (IoCallDriver(DeviceObject, Irp) == STATUS_PENDING) 
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); 

Being at PASSIVE_LEVEL is a requirement for calling KeInitializeEvent and IoBulld
DeviceloControJRequest as well as for blocking on the event object as shown here. 

The IoControlCode argument to 10BuildDeviceloControiRequest is a control 
code expressing the operation you want the target device driver to perform. This code 
is the same kind of code as you use with regular control operations. DeviceObject is 
a pointer to the DEVICE_OBJECT whose driver will perform the indicated operation. 
The input and output buffer parameters serve th~ same purpose as their counterparts 
in a user-mode DeviceloControl call. The seventh argument, which I specified as lRUE 
in this fragment, indicates that you're building an internal control operation. (You 
could say FALSE here to create an IRP _MLDEVICE_CONIROL instead.) I'll describe 
the purpose of the event and iostatus arguments in a bit. 

10BuildDeviceloControiRequest builds an IRP and initializes the first stack 10-
eation to describe the operation code and buffers you specify. It returns the IRP pointer 
to you so that you can do any additional initialization that might be required. In 
Chapter 11, for example, I'll show you how to use an internal control request to submit 



Chapter 9 Specialized Topics 

a URB to the USB bus driver. Part of that process involves setting a stack parameter 
field.to point to the URB. You then call IoCalIDriver to send the IRP to the target device. 
Whatever the return value, you wait on the event object you specified as the eighth 
argument to 10BuildDeviceIoControlRequest. The I/O Manager will set the event when 
the IRP finishes, and it will also fill in your iostatus structure with the ending status 
and information values. Finally, it will call IoFreeIrp to release the IRP. Consequently, 
you don't want to access the IRP pointer at all after you call IoCallDriver. 

Since internal control operations require cooperation between two drivers, 
fewer rules about sending them exist than you'd guess from what I've just described. 
You don't have to use IoBuildDeviceIoControlRequest to create one of them, for ex
ample: you could just call IoAllocateIrp and perform your own initialization. Pro
vided that the target driver isn't expecting to handle internal control operations solely 
at PASSIVE_LEVEL, you could also send one of these IRPs at DISPATCH_LEVEL, say 
from inside an I/O completion or deferred procedure call (DPC) routine. (Of course, 
you couldn't use IoBuildDeviceloControlRequest in such a case, and you couldn't wait 
for the IRP to finish. But you could send it because 1oA1locateIrp and IoCallDriver 
can run at DISPATCH_LEVEL or below.) You don't even have to use the I/O stack 
parameter fields exactly like you would for a regular IOCTL. In fact, calls to the USB 
bus driver use the field that would ordinarily be the output buffer length to hold the 
URB pointer. So, if you're designing an internal control protocol for two ·of your own 
drivers, just think of IRP J1LINTERNAL_DEVICE_CONTROL as being an envelope 
for whatever kind of message you want to send. 

It's not a good idea to use the same dispatch routine for internal arid external 
control operations, by the way, at least not without checking the major function code 
of the IRP. Here's an example of why not. Suppose that your driver has an external 
control interface that allows an application to query the version number of your driver 
and an internal control interface that allows a trusted kernel-mode caller to deter
mine some vital secret that you don't want to share with user-mode programs. Then 
suppose that you use one routine to handle both interfaces, as in this example: 

NTSTATUS DriverEntry( ... ) 
{ 

DriverObject-)MajorFunction[IRP_MJ_DEVICE_CONTROL] 
DispatchControl: 

DriverObject-)MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL] 
DispatchControl: 

} 

NTSTATUS DispatchControl( ... ) 
{ 

switch (code) 
{ 

(continued) 
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case IOCTL-GET_VERSION: 

case IOCTL-INTERNAL-GET_SECRET: 
II ~ exposed for user-mode calls 

} 

} 

If an application is able to somehow determine the numeric value of IOCTI._ 
INTERNAL_GET_SECRET, it can issue a regular DeviceloControl call and bypass the 
intended security on that function. 

Notifying Applications of Interesting Events 
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One extremely important use of IOCTI. operations is to give a WDM driver a way to 
notify an application that an interesting event has occurred. To motivate this discus
sion, suppose you had an application that needed to work closely with your driver 
in such a way that whenever a certain kind of hardware event occurred your driver 
would alert the application so that it could take some sort of user-visible action. For 
example, a button press on a medical instrument might trigger an application to be~ 
collecting and displaying data. Whereas Windows provides a couple of ways for a 
driver to signal an application in this kind of situation:"""nameiy, asynchronous 
procedure calls or posted window messages-those methods don't work in Win
dows 2000 because the operating system lacks the necessary infrastructure to make 
them work. A method that does work, though, is having the application issue an 
IOCTI. operation that the driver completes when the interesting event, whatever it 
might be, occurs. Implementing this scheme requires excruciating care on the driver 
side, so I'll explain the mechanics in detail. 

The central idea in this section is that when the application wants to receive 
event notifications from the driver, it calls DeviceloControl: 

HANDLE hDevice = CreateFile("\\\\.\\(driver-name)" •... ): 
BOOl okay = DeviceioControl(hDevice. IOCTL-WAIT_NOTIFY • 

. . . ) : 
(IOCTI._ WAIT_NOTIFY, by the way, is the control code I used in the NOTIFY sample 
on the companion disc.) 

The driver will pend this IOCTI. and complete it later. If other considerations 
didn't intrude, the code in the driver might be as simple as this: 

NTSTATUS D1spatchControl( ... ) 
{ 

switch (code) 
{ 

case IOCTL-WAIT_NOTIFY: 
pdx-)Notifylrp = Irp: 
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} 

IoMarklrpPending(Irp): 
return STATUS_PENDING: 

} 

VOID OnlnterestingEvent( ... ) 
{ 

CompleteRequest(pdx->Notifylrp, STATUS_SUCCESS, 0): 
} 

ApPLICATION NOTIFICATION BY USING EVENTS 

Sometimes all you need to do in a driver is notify an application that an event 
has occurred, without passing any explanatory data to the application. A stan
dard technique for doing so involves an ordinary Win32 event that the driver 
signals. To use this method, the application first calls CreateEvent or OpenEvent 
to open a handle to an event object, which it then passes to the driver via 
DeviceIoControl.· The driver can convert the user-mode handle to an object 
pointer by making this call: 

PKEVENT pEvent: 
status = ObReferenceObjectByHandle(hEvent, EVENLMODIFLSTATE, 

*ExEventObjectType, Irp->RequestorMode, (PVOID*) &pEvent, NULL): 

Note that the IOCTL must be handled at PASSIVE_LEVEL and in the con
• text of the process that owns the hEvent handle. 

At this point, the driver has a pointer to a KEVENT object, which it can 
use as an argument to KeSetEvent at an auspicious moment. The driver also 
owns a reference to the event object, and it must call ObDereferenceObject 
at some point. The right time to dereference the object depends on the exact 
way the application and the driver fit together. A good guideline might be to 
dereference the event as part of handling the IRP _MLCLOSE for the handle used 
in the IRP _MLDEVICE_CONTROL that supplied the event handle in the first 
place. The EVWAIT driver sample on the companion disc illustrates this par
ticular method. 

The kernel service routines IoCreateNotificationEvent and IoCreate
SynchronizationEvent create event objects that can also be shared by user
mode programs. They are unavailable in Windows 98 and, therefore, unavailable 
to true WDM drivers. 
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The "other considerations" I just so conveniently tucked under the rug are, of 
course, all important in crafting a working driver. The originator of the IRP might 
decide to cancel it. The application might call Cancello, or termination of the ap
plication thread might cause a kernel-mode component to call IoCance1Irp. In ei
ther case, we must provide a cancel routine so that the IRP gets completed. If power 
is removed from our device, or if our device is suddenly removed from the computer, 

'. we need to abort any outstanding locn requests. In general, any number of IOens 
might need to be aborted. Consequently, we'll need a linked list of them. Since 
multiple threads might be trying to access this linked list, we'll also need a spin lock 
so that we can access the list safely. 

Working with an Asynchronous IOCTL 
To simplify my own life, I wrote a set of helper routines for managing asynchronous 
IOCTLs. The two most important of these routines are named CacheControIRequest 
and UncacheControlRequest. They assume that you're willing to accept only one' 
asynchronous IOcn having a particular control code per device object and that you 
can, therefore, reserve a pointer cell in the device extension to point to the IRP that's 
currently outstanding. In NOTIFY, I call this pointer cell NotifyIrp. You accept the 
asynchronous IRP this way: 

IoAcquireRemovelock( ... ); 
switch (code) 

{ 

case IOCTl_WAIT_NOTIFY: 
if «parameters inva7id in some way» 

status = STATUS_INVALID_PARAMETER; 
else 

status = CacheControlRequest(pdx. Irp. &pdx->NotffyIrp): 
break; 
} 

IoReleaseRemovelock( ... ); 
return status == STATUS_PENDING ? status : 

CompleteRequest(Irp. status. info); 

The important statement here is the call to CacheControlRequest, which regis
ters this IRP in such a way that we'll be able to cancel it later, if necessary. It also 
records the address of this IRP in the Notifylrp member of our device extension. We 
expect it to return STATUS_PENDING, in which case we avoid completing the IRP 
and simply return STATUS_PENDING to our caller. 



Chapter 9 Specialized Topics 

NOTE You could easily generalize the scheme I'm describing to permit an 
application to have an IRP of each type outstanding for each open handle. In
stead of putting the current IRP pointers in your device extension, put them in
stead into a structure that you associate with the FILE_OBJECTthat corresponds 
to the handle. You'll get a pointer to this FILE_OBJECT in the I/O stack location 
for IRP _MJ_CREATE, IRP _MJ_CLOSE, and, in fact, all other IRPs generated 
for the file handle. You can use either the FsContext or FsContext2 field of the 
file object for any purpose you choose. 

Later, when whatever event the application is waiting for occurs, we execute 
code like this: 

PIRP nfyirp = UncacheControlRequest(pdx. &pdx->NotifyIrp); 
if (nfyirp) 

{ 

<do something> 
CompleteRequest(nfyirp. STATUS_SUCCESS. <info va7ue»; 
} 

This logic retrieves the address of the pending IOCTL_ WAIT_NOTIFY request, does 
something to provide data back to the application, and then completes the pending 
I/O request packet. 

How the Helper Routines Work 
I hid a wealth of complications inside the CacheControlRequest and UncacheControl
Request functions, These two functions provide a thread-safe and multiprocessor-safe 
mechanism for keeping track of asynchronous IOCTL requests. They use a variation 
on the techniques we've discussed elsewhere in the book for safely queuing and 
dequeuing IRPs at times when someone else might be flitting about trying to cancel 
the IRP. There's a little bit of extra code to show you, though (refer to CONTROL.CPP 
in the NOTIFY sample on the companion disc): 

typedef struct _DEVICE_EXTENSION { 
KSPIN_LOCK IoctlListLock; 
LIST_ENTRY PendingIoctlList; 
} DEVICE_EXTENSION. '*PDEVICE_EXTENSION; 

NTSTATUS CacheControlRequest(PDEVICE_EXTENSION pdx. PIRP Irp. 
PIRP* pIrp) 

(continued) 
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{ 

KIROL oldirql; 
KeAcquireSpinLock(&pdx->IoctlListLock, &oldirql); 
NTSTATUS status; 
if (*pIrp) 

status = STATUS_UNSUCCESSFUL; 
else if (pdx~>IoctlAbortStatus) 

status = pdx->IoctlAbortStatus; 
else 

{ 

IoSetCancelRoutine(Irp, OnCancelPendingIoctl); 
if (Irp->Cancel &&IoSetCancelRoutine(Irp, NULL» 

status = STATUS_CANCELLED; 
else 

} 

{ 

IoMarklrpPending(Irp); 
status = STATUS_PENDING; 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
stack->Parameters.nthers.Argumentl = (PVOID) *pIrp; 
IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 

OnCompletePendingIoctl, (PVOID) pdx, TRUE, TRUE, TRUE): 
PFILE_OBJECT fop = stack->FileObject: 
IoSetNextIrpStackLocation(Irp): 
stack = IoGetCurrentIrpStackLocation(Irp): 
stack->DeviceObject = pdx->DeviceObject: 
stack->FileObject = fop: 

*pIrp = Irp: 
InsertTail List(&pdx->PendingIoctl List, 

&Irp->Ta11.0verlay.L1stEntry): 
} 

KeReleaseSpinLock(&pdx->IoctlListLock, oldirql): 
return status: 
} 

VOID OnCancelPendingIoctl(PDEVICE_OBJECT fdo, PIRP Irp) 
{ 

KIROL oldirql = Irp->CancelIrql: 
IoReleaseCancelSpinLock(DISPATCH_LEVEL); 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
KeAcquireSpinLockAtDpcLevel(&pdx->IoctlListLock); 
RemoveEntryList(&Irp->Tail.Overlay.ListEntry): 
KeReleaseSpinLock(&pdx->IoctlListLock, oldirql): 
Irp->IoStatus.Status = STATUS_CANCELLED; 
IoCompleteRequest(Irp, IO_NO_INCREMENT); 
} 
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NTSTATUS OnCompletePendingloctl(PDEVICE_OBJECT junk. PIRP Irp. 
PDEVICE_EXTENSION pdx) 
{ 

KIRQL oldirql; 
KeAcquireSpinLock(&pdx->IoctlListLock. &oldirql); 
PIO_STACK-LOCATION stack = IoGetCurrentlrpStackLocation(Irp); 
PIRP* plrp = (PIRP*) stack->Parameters.Others.Argumentl; 
if (*plrp == Irp) 

*pIrp = NULL; 
KeReleaseSpinLock(&pdx->IoctlListLock. oldirql); 
return STATUS_SUCCESS; 
} 

PIRP UncacheControl Request(PDEVICCEXTENSION pdx. PIRP* pIrp) 
{ 

KIRQL oldirql; 
KeAcquireSpinLock(&pdx->IoctlListLock. &oldirql); 
PIRP Irp = (PIRP) InterlockedExchangePointer(pIrp. NULL); 
if (lrp) 

{ 

if (IoSetCancelRoutine(Irp. NULL» 
{ 

RemoveEntryList(&Irp->Tail.Overlay.ListEntry); 
} 

else 
Irp = NULL; 

} 

KeReleaseSpinLock(&pdx->IoctlListLock. old;rql); 
return Irp; 
} 

1. We use a spin lock to guard the list of pending IOCfLs and also to guard 
all of the pointer cells that are reselVed to point to the current instance 
of each different type of asynchronous IOCTI. request. 

2. This is where we enforce the rule-it's more of a design decision, really
that only one IRP of each type can be outstanding at one time. 

3. This if statement accommodates the fact that we may need to start failing 
incoming IRPs at some point because of PnP or power events. 

4. Since we'll pend this IRP for what might be a long time, we need to have 
a cancel routine for it. I've discussed cancel logic so many times in this 
book that I feel sure you'd rather not read about it once more. 
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5. Here, we've decided to go ahead and cache this IRP so that we can com
plete it later. Since we're going to end up returning STATUS_PENDING 
from our DispatchControl function, we need to call IoMarkIrpPending. 

6. We need to have a way to NUll. out the cache pointer cell when we can
cel the IRP. It's very difficult to get context parameters into a cancel rou
tine, so I decided to set up an I/O completion routine instead. I use the 
Pat'alD.eters.Others.Argumentl slot in the stack to record the cache 
pointer address. 

7. In order for the completion routine we've just installed to get called, we 
must advance the I/O stack pointer by calling IoSetNextIrpStack
Location. In this particular driver, we know there must be at least one 
more stack location for us to use because our AddDevice function would 
have failed if there hadn't been a driver object underneath ours. The device 
and m.e object pointers that later routines need come from the then-current 
stack location, so we must initialize them as well. 

8. This statement is the point of installing a completion routine. If the IRP 
gets cancelled, we'll eventually gain control to nullify the cache pointer. 

9. In the normal course of events, this statement uncaches an IRP. 

10. Now that we've uncached our IRP, we don't want it to be canceUed any 
more. If IoSetCancelRoutine returns NULL, however, we know that this 
IRP is currently in the process of being cancelled. We return a NULL IRP 
pointer in that case. 

NOTIFY also has an IRP _MLCLEANUP handler for pending 10CTLs that looks 
just about the same as the cleanup handlers I've discussed for read and write opera
tions. Finally, it includes an AbortPendingIoctIs helper function for use at power
down or surprise removal time, as follows: 

VOID AbortPendingIoctls(PDEVICE_EXTENSION pdx. NTSTATUS status) 
{ 

InterlockedExchange(&pdx->IoctlAbortStatus. status); 
CleanupControlRequests(pdx. status. NULL); 
} 

CleanupControlRequests is the handler for IRP _ML CLEANUP. I wrote it in such a 
way that it cancels all outstanding IRPs if the third argument-normally a file object 
pointer-is NULL. . 

NOTIFY is a bit too simple to serve as a complete model for a real-world driver. 
Here are some additional considerations for you to mull over in your own design 
process: 
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• A driver might have several types of events that trigger notifications. You 
could decide to deal with these by using a single 10CTI code, in which 
case you'd indicate the type of event by some sort of output data, or by 
using multiple 10CTIcodes. 

• You might want to allow multiple threads to register for events. If that's 
the case, you certainly can't have a smgle IRP pointer in the device exten
sion-you need a way of keeping track of all the IRPs that relate to a 
particular type of event. If you use only a single type of 10CTL for all 
notifications, one way to keep track is to rely on the PendingloctlList I've 
already discussed. Then, when an event occurs, you execute a loop in 
which you call ExInterlockedRemoveHeadList and IoCompleteRequest 
to empty the pending list. (I avoided this complexity in NOTIFY by fiat
I decided I'd run only one instance of the test program at a time.) 

• Your 10CTI dispatch routine might be in a race with the activity that 
generates events. For example, in the USBINT sample I'll discuss in Chap
ter 11, we have a potential race between the 10CTI dispatch routine and 
the pseudointerrupt routine that services an interrupt endpoint on a USB 
device. To avoid losing events or taking inconsistent .actions, you need a 
spin lock. Refer to the USBINT sample on the companion disc for an illus
tration of how to use the spin lock appropriately. (Synchronization wasn't 
an issue in NOTIFY because by the time a human being is able to per
form the keystroke that unleashes the event signal, the notification request 
is almost certainly pending. If not, the signal request gets an error.) 

MORE ABOUT THE NOTIFY SAMPLE 

NOTIFY consists ofa WDM device driver (in the SYS subdirectory)and a Win32 
console-mode test program (in the TEST subdirectory). You can install the driver 
via the Add New Hardware wizard or the FASTINST utility. Then you can launch 
the test program. It will spawn a separate thread to issue the IOCTI_ WAIT_ 
NOTIFICATION I/O control request. Then it prompts you to execute a keystroke 
or to press Ctrl+Break to end the test. If you type a key, the test program per
forms an 10CTI_GENERATE_EVENT, passing the scan code of your keystroke as 
input data, The driver then completes the pending notification IRP after storing 
this scan code as output data. Alternatively, if you hit Ctrl+Break at the point 
at which TEST is prompting you for a keystroke, this will eventually cause the 
I/O Manager to cancel the outstanding notification IRP. 
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SYSTEM THREADS 
In all the device drivers considered so far in the book, we haven't been overly con
cerned about the thread context in which our driver subroutines have executed. Much 
of the time, our subroutines run in an arbitrary thread context, which means we can't 
block and can't directly access user-mode virtual memory. Some devices are very 
difficult to program when faced with the first of these constraints. 

Some devices are best handled by polling. A device that can't asynchronously 
interrupt the CPU, for example, needs to be interrogated from time to time to check 
its state. In other cases, the natural way to program the device might be to perform 
an operation in steps with waits in between. A floppy disk driver, for example, goes 
through a series of steps to perform an operation. In general, the driver has to com
mand the drive to spin up to speed, wait for the spin-up to occur, commence the 
transfer, wait a short while, and then spin the drive back down. You could design a 
driver that operates as a finite state machine to allow a callback function to properly 
sequence operations. It would be much easier, though, if you could just insert event 
and timer waits at the appropriate spots of a straight-line program. 

Dealing with situations that require you to periodically interrogate a device is 
easy with the help of a system thread belonging to the driver. A system thread is a 
thread that operates within the overall umbrella of a process belonging to the oper
ating system as a whole. I'll be talking exclusively about system threads that execute 
solely in kernel mode. In the next section, I'll describe the mechanism by which you 
create and destroy your own system threads. Then I'll give an example of how to use 
a system thread to manage a polled input device. 

Creating and Terminating System Threads 
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To launch a system thread, you call PsCreateSystemThread. One of the arguments 
to this service function is the address of a thread procedure that acts as the main 
program for the new thread. When the thread procedure is going to terminate the 
thread, it calls PsTerminateSystemThread, which does not return. Generally speak
ing, you need to proVide a way for a PnP event to tell the thread to terminate and to 
wait for the termination to occur. Combining all these factors, you'll end up with code 
that performs the functions of these three subroutines: 

typedef struct _DEVICE_EXTENSION { 

KEVENT evKi 11 : 
PKTHREAD thread: 
} : 

NTSTATUS StartThread(PDEVICE_EXTENSION pdx) 
{ 

NTSTATUS status: 
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HANDLE hthread; 
KelnitializeEvent(&pdx->evKill, NotificationEvent, FALSE); 
status = PsCreateSystemThread(&hthread, THREAD-ALL-ACCESS, 

NULL, NULL. NULL. (PKSTART_ROUTINE) ThreadProc. pdx); 
if (!NT_SUCCESS(status» 

return status; 
ObReferenceObjectByHandle(hthread. THREAD-ALL-ACCESS. NULL. 

KernelMode, (PVOID*) &pdx->thread. NULL); 
ZwClose(hthread); 
return STATUS_SUCCESS; 
} 

VOID StopThread(PDEVICE_EXTENSION pdx) 
{ 

KeSetEvent(&pdx->evKill, 0, FALSE); 
KeWaitForSingleObject(pdx->thread. Executive. KernelMode. FALSE. NULL); 
ObDereferenceObject(pdx->thread); 
} 

VOID ThreadProc(PDEVICE_EXTENSION pdx) 
{ 

KeWaitForXxx«at least pdx->evKil1»; 

PsTerminateSystemThread(STATUS_SUCCESS); 
} 

1. Declare a KEVENT named evKlll in the device extension to provide a way 
for a PnP event to signal the thread to terminate. This is the appropriate 
time to initialize the event. 

2. This statement launches the new thread. The return value for a success
ful call is a thread handle that appears at the location pointed to by the 
first argument. The second argument specifies the access rights you re
quire to the thread; THREAD_ALL_ACCESS is the appropriate value to 
supply here. The next three arguments pertain to threads that are part of 
user-mode processes and should be NULL when a WDM driver calls this 
function. The next-to-Iast argument (ThreadProc) designates the main 
program for the thread. The last argument (pdx) is a context argument 
that will be the one and only argument to the thread procedure. 

3. To wait for the. thread. to terminate, you heed the address of the under
lying KTHREAD object instead of the handle you get back from PsCreate
SystemThread. This call to ObReferenceObjectByHandle gives you that 
address. 
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4. We don't actually need the handle once we have the address of the 
KTHREAD, so we call ZwClose to close that handle. 

5. A routine such as StopDevice--which performs the device-specific part 
of IRP _MN_STOP _DEVICE in my scheme of driver modularization-can 
call StopThread to halt the system thread. The first step is to set the evKill 
event. 

6. This call illustrates how to wait for the thread to finish. A kernel thread 
object is one of the dispatcher objects on which you can wait. It assumes 
the signalled state when the thread finally finishes. In Windows 2000, you 
always perform this wait to avoid the embarrassment of having your 
driver's image unmapped while one of your system threads executes the 
last few instructions of its shutdown processing. That is, don't just wait for 
a special "kill acknowledgment" event that the thread sets just before it 
exits-the thread has to execute PsTerminateSystemThread before your 
driver can safely unload. Refer also to an important Windows 98 com
patibility note ("Waiting for System Threads to Finish ':,) at the end of this 
chapter. 

7. This call to ObDereferenceObject balances the call to ObReference
ObjectByHandle that we made when we created the thread in the first 
place. It's necessary to allow the Object Manager to release the memory 
used by the KTHREAD object that formerly described our thread. 

8. The thread procedure will contain miscellaneous logic that depends on 
the exact goal you're trying to accomplish. If you block while waiting for 
some external event, you should call KeWaitForMultipleObjects and 
specify the evKill event as one of the objects. 

9. When you detect that evKill has been signalled, you call the PsTerminate
System Thread function, which terminates the thread. Consequently, it 
doesn't return. Note that you can't terminate a system thread except by 
calling this function in the context of the thread itself. 

Using a System Thread for Device Polling 
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If you had to write a driver for a device that can't interrupt the CPU to demand ser
vice, a system thread devoted to polling the device may be the way to go. I'll show 
you one way to use a system thread for this purpose. This example is based on a 
hypothetical device with two input ports. One port acts as a control port; it delivers 
a 0 byte when no input data is ready and a 1 byte when input data is ready. The other 
port delivers a single byte of data and resets the control port. 
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In the sample I'll show you, we spawn the system thread when we process the 
IRP _MN_START_DEVICE request. We terminate the thread when we receive a Plug 
and Play request such as IRP _MN_STOP _DEVICE or IRP _MN_REMOVE_DEVICE that 
requires us to release our VO resources. The thread spends most of its time blocked. 
When the Startlo routine begins to process an IRP _MLREAD request, it sets an 
event that the polling thread has been waiting for. The polling thread . then enters 
a loop to service the request. In the loop, the polling thread first blocks for a ftxed 
polling interval. After the interval expires, the thread reads the control port. If the 
control port is 1, the thread reads a data byte. The thread then repeats the loop until 
the request is satisfted, whereupon it goes back to sleep until StartIo receives another 
request. 

The thread routine in the POLLING sample is as follows: 

VOID Po.ll i ngThreadRouti ne( PDEVICE_EXTENSION pdx) 
{ 

NTSTATUS status: 
KTIMER timer; 
KeInitializeTimerEx(&timer. SynchronizationTimer); 

PYOID mainevent~[] = { 
(PVOID) &pdx->evKill. 
(PVOID) &pdx->evRequest. 
}; 

PYOID pollevents[] = { 
(PV~ID) &pdx->evKill. 
(PVOID) &timer. 
} ; 

ASSERT(arraysize(mainevents) <= THREAD_WAIT_OBJECTS): 
ASSERT(arraysize(pollevents) <= THREAD_WAIT_OBJECTS): 

BOOLEAN kill = FALSE: 

whil e (! kill) 
{ II until told to quit 
status = KeWaitForMultipleObjects(arraysize(mainevents). 

mainevents. WaitAny. Executive. KernelMode. FALSE. 
NULL. NULl): 

if (!NLSUCCESS(status) II status = STATULWAIL0) 
break: 

ULONG numxfer = 0: 
LARGE_INTEGER duetime = {0}: 
#define POLLING_INTERVAL 500 

(continued) 
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KeSetTimerEx(&timer. duetime. POLLING_INTERVAL. NULL); 

PIRP Irp = GetCurrentIrp(&pdx->dqReadWrite); 

while (TRUE) 
{ II read next byte 
if (lrp->Cancel) 

{ 

status = STATUS_CANCELLED; 
break; 
} 

status = AreRequestsBeingAborted(&pdx->dqReadWrite); 
if (! status) 

break; 
status = KeWaitForMultipleObjects(arraysize(pollevents). 

pollevents. WaitAny. Executive. KernelMode. FALSE. 
NULL. NULL); 

if (!NT_SUCCESS(status» 
{ 

kill = TRUE; 
break; 
{ 

if (status == STATUS_WAIT_0) 
{ 

status = STATUS_DELETE_PENDING; 
kill = TRUE; 
break; 
} 

if (pdx->nbytes) 
{ 

if (READ_PORT_UCHAR(pdx->portbase) == 1) 
{ 

} 

*pdx->buffer++ = READ_PORT_UCHAR(pdx->portbase + I); 

--pdx->nbytes; 
++numxfer; 
} 

if (!pdx->nbytes) 
break; 

} II read next byte 
KeCancelTimer(&timer); 
StartNextPacket(&pdx->dqReadWrite. pdx->DeviceObject); 
if (lrp) 

{ 

IoReleaseRemoveLock(&pdx->RemoveLock. Irp); 
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CompleteRequestClrp. STATUS_SUCCESS. numxfer): 
} 

} II unt1l told to qu1t 

PsTerm1nateSystemThreadCSTATUS_SUCCESS): 
} 

1. We'll be using this kemel timer later to control the frequency with which 
we poll the device. 

2. We'll call KeWaitForMultipleObjects twice in this function to block the 
polling thread until something of note happens. These two arrays provide 
the addresses of the dispatcher objects on which we'll wait. The ASSERT 
statements verify that we're waiting for few enough events such that we 
can use the array of wait blocks that's built in to the thread object. 

3. This loop terminates when an error occurs or when evKi11 becomes sig
nalled. We'll then terminate the entire polling thread. 

4. This wait terminates when either evKlll or evRequest becomes signalled. 
Our StartIo routine will signal evRequest to indicate that an IRP exists for 
us to service. 

5. The call to KeSetTimerEx starts our timer counting. This is a repetitive 
timer that expires once based on the due time and periodically thereafter. 
We're specifying a 0 due time, which will cause us to poll the device 
immediately. The POlliNG_INTERVAL is measured in milliseconds. 

6. This inner loop terminates when either the kill event becomes signalled 
or we're done with the current IRP. 

7. While we're g9ing about our business in this loop, the current IRP might 
get cancelled, or we might receive a PnP or power IRP that requires us 
to abort this IRP. 

8. In this call to KeWaitForMultipleObjects, we take advantage of the fact 
that a kernel timer acts like an event object. The call ftnishes when either 
evKlll is signalled (meaning we should terminate the polling thread al
together) or the timer expires (meaning we should execute another poll). 

9. This is the actual polling step in this driver. We read the control port, whose 
address is the base port address given to us by the PnP Manager. If the 
value indicates that data is available, we read the data port. 

The Startlo routine that works with this polling routine first sets the buffer 
and nbytes ftelds in the device extension; you saw the polling routine use them 
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to sequence through an input request. Then it sets the evRequest event to wake up 
the polling thread. 

You can organize a polling driver in other ways besides the one I just showed 
you. For example, you could spawn a new polling thread each time an arriving re
quest fmds the device idle. The thread services requests until the device becomes idle, 
whereupon it terminates. This strategy would be better than the one I illustrated if 
long periods elapse between spurts of activity on the device, because the polling 
thread wouldn't be occupying virtual memory during the long intervals of quiescence. 
If, however, your device is more or less continuously busy, the first strategy might 
be better because it avoids repeating the overhead of starting and stopping the poll
ing thread. 

EXERCISING THE POLLING SAMPLE 

You can test the POLLING sample driver on Windows 98 only. Follow the di
rections on the companion disc for launching the DEVI'EST simulator for the 
fake hardware that POLUNG manages. Then launch the user-mode TEST pro
gram to perform a read operation. 

EXECUTIVE WORK ITEMS 
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From time to time, you might wish that you could temporarily lower the processor's 
interrupt request level (IRQL) to carry out some task or another that must be done 
at PASSIVE_LEVEL. Lowering IRQL is, of course, a definite no-no. So long as you're 
running at or below DISPATCH_LEVEL, however, you can queue an executive work item 
to request a callback into your driver later. The callback occurs at PASSIVE_LEVEL in 
the context of a worker thread owned by the operating system. Using a work item can 
save you the trouble of creating your own thread that you only occaSionally wake up. 

I'll describe a simple way of using an executive work item. First declare a struc
ture that starts with an unnamed instance of the WORK_QUEUE_ITEM structure. 
Here's an example drawn from the WORKITEM sample on the companion disc: 

struct _RANDOM_JUNK { 
struct _WORK-QUEUE_ITEM; 
<other stuff> 
} RANDOM_JUNK, *PRANDOM_JUNK; 
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DECLARING THE WORK-ITEM STRUCTURE 

The ability to have an unnamed union or structure that's a member of a bigger 
structure is a Microsoft extension to the C/C++ language. In the example shown 
in the text, you can directly reference members of the standard WORK_QUEUE_ 
ITEM without needing to supply an intermediate level df name qualification. 

If you're able to use C++ syntax-as I'm doing in the sample programs
there's a better way to declare a structure like the one I showed you in the text: 

struct _RANDOM_JUNK: public _WORK-QUEUE_ITEM { 
<other stuff> 
} : 

typedef _RANDOM_JUNK RANDOM_JUNK. *PRANDOM_JUNK: 

This syntax says that .-RANDOMJUNK is derived from _ WORK_ QUEUE_ITEM, 
meaning that it inherits all of the same members as the base structure. You're 
probably familiar with the concept of deriving C++ classes from other classes, 
but you can derive structures as well. Using this method of declaration, you can 
still directly reference WORK_QUEUE_lTEMfields without extra name qualifi
cation, but you won't be relying on a Microsoft language extension to do so. 

When you're ready, allocate an instance of this structure from the heap and 
initialize it: 

PRANDOM_JUNK item = (PRANDOM_JUNK) ExAllocatePool(PagedPool. 
s;zeof(RANDOM_JUNK): 

ExlnitializeWorkltem(item. (PWORKER-THREAD_ROUTINE) Callback. 
(PVOID) item): 

(additional initialization> 

In the call to ExInitializeWorkItem, the fIrst argument (item.) is the address of the 
WORK_QUEUE_lTEM embedded in your structure. ExInitializeWorkItem is actually 
a rrulCfO that Simply references WORK_QUEUE_lTEM fIelds using this pointer; I didn't 
need to supply a cast here because I declared the WORK_QUEUE_lTEMas an un
named structure member. The second argument (Callback) is the address of a call
back routine elsewhere in your driver .. The third and final argument is a context 
parameter that will eventually be used as the single argument to the callback rou
tine. I used the item pointer here for reasons that will become apparent when I show 
you the callback routine. ExlnitializeWorkItem'merely initializes that part of your 
structure (that is, WORK_QUEUEJTEM) that the system knows about. After calling 
ExInitializeWorkItem, you need to do any initialization of your own data members 
that might be required. 
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At this point, you're ready to ask the system to put your work item into a queue, 
which can be done using the ExQueueWorkItem function: 

ExQueueWorkltem(item. Queueldentifier): 

QueueIdentifier can be either of these two values: 

• DelayedWorkQueue indicates that you want your work item executed 
in the context of a system worker thread that executes at variable prior
ity-that is, not at a real-time priority level. 

• CriticalWorkQueue indicates that you want your work item executed in 
the context of a system worker thread that executes at a real-time priority. 

You choose the delayed or t;he critical work queue depending on the urgency 
of the task you're trying to perform. Putting your item into the critical work queue 
will give it priority over all noncritical work in the system at the possible cost of 
redUCing the CPU time available for other critical work. In any case, the activities 
you perform in your callback can always be preempted by activities that run at an 
elevated IRQL. 

After you queue the work item, the operating system will call you back in the 
context of a system worker thread having the characteristics you specified as the 
second argument to ExQueueWorkItem. You'll be at IRQL PASSIVE_LEVEL. What you 
do inside the callback routine is pretty much up to you except for one requirement: 
you must release or otherwise reclaim the memory occupied by the work queue item. 
Here's a skeleton for a work-item callback routine: 

VOID Callback(PRANDOM_JUNK item) 
{ 

PAGED_CODE(): 

ExFreePool(item); 
} 

This callback receives a single argument (item), which is the context parameter 
you supplied earlier in the call to ExInitializeWorkItem. This fragment also shows the 
call to ExFreePool that balances the allocation we did earlier. Since you must re
lease the work item memory if you allocated it from the heap in the first place, it's 
often convenient to pass the work queue item address itself as the context parameter. 
That's what I did here, in fact, because the work queue item occupies the first sev
eral bytes of the RANDOMJUNK structure. 

I have one more important point to make about work items. You can't remove 
a work item from the system queue. If, however, you were to honor a PnP request 
to remove your device, it's possible (though pretty unlikely) for your driver to be 
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removed from memory while a work item is still pending. The remove lock mecha
nism I described in Chapter 6, "Plug and Play," gives you a perfect way to prevent 
this from happening, as follows: 

• Before you queue a work item, use IoAcquireRemoveLock to establish 
a claim that will prevent your driver from being unloaded. 

• At the end of the work-item callback routine, call IoReleaseRemoveLock 
to release that claim. To do this, you'll need to have access to your de
vice extension inside the callback routine. Chances are you'll need the 
device extension pointer for other reasons, anyway. So, you'll probably 
want to put a device extension or device object pointer inside the 
RANDOM...JUNK structure (to' which you'll probably also give a better 
name!). 

In addition, your callback routine needs to take whatever steps are necessary 
to avoid accessing hardware that's been surprise-removed or depowered, and so on, 

loAliocateWorkltem, loQueueWorkHem, and loFreeltem 
Windows 2000 provides a new set of functions--IoAllocateWorkItem, IoQueue
workItem, and IoFreeItem--that Microsoft recommends you use instead of the execu
tive support functions I just described. The new functioI1s surround calls to the 
executive-level functions with code that claims a reference to a device object you 
specify. That reference prevents your device object from disappearing, but it doesn't 
hold off the processing of IRP _MN_REMOVE_DEVICE requests. So long as you un
derstand that you must prevent the disappearance of your driver and any resources 
that your work-item callback will access until after the callback executes, there's no 
compelling reason to use the new functions. 

ABOUT THE WORKITEM SAMPLE 

The WORKITEM sample driver on the companion disc illustrates the bare 
mechanics of using an executive work item. It's basic;ally a reprise of the NO
TIFY sample that works like this: The test application issues aDeviceloControl 
with a code of IOCTL_SUBMIT_lTEM. The driver treats this as an asynchro
nous IOCTL by using the techniques I described earlier in this chapter. It also 
queues a work item before returning from the DEVICE_CONTROL dispatch 
function .. When the work item callback occurs, the driver then completes the 
IOCTI_SUBMIT_lTEM. 
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WATCHDOG TIMERS 
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Some devices won't notify you when something goes wrong-they simply don't 
respond when you talk to them. Each device object has an associated 10_TIMER object 
that you can use to avoid indefmitely waiting for an operation to fmish. While the 
timer is running, the I/O Manager will call a timer callback routine once a second. 
Within the timer call,back routine, you can take steps to terminate any outstanding 
operations that should have finished but didn't. . 

You initialize the timer object at AddDevice time: 

NTSTATUS AddDevice( ... ) 
{ 

IoInitializeT1mer(fdo. (PIO_TIMER-ROUTINE) OnTimer. pdx); 

} 

where fdo is the address of your device object, OnTimer is the timer callback rou
tine, and pd:x: is a context argument for the I/O Manager's calls to OnTimer. 

You start the timer counting by calling IoStartTimer, and you stop it from 
counting by calling IoStopTimer. In between, your OnTimer routine is called once 
a second. 

The PIOFAKE sample on the companion disc illustrates one way of using the 
10_TIMER as a watchdog. I put a timer member into the device extension for this 
fake device: 

typedef struct _DEVICE_EXTENSION { 

LONG timer; 

} DEVICE_EXTENSION. *PDEVICE_EXTENSION; 

When I process an IRP _MLCREATE after a period with no handles open to the 
device, I start the timer counting~ When I process the IRP _MLCLOSE that closes the 
last handle, I stop the timer: 

NTSTATUS DispatchCreate( •.. ) 
{ 

if (InterlockedIncrement(&pdx->handles == 1) 
{ 

} 

pdx->timer = -1; 
IoStartTimer(fdo); 
} 
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NTSTATUS DispatchClose( ... ) 
{ 

if (InterlockedDecrement(&pdx->handles) == 0) 
IoStopTimer(fdo): 

} 

The timer cell begins life with the value -1. I set it to 10 (meaning 10 seconds) 
in the Startlo routine and again after each interrupt. Thus, I allow 10 seconds for the 
device to digest an output byte and to generate an interrupt that indicates readiness 
for the next byte. (See the sidebar "More About PIOFAKE" for an explanation of the 
way this nonexistent device works.) The work to be done by the OnTimer routine 
at each I-second tick of the timer needs to be synchronized with the interrupt ser
vice routine (ISR). Consequently, I use KeSynchronizeExecution to call a helper 
routine (CbeckTimer) at device IRQL (DIRQL) under protection of the interrupt 
spin lock. The timer-tick routines dovetail with the ISR and DPC routines as shown 
in this excerpt: 

VOID OnTimer(PDEVICLOBJECT fdo. PDEVICLEXTENSION pdx) 
{ 

KeSynchronizeExecution(pdx->InterruptObject. 
(PKSYNCHRONIZLROUTINE) CheckTimer. pdx): 

} 

VOID CheckTimer(PDEVICE_EXTENSION pdx) 
{ 

if (pdx->timer <= 0 I I --pdx->timer > 0) 
return: 

PIRP Irp = GetCurrentlrp(&pdx->dqReadWrite); 
1 f (I I rp) 

return; 
Irp->IoStatus.Status ~ STATUS_IO_TIMEOUT; 
Irp->IoStatus.lnformation = 0: 
IoRequestDpc(pdx->DeviceObject. Irp. NULL); 
} 

BOOLEAN Onlnterrupt( ..• ) 
{ 

if (pdx->timer <= 0) 
return TRUE; 

if (!pdx->nbytes) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.lnformation = pdx->numxfer; 

(conttnued) 
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pdx->timer = -I; 
IoRequestDpc(pdx->Dev1ceObject. Irp. NULL); 
} 

pdx->timer = 10; 
} 

VOID DpcForIsr( ... ) 
{ 

PIRP Irp = StartNextPacket(&pdx->dqReadWr1te. fdo); 
IoCompleteRequest(Irp. IO_NO_INCREMENT); 

} 

1. A timer value of -1 means that no request is currently pending. A value 
of 0 means that the current request has timed out. In either case, we don't 
want or need to do any more work in this routine. The second part of the 
if expression decrements the timer. If it hasn't counted down to 0 yet, we 
return without doing anything else. 

2. This driver uses· a DEVQUEUE, so we call the DEVQUEUE routine 
GetCurre:tltlrp to get the address of the request we're currently process
ing. If this value is NULL, the device is currently idle. 

3. At this point, we've decided we want to terminate the current request 
because nothing has happened for 10 seconds. We request a DPC after 
filling in the IRP status fields. This particular status code (STATUS_IO_ 
TIMEOUT) turns into a Win32 error code (ERROR_SEM_TIMEOUT) for 
which the standard error text ("The semaphore timeout period has ex
pired") doesn't really indicate what's gone wrong. If the application that 
has requested this operation is under your control, you should provide a 
more meaningful explanation. 

4. If the timer equals 0, the current request has timed out. The ChecIaimer 
routine requested a DPC, so we don't need or want to do any more work 
in the ISR besides dismissing the interrupt. By setting timer to -1, we 
prevent the next invocation of CheckTimer from requesting another DPC 
for this same request. 

5. We allow 10 seconds between interrupts. 

6. Whateverrequested this DPC also filled in the IRP's status fields. We there
fore need to call only IoCompleteRequest. 



Chapter 9 Specialized Topics 

MORE ABOUT PIOFAKE 

The PIOFAKE sample driver works with a nonexistent device that follows a 
programmed I/O (PIO) model. The device has a single output port to which 
you can write ASCII characters. After it digests a data byte, it generates an in
terrupt on its IRQ line. 

If you install PIOFAKE in Windows 2000 and run the associated TEST 
program, nothing will happen for 10 seconds. Then PIOFAKE will time out 
because it hasn't seen an interrupt, whereupon the test application will report 
a timeout error. 

In Windows 98, you can use the DEVfEST device simulator to exercise 
the PIO part of this sample driver. Refer to the instructions in PIOFAKE.HTM 
for additional information. 

WINDOWS 98 COMPATIBILITY NOTES 
There are some minor differences between Windows 98 and Windows 2000 insofar 
as the material discussed in this chapter goes. 

Error Logging 
Windows 98 doesn't implement an error.;logging file or an Event Viewer. When you 
call IoWrlteErrorLogEntry in Windows 98, all that happens is that several lines of 
data appear on your debugging terminal. I find the formatting of this information 
unaesthetic, so I prefer to simply not use the error-logging facility under Windows 98. 
Refer to Appendix A, "Coping with Windows 98 Incompatibilities," for suggestions 
about how to determine whether you're running Windows 98 or Windows 2000. 

1/0 Controls and Windows 98 Virtual Device Drivers 
A Win32 application can use DeviceloControl to communicate with a Windows 98 
virtual device driver (VxD) as well as a WDM driver. Three subtle and minor differ
ences exist between 10CTIs for WDM drivers and 10CTIs for VxDs. The most im
portant difference has to do with the meaning of the device handle you obtain from 
CreateFile. When working with a WDM driver, the handle is for a specific device, 
whereas you get a handle for the driver when you're talking to a VxD. In practice, 
a VxD might need to implement a pseudohandle mechanism (embedded within the 
10CTI data flow) to allow applications to refer to specific instances of the hardware 
managed by the VxD. 

Another difference between VxD and WDM control operations concerns the 
assignment of numeric control codes. As I discussed earlier, you define a control code 
for a WDM driver by using the CTI_CODE macro, and you can't define more than 

449 



Programming the Microsoft Windows Driver Model 

2048 codes. For a VxD, .all 32-bit values except 0 and -1 are available. If you want 
to write an application that can work with either a VxD or a WDM driver, use 
CTL_CODE to define your control codes, since a VxD will be able to work with the 
resulting numeric values. 

The last difference is a pretty minor one: the second-to-Iast argument to 
DeviceloControl-a PDWORD pointing to a feedback variable-is required when you 
call a WDM driver but not when you call a VxD. In other words, if you're calling a 
WDM driver, you must supply a non-NULL value pointing to a DWORD. If you're 
calling a VxD, however, you can specify NULL if you're not interested in knowing 
how many data bytes are going into your output buffer. It shouldn't hurt to supply 
the feedback variable when you call a VxD, though. Furthermore, the fact that this 
pointer can be NULL is something that a VxD writer might easily overlook, and you 
might provoke a bug if your application takes advantage of the freedom to say NULL. 

Caution About Pending IOCTL Operations 
If an application uses the pending IOCTL technique to wait for your driver to tell 
it about hardware events, the application necessarily has a handle open while it's 
running. If your device can be removed from the computer by surprise, you need 
to fail the pending IOCTL(s) to encourage the application to close its handles. In 
Windows 2000, you could delay handling the eventual IRP _MN_REMOVE_DEVICE 
request until all handles get closed. You don't dare delay in Windows 98, however, 
because of the deadlock possibility I described at the end of Chapter 6. If you look 
at my sample drivers, and at NOTIFY in particular, you'll see that they do not acquire 
the remove lock when they process IRP _MLCREATE. That means that they will al
low themselves to be unloaded even though handles are open. Luckily, Windows 98 
is able to deal with the aftermath without further incident. 

Waiting for System Threads to Finish 
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Windows 98 doesn't support the use of a pointer to a thread object (a PK'fHREAI)) 
as an argument to KeWaitForSingleObject or KeWaitForMultipleObjects. Those 
support functions simply pass their object pointer arguments through to VWIN32.VXD 
without any sort of validity checking, and VWIN32 crashes because the thread ob
jects don't have the structure members needed to support synchronization use. 

If you need to wait for a kernel-mode thread to complete in Windows 98, there
fore, you'll need to have the thread signal an event just before it calls PsTerminate
SystemThread. It's possible that signalling this event will cause the terminating thread 
to lose control to a thread waiting for the same event. The terminating thread would 
then still be alive technically, but I don't think anything awful can happen as a re
sult in Windows 98. In Windows 2000, however, you could easily find the driver 
unloaded out from under the terminating thread; be sure to wait on the thread ob
ject itself in Windows 2000. 
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Windows 
Management 

Instrumentation 

Microsoft Windows 2000 supports a facility named Windows Management Instrumen
tation (WMI) as a way to manage the computer system. WMI is Microsoft's imple
mentation of a broader industry standard called Web~Based Enterprise Management 
(WBEM). The goal of WMI is to provide a model for system management and the 
description of management data in an enterprise network that's as iridependent as 
possible from a specific API set or data object model. Such independence facilitates 
the development of general mechanismS for creating, transporting, and displaying data 
and for exercising control over individual system components. 

WDM drivers fit into WMI in three ways. See Figure 10-1. First, WMI responds 
to requests for data that (usually) convey information about performance. Second, 
controller applications of various kinds can use the facilities of WMI to control ge
neric features of conforming devices. Finally, WMI provides an event-signalling 
mechanism that allows drivers to notify interested applications of important events. 
I'll discuss all three of these aspects of driver programming in this· chapter. To help 
you understand the test programs that accompany the driver samples for this chap
ter, I'm also going to describe how the user-mode side of WMI works. 
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Statistical and 
performance data 

Events 

Controls 

Figure 10-1. The role of a WDM driver in WMl. 

THE WMI AND WaEM NAMES 

The Common Information Model (CIM) is a specification for Web-based enter
prise management supported by the Distributed Management Task Force (DMTF), 
formerly named the Desktop Management Task Force. Microsoft named its 
implementation of the Common Information Model "WBEM," which was essen
tially "CIM for Windows." The kernel-mode portion of CIM for Windows was 
called "WMI." In order to get CIM more widely adopted, DMTF started a mar
keting initiative and used WBEM as the name of CIM. Microsoft then renamed 
its implementation of WBEM to WMI and renamed WMI (the kernel-mode por
tion) to. "WMI extensions for WDM." That being said, WMI is compliant with 
the CIM and WBEM specification. 

I'm afraid my usage of the various different terms in this chapter won't 
go very far to resolve the confusion you might feel at this point. I'd suggest that 
you think "WMI" whenever you see "CIM" or "WBEM" in this book and any 
documentation Microsoft provides. You'll probably then at least be thinking 
about the same concept that I and Microsoft are trying to write about-until 
something with a name like "Windows Basic Extensions for Mortals" or "Com
pletely Integrated Mouse" comes along, that is. Then you're on your own. 

WMI CONCEPTS 
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Figure 10-2 diagrams the overall architecture of WMI. In the WMI model, the world 
is divided into consumers and providers of data and events. Consumers consume, and 
providers proVide, blocks of data that are instances of abstract classes. The concept 
involved here is no different from that of a class in the C++ language. Just like C++ 
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classes, WMI classes have data members and methods that implement behaviors for 
objects. What goes inside a data block isn't specified by WMI-that depends on 
who's producing and for what purpose. When it comes to device drivers, though, 
the content of a WMI data block is most likely going to be statistical in nature. 
Consumers of driver data, therefore, are often performance monitors of one kind 
or another. 

Figure 10-2. The world of WMl. 

WMI allows for multiple namespaces, each of which contains classes belong
ing to one or more user-mode providers. Providers register with the Windows Man
agement Service by using COM interfaces that are documented in the Platform SDK. 
When Windows 2000 ships, the operating system (including all device drivers) will 
support a namespace called root\clm.v2, which stands for Version 2 of the Common 
Information Model. At the time of this writing, the structure of the CIMV2 namespace 
was rather fluid, with the consequence that Microsoft has temporarily decided to use 
another namespace, root\ wmi, for device driver classes. 

