
D-ROM Progra m m i ng Includes
Digital

Dashboard
Starter Kit

Mi and
ange

Secon-d Ed ition

Build collaborative
business solutions
with Microsoft
Outlook 2000,
Exchange Server 5.5,
and Exchange 2000

Thomas Rizzo

Aficl'OSott~

.
I

Thomas Rizzo

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Thomas Rizzo

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Rizzo, Thomas, 1972-

Programming Microsoft Outlook and Microsoft Exchange / Thomas Rizzo.--2nd ed.
p. cm.

ISBN 0-7356-1019-3
1. Application software--Deve1opment. 2. Microsoft Outlook. 3. Microsoft Exchange.

r. Title.
QA76.76.A65 R59 2000
005.369--dc21 00-028169

Printed and bound in the United States of America.

123456789 QMQM 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For
further information about i\1ternational editions, contact your local Microsoft Corporation
office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web
site at mspress.microsoft.com. Send comments to mspinput@microsojt.com.

Macintosh and TrueType fonts are registered trademarkS of Apple Computer, Inc. Active Directory,
ActiveX, BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, NetMeeting, Outlook, PowerPoint,
Visual Basic, Visual C++, Visual InterDev, Visual J++, Visual Studio, Windows, and Windows NT are
either registered trademarks or trademarks of Microsoft Corporation in the United States and! or
other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

Unless otherwise noted, the example companies, organizations, products, people, and events
depicted herein are fictitious. No association with any real company, organization, product, person,
or event is intended or should be inferred.

Acquisitions Editor: Eric Stroo
Project Editor: Victoria Thulman
Technical Editor: Marzena Makuta
Manuscript Editor: Michelle Goodman

For Stacy, my family, and the Ecksteins, my new family.

I love you.

ten GI nc

Part I Introduction to Collaborative Systems
Chapter 1 A Broader Definition of Collaboration 3
Chapter 2 Exchange Server as a Platform for Collaboration 15

Part II Building Outlook Applications
Chapter 3 Folders, Fields, and Views
Chapter 4 Forms
Chapter 5 Programming Outlook with VBScript
Chapter 6 Putting It All Together:

The Account Tracking Application
Chapter 7 Outlook and the Web
Chapter 8 Outlook 2000 Development Features
Chapter 9 Outlook Team Folders Wizard
Chapter 10 Outlook 2000 in Action: Enhancements

to the Account Tracking Application
Chapter 11 Digital Dashboards

Part III Collaboration with Microsoft Exchange
Chapter 12 Collaboration Data Objects
Chapter 13 The Event Scripting Agent
Chapter 14 Exchange Server Routing Objects
Chapter 15 Programming Exchange Server Using ADS.
Chapter 16 Enhancing Your Exchange Server

Applications with COM Components
Chapter 17 Search Solutions Using Site Server 3

47
87

129

151
185
229
273

337
385

429
527
571
647

699
731

Part IV

Chapter 18 Developing with Exchange Server 2000
Chapter 19 PuHing It All Together

785
857

Table of Contents
Acknowledgments xxiii
About the Companion CD xxv

Part I Introduction Collaborative ~vs'[e
Chapter 1 A Broader Definition of Collaboration

TOOLS FOR BUILDING COLLABORATIVE SYSTEMS

Microsoft Outlook
Microsoft Internet Explorer
Microsoft Exchange Server
Microsoft SQl Server
Microsoft Internet Information Services
Microsoft Site Server
Microsoft Visual Studio
Microsoft Visual Basic
Microsoft Visual InterDev

EXAMPLES OF COLLABORATIVE SOLUTIONS

Messaging Applications
Tracking Applications
Workflow Applications
Real-Time Applications
Knowledge Management Applications

Chapter 2 Exchange Server as a Platform for Collaboration
ROBUST MESSAGING INFRASTRUCTURE

least-Cost Routing, load BalanCing, and Failover
Delivery and Read Receipts
Message Tracking

INDUSTRIAL-STRENGTH OBJECT DATABASE

Huge Storage Capacity
Multiple Views
Built-In Replication

3
4

5
5
5
5
5
6
6

6
6

7
7

8
10
12
13

15
15
16
16
17

18
18

19
21

Table of Contents

Schema Flexibility
Transaction Logging

EXCHANGE SERVER DIRECTORY

Reliable Database Engine

Multimaster and Replication Capabilities
Cusfomizable Attributes and "White Pages"
Extensibility and Security
Internet and Industry Standards Support

PUBLIC FOLDERS

Folder and Application Accessibility
Security and Content Control

Internet Standards Support

INTEGRATED, INTERNET STANDARDS-BASED SECURITY

Windows NT Security
Secure Messaging
Secure Applications

S/MIME Support

MUL TITIERED, REPLICATED, SECURE FORMS LIBRARY

Organizational Forms Library
Folder Forms Library

Personal Forms Library
Web Forms Library

BUILT-IN INFORMATION MANAGEMENT TOOLS

Rules
Event Scripting Agent

CONNECTIVITY AND MIGRATION TOOLS

CLIENT OPTIONS

Pocket Outlook

Outlook Express
Outlook Web Access
Outlook for Microsoft Windows

Versions 3.x and the Macintosh
Microsoft Outlook

CHOOSING A CLIENT

23
23

23
24
24
24
25
26

27
28
29
30

34
34
34

35
35

35
36
37

37

37

38
38
39

40

41

41
41
42

42
42

42

Part II

Chapter 3 Folders, Fields, and Views
FOLDERS

Creating Public Folders
Customizing Folder Properties
Setting Up Moderated Folders
Creating Public Folder Rules

FIELDS

Creating Custom Fields
Creating Combination Fields

Creating Formula Fields
Using Custom Fields in Filtered Replication

VIEWS

Creating New Views
Customizing the Current View

Formatting the Columns in a View
Grouping Items in a View
Sorting Items in a View
Filtering Information in Views

Editing View Settings

Chapter 4 Forms

OUTLOOK FORM TYPES

Message Forms
Post Forms
Contact Forms

Office Document Forms

How FORMS WORK

Data Binding

DESIGNING FORMS

Opening a Form in Design Mode

Choosing Display Properties
Important Default Fields

Table of Contents

47
49

49

50
57
59

63
63
65

68
69

71
72

75
76
77
79
80
81

87

87
87
88
88
90

90
92

92
93
94

96

Table of Contents

USING CONTROLS

Accessing Controls from the Control Toolbox

Renaming Controls
Assigning Captions

Setting the Font and Color

Establishing Display Settings

Binding Controls
Setting Initial Values

Requiring and Validating Information in Fields

Built-In Outlook Controls

USing Custom or Third-Party Controls

Setting Advanced Control Properties

Setting the Tab Order

Layering Controls on a Form

FORM PROPERTIES

Setting Default Form Properties

Setting Advanced Form Properties

TESTING FORMS

PUBLISHING FORMS

Publishing Forms in a Forms Library

Saving the Form Definition with the Item

Saving the Form as an .oft File

ENHANCING FORMS

Extending Functionality with Office Document Forms

Creating Actions

Chapter 5 Programming Outlook with VBScript
THE OUTLOOK SCRIPT EDITOR

VBSCRIPT FUNDAMENTALS

Working with Variables

Data Types in VBScript

Working with Objects

Constants in VBScript

Error Handling

THE SCRIPT DEBUGGER

100

100

101

102

102

103

103

104

104

105

112

113

114

114

115

115

117

118

118

119

120

121

121

121

124

129

130

131
131

134

134

135

135

136

Table of Contents

WORKING WITH OUTLOOK OBJECTS 138

Getting Help with Outlook Objects 138
The Outlook Object Browser 140
The Outlook Object Hierarchy 141

OUTLOOK EVENTS 144

Writing Event Handlers 144
Disabling Events 144

Sequence of Events 145

OTHER COMMON TASKS IN OUTLOOK DEVELOPMENT 146

Automating Outlook Office Documents 146
Automating Outlook from Other Applications 148
Using CDO in Outlook 148

Chapter 6 Putting It All Together:
The·Account Tracking Application 151

OVERVIEW OF THE ACCOUNT TRACKING ApPLICATION 151

The Account Tracking Folder 152

The Account Tracking Form 153

SETTING UP THE ApPLICATION 157

Copying the Account Tracking Folder 157
Copying the Product Sales Database 157

Setting Permissions on the Folder 158

TECHNIQUES EMPLOYED BY THE
ACCOUNT TRACKING ApPLICATION 158

Setting Global Variables 159
Determining Compose or Read Mode: The Item_Read Event 159
Initializing the Application: The Item_Open Event 160

Connecting to the Sales Database:
The GetDatabaselnfo Subroutine 162

Displaying an Address Book
USing CDO: The FindAddress Subroutine 163

Creating Account Contacts:
The cmdAddAccountContact Subroutine 165

Refreshing the Contact List Box:
The cmdRefreshContactsList Subroutine 165

Performing Default Contact Actions:
E-Mail, Letters, and NetMeeting 167

Table of Contents

Automating Excel: The cmdCreateSalesChart
and cmdPrintAccountSummary Subroutines

Unloading the Application: The Item_Close Event

OUTLOOK TODAY AND THE
ACCOUNT TRACKING ApPLICATION

Viewing the Customized Outlook Today Page

Setting Up the Customized Outiook Today Page

Chapter 7 Outlook and the Web
OUTLOOK TODAY

Outlook Today Technologies

Outlook Today in Outlook 2000

Customizing Outlook Today

ACTIVE SERVER PAGES

ASP Fundamentals

Global.asa

Built-In ASP Objects

Server-Side Include Files

Server Components

OUTLOOK WEB ACCESS

Installing Outlook Web Access

Outlook Web Access and ASP Security

Special Considerations
for Setting Up Outlook Web Access

WINDOWS 2000 AND liS 5.0

Improved ASP Support

Improved Scripting Support

Improved Security Features

WebDAV Support

THE OUTLOOK HTML FORM CONVERTER

Software Requirements of the Converter

Components of the Con~erter

Features of the Converter

Stepping Through a Conversion

Examples of Conversions

Files Created for Converted Forms

169

175

179

179
182

185

185

186

187

189

191

192
193

196

203
203

204

204

206

208

209

209

210

210

210

210

211

211

212

215

220

222

Table of Contents

Web Forms Library 223
Making HTML Forms Available in Outlook 225
Tips for Developing HTML-Ready Outlook Applications 227

Chapter 8 Outlook 2000 Development Features 229
OFFICE 2000 COM ADD-INS 230

Deciding Whether to Write a COM Add-In 230
Developing a COM Add-In 231
Debugging Your COM Add-In 237
Using COM Add-Ins from Custom Outlook Forms 238

OUTLOOK 2000 OBJECT MODEL 241
Objects and Collections 242
Outlook Bar Object Model 246
Methods, Properties, and Events for Existing Objects 260
Characteristics of Item. Types 269

VBA SUPPORT IN OUTLOOK 2000 271
VBA Architecture 271
Creating a VBA Application 271
Choosing What to Write: COM Add-In or VBA Program? 272

Chapter 9 Outlook Team Folders Wizard 273
FEATURES OF THE TEAM FOLDERS WIZARD 273

ARCHITECTURE OF
THE TEAM FOLDERS WIZARD 275

EXTENDING THE TEAM FOLDERS WIZARD 278
Modifying the Provided HTML Pages 278

THE OUTLOOK VIEW CONTROL 281
Programming the Outlook View Control 281
Instantiating the Outlook View Control 281
Hosting the Outlook View Control in Internet Explorer 292

THE OUTLOOK PERMISSIONS CONTROL 294
Programming the Outlook Permissions Control 294
Permissions Control Properties 295
Permissions Control Methods 295
Example: Permissions Control Web Application 296

Table of Contents

THE TEAM FOLDERS WIZARD
ADMINISTRATION EXTENSION

Architecture of the Team Folders
Wizard Administration Extension

Installing the Team Folders
Wizard Administration Extension

Modifying the HTML for a
Team Folders Wizard Template

The Event Scripting Agent
for the Administration Extension

Subscription/Notification Functionality

BUILDING A CUSTOM TEAM FOLDERS TEMPLATE

Creating the .pst File

Creating the Folder Home Page

Creating the Template.ini File

File Folder Structure for Your Template

Deploying Your Template

Example: Account Tracking Template

CREATING A TEAM FOLDERS WIZARD EXTENSION

Interfaces of the Team Folders Wizard Extension

Visual Basic Form for the Account Tracking Extension

Folder Home Page for the Account Tracking Extension

REGISTERING YOUR EXTENSION

DEPLOYING YOUR EXTENSION

Chapter 10 Outlook 2000 in Action: Enhancements
to the Account Tracking Application

FOLDER HOME PAGES

Setting Up the First Folder Home Page

Example Script for the Folder Home Page

THE OUTLOOK VIEW CONTROL

Setting Up the Second Folder Home Page

Using the Outlook View Control

THE ACCOUNT TRACKING COM ADD-IN

Compiling and Registering the COM Add-In

Testing the COM Add-In

Implementing the COM Add-In

THE AVAILABILITY CHECKER SAMPLE ApPLICATION

299

300

300

301

306
310

315
315
315
315
321
321
322

324
324
328
331

334

335

337
338
339
340

345
346
347

352
353
354
357

382

Chapter 11 Digital Dashboards
PRELIMINARY CON~IDERATIONS

WHY HOST A DIGITAL DASHBOARD IN OUTLOOK?

EXAMPLE: THE FINANCE DIGITAL DASHBOARD

BUILDING A DIGITAL DASHBOARD
Digital Dashboard Architecture

USING OTHER COMPONENTS IN INFORMATION NUGGETS

Office Web Components
\'1

Outlook View Control

Outlook Databindin~ Control
ActiveX Data Objec1s

STORING CUSTOM INFORMATION FOR THE DIGITAl,. DASHBOARD

Using the Registry

~sil'!g Site Serv~r Personalization and Membership
USing the Active Qirectory

Using Cookies
Using XML
Using Exchange Server

DEPLOYING A DIGITAL DASHBOARD

Outlook Today Digita! Dashboard
Folder Homepage Digital Dashboard

RECOMMENDATIONS FOR ACCESSING EXCHANGE SERVER

Table of Contents

385
385

386

387

392
394

408
408
409
410
413

419
420
420
420
421
421
421

422
423
423

423

Part III with Microsoft Exchange
Chapter 12 Collaboration Data Objects

WHAT Is COO?

COO and the Outlook Object Library

COO and the COO for WindQws 2000
OVERVIEW OF THE COO LIBRARY

Getting Help with the COO Library

BACKGROUND FOR FOUR
SAMPLE ApPLICATIONS THAT USE COO

Using the COO Session Object
Using the Logon Method

429
429
430
431

431
433

433
433
434

Table of Contents

HELPDESK ApPUCATION

Setting Up the Helpdesk Application
Helpdesk CDO Session Considerations
Logging On to the Helpdesk
Accessing Folders in the Helpdesk

Implementing Helpdesk Folder Security
Retrieving User Directory Information
Posting Information in the Helpdesk
Rendering the List of Helpdesk Tickets

Rendering the Actual Help Ticket
CreaJing the Calendar Information
Creating a Meeting with the User

Resolving the Help Ticket

CALENDAR OF EVENTS ApPLICATION
Setting Up the Calendar of Events Appfication
CDO Sessions

Prompting the User for Input
Displaying Views of the Calendar
Displaying the Details of an Event

INTRANET NEWS ApPLICATION
Setting Up the Application

Anonymous Logon
Retrieving th~ Folder and Messages
Displaying the News Items

Reading the Detaiis of a Specific News Item

CDO VISUAL BASIC ApPLICATION
Setting Up the Application

Programming CDO with Visual Basic
Logging On the User
Finding the Details of the Specifi~ User

CDO TIPs J'ND PITFALLS
Avoid the GetNext Trap

Avoid Temporary Objects, If Possible
Use Early Binding with Visual Basic
Use With Statements

436
437
441
444
448
450
453
456
460
466
468
474
478

479
480
483
485
488
499

504
506
507
510
512
513

517
518
518
519
521

522
523
523
523
524

Table of Contents

Avoid the Dreaded ASP 0115 Error 524

Avoid the MAPIE_FaiiOneProvider
or CDOE_FaiiOneProvider Error 524

Learn Your Properties and Their IDs Well 525

Chapter 13 The Event Scripting Agent 527

ARCHITECTURE OF THE EXCHANGE EVENT SERVICE 527

EVENT SERVICE CAUTIONS 529

SETTING UP THE EVENT SERVICE 530

REGISTRY SETTINGS FOR SCRIPT AUTHORS 533

WRITING AGENTS BY USING SCRIPTS 534
Supported Event Types 536

Intrinsic Objects for Scripts 537
Instantiating Other COM Object$ from Your Scripts 538

ERROR Tj=lAPPING AND LOGGING 539
Microsoft Script Debugger 539

Script.Response and Logging 540

The Windows NT Event Log 541

EXPEN~E REPORT ApPLICATION 541
Setting Up the Expense Report Application 542

Functionality of the Expense Report Application 544
Expense Agent Script 547
CDO Code in the Application 556

PROGRAMMATICALLY BINDING AGENTS 556
Exchange Event Service Configuration Library 556

AGENT INSTALL ApPLICATION 558

Using the Exchange Event Service Configuration Library 560
Accessing Existing Agents 560

Accessing the Scripts Contained in Agents 561
Creating Agents Programmatically 562

Disabling and Deleting Agents 566
Agent Hosts 566

EXCHANGE EVENT SCRIPTING AGENT SERVERS 567

RUNNING THE SCRIPT ENGINE IN MTS 567

Table of Contents

Chapter 14 Exchange Server Routing Objects
EXCHANGE SERVER ROUTING

Routing Architecture
Operation of the Routing Engine

Process Instances
Routing Maps
Intrinsic Actions

Custom Script Actions
What About Roles?

EXPENSE ROUTING ApPLICATION

Setting Up the Expense Routing Application

Changes to the ASP Section of the Application
Changes to the Server Script

ROUTING OBJECT LIBRARY

RouteDetaiis Object
Proclnstance Object

Map Object

Row Object
Log Object

Participant Object
VoteTable Object

RecipientEntry Object
Workltem Object

UPDATED AGENT INSTALL ApPLICATION

Overview of the Updated Agent Install Application
Agent Enhancements

Routing Map Enhancements
Process Instance Enhancements

User Interface Enhancements

Chapter 15 Programming Exchange Server Using ADS I
WHAT Is ADSI?

ACCESSING THE DIRECTORY: CDO OR ADSI?

DESIGN GOALS OF THE ADSI OBJECT LIBRARY

ADSI OBJECT LIBRARY ARCHITECTURE

lADs and IADsContainer Interfa~es

571
572
572
574
574
575
576
579
581

583
583
588
590

600
601
602
604
606
607
608
609
611
611

612
613
613
620
635
641

647
648

648

649

650
650

IADsContainer Interface

Exchange Server Object Classes

EXCHANGE SERVER SCHEMA

Access-Category Property

Description Property

Heuristics Property

CREATING PATHS TO EXCHANGE
SERVER OBJECTS AND ATTRIBUTES

ADSI ApPLICATION

Setting Up the ADSI Application

Logging On to ADSI

Creating a Mailbox

Querying for Information from an Existing Mailbox

Creating a Custom Recipient

Creating a Distribution List

Adding and Removing Users from a Distribution List

Displaying the Users in a Distribution List

Creating a Recipients Container

Displaying the Objects in a Recipients Container

ACTIVE DIRECTORY AND ADSI

GETTING HELP WITH ADSI

LDP

ADSI Edit

What About ADS I 2.57

Cpapter 16 Enhancing Your Exchange Server
Applications with COM Components

ACCTCRT COMPONENT

. Creating an Instance of the AcctCrt Component

Creating a Windows NT Account
by Using the AcctCrt Component

Deleting a Windows NT Account
by Using the AcctCrt Component

Associating Windows NT Accounts
with Exchange Server Mailboxes

RULES COMPONENT

Storing Rules

Table of Contents

651

652

652

653

654

654

656

656

657

659

659

663

677

678

680

682

683

684

687

696
696

698

698

699
700

700

701

701

701

703

703

Table of Contents

Creating an Instance of the Rules Component 704

Using the Rules Component 704

Specifying a Logical Condition 708

Searching for Specific Content 710

Searching for a Particular Bitmask 713

ACL COMPONENT 715

PROJECT ApPLICATION 715

Setting Up the Project Application 716

Architecture of the Application 717

Implementing the Projects Application 723

Using the Rules Component
to Fire on All Incoming Messages 728

Chapter 17 Search Solutions Using Site Server 3 731
ENTER SITE SERVER 731

SEARCH CAPABILITIES OF SITE SERVER 732

INFRASTRUCTURE REQUIREMENTS FOR SITE SERVER 733

Exchange Server Requirements for Site Server 734

Setting Up Your Search Hosts 735

Setting Site Server to Crawr
an Exchange Server Public Folder 736

Security Implications 738

CREATING CUSTOM SEARCH ApPLICATIONS 738

Site Server Search Object Model 738

Building an ASP Search Application 745

EXTENDING OUTLOOK WITH SITE SERVER 764

Hosting the ASP Search Application
as a Folder Home Page 765

Hosting the ASP Search Application
in an Outlook Form 765

Extending the ASP Search Application
Using Outlook Controls 766

Building an Outlook 2000 COM Add-in for Site Server 768

Part IV Exchange Server 2000 Development
Chapter 18 Developing with Exchange Server 2000 785

WHAT Is THE WEB STORAGE SYSTEM? 786

Data Access Features

Programmability Features

Security Features

Additional Features

THE TRAINING ApPLICATION

Setting Up the Training Application

Using the Training Application

THE WONDERFUL WORLD OF SCHEMAS

Overview of the Exchange Server Schemas

Creating Custom Content Classes

Creating Content Class Definition Items

Setting the expected-content-class Property

Setting the schema-collection-ref Property

Setting the baseSchema Property

USING ADO 2.5 AND OLEDB 2.5
WITH EXCHANGE SERVER 2000

New ADO 2.5 Features

Putting ADO 2.5 to Work with Exchange Server 2000

Common Tasks Performed with ADO"

Using OLE DB Transactions

Best Practices for Using ADO

COO FOR EXCHANGE SERVER 2000

COO Design Goals

COO Object Model

Frequently Used Objects in COO

COO Messaging Tasks

COO Calendaring Tasks

COO Contact Tasks

COO Folder Tasks

Chapter 19 Putting It All Together

USING XML WITH EXCHANGE SERVER

XMLHTTP Component

WebDAV Commands

Persisted Search Folders

Using ADO to Retrieve
XML Data from Exchange Server

Table of Contents

786

787

790

790

794

795

796

806

807

808

812

814

815

815

816

816

818

826

836

838

839

839

840

840

844

847

853

855

857
857

857

860
871

873

Table of Contents

Using XSL to Format XML

XSL Elements

THE XML DOCUMENT OBJECT MODEL

REUSING OUTLOOK WEB ACCESS

WEB STORAGE SYSTEM FORMS

Creating a Web Storage System Form

Registering a Web Storage System Form

FrontPage 2000 Support

CONTENT INDEXING

CONTAINS Predicate

FREETEXT Predicate

Working with Ranking

Indexing Default Properties

EXCHANGE SERVER EVENTS

Firing Order of Events

Security Requirements

Supported Events

Registering an Event Handler

Writing an Event Handler

Debugging an Event Handler

WORKFLOW CAPABILITIES

How Is Workflow Implemented in Exchange Server?

Developing Workflow Applications

Deploying Workflow Solutions

EXCHANGE 2000 AND SECURITY

Security Features

Sample Security Application

INSTANT MESSAGING

Programming the 1M Contact View Control

Putting It All Together

Index

874
879

882

883

884
884
886
889

893
894
895
895
897

900
900
901
901
904
914
922

923
924
926
943

947
947
952

957
959
964

973

Acknowledgments

Writing a book is never a one-person job. It always involves help from other people,
who are either reviewing your work or teaching you things you never knew before.
The first people to thank are the folks at Microsoft Press, especially Eric Stroo, John
Pierce, Victoria Thulman, Marzena Makuta, Ben Ryan, Michelle Goodman, Roger
LeBlanc, Rob Nance, and Dan Latimer. Their hard work is greatly appreciated.

Thanks are owed to a number of people throughout Microsoft who helped in
one way or another with this endeavor. First ancl foremost, thanks must go to the
members of the Microsoft Exchange and Microsoft Outlook teams, who contributed
to my knowledge of both Exchange and Outlook. These people include Jim Van Eaton
and Bob Gering, who contributed their expertise of XML,. XSL, and WebDAV as well
as OWA to the Training application in the final chapters; and the Exchange Devel­
oper team, including Nat Ballou, Andrew Sinclair, Naveen Kachroo, Robert Brown,
Alex Hopmann, Jim Reitz, Lisa Lippert, Chuck Daniel, Dana Birkby, Seth Cousins,
Brent Jensen, Charles Eliot, and Denise Smith. They filled me in on the latest and
greatest of the Exchange 2000 technologies. Th<'J.nks must also go to the Exchange
Solutions Product Unit and the Exchange SDK team, including Keith McCall, Janine
Harrison, Michael Patten, Steve Biondi, and Bruce liarpilton for providing a wealth
of documentation and knowledge on Exchange development technologies. lowe a
thank you to the Exchange Realtime Collaboration team, including Rick Ryan and
Dalen Abraham. Another debt of gratitude must go to the Exchange management team,
including Gord Mangione and Eric Lockard, because I stole the time of their valu­
able people to answer my questions.

On the Outlook team, I have to thank Ramez Naam, Chris Kimmel, and Don
Mace for their support on all the Outlook technologies described in this book.

Thanks to Roman Lutz, who in the middle of <'J. presentation I was giving on
CDO, showed me some techniques on using CDb and Outlook together. You can
find some of his techniques highlighted ~hen I discl,lsS the O\ltlook View control.

Thanks to Noam Topaz, who planted the idea and provided a kick start for the
Site Server COM Add-in included in this book. His unique perspective on the types
of applications you can build on the Exchange and Outlook platforms is refreshing.
You can always depend on Noam to give you some unique ideas for applications you
can build.

Thanks must also go to a number of other peopl~ who helped this process along
by supporting it and understanding why I could never get together with them when
chapters were due. This includes John, Kim, Michael and Katie Hand, Jen and Steve

xxiii

Acknowledgments

xxiv

Fowler, Dan Fay, Rajeev and Arpita Agarwal, Ed Yoon, Marie Maxwell, Jim and Vivian
West, Vicky and Gary Halperin, Paul Miller, Ria Johnston, and Joanne Bromwell.

A special thanks goes to Randy Lehner, who provided the excellent security
application that you'll find described in the Exchange 2000 chapters.

Finally, I have to thank the people I work with everyday for allowing me to com­
plete this work. These people include Paul Gross, Russell Stockdale, Branch Hendrix,
Stan Sorensen, and Gytis Barzdukas.

About the Companion CD

The companion CD contains sample applications discussed in this book, supplemen­
tary chapters and sample applications, and programming help files, as well as the
electronic version of this book, additional information, and some software you might
need to view the CD files.

You will find the sample applications in the Samples folder. You can browse
these samples from the CD, or you can install them onto your hard disk. If you haven't
disabled the autorun feature in your Microsoft Windows installation, a splash screen
will appear when you insert the CD into your CD-ROM drive. You can then install
the samples, help files, or other CD content. The instructions on your screen will guide
you in the installation process. You can also access the splash screen by running
StartCD from the CD root directory. To save your disk space, you might want to install
only the selected applications.

Please refer to the appropriate Readme file for specific instructions on how to
run the application.

To uninstall the sample files, open Add/Remove Programs in Control Panel,
select the application you want to remove, and click Add/Remove. (In Microsoft
Windows 2000, click Change/Remove.)

SYSTEM REQUIREMENTS
To run the sample applications, you will need to meet the following system
requirements:

• Microsoft Windows 2000 Server, or Microsoft Windows NT 4.0 Service Pack 4
or later

• Microsoft Exchange Server 5.5 (or Microsoft Exchange Server 2000 for some
sample applications)

• Microsoft Outlook 2000

xxv

Part I

I Ir Ii
II r Ii

I

Chapter 1

A Broader Definition
of Collaboration

If you asked ten different people to defme collaboration in a computer environment,
you would receive ten different answers. Some would say collaboration is e-mail.
Others would mention video teleconferencing or the World Wide Web. You might
even hear Internet chat as an answer. People struggle to defme collaboration because
there are so many technologies and its definition today is broad. Really, all of these
answers are correct. Collaboration-at leasUn part-is the integration of many dif­
ferent technologies into a single application or environment to facilitate information
sharing and information management.

Integrated technology, however, is only one aspect of collaboration as we're
defining it. Timing is another. We're all familiar with real-time collaboration in which
you work with others at the same moment, taking turns communicating ideas. But
new technology offers you an entirely different way to collaborate-asynchronous
collaboration-in which you don't have to be present to participate. Asynchronous
collaboration allows you, at your convenience, to collaborate with other people, at
their convenience. E-mail, public databases, the Internet, and intranets are all forms
of asynchronous communication.

Collaborative technology provides these key benefits to businesses:

• Extensive, secure communication. Collaborative technologies enable ex­
tensive communication through many different mediums and secure com­
munication through encryption and digital signature technology, which
is critical as businesses increase their use of the Internet.

3

Pari I Introduction to Collaborative Systems

• Storage of information in a central location. Information is placed in a cen­
tral repository, or database, so that individuals inside and outside a cor­
poration can access it. If shown in a threaded view, the history of the
information is accessible and new information can be added to it.

• Ability to extend existing technologies with new functionality and bridge
islands of information. Collaborative systems connect disparate systems
and facilitate finding and sharing information stored in existing technolo­
gies. Essentially, they bridge islands of information.

How does a collaborative system provide these benefits to corporations? In terms
of its architecture, a collaborative system must have several characteristics. First, it
must have a robust, replicated object database that can store many different types of
information such as web pages, office documents, and e-mail messages, and it must
support replication both from server to server and from server to client. This repli­
cation allows geographically dispersed individuals to access diverse information. To
work with the data, the database needs to allow many different clients, ranging from
web browsers to e-mail clients.

Second, it must support the Internet and industry standards. The days of stove­
pipe computing are over. New technologies are connecting disparate networks to form
one global, cohesive network. A collaborative system must be able to interoperate
with these networks over the Internet, and it must follow industry standards to al­
low openness to a large number of external systems as well as guarantee the integ­
rity of the data.

Third, a collaborative system must offer powerful, easy-to-use development tools
and technologies. The environment must be open so that developers can use any tool
to develop solutions and users can access and customize the user interface.

TOOLS FOR BUILDING
COLLABORATIVE SYSTEMS

4

Microsoft offers a number of products and tools that are designed to help you lever­
age a company's current technology investments and extend them with new func­
tionality. These tools, which fall under three key product types, are listed here:

• Client products. Tools include Microsoft Outlook and Microsoft Internet
Explorer.

• Server products. Tools include Microsoft Exchange Server, Microsoft SQL
Server, Microsoft Internet Information Services and Microsoft Site Server.

• Development products. Tools include Microsoft Visual Studio, which en­
compasses Microsoft Visual Basic and Microsoft Visual InterDev.

Chapter 1 A Broader Definition of Collaboration

The two main tools you will want to learn are Microsoft Outlook and Microsoft
Exchange Server. Both provide a robust infrastructure with which corporations can
run mission-critical services. Combine this infrastructure with the rich development
tools provided by both products and you have a powerful platform on which you
can write solutions. The type and complexity of these solutions can range from simple
forms to complex applications. The next few sections briefly describe some products
and tools available from Microsoft for building collaborative solutions.

Microsoft Outlook
Outlook supports the ability to manage information (e-mail messages, appointments,
contacts, and tasks) and share it throughout an organization. Outlook also includes a
development environment that allows you to write collaborative applications qUickly.
Part II of this book is dedicated to Outlook and its development environment. Chap­
ters 8 and 10 in particular discuss and illustrate the features of Outlook 2000 that will
enable you to further extend Outlook.

Microsoft Internet Explorer
With the ubiquity of the Internet, browser technology is becoming increasingly im­
portant for user collaboration. Internet Explorer, with its support for dynamic HTML,
scripting, and security, is an ideal client interface for your applications. In Chapters
12, 13, and 14, you will see how to take advantage of Internet Explorer using both
Outlook and Exchange Server.

Microsoft Exchange Server
Exchange Server, which is part of the Microsoft BackOffice suite of products, is a linch­
pin for any collaborative system because it supports communication, information shar­
ing, and workflow services that use Internet standards and protocols. Chapter 2 of
this book proVides an introduction to Exchange Server.

Microsoft SQL Servei'
SQL Server is a relational database system that offers easy storage and retrieval of in­
formation. Its built-in data replication, powerful management tools, Internet integra­
tion, and open system architecture allow you to integrateSQL Server into existing
environments cost-effectively.

,_. ,I

Microsoft Internet Information Services
Internet Information Services (lIS) is a free web server available for Microsoft Windows
2000 Server. It provides an easy way to publish and share information securely over
corporate intranets and the Internet through HTML documents. The power of lIS is

5

Part I Introduction to Collaborative Syst~~mls

demonstrated when web applications are written using its built-in selVer-side script tech­
nology called Microsoft Active SelVer Pages (ASP). ASP allows developers to write
applications by using any ActiveX scripting language, such as]Script or Microsoft
Visual Basic Scripting Edition (VBScript). These scripts execute on lIS and can access
different data such as that provided by Exchange SelVer or SQL SelVer. The informa­
tion returned from the selVer-side script is in mML, making these applications com­
patible with any standard HTML web browser such as Internet Explorer. Chapter 7
introduces Active SelVer Pages and its programming model.

Microsoft Site Server
Site SelVer is a web publishing, analysis, and search tool. Because Site SelVer is in­
tegrated with Windows 2000 SelVer and lIS, you can easily set up and deploy intranets.
Site SelVer helps corporations get the most from their intranets by implementing best
practices for publishing and staging intranet content.

Site SelVer can also implement content tagging. Content tagging is a structured,
site vocabulary that authors use to classify the web content they create. When used
in conjunction with Site SelVer's integrated search and knowledge management capa­
bilities, these tags enable users to more easily find information. Plus, Site SelVer in­
tegrates and manages the information from other BackOffice products through full-text
indexing of these different data sources.

Microsoft Visual Studio
Visual Studio is an integrated and comprehensive suite of development tools for build­
ing web-based or Microsoft Windows-based applications. You can quickly build col­
laborative solutions that take advantage of the BackOffice family of products because
Visual Studio and BackOffice are integrated. Throughout this book, you will see
examples of collaborative solutions that use Visual Studio tools.

Microsoft Visual Basic
Visual Basic, a component of Visual Studio, is an effective and easy-to-use tool for
creating high-performance windows applications. It includes a rapid development en­
vironment with graphical layout tools and great performance because of native
code compilation. Visual Basic also creates open, industry-standard ActiveX compo­
nents. These components can provide functionality to other applications whether they
are web-based or Windows-based.

Microsoft Visual InterDev

6

Visual InterDev, a component of Visual Studio, empowers web application developers
to rapidly build fully interactive, dynamic web sites. With visual development features
and powerful database tools, Visual InterDev provides the most complete and technically

Chapter 1 A Broader Definition of Collaboration

advanced development system for building both intranet and Internet applications.
Through the use of Visual InterDev Design-time controls and wizards, you can add
collaborative technologies to your web applications.

EXAMPLES OF COLLABORATIVE SOLUTIONS
Now that you have a better understanding of collaboration and collaborative tech­
nologies, let's look briefly at the systems you can create. With Exchange Server, you
can build many different types of open and extensible applications, all of which can
take advantage of information stored inside and outside of Exchange Server. You
can leverage other data sources in your organization, such as SQL Server databases.
This openness to other data sources allows you to pick the best database for storing
the application's information without compromising the user interface consistency.

The types of applications you can build can be broken down into five catego­
ries: messaging, tracking, workflow, real-time, and knowledge management. None
of these application categories are mutually exclusive-for example, a workflow
application can take advantage of messaging services. Rather, these categories de­
fine the primary function of a particular application. Throughout this book, we'll
explore sample applications that fall into these five categories.

Messaging Applications

Messaging applications use primarily the messaging infrastructure of Exchange Ser­
ver. E-mail is the best known of these, but you can build many other types, such as
discussion group applications. Exchange Server supports threaded discussions; you
can make any folder in Exchange Server a threaded discussion folder by changing
the view of the messages inside that folder. These discussions can be replicated to
and from Internet news groups and can be mdderated for the appropriate content.

Another example of a messaging-based application is a mailbox agent. A mail­
box agent can perform many different types of functions based on how it is pro­
grammed. For example, suppose a sales force needs the ability to run certain queries
against a database of sales information. Although you could write a Microsoft Access
application that queries the database and returns the results, a salesperson wouldn't
be able to work on other items until the database processed the request and returned
the data set in the Access user interface. This means that users would have to check
the Access application continually to see whether the data was available. However,
with a mailbox agent, a salesperson could use a form to specify the type of informa­
tion she needed and then e-mail the form to the agent. The agent would process
the form and run the query on her beHalf. Once the database was finished process­
ing the query, the agent would e-mail the data set to the salesperson. Eventually,
she receives notification containing the requested data set.

7

Part I Introduction to Collaborative Systems

A mailing list server is a messaging agent that forwards all mail it receives to
its registered recipients and allows users to add and remove themselves from the list
of recipients via e-mail.

To see a mailing list application in action, sign up for the Microsoft Ex­
change Server mailing list at http://www.msexchange.org.

A document library is another example of a messaging application. Users can
submit documents to a library by dragging and dropping them, e-mailing them, or
sending them through a web browser. Because these libraries are stored in a central
location, many uSers have access to the documents. Intelligence can be added to the
library by creating a mailbox agent that notifies users when new documents are
available. Custom views are available on a folder so that users can quickly find de­
sired documents. Comments about the documents can be placed in the folder, and
interested users can gauge their relative value.

One popular example of a document library is a library of web favorites. A user
can set up a document library to store a corporation's favorites in a central location.
By dragging and droppirig Internet shortcuts into this libniry, a user's personal fa­
vorites become corporate favorites. Plus, users get the benefit of being able to cre­
ate custom fields and views that describe and categorize the favorites in the folder.

Tracking Applications

8

Tracking applications manage and track information, such as a list of contacts, from
its creation to its deletion or "completion." Tracking applications usually require the

I

integration of many different data sources because the information needing to be
tracked typically resides in more than one location.

One example of a tracking application is a job candidate tracking application,
which enables a human resource department and other employees to track a prospective
employee from the moment he submits a resume through the interview process and
finally to the decision to hire or reject. The candidate's status is always available for
review. Figure 1-1 shows a hypothetical example of a job candidate tracking applica­
tion that uses Outlook and Exchange Server to track, prospective candidates.

You could also create an account tracking application, which includes tracking
for contacts, revenue, arid tasks. Figure 1-2 shows the Account Tracking application
we'll build in Chapter 6. In Chapter 10, we'll enhance this application for Outlook 2000.

Helpdesks are also tracking applications. In a helpdesk application, trouble tick­
ets are submitted to the helpdesk by users specifying technical problems. Problems
are assigned to technicians based on the ticket type. Audit trails are established for
each ticket so that the technicians have historical information that helps them work
on the problems. After fixing a problem, the technician adds the ticket and its reso­
lution to a log of frequently asked questions, which users can query.

Chapter 1 A Broader Definition of Collaboration

Figure 1-1. A hypothetical job candidate tracking application in Outlook.

Figure 1-2. The Account Tracking application from Chapter 6.

A helpdesk might include other tracking applications as well, such as inventory
management. For example, if the technician had to request a new machine for the user,
an inventory management program informs the technician whether a new machine is
in stock. By adding a workflow application to the helpdesk application, the technician

9

Pari I Introduction to Conaborative Systems

could obtain approval for the machine from the user's manager and the help desk
manager. Figure 1-3 shows the Helpdesk application we will build in Chapter 12.

p~aseeniertledatefOrtlea~nt:I
Plaa .. _1helm,lJr1heapptHn,nt '-1-. ---,

Figure 1·3. The web-based Helpdesk application from Chapter 12.

One last example of a tracking application you might build is a class registra­
tion application, which tracks information about a class and its participants. It informs
users when desired classes become available, reminds them of which classes they
are registered for at least one day in advance, and notifies them of any updated
materials made available by the teacher. When the class is completed, class notes and
a survey can be distributed to class members.

Workflow Applications

10

Workflow applications are primarily constructed around three concepts, which are
known as the three Rs-Roles, Routes, and Rules:

• Roles. A role is the logical representation of a person or an application
in a workflow process-for example, expense report approver Roles can
change dynamically depending on who is involved in the particular
workflow process. They allow you to easily abstract the different functions
people perform in a workflow process.

• Routes. A route defines what information will route and who will receive
it. Routes can be sequential, parallel, conditional, or any combination of
these. Figure 1-4 illustrates three types of routes.

Chapter 1 A Broader Definition of Collaboration

• Rules. A rule is conditional logic that assesses the status of the workflow
process and determines the next steps. Here's an example of a rule: if the
manager approves the expense report, route the report to accounting, or else
send the expense report back to the submitter. A rule can be based on the
properties of a message or on some other data source.

Figure 1-4. Sequential, parallel, and conditional routing types.

Let's take a brief look at a few workflow samples. The Expense Report applica­
tion, which is discussed in detail in Chapters 13 and 14, is one example of a workflow
application that you can build with Exchange Server. Here's how such a workflow appli­
cation might function: a user submits expense reports from a web application, and based
on the total amount showing in the expense reports, a particular workflow process is
started. If the expense is under $1,000, the expense report is automatically approved;
if the expense is at or over $1,000, th~ report is routed to the user's manager for ap­
proval. The manager either approves or rejects the expense report, and based on his
decision, another workflow process is initiated to either pay the expense report or inform
the user that the expense report has been denied. Finally, if the manager does not
approve or reject the expense report in a certain period of time,. the workflow appli­
cation reroutes the expense report to the manager's manager for approval. Figure 1-5
shows an example of the Expense Report application in action.

11

Part I Introduction to CCl.Uilllbc.ra11,,'e Systems

• Current Time 7124199 1:12:41 Toto!: $1038.99
Status: Submitted: AM

• Current Rejected by Rob Shurtleff Time 7124199 1:13:18 Toto!: $1l984.6
Status: Submitted: AM

_Current Apprond by Dave Malcolm Tune
814i991:53:39 PM Total: $10000.6

Status: Submitted:

_Cumnt ApproYed automati,ally and routed ror Tune 81l1i9912:03:30 Total $601
Status: p~ Submitted: PM -= ApprDYed automati,ally and routed ror TI!lle 8/8199 12:01:39

Total $601.12
p~ Submitted: PM .1= Rorouted and awaitiag Approval from DaTe TI!lle 8120199 1:03:55 Total $30000
Malcolm Submitted: PM .1= Rorouted and awaitiag Approval rrom Dave TI!lle 911119910:31:12 Total $7000
Malcolm Submitted: AM

.I~t= Rorouted and awaiting Approval from D Tune 11111009:07:17
Total $11000

Malcolm Submitted: AM

.I~t= Rerouted and awaiting Approval rrom D Time 9128100 10:13:17
Total $10100

Malcolm Submitted: PM

I.I~= Rerouted and awaiting Approval rrom Dave Time 9129100 1:41:51
Toto!: snooo MaI,oIm Submitted: PM

Figure 1-5. The web-based Exchange Seroer Expense Report application/rom
Chapters 13 and 14.

Another example of a workflow application is a document routing application,
in which a document to be reviewed is routed to users in parallel, user feedback is
collected within a certain period of time and consolidated into a single message, and
the consolidated message is sent to the originator of the workflow application. Chap­
ter 14 will show you how to create an application like this using Microsoft Exchange
Server Routing Objects.

Real· Time Applications

12

Real-time collaborative applications are the newest category of Exchange Server ap­
plications. Real-time applications have the potential to enable instantane()us collabo­
ration (as compared to the "delayed" collaboration of messaging-based applications).
The challenge, of course, is to connect geographically dispersed users in real time.
When you combine real-time and messaging technologies, you can build applications
that leverage the strengths of both.

One example of a real-time application that you can build with Exchange Ser­
ver is a class registration system that schedules virtual classes by sending Microsoft
NetMeeting requests. NetMeeting allows individuals to collaborate over the Internet
using video, audio, whiteboards, and application-sharing technology, as shown in
Figure 1 ~6. In Chapter 6, you'll examine an Account Tracking sample that demon­
strates how to integrate NetMeeting into your own application.

Chapter 1 A Broader Definition of Collaboration

Figure 1-6. NetMeeting allows you to collaborate with other people in real time.

Another real-time application that will interest you as an Exchange Server de­
veloper is a new technology called Instant Messaging. Instant Messaging allows us­
ers to monitor when other users are online so .that they can collaborate with one
another. It allows two different organizations to create virtual "buddies," or business
partners. Instant Messaging is like a virtual water cooler!

CHAT ENABLES REAL-TIME COLLABORATION

Chat-a popular service on the Internet today-is one example of a real-time
application. Chat enables real-time conversation by allOWing a participant to type
in messages that appear instantly on another participant's computer. When added
to collaborative applications, chat can greatly enhance functionality for users. For
example, you can extend a help desk application with chat services so that help­
desk technicians can hold "office" hours during which they conduct real-time
question-and-answer sessions. Those chat transcripts can be posted to a discus­
sion group so that other users can troubleshoot questions based on the transcript.

Knowledge Management Applications
"Knowledge management" refers to the use of collaborative technology to implement
structured processes for finding and gathering information-in other words, it is a strat­
egy for moving information from the individual to the larger group or corporation. At
a time when corporations want to leverage the information that their intellectual as-

13

Part I Introduction to Collaborative Systems

14

sets--people--possess, knowledge management applications are critical. They make
available all kinds of information, from individual experiences to best practices to
detailed technical data. The effective sharing of knowledge brings to a company three
primary advantages: more effective use of eXisfug intellectual assets; competitive ad­
vantage through the pooling bf resources and greater accessibility of important infor­
mation; and new opportunities and more focused innovation. Although knowledge
management is a new term and a new strategy for mining and sharing information, it
uses technology that has been available since Exchange Server first shipped. Applica­
tions based on this strategy are called knowledge management applications.

Implementing a Strategy to Manage Knowledge
You can use collaborative technology such as Exchange Server to employ a knowl­
edge management strategy, but collaborative technology is not synonymous with
knowledge management. That is, corporations must establish processes that will not
only collaborate but also gather and make accessible information that is current,
relevant, and tested.

You might be wondering what types of applications you can build with Ex­
change Server to implement the concept of knowledge management. One type is a
search application in which you can search discussion groups and contacts in Ex­
change Server, as well as search in SQL databases and web sites. This search capa­
bility is a very powerful tool. One important benefit of universal search engines is
that users do not have to change the way they collaborate because the search en­
gine crawls the necessary data sources to retrieve the relevant information.

Another type of application that facilitates knowledge management is a knowl­
edge base. By developing knowledge bases with Exchange Server, you can enhance
conventional collaborative methods. Typically, knowledge bases are used by corpo­
rate users who post free-form, unmoderated messages to a common folder. Users who
want specific information, such as text in a message, query the knowledge base in a
general way and then cull all the returned information that meets their criteria. Be­
cause of the general nature of the queries and unstructured way information is posted,
many of the results are irrelevant or invalid.

Imagine how a more structured method of entering and searching for informa­
tion in a knowledge base could facilitate collaboration and knowledge management.
Suppose users who were posting information to a knowledge base had to fill out a
fottn that asked them to categorize their information, indicate how long it would be
valid, and rate its usefulness if it originated from external sources. Users would be
able to query on categories and ratings and receive only current and relevant in­
formation. By supplying just a little extra information, users make the data stored
in the knowledge base infinitely more useful. And if you added smart agent tech­
nology to the application, you could program the knowledge base to e-mail links
to relevant information that meets users' predefined criteria.

Chapter 2

Exchange Server ~
a PlaUonn for
Collaboration

~ , ".' , ;. ,t:;:<' ,

A builder is only as good as his tools: This adage still holds true for developers build­
ing successful software applications. As a developer, you require solid tools and
technologies, and Microsoft Exchange Server is one of those tools. It provides a
number of core capabilities-such as robust messaging functionality, an industrial­
strength object database, Internet protocols, and an open directory structure-that
make it an ideal platform for your collaborative solutions.

ROBUST MESSAGING INFRASTRUCTURE
Exchange Server provides an infrastructure with certain core services that enable you
to focus on bUildillg value-added services rather than on re~creatlng existing services.
This infrastructure complements current network topologies and protocols and, as
you will see, guarantees that every message gets through to its destination. The
following sections discuss some of the advantages of the Exchange Server messag­
ing infrastructure.

15

Part I Introduction to Collaborative Systems

Least-Cost Routing, Load Balancing, and Failover
Exchange Server provides technologies in its messaging engine that allow organiza­
tions to defme different routes of communications between Exchange Servers. Costs
can be assigned to these different routes, and the least costly route is always attempted
first by the Exchange Server. If this route is unavailable, the Exchange Server will
failover to the next least costly route. If you assign the same cost to two different
routes, the Exchange Server will distribute the communications traffic evenly over both
routes, thereby load balancing the connections.

Let's look at an example. Imagine there are three routes between an Exchange
Server in New York and an Exchange Server in California, and the routes consist of
one route over the Wide Area Network (WAN), another over a dial-up 28.8 modem,
and the third over a satellite link. The administrator of the Exchange Server system
can assign costs to each of these routes: the WAN route is assigned a cost of 20, the
modem route is assigned a cost of 50, and the satellite route is assigned a cost of 70.
Based on the cost of the routes, for communications, the Exchange Server would
always attempt the WAN route flrst. If this route was down, the Exchange Server would
failover to the next least costly route (the modem), and if that route was unavailable,
it would attempt to connect over the satellite.

Now this is a simple example, but Exchange Server supports the building of very
complex routing tables with associated costs that it automatically calculates. For
example, consider a message that has to be routed through seven different Exchange
Servers until it reaches its final destination. Each Exchange Server has three unique
routes to the next server. Exchange Server would automatically find the least costly
route of all of the supplied routes.

Delivery and Read Receipts

16

Exchange Server supports both delivery and read receipts when delivering informa­
tion through the Exchange Server system. Delivery receipts are returned to an indi­
vidual user or an application when an item has been delivered to its final destination.
This destination can be another Exchange Server or messaging server over the Internet.
A delivery receipt also reports the time and date that an item was received by a
particular system. You can take advantage of delivery receipts in your application by
using them to trigger events when they are returned. For example, a workflow appli­
cation can consolidate delivery receipts to track the status of message delivery to
workflow participants. Figure 2-1 shows an example of a delivery receipt.

Read receipts are similar to delivery receipts, except that read receipts are sent
to a user or application when the recipient actually opens the item, and delivery
receipts are sent as soon as the item is delivered to the destination server. You might
want to use read receipts in your application for time-sensitive items sent through
the Exchange Server system. The application could track when the item is read, and

Chapter 2 Exchange Server as a Platform for Collaboration

if no action is taken after a certain amount of time, it could reroute the item to a
different user or application. Figure 2-2 shows an example of a read receipt.

Michael Rizzo
Review Chapter 3
3120198 10:30 PM

delivered to the following retipient(s):

Michael RiZZO on 312019810:30 PM

Figure 2·1. A delivery receipt sent back to a user looks like this. Applications can also
send back delivery receipts.

Michael Rizzo
Review chapter 3
3120198 [0:30 PM

Figure 2·2. Applications can use read receipts like this to track when users open items
sent by the application.

Message Tracking
Exchange Server supports more than delivery and read receipts. When message track­
ing is enabled, Exchange Server keeps logs ·of the items that have .entered the Exchange
Server system from other systems. Exchange Server also logs where items were routed
to, which Exchange Server components routed them, and when the items were
delivered to their final destinations. Message tracking enables you to find an item's

17

Part I Introduction to Collaborative Systems

route based on specific criteria such as the sender of the item, the intended recipi­
ent, or even the component of Exchange Server that handled the message. This
powerful tool allows you to trace any item in your application and determine whether
or not it reached its destination. Figure 2-3 shows an example of tracing an item in
the Exchange Server system.

Figure 2-3. Tracking items from Thomas Rizzo across the Exchr;mge Server system.

INDUSTRIAL-STRENGTH OBJECT DATABASE
At its core, Exchange Server is an object database. This object database is highly
scalable, replicated, built for 24-hour availability 7 days a week, and can hold many
different types of objects, including messages, Microsoft Office documents, video mes,
voice mail, faxes, hyperlinks, text documents, custom forms, and applications such
as executable meso You can store all of your application's data in the database while
replicating the information to other locations, so the application and its relevant
information are available anytime, anywhere. Core features of the Exchange Server
database are discussed in the following sections.

Huge Storage Capacity

18

Many collaborative applications require large amounts of data to be available any­
time. Exchange Server makes an excellent repository for this data because it can
handle large amounts of information and ensure the reliability and availability of that
information. Exchange Server supports very large databases-up to 16 terabytes
(16,000 gigabytes) of information. That's pretty big considering that if you compiled
every Wall Street transaction in history, you'd have only a little more than 1 terabyte.
Really, the only factor limiting the size of your database is the hardware you run

Chapter 2 Exchange Server as a Platform for Collaboration

Exchange Server on. The database can run continuously because it has online
defragmentation and allows backup programs to work with the database, even when
users are logged on.

Exchange Server can store many different types of objects and their associated
data in the same database. These objects can even be in the same table, or folder
(as tables are called in Exchange Server). Users simply drag and drop different types
of objects into these folders, and Exchange Server adds them to the database. This
flexibility gives you a distinct advantage when developing applications. Figure 2-4
shows a folder in Microsoft Outlook with many different types of objects.

calenckw .asp
Q Jom Wood

Excel Expen xl.
I think Ihillrllinmg ill II great idea
Templale for new hi"e welcome email
CounIxIown lIS.ppt
readme.doe
Windows NT Server Training
Rendering of mages
Y-22 Osprey HeIiCllPter

Figure 2·4. The Exchange Server database is an object database and can hold many
types of objects in a single folder.

Multiple Views
The Exchange Server database not only supports multiple objects in a single folder
but multiple views of those objects. You can customize views of the objects stored
in the folder by sorting, grouping, and filtering the objects using any combination of
their properties. For example, you can customize the view of an Exchange Server
folder containing Office documents by specifying Office properties, as shown in
Figure 2-5. Even custom properties can be columns in a view, and you can use them
to sort and group items in the view.

Exchange Server also supports "per-user" views that allow individual users to
create custom views. Exchange Server actually maintains for each user the initial view
of the folder, the status of read and unread items, and whether a particular grouping
is expanded in the view. Figure 2-6 shows a single view of an Exchange Server folder
but for different users. Notice how different the views look. Views can also be rep­
licated offline by using Exchange Server's built-in replication features.

19

Part I

20

381
Tom RI ... 80M Demo Script v31.doc 38 128 Minutes Fri 3/20/98 l:H.

Figure 2·5. Views support using properties from Office documents. Your applications
can use these properties for sorting, grouping, and filtering.

Figure 2·6. The initial view of the same discussion folder for two different users.
Notice that certain groups are expanded and certain items are marked as read.

Chapter 2 Exchange Server as a PlaHorm for Collaboration

Built·ln Replication
The Exchange Server· database is a replicated d~tabase, enabling replication from
Exchange Server to Exchange Server and from Exchange Server to Outlook on the
client machine. Exchange Server even supports filtered replication between the ser­
ver and the client.

Replication in Exchange is not the same as Simple duplication. Exchange Ser­
ver replication is more similar to the concept of synchronization in that only the
changes are sent to replicas in the system. Sending only the changes, as opposed to
copying the entire folder for each replication cycle, saves not only time but network
bandwidth.

Setting up server-to-server replication with Exchange Server is easy. All the
administrator has to do is select the folder to be replicated and then select the ser­
ver to replicate the folder to. The settings that enable server-to-server replication in
the Microsoft Exchange Administrator program are shown in Figure 2-7. Once these
settings are in place, the actual replication messages are sent over the Exchange Server
messaging infrastructure. This allows the replication messages to leverage Exchange
Server's load balanCing, least-cost routing, and failover capabilities. Exchange Server
also supports setting the time and size limits of the replication messages.

Figure 2-7. Setting up server~to-seroer replication/or your applications in Exchange
Server is as easy as pointing and clicking in the Exchange Administrator program.

The Exchange Server replication fea~re has built-in conflict management capa-
bilities that enable users to. edit the same information at the same time in the sa!TIe
folder or even in replicas of a folder in different locations. To determine which item
to accept as the newest, Exchange Server implements "last saved wins," the process

21

Pari I Introduction to Collaborative Systems

22

of querying the time an item was saved and retaining the most recently saved item.
You can also set an option that alerts users via e-mail when items are in conflict. Both
versions of the item are sent to these users, and they can decide which item is the
most up-to-date. Exchange Server will keep the item they select.

For server-to-client replication, Exchange Server and Outlook support bidirec­
tional synchronization of changes to information in Exchange Server folders. This
synchronization occurs in Outlook as a background process, so users can continue
working in Outlook. The synchronization can be scheduled so that it happens at
certain intervals. For example, a user can configure Outlook replication so that every
30 minutes the Outlook client synchronizes its local database with new information
from the Exchange Server.

Outlook also supports filtered replication, in which only a subset of informa­
tion is synchronized to the local database. Filtered replication is most useful to users
when large amounts of data are available in the Exchange Server database but users
want to take only a subset of that data offline. For example, imagine an Exchange
Server folder with 50,000 sales contacts. A typical user wouldn't be able to accom­
modate the entire folder on her local hard disk, so she could set the replication
criterion to only those contacts for whom she is the sales representative. Instead of
50,000 contacts, the filtered subset is 1,000 contacts. Figure 2-8 shows the interface
in Outlook where users can set the criteria for filtered replication.

Figure 2-8. Setting up filtered replication in· Outlook is easy for users of your
(lpplication.

Chapter 2 Exchange Server as a PlaHorm for Collaboration

Schema Flexibility

Typically, when you begin work on an application that deals with a database, you
are forced to plan your schema for the database before you start writing your appli­
cation. If the application requirements change and a new field has to be added to
the database, the schema might not be flexible enough to support the addition, and
you might have to drop the present database and create a new one.

With the Exchange Server database, however, you can add new fields at any
point in development, which allows you to accommodate the changing requirements
of an application. New fields are automatically available to users, so users can cre­
ate custom views using them.

Transa~tion Logging

A transaction is a unit of work, such as adding an item to an Exchange Server data­
base. Before any item is committed to the Exchange Server database, the transaction
is written to a transaction log me and then to the database. This process is called write­
ahead transaction logging, and it guarantees that no item will be lost.

Transaction logs allow the Exchange Server to recover the database after some
form of failure, such as a power loss. In this type of scenario, after power is restored
and the server is rebooted, the Exchange Server automatically recovers the database.
Using checkpoints in the transaction logs, the Exchange Server replays any transac­
tions that were not committed to the database before the power failure.

The transaction log is an inherent feature of the Exchange Server database, so
any application you develop on Exchange Server can take advantage of it. Any items
your application sends or stores in the Exchange Server system will be delivered or
committed, even in the event of certain failures in the computer system or network.

EXCHANGE SERVER DIRECTORY
To collaborate effectively, users must be able to find other users and information easily.
Exchange Server provides a hierarchical directory for this purpose. lbis directory holds
the critical information of an organization, qud it can meet the needs of both large and
small organizations because it's scalable and easy to manage. Some of the most impor­
tantfeatures of the Exchange Server directory are described in the following sections.

23

Pari I Introduction to Collaborative Systems

Reliable Database Engine
The Exchange Server directory is implemented using the same database technology
as the Exchange Server messaging infrastructure, so the database engine's reliability
is high. This reliability guarantees that the directory will always be available to your
applications.

Multimaster and Replication Capabilities
The Exchange Server directory is a multimaster, replicated directory. A multimaster
directory allows an administrator to make changes to it on any Exchange Server in
the organization, changes that Exchange Server then propagates to other servers
through replication. Directory replication is implemented over the messaging infra­
structure of Exchange Server, so directory-replicated messages can take advantage
of the least-cost routing, failover, and lqad-balancing features of Exchange Server.

Directory replication in the Exchange Server system is not limited only to server­
to-server replication. Exchange Server <llso supports server-to-client directory repli­
cation. By using a feature called the Offline Address Book, Outlook can replicate the
Exc4an~e Server directory, or a subset of it, to a user's local machine. This allows a
user of your application to address items to other users and to look up detailed di­
rectory information, even when the user is working offline.

Customizable Attributes and "White Pages" , ,

24

" '

Exchange Server exposes a number of attributes in the directory that you can
customize and replicate. For example, you could customize the Exchange Server
directory with a field named "cost center," and set up a supplies requisition program
that dynamically queried the directory for users ordering supplies. Based on what
information users entered in the cost center field, the application would update an
accounting system so that the cost of supplies are automatically deducted from the
cost center. Figure 2-9 shows where you can customize the Exchange Server directory.

The directory has some additional built-in features that you can take advantage
of, such as its ability to store all types of infQrm'ation about an organization, includ­
ing users' office locations, phone numbers, department names, titles--even a user's
manager and direct reports. Exchange Server is an ideal "white pages."

Chapter 2 Exchange Server as a Platform for Collaboration

Figure 2-9. Customizing attributes in the directory. Your applications can take
advantage of these customized attributes.

For workflow applications, a central, hierarchical directory of this kind is cru­
cial. Workflow applications must be able to route items based on an organization's
staff structure, which is dynamic. If names of individuals were hard-coded in an
application, staffing changes would require the application to be rewritten. With the
Exchange Server directory, you can query and dynamically generate employee
information.

Extensibility and Security
The Exchange Server directory is not limited to storing information for only one
organization. Through the use of custom recipients, the Exchange Server directory
can also hold address and organizational information for users from other organiza­
tions. The Exchange Server directory exposes the same functionality to these types
of directory objects as it does to the standard directory objects. Figure 2-10 shows
an example of a custom recipient in the Exchange Server directory.

Any directory object in the Exchange Server system can be secured by using
access permissions, which determine who can see particular objects in the directory.
For example, an administrator can set the access permissions on the business part­
ner directory entries so that certain workers are denied access. These permissions can
be set either per user or per group.

25

Part I Introduction to Collaborative Systems

Figure 2-10. A custom recipient in the Exchange Server directory. Recipients can
hold organizational information for users outside your current organization. .

Internet and Industry Standards Support

26

The Exchange Server directory supports Internet standards such as LDAP version 3.
LDAP, which stands for Lightweight Directory Access Protocol, is an adapted subset
of the X.500 standard that specifies a common protocol for directory access over
TCP lIP. The key benefit of LDAP support in Exchange Server is that any LDAP­
compliant client or application can query the Exchange Server directory. LDAP ver­
sion 3 as implemented in Exchange Server enables you to chain directories together
through a feature called referrals. Referrals tell the Exchange Server directory where
to look for information that a user is querying for when the directory does not cur­
rently possess it. For an application, referrals are crucial since one directory might
not contain all the needed information about users and services. Rather, many dif­
ferent directories, which could be hosted on servers in different locations and even
in different organizations, might contain pieces of this information.

The Exchange Server directory supports ADSI (Active Directory Services Inter­
face). ADSI is an application programming interface that enables you to modify many
different directories using standard protocols. The different directories that ADSI
supports are the Active Directory in Microsoft Windows 2000,the Microsoft Windows
NT version 4 domain-based directory, any LDAP-compliant directory such as Exchange
Server directory, Novell NetWare's NDS Directory, and Novell NetWare Bindery. The
ADSI interface abstracts the low-level functions of these directories and exposes a

Chapter 2 Exchange Server as a Platform for Collaboration

number of objects with which you can write applications. Because ADSI provides
COM interfaces that give every directory element a common set of properties, the
application can use the same programming interface to connect to directory elements
in several directory services. Figure 2-11 shows a diagram of ADSI and the directory
services it can access. ADSI is an important technology to learn since it ties all of these
disparate directories together with a common programming model, and it is Microsoft's
strategic directory programming interface. Chapter 15 demonstrates how to program
to an Exchange Server directory using ADS!.

LDAP
NetWare

NDS
Directory

NetWare
Bindery

Active Directory Services Interfaces

Clients and server

Others

Figure 2-11. ADS! allows you to talk to many different directories, including
Exchange Server, using the same inteifaces. Tbis access is provided through the
different system providers (SPs) in ADS!.

PUBLIC FOLDERS
The core of Exchange Server's collaborative technologies is a feature called public
folders. Public folders are repositories for all kinds of information users will share.
They can be accessed by many types of clients, using various protocols to commu­
nicate. Public folders can contain custom forms for contributing or reviewing infor­
mation in the folder, and users can create custom views for organiZing and filtering
the information in the folder. The main· features of public folders for developers are
described in the following sections.

27

Pari I Introduction to Collaborative Systems

Public folders, just like the Exchange Server directory, are built on the Exchange
Server object database, so they take advantage of its architecture and enjoy the same
benefits:

• Flexible database schema

• Server-to-server, server-to-client, and flltered replication

Folder and Application Accessibility

28

Public folders in Outlook are arranged in a hierarchical tree view,as shown in
Figure 2-12. As you can see, this arrangement makes it easy for users to scroll and
find information. This hierarchy is actually a virtual view of public folder replicas in
the Exchange Server system; users don't have to know on which server the public
folders actually exist.

Figure 2-12. The hierarchical tree view of the Public Folder allows users to quickly
find tnformation.

Exchange Server can assign costs to different sites so that users connecting to
a remote site with a public folder follow the least costly route to that site. this
assignment of costs to remote connections for public folders is called public folder
affinity. Figure 2-13 shows the administration interface for public folder affmity.

Public folders are not limited to holding only the data for an application; they
also can hold any custom forms associated with the application. The availability of
these forms makes your application easier to use by allowing users to go directly to
a public folder to select the associated form rather than search for the form in a global
forms list.

Chapter 2 Exchange Server as a Platform for Collaboration

Figure 2-13. By setting the Public Folder Affinity Optiol1, users of your application
will access one replica of the Public Folder database over another depending on their
location on the network.

Security and Content Control
Inherent in public folders is security control. Public folder permissions can be set on
three different scales:

• Global. Default permissions for everyone in the organization; default
permissions for anonymous users

• Group. Permissions for a specific list of users

• Per user. Individual permissions for a particular folder

All of these permission levels can be combined for a particular folder or set of
users. Assigning permissions is easy, as shown in Figure 2-14. Notice that the per­
missions tab supports predefined roles for users, which you can use to quickly set
permissions for a folder.

In addition to haVing roles-based permissions, public folders have built-in
moderation capabilities. A moderated public folder allows you to control what con­
tent is posted to a folder and who has permission to approve this content. Before
any item is posted to a folder, the item is mailed to the selected moderators, who
approve the content. You can quickly set up a moderated public folder in the folder
properties.