A WDM driver can act as a provider of instances of a WMI class. The deSCription 
of all the classes a driver can provide data for is known as the dover's schema. You 
define a schema by using a language named the Managed Object Format, or MOP. The 
system maintains a data dictionary known as the repository that contains the defmitions 
of all known schemas. Assuming you do all the right things in your driver, the system 
will automatically put your schema into the repository When it initializes your driver. 
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A Sample Schema 
Later in this chapter, rll show you a sample named WMI42.SYS, which is available 
on the companion disc. This sample has the following MOP schema: 

~ [Dynamic, Provider("WMIProv"), 
WMI. 
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Description("Wmi42 Sample Schema"), 
gUid("A0F95FD4-A587-11d2-BB3A-00C04FA330A6"), 
locale("MS\\0x409")] 

class Wmi42 
{ 

} ; 

[key, read] 
string InstanceName; 

[read] boolean Active; 

[WmiDatald(1) , 
Description("The Answer to the Ultimate Question") 
] 

uint32 TheAnswer; 

I don't propose to describe all the details of the MOP syntax; that information 
is available as part of the Platform SDK and WMI SDK (http://msdn.microsojt.com/ 
developer/sdk/) documentation. You can either construct your MOF by hand, as I did 
for this simple example, or use a tool named WBEM elM Studio that comes with the 
Platform SDK and WMI SDK. Here, however, is a brief explanation of the contents 
of this MOP me: 

1. The provider named WMIProv is the system component that knows how 
to instantiate this class. It understands, for example, how to call into ker
nel mode and send an I/O request packet (IRP) to an appropriate driver. 
It can find the right driver by means of the globally unique identifier 
(GUID) that appears near the beginning of the me. 

2. This schema declares a class named WMI42, which coincidentally has the 
same name as our driver. Instances of the class have properties named 
InstanceName, Active, and TheAnswer. 
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As developers, we would run the MOF compiler on this schema definition to 
produce a binary file that eventually ends up as a resource in our driver executable 
file. (Resource in this sense is the same concept that application developers have in 
mind when they build dialog box templates, string tables, and other things that are 
part of their project's resource script.) Part of the process of initializing our driver is 
telling the WMI provider where the resource is so that it can read the schema and 
augment the repository. 

We should also run a utility named WMIMOFCK.EXE, which is available in the 
DDK, after compiling our schema. This utility performs additional checks to make 
sure that the schema is compatible with WMI. 

MOF FILES AND BETA RELEASES 

WMI was under active development during much of the Windows 2000 beta
testing period, and not all of the plumbing was complete. Depending on which 
release of Windows 2000 you're using, you might need to run the MOF com
piler an extra time before you'll be able to run the sample programs described 
in this chapter. During the extra run, you'll manually update the WMI reposi
tory so that various COM interfaces can access your driver's schema. Use the 
following command-line syntax to place your schema into the WMI 
namespace: 

mofcomp -N:root\wmi <name> 

Thereafter, you'll be able to use development tools like WBEMTEST.EXE 
to test your driver, and the console-mode test programs that accompany the 
samples will also work. (MOFTEST.EXE and WBEMTEST.EXE are included in 
the %windir% \system32\ wbem directory for Windows 2000 and the %winditJlo \ 
system \ wbem directory for Microsoft Windows 98. In Windows 98, you will 
need to install WMI. See "Windows 98 Compatibility Notes" at the end of this 
chapter for some additional information.) 
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WDM DRIVERS AND WMI 
The kernel-mode support for WMI is based primarily on IRPs with the major code 
IRP _MLSYSTEM_CONTROL. You must register your desire to receive these IRPs by 
making the following call: 

IoWMIRegistrationControl(fdo, WMI_ACTION_REGISTER); 

The appropriate time to make the registration call is in the AddDevice routine 
at a point when it would be safe for the system to send the driver a system control 
IRP. In due course, the system will send you an IRP _MLSYSTEM_CONTROL request 
to obtain detailed registration information about your device. You'll balance the reg
istration call with another call at RemoveDevice time: 

IoWMIRegistrationControl(fdo, WMI_ACTION_DEREGISTER); 

If any WMI requests are outstanding at the time you make the deregistration 
call, IoWMIRegistrationControl waits until they complete. It's therefore necessary 
to make sure that your driver is still capable of responding to IRPs when you 
deregister. You can fail new IRPs with STATUS_DELETE]ENDING, but you have to 
respond. 

Before explaining how to service the registration request, I'll describe how you 
handle system control IRPs in general. An IRP _MLSYSTEM_CONTROL request can 
have any of the minor function codes listed in Table 10-1. 

Minor Function Code Description 

IRP _MN_QUERY_ALL_DATA 

IRP _MN_ QUERY_SINGLE_INSTANCE 

IRP _MN_ CHANGE_SINGLE_ITEM 

IRP _MN_ENABLE_EVENTS 

IRP _MN_DISABLE_EVENTS 

IRP _MN_ENABLE_COLLECTION 

IRP _MN_DISABLE_COLLECTION 

IRP _MN_REGINFO 

IRP _MN_EXECUTE_METHOD 

Get all instances of every item in a data block 

Get every item in a single instance of a data 
block 

Replace every item in a single instance of a 
data block 

Change one item in a data block 

Enable event generation 

Disable event generation 

Start collecting "expensive" statistics 

Stop collecting "expensive" statistics 

Get detailed registration information 

Execute a method function 

Table 10-1. Minor function codes for IRPjl{LSYSTEM_CONIROL. 
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The Parameters union in the stack location includes a WMI substructure with 
parameters for the system control request: 

struct { 
ULONG_PTR Providerld: 
PVOID DataPath: 
ULONG BufferSize: 
PVOID Buffer: 
} WMI: 

Providerld is a pointer to the device object to which the request is directed. Buffer 
is the address of an input! output area where the first several bytes are mapped by 
the WNODE_HEADER structure. BufferSize gives the size of the buffer area. Your 
dispatch function will extract some information from this buffer and will also return 
results in the same memory area. For all the minor functions e~cept IRP _MN_ 
REGINFO, DataPatb is the address of a 128-bit GUID that identifies a class of data 
block. The DataPath field is either WMIREGISTER or WMIUPDATE (0 or 1, respec
tively) for an IRP _MN_REGINFO request, depending on whether you're being told 
to provide initial registration information or just to update the information you sup
plied earlier. 

When you design your driver, you must choose between two ways of handling 
system control IRPs. One method is relying on the facilities of the WMIUB support 
"driver." WMILIB is really a kernel-mode DLL that exports services you can call from 
your driver to handle some of the annoying mechanics of IRP processing. The other 
method is simply handling the IRPs yourself. If you use WMILIB, you'll end up writ
ing less code but you won't be able to use every ~st feature of WMI to its fullest
you'll be limited to the subset supported by WMILffi. Furthermore, your driver won't 
run under the original retail release of Microsoft Windows 98 because WMILIB wasn't 
available then. Before you let the lack of WMIllB in original Windows 98 ruin your 
day, consult the compatibility notes at the end of this chapter. 

WMILIB suffices for most drivers, so I'm going to limit my discussion to using 
WMILIB. The DDK documentation describes how to handle system control IRPs 
yourself if you absolutely have to. 

Delegating IRPs to WMILIB 
In your dispatch routine for system control IRPs, you delegate most of the work to 
WMILIB with code like the following: 

~ WMIGUIDREGINFO guidlist[] = { 
{&GUID_WMI42_SCHEMA. 1. WMIRE~FLAG_INSTANCE_PDO}. 
} : 

(conttnued) 
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WMILIB_CONTEXT libinfo { 
arraysize(guidlist), 
guidlist, 
QueryRegInfo, 
QueryDataBlock, 
SetDataBlock, 
Set Data Item, 
ExecuteMethod, 
FunctionControl, 
} ; 

NTSTATUS DispatchWmi(IN PDEVICE_OBJECT fdo, IN PIRP Irp) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock, Irp); 
if (INT_SUCCESS(status» 

return CompleteRequest(Irp, status, 0); 

SYSCTL_IRP_DISPOSITION disposition; 
status = WmiSystemControl(&libinfo, fdo, Irp, &disposition); 

switch (disposition) 
{ 

case IrpProcessed: 
break; 

case IrpNotCompleted: 
IoCompleteRequest(Irp, IO_NO_INCREMENT); 
break; 

default: 
case IrpNotWmi: 
case IrpForward: 

IoSkipCurrentlrpStackLocation(Irp); 
status = IoCallDriver(pdx->LowerDeviceObject, Irp); 
break; 
} 

IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
return status; 
} 

1. The WMILIB_CONTEXT structure declared at file scope describes the class 
GUIDs your driver supports and lists several callback functions that WMILIB 
uses to handle WMI requests in the appropriate device-dependent and 
driver-dependent way. 
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2. As with other dispatch routines, we acquire and release the remove lock 
while handling this IRP. The problem we prevent is having the device object 
underneath us disappear because of a Plug and Play (PnP) event. Our own 
device object cannot disappear because our call to IoWMIRegistrationControl 
acquired a reference to it. 

3. This statement calls WMILIB to handle the IRP. We pass the address of our 
WMILIB_CONTEXT structure. It's customary to use a static context struc
ture, by the way, because the information in it is unlikely to change from 
one IRP to the next. WmiSystemControl returns two pieces of informa
tion: an NTSTATUS code and a SYSCTL_IRP _DISPOSITION value. 

4. Depending on the disposition code, we might have additional work to 
perform on this IRP. If the code is IrpProcessed, the IRP has already been 
completed and we need do nothing more with it. This case would be the 
normal one for minor functions other than IRP ~N_REGINFO. 

5. If the dispOSition code is IrpNotCompleted, completing the IRP is our 
responsibility. This case would be the normal one for IRP _MN_REGINFO. 
WMILIB has already filled in the IoStatus block of the IRP, so we need 
only call IoCompleteRequest. 

6. The default and IrpNotWmi cases shouldn't arise in Windows 2000. We'd 
get to the default label if we weren't handling all possible dispOSition 
codes; we'd get to the IrpNotWmi case label if we sent an IRP to WMILIB 
that didn't have one of the minor function codes that specifies WMI func
tionality. 

7. The IrpForward case occurs for system control IRPs that are intended for 
some other driver. Recall that the ProviderId parameter indicates the driver 
that is supposed to handle this IRP. WmiSystemControl compares that value 
to the device object pointer we supply as the second function argument. 
If they're not the same, it returns IrpForward so that we'll send the IRP 
down the stack to the next driver. 

The way a WMI consumer matches up to your driver in your driver's role as a 
WMI provider is based on the GUID(s) you supply in the context structure. When a 
consumer wants to retrieve data, it (indirectly) accesses the data dictionary in the WMI 
repository to translate a symbolic object name into a GUID. The GUID is part of the 
MOF syntax I showed you earlier. You specify the same Gum in your context struc
ture, and WMILIB takes care of the matching. 
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WMILIB will call routines in our driver to perform device-dependent or driver
dependent processing. Most of the time, the callback routines will perform the requested 
operation synchronously. However, except in the case of IRP _MN_REGINFO, we can 
defer processing by returning STATUS_PENDING and completing the request later. 
If a callback routine will pend the operation, it should call IoAcquireRemoveLock 
an extra time. Whoever completes the request should make the balancing call to 
IoReleaseRemoveLock. 

The QueryReglnfo Callback 
The first system control IRP we'll receive after making our registration call has the 
minor function code IRP _MN_REGINFO. When we pass this IRP to WmiSystem
Control, it turns around and calls the QueryRegInfo function-it finds the function's 
address in our WMILIB_CONTEXT structure. Here's how WMI42.SYS handles this 
callback: 

NTSTATUS OueryRegInfo(PDEVICE_OBJECT fdo. PULONG flags. 
PUNICODE_STRING instname. PUNICODE_STRING* regpath. 
PUNICODE_STRING resname. PDEVICE_OBJECT* pdo) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
*flags = WMIREG_FLAG_INSTANCE_PDO; 
*regpath = &servkey; 
RtlInitUnicodeString(resname. L"MofResource"); 
*pdo = pdx->Pdo; 
return STATUS_SUCCESS; 
} 

We set regpath to the address of a UNICODE_STRING structure that contains 
the name of the service registry key describing our driver. This key is the one below 
... \ System \ CurrentControISet\Services. Our DriverEntry routine received the name 
of this key as an argument and saved it in the global variable servkey. We set 
resname to the name we chose to give our schema in our resource script. Here's 
the resource file for WMI42.SYS so that you can see where this name cpmes from: 

#include <windows.h> 

LANGUAGE LANG_ENGLISH. SUBLANG_NEUTRAL 
MofResource MOFDATA wmi42.bmf 

WMI42.BMF is where our build script puts the compiled MOF file. You can name 
this resource anything you want to, but MotResource is traditional (in a tradition 
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stretching back to, uh, last Tuesday). All that matters about the name is that you specify 
the same name when you service the QueryRegInfo call. 

How we set the remaining values depends on how our driver wants to handle 
instance naming. I'll come back to the subject of instance naming later in the chapter 
(in "Instance Naming"). The simplest choice, and the one Microsoft strongly recom
mends, is the one I adopted in WMI42.SYS: have the system automatically generate 
names that are static based on the name the bus driver gave to the physical device 
object (PDO). When we make this choice of naming method, we do the following 
tasks in QueryRegInfo: 

• Set the WMIREG]LAG_INSTANCE]DO flag in the Gum list that's part 
of the context structure. Setting the flag in the Gum list means that the 
instance names for data blocks of the associated WMI class will use the 
PD~ name. 

• Set the WMIREG_FLAG_INSTANCE_PDO flag in the flags value we're 
returning to WMILIB. Setting the flag here tells WMILIB that at least one 
of our objects uses PD~ naming. 

• Set the pdo value we're returning to WMILIB. In my sample drivers, my 
device extension has a field named Pdo that I set at AddDevice time to 
make it available at times like this. 

Apart from making your life easier, basing your instance names on the PD~ 
allows viewer applications to automatically determine your device's friendly name 
and other properties without you doing anything more in your driver. 

When you return a successful status from QueryRegInfo, WMILIB goes on to 
create a complicated structure called a WMIREGINFO that includes your GUID list, 
your registry key, your resource name, and information about your instance names. 
It returns to your dispatch function, which then completes the IRP and returns. Fig
ure 10-3 diagrams this process. 

The QueryDataBlock Callback 
The information you provide in your answer to the initial registration query allows 
the system to route relevant data operations to you. User-mode code can use vari
ous COM interfaces to get and set data values at several levels of aggregation. 
Table 10-2 summarizes the four possibilities. 
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1. System sends system control 
IRP (IRP _MN_REGINFO) 

5. Driver cornDhetel) .... ~
IRP and returns 

Figure 10-3. Control flow for IRP _MN_REGINFO. 

3. WMILIB calls QueryReglnfo 
to get schema-dependent 
information 

IRP Minor Function WMILIB Callback Description 

IRP _MN_QUERY_ALL_DATA QueryDataBlock 

QueryDataBlock 

SetDataBlock 

SetDataItem 

Get all items of all instances 

Get all items of one instance 

Set all items of one instance 

Set one item in one instance 

IRP _MN_QUERY_SINGLE_INSTANCE 

IRP _MN_CHANGE_SINGLE_INSTANCE 

IRP _MN_CHANGE_SINGLE_ITEM 

Table 10-2. Forms of data queries. 
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When someone wants to learn the value(s) of the data you're keeping, they send 
you a system control IRP with one of the minor function codes IRP _MN_QUERY_ 
ALL_DATA or IRP_MN_QUERY_SINGLE_INSTANCE. If you're using WMILIB, you'll 
d~legate the IRP to WmiSystemControl, which will then call your QueryDataBlock 
callback routine. You'll provide the requested data, call another WMILIB routine 
named WmiCompleteRequest to complete the IRP, and then return to WMILIB to 
unwind the process. In this situation, WmiSystemControl will return the IrpProcessed 
disposition code because you've already completed the IRP. Refer to Figure 10-4 for 
a diagram of the overall control flow. 
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1. System sends system control 

5. Driver retums 

IRP (IRP _MN_QUERY .-ALL_DATA 
or IRP _MN_QUERY _SINGLE_INSTANCE) 

4. Driver builds value structure, 
calls WMILIB to complete the IRP 

Figure 10-4. Control flow for data queries. 

Your QueryDa:taBlock callback can end up being a relatively complex function 
if your driver is maintaining multiple instances of a data block that varies in size from 
one instance to the next. I'll discuss the complications later in "Dealing with Multiple 
Instances." The WMI42 sample shows how to handle a Simpler case in which your 
driver maintains only one instance of the WMI class: 

NTSTATUS QueryDataBlock(PDEVICE_OBJECT fdo. PIRP Irp. 
ULONG guidindex. ULONG instindex. ULONG instcount. 
PULONG instlength. ULONG bufstze. PUCHAR buffer) 
{ 

if (!instlength II bufsize < sizeof(ULONG» 
return WmiCompleteRequest(fdo. Irp. STATUS_BUFFER-TOO_SMALL. 

sizeof(ULONG). IO_NO_INCREMENT): 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
(continued) 
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PULONG pvalue = (PULONG) buffer: 
*pvalue = pdx->TheAnswer: 
instlength[0] = sizeof(ULONG): 

return WmiCompleteRequest(fdo. Irp. STATUS_SUCCESS. sizeof(ULONG). 
IO_NO_INCREMENT): 

} 

1. We're obliged to make this check to verify that the buffer area is large 
enough to accommodate the data and data length values we're going to 
put there. The first part of the test-is there an insdength array?-is 
boilerplate. The second part of the test-is the buffer big enough for a 
ULONG?-is where we verify that all of our data values will fit. In this 
Simple driver, we're proViding only a Single ULONG value. 

2. The buffer parameter points to a memory area where we can put our data. 
The insdength parameter points to an array where we're supposed. to 
place the length of each data instance we're returning. Here, we install 
the single ULONG data value our schema calls for-the value of the 
TbeAnswer property-and its length. Figuring out what TheAnswer ac
tually is numerically is left as an exercise for the reader. 

3. The WMILIB specification requires us to complete the IRP by calling the 
WmiCompleteRequest helper routine. The fourth argument indicates 
how much of the buffer area we used for data values. By now, the other 
arguments should be self-explanatory. 

You'll notice that I didn't discuss the purpose of the guidindex, instindex, and 
instcount arguments to QueryDataBlock. I'll come back to those a bit further on in 
"Dealing with Multiple Instances" when I discuss some of the more complicated 
features of WMI. In WMI42.SYS, you should expect these values to be 0, 0, and 1, 
respectively. 

The SetDataBlock Callback 
The system might ask you to change an entire instance of one of your classes by 
sending you an IRP _MN_CHANGE_SINGLE_INSTANCE request. WmiSystemControl 
processes this IRP by calling your SetDataBlock callback routine. A simple version 
of this routine might look like this: 

NTSTATUS SetDataBlock(PDEVICE_OBJECT fdo. PIRP Irp. ULONG guidindex. 
ULONG instindex. ULONG bufsize. PUCHAR buffer) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
~ if (bufsize == sizeof(ULONG) 

464 

{ 

pdx->TheAnswer = *(PULONG) buffer: 
status = STATUS_SUCCESS: 
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info = sizeof(ULONG): 
} 

else 
status = STATUS_INFO_LENGTH_MISMATCH. info = 0: 

return WmiCompleteRequest(fdo. Irp. status. info. IO_NO_INCREMENT): 
} 

1. The system should already know-based on the MOF declaration-how 
big an instance of each class is and should give us a buffer tpat's exactly 
the right size. If it doesn't, we'll end up failing thiS IRP. Otherwise, we'll 
copy a new value for the data block into the place where we keep our 
copy of that value. 

2. We're responsible for completing the IRP by calling WmiComplete
Request. 

The Set Data Item Callback 
Sometimes consumers want to change just one field in one of the WMI objects we 
support. Each field has an identifying number that appears in the WmiDatald prop
erty of the field's MOF declaration. (The Active and InstanceName properties are 
not changeable and don't have identifiers. Furthermore, they're implemented by the 
system and don't even appear in the data blocks we work with.) To change the one 
field, the consumer references the field's ID. We then receive an IRP _MN_ 
CHANGE_SINGLE_ITEM request, which WrniSystemControl processes by calling our 
SetDataltem callback routine: 

NTSTATUS SetDataltem(PDEVICE_OBJECT fdo. PIRP Irp. ULONG guidindex. 
ULONG instindex. ULONG id. ULONG bufsize. PUCHAR buffer) 
{ 

PDEVICLEXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension: 
NTSTATUS status:' 
ULONG info: 

if (bufsize == sizeof(ULONG» 
{ 

pdx->TheAnswer = *(PULONG) buffer: 
status = STATUS_SUCCESS: 
info = sizeof(ULONG): 
} 

else 
status = STATUS_INFO_LENGTH_MISMATCH. info = 0: 

return WmiCompleteRequest(fdo. Irp. status. info. IO_NO_INCREMENT): 
} 

In my WMI42.SYS sample, you'll notice that this SetDataItem routine is identi
cal to SetDataBlock because my class has only a single item. 
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NOTIE The WMI system code that generates calls to the SetDataltem routine 
was apparently not complete in the beta version of Windows 2000 with which I 
tested my sample drivers. The only way I was able to invoke this routine was by 
using an internal Microsoft testing tool, and I always ended up with an item 10 of 
o instead of the 1 that's declared in the MOF schema. I don't know whether there 
was a bug in this internal tool, in the operating system, or in my own understand
ing of how this was supposed to work. I advise that you fail calls to this routine 
with STATUS_WMLNOT_SUPPORTEO until you're sure the item 10 means 
what you think it should. 

Advanced Features 
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The preceding discussion covers much of what you need to know to provide mean
ingful performance information for metering applications. Use your imagination here: 
instead of providing just a single statistic (TheAnswer), you could accumulate and 
return any number of performance measures that are relevant to your specific de
vice. You can support, however, some additional WMI features for more specialized 
purposes. I'll discuss these features now. 

Dealing with Multiple Instances 
WMI allows you to create multiple instances of a particular class data block for a single 
device object. You might want to provide multiple instances if your device is a con
troller or some other device into which other devices plug; each instance might rep
resent data about one of the child devices. Mechanically, you specify the number of 
instances of a class in the WMIGillDREGINFO structure for the GUID associated with 
the class. IfWMI42 had thi:ee different instances of its standard data block, for example, 
it would have used the following GUID list in its WMIUB_CONTEXT structure: 

WMIGUIDREGINFO guidlist[] = { 
{&GUID_WMI4LSCHEMA, 3, WMIREG_FLAG_INSTANCE_PD01, 
} : 

The only difference between this Gum list and the one I showed you earlier 
is the instance count here is 3 instead of 1. This list declares that there will be three 
instances of the WMI42 data block, each with its own value for the three properties 
(that is, InstanceName, Active, and TheAnswer) that belong in that block. 

If the number of instances changes over time, you can call loWmiRegistration
Control with the action code WMlREG_ACTION_UPDATE_GillD to cause the system 
to send you another registration request, which you'll process using an updated copy 
of your WMIUB_CONTEXT structure. If you're going to be changing your registra
tion information, you should probably allocate the WMIUB_CONTEXT structure and 
GillD list from the free pool rather than use static variables, by the way . . 
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If user-mode code were to enumerate all instances of GUID_ WMI42_SCHEMA, 
it would ftnd three instances. This result might present a confusing picture to user
mode code, though. It's impossible to tell a priori that the three instances disclosed 
by the enumeration belong to a single device, as opposed to a situation in which three 
WMI42 devices each expose a single instance of the same class. To allow WMI cli
ents to sort out the difference between the two situations, your schema should m
clude a property (such as a device name or the like) that can function as a key. 

Once you allow for the possibility of multiple instances, several of your WMIUB 
callbacks will require changes from the simple examples I showed you earlier. In 
particular: 

• QueryDataBlock should be able to return the data block for a single in
stance or for any number of instances beginning at a specific index. 

• SetDataBlock should interpret its instance number argument to decide 
which instance to change. 

• SetDataltem should likewise interpret its instance number argument to 
locate the instance within which the affected data item will be found. 

Figure lO-j illustt:ates how your QueryDataBlock function uses the output buffer 
when it's asked to provide more than one instance of a data block. Imagine that you 
were asked to provide data for two instances beginning at instance number 2. You'll 
copy the data values, which I've shown as being of different sizes, into the data buffer. 
You start each instance on an 8-byte boundary. You indicate the total number of bytes 
you consume when you complete the query, and you indicate the lengths of each 
individual instance by filling in the insdength array, as shown in the figure. . . 

Instance Naming 
Each instance of a WMI class has a unique name. Consumers that know the name of 
an instance can perform queries and invoke method routines. Consumers that don't 
know the names of the instance(s) you provide can learn them by enumerating the 
class. In any case, you're responsible for generating the names that consumers use 
or discover. 

I showed you the simplest way-from the driver's perspective, that is-,--of nam
ing instances of a custom data block, which is to request that WMI automatically gen
erate a static, unique name based on the name of the PD~ for your device. If your 
PD~ has the name Root\*WCOOA01\0000, for example, a PDO-based name for a 
single instance of some data block would be Root\ *WCOOAOI \0000_0, The _0 at 
the end is what makes this name unique. The name is static in that it persists until 
you deregister or update your registration information. 
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Data Block Instances 
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Figure 10-5. Getting multiple data block instances. 

Basing instance names on the PD~ name is obviously convenient because all 
you need to do in the driver is set the WMIREG_FLAG_INSTANCE]DO flag in .each 
WMIGUIDREGINFO structure and in the flags variable that WMILIB passes to your 
QueryRegInfo callback routine. The author of a consumer application can't know what 
this name will be, however, because the name will vary depending on how your 
device was installed. To make the instance names slightly more predictable, you can 
elect to use a constant base name for object instances instead. You indicate this choice 
by omitting the WMIREG_FLAG_INSTANCE_PDO flag from your WMIGUIDREGINFO 
structures and by responding in the' following way to the registration query: 

NTSTATUS QueryRegInfo( PDEVICE_OBJECT fdo. PULONG fl ags. 
PUNICODE_STRING instname. PUNICDDE_STRING* regpath. 
PUNICODE_STRING resname. PDEVICE_OBJECT* pdo) 
{ 

*flags = WMIREG-FLAG-INSTANCE-BASENAME; 
*regpath = &servkey; 
RtlInitUnicodeString(resname. L"MofResource"); 
stat1 c WCHAR basename[] = L "WMIEXTRA"; 
1nstname-)Buffer = (PWCHAR) ExAllocatePool(PagedPool. 

s1zeof(basename»; 
1f (11nstname-)Buffer) 

return STATUS_INSUFFICIENT_RESOURCES: 
1nstname-)MaxfmumLength = sizeof(basename); 
1nstname-)Length = s1zeof(basename) - 2; 
RtlCopyMemory(1nstname-)Buffer. basename. sfzeof(basename»; 
} 
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The parts of this function that differ from the previous example of QueryRegInfo 
are in boldface. In the WMIEXTRA sample, only one instance of each data block exists, 
and each receives the instance name WMIEXTRA with no additional decoration. 

If you elect to use a base name, try to avoid generic names such as Toaster 
because of the confusion that can ensue. The purpose of this feature is to let you use 
specific names like AcmeWaffleToaster. 

In some circumstances, static instance names won't suit your needs. If you 
maintain a population of data blocks that changes frequently, using static names means 
that you have to request a registration update each time the population changes. The 
update is relatively expensive, and you should avoid requesting one often. You can 
assign dynamic instance names to the instances of your data blocks instead of static 
names. The instance names then become part of the queries and replies that you deal 
with in your driver. Unfortunately, WMIUB doesn't support the use of dynamic in
,stance names. To use this feature, therefore, you'll have to fully implement support, 
for the IRP _MLSYSTEM_CONTROL requests that WMIUB would otherwise interpret 
for you. Describing how to handle these IRPs yourself is beyond the scope of this 
book, but the DDK documentation contains detailed information about how to go 
about it. 

Dealing with Multiple Classes 
WMI42 deals with only one class of data block. If you want to support more than 
one class, you need to have a bigger array of GUID information structures, as 
WMIEXlRA does: 

WMIGUIDREGINFOguidlist[] = { 
{&GUID_WMIEXTRA-EVENT, I, 
WMIRE~FLAG_INSTANCE_PDO I WMIREG_FLAG_EVENT_ONLY_GUID}, 

{&GUID_WMIEXTRA-EXPENSIVE, I, 
WMIRE~FLAG_EXPENSIVE I WMIREG_FLAG_INSTANCE_PDO}, 

{&GUID_WMIEXTRA-METHOD, I, 
WMIRE~FLAG_INSTANCE_PDO}. 

} ; 

Before calling one of your callback routines, WMIUB looks up the GUID ac
companying the IRP in your list. If the GUID isn't in the list, WMIUB fails the IRP. If 
it's in the list, WMIUB calls your callback routine with the guidindex parameter set 
equal to the index of the Gum in your list. By inspecting this parameter, you can 
tell which data block you're being asked to work with. 

You can use the special flag WMIREG_FLAG_REMOVE_Gum in a Gum in
formation structure. The purpose of this flag is to remove a particular GUID from 
the list of supported GUIDs during a registration update. Using this flag also pre
vents WMIUB from calling you to perform an operation on a Gum that you're trying 
to remove. 
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Expensive Statistics 
It can sometimes be burdensome to collect all of the statistics that are potentially useful 
to an end user or administrator. For example, it would be possible for a disk driver 
(or, more likely, a filter driver sitting in the same stack as a disk driver) to collect 
histogram data showing how often I/O requests reference a particular sector of the 
disk. This data would be useful to a disk-defragmenting program because it would 
allow the most frequently accessed sectors to be placed in the middle of a disk for 
optimal seek time. You wouldn't want to routinely collect this data, though, because 
of the amount of memory needed for the collection. That memory would have to be 
nonpaged, too, because of the possibility that a particular I/O request would be for 
page swapping. 

WMI allows you to declare a particular data block as being expensive so that 
you don't need to collect it except on demand, as shown in this excerpt from the 
WMIEXTRA sample program: 

WMIGUIDREGINFO guidlist[] =. { 

}: 

{&GUID_WMIEXTRA-EXPENSIVE, I, 
WMIREG_FLA~EXPENSIVE}, 

The WMIREG_FLAG_EXPENSIVE flag indicates that the data block identified by 
GUID_ WMIEXTRA_EXPENSIVE has this expensive characteristic. . 

When an application expresses interest in retrieving values from an expensive 
data block, WMI sends you a system. control IRP with the minor function code IRP_ 
MN_ENABLE_COLLECTION. When no applications are interested in an expensive data 
block anymore, WMI sends you another IRP with the minor function code IRP_ 
MN_DISABLE_COLLECTION. !fyou delegate these IRPs to WMIUB, it will turn around 
and call your FunctionControl callback routine to either enable or disable collec
tion of the values in the data block: 

NTSTATUS FunctionControl(PDEVICE_OBJECT fdo, PIRP Irp, 
ULONG guidindex, WMIENABLEDISABLECONTROL fcn, BOOLEAN enable) 
{ 

return WmiCompleteRequest(fdo, Irp, STATUS_SUCCESS, 0, 
IO_NO_INCREMENT): 

} 

In these arguments, guidindex is the index of the GUID for the expensive data block 
in your list of GUIDs, fen will equal the enumeration value WmiDataBlockControl 
to indicate that collection of an expensive statistic is being either enabled or disabled, 
and enable will be TRUE or FALSE to indicate whether you should or should not 
collect the statistic, respectively. As shown in this fragment, you call WmiComplete
Request prior to returning from this function. 
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An application "expresses interest" in a data block, by the way, by retrieving 
an IWbemClassObject interface pointer bound to a particular instance of your data 
block's WMI class. Notwithstanding the fact that an application has to discover an 
instance of the class, no instance index appears in the call to your FunctionControl 
callback. The instruction to collect or not collect the expensive statistic therefore 
applies to all instances of your class. 

WMI Events 
WMI provides a way for providers to notify consumers of interesting or alarming 
events. A device driver might use this facility to alert a user to some facet of device 
operation that requires user intervention. For example, a disk driver might notice that 
an unusually large number of bad sectors have accumulated on a disk. Logging such 
an event as described in Chapter 9, "Specialized TopicS," is one way to inform the 
human world of this fact, but an administrator has to actively look at the event log 
to see the entry. If someone were to write an event-mortitoring applet, however, and 
if you were to fire a WMI event when you noticed the degradation, the event could 
be brought immediately to the user's attention. 

WMI events are just regular WMI classes used in a special way. In MOF syn
tax, you must derive the data block from the abstract WMIEvent class, as illustrated 
in this excerpt from WMIEX'fRA's MOF me: 

[Dynamic, Provider("WMIProv"), 
WMI, 
Description("Eve~t Info from WMIExtra"), 
gUid("c4b678f6-b6e9-11d2-bb87-00c04fa330a6"), 
locale("MS\\0x409")] 

class wmiextra_event WMIEvent 
{ 

[key, read] 
string InstanceName; 

[read] boolean Active; 

[WmiDataId(l). read] uint32 EventInfo: 

} ; 

Although events can be normal data blocks, you might not want to allow ap
plications to read and write them separately. If not, use the EVENT_ONLY flag in your 
declaration of the GUID: 

WMIGUIDREGINFO guidlist[] = { 

{&GUID_WMIEXTRA_EVENT, I, 
WMIRE~FLAG_INSTANCE_PDO I WMIRE~FLA~EVENT_ONLY_GUID}, 

} : 
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When an application expresses interest in knowing about a particular event, 
WMI sends your driver a system control IRP with the minor function code IRP _MN_ . 
ENABLE_EVENTS. When no application is interested in an event anymore, WMI sends 
you another IRP with the minor function code IRP _MN_DISABLE_EVENTS. If you 
delegate these IRPs to WMIUB, you'll receive a call in your FunctionControl callback 
to specify the Gum index in your list of GUIDs, a fen code of WmiEventControl, 
and a Boolean· enable flag. 

To fIre an event, construct an inst;mce of the event class in nonpaged memory 
and call WmiFireEvent. For example: 

PULONG junk = (PULONG) ExA 11 ocatePool( NonPagedPool. si zeof( ULONG» : 
*junk = 42: 
WmiFireEvent(fdo. (LPGUIO) &GUIO_WMIEXTRA-EVENT. 0. sizeof(ULONG). junk): 

The WMI subsystem will release the memory that's occupied by the event object in 
due course. 

WMI Method Routines 
In addition to defIning mechanisms for transferring data and signalling events, WMI 
prescribes a way for consumers to invoke method routines implemented by provid
ers. WMIEXTRA defInes the following class that includes a method routine: 

[Oynamic. Provider("WMIProv"). 
WMI. 
Oescription("WMIExtra class with method"). 
guid("cd7ec27d-b6e9~11d2-bb87-00c04fa330a6"). 

locale("MS\\0x409")] 

class wmiextra_method 
{ 

} : 

[key. read] 
string InstanceName: 

[read] boolean Active: 

[Implemented. WmiMethodId(l)] uint32 
AnswerMethod([in.out] uint32 TheAnswer): 

This declaration indicates that Answer Method accepts an input! output argu
ment named TheAnswer (a 32-bit unsigned integer) and returns a 32-bit unsigned 
integer as its result. 

When you delegate system control IRPs to WMIUB, a method routine call 
manifests itself in a call to your ExecuteMethod callback routine: 
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NTSTATUS ExecuteMethod(PDEVICE_OBJECT fdo. PIRP Irp. 
ULONG guidindex. ULONG instindex. ULONG id. 
ULONG cblnbuf. ULONG cbOutbuf. PUCHAR buffer) 
{ 

NSTATUS status = STATUS_SUCCESS; 
ULONG bufused = 0; 

return WmiCompleteRequest(fdo. Irp. status. bufused. 
IO_NO_INCREMENT); 

} 

The buffer area contains an image of the input class, whose length is cbInbuf. Your 
job is to perform the method and overstore the buffer area with an image of the output 
class. You complete the request with the byte size (bufused) of the output class. In 
the WMIEXTRA case, I put the following code in place of the ellipsis. (I've omitted 
the error checking.) 

switch (guidindex) 
{ 

case 2: 
bufused = sizeof(ULONG); 
(*(PULONG) buffer)++; 
break; 

default: 
status = STATUS_WMI_GUID_NOT_FOUND; 
break; 
} 

, 
This particular method routine simply adds 1 to its input argument. 

Some of the details surrounding method routine calls were still ambiguous when 
I was writing this chapter. Here are some issues for you to think about: 

• There is no way for a driver to return a value from a method call. You can 
return only an output argument class instance. 

• You specify the input and output arguments in your schema as though 
you were describing a function. The system translates the argument de
scriptions into two WMI classes: one for the input arguments and another 
for the output arguments. It's easy enough for a user-mode consumer to 
learn the c:ontents of these classes, but you have to guess the memory 
layout of the corresponding structures when you program your driver. I 
guessed correctly that a single 32-bit unsigned integer argument would 
occupy a ULONG location in the input/output buffer, but no great intel
lectual effort was involved in this simple case. 
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• Simply enumerating an instance of a class like wmiexlra_method trig
gers a request for the data block. You must succeed the data query even 
if the class that contains the method routine has no data members. In such 
a case, you can just complete the query with a 0 data length. 

Standard Data Blocks 
Microsoft has defined some standardized data blocks for various types of devices. If 
your device belongs to a class for which standardited data blocks are defined, you 
should support those blocks in your driver. Consult WMICORE.MOF in the DDK to 
see the class definitions, and see Table 10-3. 

Device Type Standard Class DescrlpUon 

Keyboard MSKeyboard_PortInformation 

Mouse MSMouse_PortInformation 

Disk MSDiskDrivecGeometry 

MSDiskDrivecPerformance 

Storage MSStorageDrivecFailurePredictStatus 

Configuration and performance 
information 

Configuration and performance 
information 

Format information 

Performance information 

Determine whether drive is 
predicting a failure 

MSStorageDriver]ailurePredictData Failure prediction data 

MSStorageDriver]ailurePredictEvent Event fired when failure is 
predicted 

MSStorageDrivecFailurePredictFunction Methods related to failure 
prediction 

Serial MSSeriaCPortName 

MSSeriaCCommInfo 

MSSerial_HardwareConfiguration 

MSSeriaCPerformanceInformation 

MSSeriaCCommProperties 

Name of port 

Communication parameters 

va resource information 

Performance information 

Communication parameters 

Parallel MSParallel_AllocFreeCounts Counts of allocation and free 
operations 

MSParalleCDeviceBytesTransferred Transfer counts 

Table 10-3. Standard data blocks. 
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To implement your support for a standard data block, include the correspond
ing GUID in the list you report back from the registration query. Implement supporting 
code for getting and putting data, enabling and disabling events, and so on, using 
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the techniques I've already discussed. Don't include definitions of the standard data 
blocks in your own schema; those class definitions are already in the repository, and 
you don't want to override them. 

In many cases, by the way, a Microsoft class driver will be providing the actual 
WMI support for these standard classes-you might not have any work to do. 

Standard Controls 
Windows 2000 will someday employ WMI as a method of sending certain common 
commands to drivers. In particular, management applications will be able to send 
commands related to power management by means ofWMI. At the present time, only 
two such commands are defined. See Table 10-4. 

WMI Class (WMICORE.MOF) GUID Name (WDMGUID.H) Purpose 

MSPowecDeviceEnable GUID_POWER_DEVICE_ Should device dynami-
ENABLE cally power on and off 

while the system is 
working? 

MSPowecDeviceWakeEnable GUID]OWER_DEVICE_ Should device arm its 
wake-up feature? 

Table 10-4. Standard WMl commands. 

If you refer toWMICORE.MOF, you'll see that the DeviceEnable and Device
WakeEnable classes include only a Boolean member named Enable that a WMI client 
can either read or write. To support these two classes in your driver, include the two 
GUIDs in the list of GUIDs you pass to WMILIB and use code to get and set instances 
of this class. The code to handle these details is so similar to WMI42 that I won't show 
it to you here. 

If you trace back through the beta releases of Windows 2000, it looks like 
Microsoft originally planned to implement another WMI class (probably with the name 
MSPowecDeviceTimeouts) that would query and set the two timeout values you use 
when you register with the Power Manager for idle detection. That plan appears 
to have fallen by the wayside. ,!he Gum definition (GUID_POWER_DEVlCE_ 
TIMEOUTS) still appears in WDMGUID.H"though. 

USER-MODE APPLICATIONS AND WMI 
User-mode support for WMI relies on the facilities of COM. To summarize a very 
complicated situation, the Windows Management Service acts as the clearinghouse 
for information flowing between consumers and providers by implementing several 
COM interfaces. Providers register their existence with Windows Management via 
certain interfaces. Consumers indirectly communicate with providers via interfaces. 
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All of these interfaces are documented in the Platform SDK, so I'm going to illustrate 
only the important method routines a consumer uses. I'll start, though, by explain
ing the basic mechanics of using COM for those readers who have little or no expe
rience with COM. 

Just Enough COM 
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As I said, this section is for readers who don't know the basics of using COM inter
faces. I spent years deliberately avoiding COM because its unique terminology made 
me think it was too intricate to understand. I won't say that COM aficionados want 
it that way, but I will say that I was once roundly criticized for presenting the fol
lowing simplified overview to a conference audience. 

You'll encounter three crucial terms when you hear about COM. In COM, an 
object is a software entity that implements the methods belonging to an interface. 
(People in my generation will be imagining Bill Cosby saying, "R-i-g-h-t! What's an 
interface?" just about now.) The key element you deal with when acting as a COM 
client is a pointer to an interface, which you can dereference to invoke the method 
routines. You get an interface pointer either because someone gives it to you or 
because you call an API that returns it to you. From the perspective of a client pro
gram, some mysterious "them". takes care of creating and destrOying objects. 

What's an Interface? 
Now let's go through these three concepts more slowly, starting with the last one. 
An interface is nothing more than a G++ class that has a bunch of virtual member 
functions but no data members and no nonvirtual member functions. You can imple
ment or use a COM interface in many languages, not just C++. But because C++ gives 
us a common ground for understanding the concept, I'll forge ahead as if C++ were 
the only language you'd ever use. Here's the declaration of a simple interface as it 
might look before being translated into the language of COM: 

cl ass !Unknown 
{ 

public: 
virtual long __ stdcall Querylnterface(const GUID& riid. 

void** ppvObject): 
vi rtua 1 unsi gned long __ stdca 11 AddRef(): 
virtual unsigned long __ stdca11 Release(): 

}: 

Instances ofrunknown (objects in COM) implement three public, virtual func
tions (methods) named QueryInterface, AddRef, and Release. AddRef and Release 
are part of the mechanism by which COM makes sure that objects persist long enough 
for clients to make use of them. Querylnterface is how client programs obtain pointers 
to additional interfaces that an object supports. 
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In the Interface Definition Language (IDL) of COM, this· interface description 
would look like this: 

interface IUnknown 
{ 

} ; 

HRESULT Querylnterface(REFIID riid, void** ppvObject); 
ULONG AddRef(); 
ULONG Release(); 

Apart from the syntactic differences, I think it's obvious how the IDL description of 
this interface relates to a C++ class declaration. An IDL compiler can be used that 
translates an interface declaration like this into syntax understandable by C and C++ 
compilers. Some programming languages understand the IDL sYntax without a trans
lation, even. 

Just like C++ classes, interfaces can be derived from other interfaces. In COM, 
one doesn't declare interfaces with more than one base class. In addition, every COM 
interface derives ultimately from !Unknown-meaning that every COM object sup
ports the Querylnterface, AddRef, and Release methods. Here's art example from the 
WMI world that we'll be using later on: 

interface IWbemLocator : IUnknown 
{ 

} ; 

HRESULT ConnectServer(BSTR strNetworkResource, 
BSTR strUser, BSTR strPassword, BSTR strLocale, 
long lSecurityFlags, BSTR strAuthority, 
IWbemContext* pCtx, IWbemServ;ces** ppNameSpace); 

So, an object that implements IWbemLocator has four method routines: 
Querylnterface, AddRef, Release, and ConnectServer. 

Creating and Destroying Objects 
Getting an interface pointer that you can use to talk to an object is possible in many 
ways. Calling CoCreateInstance is a common way: 

IWbemlocator* locator; 
HRESULT hr = CoCreatelnstance(CLSID_WbemLocator, NULL, 

CLSCTX_INPROC_SERVER, IID_IWbemLocator, (PVOID*) &locator); 

CoCreatelnstance consults the registry to locate a server that can instantiate a 
CISID _ WbemLocator class of object. CLsm _ WbemLocator is a 128-bit GUm of the 
same kind I mentioned in Chapter 2 ("Basic Structure of a WDM Driver") in connec
tion with registered device interfaces. It's called a class identifier because it identi
fies a kind, or class, of COM object. The HKEY _CLASSES_ROOT branch of the registry 
contains a key named CISID, the subkeys of which are the ASCII represeniationsof 
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all the class identifiers that COM knows anything about. In the example we're con
sidering, CLSID_ WbemLocator would be conventionally represented as {4590f811-
Id3a-lldO-89lf-00aa004b2e241, and the CLSID key includes a subkey named exactly 
that in the registry. A subkey named InProcServer32 designates a DLL (named 
WBEMPROX.DLL, a part of the WMI core) as the server that implements this class 
of object. 

Having located the class key in the registry, CoCreateInstance loads the desig
nated server into your address space and uses magic we don't need to discuss here 
to instantiate a WbemLocator object and develop a pointer to the IWbemLocator 
interface that the object supports. (nD_IWbemLocator is another GUID declared in 
WBEMCLI.H, which you'll #include in your consumer project flIes.) 

FollOWing a successful call to CoCreateInstance, you'll have" an interface pointer 
that you can use like any pointer to a C++ class to call the method functions associ
ated with the interface. Somewhere in the world (maybe not even on the same com
puter) a concrete object eXists that implements those method functions. The object 
occupies storage and the executable program whose instructions comprise the 
implementation also occupies storage. At some point in time, presumably, you'll be 
done using your interface pointer and will be prepared to destroy the object and, 
maybe, unload the program. The question is, when? That's where AddRef and Re
lease come in. 

Each COM object has a reference count. Whenever someone obtains a pointer 
to an interface on the object, the program that implements the object increments the 
reference count. So, CoCreateInstance will always return a referenced interface 
pointer, and you can be sure that the pointer will remain valid for the time being. 
You can increase the reference count on an object explicitly by calling AddRef. When 
you're done using an interface pointer, you call the Release method. The implemen
tation of Release decrements the reference count. If the count drops to 0, the imple
mentation deletes the object. When a server doesn't own any more objects, it can be 
unloaded. 

Your job as a COM client is Simply to release your reference to an interface when 
you no longer need the underlying object. The follOwing stylized coding sequence 
is pretty typical: 

IWbemLocator* locator: 
HRESULT hr = CoCreatelnstance( ... ): 
if (SUCCEEDED(hr» 

{ 

locator->Release(): 
} 
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Accessing WMI Information 
When you want to access WMI facilities in user mode, you need to first establish a 
connection to a particular namespace. Within the context of the namespace, you can 
then find instances of WMI classes. You can query and set the data blocks associated 
with class instances, invoke their method routines, and monitor the events that they 
generate. 

Connecting to a Namespace 
When you connect to a WMI namespace, you obtain a pointer to an IWbemServices 
interface that Windows Management implements. The following code-based on the 
TEST program in the WMI42 sample-shows how to do this: 

HRESULT hr = Colnitialize~x(NULL. 0): 
if (!SUCCEEDED(hr» 

return: 
hr = ColnitializeSecurity(NULL. -1. NULL. NULL. 

RPC_C_AUTHN_LEVEL_NONE. RPC_C_IMP_LEVEL_IMPERSONATE. 
NULL. 0. 0): 

if (!SUCCEEDED(hr» 
{ 

CoUninitialize(): 
return: 
} 

IWbemLocator* locator: 
hr = CoCreatelnstance(CLSID_WbemLocator. NULL. 

CLSCTX_INPROC_SERVER. IID_IWbemLocator. (PVOID*) &locator); 
if (SUCCEEDED(hr» 

{ 

IWbemServices* services: 
BSTR pnamespace = SysAllocString(L"root\\CIMV2"); 
hr = locator-)ConnectServer(pnamespace. NULL. NULL. 0. 0 

&serv;ces); 
SysFreeString(pnamespace): 
if (SUCCEEDED(hr» 

{ 

IClientSecurity* security; 
hr = services-)Querylnterface(IID_IClientSecurity. 

(PVOID*) &security): 
if (SUCCEEDED(hr» 

{ 

(continued) 
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security-)SetBlanket(services, RPCCAUTHN_WINNT, 
RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL-CONNECT, 
RPC_C_IMP_LEVEL-IMPERSONATE, NULL, EOAC_NONE); 

security-)Release(); 
} 

II use the services interface 
services-)Release(); 
} 

locator-)Release(); 
} 

CoUninitialize(); 

1. Every program that uses COM calls CoInitialize or CoInitializeEx to ini
tialize the COM library and calls CoUninitialize to close the COM library. 

2. Never mind why you need to do this. 

3. Here's where we instantiate a WbemLocator object and get a pointer to 
its IWbemLocator interface. If this call succeeds, we'll eventually release 
our reference to the interface. 

4. We use the IWbemLocator interface to connect to the CIMV2 namespace. 
(In beta releases, this should be the WMI namespace.) One of the quirks 
of using the ConnectServer method is that you must make a copy of the 
Unicode name of the namespace by calling SysAllocString. 

5. Really never mind! I spent a couple of days figuring out that a call to 
IClientSecurity::SetBlanket was needed here, because at the time I was 
writing this chapter the SDK documentation hadn't caught up to the imple
mentation. (@#$!) 

6. This is the point at which you can use the IWbemServices interface 
pointer to locate WMI class instances and access other WMI services. 

Enumerating Class Instances 
Using an IWbemServices interface, you can enumerate all the instances of a particu
lar WMI class. WMI42's test program, for example, enumerates all the WMI42 class 
instances with the following code: 

~ IEnumWbemClassObject* enumerator = NULL; 
BSTR bs = SysAllocString(L"WMI42"); 
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HRESULT hr = services-)CreateInstanceEnum(bs, 
WBEM_FLAG_SHALLOW I WBEM_FLA~RETURN_IMMEDIATELY 
WBEM_FLAG_FORWARD_ONLY, NULL, &enumerator); 

SysFreeString(bs); 
if (SUCCEEDED(hr» 

{ 
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while (TRUE) 
{ 

ULONG junk; 
IWbemClassObject* cop = NULL; 
hr = Enumerator-)Next(INFINITE. 1. &cop. &junk); 
if (hr == WBEM_S_FALSE) 

break; 
if (!SUCCEEDED(hr» 

break; 
II Use IWbemClassObject interface 
cop-)Release(); 
} 

enumerator-)Release(); 
} 

1. IWbemServices::CreateInstanceEnunl will create an enumerator for all 
instances of a named WMI class. This interface has two quirks that I dis
covered the hard way. First, the class name must be passed in a separately 
allocated BSTR. Also, you must initialize the target interface pointer to 
NULL even though it's supposedly only an output argument-a crash 
ensues if the pointer is invalid to start with. 

2. The instance enumerator's Next method delivers pointers to successive 
instances of the class in the form of an IWbemClassObject interface 
pointer. The Next method returns WBEM_S_FALSE when there are no more 
instances of the class. Initializing the supposed output argument to NULL 
is required to avoid a crash with this interface, too. 