29

Pari I Introduction to C(l~nCllb(llratl\l'e !!iiivs'taI1'llS

Figure 2·14. Setting permissions for a public folder is easy.

Public folders support the e-mailing of items into a public folder, which makes
information available to many users, cuts down on e-mail traffic, and saves disk space.
Mailing-list server applications and distribution list applications can really take advantage
of public folders. By default, the e-mail address of the public folder is hidden from
the address book, but the public folder can be exposed in the address book so that
users can browse for its e-mail address.

Internet Standards Support

30

As you've seen, significant economies can be achieved when information is stored
in a central location rather than in individual mailboxes. By using Exchange Server
public folders as the central location, organizations can expose information to any
standard Internet client that supports the Network News Transfer Protocol (NNTP) ,
the Internet Mail Access protocol version 4 (IMAP4) , or the Hypertext Transfer Pro­
tocol (HTTP). These Internet clients can post and read information securely from a
public folder. More importantly, these protocols allow users who do not have Out­
look on their machines to take advantage of the functionality of an Exchange Server
public folder. For example, an organization can set up a customer service public folder
that enables. internal users to employ Outlook to view folder information and allows
external users to choose from several clients, including Outlook, an NNTP newsreader
such as Outlook Express, a standard web browser, or even an IMAP4 client such as
Netscape Communicator. Exchange Server exposes its collaborative functionality to
all of these clients. Let's take a look at some specific information on the Internet
protocols supported in Exchange Server.

Chapter 2 Exchange Server as a Platform for Collaboration

NNTP
NNTP is an internet standard that defines server-to-server replication of data in the
form of articles. These articles exist in a hierarchy of news groups, which are similar
to discussion folders in Exchange Server. Users can replicate the articles offline, plus
the articles are presented in a threaded view so that users can view their history.
Exchange Server supports both NNTP server-to-server replication and the ability of
any standard NNTP client to read information in Exchange Server public folders. This
allows any public folder in Exchange Server to be replicated to another NNTP ser­
ver or read by an NNTP client. Organizations can use this feature to expose public
folders and their information to their customers. Figure 2-15 shows an example of a
newsreader using NNTP to access an Exchange Server public folder.

IMAP4
IMAP4 is an Internet standard that defines a way for clients to access messaging
information on a server. Exchange Server is an IMAP4-compliant messaging server,
so any standard IMAP4 client can access the messaging services of Exchange Server.
Some of these services include sending and receiving e-mail, synchronizing e-mail
to offline storage, and accessing public folders. Accessing public folders with IMAP4
extends the power of public folders to any standard IMAP4 client.

Macinto5h

Madnto~

rJ RE:. outlook MacintGm
[:1." outloOk M_to'"

00 r1 It£: E5Cchenge on compressed drives

!B [:IS/MIHf Issue
lti r;J ru; dJlec:ts and POP3 clients
eJ !::I M5RP[endpoint maPper registry I!I'ItrlM
[!J

11/11/19911:5. ..
11/11/19914:4..
11/11/19915:0 ...
11/11/19915:0_
11/11/199710:...

11/11/19919'.3. ..
11/11/19919:2.~

10/22119912:4. ..
10/22/199110:. ..

Figure 2-15. Apublicfolder being viewed by Outlook EXpress, an NNTP newsreader.
Exchangf!> Server folders have built-in support for NNTP.

31

Part I Introduction to Collaborative Sv~t4~ml~

32

HTTP
HTIP is the primary protocol used to distribute information on the World Wide Web,
that is, to transmit graphics and documents from a web server to a web browser. HTIP
is a client-to-server protocol, meaning that a client running on the user's machine sends
to a server a request for data, and the server receives the request and sends the rele­
vant information back to the client. HTIP servers can do more than just send back
simple data-scripts that access other back-end services on the network can run on
the HTIP server. These services can be databases, collaboration servers such as
Exchange Server, or custom-built applications.

One example of an application that uses the HTIP protocol to access Exchange
Server information is Microsoft Outlook Web Access. Outlook Web Access, which we
discuss in Chapter 7, is an application that allows any standard web browser to ac­
cess the information stored inside an Exchange Server. Outlook Web Access is built
using Microsoft Collaboration Data Objects (CDO). CDO, which we look at in detail
in Chapter 12, is a set of COM objects that exposes the services of Exchange Server
to any COM-based development tool. CDO is the object library for Outlook Web
Access, and Microsoft Internet Information Sen'ices (IIS)~especially Microsoft Active
Server Pages (ASP), VBScript, and JScript-are the development tools. Figure 2-16
shows the architecture for Outlook Web Access.

Web browser

liS and ASP

t
COO

1II1II I!Jo
COO Rendering

object library object library

MAPI

Figure 2-16. The Microsoft Outlook Web Access architecture.

Chapter 2 Exchange Server as a Platform for Collaboration

Active Server Pages allows you to write scripts using any standard ActiveX scripting
language. With these scripts, which execute on lIS and return HTML to the web browser,
you can build dynamic web applications that take advantage of objects on the web
server. The following code listing shows a simple Active Server Pages application:

<HTML>
<HEAD>
<TITLE>Hello World!</TITLE>
</HEAD>
<BODY>
<H1> Hello, I was created on <%= Now() %>.<P>
<% Set BrowserControl = Server.CreateObject("MSWC.BrowserType") %>
You're using <I>
<%= BrowserControl.browser & " " & BrowserControl .Version & " " %> <II>
as your web browser.
<% set BrowserControl = Nothing %> </Hl>
</BODY>
</HTML>

If you browsed this web page using Microsoft Internet Explorer version 5, you
would see the image in Figure 2-17. Notice that none of the script is sent back to the
client, only the text, and that the date in the text is generated dynamically from the
system date on the web server. The browser is also detected by using a component
on the web server. Chapter 7 discusses the ASP object model and programming
environment in more detail.

Bello, I was created on 1125/00 12:37 :39 AM.

You're using IE 5.0 as your web browser.

Figure 2-17. Results of browsing the ASP page using Internet Explorer.

33

Part I In1tIl'Oil'liur.:'tlion to Collaborative Systems

By using Active Server Pages, Outlook Web Access can dynamically and securely
create web pages based on the information and services in Exchange Server, such
as a user's mailbox, calendar, and contacts; and messaging and calendaring services.
You can access the same features in your application since the enabling technology
for Outlook Web Access is the CDO library.

INTEGRATED, INTERNET
STANDARDS·BASED SECURITY

With so many corporations connecting their systems to the Internet and exposing their
networks to millions of Internet users, security has become a large concern. While
most users on the Internet are not lurking and waiting to break into corporate net­
works, some "bad apples" on the Internet are. Exchange Server prevents these users
from accessing privileged information by implementing Internet standards-based
security in an integrated way.

Windows NT Security

Exchange Server integrates with Windows NT security in two ways. First, users have
to be authenticated using a Windows NT account before gaining access to any Exchange
Server resource that requires authenticated access. Administrators can set up a
Windows NT security infrastructure, and Exchange Server will use that infrastructure
for its own security and access permissions. This enables users to log on only once
to access both the network and Exchange Server services.

Second, Exchange Server uses the built-in auditing capabilities of Microsoft
Windows NT. This integration allows an administrator to detect security breaches by
tracking events, across Windows NT and Exchange Server, which occur within a sys­
tem. All the events can be viewed in one window using the Windows NT event log.

Secure Messaging

34

Many corporations today use the Internet as a backbone for their corporate commu­
nications system. While this is cheaper than leasing lines between servers, it opens
a world of security concerns. Exchange Server alleviates these concerns by imple­
menting some key features that allow corporations to securely use the Internet as a
communications network backbone. For securely sending messages between serv­
ers, Exchange Server supports Secure Socket Layers (SSL) in combination with the
Simple Mail Transfer Protocol (SMTP). SMTP is the primary way that different mail
systems talk over the Internet. SSL allows systems to encrypt data sent from one system
to the other. By implementing SSL with SMTP, an organization can encrypt its data
from one Exchange Server to another when sending the data over the Internet.

Chapter 2 Exchange Server as a Platform for Collaboration

Secure Applications
SSL is not only supported with use of SMTP, but it is also used with other Internet
protocols that Exchange Server supports. By using SSL, Outlook Web Access can
encrypt any traffic between a user's web browser and web server. This secures any
HTML documents that Outlook Web Access is sending to the user. You can take
advantage of SSL when using custom forms in the web forms library of Outlook
Web Access.

S/MIME Support
Exchange Server supports encryption and digital signatures by using Secure Multi­
purpose Internet Mail Extensions, or S/MIME for short. An Internet standard, S/MIME
is a method of digitally signing and encrypting messages between users on the same
vendor's system or users on different vendors' systems.

S/MIME is built on X.509 version 3 certificates. These certificates are generated
by a certificate authority such as VeriSign or Certificate Server included with the
Microsoft Windows 2000 Server. Since Exchange Server supports X.509 version 3
certificates, it can accept the certificates from other certificate authorities. Similarly,
clients can trust certificates from other authorities through the use of Certificate
Trust Lists.

Exchange Server also supports the revocation of security certificates. Revoking
certificates is useful when a user feels that her security has been compromised and
someone else is signing messages on her behalf. Likewise, when a user leaves an
organization, you might want to revoke the user's certificate to make sure that all
messages sent by this user are marked invalid. When an administrator revokes the
certificates for a user, any encrypted messages previously sent by that user will notify
other users, upon opening of the messages, that the certificate is invalid. After revoking
a certificate, the administrator can issue a new certificate to the user.

As a developer, you can take advantage of the advanced security features of
Exchange Server. By building your applications based on the standard Outlook e-mail
message, you automatically inherit the advanced security functionality in Outlook.
This allows you to digitally sign and encrypt your custom forms before the user sends
or posts forms.

MULTITIERED, REPLICATED,
SECURE FORMS LIBRARY

Locating new applications in an organization can be a hard thing to do because they
exist in so many places. For example, an application can exist on one of many pos­
sible file servers. Although the emergence of intranets has enhanced the ability to find

35

Pari I Introduction to Collaborative Systems

applications, you still have to find the site with explicit links to the information you
want. And if you do find the web server that has the application, you might have to
connect to a server halfway around the globe, making connection speeds to that
application very slow.

Exchange Server's multitiered, replicated, secure forms library makes it easier
to locate applications. lhe Exchange Server forms library is divided into four main
components: an Organizational Forms Library, the folder forms libraries, a Personal
Forms Library, and a web forms library. Some of these libraries can be synchronized
offline, so users can work with the applications, even when the users are disconnected
from the network. You can choose which of these is best for your application.

Organizational Forms Library

36

The Organizational Forms Library contains, most often, forms that everyone in an
organization needs access to, such as vacation requests, business cards, and travel
expense reports. The Organizational Forms Library is contained on the Exchange
Server and can be replicated to servers throughout your network, so access to these
formS is fast. It lists all the available applications throughout an organization. Figure 2-18
shows an Organizational Forms Library in Microsoft Outlook 98.

Review Ingredients for FDA Compliance
SafeoOrder
Select T e.t Market City
te.t
T e.t Product Consistency
T rain Manufacturing Workers

Figure 2-18. You can publish your application in the Organizational Forms Library,
and it will automatically be available to your users.

Chapter 2 Exchange Server as a Platform for Collaboration

The Organizational Forms Library is secure, so administrators can set which users
have permissions to publish or edit information in the forms library. It is also multi­
lingual; the Exchange Seiverpresents the server-based forms library that corresponds
to the language of the client program accessing the forms library. For example, when
a Japanese client requests a list of forms in the Organizational Forms Library, the
Exchange Server displays all the corresponding Japanese forms. This multilingual
capabiiity allows you to custoritize and deploy your applications to the correct cli­
ent without writing any code.

Folder Forms Library
A folder forms library is for folder-specifiC;:: forms. The folder forms library is more
secure than the Organizational Forms Library. You would post foims you do not want
to share globally in the folder forms library. The forms stored in a personal folder
fonus library are shared only with the users to whom you give access. The forms
stored in a public folder forms library can be shared with any user who has the correct
permission on that public folder. Using the synchronization capabilities of Exchange
Server, users can replicate public folders (including their data and forms) offline.

Personal Forms Library
The Personal Forms Library is the most restrictive in terms of sharing its forms with
other users; this library "belongs" to a particular user and cannot be shared with any
other User in the organization. All forms in the Personal Forms Library can be used
both on and off the network. Users can test forms in the Personal Forms Library before
publishing them to the Organizational Forms Library or folder forms library.

Web Forms Library
The web forms library is a hierarchy of folders stored in the Windows NT file sys­
tem where your web server, lIS, runs Outlook Web Access. Exchange Server supports
HTML forms as a development environment, so Outlook Web Access has an easy and
automatic way for web developers to publish custom forms in the web forms library.
To create an HTML-based application, you need only to create a subdirectory in the
file system where Outlook Web Access is stored and copy your HTML files to it. The
new form will appear in the Launch Custom Forms window of Outlook Web Access.
Users can then start working with the application from the web forms library. Figure 2-19
on the following page shows forms in the web forms library.

37

Part I Introduction to Collaborative Systems

Figure 2-19. The web forms library holds HTML applications that you develop for
your organization.

BUILT-IN INFORMATION MANAGEMENT TOOLS
Managing information when building applications cari be one of the most tedious tasks
for a developer. But public folders, with their built-in and configurable services, handle
these tasks automatically for you. They allow you to set the expiration time for
information, which prevents public folders from becoming inundated with megabytes
of outdated and useless information. Their conflict management features prevent two
users from unintentionally saving two versions of the same document. If two users
edit the same document stored in a public folder and then try to save their changes,
Exchange Server sends a conflict message to both users and to any folder contacts
defIned on the public folder. The users then have the choice to keep one of the two
items or both. Figure 2-20 shows the Conflict Message dialog box.

Rules

38

To manage the massive amount of information received by an organization, Exchange
Server supports rules. Although many other collaborative systems also have this func­
tionality in some form, in most cases a user must be logged on to the system before
the rules can be processed. Also, other systems don't allow rules in folders other than
a user's personal folders. With Exchange Server, rules are supported for both personal
folders such as an Inbox and fbr public folders.

By setting rules in your public folder application, you can to some extent con­
trol the flow of information into and out of it. Public folder rules are configurable by

Chapter 2 Exchange Server as a Platform for Collaboration

the owner of the public folder and are server-based, which means no client has to
be logged on for the rules to fire. Instead, the server fires the rules.

Figure 2-20. Exchange Seroer automatically detects when conflicts of information
occur in your applications. The seroer will then send a notification to the folder owner
and to the users who generated the conflict.

The types of rules you can create range from simple rules, such as "send a thank
you e-mail to anyone who sends a message to the public folder," to very complex
rules. Complex rules can entail checking multiple fields on an item and taking a
specific action based on those fields.

Event Scripting Agent

Sometimes rules are not the best strategy for controlling the flow of information in
your application-for example, they might be too constrictive. In these situations, a
feature in Microsoft Exchange Server version 5.5, called the Microsoft Exchange Event
Scripting Agent, will help you greatly. The Event Scripting Agent (discussed in more
detail in Chapter 13) allows you to write custom event handlers for the most com­
mon Exchange Server folder events by using standard development tools that sup­
port COM. For example, you can write a script event handler that calls COM objects
that you create. Plus, as its name implies, the Event Scripting Agent ships with a
scripting engine that understands any ActiveX scripting language, so you can write
your custom agents using a scripting language such as VBScript or]Script. You choose
which development tool you use to write these agents.

Once you write your custom agent, you can place it in an Exchange Server
folder, such as your server-based Inbox or a public folder. Your agent can handle four
distinct events, listed on the next page.

39

ParI I Introduction to Collaborative !'!!oVS'm'I;Ji!I!'li'lIS

• OnMessageCreated. This event fires when any type of new item is posted
to the folder, such as an e-mail message, a calendar appointment, or a
Microsoft Word document. This event can be generated from any type of
clieht, such as Outlook or a web browser client. An expense report agent
might use this event to look up the manager of a person who submits an
expense report and then route the report to the manager for approval.

• OnChanged. This everit fires when any type of item is edited and saved
back into the folder.An example agent for this type of event is a resource
scheduling agent, which monitors a public folder calendar for conference
rooms. When a meeting time is changed, the agent notifies all the attendees
and any catering services.

• OnMessageDeleted. This event fires whenever an item is deleted from the
folder. It's useful when you want to synchronize the contents of a folder
with another data source. By writing a custom agent for this event, you
could delete from other folders or databases items that are related to the
deleted item.

• On Timer. This event fires based on a time limit you specify, which can
be weekly, daily, hourly, or on a more granular time. For example, you
can customize an event so that it fires every 15 minutes starting at 6:00
P.M. and ending at 3:00 A.M., or set the event to fire only on certain days.
An example of an agent using this event is another expense report agent
that works in conjunction with the sample expense report agent we just
discussed. Suppose the manager does hot approve the expense report
forwarded by the first expense agent in the specified amount of time­
an hour, let's say. A scheduled event, created to check pending expense
reports every hour, determines that the expense report needs to be esca­
lated to the manager's manager. The agent could look up that individual
using the Exchange Server directory and route the expense report to her.

As you can see, by creating custom agents, you can implement custom func­
tionality that would otherwise be unavailable in public folder rules.

CONNECTIVITY AND MIGRATION TOOLS

40

Information in a corporation is stored in various places. For employees, business
partners, and customers to collaborate effectively, these "islands" of information must
become connected, and information must be accessible. To enable this, Microsoft
Exchange Server has a number of built-in migration and coexistence tools.

Chapter 2 Exchange Server as a Platform for Collaboration

A series of connectors enables an Exchange Server to coexist with other types
of collaborative systems. These connectors ensure the reliable delivery of messages
between Exchange Server and these other systems, but the connector's capabilities
do not stop there. The connector can also provide directory synchronization between
the two systems. Directory synchronization gives clients on both systems the ability
to seamlessly query the directory for users on another system. This global, unified
directory in the Exchange Server system makes building collaborative applications
easier because it centralizes information. The systems that Microsoft Exchange Ser­
ver can connect to, send messages from, and synchronize directories with include
Microsoft Mail, Lotus cc:Mail, and Lotus Notes. Exchange Server can transfer messages
with host-based systems, such as OfficeVision VM (PROFS), and System Network
Architecture Distribution Services (SNADS) systems, such as IBM OfficeVision/MVS
and Fisher TAO.

Sometimes, corporations fmd it more cost-effective to have only one collabo­
rative system rather than several. To help organizations move to Exchange Server,
migration tools for a large number of systems are included in the product. These tools
make it easier for organizations to transfer their users and information into the Exchange
Server system. The products. supported by these migration tools are Microsoft Mail,
Lotus cc:Mail, Novell Groupwise, Collabra Share, and Lotus Notes.

CLIENT OPTIONS
The Microsoft Outlook family of clients prOVides users with a choice of clients to use
with Exchange Server. These clients support multiple platforms and provide varying
levels of functionality, depending on the needs of the user. In addition, all the cli­
ents in the family support a consistent user interface, so moving from one client to
another is easy. The following sections describe these clients .

. Pocket Outlook
Microsoft Pocket Outlook runs on any handheld device that supports the Microsoft
Windows CE version 2 operating system Pocket Outlook enables communication and
enhances collaborative work by supporting e-mail, contacts, tasks, and scheduling.
These services can be sYn<;hronized with Outlook 2000 by using the built-in ActiveSync
technology in Microsoft Windows CE.

Outlook Express
Microsoft Outlook Express is a POP3, IMAP4, and NNTP client that ships for free
with Microsoft Internet Explorer version 5. Outlook Express provides basic e-mail
and news group functionality that can be customized to meet the needs of the user.
When used in conjunction with Exchange Server, Outlook Express has simple cal­
endaring functionality.

41

Part I Introduction to Collaborative Systems

Outlook Web Access
Outlook Web Access is a browser-based view of information stored in Exchange Server
and is covered in Chapter 7. Outlook Web Access supports e-mail, calendars, public
folders, custom views, and directory functions, all from a standard web browser. The
technology behind it comprises ASP and CDO.

Outlook for Microsoft Windows
Versions 3.x and the Macintosh

For companies supporting employees who use 16-bit Windows and the Macintosh,
Microsoft Outlook offers consistent versions for both platforms. Both provide the same
user interface as the other members of the Outlook family and include e-mail, per­
sonal calendaring, task lists, group scheduling, HTML-based custom forms, and an
easy migration path from current Microsoft e-mail clients.

Microsoft Outlook
Outlook is Microsoft's premier e-mail and collaboration client. With Outlook, users
can manage many types of information including their e-mail, personal calendar,
contacts, and tasks. Group scheduling, task management, and journal capabilities
improve user productivity through better information management. Tight integration
with Office and Internet Explorer provide major benefits to users of these applica­
tions because Microsoft Outlook extends them with enhanced functionality.

CHOOSING A CLIENT

42

As a developer preparing to build a messaging, tracking, workflow, real-time, or
knowledge management application for Exchange Server, you must first ask: "Which
client interface should I use-Microsoft Outlook or a web browser?" The answer
depends on a number of factors.

You need to ask yourself a few questions.· For example, does the application
need offline support? If the answer is yes, consider using Outlook, which has built­
in support for offline forms, and which automatically synchronizes any offline changes
to Exchange Server. Compare this functionality to the web browser client, which has
limited support for offline forms. Web browsers can cache web pages for offline
viewing, but they cannot process server-side scripts such as Active Server Pages
without a web server on the local machine. The typical user does not have a web
server on a local machine.

Support for non-Win32 clients, such as Windows 3.1, Microsoft Windows for
Workgroups, Macintosh, and UNIX, is another factor to look at when designing
applications. The ubiquity of web browsers for multiple operating systems has enabled

Chapter 2 Exchange Server as a Platform for Collaboration

web-based applications to provide cross-platform client support. Although Microsoft
Outlook runs only on Windows 95, Windows 98, Windows NT, and Windows 2000,
new technology enables Outlook forms to be converted to web-based applications.
This technology, called the Outlook HTML Forms Converter, is discussed in detail in
Chapter 7.

Your skill as a developer is another factor to consider. Microsoft Outlook offers
a very approachable development environment, even for the novice developer. It also
provides built-in capabilities that allow power users or developers to customize an
application without writing any code-very appealing to those who want to meet a
specific need quickly and avoid creating an application from scratch.

If you are more familiar with other development tools, consider that Exchange
Server exposes its services through a rich API that can be called from any develop­
ment environment that supports COM. Some examples of these development envi­
ronments include Microsoft Visual Basic, Microsoft Office (through Microsoft Visual
Basic for Applications), Microsoft Visual C++, and Microsoft VisualJ++. This environ­
ment flexibility allows you to leverage the tools and skills you currently have.

43

I -I -I
Ii

Part II

tl
Ii

Chapter 3

Folders,
Fields, and Views

The first step in developing any application is planning it. Without proper planning,
you might dive too quickly into development, only to realize that you need more
resources than you expectede or the application does not meet the requirements of
your users. Planning an application begins with assessing why the application is
needed. Figure out the business purpose of the application. This step sounds obvi­
ous, but it helps you focus your development efforts and define how complex or
simple the application should be.

After deciding why to build .the application, you need to answer the "who" ques­
tion: Who are the users of this application? If the users are technically savvy, for
example, you might want to incl~de advanced functionality. If you are developing
an expense report application that everyone in the organization will use, you will want
to keep the design of the application Simple to accommodate diverse users and tech­
nical skills.

In addition to considering the technical skills of your users, you have to think
about the hardware on which the application will run. If laptop users need to use
your application while traveling and will be disconnected from the network, you need
to plan for offline support. If a remote user is the principal user of your application,
you should make the application small and fast, since these users have low band­
width connectivity.

To develop applications, you need software building blocks. In the same way
that brick, wood, and concrete are the materials that carpenters need to build a house,
software building blocks are the materials you need to build an application. Microsoft

47

Part II Building Outlook Applications

48

Outlook provides five key building blocks for developing collaborative applications:
folders, fields, views, forms, and actions. This chapter is dedicated to showing you
how to take advantage of the first three. (In the next chapter, you will learn how to
use forms and actions.) Specifically, this chapter will cover how to do the following:

• Create folders and set properties for a folder, including setting the per­
missions on a folder, setting the replication properties of a folder, and
creating custom rules in a folder.

• Create custom fields, such as combination and formula fields, all of which
allow your application to hold custom data. Plus, you will learn how to use
these fields in setting your properties for filtered replication in Outlook.

• Create custom views by using the five default view types in Outlook, cus­
tom fields, and Microsoft Office document properties.

OUTLOOK DEVELOPMENT TIPS

Here are a few tips for developing applications with Outlook. As you read
through this chapter and Chapters 4 and 5, keep these issues in mind:

If possible, develop and test your application in a personal folder before
deploying it in a public folder.

If you have to develop your application in a public folder, restrict access.
Personal folders do lack some public folder functionality such as permissions
or rules, so if your application requires complex permissions or rules, you might
want to build your application in a public folder. To limit access to this folder while
constructing the application, set an option in the folder to restrict access to only
owners of the folder. We'll talk more about this feature later in this chapter.

Always save a backup copy of a custom form before testing it. Certain logic
errors on your form can freeze Outlook and force you to kill the Outlook pro­
cess. For example, a simple oversight in your VBScript code could cause an
infinite loop in your application. The only way to end the loop would be to kill
the Outlook process. If you did not save a backup copy of the form, you would
lose all the changes since the last backup.

As obvious as it sounds, you should test your application thoroughly before
deploying it. This should involve trying all the permissions, views, rules, forms,

/",

actions, and custom code in the application. If you deploy an application and
later realize you need to make changes, make a backup copy of the original
application in your personal folders, modify the application backup in your
personal folders, and retest and deploy the new application. This method pro­
vides the least disruption to current users of the application.

Chapter 3 Folders, Fields, and Views

FOLDERS
Folders are the focal point for any Outlook application. They hold data; views for
that data; and forms, agents, and rules. They provide users with a storage location
for information and a hierarchy structure that makes finding information easy.

In Outlook, you can create folders in three places: in your mailbox stored on
the Microsoft Exchange Server, in your personal folders stored on your computer's
hard disk, and in public folders. Each of these locations has advantages and disad­
vantages. For example, if you create a new folder in your personal folders, you can­
not easily share it with other users in your organization. In addition, you cannot set
permissions on it. (In this book, we use public folders for storing application data.)
Many of the properties you can set on public folders are applicable to the other two
types of folders.

NOTE Some of the steps and figures in this chapter are based on a user hav­
ing permissions to create public folders. If you can right-click on a public folder
and choose New Folder, you have permission to create a subfolder. If you are
unable to create a public folder, contact your Exchange Server administrator to
see whether a public folder is available to you that will allow you to create fold­
ers. If no public folder is available to you, ask your Exchange Server adminis­
trator for the proper permission.

Creating Public Folders
To help you work through the rest of the chapter, we are going to look at three simple
applications that use the different building blocks of Microsoft Outlook: a threaded
discussion application, an account tracking system, and a document library applica­
tion. Each of these applications needs its own separate public folder to store its data.

To create a public folder for each application, follow these steps:

1. From the File menu in Outlook, selec:t New and then Folder. The Create
New Folder dialog box appears.

2. In the Name box, type a name for the folder. Start with the threaded dis­
cussion application, and type Outlook Discussion Group.

3. The drop-down list named Folder Contains shows possible items. Keep
the default, which is Mail Items.

NOTE Outlook allows you to set the default type of item contained in the folder.
If you were creating a public folder of task items, you would select Task Items
from the drop-down menu. The folder can hold other types of items besides the
default item you select.

4. In the Select Where To Place The Folder box, expand the Public Folders
tree, select All Public Folders, and then click OK.

49

Pari II Building Outlook Applications

5. Outlook might prompt you about whether you want to add a shortcut to
this folder to your Outlook bar. Click No.

6. Repeat these steps to create an Account Tracking public folder and a Docu­
ment Library public folder.

Customizing Folder Properties

50

After creating the folders, you need to customize their properties for your applica­
tion. Outlook automatically creates and sets certain properties of the folder for you.
For example, Outlook creates common views for a folder based on the default type
of folder you select. For a calendar folder, Outlook creates default calendar views such
as day/week/month and active appointments; for a contacts folder, Outlook creates
default contact views. You can change the default properties for a folder in the folder's
Properties dialog box: right-click on a folder in the folder list, and select Properties
from the context menu. The properties for the folder appear. Figure 3-1 shows the
Properties dialog box for a Job Candidates application.

Figure 3-1. The Properties dialog box/or aJob Candidates application.

General Tab
The General tab allows you to modify the general properties of a folder. In addition
to specifying the folder name and describing the folder, you can do the following tasks:

Chapter 3 Folders, Fields, and Views

• Specify the default form for posting items to the folder. You can set which
default or custom form a user should use when submitting an item to the
folder. As you will see with our sample applications, you'll want to modify
this property after you develop custom forms for the folder.

• Automatically generate Outlook viewsfor users of the Exchange client. When
the Automatically Generate Microsoft Exchange Views check box is
checked,.Oudook automatically generates all views for the folder so that
users on the Exchange client can use them. This property must be set if
you want your custom Oudook views to be available in the Oudook Web
Access client or to your Collaborative Data Objects (CDO) applications.
By default, Oudook enables this property.

• Check the size of the folder. Click the Folder Size button to check how
much space the folder is using to store its items and any subfolders. This
option can help you figure out which folders are being used most fre­
quendy by users.

Administration Tab
The folder's Administration tab enables you to perform common administrative tasks.
The follOWing sections describe them.

• Set the initial view for the folder. The initial view can be either a built-in
Oudook view ora custom view. Oudook Web Access respects this initial
view property; when a user browses this folder in Oudook Web Access,
the view you set will be the initial view.

• Set how Outlook formats items dragged into your folder. The Drag/Drop
Posting dtop-down list has two settings: Move/Copy and Forward.
Move/Copy specifies that when an item is dragged into the folder, the item
appears exacdy as it appears in its original location. The user who drags
the item into the folder is not indicated, and the person who originally
posted the item is retained as the owner of the item. The Forward setting,
.in contrast, identifies the user who dragged the item into the folder as the
user who forwarded the item. Oudook modifies the original text of the
item to indicate that the item was forwarded.

51

Pari II Building Outlook Applications

52

• Save the folder address to your personal address book. Use the Add Folder
Address To Personal Address Book button to save a folder's address so
that you can later preaddress any custom forms that you want Outlook
to automatically send to the folder. The administrator can also expose
the folder in the Global Address List. Once this is done, the folder appears
as just another recipient, which you can select in the address fields on
your form.

• Set the current availability of the folder. By default, the option This Folder
Is Available To is set to All Users With Access Permissions. While design­
ing your application in a folder, you can set this property to Owners Only
so that users cannot access the folder. This property affects only the cur­
rent folder, so users still can access and continue working with subfolders
under the parent folder. When a user tries to submit items to the parent
folder while you have it disabled, Outlook returns the items with a note
explaining that the folder and its contents are available only to owners at
this time. After the application is done, you can reset this option so that
all users can access the folders as long as they have proper permissi<;:m.

• Create rules for the folder. The Folder Assistant button allows you to set
rules for the folder. Because these rules can control information flow in
a public folder and check specific properties of items as they are submit­
ted into the folder, the Folder Assistant is important to designers of
applications. For more information on designing rules, see the section titled
"Creating Public Folder Rules" later in this chapter.

• Moderate folder content. The Moderated Folder button gives you access
to settings that automatically moderate all the content in a folder before
a user can post information. You can enable moderation on any public
folder. For information on how to set up a moderated folder, see the
<:prtinn tit!prl "Spttina TTn Mnrlpr<ltprl Pnlrlpr<:" htpr in thi<: rh<lntpr ------- ------- ------0 ~r -.-~------- - -----~ ----- --- ---- ----x----.

• Show the folder path. The Folder Path text box shows the location of the
folder in the public folder hierarchy. Remember this property when you
are designing an application, because it enables users to quickly open a
folder without having to search through the public folder tree.

Chapter 3 Folders, Fields, and Views

Forms Tab
On the Forms ta.b, you can specify which forms are associated with a folder. You can
also restrict which forms users can post to the folder. Clicking the Manage button
displays the Forms Manager dialog box, as shown in Figure 3~2. The Forms Manager
allows you to copy custom forms from other folders or forms libraries into the cur­
rent folder. You can also update or deiete forms.

Figure 3-2. The Fo~ ~~nager dialog box allows you to modify forms associated
with the current folder.

Permissions Tab
The Permissions tab, shown in Figure 3-3 on the next page, allows you to set user and
group permissions for your folder and it;; items so that only those features you want
your users to a.ccess are exposed. TQ modify these permissions, you need to be an
owner of the folder. By default, when you create a folder, Qudook gives you owner
rights. This means you have the full range of permissions to create, edit, or delete items
in the folder. You can also change the permissions of other users in the folder.

When you first open the tab, you see that the default role for users is set to Author.
This role corresponds tQ a set of permission.s on the folder: users have the ability to
view the folder, create and open it~ms in it, and delete and edit their own items.

To learn how to set permissions for our Document Library and Account Track­
ing applications, follow the next set of steps. We'll limit who can create and edit docu­
ments in the folder to only users in our division, but we'll enable all users to at least
read theirlformati~n in our Document Library.

53

Part II Building Outlook Applications

54

Figur~ 3·3. On the Permissions tab of the Properties dialog box, you can add, delete,
or modify the permissions that users have on the current folder.

1. In the folder list, right-click on the Document Library folder you created
earlier and select Properties.

2. Click on the Permissions tab.

3. In the Name box, select Default. In the Permissions area, select Reviewer
from the Roles drop-down list.

4. Click Add, and select several coworkers from the address list in the Add
Users dialog box. (Outlook also allows you to select and assign permis­
sions to distribution lists. This capability makes it easier to set permissions
for a large number of users.) When finished, click OK.

5. In the Name box, select one of the names you added in the preceding step.
In the Roles drop-down list, select Publishing Author. Tnis role will allow
your coworkers to create, read, and edit their own items in the folder. Your
Permissions tab should look similar to Figure 3-4.

Follow the same steps for the Account Tracking application, with these
exceptions:

• Set the default permissions to None since we do not want anyone in o~r
organization besides sales representatives accessing the application.

• Hide the folder from Default users by unchecking the Folder Visible check
box. Remember to give your salespeople permission on the folder or they
won't be able to see it either!

Chapter 3 Folders, Fields, and Views

Figure ~~4. Permissions for the Document Library application.

Figure 3-5 on the next page shows an Outlook user browsing the public folder
hierarchy. Notice that the Account Tracking folder is not visible to this user because
he does not have the Folder Visible permission.

SELECTING INDIVIDUAL
PERMISSIONS VS. SELECTING ROLES

Outlook provides roles with associated permissions so that you do not have to
select each permission individually. If you wanted to create a custom role, you
would select the permissions individually, and Outlook would apply these
permissions to any type of item in the folder. For example, try dragging and
dropping some Microsoft Word docu1llelltS into the Document Library folder.
Log into Outlook as a different user. This user is assigned the default permis­
sions for the folder, meaning that all documents in the folder are read-only. Now
double-click on one of the Word documents. You should see Word open but
with Read-Only at the top of the document. This is Outlook maintaining the
permissions you set on the items in the folder, even though the Word document
is not a default Outlook item type.

55

Pari II Building Outlook Applications

56

Figure 3-5. A user browsing the public folder hierarchy. Since the user does not have
permissions to view the Account Tracking folder, the folder does not appear in the
hierarchy.

Internet News Tab
On this tab, you can view the Internet newsgroup name of the public folder. Exchange
Server supports exposing public folders as part of an Internet newsgroup hierarchy.
For example, we can publish our Outlook Discussion Group as an Internet newsgroup
named Comp.MyCompanyDiscussions. :By doing this, other corporations can receive,
as a newsfeed, our threaded discussions in the public folder. On this tab, you can
also set whether the public folder shoulq be visible to newsreader clients.

Synchronization Tab
Outlook supports synchronizing folders and forms for offline use. Now let's set up
two of our applications to handle offline synchronization:

1. Enable Outlook for offline access. From the Tools menu, select Options.
Click on the Mail Services tab. Check the Enable Offline Access check box,
and click OK.

2. To enable offline synchronization for public folders, add the folders to your
public folder favorites. Open the folder list in Outlook. Expand the Pub­
lic Folders tree to display Favorites and All Fublic Folders. Drag and drop
the Document Library folder and the Account Tracking folder into the
Favontes folder. Both folders should appear in your Favorites folder.

Chapter 3 Folders, Fields, and Views

3. Open the Favorites folder. Right-click on the Document Library folder and
select Properties.

4. Click on the Synchronization tab, and select the When Offline Or Online
option.

5. Click OK.

6. Repeat Steps 3 through 5 for the Account Tracking folder. Now both of
these folders are set for offline synchronization. Later in this chapter, we
will use the Filter option in Outlook to select the items to synchronize,
based on specific criteria, from the server to our client.

Setting Up Moderated Folders
One of the most requested features of an application that distributes information to
many users is the ability to moderate content before it is posted. Moderation allows
folder owners to decide which content is appropriate for the application and to select
a group of people who can approve the content, and it discourages people from
posting random information to the application. By using public folders, you can supply
this functionality to your users without having to write any code yourself. The abil­
ity to moderate content is a built-in feature of public folders. To show you how
moderated public folders work, let's enable moderation for the Outlook Discussion
Group application. Take a look at Figure 3-6 on the next page as you follow these
steps:

1. Find the Outlook Discussion Group folder you created in the public folder
list, right-click on it, and select Properties.

2. In the Properties dialog box, dick on the Administration tab.

3. Click the Moderated Folder button to open the Moderated Folder dialog
box.

4. Check the Set Folder Up As A Moderated Folder checkbox to make the
discussion folder a moderated folder.

5. In the Forward New Items To box, either type the names of people who
are moderators or enter the address of another public folder to which
Outlook should forward the items.

6. Check the Reply To New Items With check box. By enabling this option,
every USer who mails or posts items ill. the folder will receive a reply note
from Outlook.

57

Part II Bunding Outlook Aplpu'catloins

58

7. Choose Standard Response as the response type. Users automatically will
,receive an e-mail in their Inbox thanking them for their submission and
explaining that there might be a delay before the item is available in the
folder due to a pending review by other users.

NOTE You can also send a custom response.

8. In the Moderators area, click the Add button. Select users or distribution
lists to be moderators of the content placed in the folder. Figure 3-6 shows
a sample Moderated Folder dialog box. When finished, click OK.

Figure 3-6. The Moderated Folder dialog box.

MORE ABOUT MODERATORS AND FORWARDING ITEMS

Moderators are individual users or distribution lists that are allowed to approve
content. When a moderator posts an item to a folder, the item is not forwarded
for review. Instead, the item is left in the folder. If the owner of the folder is
not listed as a moderator, the item she posts to a folder will be forwarded for
review. The owner cannot drag and drop the item back into the folder; Out­
look automatically forwards the item for review again until a moderator drags
and drops the item back into the folder. If you are going to use a moderated
folder, add the folder owners as moderators.

Chapter 3 Folders, Fields, and Views

Creating Public Folder Rules
Sometimes the built-in moderation features don't provide you with enough control
over the information flowing into your application. So instead of using moderated
public folders, you can place custom rules into your application. These rules auto­
matically process new items as they arrive.

Rules consist of conditions and actions. As you would guess, if the conditions
of a rule are met by an item, the associated action occurs. Outlook provides an easy
way to create rules through the Folder Assistant. The Folder Assistant, shown in Fig­
ure 3-7, allows you to create, edit, delete, enable, disable, and order rules. We will
step through an example later in this section.

Figure 3-7. The Outlook Folder Assistant belps you create custom rnlesjor your
applications.

Setting the Conditions for a Rule
The conditions for a rule can range from very simple, such as checking who the item
is from, to very complex, such as checking who the item is from and also searching
the subject and text for specific phrases or text strings.

The Folder Assistant allows you to specify multiple conditions as well as mul­
tiple arguments within a single condition. Multiple arguments in a condition are
separated with semicolons. When processing incoming items for a rule, Exchange
Server ORs the arguments together. If the item meets one of the arguments, the
associated action occurs. One example is to create a single rule that checks whether
an incoming item is from any of the specified people. To do this, you use the From
condition and separate each name with a semicolOn, such as FROM·Michael Rizzo;
Jo Brown. If the item is from either Michael Rizzo or Jo Brown, the action for the rule
will occur.

59

Part II

60

If you specify multiple conditions on different items within a rule, Exchange
Server will AND the conditions. All conditions must return true for the action to occur.
For example, if you specify the From condition to be FROMjo Brown and the Sub­
ject condition to be SUBjECI':New sales quote, the item must both be from Jo Brown
and have a subject of New sales quote for the action to occur.

You can combine the two techniques to make more complex conditions with
multiple arguments. For example, suppose in a discussion database, you set the mes­
sage Body condition to be BODY:heip;problem and the From condition to be
FROM:CEO;CIO. If a message is submitted to the folder from either the CEO or CIO
and has either help or problem in the message body, your rule's action will occur.
My recommendation for the action for this rule is to forward it to the help desk as a
high-priority message!

In addition to allowing you to specify simple conditions such as the subject,
name of the sender, and name of the intended recipient, the Folder Assistant allows
you to set up what are called advanced conditions. Some examples of advanced
conditions include size of the item, date ranges, and the presence of attachments. You
can even specify advanced conditions that check user-defined fields on forms, fold­
ers, and custom office document properties.

One other advanced feature is the ability to create rules that fire when the con­
ditions you specify are not met. For example, you might create a rule that fires for
items that are from anyone except John Hand. To do this, you would specify john
Hand in the From condition and then specify to process the rule only if the condi­
tions are not met. This type of rule comes in handy when an inclusive condition, such
as every user in an address book, is impractical to specify.

Finally, you can set an option in the Folder Assistant that will stop the rules en­
gine from processing any subsequent rules after the current rule fires. You should
use this condition when you have multiple rules in your folder and you want the
current rule to be the last one applied.

Setting the Actions for a Rule
If the conditions of a rule are met, Exchange Server applies the rule's corresponding
action to the item. There are four actions you can use in a rule, as shown in Figure 3-8.

Following is a description of these actions:

• Return To Sender. This action sends any item e-mailed into a folder back
to the sender. Outlook does not allow the user to post the item. Instead,
it returns notification that the user does not have permission to add this
item into the folder.

• Delete. This action deletes the item immediately. By setting this action, you
disable other possible actions in the rule, such as Return To Sender, and
you automatically enable the Do Not Process Subsequent Rules condition.

Chapter 3 Folders, Fields, and Views

• Reply With. This action automatically replies to the sender. You can cus­
tomize the reply message by clicking the Template button, which opens
a new message form. You can add recipients to the reply, enter custom
message text, or insert any attachments that you want to include for the
user. To save and close your reply template, choose Save & Close from
the File menu.

• Forward. This action forwards all messages not marked as private to a
specified recipient. You can specify the method that Outlook uses to for­
ward the item. The options for this are Stanqard, Leave Message Intact,
or Insert Message As An Attachment.

Figure 3·8. The Edit Rule dialog box. Notice tbefour key actions tbat you can set for
your roles. '

Applying Rules
Exchange Server will process multiple rules in the order that they appear in the Folder
Assistant, which is from top to bottom. To change the order in which rules are applied,
use the Move Up and Move Down buttons to move a rule higher or lower in the list,
respectively.

Implementing Public Folder Rules
To help you understand how to implement public folder rules, we are going to cus­
tomize the Account Tracking and Document Library applications with rules we cre­
ate. For the Account Tracking application, we're going to add a custom reply for the
user who submits an item. This reply will state that the folder has received the new
item. Follow the first set of steps on the next page.

61

Pari II Building Outlook Applications

62

1. Find the Account Tracking folder in the folder list, right-click on it, and
select Properties from the context menu.

2. On the Administration tab, click the Folder Assistant button.

3. Click the Add Rule button. The Edit Rule dialog box appears.

4. Check the Reply With check box.

5. Click the Template button to display the reply template.

6. In the reply template, type this in the Subject field: Your item has been
received. In the message body, enter Thankyou!orsubmittingyouritem
to the Account Tracking application. Your item should be available im­
mediately for other people in the organization to use.

7. From the File menu, select Save & Close.

8. Click OK in the Edit Rule dialog box. Outlook prompts you that this rule
will ftre for all incoming messages. Click Yes.

9. Click OK in the Folder Assistant dialog box. (If a message box is displayed
indicating that you do not have Send As permission, check with your Ex­
change Server administrator to ensure that you have Send As permission
on the public Account Tracking folder. See Knowledge Base article Q152113
for more information.)

You should see your new rule in the Folder Assistant. Try posting a new mes­
sage to the Account Tracking application to test your rule.

For the Document Library application, we're going to add an advanced custom
rule that will check the Author property of the Microsoft Office document. If the author
is not a member of our team, the item will be returned to the sender. To add this rule,
follow these steps:

1. Follow steps 1 through 3 from the preceding procedure for the Document
Library folder.

2. In the Edit Rule dialog box, click the Advanced button. In the Show Prop­
erties Of area, select the Document option.

NOTE On some configurations, the properties do not display when you select
the Document option.

3. Enable the Author property in the Show Properties Of section. For the val­
ues, type the names of people on your team; separate the names with
semicolons.

4. Enable the Only Items That Do Not Match These Conditions check box.
Click OK.

Chapter 3 Folders, Fields, and Views

5. Enable the Return To Sender check box.

6. Click OK three times.

FIELDS
Fields are named variables where Outlook stores the data for your application. A num­
ber of built-in fields store default information. These built-in fields are associated with
folders :ind their default content type. For example, in a Contacts folder, built-in fields
include First Name, Last Name, Mailing Address, and Primary Phone. In your Inbox,
built-in fields include From, To, Subject, and Message. Outlook also supports Office
document properties as fields. For more information on using Office document prop·
erties as fields, see the section titled "Extending Functionality with Office Document
Porms" in Chapter 4.

Outlook provides an extensive amount of built-in fields, but there will be many
times when you need to add custom fields for your application. Outlook fully sup­
ports this capability and allows you to add custom fields to any folder. Your custom
fields bm range from a simple data type, such as a text field, to a complex data type,
such as a formula field that includes a formula to calculate the value of the field from
other Outlook fields.

Creating Custom Fields
The easiest way to create and delete custom fields in Outlook is to use the Field
Chooser. The Field Chooser allows you to see both the built-in Outlook fields and
your custom fields. The easiest way to access the Field Chooser is to select a table
view in your folder, such as any of the defauit Outlook views that begin with the word
By. For example, in your calendar, you can switch your view to the By Category view.
After selecting a table view, right-click on the column headings and select Field
Chooser from the context menu, as shown in Figure 3-9 on page 65.

To create the new field, click the New button, enter a name and data type for
the field, and select the appropriate format. The following is a list of possible data
types for fields in Outlook and the type of formatting these fields support:

• Text. This field type can hold text strings or a combination of text strings
and numbers, such as a mailing address. It can be up to 255 characters
long.

• Number. Use this type of field for numeric data (except numbers that
represent currency) and for mathematical calculations. You can custom­
ize the format of this field with nine different formats, such as a scientific
notation format (125.3E+03).

63

Part II Bunding Outlook Applications

64

• Percent. Store numeric data that is a percentage here. You can choose from
four different formats. For example, you can set how many decimal places
to show in the percentage, such as show only one decimal place (10.901&).

• Currency. Store numeric data represented as currency here. You can
format this data type to either show or hide the cents portion of the cur­
rency. For example, you can have this data type show either $5,232 or
$5,232.10.

• Yes/No. This field stores data that holds only one of two values for the
following pairs of values: Yes/No, True/False, On/Off, or a checked or
unchecked check box.

• Date/I'ime. Store date and time data here. You can format this field with
a number of standard formats, such as Monday, May 05, 19987:00 AM;
5/5/98 7:00 AM; May 5, 1998; or Mon 5/5/1998.

• Duration. This field is for numeric time data represented as an amount
of time elapsed. You can expose the data in this field in several formats,
such as 12h or 12 hours. This field automatically calculates when the data
in the field should be displayed as days, hours, or minutes. For example,
if you set the format for this field as "12 hours" and you enter .25, Out­
look automatically displays 15 minutes. You can also set the format so that
Outlook takes into account only working hours. (By default, that means
an 8-hour day, but you can customize the default.)

• Keywords. This data type is used to hold multiple text values (which are
separated by commas) and is similar to the Categories field used in Out­
look. When creating custom views, keywords can be used to identify items.
Examples of keyword field values are small, medium, and large.

• Combination. This data type holds a combination of fields and literal text.
You can show each field or only the first nonempty field. The fields cre­
ated with this data type are read-only in Outlook. For more information
on creating combination fields, see the next section, titled "Creating Combi­
nation Fields."

• Formula. This data type holds the results of formulas you create. You can
use the Microsoft Visual Basic expression service that is built into Outlook
to create functions and operators for your formula. The fields created with
this data type are read-only in Outlook. For more information on creat­
ing formula fields, see the section titled "Creating Formula Fields" later in
this chapter.

• Integer. This data type holds nondecimal numeric information. You can
customize the format to be only numbers, such as 3,332, or to be "com­
puter" numbers formatted as kilobytes, megabytes, and gigabytes.

Chapter 3 Folders, Fields, and Views

Figure 3-9. Select the Field Chooser from the context menu for a table view.

Creating Combination Fields
You can combine values from other fields with literal strings to create a new field,
called a combination field. Combination fields are useful when you have many dif­
ferent types of fields and want to create a single field that combines them all. You­
can also use a combination field when you have multiple fields that hold conflicting
data and you want to display only one of the fields in your form. Here's how you
would create a combination field from two fields and a text fragment:

1. In your Inbox, open the Field Chooser and click New.

2. Enter a name for the field, such as My Follow-Up Field, and select Combi­
nation as the type of field.

3. Click Edit.

4. You have the choice to either join fields and text fragments together to
create a combination field or show only the first nonempty field and ig­
nore all the subsequent fields. Select the Joining Fields And Any Text
Fragments To Each Other option.

5. Type Need in the Formula box.

6. Click the Field button, point to Frequently-Used Fields, and then click Fol­
low Up Flag.

65

Part II

66

7. Type By in the Formula box.

8. Click the Field button, point to Frequently-Used Fields, and then click
Due By.

9. Click OK twice.

10. Drag and drop this new field from the Field Chooser onto your Inbox col­
umn headings. You should see something similar to Figure 3-10.

Use a combination field when you want to expose a primary value for a spe­
cific field but also need the option to expose a field that holds a secondary value if
the primary value is not available. If the primary value is available, you do not want
to display the secondary value. For example, in our Document Library application,
users can drag and drop Office documents into the public folder. Outlook can ex­
pose the properties of these office documents as fields. In the Outlook view, we want
to expose the document author, but because users are not required to fill this prop­
erty in when designing or saving the document, the Author property could be left
blank. If the Author property is left blank, we want to use the From field in Outlook
to display the name of the user who dragged and dropped the document into the
folder. Follow the steps on the facing page to create the combination field that shows
the first nonempty field.

!iii Need to Reply DyMon9/14/986:00PM Fieaseconfinn:Premium,ASPa.H Mon9~.

! Iii Q Need to 5hort document: please review rot reedb ... kKs - exceHent follow on to wilL .. TOle 9. ..
! '" Need to Follow up ByFri9/11/986:00PM

!iiidI Need to follow up By Thu 9/10/98 6:00 PM
§iii Need to Follow up By Thu 9/10/98 5:00 PM

! g Need to Follow up By Too 9/10/98 3:00 PM

! &ill Need to Follow up By wed 9/9/98 6!30 PM

!WI Need to Follow I4J By Wed 9/9/96 5:00 PM

lSI Need to Read By Tue 9/6/98 7:00 PM
~ Need tD FoUow up By Thu 9/3/98 SdJO PM

f.ii Need to FoUow ~ By Thu Sf27j98 5:00 PM
! §iii Q Need to Forward By Too 8/21/98 4:30 PM

~ Need to Follow up By Thu 8/6/98 12:00 PM

! ~ Need to FoIow up By Thu 6/6/98 12:00 PM
! tl! Need to Nominate CU5tOIl'lef!; By Thu 816/96 9:00 AM
t ~ Need to Nominate customers By Thu 816/98 9:00 AM

! ~ Need to Nominate customers By Thu 8/6198 9:00 AM
! e Need to Nominate customers By Thu B/6I9B 9:00 AM

! til Need tu Nominate c:ust0l'l'J8f~ By Thu 8/6!913 9:00 AM
! ~ Need to Nominate customen; By Thu 8/6198 9:00 AM

! ~ Need to Nominate customers By Thu 816/98 9:00 AM
! ~ Need to Nominate custOmel'$ By Thu 8f6I98 9:00 AM
! e Need to Nominate customers By Thu 8/6198 9:00 AM

!~

Dogfood: Your !Sl!rvers are goln_ Tue ga.

R.EMlNDER: BacitOffke News Sub.H Tue '9. ..

Outlook5J..rvlvalG.ideJArlotherTrial". Frl9/4",
RE: InfoOes;k Case #4189 closed. Tue 9._

Please Respond: ExchengerOutlook... Wed 8 .. .
FW: MS Product Training Progra... Thu 0 .. .

RE:ACTION:AreVOlJ~aReq •.. ThuB/ .. ,
ACTION: AreVOU Mak!ng a Request". Wed 8",

FW: Nominate your partners and cu". Moo 8,,,

fW: Jlk)mInate 'fOUl' parl:r\ers and tu... Wt!d B ...
FW: Nominate your partners MId tu .. , ltAJ 8/ .. ,
FW: NorriNite yoor pi!lr~ and OJ." Thu 8/."
FVv':Nominaleyourpartnersanclcu". TIru6/".
FW: Nominate yoUr partners and cu ... 1hJ 8/,,,
FIAI: URGENT MEC98: NomlnClte your." Thu 8/ .• ,
FW:lF..GENTME98:NDlTlin<teyotJr .. , 'lbJ8/ .. ,
FW: NomIn.at:e yctJr partners and Cl,J... Wed B .. .

FW: Nbmlnate your partners and OJ." wedS .. .

Figure 3-10. Two different/ields are combined to create a single combination/ield.

Chapter 3 Folders, Fields, and Views

1. Go to the Document Library folder you created, and open the Field Chooser.

2. Click New.

3. Type a name for the field, such as Document Author.

4. Select Combination as the field type.

5. Click Edit.

6. Select the option named Showing Only The First Non-Empty Field, Ignor-
ing Subsequent Ones.

7. Click the Field button, point to All Document Fields, and click Author.

8. Click the Field button, point to All Mail Fields, and click From.

9. Click OK twice.

10. Drag and drop your new field from the Field Chooser onto the view col­
umn headings. You should see a view similar to the one shown in
Figure 3-11.

Figure 3-11. You can use combination fields to show the first nonempty value from
mUltiple Outlookftelds. .

67

Part II Building Outlook Applications

Creating Formula Fields

68

Formula fields allow you to use functions to calculate values from both standard and
custom fields. These calculated values are stored inside of the formula field. Use for­
mula fields when you need to calculate the value of one field based on other fields
in your application. For example, you can use a formula field to calculate the total
of an expense report or a person's wage based on the amount of time they worked
multiplied by their hourly rate. Outlook makes creating formula fields quite easy by
offering a simple interface for field selection and by displaying a list of all possible
formulas and required inputs. You can use the provided Field and Function buttons
to quickly select the fields and functions you want to use in your formula. Outlook
will automatically parse your formula and check it for syntactical errors.

Formula fields do have some performance implications. First, Outlook has to pro­
cess formula fields whenever values change in the application. The more complex you
make your formulas, the longer Outlook will take to process them. Second, Outlook
automatically recalculates formula fields whenever the current view changes. Third,
Outlook does not allow you to sort, group, or filter views by using formula fields.

Follow these steps to create a formula field that displays the amount of time
elapsed since an item was received. Figure 3-12 shows a custom formula field.

1. In the Field Chooser, click New.

2. Type a name for your new field, such as Days since received.

3. Select Formula from the Type drop-down list.

4. Click the Edit button.

5. In the Formula box, type this:

IIF(DateDiff("d",[Received],Now(»>=7,
DateDiff("w",[Received],Now(» ? " week(s) ago",
DateDiff("d",[Received],Now(» ? " day(s) ago")

6. Click OK twice.

7. Drag and drop the new field onto your view column headings. You should
see the field automatically calculate. If the item was received within one
week, the field displays the amount in days. If the item was received more
than a week ago, the field displays the amount in weeks.

Chapter 3 Folders, Fields, and Views

.go
5iiII 1 day(s) ago

! lliiI 0 1 week(s) ago

! ~ 5 dav{s) ago
!hi 6 day(s) ago

6 day(s) ago

5day(s:)ag6
lWe:elc(S)agD
1 weelc(s) ago
1 week(s) ago
i week{s) ago

~ 2 weelr(s) BOO

t IiiII 0 2 week(slago
~ 5 wee!r(s) ago

! a 5 week(s)sgo
! tal 4week(s)ago
!~ 4_,) ...
!I!!l 5_,) ...
! ~ 5week(s)ago
!~ 5_,) ...
! I!!l 5_)"",
!I!!l 5_,)ogo
~ "-,)ogo

la 5_,) ...
!~ 5_l ...

Please confirm: Premium..ASPand Nl!!wsvroups M'on9/14/fJ .. .
bcs - em:eBent follow on 00 whltepaper rue: 9/8/98 .. .
FW: N~ed your asAs~nce ASAP Thu 9/10/9. ..
More newsgroup ~ - message suoiling Wed '9/9/98-
pevPush: Tracking tJ2ti Wed 9/9/98...
HitliI!'Site Thu9/l0/9~.

Dogtood: Your ser¥t!1'S are going down for upgrade torno. .. l'ue 9/8/98.-
REl'-iiI'l)ER: BackOffice NeW5 submissions Tue 9/8/98 ...
Outlook SurvIval Gutte/Another Trial Delay? Ft1914/9S l:D •..
Rc JnfoDesk Case #4189 dosed. lui!! 9/8/98_
Please Respond: Exchange/Ol1look Opportunty Wed 8126/98 ".
FW: M5 product Training Program - September das5 Sc... Thu 8/2119-
REi AO'ION: PIe VOU Maldnga Request of the ReId ?'? Tho 8/6/98 4: .. ,
ACTION: fsle YOU Ma!4ng a ReqUMt of the Field 77 Wed 6/5[98 8 .. ,

FW: Nomlnate)lOll' p.!Irrners MId custOfl'ltfS, . . Mon 8/17/98 ".
FIN: Nominate yOUI' partners: snd rus:tomers. , , Wed 8/12/98 ",
FW: Norrrin~eYOlJl'partnersandc:ustomer5... 1008/61986:",
FW: Nooinate your partners and ~$, , Thu aJ6/96 1."
FW: Noninate your partners and customers. • . Thu 8/6I9S 1.,.

Fw: Non'inate 'tOur p8ltners and customers. , , Too 6/6/9a: 9: ...
fIN: URGENT ~C9& Nomi1ate yOU' partners and customers. . • 1h.i 'd/6J96 6: .. ,

FW: URGENTMEge: Nominateyoutpartnersand~." ThJ8/6/983:",

WedO/5l981."
Wed0/5l984,,,

Figure 3-12. A customformulafteld in an Outlook view,

Using Custom Fields in Filtered Replication
As you learned in,Part I, Outlook and Exchange Server support synchronizing items
offline. By default, Outlook synchronizes all the items from the server to your off­
line database. But what if you don't w~nt to synchronize all the server items offline?
Outlook offers the capability to synchronize' subsets of information, called filtered
replication. You select the parameters---,-either built-in or custom fields-that Out­
look will use to filter the synchronized items. To set up filtered replication, follow
these steps:

1. Before setting filtered replication, you should add a custom property to
the Account Tracking application by selecting the, previously created Ac­
colint Tracking folder, which is nested in the Favorites folder.

2. In the Field Chooser, click New.

3. TyPe txtAccountSalesRep in the Name box, and select Text as the type.

4. Click OK.

69

Part II

70

5. From the File menu, point to the Folder option, and then select Proper­
ties For Account Tracking.

6. Click on the Synchronization tab. In the This Folder Is Available area, make
sure that the When Offline Or Online option is selected.

7. Click the Filter button.

8. In the Filter dialog box, click on the Advanced tab.

9. Click the Field button, point to User-Defined Fields In Folder, and click
txtAccountSalesRep.

10. From the Condition drop-down list, select Is (Exactly). In the Value text
box, type the name of a user of the Account Tracking application.

11. Click the Add To List button to add your criteria. Your screen should look
like Figure 3-13.

12. Click OK, click Yes, and then click OK twice. Now only the items meet­
ing your criteria will be synchronized to your offline database.

Figure 3-14 shows the folder before setting filtered replication and after setting
filtered replication. As you can see, a subset of the information in the folder is avail­
able to the client offline.

Figure 3-13. The Filter dialog box, showing synchronization information for the
Account Tracking application.

Chapter 3 Folders, Fields, and Views

Figure 3·14. The Account Tracking folder before filtered replication, arid the
Account Trackingfolder after filtered replication. Notice how a subset of items are
synchronized offline.

VIEWS
Outlook supports a variety of folder views, including custom views, to give you and
users flexibility in the presentation and organization of information. These views can
be used in any type of Outlook folder. Outlook allows you to set the initial view for
a folder, and it remembers the state of the view for each user. Outlook supports five
types of views:

• Table view. The most commonly used Outlook view, the table view con­
sists of rows and columns that expose the information from the folder.

• Timeline view. This view shows, as icons, the chronological order of the
items in the folder.

• Card view. The card view shows the items in the folder as individual cards,
similar to a business card file.

71

Part II Building Outlook Applications

• DaylWeekiMontb view. In this view, items are arranged in a calendar. This
view is best used for applications that have a date and time field as one
of the application's primary fields.

• Icon view. The icon view presents all items in the folder as individual icons
on an invisible grid. The icon view is best used for items where seeing
the details of the item are not important.

Creating New Views

72

Outlook provides two options for creating. new views: defining new views with the
Define Views dialog box or adding the Current View box to your Outlook toolbar.
This second option is the easiest and is the one you will probably use more often.
To add the Current View box to your Outlook toolbar, follow these steps:

1. Right-click on the Outlook toolbar, and select Customize.

2. On the Commands tab, select Advanced from the Categories list.

3. On the Commands list, scroll down until you find the Cuttent View drop­
down list.

4. Drag and drop the Current View drop-down list onto your toolbar. You
should see Outlook fill in the Current View drop-down list with the name
of the current view of the folder. You can now use the Current View drop­
down list to create new views by typing over the name in the box.

When you attempt to save your views, Outlook will prompt you to indicate
which view will be used. There are three primary ways you can apply your views in
Outlook:

• This Folder, Visible To Everyone. This option enables the view to be used
on the Current folder and to be visible to everyone. Any person with per­
missions to open the folder will be able to select this view from the drop­
down list of current views. As a develeJper, you can create the views for
your Outlook application and then save them so that all your users can
use them.

• This Folder, Visible Only To Me. When you select the private view option,
the view is for the current folder but is only visible to the current user.
You could use this view if you wanted to show specialized information
(like debugging information) to only certain users, not all users of your
application.

• All Folders. This option enables the view to be used in all folders that have
the same item type as the currerit folder. This allows you to share your
favorite views across folders of the same type.

Chapter 3 Folders, Fields, and Views

So far, our Document Library application is only a folder where users can drag
and drop documents to share with other users. By using views, we can transform our
simple Document Library application into a more powerful and useful application
for our users. The first view we are going to create is an icon view so that our appli­
cation looks more like a network file share than an Outlook folder. This will make
it easier for our users to navigate among the files in the folder. To create the icon view
for the Document Library application, follow these steps:

1. Select the Document Library folder in Outlook.

2. From the View menu, point to Current View, and then click Define Views.

3. Click the New button, and type a name for your view, such as As Icon.

4. Select Icon from the Type Of View box.

5. Select This Folder, Visible To Everyone in the Can Be Used On area.

6. Click OK. The View Settings dialog box is displayed.

7. Click the Other Settings button, and select the type of icon you want to
use: Large Icon, Small Icon, or Icon List.

8. Click OK twice.

9. Click Apply View. We now have an icon view of our Document Library
application. Your view should be similar to the view shown in Figure 3-15.

Overview of teched 98
coo ·w... coo c.nd. ..

Figure 3-15. An icon view o/the information in the Document Library
application.

73

Part II Building Outlook Applications

74

The second view we are going to create is a timeline view. This view will enable
our users to quickly see the last time a document was saved and how much time has
elapsed between the time the document was created and the time it was last edited
and saved. By implementing this feature, users can quickly discard older versions of
the document to ensure they are using the most recent version. As you will see in
Chapter 4, you can customize your views by using custom properties directly from
Office documents.

To create the timeline view for the Document Library application, follow
these steps:

1. Select the Document Library folder in Outlook.

2. From the View menu, point to Current View, and then click Defme Views.

3. Click the New button, and type a name for your view, such as Document
Timeline.

4. Select Timeline from the Type Of View box.

5. Select This Folder, Visible To Everyone in the Can Be Used On area.

6. Click OK. The View Settings dialog box is displayed.

7. Click the Fields button. The Date/Time Fields dialog box is displayed.

8. Select the Created field in the Available Date/Time Fields list as the start­
ing time for the document in the view, and then click the Start button.

9. Select All Document Fields from the Select Available Fields From drop­
down list.

10. Select Last Saved Time from the Available Date/Time Fields list, and then
click the End button so that the last-saved time is the ending time for the
document in the view.

11. Click OK twice. Click Apply View. The view of your documents folder
should be similar to Figure 3-16.

Chapter 3 Folders, Fields, and Views

Figure 3-16. A timeline view of the Document Library application. Notice how
Outlook automatically draws a line indicating the amount of time that has elapsed
between the creation time and the last-saved time of the document.

Customizing the Current View

You can customize the current view by using the Field Chooser to drag and drop new
columns. After you add the new column, the view is automatically updated using val­
ues taken from the items in the folder. You can also add complex data types to the
view, such as combination or formula fields. Many people find it easier to custom­
ize a view by using the drag-and-drop capabilities of the Field Chooser as opposed
to selecting available columns from a drop-down list.

To add new columns to the Document Library view, follow these steps:

1. In the Document Library application, create a new table view and name
it Document Properties.

2. Right-click on any column heading in the Document Properties view, and
select Field Chooser.

3. Select All Document Fields from the drop-down list.

75

Part II Building Outlook Applications

4. Drag and drop Author, Revision Number, and Last Saved Time from the
Field Chooser to an area next to one of the columns in the view. Outlook
presents red arrows to indicate where the field will be inserted.

5. To remove a column, select the column heading and then drag and drop
it off the column heading row.

NOTE You can remove columns easily from your view by dragging the columns
until a large X appears. Once you release the mouse button, the column disap­
pears from the view.

Formatting the Columns in a View

76

Notice that when you drag and drop columns from the Field Chooser, Outlook, by
default, gives the column heading the same name as the field on which the column
is based. Also notice that Outlook applies default formatting for the columns. For
example, Outlook automatically formats the Last Saved Time column with the day,
the date, the year, and the time the document was last saved. Most users won't need
this much detailed information about the last-saved time for the document. To make
views more intuitive to your users, Outlook allows you to change the name of the
colunul heading without changing the name of the underlying field. You can also
change the default format of values for a specific column in the view. For example,
you can change the format of the Last Saved Time column heading so that it only
displays the date the document was last saved rather than the date and the time, as
we saw earlier. Please note, however, that changing the format of the column does
not modify the format of the field on which the column is based. To modify the format
of the field, you must use the Field Chooser. To change the format of a column in
the Document Library application, follow these steps:

1. Right-click on the Last Saved Time column heading in the Document Prop­
erties view, and select Format Columns from the context menu.

2. In the Format drop-down list, select the option that shows only the month,
the day, and the year, such as April 07, 2000.

3. In the Label box, enter Last Edit Time.

4. Click OK. Your date/time column should look similar to the one shown
in Figure 3-17.

Chapter 3 Folders, Fields, and Views

Presentations GrOl.4l Royal BUe PoWerPoint Templa.tE
DCJ.Jg HarTllton lEU Demo Script
Brian Flemin:! Netmeetirg Dem:;J

Collab Tour IT Demo Script
Collab Tour 80M Demo Script

1,493 May 213, 1998

8,425 March 20, 1998
2,381 March 20, 1998

4,555 March 20, 1998
2,629 March 18, 1998

Figure 3-17. The new Document Properties view after changing the format and label
of the date/time column.

Grouping Items in a View
Grouping items ih an Outlook view makes it easy for users to find items that are
related. Outlook supports up to four levels of grouping in a single view. You can group
items in a view in one of two ways:

• Using the Group By box. This is the easiest method because it allows you
to use drag-and-drop functionality to select the column as the grouping.
If you drag and drop more than one field into the Group By box, Out­
look graphically draws the relationship between the fields as primary
groups and subgroups.

• Customizing the Current View option. This method gives you a few more
options when setting the grouping for a view, but it isn't as easy as using
the Group By box.

77

Part II Building Outlook AD'DUcatlolns

78

To group items by Author using the Group By box, follow these steps:

1. Right-click on a column for the Document Library application, and select
Group By Box to display the Group By box above the column headings.

2. Drag and drop the Author column into the Group By box, or drag items
from the Field Chooser into the Group By box.

3. If you want to group by more than one field, drag and drop a second field
into the Group By box. For our purposes, drag the Categories field from
the Field Chooser to the Group By box. Notice how Outlook draws a line
from the Author field to the Categories field to indicate that the view is
grouped first by author and then by category. Take a look at Figure 3-18.

Figure 3·18. The line connecting the Author field to the Categories field
indicates how the items are grouped-in this case, by Author first, and then by
Categories.

4. Close the Group By box by right-clicking on a column heading and then
selecting Group By box.

To create the same grouping using the Current View option, follow these steps:

1. From the View menu, point to Current View, and then click Customize Cur­
rent View.

2. Click the Group By button to display the Group By dialog box.

3. In the Select Available Fields From drop-down list, select All Documents
Fields.

Chapter 3 Folders, Fields, and Views

4. In the Group Items By area, select the Author field. You can also show
the field in the view by checking the Show Field In View check box.

5. In the Select Available Fields From drop-down list, select Frequently-Used
Fields. In the first Then By area, select the Categories field. Figure 3-19
shows the completed Group By dialog box.

6. Click OK twice.

You now have created the same view using both methods. The only difference
between the two is that in the Group By dialog box, you can select whether the groups
are expanded or collapsed by default.

Figure 3-19. The Group By dialog box.

Sorting Items in a View
Outlook also supports the ability to sort items in a view in either ascending or
descending order. When you combine sorting with grouping, you get the best combina­
tion of features for making your information available to users in a view. For example,
instead of just grouping our Document Library items by author, we can also sort the
items so that the most recently saved documents appear at the top of the grouping.

To create a sorted list, you can click on the column heading or use the Sort dialog
box. To create a sorted view by using the Sort dialog box, follow these steps:

1. From the View menu, point to Current View, and then click Customize
Current View.

2. Click the Sort button to display the Sort dialog box, shown in Figure 3-20.
In the Select Available Fields From drop-down list, select the category, or
location, of the field you want to use as your sort criterion.

79

Part II Building Outlook Applications

3. In the Sort Items By area, select the field that you want to use as your sort
criterion.

4. To select further sorting subsets, select the next field you want to sort by
in the Then By area.

5. Click OK twice.

Figure 3-20. The Sort dialog box in Microsoft Outlook.

Filtering Information in Views

80

Filtering allows you to create views in which only certain information is visible to
users. The criteria you set can be built-in Outlook fields or custom fields. Filters can
have only one or two conditions or they can be more complex, using multiple con­
ditions or the advanced filtering features. When you set multiple conditions on a filter,
Outlook ANDs them together. When you set multiple arguments in a single condi­
tion, Outlook ORs these arguments so that if only some meet the condition, the item
appears in the view. To create a simple filter for the Document Library application,
follow these steps:

1. From the View menu, point to Current View, and then click Customize Cur­
rent View.

2. Click the Filter button.

3. Click on the More Choices tab.

4. In the Categories box, type Outlook; Exchange, as shown in Figure 3-21.

5. Click OK twice.

Chapter 3 Folders, Fields, and Views

Figure 3-21. The Categories filter for the Document Library application.

Here's how to create a complex filter for the Document Library application:

1. From the View menu, point to Current View, and then click Customize Cur­
rent View.

2. Click the Filter button.

3. Click on the Advanced tab.

4. Click Field, point to All Document Fields, and then click the Last Saved
Time field.

5. In the Condition drop-down list, select Last Month.

6. Click Add To List.

7. Click Field again, point to All Document Fields, and then click the Author
field.

8. In the Condition drop-down list, select Is Not Empty. Click Add To List.

9. Click Field again, point to All Mail Fields, and then click the Message Class
field.

1 O. In the Condition drop-down list, select Contains and type this text in the
Value box: IPMDocument. WordDocument. Click Add To List.

11. Click OK twice.

Editing View Settings
You can customize the formatting of your views at a more detailed level by using the
Other Settings dialog box. The type of view you create determines which settings are
available for you to edit. For example, if you are editing a table view, you can set
the font size, enable in~cell editing, enable autopreview, create gridlines, and enable

81

Part II BuUding Outlook Applications

82

the preview pane. If you are editing an icon view, you can set the view type, such
as Large Icons, Small Icons, or Icon List, and you can specify whether Outlook should
automatically arrange and sort the icons in your view.

IN-CELL EDITING

The in-cell editing option for customizing a table view allows users to qUickly
add new items to a folder or change the properties of current items in the folder
without opening a form. All of the changes to the item can be typed directly
into the view. This capability helps speed up applications that require a lot of
data entry, such as customer contact lists or surveys.

If you enable in-cell editing in a folder that contains Office documents,
you cannot modify the properties of the Office documents directly in the view.
These properties are read-only inside of Outlook. You must modify these prop­
erties using the Office program that originally created the document.

Conditional Formatting
If your custom view is a table view, you can use the conditional formatting capabili­
ties of Outlook. Conditional formatting enables items that meet certain conditions to
use your custom formatting. For example, you can set a condition in the Document
Library application so that all Word documents appear in a 12-point, red Arial font.
Outlook automatically sets some default formats for the most common conditions,
such as unread, expired, and overdue e-mail. You can customize the settings for these
default conditions or create your own conditions. To set conditional formatting, fol­
low these steps:

1. From the View menu, point to Current View, and then click Customize Cur­
rent View.

2. Click the Automatic Formatting button.

3. Click Add, and type a name for the formatting rule in the Name box, such
as Word Documents.

4. Click the Font button, and select 12-point Arial as the font and red as the
font color. Click OK.

5. Click the Condition button. As you can see, the dialog box is the same as
the Filter dialog box we saw in Figure 3-21.

Chapter 3 Folders, Fields, and Views

6. Click on the Advanced tab.

7. Click Field, point to All Mail Fields, and then click Message Class.

8. From the Condition drop-down list, select Contains. In the Value box, type
IPM.Document. WordDocument.

9. Click Add To List and then OK.

10. Click OK two more times. Your screen should look like the one shown
in Figure 3-22.

Royal SkJe PowerPotlt TSl'Jlliate
NoSI<leTl1le
Royal BUe PowerPoilt Tel'l1llate

1,945 April 07, 1998
694 April 29, 1998

1.493 Mill)' 28. 1998

Figure 3-22. The Document Library application after applying conditional format­
tingfor Word documents.

Limiting Views to Only Those Created for the Folder
Outlook, by default, provides several standard views in a folder based on the folder's
default content type. In many cases, these default views are not relevant to your appli­
cation, so you will not want them to appear in the Outlook view list. Outlook allows
you to hide the default views and only show custom views created for the current
folder by checking the Only Show Views Created For This Folder check box in the
Define Views dialog box.

83

Part II Building Outlook Applications

84

DISABLING DEFAULT VIEWS

IN MICROSOFT OUTLOOK WEB ACCESS

If you are planning to use Outlook Web Access as one of the clients for your
application, the Only Show Views Created For This Folder property will not dis­
able the default views from appearing in Outlook Web Access. To do this, you
have to customize the Active Server Pages of Outlook Web Access to hide the
default views for your folder. Any custom table views that you create in the
Outlook client will automatically be available to the Outlook Web Access cli­
ent as long as the Automatically Generate Microsoft Exchange Views check box
is checked.

Implementing Threaded Views
Many times, you'll want to display the information in a folder as a threaded view so
that users can see the history of responses to an item. These responses are indented
in the view to make it easier to follow the flow of information about the item. In a
folder based on e-mail items, Outlook provides a default view called By Conversa­
tion Topic, which provides this threading capability. But suppose you don't build your
application based on e-mail items but instead build it based on tasks. To create
threaded views in these types of folders, Outlook supports two unique properties
called Conversation and Conversation Index.

The conversation field is based on the message's subject field. This means that
when you create a new item in a folder, the conversation field is automatically filled
with the content of the item's subject field, so any replies inherit the conversation field
from the original item.

The conversation index is a unique identifier used by Outlook to track the se­
ries of responses to an item. This index allows Outlook to know which item in the
thread the user is responding to and where the response should be placed in the
threaded view.

To implement threaded views for any of your Outlook folders, you must group
by the conversation field and sort in ascending order by the conversation index. The
sort by conversation index is usually the step that most developers forget about when
trying to implement threading. Without it, your view will be grouped only by the con­
versation index and will be void of any indented text indicating responses to items.

To implement threaded views in Outlook folders, follow this procedure:

1. From the View menu, point to Current View, and then click Customize Cur­
rent View.

2. Click the Group By button.

Chapter 3 Folders, Fields, and Views

3. In the Group Items By area, select Conversation and click OK.

4. Click the Sort button.

5. In the Sort Items By area, select Conversation Index. To see this property,
you might have to select All Mail Fields from the Select Available Fields
From drop-down list.

6. Click OK twice.

Figure 3-23 shows a threaded view.

Figure 3-23. A threaded view of a Group Tasks public folder.

NOTE In all folders except those based on e-mail item!), Outlook does not
automatically mak~ the Post RE!Ply To This Fol(jer menu option available. This
men!.! option allows you to PQst replies in a folder that automatically inherit the
conversation property from' the original item. To enable this menu option, you
can add this command to the Outlook menu or toolbar.

85

Chapter 4

Forms

You are already familiar with the capabilities of Microsoft Outlook forms since ev­
ery item you view or use in Outlook is based on one. Customizing these forms can
enhance the way you distribute and collect information electronically both inside and
outside your organization.

Outlook allows you to build custom forms based on default Outlook items.
When you customize built-in forms, your application inherits default capabilities. You
can extend the functionality of these forms using custom controls and Microsoft Visual
Basic Scripting Edition (VBScript). We'll look at VBScript in more detail in Chapter 5.

Outlook als'o allows you to base your forms on Microsoft Office documents,
which prevents you from having to re-create existing functionality. For example, if
you were building an expense reporting application, you could base your Outlook
expense reporting form on a Microsoft Excel document, giving you the full power
of Excel inside your application. You could then further extend your application using
Microsoft Visual Basic for Applications (VBA) inside the Excel document. You could
also use custom Excel properties inside your Outl09k views to sort and group items.

OUTLOOK FORM TYPES
To help you understand the types of applications you can develop and when to
customize certain forms in the Outlook environment, you need to know what the form
types· are and how they can be extended.

Message Forms
The Message form should be used for applications in which users have to send in­
formation to other users or to a folder. You inherit all built-in capabilities of the form,

87

Pari II

such as automatic name resolution and nickname support, and all fields on the form
can be customized. Figure 4-1 shows an example of a Message form in design mode.
Different pages of the form are displayed by clicking the appropriate tab.

Figure 4-1. The Message form in design mode.

Post Forms
The Post form is best used in applications that post or retrieve messages in an Outlook
folder. When you customize a Post form, Outlook automatically assigns the currently
open Outlook folder to the In Folder field. For example, if you customize a Post form
in a helpdesk public folder, Outlook automatically assigns the helpdesk public folder
to the In Folder field. This automatic assignment means that even though the user
can install, or publish, the Post form in any folder, any items the user creates with
the form will be posted to the helpdesk public folder. Figure 4-2 shows the Post form.

Contact Forms

88

Use the Contact form in applications that track address or customer information. You
can customize the first page of the Contact form; by doing so, you inherit the form's
journaling, mapping, Microsoft NetMeeting, and address resolution capabilities. The
other default pages in the form are not customizable but can be hidden. Figure 4-3
shows the Contact form.

Chapter 4 Forms

Figure 4-2. 1be Post form in design mode.

Figure 4-3. 1be Contact form in design mode.

NOTE You can customize a number of other Outlook forms, including the
Appointment, Task, and Journal forms, by hiding them or adding new pages to
them. However, you cannot customize any of the built-in pages ofthese forms.

Any custom applications you develop using the Journal form will post infor­
mation to a user's personal journal.

89

Part II BuUdlng Outlook Applications

Office Document Forms
Outlook supports embedding Microsoft Word, Excel, and Microsoft PowerPoint docu­
ments directly into a form, so you can send these documents to a user or post them
to a folder. These types of forms are best used when you want the advanced repli­
cation and forms library support of Outlook, but you also want the functionality of
other Office applications. Outlook places a wrapper around the Office application
you use to design the form, so you cannot add custom tabs to the form. You can,
however, customize the application by using the built-in capabilities and tools pro­
vided by the specific Office application. For example, you can use VBA to custom­
ize an Outlook Office document form. Figure 4-4 shows an Excel document form.

Figure 4-4. An Excel Office document form in design mode.

HOW FORMS WORK

90

Before we dive into building forms, let's step back and take a look at how forms work
inside the Outlook and Microsoft Exchange Server environments. When you double­
click on an Outlook item to open it, Outlook queries a property on the item named
the message class. The message class uniquely identifies the form that the item is based
on. For example, when you create a new e-mail message, you are creating a form
with the message class IPM.Note. (The IPM stands for interpersonal message.) When
you send the message to another user, the message class travels with the item as a
property. You can see all the different message types simply by adding the message
class property to your views. These message classes are extensible, so you can cre­
ate your own types of forms with unique message classes.

When working with forms in the Outlook development environment, you have
to base them on built-in forms. You cannot start with a blank slate as you can with
Visual Basic forms. After you customize your form, you can publish it. This is where

Chapter 4 Forms

you can customize the message class. For example,.if you modify the standard Outlook
Appointment form to make it a class registration system, you can publish the form
with its own unique message class, such as IPM.Appointment.Class Registration Form.
Although there are multiple message classes, the following list shows the message
classes for the built-in Outlook forms:

Form Message Class

Appointment IPM.Appointment

Contact IPM.Contact

Journal IPM.Activity

Message IPM.Note

Post IPM.Post

Task IPM.Task

These message classes work in conjunction with the different forms libraries in
Outlook. For example, if a user tries to launch one of your custom forms, Outlook
searches the different forms libraries to find it. First Outlook checks to see whether
the item is a standard form such as the Note form or a Post form. If the item is not
a standard form, Outlook checks its forms cache on the local machine. The forms
cache is a folder located on the user's local machine, and by default, Outlook caches
all custom forms into this folder to improve performance. When a user launches a
form for the first time, Outlook downloads the forms definition into the cache. If you
change the form, the version of the form in the forms cache will be updated auto­
matically the next time the user tries to launch that particular form type. This auto­
matic update feature ensures that your users always use the most recent version of
the application even after you've modified your forms. The user can change the size
of the cache in Outlook by selecting Options from the Tools menu, clicking the
Other tab, clicking the Advanced Options button, and then clicking the Custom
Forms button.

If the form is not in the cache, Outlook searches the forms library of the cur­
rent folder. If the form is not in the current folder, Outlook searches the user's Per­
sonal Forms Library and the Organizational Forms Library. If the user has Web Services
enabled in Outlook, Outlook searches the web forms library.

NOTE Web Services is especially useful if you plan to convert your Outlook
forms to HTML forms by using the Outlook HTML Forms Converter. To learn
more about Web Services, refer to Chapter 7.

If Outlook cannot find the form in any of the forms libraries, the standard
Outlook form on which the custom application is based is used .. For example, if a
user receives an appointment item with a message class of IPM.Appointment.Job
Interview, and the form does not exist in any of the forms libraries, Outlook will use
the standard Appointment form to open the message.

91

Part II Building Outlook Applications

Outlook enables you to save the form definition directly with an item, so when
a user does not have a copy of your custom form installed in any of her forms libraries
or the user is in a different organization, she can still receive your item and view it.
Since the form definition is being saved with the message, the size of the message
you send to the user will increase slightly. You'll learn how to save the form defini­
tion with an item later in this chapter in the section "Publishing Forms."

Data Binding

To retrieve and set the underlying properties of the form, Outlook uses data bind­
ing. If you are new to developing with Outlook, it is important to understand data
binding because misunderstanding it is often the cause of early design problems.

The layout of the form, or form definition, is separate from the data of the form.
Form definitions, then, do not store any application data. Instead, they store data
bindings. At run time, Outlook finds the field that the control on the form is bound
to, and retrieves and sets the value of the control. The most common mistake new
developers make is to add a new control on a form without setting its data binding.
If the control is not bound to any field, Outlook does not maintain the data in the
Exchange Server database. You will learn how to implement data binding later in
this chapter.

DESIGNING FORMS

92

You need to consider a variety of issues when designing your forms. Once you de­
termine the purpose of your form and which form to modify, you have to open the
form in design mode and make decisions about the tasks in the following list. In the
rest of this chapter, you will learn how to perform all these tasks.

• Which pages to display on the form

• Whether to separate the read layout from the compose layout

• Which fields to include on the form

• What information you want visible on the form

• Whether to use built-in or custom fields

• What the fields will look like

Outlook provides an environment for creating and editing forms, which is some­
times referred to as the forms designer. The forms designer is automatically installed
with Outlook.

Chapter 4 Forms

Opening a Form in Design-Mode
Opening a form in design mode is easy. If the form is not based on an Office docu­
ment, you can use one of the following two methods: open a standard form of the
type you want to modify and enter design mode; or select a form from a list of avail­
able forms, which automatically opens the form in design mode. To use the second
method, follow these steps:

1. From the Tools menu, point to Forms, and then select Design A Form.
Outlook presents you with the Design Form dialog box, as shown in
Figure 4-5.

2. From the Look In drop-down list, find the location of the form you want
to modify. You can select forms from any forms library as well as from
templates in the file system.

3. Click the Details button to display the properties of the currently selected
form, which include the icon, deSCription, contact, version, and message
da.ss of the form.

4. Click Open to OPen the selected f2frp.ip design .!Uode.

Figure 4-5. The Design Form dialog box in Outlook.

93

Pari II Building Outlook Applications

To create a new form based on an Office document and open it in design mode,
do this:

1. From the File menu, point to New, and then select Office Document.

2. Double-click on the icon representing the type of Office document you
want to create.

3. Select either the Post The Document In This Folder option or the Send The
Document To Someone option, and click OK.

4. From the Tools menu of the freshly opened document, point to Forms and
then select Design This Form to enter design mode.

For more information on customizing Office document forms, refer to the sec­
tion "Extending Functionality with Office Document Forms," later in this chapter.

Choosing Display Properties

94

When designing your Outlook application, you need to decide whether you want to
display, rename, or hide the default pages on the form. Your decision is based on
what you will use the forms for. For example, if you wanted to preaddress an item
sent to users to prevent them from modifying the values in the address field or know­
ing where the item was being sent, you could fill in the address information on the
message and then hide the default pages. To change the display properties for a form
page or to rename a default or custom page, enter design mode, click on the desired
page, and then select the appropriate option from the Form menu. You can quickly
see the display status of a form page in design mode since Outlook places paren­
theses around the name of any page that will be hidden at run time.

Separating the Read Layout from the Compose Layout
Outlook supports having separate layouts for compose and read form pages. The
compose page appears when a user opens a form to compose a new item. The read
page appears when a user double-clicks on an item to view it. The standard e-mail
message is the best example of a form that effectively uses compose and read pages.

Outlook enables you to separate the compose page and the read page from a
form so that you can add custom functionality to each of these user modes. Outlook
supports compose and read pages on every customizable forms page. By default, the
Message page on an Outlook Post form and a Message form have the Separate Read
Layout option enabled. However, your custom pages, by default, do not have this
option enabled. To enable Separate Read Layout, in design mode, select the form page

Chapter 4 Forms

where you want separate compose and read layouts. On the Form menu, make sure
there is a check mark next to Separate Read Layout. Outlook automatically copies
the layout from the compose page to the read page. You can then select the layout
you want to modify by displaying the Form menu and choosing either Edit Compose
Page or Edit Read Page.

If you find that you are making extensive changes to the compose page, and
you want to discard your read page and re-create it with the layout of the compose
page, you can disable the Separate Read Layout option and then reenable it. Outlook
will copy the layout of the compose page to the new read page.

Using the Field Chooser to Drag and Drop Fields
The Field Chooser provides a simple way to drag and drop built-in and custom fields
onto your form. When you drag and drop a field from the Field Chooser onto the
form, Outlook creates the appropriate controls. If the AutoLayout option is enabled
on the Layout menu, Outlook automatically positions your controls on the form. The
controls that Outlook creates are based on the data type of the associated field. For
example, if you drag and drop a field with a data type of text, Outlook will automati­
cally create a text box control and typically a label control with the name of the field.
If you drag and drop a field with a data type of Yes/No, Outlook will create a check
box control with the Caption property set to the name of the field. Figure 4-6 shows
a Post form with the controls for the Attachment, Categories, From, Icon, and Impor­
tance fields added by using the Field Chooser.

Figure 4-6. You can dragftelds/rom the Field Chooser to an Outlook/orm.

95

Part II

Important Default Fields

96

Outlook includes some important default fields, such as the address fields, that you
should take advantage of when designing your application. In this section, we will
briefly discuss the address fields, the Subject field, and the Message field.

Address Fields
The address fields include From, To, Cc, and Bce. The address fields enable you to
preaddress your form to individual users or distribution lists either by typing an
address at design time or by setting the initial value of the fields. (You will see how
to set initial values later in this chapter.) You can enable these fields if you want to
allow the user to change the address, but most likely you will want to disable the
To field and just expose the Cc field so that a user can send a copy of the form to
another user. By default, the To field is exposed only on a Message form, but you
can use the Field Chooser to drag and drop the To field or any other address field
onto another type of Outlook form and set its initial value. This ensures that if the
user attempts to forward the form, the address you have supplied will automatically
appear in the displayed Message form.

If you are preaddressing a form to a folder (as opposed to a user), either the
folder has to be exposed in the Global Address List or you have to copy the folder
address into your personal address book. To expose the folder in the Global Address
List, you must have administrator rights on the Exchange Server system. To expose
the folder in the Global Address List, launch the Microsoft Exchange Administrator
program. Expand the folder trees to find and select the folder you want to expose.
Choose File and then Properties. On the Advanced tab, uncheck the Hide From
Address Book check box, and click OK.

SHARED FIELDS

Outlook supports shared fields in an item. Shared fields are any controls that
are bound to the same field on both a compose page and a read page of a
particular form. A user can modify the field on either page, and the changes
will be available universally. Shared fields can also be used between Outlook
forms-for example, when you respond to an item in a folder using a custom
form, Outlook copies the values from the shared fields in the open item to the
same field in the response item.

Chapter 4 Forms

Subject Field
The Subject field is important for two reasons. First, the text in the Subject field is
the caption that appears at the top of a form. Second, the Subject field typically takes
its value from the Conversation field, which we briefly looked at in Chapter 5. If you
want to have a threaded view of the items in your application, the second point is
important to remember.

The value of the Subject field can also be determined by formulas. For example,
you can create a formula that sets the value of the Subject field by combining two
other fields on your form.

Message Field
The Message field is the only field for which text formatting, attachments, hyperlinks,
and objects are supported. This extensive support allows you to embed instructions
or other important material as an attachment, or to add shortcuts to web sites, files,
or other Outlook items. To add an attachment to the Message field, open the item
that you want to modify in run mode. From the Insert menu, select File and find the
file you want to insert.

Note that if you are using HTML as your default mail format in Outlook, you
can insert files only as attachments or text. If you are using the Outlook Rich Text
mail format, you can insert files as attachments, shortcuts, text, or embedded objects.
To add file shortcuts using the HTML mail format, you have to add hyperlinks in the
Message field that points to your files.

Outlook supports many protocols that you can place in the Message field as
hyperlinks. The most useful protocols with examples are listed here:

• file://. Use for adding hyperlink shortcuts to any file stored on a file ser­
ver that your computer can access. Examples include:

o file:!!c: \temp. Use for linking to files or directories on your own file
system, and for pointing at files that are unique to each user's system.

o <jile://docseroer/docs/earning statements>. Use for linking to files or
directories on other servers. Useful for sending users shortcuts to
shared files or directories. Notice that the hyperlink is placed in
brackets--this is required if the hyperlink contains any spaces.

• http;// or https;/1. Use for adding hyperlink shortcuts to Internet and intranet
web sites. The difference between the protocols is that Hypertext Trans­
fer Protocol, Secure (HTTPS) is a secure version of the Hypertext Transfer

97

Part II

98

Outlook Applications

Protocol (HTTP). HTTPS uses the secure socket layers to encrypt the traffic
between the web browser and the Web server. Examples of using the
HTTP protocols are:

o http://www.microsojt.comlexchange. Use for linking quickly to ex­
ternal sites.

o http://financelearnings.htm. Use for linking to internal sites. These
internal sites could be individual servers that users set up or part of
your organization's intranet.

• mailto:. Use for adding shortcuts that allow the user to preaddress a
message to the specified location, even if the user is not using Outlook
but needs to respond to messages automatically sent by Outlook. You will
see an example of this capability when we look at the Exchange Server
Routing Objects in Chapter 13. Examples of mailto hyperlinks follow:

o mailto:thomriz. Use if the default mail program of your users is
Outlook, which enables you to use the user's simple address. Out­
look automatically resolves the name by using an address book.

o mailto:thomriz@microsojt.com. Use when you cannot guarantee that
the user of the mailto hyperlink is an Outlook client.

o <mailto:thomriz@microsojt.com?subject=Great Book&body=I loved
every minute>. Use to pass additional information after the address
of the item. The formatting of the information is exactly the same
as when you pass variables along an HTTP query string. The mailto
hyperlink automatically fills in the message subject and text.

• Outlook. Used to create a hyperlink directly to Outlook information. This
protocol is supported only if Outlook is installed on the local machine.
Examples follow:

o Outlook:lnbox'Subfolder. Used for linking to Outlook folders. In this
example, the Subfolder folder of the Inbox will appear on the ma­
chine of the user. You can replace Inbox with the name of another
Outlook folder such as Tasks, Contacts, Calendar, and Journal.

o <Outlook:Contacts/-Tbomas Rizzo>. Used to link to a specific item
in the folder. This example will open the Thomas Rizzo contact in the
Contacts folder of the current user. Remember to place the hyperlink
in angle brackets if it contains spaces.

o <Outlook: \ \Public Folders\All Public Folders\JJiscussion>. Used to
link to a public folder. This example will open the Discussion
public folder. You can also use a similar syntax to open only the

Chapter 4 Forms

public folder tree or access a user's favorite folders stored in Pub­
lic Folders\Favorites.

o Outlook:EntryID. Used to link to items in the Outlook environment
by using the EntryID. This is useful if you are generating mail mes­
sages using the Microsoft Event Scripting Agent or the Microsoft
Routing Objects and you need to send a link to an item in a pub­
lic folder. Collaboration Data Objects (CDO), today, does not provide
this functionality, but using OutlookEntryID is a great workaround.
The only problem is that the Outlook protocol requires Outlook on
the local machine. Here is an example of this protocol:

Outlook:EFOOPOOOD4B32904495CD 111921 D08002BE4F322646C2700

This is a short-term EntryID. You can also use long-term EntryIDs.

You can also express spaces in any of these protocols by using the charac­
ters %20. For example, to link to a specific message in your Inbox with the sub­
ject Earnings reports, you would use the following syntax for the Outlook protocol:
Outlook:lnbox/-Earnings%20reports.

The Message control and its underlying field, the Message field, provide exten­
sive functionality to your applications. However, there are some restrictions on us­
age of the Message control inside of an Outlook form. First, you should create only
one Message control on an Outlook form. Since the Message control is automatically
bound to the Message field, more than one control will cause a conflict regarding
which content should be saved to the Message field. For example, if you have three
Message controls on different pages in the Outlook form, and a user writes a differ­
ent value to each control, Outlook will save the contents of only one of those con­
trols. This means that only one value of the Message field will be displayed in all three
Message controls.

NOTE Outlook automatically displays a warning message if you attempt to
place multiple Message controls ona form. If you need to sidestep this restric­
tion because your application needs to span multiple pages with Message con­
trols across each page, you should use a MultiPage control and keep only one
Message control at the bottom of the form. For more information on how to use
MultiPage controls, see the next section, "Using Controls."

Second, only the Message control accepts attachments or the hyperlinks we
reviewed earlier in the chapter. The other controls in Outlook do not understand
hyperlinks and will not automatically display and link information.

Third, the Message control is always bound to the Message field, and Outlook
automatically establishes this binding. You cannot change it, nor can you set initial
values of the Message control in design mode. You must either insert your hyperlinks,
text, or attachments before designing the form or insert them programmatically.

99

Part II Outlook

USING CONTROLS
So far, you've learned how to use the Field Chooser to add controls to a form. The
Field Chooser automatically binds the control to the appropriate field. You can also
add controls to your form manually.

You can set properties for the controls you use on forms, such as change the
name, change the display properties, and bind the control to an Outlook field. You
access the properties for a control via the Properties dialog box: in design mode, right­
click on the control and select Properties. From the Properties dialog box, shown in
Figure 4-7, you can select options that control the behavior and appearance of the
different Outlook controls. The following sections describe some of the Outlook
controls and how to manipulate some of their properties.

Figure 4-7. The Properties dialog box.

Accessing Controls from the Control Toolbox

100

The Control Toolbox, shown in Figure 4-8, provides an easy way for you to pick
controls when you design your forms. To launch the Control Toolbox in Outlook,
enter into design mode and choose the Control Toolbox option from the Form menu.
You can customize the Control Toolbox to assist you in designing forms more quickly.
For example, you could add the controls that you drag and drop most often onto the
toolbox. You can customize the Control Toolbox in the following ways:

Chapter 4 Forms

• Add pages to the toolbox.

• Rename the pages.

• Move controls from one page to another.

• Add other controls, such as ActiveX controls.

• Copy modified controls or groups of controls from your custom forms to
the toolbox for use on other forms.

To add controls to the toolbox from an Outlook form, select the controls that
you want to add and then drag and drop the controls onto the toolbox. You can select
individual controls or groups of controls.

Figure 4-8. The Control Toolbox and a group of controls that have been dragged and
dropped to the toolbox.

Renaming Controls
By default, when you add a control to an Outlook form, Outlook automatically as­
signs a name to it-for example, Outlook would assign the name TextBoxl to a new
TextBox control. However, it is good practice to rename the control to a name that
better describes its function. Just make sure you give it a name different from the name
of the field the control is bound to. By giving the control and the field different names,
you can avoid some confusion when writing your applications. Place an abbrevia­
tion at the beginning of the control to identify the content type. For example, if you

101

Part II •• 1..1 _ Outlook

add a TextBox control that holds the job status information for a potential job can­
didate, you might want to precede the control name with the abbreviation txt to
indicate the type. Therefore, a sample TextBox name would be txtJobStatus. When
extending your form with VBScript, you need to use the name of the control inside
your script.

Assigning Captions
The Caption property is available to only some of the Outlook controls: CheckBox,
CommandButton, Frame, Label, OptionButton, MultiPage, and ToggleButton. You set
the Caption property via the Properties page. Setting the Caption property for each
control has a different effect. For the Label and CommandButton controls, the Cap­
tion property specifies the text that appears in the control. For the MultiPage con­
trol, the Caption property applies to each page of the control and specifies the text
that appears as the tab name.

You can use the Caption property to set up accelerator keys (single-character
shortcuts) for your controls. For example, you might assign the ALT-A accelerator key
combination to a CommandButton control named Automatically Populate Fields. To
turn any letter in the text of the caption into an accelerator key, place an ampersand
(&) before the letter.

For the Outlook controls that do not support captions, such as the TextBox
control, you can create individual Label controls for identification. For example,
suppose you created a TextBox control that takes the name of a user as input. You
could create a label control with the text User Name: and position it to appear be­
fore the TextBox control.

Setting the Font and Color

102

Outlook allows you to set the font and color of your controls. The colors you set for
your controls can be relative to the colors that your users have set for their system.
For example, you can set the background color for a control to be the same as the
system window color, which the user establishes.

Using different properties for a control creates unique effects in your applica­
tion. For example, to create shading, set the background color of a label control and
then layer it behind other controls on your form. This effect is shown in Figure 4-9.

NOTE If you want to provide shading for a whole page of your form, use the
advanced Properties window of the form to set the Backe%r property rather
than add a label that stretches across the entire page. To learn how to set the
advanced properties for a control or a page, see the section titled "Setting Ad­
vanced Control Properties" later in this chapter.

Chapter 4 Forms

Figure 4·9. Set the background color of a Label control to provide shading on a
certain portion of the form.

Establishing Display Settings
Outlook provides six settings for the display of a control:

• Visible

• Enabled

• Read Only

• Resize with Form

• Sunken

• MultiLine

With the first three of these properties, you can make your controls behave
differently depending on the user accessing the form.

Binding Controls
Sometimes, when you create a new control, you will want to bind the control to an
existing field rather than create a new one. To do so, in design mode, right-click the
desired control, select Properties, click on the Value tab, and click Choose Field; From
the drop-down list, choose the field you want to bind to your control. Since this control
is bound to a field, any changes made to the information in the control will be re­
flected in the field.

103

Part II Building Outlook Applications

Setting Initial Values
You can set initial values for the coptrols on your form that are either static or calcu­
lated via the Value tab of the Properties dialog box, as shown in Figure 4-10. You
can also select whether Outlook should use your initial value only when a user is
composing an item based on the fotm, or automatically whenever any of the values
used to calculate the initial value change or a user opens the form. For example, you
can set Outlook to automatically use your name as the initial value in the Subject field
of your form. Whenever a user composes or reads the form, your name will always
appear in the Subject field. When calculating initial values, you can use the same
functionality used in formula fields. To take advantage of initial values, you must bind
your control to an Outlook field;

Figure 4-10. Using aformula in the initial value of a control. Tbisformula calculates
the total sale price based on the total number of items times the unit price per item.

Requiring and Validating Information in Fields

104

You can require that any field or any control bound to a field have a value. If the
user does not enter any information in the field arid attempts to close, save, or send
the form, Outlook returnS an error message that tells the user a value is required.

Outlook can also compare the value the user has entered to the validation cri­
terion you specify. This criterion can range from simple text to complex formulas. If
the validation fails, you can specify the message to appear. This message should be
used to tell the user what the expected values are in the field. For example, if you
create a TextBox control on your form that is supposed to have a number value greater

Chapter 4 Forms

than 0 in it, you can use a validation formula to make sure that the user does not enter
negative numbers in the field. If the user attempts to enter a negative number, your
custom message can ask the user to enter a positive number in the field. You set these
properties via the Validation tab of the Properties dialog box.

Built·ln Outlook Controls
Outlook provides 14 built-in controls that you can add to your forms, each of which
provides unique functionality. The following sections introduce these built-in con­
trols, with the exception of the ScrollBar control.

NOTI!! In addition to the 14 built-in controls, you can also use ActiveX controls.
We'll discuss ActiveX controls in the section titled "Using Custom or Third-Party
Controls" later in the chapter.

Label Control
Use the Label control to display descriptive text such as titles, captions, company
logos, or other identifying information. For example, you would use a Label control
to identify a text box or to display read-only information. The only time you typi­
cally bind a Label control to a field is when you wantto justudisplay a field value.
Figure 4-11 shows a timecard application where a user enters the number of hours
worked each day. The Label .control displays the total number of hours worked.

Figure 4-11. A timecard application that uses a Label control to display the total
number of hours worked.

NOTE You can display pictures inside·of Label controls. However, you can­
not crop or size the picture unless you use an Image control, which is described
later in this chapter.

105

Part II Building Outlook Applications

106

TextBox Control
Use the TextBox control to display or gather information from a user, gathering in­
formation being the more common use. You could use the TextBox control on a
customer survey form to gather comments. If you bind the TextBox control to a field,
the information entered by the user is saved in that field. Figure 4-12 shows some
TextBox controls on a form.

Figure 4·12. TextBox controls on an Outlookform. These TextBox controls are
combined with Label controls to gather information from a user.

The TextBox control is a highly customizable control. You can govern its func­
tionality by setting specific properties on it. For example, you can make a TextBox
control automatically adjust its size to fit text entered by the user. You can also add
multiline functionality so that users can enter more than one line of text in the TextBox
control. You can enable or disable the AutoSize, Multiline, and WordWrap proper­
ties for a TextBox control by right-clicking on a placed control and selecting the
Advanced Properties option.

WARNING Avoid using the AutaSize property when using a TextBox control
that already has WardWrap and MultiLine enabled. When the Text Box control
is empty, the size of the control will appear only 1 character wide and 1 character
high. Further, when the user adds text to the control, the control will automatically
resize itself to one long line of text rather than split the text into multiple lines.

ListBox Control
The ListBox control displays multiple values, of which users can select one or more.
A ListBox control offers you two different presentation styles:

Chapter 4 Forms

• Each item in the ListBox appears on a separate row, and the user can select
items by highlighting one or more rows.

• Items are presented as option buttons or check boxes. For option buttons
or check boxes to appear, the ListBox control must be bound to a Key­
words field.

If you set the MultiSelect property for the ListBox control on the advanced Prop­
erties window to 1 - Multi, the user can select multiple items in the ListBox. When a
user selects multiple items in the ListBox, the selections are entered in the field as
comma-separated values. You can create views that group or sort by these different
values.

You create a list of values in a ListBox control in two ways:

• Right-click on the ListBox control that is placed on the form, select Prop­
erties and click on the Value tab. Click the New button, and create a new
field that has a type of Keywords. After creating a new field, enter the
desired values in the Possible Values box. You must separate the fields
with a semicolon. Do not include quotes around your text unless you want
these quotes to appear in the ListBox control. Figure 4-13 shows where
you set possible values for a ListBox control.

• Establish the values programmatically at run time.

Figure 4-13. Setting the possible values for a List Box control. You can see the
check boxes that appear when the List Box control is bound to a Keywords field
and the MultiSelect property is set to 1 - Multi.

107

Part II Building UUIIBCIOK Arllpliic8ltle,ns

108

Combo Box Control
A ComboBox combines the features of a ListBox control and a TextBox control, so
it enables you to provide a list from which the user can select an item and a text box
into which a user can type information.

You add possible values in the drop-down list of a ComboBox control in the
same way you add them for the ListBox control. You can specify the list type on
the Value tab of the Properties dialog box, in the List Type drop-down list. Here
are the List Type options:

• Dropdown, to allow the user to type new text into the control

• Droplist, to force the user to select a value from the drop-down list

Figure 4-14 shows how properties can be set for a ComboBox control.

Figure 4-14. Tbis ComboBox allows users to type in the text portion of the control
because the List Type drop-down list is set to Dropdown.

CheckBox and ToggleButton Controls
Use the CheckBox and ToggleButton controls to give the user a choice between two
values, such as on or off, yes or no, or true or false. You should bind the CheckBox
and ToggleButton controls to a Yes/No field type for the control to work properly.

Option Button Control
The OptionButton control is identical to the CheckBox and ToggleButton controls
in that it gives the user two choices, but it differs from them in that a group of
OptionButton controls are mutually exclusive. For example, on a helpdesk form,
OptionButton controls could be associated with possible operating systems users are
running, such as Microsoft Windows 2000 Professional, Microsoft Windows 2000 .

Chapter 4 Forms

Server, or Microsoft Windows NT, as shown in Figure 4-15. You can bind all of the
OptionButton controls to the same field-for example, the txtUserOS field. The value
of the txtUserOS field will be the value of the currently selected OptionButton con­
trol. You set the value for an OptionButton control on the Value tab.

Figure 4-15. A set of OptionButtons grouped together with a Frame control.
OptionButton controls provide mutually exclusive options to users.

You can group OptionButton controls together using containers, such as the
Frame control or MultiPage control. Figure 4-15 showed a Frame control being used
to group the OptionButton controls. When you bind one of the OptionButton controls
in the group to a particular field, the other controls automatically bind to that same field.
Be careful to drag and drop the OptionButton controls onto a container m your form,
not onto the form page-Outlook automatically groups all OptionButton controls
on the farm page together, which might not produce the desired functionality.

You can also group your OptionButton controls by using the GroupName prop­
erty, which identifies related OptionButtori controls on a form. To set the GrouPName
property for an OptionButton control, in.design mode, right-click on the OptionButton
control that you want to modify and select Advanced Properties: Double-click on the
GroupName property, and type in a unique name for the group. Click Apply, and
repeat the steps for all the other OptionButton controls in your group.

NOTE If you want to create a group of Option Button controls on a TabStrip
control, you have to use the GroupName property. The TabStrip control is not a
container.

Frame Control
Frame controls are used to create groups of related controls. As you saw earlier, a
frame can hold a group of mutually exclusive OptionButton controls,but it can hold
other types of controls as well. Add controls to and remove controls from a frame
by dragging and dropping them.

CommandButton Control
CommandButton controls provide custom functionality when clicked by the user, so
you write the script that responds to its click event. The click event is the only event
for the CommandButton control. For information on writing scripts in Microsoft
Outlook forms, see Chapter 5.

109

Part II Bunding Outlook APlpn,ca.tlolns

110

MultiPage and TabStrip Controls
The MultiPage control and TabStrip control are similar in that they offer multiple pages,
or tabs, for holding information. The distinction is that every page in a MultiPage
control is its own form, so you can customize the layout and background colors of
each page as well as place unique controls on them. The TabStrip control must con­
tain the same controls on every page, so you do not have flexibility with layout. Use
it if you want a single layout for your data that you can then map a unique set of
data to. Figure 4-16 shows how the MultiPage control is used for the Account Track­
ing application we'll look at in Chapter 6.

Figure 4-16. The MultiPage control for the Account Tracking application provides
several pages of information.

To add controls to and remove controls from a MultiPage or TabStrip control,
drag and drop them. To customize a page of a MultiPage control, enter design mode,
right-click the desired tab, and select Insert, Delete, Rename, or Move. The Insert
command always places the page as the last tab, so to position the tab correctly af­
ter you've added it, use the Move command.

Chapter 4 Forms

SpinButton Control
The SpinButton control has arrows that allow you to increment or decrement a num­
ber. It accepts custom script-you choose whether or not to write it. If you want to
use the SpinButton control to increment and decrement values in another control such
as a TextBox control, rather than write script, simply bind the data to the same field
for both controls. Figure 4-17 shows the SpinButton control and TextBox control
bound to the same field.

Figure 4-17. Both the SpinButton and TextBox controls are bound to the same field.
The user can use the spin button to increment and decrement the value in the TextBox
control.

Image Control
The Image control displays an image on your form, as shown in Figure 4-18. The
Image control supports the following file formats:

•
•
•

.bmp

.cur

.gif

•
•
•

.ico

.jpg

.wmf

Here are some of the properties you can set in the advanced Properties win­
dow for the Image control:

• AutoSize. Control automatically grows or shrinks based on the size of its
associated graphic.

• Picture. Specifies the picture to display.

• PictureAlignment. Determines where the image appears in the control if
the height and width of the Image control is greater than the size of the
image.

• PictureSizeMode. Lets you clip, stretch, or zoom the image.

• PictureTiling. Creates picture tiles that fill all available space in the Im­
age control.

111

Part II Outlook

Figure 4-18. An Image control on an Outlook/arm displays a picture.

You can also set the Picture property for the Image control by using VBScript
in your Outlook form. By setting the Picture property programmatically, you can
dynamically change the graphic contained in the Image control.

Using Custom or Third·Party Controls

112

There might be times when the built-in controls of Outlook do not meet the require­
ments of your application. In these cases, you can extend the Outlook forms envi­
ronment by adding controls, such as ActiveX controls. You can create these controls
by using development tools such as Microsoft Visual Basic or Microsoft Visual C++,
or you can use controls developed by third-party companies. Figure 4-19 shows three
ActiveX controls placed on an Outlook form.

Figure 4-19. AciiveX controls on an Outlook/arm.

Chapter 4 Forms

To add custom controls to your Control Toolbox, in design mode, right-click
on the Control Toolbox and select Custom Controls. In the Additional Controls dia­
log box, check the custom controls you want to add and click OK.

NOTI: For the controls placed on your form to work correctly, they must be
available on the computers of your users. Outlook does not automatically dis­
tribute ActiveX controls with the form.

When you add one of these controls to your form, you can take advantage of
its unique functionality by binding specific properties of the control to Outlook fields,
by setting the advanced properties for the control, or by automating the control
through VBScript. For example, you can place the TreeView control included with
Visual Basic on your form, and then bind the selected node of the tree to your cus­
tom text field in Outlook so that you can track which node the user has selected. (You
could also capture this information by using a click event handler to place the value
in your custom field.)

Usually, you want to bind the default property of the control, typically the value
of the control. However, there might be times when you want to bind to other prop­
erties in the control. To bind a custom control property to an Outlook field, access
the Value tab of the Properties dialog box, select the desired field from the Choose
Field drop-down list, and in the Property To Use drop-down list, select the custom
property of the control you want to bind the field to.

Different controls support different properties. To learn about the properties of
a control, access the help file included with the control or use an object browser, such
as the VBA Object Browser, to browse the properties of the control. Using the VBA
Object Browser is discussed in Chapter 5.

Setting Advanced Control Properties
There are many times when you need to change the advanced properties of a control
on your form, such as the background color of the control or the way the control lists
the values contained in it. Below are some of the advanced properties for controls
in the advanced Properties window:

• ForeColor. This property determines the foreground color of the control,
which in turn affects any text associated with the control. This text can
be inside of the control or the caption of the control. You can either use
selected system colors or create your own color scheme for this property.

• BackColor and BackStyle. These properties determine the background of
the control. BackStyle determines whether a control is transparent.
BackColorspecifies the background color. For this property, you can either
use selected system colors or create your own color scheme for this property.

113

Part II Outlook AppUcatio,ns

• BorderColor, BorderStyle, and SpecialEffect. These properties apply to the
border of the control. By using these properties, you can specify whether
a control has a unique color around its border or whether a control looks
sunken into the form or raised off the form. BorderStyle and SpecialEffect
are mutually exclusive; when you assign a value to one of these proper­
ties, Outlook automatically resets the other.

• Picture. This property determines the picture on the control. You can set
this property for many Outlook controls.

• ControlTipText. This property determines the short, descriptive text that
appears when a user holds his mouse over the control.

• MousePointer and MouseIcon. These properties are used in conjunction
to determine the icon used when the mouse passes over the control. You
can set the MousePointer property to one of 16 built-in icons such as the
hourglass icon or the arrow with a question mark icon. When you set the
MousePointer property to 99 - Custom, the MouseIcon property is used
to determine which icon to use. You can specify your own icons in the
MouseIcon property.

• PasswordChar. This property specifies the placeholder character that is
displayed in the control in place of the real characters. This property is
available only for TextBox controls. You can use this property to provide
some protection when users enter sensitive information into the form.

Setting the Tab Order
The tab order determines which control the focus moves to when the user presses
either the Tab key or Shift-Tab keys. Setting up a logical tab order for your form makes
it easier for users to quickly enter information in the controls. To set the tab order,
right-click on the desired page on the form, being careful not to click on the con­
trols, and then select Tab Order. In the Tab Order dialog box, select the various
controls from the list box and click the Move Up button or Move Down button to
adjust the order. You can select more than one control at a time by holding down
the Ctr! key and clicking on the desired controls.

NOTE Label controls are included in the Tab Order dialog box. However, at
run time, these controls are not included in the tab order.

Layering Controls on a Form

114

By using the layering capabilities of Outlook forms, you can create dynamic visual
effects. For example, you can shade different areas of the forms by creating colored
label controls that serve as the background for other controls on the form. Outlook

Chapter 4 Forms

layers controls by using the z-order (depth) axis, which determines whether controls
are in front of or behind other controls. To layer the controls on your Outlook form,
in design mode, select the control or controls you want to adjust the order for. From
the Layout menu, select Order and then select the desired placement option.

FORM PROPERTIES
Before publishing your forms, you will want to set various form properties. These
properties can be default or advanced.

Setting Default Form Properties
Default form properties include the name of the form, the form description, and icons
for the form. You set these properties through the Properties page, as shown in
Figure 4-20.

Figure 4-20. The Properties page in an Outlook/arm.

The following list describes the properties you can set on the Properties page:

• Category. Allows you to specify a category name for your form, which will
ultimately appear in the Choose Form dialog box. Use category names to
group similar forms.

• Sub-Category. Allows you to specify a subcategory for your form so that
you can divide your forms into groups. For example, a marketing forms
category could be divided into advertising, events, pricing, and promotions.

115

Part II Building Outlcck Applicatlcns

116

• Always Use Microsoft Word As The E-Mail Editor. Allows you to specify
Word as the editor for the Message control of the form. By selecting this
property, users can take advantage of the advanced features of Word.

• Template. Allows you to specify which Word template to use for the
Message control on your form.

• Contact. Specifies the contact responsible for the form. This name appears
in the Choose Form dialog box if the user selects to view the details about
the form, and in the About dialog box for this form when the user selects
About This Form from the Help menu. (The About This Form option is
not available if you send the form definition with the item.)

• DeSCription. Allows you to enter the form description, which will appear
in the Choose Form dialog box if the user selects to view the details about
the form, and in the About dialog box for this form.

• Ver.sion. Allows you to specify a version number for the form. This ver­
sion number will appear in the Choose Form dialog box and in the About
dialog box for this form.

• Form Number. Allows you to specify a number for the form, which ap­
pears in the About dialog box for this form.

• Change Large /con. Allows you to specify the large icon that will be used
when a user selects a large icon view for any folder containing this cus­
tom form.

• Change Small Icon. Allows you to specify the small icon that will appear
in the default, custom table, timeline, or icon view of the form.

• Protect Form Design. Allows you to specify a password to protect the
design of your form after publishing it. You should do this for all of your
custom forms unless you want to give users the ability to modify or cus­
tomize your form. For example, you should not password-protect busi­
ness form templates, such as a joint marketing agreement form, that users
will have to modify to meet their specific needs.

• Send Form Definition With Item. Allows you to save the form layout with
the item. Use this option if you are not going to publish the form in a forms
library. When you save the form definition with the item, Outlook con­
siders these forms to be one-off forms, meaning that if you modify the form
later and publish it to the forms library, any older items will continue to
use the form definition saved inside of the item. This feature is useful for
sending forms to users who are not in your organization or who do not

Chapter 4 Forms

have a copy of the Outlook fonn. For example, you would use this prop­
erty if you wanted to create an event registration form that you wanted
users both inside and outside of your organization to use. Since this fonn
is not useful beyond the event, you wmlld not publish it into a fonns li­
brary. Note that when you save the fonn definition with the item, Outlook
displays a security warning if the fonn contains VBScript and is not pub­
lished anywhere in the user's Outlook system.

• Use Form Only For Responses. Makes your form available only as a re­
sponse to other fonns, so users cannot create your fonn directly from the
Choose Fonn dialog box. Instead, they must open the parent fonn and
use the methods provided in the parent to create the fonn. This option is
useful if you want to create hidden forms for your application. (Outlook
uses this feature to implement meeting responses.)

Setting Advanced Form Properties . . .

In addition to setting default form properties, you can set advanced fonn properties
to help you create visually appealing forms. These advanced properties allow you
to specify the individual background colors or images for the pages of your forms
and also the defa,ult mouse pointers. To set the advanced properties of your forms,
in design moge; right-click on the desired page and select Advanced Properties. (Be
sure to click on the pa~e, not' on a control.) In the Advanced Properties window,
choose the options you want to modify. Figure 4'::21 shows the Advanced Proper­
ties window.

Figure 4-21. The Advanced Properties Window for a page on an Outlook form.

117

Part II Building Outlook Applications

TESTING FORMS
Outlook enables you to test your forms as you develop them. Since the design and
run environment are built into Outlook, you do not have to compile or save your
forms before testing them. You can start a separate run mode so that you can test
the form's functionality while making changes to it in design mode. You can also
enable multiple instances of your forms in run mode, which is useful if you want to
try different versions of the form and test different areas of functionality. To test your
forms in run mode, enter design mode and select Run This Form from the Form menu.
Outlook will automatically create a new instance of your form in run mode. To get
back to design mode, just close the running instance of the form. Figure 4-22 shows
an Outlook form in both design and run modes.

Figure 4-22. An Outlook/orm both in design and run modes. These two separate
modes make it easier to test your Outlook applications.

PUBLISHING FORMS

118

After customizing your forms, you need to make them available to your users. There
are three primary ways you can distribute your forms to users:

Chapter 4 Forms

• Publish the form in a forms library. The forms library can be the Organi­
zational Forms Library, a folder forms library, your Personal Forms Library,
or a Web forms library. This is the most common distribution method.

• Save the form definition with the item, and send the item to your users. This
option is best suited for one-off forms where users need to use the form
only once.

• Save the form to the file system as an . oft file, and attach it to an e-mail
that you send to your users. Your users can then use the fonn from their
file systems or publish the form in their Personal Forms Library.

The following sections describe each of these methods in detail.

Publishing Forms in a Forms Library

As you learned in Chapter 2, Outlook supports four types of forms libraries, and each
type meets a specific need for forms publishing:

• Tbe Organizational Forms Library. Use this library to publish public forms
that should be available to the entire company.

• Folder forms library. Use this library to publish forms in specific folders.
To compose a form from this library, users must either click on the folder
in the Choose Form dialog box or open the folder and launch the form
from the Actions menu. Any user can create forms in his or her own per­
sonal folders, and users with editor, publishing editor, or owner permis­
sionscan create forms in a public folder.

• Personal Forms Library. Use this library to publish personal forms. This
library, which is stored on the local machine, cannot be shared with other
users in the organization. Publish personal templates and forms to this
library, and test your forms there before deploying them to your users.

• Web forms library. A web forms library is stored using Microsoft Outlook
Web Access. It can contain Outlook forms that were either converted to
HTML or that you created using HTML.

Note that Outlook also allows you to create personal folder files c.pst files).
These files implement the same functionality as your personal mail folders, so you
can create new folders in these personal store files and publish forms to the folders.
Since you can save the forms to your local hard disk, you can e-mail or copy them
to a floppy for distribution.

119

Part II

To publish your forms to a forms library, follow these steps:

1. In design mode, from the Tools menu, point to Forms and then select the
Publish Form As option.

2. From the Look In drop-down list, select the forms library where you want
to publish the form.

3. In the Display Name box, type the friendly name of your form. Outlook
automatically fills in the Form Name box for you. (Note that this name will
appear in the caption at the top of the form.) If you want to use a separate
form name from the display name, type a name in the Form Name box.

4. Click Publish.

Saving the Form Definition with the Item

120

As you learned earlier in this chapter, you should save the form definition with an
item when you know that the users will not have the form anywhere in their systems.
If the definition is saved with the item, Outlook uses the saved version of the form,
which is the most current. If the definition is not saved with the item, Outlook looks
for the form definition in other locations. To save the form definition with the form,
in design mode, click the form's Properties tab. Check the Send Form Definition With
The Item check box to enable it.

You need to keep two issues in mind when you consider whether to save the
form definition with the item. The first issue is security-particularly when VBScript
is used to customize the form. To alleviate security concerns, Outlook provides a
security measure when users receive an item with a form containing VBScript. Since
Outlook supports customizing forms with VBScript, this is a necessary precaution.
Without it, users could send malicious forms containing VBScript which could, for
example, delete data on your hard drive. This security measure displays a warning
message box, as shown in Figure 4-23, allowing the user to either enable or disable
the VBScript in the form. This security warning will appear only if the form has the
definition saved with it, is not published in any of the forms libr(iries, and has VBScript
included with it.

The second issue to note is that when you save the form definition with the item,
you cannot take advantage of the automatic update capabilities of Outlook forms.
For example, if you change the form, the new version of the form will be included
only with new items you create based on it. Any old items will use whatever form
definition was originally saved with the item.

Chapter 4 Forms

Figure 4-23. The warning message that is displayed when a form has the definition
saved with the item and also contains VBScript.

Saving the Form as an .oft File
Outlook allows you to save your forms as Outlook template, or . oft, files. This en­
ables you to embed the form in a mail message and send it to users who are both
internal and external to the organization. Your users open the form using the attach­
ment, and they either return the form completed or publish the form in a forms li­
brary. Saving your custom forms as .oft files is one way to create backups of your
custom forms. To save a form as an .oft file, in design mode, select Save As from the
File menu. In the Save In box, select the location to which you want to save your
file. In the File Name box, type a name for your file.

ENHANCING FORMS
You can enhance your forms and applications by taking advantage of additional
features available in Outlook. If you have any Microsoft Office products installed, you
can tie into some of their capabilities. You can also add actions to your forms by
customizing Reply and Forward and by using voting buttons. In this section, we'll
take a look at these features.

Extending Functionality with Office Document Forms
Office document forms are similar to built-in Outlook forms, but there are enough
differences to warrant highlighting this technology in its own section. With Office
document forms, you can take advantage of the power of other Microsoft Office
products in your applications as well as any development skills you already have.
To create an Office document form, select Office Document from the File/New menu.
Select the type of document you would like to create. Outlook will prompt you to

121

Part II

122

either e-mail or post this document to someone else in your organization. Select the
action that best suits your application: if you need to e-mail your new form to co­
workers, create a new e-mail Office form; if you're posting the information to a public
folder for others to read at their convenience, post the new Office form.

After creating your Office document form, you can customize the form by us­
ing either VBA inside of the Office document or VBScript inside of Outlook. Unlike
the standard Outlook forms, Office document forms won't let you add new tabs.
Therefore, the only way to customize the Office document form is to use the tools
available for the particular Office application you used to create the document form.
For example, to customize the values and layout in an Microsoft Excel spreadsheet
form, you use Excel tools. A customized Excel document form is shown in Figure 4-24.

Figure 4-24. An Excel document form in design mode. Notice how the first page has
been customized using the tools proVided in Excel.

You can also use the custom properties inside your Office forms as Outlook view
properties. For example, an Excel expense reporting form could use its cell values
as properties in an Outlook view. This sharing of properties is implemented by cre­
ating custom properties in the Office application. You create custom properties in

Chapter 4 Forms

Word and in PowerPoint the same way, except that in Word, the custom properties
link to custom bookmarks, and in PowerPoint, the custom properties link to objects
in the presentation. Following is a description of how to create custom properties in
Excel:

1. In your Office document form, which is based on an Excel Worksheet,
select a cell that contains the value you want to use as a custom property
in your Outlook view.

2. From the Insert menu, point to Name and then select Define.

3. In the Names In Workbook box, type the custom name you want for the
cell, such as Total, and click Add. Click Close.

4. From the File menu, select Properties.

5. Click the Custom tab. In the Name box, type the namefor your custom
property. This can be the same as the name you selected for the cell.

6. From the Type drop-down list, select the type that corresponds to the
values contained in the cell. For example, for a Total field, you should
select Number.

7. Check the Link To Content check box to enable it. From the Source drop­
down list, select the custom cell name you created in step 3.

8. Click Add. In the Properties box, you should see the name, value, and type
of the property you just added.

9. Click OK.

After you create a custom property to hold the value from the Office document,
you can add it to your Outlook view. To do this, select the folder where you posted
or e-mailed the Office document form. Right-click on the column headings for the
view, and select Field Chooser from the menu. In the Field Chooser, open the drop­
down list and choose User-Defined Fields In Folder. The Total field should be listed.
You can use this property to group, sort, and filter your view. The only restriction
on using this property is that you cannot edit it using in-cell editing in Outlook. The
properties are read-only inside of Outlook, and you must use the Office document
form to edit the properties. Figure 4-25 on the next page shows a view of expense
reports inside an Outlook folder.

123

Pari II

Figure 4-25. A view of expense reports inside an Outlookfolder. The properties in the
view are actually values from an Excel document form.

In design mode for Office documents, you can set the same form properties that
you can set for default Outlook forms. These properties include changing the icon
for the form, password-protecting the form, and establishing the form contact. For
more information on these properties, see the section "Setting Default Form Proper­
ties" earlier in this chapter.

NOTE Outlook also allows you to create custom actions for the form, which is
discussed in the next section.

In the same way you can publish custom forms, you can publish your Office
document forms so that they are available to all users in an organization. Office docu­
ment forms display a unique message class determined by the Office application that
they are based on. For example, an Excel expense report form could have a mes­
sage class named IPM.Document.Excel.Sheet.8.Expense Report, and a Word beta
agreement form could have a message class named IPM.Document.Word.Docu­
ment.8.Beta Agreement.

Creating Actions

124

Actions are either built-in or custom responses to a particular item on a form. They
add dynamic functionality to your application with no coding at all. For example, in
the Account Tracking application, individual contacts for the company can be created

Chapter 4 Forms

off the master company contact information. In a threaded discussion application,
new items are created as responses to posted items. The following section explains
how to create actions for Outlook items and associate those actions with custom forms,
and it provides strategies for using actions in your applications.

By default, Outlook provides you with four built-in actions for items: Reply,
Reply To All, Forward, and Reply To Folder. In many cases, you'll want to custom­
ize these actions or create your own. Figure 4-26 shows the Actions page, in which
you create actions.

Figure 4-26. The Actions page of a form.

To create a new action, follow these steps:

1. In design mode, click on the Actions tab.

2. Click the New button at the bottom of the form.

3. Type the name of your custom action in the Action Name box. This name
is used by Outlook to display your custom action on the form or menu.

4. From the Form Name drop-down list, select a custom form. By default,
Outlook displays the custom forms in the active folder. If the desired form
is somewhere besides the active folder, you can locate it in one of two ways:

o Select the Forms option to launch the Choose Form dialog box. You
can see and select all hidden forms in the different forms libraries.

o Type the name of a form in the drop-down list. After you select the
form, Outlook automatically enters its message class in the Message
Class box.

125

Part II Building Outlook Applications

126

5. From the When Responding di-op-down list, select the method by which
the contents of the original item will be copied to the new form. These
are your options:

o Do Not Include Original Message. Outlook does not include the
original item in the action.

o Attach Original Message. Outlook will attach the original message
as an icon in the message body itself or in a separate window at the
bottom of the message. The mail format of the attached message will
be based on the user's settings.

o Include Original Message Text. Outlook includes the original mes­
sage text and some carriage returns before the text in the message
body of the form.

o Include And Indent Original Message Text. Outlook includes the
original message text, indented in the message body of the form.

o PrefIX Each Line Of The Original Message. Outlook prefixes each line
of the message with the default prefix character the user selected
from the Options/E-mail Options menu. By default, the character is
a greater-than sign (».

o Attach Link To Original Message. Outlook attaches a shortcut to the
original message. This functionality is useful when the reply item is
a message form that is sent to the user and the original item is posted
in a public folder. It allows the user to double-click on the reply item
and quickly find the original item without searching the public folder
tree for the folder.

o Respect User's Default. Outlook uses the settings for replying and for­
warding messages that were selected by the user from the Options/
E-mail Options menu.

6. From the Address Form Like A drop-down list, choose the way you want
to address the form. These are the address options:

o Reply. Outlook copies the contents of the original From field to the
To field in the reply form. No Cc and Bcc information is copied. The
Subject field contains the text from the original item.

Chapter 4 Forms

o Reply To All. Outlook copies the contents of the original From field
to the To field in the reply form as well as Cc information. The
Subject field contains the text from the Original item.

o Fonvard. Outlook clears the address information in the reply form
so that the To, Cc, and Bcc fields are empty. However, Outlook does
copy the subject of the message to the reply form.

o Reply To Folder. Outlook places in the Post To field the active folder
so that the reply automatically posts to the folder. Outlook also
copies the subject of the message into the Conversation field and
clears the Subject field. This allows you to create threaded views of
your items.

o Response. This option is used only with voting buttons.

7. Check the Show Action On check box to make your custom action ap­
pear either on both the Actions menu and the toolbar or just on the Ac­
tions menu.

"OTIE In some cases, you will want only the action to appear on the menu.
For example, if you create a Command Button control on your form and program
the Command Button control to execute the action when clicked, you might not
want the action to also appear in the tool bar. In other cases, you will not wa.nt
the action to appear on either the toolbar or the menu-for example, when the
action is used in an event such as the close event foran Outlook form. In this case,
you would not want users to be able to launch this action, only your application.

8. Select an option from the This Action will area. The default option, Open
The Form, will probably be the one you use most often, but you can
choose options to send the form immediately, or to prompt the user about
whether to send the form or open it for modification.

9. In the Subject Prefix box, enter the characters that should precede the
Subject in the reply form. Outlook will automatically place a colon after
the characters.

10. Click OK. That's it. Now you have custom functionality on your form
without writing a single line of code.

127

Part II

128

Modifying and Disabling Actions
In addition to creating new actions, Outlook allows you to modify and disable built­
in and custom actions so that you can control which actions are available to the user.
When you disable a built-in action such as Reply All, you can replace it with your
own. Because disabling doesn't actually delete the action, you can reenable it. You
can also modify a built-in action so that its functionality is consistent with the func­
tionality of your application.

You modify, disable, and delete built-in actions via the Actions page. To modify
or disable the action, select the desired action on the Actions page and click the
Properties button to access the Form Action Properties dialog box. To delete an action,
select the desired action and click the Delete button. Once you delete an action, you
have to re-create it to get it back. If there is any chance that you will need the action
in the future, you're better off disabling it.