Getting and Setting Item Values 
The IWbemClassObject interface is the key that unlocks the WMI functionality of 
your driver. With a pointer to this interface, you can easily get or set the values of 
items in a data block: 

IWbemClassObject* cop; 
VARIANT answer; 
BSTR propname = SysAllocString(L"TheAnswer"); 
cop-)Get(propname. e. &answer. NULL. NULL); 
VariantClear(&answer); 

answer.vt = VT_I4; 
answer.1Val = 6 * 9; II should be done in base 13! 
cop-)Put(propname. e. &answer. e); 
VariantClear(&answer); 

SysFreeString(propname); 
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In these fragments, we use a system string to name the property (that is, the 
item within our schema) we want to get or put, and we use an OLE VARIANT struc
ture (which can hold any type of data) as the data value. Calling the Get method on 
this interface results in our driver getting a QUERY_ALL_DATA or QUERY_SINGLE_ 
INSTANCE. Calling the Put method results in a CHANGE_SINGLE_INSTANCE or 
CHANGE_SINGLE_ITEM. You can observe for yourself what happens by loading the 
WMI42 sample driver and invoking the test program a time or two. You shouldn't try 
to predict exactly which type of IRP will be used to support a Get or Put call because 
the WMI provider is free 'to package data requests to drivers in any convenient way. 

Receiving Event Notifications 
To receive notifications that WMI events have occurred, an application has to regis
ter interest in specific events. To register interest, you must formulate a query in the 
so-called WMI Query Language (WQL). WQL is a great deal like the Structured Query 
Language (SQL) one uses in the world of relational databases. For example, to sign 
up to receive WMIEXTRA_EVENT notifications, you could submit the following query: 

IWbemServices* services; 
BSTR query = SysAllocString(L"select * from WMIEXTRA_EVENT"); 
BSTR language = SysAllocString(L"WQL"); 
IEnumWbemClassObject* en~merator = NULL; 
HRESULT hr = services->ExecNotificationQuery(language. query. 

WBEM_FLAG_FORWARD_ONLY I WBEM_FLAG_RETURN_IMMEDIATELY. 
NULL. &enumerator); 

SysFreeString(language); 
SysFreeString(query); 
if (SUCCEEDED(hr» 

{ 

enumerator->Release(); 
} 

The flag arguments to ExecNotificationQuery must be specified exactly as shown, 
by the way. 

Once you have the enumeration interface, you can call its Next method to poll 
for events. For example: 

IWbemClassObject* cop = NULL; 
DWORD junk; 
hr = enumerator->Next(1000. 1. &cop. &junk); 

In this call, we specify that we will wait up to 1000 milliseconds to obtain one event. 
If an event is already pending or fires within this timeout period, Next will return us 
a (referenced) IWbemClassObject pointer. Recall from the previous discussion of how 
a driver fires an event that the event is represented by an instance of a WMI class. 
We can therefore call the object's Get method to interrogate properties of the event. 
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In a real-world application, you should use ExecNotificationQueryAsync 
instead of ExecNotificationQuery. The asynchronous form of the query allows you 
to provide an IWbemObjectSink interface that WMI can call when events occur. 
Please refer to the Platform SDK for additional information. 

Calling Method Routines 
Invoking a method routine requires just a few deceptively simple statements, as shown 
in the following excerpt from WMIEXTRA's test program: 

IWbemServices* services; II ~ developed as shown earlier 
IWbemClassObject* result = NULL; 
BSTR pmethod = SysAllocString(L"AnswerMethod"); 
BSTR objpath; /I ~ more about thi slater 
IWbemClassObject* inarg; II ~ ditto 

HRESULT h~ = services-)ExecMethod(objpath. pmethod. 0. NULL. 
inarg. &result. NULL); 

result-)Release(); 
SysFreeString(pmethod); 
<more c7eanup> 

Calling ExecMethod invokes the method routine. You supply values for the input 
arguments in the inarg object. The result of the call appears as the result object. 

Invoking a method in this way would be almost trivial if it weren't for two 
complicating factors. First, you have to come up with the full pathname (that is, the 
objpath argument to ExecMethod) to the object you want to address. And you must 
construct and initialize a WMI object to contain the input arguments (if any) for the 
method call. I found the first of these tasks to be a gigantic pain in the neck, as shown 
by the follOwing snippet from WMIEXTRA's test program: 

IWbemServices* services; . II ~ someone gives me this 
BSTR pclass = SysAllocString(L"wmiextrLmethod"); 
BSTR objpath = NULL; 
HRESULT hr; 

IEnumWbemClassObject* enumerator = NULL; 
hr = services-)CreateInstanceEnum(pclass. <etc.»; 
if (SUCCEEDED(hr» 

{ 

IWbemClassObject* instance = NULL; 
ULONG junk; 
hr = enumerator-)Next(INFINITE. 1. &instance. &junk): 
if (SUCCEEDED(hr» 

{ 

(continued) 
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VARIANT instname; 
BSTR propname = SysAllocString(L"InstanceName"); 
hr = instance->Get(propname, 0, &instname, NULL, NULL); 
SysFreeString(propname); 
if (SUCCEEDED(hr» 

{ 

WCHAR fullpath[256]; 
WCHAR escapedname[256]; 
<code to double backslashes in instname> 
swprintf(fullpath, L"%ws.InstanceName=\"%s\"", 

pclass, escapedname); 
objpath = SysAllocString(fullpath); 
VariantClear(&instname); 
} 

instance->Release(); 
} 

enumerator->Release(); 
} 

Ugh. Especially the part (which I omitted here in the text) that goes through 
the instance name and changes each backslash to two backslashes. In my opinion, 
there should be a method on the IWbemClassObject interface that you can call to get 
the full pathname of an object. Such a method would prevent our needing to dis
cover the algorithm that some other system component has used to construct the 
instance name. But, as I frequently find to be the case, no one asked me for my 
opinion. 

The Platform SDK documentation describes how to build the input arguments 
(that is, the inarg argument to ExecMethod). Here's how I did it for WMIEX'fRA: 

IWbemClassObject* cop = NULL; II ~ the class, not an iRstance 
hr = services->GetObject(pclass, 0, NULL, &cop, NULL); 
if (SUCCEEDED(hr» 

{ 

IWbemClassObject* iop = NULL; II ~ another class 
hr = cop->GetMethod(pmethod~ 0, &iop, NULL); 
if (SUCCEEDED(hr» 

{ 

IWbemClassObject* inarg = NULL; II ~ an instance of iop 
hr = iop->Spawninstance(0, &inarg); 
if (SUCCEEDED(hr» 

{ 

BSTR argname = SysA 11 ocStri ng (L"TheAnswer") ; 
VARIANT argval; 
argval.vt = VT_I4; 
argval.1Val = 41; 
hr = inarg->Put(argname, 0, &argval, 0); 
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SysFreeString(argname); 

<the actua7 ca77 to ExecMethod> 

inarg-)Release(); 
} 

iop-)Release(); 
} 

cop-)Release(); 
} 

This code uses the data dictionary to obtain a description of the input argument class 
(the lop variable). It then creates and initializes an instance of the input argument 
class (the inarg variable) for use as an argument to the method routine. 

I didn't check, but I assume that MFC provides a streamlined way to do all of this. 

WINDOWS 98 COMPATIBILITY NOTES 
Since a well-crafted driver should support WMI, and since WMILIB isn't available in 
the original Windows 98, you might need to provide a virtual device driver (VxD) 
stub for the WMIUB functions so that your driver will load. Consult Appendix A, "Cop
ing with Windows 98 Incompatibilities," for more information about writing a VxD 
stub. (The WDMSTUB VxD discussed in the appendix doesn't include the WMIUB 
functions, but the appendix describes how you might invent them.) 

A number of bugs afflicted the WMI support in the original retail release of 
Windows 98. The updates to Windows 98 (Second Edition and Service Pack 1) fixed 
these bugs. (Or some of them, anyway. I have a laptop that runs Windows 2000 and 
WMI just fine, but WMI won't initialize under Windows 98 Second Edition on this 
computer.) Even so, the standard setup procedure doesn't install WMI by default. 
To install it yourself, open Add/Remove Programs in the Control Panel, select the 
Windows Setup tab, and request installation of Web-Based Enterprise Mgmt within 
the Internet Tools category. 
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The Universal 
Serial Bus 

End user convenience is the keynote of the universal serial bus (USB). The Plug and 
Play (PnP) concept has simplified the process of installing certain types of hardware 
on existing PCs. However, configuration issues continue to plague end users with 
respect to legacy devices such as serial and parallel ports, keyboards, and mice. The 
USB specification also identifies port availability as one of the factors limiting prolif
eration of low-speed to medium-speed peripherals, including modems, answering 
machines, scanners, and personal digital assistants. USB helps solve these problems 
by providing a uniform method of connecting a potentially large number of self
identifying low-to-medium-speed devices-that is, devices that require less than a 
1.5-megabyte-per-second data rate and that can electronically identify themselves to 
system software-through a single PC port. 

Although this book concerns software, some of the electrical and mechanical 
aspects of USB are important to software developers. From the end user's point of 
view, USB's main feature is the use by every device of an identical4-conductor wire 
with a standardized plug that fits into a socket on the back of the PC or on a hub 
device plugged into the PC. Furthermore, you can attach or remove USB devices at 
will without explicitly opening or closing the applications that use them and with
out worrying about electrical damage. 

This chapter covers two broad topics. In the first part of the chapter, I'll describe 
the programming architecture of USB. This architecture encompasses several ideas, 
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including a hierarchical method for attaching devices to a computer, a generic scheme 
for power management, and a standard for self-identification that relies on a hierar
chy of descriptors on board the hardware. TheUSB architecture also employs a 
scheme for subdividing fixed-duration frames into packets that convey data to and 
from devices. Finally, USB allows for four different ways of transporting data between 
the host computer and endpoints on devices. One method, named isochronous, 
permits a fixed amount of data to be moved without error correction every millisec
ond (ms). The other methods, named control, bulk, and interrupt, allow relatively 
small amounts of data (64 bytes or less) to be moved with error correction. 

In the second part of this chapter, I'll describe the additional features of a Win
dows Driver Model driver for a USB device over and above the features you already 
know about. Rather than communicate directly with hardware by using hardware 
abstraction layer (HAL) function calls, a USB driver relies heavily on the bus driver 
CUSBD.syS). To send a request to its device, the driver creates a USB request block 
CURB), which it submits to the bus driver. Configuring a USB device, for example, 
requires the driver to submit several URBs for reading descriptors and sending com
mands. USBD.SYS in turn schedules requests onto the bus according to demand and 
available bandwidth. 

The ultimate source for information about USB is the official specification, which 
was at revision level 1.1 when this book went to press. The specification and vari
ous other documents produced by the USB committee and its working groups were 
available on line at http://www.usb.org/developersl. Don Anderson's Universal Serial 
Bus System Architecture (Addison-Wesley, 1997) recapitulates much of the specifi
cation in useful form. 

NOTE ON SAMPLE PROGRAMS 

Anchor Chips, Incorporated (http.//www.anchorchips.com). kindly prOvided me 
one of their EZ-USB development kits. The Anchor Chips USB chip set revolves 
around a modified 8051 microprocessor and additional core logic to perform 
some of the low-level protocol functions mandated by the. USB specification. 
The development board also contains additional external memory, a UART and 
serial connector, a set of push buttons, and an LED readout to facilitate devel
opment and debugging of 8051 firmware using Anchor Chips' software frame
work. One of the key features of the Anchor Chips chip set is that you can 
download firmware over the USB connection easily. For a programmer like me 
with a phobia for hardware in general and EEPROM programming in particu
lar, that feature is a godsend. 

(continued) 
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continued 

The USB sample drivers on the companion disc illustrate the simplest 
possible USB devices and stand alone as examples of how to perform various 
tasks. If you happen to have an Anchor Chips development kit, however, you 
can also try out these samples with real firmware. Each sample contains a WDM 
driver in a SYS subdirectory, a Microsoft Win32 test program in a TEST subdi
rectory, and a firmware program in an EZUSB directory. You can follow the 
directions in the HTM files included with each sample to build these compo
nents or to simply install the prebuilt versions that are on the disc. 

A word of caution is in order here. Anchor Chips provides a reduced
function version of 8051 development tools authored by Keil Elektronik GmbH. 
You'll need an unlimited version of those tools (which you must license separately 
from Keil) to develop real firmware and even to build some of my samples. You 
might also need some perseverance to get past the rather dated interface offered 
by these 16-bit programming tools. But, by the time you read this, Keil will have 
introduced new, considerably improved 32-bit tools for the 8051 called uVision2. 

PROGRAMMING ARCHITECTURE 
The authors of the USB specification anticipated that programmers would need to 
understand how to write host and device software without necessarily needing or 
wanting to understand the electrical characteristics of the bus. Chapter 5, "USB Data 
Flow Model," and Chapter 9, "USB Device Framework," of the specification describe 
the features most useful to driver authors. In this section, I'll summarize those chapters. 

Device Hierarchy 

Figure 11-1 illustrates the topology of a simple USB setup. A host controller unit 
connects to the system bus like other I/O devices might. The operating system com
municates with the host controller by means of I/O ports or memory registers, and 
it receives event notifications from the host controller through an ordinary interrupt 
signal. The host controller in turn connects to a tree of USB devices. One kind of 
device, called a hub, serves as a connection point for other devices. Hubs can be daisy
chained together to a maximum depth defined by the USB specification. Other kinds 
of devices, such as cameras, mice, keyboards, and so on, plug into hubs. For the sake 
of precision, USB uses the term/unction to describe a device that isn't a hub. 
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Figure 11-1. Hierarcby of USB devices. 

High-Speed and Low-Speed Devices 
The USB specification provides for high-speed and low-speed devices. A low-speed 
device communicates at 1.5 megabits per second, whereas a high-speed device com
municates eight times faster, at 12 megabits per second. A hub can tell the difference 
between high-speed and low-speed devices by electrical means. Communication 
normally occurs on the bus at the high speed, and hubs normally don't send data to 
low-speed devices. The operating system prefaces any message destined for a low
speed device with a special preamble packet that causes the hubs to temporarily 
enable the low-speed devices. 

Power 
The USB cable carries power as well as-data signals. Each hub can supply electrical 
power to the devices attached to it and, in the case of subsidiary hubs, to downstream 
devices as well. USB imposes limits on how much power a bus-powered device can 
consume. These limits vary depending on whether the device is plugged in to a 
powered hub, how far the device is from the nearest powered hub, and so on. In 
addition, USB allows devices to operate in a low-power state and consume very little 
power-just enough to support wake-up and configuration signalling. Instead of 
relying on bus power, you can build independently powered hubs and devices. 
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USB devices are able to wake up the system from a low-power state. When the 
system goes to low power, the operating system places the USB in the low-power 
state as well. A device possessing an enabled remote wake-up feature can later sig
nal upstream to wake up upstream hubs, the USB host controller, and eventually the 
entire system. 

USB device designers should be aware of some limitations on wake-up signal
ling. First, remote system wake-up works only on a computer with an Advanced 
Configuration and Power Interface (ACPI) enabled BIOS. Older systems support ei
ther Advanced Power Management (APM) or no power management standard at all. 
Another limitation has to do with driver notification. WDM provides a method-the 
IRP _MN_ WAIT_WAKE flavor of a power I/O request packet (IRP)-to notify a driver 
when its device wakes up the system. No notification occurs, however, if a device 
comes out of its low-power state when the system is already in the wotking state. 

What's in a Device? 
In general, each USB device can have one or more configurations that govern how 
it behaves. See Figure 11-2. A common reason to use more than one configuration 
relates to operating system support. You might, for example, have a simple configu
ration ~t the system BIOS uses and a more complex configuration that your Windows 
driver uses. 

Endpoints 

Figure 11-2, Device configurations, inteifaces, and endpoints. 
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Each configuration of a device embodies one or more interfaces that prescribe 
how software should access the hardware. This concept of an interface is similar to 
the concept I discussed in Chapter 2 ("Basic Structure of a WDM Driver") in connec
tion with naming devices. That is, devices that support the same interface are es
sentially interchangeable in terms of software because they respond to the same 
commands in the same specified way. Also, interfaces frequently have alternate set
tings that correspond to different bandwidth requirements. 

A device interface exposes one or more endpoints, each of which serves as a 
terminus for a communications pipe. Figure 11-3 diagrams a layered communication 
model that illustrates the role of a pipe and an endpoint. At the lowest level, the USB 
wire connects the host bus controller to the bus interface on a device. At the second 
level, a control pipe connects system software to a logical device. At the third and 
highest level, a bundle of pipes connects client software with the collection of inter
faces that constitutes the device's function. Information actually flows vertically up 
and down both sides of the diagram, but it's useful to think of the pipes as carrying 
information horizontally between the corresponding layers. 

Host Computer USB Device r----------
I I 

~------------~~ 
Data Pipes r----------

Control Pipe 

Cables and Hubs 

Figure 11-3. Layered model for USB communication. 

A set of drivers provided by Microsoft occupies the lower edge of the sys
tem software box in the figure. These drivers include a host controller driver 
(OPENHCI.SYS or UHCD.SYS), a hub driver (USBHUB.SYS), and a class driver used 
by the controller driver (USBD.SYS). For convenience, I'll lump all of these drivers 
together under the name USED because that's the component our drivers primarily 
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interact with. Collectively, they manage the hardware connection and the mechan
ics of communicating over the various pipes. WDM drivers, such as the ones you and 
I might write, occupy the upper edge of the system software box. Broadly speaking, 
the job of a WDM driver is to translate requests from client software into transactions 
that USBD can carry out. Client software deals with the actual functionality of the 
device. For example, an image-rendering application might occupy the client soft
ware slot opposite a still-image function such as that of a digital camera. 

Information Flow 
USB defines four methods of transferring data, as summarized in Table 11-1. The 
methods differ in the amount of data that can be moved in a single transaction-see 
the next section for an explanation of the term transaction-in whether any particular 
periodicity or latency can be guaranteed, and in whether errors will be automatically 
corrected. Each method corresponds to a particular type of endpoint. In fact, end
points of a given type (that is, control, bulk, interrupt, or isochronous) always com
municate with the host by using the corresponding transfer type. 

Transfer 
Type 

Control 

Bulk 

Description Lossless? 

Used to send and Yes 
receive structured 
infonnation of a control 
nature 

Used to send or receive Yes 
small blocks of 
unstructured data 

Interrupt Like a bulk pipe, but Yes 
includes ao maximum 
latency 

Isochronous Used to send or receive No 
large blocks of 
unstructured data with 
guaranteed periodicity 

Table 11-1. Data transfer types. 

Size(s) 

~ 8,16,32, 
or 64 bytes 

~ 8,16,32, 
or 64 bytes 

~ 64 bytes 

~ 1023 bytes 

Latency 
Guarantee? 

Best effort 

No 

Polled at 
guaranteed 
minimum 
rate 

Fixed 
portion of 
every I-ms 
frame 

Endpoints have several attributes in addition to their type. One endpoint attribute 
is the maximum amount of data that the endpoint can provide or consume in a single 
transaction. Control and bulk endpoints must specify one of a few discrete values, 
whereas interrupt and isochronous endpoints can specify any value less than or equal 
to an overall maximum. In general, any single transfer can involve less than the 
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maximum amount of data that the endpoint is capable of handling. Another attribute 
of an endpoint is its direction, described as either input (information moves from the 
device to the host) or output (information moves from the host to the device). Finally, 
each endpoint has a number that functions along with the input/output direction 
indicator as the address of the endpoint. 

USB uses a polling protocol in which the host requests the device to carry out 
some function on a more or less regular basis. When a device needs to send data to 
the host, the host must somehow note this and issue a request to the device to send 
the data. In particular, USB devices don't interrupt the host computer in the traditional 
sense. In place of an asynchronous interrupt, USB provides interrupt endpoints that 
the host polls periodically. 

Information· Packaging 
When a client program sends or receives data over a USB pipe, it first calls a Win32 
API that ultimately causes the function driver (that's us) to receive an IRP. The driver's 
job is to direct the client request into a pipe ending at the appropriate endpoint on 
the device. It submits the requests to the bus driver, which breaks the requests into 

. transactions. The bus driver schedules the transactions for presentation to the hard
ware. Information flows on the bus inframes that occur once every millisecond. The 
bus driver must correlate the duration of all outstanding transactions so as to fit them 
into frames. Figure 11-4 illustrates the result of this process . 

.... 1II(1f------Applications-----~.~ 

Requests 

Transactions 

Frames 

Figure 11-4. Transaction andframe modelfor informationflow. 

In USB, a transaction has one or more phases. A phase is a token, data, or 
handshake packet. Depending on the type, a transaction consists of a token phase, 
an optional data phase, and an optional handshake phase, as shown in Figure 11-5. 
During the token phase, the host transmits a packet of data to all currently config
ured devices. The token packet includes a device address and (often) an endpoint 
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number. Only the addressed device will process the transaction; devices neither read 
nor write data on the bus for the duration of transactions addressed to other devices. 
During the data phase, data is placed on the bus. For output transactions, the host 
puts data on the bus and the addressed device consumes it. For input transactions, 
the roles are reversed and the device places data onto the bus for consumption by 
the host. During the handshake phase, either the device or the host places a packet 
onto the bus that provides status information. When a device provides the hand
shake packet, it can send an ACK packet to indicate successful receipt of informa
tion, a NAK packet to indicate that it's busy and didn't attempt to receive information, 
or a STALL packet to indicate that the transaction was correctly received but logically 
invalid in some way. When the host proVides the handshake, it can send only an ACK 
packet . 

........ ---One Transaction ----... 

Figure 11-5. Phases of a bus transaction. 

You'll notice that there's no handshake packet that means, "I found a transmis
sion error in this transaction." Whoever is waiting for an acknowledgment is expected 
to realize that lack of acknowledgment implies an error and to retry the transaction. 
The USB designers believe that errors will be infrequent, by the way, which means 
that any occasional delay because of retries won't have a big effect on throughput. 

MORE ABOUT DEVICE ADDRESSING 

The previous text says that all configured devices receive the electrical signals 
associated with every transaction. This is almost true, but a true renaissance 
programmer should know two more details. When a USB device first comes on 
line, it responds to a default address (which happens to be numerically zero, 
but you don't need to know that). Certain electrical signalling occurs tb alert 
the host bus driver that a new device has arrived on the scene, whereupon the 
bus driver assigns a device address and sends a control transaction to tell "device 
number zero" what its real address is. From then on, the device answers only 
to the real address. 

(continued) 
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continued 

The other detail concerns low-speed devices. The electronics of a low
speed device might misinterpret data arriving eight times faster than it expects. 
Furthermore, the cable connecting a low-speed device to the hub is not shielded 
and might generate undesirable electromagnetic interference if driven at high 
speed. Consequently, low-speed devices are not connected most of the time. 
That is, a hub keeps low-speed devices electrically isolated while high-speed 
transactions are occurring. When the host wants to communicate with a low
speed device, it sends a special preamble packet to switch the bus to low-speed 
operation for the duration of a single packet that begins shortly after the pre-

. amble. Thus, low-speed devices get an opportunity to see only low-speed trans
actions, but high':speed devices see all transactions. 

States of an Endpoint 
In general, an endpoint can be in any of the states illustrated in Figure 11-6. In the 
Idle state, the endpoint is ready to process a new transaction initiated by the host. 
In the Busy state, the endpoint is busy processing a transaction and can't handle a 
new one. If the host tries to initiate a transaction to a busy endpoint (other than a control 
endpoint, as described in the next section), the device will respond with a NAK 
handshake packet to cause the host to retry later. Errors that the device detects in its 
own functionality (not including transmission errors) cause the device to send a STALL 
handshake packet for its current transaction and to enter the Stalled state. Control 
endpoints automatically unstall when they get a new transaction, but the host must 
send a clear feature control request to any other kind of endpoint before addressing 
another request to a stalled endpoint. 

Figure 11-6. States of an endpoint. 

Control Transfers 
A control transfer conveys control information to or from a control endpoint on a 
device. For example, one part of the overall process by which the operating system 
configures a USB device is performing input control transfers to read various descriptor 
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structures kept onboard the device. Another part of the configuration process involves 
an output control transfer to establish one of the many possible configurations as 
current and to enable one or more interfaces. Control transfers are lossless in that 
the bus driver retries erroneous transfers up to three times before giving up and 
reporting an error status to upstream software. As indicated in Table 11-1, control 
endpoints must specify a maximum data transfer length of 8, 16,32, or 64 bytes. An 
individual transaction can involve less data than the indicated maximum but not more. 

Control transactions are a high priority in USB. A device isn't allowed to claim 
business as an excuse to avoid handling a control transaction. Moreover, the bus driver 
reserves up to 10 percent of each frame time for control transactions. Assuming a light 
enough load, therefore, the host can be sure of completing a control transaction within 
one millisecond. A heavier load, however, might force a pending control transaction 
into a later frame, with the result that higher latencies are possible. 

Every device has at least one control endpoint numbered 0 that responds to 
input and output control transactions. Strictly speaking, endpOints belong to configu
rations, but endpoint 0 is an exception in that it terminates the default control pipe 
for a device. Endpoint 0 is active even before the device receives its configuration 
and no matter what other endpoints (if any) are available. A device need not have 
additional control endpoints besides endpoint 0 (although the USB specification al
lows for the possibility) because endpoint 0 can service most control requests per
fectly well. If you define a vendor-specific request that can't complete within the frame, 
however, you should create an additional control endpoint to forestall having your 
onboard handler preempted by a new transaction. 

Each control transaction includes a SETUP token, which can be followed by an 
optional data phase in which additional data moves to or from the device and a 
handshake phase in which the device responds with an ACK packet, a STALL packet, 
or not at all. See Figure 11-7. Devices are required to accept control transfers at all 
times and can therefore not respond with NAK to indicate a busy endpoint. Send
ing an invalid request to a control endpOint elicits a STALL response, but the de
vice automatically clears the stall condition when it receives the next SETUP packet. 
This special case of stalling is called protocol stall in the USB specification-see 
Section 8.5.2.4. 

The SETUP token that prefaces a control transfer consists of eight data bytes, 
as illustrated in Figure 11-8. In this and other data layout figures, I'm showing data 
bytes in the order in which they're transmitted over the USB wire, but I'm showing 
bits within individual bytes starting with the high-order bit. Bits are transmitted over 
the wire starting with the least-significant bit, but host software and device firmware 
typically work with data after the bits have been reversed. Intel computers and the 
USB bus protocols employ the little-endian data representation in which the least
significant byte of a multibyte data item occupies the lowest address. The 8051 mi
croprocessor used in several USB chip sets, including the Anchor Chips chip set, is 
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actually a big-endian computer. Firmware must therefore take care to reverse data 
bytes appropriately. 

Token 
Phase 

Data 
Phase 

Handshake 
Phase 

• Hostsends 

• Device sends 

Figure 11-7. Phases of a control transfer. 

x .....•. Direction of transfer: 
o Host to device 

.xx ..... 

•.. x xxxx 

1 Device to host 

Request type: 
o Standard 
1 Class 
2 Vendor 
3 Reserved 

Recipient: 
o Device 
1 Interface 
2 Endpoint 
3 Other 4} , : Reserved 

31 

Figure 11-8. Contents of a SETUP token. 
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Notice in the figure that the first byte of a SETUP token indicates the direction 
of information flow, a request type, and the type of entity that is the target of the 
control transfer. The request types are standard (defined as part of the USB specifi
cation), class (defined by the USB working group responsible for a given class of 
device), and vendor (defmed by the maker of the device). Control requests can be 
addressed to the device as a whole, to a specified interface, to a specified endpoint, 
or to some other vendor-specific entity on the device. The second byte of the SETUP 
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token indicates which request of the type indicated in the fIrst byte is being made. 
Table 11-2 lists the standard requests that are currently defmed. For information about 
class-specmc requests, consult the appropriate device class specmcation. (See the fIrst 
URL I gave you at the beginning of this chapter for information on how to fmd these 
specifications.) Device manufacturers are free to define their own vendor-specmc 
request codes. For example, Anchor Chips uses the request code AOh to download 
fIrmware from the host. 

NOTE Note that control requests that affect the state of some particular end
point are sent to a control endpoint and not to the endpoint whose state is 
affected. 

Request Possible 
Code Symbolic Name Description Recipients 

0 GET_STATUS Gets status information Any 

1 CLEAR_FEATURE Clears a two-state feature Any 

2 (Reserved) 

3 SET_FEATURE Sets a two-state feature Any 

4 (Reserved) 

5 SET-ADDRESS Sets device address Device 

6 GET_DESCRIPTOR Gets device, configura- Device 
tion, or string descriptor 

7 SET_DESCRIPTOR Sets a descriptor Device 
(optional) 

8 GET_CONFIGURATION Gets current configura- Device 
tion index 

9 SET_CONFIGURATION Sets new current config- Device 
uration 

10 GET_INTERFACE Gets current alternate Interface 
setting index 

11 SET_INTERFACE Enables alternate setting Interface 

12 SYNCH_FRAME Reports synchronization (Isochronous) 
frame number Endpoint 

Table 11-2. Standard device requests. 

The remainder of the SETUP packet contains a value code whose meaning 
depends on which request is being made, an index value with similarly mutable 
meaning, and a length fIeld that indicates how many bytes of data are to be transferred 
during the data phase of the control transaction. The index field contains the end
point or interface number when a control request addresses an endpoint or interface. 
A 0 value for the data length implies that this particular transaction has no data phase. 
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I'm not going to exhaustively describe all of the details of the various standard 
control requests; you should consult Section 9.4 of the USB specification for full 
information. I do want to briefly discuss the concept of a device feature, however. 
USB envisages that any of the addressable entities belonging to a device can have 
features that can be represented by the state of a single bit. Two such features are 
standardized for all devices. 

The DEVICE_REMOTE_ WAKEUP feature-a feature belonging to the device 
as a whole-indicates whether or not the device should use its ability (if any) to re
motely wake up the computer when external events occur. Host software (specifi
cally, the bus driver) enables or disables this feature by addressing a SET_FEATURE 
or CLEAR-FEATURE command, respectively, to the device and specifying a value 
code of 1 to designate the wake-up feature. The DDK uses the symbolic name 
USB_FEATURE_REMOTE_ WAKEUP for this feature code. 

The ENDPOINT_HALT feature-a feature belonging to an endpoint-indicates 
whether or not the endpoint is in the functional stall state. Host software can force 
an endpoint to stall by sending the endpoint a SET]EATURE command with a value 
code of 0 to deSignate ENDPOINT_HALT. The firmware that manages the endpOint 
might independently decide to stall, too. Host software (once again, the bus driver) 
clears the stall condition by sending a CLEAR_FEATURE command with a value code 
of O. The DDK uses the symbolic name USB_FEATURE_ENDPOINT_STALL for this 
feature code. 

The USB specification does not prescribe ranges of device or endpoint feature 
codes for vendor use. To avoid possible standardization issues later, you should avoid 
defining device-level or endpOint-level features. Instead, define your own vendor
type control transactions. Notwithstanding this advice, later in this chapter I'll show 
you a sample driver (FEATURE) that controls the 7-segment LED display on the Anchor 
Chips development board. For purposes of that sample, I defmed an interface-level 
feature numbered 42. (USB currently defines a few interface-level features for power 
management, so you would not want to emulate my example except for learning 
about how features work.) 

Bulk Transfers 
A bulk transfer conveys up to 64 bytes of data to or from a bulk endpoint. Like control 
transfers, bulk transfers are lossless. Unlike control transfers, bulk transfers don't have 
any particular guaranteed latency. If the host has room left over in a fraille after 
accommodating other bandwidth reservations; it will schedule pending bulk transfers. 

Figure 11-9 illustrates the phases that make up a bulk transfer. The transfer be
gins with either an IN or an OUT token that .addresses the device and endpoint. In 
the case of an output transaction, a data phase follows in which data moves from the 
host to the device and then a handshake phase in which the device provides status 
feedback. If the endpoint is busy and unable to accept new data, it generates a NAK 
packet during the handshake phase-the host will retry the output transaction later. 
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If the endpoint is stalled, it generates a STALL packet during the handshake phase
the host must later clear the halt condition before retrying the transmission. If the end
point receives and processes the data correctly, it generates an ACK packet in the 
handshake phase. The only remaining case is the one in which the endpoint doesn't 
correctly receive the data for some reason and simply doesn't generate a handshake
the host will detect the absence of any acknowledgment and automatically retry up 
to three times. 

FollOwing the IN token that introduces an input bulk transfer, the device per
forms one of two operations. If it can, it sends data to the host, whereupon the host 
either generates an ACK handshake packet to indicate error-free receipt of the data 
or stays mute to indicate some sort of error .. If the host detects an error,· the absence 
of an ACK to the device causes the data to remain available-the host will retry the 
input operation later on. If the endpoint is busy or halted, however, the device gen
erates a NAK or STALL handshake instead of sending data. The NAK indicates that 
the host should retry the input operation later, and the STALL requires the host to 
eventually send a clear feature command to reset the halt condition. . 

Token 
Phase 

• Host sends 

• Device sends 

Data 
Phase 

Handshake 
Phase 

Figure 11-9. Phases of a bulk or interrupt transfer. 

501 



Programming the Microsoft Windows Driver Model 

502 

Interrupt Transfers 
An inte'ITUpt transfer is practically identical to a bulk transfer insofar as the opera
tion of the bus and the device are concerned. It moves up to 64 bytes of data losslessly 
to or from an interrupt endpoint. The only difference between interrupt and bulk trans
fers has to do with latency. An interrupt endpoint specifies a polling interval in the 
range 1-255 milliseconds. The host reserves sufficient bandwidth to make sure of per
forming an IN or OUT transaction directed toward the endpoint at least as frequently 
as the polling interval. 

NOTE Note that USB devices don't generate asynchronous interrupts: they 
always respond to a poll. You might need to know that the Microsoft host 
controller drivers effectively round the polling interval specified in an interrupt 
endpoint descriptor down to a power of 2 no greater than 32. For example, an 
endpoint that specifies a polling interval of 31 milliseconds will actually be polled 
every 16 milliseconds. A specified polling interval between 32 and 255 millisec
onds results in an actual polling interval of 32 milliseconds. 

Isochronous Transfers 
An isochronous transfer moves up to 1023 data bytes to or from an isochronous 
endpoint during every bus frame. Because of the guaranteed periodicity of isochro
nous transfers, they are ideal for time-sensitive data such as audio signals. The guar
antee of periodicity comes at a price, however: isochronous transfers that fail because 
of data corruption don't get retried automatically. The USB deSigners assumed that 
isochronous data streams can tolerate occasional small losses. 

An isochronous transaction consists of an IN or OUT token followed by a data 
phase in which data moves to or from the host. No handshake phase occurs because 
no errors are retried. See Figure 11-10. 

Token 
Phase 

• Host sends 

• Device sends 

Data 
Phase 

Figure 11-10. Phasesof an isochronous transfer. 

The host reserves up to 90 percent of the bus bandwidth for isochronous and 
interrupt transfers. In fact, system software needs to reserve bandwidth in advance 
to make sure that all active devices can be accommodated. 
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Descriptors 
USB devices maintain onboard data structures known as descriptors to allow for self
identification to host software. Table 11-3 lists the different descriptor types. Each 
descriptor begins with a two-byte header containing the byte count of the entire 
descriptor (including the header) and a type code. As a matter of fact, if you ignore 
the special case of a string descriptor--concerning which, see "String Descriptors" a 
bit further on-the length of a descriptor is implied by its type because all descrip
tors of a given type have the same length. The explicit length is nonetheless present 
in the header to provide for future extensibility. Additional, type-specific data follows 
the fixed header. 

In the remainder of this section, I'll describe the layout of each type of descriptor 
by using the data structures defined in the DDK (specifically, in USBlOO.H). The 
official rendition of this information is in Section 9.6 of the USB specification. 

Descriptor Type Description 

Describes an entire device 

Describes one of the configurations of a device 

Device 

Configuration 

Interface 

Endpoint 

String 

Describes one of the interfaces that's part of a configuration 

Describes one of the endpoints belonging to an interface 

Contains a human-readable Unicode string describing the 
device, a configuration, an interface, or an endpoint 

Configuration 
power 

Interface power 

Describes power-management capabilities of a device 
configuration 

Describes power-management capabilities of a device 
function 

Table 11-3. Descriptor types. 

Device Descriptors 
Each device has a single device deSCriptor that identifies the device to host software. 
The host uses a GET_DESCRIPTOR control transaction directed to endpoint 0 to read 
this descriptor. The device descriptor has the following definition in the DDK: 

typedef struct _USB_DEVICE_DESCRIPTOR { 
UCHAR bLength; 
UCHAR bDescriptorType; 
USHORT bcdUSB; 
UCHAR·bDeviceClass; 
UCHAR bDeviceSubClass; 
UCHAR bDeviceProtocol; 
UCHAR bMaxPacketSize0; 
USHORT idVendor; 

(conttnued) 
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USHORT idProduct; 
USHORT bcdDevice; 
UCHAR iManufacturer; 
UCHAR iProduct; 
UCHAR iSerialNumber; 
UCHAR bNumConfigurations; 

} USB_DEVICE_DESCRIPTOR. *PUSB_DEVICE_DESCRIPTOR; 

The bLength field in a device descriptor will equal 18, and the bDescriptor
Type field will equal 1 to indicate that it's a device descriptor. The bcduSB field 
contains a version code (in binary-coded decimal) indicating the version of the USB 
specification to which this descriptor conforms. Current devices use the value OxOlOO 
or Ox0110 here to indicate conformance with the 1.0 or 1.1 specifications, respectively. 

The values bDeviceCJass, bDeviceSubClass, and bDeviceProtocol identify 
the type of device. Possible device class codes are defined by the USB specification 
and at the time of this writing include the codes listed in Table 11-4. Individual de
vice class working groups within the USB committee define subclass and protocol 
codes for each device class. For example, the audio class has subclass codes for 
control, streaming, and MIDI streaming interfaces. And the mass storage class defines 
protocol codes for various methods of using endpoints for data transfer. 

You can specify a class for an entire device or at the interface level, but in 
practice the device class, subclass, and protocol codes are often in an interface descriptor 
rather than in the device descriptor. (The device descriptor contains 0 for these codes 
in such cases.) USB also provides an escape valve for unusual types of devices in the 
form of the device class code 255. A vendor can use this type code to designate a 
nonstandard device for which the subclass and protocol codes provide the vendor
specific description. For example, a device built around the Anchor Chips chip set comes 
on line with a device descriptor having class, subclass, and protocol codes all equal to 
255 to indicate an Anchor Chips default device. That device is primarily capable of 
accepting a vendor-specific control request to download firmware that will change the 
personality of the device to something else having its own (new) set of descriptors. 

The bMaxPacketSizeO field of the device descriptor gives the maximum size 
of a data packet for a control transfer over endpoint O. There isn't a separate end
point descriptor for this endpoint (which every device has to implement), so this field 
is the only place where the number can be presented. Since this field is at offset 7 
within the deSCriptor, the host can always read enough of the descriptor to retrieve 
this value even if endpoint 0 is capable only of the minimum size transfer (eight bytes). 
Once the host knows how big endpoint 0 transfers can be, it can structure subse
quent requests appropriately. 

The idVendorand idProduct fields specify a vendor code and a vendor
specific product identifier for the device. bcdDevice specifies a release number (such 
as Ox0100 for version 1.0) for the device. These three fields determine which driver 
the host software will load when it detects the device. The USB organization assigns 
vendor codes, and each vendor assigns its own product codes. 
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Class 
SymhoUc Name Code Description 

USB_DEV1CE_CLASS_RESERVED 0 Indicates that class codes are 
in the interface descriptors 

USB_DEV1CE_Q.ASS_AUDIO 1 Devices used to manipulate 
'. 

analog or digital audio, voice, 
and other sound-related data 
(but not including transport 
mechanisms) 

USB_DEV1CE_CLASS_COMMUNICATIONS 2 Telecommunications devices 
such as modems, telephones, 
answering machines, and 
so on 

USB_DEV1CE_CLASS_HUMAN_INTERF ACE 3 Human interface. devices such 
as keyboards, mice, and so on 

USB_DEV1CE_CLASS~ONITOR 4( Display monitors 

USB_DEV1CE_CLASS_PHYSICAL_INTERFACE 5 HID devices involving real-
time physical feedback, such 
as force-feedback joysticks 

USB_DEV1CE_CLASS_PO~R 6 HID devices that perform 
power management, such as 
batteries, chargers, and so on 

USB_DEV1CE_CLASS]RINTER 7 Printers 

USB_DEV1CE_CLASS_STORAGE 8 Mass storage devices, such as 
disk and CD-ROM 

USB_DEV1CE_CLASS_HUB 9 USB hubs 

USB_DEV1CE_CLASS_ VENDOR-SPECIFIC 255 Vendor-defined device class 

Table 11-4. USB device class codes. 

DEVICE VERSION NUMBERING 

Microsoft strongly encourages vendors to increment the device version number 
for each revision of hardware or firmware to facilitate downstream software 
updates. Often, a vendor releases a new version of hardware along with a revised 
driver. Also, hardware updates sometimes invalidate software patches or f1lter 
drivers that were present so as to address earlier hardware bugs. An automatic 
update mechanism might therefore have trouble updating a system if it can't 
determine which revision of the hardware it's working with. 
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The iManufacturer, iProduct, and iSeria1Number fields identify string de
scriptors that provide a human-readable description of the manufacturer, the prod
uct, and the unit serial number. These strings are optional, and a 0 value in one of 
these fields indicates the absence of the descriptor. If you put a serial number on a 
device, Microsoft recommends that you make it unique for each physical device. 

Lastly, the bNumConfigurations field indicates how many configurations the 
device is capable of. Microsoft drivers work only with the first configuration (num
ber 1, that is) of a device. I'll explain later, in "Configuration," what you might do for 
a device that has multiple configurations. 

Configuration Descriptors 
Each device has one or more configuration descriptors that describe the various 
configurations of which the device is capable. System software reads a configuration 
descriptor by performing a GET_DESCRIPTOR control transaction addressed to end
pOint O. The DDK defmes the configuration descriptor structure as follows: 

typedef struct _USB_CONFIGURATION_DESCRIPTOR { 
UCHAR bLength: 
UCHAR bDescr1ptorType: 
USHORT wTotalLength: 
UCHAR bNumInterfaces: 
UCHAR bConfigurationValue: 
UCHAR 1Configuration: 
UCHAR bmAttributes: 
UCHAR MaxPower: 

} USB_CONFIGURATION_DESCRIPTOR, *PUSB_CONFIGURATION_DESCRIPTOR: 

, The bLength and bDescriptorType fields will be 9 and 2, respectively, to 
indicate a configuration descriptor nine bytes in length. The wTotalLength field 
contains the total length of this configuration descriptor plus the interface and end
point deSCriptors that are part of the configuration. In general, the host performs one 
GET_DESCRIPTOR request to retrieve the nine-byte configuration descriptor proper 
and then another GET_DESCRIPTOR request specifying this total length. The second 
request, therefore, transfers the grand unifwd descriptor. (It's impossible to retrieve 
interface and endpoint descriptors except as part of a configuration descriptor.) 

The bNumInterfaces field indicates how many interfaces are part of the con
figuration. The count includes just the interfaces themselves, not each alternate set
ting of an interface. The purpose of this field is to allow for multifunction devices 
such as keyboards that have embedded locator (mouse and the like) functionality. 

The bConfigurationValue field is an index that identifies the configuration .. 
You use this value in a SET_CONFIGURATION control request to select the con
figuration. The first configuration descriptor for a device has a 1 here. (Selecting 
configuration 0 puts the device in an unconfigured state in which only endpoint 0 
is active.) 
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The iConfiguration field is an optional string descriptor index pointing to a 
Unicode description of the configuration. Zero indicates the absence of a string 
description. 

The bmAttributes byte contains a bit mask describing power and perhaps other 
characteristics of this configuration. See Table 11-5. The unmentioned bits are reserved 
for future standardization. A configuration supporting remote wake-up would have 
the remote wake-up attribute set. The high-order two bits interact with the MaxPower 
field of the configuration deSCriptor to describe the power characteristics of the con
figuration. Basically, every configuration sets the high-order bit (which used to mean 
the device was powered from the bus) and also sets MaxPower to the maximum 
number of two milliamp power units that it will draw from the bus. A configuration 
that uses some local power will also set the self-powered attribute bit. 

Bit 
mask 

80h 

40h 

20h 

Symbolic Name 

USB_CONFIG_BUS]OWERED 

USB_CONFIG_SELF _POWERED 

USB_CONFIG_REMOTE_ WAKEUP 

Table 11-5. Configuration attribute bits. 

Interface Descriptors 

Description 

Obsolete-should always be set to 1 

Configuration is self-powered 

Configuration has a remote wake-up 
feature 

Each configuration has one or more interface deSCriptors that describe the interface(s) 
that provide device functionality. System software can fetch an interface descriptor 
only as part of a GET_DESCRIPTOR control request that retrieves the entire configu
ration deSCriptor of which the interface descriptor is a part. The DDK defines the 
interface descriptor structure as follows: 

typedef struct _USB_INTERFACE_DESCRIPTOR { 
UCHAR bLength; 
UCHAR bDescriptorType; 
UCHAR blnterfaceNumber; 
UCHAR bAlternateSetting; 
UCHAR bNumEndpoints; 
UCHAR blnterfaceClass; 
UCHAR blnterfaceSubClass; 
UCHAR blnterfaceProtocol; 
UCHAR ilnterface; 

} USB_I NTERFACCDESCRI PTOR. *PUSB_I NTERFACE_DESCRI PTOR; 

The bLength and bDescriptorType fields will be 9 and 4, respectively, to 
indicate an interface descriptor nine bytes in length. blnterfaceNumber and 
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, bAlternateSetting are index values that can be used in a SET_INTERFACE control 
transaction to specify activation of the interface. These numbers are essentially arbi

'trary, but it's customary to number the interfaces within a configUration starting with 
zero and to number the alternate settings of each interface starting with zero, too. 

The bNumEndpoints field indicates how many endpoints---other than 0, which 
is assumed to always be present-are part of the interface. 

The bInterfaceClass, bInterfaceSubClass, and bInterfaceProtocol fields 
describe the functionality provided by the interface. A nonzero class code should be 
one of the device class codes I discussed earlier, in which case the subclass and 
protocol codes would have the same meaning as well. Zero values in these fields are 
not allowed at the present time--zero is reserved for future standardization. 

Finally, llnterface is the index of a string descriptor containing a Unicode 
description of the interface. Zero indicates that no string is present. 

Endpoint Descriptors 
Each interface has zero or more endpoint descriptors that describe the endpoint(s) 
that handle transactions with the host. System software can fetch an endpoint descrip
tor only as part of a GET_DESCru;PTOR control request that retrieves the entire con
figUration descriptor of which the endpoint descriptor is a part. The DDK defines the 
endpoint descriptor structure as follows: 

typedef struct _USB_ENDPOINT_DESCRIPTOR { 
UCHAR bLength: 
UCHAR bDescriptorType: 
UCHAR bEndpointAddress: 
UCHAR bmAttributes: 
USHORT wMaxPacketSize: 
UCHAR blnterval: 

} USB_ENDPOINT_DESCRIPTOR. *PUSB_ENDPOINT_DESCRIPTOR: 

The bLength and bDescriptorType fields will be 7 and 5, respectively, to 
indicate an endpoint descriptor of length seven bytes. bEndpointAddress encodes 
the directionality and number of the endpoint, as illustrated in FigUre 11-11. For 
example, an address value of Ox82 denotes an IN endpoint numbered 2, and an 
address of Ox02 denotes an OUT endpoint that's also numbered 2. Except for end
point 0, you can have two different endpoints that share the same number but per
form transfers in the opposite direction. 

3 bits 

..... ~~1=lnput 
0= Output 

4 bits 

Figure 11-11. Bit assignments within an endpoint descriptor's address fwld. 
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The low-order two bits of bmAttributes indicate the type of the endpoint. See 
Table 11-6. The remaining bits are reserved for future standardization and should 
currently be set to O. 

Symbolic Name Value 

USB_ENDPOINT_TYPE_CONTROL 0 

USB_ENDPOINLTYPE_ISOCHRONOUS 1 

USB_ENDPOINT_1YPE_BULK 2 

USB_ENDPOINT_1YPE_INTERRUPT 3 

Table 11-6. Type codes for endpoints. 

Endpoint Type 

Control endpoint 

Isochronous endpoint 

Bulk transfer endpoint 

Interrupt endpoint 

The wMaxPacketSize value indicates the largest amount of data the endpoint 
can transfer during one transaction. Table 11-1 (on page 493) lists the possible val
ues for this field for each type of endpoint. (Even though Table 11-1 explicitly con
cerns transfer types, note that endpoint types map one to one with transfer types.) 
For example, a control or bulk endpoint would specify one of the values 8, 16, 32, 
or 64. An interrupt endpoint would specify a value in the range 0-64, inclusive. An 
isochronous endpoint would specify a number less than 1024. 

Interrupt. and isochronous endpoint descriptors also specify a polling interval 
measure in milliseconds in the bInterval field. This number indicates how often the 
host should poll the endpoint for a possible data transfer. For an interrupt endpoint, 
it can range from 1 to 255 and represents the maximum period between polls. An 
isochronous endpoint should specify 1 because it's polled during every frame--once 
per millisecond, in other words. 

String Descriptors 
A device, configuration, or endpoint descriptor contains optional string indices that 
identify human-readable strings. The strings themselves are stored on the device in 
Unicode in the form of USB string deSCriptors. System software can read a string 
deSCriptor by addressing a GET_DESCRIPTOR control request to endpoint O. The DDK 
declares the string descriptor structure as follows: 

typedef struct _USB_STRING_DESCRIPTOR { 
UCHAR bLength; 
UCHAR bDescriptorType; 
WCHAR bString[l]; 

} USB_STRING_DESCRIPTOR. *PUSB_STRING_DESCRIPTOR; 

The bLength value is variable, depending on how long the string data is. The 
bDescriptorType field will be 3 to indicate that this is a string descriptor. The bString 
data contains the string data itself. Any null terminator would be included in the 
descriptor length. 
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USB devices can support strings in multiple languages. String number 0 is an 
array of supported language identifiers rather than a character string. (A string index 
of 0 used in another descriptor denotes the absence of a string reference. Thus, in
dex number 0 is available for this special use.) The language identifiers are of the 
same LANGID type that Win32 programs use. For example, Ox0409 is the code for 
American English. The USB specification doesn't prescribe what happens if you ask 
a device to return a string descriptor for a language that the device doesn't advertise 
supporting, so you should read the string-zero array before issuing requests for string 
descriptors. Consult Section 9.6.5 of the USB specification for more information about 
language identifiers. 

Other Descriptors 
USB is an evolving specification, and I can present only a snapshot of its evolution 
at the time of writing. A USB working group recently finalized a specification for 
interface-level power management, for example. You can read about it at the USB 
Web site, and the DDK header file USBlOO.H contains definitions for it. Time doesn't 
permit us (me and the publisher, that is) to explore the ramifications of this new 
facility. Luckily, it would appear that WDM driver writers don't need to know about 
them-interpreting Interface Feature descriptors is the province of the hub driver 
rather than a WDM function or filter driver. 