ACTIONS AND HIDDEN FORMS

Actions can take advantage of hidden forms in your applications. Remember
that checking the Use Form Only For Responses check box on the form's Prop­
erties page hides the form from the user when the user chooses a form to com­
pose. Suppose you are writing a helpdesk application and on your form you
want to include an action called "Resolved." The Resolved action launches a
new form, which the technician fills out to mark a ticket as resolved. Suppose
also that you do not want users creating their own resolved forms. You can hide
the resolve form by marking it as a response form and then setting permissions
on the folder that prevent users from reading the items posted there. Techni­
cians can open the items and click the resolved action to resolve the ticket. Users
will not see the resolved form in their Choose Forms dialog boxes.

Chapter 5

Programming
Outlook with

VBScript

In Chapters 3 and 4, you learned about folders and the form design tools that assist
you with developing collaborative applications in Microsoft Outlook. To help you
further extend your applications, Outlook provides a built-in development environ­
ment that uses the Microsoft Visual Basic Scripting Edition (VBScript) programming
language. Using VBScript, you can write procedures to manipulate items, folders,
controls, and the other objects Outlook contains in its object library. VBScript also
lets you automate applications, such as Microsoft Excel, inside your own application
so that you can take advantage of their functionality.

The examples in this chapter are VBScript examples, as are many other examples
in the book-Chapter 12 on Collaboration Data Objects (CDO), Chapter 13 on event
scripting, Chapter 14 on routing objects, and Chapter 15 on Active Directory Services
Interfaces (ADSI) are all interlaced with VBScript examples. By learning the VBScript
language, you can easily use the different tools and APIs provided by Microsoft Ex­
change Server and Outlook. This is the power of the Exchange Server platform: you
need to learn only one language to develop applications in many different contexts.

129

Part II .fol"""", ... Applications

While this chapter is not an extensive tutorial on VBScript, it does provide you
with the requisite amount of information on the language to work through the
examples in this book. For more information, check out the VBScript help file avail­
able on the companion CD. It has a language reference section and a simple tuto­
rial. There are also many great books published by Microsoft Press that cover VBScript
in more detail as well as Web sites that provide excellent information. One Web site
in particular has up-to-date information on VBScript and VBScript-related files avail­
able for downloading: bttp:/lmsdn.microsoft.comlscripting.

You can, of course, use other development languages to create solutions that
take advantage of Outlook, CDO, and the other Exchange Server tools. However,
VBScript is integrated with the Outlook environment, and Outlook provides a num­
ber of great tools that take advantage of this integration.

THE OUTLOOK SCRIPT EDITOR

130

While creating forms and actions in the last two chapters, you might have wondered
what the View Code option on the Form menu did. If you had selected the View Code
command, the Outlook Script Editor would have appeared, showing you firsthand
how VBScript is integrated with Outlook. Figure 5-1 shows the Script Editor display­
ing code from a sample application.

oDatal:)aseEnqine
I Used to tell the application to w:l1!!: an external DB

txtAccountName
txtOr ig-inalStreet, txtOr iqinalC i ty r txtOr iqina13tate, txtOriqinalPostalCode, txtOr 'g,"alce'U"tlml

I Tells the application to use an Access Database set this to 0 to not
'use a database

Ic""po.el'lode = True 'Used to determine if the application is in compose or readmode

I USl!.d to dl!.tl!.rminl!. it tb1! 'lil'@bbroV!ll!.r control W!!U!!I succl!!:!I!lully crl!.lltll!d

Figure 5-1. The integrated Outlook Script Editor.

The Script Editor allows you to add custom VBScript procedures and variables
to your Outlook applications as well as use Outlook objects in your applications. Using

Chapter 5 Programming Outlook with VBScript

the Script Editor, you can write VBScript to handle Outlook events. The Script Editor
provides an Insert Event Handler dialog box, which lets you select the event you want
to write a handler for. We'll discuss Outlook events more later in this chapter.

Outlook provides line numbers when reporting errors, and in the Script Edi­
tor, you can jump to a specific line of code. This feature makes it easier to debug any
errant code in your application. To use this functionality, in the Script Editor, select
Go To from the Edit menu, specify the line number, and click OK. Your cursor will
be inserted at the specified line.

YBSCRI·PT FUNDAMENTALS
VB Script should be familiar to any developer who has experience with Microsoft
Visual Basic or Microsoft Visual Basic for Applications (VBA) because VBScript is a
subset of them. Version 5.1 of VBScript, which includes many enhancements from
previous versions, ships with Outlook,2000. As you would expect, you write VBScript
applications in the same way you write applications in other programming lan­
guages-by using variables, procedures, and objects.

NOTE For more information on the different versions and features of the
VBScript language, visit http://msdn.microsoft.com/scripting.

Working with Variables

Variables in VBScrfpt correspond to locations in memory where youcan store infor­
mation while your application is running. Variable names are easily identifiable words
or phrases such as myColor, myObject, and myTotal. There are some restrictions on
the naming of variables inside of the VBScript environment, including the following:

• The variable name must begin with an alphabetic character. For example,
myTotal is a legal variable name, but $Total is not.

• The variable name cannot contain an embedded period. For example,
this. total is not a valid variable name.

• The variable name cannot contain more than 255 characters.

• The variable name must be in a unique scope when declared. (Scope will
be discussed shortly.)

Declaring Variables
To make variables available to your application, you need to either explicitly declare
the variable or have the VBScript language implicitly declare the variable for you. The
easiest way to declare a new variable is to use the Dim statement inside your VBScript
code. For example, to declare three new variables, you could write either of the code
fragments on the next page.

131

Pari II Building Outlook Applications

132

'Declaring variables using separate lines
Dim myColor
Dim myObject
Dim Total

'Or you can use the same line and separate the names by commas
Dim myColor, myObject, Total

VBScript does not require you to explicitly declare variables. If you do not
declare a variable and you use that variable in your code, VBScript will automatically
save storage space for your data and use your variable as the friendly name for that
storage space. However, if you accidentally misspell a variable in your code, errors
are likely to occur in your application. These errors are particularly hard to track down
because the VBScript interpreter does not know that a variable has been misspelled.
To make these types of errors more manageable, VBScript provides the Option Ex­
plicit statement. The Option Explicit statement forces all VBScript variables to be
explicitly declared. If you do not declare all your variables, VBScript will display an
error. The Option Explicit statement must appear before any procedures and is typi­
cally the first statement in your code.

Scope and Lifetime of a Variable
The lifetime of a variable is determined by the scope in which the variable was de­
clared. There are two levels of scope for a variable inside VBScript:

• Global, or sCript-level scope

• Local, or procedure-level scope

Global variables can be called from any procedure inside the running script.
To create global variables, all you need to do is declare your variables outside any
procedure in your script. It is best to group all global variables at the top of your script
instead of scattering them throughout your code.

Local variables are declared within procedures and can be accessed only by the
code in that procedure. If you attempt to call one of these variables from other pro­
cedures, VBScript displays an error. Also, procedure-level variables in different proce­
dures can have the same name.

The next code snippet shows both sCript-level and procedure-level variables being
declared. To test this code, create a new Message form in Outlook and enter design
mode. Drag and drop a CommandButton control onto the second tab of the Outlook
form. The CommandButton control will automatically be named CommandButtonl.
Display the Script Editor by selecting View Code from the Form menu. Type the fol­
lowing code in the Script Editor. When finished, try running the form by choosing Run
This Form from the Form menu and then clicking the button on the second tab.

Chapter 5 Programming Outlook with VBSeript

'Make sure to Dim our variables before using them
Option Explicit
'Global/script-level variables
Dim strName
strName = "Joe Use~"

Sub CommandButtonl_Click
Dim strLocation 'Procedure-level variable
strLocation = "Seattle. Washington"
ms~btix str~ame & " is located in " & strLocation
End Sub

The lerigthof time a variable exisi:s is called its lifetime. The scope in which the
variable is declared affects the lifetime of the variable. For example, if a variable is
declared with script-level scope, it will exist the entire time the script is running. If
the variable is declared with procedure-level scope, that variable wlll be created when
the procedure begins and destroyed when the procedure ~nds. This is why procedure­
level variables are good as temporary storage space inside your vBScript procedures.
Some restrictions apply to VBScript variables and their lifetimes:

• You can have up to 127 procedure-level variables. Arrays count as only
one variable.

• You can have up to 127 script-level variables.

The following code snippet demonstrates variable lifetimes:

'Make sure to Dim our variables before using them
Option Explicit
'Global/script-level variables
Dim strName
strName = "Joe User"

Sub CommandButtonl_Click
Dim strLocation 'Procedurerl~vel variable
strLocation = "Seattl~. Washington"
msgbox strName & " is located in " & strLocation
End Sub

Sub CommandButton2_Click
'Attempt to use variable from the previous procedure
msgbox strLocation
End Sub

When you run this code, clickCommandButton1, and then click Command­
Button2. You will receive a "Variable is undefined"error message from Outlook
because the variable strtLocation is a procedure-level variable, and it is destroyed after
the CommandButtonl_Click procedure is complete.

133

Part II Building Outlook Applications

Data Types in VBScript
If you're a Visual Basic or VBA programmer, you've probably been wondering how
in VBScript you can explicitly declare variables as different data types. Well, the answer
is you can't because VBScript supports only one data type, Variant. The Variant data
type is special in that it can hold many categories of information, such as text, num­
bers, dates, times, floating point numbers, and objects. These categories of the Vari­
ant data type are called subtypes. The Variant data type works in such a way that
VBScript can figure out what subtype to use based on the information-for example,
if you place a number in a VBScript variable, VBScript assumes the subtype should
be numeric and treats it as a number.

By using the built-in conversion functions of VBScript, you can tum any vari­
able into different subtypes. For example, with the CStr function you can convert an
expression into a string. By using the VarType function, you can obtain the current
subtype for a variable.

Working with Objects

134

You work with objects in VBScript in the same way you work with variables except
for one difference: when working with objects, you use the Set statement to set the
variable to point to the object. When you work with variables, you do not use the
Set statement. To illustrate why, consider the previous code example in which you
set the strtName variable to the string Joe User by using the following statement:

strName = "Joe User"

For an object, the syntax would be different. Let's look at an example in which
a hypothetical object named Information has a property named UserName. To ac­
cess this object in VBScript, you first need to set a variable to the object and then
use the dot (.) operator to access the specific object property. You can also use the
dot operator to access a specific method on the object. Following is a code snip­
pet that shows the variable mylnformation being set to the Information object. Using
the mylnformation variable, properties and methods can be accessed with the
dot notation.

'The variable that will hold the Information object
Dim myInformation

'Set a variable to the Information object
Set myInformation = Information
'Initialize the UserName property of the Information object
myInformation.UserName = "Michael Dunn"
'Get the UserName property of the Information object
msgbox "Current User is " & myInformation.UserName
'Call the Print method of the Information object
myInformation.Print

Chapter 5 Programming Outlook with VBScript

EARLY BINDING vs. LATE BINDING IN VBSCRIPT CODE

Binding is a term that describes the association of a variable with an object. In
Visual Basic, there are basically two times in which this binding can occur,com­
pile time and run time. The binding that occurs at compile time is called early
binding. The advantage of early binding is that the compiler can perform some
data-type and function-name checking. Binding at run time, or late binding, has
the advantage of being flexible because the object does not have to be explic­
itly specified at compile time. The disadvantage of late binding, however, is that
it requires additional code, which does make it slower than early binding. Since
all variables in VBScript are declared as Variant data types, you cannot take ad­
vantage of early binding in your code. Instead, VBScript uses late binding.

Constants in VBScript

When using VBScript in Outlook, you sometimes must refer to predefined constants,
such as olMailItem. You can't use the constant by name, but rather you must use the
constant's numeric value. For example, if you wanted to use the constant olMailItem
in your code, you would need to use the value O. VBScript does support user-defined
constants and some intrinsic constants, but if the constants are defined in another file,
you must either use the constant's numeric value or explicitly declare the constants
in your code. You can find a list of all the constants and their values in the Outlook
help file, or look up a particular constant in the Outlook Object Browser. The Out­
look Object Browser is discussed later in this chapter.

Error Handling

The VBScript engine provides very basic error-handling functionality. For example,
if a run-time error occurs, VBScript will display a message and stop execution. You'll
probably want to override the default error handler since it returns messages that are
not properly formatted for the user-they're really more for the developer. To over­
ride the default error handler, you need to follow two steps in your VBScript code.

First you need to tell VBScript how to proceed when an error occurs. By default,
all run-time errors in VBScript are considered fatal errors. This means that an error
message will appear and the script will stop running. To override the built-in error
message in your VBScript code, add the On Error Resume Next statement in each
procedure in which you want custom error handling. This statement informs VBScript
to continue executing beginning at the line follOWing the code that caused the error.

Second, you need to figure out what the error was and what the application
should do about the error. VBScript provides a global object, the Err object, which

135

Part II Building Outlook Applications

has properties you can check to get information about the error. These properties
include a number that identifies the error and descriptive text about the error. Typi­
cally, you would check the error number property to see whether it is a number other
than O. If the properly is 0, no error has occurred. The following code shows how
to check the error number using VBScript:

If Err.Number <> 0 Then
'Put your error-handling code here, and exit the procedure
Exit Sub
End if

VBScript lets you clear the Err object once an error has been raised so that other
error-handling routines in your application do not reprocess the error. VBScript also
automatically clears the Err object for you after it encounters any of the following three
statements: On Error Resume Next, Exit Sub, or Exit Function. The following code
snippet demonstrates how to display more detailed error messages by using the
properties of the Err object:

Dim strMessage
strMessage = "The following errbr " & Err.Description & _
" ha. occurred in the" & Err.Sourc~ & " application. " & _
"The error number was" & Er~.Number & ". " & _
"Please report this error to the help desk."
MsgBox strMessage,16,"Run-time Error U" & Err.Number

In determining what action to take in your error-handling code, you should
consider whether to exit the procedure or just continue executing the code in the
procedure. If the error is nonfatal, display a dialog box to inform the user of the error
and continue executing. If the error is fatal, gracefully exit the procedure and con­
tinue the application if possible.

THE SCRIPT DEBUGGER

136

Using the Microsoft Script Debugger, shown in Figure 5-2, you can debug the VBScript
you add to an Oudook application. You also use this debugger for Microsoft Active
Server Pages, so learn to use it-it will assist you as you develop all your Exchange
Server applications.

To use the Script Debugger, you must first install it. The Script Debugger is part
of the Development Tools component in dudo.ok. You can add this component by
running Add/Remove Programs for Oudook 2000.

The Script Debugger can be launched in tWo ways. The first way is by insert­
ing a Stop statement in your VBScript. When you run your form and the Stop state­
ment is executed, the Script Debugger should automatically be launched. The second
way is to launch it manually from a form that contains VBScript and is in run mode
by chOOSing Tools/Forms and then Script Debugger.

Chapter 5 Programming Outlook with VaSeript

'it selects the na:me of the account. at che top of the
'user's atr.entior. to eh!;l.t field.

-'Get the de:fault. page of the applicat.lon to use it late::"
Set. oDet:8.ultPage = Get Inspector .KodifiedFormPEUJes ("Account Tracking")
Set oN&tmIiiI3paee = Applice.tion.GetNameSpsce("JlAPI")
'Initia,Li~e the ffl!'.b br.ol\U!er control
!U!!!t olle:bBrollrSer - G!!tlnspector.lIod1:UectFoPllPagl!:s("CoraPSDY Tletleite") .Control:l!l C·ol ,,'o, ... ,'.
I Check eo !!lee if the brower was suceesfully cree:t.ed~ if so then
'enable t.he go button for the conq:ra.ny velot!lict!: and the Net.Heetinq opt-ion
it: err. nuni:ll!r - 0 tben

bllebEx:1sts - TJrW!
oDefaultPag'l!.Contro!s("cmdGo", .@nablll!!!d - True
oDefaultPage. Controls C"cmdNet!lell!!!t1ngContact") • Visible - True
oDeta:ultPagt!.Controle ("lblNe'tl!eetingCont.act") .Vte1ble - True
oDetaultpage.Controls ("cmdN'et!eet1n'OfContact") .EDBbled ... True
oDefaul'CPage. Con'Crols t "1blNe'Cl!leet1ngCon'Cac'C") • Enabled" True

end. if
'Get Current Fold,er
set oCurren'CFolder .. .A.p'Plicat1on.1.ct1veExplorer .CurrentFolder
call cmdRefreshContactsLis't_Click
call cmciRefreshTasks Click
'Check to see if any - ueers are assiQ'l1ed to the acCOUb.t t.eam and add 'them to a.s~i"n task

Figure 5-2. The Microsoft Script Debugger.

The following list describes some of the common tasks you will want to per­
form with the Script Debugger:

• Set a breakpoint. To set a breakpoint, insert a Stop statement in your VBScript
code. When this Stop statement is encountered, the Script Debugger should
be automatically launched.

• Control script execution. Once in the Script Debugger, you can control the
execution of the sCript. You can either step through a procedure line by
line or step over procedures. You can also cause the script to continue
executing normally after it has been stopped.

• View and change values at run time. Through the Command window of
the Script Debugger, you can view and change the values for specific vari­
ables in your application. These changes are preserved only in the con­
text of the current sCript. For example, you can print out to the Command
window the value of a variable, such as the Subject property of the cur­
rent item, by using the command? Item.Subject. You can also change the
value by typing in an assignment statement such as Item.Subject "My
Debugged Script". You can execute methods inside of your script by calling
them directly.

• Trace the call stack. The Script Debugger includes all the currently run­
ning procedures in your script. This allows you to see how a particular

137

Part II Building Outlook Applications

procedure was called, which is especially helpful when that procedure is
a part of a nested procedure. (Note that you can view the source of your
script in the Script Debugger, but it's read-only. To make changes to
your script, you need to go back to the Outlook Script Editor.)

WORKING WITH OUTLOOK OBJECTS
There are two distinct object libraries you should know about when creating Out­
look applications: the Microsoft Forms 2.0 object library and the Microsoft Outlook
object library. The Microsoft Forms 2.0 object library contains all the built-in visual
interface controls for Outlook forms (discussed in Chapter 4) including text boxes,
list boxes, and multipage controls. This object library is contained in the file called
Fm20.dll. If you've developed Office applications, you'll be familiar with these con­
trols-they are the same controls that you use to create forms in the other Office
applications.

The second object library you should know about is the Microsoft Outlook object
library. The object library for Outlook 2000 is contained in the file Msoutl9.0Ib. This
file contains the objects that you can use to develop custom Outlook solutions. It is
not necessary to have a reference to either of these two libraries in your Outlook
forms. Outlook automatically references the libraries for you, so you can start tak­
ing advantage of their powerful features.

Getting Help with Outlook Objects

138

You should take a look at some of the documentation provided by Outlook to
help you. For Outlook 2000, a help file is useful when creating applications:
Vbaoutl09.chm. This help file is normally stored in Program Files\Microsoft
Office\Office. (YOll can also find it on the companion CD.) The help file includes
information about the Outlook object library and the Forms object library and is
shown in Figure 5-3.

These help files include not only detailed information about the Outlook ob­
jects and controls in the libraries but also code samples that will help you get started
with the objects. This documentation is a great reference tool to use in conjunction
with this book: the documentation outlines the objects and their properties, meth­
ods, and events, and this book shows you how to implement those objects to create
complete solutions.

To access the Outlook object help file in Outlook, open a form in design mode.
From the Form menu, select View Code. From the Help menu, select Microsoft
Outlook Object Library Help.

The Outlook object library contains many objects. Due to the sheer volume and
functionality of these objects, this chapter will not cover them in detail. Instead, I have

Chapter 5 Programming Outlook with VlSerlpt

included a supplement on the companion CD, named "Programming Outlook and
Exchange Supplement," that discusses many of the Outlook objects and collections
and includes some sample code. The following is a list of the Outlook objects and
collections discussed in this supplement:

• Application object • MAPIFolder object

• Explorer object • Items collection

• Inspector object • PostItem object

• Pages collection • MailItem object

• Page object • ContactItem object

• Controls collection • AppointmentItem object

• Control object • MeetingItem object

• NameSpace object • TaskItem object

• AddressLists collection • Recipients collection

• AddressList object • Recipient object

• AddressEntries collection • UserProperties collection

• AddressEntry object • UserProperty object

• Folders collection • FormDescription object

Figure 5-3. The Outlook help file.

139

Part II BuUding Outlook Applications

The Outlook Object Browser

140

To make it easy for you to find objects in the Outlook object model, Outlook pro­
vides an object browser, which is shown in Figure 5-4. The Outlook Object Browser
lists the available Outlook objects with theirmethods and properties. You can quickly
add these objects to your code by clicking the Insert button. Clicking Object Help
opens the Outlook object library help file.

Figure 5-4. The Outlook Object Browser is accessible from the Script Editor. The object
browser allows you to insert objects into your code as well as get help on all the objects.

While Outlook does provide an object browser for the Outlook object library, it
does not provide an object browser for the Microsoft Forms 2.0 object library. To browse
the objects contained in this library, you need to use the VBA object browser from an­
other product or from within Outlook. Since VBA is integrated into the Office prod­
ucts, you can use the VBA Object Browser. And because the Microsoft Forms 2.0 object
library is shared across the Office products, you do not need to add a reference to this
library in the object browser: the library is added by default to the VBA Object Browser.
The follOwing steps explain how to view the Microsoft Forms 2.0 object library from
within Outlook. The same steps could be used in Microsoft Word 2000 or
Microsoft PowerPoint 2000.

1. From the Tools menu, select Macro and then Visual Basic Editor.

2. From the View menu, select Object Browser. The VBA Object Browser is
displayed.

3. To view the Microsoft Forms 2.0 object library, select MSForms from the
Project/Library drop-down list, as shown in Figure 5-5.

NOTIE If you don't see MSForms in your drop-down list, add it to your references,
as explained in the next step.

Chapter 5 Programming Outlook with VBScript

fmBordersTop
ftnBorder8t1leNons
fmBorderSt,tleSlngle
fmButtonEffBctFlat
ft'n8utton~ctsunken

ftnBuItonstyiePushButton
fmButtonstyieToggle8utton
fmCycleAllForms
fmCyc:leCurrentForm

Figure 5-5. The VBA Object Browser being used from Excel 2000 to view the Microsoft
Forms 2.0 object library.

4. To view other object libraries, such as the Outlook object library, you need
to add a reference to the library: from the Visual Basic Editor Tools menu,
select References. Check the library that you want to add as a reference.
For Outlook, check Microsoft Outlook 9.0 Object Libraryand click OK.

5. From the Project/Library drop-down list, select Outlook to view only the
Outlook object library.

The Outlook Object Hierarchy
Let's look briefly at the Outlook object hierarchy so that you gain a basic understanding
of how these objects can be used. In Chapter 6, we will bring a lot of the concepts
we have learned together by looking at an Account Tracking application.

The Outlook object library is a hierarchy of unique objects, as shown in Figure 5-6.
This hierarchy makes it easier to understand the object library. To create or edit cer­
tain instances of the objects, you need to traverse the hierarchy.

Iri the Outlook object library, user interface objects are separated from data
objects. This allows you to change the controls on your forms without having to
modify the underlying data and gives you great fleXibility in controlling the user
interface presented to your users.

The Outlook object library is also built on the notion of items and collections.
An item is a distinct object, such as the ContactItem object, the TaskItem object, and
the PostItem object. A collection is a group of related objects. For example, the Items
collection is a container for Outlook items.

141

Pari II

142

Applications

In Outlook, you can access the specific items in a collection in two ways. The
first way is to use the Items collection with an index that references the specific item
you want to access. The following code snippet illustrates this approach. It shows
how you can use the Items collection to retrieve the items in your Inbox and display
the message text:

Sub CommandButtonl_Click
'Open the Inbox using the GetDefaultFolder method
Set oInbox = Application.GetNameSpace("MAPI").GetDefaultFolder(6)
Set oItems = oInbox.Items
'Notice how you can get the count
Msgbox "Number of items in your Inbox: " & oItems.Count
For counter = 1 to 3
Msgbox oItems(counter).Subject
Next
End Sub

LEGEND

I Outtook COllection'

I Outlook ObJect
,

I OfflceCollectiro
,

I OfficeObjl!ct
,

I HTh4LObJect
,

Figure 5-6. The Outlook object hierarchy.

The second way you can access specific items in a collection is by using a named
argument. For example, instead of calling the Items collection with an index, you can
just pass in a name that corresponds to the default property for the item and uniquely
identifies the item. For example, the Subject property is the default property for the
MailItem object. Therefore, you can pass in a unique subject name to identify a spe­
cific message. The following code illustrates this:

Chapter 5 Programming Outlook with VBSeript

Sub CommandButtonl_Click
'Open the Inbox using the GetOefaultFolder method
Set oInbox = Application.GetNameSpace("MAPI").GetOefaultFolder(6)
'Point to the Inbox Items collection
Set oItems = oInbox.Items
'Oisplay the body of the message that has the Subject
'My Unique Subject
Msgbox oItems("My Unique Subject") .Body
End Sub

The topmost object in the Oudook object library is the Application object. All
other Oudook objects are created either direcdy from the Application object or from
a child object of the Application object. The Application object provides four key
functions that you can take advantage of in your applications. First, the Application
object provides one-step creation of any of the built-in Outlook types, such as the
Contact, Task, or Message item. Second, the Application object allows you to obtain
the currendy active user interface elements, such as the current Outlook window the
user is displaying and the current Outlook window that contains the folder the user
is viewing. Third, the Application object provides an entry point for you to access
the data that is stored inside of Exchange Server by using the Oudook objects. Fourth,
the Application object, since it is the topmost object, enables you to create or refer­
ence the other Outlook objects in your application. When you write code, you'll find
that you will use the Oudook Application object extensively.

The code you write in Outlook is automatically passed both a precreated Appli­
cation object and an Item object. The Application object corresponds to the currendy
active instance of Oudook, and the Item object corresponds to the currently active
instance of the form. This frees you from having to write code that Creates both of
these objects in your application. In fact, it is strongly recommended that you do not
attempt to use the CreateObject function in Outlook to create another instance of
Oudook. Instead, you should use the Application object that is available in your
VBScript code. G

Since the Application and Item objects are already created for your application,
you can use their methods and properties immediately. For example, you can change
the subject or body of the currendy displayed item without having to search the current
folder for the item, as shown in the following code:

Sub CommandButtonl_Click
Item.Subject = "This is using the built-in Item object"
Item.Body = "This can make writing code easier"
Importance = 2 'High
'Notice how you do not have to include the Item keyword.
'However, it's a good practice to include the explicit Item
'keyword to make your code more readable.
End Sub

143

Part II Building Outlook Applications

NOTE This implicit Item object and its methods and properties correspond to
the type of Outlook item the form is based on. For example, the properties and
methods for an implicit Item in a Contact form are different from those for a
Message form. You need to be aware of this when developing your applications.

As you saw with the Item object, the Application object is also automatically
available to you in your VBScript code. The following code shows you how to use
sorpe of the properties of the built-in Application object. Note that unlike the Item
object, the built-in Application object requires you to explicitly place the word Appli­
cation before any of its methods or properties.

Sub CommandButtonl_Click
Msgbox Application.Version
Application.Quit 'Quits Outlook
End Sub

OUTLOOK EVENTS
Outlook supports 11 events that are called when users of your Outlook applications
try to use some of the built-in capabilities of Outlook. You can write code to handle
these events as well as to disable these events. Let's look at how to add some event­
handling code to your application and review the sequence of the events.

Writing Event Handlers
The Outlook Script Editor makes it easy to add event handlers to your VBScript code.
In the Script Editor, select Event Handler from the Script menu. Select the event you
want to write a handler for, and click Add. Outlook will automatically add a skeleton
function with the correct parameters for you. All you need to do is fill in your specific
code to handle the event. The Script Editor does not, however, provide the option to
add skeleton code to handle the events your controls support. In this case, you will
need to write your event handlers from scratch. In Outlook, the event names are pre­
ceded with the word Item. For example, the open event handler is named Item_Open.

Disabling Events

144

You can prevent events and their default behavior from occurring by setting the func­
tion value, or the name of the event, to False. You can then place your oWn code in­
side the event handler to replace the standard behavior. For example, if you write a
custom Contact form that synchronizes the information with a database, you can dis­
able the Write event when the database is not available. This will prevent Outlook from
saving the item and also prevent the two data sources, Outlook and the database, from
becoming out of sync. The following code sample shows an example of this:

Chapter 5 Programming Outlook with VBScrlpt

Function Item_Write()
'Call the CheckDatabase function
boolIsDnline = CheckDatabase()
if boolIsOnline = False then
'No database. Do not save the item.
Item_Write = False
msgbox "The database is offline"
end if
End Function

Function CheckDatabase
'You would put your database connection code here
CheckDatabase = False
End Function

Sequence of Events
Here is a list of the built-in Outlook events, which are discussed in more detail in
the "Programming Outlook and Exchange Supplement" on the companion CD:

• Item_Close • Item_Read

• Item_CustomAction • Item_Reply

• Item_ CustomPropertyChange • Item_Reply All

• Item_Forward • Item_Send

• Item_Open • Item_Write

• Item_PropertyChange

Outlook also includes another event, named Click, that can be used with your
custom controls. The Click event is the only control event supported in Outlook. The
following list describes the sequence of some of these events when you perform
common Outlook tasks:

• Creating a new item using a form or in-cell editing. When a user attempts
to create a new item in Outlook either by clicking the new mail icon to
open a form or by starting to type information into a new item row in a
view with in-cell editing enabled, Outlook will fire the Item_Open event.

• Sending an item. When a user attempts to send an item in Outlook, the
Item_Send event is fired first followed by the Item_Write event and then
the Item_Close event. If you disable any event in the sequence, the other
events will not fire.

145

Part II Building Outlook Applications

WORKING WITH ITEMS THAT CONTAIN YBSCRIPT

Sometimes you'll want to open your Outlook form without executing the VBScript
code contained in the form. To do this, hold down the Shift key while opening
the form. This method of opening forms is useful while designing your applica­
tions because it prevents VBScript functions from adding undesirable data into
the form.

• Posting an item. When a user attempts to post an item, the Item_Write
event is fired and then the Item_Close event is fired. If you disable any
event in the sequence, the subsequent events will not fire.

• Saving an item. When a user tries to save an item, the Item_Write event
is ftred.

• opening an item. When a user opens an item, the Item_Read event is ftred
followed by the Item_Open event.

• Closing an item. When a user attempts to close an item, the Item_Close
event is fired.

OTHER COMMON TASKS
IN OUTLOOK DEVELOPMENT

After you start to create applications with Outlook, you might think of development
tasks you want to accomplish that are beyond the standard Outlook object library.
This section highlights three common development tasks in Outlook: automating
Office documents, automating Outlook from other applications, and using CDO in
Outlook applications.

Automating Outlook Office Documents

146

In Outlook, you can use Office documents as the basis for your collaborative appli­
cations. For example, you can create an expense report application that uses the
calculation features of Excel while giving users the ability to e-mail and categorize
expense reports using the features of Outlook.

When using Office documents as forms, you can customize your application
in two ways: through VBA in the Office document, or through VBScript in Outlook.
Let's examine both of the ways you can automate an Office document application.

Chapter 5 Programming OUtlook with VISerlpt

Using VBA with an Outlook Office Document
The following example shows you how to add VBA code to an Outlook Office docu­
ment based on Excel 2000.

1. In Outlook, on the File menu, point to New and then select Office Docu­
ment. In the New Office Document dialog box, select Microsoft Excel
Worksheet and click OK.

2. In the displayed Microsoft Outlook dialog box, select either the Post or
the Send option and click OK.

3. From the Tools menu on the Excel form, point to Forms and then select
Design This Form.

4. From the Tools menu, point to Macro and then select Visual Basic Editor.

5. Expand the project explorer, which is on the left, until you locate the
ThisWorkbook object. Double-click on the object to display the code
window.

6. From the Object drop-down list, select Workbook. Excel should automati­
cally place a Workbook_open subroutine in the code window.

7. In the procedure, use the MsgBox function to display some text. For ex-
ample, you could add this:

Private Sub WorkbooLOpen()
Msgbox "This is from Excel"
End Sub

8. Close the Visual Basic Editor.

9. On the Excel form, select Run This Form from the Form menu.

10. In the displayed message box, click Yes to indicate that you trust the
macros in the workbook. After you click Yes, the message box that you
added earlier will be displayed.

Using VBScript with an Outlook Office Document
There might be times when you would rather automate the Office application em­
bedded in the Outlook Office document than create VBA code in the Office docu­
ment. The most common example of this automation strategy is to write VBScript code
that retrieves information from Outlook sources and places it in the Office document.
You would use the GetObject method to get the currently running instance of the
Office application. The next set of steps shows you how to create an Outlook Of­
fice document based on Word 2000 and automatically take the name of a contact and
place it into the Word document.

1. In Outlook, from the File menu, point to New and then select Office
Document. Select Microsoft Word Document, and click OK.

147

Pari II Building Outlook Applications

2. In the displayed Microsoft Outlook dialog box, select either the Post or
the Send option and click OK.

3. From the Tools menu on the Word form, point to Forms and then select
Design This Form.

4. Select View Code from the Form menu.

5. Type the following lines of code into the Script Editor:

Sub I tellLOpen ()
set oWord = GetObject(."Word.Application")
set oNS = Application.GetNameSpace("MAPI")
set oContact = oNS.GetDefaultFolder(10).Items.GetFirst
oWord.Selection.TypeText "Dear" & oContact.Subject
End Sub

6. On the Word form, from the Form menu, select Run This Form. A Word
document will be displayed with the contact name already entered.

Automating Outlook from Other Applications
Since Outlook supports automation, you can access the Outlook objects from other
applications. To access the Outlook objects, you typically set a reference to the Out­
look object library. For example, to add a reference to the Outlook object library in
Visual Basic, select References from the Tools menu. In the References dialog box, check
the Microsoft Outlook 9.0 Object Library option and click OK. The next code sample
shows you how to use Visual Basic to automate Outlook to return the first Calendar
appointment and display it. Notice that the Outlook constant olFolderCalendar can be
used, and it is not necessary to replace it with the actual value as is required in VBScript.

Private Sub Commandl_Click()
Set oOutlook = CreateObject("Outlook.Application")
Set oNS = oOutlook.GetNameSpace("MAPI")
Set oCalendar = oNS.GetDefaultFolder(olFolderCalendar)
Set oItems = oCalendar.ltems
Set oFirst = oItems.GetFirst()
oFirst.Display
End Sub

Using CDO in Outlook

148

As you have seen, Outlook provides an extensive object library with which you can
develop custom applications. However, at times you'll need to extend this environ­
ment by using other object libraries. The object library most commonly used to extend
Outlook applications is Collaboration Data Objects (CDO). CDO provides some func­
tionality for dealing with data stored in Exchange Server beyond that provided by
the Outlook object library.

Chapter 5 Programming Outlook with VBScrlpt

You'll need this additional functionality in the Account Tracking application, which
is discussed in Chapter 6. One requirement for the application is that it keep track of
the internal team assigned to work with a particular account. Keeping track of the team
includes capturing the team's directory and e-mail information so that other internal
users who have questions about the account can send team members e-mail. The easiest
way for users to pick account team members is to display the address book. Outlook
does not support displaying the address book and returning the inqividual that the user
selected, but CDOdoes. To take advantage oftheCDO functionality, the Account
Tracking application is extended to call the specific CDO functions, as shown here:

Sub FindAddress(FieldName, Caption, ButtonText)
On Error Resume Next
Set oCDOS~ssion = application.CreateObject("MAPI.Session")
oCDOSession.Lo~on "","a, False, False, 0
txtCaption = Ca,ption
if not err then
Set orecip = oCDOSession.addressbQok (Nothing, txtCaption, _
True, True, I, ButtonText, ""~ "", 0)
end if
if not err then
item~userproperties.find(FieldName).value = orecip(l).Name
end if

oCDOSession.logoff
oCOOSession = Nothing

End Sub

As you Can see from the preceding code, to take advantage of CDO, you use
the CreateObject method of the Application object. You then pass to this method the
ProgID of CDO, which is MAPI.Session. Next CDO requires that you log on to a
session. Because Outlook already has an active session, the parameters passed to the
CDO Logon method force CDO to u&e the already established Outlook session. From
there, the application uses the cOO AddressBook method to bring up the address book
with a specific caption and buttons, which enables the user of the application to select
a person from the address book. The application then uses the Olltlook object library
to place the selection of the user in a custom Outlook property. The final task the
application performs is to call the L?gojJ method of CDO and set the object reference
to CDO to Nothing. These two steps are important because you do not want stray
objectS left around after your application ends.

As you have seen, you can leverage CDO 4l your Outlook applications. How­
ever, the integration does not stop there-you can also leverage the Outlook library
in your CDO applications using a similar technique. for more iilformationon the fea­
tures of CDO and' how you c~n use them in your Outlook application, see Chapter 12.

149

Chapter 6

Putting It All
Together: The

Account Tracking
Application

This chapter discusses the Account Tracking application, which was constructed based
on the techniques described in Chapters 1 through 5. The application allows you to
track contacts, team members, tasks, and revenue for different company accounts.
The application is included on the book's companion CD.

OVERVIEW OF T"E
ACCOUNT TRACKING APPLICATION

This Account Tracking application uses a customized Post form, a customized Con­
tact form, the standard Task form, a customized Outlook Today page, a customized
folder, and an optional database. To create a new account, the user either installs the

151

Part II Building Outlook Applications

Account Tracking form in a forms library or uses the Create New Account hyperlink
in the customized Outlook Today p~ge. After the account is created, the user can
create new contacts or new tasks for the account. The user can even track internal
team members wl:1o service the account. TJ:1e Account Tracking application also con­
nects to a Microsoft Access database, which enables users to retrieve revenue infor­
mation. The Account Tracking application does not write to the database. By studying
this application, you should learn how to:

• C4stomize a Post form and a Contact form in Microsoft Outlook.

• Use ActiveX controls on an Outlook form.

• Programmatically restrict items by using the Outlook object library.

• Automate other programs from an Outlook form.

• Connect a database to an Outlook form, and use a database as a data
source for Outlook fields.

• Customize the Outlook Today page.

After you review the features of the application, you'll learn how to set it up
and examine the code that drives it.

The Account Tracking Folder

152

The primary way the user interacts with this application is by accessing data through
the Account Tracking folder, so this folder provides a number of views that enable
the user to find desired information quickly. Although users can create their own data
views for the folder, the application does provide some unique views by default. One
view, called the Accounts view, lets a user see all accounts and related contacts and
tasks in a threaded view. All associated tasks and contacts are threaded from the
original form for the account, as shown in Figure 6-1.

Two other views use filters so that the user can quickly find only contacts or
only tasks without looking at the other items in the folder. The Accounts-~olor view
uses conditional formatting features to color-code accounts, contacts, and tasks.

Recall that Outlook supports multiple types of views, such as timeline and card
views, in a Single folder. Our Account Trac~ing folder offers these special types of
views. Figure 6-2 shows the contacts for different accounts in a view named Account
Contacts. This view allows users to print mIt the contacts list so that it's portable­
they can take it with them in paper-based plapners.

Chapter 6 Putting It All Together: The Account Tracking Application

Figure 6-1. The Accounts view in the Account Tracking folder.

Company: City Power and Light
Busines5: 1000 westmare Drive

f'lCew York, NY 10932

Figure 6-2. The. Account Contacts view of the Account Trackingfolder, which shows
only the contacts for the different accounts.

The Account Tracking Form
Users employ the Account Tracking form to create a new item, such as a new account,
a contact, a task, a letter, or a NetMeeting. The form is accessed by double-clicking
on an account or by selecting New Account Info from the Actions menu. Figure 6-3
shows the Account Tracking form. It consists of a customized Post form with mul­
tiple tabs and ActiveX controls.

153

Part II Bulldlll'llg Outlook Applicatioll'lls

154

Every action, such as creating a task or a contact, creates an item in the folder or
launches an external program such as Microsoft Word. Depending on the action in­
voked, a specific Outlook form is displayed. 1bis form is then automatically posted into
the folder as a reply to the original Account Tracking form, which allows the applica­
tion to use the conversation topic and conversation index fields to create threaded views
of the accounts, including their associated contacts and tasks. Figure 6-4 shows the
Account Contact form, which is customized, and Figure 6-5 shows the Account Task
form, which is a standard Outlook Task form.

Figure 6-3. The Account Trackingform.

Figure 6-4. The Account Contact form is a customized version of the Outlook Contact
form.

Chapter 6 Putting It All Together: The Account Tracking Application

Figure 6-5. The Account Taskfonn uses the standard Outlook Taskfonn.

The Account Tracking form includes an ActiveX control-the Microsoft Inter­
net Explorer component-which is embedded on the Company Website tab of the
form. Using this control, the user can browse an account's Web site by entering the
Web site address.in the Company Website text box on the form's Account Info tab,
as WaS shown in Figure 6-3, and then clicking the Go button. This control is auto­
mated by using the Microsoft Visual Basic Scripting Edition (VBScripO coder.

Optionally, the Account Tracking form can connect to a database using Data
Access Objects (DAO) version 3.5. The database can be used to retrieve financial
information for the Revenue tab of the form. If information is pulled from the data­
base, the Revenue tab includes Outlook formula fields that total the actual revenues
and the quota for each product, as shown in Figure 6-6.

If the user has Microsoft Excel 2000 installed, the Account Tracking application
can create reports and charts in Excel. If the user clicks on the Create Sales Charts
link on the Revenue tab, Outlook launches Excel and passes the numbers from the
Revenue tab to the Excel chart, as shown in Figure 6-7. This functionality is accom­
plished by using VBScript in the form.

The final feature of the Account Tracking form is the use of Outlook events,
such as Item_Open and Item_Close, to set up the environment for the user and ensure
that objects needed by the application are availahle. For example, when a user
changes the address of an account using the Account Tracking form, the Item_Close
event detects this and asks whether the user wants to update all the addresses for
all contacts of that account. If the user answers yes, the application finds all the
account contacts and changes the address of each, as long as the original address is
the same as the account address.

155

Part II Building Outlook ApfplllcaltlCllns

156

Figure 6-6. The Revenue tab in the Account Trackingfarm. You can optionally use a
database to populate the fields in this page. Outlook will automatically calculate the
totals for each of the products using Formula fields.

Figure 6-7. The Excel charts are created by clicking on the Create Sales Charts link
on the Revenue tab.

Chapter 6 Putting It All Together: The Account Tracking Application

SETTING UP THE APPLICATION
To install the Account Tracking application, you'll need a machine that has Outlook
2000 and at least one application from Microsoft Office 2000 installed, preferably Excel
2000. You'll also need to have a user account on a Microsoft Exchange Server. Now
let's step through setting up the Account Tracking application.

NOTE Files copied from CDs have their Read-only flags set. When setting up
the applications included with this book, be aware that you might need to clear
these Read-only flags after copying files from the companion CD.

Copying the Account Tracking Folder
First you will need to copy the Account Tracking folder from the . pst file included
on the companion CD to your Public Folders in Exchange. To do this, copy the
ExBook.pst file from the CD to your local hard drive. Clear the Read-only flag for this
file. In Outlook 2000, choose File, point to Open, and then select Personal Folders
File (.pst). In the Open Personal Folders dialog box, locate ExBook.pst on your hard
drive, select it, and click OK. At this point, the file folder named ExBook should be
displayed in your Outlook Folder List. Expand the ExBook file folder to display the
Account Tracking folder. While pressing the Ctr! key, qrag and drop the Account
Tracking folder to the location in the Public Folder tree where you want the folder
to appear. Pressing the Ctrl key will make a copy of the Account Tracking folder.

NOTE If you do not copy the Account Tracking folder from the ExBook.pst file
folder to your Public Folders, the Assign Task To functionality will not work.

Copying the Product Sales Database
Included on the companion CD is a sample Access database named Sales.mdb. The
application can use this sample product sales database to retrieve product sales and
qUdta information for an account previously entered in the database. The default
location for this sales database is in the root of your C: drive, but you can change
this location by modifying some of the VBScript code in the Account Tracking form.
By default, the application does not use the database, but you can change this set­
ting in the VBScript for the form. To configure the Access database, follow these steps:

1. From the companion CD, copy the file named Sales.mdb to your local hard
drive and clear its Read-only flag.

2. In the Outlook Public Folders list, select the Account Tracking folder you
just copied. .

3. Launch the Account Tracking form by selecting New Account Info from
the Actions menu.

157

Pari II Building OUltIO'Ok Applications

4. Select Tools\Forms\Design This Form.

5. From the Form menu, select View Code.

6. If you do want to use the sales database, in the Global Declaration sec­
tion, change the line

bUseOatabase = 0
to

bUseOatabase = 1

If you want to change the location of the database, fmd the Itenc Open
subroutine. Change the parameter in the line

InitializeOatabase "c:\sales.mdb"

to reflect the location of the database. For example, if the database is
located on a file share, you would change the line to

InitializeOatabase "\\fileserver\fileshare\sales.mdb"

NOTE Although an Access database is being used in this sample application,
you could also use a Microsoft SOL Server database.

7. Publish the form to save your changes by opening the Tools menu from
the Account Tracking form, pointing to Forms, and then selecting Publish
Form.

Setting Permissions on the Folder
After configuring the database, you need to set permissions on the folder. For example,
you might want to give all users the ability to submit new items to the folder but give
only the internal sales teams the ability to read and edit items in the folder. You also
might want to create multiple folders for the different internal sales teams so that each
team accesses only its own accounts, contacts, and tasks. To set up permissions for
the application, right-click on the Account Tracking folder in the folder list and se­
lect Properties. Click on the Permissions tab, and then use the menus to set the
permissions for the different users of the application. Consider using distribution lists
to simplify setting permissions for teams of individuals.

TECHNIQUES EMPLOYED BY THE
ACCOUNT TRACKING APPLICATION

158

The Account Tracking application demonstrates many techniques that you can em­
ploy in your Outlook applications. For example, it shows you how to connect data­
bases to Outlook, automate applications from your Outlook application, and use the

Chapter 6 Putting It All Together: The Account Tracking Application

Outlook object library to modify the controls on your form at run time. Let's review
some of the interesting techniques used in the Account Tracking application.

Setting Global Variables

The first technique used by the Account Tracking application is employing global
variables in VBScript to keep objects and variables in memory throughout the life­
time of the application. This technique also uses global variables to set the prefer­
ences for the application, such as whether to use a database for the product sales
information. The following code shows the global variables and global initializations:

'**
'Global Decl arati ons
'**
Dim oRestrictedContactltems
Dim oRestrictedTaskltems
Dim oExcel
Dim oSheet
Dim ComposeMode
Dim bWebExists
Dim oDefaultPage
Dim oWebBrowser
Dim oCurrentFolder
Dim olstAssignTaskName
Dim oNameSpace
Dim oDatabase
Dim oDatabaseEngine
Dim bUseDatabase 'Used to tell the application to use an

'external DB
Dim txtAccountName
Dim txtOriginalStreet, txtOriginalCity, txtOriginalState
Dim txtOriginalPostalCode, txtOriginalCountry
Dim oExcelChart
bUseDatabase = 0 'Tells the application whether to use an Access

'database
'Set this to 1 to use a database, otherwise
'set it to 0.

ComposeMode = True 'Used to determine whether the application is in
'compose or read mode

bWebExists = False 'Used to determine whether the WebBrowser control
'was successfully created

Determining Compose or Read Mode: The Item_Read Event
The Item_Read event is used to determine whether the user is creating a new account
or reading an existing account from the folder. Determining the mode is important
because during compose mode, the code for reading the database and updating the

159

Part II

contact address should not be run. After the mode is determined, the code sets a global
variable, ComposeMode, which is used throughout the application. Because the VBScript
in an Outlook form runs whether an item is being composed or read, you can use the
Read event and global variable approach to identify the application mode and have
your application behave appropriately. The following code shows the Item_Read sub­
routine, which runs only when an item is being read:

'**

'This is the standard Read event for an Outlook form.
'It checks to see whether the user is in read or compose mode
'on the form.
'**
Sub Item_Read

'Check to see if the application is in compose mode
ComposeMode

End Sub
Fal se

Initializing the Application: The Item_Open Event

160

The Item_Open event in the Account Tracking form is used to perform some appli­
cation initialization, in this order:

1. It initializes the global variables used most commonly throughout the
application, including the Page object for the default page of the form and
the NameSpace object in Outlook.

2. It checks whether the WebBrowser control on the Company Website tab
is successfully created. If it is, Item_Open enables a number of controls
on the form by using the Controls collection.

3. It checks whether the user has filled in the internal account team. If so, it
adds these users to the list box on the Account Tasks tab to make it easy
for users to assign tasks to the account team members.

4. It stores the original information for the address of the company. This
information is used later in the Item_Close event.

5. It initializes and opens the database using helper functions in the script.

The entire Item_Open subroutine is shown here:

Chapter 6 Putting It All Together: The Account Tracking Application

"**
'Sub IteTlLOpen

'This is the standard Outlook Open event. This subroutine
'sets some objects for use later in the app. Checks whether
'the WebBrowser control was successfully created and also checks
'to see whether there are names for the account team in the form.
'If the form is in compose mode, the subroutine selects the name of
'the account at the top of the form to draw the user's attention to
'that field.
'**
Sub IteTlLOpen

'Get the default page of the application to use later
Set oDefaultPage = GetInspector.ModifiedFormPages(_

"Account Tracking")
Set oNameSpace = Application.GetNameSpace("MAPI")
'Initialize the WebBrowser control
set oWebBrowser = GetInspector.ModifiedFormPages(_

"Company Website").Controls("oWebBrowser")
'Check to see if the browser was successfully created; if SQ,

'enable the Go button for the company Web site and the
'NetMeeting option
If err.number = 0 Then

bWebExists = True
oDefaultPage.Controls("cmdGo").enabled = True
oDefaultPage.Controls("cmdNetMeetingContact").Visible True
oDefaultPage.Controls("lblNetMeetingContact").Visible True
oDefaultPage.Controls("cmdNetMeetingContact").Enabled True
oDefaultPage.Controls("lblNetMeetingContact").Enabled True

end if
'Get Current Folder
set oCurrentFolder = Application.ActiveExplorer.CurrentFolder
call cmdRefreshContactsList_Click
call cmdRefreshTasks_Click
'Check to see if any users are assigned to the account team and
'add them to assign task list
Set olstAssignTaskName = oDefaultPage.Controls(_

"lstAssignTaskName")
CheckFor "txtAccountSalesRep"
CheckFor "txtAccountSE"
CheckFor "txtAccountConsu1tant"
CheckFor "txtAccountSupportEngineer"
CheckFor "txtAccountExecutive"

(continued)

161

Part II Building Outlook Applications

End

If not(ComposeMode) then
txtOriginalStreet = _

Item.UserProperties.Find("Account Street")
txtOriginalCity = _

Item.UserProperties.Find("Account City")
txtOriginalState = _

Item.UserProperties.Find("Account State")
txtOriginalPostalCode = _

Item.UserProperties.Find("Account Postal Code")
txtOriginalCountry = _

Item.UserProperties.Find("Account Country")
oDefaultPage.Controls("lblDistrict").visible = True
set oDistrict = oDefaultPage.Controls("lstDistrict")
oDistrict.visible = True

end if

If not(ComposeMode) and bUseDatabase then
txtAccountName = item.Subject
'Initialize DB

End

If

End
Sub

InitializeDatabase "c:\sales.mdb"
GetDatabaseInfo "[1998 Actual]", "cur1998ActualProdl", _

"cur1998ActualProd2","cur1998ActualProd3"
GetDatabaseInfo "[1999 Actual]", "cur1999ActualProdl", _

"cur1999ActualProd2","cur1999ActualProd3"
GetDatabaseInfo "[1998 Quota]", "cur1998QuotaProdl", _

"cur1998QuotaProd2","cur1998QuotaProd3"
If

ComposeMode Then
oDefaultPage.txtName.SetFocus
oDefaultPage.txtName.SelStart = 0
oDefaultPage.txtName.SelLength = 11
If

Connecting to the Sales Database:
The GetDatabaselnto Subroutine

162

If you have enabled a database for the sales information, the GetDatabaselnjo sub­
routine is called to retrieve the sales information from the database and place this
information into Outlook fields. This subroutine uses DAO 3.5 to query the data­
base and retrieve the sales information associated with accounts previously entered
in the database. Once this information is placed in the form, Outlook formula fields
determine whether the current sales of the product are exceeding the quota for the

Chapter 6 Putting It All Together: The Account Tracking Application

product. Outlook then displays how much the account team needs to sell to reach
its quota or how much over quota the account team is. The following code shows
the GetDatabaselnjo subroutine:

'**
'Sub GetDatabaseInfo

'This subroutine retrieves the product revenue information
'from the database using the passed-in table name as well as
'field names and the current account name from the open item.
'You can customize this subroutine to meet your specific needs.
'**
Sub GetDatabaseInfo(TableName, FieldNamel, FieldName2, FieldName3)

strSQL = "Select Productl, Product2, Product3 FROM" & _
TableName & " WHERE AccountName = '" & txtAccountName & "';"

Set oRS = oDatabase.OpenRecordset(strSQL)
If Err.Number <> 0 Then

MsgBox Err.Description & Err.Number & Chr(13) & _
"OpenRecordset failed"

Exit Sub
End If
oRS.MoveFirst

Item.UserProperties.Find(FieldNamel).Value oRS.Fields(0)
Item.UserProperties.Find(FieldName2).Value oRS.Fields(l)
Item.UserProperties.Find(FieldName3).Value oRS.Fields(2)

End Sub

Displaying an Address Book
Using COO: The FindAddress Subroutine

Because Outlook does not natively support displaying an address book in its object
library, the application needs to be extended with the CDO library, which will display
address books and return the values selected by the user. To use CDO in the Account
Tracking application, the VBScriptcode in the form has to create a CDO object by using
the CreateObject method of the Outlook Application object. When the object is cre­
ated, a subroutine starts a session using the CDO methods and displays an address book
using the caption and button text, which are passed in as parameters. Then the sub­
routine stores the results selected by the user in a specific Outlook field, which is also
passed in as a parameter. Finally, the subroutine logs out of the CDO session and
destroys the CDO object. Figure 6-8 shows how the address book looks when you click
one of the address book buttons on the Account Team tab.

163

Part II

164

Figure 6-8. Displaying the address book in an Outlook/arm by using CDO.

The following code shows how the address book is displayed using CDO:

'**
'Sub FindAddress

'This subroutine takes the Outlook field that stores
'the returned value and the caption for the dialog box as
'well as the button text for the dialog box, and then it
'displays the AddressBook dialog box by using CDO

'**
Sub FindAddress(FieldName. Caption. ButtonText)

On Error Resume Next
Set oCDOSession = application.CreateObject("MAPI.Session")
oCDOSession.Logon "H. "H. False. False. 0
txtCaption = Caption
If Not err Then

set orecip = oCDOSession.addressbook (Nothing. txtCaption. _
True. True. 1. ButtonText. "H. "H. 0)

End If
If Not err Then

item.userproperties.find(FieldName).value
End If
oCDOSession.logoff
oCDOSession = Nothing

End Sub

orec; p (1) • Name

Chapter 6 Putting It All Together: The Account Tracking Application

Creating Account Contacts:
The cmdAddAccountContact Subroutine

After assigning internal people to the account team, the user can add new account
contacts for the company. The application has a custom action that creates a reply
in the folder by using the custom Account Contact form. Because you are using an
action, the command for the action, Create New Account Contact, will appear on
context menus. For example, if you right-click on an account item in Outlook, Cre­
ate New Account Contact will be one of the choices. Using an action also makes it
easy for Outlook to automatically create a conversation thread for the account con­
tact. Finally, using an action allows the application to attach the original item to the
contact, in this case the account item, as a shortcut without any coding. The
cmdAddAccountContact subroutine, shown in the following code snippet, executes
the custom action by using the Actions collection on the account form. This code is
similar to the cmdAddTasks subroutine, but instead of displaying an Account Con­
tact form it displays an Account Task form for the user to fill in.

'**
'Sub cmdAddAccountContact_Click

'This subroutine creates a new contact and displays
'the form for the. new contact as a modal dialog box
'**
Sub cmdAddAccountContact_Click

Item.Save
Set AccountContactForm = item.Actions(_

"Create New Account Contact").Execute
AccountContactForm.Display(True)
call cmdRefreshContactsLisLClick

End Sub

Refreshing the Contact List Box:
The cmdReireshConfactsList Subroutine

When the form initially opens, or when users add or delete contacts or tasks in the
folder, the ListBox control that contains these items must be refreshed and filled with
the most recent information from the folder. To do this, the application calls sub­
routines that restrict the folder based on the item type and on the account the item
belongs to. The application then programmatically fills the list box with the correct
information for the account. The list box is shown in Figure 6-9.

165

Part II

166

Outlook

Figure 6-9. The Account Contacts list box for the Account Tracking application. It is
dynamically filled in using the contact items contained in the folder.

The following code shows the cmdRefreshContactsList subroutine at work:

'**
'Sub cmdRefreshContactsList_Click

'This subroutine refreshes the list box of contacts by
'applying a restriction on the folder

'**
Sub cmdRefreshContactsList_Click

'Initialize ListBox
set oListBox = oDefaultPage.Controls("lstContacts")
oListBox.Clear
oListBox.ColumnWidths = "0;172;140;80;120"

'Create search criteria
RestrictString
RestrictString = "[Message Class] = " & _

"""IPM.Contact.Account contact"" and [Conversation]
item.ConversationTopic & ""un

Set oRestrictedContactItems = _

oCurrentFolder.Items.Restrict(RestrictString)
For i = 0 to oRestrictedContactItems.Count - 1

oListBox.AddItem

""" & -

oListBox.Column(1,i)
oListBox.Column(2,i)

oRestrictedContactItems(i+1).FullName
oRestrictedContactItems(i+1).JobT1tle

Chapter 6 Putting It All Together: The Account Tracking Application

Next
End Sub

oListBox.Column(3.i)
oRestrictedContactltems(i+1).BusinessTelephoneNumber

oListBox.Column(4.i) = _
oRestrictedContactItems(i+1).Email1Address

Performing Default Contact
Actions: E-Mail, Letters, and NetMeeting

Because users of this application will want to perform many actions for the account
contacts they create, the Account Tracking application provides the most common
actions as default controls on the Account Contacts tab. The user can click the Email
Contact link to e-mail a contact. This action uses the Create/tern method on the
Application object to create an e-mail message, and then uses the name of the se­
lected contact to flll in the address information for the e-mail.

If Word 2000 is installed, the user can also send a letter to the contact by click­
ing the Send Letter To Contact link. This action takes advantage of Outlook by using
the CommandBars collection on Outlook forms to trigger toolbar actions. Then, by
using the FindControl method and the Execute method of the CommandBar object,
the application launches the New Letter To Contact option from the Actions menu
for a contact. This, in turn, launches the Microsoft Word Letter Wizard, which uses
the contact information to automatically populate the address information for the letter.

Finally, the user can start a Microsoft NetMeeting with the contact by clicking the
NetMeeting This Contact link. This action ~ses the WebBrowser control. If the
WebBrowser control is available and the user launches the action, the application uses
VBScript in Outlook to automate the WebBrowser control, which starts NetMeeting and
connects the user to the Account contact using the NetMeeting client.

The following code shows the subroutines that enable the user to send an e-mail
or a letter and to set up a NetMeeting:

'**
'Sub cmdEmailContact_Click

'This subroutine creates an e-mail message for the gelected
'account contact. If there is no selected contact. it displays an error.
'**
Sub cmdEmailContacLClick

Set oListBox = oDefaultPage.Controls("lstContacts")
If oListBox.ListIndex = -1 Then

MsgBox "No selected account contact. Please select one _
48 ... Email Account Contact ..

(continued)

167

Part II

168

uuuoling Outlook

Else
Set oItem = oRestrictedContactltems(oListBox.Listlndex + 1)
'Create an e-mail message
Set oNewMessage = Application.Createltem(0)
oNewMessage.Recipients.Add oItem.Email1Address
oNewMessage.Recipients.ResolveAll
oNewMessage.Display

End If
End Sub

'**
'Sub cmdSendLettertoContact_Click

'The following subroutine uses the commandbars
'property to automate the Contact form in Outlook
'to select the Send Letter To A Contact menu
'command. This in turn launches the Word Letter
'Wizard.
'**
Sub cmdSendLettertoContact_Cllck

Set oListBox = oDefaultPage.ControlS("lstContacts")
If oListBox.Listlndex = -1 Then

Else

~sgBox "No selected account contact. Please select one.", _
48, "Send letter to Account Contact"

Set oltem = oRestrictedContactltems(oListBox.Listlndex + 1)
oltem.Display
oItem.Getlnspector.CommandBars.Findtontrol(,2498).Execute

End If
End Sub

'**
'Sub cmdNetMeetingContact_Click

'This subroutine checks the contact to see if the
'NetMeeting information is filled in and, if so, it
'automates the WebBrowser control to use the NetMeeting
'callto: syntax to start a NetMeeting
'**
Sub cmdNetMeetingContact_Click

Set oListBox = oDefaultPage.Controls("lstContacts")
If oListBox.Listlndex = -1 Then

Else

MsgBox "No selected account contact. Please select one.", _
48, "NetMeeting Account Contact"

Set oItem = oRestrictedContactltems(oListBox.Listlndex + 1)
If oItem.Net~eetingAlias = "" Then

MsgBox "The NetMeeting information is not filled" & _

Chapter 6 Putting It All Together: The Account Tracking Application

" in for this contact.". 48. _
"NetMeeting Account Contact"

Exit Sub
End If
If oItem.NetMeetingServer = "" Then

MsgBox "The NetMeeting information is not filled" & _
" in for this contact.". 48. _
"NetMeeting Account Contact"

Exit Sub
End If
On Error Resume Next
txtNetMeetingAddress = "callto:" & oItem.NetMeetingServer _

& "I" & oItem.NetMeetingAlias
oWebBrowser.Navigate txtNetMeetingAddress
If err.number <> 0 Then

MsgBox "NetMeeting is either not installed or not" & _
" configured correctly.". 48. _
"NetMeeting Account Contact"

Exit Sub
End If

End If
End Sub

Automating Excel: The ·cmdCreateSa'esChart
and cmdPrintAccountSummary Subroutines

If the user has Excel 2000 installed, the Account Tracking application can automate Excel
to create charts, as was shown earlier in Figure 6-7. One way to start the chart crea­
tion process is to click the Create Sales Chart control on the Revenue tab of the appli­
cation. An even easier way to start this process is to use the context menu in the Outlook
window. Depending on the item type, you can right-click on an item and select Cre­
ate Account Sales Charts without opening the item. The application does this through
a custom action. The application captures the ltem_CustomAction event when the user
selects the Create Account Sales Charts action, and it calls its own subroutine to handle
the action rather than displaying a response form. The subroutine then creates sales
charts by using VBScript to automate Excel. (Notice in the Item_CustomAction event
procedure that I also tried to create an action for printing an Excel account summary.
Unfortunately, this action did not work from the context menu.)

'***
'Function Iteffi-CustomAction

'This is the standard CustomAction event for an Outlook form.
'This event is captured so that the Create Account Sales Chart

(continued)

169

Part II

170

Outlook

'as well as the Print Account Summary actions can appear on the menu.
'However, these actions actually call VBScript functions. This
'is why these actions are canceled after the VBScript functions
'automate Excel to create the reports. Otherwise, a reply form
'would appear to the user.
'***
Function Item_CustomAction(ByVal Action, ByVal ResponseItem)

select case Action
case "Create Account Sales Charts"

cmdCreateSalesChart_Click()
'Disable the action so that a response form does not appear
Item_CustomAction = False

case "Print Account Summary"
cmdPrintAccountSummary_Click()
Item_CustomAction = False

end select
end Function

'**
'Sub cmdCreateSalesChart_Click

'This subroutine responds to the Click event of the
'Create Sales Charts control. It automates Excel
'to create both a worksheet and embedded charts on that worksheet.
'You can modify this subroutine to meet your specific needs.
'**
Sub cmdCreateSalesChart_Click

Set oExcel = Item.Application.CreateObject("Excel .Application")
oExcel .Visible = True
oExcel.Workbooks.Add
Set oSheet = oExcel.Workbooks(I).Worksheets("Sheetl")
'Set the title for the worksheet
oSheet. Act i vate
set oSheetTitle = oSheet.Range("Al")

oSheetTitle.Value = item.Subject & " Sales Summary"
oSheetTitle.Font.Bold -1
oSheetTitle.Font.Size
oSheetTitle.Font.Name

18
"Arial"

oExcel .Application.ActiveCell .Offset(2,0).Select
oExcel .Application.ActiveCell .Value = "Revenue Information"
oExcel .Application.ActiveCell .Font.Bold = -1
oExcel .Application.ActiveCell .Font.Name= "Arial"
oExcel.Application.ActiveCell .Font.Size = 11
oExcel .Application.ActiveCell .Font.Underline = 2
oExcel .Application.ActiveCell .Offset(l,0).Select

Chapter 6 PuHing It All Together: The Account Tracking Application

oSheet.Range("A6").Value = "Product 1"
oSheet.Range("A7").Value = "Product 2"
oSheet.Range("A8").Value = "Product 3"

oSheet.Range("B5").Value = "1998 Actual"
oSheet.Range("B6").Value = item.userproperties(_

"curI998ActualProdl")
oSheet.Range("B7").Value = item.userproperties(_

"curI998ActualProd2")
oSheet.Range("B8").Value = item.userproperties(_

"curI998ActualProd3")

oSheet.Range("C5").Value = "1998 Quota"
oSheet.Range("C6").Value = item.userproperties(_

"curI998QuotaProdl")
oSheet.Range("C7").Value = item.userproperties(_

"curI998QuotaProd2")
oSheet.Range("C8").Value = item.userproperties(_

"curI998QuotaProd3")

oSheet.Range("D5").Value = "1999 Actual"
oSheet.Range("D6").Value = item.userproperties(_

"curI999ActualProdl")
oSheet.Range("D7").Value = item.userproperties(_

"curI999ActualProd2")
oSheet.Range("D8").Value = item.userproperties(_

"curI999ActualProd3")

'Create charts
set oChart = oSheet.ChartObjects.Add(250, 20, 200, 200)
oChart.Chart.ChartWizard oSheet.Range(_

"a6:B8"),5"2,I,,,"Actual Product 1998"
set oChart = oSheet.ChartObjects.Add(0, 150, 200. 200)
oChart.Chart.ChartWizard oSheet.Range(_

"a6:A8, D6:D8"),5"2,I,,,"Actual Product 1999"
setoChart = oSheet.ChartObjects.Add(250, 250, 200, 200)
oChart.Chart.ChartWizard oSheet.Range(_

"a6:A8, C6:C8"),5"2,I,,,"Quota Product 1998"
set oChart = oSheet.ChartObjects.Add(500, 20, 200, 200)
oChart.Chart.ChartWizard oSheet.Range(_

"a6:c8">,3"2,I,,,"Quota vs Actual 1998"
oSheet.ChartObjects(4).Chart.ChartType = 54

end Sub

When the user clicks the Print Account Summary control on the Account Track­
ing tab, an account summary is created in Excel. The Excel Account Summary sheet
is shown in Figure 6-10.