WORKING WITH THE BUS DRIVER 
In contrast to drivers for devices that attach to traditional PC buses such as PCI (Peri
pheral Component Interconnect), a USB device driver never talks directly to its hard
ware. Instead, it creates an instance of the data structure known as the USB request 
block that it then submits to the bus driver. 

Think of USBD.SYS as the entity to which you submit URBs. The call to USBD 
takes the form of an IRP with the major function code IRP _MLINTERNAL_ 
DEVICE_CONTROL. USBD in turn schedules bus time in some frame or another to 
carry out the operation encoded in the URB. 

In this section, I'll describe the mechanics of working with USBD to carry out 
the typical operations a USB function driver performs. I'll first describe how to build 
and submit a URB. Then I'll discuss the mechanics of configuring and reconfiguring 
your device. Finally, I'll outline how your driver can manage each of the four types 
of communication pipes. 

Initiating Requests 
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To create a URB, you allocate memory for the URB structure and invoke an initial
ization routine to fill in the appropriate fields for the. type of request you're about to 
send. Suppose, for example, that you were beginning to configure your device in 
response to an IRP _MN_START_DEVICE request. One of your first tasks might be to 
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read the device descriptor. You might use the following snippet of code to accom
plish this task: 

USB_DEVICE_DESCRIPTOR dd; 
URB urb; 
UsbBuildGetDescriptorRequest(&urb, 

sizeof(_URB_CONTROL-DESCRIPTOR-REOUEST), 
USB_DEVICE_DESCRIPTOR-TYPE, 0, 0, &dd, NULL, 
sizeof(dd), NULL); 

We first declare a local variable (named urb) to hold a URB data structure. The 
URB is declared (in USBDI.H) as a union of several substructures, one for each of 
the requests you might want to make of a USB device. We're going to be using the 
UrbControJDescriptorRequest substructure of the URB union, which is declared 
as an instance of struct _URB_CONTROL_DESCRIPfOR_REQUEST. Using an au
tomatic variable like this is fine if you know the stack has enough room to hold the 
largest possible URB and if you'll await completion of the URB before allowing the 
variable to pass out of scope. 

You can, of course, dynamically allocate the memory for a URB from the heap 
if you want: 

PURB urb = (PURB) ExAllocatePool(NonPagedPool, 
sizeof(_URB_CONTROL_DESCRIPTOR-REOUEST»; 

if (!urb) 
return STATUS_INSUFFICIENT_RESOURCES; 

UsbBuildGetDescriptorRequest(urb, ... ); 

ExFreePool(urb); 

UsbBuildGetDescriptorRequest is documented like a normal service routine, but 
it's actually a macro (declared in USBDLIB.H) that generates inline statements to 
initialize the fields of the get descriptor request substructure. The DDK headers de
fine one of these macros for most types of URBs you might want to build. See 
Table 11-7. As is true of preprocessor macros in general, you should avoid using ex
pressions that have side effects in the arguments to this macro. 

Helper Macro 1}pe ofTransactton 

UsbBuildInterruptOrBulkTransferRequest Input or output to an interrupt or bulk 
endpoint 

UsbBuildGetDescriptorRequest GET_DESCRIPTOR control request for 
endpoint 0 

UsbBuildGetStatusRequest GET_STATUS request for a device, an 
interface, or an endpoint 

Table 11-7. Helper macros for building URBs. (continued) 
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continued 

Helper Macro 

UsbBuildFeatureRequest 

U sbBuildSe1ectConfigurationRequest 

UsbBuildSe1ectInterfaceRequest 

UsbBuildVendorRequest 

Type of Transaction 

SET_FEATURE or CLEAR]EATURE re
quest for a device, an interface, or an 
endpoint 

SET_CONFIGURATION 

SET _INTERFACE 

Any vendor-defined control request 

In the previous code fragment, we specify that we want to retrieve the device 
descriptor information into a local variable (dd) whose address and length we supply. 
URBs that involve data transfer allow you to specify a nonpaged data buffer in either 
of two ways. You can specify the virtual address and length of the buffer, as I did in 
the fragment. Alternatively, you can supply a memory descriptor list (MDL) for which 
you've already done the probe-and-Iock step by calling MmProbeAndLockPages. 

MORE ABOUT URBs 

Internally, the bus driver always uses an MDL to describe data buffers. If you 
specify a buffer address, USBD creates the MDL itself. If you happen to already 
have an MDL, it would be counterproductive to call MmGetSystemAddress
ForMdl and pass the resulting virtual address to USBD: USBD will turn around 
and create another MDL to describe the same buffer! 

The URB also has a chaining field named urblink that USBD uses inter
nally to submit a series of URBs all at once to the host controller driver. The 
various macro functions for initializing URBs also have an argument in which 
you could theoretically supply a value for this linking field. You and I should 
always supply NULL because the concept of linked URBs hasn't been fully 
implemented-trying to link data transfer URBs will lead to system crashes, 
in fact. 

Sending a URB 
Having created a URB, you need to create and send an internal I/O control (IOCTL) 
request to the USBD driver, which is sitting somewhere lower in the driver hierar
chy for your device. In many cases, you'll want to wait for the device's answer and 
you'll use a helper routine like this one: 

NTSTATUS SendAwaitUrb(PDEVICE_OBJECT fda. PURB urb) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fda->DeviceExtensian; 
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KEVENT event: 
KeInitializeEvent(&event, NotificationEvent, FALSE): 
IO_STATUS_BLOCK iostatus: 
PIRP Irp = IoBuildDeviceIoControlRequest 

(IOCTL-INTERNAL_USB_SUBMIT_URB, pdx->LowerDeviceObject, 
NULL, 0, NULL, 0, TRUE, &event, &iostatus): 

PIO_STACK-LOCATION stack = IoGetNextIrpStackLocation(Irp): 
stack->Parameters.Others.Argumentl = (PVOID) urb: 
NTSTATUS status = IoCallDriver(pdx->LowerDeviceObject, Irp): 
if (status == STATUS_PENDING) 

{ 

KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL): 
status = iostatus.Status: 
} 

return status: 
} 

1. We're going to wait for the URB to complete, so we need to create a kernel 
event object on which to wait. This technique is very similar to the one I 
used in the ForwardAndWait helper routine in Chapter 6, "Plug and Play." 

2. The easiest way to build the internal IOCTL IRP we need is to call IoBulld
DeviceloControlRequest, which does it for us. The first argument 
(IOCTL_INTERNAL_USB_SUBMfCURB) specifies the I/O control code 
of the control request and indicates to USBD that we're submitting a URB. 
The second argument (pdx->LowerDeviceObject) specifies the device 
object that will initially receive the request; 10BuildDeviceloControiRequest 
uses this pointer to decide how many stack locations to reserve when it 
builds the IRP. The neXt four parameters, which are NULL or 0 in this 
example, describe input and output buffers that we don't need when we're . 
submitting a URB. The seventh parameter is TRUE to indicate that we're 
creating an IRP _MLINTERNAL_DEVICE_CONTROL request instead of an 
IRP _MLDEVICE_CONTROL request. The last two parameters designate 
the event on which we'll await completion of the URB and an IO_STATUS_ 
BLOCK that will receive the ending status from the operation. 

3. The address of the URB we're submitting goes in the Argumentl field 
of the Parameters.Others substructure within the top stack location. This 
field occupies the same offset in the stack location as the OutputBuffer
Length parameter for a normal IOCTL request. 

4. We send the request to the next driver in the usual way-by calling IoCall
Driver. USBD will now process the request to completion, whereupon 
the I/O Manager will delete the IRP and signal our event. Since we haven't 
provided our own completion routine, we can't be certain that the I/O 
Manager will signal our event in all possible completion cases. Hence, we 
wait for the event only if the return value from the lower level dispatch 
outine is STATUS_PENDING. 
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NOTE It bears emphasizing that drivers package URBs into normallRPs with 
the major function code IRP _MJ_INTERNAL_DEVICE_CONTROL. To provide 
for an upper filter driver to send its own URBs, every driver for a USB device 
should have a dispatch function that passes this IRP down to the next layer. 

Status Returns from URBs 
When you submit a URB to the USB bus driver, you eventually receive back an 
NTSTATUS code that describes the result of the operation. Internally, the bus driver 
uses another set of status codes with the typedef name USBD_STATUS. These codes 
are not NTSTATUS codes. 

When USBD completes a URB, it sets the URB's UrbHeader.Status field to one 
of these USBD_STATUS values. You can examine this value in your driver to glean 
more information about how your URB fared. The URB_STATUS macro in the DDK 
simplifies accessing: 

NTSTATUS status = SendAwaitUrb(fdo, &urb); 
USBD_STATUS ustatus = URB_STATUS(&urb); 

There's no particular protocol for preserving this status and passing it back to an 
application, however. You're pretty much free to do what you will with it. 

Configuration 
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The USB bus driver automatically detects attachment of a new USB device. It then 
reads the device descriptor structure to determine what sort of device has suddenly 
appeared. The vendor and product identifier fields of the deSCriptor, together with 
other deSCriptors, determine which driver needs to be loaded. 

The Configuration Manager calls the driver's AddDevice function in the normal 
way. AddDevice does all the tasks you've already heard about: it creates a device 
object, links the device object into the driver hierarchy, and so on. The Configura
tion Manager eventually sends the driver an IRP _MN_START_DEVICE Plug and Play 
request. Back in Chapter 6, I showed you how to handle that request by calling a 
helper function named StartDevice with arguments describing the translated and 
untranslated resource assignments for the device. One piece of good news is that you 
needn't worry about I/O resources at all in a USB driver, because you have none. 
So you could write a StartDevice helper function with the following skeletal form: 

NTSTATUS StartDevice(PDEVICE_OBJECT fdo) 
{ 

PDEVICLEXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
<configure device> 
return STATUS_SUCCESS; 
} 

I glibly said configure device where you'll write rather a lot of code to config
ure the hardware. But, as I said, you needn't concern yourself with I/O ports, 
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interrupts, direct memory access (DMA) adapter objects, or any of the other resource
oriented elements I described in Chapter 7. 

WHERE'S THE DRIVER? 

I'll discuss the mechanics of installing WDM drivers in Chapter 12, "Installing 
Device Drivers." It will help to understand some of those details right now, how
ever. Let's suppose that your device has a vendor ID of Ox0547 and a product 
ID of Ox102A. I've borrowed .the vendor ID belonging to Anchor Chips (with 
their permission) for purposes of this illustration. rIP using the product ID for 
the USB42 sample (the Answer Device) that you'll find on the ~ompanion disc. 

USB describes many methods for the operating system to locate a device 
driver (or set of drivers) based ort the device, corifiguration, and interface de
scriptors on a device. See Universal Serial Bus Common Class Specification 
(Rev. 1.0, December 16, 1997), Section 3.10. My samples all rely on the second 
highest priority method, whereby the vendor and product identifiers alone 
determine the driver. 

Confronted with a device having the vendor and product identifiers I just 
mentioned, the Configuration Manager will look for a registry entry that con
tains information about a device named USB\ VID_0547&PID_I02A. If no such 
entry exists in the registry, the Configuration Manager will trigger the new 
hardware wizard to locate an INF me describing such a device. The wizard might 
prompt the end user for a disk, or it might find the INF me already present on 
the computer. The wizard will then install the driver and populate the registry. 
Once the Configuration Manager locates the registry entries, it can dynamically 
load the driver. That's where we come in. 

The executive overview of what you need to accomplish in StartDevice is as 
follows. First you'll select a configuration for the device. If your device is like most 
devices, it has just one configuration. Refer to the sidebar "Multifunction Devices" for 
advice about what to do if your device has more than one configuration. Once you 
select the configuration, you choose. one or more of the interfaces that are part of 
that configuration. It's not uncommon for a device to support multiple interfaces, by 
the way. Having chosen a configuration and.a set of interfaces, you send a select con
figuration URB to the bus driver. ·The bus driver in turn issues commands to the 
device to enable the configuration and interfaces. The bus driver creates pipes that 
allow you to communicate with the endpoints in the selected interfaces and provides 
handles by which you can access the pipes. It also creates handles for the configu
ration and the interfaces. You extract the handles from the completed URB and save 
them for future use. That accomplished, you're done with the configuration process. 
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MULTIFUNCTION DEVICES 

If your device has one configuration and multiple interfaces, the Microsoft bus 
driver will handle it automatically as a composite, or multifunction, device. You 
supply function drivers for each of the interfaces on the device by using INF 
flles that specify the interface class and subclass instead of a vendor and prod
uct ID. The bus driver creates a physical device object (PDO) for each inter
face, whereupon the PnP Manager loads the separate function drivers you've 
provided. When one of these function drivers reads a configuration descrip
tor, the bus driver provides an edited version of the descriptor that describes 
just one interface. 

If your device has more than one configuration, however, the bus driver 
doesn't perform the magic that allows you to just furnish separate function 
drivers. Your driver needs to decide which configuration to select and needs 
to manage all of the interfaces in the configuration you choose. You will also 
need to deal with all of the interfaces on your device if your INF file uses the 
vendor and product ID method for specifying a device identifier. 

Refer to Chapter 12 for more information about the possible forms of 
device identifier in an INF file. 

Reading a Configuration Descriptor 
It's best to think of a fixed-size configuration descriptor as the header for a variable
length structure that describes a configuration, all its interfaces, and all the interfaces' 
endpoints. See Figure 11-12. 

"Grand unified descriptor" 
to be read in a single 
control transfer 

Figure 11·12. Structure of a configuration descriptor. 
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You must read the entire variable-length structure into a contiguous area of 
memory because the hardware won't allow you to directly access the interface and 
endpoint descriptors. Unfortunately, you don't initially know how long the combined 
structure is .. The following fragment of code shows how you can use two URBs to 
read a configuration descriptor: 

ULONG ieonfig = 1; 
URB urb; 
USB_CONFIGURATION_DESCRIPTOR ted; 
UsbBuildGetDeseriptorRequest(&urb. 

sizeof(_URB_CONTROL_DESCRIPTOR-REQUEST). 
USB_CONFI GURATIOLDESCRI PTOR-TYPE. 
ieonfig. 0. &ted. NULL. sizeof(ted). NULL); 

SendAwaitUrb(fdo. &urb); 
ULONG size = ted.wTotalLength; 
PUSB_CONFIGURATION_DESCRIPTOR ped 

(PUSB_CONFIGURATION_DESCRIPTOR) ExAlloeatePool( 
NonPagedPool. size); 

UsbBuildGetDeseriptorRequest(&urb. 
s izeofCU RB_CONTROL_DESCRI PTOR-REQUEST) • 
USB_CONFIGURATION_DESCRIPTOR-TYPE. 
ieonfig. 0. ped. NULL, size. NULL); 

SendAwaitUrb(fdo. &urb); 

ExFreePool(ped); 

In this fragment, we issue one URB to read a configuration descriptor-I speci
fied configuration number 1, which is the first one-into a temporary deSCriptor area 
named ted. This descriptor contains the length (~otalLength) of the combined 
structure that includes configuration, interface, and endpoint deSCriptors. We allocate 
that much memory and issue a second URB to read the entire descriptor. At the end 
of the process, the pcd variable points to the whole shebang. (Don't leave out the 
error checking as I just did-see the code samples on the companion disc for ex
amples of how to handle the many errors that might arise in this short sequence.) 

If your device has a single configuration, go ahead to the next step using the 
descriptor set you've just read. Otherwise, you'll need to enumerate the configu
rations (that is, step the iconfig variable from 1 to the bNumConfigurations value 
in the device descriptor) and apply some· sort of algorithm to pick between them. 

Selecting the Configuration 
You eventually have to select a configuration by sending a series of control commands 
to the device to set the configuration and enable the desired interfaces. We'll be using 
a function named USBD _ CreateConfigurationRequestEx to create the URB for this 
series of commands. One of its arguments is an array of pointers to descriptors for 
the interfaces you intend to enable. Your next step in configuration after settling on 
the configuration you want to use, therefore, is to prepare this array. 
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READING A STRING DESCRIPTOR 

For reporting or other purposes, you might want to retrieve some of the string 
descriptors that your device might provide. In the USB42 sample, for example, 
the device contains English-language descriptors for the vendor, product, and 
serial number as well as for the single configuration and interface supported by 
the device. I wrote the following helper function for reading string descriptors: 

NTSTATUS GetStringDescriptor(PDEVICE_OBJECT fdo, UCHAR istring, 
PUNICODE_STRING s) 
{ 

NTSTATUS status; 
PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
URB urb; 

UCHAR data[256]; 

if (!pdx->langid) 
{ 

UsbBuildGetDescriptorRequest(&urb, 
sizeof(_URB_CONTROL-DESCRIPTOR-REQUEST), 
USB_STRING_DESCRIPTOR-TYPE, 
0, 0, dBta, NULL, sizeof(data), NULL); 

status = SendAwaitUrb(fdo, &urb); 
if (!NT_SUCCESS(status» 

return status; 
pdx->langid = *(LANGID*)(data + 2); 
} 

UsbBuildGetDescriptorRequest(&urb, 
sizeof(_URB_CONTROL_DESCRIPTOR-REQUEST), 
USB_STRING_DESCRIPTOR-TYPE, 
istring, pdx->langid, data, NULL, sizeof(data), NULL); 

status = SendAwaitUrb(fdo, &urb); 
if (!NT_SUCCESS(status» 

return status; 

ULONG nchars = (data[0] - 2) / 2; 
PWSTR p = (PWSTR) ExAllocatePool(PagedPool, data[0]); 
if (!p) 

return STATUS_INSUFFICIENT_RESOURCES; 
memcpy(p, data + 2, nchars*2); 
p[nchars] = 0; 

(continued) 
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continued 

s-)Length = (USHORT) (2 * nchars); 
s-)MaximumLength = (USHORT) «2 * nchars) + 2); 
s-)Buffer = p; 

return STATUS_SUCCESS; 
} 

The new and interesting part of this function-given that you already know 
a lot about kernel-mode programming if you've been reading this book sequen
tially-is the initialization of the URB to fetch a string descriptor. In addition to 
supplying the index of the string we want to get, we also supply a standard 
LANGID language identifier. This is the same kind of language identifier that 
you use in a Win32 application. As I mentioned earlier, devices can provide 
strings in multiple languages, and string descriptor 0 contains a list of the sup
ported language identifiers. To make sure to always ask for a supported lan
guage, I read string 0 the ftrst time this routine executes and arbitrarily choose 
the ftrst language as the one to ask for. In the actual sample drivers, the iden
tifIer will always be 0x0409, which identifIes American English. USBD.SYS passes 
this language identifier along with the string index as a parameter for the get 
descriptor request it sends to the device. The device itself is responsible for 
deciding which string to return. 

The output from my GetStringDescriptor function is a UNICODE_ 
STRING that you use in the normal way. You would eventually call RtlFree
UnicodeString to release the string buffer. 

I used GetStringDescriptor in the USB42 sample to generate extra debug
ging output about the device, For example, StartDevice contains code similar 
to this fragment: 

UNICODE_STRING sd; 
if (pcd-)iConfiguration 

&& NT_SUCCESS(GetStringDescriptor(fdo. 
pcd-)iConfiguration. &sd») 
{ 

KdPrint«"USB42 - Selecting configuration named %ws\n". 
sd.Buffer»; 

RtlFreeUnicodeString(&sd); 
} 

I actually used a macro so that I wouldn't have to type this same code a 
bunch of times, but you get the idea. 
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Recall that when we read the configuration descriptor, we also read all of its 
interface descriptors into adjacent memory. This memory therefore contains a series 
of descriptors: a configuration descriptor, an interface descriptor followed by all of 
its endpoints, another interface descriptor followed by all of its endpoints, and so on. 
One way of choosing interfaces is to parse through this collection of descriptors and 
remember the addresses of the interface descriptors you're interested in. The bus 
driver provides a routine named USBD _ParseConfigurationDescriptorEx to sim
plify that task: 

PUSB_INTERFACE_DESCRIPTOR pid; 
pid = USBD_ParseConfigurationDescriptorEx(pcd. StartPosition. 

InterfaceNumber. AlternateSetting. InterfaceClass. 
InterfaceSubclass. InterfaceProtocol); 

In this function, pcd is the address of the grand unified configuration descrip
tor. StartPosition is either the address of the configuration descriptor (the first time 
you make this call) or the address of a deSCriptor at which you want to begin search
ing. The remaining parameters specify criteria for a descriptor search. The value -1 
indicates that you don't want the corresponding criterion to be employed in the search. 
You can look for the next interface deSCriptor that has zero or more of these attributes: 

• The given InterfaceNumber 

• The given AlternateSetting index 

• The given InterfaceClass index 

• The given InterfaceSubclass index 

• The given InterfaceProtocol index 

When USBD_ParseConfigurationDescriptorEx returns an interface descriptor to 
you, you save it as the InterfaceDescriptor member of an element in an array of 
USBD_INTERFACE_LlST_ENTRY structures, and then you advance past the interface 
descriptor so that you can parse the next one. The array of interface list entries will 
be one of the parameters to the eventual call to USBD _ CreateConfigurationRequestEx, 
so I need to say a little more about it. Each entry in the array is an instance of the 
following structure: 

typedef struct _USBD_INTERFACE_LIST_ENTRY { 
PUSB_INTERFACE_DESCRIPTOR InterfaceDescriptor; 
PUSBD_INTERFACE_INFORMATION Interface; 

} USBD_INTERFACE_LIST_ENTRY. *PUSBD_INTERFACE_LIST_ENTRY; 

When you initialize an entry in the array, you set the InterfaceDescriptor 
member equal to the address of an interface descriptor that you want to enable and 
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you set the Interface member to NULL. You define one entry for each interface, and 
then you add an additional entry whose InterfaceDescriptor is NULL to mark the end. 
For example, in my USB42 sample, I know in advance that only one interface ex
ists, so I use the following code to create the interface list: 

PUSB_INTERFACE_DESCRIPTOR pid = 
USBD_ParseConfigurationDescriptorEx(pcd. pcd. -1. -1. -1. -1. -I); 

USBD_INTERFACE_LIST_ENTRY interfaces[2] = { 
{pid. NULL}. 
{NULL. NULL}. 
} ; 

That is, I parse the configuration descriptor to locate the first (and only) interface 
descriptor. Then I defme a 2-element array to describe that one interface. 

If you need to enable more than one interface because you're providing your own 
multifunction device support, you'll repeat the parsing call in a loop. For ex:unple: 

ULONG size = (pcd-)bNumInterfaces + 1) * 
sizeof(USBD_INTERFACE-LIST_ENTRY); 

PUSBD_INTERFACE_LIST_ENTRY interfaces = 
(PUSBD_INTERFACE_LIST_ENTRY) ExAllocatePool(NonPagedPool. size); 

RtlZeroMemory(interfaces. size); 
ULONG i = 0; 
PUSB_INTERFACE_DESCRIPTOR pid = (PUSB_INTERFACE_DESCRIPTOR) pcd; 
while ((pid = USBD_ParseConfigurationDescriptorEx(pcd. pid •... ») 

interfaces[i++].InterfaceDescriptor = pid++; 

1. We first allocate memory to hold as many interface list entries as there are 
interfaces in this configuration, plus one. We zero the entire array. Wher
ever we leave off in filling the array during the subseque~t loop, the next 
entry will be NUll to mark the end 'of the array. 

2. The parsing call includes whatever criteria are relevant to your device. In 
the first iteration of the loop, pid points to the configuration descriptor. 
In later iterations, it points just past the interface descriptor returned by 
the preceding call. 

3. Here, we initialize the pointer to an interface descriptor. The postincrement 
of i causes the next iteration to initialize the next element in the array. 
The postincrement of pid advances past the current interface descrip
tor so that the next iteration parses the next interface. (If you call USBD_ 
ParseConfigurationDescrlptorEx with the second argument pointing 
to an interface descriptor that meets your criteria, you'll get back a pointer 
to that same deSCriptor. If you don't advance past that descriptor before 
making the next call, you're doomed to repeat the loop forever.) 
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The next step in the configuration process is to create a URB that we'll submit
soon, I promise-to configure the device: 

PURB selurb = USBD_CreateConfigurationRequestEx(pcd. interfaces); 

In addition to creating a URB (to which selurb points at this moment), USBD_ 
CreateConfigurationRequestEx also initializes the Interface members of your USBD_ 
INTERFACE_LIST entries to point to USBD_INTERFACE_INFORMATION structures. 
These information structures are physically located in the same memory block as the 
URB and will, therefore, be released back to the heap when you eventually call 
ExFreePool to return the URB. An interface information structure has the following 
declaration: 

typedef struct _USBD_INTERFACE_INFORMATION { 
USHORT Length; 
UCHAR InterfaceNumber; 
UCHAR AlternateSetting; 
UCHAR Class; 
UCHAR SubClass; 
UCHAR P rotoco 1 ; 
UCHAR Reserved; 
USBD_INTERFACE_HANDLE InterfaceHandle; 
ULONG NumberOfPipes; 
USBD_PIPE_INFORMATION Pipes[l]; 
} USBD_INTERFACE_INFORMATION. *PUSBD_INTERFACE_INFORMATION; 

The array of pipe information structures is what we're really interested in at this 
point, since the other fields of the structure will be filled in by USBD when we sub
mit this URB. Each of them looks like this: 

typedef struct _USBD_PIPE_INFORMATION { 
USHORT MaximumPacketSize; 
UCHAR EndpointAddress; 
UCHAR Interval; 
USBD_PIPE_TYPE PipeType; 
USBD_PIPE_HANDLE PipeHandle; 
ULONG MaximumTransferSize; 
ULONG PipeFlags; 
} USBD_PIPE_INFORMATION. *PUSBD_PIPE_INFORMATION; 

So, we have an array of USBD_INTERFACE_L1ST entries, each of which points 
to a USBD_INTERFACE_INFORMATION structure that contains an array of USBD_ 
PIPE_INFORMATION structures. Our immediate task is to fill in the Maximum
TransferSize member of each of those pipe information structures if we don't want 
to accept the default value chosen by USBD. The default value is USBD_DEFAULT_ 
MAXIMUM_TRANSFER_SIZE, which was equal to PAGE_SIZE in the DDK I was using 
at the time I wrote this book. The value we specify isn't directly related either to the 
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maximum transfer size for the endpoint (which governs how many bytes can be 
moved in a single bus transaction) or to the amount of data the endpoint can absorb 
in a series of transactions (which is determined by the amount of memory available 
on the device). Instead, it represents the largest amount of data we will attempt to 
move with a single URB. This can be less than the largest amount of data that an 
application might send to the device or receive from the device, in which case our 
driver must be prepared to break application requests into pieces no bigger than this 
maximum size. I'll discuss how that task can be accomplished later in "Managing Bulk 
Transfer Pipes." 

The reason that we have to supply a maximum transfer size is rooted in the 
scheduling algorithm that the host controller drivers use to divide URB requests into 
transactions within bus frames. If we send a large amount of data, it's possible for 
our data to hog a frame to the exclusion of other devices. We therefore want to 
moderate our demands on the bus by specifying a reasonable maximum size for the 
URBs that we'll send at once. 

The code needed to initialize the pipe information structures is something 
like this: 

for (ULONG ii = 0; ii < <number of interfaces>; ++ii) 
{ 

PUSBD_INTERFACE_INFORMATION pii = interfaces[ii].Interface: 
for (ULONG ip = 0: ip < pii->NumberOfPipes: ++ip) 

} 
pi i ->Pi pes [i p] . MaximumTrans ferSi ze= <some constant>: 

NOTE The USBD_CreateConfigurationRequestEx function initializes the 
MaximumTransferSize member of each pipe information structure to USBD_ 
DEFAULT _MAXIMUM_ TRANSFER_SIZE and the PipeFlags member to O. 
Bear this in mind when you look at older driver samples and when you write 
your own driver. 

Once you've initialized the pipe information structures, you're finally ready to 
submit the configuration URB: 

SendAwaitUrb(fdo. selurb): 

Finding the Handles 
Successful completion of the select configuration URB leaves behind various handle 
values that you should record for later use: 

• The UrbSelectConfiguration.C()nfigurationHandle member of the 
URB is a handle for the configuration. 

• The InterfaceHandle member of each USBD_INTERFACE_INFORMATION 
structure contains a handle for the interface. 
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• Each of the USBD _PIPE_INFORMA nON structures has a PipeHandle for 
the pipe ending in the corresponding endpoint. 

For example, the USB42 sample records two handle values (in the device 
extension): 

typedef struct _DEVICE-EXTENSION { 

USBD_CONFIGURATION_HANDLE hconfig: 
USBD_PIPE_HANDLE hplpe: 
} DEVICE_EXTENSION. *PDEVICE_EXTENSION: 

pdx->hconfig = selurb->UrbSelectConfiguration.ConfigurationHandle: 
pdx->hplpe = lnterfaces[0].lnterface->Pipes[0].PipeHandle: 
ExFreePool(selurb): 

At this point in the program, the select configuration URB is no longer needed 
and can be discarded. 

Shutting Down the Device 
When your driver receives an IRP _MN_STOP _DEVICE request, you should place the 
device into its unconfigured state by creating and submitting a select configuration 
request with a NUll configuration pointer: 

URB urb: 
UsbBuildSelectConfigurationRequest(&urb. 

slzeof(_URB_SELECT_CONFIGURATION). NULL): 
SendAwaitUrb(fdo. &urb): 

Managing Bulk Transfer Pipes 
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The companion disc has two sample programs that illustrate bulk transfers. The ftrst 
and simplest is named USB42. It has an input bulk endpoint that delivers back the 
constant value 42 each time you read it. (I call· this the Answer device because the 
number 42 is Douglas Adams's answer to the Ultimate Question of Life, the Universe 
and Everything in The Hitchhiker's Guide to the Galaxy. Most readers probably al
ready knew that, actually, given our common afftnity for science fiction.) The code 
to do the reading is as follows: 

URB urb: 
UsbBul1dlnterruptOrBulkTransferRequest(&urb. 

slzeof(_URB_BULK-OR-INTERRUPT_TRANSFER). 
pdx->hpipe. Irp->Associatedlrp.SystemBuffer. NULL. cbout. 
USBD_TRANSFER-DIRECTION_IN I USBD_SHORLTRANSFER-OK. NULl): 

status = SendAwaitUrb(fdo. &urb): 
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This code runs in the context of the handler for a DeviceIoControl call that 
uses the buffered method for data access, so the SystemBuffer field of the IRP points 
to the place to which data should be delivered. The chout variable is the size of the 
data buffer we're trying to fill. 

There's not much to explain about this request. You indicate with a flag whether 
you're reading (USBD_TRANSFER_DIRECTION_IN) or writing (no such flag) the 
endpoint. You can optionally indicate with another flag bit (USBD_SHORT_ 
TRANSFER_OK) whether you're willing to tolerate having the device provide or 
consume less data than the maximum for the endpoint. The pipe handle is something 
you capture at IRP _MN_START_DEVICE time in the manner already illustrated. 

The LOOPBACK sample is considerably more complicated than USB42. The 
device it manages has two bulk transfer endpoints, one for input and another for 
output. You can feed up to 16,384 bytes into the output pipe, and you can retrieve 
what you put in from the input pipe. The driver itself uses standard IRP _MLREAD 
and IRP _ML WRITE requests for data movement. Handling read and write requests 
is so similar that the dispatch routines simply delegate these requests to a helper 
function named ReadWrite: 

NTSTATUS DispatchRead(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

return ReadWrite(fdo. Irp. TRUE); 
} 

NTSTATUS DispatchWrite(PDEVICLOBJECT fdo. PIRP Irp) 
{ 

return ReadWrite(fdo. Irp. FALSE); 
} 

NTSTATUS ReadWrite(PDEVICE_OBJECT fdo. PIRP Irp. BOOLEAN read) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx-)RemoveLock. Irp); 
if (!NLSUCCESS(status» 

return CompleteRequest(Irp. status. 0); 

IoMarklrpPending(Irp); 
IoSetCompletionRoutine(Irp. (PIO_COMPLETION_ROUTINE) 

OnReadWriteComplete •... ); 
IoCallDriver( ... ); 
return STATUS_PENDING; 
} 
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In summary, ReadWrite acquires the remove lock, creates a URB to do a bulk 
transfer, installs a completion routine, and submits the URB to the bus driver. The 
function deals with the two complications that make this sample more informative 
than USB42: the I/O operation might result in an error, and the request might need 
to be broken up to be handled in stages. 

LOOPBACK's overall strategy for submitting requests to the bus driver is to 
change the personality of the read or write IRP into an IRP _MLINTERNAL_ 
DEVICE_CONTROL containing a URB and send this altered IRP down the stack. To 
us and every driver above us, the IRP looks like an IRP _MLREAD or IRP _ML WRITE 
because one of those two values will be in the MajorFunction field of the corre
sponding stack location. To the drivers below us, however, the IRP looks like an 
internal control request. The completion routine will resubmit this same IRP to per
form the second and subsequent stages of a large transfer. Both features of this strategy 
are perfectly legal but will probably seem novel if you're seeing them for the first time. 
Without the error checking that's in the real LOOPBACK sample, here's ReadWrite 
and its associated completion routine in all their glory: 

struct _RWCONTEXT : public _URB 
{ 

ULONG_PTR va; 
ULONG length; 
PMDL mdl: 
ULONG numxfer; 
} ; 

NTSTATUS ReadWrite(PDEVICE_OBJECT fdo. PIRP Irp. BOOLEAN read) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->DeviceExtension; 
NTSTATUS status = IoAcquireRemoveLock(&pdx->RemoveLock. Irp); 
if (!NT_SUCCESS(status» 

return CompleteRequest(Irp. status. 0); 
USBD_PIPE_HANDLE hpipe = read? pdx->hinpipe pdx->houtpipe; 

LONG haderr; 
if (read) 

haderr = InterlockedExchange(&pdx->inerror. 0); 
else 

haderr = InterlockedExchange(&pdx->outerror. 0); 
if (haderr && !NLSUCCESS(ResetPipe(fdo. hpipe») 

ResetDevice(fdo); 

PRWCONTEXT ctx = (PRWCONTEXT) ExAllocatePool(NonPagedPool. 
s1zeof(RWCONTEXT»; 
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RtlZeroMemory(ctx, sizeof(RWCONTEXT»; 

ULONG length = Irp->MdlAddress 
7 MmGetMdlByteCount(Irp->MdlAddress) 0; 

if (!length) 
{ 

IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
return CompleteRequest(Irp, STATUS_SUCCESS, 0); 
} 

ULONG_PTR va = (ULONG_PTR) MmGetMdlVirtualAddress(Irp->MdlAddress); 

ULONG urbflags = (read 7 USBD_TRANSFER-DIRECTION_IN 
USBD_TRANSFER-DIRECTION_OUT); 

ULONG seglen = length; 
if (seglen > MAXTRANSFER) 

seglen (ULONG_PTR) PAGE-ALIGN(va) + PAGE_SIZE - va; 

PMDL mdl IoAllocateMdl«PVOID) va, PAGE_SIZE, FALSE, FALSE, NULL); 
IoBuildPartialMdl(Irp->MdlAddress, mdl, (PVOID) va, seglen); 

UsbBuildlnterruptOrBulkTransferRequest(ctx, 
sizeof(_URB_BULK-OR-INTERRUPT_TRANSFER), 
hpipe, NULL, mdl, seglen, urbflags, NULL); 

ctx->va = va + seglen; 
ctx->length = length - seglen; 
ctx->mdl = mdl; 
ctx->numxfer = 0; 

PIO_STACK-LOCATION stack = IoGetNextlrpStackLocation(Irp); 
stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL; 
stack->Parameters.Others.Argumentl = (PVOID) (PURB) ctx; 
stack->Parameters.DeviceloControl.loControlCode = 

IOCTL_INTERNAL_USB_SUBMIT_URB; 

IoSetCompletionRoutine(Irp, (PIO_COMPLETION_ROUTINE) 
OnReadWriteComplete, (PVOID) ctx, TRUE, TRUE, TRUE): 

IoMarklrpPending(Irp); 
status = loCal 1 Driver(pdx->LowerDeviceObject, Irp); 
return STATUS_PENDING; 
} 

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, PIRP Irp, PRWCONTEXT ctx) 
{ 

(continued) 
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PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo->Dev1ceExtension; 
BOOLEAN read = 

(ctx->UrbBulkOrInterruptTransfer.TransferFlags & 
USBD_TRANSFER-DIRECTION_IN) != 0; 

ctx->nurnxfer += 
ctx->UrbBulkOrInterruptTransfer.TransferBufferLength; 

NTSTATUS status = Irp->IoStatus.Status; 
if (NT_SUCCESS(status) && ctx->length) 

{ 

ULONG seglen = ctx->length; 
if (seglen > MAXTRANSFER) 

seglen = (ULON~PTR) PAGE-ALIGN(ctx->va) + 
PAGE_SIZE - ctx->va; 

IoBuildPart1alMdl(Irp->MdlAddress. ctx->rndl. 
(PVOID) ctx->va. seglen); 

ctx->UrbBulkOrInterruptTransfer.TransferBufferLength = seglen; 

PIO_STACK-LOCATION stack = IoGetNextIrpStackLocation(Irp); 
stack->MajorFunction = IRP_MJ_INTERNAL-DEVICE_CONTROL; 
stack->Pararneters.Others.Argurnentl = (PVOID) (PURB) ctx; 
stack->Pararneters.DeviceloControl.loControlCode = 

IOCTL_INTERNAL_USB_SUBMIT_URB; 
IoSetCornpletionRoutine(Irp. (PIO_COMPLETION_ROUTINE) 

OnReadWriteCornplete. (PVOID) ctx. TRUE. TRUE. TRUE); 

ctx->va += seglen; 
ctx->length -= seglen; 

IoCallDriver(pdx->LowerDeviceObject. Irp); 
return STATUS_MORE_PROCESSING_REQUIRED; 
} 

if (NT_SUCCESS(status» 
Irp->IoStatus.Inforrnation = ctx->nurnxfer; 

else 
{ 

if (read) 
InterlockedIncrernent(&pdx->1nerror): 

else 
InterlockedIncrernent(&pdx->outerror); 
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ExFreePool(ctx-)mdl); 
ExFreePool(ctx); 
IoReleaseRemoveLock(&pdx-)RemoveLock. Irp); 

return status; 
} 

1. ReadWrite needs to create a URB that it will share with OnReadWrite
Complete, and it needs to provide some additional context information 
to keep track of the ongoing progress of the operation. This RWCONfEXT 
structure encompasses both purposes. (Deriving one structure from another 
as shown here is a C++ stratagem for declaring a structure that begins with 
the members of the base structure.) In addition to the URB, this structure 
includes va, the virtual address of the current portion of the user-mode 
buffer; length, the residual count for this operation; mdl, a partial memory 
descriptor list describing the current segment of the transfer; and numxfer, 
the cumulative number of bytes transferred. 

2. We acquire the remove lock here. The balancing call to IoRelease
RemoveLock occurs in the completion routine. 

3. This is one of a few places where ReadWrite needs to distinguish between 
read and write requests. Here, we're obtaining the handle of the pipe 
through which we'll move data. 

4. Either the input or the output pipe might have had an error the last time 
we tried to use it, in which case either inerror or outerror will be set 
in the device extension. Before launching a new operation, we try to reset 
the pipe that had the error. If that doesn't work, we reset the entire de
vice. I'll explain the ResetPipe and ResetDevice helper functions in the 
next section. 

5. This driver declared itself as using the DO_DlRECT_IO buffering method 
at AddDevice time, so the IRP has a pointer to a memory descriptor list 
describing the Clocked) pages containing the user-mode buffer. It's cus
tomary to obtain the transfer length from the MDL, as shown here, rather 
than from the stack location. 

6. We'll be performing the operation in blocks no bigger than a page. The 
choice of PAGE_SIZE as a maximum transfer size was a design choice, and 
you might pick a different value as preViously described. To gain what
ever benefits might flow from processing a page-aligned buffer, I also 
decided to make the first transfer short, if necessary, so that later trans
fers would be page-aligned. 
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7. We'll be using a partial memory descriptor list for each segment of the 
transfer. We need an MDL that has the capacity to describe the largest 
number of pages we'll transfer in a single segment. This number is either 
one or two, depending on the alignment of the buffer. After allocating the 
MDL, we call IoBulldPartialMdl to map the initial segment. 

8. We're ready at this point to build and submit a URB for the first segment 
of the read or write. The key task here is our initialization of the next 
driver's stack entry to describe an internal control operation instead of a 
read or write. The main advantage of doing this is that we don't need extra, 
fairly involved logic to handle cancellation of a subsidiary IRP when the 
main read/write IRP gets cancell€d. 

9. When one stage in the transfer completes successfully, the bus driver calls 
IoCompleteRequest and our completion routine gains control. If the 
request isn't finished yet, we'll resubmit the URB with a new buffer ad
dress and length. Otherwise, we'll allow the completion process to run 
its course. Don't forget that the IRP we're dealing with originally came to 
us with a major function code of IRP _MLREAD or IRP _ML WRITE. 

10. Here we set up the partial MDL for the next segment of the transfer. The 
user-mode virtual address is pretty useless per se because this completion 
routine executes in an arbitrary thread context. IoBuildPartialMdl is 
mapping a subset of a master MDL that's already been probed and locked, 
however. Since it merely copies physical page numbers from the master 
MDL, it doesn't depend on executing in any particular memory context. 

11. Here we set up the URB and I/O stack for the next stage. The only field 
in the URB that requires change is the byte count. The URB's MDL pointer, 
flags, and so on, are as ReadWrite left them. (The MDL itself changed, but 
its location in memory didn't.) We need to completely reinitialize the next 
stack location, however, because 10CompieteRequest set most of it to o. 

12. We reissue this IRP to the bus driver and return the status code STATUS_ 
MORE_PROCESSING_REQUIRED to hal~ the completion process inside 
10CompleteRequest. When this new stage finishes, this completion rou
tine will regain control. 

13. Beginning here we handle the final completion of the read/write request. 
We set the IoStatus.Information field to be the total number of bytes 
we'Ve successfully transferred and clean up the memory we allocated in 
ReadWrite. We also release the remove lock to balance the acquisition that 
ReadWrite did. 
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You might notice that the completion routine in this sample doesn't contain the 
standard boilerplate code to conditionally call IoMarkIrpPending. That's not nec
essary in this case because we made that call in ReadWrite. 

You'll also notice that when the completion routine calls IoCallDriver to re
submit the URB, it then unconditionally returns STATUS_MORE]ROCESSING_ 
REQUIRED. There's an important but subtle reason for this behavior. If the bus driver 
accepts the new URB normally, it will return STATUS_PENDING to us. (This is just 
how USBD works-it's not a general characteristic of bus drivers.) In this case, we 
certainly should return STATUS_MORE_PROCESSING_REQUIRED because we want 
IoCompleteRequest to stop processing the IRP for the time being. The bus driver 
will complete it again later. If the bus driver were to fail the new submission, how
ever, or if it were for some reason to complete it in the dispatch routine, it will have 
called IoCompleteRequest before returning. We've already processed that completion 
event in a recursive call! We shouldn't, therefore, do anything more with this IRP or 
allow the initial invocation of IoCompleteRequest to do anything with it either. Re
turning STATUS_MORE]ROCESSING_REQUIRED is always the right thing to do here. 

Error Recovery 
I can't say much of a general nature about recovering from errors in USB operations. 
When you send or receive data to a bulk transfer endpoint, the bus and bus driver 
take care of retrying garbled tr~nsmissions. Consequently, if your URB appears to 
complete successfully, you can be confident that the data you intended to transfer 
has in fact been transferred correctly. When an error occurs, however, your driver 
needs to attempt some sort of recovery. The first line of defense is generally to unstall 
the endpoint with which you've been trying to communicate so that you can try again. 
Here's a helper routine named ResetFipe that will do that: 

NTSTATUS ResetPipe(PDEVICE_OBJECT fdo. USBD_PIPE_HANDLE hpipe) 
{ 

URB urb; 
urb.UrbHeader.Length = (USHORT) sizeof(_URB_PIPE_REQUEST); 
urb.UrbHeader.Function = URB_FUNCTION_RESET_PIPE; 
urb.UrbPipeRequest.PipeHandle = hpipe; 

NTSTATUS status = SendAwaitUrb(fdo. &urb); 
return status; 
} 

As you can see, all that's required is to submit a URB with the RESET_PIPE 
function code. Since this helper routine indirectly waits for the URB to complete, you 
must be running at PASSIVE_LEVEL to call it. What this URB does, in USB terms, is 
clear the ENDPOINT ~HAL T feature. If the endpoint was stalled, it then becomes ready 
for the next transaction. 
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If you're unable to reset the pipe, you can then try to reset the entire device 
by using this ResetDevice function: 

VOID ResetDevice(PDEVICE_OBJECT fdo) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) fdo-)DeviceExtension; 

KEVENT event; 
KelnitializeEvent(&event. NotificationEvent. FALSE); 
IO_STATUS_BLOCK iostatus; 

PIRP Irp = IoBuildDeviceloControlRequest 
(IOCTL-INTERNAL_USB_RESET_PORT. pdx-)LowerDeviceObject. 
NULL. 0. NULL. 0. TRUE. &event. &iostatus); 

if (! I rp) 
return; 

NTSTATUS status = (IoCallDriver(pdx-)LowerDeviceObject. Irp); 
if (status == STATUS_PENDING) 

KeWaitForSingleObject(&event. Executive. KernelMode. 
FALSE. NULL); 

} 

The port-reset command causes the hub driver to reinitialize the device while pre
serving the existing configuration. This process might fail somewhere along the way, 
in which case the command will complete with an error status. If the device turns 
out to be missing, for example, the hub driver fails the request with STATUS_ 
UNSUCCESSFUL. 

Managing Interrupt Pipes 
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From the device side of the bus, an intelTIlpt pipe is practically identical to a bulk transfer 
pipe. The only important difference from that perspective is that the host will be poll
ing an intelTIlpt endpoint with some guaranteed frequency. The device will respond 
with NAK except at instants when it will present an intelTIlpt to the host. To report 
an intelTIlpt event, the device ACKs the host after providing whatever morsel of data 
is supposed to accompany the intelTIlpt. 

From the driver's perspective, managing an interrupt pipe is quite a bit more 
complicated than managing a bulk pipe. When the driver needs to read or write data 
to a bulk pipe, it just creates an appropriate URB and sends it to the bus driver. But 
for an intelTIlpt pipe to serve its intended purpose of notifying the host of interest
ing hardware events, the driver basically needs to keep a read request outstanding 
at all times. I don't recommend using a system-polling thread in this case because 
power management greatly complicates the management of the separate thread. The 
best way to keep a read request active is to use the same idea I showed you in 
LOOPBACK, where we have a completion routine that keeps recycling a URB. 
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The USBINT sample illustrates how to manage an interrupt pipe with a URB 
that's always active. I wrote a few helper rou~es to assist in the job. I won't describe 
all of these functions in detail; please refer to the READWRITE.CPP file with the 
USBINT sample on the companion disc. 

CreatelnterruptUrb CreatelnterruptUrb creates the URB and an associated IRP. 
The device extension has fields named PoIlingUrb and PolIingIrp that point to these 
two structures. We call this function during our processing of IRP _MN_START_ 
DEVICE. 

DeletelnterruptUrb DeleteinterruptUrb is the counterpart of CreatelnterruptUrb. 
Whenever we're shutting the device down, we call this function to release the IRP 
and URB memory blocks. 

StartlnterruptUrb StartinterruptUrb launches a URB to poll the device's interrupt 
endpoint. We call this function whenever we activate the device, which we do when 
we open the first handle after a period in which no handles were open. (We also 
power the device on at the same time. We can't have a URB outstanding when the 
device is powered down, but we want one outstanding when the device is powered 
up in order to service an application.) 

Onlnterrupt Oninterrupt is a standard I/O completion routine that functions as 
an interrupt routine for the device. It looks like this: 

NTSTATUS Onlnterrupt(PDEVICE_OBJECT junk. PIRP Irp. 
PDEVICE_EXTENSION pdx) 
{ 

if (NT_SUCCESS(Irp-)IoStatus.Status» 
{ 

KdPri nt( ("USBI NT - Interrupt! \n"» : 
StartInterruptUrb(pdx-)DeviceObject): 
} 

return STATUS_MORE_PROCESSING_REQUIRED: 
} 

1. This is where you would do whatever interrupt processing is required by 
your device. In the USBINT sample, there's code at this point to increment 
a count of pending interrupts or complete a pending 10CTL that an ap
plication is using as a means of knowing when interrupts occur. 

2. Here, we initiate another poll for an interrupt using the same URB. 

3. We return STATUS_MORE]ROCESSING_REQUIRED beqLUse we don't 
want IoCompleteRequest to do anything else with the IRP. 
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MORE ABOUT THE USBINT SAMPLE 

The USBINT sample on the companion disc illustrates how to manage a device 
with an interrupt pipe. The device firmware (in the EZUSB subdirectory) de
fines a device with a single input interrupt endpoint. Each time you press and 
release the FI button on the Anchor Chips development board, the firmware 

> r 

increments the integer being displayed in the 7-segment LED and arms the 
endpoint to deliver four bytes of data on the next IN transaction. The driver (in 
the SYS subdirectory) continuously tries to read the endpoint. The test program 
(in the TEST subdirectory) issues DeviceloControl calls to count and display the 
interrupts that occur. Terminate the test program with Ctrl+Break. The number 
displayed by the device should match the low-order digit displayed by the test 

. program. 

Control Requests 
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If you refer back to Table 11-2 on page 499, you'll notice that there are 11 standard 
types of control requests. You and I will never explicitly issue SET_ADDRESS requests. 

. The bus driver does that when a new device initially comes on line; by the time we 
ever get control in a WDM driver, the bus driver has assigned an address to the device 
and read the device deSCriptor to learn that we're the device driver. I've already dis
cussed how to create the URBs that cause the bus driver to send control requests for 
getting descriptors or for setting a configuration or interface in the "Initiating Requests" 
and "Configuration" sections. In this section, I'll fill in the blanks related to the re
maining kinds of control transactions. 

Controlling Features 
If we want to set or clear a feature of a device, an interface, or an endpoint, we submit 
a feature URB. For example, the following code (which appears in the FEATURE 
sample driver on the companion disc) sets a vendor-defined interface feature: 

URB urb; 
UsbBuildFeatureRequest(&urb. 

URB_FUNCTION_SET_FEATURE_TO_INTERFACE. 
FEATURE_LEO_DISPLAY. 1. NULL); 

status = SendAwaitUrb(fdo. &urb); 

The second argument to UsbBulldFeatureRequest indicates whether we want 
to set or clear a feature belonging to the device, an interface, an endpOint, or another 
vendor-specific entity on the device. This parameter takes eight possible values, and 
you could guess without me telling you that they're formed according to the follow
ing formula: 
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URB_FUNCTION_ [SET I CLEAR] _FEATURE_TO_ 
[DEVICE I INTERFACE I ENDPOINT I OTHER] 

The third argument to UsbBuildFeatureRequest identifies the feature in ques
tion. In the FEATURE sample, I invented a feature called FEATURE_LED_DISPLAY. 
The fourth argument identifies a particular entity of whatever type is being addressed. 
In this example, I wanted to address interface 1, so I coded 1. 

USB defines two standard features that you might be tempted to control your
self using a feature URB: the remote wake-up feature and the endpoint stall feature. 
You don't, however, need to set or clear these features yourself because the bus driver 
does so automatically. When you issue an IRP _MN_ WAIT_WAKE request-see Chapter 
8, "Power Management"-the bus driver ensures that the device's configuration al
lows for remote wake-up, and it also automatically enables the remote wake-up 
feature for the device. The bus driver issues a clear feature request to unstall a de
vice when you issue a RESET_PIPE URB. 