171

Part II Building Outlook Applications

172

Figure 6-10. The Excel Account Summary sheet, which is programmatically created
by the Account Tracking application.

The code to create the Account Summary is shown here:

'**
'Sub cmdPrintAccountSummary_Click

'This subroutine calls the helper subroutine to
'print the Account Summary. You can replace the
'helper subroutine without having to replace the controls
'on the form.
'**
Sub cmdPrintAccountSummary_Click()

CreateExcelSheet
End Sub

'**
'Sub ExcelPrintProductRevenue

'This subroutine is a helper subroutine that prints
'the passed-in product name as well as the current
'sales numbers. You can replace this subroutine
'with your own.
'**
Sub ExcelPrintProductRevenue(ByVal txtType, txtProdl, txtProd2, _

txtProd3,curProdl,curProd2,curProd3)
oExcel.Application.ActiveCell.Value = txtType
oExcel .Application.ActiveCell .Font.Italic = -1
oExcel.Application.ActiveCell .Offset(l,l).Value = txtProdl
oExcel.Application.ActiveCell .Offset(l,l).Font.Bold = -1

Chapter 6 Putting It All Together: The Account Tracking Application

oExcel.Application.ActiveCell(2,3).Value = curProdl
oExcel .Application.ActiveCell.Offset(2,1).Value = txtProd2
oExcel .Application.ActiveCell.Offset(2,1).Font.Bold = -1
oExcel .Application.ActiveCell(3,3).Value = curProd2
oExcel .Application.ActiveCell.Offset(3,1).Value = txtProd3
oExcel .Application.ActiveCell.Offset(3,1).Font.Bold = -1
oExcel .Application.ActiveCell(4,3).Value = curProd3

end Sub

'**
'Sub CreateExcelSheet

'ThiS subroutine automates Excel to create an Account
'Summary report. You can replace this subroutine
'with your own.
'**
Sub CreateExcelSheet

Set .0Excel = Item.Application.CreateObject("Excel.Application")
oExcel .Visible = True

oExcel.Workbooks.Add
Set oSheet = oExcel.Workbooks(I).Worksheets("Sheetl")
'Set the title for the worksheet
oSheet. Acti vate
set oSheetTitle = oSheet.Range("Al")

oSheetTitle.Value = item.Subject & " Account Summary"
oSheetTitle.Font.Bold -1
oSheetTitle.Font.Size 18
oSheetTitle.Font.Name "Arial"

'Put in the printout date
oSheet.Range("A3").Value = "Printed on: " & Date
oSheet.Range("A3").Font.Bold -1
oSheet.Range("A3").Font.Name = "Arial"
oSheet.Range("A3").Font.Size = 12
oSheet.Range("A3").Font.Color = RGB(0,0.255)

'Put in the date the item was created
oSheet.Range("A4").Value = "Account created on: " & _

item.CreationTime
oSheet.Range("A4").Font.Bold
oSheet.Range("A4").Font.Name
oSheet.Range("A4").Font.Size
oSheet.Range("A4").Font.Color

-1
"Arial"
12

= RGB(0.0,255)

'Put in the date the item was last modified
oSheet.Range("A5").Value = "Account modified on: " & _

item.LastModificationTime
(continued)

173

Part II Building DII.!!tIOIGk Applications

174

oSheet.Range("AS").Font.Bold -1
oSheet.Range("AS").Font.Name "Arial"
oSheet.Range("AS").Font.Size 12
oSheet.Range("AS").Font.Color = RGB(0.0.2SS)
oSheet.Range("A7").Activate

'Retrieve contact information
oExcel.Application.ActiveCell.Offset(I.0).Select
oExcel .Application.ActiveCell .Value = "Account Contacts"
oExcel .Application.ActiveCell .Font.Bold = -1
oExcel .Application.ActiveCell .Font.Name= "Arial"
oExcel.Application.ActiveCell .Font.Size = 11
oExcel.Application.ActiveCell.Font.Underline = 2
oExcel.Application.ActiveCell.Offset(I.0).Select

'Refresh the contact listbox
cmdRefreshContactsList_Click
'Retrieve the data from the listbox
set oPage = GetInspector.ModifiedFormPages("Account Tracking")
set oListBox = oPage.lstContacts
If oListBox.ListCount > 0 Then

Else

oExcel .Application.ActiveCell.Value = "Contact Name"
oExcel .Application.ActiveCell .Font.Bold = -1
oExcel .Application.ActiveCell .Offset(0.1).Value = _

"Job Title"
oExcel .Application.ActiveCell .Offset(0.1).Font.Bold = -1
oExcel .Application.ActiveCell.Offset(0.2).Value =_

"Business Phone"
oExcel.Application.ActiveCell .Offset(0.2).Font.Bold = -1
oExcel .Application.ActiveCell .Offset(0.3).Value = _

"Email Address"
oExcel .Application.ActiveCell .Offset(0.3).Font.Bold -1
oExcel.Application.ActiveCell.Offset(1.0).Activate
For intLB = 0 to oListBox.ListCount -1

oExcel .Application.ActiveCell .Value = _
oListBox.Column(l.intLB)

oExcel .Application.ActiveCell .Offset(0.1).Value
oListBox.Column(2.intLB)

oExcel.Application.ActiveCell.Offset(0.2).Value
oListBox.Column(3.intLB)

oExcel .Application.ActiveCell .Offset(0.3).Value
oListBox.Column(4.intLB)

oExcel .Application.ActiveCell .Offset(I.0).Activate
Next

oExcel.Application.ActiveCell.Value
"No contacts for this account"

End If

Chapter 6 Putting It All Together: The Account Tracking Application

"Retrieve revenue information
oExcel.Application.ActiveCell.Offset(2,0).Select
oExcel .Application.ActiveCell .Value = "Revenue Information"
oExcel.Application.ActiveCell.Font.Bold = -1
oExcel.Application.ActiveCell.Font.Name= "Arial"
oExcel .Application.ActiveCell .Font.Size = 11
oExcel .Application.ActiveCell.Font.Underline = 2
oExcel.Application.ActiveCell.Offset(I,0).Select
'Retrieve the user properties for the revenue information
set ouserprop = item.userproperties

ExcelPrintProductRevenue "1998 Actual","Productl","Product2", _
"Product3",ouserprop("curI998ActualProdl"), _
ouserprop("curI998ActualProd2"), _
ouserprop("curI998ActualProd3")

oExcel .Application.ActiveCell .Offset(5,0).Select _
ExcelPrintProductRevenue "1999 Actual","Productl","Product2", _
"Product3",ouserprop("curI999ActualProdl"), _
ouserprop("curI999ActualProd2"), _
ouserprop("curI999ActualProd3")

oExcel .Application.ActiveCell .Offset(5,0).Select
ExcelPrintProductRevenue "1998 Ouota","Productl","Product2", _

"Product3",ouserprop("curI9980uotaProdl"), _
ouserprop("curI9980uotaProd2"), _
ouserprop("curI9980uotaProd3")

'Format the output
oSheet.Columns("A:B").EntireColumn.AutoFit
oSheet.Columns("B:B").HorizontalAlignment = -4152
oSheet.Range("Al:Fl").Select
oSheet.Range("Al:F1").HorizontalAlignment=7

End Sub

Unloading the Application: The Item_Close Event
When the user is finished using the application, the Item_Close event for the app1i­
cation is invoked. In the event handler, the application checks to see whether the
user has updated any account address information. If the user has updated informa­
tion, the application prompts the user about whether she wants to update all the
contacts for that specific account in the folder. If the user answers yes, all the accounts
are updated by using the properties of the standard Outlook contact. Figure 6-11
shows the message box that is displayed when the user changes the address in the
Account Tracking form.

175

Part II Building Outlook Applications

176

Figure 6-11. lfthe user wants to change the difault address for each contact, this
message box prompts the user about whether to change the addresses of all associated
contacts for the account.

In the code that follows, notice how the Save method of the account contact is
called only once after all the properties are changed. Outlook automatically parses
the individual address properties such as BusinessAddressStreet, BusinessAddressCity,
and BusinessAddressPostalCode to create the overall BusinessAddress property. If the
code saved the item after making a change in each property, Outlook would auto­
matically overwrite the previous changes when it parsed the individual properties to
create the BusinessAddress property. Instead a temporary variable, boolSaveItem, is
used to notify the code at the end of the If statements about whether the contact items
that are being modified need to be saved or not. The Item_Close event handler also
contains the code to destroy any database objects used in the application so that they
are not left in memory after the application closes. The following code shows the
Item_Close event procedure:

'**
'Function Ite~Close

'This function fires on the standard Outlook close
'event and prompts the user about whether to update
'all contacts for the company if the user changed the
'master address for the company. This routine will
'update only the contacts that have the same text in
'the address fields as the original since users can
'change the address fields to reflect different
'locations or addresses for customers. This function
'also cleans up any open database objects that are left.
'**
Function Item_Close()

boolSomethingDirty = 0 'False
If not(ComposeMode) then

'Divided into multiple ifs to pinpoint changed property on
'exit for faster performance when updating
If oDefaultPage.Controls("txtStreet").Value <>
txtOriginalStreet then

boolStreetIsDirty = 1
boolSomethingDirty = 1

Chapter 6 Putting It All Together: The Account Tracking Application

End if
if oDefaultPage.Controls("txtCity").Value <> _

txtOriginalCity then
boolCityIsDirty = 1
boolSomethingDirty = 1

End if
if oDefaultPage.Controls("txtState").Value <> _

txtOriginalState then
boolStateIsDirty = 1
boolSomethingDirty = 1

End if
if oDefaultPage.Controls("txtPostalCode").Value <> _

txtOriginalPostalCode then
boolPostalCodeIsDirty = 1
boolSomethingDirty = 1

End if
if oDefaultPage.Controls("lstCountry").Value <> _

txtOriginalCountry then
boolCountryIsDirty=l
boolSomethingDirty = 1

End if
If boolSomethingDirty then

'Make sure the user wants to update all the
'contact addresses
intResponse = msgbox("The account address" & _

"information has changed. Outlook can update" & _
"all the contacts for this account with" & _
"the new address information automatically. " & _
"However, if there are any changes to the" & _
"address information in the contact that do " & _
"not match the original address for the" & _
"account, Outlook will skip these messages. Do " & _
"you want Outlook to update your accounts now?", _
292, "Update Account Contacts")

if intResponse = 6 then 'Yes
for counter = 1 to oRestrictedContactItems.Count

boolSaveItem = 0
set oltem = _

oRestr1ctedContactItems.Item(counter)
if boolStreetIsDirty then

if oItem.BusinessAddressStreet
txtOriginalStreet then
oItem.BusinessAddressStreet
oDefaultPage.Controls("txtStreet").Value
boolSaveltem = 1

end if
end if

(continued)

177

Part II Building Outlook Applications

178

if boolCityIsDirty then
if oItem.BusinessAddressCity

txtOriginalCity then
oItem.BusinessAddressCity
oDefaultPage.Controls("txtCity").Value
boolSaveltem = 1

end if
end if
if boolStateIsDirty then

if oItem.BusinessAddressState = ~
txtOriginalState then
oItem.BusinessAddressState = _
oDefaultPage.Controls("txtState").Value

end if
end if

boolSaveltem = 1

if boolPostalCodeIsDirty then
if oItem.BusinessAddressPostalCode = _

txtOriginalPostalCode then
oItem.BusinessAddressPostalCode

oDefaultPage.Controls(_
"txtPostalCode").Value
boolSaveltem = 1

end if
end if
if boolCountryIsDirty then

if oItem.BusinessAddressCountry
txtOriginalCountry then
oItem.BusinessAddressCountry = _
oDefaultPage.Controls("lstCountry").Value
boolSaveltem = 1

end if
end if
If boolSaveltem then

'Make sure address information is only
'parsed once by Outlook
oItem.Save

end if
next

end if
end if

end if
'Close the database if enabled
if ComposeMode=False and bUseDatabase then

oDatabase.Close
set oDatabaseEngine Nothing

end if
End Function

Chapter 6 Putting It All Together: The Account Tracking Application

OUTLOOK TODAY AND THE
ACCOUNT TRACKING APPLICATION

Users have a secondary way to interact with the Account Tracking application­
through a customized Outlook Today page. Outlook Today is discussed more in
Chapter 7, but here is an overview. Microsoft Outlook 2000 includes a feature that
takes advantage of the HTML support in Outlook. This feature, Outlook Today, al­
lows users to view all their information in one HTML window rather than as sepa­
rate modules. You can customize Outlook Today's HTML code so that you can provide
your Outlook or intranet information in a single window view as well.

When customized for the Account Tracking application, Outlook Today allows
users to quickly create new accounts; find account contacts; and open the Account
Tracking folder to see how many accounts, tasks, and contacts are contained there.
The customized Outlook Today page is shown in Figure 6-12.

Create New Items
Oeate New AttWlt I Mall I Appt I COlQct I Task

• Calendar $ Mail
Drab; 2ur1bishecl
Irbox 1unrMCI

Acrount_
3.",,,,, ..
3Conto'"
6T_

Figure 6-12. The customized Outlook Today page in the Account Tracking applica­
tion. Nottce how users can quickly create or find information pertaining to their
accounts right from this page.

Viewing the Customized Outlook Today Page

The customized Outlook Today page for the Account Tracking application shows you
how you can use your VBScript and Outlook object library skills in another medium,
HTML. The code in the customized Outlook Today page uses the Outlook object
library to count the number of items in the account folder as well as search the folder
for specific account contacts. The code on the following page is taken from the
Account.htm file, which is the Outlook Today page customized for the Account Track­
ing application.

179

Part II Building Outlook Applications

180

<script language="VBScript">

'**
'In-line code

'These lines of code are run when the browser reaches
'them while parsing the document. They set up the global
'variables that are needed throughout the application.
'**
Set oApplication = window.external .OutlookApplication
Set oNS = oApplication.GetNameSpace("MAPI")

'Change this to your location for the Account Tracking Folder
set oAccountFolder = oNS.Folders("ExBook").Folders("Account Tracking")

'**
'Sub FindAccountContact

'This subroutine takes the name of the contact that the
'user types into the Outlook Today page and searches the
'contact folder for the contact. If the contact is
'found. it displays the contact. If the contact is not
'found. it displays a message box.
'**
Sub FindAccountContact(ContactName)

if ContactName <> "" then
boolFound = 0
RestrictString = ""
RestrictString = "[Message Class] = "

"""IPM.Contact.Account contact"""
Set oContacts = _

oAccountFolder.Items.Restrict(RestrictString)
for i = 1 to oContacts.Count

set oContact = oContacts.Item(i)
if oContact.FullName = ContactName then

oContact.Display()
boolFound = 1
exit for

end if
next
if boolFound = 0 then

msgbox "No contact by that name was found" •• _
"Find Account Contact"

end if
end if

End Sub

Chapter 6 PuHlng I~ All Togethe,: The Account Tracking Application

'**
'Sub CreateAccount

'This subroutine creates a new Account info form and
'displays it for the user to fill in
'**
Sub CreateAccount()

set oAccount = oAccountFolder.Items.Add("IPM.Post.Account info")
oAccount.Oisplay()

End Sub

'**
'Sub OisplayAccountFolder

'This subroutine finds and displays the Account Tracking
'folder in a separate Outlook window. The reason for this
'is to create a new Explorer object separate from the
'current Explorer object in Outlook Today.
'********************.*********************************
Sub OisplayAccountFolder()

'Change thls location to your folder location
set oFoldef = oNS.Folders(~ExBook").Folders("Account Tracking")
pFolder.Oisplay()

End Sub

'****'*****.*************************************'*****
'Sub ~etAccountFolderCounts

'T~is subroutine calculates how many accounts. contacts.
'and tasks are in the Acc6unt Tracking fold,r and
'displays this information'
'***************************.**.*******************.***
Sub GetAccountFolderCounts()

RestrictString ~ ""
RestrictString = "[Message Class] = ""JPM.Post.Account info"""
Set o~ccounts = oAccountFplder.Items.~estrict(RestrictStr1ng)
oAcctCount ~ pAccounts.Count .
AccountCount.innerHTML =' oAcctCoMnt & ~ Accounts"

RestrictString = ""
R~strictStrih9 = "[Message Class] = " _

"""IPM.Cpntact.Account contact"""
Set oContacts = oAccountFolder.Items.Restrict(RestrictString)
oContactCount = oContacts.CoUnt·· .
Cont~ct~ount~innerHTML = oContactCount l " Contacts"

(continued)

181

Part II Outlook Applications

RestrictString = ""
RestrictString = "[Message Class] = ""IPM.Task"""
Set oTasks = oAccountFolder.Items.Restrict(RestrictString)
oTasksCount = oTasks.Count
TaskCount.innerHTML = oTasksCount & " Tasks"

end Sub
</script>

Setting Up the Customized Outlook Today Page

182

You need to modify the Outlook Today page so that it knows the location of the
Account Tracking folder and also modify your Registry to point Outlook at the cus­
tomized Outlook Today page. If you want to deploy the customized Outlook Today
page to users in your organization, consider writing a simple Microsoft Visual Basic
program that modifies their Registries and points them to a Web server containing the
customized Outlook Today page. If you have not deployed Outlook to your organiza­
tion yet, you can visit the site http://www.microsoft.comiolficelfeatureslofc200Otour to
see the demo showing how to set the default location for the Outlook Today page.

The following steps show you how to modify the Outlook Today page and your
Registry for the Account Tracking application:

1. On the companion CD, open the file named Account.htm in a text editor
such as Notepad.

2. Change the line

set oAccountFolder = oNS.Folders("ExBook").Folders(_
"Account Tracking")

so that it reflects the location of the Account Tracking folder. For example,
if you copied the Account Tracking folder into the main tree of your Public
Folder hierarchy, the code would look like this:

set oAccountFolder = oNS.Folders("Public Folders").Folders(_
"All Public Folders").Folders("Account Tracking")

3. Modify the following line so that it reflects the location where you cop­
ied the Account Tracking folder:

set oFolder = oNS.Folders("ExBook").Folders(" _
Account Tracking")

4. Save the file to your hard drive to keep your changes.

NOTE The general instructions for modifying the Registry are given here, but
for detailed instructions, follow steps described on page 190 in Chapter 7, in the
section titled "Modifying the Registry." When the procedure asks you for the URL,
specify the location where you saved the Account.htm file.

Chapter 6 Putting It All Together: The Account Tracking Application

To modify the Registry for the customized Outlook Today page, add the follow- '
ing key to the Registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Outlook\Today

Add a new string value to the Today key named UrI. For its value data, type
the path to the Account.htm. For example, me:! Ie: \Account.htm. When fInished, click
the Outlook Today icon in Outlook to display your customized Outlook Today page.

183

Chapter 7

Outlook
and the Web

This chapter looks at how Microsoft Outlook ties into the World Wide Web and is
broken into five main sections: Outlook Today, Active Server Pages (ASP), Outlook
Web Access (OWA) , Windows 2000 and lIS 5.0, and the Outlook HTML Form Con­
verter. We start by examining Outlook Today, which is an HTML feature introduced
in Outlook 2000. Then we'll cover the basics of ASP-the foundation for Outlook and
the Web. We'll move on to an overview of installing and configuring OWA. OWA tech­
nology is based on Active Server Pages and Microsoft Collaboration Data Objects
(CDO), and it's used to access information on Microsoft Exchange Server and Microsoft
Internet Information Services (lIS). We'll finish with a discussion of the Outlook HTML
Form Converter. The Form Converter is a tool to help you convert your Outlook forms
into a Web-based format that integrates OWA.

OUTLOOK TODAY
As you learned at the end of Chapter 6, Outlook 98 and Outlook 2000 include a fea­
ture that takes advantage of the HTML support in Outlook-Outlook Today. Outlook
Today allows users to view information in an HTML window, as shown in Figure 7-1,
rather than as separate modules. You can also customize Outlook Today's HTML code.
For example, a customized Outlook Today page might include hyperlinks to Public
Folder favorites, intranet sites, or Internet sites. You can even link to other applica­
tions, such as a Web-based Microsoft SQL Server application. You can also create

185

ParI II , Outlook

multiple Outlook Today pages for the different types of users of your application.
Let's take a look at how the Outlook Today page functions and how you modify the
Outlook Today page for your specific application needs.

Figure 7-1. Outlook Today is an HTMLfeature that was added in Outlook 98. Users
can see different types of information in a Single window.

Outlook Today Technologies

186

The standard Outlook Today page takes advantage of a feature in Microsoft Internet
Explorer called data binding. Data binding allows Outlook to quickly display the user
interface for the Outlook Today page while asynchronously downloading data from
the Exchange server (that is, the computer running Exchange Server) to the Outlook
client. Once the data is downloaded, Outlook can modify the data without making
additional trips to the server. On the default Outlook Today page, there are three
separate data binding tables, one each for your Calendar, Tasks, and Mail. To modify
the location of these tables or to add new functionality to the Outlook Today page,
you need to know how to modify HTML. Since Outlook Today leverages Internet
Explorer, you can even use Dynamic HTML (DHTML) in your customization. How­
ever, remember these limitations when customizing the Outlook Today page:

Chapter 7 Outlook and the Web

• Modifying the page might slow performance because Outlook has to
retrieve information from other data sources. Try not to build complex
applications in the Outlook Today window; instead, build either an Out­
look fonn or a standard HTML application, and then add the HTML appli­
cation to Outlook Web Access.

• Although you can add external links to Internet sites on your Outlook
Today page, Outlook Today will not verify the security of the site. To use
the security capabilities you have in your browser, add a link in Outlook
Today that launches a separate browser, such as Internet Explorer, to
render the page. If you are sure of the content that you are linking to, you
do not have to browse the link in a separate browser.

• You cannot add the Outlook Today page as an Active Desktop item.
Currently, the Outlook Today functionality works only when hosted in the
Outlook window. '

NOTE The standard Outlook Today pages are hosted in a resource dynamic
link library (DLL), which improves the performance of the Outlook Today appli­
cation. When modifying your Outlook Today pages, you have the option to place
your custom HTML pages and images in aresourc.e DLL. However, this book
covers only customizing Outlook Today and saving these customizations as
HTML files. To learn how to compile your files into a resource DLL for Outlook
Today, visit http://www.microsoft.com/office/orki.

Outlook Today in Outlook 2000
There are some differences between the Outlook Today page in Outlook 2000 and
the Outlook Today page in previous versions of Outlook. In this section, we'll look
at the most significant changes made to Outlook Today in Outlook 2000.

User Interface Changes
One of the major differences in the new version of Outlook Today is the user inter­
face. In Outlook 2000, the ability to change both the folders that are listed and the
style of the Outlook Today page is integrated directly into the user interface. Figure
7-2 shows the new interface for the Outlook Today page, and Figure 7-3 shows the
Customize Outlook Today page.

187

Part II

188

Outlook

Figure 7-2. The new interface for Outlook Today in Outlook 2000.

show this number of days in my calendar I5ili

In my t<lsk list, show me: r. All tasks
('. Today's tasks

~ Include tasks with no due date

===-'iiI'" ,"'" by, ic","e) iii
Ascending
Descending

Figure 7-3. The customization page for Outlook Today in Outlook 2000.

Security Changes
The new Outlook Today page has two security changes from previous versions. First,
browsing security is disabled for the default Outlook Today page. When the user clicks
on links or navigates to other pages, the browser turns on security for those pages.
Therefore, you need to make sure that the controls or scripts you use in your default

Chapter 7 Outlook and the Web

Outlook Today page are secure. However, you also need to make sure any links to
which the user tries to navigate are not affected by the browser security being on.

Second, if the default page is a frameset, browser security is disabled when the
parent frame is the page displayed in Outlook Today. This means security will not
be enabled when a user makes any changes to or performs any navigation in child
frames. Security will be enabled only when the user changes the parent frame to
navigate to a different location. For this reason, you should force the links in the child
frames of a frameset to open in the parent frame.

Browser Issues
Since the new version of Outlook Today implements a subset of Internet Explorer
technology, there are two browser issues that you should be aware of. First, the
frameset or Iframe HTML elements might not work as you expect. For example, when
you set the target to be a blank frame, the new window will open in Outlook rather
than in a separate Web browser. Second, you might find that HTML forms or tabular
data controls do not work correctly.

To remedy these problems, you will have to modify Outlook Today to use a
full version ofInternet Explorer. Note that when you make this change you will lose
the performance enhancements of Outlook Today, such as the <RENSTATICTABLE>
elements. To modify Outlook Today to use the full Internet Explorer version, add two
settings to the registry in the following location:

[HKEY_CURRENT_USER\Software\Policies\Microsoft\Office\9.0\Outlook\Webview\mailboxJ
"url"="http://YOURLOCATION/default.htm"
"navigation"="yes"

You also can make this change programmatically on a folder-by-folder basis by
setting the WebViewAllowNavigation property to True on the MAPIFoider object that
represents the folder. By default, folder home pages, which you'll learn about later
in the chapter, use the full version of Internet Explorer to display content.

Customizing Outlook Today
Customizing the Outlook Today page and saving the result as an HTML file involves
a few steps, which are outlined in the following sections.

Retrieving the Outlook Today Source
To view the source of an HTML page in Internet Explorer, you can right-click on the
page and select View Source from the context menu. If you right-click on the Out­
look Today page to view the source of the HTMLpage, however, you will notice that
the View Source option is not available-Outlook disables this option. To retrieve
the HTML source for the Outlook Today page, you can use Internet Explorer. Fol­
low the steps listed on the following page.

189

Part II Building Outlook Applications

190

1. Start Internet Explorer. In the address box, type the following URL, ad­
justing the path as necessary:

res:! Ie: \Program FilesWicrosoft Office\Office\l 033\Outlwvw. dill
Outlook.htm

NOTE The 1033 in the path above specifies the locale for your language. If
you are using a version of Microsoft Office with a language other than English,
you'll need to change the 1033 to the correct value for your language.

2. After you press Enter, you will get a script error. Select No to decline
continuing running scripts and debugging the current page.

3. From the View menu, select Source to display the source in Notepad.

4. From the File menu in Notepad, select Save As and save the file to your
hard disk as Outlookhtm.

5. Perform a search in Notepad for the three instances of display.·none, and
replace them with display:.

Modifying the Registry
You need to modify your registry settings so that Outlook knows you want Outlook
Today to point to a new file. You could write a program that performs this step for
your customers:

1. Start the Registry Editor (Regedit.exe).

2. Find the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Outlook\Today

If the Today key does not exist, create it. Right-click on the Outlook key,
point to New, and select Key. Type Today for the name of the key.

3. Add a new string value to the Today key by right-clicking on the Today key,
pointing to New, and selecting String Value. Type Uri for the value name.

4. Double-click on the URL string icon to edit it. For its value data, type the
path to the Outlookhtm file that you saved previously. For example,
file://C:\Outlookhtm. When finished, click OK

Customi~ing the HTML File
The final step is to customize the IITML file. The easiest way to do this is by using
a text editor, because the HTML code in the page contains special formatting that will
make the file appear incorrectly in Microsoft FrontPage. Let's review some of the ways
you can customize the Outlook Today HTML page.

Changing fonts
Since Outlook Today uses cascading style sheets, you can easily change fonts and
styles by modifying the style sheet. For example, you could change the font for

Chapter 7 Outlook and the Web

important items by changing the .itemlmportant {c%r:red} line in the style sheet to
the desired font and color.

Adding text, images, and hyp.rlinks
Using HTML, you can add new text, images, or hyperlinks to your Outlook Today
page. Remember that if you link to an external Web site, Outlook will not implement
the security that you set in your standard Web browser. So use the following code
when placing external links in the Outlook Today page:

<a style="cursor:hand"" class="itemNormal"" onclick=
"window.openC.http://www.microsoft.com/exchange/ ••• _blank');")
Exchange web site</a)

Adding components
Since Outlook Today uses Internet Explorer, you can place any components on your
page as long as Internet Explorer supports them. These components can include
ActiveX controls as well as Java applets. However, make sure you trust the
source of the component because Outlook does not check the component's
security credentials.

Adding script
Outlook Today supports both JScript as well as Microsoft Visual Basic Scripting
Edition (VBScript). From script, you can access the Outlook object library and use
its functions in your Outlook Today page. You can see an example of a customized
Outlook Today page for the Account Tracking application in Chapter 6.

Using the Outlook Databinding controls
The Databinding controls provided in Outlook can quickly bind and display infor­
mation contained in Outlook folders. The Databinding control places the informa­
tion dynamically bound from Outlook data into the sections of the Outlook Today HTML
pag~, designated by the RENSTATICTABLE elements. You can point these controls at
public folders rather than at default folders such as Calendar or Tasks. We'll look at the
Databinding control in detail in Chapter 11, when we discuss the Digital Dashboard.

ACTIVE SERVER PAGES
In this section, we'll explore Active Server Pages technology. You should know about
ASP for several reasons. First, the Outlook HTML,Form Converter, a conversion tool
that. migrates Outlook forms to HTML forms, utilizes this technology. We'll examine
the converter later in this chapter. Second, ASP is used in other areas, including
Collaboration Data Objects (CDO) and Active Directory Services Interfaces (ADSI).
We look more closely at CDO in Chapter 12 and ADSI in Chapter 15 ..

191

Part II Bunding Outlook Applications

ASP Fundamentals

192

Active Server Pages are standard text files that contain HTML and script. The script
can be written using any ActiveX scripting language, such as VBScript or JScript. The
HTML files that most Web developers write differ from ASP files in two significant
ways. First, instead of having an .htm or .html file extension, ASP files have an .asp
file extension. When you install lIS, as a part of your installation you also install an
Internet Server Application Programming Interface (ISAPI) component that processes
all files with an .asp extension. This {SAPI component parses the ASP file and executes
the appropriate script. Second, the actual script is processed on the Web server. The
processed results can include client-side scripting code but for the most part is just
simple HMTL. Returning only HTML has two benefits: any modern Web browser can
view the results of an ASP application and the additional capabilities of the browser
is less of an issue.

Since Active Server Pages supports VBScript, you can easily move from devel­
oping Outlook forms to developing ASP pages. The only difference in the develop­
ment process is that you should use the CDO library to write your Active Server Pages
application rather than the Outlook object library, because CDO was designed to be
multiuser and server-based.

The following code is an example of an ASP application. This example uses the
VBScript function Now to print the date and time that the ASP application ran on the
Web server.

<%@ LANGUAGE="VBSCRIPT"%>
<!DOCTYPE HTML PUBLIC -IIIETFIIDTD HTMLIIEN">

<HTML>
<HEAD><TITLE>ASP Example</TITLE></HEAD>
<BODY>
<HI>I was created on <%=Now()%></HI>
</BODY>
</HTML>

As you can see, the syntax of the ASP script is a little bit different from the syn­
tax for Outlook code. To tell the Web server that you want to run a script on the ser­
ver, you must enclose it in special characters: <% and %>. Active Server Pages supports
placing your script directly in your illML code-the script does not have to be in a
separate section of the HTML file.

Take a look at the first line of the code:

<%@ LANGUAGE="VBSCRIPT"%>

ASP assumes that the default language for server-side script is VBScript. If you
replace VBSCRIPT with JSCRIPT, you can write server-side JScript code.

Chapter 7 Outlook and the Web

NOTE You can specify the default ASP language for an application in the
Management Console for liS. Open the Properties window for an application, and
in the Applications Settings area, click the Configuration button. On theApp Options
tab, type the desired default language in the Default ASP Language text box.

You might be wondering what the <%=NowO%> code does in this example.
The equal sign (=) indicates that the code should evaluate the expression, which in
this case returns the current date and time. As you will see, the equal sign in ASP is
a shortcut for calling the Write method of the Response object.

Global.asa
If you've viewed the actual directories that contain .asp files, you might have noticed
a certain file with the .asa extension: Global.asa. This is a special file in ASP applica­
tions that allows you to include global code that executes when an application starts
and ends and also when a session starts and ends. One thing to remember is that the
Global.asa is an optional file for your Web applications. A skeleton Global.asa file is
shown here:

(SCRIPT LANGUAGE="VBSCRIPT" RUNAT="Server")
Sub Session_OnStart

'Put your session startup code here
End Sub
Sub Session_OnEnd

'Put your session termination code here
End Sub
Sub Application_OnStart

'Put your application startup code here
End Sub
Sub Application_OnEnd

'Put your application termination code here
End Sub

(/SCRIPT>

The Global.asa file contains stubs for your session and application start and end
subroutines. To understand when these subroutines are called, you must understand
what exactly constitutes a session and an application inside ASP.

Normally when you browse Web pages, the Web server does not remember who
you are or where you have been, and it does not store any values associated with
you. One of the features of ASP is that it transforms the applications you can build
on the http protocol from being stateless to being able to track the state of users. This
ultimately lets you create global variables that are maintained for users throughout
an application.

An ASP application consists of a virtual directory and associated files. But to
understand when an ASP application starts and ends, you'll need a little bit more

193

Pari II Building Outlook Applications

194

explanation of how ASP works. For your Application_ OnStart subroutine to be called,
the first user must request an .asp file from the virtual directory of your ASP applica­
tion. The user can request an HTML file or other types of files from that directory.
However, these requests will not cause the Application_OnStart subroutine to be
called. The user must explicitly request an ASP file. This is the only time this sub­
routine will be called, unless you restart the application. Restarting the application
usually consists of restarting the Web service.

You should use the Application_OnStart subroutine to initialize global variables
across the lifetime of the Web application. A good example of a variable to initial­
ize or set in your Application_OnStart subroutine is one that counts the number of
users who have used your application. To improve performance, for every user in
your ASP application, you should initialize in the Application_OnStart subroutine any
server components that you will use. Figure 7-4 illustrates a Web browser sending a
request to an ASP application for the first time.

ASP file request

Web Client Internet
Information

Services

, Application_OnStart
(fires on first ASP file request)

, Session_OnStart

Figure 7-4. When the first user of an application requests an . asp file, the
Application_OnStart event isfired and then the Session_OnStart event fires.

When the user who first requested the ASP page also browses an .asp file in
your application, the Session_OnStart event is called. Unlike the Application_OnStart
event, the Session_OnStart event is called for any user who makes an application file
request. With ASP, each user of your application is considered to have a distinct session
with the Web server. As a user browses Web pages in your ASP application, ASP
implements and maintains state in a session by using cookies-whenever a user
connects to your application, a file containing information (a cookie) is saved on the
user's machine. When his session ends and he closes his Web browser, the cookie is
removed and the session is invalidated. If he reconnected to your application, his
machine would receive a new cookie and a new session would be started. For this
reason, the users of your application must support and accept cookies; otherwise,
your ASP applications will not fully function. You can still use the server-side script
of ASP, but you cannot maintain state information for any of your users.

The Session_OnStart event is best used to initialize session variables for indi­
vidual users. Session scope variables include a connection to Exchange Server for an
individual user and personalized information that a user has set in your application-

Chapter 7 Outlook and the Web

for example, a user could specify a background color for Web pages that is stored
in a session variable. Then, each page the user accesses from your site during a session
could be displayed in her personalized background color. Figure 7-5 shows each Web
browser starting a new session when accessing an ASP application.

~~ CI) , Session_ OnStart

, Session_OnStart

Web Client Internet , Session_OnStart
Information (fires three times,

Services once for each user)

Web Client

Figure 7-5~ Whenever a new user accesses your ASP application, the Session_OnStart
event fires. Application_ OnStart fires only when the first user accesses your application.

The Session_OnEnd event is called when the session with the Web server ends.
This end state can be reached in two ways:

• When the user has not requested or refreshed a Web page in the appli­
cation for a specified amount of time

• By explicitly calling the Abandon method on the Session object

By default, lIS sets the timeout interval at 20 minutes. You can change !his in­
terval either through the administration program for lIS or by setting the TimeOut
property on the intrinsic Session object in ASP. For example, to set a particular script
timeout to 10 minutes, you would write the following code in your ASP application:

<% SessiOn.TimeOut =10 %>

The second way to reach the end state-by explicitly calling the Abandon
method on the Session object-immediately ends the session and calls the
Session_OnEnd event.

195

Part II Building Outlook Applications

NOTE Applications discussed in later chapters (COO Helpdesk, Event Script­
ing Expense Report, Routing Objects Expense Report) provide a logout menu
option. This option calls another ASP file, which calls the Abandon method on
the Session object to end the session.

One final note about sessions: you have to be careful when you redirect people
to other virtual directories in your application. Developers, including me, commonly
make the mistake of redirecting users to another virtual root and forget that this is
considered by ASP to be an application. When you do this,the session variables you
establish in one application will not transfer to the other application. If you want to
share session variables between the two applications, you should place the second
application under the same virtual directory in lIS as the first application.

When a Web application ends, the Application_OnEnd event is called. You end
a Web application in one of two ways: by shutting down the Web server, or by stop­
ping your application by using the Unload button in the lIS administrator. To use the
Unload button, you must be running your Web application in a separate memory
space. So make sure you save any application scope variables to a persistent medium,
such as to your Exchange server or to a database, so that when your application
restarts, the Application_OnStart event can reload the values. For example, you don't
want a user-counter variable to restart at zero every time your application restarts.
You should also destroy any server objects that you have created with an applica­
tion scope. This will eliminate potential memory leaks on your server.

Built·ln ASP Objects

196

The real power of ASP applications is that you can write server-side scripts and use
their intrinsic objects. ASP and its built-in objects enable you to generate custom
responses and maintain state information. The following section describes, in detail,
five built-in objects in ASP: Application, Session, Request, Response, and Server.

NOTE The only object not covered here is the ObjectContext object, available
in liS version 4.0. This object can be used for creating ASP applications with
transaction capabilities. For more information on the ObjectContext object and
transactions, consult the liS product documentation.

Application Object
The Application object is used to store global data related to an application that can
be shared among all users. By using the methods and properties of this object in your
application, you can create and set variables that have an application scope. To make
sure that you do not run into concurrency issues when setting your application-level
variables, since multiple users can be using the same application simultaneously, the
Application object provides two methods: Lock and Unlock. These methods serial­
ize the access to application-level variables so that only one client at a time can read
or modify the values. The following example shows how to use the Lock and Unlock

Chapter 7 Outlook and the Web

methods to increment a user-counter variable whenever a user accesses the appli­
cation. The example also shows you hbw to set and retrieve application-level vari­
ables by using the Application "C"Variab/eName'') syntax:

<HTML>
<HEAD>
<TITlE>Example: Application Object</TITlE>
</HEAD>
<BODY>
<%

%>

Application.lock
Applitation{"NumVfsitors~) = Applicition"("NumVisitors") + 1
Application.Unlock

Welcome! You are visitor f<%=Applicition"{"NumVis1tors")%>.
</BODY>
</HTMl>

The Application object also contains two bther collections beyond the variables
collection-Contents and StadcObjects-which. allow you to browse .thrbugh the
application-level objects and variaoles you have created. Yoti ptbbably won't use
either of these cbllections in your fmal applications, but both of them provid~ great
debugging functionality. For i;!xample, the Contents collection enables you to list all
the items that have been added to your application through a script command, and
the StaticObjects collection enables .you to list all the items with an appljcation scope
that have been added using the <OBJECT> tag. By adding debug code to your appli­
cation at design time, when you run ~to applicatibn object problems, you can make
ASP list all the objects you have created with an application scope. The following code
illustrates creating debug code for both the Contents and StaticObjects collections.
You can see the code output in Figure 7-6.

<HTML>
<HEAD>
<TITLE>Debuggi ng Appl i cat; on bbjects</TITlE>
<%

%>

'Create some applicati~n variables
Application.lock
Set Application"{"oCDOSession") = _

Server.Cr~ateObject"l·MAPI.Session")
Application{"count~r") = 10
Application.Unlock

<P>Objects from the Contents Collection

<%

for each tempObj in Application.Crihtents
response.write tempObj & "
"

(continued)

197

Part II Building Outlook Applications

198

next
%)
<P)Objects from the StaticObjects Collection<BR)
<%

for each tempObj in Applicat1on.StaticObjects
response.write tempObj & "<BR)"

next
%)
</BODY)
</HTML)

Objects from !be C""",,", Col1ec~on
OCDOSESSION
COUNTER

Object. from !be SIaIicObjects Col1ec~on

Figure 7-6. The debug output for the Contents and StaticObjects collections. As you
can see, objects and variables both can have an application scope.

Session Object
The Session object is one you'll use a lot in your Web applications. It holds the vari­
ables for individual users across the Web pages in your application. When you place
a variable in the Session object, that variable is valid only for the current user and
cannot be shared among users in the same way that an Application variable can.

Like the Application object, the Session object contains the Contents and
StaticObjects collections. You can also create session variables in the same way you
create Application variables, by using the syntax Session(IVariableName").

The properties for the Session object include CodePage, LCID, SessionID, and
TimeOut. The CodePage property represents the language code page that will be used
to display the content for the HTML page. the Outlook HTML Form Converter, which
you'll learn about later in this chapter, uses this property in its converted forms, as
shown here:

<% @LANGUAGE=VBSCRIPT CODEPAGE = 1252 %)

You can use the LCID, or locale identifier, property in conjunction with the
CodePage property. The LCID property stores a standard international abbreviation
that uniquely identifies a system-defined locale.

The SessionID property returns to you the unique session identifier for the
current user. You should remember, however, that this ID is unique only during the
lifetime of the ASP application. If you restart your Web server and therefore restart

Chapter 7 Outlook and the Web

your Web applications, the Web server might generate the same IDs it already gen­
erated for the users before the Web application was restarted. For this reason, you
should avoid storing these IDs and attempting to use them to uniquely identify a user
of your application. If you always need to uniquely identify your users whenever they
access your application, you should use globally unique identifiers (GUIDs) in cookies,
which are saved on the users' computers.

The fourth property of the Session object is the Timeout property. This prop­
erty enables you to change the timeout period associated with a particular ASP ses­
sion. Remember that by default, the timeout is set to 20 minutes. If you know that
your application will be used for less than 20 minutes, you might want to decrease
the duration of the timeout so that sessions end more quickly and resources are
returned to the Web server at a faster rate.

The only method of the Session object is the Abandon method. As mentioned
earlier, by calling this method, the user's session with the Web server as well as any
associated objects and variables for that session are destroyed. If the user attempts
to reconnect to the Web application, a new session starts on the server.

Request Object
The Request object allows you to access the information that was passed from the
Web browser to your Web application. The Request object is crucial in ASP applica­
tions since it enables you to access user input for your server-side scripts. For example,
suppose a user fills out an HTML form that you created. Once the user clicks the
Submit button on the form, the Request object contains the form information that was
passed to the server. By using the collections of the Request object, you can retrieve
that information and design your application to respond based on the user's input.

Request object collections
The Request object collections are created when the user submits a request to the
Web server either by requesting an ASP file or by submitting an HTML form via clicking
the Submit button. The three collections of the Request object that you'll primarily
work with in your ASP applications are the Form, QueryString, and ServerVariables
collections.

NOTE For information on the other two collections, ClientCertificate and
Cookies, refer to the liS documentation.

To understand when to use these collections, you first need to know about the
different ways information can be passed from the Web browser to the Web server.
Normally in your Web applications, you use HTML forms to gather input from the
user so that you can use it in your calculations or store it in a data source. There are
two main ways input can get passed to the Web server from the client browser: via
the Get method and via the Post method. The example that follows shows an HTML
page that contains both methods on the same page.

199

Part II Building Outlook Applications

200

<html>
<head>
<title>Forms Galore</title>
<meta name="GENERATOR" content="Microsoft FrontPage 3.0">
</head>
<body>
<form method="GET"" action="getinfo.asp"" name="GetForm">

<p>What is your e-mail address?</p>
<p><ihput type="text" name="e-mail" size="20"></p>
<p><input type="submit" value="Submit" name="GetS~bmit"> </p>

</form>

<form method="POST" action="getinfo.asp" name="PostForm">
<p>What is your first name?</p>
<p><input type="text" name="firstname" size= ri 20"></p>
<p><input type="submit" value="Submit" name="PostSubmit"> </p>

</form>
</body>
</html>

The Action attribute for each of the HTML forms specifies the same ASP file,
getinfo.asp. The getinfo.asp file is shown here:

<HTML>
<HEAD>
<TITLE>Post and Get Methods Example</TITLE>
</HEAD>
</BODY>
<%txtRequestMethod = Request. ServerVa ri abl es" ("REQUESLMETHOD"")%>
You selected to use the <%=txtRequestMethod%> Method.
<~><% if txtReque~tMethod="GET"" then %>
You entered your e-mail address as:
<%=Request.QueryString"("email")%>
<% else %>
You entered your first name as:
<%=Requesi. Form"("fi rstname")%>
<% end if %>
</BODY>
</HTML>

This ASP code uses the ServerVariables collection of the Request object to check
whether the form's Request method was a Post or Get method. Once the file deter­
mines which method was used, it displays the correct information for that particular
type of form. Figure 7-7 shows a sample of the Get method.

Chapter 7 Outlook and the Web

lro~ ';:ThttM th,oJ F lfTlI~' M~(ro ultlrl\'rr,~r plnr:r~lrn.lrl~rll'\'lrIJ - ~ - ~ --r-F,"'}
• ~-~~ ~ --.- -- - - '" ~~~~~ I

:- ~ '", ~ ,--'~=-:!'~ , ~_~~~" __ r ~-~-~rr:=-~~-~ ~-~ 1_ -~l
, __ ~~L_g(

You ,elected to use the GET Method

You entered your email address as: thomr:iz@mjU8loft.eom

Figure 7-7. When a user types an e-mail address and submits the/orm, the Get
method is used to pass the information to the Request object.

NOTE You can also retrieve other server variables such as HTTP_USER_
AGENT, which returns information about which browser the client is using; and
LOGON_USER, which represents the Microsoft Windows NT account the user
is currently logged on to. For a complete list of server variables, see the liS
documentation.

As you can see in Figure 7-7 with the Get method, the information from the form
is actually appended to the URL-for example:

http:// exserver/ examples/ getinfo.asp?email =thomriz@microsoft.com&

GetSubmit=Submit

When data is appended to the URL using the Get method of a form, you use
the Query-String collection of the Request object to retrieve the data. When using the
QueryString collection, follow this format to retrieve the information:

Request. QueryStri ng" C" Vari ab 7 eName· .. ·)

Because the information that is passed to your application appears in the address
of the user's browser, the user can see it, so you might want to limit when you use
the Get method. Instead, consider using the Post method.

The Post method places the form information inside the HTIP header, hiding
the information from the client. However, when the Post method is used to submit
form variables, you cannot use the QueryString collection. Instead, you need to use
the Forms collection of the Request object. In the preceding example, the line

Request.Form"C"firstname")

retrieves the information the user typed into the First Name text box on the form. You
can use this same syntax in your applications to retrieve information from an HTML form.

201

Part II Building Outlook Applications

202

Response Object
The Response object is used to control the content that is returned to the client. For
example, when you calculate a value on the server, you need a way to tell the ASP
engine that you want to send the information back to the client. You do this by using
the Write method of the Response object.

The Write method of the Response object will be the most commonly used
method in your ASP applications. Even though you have not seen apy explicit state­
ments using the Response. Write method in the examples, they are there. The syntax
<%=Variant%> is equivalent to <% Response. Write Variant %>. The shorthand ver­
sion makes it easier for you to put these statements in your code quickly.

The Response object has a number of other collections, properties, and meth­
ods that you can use, such as the Expires property, which tells the Web browser how
long to cache a particular page before it expires. If you do not want your clients to
cache your Web pages, you would add the following line to your ASP files to cause
your Web page to expire immediately on the user's local machine:

<% Response.Expires = 0 %>

The Response object allows you to buffer the output of your ASP page. This is
useful if you want to hold back the output of your ASP code until the script com­
pletes its processing. The best example for using buffering is to capture errors in your
code. For example, by turning buffering on using the command Response.Buffer =
True, you can check throughout your ASP code whether an error has occurred. If one
has, you can clear the buffer without sending its contents by using the Response.Clear
method, and then you can replace the output with new output such as Response. Write
'~n error has occurred. Please contact the administrator. "Finally, you can call the
Response.End method, which sends the new contents of the buffer to the client and
stops processing any further scripts in the ASP.

Server Object
The Server object provides you with utility methods and properties to modify the
information on your Web server. This object is used extensively in ASP applications
because it contains both the CreateObject method and the ScriptTimeout property.

The CreateObject method allows you to create an object on the Web server by
passing in the ProgID for the object. Let's look at an example. To create a CDO object,
you would type this in your ASP file:

Set oSession = Server.CreateObject("MAPI.Session")

ASP creates an object and passes that object to you in the oSession variable. By
default, when you do this on an ASP page, the object has page-level scope. This means
that when ASP is done processing the current page, the object is destroyed. There­
fore, you might want to create objects on a page and then store them by assigning them
to either session variables or application variables, as shown in this code snippet:

Chapter 7 Outlook and the Web

<%

%>

Set oSession = Server.CreateObject("MAPI.Session")
Set Session("oSession") = oSession

As you learned earlier, an object that is assigned either a session or an applica­
tion scope will be destroyed when either the session or the application ends, respec­
tively. The one issue to watch out for with the CreateObject method and some objects
is potential performance loss. You can instantiate almost every object on your Web
server as an ASP object, but some objects are specifically designed to run in a server­
based, multiuser environment such as CDO. When you instantiate an object that was
not designed for an ASP environment, the application performance might suffer if
many people hit the page containing that object at the same time.

The ScriptTimeout property of the Server object allows you to specify how long
a script should run before it is terminated. By default, an ASP script can run for 90
seconds before it is terminated, but this might not be enough time to retrieve data
from a data source. By using the following syntax for this property, you can increase
or decrease the amount of time the script will run before termination:

Server.ScriptTimeout = numseconds

Avoid increasing this number much beyond 90 seconds, because users who are
waiting for long periods of time might assume the page did not load correctly, and
they might click their Stop and then Refresh buttons continuously, flooding your Web
server with requests.

Server-Side Include Files
One other powerful feature beyond the intrinsic objects of ASP is the ability to use
server-side include files in your ASP files. Include files are just text files containing
script or HTML that you want to add to your ASP page. Outlook Web Access, which
you will learn about later in this chapter, relies heavily on server-side include files
for common code libraries in its ASP files. Here are some examples of server-side
include files:

<1-- 'include file="library/vbsfunctions.inc" -->

<1-- 'include virtual="/library/vbsfunctions.inc~ -->

Server Components
ASP can take advantage of built-in objects and also use server components to add
functionality to ASP. An example of two such components are Microsoft ActiveX Data
Objects (ADO) and CDO. ADO allows you to connect to many types of databases;
CDO allows you to connect to Exchange Server and other messaging servers. You
can also write your own components using any COM-based development tool.

203

Part II Building Outlook Applications

NOTE There are a number of other components packaged with ASP that you
can use in your applications, including Ad Rotator, Browser Capability, Content
Linking, Content Rotator, File Access, Page Counter, and Permission Checker.
If you want to learn more about these components, you should refer to the docu­
mentation that ships with liS version 4.0.

OUTLOOK WEB ACCESS
Outlook Web Access is an ASP application that Microsoft ships with Exchange Ser­
ver version 5.5. This ASP application allows you to access your mailbox, calendar,
and contacts as well as directory information using any standard Web client. The
Outlook Web Access application is built on CDO and is one of the best tools for
learning CDO.

In this section, you'll learn how to install Outlook Web Access on your Web
server, which also installs the CDO library. You'll also learn about security when using
Outlook Web Access. This security architecture is important since it also applies to
any custom CDO applications you develop using ASP.

Installing Outlook Web Access

204

Before installing Outlook Web Access, you must have installed IIS version 3.0 or a
later version with Active Server Pages. IIS 4.0 and Exchange Server 5.5 both require
at least Windows NT 4.0 Service Pack 3, but it is recommended that you install Ser­
vice Pack 4 or later, or better yet, use Microsoft Windows 2000 Server. You can down­
load Windows NT 4.0 Service Pack 4 from http://www.microsojt.com/windows/
downloads!. If you don't install Service Pack 4, you will need to install the Windows
NT related fIxes required for Outlook Web Access. You can download these hot fixes
from the following:

ftp:/ /ftp.microsoft.comlbussys/winntlwinnt -publiC/fixes/usa/nt40/hotfixes­
postsp3/roll-up/

You can install Outlook Web Access on your Exchange server or on a separate
server. Be aware that if you do install Outlook Web Access on a separate server,
you cannot use Windows NT Challenge/Response as your authentication method.
You'll learn more about security implications later in the chapter.

The architecture for your Web servers and Exchange servers can vary depend­
ing on the topology of your network environment and the requirements of your
applications. For example, if few users will be accessing Outlook Web Access but you
have a number of Exchange servers and you do not want to set up multiple Outlook
Web Access servers for each Exchange server, you can set up just one Outlook Web
Access server to talk to multiple Exchange servers. The opposite is true as well. You

Chapter 7 Outlook and the Web

can have multiple Outlook Web Access servers talking to just one Exchange server.
Think of it as a Web farm of Outlook Web Access servers. This will work as long as
you make sure that when a user starts a session with an Outlook Web Access server
in a Web farm, that user stays with the same Outlook Web Access server until her
session expires or she logs out. Remember that ASP sessions do not span separate
ASP applications. If you use DNS round-robin techniques to farm a user out to multiple
Outlook Web Access servers, that user's session will be lost when she changes to a
different server.

To install Outlook Web Access, follow these steps:

1. Insert the Exchange Server version 5.5 CD in your CD-ROM drive.

2. If the Exchange Server welcome screen does not start automatically, launch
it by double-clicking on Launch.exe.

3. Click on Server Setup And Components.

4. Click on Microsoft Exchange Server 5.5.

5. When setup starts, click Complete/Custom installation. (If you already have
Exchange Server installed, click Add/Remove.)

6. In the Options list, check Outlook Web Access and click Continue. If you
don't have Windows 2000 Server, or the Windows NT Service Pack 4
(or the Windows NT related ftxes) and lIS installed, a message box will
be displayed and you won't be able to continue the installation of Out­
look Web Access.

7. The setup program will prompt you for the name of an Exchange server
that Outlook Web Access should connect to. Type a name of a server that
contains an entire replica of the Exchange Server directory. This sets up
Outlook Web Access so that it automatically redirects itself to the Ex­
change server where the mailbox of the user resides. It also allows you
to set up one Outlook Web Access Web server that talks to multiple
Exchange servers.

After completing the Outlook Web Access installation, you need to update it by
installing Service Pack 3 for Exchange Server 5.5. You can download or order this
service pack from http;llwww.microsoft.comlexchange/.This service pack includes
a number of enhancements for the Outlook Web Access client, such as the ability to
access Outlook contacts from the Web.

After running the update, you need to set the proper permissions in the User
Manager For Domains. Ensure that the Exchange users who will use Outlook Web
Access have the following rights: Log On Locally and Access This Computer From
Network.

205

Part II

Access your new Outlook Web Access server by typing the URL http;//OWAServeri
exchange in your browser, replacing OWAServerwith your Outlook Web Access server
name. From the displayed page, you can log in as an Exchange user or log in with anony­
mous access. (Anonymous access is discussed in more detail in Chapter 12.) Figure 7-8
shows how Outlook Web Access looks when you log on as an Exchange user.

No:IUre:nwaager to ntrie to

r !iii 'Dao_Rbzo No JUre:nwaapr to ntdll to

r !iii TkoIllaSRb.zO No lUre mmacer tD mute to

r !iii TIumwoRlz .. No more ..aaprtD roUII tao

r !iii TIumwoRlz .. No IIlore JaDCllr tao ... _ tD

r !iii 'I1IDlttasRizz. No lIIU'e..aapr to 1'8* tD

r !iii 'I1I1nnasRizz. No JIIU'8 nwaager to 1'8*"
r !iii 'I1mnas Rhz. No IIIU'e nwacer to n1l1ll io

r !iii ~ No lUre:nwaapr to n1ltll to

r !iii 'Ilunnas RIzza No JUre JIIllJIaCU' to mute to

r: !iii l'ho_Rhzo No JUI.'!I HWtapr to ratite ..

r !iii TIumwoRlz .. No more IIIIlIllCllrtD rom ..

Figure 7-8. Outlook Web Access.

Outlook Web Access and ASP Security

206

Since the Outlook Web Access application utilizes Active Server Pages, you need to
understand the ASP security architecture and how best to configure it for your envi­
ronment. If you configure the environment incorrectly, you will run into problems
when attempting to use authenticated access to the Outlook Web Access application
or to any of your CDO Web applications requiring authenticated access. This section
describes how ASP security works and how you should set up Windows NT to sup­
port the type of security you want for your Web applications.

ASP Security
When IIS is ftrst installed, it creates a Windows user account named IUSRJomputername,
where computername corresponds to the current computer name. This account is
assigned to the Guests account group, is given a random password, and is granted
the right to Log On Locally. Whenever a user browses a Web page, this account at­
tempts to access the page on behalf of the user. If the IUSR_computername account
does not have the proper permissions to access the page, the request is rejected with
this error message: "401 Access Denied". The Web server then informs the Web

Chapter 7 Outlook and the Web

browser which authentication methods the Web server will support--either Basic
authentication or Windows NT Challenge/Response authentication---depending on
your settings for your lIS server.

Basic authentication
Basic authentication is supported across all Web browsers. When the Web server
informs the client that it supports Basic authentication, the Web browser displays a
message box asking the user for a user name and password. Once the user types this
information in, the Web server tries to invoke the request using the identity of the
supplied user rather than the lIS anonymous account. It is a good idea to pass in your
domain name as well as the user name in the authentication dialog box in the Web
browser using the syntax domain\username.

Basic authentication, if used over Internet connections, can present some security
concerns, because the user name and password typed into the authentication dia­
log box is transmitted to the server as clear text. If you do use Basic authentication
over Internet connections, use it in conjunction with Secure Sockets Layer (SSL). SSL
will encrypt the connection between the Web browser and the Web server so that
any information passed between the two cannot be viewed by unauthorized individuals.

For the Web server to impersonate the user whose name is typed into the
authentication dialog box, the Web server must log on as that user. By default,
Windows NT does not give regular users the Log On Locally right on the server
computer. For this reason, you must give all the users you expect will use your Web
application with Basic authentication enabled the Log On Locally right on your Windows
NT server, which runs your Web server. The easiest way to do this is to grant all your
domain users the Log On Locally right in the User Manager for Domains.

Windows NT Challenge/Response authentication
Windows NT Challenge/Response, or NTLM, authentication is the most secure form
of authentication because the user name and password are not sent from the Web
browser to the Web server. Instead an encrypted challenge/response handshake
mechanism is used. Unlike Basic authentication, NTLM typically does not prompt the
user for a name and password. The Windows NT security credentials of the Web user
currently logged on are sent to lIS and are used to access the requested resource.
lIS then changes to the context of the specified user and attempts to access the
resource. If this fails, the user will be prompted for a user name and password.

NOTE For Windows NT Challenge/Response to work correctly, the users you
are trying to authenticate must have Access This Computer From Network rights
in the User Manager for Domains. This is normally enabled for users by default.

A one-way encryption method is used, meaning the mechanism validates the
user without sending the password to lIS. lIS doesn't know the user information and
cannot use it to access other resources on other machines. Essentially, this is a problem

207

Part II Building Outlook Applications

of delegation. When lIS attempts to access a resource on another machine, the other
machine will prompt lIS for user credentials. Since lIS does not have the password
for the user, it cannot return the correct information to the other machine. For this
reason, you cannot use the Windows NT Challenge/Response authentication method
with Outlook Web Access when your Outlook Web Access server is on a server
different from your Exchange server. lIS cannot remotely send the authentication to
the Exchange server when the Windows NT Challenge/Response method is used. If
you're using lIS 4.0, this is a gotcha. If you're using lIS 5.0, however, you can solve
this problem with the new features of lIS 5.0. For more information on Windows 2000
and lIS 5.0, see the section titled "Windows 2000 and lIS 5.0" later in this chapter.

A second gotcha of the Windows NT Challenge/Response method is that you
cannot use it over proxy connections for the same reasons just discussed. So when
setting up your Web server, consider NTIM's security advantages as well as its limi­
tations. One way to solve some of these problems is to upgrade to Windows 2000
and lIS 5.0.

A third gotcha for NTIM is that at the time of this book's publication, NTIM is
supported only by Internet Explorer. This means that if you have a mixture of Web
browser clients accessing your application, you might want to enable both Windows NT
Challenge/Response and Basic authentication. If you enable only Wmdows NT Challenge/
Response, when your Netscape Navigator users attempt to access a secure resource
or page, they'll receive a message denying them permission. With both security meth­
ods set up, if Windows NT Challenge/Response fails, Basic authentication will be used.

ACLs
Another way to restrict access to your Web pages is by setting NTFS file permissions,
or access control lists (ACLs), on your actual ASP files and directories. Doing so con­
trols who can and cannot read the files. lIS respects the ACLs on the files, and if you
have authentication enabled on your lIS server, lIS will use it to attempt to verify users
and their individual permissions on the files. Be careful when setting permissions on
files, however, because if the permissions you set are too restrictive, users will not
be able to use your application.

Special Considerations
for Setting Up Outlook Web Access

208

ASP security and Outlook Web Access security work in the same way when a user is
being authenticated, but when you set up Outlook Web Access on your Web server,
you need to keep some access issues in mind. The following section describes file
permission issues when users try to access Outlook Web Access on a Web server, prob­
lems that could ultimately cause trouble in your CDO applications.

Chapter 7 Outlook and the Web

File Permissions for the Outlook Web Access Files
Outlook Web Access is installed by default in a subfolder named Webdata, located
under Exchsrvr. If you change the NTFS file permissions for this folder, at the mini­
mum you should enable Read access on it and its subfolders. For temporary work,
Outlook Web Access uses another subfolder under Exchsrvr, named WebTemp. Make
sure that the permission for this folder is set to Change because Outlook Web Access
needs to create and delete items in it.

Exchange Server Search Permissions
If you are using the Search permissions in Exchange Server version 5.5 to restrict
access to information in the Exchange Server directory for your users, you need to
make sure that the Everyone and Directory Anonymous accounts have Search per­
missions at the Exchange Site or Configuration container level. If you do not grant
these permissions, a user might get an error message stating that the Exchange ser­
ver is down or that HTTP access has been disabled. Your CDO applications could
fail as well. For more information on this error, be sure to check out the following
Knowledge Base articles in MSDN: Q173455 "OWA Returns Exchange Server Down
Error Message"; Q175892 "Permissions Required for Outlook Web Access"; Q180417
"Error Msg: Sorry! The Microsoft Exchange Server Is Down."

Installing Outlook 8.03 on Your Outlook Web Access Server
If you install Outlook 8.03 on your Web server after installing Outlook Web Access,
Outlook will register an older version of the CDO library. Most commonly, users
won't be able to access or render calendar information in Outlook Web Access or
CDO applications because the older version of the library did not support this. To
fix this problem, type the following at the Run command, which is accessed from
the Start menu on your Outlook Web Access server: regsvr32 cdo.dll.

WINDOWS 2000 AND liS 5.0
Whereas IIS 4.0 and Windows NT 4.0 provided an excellent platform for building Web
applications such as OWA, Windows 2000 and IIS 5.0 provide an even better one.
For this reason, Microsoft supports running OWA on IIS 5.0 and Windows 2000. To
run OWA on IIS 5.0 and Windows 2000, you must upgrade your OWA server to at least
Exchange 5.5 Service Pack 3. Using Windows 2000 and IIS 5.0 offers a number of
benefits, especially for ASP developers, and I'll discuss them in the next few sections.

Improved ASP Support
In versions of IIS prior to 5.0, the scope of a Web application was a virtual directory.
So if you accessed an application in the virtual directory sales, and then you trans­
ferred the user to the virtual directory contacts, you lost all the application information

209

Pari II Building Outlook Applications

from the sales application. Why? lIS considered these two Web applications to be
separate because they resided in distinct virtual directories. However, with lIS 5.0,
which uses the Server. Transfer method, this directory limitation is removed. With the
Server. Transfer method, you can specify another ASP me to execute in a different ASP
application without losing all your existing variables in the calling ASP application.

lIS 5.0 also supports much better error-handling than previous versions. When
lIS detects an error in your application, it passes you an ASPError object. Using this
object, you can determine the error number and the line of the source code as well
as the number of the code line that caused the error. From this information, you can
display custom error information to your users.

Improved Scripting Support
lIS 5.0 includes new versions of both VBScript and Jscript. While I can't cover all the
new features of both languages, I do want to make you aware of two key enhance­
ments in VBScript. The first one is support for the With statement. This support makes
it easier for you to instantiate an object and then call methods and set properties on
the object without rewriting a bunch of code. The second enhancement is support
for regular expressions, which allows you to perform complex evaluation and
manipulation of string variables.

Improved Security Features
lIS 5.0 supports the standard Digest authentication. Digest authentication is similar
to Basic authentication, but Digest authentication does not send the user's password
over the wire. Instead, Digest authentication uses a hashing algorithm to form a
hexadecimal representation of a combination of user name, password, the requested
resource, and the HTTP method.

WebDAV Support
lIS 5.0 supports WebDAY. WebDAV is a set of extensions to HTTP that allows you
to send to your Web server commands that will open, edit, move, search, or delete
meso Exchange 2000 supports WebDAV, so you'll learn more about it when I dis­
cuss Exchange 2000.

THE OUTLOOK HTML FORM CONVERTER

210

In previous chapters, you learned how to develop Outlook solutions using the fea­
tures of Outlook, such as forms. These forms, however, work only with Outlook on
machines running Microsoft Windows 95 or later versions, or Microsoft Windows NT
4.0 or Windows 2000 Server. There are still many 16-bit, UNIX, and Macintosh clients
for whom developers need to design collaborative solutions. To provide cross-platform

Chapter 7 Outlook and the Web

support for forms, Microsoft offers the Outlook HTML Form Converter. This converter
allows you to take your Outlook solutions and turn them into HTML, ASP, and CDO­
based applications that can be viewed by any standard browser such as Internet
Explorer and Netscape Navigator. Once you convert your application to HTML, you
can use any standard Web development tool-for example, FrontPage-to edit the
HTML output of the converter. Once you convert the form, your users can work
with either the Outlook version of the application or the HTML version of the
application.

While this technology is a great step forward for cross-platform collaborative
solutions, the HTML environment has some limitations and does not provide the same
level of functionality as Outlook. This section describes what the Outlook HTML Form
Converter is, how the converter works, and what the Web forms library for Outlook
Web Access is. I also provide tips for developing Outlook solutions that can be more
easily converted to Web solutions.

Software Requirements of the Converter
Before you attempt to convert your forms, you must meet a few software require­
ments. First, you must have Outlook Web Access installed on one of your servers
running Internet Information Services. Installing Outlook Web Access was discussed
in the previous section. Second, you must have either Outlook 97 (version 8.03 or
later), Outlook 98, or Outlook 2000 installed on the machine on which you are going
to convert the forms. Make sure that you install the converter after you install one
of these versions of Outlook. Third, you need to have Exchange 2000 or Exchange
Server 5.5 with Service Pack 3. The service pack includes the Outlook HTML Form
Converter as well as some improvements to Outlook Web Access that allow you to
view Outlook contacts from any standard Web browser. To install the Outlook HTML
Form Converter, run Fcsetup.exe in the Formscnv folder of the Service Pack 3 CD
for Exchange 5.5. Finally, on the client, users of converted forms can use any ver­
sion of Outlook or no version of Outlook-that is, they don't even need to have
Outlook. They need only a Web browser to use the forms.

Components of the Converter
The Outlook HTML Form Converter'S architecture consists of a number of components:

• Conversion wizard. This is the user interface that walks you through
converting the form.

• OFT-HIML COM object. This reads the layout and data-binding informa­
tion from the Outlook form and writes the corresponding HTML code to
one or more files on the Web server.

211

Part II Building Outlook Applications

• Form Converter templates. These templates are used as base templates for
the converted file.

• Template processor object. This object customizes the base templates to
create the converted form.

Features of the Converter

212

Before stepping through the actual Outlook HTML Form Converter, you should know
about its features. The Form Converter does provide a large feature set that you can
take advantage of, but it also has some limitations.

Form Locations
The Form Converter allows you to convert forms from multiple forms libraries as well
as forms from the file system that are saved as .oft files. The types of forms libraries
that the Form Converter supports are the Personal Forms Library, the Organizational
Forms Library, and the Folder Forms Library. Using the Form Converter wizard, you
can specify either the forms library or the specific .oft files you want to use. The Form
Converter also supports selecting multiple forms for simultaneous conversion.

Form Types
The Form Converter currently supports forms based on the following types:

• IPMNote. Mail message

• IPM.Post. Post form

• IPM.Contact. Contact form

IPM,Task, IPM.Appointment, and IPM.Activity (journal entry) are not supported
by the Form Converter, but if you need to convert the user interface for any of them,
you can copy their controls to a supported form type. You can then convert the
supported form type with the copied controls and customize the converted form using
an HTML development tool. If you try to convert an unsupported form type, the Form
Converter will display an error message.

Convertible Features
The Form Converter can convert many of the Outlook controls with their correspond­
ing layouts. Following is a list of features that the Form Converter can convert to HTML.
Limitations are described.

• Label control.

• TextBox control.

• ComboBox control. If the Outlook form contains an editable ComboBox
control, the Form Converter changes it to a noneditable ComboBox.

Chapter 7 Outlook .nd the Web

• List Box control.

• CheckBox control.

• OptionButton control.

• Frame control.

• Command Button control. Any images placed on the CommandButton
control are lost since HTML does not support images on buttons.

• MultiPage control.

• Image control. Images that are bitmaps are converted to GIF files auto­
matically by the Form Converter. In addition, any images that are clipped
in Outlook by the Image control are shrunk automatically by the Form
Converter for the HTML version of the 'form.

• Background images on a form.

• ActiveX controls. The Form Converter adds a commented out Object tag
to the HTML form for the ActiveX control. However, the Form Converter
does not package the ActiveX control as a CAB file nor does it add a
CodeBase statement to the Object tag to point to the control's CAB file.
To make the control appear on the form, you can package the control,
add. the CodeBase statement,' and then remove the comments generated
by the Form Converter.

• Initial values.

• Required fields. If a user attempts to change a tab in the fITML version
of the form, the form will display a warning message that one of the fields
is required on the form and also display the identifier text of the field. This
text might appear in a foimat like SUBJECT31_0~G, which might not be
meaningful to your users. You can modify the error code to make it dis­
play the friendly name of the . control rather than the identifier text.

• Type checking and formatting.

• Read and compose layout.

• Hidden controls. In most cases, the initial values of hidden controls are
not maintained.

• BUilt-in and cUS,tom actions. If your actions call a custom form, be sure
to also convert these forms, or the HTML version will retl!:rn an error when
the us.er invokes the. custom action, The HTML version of the form can
use only two rows of bu~ons to invo!<:e custom actions. Since the width
of the button is based on ~e amount of t~xtonthe button, and you're
allowed only two rows of butt~ns, keep the length of the names of cus­
tom actions to a minimum.

213

Pari II Outlook Applications

214

• Limited support for non-English forms. The Form Converter provides lim­
ited support for non-English forms. It generates the ASP files and places
them on the client machine in the correct subfolder for the language. For
example, the output of a German form will be placed under the GER folder
in Outlook Web Access, not under the USA folder. The Form Converter
also places in the Form.ini file the appropriate code page for the language
in which the form must be rendered. You must have installed on Outlook
Web Access the language pack for the character set of the form you want
to convert before running the Form Converter wizard. If you do not, you
will not get the. international options in the wizard.

Unconvertible Features
Following is a list of features that are not supported by the Form Converter. Details
are provided for a few of these.

• ScrollEar control.

• SpinButton control.

• TabStrip control.

• ToggleButton control.

• Formulas. Even though the Form Converter does not convert formulas,
it places the code for the formulas in commented out text in the HTML
file. You can then uncomment and modify the formulas according to the
needs of your application.

• Script code. The VBScript behind an Outlook form is not converted. Instead,
it is placed in a text file, named Script.txt, which is in the folder that con­
tains the ASP files for the converted form. The reason VBScript is not
included in the HTML form is to accommodate cross-browser support.
Since Netscape browsers do not support VBScript, you can either change
the script in your form to server-side VBScript or rewrite the script as client­
side JavaScript code.

• Overlapped controls. Since HTML does a poor job of supporting over­
lapped controls and layouts, the Form Converter does not convert over­
lapped controls. Instead, it places the controls as close as possible to one
another on the form.

• Calculatedfields. In a Contact form in Outlook, there are calculated fields
such as FullName whose values are derived from other fields, such as
FirstName and LastName. The Form Converter will convert forms that
contain calculated fields, but these fields will become static fields. For
example, the FullName field will not automatically change in an HTML
form when either the FirstName or LastName field is changed.

Chapter 7 Outlook and the Web

Stepping Through a Conversion

Before you attempt to convert a form, you must first share the Webdata folder on your
Outlook Web Access Web server. For a default installation of Outlook Web Access,
this folder is located at C:\exchsrvr\ Webdata. You must give yourself and other
developers in your organization who will use the Form Converter at least Read and
Write access to the share. Also, be sure to name the share Webdata. If you do not
share this folder, the Form Converter will not allow you to finish the wizard.

To start the Form Converter, click the Start button, point to Programs, and select
Microsoft Outlook HTML Form Converter. This will display a starting screen for the
Form Converter. Click Next to begin the conversion process.

Selecting a Form Location
On the second screen of the Form Converter, shown in Figure 7-9, you can select
the type of form you want to convert. As mentioned earlier, you can select forms from
the Personal Forms Library, the Organizational Forms Library, and the Folder Forms
Library or Outlook templates from the file system. On the second screen, you also
specify the name of the Outlook Web Access Server where the ASP file will be placed
after the conversion.

Figure 7-9. Selecting the type of form and specifying the Outlook Web Access server in
the Form Converter. wizard.

Selecting Specific Forms
Clicking Next might display a Choose Profile dialog box. If so, choose a profile or
create a new profile, and click OK. Depending on the type of form you selected in
the second screen, the Form Converter wizard will present you with a forms library
view, shown in Figure 7-10, or the Open Outlook Template dialog box, shown in
Figure 7-11. You can select multiple forms from either of these interfaces. The forms
library view enables you to display form categories rather than form names in the

215

Part II

216

Outlook Forms list box. For forms in which these category properties were specified,
this can make finding forms easier.

Figure 7-10. The Forms Library view of the Form Converter wizard. You can view
your forms by category or by display name.

Figure 7-11. The Open Outlook Template dialog box presented by the Form Converter
wizard. You can select multiple forms to convert from the dialog box by using the
Ctrl key.

Choosing Conversion Options
In the final step of the conversion process, shown in Figure 7-12, you can choose
how you want the forms converted. If there are international language packs installed
on the Outlook Web Access server, this screen also proVides a drop-down list from
which you can select the language for the converted form. This final step of the wizard
also gives you the option of always overwriting your existing form. If you do not check
this option, the Form Converter will prompt you during the conversion about

Chapter 7 Outlook and the Web

overwriting the existing form. Checking the Layout Debug Mode check box enables
debug mode on the converted form. If debug mode is enabled, the table borders for
the HTML version of the form will be made visible so that you can easily see where
and how the tables are laid out. You can use the borders to adjust the size and place­
ment of controls on the converted form.

Figure 7-12. On the last page of the conversion process, you choose options for
conversion: you can overwrite your existing forms or enable the debug mode for your
converted forms.

Results of the Conversion Process
When you click the Finish button, the wizard converts your form. At the end of the
conversion, the wizard displays its results. There can be three results:

• Succesiful conversion. This result means that the form was converted and
the Form Converter has no suggestions for improving the layout and func­
tionality of the form through post-conversion edits. A successful conversion
is shown in Figure 7-13.

Figure 7-13. The Form Converter lets you know when you've converted a form
successfully.

217

Part II

218

Bundling Outlook Appn~c:at:

• Successful conversion with To-Do list. This result means that although the
form was converted successfully overall, the Form Converter describes
some post-conversion enhancements that you can make or some function­
ality on the form that did not get converted. The Form Converter creates
a text version of the To-Do list it displays, named ToDo.txt, and copies it
into the same folder it places the ASP files for the converted form. Figure
7-14 shows a successful conversion with a To-Do list.

Figure 7-14. A successful conversion with a To-Do list offers suggestions.

• No conversion. This result means that the Form Converter could not con­
vert the specified form. This unsuccessful conversion could be due to a
number of issues, the most common being that the form you are trying
to convert does not fall into one of the three supported form types. Fig­
ure 7-15 shows an example of an unsuccessful attempt to convert a Task
form from an .oft file.

was not converted.
This form cannot be converted because it contains an unsupported message class.

Figure 7-15. Attempting to convert a taskform results in the Form Converter
returning a No Conversion result.

Chapter 7 Outlook and the Web

Viewing the Results
The most common way to view the results of your conversion is to launch your Web
browser and type http://OWAServerlexchangelfor the URL, replacing OWAServerwith
your Outlook Web Access server name. When the Outlook Web Access Log On page
is displayed, log on. Select Custom Form from the Compose New drop-down list as
shown in Figure 7-16, and click the Compose New link.

!iii ~

~ No JIUlre manager to I'Oure to

~ No more ltI.alIager to route to

Thomas Rizzo No JIIOI'e manager m route 1n

Thomas Rizzo No ltIDl'e ntaHager to route to

!iii ThoI!l3SlRizzo No more mmagerm route to

~ No more maxager to ruure to

~ No more JttaHagerro route m

~ No more ma:n.ager ro route 18

!iii ~ No more maHager to route tG

~ No more manager 18 route tu

Figure 7-16. Selecting Custom Formfrom the Compose New drop-down list in
Outlook Web Access to view forms converted with the HTML Form Converter.

After you select Custom Form and click the Compose New link, the Launch
Custom Forms window is displayed, as shown in Figure 7-17. This window lists the
custom forms in your Web forms library; the forms you converted using the Form
Converter will be listed here. Click the link of the custom form that you want to test.

Figure 7-17. The Launch Custom Forms window lists the forms in your Web forms
library.

219

Part II

Examples of Conversions

220

Now let's take a look at a few figures showing Outlook forms before and after being
run through the Form Converter. Some of the figures illustrate the limitations men­
tioned earlier.

Figure 7-18 shows the converted Compose form for the Account Tracking appli­
cation discussed in Chapter 6. The Account Tracking application was not designed
with conversion to the Web in mind; therefore, a large amount of dynamic user­
interface script was generated for the form. Typically, when forms use a lot of script
to change user interface elements (for example, when you dynamically disable con­
trols on your form based on the values a user types in another control), you will need
to manually code many of the changes on the converted HTML form.

Figure 7-18. The Compose form for the Account Tracking application. Notice how the
picture does not come across on the CommandButton control.

Figure 7-19 shows the Read form for the Account Tracking application. The form's
custom actions display as buttons in the HTML version. Also notice that the Form
Converter automatically converts the Read form for your Outlook application. The CDO
rendering library, which you will learn about in Chapter 12, also automatically recog­
nizes that the user is reading information for an application and thus launches the Read
form when that user clicks on data in your application. All the binding of data in the
form is generated by the Form Converter. You should be aware, however, that the HTML
version of this form does not have the full functionality of the Outlook version. For
example, the HTML version cannot display the embedded Tasks or Contacts for the
account because these are populated by using VBScript code in the Outlook form.

Chapter 7 Outlook and the Web

Figure 7-19. The Readformfor the Account Tracking application. Notice that the
custom actions come across as buttons on the converted form.

Figure 7-20 shows a helpdesk application before conversion to HTML, and
Figure 7-21 shows the application after conversion. Notice the Opened By text box
is automatically filled for the Outlook version but not filled for the Web version. How­
ever, the Web version does have text boxes where the default values are specified.

Figure 7-20. The Outlook version of a helpdesk application.

221

Part II

Figure 7-21. The Web version of a helpdesk application.

Files Created for Converted Forms

222

Forms converted by the Outlook HTML Form Converter consist of a number of files
that you can customize. These files are placed in the Web forms library, which we
will discuss in the next section. Let's look at the set of HTML and ASP files that com­
prise the core architecture of the Form Converter.

FrmRoot.asp
This file is the entry point of the converted or custom form. For the Form Converter,
this file includes script and an HTML frameset that displays the other components of
the form. This file is discussed more in the next section on the Web forms library.

Posttitl.asp
This file is the frame of the form, located near the top of the screen. This frame con­
tains the toolbar and the tab strip. The main purpose of this file is to handle form
commands generated by clicking the toolbar buttons and the tab strip.

Page_N.asp and Page_N.Read.asp
Every page in a converted form is represented by a separate .asp file. Certain pages
of a form have predefined names-for example, the Options tab is named
Options. asp. Custom pages of a form are assigned system-generated names, such as
Page_3.asp. These custom form pages are generated by the Form Converter. If you
created a separate compose and read layout for a particular form page, its file will
have two different versions: Page_N.asp for composing the custom form, and Page_
N-Read.asp for reading the custom form.

Chapter 7 Outlook and the Web

Commands.asp
Commands. asp is used to implement utility functions and event handlers for the con­
verted form. Commands. asp is never seen by the user but rather is a hidden .asp file
that is called to handle functions such as standard actions COn_Send, On_Reply, and
so on) and also custom action event handlers.

Form.ini
The Form Converter automatically creates and publishes a Form.ini file for your appli­
cation. This file contains the form's display name and code page, and indicates
whether the form should be hidden in the Launch Custom Forms window. This file
is discussed more in the next section on the Web forms library.

Web Forms Library
After the Outlook HTML Form Converter wizard is run and the necessary files are cre­
ated, the files are copied to the Web forms library in Outlook Web Access. You might
be wondering what the Web forms library is-well, it's nothing more than a folder,
named Webdata, on the server where Outlook Web Access and some associated files
were installed. CDO uses the Webdata folder to allow developers to publish custom
forms for the Outlook Web Access client. By default, the Webdata folder is located
at C:\exchsrvr\ Webdata. Within the Webdata folder are additional subfolders that con­
tain converted forms and other files.

If you browse the Webdata folder, you will see a folder structure similar to that
shown in Figure 7-22. In the Webdata folder is a subfolder named for the language
pack you installed for Outlook Web Access. Open it to find the Forms subfolder. This
is where all the default forms for this particular Web server are stored.

All folders under the Forms subfolder correspond to custom message classes
in Outlook. For example, if you have a custom form in Outlook with the message
class IPM.Post.Project, the Form Converter creates a subfolder under the IPM\Post
folder named Project, and copies all ASP and related files for that converted form into
the Project subfolder. When a user views the custom forms in Outlook Web Access,
she will see a new form named Project. A user can refresh the custom forms listing
in the Launch Custom Forms window because the CDO object library allows this. Once
the user clicks on the Project link in the Launch Custom Forms window, the converted
Outlook form appears in her browser.

The Web forms library does not have to include converted Outlook forms only.
You can place your own Web-based applications there. The applications you place
in the library do not even have to be Exchange Server applications. You can add
any application that can be used on a Web server. For example, you can place a
SQL-based Web application in the Web forms library. This can make it easier for
users because they can find the Web-based enterprise applications they need in a
single location. Furthermore, since Outlook Web Access can authenticate users in

223

Pari II

224

BuUdiing Outlook

your ASP session, you can use this authentication in other Web-based applications
stored in the Web forms library.

Figure 7-22. The folder structure of the Web forms library. This structure is used by
Outlook Web Access to show available Web applications to users.

Adding Web-Based Applications to the Web Forms Library
To add a Web-based application to the Web forms library, you first need to create a
subfolder for your application under the Forms folder. Then you need to specify
certain names for your ASP files so that Outlook Web Access can recognize your
application. You need to place three files in the form's subfolder: Form.ini, FrmRoot.asp,
and Icon.jpg.

Form.ini
Form.ini includes the following three values:

• The friendly display name of a form, which avoids display of the message
class name, such as IPM.Post.Project.

• The language code page of the form.

• Whether the form should be hidden in the Launch Custom Forms window.
(Hide it if you want to make it available only as a response form.)

Chapter 7 Outlook and the Web

This is an example of a Form.ini file:

[Description]
DisplayName=My Custom Exchange and Sal Application
CodePage=1252
Hidden=0

Setting the Hidden variable to 0 makes a hyperlink to this application avail­
able in the Launch Custom Forms window. Setting Hidden to 1 hides the hyperlink.
If your form is going to appear correctly when a user clicks on its name in the
Launch Custom Forms window, you need to create a file named FrmRoot.asp in
the form's subfolder. When the CDO Rendering Objects trace the Webdata folder
tree, they recognize the Form.ini file and automatically add a hyperlink in the Launch
Custom Forms window to the file FrmRoot.asp. If you do not create this file, your
application name will appear as a hyperlink, but the link will be broken. In your
FrmRoot.asp, you can redirect users to the Web server that contains your applica­
tion or place your application code directly in the file. Include any necessary files
in the subfolder you created for the application. If you place your application code
in the same subfolder as Outlook Web Access, you can take advantage of the
authentication and Exchange Server ASP Session objects that Outlook Web Access
creates for you. If your application requires authentication and you redirect the
browser to a separate Web location, you will have to create your own authentica­
tion code and CDO session for the Exchange server.

Icon.jpg
To make an icon appear to the left of the hyperlink for your Web-based application
in the Launch Custom Forms window, you must create a]PEG file containing the
image you want displayed, name it Icon.jpg, and place it in the form's subfolder. If
you do not do this, the image will be displayed as missing.

Making HTML Forms Available in Outlook
You might want to make your converted forms and Web applications in the Web forms
library available to users who are running Outlook 97, Outlook 98, Outlook 2000,
Outlook for the Macintosh, or Outlook for Windows 3.1. To do this, you need to set
some options in the Outlook client by following these steps:

1. In Outlook, from the Tools menu, select Options.

2. For Outlook 98 and Outlook 2000, click on the Other tab, click the Advanced
Options button, click the Custom Forms button, and then click the Web
Services button. This displays the Web Services dialog box. A configured
Web Services dialog box for Outlook 2000 is displayed in Figure 7-23.

225

Part II Building Outlook Applications

226

NOTE The version of Outlook that your users have determines the location
of the Web Services button. Users can always find it, however, by clicking the
Custom Forms button.

Figure 7-23. Afully configured Web Services dialog box in Outlook 2000.

3. Check the Use Oudook Web Access To Open Messages Not Understood
By The Oudook Client check box.

4. In the Web Services Location text box, type the following URL, replacing
OWAServer with the name of your Oudook Web Access server:

http;//OWAServer/exchange/jorms/openitem.asp

This option causes Oudook to search the Web forms library if it
receives an item with a message class that does not have a correspond­
ing Oudook fonn. Oudook looks in the Web forms library for a Web-based
form that matches the message class.

5. If you want to prompt the user before Oudook opens the Web fonn, check
the Prompt User Before Opening Each Form check box. If you enable this
option, users will see a message similar to Figure 7-24.

Figure 7-24. A prompt telling the user that Outlook is going to look for the
custom form in the Web forms library.

6. Check the Activate Web Forms Link On Actions Menu check box.

Chapter 7 Outlook and the Web

7. In the Directory Page Location text box, type the following URL, replac­
ing OWAServer with the name of your Outlook Web Access server:

http://OWAServerlexchangelJorms/pickJorm.asp
This adds the Web Form option under Actions menu to the Outlook

client. If a user selects this option from the menu, Outlook will automati­
cally launch the user's Web browser and display the Launch Custom Forms
window. Users can then pick the desired Web-based form.

8. Click OK four times.

You should now have an option named Web Form on the Actions menu. If you
select this option, the Launch Custom Forms window should appear when you log on.

Tips for Developing HTML.Ready Outlook Applications

This section discusses a few techniques that will simplify the process of converting
your Outlook applications to HTML.

Align Your Controls on the Form
The Outlook HTML Form Converter uses HTML tables to position controls, so always
use the layout capabilities of the Outlook design environment to line up your con­
trols when you can. HTML tables are not as sophisticated as Outlook's layout tools,
so relying on them for composition is risky. Using the layout tools helps the Form
Converter figure out the best layout for your form in HTML, such as where the con­
trols on your form should be relative to one another.

Avoid Calling the Outlook Object Library Interface Objects
The Outlook object library can be divided into an interface library with objects like the
Explorer and the Inspector and a data access library with objects like MAPIFolder or
Items. If you want to enable the cleanest conversion for your application, avoid dy­
namically changing the user interface using the Outlook object library because that code
cannot be ported directly to HTML. If you require this, keep the changes to a minimum
so that you can manually code them easily in the Web version of the application.

Avoid Overlapping Controls
Standard HTML today does not support overlapping controls on a Web page. If any
of the controls overlap, the Form Converter will automatically move one of the con­
trols in the HTML version. If your controls completely overlap, the Form Converter
will probably skip converting one of the controls altogether because it won't be able
to resolve which should be converted.

227

Part II

228

Avoid Using Images on CommandButtons
Since HTML does not support placing images on buttons, your images on Command­
Buttons will not be converted to HTML.

Do Not Customize the First Page of a Contact Form
The Form Converter works with Outlook 97, Outlook 98, and Outlook 2000 forms.
Because Outlook 97 did not support first-page customization for a Contact form, the
Form Converter will not convert a modified first page of a Contact form to HTML.
The Form Converter ignores your modifications.

Do Not Save the Form Definition with the Item
For your form to retain its correct message class, do not save the form definition with
the item. If you do save the form definition with the item and convert it, Web browser
users will see only the form that corresponds to the default message class for the item,
such as IPM.Note.

Avoid Using Unsupported Controls
If you can, avoid using the unsupported controls listed in the section "Features of
the Converter," which appears earlier in the chapter. If you find that you do need to
use them, you can instantiate them as ActiveX controls on an HTML form. You would
then have to write the script to enable interaction between the ActiveX controls and
the ASP application.

Set AutoSize to True with Image Controls
When working with Image controls, always set the AutoSize property to True under
the Advanced Properties for the control. This will force the control to change size
based on the size of the image and help avoid unintended sizing when the converter
converts the form to HTML.

Chapter 8

Outlook 2000
Development

Features

Microsoft Outlook 2000, released with Microsoft Office 2000, offers a slew of enhance­
ments you can employ in your collaborative applications. These enhancements include
COM add-in support, an enhanced object model, folder home pages, and Microsoft
Visual Basic for Applications (VBA) support. In addition to the enhancements, Out­
look 2000 provides backward compatibility with any of the solutions you developed
in previous versions of Outlook. This means that all the techniques and code we've
looked at for Outlook 98 apply for Outlook 2000. And because the forms environ­
ment in Outlook 2000 has not changed, you use the same tools for both Outlook 98
and Outlook 2000.

This chapter discusses COM add-ins and the changes to the Outlook object
model. We will also look at how to write applications by using VBA in Outlook, and
explore the trade-offs of developing a COM add-in vs. developing a VBA program
directly inside Outlook. In Chapter 10, we'll update the Account Tracking applica­
tion by adding a COM add-in as well as two folder home pages, which will illustrate
how to take advantage of the new objects in the Outlook object model, use the
Outlook View control, and write COM add-ins.

229

Pari II Building Outlook Apia:mcallClns

OFFICE 2000 COM ADD-INS
When deveioping Office solutions, you probably want to extend existing Office
applications-Outlook in this case-with new functionality. With Outlook 98, you
could add new forms to your application's Outlook environment, but you could not
easily add new toolbars or program your application to respond to events beyond
the form events, such as Item_Open or Item_Read. Plus, if you really wanted to extend
beyond forms, you had to write an Exchange Client Extension. Exchange Client
Extension development involved strict requirements and coding practices, and any
extensions had to be written using C/C++. This meant that as a Microsoft Visual Basic
or VBA developer, you were stuck either hacking a solution together or not enhanc­
ing the functionality at all.

Office 2000 includes support for COM add-ins. A COM add-in is a dynamic-link
library eDLL) that can be used in an Office 2000 application. COM add-ins are used
to include additional functionality in an Office application. As you can guess by the
name, a COM add-in can be built using any COM development tool, such as Visual
Basic, Microsoft Visual C++, or even Microsoft Visual J++. Since COM add-ins are
compatible with all Office products, you can design a COM add-in once and reuse
it in other Office products. For example, you could write a COM add-in that customizes
the toolbars in your applications by using the CommandBar object model, which is
shared across all of the Office products.

In this chapter, we'll look at a COM add-in that cannot be used across all the
Office applications since it does call specific Outlook functionality. However, the
concepts required to build this COM add-in can be applied to any add-in designed
for other Office applications.

COM add-ins are registered specifically to be loaded by Office 2000 applica­
tions. Since COM add-ins are designed as DLLs, they will run in the same process as
the host application. One benefit of an in-process add-in is that it has efficient access
to the object model of the host application, allowing the add-in to quickly call methods
and properties or to receive events from the host application. One potential cau­
tion to running an add-in in the same process space as the host is that you're in
danger of slowing down or even crashing the host application. Keep this in mind
during development.

Deciding Whether to Write a COM Add-In

230

You need to consider a number of issues when deciding whether to develop a COM
add-in. Some of the functionality COM add-ins provide in Outlook is similar to other

Chapter 8 Outlook 2000 Development Features

Microsoft Exchange Server and Outlook development technologies, such as the
Event Scripting Agent, which we'll discuss in Chapter 13. For this reason, I've pro­
vided three test questions to help you determine whether to create a COM add-in
or use another technology.

First, do you need to receive events when the Outlook client is not running?
The life span of your COM add-in is controlled by Outlook. When the Outlook pro­
cess is running, your COM add-in can run and receive events. When Outlook is not
running, your add-in is also not running. If you need to receive events when the
Outlook client is not running, you might want to consider using the Event Scripting
Agent; because your agent runs on the server, it will always receive events while the
server is running. In Chapter 10, we'll examine a COM add-in that notifies users when
an item in a folder changes-functionality that might be better implemented by using
the Event Scripting Agent.

The second test question to answer is this: is performance a big concern for your
application? If so, you should use an add-in because it is loaded in-process with
Outlook, but be aware that you must use defensive coding practices to prevent crash­
ing Outlook. Don't create an add-in that performs expensive lookups or data retrievals
when starting, because Outlook will wait for it to finish before continuing.

Third, is your application event-driven? Outlook will fire a number of new events
that your COM add-in can implement and handle. These new events allow you greater
control over the Outlook user interface and Outlook data.

Developing a COM Add·ln

If your application passes my three test questions, start developing your COM add­
in! It is actually quite easy as Visual Basic has some features that can get you up and
developing in a matter of minutes. In this section, we'll take a look at how to start
developing COM add-ins, and then we'll review the new features of the Outlook object
model that you can employ in your COM add-ins.

Before you can begin creating an add-in, you must start Visual Basic 5.0 or a
later version and select an ActiveX DLL project. After the new project loads, you must
select Microsoft Add-In Designer from the Project/References dialog box, as shown
in Figure 8-1. This library contains the necessary interfaces for your COM add-ins.

In your Visual Basic code, you will need to type Implements IDTExtensibility2
to see the IDTExtensibility2 interface's events in the Procedure drop-down list in
the Visual Basic code window. Figure 8-2 shows the code window with all of the
IDTExtensibility2 event procedures added.

231

Part II

232

Figure 8-1. Select Microsoft Add-In Designer from the Project/References dialog box.

ByVal Application As Olllect, _
ByVal ConnectMode As AddInDesigneJ:Objects.ext COIUlectMode,
ByVa.l Addlnlnst As Object, custom. (j As Va:t:iant) -

ByVal Rem.oveHode As AddInDesignet:Objects.exC_Di;connectMode, _
custom() As Vat:ianc)

custom. () As Variant)

Figure 8-2. The Visual Basic 6.0 code window with the five event procedures for the
IDTExtensibility2 inteiface.

The IDTExtensibility2 Events
As you can see in Figure 8-2, IDTExtensibility2 provides five events for you to
use in your COM add-in: OnConnection, OnDisconnection, OnStartupComplete,
OnBeginShutdown, and OnAddInsUpdate. Let's examine each of these events.

OnConnection event
The OnConnection event is called when your add-in is first loaded or connected to-­
for example, when Outlook starts or when the user selects to load your COM add­
in. The user can select your add-in in the COM Add-Ins dialog box in Outlook 2000.

Chapter 8 Outlook 2000 Development Features

You can access this dialog box in Outlook by choosing Options from the Tools menu,
clicking the Other tab, clicking the Advanced Options button, and clicking COM Add­
Ins. The COM Add-Ins dialog box is shown in Figure 8-3.

Figure 8·3. The COM Add-Ins dialog box in Outlook 2000, where users can add or
remove COM add-ins. Using the registry, you can force your add-ins to always load no
matter what the user selects.

The On Connection event procedure is a great place to grab and store the Out­
look Application object for use in your code later. When an OnConnection event
occurs, the OnConnection event procedure is passed the following four parameters:
Application, Connect Mode, Addlnlnst, and CustomO. The Application parameter
is a reference to the Outlook Application object. The Connect Mode parameter de­
scribes the way in which the COM add-in was loaded. The Connect Mode parame­
ter is a Long data type that can be set to one of the following four constants:
exccm_AfterStartup, exccm_CommandLine, ext_cm_External, or ext_cm_Startup.
The constants ext3m_CommandLine and ext_cm_External do not apply to Office
2000 add-ins. The exccm_AfterStartup and ext_cm_Startup constants are subtly dif­
ferent from each. other. The Connect Mode parameter is set to exccm_AfterStartup
when the add-in is connected after Outlook starts or when the Connect property
of the add-in is set to True. Usually, the ConnectMode parameter is set to
ext_cm_AfterStartup when the user connects the a~d-in manually through the user
interface. The Connect Mode parameter is set to exccm_Startup when your add-in
is connected at the time Outlook starts up. The Addlnlnst parameter passes an object
that refers to the current instance of your COM add-in. The CustomO parameter is
an array of Variant data types that can hold user-defined data for your add-in. For
Office 2000 add-ins, this parameter should be ignored.

OnDisconnection event
The OnDisconnection event occurs when your COM add-in is being disconnected
from the application. The OnDisconnection event procedure is passed two parame­
ters: RemoveMode and CustomO. The RemoveMode parameter, which is a Long data

233

Pari II Building Outlook Applications

234

type, specifies how your add-in was disconnected and can be set to these con­
stants: exU:lm_HostShutdown or ext_dm_UserClosed. As you can guess by their names,
ext_dm_HostShutdown indicates that the add-in is disconnected by the host shutting
down, and ext_dm_UserClosed indicates either that a user is unchecking the add-in's
check box in the COM Add-Ins dialog box or that the Connect property of the add­
in is set to False.

The second parameter, CustomO, is an array of Variant data types that can hold
user-defined data for your add-in. For Office 2000 add-ins, this parameter should
be ignored.

Use the OnDisconnection event to restore any changes made to the applica­
tion or to perform general cleanup for your application. Make sure you destroy any
Inspector or Explorer objects that you create since Outlook will not properly close
if any of these objects still exist.

OnStartupComplete event
In the case where a COM add-in connects at the time the host application is started,
the OnStartupComplete event fires when the host has completed all of its startup
routines. The OnStartupComplete event will not occur when a user selects to load
the add-in from the COM Add-Ins dialog box after the application has already loaded.
In that case, the OnConnection event will fire. The OnStartupComplete event proce­
dure takes one parameter, CustomO, which you should ignore.

In this event procedure, place code that interacts with the application and should
not be run until the application finishes loading. This event procedure is a good place
to set some of your local and global variables to their corresponding Outlook objects.
In the COM add-in example for Chapter 10, the OnStartupComplete event procedure
searches the Outlook groups for a shortcut to the Account Tracking application and
also has code to manipulate the command bars in the user interface.

OnBeginShutdown event
The OnBeginShutdown event is fired when the application is about to shut down and
is called before the OnDisconnection event. Even after the OnBeginShutdown event
fires, you still have full access to the Outlook object model, so you can save your
settings to the registry or a me, or save any changes to your objects, before your objects
are unloaded.

NOTE If you are using Explorer or Inspector objects in your COM add-in, lis­
ten for the Close event on these objects. When your application receives this
event, it should destroy all your open Explorer or Inspector objects because your
Outlook COM add-in will not correctly shut down if any Explorer or Inspector
objects are left open.

OnAddlnsUpdate event
The OnAddInsUpdate event is fired whenever the list of COM add-ins is updated.
When another add-in is connected or disconnected, this event occurs in any other

Chapter 8 Outlook 2000 Development Features

connected COM add-in. You can use this event to ensure that any other add-in upon
which your add-in is dependent is connected. Once the dependent add-in is discon­
nected, you can disable your functionality or display a dialog box to warn the user
to reconnect the other add-in. The OnAddlnsUpdate event handler includes one
parameter, CustomO, which your application should ignore.

Registry Settings for COM Add-Ins
Now that you know which events fire for add-ins, you need to know how to regis­
ter and load the add-ins. Outlook decides which add-ins to load based on settings
in the user's registry. If your add-in is not specified correctly in the registry, Outlook
will not be able to load your add-in nor will your add-in appear in the COM Add­
Ins dialog box.

Registering your add-in
For your add-in to work correctly, you must first compile and register the DLL that
the add-in is based on. To do this, use the Regsvr32 command and specify the path
to your DLL. This will register your DLL under the HKEY_CLASSES_ROOT subtree
in the registry. If you are deploying your add-in to multiple machines, you will have
to figure out how to install your DLL me on those machines. One way would be to
use logon scripts to copy and register the DLL. Another way would be to deploy your
add-in using either the Visual Basic deployment and setup tools or Microsoft Systems
Management Server (SMS).

Once your COM add-in DLL is registered, you need to add some settings into
the registry on the local machine. These settings include the add-in's name, descrip­
tion, target application, initial load behavior, and connection state.

Before writing this information to the registry, you must first decide how you
want fo deploy your add-in: you can either force all users to use your add-in or allow
each user to decide whether he or she wants to load the add-in. The model you select
determines. where in the registry the information for your add-in has to be written.
If you want to ensure the add-in is always loaded and that every user on a machine
has access to it, you must register it under the key:

WKLM\SojtwareWicrosojt\Offtce\<applicatioll:> \Add Ins

Then you must lock down the registry because the COM Add-Ins dialog box cannot
unload add-ins registered there. If you want to give your users the option to specify
whether they want the add-in loaded and to choose their own settings for the add­
in, install your add-in under this key:

WKCU\SojtwareWicrosojt\Ojfice\<application>\Addlns

This location allows per-user settings for the add-in. An example of registering
your add-in under this key is shown in Figure .8-4.

235

Part II Building Outlook Applications

236

REG~

REG..5Z "",,/I'''''''''ITF_
REG..5Z fIIcrosoftOutiook2OOlTe<fOFoidersWIZ<I'd
REG..5Z ou:Iook2OOD Team Folders ward (9.0,Q.3217)

REG3Z 1033
REG"pwoRD 0x00CmJ09 (9)

REG":;'

C:\WIr.tlT\Profilesl,thomriz\L0CAI..SN1\Temp\radNECA.tmp

Figure 8-4. Tbis registry shows an add-in loaded under the key \]{KCU\Sojtware\
Microsojt\Office\Outlook\Addlns. Registering your add-ins under this key will allow
per-user settings.

When you register your add-in under one of these registry keys, the informa­
tion written to the key includes the following name/value pairs: Description,
FriendlyName, and LoadBehavior. Description is a string type that provides a short
description of the COM add-in. FriendlyName is a string that contains the name dis­
played in the COM Add-Ins dialog box. LoadBehavior is of type DWORD where the
value is an integer that specifies how to load your COM add-in. This integer can have
a value of 0 for Disconnected, 1 for Connected, 2 for load on startup, 8 for load on
demand, or 16 for connect first time. You can combine these values to create differ­
ent types of load sequences. For example, if you assign the value 3 to LoadBehavior,
the add-in will be loaded on startup as well as connected. If you assign 9 to the add­
in, the add-in will be connected and loaded when necessary, such as when the user
clicks a button that uses code in the add-in.

The following code shows the content of a sample registry editor file (.reg) for
a COM add-in:

REGEDIT4

[HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\
Addins\Sample.MyAddIn]
"FriendlyName"="My Sample Add-In"
"Description"="Sample Outlook COM Add-In"
"LoadBehavior"=dword:00000003

Chapter 8 Outlook 2000 Development Features

Trusting your COM add·ins
You can specify whether to trust all installed COM add-ins on a machine by setting
the DWORD value DontTrnstlnstalledFiles under the following registry key:

\HKCU\Software\Microsoft\Office\9.0\Outlook\Security

By assigning 0 to DontTrnstlnstalledFiles, you are specifying that Outlook trust
all installed add-ins. A value of 1 specifies to not trust all add-ins.

Debugging Your COM Add·ln
Debugging your add-in using Visual Basic 6.0 is easy. All you need to do is write your
add-in, register it, set some breakpoints on the code statements you are interested
in, and then run the add-in in the Visual Basic 6.0 environment. In the Project Prop­
erties dialog box, shown in Figure 8-5, you can set some debugging options. You can
specify whether you want to wait for the component to be created by the host appli­
cation or you want Visual Basic to start an instance of the host application for you.
Most times, I specify to wait for the components to be created by the host applica­
tion. After Outlook starts and creates the COM add-in, the code in the add-in will
execute and stop on encountered breakpoints. You can then step through your code
in the Visual Basic Editor.

Figure 8-5. The Debugging tab of the Project Properties dialog. box in Visual Basic
version 6.0. You can specify how you want Visual Basic to debug your ActiveX DU.

When debugging, be aware that message boxes in your add-in will appear in
the Visual Basic development environment, not Outlook. If Outlook stops respond­
ing, you should switch to Visual Basic to see whether a message box is visible and
waiting for you to respond.

237

Part II Building Outlook Applications

WARNING One thing to watch out for in your COM add-ins is references to
Inspector or Explorer objects in your code. If. you do not properly destroy your
variables, Outlook will exit but will stay in memory. Even if you set the variables
holding references to these objects in your OnBeginShutdown procedure to
Nothing, Outlook will still stay in memory. For this reason, both the Explorer and
Inspector objects implement a Close event. You should add code to this event
to destroy your references and check for any remaining Explorer or Inspector
objects. If you find no Inspector objects and only one Explorer object, it's a sign
that Outlook is properly shutting down.

Using COM Add-Ins from Custom Outlook Forms

238

There are many ways you can leverage COM add-ins from Outlook forms. One of
the best ways is to use them to add functionality that might not be very easy to
implement in Microsoft Visual Basic Scripting Edition (VBScript) or that might be very
expensive to create. For example, you could create a CDO session in a COM add-in
and then share that CDO session across multiple Outlook applications so that each
application does not have to create and destroy a CDO session. By using VBScript,
you can access the collections of COM add-ins available on your local machine and
call public methods or set public properties on these add-ins. Since you can write
add-ins in Visual Basic or Visual C++, you can implement advanced functionality that
would be difficult to implement with VBScript. Furthermore, a COM add-in can pro­
vide a library of functions that you can reuse in all your custom Outlook forms.

Figure 8-6 shows a sample Outlook form that uses a COM add-in to launch other
executable programs. Since VBScript doesn't support the Shell function, you can
leverage the Shell function in your COM add-in.

Figure 8·6. A Simple Outlook form that uses VBScrtpt to leverage a COM add-in. From
this form, you can launch any executable you need.

Take a look at the following code from the Outlook form in Figure 8-6. Notice
how you can access the COMAddins collection to retrieve a list of the COM add-ins

Chapter 8 Outlook 2000 Development Features

on your machine. You can then check whether the COM add-in you're interested in
is loaded and connected in Outlook. To retrieve a COM add-in, use the Item method
on the collection and either pass in the index of your add-in in the collection or pass
a string that specifies the ProgID of the add-in. Notice how I use the GetObject method
with the ProgID of the COM add-in. You would think that I could simply use the Object
property of the COM add-in object that corresponds to my add-in. However, this
technique didn't work on my test machines. If it works for you, by all means use this
method. Otherwise, you should use the workaround in the code to make the COM
add-in library work.

Dim oCOMAddinObj
Dim oCOMAddin

Sub cmdLaunchWord_Click
Launch "winword"

End Sub

Sub cmdLaunchCalc_Click
launch "calc"

end sub

Sub cmdLaunchApp_Click
Launch item.userproperties.find("strAppPath").value

end sub

Function Item_Open()
'On error resume next
err.clear
'Try to get a reference to the COM add-in
set oCOMAddin = Application.COMAddIns.Item("OutlookHelper.Library")
if err. number <> 0 then

Msgbox "There was an error retrieving a reference to the COM" _
& "Add-in Helper Library! Closing form!"

Ite~Open = False
exit function

end if
'Check to see whether the COM add~in is connected
if oCOMAddin.Connect = False then

msgbox "You must connect the COM Add-in before using this app!"
Item_Open = False
exit function

end if
'Get the real COM add-in object
'This doesn't work in Outlook!
set oCOMAddinObj = _

Application.COMAddins.Item("OutlookHelper.Library").object
'Workaround: use GetObject
set oCOMAddinObj = GetObject("","OutlookHelper.Library")

End Function
(continued)

239

Part II

240

BUnGling Outlook

Sub Launch(strAppPath)
'Get the Windows style
iStyle = item.userproperties.find("strWindowsStyle").value
iError = oCOMAddinObj.CustomShell(strAppPath. iStyle)
if iError = 0 then

msgbox "Error launching applicationl"
end if

end Sub

In the next example, the add-in doesn't do much besides add a single public
function named CustomShell that the user can call. This function leverages the Shell
function in Visual Basic and allows you to shell out to another program. The func­
tion also provides a bit of error checking just in case some bogus values get past the
Outlook test form. If the add-in successfully shelled out to executable, it returns the
ID of the executable. If not, it returns zero.

Implements IDTExtensibility2
Dim oApp As Outlook.Application 'Global Outlook Application Object

Private Sub IDTExtensibility2_0nAddInsUpdate(custom() As Variant)

End Sub

Private Sub IDTExtensibility2_0nBeginShutdown(custom() As Variant)
Set oApp = Nothing

End Sub

Private Sub IDTExtensibility2_0nConnection(_
ByVal Application As Object. _
ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode. _
ByVal AddInlnst As Object. custom() As Variant)

Set oApp = Application
End Sub

Private Sub IDTExtensibility2_0nDisconnection(_
ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode. _
custom() As Variant)

End Sub

Private Sub IDTExtensibility2_0nStartupComplete(custom() As Variant)

End Sub

Public Function CustomShell(strAppPath. iWindowStyle)
If strAppPath = "" Then

'Return back an error
Err.Raise vbObjectError + 513. "Shell Function". "A blank" _

& "pathname was passedl"
Exit Function

Else
'Check iWindowStyle

Chapter 8 Outlook 2000 Development Features

If CInt(iWindowStyle) < 0 Or CInt(iWindowStyle) > 6 Then
'Make it normal with focus
iWindowStlye = vbNormalFocus

End If
'Try to execute the command and return the value
iReturn = Shell(strAppPath, CInt(iWindowStyle))
CustomShell = iReturn

End If
End Function

OUTLOOK 2000 OBJECT MODEL
To help you develop COM add-ins as well as other applications, the object model
has been updated in Outlook 2000 with over 100 new methods and properties and
a bunch of new events that your applications can hook into. Figure 8-7 shows the
hierarchy for the Outlook 2000 object model. In the rest of this chapter, we'll look at
some of the objects, methods, properties, and events, and I'll give you hints for using
them in your own applications. For more information on the Outlook 2000 object
model, consult the help file named vbaoutl9.chm on the companion CD.

NOTE The events discussed in this section are not available from VBScript
behind your Outlook forms. You must either use VBA, Visual Basic, or Visual
C++ to receive these events.

Microsoft outlook Objects

Propertppages (ProperlyPageJ

5,ncObiecb (S,ncObjed)

Add.8uUsts [AddressList)

L[AddressEntries (AddressEn!I,)

Folders (NAPIFolder)

4items (H&w)

Linb(LinkJ

UserPiopertie$ (UserPropert,)

Acl:ions (Adion)

Attammenls (AUachmenl)

Recipients (Recipient)

LrExceptions (Exception)

Propert,Pages (PropertyPage]

Legend

D Object and collection
~ObjedonlY

COMAddins [COMAddln)

Explorers (ExpIOJ8r)

Selection (HIMu)

CommandBafs(CommandBar)

Panes (PdI'IL'!'J

4OutiookBarGIoUPs (OutlookBarGroup)

l{ OutiookBarShorlcuts [OutlookBarShortcut)

Inspectors (lMpector)

Pagtl!s(P~)

CommandBals (CommandBar)

Figure 8-7.1be Outlook 2000 object model hierarchy.

241

Part II

Objects and Collections

242

Outlook 2000 contains some collections and objects that consist of item types you
can create, such as distribution lists, as well as user interfaces, such as custom prop­
erty pages.

DistListltem Object
The DistListItem object represents a distribution list in a Contacts folder, which allows
your users to do away with personal address books. The DistListItem object can hold
multiple recipients both from the address list in Exchange Server as well as from one­
off addresses.

You can use the Create/tem method on the Application object to create a new
DistListItem object, or you can add the DistListItem object to a Contacts folder by using
the Add method of the Items collection for the folder. The following code shows you
how to use both methods to create a DistListItem object:

Dim oApp As Outlook.Application
Dim oNS As Outlook.NameSpace
Dim oExplorer As Outlook. Explorer
Dim oContact As Outlook.MAPIFolder
Dim oItems As Outlook. Items
Dim oDistList As Outlook.DistListItem
Dim oDistList2 As Outlook.DistListltem

Set oApp = CreateObject("Outlook.Application")
Set oNS = oApp.GetNamespace("MAPI")
Set oExplorer = oApp.ActiveExplorer
Set oContact = oNS.GetDefaultFolder(olFolderContacts)
Set oItems = oContact.Items
Set oDistList = oItems.Add(olDistributionListItem)
oDistList.DLName = "My new distribution list"
oDistList.Save
Set oDistList2 = oApp.CreateItem(olDistributionListItem)
oDistList2.DLName = "My other new distribution list"
oDistList2.Save

The DistListItem object inherits many of the methods and properties that other
Outlook items also inherit, but it also has some unique methods and properties, which
are described in the following sections.

Adding new members to the distribution list
To add new members to your DistListItem object, you use the Add Members method.
Before you call this method, however, you must create a new Recipients collection
to hold the names you want to add to the distribution list. The easiest way to create
the new Recipients collection is to create a new mail item and use the Recipients
collection available on the mail item. Then you can populate the collection and cre­
ate the new DistListItem object as shown here:

Chapter 8 Outlook 2000 Development Features

Dim oDistList As Outlook.DistListltem
Dim oTempMail As Outlook.Mailltem
Dim oTempRecips As Outlook.Recipients

Set oDistList = oItems("My new distribution list")
Set oTempMail = oApp.Createltem(olMailltem)
Set oTempRecips = oTempMail .Recipients
oTempRecips.Add "Thomas Rizzo"
oTempRecips.Add "Aaron Con"
oDistList.AddMembers oTempRecips
oDistList.Display

Removing members from a distribution list
To remove members from your DistListItem object, you use the RemoveMembers
method. This method is similar to the Add Members method in that you need to pass
it to a valid Recipients object that contains the members you want to remove. The
following code shows you how to use this method:

Dim oDistList As Outlook.DistListltem
Dim oTempMail As Outlook.Mailltem
Dim oTempRecips As Outlook. Recipients

Set oDistList = oItems("My new distribution list")
Set oTempMail = oApp.Createltem(olMailltem)
Set oTempRecips = oTempMail .Recipients
oTempRecips.Add "Thomas Rizzo"
oTempRecips.Add "Aaron Con"
oDistList.RemoveMembers oTempRecips
oDistList.Display

Retrieving the name of the distribution list
The DistListItem object contains a property named DLName. This property can be
used to set or return the name of the distribution list. The following code finds all
the distribution lists in your Contacts folder and returns their names in a message box:

Dim oItem As Outlook.DistListltem

RestrictString = "[Message Class] = 'IPM.DistList'"
Set oRestrictedltems = oItems.Restrict(RestrictString)
For Each oItem In oRestrictedltems

strDLs = strDLs & vbLf & oItem.DLName
Next
MsgBox "You have" & oRestrictedltems.Count & " DL(s) in your" _

& "contact folder. Names:" & strDLs

Counting the number of users in a distribution list
Sometimes you'll want to know how many users are on a distribution list before you
mail items to it. To retrieve the count for the number of users contained in a distri­
bution list object, you must use the MemberCount property. Note that this count does

243

Part II

244

not include the member count for nested distribution lists in your original list. For
example, if you have a distribution list with 20 members, and one of those members
is a distribution list with 50 members, the MemberCount property will return 20, not
70. The following code finds all the distribution lists in your Contacts folder and returns
a sum of all the MemberCount properties:

RestrictString = "[Message Class] = 'IPM.DistList'"
Set oRestrictedltems = oItems.Restrict(RestrictString)
For Each oItem In oRestrictedItems

intCount = intCount + oItem.MemberCount
Next
MsgBox "Member count for all DLs is: " & intCount

SyncObject Object and SyncObjects Collection
Outlook 2000 allows users to set up quick synchronization folder groups. These
synchronization groups, or profiles, allow users to configure different synchroniza­
tion scenarios, such as which folders get synchronized offline and which filters apply
to those folders. Users can then select the proper profile for their connection speed
or synchronization preferences.

The Outlook SyncObjects collection contains all the synchronization profiles set
up for the current user. Your program can start or stop any of these synchronization
profiles using the methods of the SyncObject object. You can also monitor the progress
of the synchronization by hooking into the events provided by the SyncObject object,
named SyncStart, Progress, OnError, and SyncEnd. Let's look at how to use the
SyncObjects collection and the SyncObject object.

Finding a SyncObject in the SyncObjects collection
The SyncObjects collection contains one property, named the Count property, and
one method, named the Item method, that you can use to find out more information
about the SyncObject objects contained in the collection. The Item method allows
you to identify an object in the collection by specifying a numeric or named index.
By using the Item method, you can quickly retrieve a Sync Object object. The Count
property returns the number of SyncObject objects contained in the collection.

The next code example shows you how to use both the Item method and the
Count property. First, the code finds a SyncObject object named slow modem, and
then it displays the number of synchronization profiles the user currently has set up.
Note that you cannot create or delete SyncObject objects programmatically. Only the
user can do this through the Outlook user interface.

Dim oSyncObjects As Outlook.SyncObjects
Dim oSyncObject As Outlook.SyncObject

Set oSyncObjects = oNS.SyncObjects
Set oSyncObject = oSyncObjects("slow modem")

Chapter 8 Outlook 2000 IJltvelopment Features

MsgBox "You have" & oSyncObjects.Count & " SyncObjects!"
strNames = vbLf
For Each oSyncObject In oSyncObjects

strNames = strNames & vbLf & oSyncObject.Name
Next
MsgBox "Names: " & strNames

Starting and stopping synchronization
Once you find a SyncObject object, you might want to start or stop the synchroniza­
tion process. You can do this by using the Start and Stop methods of theSyncObject
object, as shown here:

Set oSyncObjects = oNS.SyncObjects
Set oSyncObject = oSyncObjects("slow modem")
oSyncObject.Start

Monitoring the progress of synchronization
The SyncObject object provides four events that your application can hook into to
track the progress of a synchronization process: SyncStart, SyncEnd, Progress, and
OnError. To implement these events, you must first declare a variable using the Dim
statement in Visual Basic that defines a SyncObject object and uses the keyword
WithEvents. The SyncStart event is fired when Outlook starts synchronizing using a
particular SyncObject. The SyncEnd event is fired immediately after Outlook finishes
synchronizing. The OnError event is fired when Outlook encounters an error when
synchronizing. The OnError event procedure is passed both the error code and the
description of the error as a string.

The final event, Progress, is fired periodically by Outlook to report on the
progress of synchronization. Four parameters are passed to the Progress event pro­
cedure: State, Description, Value, and Max:

• State is a Long data type that indicates the status of the synchronization.
State can have the value olSyncStopped (0) or olSyncStarted 0).

• Description is a string that describes the current state of synchronization.

• Value is a variable of Long data type that indicates the current value in
the synchronization process. Value can be the number of items synchro­
nized in the folder.

• Max is a Long parameter that indicates the maximum value for the third
parameter. The ratio of the third parameter (the value) to the fourth pa­
rameter (the maximum) represents the percent of the synchronization
process that is complete.

245

Part II

The following code shows you how to use these events in your application.
These events are not available from VBScript behind an Outlook form.

Private Sub oSyncObject_Progress(_
ByVal State As Outlook.01SyncState, _
ByVal Description As String, ByVal Value As Long, _
ByVal Max As Long)

strPercent = Description & Str(State / Max * 100) & "% "
MsgBox strPercent & vbLf & "State: " & State & vbLf & _

"Max: " & Max
End Sub

Outlook Bar Object Model

246

One of the most significant enhancements to the Outlook 2000 object model is the
Outlook Bar objects, which allow you to manipulate the Outlook Bar shortcuts as well
as the user interface. With Outlook 2000, Outlook Bar shortcuts hold not only file
and folder shortcuts but also URL shortcuts to Web pages, and you can customize
Outlook to meet the needs of your applications. Let's take a look at the objects and
collections for the Outlook Bar object model. Figure 8-8 shows how the objects in
the Outlook Bar object model work together.

PanesIP_)

OutiookBarGroups IOutiookBarGroup)

OutlookBarShorlcuts IOutlookBarShorlcul)

legend

D Object and collection
• Object only

Figure 8-8. The relationship between the objects and collections in the Outlook Bar
object model.

Panes Collection
The Panes collection enables developers to access the available Outlook application
window panes. Although Outlook supports three panes-the OutlookBar, the
FolderList, and the Preview panes-only the OutlookBar pane is accessible as an
object in the Panes collection. If you try to access either of tpe other two panes, you
will receive an error.

The Panes collection is retrieved from an Explorer object by using the new Pane

property on that object. Once you retrieve the Panes collection, you can use the Item
method of the Pane object and pass in either the numeric index or the name of the
desired Pane object. To retrieve the OutlookBarPane object, you should pass in the
text Out/ookBar to the Item method.

Chapter 8 Outlook 2000 Development Features

The Panes collection also supports the Count property. Use this property to
retrieve the number of Pane objects in the collection.

OutlookBarPane Object
After passing the text Out/ookBar to the Item method of the Panes collection, Out­
look returns an OutlookBarPane object. The OutlookBarPane object contains events
and properties that let you control and monitor the Outlook Bar. These are the four
properties you will use on the OutlookBarPane object:

• Contents. This read-only property returns the OutlookBarStorage object
for the current OutlookBarPane object. From the returned object, you can
retrieve the shortcuts and groups for the Outlook Bar.

• CurrentGroup. This property returns or sets the current group displayed
in the Outlook Bar. You must pass a valid OutlookBarGroup object as the
value for this property.

• Name. This read-only property returns a string that indicates the name of
the current OutlookBarPane object.

• Visible. This property returns or sets the visibility of the OutlookBarPane
object. Visible takes a Boolean value that specifies whether you want to
show the Outlook Bar in the user interface.

The follOWing code shows you how to use the OutlookBarPane object in your
applications:

Dim oPanes As Outlook.Panes
Dim oOutlookBarPane As Outlook.OutlookBarPane

Set oPanes = oExplorer.Panes
Set oOutlookBarPane = oPanes("OutlookBar")
'Flip whether the pane is visible
oOutlookBarPane.Visible = Not (oOutlookBarPane.Visible)

The OutlookBarPane object also provides two events that you can capture when
users work with the Outlook Bar: BeforeGroupSwitch and BeforeNavigate. The
BeforeGroupSwitch event is fired whenever the user or object model attempts to
switch to a new visible group. The BeforeGroupSwitch event procedure takes two
parameters, Group and Cancel. If you set the Cancel parameter to True, the switch
is canceled. The Group parameter is an OutlookBarGroup object containing the
Outlook group that the user is trying to navigate to. The code on the following page
shows you how to use BeforeGroupSwitch and cancel it when a user tries to navi­
gate to a specific Outlook group.

247

Part II

248

Dim WithEvents oOutlookBarPane As Outlook.OutlookBarPane
Private Sub oOutlookBarPane_BeforeGroupSwitch(_
ByVal ToGroup As Outlook.OutlookBarGroup. Cancel As Boolean)

If ToGroup.Name = "My Shortcuts" Then
MsgBox "You cannot switch to the My Shortcuts group!"
Cancel = True

Else
MsgBox "Now switching to the" & ToGroup.Name & " group."

End If
End Sub

The BeforeNavigate event fires when the user attempts to click on an Outlook
Bar shortcut. The BejoreNavigate event procedure takes two parameters, Shortcut and
Cancel. Shortcut is an OutlookBarShortcut object, the Outlook Bar shortcut the user
is trying to navigate to, and Cancel is a Boolean, which you can set to True to can­
cel the navigation. The following code example shows you how to use BeforeNavigate:

Dim WithEvents oOutlookBarPane As Outlook.OutlookBarPane
Private Sub oOutlookBarPane_BeforeNavigate(_

ByVal Shortcut As Outlook.OutlookBarShortcut. Cancel As Boolean)
On Error Resume Next
'Need to watch out for file shortcuts!
Err.Clear
Set oTempFolder = Shortcut. Target
strName = oTempFolder.Name
If Err.Number = 0 Then

If strName = "Inbox" Then
MsgBox "Sorry. you can't switch to your Inbox."
Cancel = True

Else
MsgBox "Now switching to the" & Shortcut. Name & " shortcut."

End If
End If
End Sub

OutlookBarStorage Object
The OutlookBarStorage object is a container for the objects in an OutlookBarPane
object. This object contains only one property-the Groups property-which you
will use in your applications. The Groups property returns an OutlookBarGroups
collection, which enables you to scroll through the groups on the Outlook Bar.
The following code shows you how to use the Groups property to retrieve the
OutlookBarGroups collection and then scroll through each group in the collection:

Dim oOutlookBarStorage As Outlook.OutlookBarStorage
Dim oOutlookBarGroups As Outlook.OutlookBarGroups
Dim oOutlookBarGroup As Outlook.OutlookBarGroup

Chapter 8 Outlook 2000 Development Features

Set oPanes = oExplorer.Panes
Set oOutlookBarPane = oPanes("OutlookBar")
Set oOutlookBarStorage = oOutlookBarPane.Contents
Set oOutlookBarGroups = oOutlookBarStorage.Groups
strGroups = vbLf
For Each oOutlookBarGro'up In oOutlookBarGroups

strGroups = strGroups & vbLf & oOutlookBarGroup.Name
Next
MsgBox "The names of the groups on your Outlook Bar: "

& strGroups

OutlookBarGroups Collection
The OudookBarGroups collection contains OudookBarGroup objects that represent
all the Oudook groups on your Oudook Bar. Use this collection to count and add
new groups to the Oudook Bar. This collection supports one property, Count, which
you can use to retrieve the number of groups in the collection, as shown in the fol­
lowing code:

Set oPanes = oExplorer.Panes
Set oOutlookBarPane = nPanes("OutlookBar")
Set oOutlbokBarStorage = oOutlookBarPane.Contents
Set oOutlookBarGroups = oOutlookBarStorage.Groups
MsgBox "The number of Outlook groups on your Outlook Bar is: " _

& oOutlookBarGroups.Count

This collection also supports three methods-Add, Item, and Remove. The Add
method adds a new, empty OudookBarGroup object to the collection and returns a
reference to this new OudookBarGroup object. The Add method takes two parame­
ters: one is a string that specifies the name of the group to add; the other is optional
and specifies a number indicating the insertion position for the new Oudook group.
The top of the bar is at position 1.

The Item method allows you to retrieve an OudookBarGroup object by name
or by index. The Remove method allows you to delete an OudookBarGroup object
by specifying the index of the object you want to remove.

The follOWing example uses all three of these methods together. It creates a new
OudookBarGroup object, finds the object by using the Item method, and deletes the
object by using the Remove method.

'Create the new group at the top of the bar
Set oNewOLBarGroup = oOutlookBarGroups.Add("My New Group". 1)
Ms~Box "Added Group"
Set oTempOLBarGroup = oOutlookBarGroups("My New Group")
MsgBox "Got Group Named: " & oTempOLBarGroup.Name
'Since you have to remove a group by numeric index. we can loop

(continued)

249

Part II Building Outlook Applications

250

'through the collection, find the OutlookBarGroup by name, and
'get the corresponding index
intCounter = 0
boolFound = 0
For Each oOutlookBarGroup In oOutlookBarGroups

intCounter = intCounter + 1
If oOutlookBarGroup.Name = "My New Group" Then

boolFound = intCounter
End If

Next
If boolFound <> 0 Then

oOutlookBarGroups.Remove boolFound
MsgBox "Deleted Group"

End If

The OutlookBarGroups collection is interesting because it supports three events
that you can hook into: BeforeGroupAdd, BeforeGroupRemove, and GroupAdd.
These three events enable you to trace when users try to add or remove certain
Outlook groups and, if desired, cancel the user's action of removing or adding an
Outlook group.

The BeforeGroupAdd event is fired before a new group is added to the Out­
look Bar through either the user interface or code. The BeforeGroupAdd event pro­
cedure is passed a Boolean parameter named Cancel which, if set to True, will not
be added to the new group by Outlook. The next code snippet shows you how to
use the BeforeGroupAdd event to cancel a user's attempt to add an Outlook group.
Note that because the group hasn't been created yet, a reference to the new group
is not passed the BeforeGroupAdd event procedure, so you have no way of know­
ing which group the user is trying to add. However, since the GroupAdd event passes
you the group the user added, you can write code in that event procedure to remove
the group if the user is not allowed to add it.

Dim WithEvents oOutlookBarGroups As Outlook.OutlookBarGroups

Private Sub oOutlookBarGroups_BeforeGroupAddCCancel As Boolean)
MsgBox "You are not allowed to add groups to your Outlook Bar!"
Cancel = True

End Sub

The BeforeGroupRemove event is fired before a group is removed from an
Outlook Bar. You can hook into this event with your custom applications to pre­
vent users from deleting Outlook groups you created programmatically. The
BeforeGroupRemove event procedure is passed two parameters. The first is an
OutlookBarGroup object, which corresponds to the Outlook group that a program
or user is trying to remove. The second is the Cancel Boolean parameter, which you
can set to True to cancel the removal of the Outlook group. The following code checks

Chapter 8 Outlook 2000 Development Features

to see whether the user is trying to remove her Outlook Shortcuts group, and when
it finds out that she is, the code cancels the action:

Private Sub oOutlookBarGroups_BeforeGroupRemove(_
ByVal Group As Outlook.OutlookBarGroup. Cancel As Boolean)

If Group.Name = "Outlook Shortcuts" Then
MsgBox "You cannot remove this group!"
Cancel = True

End If
End Sub

The GroupAdd event fires when a new group has been added successfully to
the Outlook Bar. The GroupAdd event procedure is passed an OutlookBarGroup
object, so you know which group has been added. If the user adds the new group
using the Outlook user interface, the group will be named New Group because this
is the default name for newly created Outlook groups. The following code displays
a message box that shows the name of the Outlook group you added:

Private Sub oOutlookBarGroups_GroupAdd(_
ByVal NewGroup As Outlook.OutlookBarGroup)

MsgBox "You added the" & NewGroup.Name & " group!"
End Sub

OutlookBarGroup Object
The OutlookBarGroup object represents an Outlook group on your Outlook Bar. The
OutlookBarGroup object supports three properties and no methods. Use these three
properties to access information about the Outlook group as well as shortcuts inside
the Outlook group:

• Name. This property returns or sets the name of the OutlookBarGroup
using a string.

• Shortcuts. This property returns the set of Outlook shortcuts contained in
the group as an OutlookBarShortcuts collection.

• ViewType. This property returns or sets the way icons are displayed in the
Outlook Bar. This property can be two values, either olLargelcon (1) or
olSmalllcon (2).

The following example shows you how to use all these properties. It loops
through the OutlookBarGroups collection, and then retrieves each OutlookBarGroup
object and displays information about it.

For Each oOutlookBarGroup In oOutlookBarGroups
strName = oOutlookBarGroup.Name
Set oOutlookBarShortcuts = oOutlookBarGroup.Shortcuts

(continued)

251

Part II Building Outlook Applications

252

intShortcutCount = oOutlookBarShortcuts.Count
strNames = vbLf
For Each oOutlookBarShortcut In oOutlookBarShortcuts

strNames = strNames & vbLf & oOutlookBarShortcut.Name
Next
Select Case oOutlookBarGroup.ViewType

Case olLargelcon:
strViewType = "Large Icons"

Case olSmalllcon:
strViewType = "Small Icons"

End Select
MsgBox "The following information is for the" & strName _

& " group." & vbLf & "The ViewType is: " & strViewType _
& vbLf & "The number of shortcuts in the group" _
& " is: " & intShortcutCount & vbLf & _
& "The shortcuts are named:" & strNames & vbLf

Next

OutlookBarShortcuts Collection
The OutlookBarShortcuts collection contains a set of OutlookBarShortcut objects and
represents the shortcuts in an OutlookBarGroup object. This collection supports the
Count property, which returns the number of OutlookBarShortcut objects in the
collection.