ABOUT THE FEATURE SAMPLE 

The FEATURE sample on the companion disc illustrates how to set or clear a 
feature. The device frrmwate (in the EZUSB subdirectory) defmes a device with 
no endpoints. The device supports an interface-level feature numbered 42, 
which is the FEATURE_LED_DISPLAY referenced symbolically in the driver. 
When the feature is set, the Anchor Chips development board's 7-segment LED 
display becomes illuminated and shows how many times the feature has been 
set since the device was attached (modulo ~O). When the feature is clear, the 
LED display shows only the decimal point. 

The FEATURE device driver (in the SYS subdirectory) contains code to set 
and clear the feature and to exercise a few other control commands in response 
to IOCTL requests. Refer to CONTROL.CPP to see this code, which isn't much 
more complicated than the code fragments displayed in the text. 

The test program (in the TEST subdirectory) is a Win32 console applica
tion that performs a DeviceloControl to set the custom feature; issues additional 
DeviceloControl calls to obtain status masks, the configuration number, and the 
alternate setting for the single interface; waits five seconds; and then 'performs 
another DeviceIoControl to clear the feature. Each time you run the test, you 
should see the development board's display light up for five seconds, show
ing successively larger decimal integers. 
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Determining Status 
If you want to obtain the current status of the device, an interface, or an endpoint, 
you formulate a get status URB. For example: 

URB urb; 
USHORT epstatus; 
UsbBuildGetStatusRequest(&urb. URB_FUNCTION_GET_STATUS_FROM_ENDPOINT. 

<index>. &epstatus. NULL. NULL); 
SendAwaitUrb(fdo. &urb); 

You can use four different URB functions in a get status request, and theyal
low you to retrieve the current status mask for the device as a whole, for a specified 
interface, for a specified endpoint, or for a vendor-specific entity. See Table 11-8. 

The status mask for a device indicates whether the device is self-powered and 
whether or not its remote wake-up feature is enabled. See Figure 11-13. The mask 
for an endpoint indicates whether or not the endpoint is currently stalled. See Fig
ure 11-14. USB now defines interface-level status bits related to power management. 
Refer to the "USB Feature Specification: Interface Power Management" document on 
line at the USB Web site, which at press time was available at bttp;//www.usb.orgl 
developersidevclass.btml. USB should never prescribe vendor-specific status bits since 
they're, by definition, up to vendors to specify. 

Operation Code 

URB_FUNCTION_GET_STATUS_FROM_DEVICE 

URB_FUNCTION_GET_STATUS]ROM_INTERFACE 

URB_FUNCTION_GELSTATUS_FROM_ENDPOINT 

URB_FUNCTION_GET_STATUS_FROM_OTIIER 

Table 11-8. URB function codes used for getting status. 

Retrieve Status From •.. 

Device as a whole 

Specified interface 

Specified endpoint 

Vendor-specific object 

_ ..... ~ 1 = Self-powered 
0= Bus-powered 

1= Enabled 
..... -t~O= Disabled 

Figure 11-13. Bits in device status. 
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Figure 11-14. Bits in endpoint status. 

Managing Isochronous Pipes 

Chapter 11 The Universal Sarlal Bus 

"'-I~1 = Endpoint stalled 
0= Not stalled 

The purpose of an isochronous pipe is to allow the host and the device to exchange 
time-critical data with guaranteed regularity. The bus driver will devote up to 90 
percent of ~e bus bandwidth to isochronous and interrupt transfers. What this means 
is that every 1-ms frame will include reserved time slots long enough to accommodate 
maximum-sized transfers to or from each of the isochronous and interrupt endpoints 
that are currently active. Figure 11-15 illustrates this concept for three different de
vices. Devices A and B each have an isochronous endpoint, for which a fixed and 
relatively large amount of time is reserved in every frame. Device C has an interrupt 
endpoint whose polling frequency is once every two frames; it has a reservation for 
a small portion of every second frame. During frames that don't include a poll of 
Device C's interrupt endpoint, additional bandwidth would be available, perhaps for 
bulk transfers or other purposes. 

Time 

Framen Frame n+1 Frame n+2 

Interrupt Endpoint 
(Polled every 2d frame) 

Figure 11-15. Allocation of bandwidth to isochronous and interrupt endpoints. 
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Re.erving Bandwidth 
The bus driver reserves bandwidth for you when you enable an interface by exam
ining the endpoint descriptors that are part of the interface. Reserving bandwidth is 
just like buying a theater ticket, though: you don't get a refund if you don't use the 
space. Consequently, it's important to enable an interface that contains an isochro
nous endpoint only when you'll be using the bandwidth you thereby reserve, and 
it's important that the endpoint's declared maximum transfer size be approximately 
the amount you intend to use. Normally, a device with isochronous capability has a 
default interface that doesn't have any isochronous or interrupt endpoints. When you 
know you're about to access that capability, you enable an alternate setting of the 
same interface that does have the isochronous or interrupt endpoints. 

An example will clarify the mechanics of reserving bandwidth. The USBISO 
sample on the companion disc has an interface with a default and an alternate set
ting. The default setting has no endpoints. The alternate setting has an isochronous 
endpoint with a maximum transfer size of 256 bytes. See Figure 11-16. 

r------------::=:;;;;::--=l-Isochronous 
Endpoint 

Figure 11-16. DesCriptor structure/or the USBISO device. 

At StartDevice time, we select a configuration based on the default interface. Since 
the default interface doesn't have an isochronous or interrupt endpoint in it, we don't 
reserve any bandwidth just yet. When someone opens a handle to the device, how
ever, we invoke the follOwing SelectAlternateterface helper function to switch to 
the alternate setting for our interface. (Again, I've omitted the error checking.) 

NTSTATUS SelectAlternatelnterface(PDEVICLOBJECT fdo) 
{ 

PDEVICLEXTENSION pdx = (PDEVICLEXTENSION) fdo->DeviceExtension; 
PUSB_INTERFACLDESCRIPTOR pid = 

USBD_ParseConfigurationDescriptorEx(pdx->pcd. pdx->pcd. 
0. 1. -1. -1. -1); 

ULONG npipes = pid->bNumEndpoints; 
ULONG size = GET_SELECT_INTERFACLREQUEST_SIZE(npipes); 
PURB urb = (PURB) ExAl1ocatePool(NonPagedPool. size); 
RtlZeroMemory(urb. size); 
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UsbBufl dSel ectInterfaceRequest(urb. si ze. pdx- >hconfi g. 0. 1); 
urb->UrbSelectInterface.lnterface.Length = 

GET_USBD_INTERFACE-SIZE(npipes); 
urb->UrbSelectInterface.lnterface.Pipes[0].MaximumTransferSize = 

PAGE-SIZE; 
NTSTATUS status = SendAwaitUrb(fdo. &urb); 
if (NT_SUCCESS(status» 

{ 

pdx->hinpipe = 
urb.UrbSelectInterface.Interface.Pipes[0].PipeHandle; 

status = STATUS_SUCCESS; 
} 

ExFreePool(urb); 
return status; 
} 

1. Before we can allocate space for the. URB, we need to know how many 
pipe descriptors it Will contain. '!he most common way to find this num
ber is to go back to the grand unified configuration descriptor and find 
the descriptor for interface 0, alternate setting 1. '!hat descriptor contains 
a count of endpoints, which is the same as the number of pipes that we're 
about to open. 

2. GET_SELECT_INTERFACE_REQUEST_SIZE calculates the number of bytes . 
needed to hold a select interface request that will open the specified 
number of pipes. We can then allocate memory for the URB and initial
ize it to O. '!he real code sample on the companion disc checks to make 
sure that the call to ExAIlocatePooI succeeded, by the way. 

3. Here, we build a URB to select alternate setting- 1 (the last argument) of 
interface number 0 (the next-to-last argument). 

4. We must do these two additional initialization steps to finish setting up the 
URB. Failing to set the interface information structure's length earns you 
a STATIJS_BDFFER_TOO_SMALL failure right away. Failing to set the 
MaximumTraosferSize fields of the pipe descriptors earns you a STATUS_ 
INVAliD_PARAMETER when you try to read or write the,pipe. 

5. When we submit this URB, USBD automatically closes the current setting 
of this interface, including all of its endpoints. '!hen USBD tells the de
vice to enable the alternate setting, and it .creates pipe descriptors for the 
endpoints that are·part of the. alternate setting. If opening the new inter
face fails for some reason, USBD reopens the previous interface, and all 
your previous interface and pipe handles remain valid. 

6. My SendAwaitUrb helper function simply returns an error if it's unable 
to select the one-and-only alternate setting for this interface. I'll have a bit 
more to say about how you should handle errors after this numbered list. 
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7. In addition to selecting the new interface at the device level, USBD also 
creates an attay of pipe descriptors from which we can extract handles 
for later use .. 

The select interface call might fail because not enough free bandwidth exists 
to accommodate our endpoint. We would fmd out about the failure by examining 
the URB status: 

Dealing with lack of bandwidth poses a bit of a problem. The operating sys
tem doesn't currently provide a convenient way for competing drivers to negotiate 
a fair allocation. Neither does it provide for any sort of notification that some other 
driver has failed to acquire needed bandwidth so that we might give up some of ours. 
In this state of affairs, therefore, you have two basic choices. One choice is to pro
vide multiple alternate interface settings, each of which has a different maximum 
transfer size for its isochronous endpoint(s). When you detect an allocation failure, 
you can try to select progressively less-demanding settings until you finally succeed. 

A savvy end user who's able to launch the Windows 2000 Device Manager applet 
can display a property page for the USB host controller-see Figure 11-17-that 
displays information about the current allocation of bandwidth. Double-clicking one 
of the devices listed in the page brings up the property display for the device in 
question. A well-crafted page could perhaps communicate with the associated device 
driver in order to scale back its demand for bandwidth. This whole area seems ripe 
for a more automatic Microsoft-driven solution, though. 

Figure 11-17. A property page for the USB host controller. 
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Your other choice for handling lack of bandwidth is to allow an IRP to fail in 
such a way that an application can alert the end user to the problem. Perhaps the 
end user can unplug something so that your device can be accommodated. This is 
the option I chose in the USBISO sample except I didn't bother to put code into the 
test application that would respond to a bandwidth allocation failure-TEST.EXE will 
just fail. To adopt this option, you need to know how the failure shows up back in 
user mode. If the URB fails with USBD_STATUS_NO_BANDWIDTII, the NTSTATUS 
code you get back from the internal control IRP is STATUS_DEVICILDATA_ERROR, 
which isn't very specific. An application call to GetLastError would retrieve ERROR_ 
CRC' as the error code. There's no easy way for an application to discover that the 
real cause of the error is a lack of bandwidth, unfortunately. If you're interested in 
diving down this particular rat hole to reach a conclusion, read the sidebar. 

How AN ApPLICATION 

DISCOVERS YOU'RE OUT OF BANDWIDTH 

Suppose you do what USBISO does and try to select the high-bandwidth alter
nate interface when you receive an IRP,-MLCREATE. Further suppose you 
complete the IRP with the status code you get back when there's not enough 
bandwidth-namely, STATUS_DEVICE_DATA_ERROR. Your application caller 
will eventually see ERROR_CRC, as I said in the main text. What now? The 
application can't send you an IOCTL to find out the real cause of the error 
because it doesn't have a handle to your device. You failed the IRP _MLCREATE, 
remember? So maybe you need to have a way for people to open handles to 
your device that doesn't try to reserve bandwidth. Then you need some other 
way for an application to ask for bandwidth, perhaps by means of an IOCTL 
operation. Or perhaps your application just interprets ERROR_CRC from a call 
to CreateFile as meaning there's no bandwidth. Actual data errors are pretty 
unlikely, after all, so that interpretation would be correct much of the time. 

But the best solution would be a specific NTSTATUS code and matching 
Win32 error code that means "no bandwidth." Keep your eyes on NTSTATUS.H 
and WINERROR.H for future developments. 

USBISO performs the converse operation of selecting the original default inter
face when it receives the IRP _MLCLOSE for the last remaining open handle. That 
operation entails issuing another select interface URB, but with the value 0 for the 
alternate interface index. 
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Initiating a Series of Isochronous Transfers 
You can use an isochronous pipe either to read or write data in discrete chunks or 
to provide or consume data in a continuous stream. Data streaming is probably the 
most frequent occupation for an isochronous pipe, actually. But, in addition to under
standing the mechanics of working with the USB bus driver, you must understand and 
solve additional problems related to data buffering, rate matching, and so on, if you 
want to operate a streaming pipe. The kernel-streaming component of the operating 
system deals with all these additional problems. Unfortunately, we didn't have time 
to include a chapter on kernel streaming in this book. I'm therefore going to show 
you only how to program a discrete transfer over an isochronous pipe. 

To read from or write to an isochronous pipe, you'll of course use a URB with 
the appropriate function code. But there are a few wrinkles that you haven't seen 
yet associated with creating and submitting the isochronous URB. First, you must be 
aware of how the device will break up a transfer into packets. In general, the device 
is free to accept or deliver any amount of data less than the endpoint's declared 
maximum. (Any leftover bandwidth on the bus simply won't be used.) The packet 
size the device will use doesn't have any other necessary relation with the endpoint 
maximum, with the maximum amount of data you said you'd transfer in a URB, or 
with the amount of data the device and application can exchange in a series of trans
actions. The firmware for the USBISO device, for example, works with 16-byte packets 
even though the isochronous endpOint in question can handle up to 256 bytes per 
frame according to its descriptor. You must have a priori· knowledge of how big these 
packets will be before you construct a URB because the URB must include an array 
of descriptors for each packet that will be exchanged and each of these deSCriptors 
must indicate how big the packet will be. 

In an impractical simple situation, you could allocate an isochronous URB in 
the following way: 

ULONG length = MmGetMdlByteCount(Irp-)MdlAddress); 
ULONG packsize ~ 16; II a constant in USBISO 
ULONG npackets = (length + packsize - 1) I packsize; 
ASSERT(npackets <= 255); 
ULONG size = GET_ISO_URB_SIZE(npackets); 
PURB urb = (PURB) ExAllocatePool(NonPagedPool. size); 
RtlZeroMemory(urb. size); 

The key step in this fragment is the use of the GET_ISO_URB_SIZE macro to calcu
late the total size needed for an isochronous URB to transfer a given number of data 
packets. A single URB can accommodate a maximum of 255 isochronous packets, 
by the way, which is why I put the ASSERT statement into this code. Limiting the 
application to just 255 packets is not practical, as I said, so we will do something more 
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complex in the real USBISO sample driver. For the time being, though, I just want 
to describe the mechanics of building a single URB for an isochronous (ISO) transfer. 

There being no UsbBuiIdXXxRequest macro for building an isochronous URB, 
we go on to initialize the new URB by hand: 

urb->UrbIsochronousTransfer.Hdr.Length = (USHORT) size; 
urb->UrbIsochronousTransfer.Hdr.Function = 

URB_FUNCTION_ISOCH_TRANSFER; 
urb->UrbIsochronousTransfer.PipeHandle = pdx->hinpipe; 
urb->UrbIsochronousTransfer.TransferFlags = 

USBD_TRANSFER-DIRECTION_IN I USBD_SHORT_TRANSFER-OK I 
USBD_START_ISO_TRANSFER-ASAP; 

urb->UrbIsochronousTransfer.TransferBufferLength = length; 
urb->UrbIsochronousTransfer.TransferBufferMDL 

Irp->MdlAddress; 
urb->UrbIsochronousTransfer.NumberOfPackets npackets; 

for (ULONG i = 0; i < npackets; ++i. length -= packsize) 
{ 

urb->UrbIsochronousTransfer.IsoPacket[i].Offset = i * packsize; 
} 

The array of packet descriptors collectively describes the entire data buffer that we'll 
read in to or write out from. This buffer has to be contiguous in virtual memory, which 
basically means that you need a single MDL to describe it. It would be pretty hard 
to violate this rule. Reinforcing the idea of contiguity, each packet descriptor con
tains just the offset and length for a portion of the entire buffer and not an actual 
pointer. The host controller driver is responsible for setting the length; you're respon
sible for setting the offset. 

The second wrinkle with starting an isochronous transfer involves timing. USB 
uniquely identifies each 1-ms frame with an ever-increasing number. It's sometimes 
important that a transfer begin in a specific frame. USBD allows you to indicate this 
fact by explicitly setting the StartFrame field of the URB. I'll discuss how and why 
you might need to be explicit about the starting frame number in the next section. 
USBISO doesn't depend on timing, however. It therefore sets the USBD_START_ 
ISO _TRANSFER_ASAP flag to indicate that the transfer should be started as soon as 
possible. 

The final wrinkle in isochronous processing has to do with how the transfer 
ends. The URB itself will succeed overall even though one or more packets had data 
errors. The URB has a field named ErrorCount that indicates how many packets 
encountered errors. If this ends up nonzero, you could loop through the packet 
descriptors to examine their individual status fields. 
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Achieving Acceptable Performance 
To achieve acceptable performance for an isochronous transfer that requires more 
than one URB, you need to program your driver in a more complex way than any of 
the samples I've shown you so far. As soon as one URB finishes, you want the bus 
driver to immediately start processing the next one. Interposing a completion rou
tine (as in the LOOPBACK sample) won't be fast enough. The least complex strat
egy to keep data moving is the one employed by the USBISO sample: create a set of 
subsidiary IRP/URB pairs and submit them all at once. 

NOTE The need to create multiple IRPs, and the consequent enormous com
plication of cancellation logic, arises because you can currently submit only 
one URB with an IRP. If it were possible to use the UrbLink field to chain a series 
of URBs from a single IRP, you wouldn't need all the complication I'm about to 
describe. 

The basic idea behind USBISO's read/write logic is to have the completion 
routine for subsidiary IRPs complete the main read/write IRP when the last sub
sidiary IRP finishes. To make this idea work, I declared the following special-purpose 
context structure: 

typedef struct _RWCONTEXT { 
PDEVICE_EXTENSION pdx; 
PIRP mainirp; 
NTSTATUS status; 
ULONG numxfer; 
ULONG numirps; 
LONG numpending; 
LONG refcnt; 
struct { 

PIRP i rp; 
PURB urb; 
PMDL mdl; 
} sub[1]; 

} RWCONTEXT. *PRWCONTEXT; 

The dispatch routine for IRP _MLREAD-USBISO doesn't handle IRP _ML WRITE 
requests-calculates the number of subsidiary IRPs required for the complete trans
fer and allocates one of these context structures, as follows: 

ULONG packsize = 16; 
ULONG segsize = USBD_DEFAULT_MAXIMUM_TRANSFER-SIZE; 
if (segsize / packsize > 255) 

segsize = 255 * packsize; 
ULONG numirps = (length + segsize - 1); 
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ULONG ctxsize = sizeof(RWCONTEXT) + 
(numirps - 1) * sizeof«(PRWCONTEXT) 0)->sub); 

PRWCONTEXT ctx = (PRWCONTEXT) ExAllocatePool(NonPagedPool. ctxsize); 
RtlZeroMemory(ctx. ctxsize); 
ctx->numirps = ctx->numpending = numirps; 
ctx->pdx = pdx; 
ctx->mainirp = Irp; 
ctx->refcnt = 2; 
Irp->Tail.Overlay.DriverContext[0] = (PVOID) ctx; 

I'll explain the purpose of the last two statements in this sequence when I dis
cuss USBISO's cancellation logic. We now perform a loop to construct numirps IRP _ 
MLINTERNAL_DEVICE_CONTROL requests. At each iteration of the loop, we call 
IoAllocateIrp to create an IRP with one more stack location than is required by the 
device object immediately under us. We also allocate a URB to control one stage of 
the transfer and a partial MDL to describe the current stage's portion of the main I/O 
buffer. We record the address of the IRP, the URB, and the partial MDL in an element 
of the RWCONTEXT structure's sub array. We initialize the URB in the same way as 
I showed you earlier. Then we initialize the subsidiary IRP's first two I/O stack loca
tions, as follows: 

IoSetNextIrpStackLocation(subirp); 
PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(subirp); 
stack->DeviceObject = fdo; 
stack->Parameters.Others.Argumentl = (PVOID) urb; 
stack->Parameters.Others.Argument2 = (PVOID) mdl; 

stack = IoGetNextIrpStackLocation(subirp); 
stack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL; 
stack->Parameters.Others.Argumentl = (PVOID) urb; 
stack->Parameters.DeviceIoControl.IoControlCode = 

IOCTL-INTERNAL_USB_SUBMIT_URB; 

IoSetCompletionRoutine(subirp. (PIO_COMPLETION_ROUTINE) 
OnStageComplete. (PVOID) ctx. TRUE. TRUE. TRUE); 

The first stack location is for use by the OnStageComplete completion routine we 
install. The second is for use by the lower-level driver. 

Once we've built all the IRPs and URBs, it's time to submit them to the bus driver. 
Before we do so, however, it's prudent to check whether the main IRP has been 
cancelled, and it's necessary to install a completion routine for the main IRP. The logic 
at the end of the dispatch routine looks like the code on the following page. 
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IoSetCancelRoutine(Irp. OnCancelReadWrite); 
if (Irp-)Cancel) 

{ 

status = STATUS_CANCELLED; 
if (IoSetCancelRout1ne(Irp. NULL» 

--ctx-)refcnt; 
} 

else 
status = STATUS_SUCCESS; 

IoSetCompletionRoutine(Irp.· (PIO_COMPLETION_ROUTINE) OnReadWriteComplete. 
(PYOID) ctx. TRUE. TRUE. TRUE); 

IoMarkIrpPending(Irp); 
IoSetNextIrpStackLocat1on(Irp); 

if (INT_SUCCESS(status» 
{ 

for (i = 0; i < numirps; ++i) 
{ 

if (ctx-)sub[i] .urb) 
ExFreePool(ctx-)sub[i].urb); 

if (ctx-)sub[i].mdl) 
IoFreeMdl(ctx-)sub[i].mdl); 

} 

CompleteRequest(Irp. status. 0); 
return STATUS_PENDING; 
} 

for (i = 0; i < numirps; ++i) 
IoCallDriver(pdx-)LowerDeviceObject. ctx-)sub[i].irp): 

return STATUS_PENDING; 

Handling Cancellation of the Main IRP 
To explain the two completion routines that I'm using in this example--that is, 

OnReadWriteComplete for the main IRP and OnStageComplete for each subsidi
ary IRP-I need to explain how USBISO handles cancellation of the main IRP. Can
cellation is a concern because we've submitted a potentially large number of subsidiary 
IRPs that might take some time to finish. We can't complete the main IRP until all of 
the subsidiary IRPs complete. We should, therefore, provide a way to cancel the main 
IRP and all outstanding subsidiary IRPs. 
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I'm sure you recall from Chapter 5, "The I/O Request Packet," that IRP cancel
lation implicates a number of knotty synchronization issues. If anything, the situation 
in this driver is worse than usual. 

USBISO's cancellation logic is complicated by the fact that we Can't control the 
timing of calls to the subsidiaty IRP's completion routine-those IRPs are owned by 
the bus driver once we submit them. Suppose you wrote the follOwing cancel routine: 

VOID OnCancelReadWrite(PDEVICE-OBJECT fdo. PIRP Irp) 
{ 

IoReleaseCancelSpinLock(Irp-)Cancellrql): 
PRWCONTEXT ctx = (PRWCONTEXT) 

Irp-)Tail.Overlay.DriverContext[0]: 
for (ULONG i = 0: i < ctx-)numirps: ++i) 

IoCancellrp(ctx-)sub[i].irp): 
(additional steps> 

} 

1. We saved the address of the RWCONTEXT structure in the DriverContext 
area of the IRP precisely so that we could retrieve it here. DriverContext 
is ours to use so long as we own the IRP. Since we returned STATUS_ 
PENDING from the dispatch routine, we never relinquished ownership. 

2. Here, we cancel all the subsidiary IRPs. If a subsidiary IRP has already 
completed or is currently active on the device, the corresponding call to 
IoCanceUrp won't do anything. If a subsidiary IRP is still in the host 
controller driver's queue, the host controller driver's cancel routine will 
run and complete the subsidiaty IRP. In all three cases, therefore, we can 
be sure that all subsidiary IRPs will be completed sometime soon. 

This version of OncanceJReadWrite is almost complete, by the way, but it 
needs an additional step that I'll show you after I've explained the synchronization 
problem we need to solve. I can illustrate the problem by shOwing the completion 
routines we'll use with two naive mistakes built in. Here's the completion routine for 
one stage of the total transfer: 

NTSTATUS OnStageComplete(PDEVICE-OBJECT fdo. PIRP subirp. 
PRWCONTEXT ctx) 
{ 

PIO_STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp): 
PIRP mainirp = ctx-)mainirp: 
PURB urb = (PURB) stack-)Parameters.Others.Argument1: 

(continued) 
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if (NT_SUCCESS(Irp->IoStatus.Status» 
ctx->numxfer += urb->UrbIsochronousTransfer 

.TransferBufferLength: 
else 

ctx->status = Irp->IoStatus.Status: 
ExFreePool(urb): 
IoFreeMdl«PMDL) stack->Parameters.Others.Argument2): 
IoFreelrp(subirp): II ~ don't do this 
if (InterlockedDecrement(&ctx->numpending) == 0) 

{ 

IoSetCancelRoutine(mainirp. NULL): II ~ also needs some work 
mainirp->IoSiatus.Status = ctx->status: 
IoCompleteRequest(mainirp. IO_NO_INCREMENT): 
} 

return STATUS-MORE-PROCESSIN~REQUIRED: 
} 

1. This stack location is the extra one that the dispatch routine allocated. We 
need the address of the URB for this stage, and the stack was the most 
convenient place to save that address. 

2. When a stage completes normally, we update the cumulative transfer count 
for the main IRP here. The ftnal value of numxfer will end up in the main 
IRP's IoStatus.Information field. 

3. We initialized status to STATUS_SUCCESS by zeroing the entire context 
structure. If any stage completes with an error, this statement will record 
the error status. The final value will end up in the main IRP's 
IoStatus.Status field. 

4. We no longer need the URB or the partial MOL for this stage, so we re
lease the memory they occupied here. 

S. This call to IoFreeIrp is the naive part of this completion routine, as I'll 
explain shortly. 

6. When the last stage completes, we'll also complete the main IRP. Once 
we've submitted the subsidiary IRPs, this is the only place where we 
complete the main IRP, so we can be sure that the main IRPpointer is valid. 

Here's the naive version of the completion routine for the main IRP: 

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo. PIRP Irp. 
PRWCONTEXT ctx) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE-EXTENSION) ctx->pdx: 
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if (lrp->Cancel) 
Irp->IoStatus.Status = STATUS_CANCELLED; 

else if (NT_SUCCESS(Irp->IoStatus.Status» 
Irp->IoStatus.Information = ctx->numxfer: 

ExFreePool(ctx): II ~ don't do this 

IoReleaseRemoveLock(&pdx->RemoveLock. Irp): 
return STATUS_SUCCESS: 
} 

1. If someone tried to cancel the' main IRP, this statement will set the corre
sponding ending status. 

2. Releasing the context structure's memory is a problem, as I'll explain. 

3. This call to IoReleaseRemoveLock balances the acquisition we did in the 
dispatch function. 

4. If we return any value at all besides' STATUS_MORE_PROCESSING_ 
REQUIRED, 10CompieteRequest will continue its work without altering the 
completion status of the IRP. 

I've been building up to a big and dramatic expose of a syhchronization prob
lem associated with IRP cancellation, and here it fmally is: suppose our cancel routine 
gets called after one or more of the calls to IoFreeIrp has already happened inside 
OnStageComplete? You can see that we might call IoCanceJIrp with an invalid pointer 
in such a case. Or, suppose that the cancel routine gets called more or less simulta
neously with OnReadWriteComplete. In that case, we might have the cancel routine 
accessing the context structure after it gets deleted. 

You might attempt to solve these problems with various subterfuges. Could 
OnStageComplete nullify the appropriate subsidiary IRP pointer in the context struc
ture, and could OnCancelReadWrite check before calling 10CancelIrp? (Yes, but 
there's still no way to guarantee that the call to 10Freelrp doesn't squeeze in between 
whatever test OnCancelReadWrite makes and the moment when 10CancelIrp is finally 
done modifying the cancel-related fields of the IRP.) Could you protect the various 
cleanup steps with a spin lock? (That's a horrible idea, because you'd be holding the 
spin lock across calls to time-consuming functions.) Could you take advantage of 
knowing that the current telease of Windows 2000 always cleans up completed IRPs 
in an APC routine? (No, for the reasons I discussed back in Chapter 5.) 

I struggled long and hard with this problem before inspiration finally struck. 
Why not, I finally realized, protect the context structure and subsidiary IRP pointers with 
a reference count so that both the cancel routine and the main completion routines could 
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share responsibility for cleaning them up? That's what I ended up doing. I put a 
reference count field (refent) into the context structure and initialized it to the value 
2. One reference is for the cancel routine; the other is for the main completion rou
tine. I wrote the following helper function to release the memory objects that are the 
source of the problem: 

BOOLEAN DestroyContextStructure(PRWCONTEXT ctx) 
{ 

if (InterlockedDecrement(&ctx->refcnt) > 0) 
return FALSE; 

for (ULONG i = 0; i < ctx->numirps; ++i) 
if (ctx->sub[i].irp) 

IoFreeIrp(ctx->sub[i].irp); 
ExFreePool(ctx); 
return TRUE; 
} 

I call this routine at the end of the cancel routine: 

VOID OnCancelReadWrite(PDEVICE_OBJECT fdo. PIRP Irp) 
{ 

IoReleaseCancelSpinLock(Irp->CancelIrql); 
PRWCONTEXT ctx = (PRWCONTEXT) 

Irp->Tail.Overlay.DriverContext[0]; 
for (ULONG i = 0; i < ctx->numirps; ++i) 

IoCancelIrp(ctx->sub[i].irp); 
PDEVICE_EXTENSION pdx = ctx->pdx; 
if (DestroyContextStructure(ctx» 

} 

{ 

CompleteRequest(Irp. STATUS_CANCELLED. 0); 
IoReleaseRemoveLock(&pdx->RemoveLock. Irp); 

} 

I omitted the call to IoFreelrp in the stage completion routine and added one 
more line of code to decrement the reference count once it's certain that the cancel 
routine hasn't been, and can no longer, be called: 

NTSTATUS OnStageComplete(PDEVICE_OBJECT fdo. PIRP subirp. 
PRWCONTEXT ctx) 
{ 

PIO~STACK-LOCATION stack = IoGetCurrentIrpStackLocation(Irp); 
PIRP mainirp = ctx->mainirp; 
PURB urb = (PURB) stack->Parameters.Others.Argumentl; 
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if (NT_SUCCESS(Irp->IoStatus.Status» 
ctx->numxfer += urb->UrbIsochronousTransfer.TransferBufferLength; 

else 
ctx->status = Irp->IoStatus.Status; 

ExFreePool(urb); 
IoFreeMdl((PMDL) stack->Parameters.Others.Argument2); 
if (InterlockedDecrement(&ctx->numpending) == 0) 

{ 

if (IoSetCancelRoutine(mainirp, NULL» 
InterlockedDecrement(&ctx->refcnt); 

mainirp->IoStatus.Status = ctx->status; 
IoCompleteRequest(mainirp, IO_NO_INCREMENT); 

} 

return STATUS_MORE_PROCESSING_REQUIRED; 
} 

Recall that IoSetCancelRoutine returns the previous value of the cancel pointer. If 
that's NULL, the cancel routine has already been called and will call DestroyContext
Structure. If that's not NULL, however, it will no longer be possible for the cancel 
routine to ever be called, and we must use up the cancel routine's claim on the context 
structure. 

I also replaced the unconditional call to ExFreePool in the main completion 
routine with a call to DestroyContextStructure: 

NTSTATUS OnReadWriteComplete(PDEVICE_OBJECT fdo, PIRP Irp, 
PRWCONTEXT ctx) 
{ 

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION) ctx->pdx; 
if (Irp->Cancel) 

Irp->IoStatus.Status = STATUS_CANCELLED; 
else if (NT_SUCCESS(Irp->IoStatus.Status» 

Irp->IoStatus.lnformation = ctx->numxfer; 

if (DestroyContextStructure(ctx» 
{ 

IoReleaseRemoveLock(&pdx->RemoveLock, Irp); 
return STATUS_SUCCESS; 
} 

else 
return STATUS_MORE_PROCESSING_REQUIRED; 

} 
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Here's how this extra logic works. If the cancel routine ever gets called, it will 
run through the context structure calling IOCancelIrp for each of the subsidiary IRPs. 
Even if all of them have already completed, these calls will still be safe because we 
won't have called IoFreeIrp yet. The reference to the context structure will also be 
safe because we won't have called ExFreePool yet. The cancel routine finishes up 
by calling DestroyContextStructure, which will decrement the reference counter. If 
the main completion routine hasn't run yet, DestroyContextStructure will return FALSE, 
whereupon the cancel routine will return. The context structure still exists at this point, 
which is good because the main completion routine will reference it soon. The comple
tion routine's eventual call to DestroyContextStructure will release the subsidiary IRPs 
and the context structure itself. The completion routine will then give up the remove 
lock that we acquired in the dispatch routine and return STATUS_SUCCESS in order 
to allow the main IRP to finish completing. 

Suppose that calls to the cancel and main completion routines happen in the 
other order. In that case, OnReadWriteComplete's call to DestroyContextStructure will 
simply decrement the reference count and return FALSE, whereupon OnReadWrite
Complete will return STATUS_MORE]ROCESSING_REQUIRED. The context structure 
still exists. We can also be sure that we still own the IRP and the DriverContext field 
from which the cancel routine will fetch the context pointer. The cancel routine's 
call to DestroyContextStructure will, however, reduce the reference count to 0, 
release the memory, and return TRUE. The cancel routine will then release the 
remove lock and call IoCompleteRequest for the main IRP. That adds up to two calls 
to IoCompleteRequest for the same IRP. You know that you're not allowed to complete 
the same IRP twice, but the prohibition is not against calling IoCompleteRequest twice 
per se. If the first invocation of IoCompleteRequest results in calling a completion routine 
that returns STATUS_MORE_PROCESSING_REQUIRED, a subsequent, duplicate call is 
perfectly okay. 

The only remaining case in this analysis is when the cancel routine never gets 
called at all. This is, of course, the normal case because IRPs don't usually get cancelled. 
We discover this fact when we call IoSetCancelRoutine in preparation for completing 
the main IRP. If IoSetCancelRoutine returns a non-NULL value, we know that IoCancelIrp 
has not yet been called for the main IRP. (Had it been, the cancel pointer would 
already be NULL, and IoSetCancelRoutine would have returned NULL.) Furthermore, 
we know that our own cancel routine can now never be called and will therefore 
not have a chance to reduce the reference count. Consequently, we reduce the ref
erence count by hand so that OnReadWriteComplete's call to DestroyContextStructure 
will release the memory. 



Chapter 11 The Universal Serial Bus 

WHERE'S THE SYNCHRONIZATION? 

You'll notice that I didn't use a spin lock to guard the code I just showed you 
earlier for testing for cancellation inside the dispatch routine. Synchronization 
between that code and some hypothetical caller of IoCancelIrp is implicit in the 
facts that IoSetCancelRoutine is an interlocked exchange operation and that 
IoCancelIrp sets the Cancel flag before calling IoSetCancelRoutine. Refer to the 
discussion in Chapter 5 for a sketch of how IoCancelIrp works. 

Our dispatch routine's first call to IoSetCancelRoutine might occur after 
IoCancelIrp sets the Cancel flag but before IoCancelIrp does its own call to 
IoSetCancelRoutine. Our dispatch routine will see that the Cancel flag is set and 
make a second call to IoSetCancelRoutine. If this second call happens to pre
cede IoCancelIrp's call to IoSetCancelRoutine, the cancel routine will not be 
called. We will also decrement the reference count on the context structure so ,.. 
that it gets released on the first call to DestroyContextStructure. 

If our dispatch routine's second call to IoSetCancelRoutine follows 
IoCancelIrp's, we will not decrement the reference count. One or the other of 
the cancel routine or the completion routine will end up releasing the context 
structure. 

If our dispatch routine tests the Cancel flag before IoCancelIrp sets it, or 
if IoCancelIrp has never even been called for this IRP, we'll go ahead and start 
the subsidiary IRPs. If IoCancelIrp was called in the distant past before we 
installed a cancel routine, it will have simply set the Cancel flag and returned. 
What happens after that is just the same as when our dispatch routine nullifies 
the cancel pointer before IoCancelIrp calls IoSetCancelRoutine. 

So, you see, you don't always need a spin.,lock to give you multiprocessor 
safety: sometimes an atomic interlocked operation will do the trick by itself. 
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ASSOCIATED IRPS? 

At first blush, IoMakeAssociatedIrp looks like an alternative way to create the 
subsidiary IRPs that USBISO needs. The idea behind IoMakeAssociatedIrp is that 
you could create a number of associated IRPs to fulfill a master IRP. When the 
last associated IRP completes, the VO Manager automatically creates the mas
ter IRP. 

Unfortunately, associated IRPs are not a good way to solve any of the 
problems that USBISO grapples with. Most important, WDM drivers aren't sup
posed to use IOMakeAssociatedIrp. Indeed, the completion logic for associated 
IRPs is incorrect in Windows 98-it doesn't call any completion routines for the 
master IRP when the last associated IRP ftnishes. Even in Windows 2000, how
ever, the I/O Manager won't cancel associated IRPs when the master IRP is 
cancelled. Furthermore, the call to IoFreeIrp for an associated IRP occurs in
side I6CompleteRequest, in whatever thread context happens to be current. This 
fact makes it harder to safely cancel the associated IRPs. 

Streaming Isochronous Transfers 
In the preceding section, I described a technique for performing a single long trans
fer over an isochronous pipe. You might need to arrange to transmit a continuous 
stream of data instead. I'll provide a quick sketch here of how you might do that. 

In a streaming driver, you need to provide one or more data buffers that you 
can continuously transfer to or from the device without missing any frames. You 
also need to allocate at least two IRP/URB pairs that you use for the transfers. In 
this situation, the ability to chain URBs wouldn't help you even if it worked: you need 
to know when each URB finishes, and the only way to ftnd out is when the associa
ted IRP's completion routine gets called. 

You initially submit all the IRPs to the bus driver. When one IRP completes, you 
immediately (in a completion routine) recycle it. The idea is to always have a URB 
queued in the host controller driver ready to run as soon as the current URB ftnishes. 
You might need to tune the size or number of data buffers and the number of IRP/ 
URB pairs to avoid buffer overruns caused by temporary failures of your consumer 
or provider to keep up with the device. 

Synchronizing Isochronous Transfers 
Synchronicity is an important attribute of many types of isochronous data streams. 
To give a simple example, suppose you have two speakers and a microphone attached 
to a computer. You want the audio data rendered by the speakers to be synchrOnized 
with the data coming from the microphone in the sense that audible sound keeps 
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up with the microphone input. You also want the sound coming out of one speaker 
to be synchronized with the other speaker. 

Achieving acceptable synchronicity can be hard for seveml reasons. Section 5.10 
of the USB specification describes these reasons and the hardware bases for their 
resolution in detail. I'm only going to summarize the challenges so that I can point 
you to the support USBD provides for drivers. 

The sources and sinks of data might have different sample sizes and rates. A 
microphone, for example, might generate 8,000 one-byte samples every second, and 
a speaker might consume 44,100 32-bit samples every second. (This is the same 
example carried through Section 5.10 of the USB specification.) Some hardware or 
software agent must employ a scaling and interpolation process to match the source 
and sink. 

Devices have 'inherent internal delays, too. A data source might need time to 
capture and encode data before sending it to the host, and a data sink might need 
time to decode and render data. In the simple example I gave of a single source with 
two similar sinks, these delays wouldn't be important. But imagine a situation in which 
multiple input devices, each with its own delay characteristics, were trying to cap
ture different aspects of the same series of external events. (For example, a collec
tion of microphones and MIDI devices.) Some agent needs to understand the delays 
that were intrOduced by the various source devices so as to "line up" the data streams 
received by the host. Some agent also needs to understand the delays that the sink 
devices will introduce so as to cause the actual output signals to reach the external 
environment at the right times. Since USB requires device delays to be measured in 
fmme units, a driver deals with delay by explicitly setting the StartFrame member of 
the isochronous transfer URBs it generates. To set this field, you perform a calcula
tion starting either with the frame number during which some input data arrived
which you can retrieve from the completed URB's StartFrame member-Dr with the 
current frame number. 

Finally, devices must provide some way to synchronize their internal clocks with 
the rest of the system. Synchronization is required in the first place because clocks 
can drift over time (that is, they can become progressively less synchronized because 
of slight differences in oscillator frequency) or they can jitter (that is, their rate can 
vary up and down because of thermal or other fluctuations). USB identifies three 
alternative methods for an endpoint to synchronize its clock: asynchronous, synchro
nous, and adaptive. 

An asynchronous endpoint can't synchronize its operation with any external 
source. A source endpoint implicitly informs the host of its data rate by the amount 
of data it provides. A sink endpoint would need to have access to an auxiliary syn
chronization endpoint, such as an interrupt endpOint, to report back its progress in 
consuming data. 
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A synchronous endpoint ties its operation to the I-kHz frame rate of the bus. 
It does so either by slaving its own clock to the start-of-frame (SOF) packet that begins 
every frame or by forcing the bus frame rate to match its own clock. USB allows any 
one device to be the frame master and to alter the duration of frames to be more or 
less than the standard one millisecond. On the driver side, you issue a URB with the 
function code URB_FUNCTION3AKE_FRAME_LENGTH_CONTROL to become the 
frame master, and you issue another URB with the function code URB]UNCTION_ 
RELEASE_FRAME_LENGTH_CONTROL to relinquish your status as frame master. 
While you are the master, you can issue URBs with the function codes URB_ 
FUNCTION_GET_FRAME_LENGTH and URB_FUNCTION_SET]RAME_LENGTH to 
get and set the frame length, respectively. 

An adaptive source endpoint has some way (a control pipe, for example) of 
receiving feedback from a data sink that allows it to generate samples that are already 
matched to the sink. An adaptive sink endpoint simply adapts to the rate informa
tion that's implicit in the data stream it receives. 
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Installing 
Device Drivers 

Early in the device driver development process, it is important to devote some thought 
to how an end user will install your driver and install the hardware it serves. Microsoft 
Windows 2000 and Microsoft Windows 98 use a text file with the file extension INF 
to control most of the activities associated with installing drivers. You provide the INF 
file. It either goes on a diskette or on a disc that you package with the hardware, or 
else Microsoft puts it on the Windows 2000 installation disc. In the INF file, you tell 
the operating system which file(s) to copy onto the end user's hard disk, which reg
istry entries to add or modify, and so on. 

In this chapter, I'll discuss several aspects of installing your driver. I'll lead you 
through the important parts of a simple INF file to help you tie together the DDK 
documentation about INF file syntax. I'll explain in detail the format of device iden
tifiers used for various types of devices-this information is hard to come by right 
now, as it happens. I'll discuss how to initialize property values in a device's hard
ware registry key and how to access those properties later from drivers and applica
tions. Since I had to define a custom device class for all the sample "devices" used 
in this book, I thought it would help you to see how I did that. To round out this 
chapter (and, in fact, the entire book), I'll discuss a method you can use to cause an 
application to start automatically when the PnP Manager starts one of your devices. 
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An INF file contains a collection of sections introduced by a section name in brack
ets. Most sections contain a series of directives of the form "keyword = value". The 
INF file begins with a Version section that identifies the type of device described by 
entries in the file: 

[Version] 
Signature=$CHICAGO$ 
Class=Sample 
ClassGuid={894A7460-A033-11d2-821E-444553540000} 

Signature can be one of the three magic values $Chicago$, $Windows NT$ 
(with one space), or $Windows 95$ (also with one space). Class identifies the class 
of device. Table 12-1 lists the predefmed classes that Windows 2000 already supports. 
ClassGuid uniquely identifies the device class. The DDK header file DEVGUID.H 
defines the globally unique identifiers (GUIDs) for standard device classes, and the 
DDK documentation entry for the Version section documents them as well. 

In a production INF file, you will also need to have DriverVer and CatalogFlle 
statements in the Version section. You should also have a comment (that is, any line 
that starts with a semicolon) containing the word "copyright" to satisfy the CHKINF 
utility I'll describe in the section ''Tools for INF Files" later in this chapter. The operating 
systems will accept INF files that lack these details, but Microsoft won't certify your 
driver package without them. Refer to the DDK documentation for more details about 
the required INF syntax. 

I fmd it useful to think of the bulk of an INF file as the linear description of a 
tree structure. Each section is a node in the tree, and each directive is a pointer to 
another section. Figure 12-1 illustrates the concept. 

Figure 12-1. Tree strncture of an 1NF file. 
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Description 

IEEE 1394 host bus controllers (but not peripherals) 

Battery devices 

CD-ROM drives, including SCSI and IDE 

Hard disk drives 

Video adapters 

Floppy disk controllers 

Floppy disk drives 

Hard disk controllers 

Human input devices 

Still-image capture devices, including cameras and scanners 

NDIS miniport drivers for Serial-IR and Fast-IR ports 

Keyboards 

SCSI media changer devices 

Multimedia deVices, including audio, DVD, joysticks, and 
full-motion video capture devices 

Modems 

Display monitors 

Mouse and other pointing devices 

Memory technology driver for memory devices 

Combination devices 

Intelligent multiport serial cards 

Network adapter cards 

Network file system and print providers (client side) 

Server-side support for network file systems 

Network protocol drivers 

PCMCIA and CardBus host controllers (but not peripherals) 

Serial and parallel ports 

Printers 

SCSI and RAID controllers, host bus adapter miniports, and 
disk array controllers 

Smart card readers 

System devices 

Tape drives 

USB host controllers and hubs (but not peripherals) 

Logical storage volume drivers 

Table 12·1. Device classes for INF files. 
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At the apex of the tree is a Manufacturer section that lists all the companies 
with hardware described in the file. For example: 

[manufacturer] 
"Walter Oney Software"=DeviceList 
"Finest Organization On Earth Yet"=FOOEY 

[DeviceList] 

[ FOOEy] 

Each individual manufacturer's model section (DeviceList and FOOEY in the 
example) describes one or more devices: 

[DeviceList] 
Description=Insta77SectionName,Deviceld 

where Description is a human-readable description of the device and DeviceId 
identifies a hardware device. The InstallSectionName parameter identifies (or points 
to, in my tree metaphor) another section of the INF file that contains instructions for 
installing the software for a particular device. An example of an entry for a single type 
of device might be this (drawn from the PKTDMA sample in Chapter 7, "Reading and 
Writing Data"): 

[DeviceList] 
"AMCC S5933 Development Board (DMA)"=Driverlnstall,PCI\VEN_10E8&DEL4750 

The information in the Manufacturer section and in the model section(s) for indi
vidual manufacturers comes into play when the system needs to install a driver for a 
piece of hardware. A Plug and Play (PnP) device announces its presence and identity 
electronically. A bus driver detects it automatically and constructs a device identifier 
using onboard data. The system then attempts to locate preinstalled INF files that de
scribe that particular device. INF files reside in the INF subdirectory of the Windows 
directory. If the system can't find a suitable INF file, it asks the end user to specify one. 

A legacy device can't announce its own presence or identity. The end user 
therefore launches the add hardware wizard to install a legacy device and helps the 
wizard locate the right INF file. Key steps in this process include specifying the type 
of device being installed and the name of the manufacturer. See Figure 12-2. 

The hardware wizard constructs dialogs such as Figure 12-2 by enumerating all 
the INF files for a particular type of device, all of the statements in their Manufac
turer sections, and all of the model statements for each of the manufacturers. You 
can guess that the manufacturer names that appear in the left pane of the dialog come 
from the left sides of Manufacturer statements and that the device types that appear 
in the right pane come from the left sides of model statements. 
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Select Network Adapter 
Which network adapler do you want to install? 

Figure 12-2. Selecting a device during installation. 

MORE ABOUT HARDWARE WIZARD DIALOGS 

Once the wizard is past the stage of looking for PnP devices, it builds a list of 
device classes and uses various SetupDiXxx routines from SETUPAPI.DLL to 
retrieve icons and descriptions. The information that SETUP API uses to imple
ment these routines ultimately comes from the registry, where it was placed by 
entries in Classlnstall32 sections. Not every device class will be represented 
in the list-the wizard will suppress information about classes that have the 
NolnstallClass attribute. 

After the end user selects a device class, the wizard calls SETUP API func
tions to construct lists of manufacturers and devices as described in the text. 
Devices mentioned in ExcludeFromSelect statements will be absent from 
these lists. 

Install Sections 
An install section contains the actual instructions that the installer needs to install soft
ware for a device. We've been considering the PKTDMA sample. For that device, the 
DeviceList model section specifies the name DriverInstall. I find it useful to think of 
this name as identifying an array of sections, one for each Windows platform. The "zero" 
element in this array has the base name of the section (DriverInstall). You can have 
platform-specific array elements whose names start with the base name and contain 
one of the sufflxes listed in Table 12-2. The device installer looks for the install section 
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having the most specialized suffix. Suppose, for example, that you have install sections 
with no suffix, with the .NT suffIX, and with the .NTx86 suffix. If you're installing into 
Windows 2000 on an Intel x86 platform, the installer will use the .NTx86 section. If 
you're installing into Windows 2000 on a non-Intel platform, it would use the .NT 
section. If you're installing into Windows 98, it would use the section without a suffIX. 

Platform 

Any platform including Windows 98 

Any Windows 2000 platform 

Windows 2000 on Intel x86 

Install Section Suffix 

[none] 

.NT 

.NTx86 

Table 12-2. Install section SUffixes for each platform. 

Because of the search rules I just outlined, all of the INF files for my sample 
drivers have the no-suffix and .NT-suffIX install sections. That makes the INF files work 
fine on any Intel platform. (As you probably know by now, Microsoft and Compaq 
dropped support for the current 32-bit version of Windows 2000 on the Alpha plat
form just as this book was going to press. We therefore made no provision for test
ing my samples on the Alpha.) 

Further along in this chapter, I'll be discussing other INF sections whose names 
begin with the name of the install section. If you have multiple install sections in your 
"array," these other sections have to include the platform-dependent suffIX in their 
names, too. For example, I'll be discussing a Services section that you use to install 
a description of the driver into the registry. You would form the name of this sec
tion by taking the base name of the install section (for example, DriverInstall) plus 
the platform suffix (for example, NT) and adding the word Services, ending up with 
[DriverInstaILNT.Services]. 

A typical Windows 2000 install section would contain a CopyFlles directive and 
nothing else: 

[DriverInstall.nt] 
CopyFiles=DriverCopyFiles 

This CopyFiles directive indicates that we want the installer to use the information 
in another INF section for copying files onto the end user hard disk. For the PK1DMA 
sample, the other section is named DriverCopyFiles: 

[DriverCopyFiles] 
pktdma.sys ••• 2 

This section directs the installer to copy PKTDMA.SYS to the end user's hard disk. 
The statements in a CopyFiles section have this general form: 

Destination.Source.Temporary.Flags 
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Destination is the name (without any directory name) of the me as it will eventu
ally exist on the end user system. Source is the name of the me as it exists on the 
distribution media, if that name is different from the Destination name; otherwise, 
it's just blank as in the example. In Windows 98, if you might be installing a me that 
will be in use at the time of installation, you specify a temporary name in the Tem
porary parameter. Windows 98 will rename the temporary me to the Destination 
name on the next reboot. It's not necessary to use this parameter for Windows 2000 
installs because the system automatically generates temporary names. 

The Flags parameter contains a bit mask that governs whether the system will 
decompress a me and how the system deals with situations in which a me by the same 
name already exists. The interpretation of the flags depends in part on whether the 
INF and driver are part of a package that Microsoft has digitally signed after certifi
cation. Table 12-3 on the following page is a list of all these flag bits. The italicized 
flags in the table are ignored in a digitally signed package. I used a double line to 
delimit groups of mutually exclusive flags. Thus, in an unsigned package, you could 
specify one or the other of the NOSKIP or WARN_IF_SKIP flags, but not both. 

The file name by itself is not sufficient to tell the installer what it needs to know 
to copy a me. It also needs to know which directory you want the me copied to. In 
addition, if you have multiple diskettes in the installation set, it needs to know which 
diskette contains the source me. These pieces of information come from other sec
tions of the INF me, as suggested by Figure 12-3. In the PKTDMA example, these 
sections are as follows: 

[OestinationOirs] 
OefaultOestOir=10.System32\Orivers 

[SourceOisksFiles] 
pktdma.sys=l 

[SourceOisksNames] 
l="WOM Book Companion Oisc",diskl 

Figure 12-3. Source and destination information/or file copies. 
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Numeric 
SymboUc Name Value Description 

COPYFLG_REPLACEONLY OxOOOOO400 Copy only if destination file al-
ready exists 

COPYFLG_NODECOMP OxOOOOO800 Don't decompress file 

COPYFLG_FORCE_FILE_IN_USE OxOOOOOOO8 Always copy under temporary 
name and rename on next boot 

COPYFLG_NO_OVER~TE OxOOOOOOlO Don't overwrite an existing me 
(other flags can't be used with 
this flag) 

COPYFLG_REPLACE_BOOT_FILE OxOOOOlOOO Replace boot me needed by the 
loader, which will prompt user to 
reboot 

COPYFLG_NOPRUNE OxOOOO2000 Copy this me even if Setup thinks 
it's already present 

COPYFLGflOVERSIONCHECK OXOOOOOOO4 Overwrite a me even if it's a 
newer version than the source me 

COPYFLG_NO_ VERSION_DIALOG OxOOOOOO20 Don't present the dialog that al-
lows the user to decide whether 
to overwrite a newer me 

COPYFLG_OVERWRITE_OLDER_ONLY OxOOOOOO40 Only overwrite an older version 
of the me 

COPYFLGflOSKlP OxOOOOOOO2 Don't allow the user to skip this 
me 

COPYFLG_ WARNjF_SKlP OxOOOOOOOl Allow the user to skip this me and 
provide a warning 

Table 12-3. Flags in a CopyFile section directive. 

The SourceDisksFlles section indicates that the installer can fmd PKIDMA.SYS 
on disk number 1 of the set. The SourceDisksNames section indicates that disk 
n}lmber 1 has a human-readable label of "WDM Book Companion Disc" and con
tains a file named "diskl" that the installer can look for to verify that the correct 
diskette is in the drive. Note that these section names have an interior "s" that's very 
easy to miss. 

The DestinationDirs section specifies the target directories for copy operations. 
DefaultDestDir is the target direct0rx,to use for any file whose target directory isn't 
otherwise specified. You use a numeric code to specify the target directory because the 
end user might choose to install Windows 2000 to a directory with a nonstandard 
name. Please refer to the DDK documentation entry for the DestinationDirs section 
for a complete list of the codes--only a few of them are in common use, as follows: . 
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• Directory 10 is the Windows directory (for example, "\ Windows" or 
"\ Winnt"). 

• Directory 11 is the System directory (for example, "\ Windows \ System" or 
"\ Winnt\System32"). 

• Directory 12 is the Drivers directory on a Windows 2000. system (for 
example, "\ Winnt\System32\Drivers"). Unfortunately, this number has 
a different meaning on a Windows 98 system (for example, "\ Windows \ 
System \Iosubsys"). 

WDM drivers reside in the Drivers directory. If your CopyFiles section applies 
only to a Windows 2000 installation, you can just specify directory number 12. If you 
want to share a CopyFiles section between Windows 98 and Windows 2000 installs, 
however, I recommend that you specify "10,System32\Drivers" instead because it 
identifies the Drivers directory in both cases. 

Defining the Driver Service 
The INF syntax I've described so far is sufficient for your driver file(s) to be copied 
onto the end user's hard disk. You must also arrange for the PnP Manager to know 
which files to load. A .Services section accomplishes that goal, as in this example: 

[Oriverlnstall.NT.Services] 
AddService=PKTDMA.2.DriverService 

[OriverService] 
ServiceType=l 
StartType=3 
ErrorControl=l 
ServiceBinary=%10%\system32\drivers\pktdma.sys 

The 2 in the AddService directive indicates that the PKTDMA service will be the 
function driver for the device. You form the name of this section by appending the 
word "Services" to the name of the install section to which it applies. 

The end result of these directives will be a key in the HKEY _LOCAL_ 
MACHlNE\System\CurrentControlSet\Services branch of the registry named PKTDMA 
(the first parameter in the AddService directive). It will define the service entry for 
the driver as a kernel-mode driver (ServiceType equal to 1) that should be demand
loaded by the PnP Manager (StartType equal to 3). Errors that occur during loading 
should be logged but should not by themselves prevent the system from starting 
(ErrorControl equal to 1). The executable image can be found in \ Winnt\System32\ 
Drivers \ pktdma.sys (the value of ServiceBlnary). By the way, when you look in the 
registry, you'll see that the name of the executable file is stored under the name 
ImagePath rather than ServiceBinary. 

It's a good idea to make the name of the service (PKTDMA in this example) the 
same as the filename (PKTDMA.SYS in this example) of your driver binary file. Not 
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only does this make it obvious which service name corresponds to which driver, but 
it also avoids a problem that can arise when two different service keys point to the 
same driver: any device that uses the same driver as a then-started device but under 
a different service name can't itself start. 

Device Identifiers 
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For true Plug and Play devices, the device identifier that appears in a manufacturer's 
model section of an INF is very important. Plug and Play devices are those that can 
electronically announce their presence and identity. A bus enumerator can ftnd these 
devices automatically, and it can read some sort of onboard information to find out 
what kind each device is. Universal serial bus (USB) devices, for example, include 
vendor and product identiftcation codes in their device descriptors, and the configu
ration space of Peripheral Component Interconnect (PCI) devices includes vendor and 
product codes. 

When an enumerator detects a device, it constructs a list of device identifica
tion strings. One entry in the list is a complete identification of the device. This en
try will end up naming the hardware key in the registry. Additional entries in the list 
are "compatible" identifters. The PnP Manager uses all of the identifters in the list when 
it tries to match a device to an INF me. Enumerators place more specific identifters 
ahead of less specific identifiers so that vendors can supply specific drivers that will 
be found in preference to more general drivers. The algorithm for constructing the 
strings depends on the enumerator, as follows: 

PC. Devices 
The full device identifter has the form 

PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr 

where vvvv is the vendor identifier that the PCI Special Interest Group assigned to 
the manufacturer of the card, dddd is the device identifier that the manufacturer 
assigned to the card, ssssssss is the subsystem id (often zero) reported by the card, 
and rr is the revision number. 

For example, the display adapter on my current laptop computer (based on the 
Chips and Technologies 65550 chip) has this identifier: 

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000&REV_04 

A device can also match an INF model with any of these identifiers: 

PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss 
PCI\VEN_vvvv&DEV_dddd&REV_rr 
PC'I \V EN_vvvv&DELdddd 
PCI\VEN_vvvv&DEV_dddd&REV_rr&CC_ccss 
PCI\VEN_vvvv&DEV_dddd&CC_ccsspp 
PCI\VEN_vvvv&DEV_dddd&CC_ccss 



PCI\VEN_vvvv&CC_ccsspp 
PCI\VEN_vvvv&CC_ccss 
PCI \vEN_ vvvv 
PCI\CCccsspp 
PCI\CCccss 
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in which ee is the base class code from the configuration space, ss is the subclass 
code, and pp is the programming interface. For example, the following additional 
identifiers for my laptop's display adapter would have matched the information in 
an INF file: 

PCI\VEN_102C&DEV_00E0&SUBSYS_00000000 
PCI\VEN_102C&DEV_00E0&REV_04 
PCI\VEN_102C&DEV_00E0 
PCI\VEN_102C&DEV_00E0&REV_04&CC_0300 
PCI\VEN_102C&DEV_00E0&CC_030000 
PCI\VEN_102C&DEL00E0&CC...:0300 
PCI\VEN_102C&CC_030000 
PCI\VEN_102C&CC_0300 
PC I \vEN_102C 
PCI\CC030000 
PCI\CC0300 

The INF that the system actually used for driver installation was the third one, 
which includes just the vendor and device identifiers. 

PCMCIA Devices 
The device identifier for a simple device has the form 

PCMCIA\Manufacturer-Product-Crc 

For example, the device identifier for the 3Com network card on my current laptop 
computer is 

PCMCIA\MEGAHERTZ-CC10BT/2-BF05 

For an individual function on a multifunction device, the identifier has the form 

PCMCIA\Manufacturer-Product-DEVdddd-Crc 

where Manufacturer is the name of the manufacturer and Product is the name of 
the product. The PCMCIA enumerator retrieves these strings directly from tuples on 
the card. Cre is the 4-digit hexadecimal CRC checksum for the card. The child func
tion number (dddd in the template) is a decimal number without leading zeros. 

If the card doesn't have a manufacturer name, the identifier will have one of 
these three forms: 

PCMCIA\UNKNOWN_MANUFACTURER-Crc 
PCMCIA\UNKNOWN_MANUFACTURER-DEVdddd-Crc 
PCMCIA\MTD-0002 
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(The last· of these three alternatives is for a flash memory card with no manufacturer 
identifier on the card.) 

In addition to the device identifier just described, an INF file's model section 
can also contain an identifier composed by replacing the 4-digit hexadecimal CRC 

with a string containing the 4-digit hexadecimal manufacturer code, a hyphen, and 
the 4-digit hexadecimal manufacturer information code (both from onboard tuples). 
For example: 

PCMCIA\MEGAHERTZ-CC10BT/2-0128-0103 

SCSI Devices 
The complete device identifier is 

SCSI\ttttvvvvvvvvpppppppppppppppprrrr 

where tttt is a device type code, vvvvvvvv is an 8-character vendor identifier, 
pppppppppppppppp is a 16-character product identifier, and rrrr is a 4-
character revision level value. The device type code is the only one of theidenti
fier components that doesn't have a fixed length. The bus driver determines this 
portion of the device identifier by indexing an internal string table with the device 
type code from the device's inquiry data, as shown in Table 12-4. The remaining 
components are just the strings that appear in the device's inquiry data but with special 
characters' (including space, comma, and any nonprinting graphic) replaced with an 
underscore. 

Device Generic 
SCSI Type Code Type Type 

DIRECT_ACCESS_DEVICE (0) Disk GenDisk 

SEQUENTIAL_ACCESS_DEVICE (1) Sequential 

PRINTER_DEVICE (2) Printer GenPrinter 

PROCESSOR_DEVICE (3) Processor 

WRITE_ONCE_READ_MULTIPLE_DEVICE (4) Worm GenWorm 

READ_ONLY _DIRECT_ACCESS_DEVICE (5) CciRom GenCdRom 

SCANNER_DEVICE (6) Scanner GenScanner 

OPTICAL_DEVICE (7) Optical GenOptical 

MEDIUM_CHANGER (8) Changer ScsiChanger 

COMMUNICATION_DEVICE (9) , Net ScsiNet 

Other ScsiOther 

Table 12-4. Type names/or SCSI devices. 

For example, a disk drive on one of my workstations has this identifier: 

SCSI\OiskSEAGATE_ST39102LW 0004 
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The bus driver also creates these additional identifiers: 

SCSI\ttttvvvvvvvvpppppppppppppppp 
SCSI\ttttvvvvvvvv 
SCSI \ vvvvvvvvppppppppppppppppr 
vvvvvvvvppppppppppppppppr 
gggg 

In the third and fourth of these additional identifiers, r represents just the first char
acter of the revision identifier. In the last identifier, gggg is the generic type code from 
Table 12-4. 

To carry forward the example of my disk drive, the bus driver generated these 
additional device identifiers: 

ScSI\Oi skSEAGATLST39102LW __ _ 
ScSI\OiskSEAGATE_ 
ScSI\OiskSEAGATE_ST39102LW 0 
SEAGATE_ST39102LW 0 
GenOisk 

The last of these (GenDisk) is the one that appeared as the device identifier in the 
INF file that the PnP Manager actually used to install a driver for this disk. In fact, 
the generic identifier is usually the one that's in the INF file because SCSI drivers tend 
to be generic. 

IDE Devices 
IDE devices receive device identifiers that are very similar to SCSI identifiers: 

IOE\ttttvpvprrrrrrrr 
IOE\vpvprrrrrrrr 
IOE\ ttttvpvp 
vpvprrrrrrrr 
gggg 

Here, tttt is a device type name (same as SCSI); vpvp is a string containing the ven
dor name, an underscore, the vendor's product name, and enough underscores to 
bring the total to 40 characters; Huun is an 8-character revision number; and gggg 
is a generic type name (almost the same as SCSI type names in Table 12-4). For IDE 
changer devices, the generic type name is GenChanger instead of ScsiChanger; 
other IDE generic names are the same as SCSI. 

For example, here are the device identifiers generated for an IDE hard drive on 
one of my desktop systems: 

IOE\Oi skMaxtor _9100008, ___________ SASX1B18 
IOE\Maxtor_9100008 SASX1B18 
I OE\Oi skMaxtor _9100008, __________ _ 
Maxtor _9100008, __________ SASX1B18 
GenOisk 
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ISAPNP Devices 
The ISAPNP enumerator constructs two hardware identifiers: 

ISAPNP\fd 
*a1tfd 

where id and altid are EISA-style identifiers for the device-three letters to identify 
the manufacturer and 4 hexadecimal digits to identify the particular device. If the 
device in question is one function of a multifunction card, the first identifier in the 
list takes this form: 

ISAPNP\id_DEVnnnn 

where nnnn is the decimal index (with leading zeros) of the function. 
For example, the codec function of the Crystal Semiconductor audio card on 

one of my desktop machines has these two hardware identifiers: 

ISAPNP\CSC6835_DEV0000 
*CSC0000 

The second of these identifiers is the one that matched the actual INF file. 

USB Devices 
The complete device identifier ~ 

USB\VID_vvvv&PID~dddd&REV_rrrr 

where vvvv is the 4-digit hexadecimal vendor code assigned by the USB committee 
to the vendor, dddd is the 4-digit hexadecimal. product code assigned to the device 
by the vendor, and rrrr is the revision code. All three of these values appear in the 
device descriptor or interface descriptor for the device. 

An INF model section can also specify these alternatives: 

USB\VID_vvvv&PID_dddd 
. USB \CLASLcc&SUBCLASLss&PROT _pp 
USB\CLASS_cc&SUBCLASS_ss 
USB\CLASS_cc 
USB \COMPOS ITE 

where cc is the class code from the device or interface deSCriptor, ss is the subclass 
code, and pp is the protocol code. These values are in 2-digit hexadecimal format. 

1394 Devices 
The 1394 bus driver constructs these identifiers for a device: 

1394\VendorName&Mode1Name 
1394\UnitSpecld&UnitSwVersfon 
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where VendorName is the name of the hardware vendor,ModelName identifies 
the device, UnitSpecId identifies the software specification authority, and UnitSw
Version identifies the software specification. The information used to construct these 
identifiers comes from the device's configuration ROM. 

If a device has vendor and model name strings, the 1394 bus driver uses the 
first identifier as the hardware ID and the second identifier as the one and only com
patible ID. If a device lacks a vendor or model name string, the bus driver uses the 
second identifier as the hardware ID. 

Since I don't have a 1394 bus on any of my computers, I relied on fellow driver 
writer Jeff Kellam to provide me with two examples. The first example is for a Sony 
camera, for which the device identifier is 

1394\SONY&CCM-DS250_1.08 

The second example is for the 1394 bus itself operating in diagnostic mode; this 
device identifier is 

1394\031887&040892 

Identifiers for Generic Devices 
The PnP Manager also works with device identifiers for generic devices that can 
appear on many different buses. These identifiers are of the form 

*PNPdddd 

where dddd is a 4-digit hexadecimal type identifier. At press time, the official list of 
these identifiers was at http://www.microsoft.comlhwdev/downloadlrespecldevids.txt. 

The Hardware Registry Key 
The hardware registry key records information about a particular hardware instance 
your driver manages. Each enumerator of devices has its own registry key below 
HKEY _LOCAL_MACHINE\System \ CurrentControISet\Enum. When the enumerator 
fmds a device with a particular identifier, it creates a key for the identifier and a subkey 
for each instance of the same device. For example, the PKTDMA device has the 
identifier PCI\ VEN_10E8&DEV _ 4750. The first instance of this device in your system 
might have a hardware key named like this: 

\Registry\Machine\System\CurrentControlSet\Enum\ 
PCI\VEN_10E8&OEL4750\BUS_00&OEL04&FUNC00 

Standard Properties 
The PnP Manager stores certain standard information about the device in the hard
ware key. You can retrieve this information in a WDM driver by calling IoGetDevice
Property with one of the property codes listed in Table 12-5. 
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Property Name Value Name 

DevicePropertyDeviceDescription DeviceDesc 

DevicePropertyHardwareId HardwareID 

DevicePropertyCompatibleIDs CompatibleIDs 

DevicePropertyClassName Class 

DevicePropertyClassGuid ClassGUID 

DevicePropertyDriverKeyName Driver 

DevicePropertyManufacturer Mfg 

DevicePropertyFriendlyName FriendlyName 

Source Description 

First parameter in Description of device 
model statement 

Third parameter Identifies device 
in model statement 

Created by bus Device types that can 
driver during be considered to 
detection match 

Class parameter Name of device class 
in Version section 
ofINF 

ClassGuid para- Unique identifier of 
meter in Version device class 
section of INF 

Created automati- Name of service 
cally as part of in- (software) key that 
stallation process specifies driver 

Manufacturer in Name of hardware 
whose model manufacturer 
section device 
was found 

Explicit AddReg "Friendly" name suit-
in INF file, or able for presentation 
class installer to the user 

Table 12-5. Standard device properties in the hardware key. 
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For example, to retrieve the description of a device, use the following code. (See 
the AddDevice function in the DEVPROP sample.) 

WCHAR name[256]; 
ULONG junk; 
status = IoGetDeviceProperty(pdo. 

DevicePropertyDeviceDescription. sizeof(name). name. &junk); 
KdPrint«DRIVERNAME 

" - AddDevi ce has succeeded for • %ws' devi ce\n". name»; 

Notice from Table 12-5 that the PnP Manager and bus driver together manage 
to create all of the standard device properties automatically except for the friendly 
name. You can supply a friendly name by an explicit statement in your INF me if 
you want: 
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[Driverlnstall.NT.hw] 
AddReg=DriverHwAddReg 

[DriverHwAddReg] 
HKR •• FriendlyName •• "Packet DMA Demonstration Device" 

Mind you, every device of this particular type that is installed on a particular machine 
will end up with the same friendly name if you adopt this approach. The end user 
will obviously be confused if more than one device has the same friendly name. If 
you anticipate that there might be duplicate friendly names, you should provide a 
co-installer DLL to compute unique names. 

User-mode applications can retrieve the standard device properties with 
SetupDiGetDeviceRegistryProperty. Use the following method within the context 
of an enumeration of registered interfaces using the setup APIs: 

HDEVINFO info = SetupDiGetClassDevs( ... ); 
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}; 
SetupDiGetDevicelnterfaceDetail(info •...• &did); 
TCHAR fname[256]: ' 
SetupDiGetDeviceRegistryProperty(info. &did. 

SPDRP_FRIENDLYNAME. NULL. (PBYTE) fname. 
sizeof(fname). NULL); 

Refer to the DDK documentation of SetupDiGetDeviceRegistryProperty for a list 
of the SPDRP _XXX values you can specify to retrieve the various properties. 

As you can see, you must supply a device information set handle (an HDEVINFO) 
and an, SP _DEVINFO _DATA structure as arguments to SetupDiGetDeviceRegistry
Property. That's easy to do if you're in the middle of a loop enumerating instances 
of a device interface. But suppose all you have is the symbolic name of the device? 
You can use the follOwing trick, which I found to be pretty obscure when one of the 
Microsoft developers showed it to me, to construct these two crucial parameters: 

LPCTSTR devname; II ~ someone gives you this 
HDEVINFO info = SetupDiCreateDevicelnfoList(NULL. NULl); 
SP_DEVICE_INTERFACE_DATA ifdata = {sizeof(SP_DEVICE_INTERFACE_DATA)}; 
SetupDiOpenDevicelnterface(info. devname. 0. &ifdata); 
SP_DEVINFO_DATA did = {sizeof(SP_DEVINFO_DATA)}; 
SetupDiGetDevicelnterfaceDetail(info. &ifdata. NULL. 0. NULL. &did); 

You can go on to call routines such as SetupDiGetDeviceRegistryProperty in the nor
mal way at this point. 
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NOTE In Windows 98 and Windows NT version 4, application programs used 
the CFGMGR32 set of APls to obtain information about devices and to interact 
with the PnP Manager. These APls continue to be supported for purposes of com
patibility in Windows 98 and Windows 2000, but Microsoft discourages their use 
in new code. For that reason, I'm not even showing you examples of calling them. 
You might be tempted-as I initially was-to use them because they seem to 
be better documented. If you know where to look for the documentation, that is. 
Have patience: Microsoft will get around to documenting the SetupDiXxx func
tions in enough detail for us mortals to use them effectively. 

Nonstandard Properties 
The PnP Manager creates a subkey of the hardware key named Device Parameters. 
This subkey contains nonstandard properties of the device. You can initialize ,non
standard properties in a hardware add registry section in your INF: 

[DriverInstall.nt.hw] 
AddReg=DriverHwAddReg 

[DriverHwAddReg] 
~KR •• SampleInfo •• "%wdmbook%\chap7\pktdma\pktdma.htm" 

WDM drivers can easily open a handle to the device parameter key by calling 
IoOpenDeviceRegistryKey. Applications can access the key by using SetupDi
OpenDevRegKey. 

Tools for INF Files 
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If you look in the TOOLS subdirectory of the Windows 2000 DDK, you'll find two 
useful utilities for working with INF files, GENINF will help you build a new INF file, 
and CHKINF will help you validate an INF file. At the time I'm writing this, I'm us
ing the RCI release of the DDK, in which GENINF is still pretty rudimentary. By the 
time you read this, GENINF will either have grown to a robust tool with a completely 
different user interface than it now has, or else it will have been dropped from the 
kit. Either way, I can't give you any useful information about how to use it. 

CHKINF is actually a BAT file that runs a PERL script to examine and validate 
an INF file. You'll obviously need a PERL implementation to use this tool. I got a copy 
from bttp;//www.perl.com. 

You can run CHKINF most easily from a command prompt. For example: 

E:\Ntddk\tools\chkinf>chkinf C:\wdmbook\chap12\devprop\sys\device.inf 

CHKINF generates HTML output files in an HTM subdirectory. Figure 12-4 shows the 
output I received when checking DEVICE.lNF for DEVPROP sample. 
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Summary of "c:\wdmbook\chap12 
\devprop\sys\device.inf" 
Total Wamincs: 2 
Total Errors: 5 

• Line I: (W2073) No Copyrightinfonnation found 
• ~: (W2019) Clas, SAMPLE (Cl.ssGUID (894A7460-A033-11D2-821E-444553540000)) ~ unrecognized. 

Errors: 

• Line 1: (El080) Directive: DriverVer required in section [Version] 
• Line 1: (E10B1) Directive: CatalogFile required in section [Version] 
• Line 13: (EI083) Section [SOURCEDISKFlLES] not referenced 
• Line 16 (EIOS3) Section [SOURCEDlSKNAMES] not referenced 
• Line 74: (£1056) Section [SourceDisksNames J not found. Microsoftmternal mrs using the LayoutFile directive can ignore 
(EI056) 

Figure 12-4. Example of CHKINF output. 

In Windows 2000, the device installer logs various information about the opera
tions it performs in a disk me named SETUPAPLLOG in the Windows NT directory. You 
can control the verboSity of the log and the name of the log file by manually changing 
entries in the registry key named HKEY _LOCAL_MACHINE\Software \Microsoft\ 
Windows \ CurrentVersion \Setup. Please consult the DDK documentation for detailed 
information about these settings. 

DEFINING A DEVICE CLASS 
Let's suppose you have a device that doesn't fit into one of the device classes Microsoft 
has already defined. When you're initially testing your device and your driver, you 
can get away with using the Unknown class in your INF me. Production devices are 
not supposed to be in the Unknown class, however. You should instead place your 
custom device into a new device class that you define in the INF file. I'll explain how 
to create a custom class in this section. 

The INF example I showed you earlier relied on a custom device class: 

[Version] 
Signature=$CHICAGO$ 
Class=Sample 
ClassGuid={894A7460-A033-11d2-821E-444553540000} 

In fact, all of the samples in this book use the Sample class. 
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When you want to define a new class of device, you only need to do one task: 
run GUIDGEN to create a unique GUID for the class. You can add polish to the user 
interface for your device class by doing some additional tasks, such as writing a 
property page provider for use with the Device Manager and putting some special 
entries into the registry key your class uses. You can also provide filter drivers and 
parameter overrides that will be used for every device of your class. You control each 
of these additional features by statements in your INF file. For example: 

[Classlnstal132] 
AddReg=SamclassAddReg 
CopyFiles=SamclassCopyFiles 

[SamclassAddReg] 
HKR •••• "WDM Book Sample" 

[SamclassCopyFiles] 

The illustrated registry entry turns into the "friendly name" for the device class 
in the Device Manager and in the list of device types displayed by the add hardware 
wizard. I'll explain some of the additional registry entries you might want to add to 
the class key in the following sections. 

NOTE None of my INF files has a Classlnstall32 section. None is needed be
cause the setup program for the sample disc puts the necessary class informa
tion directly into the registry. If you define your own device class as part of a 
production driver package, however, you will need this section. Note also that 
Microsoft discourages installing a new class without using an INF. 

A Property Page Provider 
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Way back in Chapter 1, "Introduction"-in Figure 1-6 on page 13, to be precise-I 
showed you a screen shot of the property page I invented for use with the Sample 
device class. The SAMCLASS sample on the companion disc is the source code for 
the property page provider that produced that page, and I'm now going to explain 
how it works. 

A property page provider for a device class is a 32-bit DLL with the following 
contents: 

• An exported entry point for each class for which the DLL supplies prop
erty pages 

• Dialog resources for each property page 

• A dialog procedure for each property page 
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In general, a single DLL can provide property pages for several device classes. 
Microsoft supplies some DLLs with the operating system that do this, for example. 
SAMCLASS, however, provides only a single page for a single class of device. Its only 
exported entry point is the following function: 

extern "C" BOOl CAllBACK EnumPropPages 
(PSP_PROPSHEETPAGE_REQUEST p. 
lPFNADDPROPSHEETPAGE AddPage. lPARAM lParam) 
{ 

PROPSHEETPAGE page; 
HPROPSHEETPAGE hpage; 
memset(&page. 0. sizeof(page»; 
page.dwSize = sizeof(PROPSHEETPAGE); 
page.hlnstance = hlnst; 
page. pszTempl ate = MAKEINTRESOURCE(IDD_SAMPAGE); 
page.pfnDlgProc = PageDlgProc; 
<some more stuff> 
hpage = CreatePropertySheetPage(&page); 
if (!hpage) 

return TRUE; 
if (!(*AddPage)(hpage. lParam» 

DestroyPropertySheetPage(hpage); 
return TRUE; 
} 

When the Device Manager is about to construct the property sheet for a device, 
it consults the class registry key to see if there's a property page provider. You can 
designate a provider with a line like the following in your INF file: 

[SamclassAddReg] 
HKR •• EnumPropPages32 •• "samclass.dll.EnumPropPages" 

The Device Manager loads the DLL you specify (SAMCLASS.DLL) and calls the 
deSignated entry point (EnumPropPages). If the function returns TRUE, the Device 
Manager will display the property page; otherwise, it won't. The function can add zero 
or more pages by calling the AddPage function as shown in the preceding example. 

Inside the SP _PROPSHEETPAGE_REQUEST structure your enumeration function 
rec~ives as an argument, you'll fmd two very useful pieces of information: a handle 
to a device information set, and the address of an SP _DEVINFO_DATA structure that 
pertains to the device you're concerned with. These data items (but not, unfortunately, 
the SP ]ROPSHEETPAGE_REQUEST structure that contains them) remain valid for 
as long as the property page is visible, and it wbuld be useful for you to be able 
to access them inside the dialog procedure you write for your property page. 
Windows SDK Programming 101 (well, maybe 102, because this is a little obscure) 
taught you how to do this. First create an auxiliary structure whose address you 
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pass to CreatePropertySheetPage as the IParam member of the PROPSHEETPAGE 
structure: 

struct SETUPSTUFF { 
HDEVINFO info: 
PSP_DEVINFO_DATA did: 
} : 

BOOl EnumPropPages( ... ) 
{ 

PROPSHEETPAGE page: 

SETUPSTUFF* stuff = new SETUPSTUFF: 
stuff->info = p->DevicelnfoSet: 
stuff->did = p->DevicelnfoData: 
page.1Param = (LPARAM) stuff: 

page.pfnCallback = PageCallbackProc: 
page.dwFlags = PSP_USECALLBACK: 

} 

UINT CALLBACK PageCallbackProc(HWND junk. UINT msg. LPPROPSHEETPAGE p) 
{ 

if (msg == PSPCB_RELEASE && p->lParam) 
delete (SETUPSTUFF*) p->lParam: 

return TRUE: 
} 

The WM_INITDIALOG message that Windows sends to your dialog procedure 
gets an IParam value that's a pointer to the same PROPSHEETPAGE structure, so 
you can retrieve the stuff pointer there. You can then use SetWindowLong and 
GetWindowLong to save any desired information in the DWL_USER slot associated 
with the dialog object. In SAMCLASS, I chose to determine the name of a readme file 
that would describe the sample driver. I'll show you the code for doing that in a couple 
of paragraphs. 

You also need to provide a way to delete the SETUPSTUFF structure when it's 
no longer needed. The easiest way, which works whether or not you ever get a 
WM_INITDIALOG message-you won't if there's an error constructing your prop
erty page-is to use a property page callback function as shown in the preceding 
fragment. 

You can do all sorts of things in a custom property page. For the sample class, 
I wanted to provide a button that would bring up an explanation for each sample 
device. To keep things as general as possible, I decided to put a SampleInfo value 
naming the explanation file in the device's hardware registry key. To invoke a viewer 
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for the explanation file, it suffices to call ShelJExecute, which will interpret the file 
extension and locate an appropriate viewer application. For my book samples, the 
explanation files are HTML files, so the viewer in question will be your Web browser. 

Most of the work in SAMCLASS occurs in the WM_INITDIALOG handler. (Er
ror checking is again omitted.) 

case WM_INITDIALOG: 
{ 

SETUPSTUFF* stuff = (SETUPSTUFF*) «LPPROPSHEETPAGE) lParam)->lParam; 
BOOL okay = FALSE; 
TCHAR name[256]; 
SetupDiGetDeviceRegistryProperty(stuff->info, stuff->did, 

SPDRP_FRIENDLYNAME, NULL, (PBYTE) name, sizeof(name), NULL); 
SetDlgItemText(hdlg, IDC~SAMNAME, name); 

HKEY hkey = SetupD10penDevRegKey(stuff->info, stuff->d1d, 
DICS_FLAG_GLOBAL, 0, DIREG_DEV, KEY_READ); 

DWORD length = sizeof(name); 
RegQueryValueEx(hkey, "SampleInfo", NULL, NULL, 

(LPBYTE) name, &length); 
LPSTR infofile; 
DoEnvironmentSubst(name, sizeof(name»; 
infofile = (LPSTR) GlobalAlloc(GMEM_FIXED, strlen(name)+l): 
strcpy(infofile, name); 
SetWindowLong(hdlg, DWLUSER, (LONG) infoflle); 
RegCloseKey(hkey); 
break; 
} 

1. Here, we determine the FriendlyName f0r the device and put it into a 
static text control. The actual code sample receives the device description 
if there's no friendly name. 

2. The next few statements determine the SampleIttfo filename from the 
hardware key's parameter subkey. 

3. The strings I put in the registry are of the form %wdmbookOAl\chap12\ 
devprop\devprop.htm, in which %wdmbook% indicates substitution 
by the value of the WDMBOOK environment variable. The call to Do
EnvironmentSubst, a standardWin32 API, expands the environment 
variable. 

4. I need to remember the name of the Samplelnfo file somewhere, and 
SetWindowLong provides a convenient way to do that. 

When the end user-that would be you in this particular situation, I think
presses the More Information button on the property page, the dialog procedure 
receives a WM_COMMAND message, which it processes as on the next page. 
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case WM_COMMANO: 
switch (LOWORO(wParam» 

{ 

case IDB_MOREINFO: 
{ 

LPSTR infofile = (LPSTR) GetWindowLong(hdlg, OWL-USER); 
ShellExecute(hdlg, NULL, infofile, NULL, NULL, SW_SHOWNORMAL); 
return TRUE; 
} 

} 

break; 

ShellExecute will launch the application associated with the Samplelnfo file
namely, your Web browser-whereupon you can view the file and fmd all sorts of 
interesting information. 

Other Class-Specific Information 
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In the preceding section, I showed you how an EnumPropPages32 registry entry 
controls the display of property pages for devices belonging to your custom class. 
Here are some other registry entries that you can use to tailor features of the class: 

• Installer32 designates a DLL that performs installation functions for 
devices belonging to the class. Writing a class installer is a huge under
taking, not least because the DDK documentation hasn't caught up to 
the software in this area. I didn't attempt to write a class installer for the 
Sample class. 

• Class is the class name as it should be spelled in INF file Class- state
ments. 

• Icon designates an icon to use in user interface displays about the class. 
This value is a string containing a decimal integer. A positive value des
ignates an icon in the Installer32 DLL; documentation says that the sys
tem will find the icon in your EnumPropPages32 DLL if you don't have 
a class installer, but I didn't fmd that to be the case. A negative number 
designates an icon (whose index is the absolute value) in SETIJPAPI.DLL. 
If you don't specify an icon, the system uses a nondescript gray diamond. 
I decided to use the value -5 for the Sample class, which designates an 
icon that looks vaguely like a PCI card. In fact, the system uses the same 
icon for network cards, but I liked this choice better than the others. 

• NoInstallClass, if present and not equal to 0, indicates that some enu
merator will automatically detect any device belonging to this class. If the 
class has this attribute, the hardware wizard won't include this class in the 
list of device classes it presents to the end user. 



Chapter 12 Installing Device Drivers 

• SllentInstall, if present and not equal to 0, causes the PnP manager to 
install devices of this class without presenting any dialogs to the end user. 

• UpperFllters and LowerFllters specify service names for ftlter drivers; 
lhe PnP Manager loads these ftlters for every device belonging to the class. 
(You specify filter drivers that apply to just one device in the device's 
hardware key.) 

• NoDisplayClass, if present and not equal to 0, suppresses devices of this 
class from the Device Manager display. 

A class key may also specify DeviceCharacteristics, DeviceType, and/or 
Security properties that contain overriding values for certain device attributes. I dis
cussed these values in Chapter 2, "Basic Structure of a WDM Driver," in the section 
"lhe Role of the Registry." The PnP Manager applies these overrides when it creates 
a physical device object (PDO). I'm guessing here, but I suspect that someday a system 
administrator will somehow be able to examine and change these properties. 

LAUNCHING AN APPLICATION 
You can enhance the end user experience of your hardware by providing an appli
cation that starts whenever one of your devices exists. Microsoft provides a special
purpose mechanism for still-image cameras but hasn't provided a general-purpose 
mechanism that other devices can use. I'll describe just such a mechanism, named 
AutoLaunch, in this section. 

The AutoLaunch Service 
Windows 98 and Windows 2000 both provide for notifications to applications when 
hardware events occur. Microsoft Windows 95 introduced the WM_DEVICECHANGE 
message. As originally conceived for Windows 95, the system broadcasts this mes
sage in user mode to all top-level windows for each of several possible device events. 

Building on WM_DEVICECHANGE, Windows 2000 generates notifications to 
interested service applications whenever a device driver enables or disables a regis
tered device interface. I wrote an AutoLaunch service to take advantage of these· 
notifications. The service subscribes for notifications about a special interface GUID 
by calling a new user-mode API named RegisterDeviceNotiflcation: 

#include <dbt.h> 

DEV_BROADCAST_DEVICEINTERFACE filter = {0}; 
fi lter. dbccs i ze =s i zeof( fi lter) ; 
fil ter .dbccdevi cetype = DBLDEVTYP _DEVICEINTERFACE; 
filter.dbcc_classguid = GUID_AUTOLAUNCH_NOTIFY; 

(continued) 
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HDEVNOTIFY hNotification = RegisterDeviceNotification(hService, 
(PVOID) &filter, DEVICE_NOTIFY_SERVICE_HANDLE); 

To receive the interface notifications, the service must initialize by calling 
RegisterServiceCtrffiandlerEx instead of RegisterServlceCtrffiandler in its 
ServiceMain function: 

hService = RegisterServiceCtrlHandlerEx«svcname>, 
HandlerEx, (context»; 

When you call RegisterServiceCtrlHandlerEx, you specify a HandierEx event 
handler function that receives three more parameters than a standard service Han
dler function: 

DWORD __ stdcall HandlerEx(DWORD ctlcode, DWORD evtype, 
PYOID evdata, PYOID context) 
{ 

} 

In the situation we're concerned with here, ctlcode will equal SERVICE_CONTROL_ 
DEVICEEVENT, evtype will equal DBT_DEVICEARRIVAL, and evdata will be the 
address of a device interface broadcast structure. The context parameter will be 
whatever value you specified as the third argument to RegisterServiceCtrlHandlerEx. 

The device interface broadcast structure looks like this: 

struct _DEV_BROADCAST_DEVICEINTERFACE_W { 
DWORD dbcc_size; 
DWORD dbcc_devicetype; 
DWORD dbcc_reserved; 
GUID dbcc_classguid; 
WCHAR dbcc_name[l]; 
} ; 

The dbcc_devicetype value will be DBT_DEVfYP _DEVICEINTERFACE. The dbcc_ 
classguid will be the 128-bit interface GUID that some device driver enabled or 
disabled, and the dbcc_name will be the symbolic link name you can use to open 
a handle to the device. This particular structure comes in both ANSI and Unicode 
versions. The service notification always uses the Unicode version, even if your ser
vice happens to have been built, as AutoLaunch is, using ANSI. 

Triggering AutoLaunch 
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To trigger a device interface arrival notification to AutoLaunch, a driver simply has 
to register and enable an interface by using the AutoLaunch GUID: 

typedef struct _DEVICE_EXTENSION { 

UNICODE_STRING AutoLaunchInterfaceName; 
} DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
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NTSTATUS AddDevice( ... ) 
{ 

IoRegisterDevicelnterface(pdo. &GUID_AUTOLAUNCH_NOTIFY. 
NULL. &pdx->AutoLaunchlnterfaceName); 

} 

NTSTATUS StartDevi ce( PDEVICE_OBJECT fdo •... ) 
{ 

IoSetDevicelnterfaceState(&pdx->AutoLaunchlnterfaceName. TRUE); 

} 

I discussed device interfaces in Chapter 2 as a method of giving a name to a 
device so that an application could find the device and open a handle to it. A single 
device can register as many interfaces as make sense. In this particular situation, you 
would register an AutoLaunch interface in addition to any interfaces that you might 
support. The only purpose of the AutoLaunch interface is to generate the notifica
tion for which the service is waiting. 

When your driver enables its GUID_AUTOLAUNCH_NOTIFY interface, the 
system sends the AutoLaunch service a device arrival notification, which the service 
processes in this function: 

DWORD CAutoLaunch::HandleDeviceChange(DWORD evtype. 
_DEV_BROADCAST_HEADER* dbhdr) 
{ 

if (ldbhdr 
I I evtype l= DBT_DEVICEARRIVAL 
I I dbhdr->dbcd_devicetype l= DBT_DEVTYP_DEVICEINTERFACE) 
return 0; 

PDEV_BROADCAST_DEVICEINTERFACE_W p = 
(PDEV_BROADCAST_DEVICEINTERFACE_W) dbhdr; 

CString devname = p->dbcc_name; 
HDEVINFO info = SetupDiCreateDevicelnfoList(NULL. NULL); 
SP_DEVICE_INTERFACE_DATA ifdata = 

{sizeof(SP_DEVICE_INTERFACE_DATA)}; 
SP_DEVINFO_DATA devdata = {sizeof(SP_DEVINFO_DATA)}; 
SetupDiOpenDevicelnterfaceCinfo. devname. 0. &ifdata); 
SetupDiGetDevicelnterfaceDetail(info. &ifdata. NULL. 0. NULL. 

&devdata); 
OnNewDevice(devname. info. &devdata); 
SetupDiDestroyDevicelnfoList(info); 
return 0; 
} 

583 



Programming the Microsoft Windows Driver Model 

584 

1. There are other notifications besides the ones we're interested in. Some 
of them are queries. Returning 0 is how we indicate success or acqui
escence to some query we don't specifically process. In fact, the real 
AUfOLAUNCH sample on the disc handles the DBT_DEVICEREMOVE
COMPLETE notification too so that it can keep track of which arrival 
notifications it's already processed and avoid duplication during system 
startup. I left that detail out here to avoid clutter. 

2. I built the AutoLaunch sample without UNICODE. This statement there
fore converts the UNICODE linkname'in the notification structure to ANSI. 

My OnNewDevice function is going to spawn a new process to perform what
ever command line it finds in the registry. It was most convenient to use the device's 
hardware key as a repository for the command line. The code to do this is as follows: 

void CAutoLaunch::OnNewDevice(const CString& devname, 
HDEVINFO info, PSP_DEVINFO_DATA devdata) 
{ 

HKEY hkey = SetupDiOpenDevRegKey(info, devdata, DICS_FLA~GLOBAL, 
0, DIREG_DEV, KEY_READ); 

DWORD junk; 
TCHAR buffer[-MAX_PATH]; 
DWORD size = sizeof(buffer); 
CString Command; 
RegOueryValueEx(hkey, "AutoLaunch", NULL, &junk, 

(LPBYTE) buffer, &size); 
Command = buffer; 

CString FriendlyName; 
SetupDiGetDeviceRegistryProperty(info, devdata, 

SPDRP_FRIENDLYNAME, NULL, (PBYTE) buffer, sizeof(buffer), NULL); 
Fri endl yName. FormatCT("\ "%5\""), buffer); 

RegCloseKey(hkey); 

ExpandEnvironmentStrings(Command, buffer, arraysize(buffer»; 
CString name; 
name. FormatCT("\ "%5 \""), (LPCTSTR) devname); 
Command.Format(buffer, (LPCTSTR) name, (LPCTSTR) FriendlyName); 

STARTUPINFO si = {sizeof(STARTUPINFO)}; 
si.lpDesktop = "WinSta0\\Default"; 
si.wShowWindow = SW_SHOW; 
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PROCESS_INFORMATION pi; 
CreateProcess(NULL, (LPTSTR) (LPCTSTR) Command, NULL, NULL, 

FALSE, 0, NULL, NULL, &si, &pi); 
CloseHandle(pi.hProcess); 
CloseHandle(pi.hThread); 
} 

1. This statement opens the Device Parameters subkey of the device's hard
ware registry key. 

2. The INF file put an AutoLaunch value in the registry. We read that value 
here. 

3. Here we fetch the FriendlyName of the device for use as a command line 
argument. There might be blanks in the name, so we want to put quotes 
around it before submitting the command. 

4. I wanted to allow the command line template in the registry to ioclude 
environment variables surrounded by % characters. This statement ex
pands the environment strings. 

5. I also wanted the command line template to use a %s escape to indicate 
where the device name and friendly name belong. This statement produces 
a command line with the substitution taken care of. 

6. We're about to call CreateProcess to execute the command. Unless we're 
careful, the command will use the same hidden desktop as our own ser
vice process, which is not going to be very useful to the end user! So we 
create a STARTUPINFO structure that specifies the interactive session 
desktop. 

7. Here's where we actually launch the application whose name we found 
in the registry. CreateProcess returns right away; the application lives ort 
until someone closes it. 

8. CreateProcess also gives us handles to the process and its initial thread. 
We need to close those handles, or else the process and thread will never 
go away. 

Chickens and Eggs 

The process I just described works great in a steady-state situation, where the 
. AutoLaunch service is already up and running on a computer when a device comes 
along and tries to launch a special application. Two other situations need to be dealt 
with, though. . 

First, devices that are already plugged in when the system is bootstrapped will 
manage to register their GUID_AUTOLAUNCH_NOTIFY interfaces before the service 
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manager starts up the AutoLaunch service. Yet, you still (presumably) want the 
AutoLaunch applications to start too. 

AutoLaunch deals with this startup issue by enumerating all instances of the 
interface when it first starts: 

VOID CAutoLaunch::EnumerateExist1ngDev1ces(const GUID* guid) 
{ 

HDEVINFO info = SetupDiGetClassDevs(guid, NULL, NULL, 
DIGCF_PRESENT I DIGCF_INTERFACEDEVICE); 

SP_INTERFACE_DEVICE_DATA ifdata; 
ifdata.cbSize = sizeof(ifdata); 
DWORD devindex; 
for (devindex = 0; 

} 

SetupDiEnumDeviceInterfaces(info, NULL, guid, devindex, &ifdata); 
++devindex) 
{ 

DWORD needed; 
SetupDiGetDeviceInterfaceDetail(info, &ifdata, NULL, 0, 

&needed, NULL); 
PSP_INTERFACE_DEVICE_DETAIl-DATA detail = 

(PSP_INTERFACE_DEVICE-DETAIl-DATA) malloc(needed); 
detail-)cbSize = sizeof(SP_INTERFACE_DEVICE-DETAIl-DATA); 
SP_DEVINFO_DATA devdata = {sizeof(SP_DEVINFO_DATA)}; 
SetupDiGetDevicelnterfaceDetail(info, &ifdata, detail, 

needed, NULL, &devdata): 
CString devname = detail-)DevicePath: 
free((PVOID) detail); 
OnNewDevice(devname, guid); 
} 

The only interesting lines of code in this whole function are the ones in bold face, 
where we obtain the necessary SP _DEVINFO_DATA structure and symbolic link name. 
We then call OnNewDevice (the function you've already seen) to deal with this pre
existing device. 

Getting the Service Running 
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The second startup situation you have to deal with is when your device is being 
installed for the first time onto a machine that's never seen the AutoLaunch service 
before. Your INF file needs to defme the AutoLaunch service and copy the service 
binary file onto the end user computer. It can add a registry entry to the so-called 
RunOnce key to trigger the service. For example: 

[DestinationDirs] 
AutoLaunchCopyFiles=10 
[etc.] 
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[Driverlnstall.NT] 
CopyFiles=DriverCopyFiles.AutoLaunchCopyFiles 
AddReg=DriverAddReg.NT 

[DriverAddReg.NT] 
HKLM.%RUNONCEKEYNAME%.AutoLaunchStart •• \ 

"rundl132 StartService.StartService AutoLaunch" 

[DriverInstall.NT.Services] 
AddService=AutoLaunch •• AutoLaunchService 
[etc.] 

[AutoLaunchCopyFiles] 
AutoLaunch.exe ••• 0x60 
StartService.exe ••• 0x60 

[AutoLaunchService] 
ServiceType=16 
StartType=2 
DisplayName="AutoLaunch Service" 
ErrorControl=l 
ServiceBinary=%10%\AutoLaunch.exe 

[Strings] 
RUNONCEKEYNAME="Software\Microsoft\Windows\CurrentVersion\RunOnce" 

Refer to the DEVICE.INF in the SYS subdirectory of the AUTOLAUNCH sample for 
the full picture. 

After the installation of your device finishes, the system executes any commands 
that are within the RunOnce registry key. The command we put there starts the 
Autotaunch service if it's not already running. Note that STARTSERVICE.DLL is a tiny 
DLL I wrote that starts a service without displaying any user interface or popping up 
a dialog box. You'll want to use RUNDLL32 as the command verb in the RunOnce 
value so that it will work correctly with a remote install of your driver package. 

Non: Microsoft Knowledge Base article Q173039 suggests that the immedi
ate-processing behavior of entries in the RunOnce key is essentially a side ef
fect of a call to RUNDLL32. One of the Microsoft developers responsible for the 
device installer has assured me that the RunOnce values are always processed 
at the conclusion of installing a new device, regardless of what this article says. 

WINDOWS 98 COMPATIBILITY NOTES 
Windows 98 uses completely different technology for installing and maintaining 
devices than Windows 2000. In this section, I'll describe some of the ways this might 
affect you. 
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Property Page Providers 
A property page provider for a new device class must be a 16-bit OLL. Look at 
SAMCLS16 on the companion disc if you want to see an example, and don't discard 
your 16-bit compiler just yet! 

Registry Usage 
Windows 98 uses a software registry key to locate device drivers. To initialize this 
key, your Windows 98 install section should have an AddReg directive similar to this 
example: 

[Driverlnstall] 
AddReg=DriverAddReg 
<other install directives> 

[DriverAddReg] 
HKR •• DevLoader •• *ntkern 
HKR •• NTMPDriver •• pktdma.sys 

That is, you designate NTKERN.VXD as the device loader for your device, and you 
designate your WDM driver as the NTMPDriver for which NTKERN looks. In addi
tion, you omit a .Services section because Windows 98 doesn't use it. 

In contrast to Windows 2000, Windows 98 puts standard and nonstandard device 
properties in the hardware key instead of separating the nonstandard properties 
into a Device Parameters subkey. This turns out to be lucky, since you can't use 
IoGetDeviceProperty to retrieve standard properties in Windows 98. (See the next 
section for the reason.) 

Getting Device Properties 
Windows 98 (including Windows 98 Second Edition) incorrectly implements IoGet
OeviceProperty for the standard properties in a device's hardware key. To retrieve 
these properties in a WDM driver, you should use IoOpenDeviceRegistryKey and 
interrogate the property by name. The OEVPROP sample illustrates how to do this 
for the standard device deSCription property. 