This collection also supports three methods so that you can manipulate it: Add,
Item, and Remove. The first method, Add, allows you to create a new shortcut in your
Outlook group. The return value for Add is the new OutlookShortcut object you
created. This method takes three parameters. The first parameter is a Variant that is
the target for the shortcut. The target can be either a MAPIFolder object or a string
that specifies a URL. Outlook 2000 supports placing URL shortcuts on your Outlook
Bar. The second parameter is a string that specifies the name of the shortcut you are
creating. The final parameter is an optional parameter that specifies the insertion
position of the new shortcut. A value of 0 specifies to insert the shortcut at the top
of the Outlook group. The following code example adds both a folder and a URL
shortcut to a newly created Outlook group using the Add method:

'Create the new group at the top of the bar
Set oNewOLBarGroup = oOutlookBarGroups.Add("My New Group", 1)
'Get the shortcuts in the new group
Set oOutlookBarShortcuts = oNewOLBarGroup.Shortcuts
'Now add a shortcut that points to a folder
Set oFolder = oNS.GetDefaultFolder(olFolderlnbox)
'Optionally, we can set a variable to retrieve the
'new shortcut. 0 at the end means add it to the
'top of the group.
Set oNewShortcut = oOutlookBarShortcuts.Add(oFolder, "My Inbox", 0)

Chapter 8 Outlook 2000 Development Features

'Now let's create a new shortcut to a Web page
strEXHTTP = "http://www.microsoft.com/exchange"
oOutlookBarShortcuts.Add strEXHTTP. "Exchange Web site"

The second method, Item, allows you to specify the index number or the name
of the shortcut you want to retrieve from the collection. The third method, Remove,
takes the index of the OutlookBarShortcut object you want to remove from the col­
lection. The following code shows you how to find and remove all shortcuts that point
to the Inbox:

On Error Resume Next
For Each oOutlookBarGroup In oOutlookBarGroups

Set oOutlookShortcuts = oOutlookBar~roup.Shortcuts
intCounter = 1
For Each oOutlookShortcut In oOutlookShortcuts

'Watch out for File System shortcuts
Err.Clear
If oOutlookShortcut.Target.Name = "Inbox" Then

If Err.Number = 0 Then
oOutlookShortcuts.Remove intCounter

End If
End If
intCounter intCounter + 1

Next
Next

The OutlookBarShortcuts collection supports these events: BeforeShortcutAdd,
BeforeShorcutRemove, and ShortcutAdd. The BeforeShortcutAdd event fires before
a new shortcut is added to the Outlook Bar. The BeforeShortcutAdd event procedure
is passed a parameter named Cancel, which you can set to True to cancel the
attempted addition of the shortcut. The following code shows you how to hook into
this event and cancel the action of a user trying to add a new shortcut to his Out­
look Shortcuts group. Note that you are not passed the new Outlook shortcut object
because the event is fired before the new shortcut is created.

Dim WithEvents oOutlookShortcuts As OutlookBarShortcuts

'The oOutlookShortcuts variable must be set before the event
'wi 11 fi re
Set oOutlookBarGroup = oOutlookBarGroups("Outlook Shortcuts")
Set oOutlookShortcuts = oOutlookBarGroup.Shortcuts

Private Sub oOutlookShortcuts_BeforeShortcutAdd(Cancel As Boolean)
On Error Resume Next
MsgBox "You are not allowed to add shortcuts!"
Cancel = True

End Sub

253

Part II

254

Outlook

The second event supported by the OutlookBarShortcuts collection is the
BeforeShortcutRemove event, which fires before a shortcut is removed from a group
in the Outlook Bar. The BejoreShortcutRemove event procedure is passed two
parameters: an OutlookBarShortcut object that corresponds to the shortcut the user or
program is trying to remove; and Cancel, which is a Boolean parameter that you can
set to True to cancel the removal. The following code shows you how to use this event
to prevent a user from removing his Calendar shortcut from the Outlook Shortcuts group:

Dim WithEvents oOutlookShortcuts As OutlookBarShortcuts

'The oOutlookShortcuts variable must be set before the event
'will fi re
Set oOutlookBarGroup = oOutlookBarGroups("Outlook Shortcuts")
Set oOutlookShortcuts = oOutlookBarGroup.Shortcuts

Private Sub oOutlookShortcuts_BeforeShortcutRemove(_
ByVal Shortcut As Outlook.OutlookBarShortcut. Cancel As Boolean)

On Error Resume Next
If Shortcut.Target.Name = "Calendar" Then

MsgBox "You can't remove the shortcut to your calendar!"
Cancel = True

End If
End Sub

The third event supported by the OutlookBarShortcuts collection is ShortcutAdd.
This event fires after a new Outlook shortcut has been added to the Outlook Bar. This
event passes to you, as an OutlookBarShortcut object, the newly added shortcut. The
following example shows you how to hook into this event:

Dim WithEvents oOutlookShortcuts As OutlookBarShortcuts
'The oOutlookShortcuts variable must be set before the event
'wi 11 fi re
Set oOutlookBarGroup = oOutlookBarGroups("Outlook Shortcuts")
Set oOutlookShortcuts = oOutlookBarGroup.Shortcuts

Private Sub oOutlookShortcuts_ShortcutAdd(_
ByVal NewShortcut As Outlook.OutlookBarShortcut)

MsgBox "You added the" & NewShortcut.Name & " shortcut!"
End Sub

OutlookBarShortcut Object
The OutlookBarShortcut object represents an Outlook shortcut on your Outlook Bar.
Use this object to inquire about the target a shortcut points to. You make the inquiry
by using the Target property. The Target property returns a Variant object; the data
type of this Variant is determined by the target for the shortcut. If the shortcut points
to a folder, the data type is MAPIFolder. If the shortcut points to a file system folder,
the data type is Object. If the shortcut points to a URL or a file system path, the data

Chapter 8 Outlook 2000 Development Features

type is String. You can see how to use this object in the Account Tracking applica­
tion we examine in Chapter 10.

Selection Collection Object
To provide your applications with the ability to identify what the user has selected
in an Explorer window in Outlook, the Outlook object model has added a Selection
collection object. The Selection object contains the set of items that a user has selected
in the user interface. For example, you could use this collection to validate that the
user has selected the proper item to enable your application to continue. You could
also use it to dynamically add menu options and toolbar buttons when a user selects
a certain item.

You must use the Item method with the object's index as a parameter to retrieve
a specific object in the collection. The object is returned to you as an Object vari­
aole, so if you want to call a specific method or property on the object, you should
coerce the object to a specific data type first.

This collection supports the Count property, which returns the number of items
selected in a collection. You could use the Count property to determine the number
of items the user has currently selected.

NOTE To see the Selection collection in action, refer to the enhanced Account
Tracking application in Chapter 10.

Explorers Collection
An Explorer object represents the window in which the contents of a folder are dis­
played. To make it easier .for you to access these Explorer windows in your applica­
tion, Outlook provides an Explorers collection below the Application object. The
Explorers collection contains all the Explorer objects in your application, even those
that are not visible.

The Explorers collection also contains the Count property, which you can use
to fmd out how many Explorer objects are in the collection. The Count property could
be used to identify any open Explorers that need to be closed before exiting your
application. This is important because Outlook cannot terminate properly when
Explorers are running.

The Explorers collection contains two methods, Add and Item. By using the Add
method, you can create a new Explorer object and specify the folder to display in
that Explorer's·window. The Add method takes two parameters. The first parameter
is either a MAPIFolder object or a string containing a path to the folder. The second
parameter is an optional Long data type that specifies the display mode for the folder.
This value can be olFolderDisplayNormal (0), olFolderDisplayFolderOnly 0), or
olFolderDisplayNoNavigation (2). The Add method returns the newly created Ex­
plorer object. This new Explorer object is initially hidden, and you ml,lst call the
Display method to reveal it. The code on the following page shows you how to use
the Add method.

255

Part II Building Outlook Applications

256

Dim oExplorers As Outlook. Explorers
Dim oExplorer As Outlook. Explorer

Set oFolder = oNS.GetDefaultFolderColFolderContacts)
Set oExplorers = oApp.Explorers
Set oExplorer = oExplorers.AddCoFolder. olDisplayNormal)
oExplorer.Display

The Item method of the Explorers collection is used to access an individual
Explorer object in the collection by passing the object's index. The following example
shows you how to do this:

Set oFolder = oNS.GetDefaultFolderColFolderContacts)
Set oExplorers = oApp.Explorers
Set oExplorer = oExplorers.ItemCl)
MsgBox oExplorer.Caption

The Explorers collection includes, a single event, NewExplorer, which you use
for tracking a newly created Exp16ter,dbjectthat has not been made visible.yet. This
event passes you an Explorer object that is being opened or created. The following
code shows you how to use the NewExplorer event:

Dim WithEvents oExplorers As Outlook.Explorers

Set oExplorers = oApp.EXplorers
Privat~ Sub oExplorers_NewExplorerC _
ByVal Explorer As Outlook.Explorer)

MsgBox "You opened or added a new Explorer with the caption: " _
& Explorer.Caption

End Sub

Inspectors Collection
An Inspector object represents the window in which an Outlook item is displayed.
To make it easier for you to find out which Inspector objects are available in your
application, the Outlook object model added an Inspectors collection. This collec­
tion can contain Inspector objects that are not currently visible to the user as well as
Inspector objects that are. The Inspectors collection is accessed from the Application
object in Outlook.

The Inspectors collection contains one property, the Count property. This prop­
erty returns to you the number of Inspector objects in the collection.

The Inspectors coliection also contains two methods, Add and Item. The Add
method takes one parameter, which is a valid Outlook Item object, to display in the
new Inspector. This method returns an Inspector object. You must call the Display
method on the returned Inspector object to display the item. The following code
example shows you how to use this method:

Chapter 8 Outlook 2000 Development Features

Set oFolder = oNS.GetDefaultFolder(olFolderTasks)
Set oItern = oFolder.lterns.GetFirst
Set oInspectors = oApp.lnspectors
Set oInspector = oInspectors.Add(oItern)
oInspector.Display

The Item method allows you to access an Inspector object in the collection. You
must pass the numeric index of the Inspector object you want to retrieve.

Links Collection and Link Object
Because Outlook 98 journals are not supported in Exchange Public Folders, users are
not allowed to share their journal information with others. To make group tracking
activities possible, Outlook 2000 supports it feature named Activity Tracking. Activ­
ity Tracking is the ability to associate, with a contact, items and documents so that
Outlook can search folders that you specify for any linked items. To enable Activity
Tracking, open a contact and select the Activities tab. A sample Activities contact is
shown in Figure 8-9.

Followup o-mail on proposal

Inbox
Sort Items
Sert Items
Calendar
Inbox

Figure 8-9. The Activities tab for a specific contact. Outlook will find all linked items
for a specified contact.

Outlook can search both private and public folders. To specify which folders
Outlook should search, right-click on the Contacts folder and select Properties. In the
Contact Properties dialog box, click on the Activities tab. On this tab, you'll see a list
of searchable folders you specified. You can also add new folders to the search cri­
teria as shown in Figure 8-10.

Your ability to use Activity Tracking would be limited if the Outlook object model
didn't support working with these links programmatically. For this reason, a Links
collection and a Link object have been added to the Outlook object model.

257

Part II Building Outlook Applications

258

Figure 8-10. TbeActivities tab/ora/older. From here, you can add new/alders/or
Outlook to search for linked items to the contacts in the/older.

The Links collection contains a set of Link objects that comprise other items
linked to a particular Outlook item. You can use the methods and properties of this
collection to add, delete, or count the number of links to the particular item.

The Links collection contains three methods: Add, Item, and Remove. The first
method, Add, creates a new Link object in the collection. You must pass to this method
the object that you want to link to, and currently that object must be an Outlook
Contact object. You would use the Links collection and the Add method, then, on
the mail items, task items, and other types of Outlook items. The following example
shows you how to use the Add method:

Dim oLinks As Outlook.Links
Dim oLink As Outlook.Link
Dim oContact As Outlook.Contactltem

Set oFolder = oNS.GetDefaultFolder(olFolderlnbox)
Set oMailltem = oFolder.ltems.Find("[Message Class] = 'IPM.Note'")
Set oLinks = oMailltem.Links
Set oContactFldr = oNS.GetDefaultFolder(olFolderContacts)
Set oItems = oContactFldr.ltems
Set oContact = oItems.GetFirst

oLinks.Add oContact
MsgBox "Added a link to the" & oContact.FullName & " contact on " _

& "the item" & oMailltem.Subject

The second method of the Links collection, the Item method, allows you to
quickly retrieve an item in the collection by using either its index or its name. The
following code shows you how to retrieve a Link object in the collection by using
the name of the contact that the link refers to:

Chapter 8 Outlook 2000 Development Features

Set oFolder = oNS.GetDefaultFolder(olFolderlnbox)
Set oMailltem = oFolder.ltems.Find("[Message Class]
Set oLinks = oMailltem.Links
Set oLink = oLinks.ltem("Don Hall")

'IPM.Note'")

MsgBox "The link refers to the" & oLink.Name & " contact on " _
& "the item" & oMailltem.Subject

The third method supported in the Links collection is Remove. This method
allows you to remove a link from the collection by specifying the index of the Link
object. The next bit of code shows you how to fmd and remove a specific Link object
in the collection. Note that a user or application can associate an Outlook item with
multiple contact items as links. This means that a single task could be linked to more
than one contact.

Set oFolder = oNS.GetDefaultFolder(olFolderlnbox)
Set oMailltem = oFolder.ltems.Find("[Message Class]
Set oLinks = oMailltem.Links
Counter = 1
For Each oLink In oLinks

If oLink.Name = "Don Hall" Then
oLinks.Remove Counter
oMailltem.Save

End If
Counter Counter + 1

Next

MsgBox "Removed the Don Hall link object."

'IPM.Note"')

The Link object contains properties but no methods. Of all the properties, you
will probably use only three in your applications: Item, Name, and Type. The Item
property returns the Outlook item that is represented by the Link object. For Out­
look 2000, this property always returns an Outlook Contact item, which you can then
manipulate in your code. The following example shows you how to use the Item
property:

Set oFolder = oNS.GetDefaultFolder(olFolderlnbox)
Set oMailltem = oFolder.ltems.Find("[Message Class]
Set oLinks = oMailltem.Links
Set oLink = oLinks.ltem(l)
Set oContact = oLink.ltem
MsgBox "The contact name is " & oContact.FullName

, I PM. Note "') .

The Name property returns the name of the contact that the Link object is rep­
resenting. This name is the display name for the contact. The Type propertY returns
the Outlook item type represented by the Link object. As of publication, the only valid
type is olContact.

259

Pari II Building Outlook Applications

PropertyPages Collection,
PropertyPage Object, and PropertyPageSite Object
For information on the PropertyPages collection, the PropertyPage object, and the
PropertyPageSite object, refer to the Account Tracking application enhancements in
Chapter 10.

Methods, Properties, and Events for Existing Objects

260

Outlook 2000 adds more capabilities to existing objects in the Outlook object
model. These enhancements include new methods and properties for the objects
as well as a host of new events that your applications can use to receive notifi­
cations from Outlook.

Application Object
Recall that the Application object is the topmost object in the Outlook object model,
so you must create an Application object before you create any other objects. Let's take
a look at some of the methods, properties, and events of the Application object.

AcfiveWindow method
The ActiveWindow method returns the object that represents the topmost Outlook
window on the desktop. The return type for this object can be either an Explorer
object or an Inspector object. If there is no currently open Explorer or Inspector object,
this method returns nothing. Use this method to determine which object the current
user is viewing and, if necessary, change the state of that object. The following code
shows you how to use the Active Window method:

Set oWindow = oApp.ActiveWindow
If Not (oWindow Is Nothing) Then

If oWindow.Class = olExplorer Then
strTop = "Explorer"

ElseIf oWindow.Class = olInspector Then
strTop = "Inspector"

End If
MsgBox "The topmost object is a(n) " & strTop & " object."

End If

AnswerWizard property
The AnswerWizard property returns an AnswerWizard object for the application. If
you want more information on the AnswerWizard object model, see the Office 2000
documentation.

COMAddlns property
The COMAddlns property returns a COMAddIns collection that represents all COM
add-ins currently loaded and connected in Outlook. You can use this collection to
quickly access COM add-ins and their exposed objects. The following example shows
you how to use the COMAddlns property:

Chapter 8 Outlook 2000 Development Features

Dim oCOMAddins As Office.COMAddIns
Dim oCOMAddin As Office.COMAddIn

Set oCOMAddins = oApp.COMAddIns
strName = vbLf
For Each oCOMAddin In oCOMAddins

strName = strName & vbLf & oCOMAdd1n.ProgId
Next
MsgBox "The COM Add-Ins ProgIDs in Outlook are: "

& strNameExplorers and Inspectors properties

Explorers and Inspectors properties
The Explorers property returns the Explorers collection. The Inspectors property
returns the Inspectors collection. For more information on these collections, see the
"Objects and Coi!ections" section earlier in this chapter.

l.anguageSettings property
The LanguageSettings property returns a LanguageSettings object that you can use
to retrieve language-related information about Outlook. For example, you can retrieve
the install language, the user interface language, and the help language fox Outlook.
For COM add-ins, you cah use this information to load the proper resource string for
a user interface .according to the language of the user.

ProductCode property
The ProductCode property returns a string that is the globally unique identifier (GUID)
for the Outlook product. If you need to identify Outlook in your COM add-ins or
applications, this GUm can be used to identify it.

ItemSend event
The ItemSend event fires whenever an attempt is made to send an item by using
Outlook. This event returns an object, which is the item the user or application is trying
to send, and a Boolean named Cancel. If you set Cancel to True, Outlook will stop
the send action and leave the Inspector open for the user. If you do cancel the send,
you should display an explanation in a message box so that users know what they
need to add or delete to successfully send the item. The following code checks to
see whether a user added a subject and a category to his message before he is able
to send the item. Note that the ItemSend event does not fire when a user posts an
item to a folder. In this case, you should monitor the folder for the ItemAdd event.

Dim WithEvents oApp As Outlook.Application

Private Sub oApp_ItemSend(ByVal Item As Object. Cancel As Boolean)
If Item.Subject = "" Then

MsgBox "You must add a subject!"
Cancel = True

ElseIf Item.Categories = "" Then
(continued)

261

Pari II Building Outlook Applications

262

MsgBox "You must have a category!"
Cancel = True

End If
End Sub

NewMaii event
The NewMail event fires when a new item is received in the Inbox of the current user.
This event does not pass any parameters. Note that there is no one-to-one correspon­
dence between the number of arriving messages and the number of times this event
fires; the Inbox could receive many new messages but Outlook might fire this event
only once. The following code shows you how to use the NewMail event:

Private Sub oApp_NewMail()
MsgBox "You have received new mail!"

End Sub

OptionsPagesAdd event
For information on the OptionsPagesAdd event, see the Account Tracking applica­
tion in Chapter 10.

Quit event
The Quit event is fired when Outlook begins to close. Using this event, you can persist
any settings or other information as well as destroy any objects that are left open by
your application.

Reminder event
The Reminder event is fired immediately before a reminder is displayed. This event
passes one parameter, which is an object that corresponds to the item firing the
reminder. You cannot cancel this event, so you are notified only that a reminder is
going to appear. The following example shows you how to use the Reminder event:

Private Sub oApp_Reminder(ByVal Item As Object)
MsgBox "The following item" & Item.Subject & " has" _

I "fired a reminder."
End Sub

Startup event
The Startup event is fired after Outlook and any of its COM add-ins have been loaded.
You can use this event to initialize VBA programs you created with Outlook.

NameSpace Object
The NameSpace object has been enhanced incrementally in Outlook 2000. The main
enhancements you are mostly likely to use in your applications are the ability to
dynamicallycadd a .pst file to the NameSpace object, and the ability to create cus­
tom property pages for folders. Let's examine more closely the additions to the
NameSpace object.

Chapter 8 Outlook 2000 Development Features

Sync Objects property
The SyncObjects property returns the SyncObjects collection for the NameSpace object.
For more information on the SyncObjects collection, see the "Object and Collections"
section earlier in the chapter.

AddStore method
The AddStore method allows you to dynamically connect an existing . pst file to
Outlook and to create a new .pst file. This method takes one parameter, which is a
path to the .pst file you want to access or create. If you pass in a path for the .pst
file and the .pst file doesn't exist, Outlook will create the file. You can then retrieve
the information in the . pst file by using the Outlook object model. The following
example shows you how to use the AddStore method to access an existing .pst file
on the hard drive:

oNS.AddStore "c:\my new store.pst"

'Retrieve a folder from the newly connected store
Set oFolder = oNS.FoldersC"Personal Folders").FoldersC"My Folder")

'Oisplay the folder
oFolder.Oisplay

OptionsPagesAdd event
For more information on this event, please see the enhanced Account Tracking appli­
cation in Chapter 10.

Explorer Object
One of the most frequent requests by Outlook developers is to have more granular
control over the way Explorers and Inspectors are graphically displayed on the screen.
With Outlook 2000, you can not only control the location of your Explorer and
Inspector windows but also receive events from these objects that describe what the
user is doing with the user interface. Let's take a look at the additions to the Explorer
object in Outlook 2000.

Caption property
The Caption property returns the string for the Explorer window text. This property
is read-only.

CurrentView property
The CurrentView property returns or sets the view for the Explorer. When you set
this property, you will cause the BeforeViewSwitch and ViewSwitch events to fire on
the Explorer object. Since Outlook supports only a single initial view of a folder, you
can use this property to customize per-user settings for the initial view. To do this,
use the FolderSwitch event for the Explorer object. When this event fires, check the
current folder and current user. Based on the current folder and current user, set the

263

Part II Building Outlook Applications

264

Current View property appropriately. The following code snippet shows an example
of this functionality:

Dim WithEvents oExplorer As Outlook.Explorer
Private Sub oExplorer_FolderSwitch()
On Error Resume Next

If oExplorer.CurrentFolder.Class = olFolder Then
If oExplorer.CurrentFolder.Name = "Contacts" Then

If oNS.CurrentUser.Name = "Thomas Rizzo" Then
oExplorer.CurrentView = "By Category"

End If
End If

End If
End Sub

Height property
The Height property returns ot sets the height of the Explorer window in pixels. You
can use this property to dynamically change the height of your Explorer window.

'-eft property
The Left property returns or sets the distance from the left edge of the screen to the
left edge of the Explorer window in pixels.

Panes property
The Panes property returns the Panes collection for the Explorer object. For more
information on the Panes collection, see the "Objects and Collections" section ear­
lier in the chapter.

Selection propertf
The Selection property returns a Selection collection, enabling you to access the items
currently selected by the user. For more information on the Selection collection, see
the "Objects and Collections" section earlier in the chapter.

Top property
The Top property returns or sets the distance, in pixels, from the top edge of the screen
to the top edge of the Explorer window.

Width property
The Width property returns or sets the width of the Explorer window in pixels. The
next code sample uses the Top, Width, Left, and Height properties to move an Explorer
window around the screen. Notice how the code first sets the WindowState property
to olNormalWindow. Outlook will return an error if the window is already maximized
or minimized when you try to set these properties.

oExplorer.WindowState = olNormalWindow
oExplorer.Top = 100
o~XRlorer.Width = 200
oExplorer.Left = 300
oExplorer.Height = 100

Chapter 8 Outlook 2000 Development Features

WindowState property
The WindowState property returns or sets the window state. The possible values for
this property include olMaximized (1), olMinimized (2), and olNormalWindow (3).

Activate method
The Activate method activates an Explorer object by bringing it to the foreground and
giving it keyboard focus. You can use this method to highlight a specific Explorer or
Inspector window for your application.

'sPaneVisible method
The IsPane Visible method returns a Boolean that specifies whether a particular pane
is visible in the Explorer window. You pass in the desired pane as a parameter to
this method. The possible values you can pass are olOutlookBar (1), olFolderList (2),
and olPreview (3). Use the IsPaneVisible method in conjunction with the Show Pane
method, which is described next.

ShowPane method
The ShowPane method either hides or displays a specific pane in your Explorer
window. You must pass to this method the pane you are interested in as well as a
Boolean parameter that is either set to True to display the pane or set to False to hide
the pane. The following code example shows you how to use the IsPaneVtSible method
with the ShowPane method to hide and display panes in an Explorer window:

'Flip the settings that the user already has
boolFolderList = oExplorer.IsPaneVisible(olFolderList)
boolOutlookBar = oExplorer.IsPaneVisible(olOutlookBar)
boolPreviewPane = oExplorer~IsPaneVisible(olPreview)

oExplorer.ShowPane olFolderList. Not (boolFolderList)
oExplorer.ShowPane olOutlookBar. Not (boolOutlookBar)
oExplorer.ShowPane olPreview, Not (boolPreviewPane)

Activate event
The Activate event is fired when an Explorer or an Inspector window becomes the
active window. You can use this event to see whether a specific Explorer or Inspec­
tor window is made the active window and then customize the toolbar for that win­
dow. The following code shows you how to use this event:

Dim WithEvents oExplorer as Outlook. Explorer

Private Sub oExplorer_Activate()
MsgBox "This Explorer window has become active!"

End Sub

BeforeFolder$witch event
The BeforeFolderSwitch event occurs before the Explorer navigates to the new folder.
This event passes to you, as an object, the folder the user is trying to navigate to as

265

Pari II Building Outlook Applications

266

well as a Boolean parameter named Cancel. To keep the user on the current folder
and prevent the user from navigating to the new folder, set Cancel to True. If the user
navigates to a folder in the file system, the BeforeFolderSwitch event will not pass
an object for that folder. For an example of this event in action, look at the Account
Tracking application in Chapter 10.

BeforeView$witch event
The BeforeViewSwitch event fires when a user tries to switch views. This event
passes the name of the view the user is trying to change to as well as the Boolean
variable Cancel. To cancel the view change and maintain the user's current view,
set the Cancel variable to True. The following code sample shows you how to use
the Before ViewSwitch event:

Private Sub oExplorer_BeforeViewSwitch(_
ByVal NewView As Variant. Cancel As Boolean)

If NewView = "By Category" Then
Cancel = True

End If
End Sub

Deactivate event
This event is fired when the Explorer or Inspector window is no longer the active
window. This event does not pass any parameters.

Folder$witch event
This event fires after a user successfully switches folders. This event does not pass
any parameters.

$electionChange event
This event is fired after the user selects a different item in the current view. This
event does not pass any parameters. The next code sample shows you how to use
this event with the Selection collection:

Private Sub oExplorer_SelectionChange()
On Error Resume Next
Set oSelection = oExplorer.Selection
strName = vbLf
For Each oltem In oSelection

strName = strName & vbLf & oltem.Subject
Next
MsgBox "New Selection: " & strName

End Sub

View$witch event
This event fires when the user successfully changes the view in the Explorer win­
dow. This event does not pass any parameters.

Chapter 8 Outlook 2000 Development Features

Close event
This event fires when the Explorer window is being closed. Most likely, you will listen
for this event only when developing COM add-ins that need to correctly destroy
Explorer objects or the variables that reference them.

Inspector Object
Since the properties, methods, and events for the Inspector object we have seen are
the same as their Explorer object counterparts, I'm not going to dive into the details
of these. I have listed them, however, below. For more information about them,
reference the descriptions of the additions to the Explorer object.

• Caption property • Activate method

• Height property • Activate event

• Top property • Deactivate event

• Width property • Close event

• WindowStareproperty

Folders Collectif;»n
The Folders collection contains three new events that you can use in your applica­
tions: FolderAdd, FolderChange, and FolderRemove.

FolderAdd event
The FolderAdd event fires when a folder is added to the Folders collection. This event
passes the added folder as a MAPIFolder object. You cannot cancel this event. You
might want to hook into this event to prompt the user to add the folder to a specific
group on the Outlook Bar. The following code uses the FolderAdd event:

Dim WithEvents oFolders As Outlook.Folders

Set oFolders = oNS.Folders("Mailbox - Thomas Rizzo").Folders

Private Sub oFolders_FolderAdd(_
ByVal Folder As.Outlook.MAPIFolder)

MsgBox "You have added the" & Folder.Name & " folder!"
End Sub

FolderChange event
The FolderChange event fires when something is changed in the specified Folders
collection, such as deleting all the items in the folder. This event passes the changed
folder as a MAPIFolder object, but it . does not pass the actual folder property that was
changed. You have to figure out which property was changed programmatically. You
can't cancel this event. The code on the following page shows you how to use the
FolderChange event.

267

Part II Building Outlook Applications

268

Private Sub oFolders_FolderChange(_
ByVal Folder As Outlook.MAPIFolder)

MsgBox "You changed the" & Folder.Name & " folder!"
End Sub

FolderRemove event
The FolderRemove event fires when a folder is removed from the collection. It does
not pass any parameters, so if you need to know which folder was removed, your
code has to figure this out. Outlook will only notify you that some folder was removed.
You can't cancel the FolderRemove event.

MAPIFolder Object
The MAPIFolder object provides three interesting properties: Web ViewAllowNavigation,
Web ViewOn, and Web ViewURL. All three are described in Chapter 10 in the context
of the Account Tracking application enhancements.

Items Collection
Recall that the Outlook Items collection is a collection of objects in a particular
folder. The type of object the Items collection contains depends on the items in the
folder. For example, in your Calendar folder, the Items collection will most likely
contain AppointmentItem objects. The following sections highlight the enhance­
ments to the Items.

ItemAdd event
The ItemAdd event fires when a new item is added to the folder. This event returns,
as an object, the item added to the collection for the folder. Remember that before
you attempt to call methods or properties on a returned object, you should check
which type of object was returned. The type of object returned might not be the type
you expected and could cause unwanted behavior in your application. For an example
of how to use this event, see the Account Tracking application in Chapter 10.

ItemChange event
The ItemChange event is fired when an item in the collection is changed in any way.
The event passes to you, as an object, the item that was changed; it does not pass
you the changed property. This means that you use your code to determine what was
changed on the item. For an example of using this event, see the Account Tracking
application later in Chapter 10.

ItemRemove event
The ItemRemove event is fired when an item is removed or deleted from the collec­
tion. This event does not pass any parameters. This means that your co<;le must fig­
ure out which items were deleted from the collection.

;."

Chapter 8 Outlook 2000 Development Features

Characteristics of Item Types
The following section describes some characteristics of all the item types in Outlook,
such as the PostItem, the MailItem, and the AppointmentItem objects. The events
we'll discuss can be used with Visual Basic!VBA and from VBScript, so the examples
are written using VBScript.

Links Property
The Links property returns the Links collection for the object. For more information
on the Links collection, refer to the "Methods, Properties, and Events for Existing
Objects" section earlier in this chapter.

AttachmentAdd Event
The AttachmentAdd event fIres after an attachment has been added to an Outlook
item. This event passes the attachment as an Attachment object. Once the object is
passed, you can perform tasks, such as checking the attachment for viruses, before
the user sends the item. You cannot, however, cancel or stop the user from adding
an attachment to the item. The following VBScript example shows you how to use
this event:

Sub Ite~AttachmentAdd(ByVal NewAttachment)
if NewAttachment.Type = 1 then
item.save
if Item.Size > 10000 then

msgbox "Sending a message with an attachment this large" _
& " may take a long time."

end if
end if

End Sub

AttachmentRead Event
The AttachmentRead event fires after an attachment has been opened for reading and
passes the attachment as an Attachment object. You can use this event to perform
certain actions when the user opens the attachment, such as making a backup copy
of the attachment or marking this attachment as checked out for a document man­
agement solution. The following example shows you how to prompt the user to save
changes when the user opens an attachment to read it:

Sub Ite~AttachmentRead(ByVal ReadAt1;achment)
if ReadAttachment.Type = 1 then

msgbox "Make sure to save any changes that "
l "you make to the attachment."

end if
End Sub

269

Part II Building Outlook Applications

270

BeforeAttachmentSave Event
The BeforeAttachmentSave event fires before an attachment is saved with the item.
Since this event is supported in both VBScript and Visual Basic/VBA, you must fol­
low the appropriate syntax. When you use this event from VBScript behind your
Outlook form, the BeforeAttachmentSave event passes the attachment that is trying
to be saved as an Attachment object. If you're using Visual Basic or VBA, this event
passes both the attachment as well as a Boolean parameter named Cancel. To abort
the save, set Cancel to True. The follOwing two code examples show you a VBScript
version and a Visual Basic/VBA version of this event, respectively. Notice how the
VBScript version is a function and the Visual Basic/VBA version is a subroutine.

Function Iteffi-BeforeAttachmentSave(ByVal SaveAttachment)
If SaveAttachment.Type = 1 then

If SaveAttachment.FileName = "sales.mdb" Then
MsgBox "You cannot save this file!"
Iteffi-BeforeAttachmentSave = False

End If
End if

End Function

Private Sub oMailItem_BeforeAttachmentSave(_
ByVal Attachment As Outlook.Attachment. Cancel As Boolean)

If Attachment.Type = 1 then
If Attachment.File~ame = "sales.mdb" Then

MsgBox "You cannot save this file!"
Cancel = True

End If
End if

End Sub

BeforeCheckNames Event
The BeforeCheckNames event fires before Outlook starts resolving names for the
recipients of an item. You can use this event to check the names of the recipients
from another data source such as a database. This event, like the BeforeAttachmentSave
event, has two different syntaxes depending on whether you are calling the event
from VBScript or Visual Basic/VBA. In VBScript, this event is implemented as a func­
tion that you can cancel by setting the name of the function to False. In Visual
Basic/VBA, you are passed a Boolean parameter named Cancel. To cancel the name
resolution, you set Cancel to True. The two following examples show you the VBScript
version and the Visual Basic/VBA version:

Function Iteffi-BeforeCheckNames()
'You can use this event to cancel Outlook's resolution
'And put your own resolution in

Chapter 8 Outlook 2000 Development Features

Item_BeforeCheckNames False
End Function

Private Sub oMailItem_BeforeCheckNames(Cancel As Boolean)
'You can use this event to cancel Outlook's resolution
'And put your own resolution in
Cancel = True

End Sub

VBA SUPPORT IN OUTLOOK 2000
Outlook 2000 supports VBA. Now some of you reading this book might be thinking
that your Outlook forms already support VBA, but this is not the case. In fact, you
still need to write VBScript behind your Outlook forms. The VBA support in Outlook
provides a way to customize the Outlook environment using the Outlook object model
and all the events just discussed without using a separate development tool such as
Visual Basic.

VBA Architecture

When writing your VBA applications in Outlook, you must contain your code in a
VBA project. Each project is associated with a particular user. This means that differ­
ent users on the same machine can customize Outlook differently using VBA. These
projects can contain code modules or user forms. (User forms are different from
Outlook forms.) To share information among these VBA projects, you must export
your file and have the receiving user import your file into her VBA project.

Creating a VBA Application

The first step in creating your VBA application is to launch the Visual Basic Editor in
Outlook. You can find the Visual Basic Editor on the Tools menu, via the Macro option.
The Visual Basic Editor is shown in Figure 8-11. Once you are in the editor, you can
add class modules, code modules, and user forms, depending on the needs of your
application. You can even write code that responds to Outlook events by declaring
your variables using the WithEvents keyword.

The Outlook object model is automatically available to your VBA application.
After you finish writing your macro in the editor, you can explicitly run it or create
a button on your Outlook toolbar that runs the macro when clicked. Figure &-12 shows
a sample application that converts incoming mail to a specific message class using a
VBA macro and the Outlook object model.

271

Pari II

Figure 8-11. The Visual Basic Editor in Outlook 2000. From here, you have the full
power of VBA for your application.

Set oNS = oApp. GetNaruespace ("HAP!")
Set oroider = oN5.GetDefaultFolder (olFolderlnbox)
Set alterns = oFoider. Items

Private Sub oIte:ms_IternAdd(ByVal Item As Object)
On Error Resume Next
Dim oMailltern As Outlook.HailItern
If Item.Class = ollliail Then

Set oMailItem = Item
oMailICem. MessageC lass = "IPH.Note. Tracking Form"
o!lailltern. Save

End If

Figure 8-12. The sample mail conversion code in the Visual Basic Editor.

Choosing What to Write: COM Add·ln or VBA Program?

272

By now you must be wondering whether you should write VBA programs or COM
add-ins to customize your Outlook environment. While both technologies have their
merits, I believe that if more than one user is going to run your program in an Out­
look client, you should write a COM add-in. COM add-ins are easily distributed, and
you can control a user's ability to run them.

If you want to customize only the Outlook client, writing a quick VBA pro­
gram is easier than writing a full-blown COM add-in. To deploy your application
in VBA, however, users must import the VBA file into their Outlook client, which
is not the best deployment method. I predict that if you use COM add-ins many users
will be installing your application.

Chapter 9

Outlook Team
Folders Wizard

The Microsoft Outlook Team Folders Wizard, an Outlook 2000 add-in, shipped shortly
after the release of Outlook 2000. The Outlook Team Folders Wizard provides a set
of turnkey collaborative applications that take advantage of Outlook 2000 features
and Microsoft Exchange Server public folders. Later in this chapter, we'll take a look
at the Outlook 2000 development features that the Team Folders Wizard takes advantage
of. First, we'll look at the features that the Team Folders Wizard provides for users
who create collaborative applications.

FEATURES OF THE TEAM FOLDERS WIZARD
The Outlook Team Folders Wizard provides the following six applications, called
folder templates, that users can quickly employ as a basis for their solutions. Users
can use these templates directly from the Team Folders Wizard.

• Discussion Forum

• Document Library

• Team Calendar

• Team Contacts

• Team Project

• Team Tasks

273

Part II

274

Outlook

The Team Project application consists of the other five templates. If you want
to quickly learn what these five templates can do, install Team Folders, run Wizard
setup, create a Team Project application, and scroll through its features.

Figure 9-1 shows how to select a template from the Team Folders Wizard. Once
the user selects the template for her application, she can type the title of her appli­
cation into the space provided. Now the interesting features of the Team Folders
Wizard kick in. Namely, the user can select the Exchange Server location for her Team
Folders application. The user will probably select a public folder for this location
because she wants to share the application with others.

Figure 9-1. Selecting a template/rom the Team Folders Wizard. You can extend the
built-in templates or add new ones, as you'll see later in the chapter.

After selecting the location, the user needs to select a Web location on which
the HTML files for the Team Folders application will reside. Yes, you read that sen­
tence correctly. The Team Folders Wizard requires you to publish some files to a Web
server. If you're only testing your custom application or evaluating the Team Folders
Wizard, you can publish your files to your local machine instead of to a Web server
by typing something like c:ltemp/ in the Web Page Destination box. Remember that
if you publish the files to your local drive, it's going to be hard for anyone else to
use the application, unless of course you want to share out your hard drive to every­
one else. Figure 9-2 illustrates the step of selecting where to publish your files.

The final step of the wizard allows the user to select the team members for the
application using the Global Address List (GAL) in Exchange Server. This step, shown
in Figure 9-3, also allows a user to set the permissions for team members and the
default permissions for non-team members.

Once you've completed this step, the Team Folders Wizard will create the folder,
copy the appropriate files to both the folder and Web server, and allow the user
creating the folder to start administering his application. As. an option, you can have
the Team Folders Wizard invite the team members to join the newly created Team
Folders application. When a user accepts this invitation, Outlook adds to that user's
Outlook bar a shortcut to the Team Folders application.

Chapter 9 Outlook Team Folders Wizard

Figure 9-2. Selecting the Exchange Seroer location for the Team Folders application
and the Web server that will publish the HTMLflles.

Figure 9-3. The Team Folders Wizard allows users to select team members in their
application and set the permissions those team members will have.

ARCHITECTURE OF
THE TEAM FOLDERS WIZARD

Now that we've seen how the Team Folders Wizard works, let's take a look at the
architecture that comprises both the wizard and the applications it deploys. Under­
standing this architecture will help you build new templates as well as extensions to
the wizard.

As stated earlier, the Team Folders Wizard is an Outlook 2000 COM add-in.
Therefore, when you click on the File menu and select New Team Folders, you're
actually instantiating a COM add-ill. One neat feature· of this COM add-in is that it
loads on demand. When Outlook starts, you don't have to wait for the COM add-in
to load; the add-in loads only when you sele.ct the New Team Folders menu item.
Figure 9-4 depicts the registry entries for the Te~m Folders COM add-in.

275

Part II Building Outlook Applications

276

http,//lmonot/TFAPOS
REG..SZ Microsoft Oltlook 21XXl Teem Folden: WliMl'd
REG..5Z outlook2OOl Team Foiders WIz.-d(9.Q,Q,3211)
REG..5Z 1033
REGj)WORD Oxooocom (9)
REG_5Z
REG..SZ e:\prclJ'an Fnes\Micl'05oft Off;;" ,\Offk.\TFI ~lQ3:l\tfMuil
REG_D'NORD OxOOOOOXlO CO)
I1EG..5Z
REGJjZ C\WMT\ProfI1e5\thomrlz\lOCAL.Srvl\TelJll\rad74ECA.tmp

Figure 9-4. The Team Folders Wizard is implemented as a COM add-in in Outlook
2000. The required registry entries for all COM add-ins are part of the Team Folders
Wizard registry entries.

The Team Folders applications, which are deployed by the wizard, are not COM
add-ins. Since we haven't seen a deployed Team Folders application yet, let's look
at a completed Team Project application. Figure 9-5 shows the home page of the Team
Project application, and Figure 9-6 shows the Team Calendar page in the Team Pro­
ject application.

Tom's Team is finally off the ground! This site is dedicated to providing you with the
latest infonnation about our team activities!

Figure 9-5. The home page for the Team Project application.

Chapter 9 Outlook Team Folders Wizard

Figure 9-6. The Team Calendar page for the Team Project application.

NOTE The Team Project application is hosted in the right-hand pane of
Outlook 2000. Your deployed Team Folders applications are actually folder home
pages in Outlook 2000. This is why you need a Web server to place the files for
the Team Folders application.

You might be wondering whether you can simplyhost the deployed Team Fold­
ers applications directly inside Microsoft Intemet Explorer, since they're HTML­
based. The answer is "no"-hosting the Web pages inside Outlook provides you
with many key benefits, such as full access to the Outlook object model and View
control. You'll see how you can directly access Outlook information inside Inter­
net Explorer later in this chapter.

In addition to the COM add-in and the folder home pages, we need to discuss
the rest of the architecture for the Team Folders applications. The logic for the Team
Folders applications is programmed inside the folder home pages using Microsoft
Visual Basic Scripting Edition (VBScript). Furthermore, the Team Folders applications
leverage two ActiveX controls that ship with the Team Folders Wizard: the Outlook
View control and the Outlook Permissions control.

The Outlook View control, which is similar to the Chart and Spreadsheet Office
Web Components, packages Outlook functionality into a reusable component. There­
fore, you can place the Outlook View control inside a Web page, Outlook form, or
even a Microsoft Visual Basic application. You'll learn more about the Outlook View
control a little later in the chapter. The Outlook Permissions control, shown in
Figure 9-7, provides a user interface that makes it easy for users to set permissions
on a folder.

277

Part II Outlook ADDncatmcl~'Ull

Figure 9-7. The Outlook Permissions control hosted inside the Administration page
for the Team Project application,

The final part of the Team Folders Wizard architecture is the ,pst files that con­
tain the application folders, When you select a template in the wizard, you're actu­
ally telling the wizard which ,pst file you want it to copy to the folder location selected
by the user, We'll see how ,pst files work with the Team Folders Wizard when we
create our own custom template later in the chapter,

EXTENDING THE TEAM FOLDERS WIZARD
A key requirement of tools like the Team Folders Wizard is to allow developers to
extend them in order to customize or replace features of the application. The Team
Folders Wizard provides a number of extensibility options for developers who want
to customize both the applications that the wizard deploys and the wizard itself.

Modifying the Provided HTML Pages

278

The first way you can change the applications in the Team Folders Wizard is to
modify the HTML pages that comprise the Outlook folder home pages, These HTML
pages are stored locally on the machine of the user who is creating Team Folders
applications, Therefore, you have to modify these HTML pages either before
deploying the Team Folders Wizard or on the desktop of every developer creating
Team Folders applications,

Chapter 9 Outlook Team Folders Wizard

The HTML pages that ship with the Team Folders Wizard contain HTML,
Dynamic HTML (DHTML), and VB Script code to perform the wizard's functions.
Before you begin modifying the HTML pages, be aware that applications such as Team
Project have six files you must modify in order to make the changes effective.

Why do you need to make the same changes in these six files? When you deploy
a Team Project application, you'll notice that it creates a number of subfolders named
Calendar, Contacts, and so on. Figure 9-8 shows this hierarchy of folders.

~ Sales Tracking (9)

~Temp
~TODO(6) ""-, ~Administration

< ~Calendar
!f? Contacts
fi¥! Discussion (11)

i' ~. Documents (2)
tpTasks

Journal

Links

Mission Statement

Goals

Policies

Welcome to the Tom's Team I
We hope that you find it useful. I
have any suggestions at all please
I3mail us at mailto'torflsteam or you
can post a suggestion in our
discussion folder. Enjoy! -Discussion 11 •• lIIl11l11fIllIllIllIllRli

D~uments

Figure 9-8. The hierarchy of folders created by the Team Project application.

The folder home page HTML file associated with the topmost folder is default.htm.
However, if you click on the Calendar folder, the folder home page HTML file asso­
ciated with it will be cal.htm. You might be wondering why the Calendar folder doesn't
just use the default.htm file to display its information. There is a good reason for this.
Imagine that instead of navigating to the Calendar folder by using the default links
at the top of the HTML page, a user opens the Outlook folder list and selects the
Calendar folder. The desired default behavior is to have the Team Project applica­
tion open but default to the Team Calendar section of the project. If default.htm was
associated with the Calendar folder, the Welcome page would be displayed.

The Team Project application is the only Team Folders application for which
you need to modify multiple HTML pages. The other applications contain only one
or two files that you need to modify, such as default.htm and admin.htm. Be aware
that you also might see hcal.htm or hcon.htm in the same folder, the help files for
the Team Folders applications. When a user clicks the Help button in the folder home

279

Part II

280

page, these help files will display help information in a Help window. You also might
want to modify these files in order to add help information to your custom functionality.

WARNU~G The HTML pages in the Team Folders applications might operate
differently than the HTML pages you're used to. For example, when you click
on the hyperlinks at the top of the default page for the Team Project application,
you might expect a separate HTML page to load, showing the contents of a folder
associated with the hyperlink you clicked. Instead, the HTML page changes
dynamically. The Outlook View control is also dynamically updated to point to
the newly selected Outlook folder.

Therefore, if you select Team Calendar in the default.htm file at the root of the
Team Project application, you won't navigate to the Team Calendar folder and
cal.htm. Instead, the buttons and user interface change dynamically in default.htm,
and the Outlook View control embedded in the page points at the Team Calen­
dar folder. Watch out for this when you modify the Team Project application.

Now that you've seen the HTML included with the Team Folders applications,
let's take a look at adding your own custom functionality to your applications. Since
these files are simply HTML files, you can add HTML buttons, DHTML, ActiveX con­
trols, and VBScript functions to them. The Outlook team designed the Team Folders
Wizard applications with developer customization in mind.

You will find hints about how HTML pages are constructed in the HTML files
themselves. For example, the default.htm file in the Team Folders Wizard applica­
tions includes an index for the HTML page that guides you to the portion of the code
you must modify in order to meet your needs, as shown in the next bit of code.
Suppose you bring up default.htm and search on Folder Name Properties (FNP). You
can then jump to the section that allows you to specify folder name properties. This
helps you both modify the HTML functionality as well as localize the content of your
Team Folders application to another language.

'############################
'Index for this page
'If you would like to make modifications to any part of this page, this
'index will help you locate the correct place in the code to make your
'changes
'LOC --> Localizable Areas
'FNP --> Folder Name Properties
'PCV --> Page Characteristic Variables
'NBP --> Navigation Bar Properties
'VTP --> View Tab Properties
'DVT --> Default View Tab
'TBB --> Navigation Buttons
'VCT --> View Control Tabs
'############################

Chapter 9 Outlook Team Folders Wizard

THE OUTLOOK VIEW CONTROL
Before we see an example of how to modify the Team Folders HTML pages, let's take
a closer look at the Outlook View control. This control ships as part of the Team
Folders Wizard, plus you can download it from Microsoft's Web site. The Team Folders
Wizard provides a reference to the Internet location of the Outlook View control as
part of the control's CodeBase property in the Team Folders HTML pages. For those
of you who don't want to look at the Team Folders HTML pages, the location is
http.';/activex. microsoft. com/ activex/controls/ office/ outlctlx. cab.

You must install Outlook on your local machine before you can take advantage
of the Outlook View control. This differs from the requirements for the Office Web
Components, which only mandate that you have a license for Office 2000 on the local
machine, not the actual Office application.

Programming the Outlook View Control

To take full advantage of the Outlook View control, you have to program it to meet
your needs. This section highlights the most common methods and properties you
can use with the View control. (For the full documentation for the Outlook View
control, see the companion CD.) This section will also show you how to program
the View control within HTML p~ges. You can also use and program the control in
other ActiveX containers, such as Visual Basic or Outlook forms. The techniques for
programming the View control in these other environments will be the same, except
you won't need to instantiate the control using an <OBJECT> tag.

Instantiating the Outlook View Control

Before you can program the Outlook View control, you need to instantiate it. You
can do this in one of two ways. You can use a tool such as Microsoft Visual InterDev
to insert the control, which will provide the <OBJECT> tag needed to create the View
control in your HTML application. Your other choice is to create the <OBJECT> tag
for the Outlook View control yourself. The following <OBJECT> tag shows your
Outlook calendar:

<OBJECT classid=CLSID:0006F063-0000-0000-C000-000000000046
codebase=''http://activex.microsoft.com/activex/controls/office/
outlctlx.CAB'ver=9.0.0.3203" height="84%"
id=oViewControl style="BORDER-BOTTOM: silver Ipx solid" width="100%")
<PARAM NAME="View" VALUE="")
<PARAM NAME="Folder" VALUE="Calendar")
<PARAM NAME="Namespace" VALUE="MAPI")
<PARAM NAME="Restriction" VALUE="")
<PARAM NAME="DeferUpdate" VALUE="0")</OBJECT)

281

Pari II Building Outlook Applications

282

No matter which technique you use to create the Outlook View control, you
need to understand the parameters that are passed to the control. Notice the ID for
the control in this code. The text you specify for the ID (in this case, oViewControl)
will dictate how you refer to the control in your code. The code also contains a
number of parameters: View, Folder, Namespace, Restriction, and DejerUpdate. Each
parameter corresponds to a property of the control that you can set either in the
<OBJECT> tag or programmatically. These properties are important for applications
that use the Outlook View control. (We're not going to discuss the Namespace property
below since-let's face it-the only namespace that the View control supports is
MAPI.) Let's take a look at the other properties now.

View Property
The View property specifies the Outlook view you want to use in the View control­
for example, Messages, Messages with AutoPreview, and DayIWeekiMonth. How do
you obtain the list of current views to display in the control? Unfortunately, the
Outlook object model doesn't have a Views collection that you can retrieve from.
Instead, there are two ways you can programmatically determine which views are
in the folder to which the View control is pointing.

The first way, depicted in Figure 9-9, is to grab the list of views from the Cur­
rent View control on the Outlook Advanced toolbar. To grab the list, you must
automate Outlook using the Outlook objecrmodel in your application. Get a refer­
ence to the Outlook Application object, which you can easily do by using the
OutlookApplication property of the View control.

Figure 9·9. Dynamically determining which views are available in a folder.

Chapter 9 Outlook Team Folders Wizard

You can then use the ActiveExplorer property to retrieve the active Explorer
object in Outlook. Next, you can use the Explorer object's Command Bars property
to retrieve the Office CommandBars collection. From that collection, you can retrieve
the Advanced CommandBar object. From that object in turn you can retrieve the
current View control. You can now retrieve all the views from that control. In the
follOWing code sample, the views are added to a drop-down list in an HTML page.
This allows you to force the Outlook View control on the Web page to change views
depending on which view you select from the list by using the View property on the
View control.

<!DOCTYPE HTML PUBLIC "-IIW3CIIDTD HTML 4.0 TransitionalIIEN">
<HTML><HEAD>
<META content="textlhtml; charset=unicode" http-equiv=Content-Type>
<META content="MSHTML 5.00.2919.3800" name=GENERATOR></HEAD)
<BODY>
<P>This sample gets the custom views in the folder.</p>
<P><SELECT id=selectl name=selectl() onChange="ChangeView()"
style="HEIGHT: 22px; WIDTH: 333px"></SELECT></P>
<P>
<OBJECT classid=clsid:0006F063-0000-0000-C000-000000000046 height="100%"
id=OVCtll width="100%" VIEWASTEXT><IOBJECT>
<!-- By passing no parameters to the View control. you can
make it display the default folder ft'. in -->

<SCRIPT language="VBScript">

Set oApplication = OVCtll.0utlookApplicatio~
Set oCurrentFolder = oApplication.activeExplorer.currentfolder
set oFolder = oCurrentFolder
strPath = strFullPath
MsgBox "The Current Folder Path is: " & strPath
OVCtll.Folder = strPath
Set oExplorer = oApplication.Explorers.Add(oFolder.0)
Dim oAdvancedCB
For each oCB in oExplorer.CommandBars

if oCB.Name = "Advanced" then
set oAdvancedCB = oCB
exit for

End If
next
set oCBCombo = oAdvancedCB.Controls("Current View")
for x= 1 to oCBCombo.ListCount

AddToSelect(oCBCombo.List(x»
next
'Set the default view for the control to the
'currently selected item in the drop-down list
ChangeView() (continued)

283

Part II

284

Sub AddtoSelect(strViewName)
set oOption = document.createElement("OPTION")
oOption.text=strViewName
oOption.value=strViewName
document.all.Selectl.add(oOption)

End Sub

'**
'Function StrFullPath()

'This function creates and returns the full path to the
'folder
'**
Function StrFullPath()

strFolderName = ""
Set olRoot = oCurrentFolder
While (olRoot <> "MAPI")

strFolderName = oCurrentFolder.Name & "\" & strFolderName
Set olRoot = oCurrentFolder.Parent
If olRoot <> "MAPI" Then

Set oCurrentFolder = oCurrentFolder.Parent
End If

Wend
strFullPath

end Function

Sub ChangeView()

"\\" & strFolderName

if selectl.value <> "" then
'Change the View control view
OVCtll.View = selectl.value

End If
End Sub

'Make sure to kill the Explorer or else
'Outlook will remain in memory!
set oExplorer Nothing
</SCRIPT>
</BODY></HTML>

The second way you can determine which views are contained in the folder is
to use Collaboration Data Objects (CDO). One drawback of this technique is that
although CDO can recognize the custom views in the folder, it cannot detect stan­
dard Outlook views such as the Messages view or the Messages with AutoPreview
view. This is because Outlook stores custom views as hidden messages inside the
folder while storing standard Outlook views in a central location. Therefore, CDO
doesn't offer you a good way to determine the default view names unless you hard­
code them into your application. As you'll see, you can determine whether the default
views should be used in the folder.

Chapter 9 Outlook Team Folders Wizard

The advantage of using CDO to detect views is that you can use this technique
from Active Server Pages (ASP) or other non-Outlook applications and can detect what
the default view is for the folder. Outlook provides no easy way to detect what the
folder owner has set as the folder's default view. The only caveat for detecting the
folder's default view is that this technique will work only in an online mode. If us­
ers are working with an offline version of your application, you won't be able to detect
the default view for the folder.

The following example of an HTML page containing some CDO code shows
the views contained in the folder:

<!DOCTYPE HTML PUBLIC "-IIW3CIIDTD HTML 4.0 TransitianalIIEN">
<HTML><HEAD>
<META content="textlhtml; charset=unicode" http-equ;v=Content-Type>
<META content="MSHTML 5.00.2919.3800" name=GENERATOR></HEAD)
<BODY>
<P)This sample gets the custom views in the folder. It first detects
the type of items in the folder and then displays some default views
for the type of folder as well as the custom yiews:</P>
<P><SELECT idselect=l name=select1 onCh.nge="ChangeView()"
style="HEIGHT: 22px; WIDTH: 333px~'></SELECT></P>

<P>The default view is currently: </P>

<P>
<OBJECT classid=clsid:0006F063-0000-0000-C000-0000000~0046 height="100%"
id=OVCtll width="100%" VIEWASTEXT><PARAM NAME="View" VALUE="">
<PARAM
NAME="Folder" VALUE="inbox">
<pARAM
NAME="Namespace" VALUE="MAPI"><PARAM NAME="Restriction"
VALUE= ><PARAM NAME="DeferUpdate" VALUE="0"></OBJECT>
<SCRIPT ID=clientEventHandlersVBS LANGUAGE=vbscript>

'**
'Inline code

'These lines of code are run when the browser reaches
'them when parsing the document. They set up the global
'variables that are needed throughout the application.
'**
const ActMsgPR-IPM_PUBLIC_FOLDERS_ENTRYID
const ActMsgPR-STORE_ENTRYID
const ActMsgPR-STORE_SUPPORT_MASK
const ActMsgSTORE_PUBLIC_FOLDERS
const ActMsgPR-DEFAULT_ENTRYID

Set oApplication = OVCtl1.0utlookApplication

&l:l66310102
&H0FFB0102
&H340D0003
&H00004000
&H36160102

(continued)

285

Part II Building Outlook Applications

286

Set oNS = oApplication.GetNamespace("MAPI"}
Set oCurrentFolder = oApplication.activeExplorer.currentfolder
strPath = strFullPath
OVCtll.Folder = strPath
'Log on to CDO
set oSession = oApplication.CreateObject("MAPI.Session"}
oSession.Logon "","",False,False
'Have Outlook get the EntryID for the folder
set oCurrentFolder = OVCtll.ActiveFolder
strEntryID = oCurrentFolder.EntryID
strStoreID = oCurrentFolder.StoreID
'Have CDO get the item
'You can try this code if EntryID, StoreID aren't workin~
'Set objStores = oSession.InfoStores
'For f = 1 to objStores.Count

Se~ objStore = objStores.Item(i}
szID = pbjStore.Fields.Item(ActMsgPR-IPM_PUBLIC_FOLDERS_ENTRYID}
lMask = objStore.Fields.Item(ActMsgPR-STORE_SUPPORT_MASK}
Err.Clear
If lMask And ActMsgSTORE_PUBLIC_FOLDERS Then

, STORE_PUBLIC_FOLDERS
strStoreID = objStore.ID

End if
'Exit for
'Next
set oFolder = oSession.GetFolder(strEntryID,strStoreID)
On Error Resume Next
'Figure out the folder type from PR-CONTAINER-CLASS
'This application understands only mail folders
strContainerClass = oFolder.Fields(&H36130~lE}.value
'Load up the default views for this content type
If strContainerCl~ss = "IPF.Note" Then

AddtoSelect("Messages"}
AddtoSelect("Messages with AutoPreview"}

End If
'Load up the custom views ... stored as hidden
'message~ with MsgClass
'IPM.Microsoft.FolderDesign.NamedView
'Get the HiddenMessages collection
Set oHiddenMsgs = oFolder.HiddenMessages
iCreafe a filter, but first ciear it
oHidd~nMsgs.Filter = Nothing
Set oFilter = oHiddenMsgs.Filter
oFil ter. Type '" "I PM. Mi crosoft. Fol derDes i gn. NamedVi ew"
'Scroll through and add hidden messages
For Each oHidden In oHiddenMsgs '

Addt~Select(oHidden.Subjecf}
Next
'Figure out the current default view for the folder

Chapter 9 Outlook Team Folders Wizard

'This may fail if it's an Outlook normal view
'If a custom view. say what it is
err.clear
On Error Resume Next
strViewEntryID = ""
strViewEntryID = oFolder.Fields(ActMsgPR-DEFAULT_ENTRYID).Value
If strViewEntryID = "" Then

'It's a standard butlook view
def~ultview.innerHTML = "Built-in Outlook View"

Else
set oDefaultView = oSession.GetMessage(strViewEntryID.null)
defaultview.innerhtml = oDefaultView.Subject

End If

Sub AddtoSelect(strViewName)
set oOption = document.createElement("OPTION")
oOption.text=strViewName
oOption.value=strViewName
document.all.Selectl.add(oOption)

End Sub

'*******************~**********************************
'Function StrFullPath()

'This function creates and returns the full path to the
'folder
'**
Function StrFullPath()

strFolderN~me = ""
Set olRoot = oCurrentFolder
While (olRoot <> "Mapi")

strFolderName = oCurrentFolder.Name & "\" & strFolderName
Set 01 Root = oCurrentFolder.parent
If olRoot <> "MAPI" Then

Set oCurrentFolder = oCurrentFolder.Parent
End If

Wend
strFullPath "\\" & strFolde~Name

End Function

Sub ChangeView()
If ~electl.value <> "" then

'Change the view control view
OVCtll.View = selectl.value

End If
End Sub
</SCRIPT>
</BODY></HTML>

287

Part II Building Outlook Applications

288

This code contains some important techniques. Contrary to what you might ex­
pect when you use CDO in a Web application, you won't receive an E_ACCESSDENIED
error because CDO isn't allowed to be created by HTML client-side code. Why? Imag­
ine you visit an Internet site and a malicious site administrator includes the call
CreateObject("MAPI.Session"). He scrolls through your Outlook Inbox looking for
passwords, credit card numbers, and so on. Then suppose that, posing as you, he
sends an e-mail message containing a virus attachment to the addresses on your
contacts list. This potential for security problems is why CDO is disabled in client­
side HTML script.

Usually when developers need to use CDO, they wrap their CDO code in an
ActiveX control that they sign and distribute. This works well for Internet applica­
tions; however, on intranet applications-specifically folder home pages in Outlook
2000--you don't want to create an ActiveX control just so that you can use CDO.
Instead, you can use the CreateObject method of the Outlook Application object in
the Outlook object model, which allows you to create the CDO object in your folder
home page. Now before you start screaming security violation, note that this tech­
nique will not work if you run the HTML page outside Outlook, either on an intranet
or the Internet. Since you're probably linking to trusted content in your folder home
pages, you have nothing to worry about. Later in this chapter, you'll see some other
ways Outlook locks down its object model when you run Outlook controls in other
environments.

The code uses the MAPI property PR_CONTAINER_CLASS to determine the
default item type in the folder. The code then uses the CDb MessageFilter object
to search for all hidden messages in the folder that are of the message class
IPM.Microsojt.FolderDesign.NamedView. Next, the code scrolls through each of
these messages (each of which corresponds to a view) and adds the subject of the
message (the name of the view) to the HTML page. Finally, the code uses the
PR_DEFAULT_ VIEW_ENTRYID property on the folder. This property contains the
EntryID of the folder's default view. If the default view is an Outlook built-in view,
this property will not contain any value.

Folder Property
The Folder property specifies which folder you want the View control to display in
its interface. When you set this property, you need to pass in the path to the folder
that you want to display. You might be wondering how you find the path to a folder.
Unfortunately, Outlook doesn't provide a FolderPatb property in its object model,
meaning you must programmatically figure out the path for the folder at which you

Chapter 9 Outlook Team Folders Wizard

want to point the View control. You can do this easily by using the StrFullPath func­
tion listed in the previous code sample. This function generates the folder path by
simply walking the folder hierarchy until it reaches the topmost Outlook folder.

If you leave blank the Folder property in an HTML application's <OBJECT> tag,
the View control defaults to your Inbox. If you prefer to have the control default to
the current folder that the user is looking at in Outlook, do not pass any parameters
to the View control inside your folder home page. Be aware that this is a departure
from what the View control documentation says to do.

Restriction Property
The Restriction property specifies the restriction on the items contained in the folder.
This property takes the same format as the Restrict method in the Outlook object
model. Be aware that when you use the equal sign in this property, Outlook performs
. a search for strings that contain the criteria you specified. If you want to obtain an
exact match for a string, you need to use the "greater than, less than" format. The
following example shows the difference between these two formats:

'Does a contains
~I oVCtll.Restriction = "[Subject] = 'Exchange'"

'Does an exact match
oVCtll.Restriction = "[Subject] <= 'Exchange' AND [Subject] >= 'Exchange'"

DeferUpdate Property
When set to True, the Dejerupdate property prevents the View control from displaying
its contents until you reset the property to False. Dejerupdate is useful if you're dynami­
cally modifying a folder's restriction or view; it prevents the user from seeing one set
of items appear in the control and then suddenly disappear.

OpenSharedDefaultFolder Method
The OpenSharedDejaultFolder method allows you to open other user's folders, if you
have permissions for those folders, inside the View control. Using this method along
with multiple View controls on a single page, you could open up multiple calendars,
task folders, or any other folders in your mailbox and other users' mailboxes for which
you have permissions. OpenSharedDejaultFolder takes the name of the recipient's
mailbox that you want to open and the folder type. Figure 9-10 shows how you can
use the CDO address book with this method.

288

Part II lBuilding Outlook Applications

290

T .. , Create ... lhJ ...

Too. Yourt. .. Too ...
T", Create ... ThJ ...

.. T", Notlfic." 1hJ",
T ... 'our t. .. Thu ...

T", Create ... Th.J ','
r .. , 'l'ourt .. , ThJ '"
T." Create,,, Thu."
T ... "'ourt ... Thu ...
T ... Create ... Thu '"
T... Ya .. t... Thu ...

T ... Create". Thu."
T ... Tf:[r ... ThII_

T ... Yourt ... Thu_
T ... Crsate .. , Thu ...

.. T ... Notlflc ... Wed",

Figure 9-10. A sample application that shows how to use the CDO address book with
the OpenSharedDefaultFolder method.

The following code allows you to select a user from the address book, and then
adds a new View control to display that user's Calendar folder. This sample is lim­
ited to only three View controls, but you can add more in your code.