Application Launching 
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Windows 98 doesn't have a service manager, so you can't run AutoLaunch as a ser
vice. The next best thing is an executable named in the registry's Run keyword. Part 
of the AutoLaunch package is an ALNCH98.EXE applet that can be executed in this 
way. It proVides a tray icon that you can use if you want it to halt. 
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Coping with Windows 98 
Incompatibil ities 

I closed many of the chapters in this book with a series of Microsoft Windows 98 compatibil
ity notes. While Microsoft originally planned that you'd be able to ship a single driver binary 
file for both Windows 98 and Microsoft Windows 2000, the sad fact is that so lofty a goal might 
prove elusive in practice. Not surprisingly, Windows 2000 continued to evolve long after 
Windows 98 was up and running on millions of pes, and it supports several kernel-mode 
service functions that Windows 98 does not. If a WDM driver calls one of these functions, 
Windows 98 simply won't load the driver because it can't resolve the reference to the sym
bol. In this appendix, I'll describe a static virtual device driver eVxD)-the WDMSTUB sample 
on the companion disc-that resolves a few of these symbols. Once you have the ability to load 
a driver that calls functions that Windows 98 doesn't normally support, you might find that you 
need a way to determine at run time whether you're running under Windows 98 or 
Windows 2000; I'll also describe a heuristic that you can use to make this determination. 

DEFINING STUBS FOR KERNEL-MODE ROUTINES 
The stub technique used in WDMSTUB.VXD relies on the same basic trick that Microsoft crafted 
to port several hundred kernel-mode support functions from Microsoft Windows NT to 
Windows 98--that is, extending the symbol tables that the run-time loader uses when it re
solves import references. To extend the symbol tables, you first define three data tables that 
will persist in memory: 

• A name table that gives the names of the functions you're defining 

• An address table that gives the addresses of the functions 

• An ordinal table that correlates the name and address tables 
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Here are some of the table entries from WDMSTUB: 

static char* names[] = { 
"PoRegisterSystemState", 

" ExSystemTi meTolocalTi me" , 

} : 

static WORD ordinals[] { 
0, 

6, 

} : 

static PFN addresses[] = { 
(PFN) PoRegisterSystemState, 

(PFN) ExSystemTimeTolocalTime, 

} : 

The purpose of the ordinal table is to provide the index within addresses of the entry for 
a given names entry. That is, the function named by wunes[iJ is address[ordinals[i]]. 

If it weren't for a version compatibility problem I'll describe in a moment, you could 
call _PEIDR_AddExportTable as follows: 

HPEEXPORTTABlE hExportTable = 0: 

extern "C" BOOl OnDeviceInit(DWORD dwRefData) 
{ 

_PElDR-AddExportTable(&hExportTable, 
"ntoskrnl.exe", 
arraysize(addresses). II ~ don't do it this way! 
arraysize(names). 0. 
(PVOID*) names. 
ordinals. addresses. NUll): 

return TRUE: 
} 

The call to _PELDR_AddExportTable extends the table of symbols that the loader uses when 
it tries to resolve import references from NTOSKRNL.EXE, which is of course the Wmdows 2000 
kernel. NTKERN.VXD, the main support module for WDM drivers in Windows 98, initializes 
this table with the addresses of the several hundred functions it supports. WDMSTUB.VXD is 
a static VxD with an initialization order later than NTKERN and earlier than the Windows 98 
Configuration Manager. Consequently, WDMSTUB's export defmitions will be in place by the 
time the system loads any WDM drivers. In effect, then, WDMSTUB is an extension to NTKERN. 
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Version Compatibility 
The version compatibility problem to which I alluded earlier is this: Windows 98 supports a 
particular subset of the Windows 2000 functions used by WDM drivers. Windows 98, Sec
ond Edition, supports a larger subset. The next version of Windows, code-named Millen
nium, will support a still larger subset (maybe even a superset, given that it will be released 
after Windows 2000). You would not want your stub VxD to duplicate one of the functions 
that the OS supports. What WDMSTIlB actually does during initialization, therefore, is dynami-

, cally construct the tables that it passes to _PELDR_AddExportTable: 

HPEEXPORTTABlE hExportTable = 0; 

extern "e" BOOl OnDevicelnit(DWORD dwRefData) 
{ 

char**stubnames = (char**) _HeapA 11 ocate( si zeof(names), HEAPZEROINIT); 
PFN* stubaddresses = (PFN*) _HeapA11ocate(sizeof(addresses), 

HEAPZEROINIT); , 
WORD* ordinals = (WORD*) _HeapA11ocate(arraysize(names) * sizeof(WORD). 

HEAPZEROINIT) ; 
inti,istub; 
for (i = 0, istub = 0; i < arraysize(names); ++i) 

{ 

if (_PElDR-GetProcAddress«HPEMODULE) "ntoskrnl.exe", names[i]. NULL) 
= 9) 

} 

{ 

stubnames[istub] = names[i]; 
ordinals[istub] = istub; 
stubaddresses[istub] = addresses[i]; 
++istub; 
} 

_PElDUddExportTable(&hExportTable, "ntoskrnl.exe", istub, 
istub. 0, (PVOID*) stubnames, ordinals, stubaddresses. NUll); 

return TRUE; 
} 

The line appearing in bold face is the crucial step here-it makes sure that we don't inad
vertently replace a function that already exists in NTKERN or another system VxD. 

There's one annoying glitch in the version compatibility solution I just outlined. 
Windows 98, Second Edition, exports just three of the four support functions for managing 
the IO_REMOYE_LOCK object. The missing function is I~RemoveLockAndWaitEx, if you 
care. My WDMSTIlB.VXD driver compensates for this omission by stubbing either all or none 
of the remove lock functions based on whether or not this function is missing. 
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Stub Functions 
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The main purpose of WDMSTIJB.VXD is to resolve symbols that your driver might reference 
but not actually call. For some functions, such as PoRegisterSystemState, WDMSTUB.VXD 
simply contains a stub that will return an error indication if it is ever called: 

PYOID PoRegisterSystemState(PVOID hstate. ULONG flags) 
{ 

ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL): 
return NULL: 
} 

BUILDING WDMSTUB 

To get WDMSTIJB to build correctly, I needed to incorporate a couple of nonstandard 
features. Each stub function must use the __ stdcall calling convention, whereas VxDs 
normally use __ cdecl. 

I wanted to call KeGetCurrentIrql and maybe other WDM service functions 
from the stub VxD. A standard way to do this is to include WDM.H or NTDDK.H before 
all of the VxD header files and link with the WDMVXD.LIB import library. 
WDMVXD.LIB assumes that the functions you're trying to import are declared with the 
__ declspec(dllimport) directive, which is normally true when you include either 
WDM.H or NTDDK.H. This is because they're all declared using a preprocessor macro 
named NTKERNALAPI, which normally gets #defined as __ declspec(dllimport). Unfortu
nately, if you try to define a function that's marked as dllimport, the compiler assumes 
you meant to export the function. A VxD's first export must be the device description 
block (DDB) that defines the driver, though, and not some random exported stub func
tion. I guessed that specifying ordinal number 1 for the DDB in my module defmition 
file would force the DDB to be the first export, but I was mistaken. At the end of this 
rather sad story, I ended up with a VxD that wouldn't load. 

To get past all of these problems with import vs. export declarations, I had to 
coerce NTDDK.H not to defme NTKERNELAPI in the normal way. (See STDVXD.H in 
the WDMSTIJB project.) That leaves the module with unresolved references to symbols 
like _KeGetCurrentIrql@O because of the limited vocabulary of WDMVXD.LIB. In the 
particular case of KeGet<;:urrentIrql, one can issue a standard VxDCall to a service 
named ObsoleteKeGetCurrentIrql and reach the right function in the Windows 98 
kernel. Alternatively, one could defme a function (with a name like MyGetCurrentIrql) 
that calls KeGetCurrentIrql and place it in a source module that you compile with the 
normal setting for NTKERNELAPI. 

Sometimes, though, you don't need to write a stub that fails the function call-you can 
actually implement the function, as in this example: 
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VOID ExLocalTimeToSystemTime(PLARGE_INTEGER localtime. 
PLARGE_INTEGER systime) 
{ 

systime->QuadPart = localtime->QuadPart + GetZoneBias(); 
} 

where GetZoneBias is a helper routine that determines the time zone bias--that is, the number 
of units by which local time differs from Greenwich mean time-by interrogating the 
ActiveTimeBias value in the TimeZoneInformation registry key. 

Table A-I lists the kernel-mode support functions that WDMSTUB.VXD exports. 

Support Function 

ExLocalTimeToSystemTime 

ExSystemTimeToLocalTime 

IoAcquireRemoveLockEx 

IoAllocateWorkItem 

IoFreeWorkItem 

IoInitializeRemoveLockEx 

IoQueueWorkItem 

IoReleaseRemoveLockEx 

IoReleaseRemoveLockAndWaitEx 

IoCreateNotificationEvent 

IoCreateSynchronizationEvent 

IoReportTargetDeviceChangeAsynchronous 

KdDebuggerEnabled 

KeEnterCriticalRegion 

KeLeaveCriticalRegion 

KeNumberProcessors 

KeSetTargetProcessorDpc 

PoCancelDeviceN otify 

PoRegisterDeviceNotify 

PoRegisterSystemState 

PoSetSystemState 

PoUnregisterSystemState 

PsGetVersion 

RtlInt64ToUnicodeString 

RtiUlongByteSwap 

RtlUlonglongByteSwap 

RtlUshortByteSwap 

Table A-1. Functions exported by WDMSTUB. VXD. 

Remarks 

Implemented 

Implemented 

Implemented 

Implemented 

Implemented 

Implemented 

Implemented 

Implemented 

Implemented 

Stub--always fails 

Stub--always fails 

Stub--always fails 

Implemented 

Implemented 

Implemented 

Always returns 1 

Implemented 

Stub--always fails 

Stub--always fails 

Stub--always fails 

Stub--always fails 

Stub--always fails 

Implemented 

Stub--always fails 

Implemented 

Implemented 

Implemented 
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DETERMINING THE 
OPERATING SYSTEM VERSION 
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Once you've managed to get your device driver loaded-a feat that might require, as I've just 
discussed, arranging to define Windows 98 stubs for certain support routines-you may need 
to base run-time decisions on which version of the operating system happens to be in charge 
of the computer. You might want, for example, to call functions that aren't, strictly speaking, 
part of the WDM. IoReportTargetDeviceChangeAsynchronous, which I used in the 
PNPEVENT sample, is such a function. 

It's very easy for an application to learn the operation system platform by calling 
GetVersionEx. The closest equivalent function in kernel mode is IOIsWdmVersionAvailable: 

BOO LEAN 101 sWdmVers i onAva il ab 1 e (Maj orVers ion. Mi no rVers ion) : 

Windows 2000 supports WDM version 1.10, which corresponds to the WDM 
MA)ORVERSION (1) and WDM_MINORVERSION (10) constants in the file WDM.H. Windows 98 
(including Windows 98, Second Edition) supports WDM version 1.0 only. You can use this 
difference in support level to tell which platform you happen to be running on. 

OTHER HEURISTICS FOR OPERATING SYSTEM VERSION 

I used to rely on different heuristics for determining the operating system version until 
experience and changes in the operating system made them obsolete. In the original 
retail release of Windows 98, for example, the DriverExtension of your driver object 
had a ServiceKeyName with zero length when the system invoked your DriverEntry 
in a normal way. Windows 2000, on the other hand, supplies a nonempty string for this 
parameter. So do later editions of Windows 98, which makes this heuristic useful only 
for detecting the Original Windows 98. 

Vireo Software used to suggest using the presence of a registry key named 
\Registry\Machine\SAM as an indicator for Windows 2000. This test isn't reliable for 
drivers that load during Windows 2000 startup, though, so you shouldn't rely on this 
test either. The company currently recommends a test based on the facts that the reg
istry key HKLM\System\CurrentControlSet\Control\Class will exist in Windows 2000 
but not Windows 98 and that the key HKLM\System\CurrentControlSet\Services\Class 
will exist in Windows 98 but not Windows 2000. 
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Using GENERIC.SYS 

This appendix explains the public interface to the GENERIC.SYS support library that most of 
the sample drivers in this book use. I need to explain a few things about GENERIC first. 

I built GENERIC for the simple reason that I kept needing to change the Plug and Play 
(PnP) and power support for my sample drivers while I was writing this book. I'll probably 
have to change that support after this book is published, too. Rather than try to change over 
20 sample drivers each time I learned some new fact about PnP and power management, I 
decided to build GENERIC and let it handle all the IRP _MLPNP and IRP _MLPOWER requests 
that came my way. 

I kept WDMWIZ.AWX (the subject of the next appendix) and GENERIC in synchrony. 
That is, if you build a driver using WDMWIZ, you'll end with the same functionality whether 
or not you elect to use GENERIC. If you decide to use GENERIC, your driver will call GE
NERIC to handle some of the more complicated things that WDM drivers do. If you decide 
not to use it, your driver will include all that code. 

I designed GENERIC to be redistributed as part of WDM driver packages, but only 
under a royalty-free license agreement that will protect end users from inconsistency. Please 
consult the sample program license agreement for more details about this. 

Finally, I used Microsoft's AUTODUCK tool to automatically generate documentation 
for the functions GENERIC exports. AUTODUCK takes specially formatted comments in source 
code and turns them into documentation. If you remember to update the comments, you can 
keep your documentation up-to-date fairly painlessly. You'll find the documentation in the 
GENERIC directory on the companion disc under the name GENERIC.RTF. I could lie and tell 
you we put it there for your convenience or so that I could change it up until the last minute-
which I did!-but the truth is that we printed the covers before we knew exactly how many 
pages were in the book, and there turned out to be too many. So much for any illusions you 
may have treasured about the intellectual purity of the publishing process. 
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Using WDMWIZ.AWX 

This appendix describes how to use the WDMWIZ.AWX custom wizard to build a driver project 
for use with Microsoft Visual C++ version 6.0. I built this wizard because I wanted an easy 
and reproducible way to generate the sample drivers for this book. I've included it on the 
companion disc because I knew you'd want an easy way to generate drivers as you read 
through the book. 

The WDMBOOK.HTM file on the companion disc tells you how to install this wizard 
on your system. Once you've installed it, you'll find a WDM Driver Wizard item on the Projects 
tab of the New dialog box that Visual C++ presents when you create a new project. 

WDMWIZ.AWX is not a product and never will be. I would like to know about situa
tions in which it generates incorrect code, but I'm not planning to make any changes to the 
admittedly clunky user interface. Furthermore, you're on your own as far as quality assurance 
for your finished driver goes. 

BASIC DRIVER INFORMATION 
The initial page (shown in Figure C-l) asks you for basic information about the driver you 
want to build. 

For Type Of Driver, you can specify these choices: 

• Generic Function Driver Builds a function driver for a generic device. (Note that 
use of the word generic here is unfortunate because it has nothing to do with 
GENERIC.SYS.) 

• Generic Filter Driver Builds a filter driver with default handling for all types 
of IRP. 

• USB Function Driver Builds a function driver for a USB device. 

• Empty Driver Project Builds a project with no files but with options set up for 
building a WDM driver. 
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Figure C-1. Page for entering basic driver information. 

You can select the following options: 

• Verbose Debugging Trace If you check this option, the driver project files will 
include many KdPrint macro calls to trace important operations in the driver. 

• Use Buffered Method For Reads And Writes Set this option if you want to use 
the DO_BUFFERED_IO method for read and write operations. Clear this option if 
you want to use DO_DIRECT_10 instead. 

• Use Old-Style For Device Naming Set this option to generate named device ob
jects. Clear this option to generate a driver that uses a device interface instead. The 
second choice (device interface) is the one Microsoft prefers for WDM drivers. 

• Replace ASSERT For i86 Platforms The DDK's ASSERT macro calls a kernel
mode support routine (RtlAssert) that's a no-operation in the free build of Microsoft 
Windows 2000. The checked build of your driver will therefore not stop in the free 
build of the operating system. Set this option to redefine ASSERT so that the checked 
build of your driver halts even in the free build of the operating system. 

• Use GENERlC.SYS Library Set this option to make use of the standardized driver 
code in GENERIC.SYS. Clear this option to put all that standardized code in your own 
driver. 

• Windows 98 Detection Set this option to include a run-time check for whether 
your driver is running under Windows 98 or Windows 2000. Clear this option to omit 
the check. 

You can also specify the base pathname where you've installed the Windows 2000 DDK 
and the samples for this book. The default values-$(DDKPATH) and $(WDMBOOK)-rely 
on the environment variables that the sample setup program creates. 

Finally you can click the Dispatch Functions button to specify the types of IRP your driver 
will handle, as Figure C-2 shows. The dialog box embodies some design decisions that you 
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can't override: Your driver will include support for IRP _MLPN.P and IRP _MLPOWER. If you 
specify handling for IRP _MLCREATE, youlll get support for I~ _MLCLOSE. If you specify 
handling for IRP _MLREAD, IRP _ML WRITE, or IRP _MLDEVICE_C:0NTROL, you'll get sup
port for IRP _MLCREATE (and therefore IRP _MJ_CLOSE). WDMWIZ.AWX doesn't generate 
skeleton dispatch functions for many types of IRP that are used only by me system drivers. 

Figure C-2. Dialog box for specifying the IRP major function codes for which you 
want dispatch functions . 

DEVICEloCONTROL CODES 
If you specified handling for IRP _MLDEVICE_CONTROL, the wizard will present a page 
(depicted in Figure C-3) to allow you to specify information about the control operations you 
support. 

Figure C-3. Page for specifying suppprted I/O control operations. 
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Figure C-4 is an example of how you specify information about a particular 
DeviceloControl operation. Most of the fields correspond directly to parameters in the 
CTL_CODE preprocessor m~cro and should therefore require no explanation. Setting the 
Asynchronous option generates support for an operation that you complete asynchronously, 
after the dispatch function returns STATUS_PENDING. 

Figure C-4. Dialog box for adding and editing an I/O control operation. 

1/0 RESOURCES 
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If your device uses any I/O resources, you can fill in the third page with information about 
them, as Figure C-5 shows. 

Figure C-5. Page for specifying I/O resources. 
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POWER CAPABILITIES 
The fourth step in the wizard (shown in Figure C-6) allows you to specify some miscellaneous 
power management capabilities. With the exception of the Idle Detection option, I haven't 
debugged all the interactions between this page and the driver options on other pages. Be 
prepared to sort this out yourself if you set any option other than Idle Detection. 

Figure C-6. Page for specifying power management capabilities. 

The capabilities in this page are as follows: 

• Queue Reads And Writes While Power Is Off Set this option if your driver 
will accept and queue read and write IRPs even while your device is powered 
down. Clear this option if your driver will reject new read and write IRPs during 
such periods. 

• Device Supports System Wakeup Set this option if your device has system 
wake-up capability. Otherwise, clear the option. Setting the option generates skeletal 
support for generating IRP _MN_ WAIT_WAKE requests at appropriate points. 

• Device Can Be Stopped While Busy With An IRP If your driver has some way 
to halt an active read or write IRP when an IRP _MN_STOP _DEVICE comes along, 
you can set this option if you want. Otherwise, leave the option clear. 

• Idle Detection Set this option if you want your device to automatically power 
down after a user-prescribed period of inactivity. If you're using GENERIC.SYS 
with your driver, you'll automatically get support for a set of IOCTLs that my 
POWCPL.DLL uses, thereby gaining a user interface for free. 

• Power On Only While Handles Open This option is available for USB devices 
only. Set it if you want your device powered on only while an application has 
an open handle. 
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• Power Inrush During Power-On Set this option if your device is an inrush 
device that demands a large spike of current when powering on. 

USB ENDPOINTS 
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If you selected USB Function Driver in the first page, the wizard will present a page that allows 
you to describe the endpoints of your device, as Figure C-7 shows. This page lists the names 
of variables in your device extension that will hold pipe handles. The order of names corre
sponds to the order of endpoint descriptors on your device. 

NOTE This page isn't sufficiently complex to let you describe a device with 
multiple interfaces or with alternate settings for interfaces. 

Figure C-7. Page for defining USB endpoints. 

Refer to Figure C-8 for an illustration of the dialog box you can use to describe a single 
endpoint. The Description Of Endpoint group relates to the description of the endpoint in 
your device firmware and should be self-explanatory. Within the Resources In The Driver 
group, complete the fields as follows: 

• Name Of Pipe Handle In Device Extension Supply the name of a DEVICE_ 
EXTENSION member to hold the pipe handle you'll use for operations on this 
endpoint. 

• Maximum Transfer Per URB Specify here the maximum number of bytes 
you'll transfer in a single URB. In general, this value is much larger than the 
endpoint maximum. 
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Figure CoS. Dialog box for adding and editing a USB endpoint. 

WMI SUPPORT 
If you've specified that you want to handle IRP _MLSYSTEM_CONTROL requests, the wizard 
will present the page shown in Figure C-9 to allow you to specify the elements of your cus
tom WMI schema. 

Figure C-9. Page for specifying W1\.[] options. 

In this page, you should always leave the Use WMILIB option checked because the 
generated code won't give you much help in handling WMI requests otherwise. The Block 
Identifiers list names the class GUIDs in your custom schema in the order they'll appear in 
the GUID list for WMILIB. 
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Figure C-lO illustrates how you can describe one class in your custom schema. The 
topmost (unlabelled) control is the symbolic name of a GUID that the wizard will generate 
for you automatically. You can specify the following attributes of this class: 

• Number Of Instances Indicates how many instances of the class your driver 
will create. 

• Expensive Indicates an expensive class that must be specifically enabled. 

• Event Only Indicates that the class is used only to fire an event. 

• Traced Corresponds to a WMI option that I don't currently understand. But if 
I ever do understand it, I'll be able to use this check box to influence its state. 

You can choose between PDQ-based instance naming or instance naming using a base 
name. Microsoft recommends you use PDQ-based naming. 

Figure C-10. Dialog box for specifying a WM! class. 

PARAMETERS FOR THE INF FILE 
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The last page in the wizard (shown in Figure C-ll) lets you specify information for the INF 
file that becomes part of your driver project. 

The fields in this page are as follows: 

• Manufacturer Name Name of the hardware manufacturer. 

• Device Class The standard device class to which your device belongs. Sample 
is my own class for the driver samples in this book: you shouldn't use this class 
for a production device. 
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• Hardware ID The hardware identifier for this device. I made up 'WCOOC01 for 
this example. You should specify the identifier that will match one of the iden
tifiers that the relevant bus driver will create. Refer to the section titled "Device 
Identifiers" in Chapter 12, "Installing Device Drivers," for more information. 

• Friendly Name For Device If you want to have a FriendlyName value in
serted into the device's hardware key, specify that name here. 

• Auto-Launch Command If you want the AutoLaunch service to automatically 
start an application when your device starts, specify the command line here. For 
example, when I built the AutoLaunch sample for Chapter 12, I specified 
%windirDlo\altest.exe %s %s in this field. 

• Device Description Insert the description of your device here. 

Figure C-11. Page for specifying INF file options. 

NOW WHAT? 
After you run through all the pages of the wizard, you'll have a project that you can use to 
finish crafting your driver. Because of limitations on the custom wizard support in Visual C++, 
you'll need to add some project settings by hand. Please refer to WDMBOOK.HTM on the 
companion disc for a description of these settings. 

The generated code will contain a number of TODO comments that highlight areas 
where you need to write some code. I suggest you use the Find In Files command to locate 
these items. 
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1394 devices, 570-71 
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AbortPendingJobs function, 434 
AbortRequests function, 238, 259 
accessible members, 9 
ACPI (Advanced Configuration and Power 
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. AcquireRemoveLock function, 250 
AdapterControl routine, 11, 11, 329-30, 

333-35,339 
adapter object data structure, 321 
AddDevice routine, 21, 48-49, 75, 95, 96, 219, 

226, 246, 294, 333, 387-88, 387, 402, 
403-6,446,456,514 

creating device objects, 49-51 
introduced, 11, 1.1 
naming devices 
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name creation, 56-57 
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other global device initialization 
building the device stack 68 
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initializing default DPC objects, 66 
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initializing device flags, 67 
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miscellaneous objects, 67 
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setting initial power states, 68 

status codes in, 75 

AddPage function, 577 
AddRef method, 476-77 
Advanced Configuration and Power Interface 

(ACPI),491 
Advanced Power Management (APM), 491 
Advanced RISC Computing (ARC) 

architecture, 54 
AllocateAdapterChannel function pointer, 321 
AllocateAdapterChannel routine, 326-29, 

335,341 
AllocateCommonBuffer function pointer, 321 
AllocateCommonBuffer routine, 340, 341-42 
AllocateFrom functions, 110, 110, 111 
alloc_text pragma, 95, 96 
AllowRequests function, 238, 260 
Anchor Chips USB set, 488--89 
ANSCSTRING data structure, 112, 112, 114 
ANSI strings, 112-14, 112,113 
AnswerMethod routine, 472 
APC_LEVEL IRQL, 135, 135, 162, 164, 192-93 

215,218 ' 
APCs. See asynchronous procedure calls 

(APCs) 
APM (Advanced Power Management) 491 
arbitrary thread context, 10, 142 ' 
ARC (Advanced RISC Computing) 

architecture, 54 
AreRe9uestsBeingAborted function, 238, 

259-60,318 
arithmetic 

floating-point, 126-27 
interlocked, 164-68, 165 

ASSERT macros, 128 
asynchronous kernel-mode drivers, 9-10 
asynchronous procedure calls (APCs) 

I/O requests and, ·160-61 
IRQL and, 135 
thread alerts and, 159-62 

AutoLaunch setvice, 581-87, 588 
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B 
blue screen of death (BSOD), 89-90, 89 
books about driver development, 17 
BSOD (blue screen of death), 89-90, 89 
buffer alignment masks, 66--67 
bug checks, 74, 89-90, 89 
bulk transfer pipe management, 524-32 
bulk transfers, 488, 493, 500-501,501 
bus, defUled, 20-21 
bus address, 340 
bus drivers, 10 . 
bus-master DMA operations, 342-44 

C 
CacheControlRequest function, 430, 431-34 
CancelDeviceWakeupRequest API 

function, 391 
Cancello routine, 200, 430 
CancelRequest function, 238, 239, 256-57 
CDeviceList class, 61-63 
CDeviceListEntry class, 61-63 
CDeviceList::Initialize function, 62-63 
CD-ROM, 12-13, 13. See also GENERIC.SYS 

library; sample code; WDMWIZ.AWX
wizard 

CFGMGR32 set of APIs, 574 
CheckBusyAndStall function, 238, 242, 252, 

254, 256 
CheckTUnerroutine, 447, 448 
rUVTl\T'P ,1 .... ~1~"'I' C:/A 
"-' ......... ~, ... '-"II..L.I..I.'"],.J/.I. 

CIM (Common Information Model), 452 
class drivers, 5, 6, 10-11 
class keys, 24, 27-28, 28, 69 
CleanupControlRequests function, 434 
CleanupRequests function, 238, 257-58 
CLOCK1_LEVEL IRQL, 135 
CLOCK2_LEVEL IRQL, 135 
CloseHandle routine, 415 
CM_P ARTIAL_RESOURCE_DESCRIPTOR data 

structure, 290, 290 
CM_PARTIAL_RESOURCE_LIST data structure, 

290,290 
CM_RESOURCE_LIST data structure, 231, 231 
CoCreateInstance routine, 477-78 
code. See sample code 
code_seg pragrna, 96 
CoInitializeEx routine, 480 
COM (Component Object Model) interfaces, 

476-78 
common buffer, 322, 339-42 
Common Information Model (CIM), 452 
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companion disc, 12-13, 13. See also 
GENERIC.SYS library; sample code; 
WDMWIZ.A WX wizard 

compatibility. See Microsoft Windows 98 
compatibility notes 

compile-tUne control of pagability, 94-96 
CompleteMain routine, 360 
CompleteRequest function, 86, 190 
Component Object Model (COM) interfaces, 

476-78 
configuration descriptors, 503, 506-7,507 
ConnectServer method, 477, 480 
CONTAINING_RECORD macro, 103, 103, 170 
controller and multifunction devices 

creating child device objects, 267-68 
handling child device resources, 277 
handling device removal, 274 
handling IRP_MN_QUERY_DEVICE_ 

RELATIONS minor function code, 276 
handling IRP _MN_QUERY_ID minor 

function code, 275-76 
introduced, 265-66 
overall architecture, 266 
PDO handling of PnP requests, 270-74, 270 
telling the PnP Manager about our 

children, 268-70 
control pipes, 492 
control requests, 534-36,536, 537 
controls, standard, 475, 475 
control transfers, 488, 493, 496-500, 498, 499 
CoUninitialize routine, 480 
CreateEvent routine, 429 
CreateFile routine, 208, 324, 415, 541 
CreateInstanceEnum routine, 481 
CreateInterruptUrb routine, 533 
CreateProcess routine, 585 
CreatePropertySheetPage routine, 577-78 

o \. 
DO, Dl, D2, and D3 states, 347-48, 347 
data blobs, 114-15, 115 
data blocks, st:atldard, 474-75, 474 
data buffers, addressing 

buffered method, 293, 294-95 
direct method, 293, 295-98,296, 296-97 
introduced, 293-94, 293 
neither method, 293, 298 

data phase, 494-95, 495 
data_seg pragma, 95, 96 
dates, tUnestamps and, 144-45 
DbgPrint routine, ·127 



DbgView utility, 127-28 
debugging. See also errors 

Driver Verifier for, 94 
making debugging easier, 127-28 

DefaultPnpHandler routine, 263 
deferred procedure calls (DPCs), 11, 11, 

185--86 
custom DPC objects, 312-13 
importance of, 312 
initializing default DPC objects, 66 
introduced, 308-10,309 
notification timers used with, 155-56 
scheduling, 310-12 

DefmeDosDevice routine, 53 
Delete functions, 110,110, 111 
DeleteInterruptUrb routine, 533 
DeregisterAllInterfaces routine, 234 
DestroyContextStructure routine, 551 
device and driver layering 

device objects, 38-44, 39, 40, 41-43 (see 
also filter device objects (FiDOs); 
functional device objects (FDOs); 
physical device objects (PDOs» 

driver objects, 35-38, 35, 36, 37 
introduced, 19-22, 20 
system driver loading, 30 

device object interrelations, 30-32, 31, 
32,33 

device stack examination, 33, 34 
introduced, 22 
recursive enumeration, 22-23, 23 
role of the registry, 24-29, 24, 26, 28, 29 

DEVICE_CAPABILITIES data structure, 367-
68,368 

device descriptors, 503-6, 503, 505 
DEVICE_EXTENSION data structure, 64-65 
device extensions, initializing, 64-65 
device flags, initializing, 67 
device identifiers, 566-71,568 
device initialization, global 

building the device stack, 68 
clearing the DO_DEVICE_INITIALIZING 

flag, 68 
initializing default DPC objects, 66 
initialiZing device extensions, 64-65 
initializing device flags, 67 
introduced, 63-64 
miscellaneous objects, 67 
setting buffer alignment masks, 66-67 
setting initial power states, 68 

DEVICE_INTERF ACE_CHANGE-.NOTIFICATION 
data structure, 283-84 

device interfaces, 57-63, 59 
enumerating, 61-63 
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DeviceIoControl API function, 175, 285, 287, 
415-18, 416, 525, 535 

device IRQL (DIRQL), 8, 135, 170 
device naming 

deciding whether to name or not, 54-56 
device interfaces and, 57-63, 59 . 
introduced, 51-52, 51 
name creation, 56-57 
symbolic links, 52-54, 53 

DEVICE_OBJECT data structure, 38-44,39, 
40,41-43 

device object pointers, 219-20 
device objects, 38-44,39, 40, 41-43. See also 

filter device objects (FiDOs); functional 
device objects (FDOs); physical device 
objects (PDOs) 

creating, 49-51 
device properties, 588 
device stack 

building, 68 
examining with DevView, 33, 34 
implementing, 43-44 

device types, unimplemented, 70-
device version numbering, 505 
DEVQUEUE object 

aborting requests, 259-60 
awaiting the current IRP, 258-59 
cancelling IRPs, 256-58 
dequeuingIRPs, 254-56 
initializing, 251-52 
introduced, 236-37, 236, 237 
queuing IRPs, 252-54 
stalling the IRP queue, 252 
using for IRP queuing and cancellation, 

237-40,238 
using with PnP requests, 240-50, 245 

DEVVIEW utility 
introduced, 33, 34 
viewing namespaces with, 51, 51 

direct memory access (DMA) 
bus-master operations, 342-44 
introduced, 320-21,320, 321 
packet-based, 323 
performing DMA transfers 

.introduced, 323-32, 325-26 
using GetScatterGatherList routine, 

335-37 
using scatter/gather lists, 322, 332-35 
using the system controller, 322,.337-39 

simple bus-master device, 342-44 
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direct memory access (DMA), continued 
slave, 322, 337-39, 340-41 
transfer strategies, 321-23, 323 
using a common buffer, 322, 339-42 

DIRQL (device IRQL), 8, 135, 170 
disc, 12-13, 13. See also GENERIC.SYS library; 

sample code; WDMWIZ.A WX wizard 
DispatchAny routine, 402 
DispatchCleanup routine, 211, 257 
DispatchClose routine, 210 
DispatchControl function, 434 
DispatchCreate routine, 210, 249 
DISPATCH_LEVEL IRQL, 8, 93,100,126,134, 

135, 135, 136, 136, 137, 138, 139, 140, 
141, 143, 145, 147, 148, 149, 153, 165, 
170, 171, 183, 188, 192-93, 219, 
264-65,308,310,353,388,397,406, 
427,442 

DispatchPnP function, 95, 96, 132-33, 405 
DispatchPower routine, 94 
dispatch routines, IRP 

duties of, 182-83 
forwarding IRPs to, 181-82 

DispatchXx:x functions, 182 
Distributed Management Task Force 

(DMTF),452 
divisor latch, 307-8 
DLLs. See dynamic-link libraries (DLLs) 
DmaExecutionRoutine routine, 336 
DmaOperations data structure, 321, 321 
DIvI1'F (Distributed Management Task 

Force),452 
DO_DEVICE_INITIALIZING flag, 68 
DoEnvironmentSubst API function, 579 
DO_POWER_PAGABLE flag, 353, 396-97, 406 
doubly-linked lists, 104-6, 104 
DpcForIsr routine, 185, 248, 317, 319, 330-32, 

336,339 
DPCs. See deferred procedure calls (DPCs) 
DpcSpecial function, 186 
DriverEntry routine 

differences in Windows 98 and 
Windows 2000 call, 69 

driver reinitialization routine, 48 
DriverUnload function, 47 
introduced, 11, 11, 44-45,402-3,460 
IRPs and, 181 
overview, 45-47 
section placement and, 96 
status codes in, 75 

DRIVER EXTENSION data structure, 37, 37 
driver layering. See device and driver layering 
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DRIVER_OBJECT data structure, 35-38, 35, 
36, 37 

driver objects, 35-38, 35, 36, 37 
DriverUnload routine, 47, 111,282,402 
Driver Verifier feature of Windows 2000, 94 
DUMPBIN utility, 96 
dynamic-link libraries (DLLs) 

E 

GENERIC.SYS, 14,354-55 
WMILIB, 457, 459--{)0, 485 

endpoint descriptors, 503, 508-9,508, 509 
endpoints, 492, 496, 496 
enumerating device interfaces, 61-63 
enumeration, recursive, 22-23, 23 
EnumPropPages routine, 577 
error handling. See also structured exception 

handling 
bug checks, 74, 89-90, 89 
introduced, 74 
status codes, 45, 75-77, 75 

errors. See also debugging 
errata page for, 17 
logging 

creating error log packets, 406, 408-10, 
408 

creating message files, 406, 410-14, 411 
introduced, 406-7, 407 
Windows 98 compatibility notes, 449 

EVENTLOG sample, 409, 411-13, 414 
ExAcquireFastMutex function, 163, 163, 164 
ExAcquireFastMutexUnsafe function, 163, 

163, 164 
ExAllocateFromNPagedLookasideList 

function, 110, 110, 111 
ExAllocateFromPagedLookasideList function, 

110,110, 111 
ExAllocatePool function, 91, 99-100, 100, 

101, 539 
ExAllocatePoolWithQuota function, 102 
ExAllocatePoolWithQuotaTag function, 102 
ExAllocatePoolWithTag function, 101-2 
exception frames, 77, 79 
exception handlers, 79 
exceptions, raising, 85-86, 85 
__ except statement, 79, 81-83, 82, 85 
exclusive devices, 50 
ExDeleteNPagedLookasideList function, 110, 

. 110, 111 
ExDeletePagedLookasideList function, 110, 

110, 111 
ExecMethod routine, 483 



ExecNotificationQueryAsync routine, 483 
ExecNotificationQuery routine, 482, 483 
ExecuteMethod routine, 472-73 
executive work items, 442-45 
ExFreePoolroutine, 86, 91,100-101,444,522 
ExFreeToNPagedLookasideList function, 110, 

110, 111 
ExFreeToPagedLookasideList function, 110, 

110, 111 
ExGetPreviousMode routine, 162 
ExIhitializeFastMutex function, 163, 163 
ExInitializeNPagedLookasideList function, 

110,110 
ExInitializePagedLookasideList function, 

110,110 
ExInitializeWorkItem function, 443 
ExInterlockedAddLargeInteger function, 

165, 167-68 
ExInterlockedAddLargeStatistic function, 

165, 168 
ExInterlockedAddUlong function, 165, 168 
ExInterlockedCompareExchange64 function, 

165, 168 
ExInterlockedInsertHeadList function, 311 
ExInterlockedRemoveHeadList function, 435 
ExInterlockeclXXx functions, 165, 167-68, 

170-71,210 
Ex prefix (executive), 72 
ExQueueWorkItem function, 444 
ExRaiseAccessViolation function, 85 
ExRaiseDatatypeMisalignment function, 85 
ExRaiseStatus function, 85 
ExReleaseFastMutex function, 163, 164 
ExReleaseFastMutexUnsafe function, 163, 164 
extern "C" declaration, 95 
ExTryToAcquireFastMutex function, 163, 164 

F 
fast mutex objects, 162-64, 162-63, ·163 
FDO drivers, 21 
FDOs. See functional device objects (FDOs) 
FEATURE sample, 534-35 
FiDOs. See filter device objects (FiDOs) 
file objects, 210 
files 

accessing 
creating or rewriting files, 124-25 
introduced, 123 
opening existing files for reading, 124 
ZwXxx routine problems, 129 

timing of file operations, 126 
file system driver (FSD), 6, 180 

filter device objects (FiDOs) 
acronym for, 20 
device object interrelations, 30-32, 31, 

32,33 
introduced, 19,20, 21 

filter drivers 
AddDevice routine, 403-6 
DriverEntry routine, 402-3 

Index 

introduced, 10, 399-401, 400, 401, 402 
lower, 400-401, 401, 402 
upper, 400, 400 

FilterResour<:eRequirements substructure, 261 
__ finally statement, 79-81, 80, 83,85 
floating-point calculations, 126-27 
FlushAdapterBuffers function pointer, 321 
FlushAdapterBuffers routine, 331, 341 
ForwardAndWait function, 227-29, 229, 230, 

242,263,513 
frame master, 556 
frames, 494-95, 494, 495 
FreeAdapterChannel function pointer, 321 
FreeAdapterChannel routine, 339, 341 
FreeCommonBuffer function pointer, 321 
FreeMapRegisters function pointer, 321 
FreeMapRegisters routine, 339, 341 
FreeTo functions, 110, 110, 111 
friendly names, 63 
FSD (file system driver), 6, 180 
functional device objects (FDOs) 

acronym for, 20 
device object interrelations, 30-32, 31, 

32,33 
introduced, 19, 20, 21-22 

functional stall, 500 
FunctionControlroutine, 470,471 
function drivers, 10 
function pointer tables, 225 
functions (devices), 489 

G 
GenericAcquireRemoveLock function, 250 
GenericDispatchPower routine, 354, 366 
GENERIC.SYS library, 14, 354-55 
GENINF utility, 574 
GetCurrentIrp function, 238, 239, 448 
GetDmaAlignment function pointer, 321 
GetExceptionCode function, 84 
GetExceptionInforrnation function, 84 
GetLastError function, 416, 541 
Get method, 482 
GetOverlappedResult API function, 418 
GetScatterGatherList function pointer, 321 
GetScatterGatherList routine, 335-37 
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GetStringDescriptor function, 518-19 
GetWindowLong routine, 578 
global cancel spin lock, 204 
globally unique identifiers (GUIDs), 27, 

58--60,59 
grand unified descriptor, 506 
guarded body for exception frames, 79 
GUIDs (globally unique identifiers), 27, 

58--60,59 ' 

H 
HAL (hardware abstraction layer), 299-300, 

300 
HalGetAdapter function, 325 
HalGetInterruptVector routine, 231 
Hal prefix (hardware abstraction layer), 72-73 
HalTranslateBusAddress routine, 231 
HandleFilterResources function, 261-63 
HandlePowerEvent function, 354-57, 

356, 371 
HandlerEx function, 582 
Handler function, 582 
HandleStartDevice function, 224 
HandleUsageNotification function, 263-64 
handshake phase, 494-95, 495 
hardware abstraction layer (HAL), 299-300, 

300 
hardware (instance) keys, 24-27, 24, 26, 69, 

571-74, 572, 588 
hardware wizard. 560--61.561 
heap allocator 

ExAllocatePoolWithTag function, 101-2 
introduced, 99-100, 100 
releasing a memory block, 100-101 

Hibernate state, 348,348 
highest-level driver, 142-43 
HIGH_LEVEL IRQL, 135, 135, 171 
hubs, 489 
HWPROFILE_CHANGE_NOTIFICATION data 

structure, 284 

IDE devices; 569 
IDL (Interface Definition Language), 477 
idle detection, 391-95, 393 
ihere on Soft-Ice/W command, 128 
INF files 

device identifiers, 566-71,568 
hardware registry key, 571-74, 572, 588 
install sections, 561-66,562,563,564 
introduced, 558--61, 558, 559, 561 
tools for, 574-75, 575 
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InitializeListHead function, 104, 105, 255 
InitializeObjectAttributes macro, 117 
InitializeQueue function, 238, 240, 251-52 
IN keyword, 45 
INOUT keyword, 45 
InsertHeadList function, 104, 105 
InsertTailList function, 104, 105 
installing device drivers 

defining device classes 
introduced, 575-76 
other class-specific information, 580-81 
property page providers, 576-80, 588 

INF files 
device identifiers, 566-71,568 
hardware registry key, 571-74,572, 588 
install sections, 561-66, 562, 563, 564 
introduced, 558--61,558,559,561 
tools for, 574-75, 575 

introduced, 557 
launching applications 

AutoLaunch service, 581-87, 588 
introduced, 581 
Windows 98 compatibility notes, 588 

Windows 98 compatibility notes 
device properties, 588 
launching applications, 588 
property page providers, 588 
registry usage, 588 

install sections (INF files), 561-66, 562, 
563,564 

instance C'nardware) keys, 24-27, 24, 26, 69, 
571-74, 572, 588 

Interface Definition Language (IDL), 477 
interface descriptors, 503, 507-8 
interlocked arithmetic, 164-68, 165 
InterlockedCompareExchange function, 165, 

166,311 
IntedockedCompareExchangePointer 

function, 166-67 
InterlockedDecrement, 165, 165 
InterlockedExchangeAdd function, 165 
InterlockedExchange function, 165, 167 
InterlockedExchangePointer function, 167 
InterlockedIncrement function, 165, 165 
interlocked list access, 168-71 
InterlockedOr routine, 344 
InterlockedXXX' functions, 165-67, 165 
interruptibility of kernel-mode drivers, 8 
interrupt pipe management, 532-34 
interrupt request level (IRQL) 

APC_LEVEL, 135, 135, 162, 164, 192-93, 
215, 218 

basic synchronization rule, 136 



interrupt request level (IRQL), continued 
CLOCKCLEVEL, 135 
CLOCK2_LEVEL, 135 
compared with thread priorities, 137 
device IRQL (DIRQL), 8, 135, 170 
DISPATCH_LEVEL, 8, 93, 100, 126, 134, 

. 135, 135, 136, 136, 137, 138, 139, 140, 
141, 143, 145, 147, 148, 149, 153, 165, 
170, 171, 183, 188, 192-93, 219, 
264-65,308,310,353,388,397,406, 
427, 442 

explicitly controlling, 138-39 
HIGH_LEVEL, 135, 135, 171 
implicitly controlling, 137-38 
interrupt priority in action, 136, 136 
introduced, 131, 134-35, 135 
IPCLEVEL, 135 
of ISRs, 306 
and paging, 137 
PASSIVE_LEVEL, 8,134, 135, 136,136, 137, 

138, 143, 147, 150, 155, 165, 192-93, 
213,227,353,388,397,405,406,427, 
442, 444 

POWER_LEVEL, 135 
PROFILE_LEVEL, 135, 136 
SYNC_LEVEL, 134 

interrupts 
configuring, 303-5 
handling, 306-8 

interrupt service routines (ISRs), 11, 11, 
184-85 

IRQL of, 306 
programming restrictions in, 306-7 
synchronizing operations with, 307-8 

interrupt transfers, 488, 493, 501, 502 
IoAcquireCancelSpinLock routine, 256 
IoAcquireRemoveLock function, 132, 246, 

248,365,405,445,460 
IoAllocateErrorLogEntry function, 409 
IoAllocateIrp function, 180, 216-17, 370, 427 
IoAllocateMdl function, 296, 297 
IoAllocateWorkItem function, 445 
IoAttachDeviceToDeviceStack routine, 43, 68, 

197,219,234,403 
IoBuildAsynchronousFsdRequest function, 

180,212,212,217-19 
IoBuildDeviceIoControlRequest function, 180, 

217,426,513 
IoBuildPartialMdl function, 296, 530 
IoBuildSynchronousFsdRequest function, 180, 

212-16,212, 218 
IoCallDriver function, 181-82, 197, 216, 228, 

351,397,427,513,531 

Index 

IoCancelIrp routine, 200-202, 210, 214, 215, 
216, 253, 255, 256, 390, 430, 547, 549 

IoCompleteRequest routine, 151-52, 185-86, 
189, 190-91, 191, 193, 195-,97, 210, 
214,216,228,308-9,310,365,435, 
448,459,530,531,554 

IoConnectInterrupt routine, 303-5, 307, 314 
I/O control (IOCTI.) operations 

deftning I/O control codes, 418-19, 418 
DeviceIoControl API function, 415-,16, 416 
handling IRP _MLDEVICE_CONTROL 

internal I/O control operations, 426-28 
introduced, 420-22, 420 
METHOD_BUFFERED buffering method, 

422-23, 422 
METHOD_IN_DIRECT and 

METHOD_OUT_DIRECT buffering 
methods, 424-25, 424 

METHOD_NEITHER buffering method, 
425-26 

introduced, 414-15 
notifying applications of interesting events 

helper routine operation, 431-35 
introduced, 428-30 
working with an asynchronous IOCTI., 

430-31 
pending IOCTL operations, 450 
synchronous and asynchronous calls to 

DeviceIoControl,416-18 
and Windows 98 virtual device drivers 

(VxDs),449-50 
IoCopyCurrentIrpStackLocationToNext macro, 

198, 272 
IoCreateDevice routine, 49-51, 70, 76, 87, 

234, 387, 403 
IoCreateNotiftcationEvent routine, 429 
IoCreateSymbolicLink routine, 53 
IoCreateSynchronizationEvent routine, 429 
IoCreateUnprotectedSymbolicLink routine, 53 
IOCTI. operations. See I/O control (IOCTI.) 

operations 
IoDeleteDevice routine, 65, 76, 234 
IoDetachDevice routine, 234, 405 
IO_ERROR_LOG_PACKET data structure, 

408-9,408 
IoFreeIrp routine, 197, 206, 214, 215, 390, 

427, 548, 549, 554 
IoFreeItem function, 445 
IoFreeMdl function, 296 
IoGetAttachedDeviceReference routine, 43, 

405 
IoGetCurrentIrpStackLocation function, 193, 

199,224 
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10GetDeviceObjectPointer function, 52, 
220, 282 

10GetDeviceProperty routine, 276, 571, 588 
10GetDmaAdapter routine, 321, 324, 325-26, 

328, 335, 338, 340 
10lnitializeDpcRequest macro or routine, 

185,309 
10lnitializeRemoveLock routine, 76, 246 
10InvalidateDeviceReiations function, 235, 

270 
10InvaiidateDeviceState routine, 235 
10MakeAssociatedIrp function, W0-81, 554 
I/O Manager, 2 
I/O-mapped devices, 298, 300-302 
10MarkIrpPending routine, 194-97,434, 531 
100penDevicelnterfaceRegistryKey function, 

116, 118 
100penDeviceRegistryKey function, 116, 

118,588 
10pCompieteRequest routine, 218 
10 prefix (I/O Manager), 71 
10QueueWorkItem function, 282, 445 
10RegisterDevicelnterface function, 59-60, 76, 

87, 278 
10RegisterDriverReinitialization function, 48 
10RegisterPlugPIayNotiftcation routine, 

281-82 
10ReleaseRemoveLockAndWait function, 247, 

287, 405 
10ReleaseRemoveLock routine, 246, 248, 249, 

". .... - ..,./,. / /,,- /./""" ,. .... ,... ,.. /,.,. 

~~/, ~OJ,~~J,~ov, J~~, J~~ 

10_REMOVE_LOCK object, 245-50, 245 
10ReportTargetDeviceChangeAsynchronous 

function, 285, 287 
10ReportTargetDeviceChange function, 285, 

287 
10ReportXxx routines, 286 
10RequestDpc routine, 309, 310 
I/O request packets (IRPs) 

awaiting current; 258--59 
cancelling I/O requests, 200-211, 203, 207, 

208, 256-58 
completing I/O requests, 3, 189-97, 189, 

191,194 
delegating to WMILIB, 457-66, 462, 463 
dequeuing, 254-56 
device object pointers and, 219-20 
device power, 375-87,376, 377, 378, 379, 
, 382, 383, 386, 397 

introduced, 2-3, 21 
10_STACK_LOCATION data structure, 

177-79,177, 178, 181,198,199 
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I/O request packets (IRPs), continued 
managing 

introduced, 211-12, 212 
. using 10Allocatelrp, 180, 216-17 
using 10BuildSynchronousFsdRequest, 

180,212-16,212,218 
passing requests down to lower levels, 

197-99, 198, 200 
queuing, 252-54 
repeater, 271-74 
stalling the IRP queue, 252 
standard model for processing 

creating IRPs, 180-81 
custom queues, 186-88, 187 
deferred procedure call routine, 185-86 
duties of a dispatch routine, 182-83 
forwarding to a dispatch routine, 181-82 
interrupt service routine, 184-85 
introduced, 179-80, 179 
Startlo routine, 183-84 

structure, 173-77, 174,176 
system power 

that decrease power, 372-75,373,374 
that increase power, 361-72, 361, 

362,368 
using 10BuildAsynchronousFsdRequest, 

180, 212, 212, 217-19 
using 10BuildDeviceloControlRequest, 

180, 217 
I/O requests. See also I/O request packets 

GRF:;) 
APCs and, 160-61 
in Windows 98, 4-5, 4 
in Windows 2000, 2-3 

IO_RESOURCE_REQUIREMENTS_LIST data 
structure, 261 

I/O resources, defined, 226 
10SetCancelRoutine routine, 204, 253-54, 255, 

, 258, 434, 551 
10SetCompletionRoutine macro, 179, 191-92 
10SetDevicelnterfaceState routine, 60-61, 278 
10SetNextirpStackLocation routine, 434 
10SkipCurrentIrpStackLocation routine, 

199, 352 
10_STACK_LOCATION data structure, 

177-79,177, 178, 181,198,199 
IoStartNextPacketByKey routine, 205, 206 
10StartNextPacket routine, 138, 185, 201, 202, 

205, 206, 211, 239, 308--9, 310 
10StartPacket routine, 138, 183, 201, 211, 239 
10StartTimer routine, 446 
10_STATUS_BLOCK data structure, 174, 175, 

189, 190 



iostatus data structure, 427 
IoStopTimer routine, 446 
IoUnregisterPlugPlayNotification routine, 282 
IoWMIRegistrationControl routine, 456 
IoWriteErrorLogEntry function, 406, 449 
IPCLEVEL IRQL, 135 
IRP _MLCLEANUP major function code, 

178-79,207,208,208, 209, 210, 211, 
240,257,258,434 

IRP _MLCLOSE major function code, 208, 210, 
220,249,257,287,446,541 

IRP _MLCREATE major function code, 50, 56, 
208,210,220,249,446,450,541 

IRP _MLDEVICE_CONTROL major function 
code, 173-74, 175,212, 394,420-28, 
420,422,424 

IRP _MLFLUSH_BUFFERS major function 
code,212 

IRP _MLINTERNAL_DEVICE_CONTROL major 
function code, 212, 401, 405, 426, 427, 
510, 514, 526, 545 

IRP _MLPNP major function code, 32, 148, 
178, 190, 212, 221, 222, 223-25, 240, 
405 

IRP _MLPOWER major function code, 67, 
212, 349-53, 350, 351, 352, 370, 388, 
389 

IRP _MLREAD major function code, 2, 3, 
31-32, 175, 178, 182,212, 294, 525, 
526, 530, 544 

IRP _MLSHUTDOWN major function code, 
212 

IRP ->1LSPECIAL major function code, 186 
IRP _MLSYSTEM_CONTROL major function 

code, 456, 469 
IRP _MLWRITE major function code, 175, 

212,294,394,525,526,530 
IRP _MN_CANCEL_REMOVE_DEVICE minor 

function code, 222, 244, 270 
IRP _MN_CANCEL_STOP _DEVICE minor 

function code, 222, 242, 270 
IRP _MN_CHANGE_SINGLE_INSTANCE minor 

function code, 456, 462, 464 
IRP _MN_CHANGE_SINGLE_lTEM minor 

function code, 456, 462, 465 
IRP _MN_DEVICE_USAGE_NOTIFlCATION 

minor function code, 32, 222, 242, 
263,270 

IRP _MN_DISABLE_COLLECTION minor 
function code, 456, 470 

IRP _MN_DISABLE,-EVENTS minor function 
code, 456, 472 

IRP _MN_EJECT minor function code, 222, 
270 

IRP _MN_ENABLE_COLLECTION minor 
function code, 456, 470 

Index 

IRP _MN_ENABLE_EVENTS minor function 
code, 456, 472 

IRP _MN...:.EXECUTE->1ETHOD minor function 
code, 456 

IRP _MN_FILTER_RESOURCE_REQUIREMENTS 
minor function code, 222, 261,270 

IRP _MN_POWER_SEQUENCE minor function 
code, 76-77,35~ 370,396 

IRP _MN_QUERY_ALL_DATA minor function 
code,456, 462,462 

IRP _MN_QUERY_BUS_INFORMATION minor 
function code, 222, 270 

IRP _MN_QUERY_CAPABILITIES minor 
function code, 222, 234, 270, 367 

IRP _MN_QUERY_DEVICE_RELATIONS minor 
function code, 222, 266,268,270, 276 

IRP _MN_QUERY_DEVICE_TEXT minor 
function code, 222, 270 . 

IRP _MN_QUERY_ID minor function code, 
222,270, 275-76 

IRP _MN_QUERY_INTERFACE minor function 
code, 222, 270, 277 

IRP _MN_QUERY]NP _DEVICE_STATE minor 
function code, 222, 270 

IRP _MN_QUERY]OWER minor function 
code, 349, 350,350, 353,378, 381, 
385, 389 

IRP _MN_QUERY_REMOVE_DEVICE minor 
function code, 222, 243,270 

IRP _MN_QUERY...;RESOURCE_REQUIREMENTS 
minor function code, 222, 270, 277 

IRP _MN_QUERY_RESOURCES minor function 
code,222,270 

IRP _MN_QUERY_SINGLE_INSTANCE minor 
function code, 456, 462, 462 

IRP _MN_QUERY _STOP _DEVICE minor 
function code, 222, 241,270 

IRP _MN_READ_CONFIG minor function 
code, 222, 270 

IRP _MN_REGINFO minor function code, 456, 
460,462 

IRP ~N_REMOVE __ DEVICE minor function 
code, 178, 221,222,233-34, 245, 247, 
249, 258, 270, 274, 287, 439, 450 

IRP _MN_SET_LOCK minor function code, 
222,270 

IRP _MN_SET_POWER minor function code, 
349, 350, 351, 353, 378,378, 381, 382 
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IRP _MN_START_DEVICE minor function 
code, 126, 129, 143, 178, 221, 222, 
227, 230, 240, 251, 263, 267, 268, 270, 
277, 315, 439, 510 

IRP _MN_STOP _DEVICE minor function code, 
221, 222, 232-33, 241, 243, 258, 270, 
439, 524 

IRP _MN_SURPRISE_REMOV AL minor 
function code, 32, 222, 234-35,270, 
287 

IRP_MN_WAIT_WAKE minor function code, 
35~ 389-91, 491, 535 

IRP _MN_ WRITE_CONFIG minor function 
code,222,270 

IRPs. See I/O request packets (IRPs) 
IRQL. See interrupt request level (IRQL) 
ISAPNP devices, 570 
IShellExtInit COM interface, 393 
IShellPropSheetExt COM interface, 393 
IsListEmpty function, 104, 105 
isochronous pipe management 

achieving acceptable performance, 544-46 
handling cancellation of the main IRP, 

546-54 
initiating a series of isochronous transfers, 

542-43 
introduced, 537, 537 
reserving bandwidth, 538-41,538,540 
streaming isochronous transfers, 554 
synchronizing isochronous transfers, 

5;4-56 
isochronous transfers, 488, 493, 502, 502 
ISRs. See interrupt service routines (ISRs) 
IUnknown objects in COM, 476-77 
IWbemClassObject interface, 471, 481-82, 484 
IWbemLocator interface, 477-78, 480 
IWbemObjectSink interface, 483 
IWbemServices interface, 479-84 

K 
KDEVICE_QUEUE object, 186-88, 187, 

236,237 
KdPrint macro, 76, 128 
KeAcquireSpin:LockAtDpcLevel function, 193 
KeAcquireSpinLock routine, 141, 171 
KeBugcheckEx function, 89-90 
KeCancelTirner function, 153 
KeClearEvent function, 147, 147, 149-50 
KeDelayExecutionThread routine, 158, 315 
KeFlushIoBuffers routine, 330, 341 
KelnitiaHzeDpc routine, 312 
KeInitializeEvent function, 147, 147, 227, 426 
KelnitializeMutex function, 152, 152 
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KelnitializeSemaphore function, 150, 150 
KeInitiaHzeSpinLock function, 140-41, 305 
KelnitializeTirnerEx function, 153, 155, 157 
KeInitializeTirner function, 153, 154, 155 
KelnsertByKeyDeviceQueue, function, 186-87 
KelnsertDeviceQueue function, 186-87, 188 
KelnsertQueueDpc routine, 312-13 
KeLowerIrql routine, 138-39, 188 
Ke preftx (Windows NT kernel), 72 
KeQuerySystemTime routine, 144 
KeRaiselrql routine, 138-39 
KeRaiselrqlToDpcLevel function, 139 
KeReadStateEvent function, 147, 149 
KeReadStateMutex function, 152, 152 
KeReadStateSemaphore function, 150, 151 
KeReadStateTimer function, 153 
KeReadStateXxx functions, 145, 149 
KeReleaseMutex function, 152, 153 
KeReleaseSemaphore function, 150, 151 
KeReleaseSpin:Lock routine, 141 
KeRemoveByKeyDeviceQueue function, 

186-87 
KeRemoveDeviceQueue function, 186-87, 

188 
KeResetEvent function, 147, 149 
KeRestoreFloatingPointState routine, 127 
kemel dispatcher objects 

blocking threads, 142-43 
introduced, 141-42, 142 
kernel events, 147-50, 147 
kernei mu[exes, 151-53, 152 
kernel semaphores, 150-51, 150 
kernel timers, 153-58, 153 
thread alerts and APCs, 159-62 
using threads for synchronization, 158-59 
waiting on multiple dispatcher objects, 

145-47 
waiting on single dispatcher objects, 

143-45 
kernel events, 147-50, 147 
kernel mode, 1-2 
kernel-mode address spaces. See user-mode 

and kernel-mode address spaces 
kernel-mode drivers 

attributes 
asynchronous, 9-10 
conftgurability, 7-8 
interruptibility, 8 
introduced, 7 
multiprocessor-safe, 8-9 
object-based, 9 
packet-driven, 9 



kernel-mode drivers, attributes, continued 
portability, 7 
preemptibility, 8 

introduced, 5, 6 
kernel-mode programming environment 

introduced,71-73, 73 
side effects, 74 
using standard run-time library functions, 

73 
kernel mutexes, 151-53, 152 
kernel semaphores, 150-51, 150 
kernel streaming, 542 
kernel timers, 153-58, 153 
KeSaveFloatingPointState function, 127 
KeSetEvent function, 144, 147, 148-49, 160, 

195, 229, 255, 429 
KeSetImportanceDpc routine, 312 
KeSetTargetProcessorDpc routine, 311 
KeSetTimerEx function, 153, 154, 155, 441 
KeSetTimer function, 153, 154, 155 
KeStallExecutionProcessor routine, 158 
KeSynchronizeExecution function, 138, 184, 

308, 447 
KeWaitForMultipleObjects routine, 141, 

145-47, 156-57, 438, 441, 450 
KeWaitForMutexObject macro, 153 
KeWaitForSingleObject routine, 137, 141, 143, 

151,160,161,214,228,450 
KeWaitXxx functions, 148-49, 151, 152, 154, 

155, 158 
KeXXxDeviceQueue routines, 211 
KEY_BASIC_INFORMATION data structure, 

122 
KEY]Ull_INFORMATION .data structure, 

121-22, 123 
KEY_VALUE_BASIC_INFORMATION data 

structure, 123 
KEY_VALUE]ARTIAL_INFORMATION data 

structure, 119-20 

L 
latency period, 347 
launching applications 

AutoLaunch service, 581-87, 588 
introduced, 581 
Windows 98 compatibility notes, 588 

leap years, 144-45 
__ leave statement, 88 
legacy device drivers, 5, 6 
linked lists 

doubly-linked lists, 104-6, 104 
interlocked access, 168-71 

linked lists, continued 
introduced, 102-3, 103 
singly-linked lists, 106-8, 106, 107 
S-Lists, 168-70 

LIST_ENTRY data structure, 102 
LOCeK instruction prefIx, 133~--34 
LogEventfunction, 409 
logging errors 

Index 

creating error log packets, 406, 408-10, 408 
creating message files, 406, 410-14, 411 
introduced, 406-7, 407 
Windows 98 compatibility notes, 449 

logical address, 340 
lookaside lists, 108-11, 108, 109, 110 
LOOPBACK sample, 525-31 
lower mter drivers, 400-401, 401, 402 
lower mters, 19, 20 

M 
magazines about driver development, 18 
MainCompletionRoutine routine, 363-64, 365 
major function code, defined, 2 
Managed Object Format (MOF), 453, 454-55 
Manufacturer section (INF mes), 560 
map registers, 320, 320 
MapTransfer function pointer, 321 
MapTransfer routine, 330, 334, 337, 339-41, 

343 
MDL (memory descriptor list) data structure, 

293, 295-98, 296, 296-97 
memcpy function, 73 
memory descriptor list (MDL) data structure, 

293,295-98,296, 296-97 
memory management 

heap allocator 
ExAllocatePoolWithTag function, 101-2 
introduced,99-100, 100 
releasing a memory block, 100-101 

introduced, 90-91 
linked lists 

doubly-linked lists, 104-6, 104 
interlocked access, 168-71 
introduced, 102-3, 103 
singly-linked lists, 106-8, 106, 107 
S-Lists, 168-70 

lookaside lists, 108-11, 108, 109, 110 
user-mode and kernel-mode address 

spaces 
compile-time control of pagability, 94-96 
introduced, 91-92, 91 
paged and nonpaged memory, 93-94 
page size, 92-93 
run-time control of pagability, 97-99, 97 
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memory-mapped devices, 298, 302-3 
memory resources, 298, 302-3 
message files, 406, 410-14, 411 
method routines, 9 
Microsoft Windows 98 

architecture, 3 
I/O requests in, 4-5, 4 
overview, 3-5, 3, 4 
system threads, 450 

Microsoft Windows 98 compatibility notes 
\?? directory, 70 
DeviceIoControl function, 287 
device properties, 588 
differences in DriverEntry call, 69 
differences in registry organization, 69 
error logging, 449 
importance of DO_POWER_PAGABLE, 

396-97 
I/O controls and Windows 98 virtual device 

drivers (VxDs), 449-50 
IoReleaseRemoveLockAndWait function, 

287 
IoReportTargetDeviceChangeAsynchronous 

function, 287 
IoReportTargetDeviceChange function, 287 
IRP _MLCLOSE major function code, 287 
IRP _MN_REMOVE_DEVICE minor function 

code, 287 
IRP _MN_SURPRISE_REMOV AL minor 

function code, 287 
iaunching appiications, 588 
pending IOCTL operations, 450 
PoCallDriver function, 397 
PoCancelDeviceNotify function, 398 
PO_POWER_NOOP flag, 398 
PoRegisterDeviceForIdleDetection routine, 

398 
PoRegisterDeviceNotify function, 398 
PoRegisterSystemState function, 398 
PoSetPowerState routine, 398 
PoSetSystemState function, 398 
PoStartNextPowerIrp routine, 398 
PoUnregisterSystemState function, 398 
property page providers, 588 
registry usage, 588 
requesting device power IRPs, 397 
unimplemented device types, 70 
virtual device drivers (VxDs) and I/O 

controls, 449-50 
Windows Management Instrumentation 

(WMI),485 
ZwXxx routine problems, 129 
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Microsoft Windows 2000 
architecture, 2 
driver types, 5-6,5 
Driver Verifier feature, 94 
I/O requests in, 2-3 
overview, 1-3,2 

Microsoft Windows NT components, 71-73, 
73 

min function, 74 
minidrivers, 5, 6, 11 
MmBuildMdlForNonPagedPool function, 296 
MmCreateMdl routine, 86 
MmGetMdlByteCount function, 296 
MmGetMdlByteOffset function, 296 
MmGetMdlVirtualAddress function, 296 
MmGetPhysicalAddress function, 296 
MmGetSystemAddressForMdl function, 297, 

425,512 
MmGetSystemAddressForMdlSafe function, 

297 
MmInitializeMdl function, 297 
MmLockPagableCodeSection function, 97, 98 
MmLockPagableDataSection function, 97, 98 
MmLockPagableSectionByHandle function, 

97, 98 
MmMapIoSpace routine, 301, 303 
MmPageEntireDriver function, 97, 98 
Mm preftx (Memory Manager), 72 
MmPrepareMdlForReuse function, 297 
MmProbeAndLockPages function, 77, 86, 

297-98,297, 512 
MmResetDriverPaging function, 97, 98-99 
MmSizeOfMdl function, 297 
MmUnlockPagableImagesSection function, 

97, 98 
MmUnlockPages function, 297 
MOF (Managed Object Format), 453, 454-55 
multifunction devices. See controller and 

multifunction devices 
multiprocessor-safe kernel-mode drivers, 8-9 
mutexes, kernel, 151-53, 152 
mutex objects, fast, 162-64, 162-63, 163 

N 
newsgroup about driver development, 18 
Next method, 481, 482 
nonarbitrary thread context, 142 
nonpaged memory, paged memory and, 
93-94 



notifications 
device usage, 263-65, 263 
PnP 

custom, 285-87 
extensions to WM_DEVICECHANGE 

message, 278-79 
introduced, 277-78 
kernel-mode, 281-85, 283 
knowing when to close a device handle, 

279-80 
to Windows 2000 services, 280-81 

notification timers 
used like events, 153-55 
used with DPCs, 155-56 

NOTIFY sample, 431-35 
NtAlertThread API function, 159 
NtReadFile function, 1-2, 160, 161 
NTSTATUS codes, 45, 75-77, 75, 189 
NtWaitForSingleObject function, 160 
null-terminated strings, 112 

o 
ObDereferenceObject routine, 159, 429, 438 
OBJECT_ATTRIBUTES data structure, 117 
object-based kernel-mode drivers, 9 
Object Manager, kernel-mode drivers and, 9 
Ob prefix (Object Manager), 72 
ObReferenceObjectByHandle routine, 

159, 437 
ObReferenceObject routine, 269 
OkayToRemove function, 244 
OnCancelReadWrite routine, 547, 549 
OnInterrupt routine, 307, 317-19, 343-44, 533 
OnNewDevice function, 584-85, 586 
OnReadWriteComplete routine, 529, 546 
OnRequestComplete routine, 228, 229 
OnStageComplete routine, 545, 546, 547-48 
OnTimer routine, 446 
OpenDevRegKey routine, 574 
OpenEvent routine, 429 
OUT keyword, 45 

p 
packet-based DMA, 323 
packet-driven kernel-mode drivers, 9 
pagability 

compile-time control of, 94-96 
run-time control of, 97-99, 97 

paged and nonpaged memory, 93-94 
page faults, 93, 129 
page size, 92-93 
page tables, 92 

Index 

paging, IRQL and, 137 
Parameters. UsageN otification substructure, 

263,263 
partially opaque objects, 9, 35 
PASSIVE_LEVEL IRQL, 8, 134, 135, 136, 136, 

137, 138, 143, 147, 150, 155, 165, 
192-93, 213, 227, 353, 388, 397, 405, 
406, 427, 442, 444 

PCI42 sample 
handling the interrupt, 317-19 
initializing, 313-15 
introduced, 313 
starting a read operation, 315-17 
testing, 319 

PCI devices, 566--67 
PCMCIA devices, 568 
PD~ drivers, 21 
PDOs. See phYSical device objects (PDOs) 
periodic timers, 156 
physical device objects (PDOs) 

device object interrelations, 30-32, 31, 
32,33 

introduced, 19, 20, 21-22 
PIO (programmed I/O). See PCI42 sample; 

PIOFAKE sample 
PIOFAKE sample, 446-49 
PKTDMA sample, 342-44 
Plug and Play (PnP) 

controller and multifunction devices 
creating child device objects, 267-68 
handling child device resources, 277 
handling device removal, 274 
handling 

IRP _MN_QUERY_DEVICE_RELATIONS 
minor function code, 276 

handling IRP_MN_QUERY_ID minor 
function code, 275-76 

introduced, 265-66 
overall architecture, 266 
PD~ handling of PnP requests, 270-74, 

270 
telling the PnP Manager about our 

children, 268-70 
device usage notifications, 263-65, 263 
flltering resource requirements, 261-63 
introduced, 221-23,222, 223 
IRP _MLPNP dispatch function, 223-25 
managing PnP state transitions 

DEVQUEUE implementation, 250-60 
introduced, 236-37,236, 237 
using DEVQUEUE for IRP queuing and 

cancellation, 237-40, 238 
using DEVQUEUE with PnP requests, 

240-50, 245 
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Plug and Play (PnP), continued 
Microsoft Windows 98 compatibility notes 

DeviceloControl function, 287 
IoReleaseRemoveLockAndWait function, 

287 
IoReportTargetDeviceChangeAsynchronous 

function, 287 
IOReportTargetDeviceChange function, 

287 
IRP _MLCLOSE major function code, 287 
IRP _MN_REMOVE_DEVICE minor 

function code, 287 
IRP _MN_SURPRISE_REMOV AL minor 

function code, 287 
notifications 

custom, 285-87 
extensions to WM_DEVICECHANGE 

message, 278-79 
introduced, 277-78 
kernel-mode, 281-85, 283 
knowing when to close a device handle, 

279-80 
to Windows 2000 services, 280-81 

PnP Manager, 20-21 
starting and stopping devices 

extracting resource assignments, 230-31, 
231 

forwarding and awaiting the IRP, 227-29, 
229 

introduced, 225-27,226 
IRP _MN_REMOVE_DEVICE minor 

function code, 233-34 
IRP _MN_STOP _DEVICE minor function 

code, 232-33 
IRP _MN_SURPRISE_REMOV AL minor 

function code, 234-35 
PLUGPLAY_NOTIFlCATION_HEADER da1:<l 

structure, 283, 283 
PnP. See Plug and Play (PnP) 
-PnP drivers, 5, 6 
PNPEVENT sample, 280 
PnP Manager, 20-21 
PNPMON sample, 285 
PoCallDriverroutine, 351, 352, 397 
PoCancelDeviceNotify function, 398 
PoCompletionRoutine routine, 372 
polling devices, 436, 438-42 
POLLING sample, 438-42 
PopEntryList function, 103, 106, 106, 108 
PO]OWER_NOOP flag,- 398 
PoRegisterDeviceForIdleDetection function, 

391, 398 
PoRegisterDeviceNotify function, 398 
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PoRegisterSystemState function, 392, 398 
PoRequestPowerlrp function, 370-72, 395 
portability of kernel-mode drivers, 7 
port resources, 298, 300-302 
PoSetDeviceBusy function, 391, 394 
PoSetPowerState routine, 398 
PoSetSystemState function, 398 
PoStartNextPowerirp routine, 350, 352, 

365, 398 
POUnregisterSystemState function, 398 
POWCONTEXT data structure, 354 
POWER_LEVEL IRQL, 135 
power management 

flags to set in AddDevice, 387-88,387 
idle detection, 391-95, 393 
introduced, 345-46 
managing power transitions 

device power IRPs, 375-87, 376, 377, 
378, 379, 382, 383, 386 

initial handling for new IRPs, 357--61 
introduced, 353-54 
overview of the finite state machine, 

354-57,356 
system power IRPs that decrease power, 

372-75,373,374 
system power IRPs that increase power, 

361-72, 361, 362, 368 
Microsoft Windows 98 compatibility notes 

importance of DO_POWER_PAGABLE, 
396-97 

PoCaHVrtver function, 397 
POCancelDeviceNotify function, 398 
PO]OWER_NOOP flag, 398 
PoRegisterDeviceForidleDetection 

routine, 398 
PoRegisterDeviceNotify function, 398 
PoRegisterSystemState function, 398 
PoSetPowerState routine, 398 
PoSetSystemState function, 398 
PoStartNextPowerirp routine, 398 
PoUnregisterSystemState function, 398 
requesting device power IRPs, 397 

using sequence numbers.to optimize state 
changes, 395-96 

wake-up features, 388-91,389 
WDM power model 

device power and system power states, 
347-48, 347, 348 

handling IRP _MLPOWER requests, 
349-53, 350, 351, 352 

introduced, 346 
power state transitions, 349 
roles of WDM drivers, 346-47 

WMI commands for, 475, 475 



power relation, 395 
power states, initial, setting, 68 
Power substructure, 350, 350 
preamble packet, 490, 496 
preemptibility of kernel-mode drivers, 8 
ProbeForRead routine, 77, 425-26 
ProbeForWrite routine, 77, 83, 425-26 
PROFILE_LEVEL IRQL, 135, 136 
programmed I/O (PIO). See PCI42 sample; 

PIOFAKE sample 
property page providers, 576--80, 588 
protocol stall, 497 
PsCreateSystemThread routine, 159, 436 
Ps prefIx (Process Structure module), 72 
PsTerminateSystemThread routine, 158, 436, 

438,450 
PushEntryList function, 106, 106, 108 
PutDmaAdapter function pointer, 321 
Put method, 482 
PutScatterGatherList function pointer, 321 
PutScatterGatherList routine, 336 

Q 
QueryDataBlock routine, 461-64, 462, 463, 

467, 468 . 
Querylnterface method, 476-77 
QueryPower function, 381 
QueryReglnfo routine, 460-61, 468-69 

. queues, custom, 186-88, 187 
QueueUserAPC API function, 159, 162 

R 
RaiseException API function, 85 
raising exceptions, 85-86, 85 
RANDOMJUNK data structure, 443, 444, 445 
ReadDmaCounter function, 341 

, ReadDmaCounter function pointer, 321 
ReadFile function, 1-2, 4, 160, 415 
reading and writing data. See also direct 

memory access (DMA) 
addressing data buffers 

buffered method, 293, 294-95 
direct method, 293, 295-98, 296, 296-97 
introduced,' 293-94, 293 
neither method, 293, 298 

conflguring devices, 289-92, 290, 292 
ports and registers 

introduced, 298-300, 299, 300 
memory resources, 298, 302-3 
port resources, 298, 300-302 

Index 

reading and writing data, continued 
servicing interrupts (see also deferred 

procedure calls (DPCs); PCI42 sample) 
configuring interrupts, 303-5 
handling interrupts, 306--8 

ReadWrite function, 525-31 
recursive enumeration, 22-23, 23 
RegisterDeviceNotification routine, 278, 279, 

581-82 
RegisterServiceCtrlHandlerEx routine, 

280, 582 
RegisterServiceCtrlHandler routine, 582 
registry 

accessing 
accessing device keys from user mode, 

26-27 
deleting subkeys or values, 121 
enumerating subkeys or values, 121-23 
getting and setting values, 119-21, 120 
introduced, 116, 116 
opening registry keys, 116-19, 118 

class keys, 24, 27-28, 28, 69 
differences in Windows 98 and Windows 

2000 organization, 69 
hardware (instance) keys, 24-27, 24, 26, 

69, 571-74, 572, 588 
key naming scheme, 25 
role in system driver loading, 24-29,24, 

26, 28, 29 
service (software) ,keys, 24, 28-29, 29, 69 
values useful to WDM drivers, 120 
Windows 98 compatibility notes, 588 

Release method, 476-77 
RemoveDevice function, 234, 456 
RemoveEntryList function, 104, 105 
RemoveHeadList function, 104, 105, 255 
RemoveTailList function, 104, 105 
repeater IRPs, 271-74 
repository, 453 
RequestDeviceWakeup API function, 391 
ResetDevice routine, 314-15, 529, 532 
ResetPipe routine, 529, 531 
RestartRequests function, 238, 241,242, 

256, 360 
RtlAssert function, 128 
RtlCompareMemory function, 115 
RtlCompareUnicodeString function, 73 
RtlCopyBytes function, 73, 115, 115 
RtlCopyMemory function, 115, 115 
RtlDeleteRegistryValue function, 116, 

116, 121 

621 



Programming the Microsoft Windows Driver Model 

RtlEqualMemory function, 115 
RtiFillBytes function, 115 
RtiFillMemory function, 115 
RtiFreeUnicodeString function, 519 
RtlMoveMemory function, 115 
Rtl prefix (run-time library), 72 
RtiQueryRegistryValues function, 116, 120 
RtlWriteRegistryValue function, J.J6 
Rt:lXxx functions, 113-14, 113, 115,115 
RtiZeroBytes function, 115 
RtiZeroMemory function, 115, 358 
RunOnce key, 586--87 
run-time control of pagability, 97-99, 97 
RWCONTEXT data structure, 544-45 

S 
S5933 PCI chip set (Applied Micro Circuits 

Corporation (AMCC». See PCl42 
sample; PKTDMA sample 

SAMCLASS sample, 576--80 
sample code. See also GENERIC.SYS library; 

PCl42 sample; WDMWIZ.A WX wizard 
companion disc and, 12-13, 13 
EVENTLOG sample, 409, 411-13, 414 
FEATURE sample, 534-35 
introduced, 12 
LOOPBACK sample, 525-31 
method used for creating samples, 13-14 
NOTIFY sample, 431-35 
PIOFAI<..E sa...T..ple, 446-49 
PKTDMA sample, 342-44 
PNPEVENT sample, 280 
PNPMON sample, 285 
POllING sample, 438-42 
SAMCLASS sample, 576--80 
USB42 sample, 524-25 
USBINT sample, 533-34 
USBISO sample, 538-47 
WMI42.SYS sample, 454, 461, 463-64, 465, 

466, 467, 469, 479-82 
WMIEXTRA sample, 469, 470, 472, 473, 

482-85 
WORKITEM sample, 442-45 

SCATTER_GATHER_UST data structure, 336 
scatter/gather lists, 322, 332-35 
SCSI devices, 568--69,568 
section placement, 96 
sections, 94" 
security, device names and, 54-56 
SelectAlternateInterface function, 538-40 
semaphoresI' kernel, 150-51, 150 
seminars about driver development, 18 
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SendAwaitUrb function, 539 
SendDeviceSetPower function, 366, 394, 395 
Se preftx (Security Reference Monitor), 72 
service (software) keys, 24, 28-29, 29, 69 
ServiceMain function, 582 
SetBlanket routine, 480 
SetDataBlock routine, 464-65, 467 
SetDataltem routine, 465-66, 467 
SetEvent function, 147 
SetupDevice function, 314, 315 
SetupDiEnumDeviceInterfaces routine, 63 
SetupDiGetDevicelnterfaceDetail routine, 63 
SetupDiGetDeviceRegistryProperty 

routine, 573 
SetupDiOpenDeviceInterfaceRegKey 

routine, 118 
SetupDiOpenDeviceRegistryKey routine, 574 
SetupDiXXx routines, 561 
SETUP token, 497-99, 498 
SetWindowLong routine, 578, 579 
ShellExecute routine, 578-79, 580 
Shutdown state, 348, 348 
SINGLE_UST_ENTRY data structure, 102-3 
singly-linked lists, 106--8, 106, 107 
slave DMA, 322, 337-39, 340-41 
Sleeping1, Sleeping2, and Sleeping3 states, 

348,348 
S-Lists, 168-70 
Soft-Ice/W (Compuware), 128 
software (service) keys, 24, 28-29, 29, 69 
SP _DEVINFO_DATA data structure, 577, 5M6 
spin locks, 9, 131, 139-41, 553 

global cancel, 204 
SP _PROPSHEETPAGE_REQUEST data 

" structure, 577 
StallRequestsAndNotify routine, 360, 377 
StallRequests function, 238, 241, 252, 254, 256 
standard controls, 475, 475 
standard data blocks, 474-75, 474 
StartDevice function, 230, 232, 290-92, 

313-14, 324,338-39, 514-15 
StartInterruptUrb routine, 533 
StartIo routine, 183-84, 201-2, 206, 211, 239, 

248-49, 251, 254, 255, 315-16, 332, 
335-36, 392, 439 

StartIoSpecial function, "186 
StartNextPacket function, 238,238, 239, 

248-49, 254-56, 259, 377-78 
StartPacket function, 238, 238, 239, 252-54 
StartTransfer function, 342-43 
STARTUPINFO data structure, 585 
STATUS_ACCESS_ VIOLATION code, 129 
status codes, 45, 75-77, 75 



StopDevice function, 232, 243, 302, 324, 438 
StopThread routine, 438 
string descriptors, 503, 509-10, 518-19 
string handling 

allocating and releasing string buffers, 114 
data blobs, 114-15, 115 
introduced, 111-14, 112, 113 

structured exception handling 
examples, 86-89 
exception filter expressions, 83-85 
introduced,77-79, 78 
raising exceptions, 85-86, 85 
try-except blocks, 79, 81--83, 82 
try-finally blocks, 79--81, 80 

symbolic links, 52-54, 53 
sync critical section routine, 308 
SynchCritSection routines, 184 
synchronization 

archetypal problem, 132-34 
fast mutex objects, 162-64, 162-63, 163 
interlocked arithmetic, 164-68, 165 
interlocked list access, 168-71 
introduced, 131 
IRQL 

APC_LEVEL, 135, 135, 162, 164, 192-93, 
215, 218 

basic synchronization rule, 136 
CLOCKCLEVEL, 135 
CLOCK2~LEVEL, 135 
compared with thread priorities, 137 
device IRQL (DffiQL), 8,135,170 
DISPATCH_LEVEL, 8, 93, 100, 126, 134, 

135, 135, 136, 136, 137, 138, 139, 140, 
141, 143, 145, 147, 148, 149, 153, 165, 
170,171,183,188,192-93,219,264-
65,308,310,353,388,397,406,427, 
442 

explicitly controlling, 138-39 
HiGH_LEVEL, 135, 135, 171 
implicitly controlling, 137-38 
interrupt priority in action, 136, 136 
introduced, 131, 134-35, 135 
IPCLEVEL, 135 
of ISRs, 306 
and paging, 137 
PASSIVE_LEVEL,8, 134, 135, 136, 136, 

137, 138, 143, 147, 150, 155, 165, 
192-93, 213, 227, 353, 388, 397, 405, 
406,427,442,444 

POWER_LEVEL, 135 
PROFILE_LEVEL, 135, 136 
SYNC_LEVEL, 134 

Index 

synchronization, continued 
kernel dispatcher objects 

blocking threads, 142-43 
introduced, 141-42, 142 
kernel events, 147-50, 147 

• 

kernel mutexes, 151-53, 152 
kernel semaphores, 150-51, 150 
kernel timers, 153-58, 153 
thread alerts and APCs, 159-62 
using threads for synchronization, 

158-59 
waiting on multiple dispatcher objects, 

145-47 
waiting on single dispatcher objects, 

143-45 
spin locks, 9,131,139-41 

synchronization objects, 9, 131, 1~9-41 
synchronization problems with multiple 

CPUs,8-9 
synchronization timers, 156 
SYNC_LEVEL IRQL, 134 
SysAllocateString routine, 480 
system controller, 322, 337-39 
system threads 

T 

creating and terminating, 436-38 
introduced, 436 
using for device polling, 438-42 
waiting for threads to fmish, 450 

Tail.Overlay data structure, 176, 176 
TARGELDEVICE_CUSTOM_NOTIFICATION 

data structure, 286 
thread alerts and APCs, 159-62 
'thread context 

arbitrary, 10, 142 
nonarbitrary, 142 

thread priorities compared with ffiQL, 137 
thread rundown, 214 
threads 

blocking, on kernel dispatcher objects, 
142-43 

system 
creating and terminating, 436-38 
introduced, 436 
using for device polling, 438-42 
waiting for threads to fmish, 450 

using for synchronization, 158-59 
timers 

kernel, 153-58, 153 
watchdog, 446-49 

timestamps and dates, 144-45 
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timing of file operations, 126 
token phase, 494-95, 495 
transactions, 494-95, 494, 495 
TransferFirst routine, 184, 316-17 
translation buffers, 92 
try-except blocks, 79, 81~3, 82 
try-finally blocks, 79~1, 80 
__ try statement, 79~3, 80, 82, 85 

U 
UncacheControlRequest function, 430, 431-34 
UNICODE_STRING data structure, 56-57, 111, 

112,112, 114 
Unicode strings, 111, 112-14, 112, 113 
universal serial bus (USB) 

bulk transfer pipe management, 524-32 
bulk transfers, 488, 493, 500-501, 501 
configuration 

finding handles, 523-24 
introduced, 514-16 
reading configuration descriptors, 

516-17,516 
selecting the configuration, 517-23 
shutting down the device, 524 

control requests, 534-36,536, 537 
control transfers, 488, 493, 496-500, 498, 

499 
descriptors 

configuration, 503, 506-7,507 
devicc, 503-6, 503, 505 
endpoint, 503, 508-9,508,509 
interface, 503, 507~ 
introduced, 503,503 
other, 503, 510 
string, 503, 509-10, 518-19 

device contents, 491-93, 491, 492 
device hierarchy 

high-speed and low-speed devices, 490 
introduced, 489, 490 
power, 490-91 

device version numbering, 505 
information flow 
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bulk transfers, 488, 493, 500-501, 501 
control transfers, 488, 493, 496-500, 498, 

499 
information packaging, 494-96, 494, 495 
interrupt transfers, 488, 493, 501, 502 
introduced, 493-94, 493 
isochronous transfers, 488, 493, 502, 502 
states of an endpoint, 496, 496 

initiating requests 
introduced, 510-12,511-12 
sending URBs, 512-14 
status returns from URBs, 514 

interrupt pipe management, 532-34 
interrupt transfers, 488, 493, 501, 502 
introduced, 487~9 
isochronous pipe management 

achieving acceptable performance, 
544-46 

handling cancellation of the main IRP 
546-54 ' 

initiating a series of isochronous 
transfers, 542-43 

introduced, 537, 537 
reserving bandwidth, 538-41,538,540 
streaming isochronous transfers, 554 
synchronizing isochronous transfers 

554-56 ' 
isochronous transfers, 488, 493, 502, 502 

UnregisterDeviceNotification routine 278 
upper filter drivers, 400, 400 ' 
upper filters, 19, 20 
UrbControlDescriptorRequest substructure, 

511 
URBs (USB request blocks), 488, 510-14, 

511-12 
USB. See universal serial bus (USB) 
USB42 sample, 524-25 
UsbBuildFeatureRequest macro, 512, 534-35 
UsbBuildGetDescriptorRequest macro, 511, 

511 
UsbBuildGetStatusRequest macro, 511 
UsbBuildInterruptOrBulkTransferRequest 

macro, 511 
UsbBuildSelectConfigurationRequest macro, 

512 
UsbBuildSelectInterfaceRequest macro, 512 
UsbBuildVendorRequest macro, 512 
USBD _ CreateConfigurationRequestEx 

function, 517, 523 
USBD drivers, 492-93 
USB devices, 570 
USBD_INTERFACE_INFORMATION data 

structure, 522, 523 
USBD_INTERFACE_LIST_ENTRY data 

structure, 520 
USBD _ParseConfigurationDescriptorEx 

routine, 520, 521 
USBD_PIPE_INFORMATION data structure, 

522, 524 



USBINT sample, 533-34 
USBISO sample, 538-47 
USB request blocks (URBs), 488, 510-14, 

511-12 
user mode 

accessing device keys from, 26-27 
defined, 1 
introduced, 1-2 

user-mode and kernel-mode address spaces 
compile-time control of pagability, 94--96 
introduced, 91-92, 91 

V 

paged and nonpaged memory, 93-94 
page size, 92-93 
run-time control of pagability, 97-99,97 

VDDs (virtual device drivers, Windows 2000), 
5, 6 

Version section (INF files), 558 
video drivers, 5, 6 
virtual device drivers (VxDs, Windows 98) 

introduced, 5, 6 
I/O controls and, 449--50 

virtual device drivers (VDDs, Windows 2000), 
5, 6 

VirtualFree routine, 426 
Virtual Machine Manager (VMM), 3,3 
VxDs. See virtual device drivers (VxDs, 

Windows 98) 
VMM (Virtual Machine Manager), 3,3 

W 
WaitForCurrentIrp function, 238, 241, 258--59 
WaitForSingleObject API function, 418 
WaitWakeCallback routine, 390 
wake-up features, 388--91,389 
watchdog timers, 446-49 
WBEM (Web-Based Enterprise Management). 

See Windows Management 
Instrumentation (WMI) 

wcscmp function, 73 
WDM drivers introduced, 5, 6 
WDM (Windows Driver Model) introduced, 

10-11, 11 
WDMWIZ.AWX wizard, 13-14 
Web-Based Enterprise Management (WBEM). 

See Windows Management 
Instrumentation (WMI) 

Web site of author, 17 
Win16 applications, I/O operations in, 4--5, 4 
Windows. See Microsoft Windows entries 

Index 

Windows Driver Model (WDM) introduced, 
10-11, 11 

Windows Management Instrumentation 
(WMI) 

calling method routines, 483-85 
concepts 

introduced, 452-53, 453 
sample schema, 454--55 

connecting to namespaces, 479-80 
dealing with multiple classes, 469 
dealing with multiple instances, 466-67 
enumerating class instances, 480-81 
events, 471-72 
expensive statistics, 470-71 
getting and setting item values, 481-82 
instance naming, 467-69, 468 
introduced, 451, 452 
method routines, 472-74 
power management commands, 475, 475 
receiving event notifications,482-83 
standard controls, 475, 475 
standard data blocks, 474--75, 474 
user-mode applications and 

accessing WMI information, 479-85 
Component Object Model (COM) 

interfaces, 476-78 
introduced, 475-76 

WDM drivers and 
advanced features, 466-75, 468, 474, 475 
delegating IRPs to WMILIB, 457-66, 462, 

463 
introduced, 456-57, 456 

Windows 98 compatibility notes, 485 
WMI and WBEM names, 452 

wizards 
hardware, 560-61,561 
WDMWIZ.AWX, 13-14 

WM_COMMAND message, 579-80 
WM_DEVICECHANGE message, 249, 277-80, 

581 
WMI. See Windows Management 

Instrumentation (WMI) 
WMI42.SYS sample, 454, 461, 463--64, 465, 

466, 467, 469, 479-82 
WmiCompleteRequest routine, 462, 464, 465, 

470 
WMIEvent class, 471 
WMIEXTRA sample, 469, 470, 472, 473, 

482-85 
WmiFireEvent routine, 472 
WMIGUIDREGINFO data structure, 468 
WMILlB_CONTEXT data structure, 458, 

460, 466 

625 



Programming the Microsoft Windows Driver Model 

WMIUB DLL, 457, 459-60, 485 
WM_INITDIALOG message, 578-79 
WMlREGINFO data structure, 461, 462, 466 
WMI substructure, 457 
WmiSystemControl routine, 459 
Working state, 348,348, 349 
WORKITEM sample, 442-45 
WORK_QUEUE_lTEM data structure, 442-43 
WriteFile function, 175,415 
writing data. See reading and writing data 

Z 
ZwClose function, 116, 117, 125,438 
ZwCreateFile function, 123-25, 129, 161, 208 
ZwCreateKey function, 116-17, 116 
ZwDeleteKey function, 116, 121 
ZwEnumerateKey function, 116, 122, 123 
ZwEnumerateValueKey function, 116, 123 
ZwFlushKey function, 116 
ZwOpenKey function, 69, 116, 116, 117 
Zw prefix (Win32 kernel mode), 72 
ZwQuerylnformationFile function, 125, 129 
ZwQueryKey function, 116, 121, 122, 123 
ZwQueryValueKey function, 116, 119 
ZwReadFile function, 125, 129, 161 
ZwSetValueKey function, 116, 121 
ZwWriteFile function, 125, 129 
ZwX:xx function problems, 129 

626 



WALTER ONEY 

Walter Oney is a freelance software consultant based in Boston, Massachusetts. A 
member of the class of 1968, he holds S.B. and S.M. degrees in Electrical Engineering 
from the Massachusetts Institute of Technology. When not teaching programming semi
nars, he enjoys running, cycling, watching ballet, and playing the oboe. 



About the Companion Disc 

The companion disc for Programming the Microsoft Windows Driver Model contains 
more than 20 sample drivers and test programs to illustrate the topics covered by the 
book. Each sample also has an HTML file that describes the overall purpose of the 
sample and contains brief instructions about how to build and test the sample. 

The companion disc also includes a wizard to help learn about creating driv
ers (WDMWIZ.AWX), a library to help handle Plug and Play and power management 
details (GENERIC.SYS), a utility to qUickly install drivers in Windows 2000 (FASTINST), 
and a fully searchable electronic version of the book. 

SYSTEM REQUIREMENTS 
To test the samples, you must have either (preferably both) of the following operat
ing systems: 

• Microsoft Windows 98. (Some samples require Windows 98, Second 
Edition.) 

• Microsoft Windows 2000. (The samples were tested with Windows 2000 
RCL) 

To build the samples, you must have the following software installed: 

• Microsoft Visual C++ 6.0, Professional or Enterprise Edition. 

• Microsoft Platform Software Development Kit (SDK). (The samples were 
built and tested with the version that accompanied the RCI release of 
Windows 2000.) 

• Microsoft Windows 2000 Driver Development Kit (DDK). (The samples 
were built and tested with the version that accompanied the RCI release 
of Windows 2000.) 

• Microsoft Windows 98 Driver Development Kit (DDK). (Only some of the 
samples require this DDK.) 

For information about Microsoft's SDKs, see http://msdn.microsojt.com/developerlsdkl. 
For information about Microsoft's DDKs, see http://www.microsojt.com/ddkl. 
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IMPORTANT-READ CAREFULLY: This Microsoft End-User Ucense Agreement ("EULA") is a legal agreement between you (either 
an individual or an entity) and Microsoft Corporation for the Microsoft product identified above, which includes computer software and 
may include associated media, printed materials, and "on-line" or electronic documentation ("SOFTWARE PRODUCT'). Any compo
nent included within the SOFTWARE PRODUCT that is accompanied by a separate End-User Ucense Agreement shall be governed 
by such agreement and not the terms set forth below. By installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree 
to be bound by the terms of this EULA.lf you do not agree to the terms of this EULA, you are not authorized to install, copy, or otherwise 
use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PRODUCT, along with all printed materials and other items 
that form a part of the Microsoft product that includes the SOFTWARE PRODUCT, to the place you obtained them for a full refund. 

SOFTWARE PRODUCT LICENSE 

The SOFTWARE PRODUCT is protected by United States copyright laws and international copyrigbt treaties, as well as other intellectual 
property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold. 

1. GRANT OF LICENSE. This EULA grants you the following rights: 

a. Software Product. You may install and use one copy of the SOFTWARE PRODUCT on a single computer. The primary user of the 
computer on which the SOFfW ARE PRODUCT is installed may make a second copy for his or her exclusive use on a portable 
computer. 

b. StoragelNetwork Use. You may also store or install a copy of the SOFTWARE PRODUCT on a storage device, such as a network 
server, used only to install or run the SOFfW ARE PRODUCT on your other computers over an internal network; however, you must 
acquire and dedicate a license for each separate computer on which the SOFTWARE PRODUCT is installed or run from the storage 
device. A license for the SOFfW ARE PRODUCT may not be shared or used concurrently on different computers. 

c. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may make the number of additional copies of the 
computer software portion of the SOFTWARE PRODUCT authorized on the printed copy of this EULA, and you may use each copy in 
the manner specified above. You are also entitled to make a corresponding number of secondary copies for portable computer use as 
specified above. 

d. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT that are identified within the SOFTWARE 
PRODUCT as sample code (the "SAMPLE CODE"): 

i. Use and Modification.· Microsoft grants you the right to use and modify the source code version of the SAMPLE CODE, provided 
you comply with subsection (d)(iii) below. You may not distribute the SAMPLE CODE, or any modified version of the SAMPLE 
CODE, in source code form. 

ii. Redistributable Files. Provided you comply with subsection (d)(iii) below, Microsoft grants you a nonexclusive, royalty-free right 
to reproduce and distribute the object code version of the SAMPLE CODE and of any modified SAMPLE CODE, other than 
SAMPLE CODE (or any modified version thereof) designated as not redistributable in the Readme file that forms a part of the 
SOFTWARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other than the Non-Redistributable 
Sample Code is collectively referred to as the "REDISTRlBUTABLES." 

iii. Redistribution Requirements. If you redistribute the REDISTRIBUT ABLES, you agree to: (i) distribute the 
REDISTRIBUTABLES in object code form only in conjunction with and as a part of your software application product; (ii) not use 
Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid copyright notice on your 
software application product; (iv) indemnify, hold harmless, and defend Microsoft from and against any claims or lawsuits, 
including attorney's fees, that arise or result from the use or distribution of your software application product; and (v) not permit 
further distribution of the REDISTRIBUTABLES by your end user. Contact Microsoft for the applicable royalties due and other 
licensing terms for all other uses and/or distribution of the REDISTRIBUTABLES. 

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS. 

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or disassemble 
the SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding 
this limitation. 

• Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated 
for use on more than one· computer. 

• Rental. You may not rent, lease, or lend the SOFfW ARE PRODUCT. 

• Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFTWARE PRODUCT 
("Support Services"). Use of Support Services is governed by the Microsoft policies and programs described in the user manual, in 
"on-line" documentation, and/or in other Microsoft-provided materials. Any supplemental software code provided to you as part of the 
Support Services shall be considered part of the SOFTWARE PRODUCT and subject to the terms and conditions of this EULA. With 
respect to technical information you provide to Microsoft as part of the Support Services, Microsoft may use such information for its 
business purposes, including for product support and development. Microsoft will not utilize such technical information in a form that 
personally identifies you. 



• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no copies, you transfer all 
of the SOFTWARE PRODUCT (including all component parts, the media and printed materials, any upgrades, this EULA, and, if 
applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this EULA. 

• Termination. Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with the terms and 
conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts. 

3. COPYRIGHT. A1l title and copyrights in and to the SOFfWARE PRODUCT (including but not limited to any images, photographs, 
animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUTABLES, and "applets" incorporated into the SOFTWARE 
PRODUCT) and any copies of the SOFfW ARE PRODUCT are owned by Microsoft or its suppliers. The SOFTWARE PRODUCT is 
protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE PRODUCT like any other 
copyrighted material except that you may install the SOFTWARE PRODUCT on a single computer provided you keep the original solely 
for backup or archival purposes. You may not copy the printed materials accompanying the SOFTWARE PRODUCT. 

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with RESTRICTED 
RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii) ofthe Rights in 
Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer 
Software--Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Microsoft Corporation/One Microsoft WaylRedmond, 
W A 98052-6399. 

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereof, or any 
process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing co1lectively referred to as the "Restricted 
Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifica1ly agree not to export or re
export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted the export of goods or services, 
which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria, or to any national of 
any such country, wherever located, who intends to transmit or transport the Restricted Components back to such country; (ii) to any end 
user who you know or have reason to know will utilize the Restricted Components in the design, development, or production of nuclear, 
chemical, or biological weapons; or (iii) to any end user who has been prohibited from participating in U.S. export transactions by any 
federal agency of the U.S. government. You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended, 
revoked, or denied your export privileges. . 

6. NOTE ON JAVA SUPPORT. THE SOFTWARE PRODUCT MAY CONTAIN SUPPORT FOR PROGRAMS WRITTEN IN JAVA. 
JAVA TECHNOLOGY IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED, OR INTENDED FOR USE OR 
RESALE AS ON-LINE CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, 
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TRAFFIC CONTROL, DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF JAVA 
TECHNOLOGY COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL 
DAMAGE. SUN MICROSYSTEMS, INC. HAS CONTRACTUALLY OBLIGATED MICROSOFT TO MAKE TillS DISCLAIMER. 

DISCLAIMER OF WARRANTY 

NO WARRANTIES OR CONDmONS. MICROSOFf EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDmON FOR THE 
SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT 
WARRANTY OR CONDmON OF ANY KIND, ElTHER EXPRESS OR IMPLlED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. THE ENTIRE RISK 
ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS WITH YOU. 

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL 
MICROSOFf OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES 
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, 
LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE 
THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MICROSOFf HAS 
BEEN ADVISED OF THE POSSmILITY OF SUCH DAMAGES. IN ANY CASE, MICROSOFf'S ENTIRE LIABILITY UNDER ANY 
PROVISION OF TIllS EULA SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE 
SOFTWARE PRODUCT OR US$5.00; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A MICROSOFf SUPPORT SERVICES 
AGREEMENT, MICROSOFf'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF 
THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF 
LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU. 

MISCELLANEOUS 

This EULA is govemed by the laws of the State of Washington USA, except and only to the extent that applicable law mandates governing law 
of a different jurisdiction. 

Should you have any questions conceming this EULA, or if you desire to contact Microsoft for any reason, please contact the Microsoft subsidiary 
serving your country, or write: Microsoft Sales Information Center/One Microsoft WaylRedmond, WA 98052-6399. 
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