<!DOCTYPE HTML PUBLIC "-/IW3CIIDTD HTML 4.0 TransitionalIIEN">
<HTML><HEAD>
<META content="text/html: charset=unicode" http-equiv=Content-Type>
<META content="MSHTML 5.00.2919.3800" name=GENERATOR></HEAD>
<BODY>
<P>
This sample shows how you can use OpenSharedDefaultFolder:

<INPUT id=AddressBook name=AddBook type=button value="Address Book"
nclick="ShowAddBook()~>

</P>

<OBJECT classid=clsid:0006F063-0000-0000-C000-000000000046 height="100%"
id=OVCtll width="30%" VIEWASTEXT><PARAM NAME="V1ew" VALUE=""><
PARAM NAME="Folder" VALUE=""><PARAM NAME="Namespace" VALUE="MAPI"><
PARAM NAME="Restriction" VALUE=""><PARAM NAME="DeferUpdate" VALUE="0"><1
OBJECT>

Chapter 9 Outlook Team Folders Wizard

<OBJECT classid=clsid:0006F063-0000-0000-C000-000000000046 height="100%"
id=OVCt12 width="30%" VIEWASTEXT><PARAM NAME="View" VALUE=""><
PARAM NAME="Folder" VALUE=""><PARAM NAME="Namespace" VALUE="MAPI"><
PARAM NAME="Restri ct ion" VALUE=· .. ·><PARAM NAME="DeferUpdate" VALUE="0"></
OBJECT>

<OBJECT classid=clsid:0006F063-0000-0000-C000-000000000046 height="100%"
id=OVCt13 width=30% VIEWASTEXT><PARAM NAME="View" VALUE=""><
PARAM NAME="Folder" VALUE=""><PARAM NAME="Namespace" VALUE="MAPI">
<PARAM NAME="Restriction" VALUE=""><PARAM NAME="DeferUpdate" VALUE="0"></
OBJECT>

<SCRIPT ID=clientEventHandlersVBS LANGUAGE=vbscript>

'**
'Inline code

'These lines of code are run when the browser reaches
'them when parsing the document. They set up the global
'variables that are needed throughout the application .
• *********~**
Set oApplication = window.external .0utlookApplication
'Log on to CDO
'Use CDO to pop up an Address book so that the person can select
·the user they want to open the calendar for
Set oSession = oApplication.CreateObject("MAPI.Session")
oSession.Logon "", "n, False, False
iNumFolders = 0

Sub ShowAddBook()
On Error Resume Next 'to catc~ the cancel

Set oRecips = oSession.AddressBook(, "Select a User", True, _
True, I, "User")

If oRecips.Count <> 0 Then
On Error GoTo 0
strRecipName = oRecips.Item(I).Name

If iNumFolders = 0 Then
On Error Resume Next
Err.Clear
OVCtll.OpenSharedDefaultFolder strRecipName, 9
If Err.Number = 0 Then

(continued)

291

Part II Building Outlook Applications

'Bump up the folder count
iNumFolders = iNumFolders + 1

Else
MsgBox "Error: " & Err.Number & " " & Err.Description

End If
ElseIf iNumFolders = 1 Then

On Error Resume Next
Err.Clear
OVCt12.0penSharedDefaultFolder strRecipName, 9
If Err.Number = 0 Then

'Bump up the folder count
iNumFolders = iNumFolders + 1

Else
MsgBox "Error: " & Err.Number & " " & Err.Description

End If
ElseIf iNumFolders 2 Then

On Error Resume Next
Err.Clear
OVCt13.0penSharedDefaultFolder strRecipName. 9
If Err.Number = 0 Then

'Bump up the folder count
iNumFolders = iNumFolders + 1

Else
MsgBox "Error: " & Err.Number & " " & Err.Description

End If
Else

MsgBox "No more view controls left!"
End If

End If
End Sub
<ISCRIPT></P>
</BODY></HTML>

Hosting the Outlook View Control in Internet Explorer

292

When you host the Outlook View control directly inside Internet Explorer, the func­
tionality you can perform in the control's object model is locked down. For example,
you can't access the Namespace object from the View control, and you can't use the
CreateObject method of the Application object. You can, however, create items, delete
items, or change views in the folder via the user interface of the View control. Remem­
ber, when you host the View control in Internet Explorer, only the object model is locked
down. Figure 9-11 and the following code show what happens when you attempt to
perform restricted methods while hosting the View control in Internet Explorer.

Chapter 9 Outlook Team Folders Wizard

This samples shows how VieW controls are locked down in IE:

Trying to get the NameSpace object
424 Object required

Trying to create an object
424 Object required

TN A I!ltrator

TFW Adnilistrator
o TFWActn/nl$l:rato!'

TfW Administrator
TFWl\dmfnlstrator
TFW Administrator
TFWMnlnlstrol!tor

TFW Administrator
TFWP.rlmlnlstrator
TfW Admlniltrator

Yow team ha!I: been approved
Create Team Folder ~
YIU' team has: been approved
Create Team Folder request
Notfkatlon Message: New Message posted to folder
YtIIB' t9m has: been approYl!!d

Create Team Folder reqUest
Your team has been awroved

Create Team Folder request
Your team cretla"l was net approved

Create Teem Folder request
Your tYIII has been appt'OW!d

Thu 10/14/99 7:14 PM
1'hu Ul/14/99 7:14 PM
Thu 10/14/99 6:11 PM

ThJIOj14/99fi:llPM

Th.J 10114/99 5:09 PM
Too 10/14/99 5:08 PM
lhJ 10/14/99 5:08 PM
lh.J 10/14/99 5:05 PM
lhI1OJ14/99 5:(J5 PM
lh.JIO/14/995:02PM

lh.JIO/I4/995:01 PM

Too 10/14/99 4-:23 PM

Figure 9-11. Hosting the View control in Internet Explorer restricts the methods you
can use with the control. Notice the errors you receive when attempting certain
actions.

<p>This sample shows how View controls are locked down
in Internet Explorer:

Trying to get the Namespace object
<LABEL ID=NameErr></LABEL>

Trying to create an object
<LABEL ID=ObjErr></LABEL>

</P>
<OBJECT CLASSID="clsid:0006F063-0000-0000-C000-
000000000046" id=OVCtll VIEWASTEXT width=100% height=100%>

<param name="View" value>
<param name="Folder" value=~inbox">
<param name="Namespace" value="MAPI">
<param name="Restr~ction" value>
<param name="DeferUpdate" value="0">

</OBJECT>

<SCRIPT defer for=window eveni=on1oad ID=clientEventHandlersVBS
LANGUAGE=vbscript>

(continued)

293

Part II Building Outlook Applications

'**
'Inline code

'These lines of code are run when the browser reaches
'them when parsing the document. They set up the global
'variables that are needed throughout the application.
'**
On Error Resume Next
Set oApplication = OVCtll.OutlookApplication

err.clear
'Try to get Namespace
Set oNS = oApplication.GetNamespace("MAPI")
document.all.NameErr.innerHTML = "(BR)" & err.number & " " &_

err.description

err.clear
'Try creating an object
Set oSession = oApplication.CreateObject("CDO.Session")
document.all.ObjErr.innerHTML = "(BR)" & err.number & " " & err.description
(/SCRIPT>

THE OUTLOOK "ERMISSIONS CONTROL
The Outlook Team Folders Wizard ships with another control, the Outlook Permis­
sions control, which you can either use as part of the wizard itself or use in the
Outlook applications you create. The Team Folders Wizard uses this control in its
template administration pages to allow application owners to modify which users have
permissions for the Team Folders application.

Since the Outlook Permissions control has an object model, you can reuse the
control in your own applications. The Permissions control is best used in Public Folder
applications when you're providing a folder home page to a public folder and want
users to have the ability to easily change permissions on the application.

The Permissions control requires a user interface. Therefore, you should not use
the Permissions control in scenarios that do not require a user interface, such as
working with server-side Active Server Pages.

Programming the Outlook Permissions Control

294

Programming the Outlook Permissions control is quite straightforward. The control
properties are usually set at instantiation time in the folder home page in which you're
using the control. Since the Outlook team created this control to be localized in
multiple languages, a number of the properties allow you to set the labels for the
control's user interfaces. Besides these localizable properties, the only properties that
we'll look at are InitSucceeded, TargetAdminFolder, and TargetFolder.

Chapter 9 Outlook Team Folders Wizard

NOTE A key requirement of the Permissions control is that CDO must be in­
stalled on the local machine.

Permissions Control Properties
The InitSucceeded property returns a Boolean that specifies whether the control
successfully initialized on the Web page. If the user is working offline or doesn't have
the correct permissions on the folder, the control will return False for this property. You
should check this property in your Web applications that use the Permissions control.

The TargetAdminFolder property specifies the fully qualified path to the
administration folder. If you don't set this property, the control will default to the
TargetFolder property value with \administration appended.

The TargetFolder property specifies the fully qualified path to the root folder
of your application. When you use the Permissions control's Update method, which
we'll discuss momentarily, the control starts at the, folder you specify in the Target­
Folder property and sets permissions for all subfolders under that folder.

Permissions Control Methods
There are four Permissions control methods that you'll want to use in your applica­
tions: Add, List, Remove, and Update. When combined, these four methods provide
the functionality needed to set, retrieve, and display permissions for your folder.

The Add method invokes an Outlook address book so that the user can select
the person for which he wants to add permissions. Once a user is selected, he receives
the default permissions selected in the control.

The List method returns the list of users who have permissions on the folder
specified in the TargetFolder property. You can specify one of two list types you want
returned to you. The first type is a list of the users' display names, separated by
semicolons. To receive a list of this type, specify Users or a constant of 1. The sec­
ond type is a list of the e-mail aliases for the users who have permissions on the folder.
To receive a list of this type, specify UserEmailor a constant of 2.

The Remove method will remove the user who is currently selected in the con­
trol. After calling this method, you must call the Update method to make your changes
permanent.

The Update method, to which you always must pass a constant of 1, will make
permanent your changes in the control to the folder contained in the TargetFolder
property and all that folder's subfolders. The only exception is the Administration
folder, for which all users (except those with Owner or OwnerContact rights) receive
Reviewer permissions so that they can read (but not modify) messages in the folder.
This is because the Administration folder contains welcome messages, links, and other
information in the Welcome page of a Team Folders application.

295

Part II

Exalhple: Pel'missions Control Web Application

296

The following Web application shows how you can take advantage of the Outlook
Permissions control in your own applic:itibns. Note that if you leave the Target­
AdminFolder property blank, the Permissions control applies your permissions to all
the subfolders of the folder specified in the TargetFolder property. However, if you
set the TargetAdminFolder property to some path, the Permissions control will give
all the users in the control Reviewer permissions for the administration folder you
specify, even if they already have different permissions for that folder. Figure 9-12
shows how you can use this control to update permissions in Public Folders.

'This web page shows how you can host the permissions control in a Folder Homepage

Member List Role
Author
Owner I Contact

Figure 9·12. A folder home page hosting the Outlook Permissions control. Using this
control, you can easily update permissions in public folders.

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Outlook Permissions Control Test</TITLE>
<Script Language=VBScript>
Function CreateControl()

dim L_SelectTeam_Text. L_AddMemberLabel_text. L_RoleEveryone_Text. _
L_RoleNoAccess_Text. L_RoleEditor_Text, L_RoleAuthor_Text

dim L_RoleReviewer~Text. L_RoleCustom_Text. L_RoleNonEditAuthor_Text. _
L_RoleOwner_Text

dim L_RoleOwnerContact_Text. L_LabelUserName_Text. _
L_LabelUserRole_Text.L_LabelAvailableRoles_Text

dim L_ProgFormCaption_Text

L_SelectTeam_Text = "Select Team Members"

Chapter 9 Outlook Team Folders Wizard

L_AddMemberLabeLtext = "Add"
L_RoleEveryonLText = "Everyone"
L_RoleNoAccesLText = "No Access"
L_RoleEditor_Text = "Editor"
L_RoleAuthor_Text = "Author"
L_RoleNonEditAuthor_Text = "Nonediting Author"
L_RoleReviewer_Text = "Reviewer"
L_RoleOwner_Text = "Owner"
L_RoleCustom_Text = "Custom"
L_RoleOwnerContact_Text = "Owner / Contact"
L_LabelUserName_Text = "Member List"
L_LabelUserRolLText = "Role"
L_LabelAvailableRoleLText = "Available Roles"
L_ProgFormCaption_Text = "Updating Permissions"

Dim MyCont

MyCont = "<OBJECT classid=clsid:1786454A-B4A0-11D2-97C7-"L
000000000000 codebase=" & Chr(34) & "_
''http://activex.microsoft.com/ activex/controls/office/
olTFACL.cabfversion=I.3210.0.1" & Chr(34) & " id=OLTFCTRLI style=" & _
Chr(34) & "HEIGHT:240px" & Chr(34) & ">"
MyCont = MyCont & "<param name=" & Chr(34) & "_Extentx" & Chr(34) & _

" value=" & Chr(34) & "11827" & Chr(34) & ">"
MyCont = MyCont & "<param name=" & Chr(34) & "_ExtentY" & Chr(34) & _

" value=" & Chr(34) & "9948" & Chr(34) & ">"
MyCont = MyCont & "<param name=" & Chr(34) & "TargetFolder" & _

Chr(34) & " value=" & Chr(34) & _
"\\Public Folders\All Public Folders\View Control Samples" & _
Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "TargetAdminFolder" & _
Chr(34) & " value=" & Chr(34) & _
"\\Public Folders\All Public Folders\View Control Samples\ & _
"Outlook Form" & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "EveryoneLabel" & _
Chr(34) & " value=" & Chr(34) & L_RoleEveryone_Text & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "AddressBookTitle" & _
Chr(34) & " value=" & Chr(34) & L_SelectTeaTlLText & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "AddressBookToLabel" & _
Chr(34) & " val ue=" & Chr(34) & LAddMemberLabeLtext & Chr(34) &
">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleNoAccess" & _
Chr(34) & " value=" & Chr(34) & L_RoleNoAcceSLText & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleEditor" & _
Chr(34) & " value=" & Chr(34) & LRoleEditor_Text & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleAuthor" & Chr(34) & _
" value=" & Chr(34) & L_RoleAuthor_Text & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleNoneditingAuthor" & _
(continued)

297

Part II

298

Chr(34) & " value=" & Chr(34) & L_RoleNonEditAuthor_Text & _
Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleReviewer" & _
Chr(34) & " value=" & Chr(34) & L_RoleReviewer_Text & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleOwner" & Chr(34) & _
" value=" & Chr(34) & L_RoleOwner_Text & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleCustom" & Chr(34) & _
" value=" & Chr(34) & L_RoleCustom_Text & Chr(34) & ">"

MyCont = MyCont & "<param name=" & Chr(34) & "RoleOwnerContact" & _
Chr(34) & " value=" & Chr(34) & L_RoleOwnerContacLText & _
Chr(34) & ">"

MyCont = MyCont & "<param name="
Chr(34) & " value=" & Chr(34)

MyCont = MyCont & "<param name="
Chr(34) & " value=" & Chr(34)

MyCont = MyCont & "<param name="
Chr(34) & " value=" & Chr(34)
Chr(34) & ">"

& Chr(34) & "LabelUserName" & _
&
&
&
&
&

MyCont = MyCont & "<param name=" &
Chr(34) & " value=" & Chr(34) &
Chr(34) & "></OBJECT>"

CreateControl = MyCont
End function

Sub AddUser()
OL TFCTRLl. Add

End Sub

Sub RemoveUser()
OLTFCTRLl.Remove

End Sub

Sub UpdateUsers
Dim UList
On Error Resume Next
UList = OLTFCTRLl.Update(l)
If err.number <> 0 then

L_LabelUserName_Text & Chr(34)
Chr(34) & "LabelUserRole" & _
L_LabelUserRole_Text & Chr(34)
Chr(34) & "LabelAvailableRoles"
L_LabelAvailableRoles_Text & _

Chr(34) & "ProgFyrmCapt~~" & _
L_ProgFormCaptyon_Text & _"

(

MsgBox "Error: " & err. number & " " & err.description
End If

End Sub

Sub ListUser(LType)
Dim UList
On Error Resume Next
UList = OLTFCTRLl.List(LType)
If err. number <> 0 Then

MsgBox "Error: " & err. number & " " & err.description
End If
MsgBox UList

End Sub

&

&

")"

")"

& -

Chapter 9 Outlook Team Folders Wizard

</SCRIPT>
</HEAD>
<BODY>
This Web page shows how you can host the Permissions
control in a folder home page.
<Script Language="VBScript">
document.writeln(CreateControl(»
</SCRIPT>
<DIV>
<INPUT type="button" value-"Add User" onclick="AddUser"
id=buttonl name-buttonl>
<INPUT type-"button" value-"Remove User" onclick="RemoveUser"
id=button2 name-button2>
<INPUT type="button" value-"List Users (Name)" onclick="ListUser(l)"
id=button3 name=button3>
<INPUT type="button" value-"List Users (Email)" onclick="ListUser(2)"
id=button4 name=button4>
<INPUT type="button" value-"Update Permissions" onclick~"UpdateUsers"
id=button5 name=button5>
</DIV>
</BODY>
</HTML>

THE TEAM FOLDERS WIZARD
ADMINISTRATION EXTENSION

To enhance the capabilities of the Team Folders Wizard, you can use the Team Folders
Wizard Administration Extension provided.on this book's companion CD. This ex­
tension provides a number of features that the· Team Folders Wizard lacks. These
features make it easier for administrators to control the creation of Team Folders
applications and are listed here:

• Approval and rejection of Team Folders applications

• Creation of distribution lists (DLs) for Team Folders applications

• Deletion of Team Folders applications, including DLs and folders associ­
ated with the application

The Administration Extension also incorporates some Exchange Server features
that make the Team Project application easier to use. The extension provides a use­
ful subscription/notification feature for any public folder application. The user can
subscribe to. a public folder, and an agent win notify her when a new item has been
created there. In addition, the agent will send a link to the new item created in the folder.

299

Part II Building Outlook Applications

Architecture of the Team Folders
Wizard Administration Extension

Before diving into the code behind this extension, let's look at its architecture. The
extension is comprised of a mailbox for the Event Scripting Agent. This agent pro­
cesses Team Folders application requests, processes the approvaVrejection of those
requests, and dynamically creates the subscription/notification agents in the team fold­
ers themselves. The agent uses a distribution list, known as the Administrative Agent
Distribution List (AADL), which names the administrators who can approve or reject
the creation of Team Folders applications.

In addition to this agent, a client-side ActiveX control runs as part of the
extension. This control checks to see whether the Team Folders application has been
approved; if it hasn't, the control doesn't allow the Team Folders application to dis­
play any windows. To host this control, we modify the Team Folders HTML files to
load the ActiveX control.

There are two aspects of the extension you should be aware of. First, I modi­
fied only the Team Project template to support the extension. After looking through
the changes in the Team Project template, you should be able to easily modify the
other templates of the Team Folders Wizard to support the extension. Second, I didn't
sign the ActiveX control, and I have the CodeBase pointing to the standard Team
Folders CodeBase location I specified when I set up the Team Folders Wizard. I didn't
want to sign the control because you might want to give it your own signature,
depending on how you use it. If you use the control as is from the companion CD,
Outlook will ask whether you want to run an ActiveX control on a Web page.

Installing the Team Folders
Wizard Administration Extension

300

Rather than detail the steps for installing this extension from the companion CD, I'll
highlight the tools included with it that make installing the extension much easier.
I'll also show you how to use a number of Exchange Server programming compo­
nents, such as Active Directory Services Interface (ADSI) and the Event Scripting Con­
figuration Library.

The companion CD contains three installation programs for the Team Folders
Wizard Administration Extension. The first one is the agent installation program, which
you must run on your Exchange server. The agent installation program creates the
mailbox for the Team Folders Wizard Administration Extension agent and allows you
to select membership for the AADL. This installation program also creates the agent
and dynamically populates its script. Figure 9-13 depicts the user interface for the agent
installation program. You can see the code for this installation program on the com­
panion CD.

Chapter 9 Outlook Team Folders Wizard

Figure 9-13. The agent installation program for the Team Folders Wizard Adminis­
tration Extension.

The second installation program on the companion. CD is the template instal­
lation program. You need to run this program on all client machines on which you
want to use the Team Folders template. This program makes a backup of the origi­
nal Team Folders templates and replaces the project template. with the modified tem­
plate. We'll look at the code for this later in the chapter.

The fmal program installs the ActiveX control. You can either modify the CodeBase
property on the HTML pages to point at the .cab me included for the ActiveX con­
trol, or you can manually register the control from the .cab me.

Modifying the HTML for a
Team Folders Wizard Template

Since the Team Folders templates are HTML mes, you can easily modify them to fit
your needs, including adding custom controls, HTML, or even script to the page. By
looking at the modifications the extension makes to the HTML pages, you can determine
what types of modifications "you can make to your own applications.

The key modification!, the extension makes to the Administration page of the
Team Project template are the addition of a menu item, a Delete This Team button,
and the ActiveX control. Since modifyib.g the HTML for the Team Folders templates
is pretty straightforward, I won't spend much time discussing how to modify the
intrinsic HTML buttons and other elements of the user interface. However, the ActiveX
control and some of the script in the HTML page contain the interesting code we'll
examine next. Figure 9-14 shows the user interface of the modified Administration page.

301

Part II Building Outlook Applications

302

If the remOYails approvedj)'00 will lose all rI this: team's folder5 and III items stored wlthn them,

If VOU want to keep a COP), d ~ of the Items In yOU' team fOlders it is suggested vou copy them to another
location before proceldng with the I'eCJl8st for team deletion. -----1

Figure 9-14. The modified Administration page. Notice the new team deletion
capabilities.

The code in this section shows some of the modifications the extension makes
to the Administration page. The first code snippet uses the ActiveX control called
Session, which checks to see whether the Team Folders application has been ap­
proved. If it hasn't, the code displays the nice message shown in Figure 9-15.

<SCRIPT LANGUAGE="vbscript">
<! --
Function IsApproved()

Dim CurrentState
CurrentState = Session.TeamApproved(g_Fullpath, False,True)
Select Case lcase(CurrentState)
Case "requested"

IsApproved = False
Case "notadministrator"

IsApproved = False
Case "approved"

IsApproved True
Case Else

IsApproved False
End Select

End Function

If (not IsIEOK) or (Not IsOLOK) or (cInt(lErrCode) <> 0) Then
'there were no initialization errors

ErrorBox.style.display = "inline"
Else

Chapter 9 Outlook Team Folders Wizard

-->

'Added by the Team Folders Wizard Extension.
'Check to see whether this team has been approved.
If IsApproved = False Then

IsAdmin = False
TheBodyUnapproved.style.display "inline"

El se 'Added
TheBody.style.display = "inline"

End If' Added
End If

</SCRIPT>

Figure 9-15. This page is shown if the application is waiting for administrator
approval.

Here is the code for the TeamApproved function in the ActiveX control:

Public Function TeamApproved(strFolderPath. _
TopTeamFolder As Boolean. AdminFolder As Boolean)
On Error GoTo errHandler
Dim Pos
Dim strBody

DoMAPILogon
'Get the Administration folder and InfoStore

If GetFolderAndInfoStore(CStr(strFolderPath). oTeamFolder. _
oInfoStore) = False Then Exit Function

(continued)

303

Pari II Building Outlook Applications

304

If InDebug Then MsgBox "Got Folder & InfoStore for strFolderPath: "
& strFolderPath

Dim strAddressID

strAddressID = GetAddressIDFromAlias(strTFWAAlias)

If strAddressID = 0 Then
MsgBox "Error getting address of the TFWA alias in TeamApproved."

End If
Set TFWAAddress = oSession.GetAddressEntry(strAddressID)

If InDebug Then
If Not (TFWAAddress Is Nothing) Then

MsgBox "Got TFWAAddress"
Else

MsgBox "Didn't get TFWAAddress"
End If

End If

EnsureTFWA_IsIn-ACL oTeamFolder

'Get the main team folder

If TopTeamFolder = False Then
'We're currently looking at the Administration folder,
'and need to move up one folder level to access the main team folder

Set oTeamFolder = oSession.GetFolder(oTeamFolder.FolderID, _
oInfoStore.ID)

EnsureTFWA-IsIn-ACL oTeamFolder

If InDebug Then MsgBox "Looking at "& oTeamFolder.Name
End If

'We also need tp make sure the Administration folder is a member of
'all the subfolders
'If AdminFolder = True Then

EnsureTFWA-IsIn_ACL-AllSubFolders oTeamFolder

'End If
'Determine the actual team path, and store it for notifying the
'AADL
Pos = InStrRev(strFolderPath, oTeamFolder.Name)
strTeamPath = Left(strFolderPath, Pos + Len(oTeamFolder.Name»
If InDebug Then MsgBox "strTeamPath: " & strTeamPath

Chapter 9 Outlook Team Folders Wizard

If TeamStatusMessageFound(oTeamFolder) = False Then
If strErrNo = 0 Then

If InOebug Then MsgBox "No Team Status Message found"
'We have not done any of the administration required
'to start the team approval process

If AdminFolder = True Then
If InOebug Then MsgBox "Admin Page"

'Hide the team folder from the team members
If InOebug Then

MsgBox "Attempting to Hide folder from team members"
End If

If SetFolderACL(oTeamFolder) = False Then
TeamApproved = "An Error occurred 1. Ensure The" & _

"TFW Administrator has owner rights to this folder."
Exit Function

End If
If InOebug Then MsgBox "Hidden folder from team members"

'Create the message body for the message
strBody = CreateMsgBody("Requested")

If CreateHiddenStatusMessage(oTeamFolder. strBody)
False Then
TeamApproved = "An Error occurred 2. Ensure The" & _

"TFW Administrator has owner rights to this folder."
Exit Function

End If

SendAgentMsg strBody. "TF: Create Team Folder request"
End If
TeamApproved = "Requested"

Else
Select Case strErrNo
Case -2147024891

strErrOesc = "You do not have permission to read" & _
"entries in this folder."

Case Else
'00 nothing

End Select

TeamApproved = "Error encountered: " & strErrOesc & _
" " & strErrNo

Err.Clear
End If

(conttnued)

305

Part II Building Outlook Applications

Else
TeamApproved strCurrentTeamStatus

End If
Exit Function

errHandler:
MsgBox "Error in TeamApproved function. Err I" & Err.Number _

& " Description: " & Err.Description
End Function

The TeamApproved function makes sure that the mailbox object of the Team
Folders Wizard Administration Extension has Owner rights on all the folders for the
application. When performing subscription and notification, this mailbox must be able
to dynamically create agents in the application folders-and to do so, the mailbox
must have Owner rights.

Next, TeamApproved checks to see whether a hidden message exists in the
application's root folder. If no hidden message exists, it means that the application
is a new one. If that's the case, the control creates a new hidden message and sends
an approval notice to the extension agent. The control then sets the application sta­
tus to Requested.

If the control does find a hidden status message in the root folder, it checks the
message to see whether the team has been approved, has been rejected, or is still
waiting for approval. The control returns this status to the HTML page so that the page
can act accordingly.

The next function in the Administration page, RequestDeleteTeam, deletes the
team. Since the Team Folders applications do not provide a good way for users to
delete their applications, the extension offers this capability. This function requests
that the agent delete all the applications' team folders, and forces the Outlook client
to move to a folder other than the applications' team folder. This prevents Outlook
from sitting on the folder while the agent deletes it in the background.

The Event Scripting Agent
for the Administration Extension

306

I'd like to point out three aspects of the Event Scripting Agent for the Team Folders
Wizard Administration Extension. (Chapter 13 will cover the Event Scripting Agent
in much more detail.) First, the extension's Event Scripting Agent performs extensive
logging, as shown in Figure 9-16. This logging allows you to watch the agent actions.

Second, the Event Scripting Agent uses subfolders to log the messages it receives,
as shown in Figure 9-17. You can use these subfolders to troubleshoot any problems
such as malfunctions in the agent or the functions it performs.

Chapter 9 Outlook Team Folders Wizard

Figure 9-16. The log/rom tbe extensions Event Scripting Agent.

TFYI Adm.. Yourteam has been a- Thu-IO/14/99 7:_

TFW,Adnl ... _ Cre8teTeam~feqU,,, Thu 10/14/997:1"'1".
lfWA Yaw team has been a... n... 10/14/9' 6:..
TFW Pdnj... Create Team Folder requ... l1l.J 10/1"'(99 6: 11 ...

II TFW Mni ... Notficetlon Message: Ne .. , ThJ 1011"1(99 5:09 .. ,
TrW AIh- Your team tum been a.. Thu 10/14/99 5:..

TFWPdni", Create Team Fo/der requ ••• Th.Jl0/14/995:00 ...
TFWAckTi", Vour team has been appr", ThJI0/1"r/995:05."

TFWAdmi", Create Team Folder requ". Thul0/14/995:05",
TFWAdmi." VOU'teamcreationwasn •• , Thu 10/141995:02."
TFWAdmI." Cf8ateTeamFolder'requ". Tnul0/11/995:01 .. ,
1FW A YlM'team hal been &.. 11m 10/14/99 04-:_
TFWAdrri ... CreateT~mFolderrequ ... ThuIOlH/994:23 ...
TFW A 1f: Create Tum FoIde.. n... 10/14/99 4:..
TFW Adm... ,CO' tum hat: bII!~ &. Tho IO/t4,tgg 4:..

TFW AIhI ... Create TeM! Folder reCfJ ... TIIJ 10/14/994:20 .. ,
a Tf'!NAdrri .. , NotlflcationMessage:Ne ... Wecl9/29/998:"'I5 .. .

TFwAdmi .. , Vou"tum has been eppr". Weci9/29/998:13 .. .

TFW Adm .. , Creb Team Folder requ." Wed 9/29/99 8: 12 .. .
TFWAdm... TF:DeleteTeamFolde.. Mon9tnlfJ93:,2._

tl TFWAdmj ... NotIflcationMessage:Ne". Mon9/21/993:18PM
TFW Adm ... Vr:u teem has been appr ... Men 9/Z1j99 2:44 PM

TFWAdmI". Creai:ete&m .• Mon9/27/992:44PM

Figure 9-17. The sub/older structure 0/ tbe extension mailbox.

Third, the Event Scripting Agent uses ADSI to dynamically create distribution
lists and to add or remove members from these lists. You could take the code from
this agent and build a generic agent that manages distribution lists. The code for
managing the extension's DLs is shown on the following page.

307

Part II Building Outlook Applications

308

'**
'******* Customized Subroutines
'******* This subroutine creates a DL on the fly

*
*

'**
Public Sub CreateNewDL(DLAlias)

On Error Resume Next

If UserIsOwnerofDL = True Then
strOwner = objRequestor.Fields(&H3A00001E).Value

Else
strOwner = "TFWA"

End If
LogIt "strOwner is " & strOwner

strLDAPPath = "LDAP:II" & LDAPServer & "I" & LDAPRecipientContainer _
& "," & LDAPSite & "," & LDAPOrg

strLDAPOwnerPath = "LDAP:II" & LDAPServer & "/cn=" & strOwner & "
" & LDAPRecipientContainer & "," & LDAPSite & "," & LDAPOrg

LogIt "LDAP Path:" & strLDAPPath
LogIt "LDAP UserName: " & LDAPUserName
LogIt "LDAP Password: " & LDAPPassword
Logit "New Alias: " & DLAlias

Set objMyIADs = GetObject("LDAP:")
Set objADSI = objMyIADs.OpenDSObject(strLDAPPath, LDAPUserName, _

LDAPPassword, 0)
Set objNewDL = objADSI.Create("groupOfNames", "cn=" & CStr(DLAlias»
set objOwner = objMyIADS.OpenDSObject(strLDAPOwnerPath, _

LDAPUserName, LDAPPassword, 0)

objNewDL.Put "cn", CStr(RequestorsName & " " & TeamFolderName)
objNewDL.Put "uid", CStr(DLAlias)
objNewDL.Put "distinguishedName", CStr("cn=" & CStr(DLAlias) & _

"," & LDAPRecipientContainer & "," & LDAPSite & "," & LDAPOrg)
objNewDL.Put "owner", objOwner.distinguishedName
objNewDL.Put "mail", CStr(DLAlias) & CStr(strSMTPAddr)
objNewDL.Put "Report-To-Originator", True
objNewDL.Put "Report-to-Owner", False
objNewDL.Put "Replication-Sensitivity", CInt(20)
obj NewDL. Put "rfc822Mail box", CStr(DLA 1 i as) & CStr(strSMTPAddr)
objNewDL.Put "textEncodedORaddress", CStr(strx400Addr) & _

CStr(DLAlias) & ";"
objNewDL.SetInfo
dim strPath
dim strUID
strUID = objNewDL.Get("uid")
strPath ~ strLDAPPath & vblf & strUID
LogIt "strPath: " & strPath

Chapter 9 OutJook Team Folders Wi~rd

'Save DL alias to a hidden message in the team folder
StoreDLAliasName strPatp

End Sub
'**
'******* This subroutine adds a new member to a DL *
'**
Public Sub AddMemberToDL(NameToReplace, DLAlias)

On Error Resume Next
strLDAPPath - "LDAP:II" & LDAPServer & "I" & NameToReplace & "," _

& LDAPRecipientContainer & "," & LDAPSite & "," &. LDAPOrg
strLDAPRecip - "LDAP:II" & LDAPServer & "/cn-" & DLAlias & ","

& LDAPRecipientContainer & ~." & LDAPSite & "," & LDAPOrg

LogIt "strLDAPPath: "& strLDAPPath
LogIt "strLDAPRecip: .'& strLDAPRecip

Set objIADs - GetObject("LDAP:")
Set objLDAPRecip - objIADs.OpenDSObject(strLDAPRecip, _

LDAPUserName, LDAPpasswo~d, 0)

objLDAPRecip.Add (strLDAPPath)

If Err.Number - -2147016691 Then
'They're already in the DL
Else

objLDAPRecip.SetInfo
End If
End Sub

'***
'******* This subroutine removes a member from a DL *
'***
Public Sub RemoveMemberFromDL(N~meToReplace, DLAlias)

On Error Resume Next

strLDAPPath - "LDAP://" & LDAPServer & '~/" & NameToReplace & "," _
& LDAPRecipi~~tContainer & "," ,'LDAPSite &'"," & LDAPOrg

strLDAPRecip - "LDAP:II" & LDAPServer • "/cn-~ & Q~Alias & "," _
& LDAPRecipientContainer & ",~ & LDAPSite & "," & LDAPOrg

Set objIADs - GetObject("LDAP:")
Set objLDAPRecip - objIADs.OpenDSObject(strLDAPRecip,

LDAPUserName, LDAPPassword, 0)
objLDAPRecip.Remove (strLDAPPath)
Qbj~DAPRecip.SetInfo

End Sub

309

Part II Building Outlook Applications

Subscription/Notification Functionality

310

The last functionality of the Administration Extension that we'll talk about is the
subscription/notification functionality. For me, this is the most exciting part of the
extension because it makes using any Public Folder application easier. The exten­
sion notifies users who subscribed to the Public Folder that a new item is available,
meaning users don't have to check for new items in the Public Folder application.
Users subscribe to the Public Folder by clicking a button in the home page of any
folder in the Team Project application. The subscription/notification functionality is
implemented on a folder-by-folder basis. Figure 9-18 shows the interface that allows
the user to enable this functionality.

Figure 9-18. The user interface for enabling subscription/notification.

The extension tracks which users to notify about new items posted in the folder
by storing in the folder a hidden message containing a list of users who've requested
notification. The HTMLpages in the extension use the CurrentlyNotified function from
the ActiveX control to see whether the current user is on the folder's notification list.
If the user is on the notification list, the text in the HTML offers the ability to
unsubscribe to the notifications. Here is the cock for the CurrentlyNotified function:

Public Function CurrentlyNotified(strFolderPath)
If InDeb~g Then MsgBox "strFolderPath = " & strFolderPath
If GetFo1derAndInfoStore(CStr(strFolderPath), oTeamFolder, _

oInfoStore) = False Then
MsgBox "Could not open folder: " & strFolderPath
Exit Function

End If

Chapter 9 Outlook Team Folders Wizard

Dim oHiddenMessages. oFilter
Dim oMessage
Dim strTeamDLPath. objIADs. objLDAPRecip. arrTeamPath. _

strDLAlias. strRecipContPath
Dim arrMembers. strMember

Set oHiddenMessages = oTeamFolder.HiddenMessages
oHiddenMessages.Filter = Nothing
Set oFilter = oHiddenMessages.Filter
oFilter.Subject = "TFW Member Notification"
If oHiddenMessages.Count >= 1 Then 'There should only ever be one.

Set oMessage = oHiddenMessages.GetFirst
arrMembers = Split(oMessage.Text. vbCrLf)

CurrentlyNotified = False
For Each strMember In arrMembers

Else

If strMember = oSession.CurrentUser.ID Then
CurrentlyNotified = True
Exit For

End If
Next

'No notification message exists; therefore. no one is
'currently notified
CurrentlyNotified = False

End If

End Function

If the user asks to be added to the notification list, the application sends a
message to the extension's mailbox agent. The extension checks to see whether a
notification agent already exists in the requested folder. If it does, the user is added
to the hidden notification message in the folder. If the agent doesn't exist, the ex­
tension agent creates a new agent in the folder and dynamically binds a script to this
newly created notification agent to implement the notification functionality. Fig­
ure 9-19 shows a folder containing the dynamically created agent.

The notification agent uses the Windows Scripting Host to create a shortcut to
the newly added item and attaches the shortcut to the notification e-mail. The user
can then double-click on the shortcut, causing Outlook to open the original item.

The code for the notification agent follows. Be sure to look at the section that
uses the Windows Scripting Host, since you can probably reuse this functionality in
a number of your Outlook applications.

311

Part II Building Outlook Applications

312

F!gure 9-19. A Team Folders with the notification agent installed in it.

WARNING There are two caveats to using this solution. First, the solution will
work only online because you're specifying a path to an item that's online. Sec­
ond, if two items have the same subject in the folder, it's undetermined which
one Outlook will open.

'DESCRIPTION: This event is fired when a new message is added
'to the folder
Public Sub Folder_OnMessageCreated()

Const CdoFileData = 1

Dim oNewMsg. oHidden. aryText. iCount. blnFoundMsg. objAddrEntry
Dim objS~ssion. objFolder, aryHiddenMsgText. strRecip
Dim WSHShell. MyShortcut. strUserProfile
Dim objInMsg. MyAttachment
Dim strPath

On Error Resume Next
Set objSession = EventDetails.Session
Set objFolder = objSession.GetFolder(EventDetails.FolderID. Null)
LogIt "Running"
LogIt "Fol~er: " & objFolder.Name

blnFoundMsg = False

For iCount = objFolder.HiddenMes~age~.Count To 1 Step -1

Set oHidden = objFolder.HiddenMessages(iCount)
If oHidden Ii Nothing Then

LogIt "oHidden is empty -"L

Chapter 9 Outlook Team Folders Wizard

"there should be at least 1 member to notify"
Exit For

End If
If oHidden.Subject = "TFW Member Notification" Then

aryHiddenMsgText = Split(oHidden.Text. vbCrLf)
blnFoundMsg = True
Exit For

End If
Next

Set oHidden = Nothing

If blnFoundMsg = False Then
LogIt "Hidden is missing from folder" & objFolder.Name
'00 nothing but exit
Set objSession = Nothing
Set objFolder = Nothing
Exit Sub

End If

LogIt "Got Hidden "

Set oNewMsg = objSession.Outbox.Messages.Add
For Each strRecip In aryHiddenMsgText

If strRecip <> Then
Set objAddrEntry = objSession.GetAddressEntry(strRecip)
oNewMsg.Recipients.Add ••• objAddrEntry.IO
Script.Response = Script. Response & vbCrLf & strRecip

End If
Next

oNewMsg.Recipients.Resolve
If oNewMsg.Recipients.Count = 0 Then

LogIt "No Recipients to notify"
Exit Sub

End If
Set objInMsg = objSession.GetMessage(EventOetails.MessageIO. Null)

'This will create a shortcut and attach it to a message
Set WSHShell = CreateObject("WScript.Shell")

LogIt "Started"
LogIt "Subject: .. & objInMsg.Subject

strUserProfile = WSHShell.ExpandEnvironmentStrings("%USERPROFILE%")
(continued)

313

Part II Building Outlook Applications

314

Set MyShortcut = WSHShell.CreateShortcut(strUserProfile &_
"\msolink.url")

LogIt strUserProfile

Dim oParent
strPath = "\" & objFolder.Name
'Get the path to the folder; assume it's in the Public Folder tree
set oParent = objSession.GetFolder(objFolder.FolderID,Null)
Do While oParent.Name <> "All Public Folders"

strPath = "\" & oParent.Name & strPath
set oParent = objSession.GetFolder(oParent.FolderID,Null)

Loop
strPath = "\\Public Folders\All Public Folders" & strPath
Dim strPathwithoutFileName
strPathwithoutFileName = strPath
strPath = strPath & "\-" & objInMsg.Subject
LogIt "strPath: " & strPath

'Set shortcut object properties and save them
'You can also try the format outlook:EntryID
'MyShortcut.TargetPath = "outlook:" & objInMsg.ID
MyShortcut.TargetPath = "outlook:" & strPath
LogIt "MyShortcut.TargetPath: "& strPath
MyShortcut.Save
LogIt "Saved"

Set MyAttachment = oNewMsg.Attachments.Add("Shortcut to " & _
objInMsg.Subject)

MyAttachment.Type = CdoFileData 'Attach the link, not a shortcut to it.
MyAttachment.Source = strUserProfile & "\msolink.url"

LogIt "New Message posted to folder"
oNewMsg.Text = "A message has been posted to the folder <outlook:" _
& strPathwithoutFileName & "> " & vblf & _
"This message was posted by" & objInMsg.Sender.Name & "." & _
vblf & "The subject of the message is: " & objInMsg.Subject & _
"." & vblf & "Open the attachment in this mail to read the new item."
oNewMsg.Subject = "Notification Message: New Message posted to folder"
oNewMsg.Update True, True
oNewMsg.Send False, False

Set MyShortcut = Nothing
Set oNewMsg = Nothing
Set WSHShell = Nothing
Set objSession = Nothing
Set objFolder = Nothing
Set objInMsg = Nothing

End Sub

Chapter 9 Outlook Team Folders Wizard

BUILDING A CUSTOM TEAM FOLDERS TEMPLATE
Although customizing the built-in templates can be interesting, you might want to
create your own template and have the Team Folders Wizard deploy it. There are a
number of reasons for doing this. First, the Team Folders Wizard provides an easy
way for your users to create applications based on your template. Second, the Team
Folders Wizard deploys your application to a folder. This includes copying forms,
views, and folder home pages to the application folder. Instead of having to write a
deployment and customization application yourself, you can simply leverage the Team
Folders Wizard.

Creating a custom template is straightforward. Every custom template must
consist of a personal folders file c.pst), a folder home page, and a Template initiali­
zation file (.inD. The .pst file contains the folders, items, views, and forms you want
to deploy. The folder home page is the Web interface you want to display to the user.
The .ini file contains settings that you specify for the wizard when it deploys your
application.

Creating the .pst File

To create the .pst file, take your existing application and its folder and simply copy
them to a personal folder. If you're creating a new application, you can just create a
new .pst file and proceed. You'll need to create a Team Folders root folder to con­
tain your application. The wizard will copy this root folder to the location specified
by the user who is deploying your application using the Team Folders Wizard. The
. pst file can also contain an Administration folder, which you need if you want your
application to have an administration module.

Creating the Folder Home Page

There's no special tasks that you need to perform inside of the folder home page in
order to allow the Team Folders Wizard to deploy it. However, you might want to
create a separate folder home page for each folder in your application. This arrange­
ment differs from that of the built-in Team Folders templates, which use one folder
home page that dynamically changes the HTML when a user clicks on its links.

Creating the Template.ini File

The Template.ini file tells the Team Folders Wizard how to specifically deploy your
application. In this file, you tell the wizard how to replace strings in your folder home
pages, associate application folders with folder home page files, and localize your
application if needed. A sample Template.ini file follows on the next page.

315

Part II

316

'**
'Template.ini File *
'**

'The individual files are made up of a list of keys and replacement items.
'The keys are the values that should be searched for in the file.

'Notation is as follows:

My String Name=mystring <none - default string>

'The global section applies to all HTML files listed in the
'HTMLFiles section. This could provide a convenient mechanism
'for changing elements such as:

'Style sheet, corporate logo, and so on

'**

'GLOBAL SECTION

'[Global] keys added by the search engine at run time:

'(1) Title

'Retrieved from user entry for project name in Team Folders Wizard.
'Replaces <OLTF@Title> tag in HTML files.

'(2) CodeBaseURL

'Specifies location for download of View and Permissions controls.
'It is CtlCodeBase value for the wizard add-in entry under
'HKEY_CURRENT_USER (HKCU), created during installation of Outlook 2000
'Team Folders. Replaces <OLTF@CodeBaseURL> tag in HTML files.

'Registry value for CtlCodeBase can be customized with Custom Installation
'Wizard (CIW) or overwritten by running Codebase.bat to install Outlook
'2000 Team Folders. Codebase.bat is included with the Team Folders
'Administration Kit.

'[Global] keys that MUST be defined by template designer:

'(I) AdminFolder

'Used for updating permissions for the project Administration folder

Chapter 9 Outlook Team Folders Wizard

'*** Requires full path relative to root folder. ***

'(2) ShowNavBar

'Used to show (value of 1) or hide (value of 0) folder navigation
'buttons
'Replaces <OLTF@ShowNavBar> tag in HTML files

[Global]
'AdminFolder=Administration\
ShowNavBar=0

'INCLUSIVE HTML FILES LIST SECTION

'Following section lists the names of all the files that
'need to be edited

[HTMLFiles]
acctext.htm
'admin.htm

.--~ ----------.---
'INDIVIDUAL HTML FILES SECTION

'Following sections have search and replace actions
'specific to the file

[acctext.htm]
'value=string

[Admin.htm]
'value=string

'FOLDER URL MAPPING

'This section identifies which HTML file webyiew each
'project folder is to be associated with

'Assumptions:

(continued)

317

Part II

318

'* All target HTML files are in the \Webview directory.
'* There is no limit to nesting of the project folders.
'* There can be only one root per project.
'* The folder names cannot contain the equal sign since this is being

used as the item delimiter (key=value).
'* Folder URL mapping occurs **after** folder name

localization.

'[Folders] section pseudo key=value format: (table
'key=idnum.foldername.webview.fullpathrelativetoroot

'example: 10=Update Permissions.OLTFaclsTest.htm.\administration\

'path notation

'root folder:
'folders nested one level deep:
'folders nested> 1 level must specify path:

[Folders]
'l=Account Tracking.acctext.htm.root
'2=Administration.admin.htm.\

'PUBLISH UNIQUE MESSAGE CLASS

"root"
"\"

"\folder1\folder2\"

'This section identifies which folders contain forms that need
'unique message class assignment

'*** Please Note: ***

'The ID assigned to each folder in the project from the [Folders]
'section above is also referenced for folder identity in this section

'(1) The first item in the comma-delimited value string represents the
ID of the folder containing the form.

'(2) The second item in the comma-delimited value string represents the
existing form MessageClass.

'(3) The last item in the comma-delimited value string represents the
concatenated IDs for folders with associated HTML files that need
to be updated with the new unique MessageClass string.

'(4) The folder IDs used in this section must match the assignments in the
[Folder] section.

[FormClassAssignment] section pseudo key=value format: (table)

Chapter 9 Outlook Team Folders Wizard

'ex) idnum=locationfolderid,messageclass,HTMLFolderIdl+HTMLFolderId2+ ...

[FormClassAssignment]
'l=l,IPM.Post.Account info,l
'2=l,IPM.Contact.Account contact,l

'LOCALIZABLE STRINGS

'This section identifies strings that can be localized.
'At the momentJ this consists solely of the folder names.

[Strings]

Replacing HtML Strings in Template.ihi
By having the Team Folders deploy your application, you can have the wizard re­
piace HTML strings inside your folder home page files. One way to take advantage
of this is to change the CodeBase location for ActiveX controls or change constants
in your HTML code, depending on the application the user chose to deploy.

The strings in your HTML page must be marked with the format OLTF@searchstrirrg.
For example, to replace a string named "username" with the string "Tbomriz", you
would place OLTF@username in your HTML file. Then, if the name of the HTML file
in your Template.ini file was default.htm, you would place a line under the individual
HTML files section, as shown in the following example:

[default.htm]
username=Thomriz

You can replace the strings either globally or at the individual file level. This
example shows how to perform a replacement at an individual file level. The Team
Folders Wizard performs a global replacement for names such as OLTF@CodeBaseURL,
which specifies the location for the View control and Permissions control, and
OLTF@Tide, which contains the name of the application provided by the user.

Global Section in Template.ini
In addition to specifying the replacement strings in the global section of Template.irri,
you need to specify the path to the Administration folder (if you have one) and
whether to display the Internet Explorer navigation bars so that you can move back­
ward and forward between Web pages in your folder home page. The navigation bar
setting, ShowNavBar, is helpful only if you use the Team Folders built-in templates or
if youimpiement the functionality th:ittums on and shuts off the naVigation bar (the
Same functionality that the Team Folders templates implement in your application).

319

Pari II Building Outlook Applications

320

The AdminFolder key takes the full path, relative to your application's root
fblder, to the Administration folder in your .pst file. For example, if your folder is
located directly under the toot folder in the .pst file, the value for this key will be
"Administration \". '

HTMLFiles Section in Timplate.ini
The HTMLFiles section in Template.ini specifies the HTML files that are included in
your application. This section also specifies on which files to perform search and
replace actions for your global replacement strings.

Folders Section in TIi""'plate.ini
The Folders section contains the mappings between your Outlook folders and their
corresponding folder home page HTML files. The format for each mapping is
keynum=foldername; pagename; path where keynum is any unique integer;
foldername, which is the folder name; pagename, which is the HTML file to associ­
ate with the folder; and path, which is the path, relative to the root application folder,
to the folder. Note that if the folder is the root folder, you need to place root for the
path. Also, you should not include the name of the folder when you specify the path.
For example, if you wanted to associate the default.htm HTML file to a folder called
My Application under your application's root folder, the Folders section of Template.ini
would look like this:

[Folders]
l=My appltcation,default.htm,\

FormelassAssignment Section in T.mplate.ini
I recommend that you don't use the FQrtrlClassAssignment section of the Template.ini
file. This section publishes a uniqti~ inessage class for your form when the form is
deployed to a folder. This is irnportiht because the Outlook forms cache doesn't work
correctly when multiple forms with the same name are published and used from
different folders. Instead of Using this section of the Template.ini file, give your forms
unique names to prevent them from clashing with forms in other applications on your
user's system.

Strings Section in T plate.ini
The Strings section contains strings that you want to localize throughout the Template.ini
file. For example, if you wanted to localize the word Calendar into multiple languages,
you could place the following key under this section:

[Strings]
CalendarFolder = Calendar

Then, throughout Template.ini, you would use %CalendarFolder%. The Team
Folders Wizard will replace all instances of %CalendarFolder% with the literal you
specify in the Strings section before processing the Template.ini file.

Chapter 9 Outlook Team Folders Wizard

File Folder Structure for Your Template
When creating the file folder for your template files, including the .pst file and
Template.ini file, you need to layout your folder correctly in order for the Team
Folders Wizard to process it. You must place the Template.ini flie and the .pst file at
the root level of your folder, and you must place the HTML flies for your folder home
page in a folder named Web view.

Deploying Your Template
Once you've created your .pst flie, folder home page flies, and Template.ini flie, you
must deploy your template to the computers of the users who will create applica­
tions based on it. In addition to copying the actual flies to the users' computers, you'll
need to add certain settings to their registries so that the Team Folders Wizard can
detect the new template.

To make the template available, you need to create a key under HKEY_
CURRENT_USE\Software\Microsoft\Office\Outlook\Addins\Microsoft.OLTeam­
FolderWizard\1033. The number at the end of this path will vary depending on the
language settings for the computer you're deploying to. In this case, 1033 indicates that
the language is English. Under this key, you'll need to create a number of other keys:

• AppPath. This key specifies the path of the template in 8.3 format. If your
template is located at C:\program flies\microsoft office\template\myapp,
you'll need to specify C:\progra-l\micros-l\templa-l\myapp.

• Description. This key contains a string value that describes your template
to the users of the Team Folders Wizard. The wizard displays this string
when a user clicks on the application in the wizard's interface.

• FriendlyName. This key contains a string value that the wizard displays
in the list of applications available. The user can select this name in the
list box of available templates.

• PSTAppRoot. This key contains a string value that specifies the path, rela­
tive to the root of your .pst file, to your template'S root folder. If your
template's root folder is the root of the .pst, this string is the name of
the template'S root folder. For example, if your template is named Accounts
and is located beneath the root of your .pst, this value would be Accounts.

• PS7Name. This key contains the name of the .pst flie that contains your
application. The Team Folders Wizard will dynamically try to mount this
.pst flie when users create your applications. This flie must be in the folder
specified by your AppPath key.

321

Part II Building Outlook Applications

• PSTTitle. This key contains a string that specifies the name of the .pst file
in the Outlook interface when the Team Folders Wizard mounts your .pst.
Make sure that this name does not conflict with another folder root in your
Outlook client.

• UseFinisbScreen (optional). This keyword contains a DWORD value that
specifies whether to show the final screen of the wizard after it deploys
your application. If you do not create an Administration page for your
application, set this value to a so that the wizard does not display an error
when it finishes deploying your application.

You can also customize other keys for the Team Folders Wizard that will affect
your application. The main keys for the Team Folders Wizard are located at HKEY_
CURRENT_USER \Software \Microsoft\ Office \ Outlook\Addlns \Microsoft. OL Team­
FolderWizard. Figure 9-4 on page 276 shows these registry keys.

• DefaultTargetFolder. This key contains a string value that specifies the
default Public Folder path to install your application. The user can accept
this location in the wizard rather than having to browse for it. An example
value for this key is \ \ Public Folders\AlI Public Folders\Applications\My
Application.

• DefaultTargetURL. This key contains a string value that specifies the default
address of a Web location for the folder home pages for your application.
The wizard will display this address, and the user can accept it as the
location from which to deploy the HTML pages.

• UseWelcomeScreen. This key contains a DWORD value that specifies
whether to display the Welcome page to the Team Folders Wizard. If you
specify a value of 1, the Welcome page will display; specifying a value
of a will not display the Welcome page.

• CTlCodeBase. This key contains a string value that indicates the CodeBase
location for the ActiveX controls, specifically the View control and the
Permissions control, in Team Folders applications.

Example: Account Tracking Template

322

In order to show you how to build a custom template, I've taken the Account Track­
ing application and turned it into a Team Folders template. This sample template
makes it easier for multiple groups in a corporation to deploy the Account Tracking
application with its forms, views, and starter items intact. Figure 9-20 shows how you
can add the Account Tracking application to the list of templates in the Team Folders
Wizard.

Chapter 9 Outlook Team Folders Wizard

Figure 9-20. The Account Tracking application as one of the Team Folders Wizard
templates.

While modifying the Account Tracking application to make it part of the Team
Folders Wizard, I added a number of new features to the application's folder home
page, shown in Figure 9-21. First, the application detects the custom views contained
in the folder so that you don't have to hard-code them into the application. Second,
the application shows you how to use the Restriction property of the View control.

Figure 9~21. The new folder home page for the Account Tracking application.

The final and most interesting feature of the new folder home page is that it
shows you how to detect whether the application has the default Outlook views
enabled. A user or developer can specify that the application should not use the
standard Outlook views. You need to detect whether the default Outlooks views are
enabled in your applications so that you don't display them in your user interface.

323

Pari II Building Outlook Applications

The application detects the setting for the default Outlook views by checking a prop­
erty on one of its folders. The hexadecimal value for this property is &H36EI003. This
property will return a value of 1 if the default Outlook views should not be displayed
for the folder; if they should be displayed, either the property will return 0 or the
field won't exist. The following code checks this property in the folder home page:

'Load the default views for this content type
'Make sure that the default views are enabled first.
'by checking a property on the folder
On Error Resume Next
If oFolder.Fields(&H36E10003).Value= 1 Then

'Default views should not be displayed!
'Do not attempt to add them

Else
'Default views should be displayed
'Note: This sample adds only two of the default
'views for message folders
'You can use the CommandBars method to get the default Outlook
'views if you want
If strContainerClass = "IPF.Note" Then

AddtoSelect "Messages",oElement
AddtoSelect "Messages with AutoPreview".oElement

End If
End If

CREATING A TEAM
FOLDERS WIZARD EXTENSION

In addition to creating a template for the Team Folders Wizard, you can extend the
wizard interface itself. Extending the wizard interface allows users to further customize
your applications before the wizard deploys them. The Team Folders Wizard exten­
sions are registered individually for each template. Therefore, to add an extension
to all templates, you need to register the extension with each template. You'll see how
to register an extension later in this chapter.

Interfaces of the Team Folders Wizard Extension

324

A Team Folders extension is an ActiveX DIL that implements specific interfaces required
by the Team Folders Wizard. The wizard uses these interfaces to inform an exten­
sion of specific events, such as when the user enters the portion of the wizard that
implements the extension. This occurs after the user has selected the permissions for
the Team Folders application but before the wizard displays the last screen.

When creating your ActiveX DLL, you should implement a similar interface to
that of the Team Folders Wizard. This means implementing Back, Next, and Cancel
buttons directly on your form. Plus, you need to make sure that you code the extension

Chapter 9 Outlook Team Folders Wizard

correctly so that if a user returns to it after clicking the Next button, the extension
can correctly return to the appropriate screen. You don't want your extension to repeat
any unnecessary steps.

Creating an extension is quite easy. This book's companion CD contains a
sample extension for the Account Tracking template. This extension allows the user
creating an application from the Account Tracking template to specify whether to
automatically add the folder to her Favorites folder as well as to add a shortcut on
the Outlook bar. Figure 9-22 shows the extension's user interface.

Figure 9-22. The user inteiface of the Account Tracking extension.

Now, you need to add some references to your Microsoft Visual Basic pro­
ject in order to determine which extension interfaces to implement in your ActiveX
DLL. First, you need to add a reference to the file tfexten.dll CITeamFoldersExtension
typelib). Next, add the Microsoft Scripting Runtime reference. Figure 9-23 shows
how to add these references.

Figure 9-23. Adding Visual Basic references to the necessary files to create a Team
Folders extension.

325

Part II Building Outlook Applications

326

Once you've added these references, you need to type Implements ITeam­
FolderExtension in your Visual Basic code. In the drop-down lists, you'll see three
interfaces that you need to implement: ExtExec, ExtUndo, and ExtCancel.

The wizard calls the ExtExec function when the user enters your extension by
clicking on Next in the wizard. Here is a stub for this function:

Private Function ITeamFoldersExtension_ExtExec(_
ByVal UserPerms As Scripting.IDictionary, _
ByVal TempDirectory As String, ByVal CurrentStep As Integer, _
ByVal TotalSteps As Integer) As Long

End Function

The Team Folders Wizard passes you a number of parameters for this interface.
The first parameter is a Dictionary object called UserPerms that contains the permis­
sions list for the application. The second parameter, TempDirectory, specifies the path
to the temporary directory where the folder home page files for the application are
located before being deployed. You have Write permissions to these files in the tem­
porary directory. The Accourit Tracking extension uses this location to modify the files
to specify the preferences of the user. The third parameter, CurrentStep, specifies the
number of steps of the wizard that the user already has been through. When you
combine CurrentStep with the next parameter, TotalSteps, you can display the progress
bar showing the progress of your wizard's extension.

Your extension should return a value of Long data type, which tells the wizard
whether the user clicked Next, Back, or Cancel, or if the extension didn't work. The
specific literals for this return value appear in the following code for the Account
Tracking extension's ExtExec function that shows the user interface:

Private Function ITeamFoldersExtension_ExtExec(_
ByVal UserPerms As Scripting.IDictionary, _
ByVal TempDirectory As String, ByVal CurrentStep As Integer, _
ByVal TotalSteps As Integer) As Long

'Shows user interface
'Returns Success = 0

Fail ure = -1
Back = 1
Cancel = 2

'This extension needs to know only where the working directory is so that
'it can modify the HTML file

Debug.Print "in ITeamFolderExt"

gWizardStep = CurrentStep + 1
gWizardSteps = TotalSteps
gTempDirectory = TempDirectory
Debug.Print gTempDirectory & gWizardSteps
frmAppOptions.Show vbModal 'as modal so that it doesn't

'return too early
ITeamFoldersExtension_ExtExec = gRetValue

End Function

Chapter 9 Outlook team Foiders Wizard

As the code shows, the extension retrieves the values fot the step counters, gets
the temporary directory, and then displays its Visual Basic form as a modal form. Once
the user leaves the form, the extension returns the correct value as determined by
the user's actions in the form.

The wizard calls the ExtUndo function when the user reenters your extension
after he has already left. This can happen if the user clicks the Back button on one
of your subsequent extension pages or on the wizard's final page to return to a spe­
cific extension. This function receives the same parameters as the ExtExec func­
tion and returns a Long value that means the same as each value in the ExtExec
function. For example, returning a value of 0 indicates success. the code for this func­
tion follows:

Private Function ITeamFoldersExtension~ExtUndo(_
ByVal UserPerms As Scripting.IDictionary. _
ByVal TempDirectory As String. ByVal CurrentStep As Integer. _
ByVal TotalSteps As Integer) As Long

Should show user interface from last step in extension
'Returns Success = 0

Failure = -1
Back = 1
Cancel = 2

gWizardStep = CurrentStep - 1
gWizardSteps = TotalSteps
gTempDirectory = TempDirectory
frmAppOptions.Show vbModal
ITeamFoldersExtension_ExtUndo = gRetValue

End Function

As you can see, the ExtExec and ExtUndo functions are very similar. The func­
tion sets the progress bar for the extension to the correct value. It then displays the
Visual Basic form as a rhodal form, and after the user is finished interacting with
the form, the function returns the correct return valUe. Depending on what your
extension does, you might need to implement more functionality.

The ExtCancel function is called when the user. clicks the Cancel button else­
where in the wizard. In this function, place any deanup code that your extension
requires. This function passes you the same parameters as the ExtUndo and ExtExec
functions; however, the return value for ExtCancel is a bit different than that of the
previous two functions. The ExtCancel function can return one· of only two values
rather than four. Since the user has clicked Cancel, she won't care about moving
backward or forward in the wizard. Therefore, the return value needs to indicate only
success or failure. Here is the code for this function:

Private Function ITeamFoldersExtension_ExtCancel(_
ByVal UserPerms As Scripting.ID1ctionary. _
ByVal TempDirectory As String. ByVal CurrentStep As Integer. _

(continued)

327

Part II Building Outlook Applications

ByVal TotalSteps As Integer) As long
'Should show no user interface
'Returns Success = 0

Failure = -1
gTempDirectory = TempDtrectory
'MsgBox." Implement C~ncel 'unct1ori.lit~ for extension here"
IT~amFoldersExtension_ExtCahcel = eSuccess

End Function

Visual Basic Form for the Account Tracking Extension

328

Besides implementing the extension interfaces, the Visual Basic project for the Ac­
count Trttcking extension iricludes the actual Visual Basic form shown to the user as
part of the application. This form contains all the logic fat the extension as well as
the navigation for the user. The code for the form follows:

Dim strText
Dim oCreatedFile As Scripting.File
Dim fs As Scripting.FileSystemObject
Ditn i Favorites
Dim iAddShortcut

Private Sub btnBack-C11ck{)
gRetValue = eStep8ack 'Function returns 1

'indicating extension Undo
frmAppOptions.Hide

End Sub

Priva~e Sub btnHel~_Click()
MsgBox "Insert You~ Help Routines Here"

End Sub

Private Sub btnNext_Click{)
'Need to set return value for function and exit function
'OlTFWizardExt returns 0 if successful
Dim fSResult
bim dFile As Scripting~Fil~
Dim oBUF1le As Scripting,File
Dim oTextStream As Scripting.TextStream

'Open the HTMl file and set some global variables
'storing the user's selections
Set. oFile = fs.GetFile{strBrowseAddress)
If oFile Is Nothing Then

MsgBox "Error opening acctext.htm"
Else

Chapter 9 Outlook Team Folders Wizard

'Before writing to the file, make a clean backup
'Make sure not to overwrite if already there!
On Error Resume Next
oFil e. Copy gTempDi rectory & "\webvi ew\acctext2. htm", Fa 1 se
On Error GoTo 0
Set oBUFile = fs.GetFile(gTempDirectory & "\webview\acctext2.htm")
'Overwrite the backup over the original
oBUFile.Copy strBrowseAddress, True
Debug.Print "made copy"
'Reset oFile
Set oFile = fS.GetFile(strBrowseAddress)
Set oTextStream = oFile.OpenAsTextStream(ForAppending, _

TristateUseDefault)
With oTextStream

.WriteLine "(Script Language = vbscript)"

.WriteLine "boolAddtoFavorites = " & _
checkAddtoFavorites.Value

.WriteLine "boolAddShortcut = " & checkAddShortcut.Value

.WriteLine "(/Script)"
End With

oTextStream.Close
End If

Debug.Print "creating file"
'Create a new file in the temporary address to mark down the values
Set oCompleted = fs.CreateTextFile(gTempDirectory _

& "\complete.txt", True)
, Remember user selections
oCompleted.WriteLine checkAddtoFavorites.Value
oCompleted.WriteLine checkAddShortcut.Value
oCompleted.Close
Set fs = Nothing

gWizardStep = gWizardStep + 1
gRetValue = eSuccess 'Extension finished; return 0 success code
Me.Hide

End Sub

Private Sub btnCancel_Click()
'Insert your cancel functionality here and then set the
'OLTFWizardExt return value to 2 (Cancel)
gRetValue = eCancelWiz
Me.Hide

End Sub

Private Sub Form-Activate()
progBar.Max = gWizardSteps
progBar.Value = gWizardStep

(continued)

329

Part II Building Outlook Applications

330

Set fs = New FileSystemObject
Dim oTS As Scripting.TextStream

Set oCreatedFile = Nothing
Debug.Print "in Activate"
'Check to see whether a file called complete.txt already exists
On Error Resume Next
Set oCreatedFile = fs.GetFile(gTempDirectory & "\complete.txt")
On Error Go To 0
If Not (oCreatedFile Is Nothing) Then

Debug.Print "File exists"
'Pull the values from the file
Set oTS = oCreatedFile.OpenAsTextStream(ForReading)
iFavorites = oTS.ReadLine
iAddShortcut = oTS.ReadLine
If iFavorites = 1 Then

checkAddtoFavorites.Value vbChecked
Else

checkAddtoFavorites.Value vbUnchecked
End If
If iAddShortcut = 1 Then

checkAddShortcut.Value = vbChecked
Else

checkAddShortcut.Value vbUnchecked
End If

End If
End Sub

Private Sub For~Load()
'Load form strings
strText = ""
'Need to load all strings here
Debug.Print "Form Load: " & gTempDirectory
If gTempDirectory <> "" Then

strBrowseAddress = gTempDirectory & "\webview\acctext.htm"
Else

MsgBox "Error - no browsable address found"
End If

End Sub

The interesting aspects of the code lie in the btn_Next and Activate subroutines.
The Activate subroutine sets the progress bar for the form that shows the user the
wizard's progress based on the number of steps already performed. This subroutine
also checks to see whether a file named complete.txt exists in the temporary
directory created by the Team Folders Wizard. This file stores the user's preferences,
as you'll see in the btn_Next subroutine. I use a text file to be absolutely sure that
the preferences are stored-just in case the user clicks Back or Next, possibly sev­
eral times, to move between the extension and the built-in Team Folders Wizard

Chapter 9 Outlook Team Folders Wizard

pages. If the text file doesn't exist, the application creates it. If it does exists, the
application loads the values from the text file and makes them the default for the
form controls.

The application calls the btn_Next subroutine when the user clicks the Next
button on the extension's form. In this subroutine, the extension needs to set some
variables so that the folder home page knows what the user selected from the extension.
If no backup exists, the subroutine first makes a backup copy of the original folder
home page file so that if the user unselects something in the user interface, the
extension doesn't have to parse and delete text from the HTML file. Instead, the ex­
tension can overwrite the existing file with the clean backup and add the necessary
information to it.

Once the backup is completed or verified, the subroutine writes the necessary
values to the file. Then, the subroutine creates the complete.txt file using the
FileSystemObject of the scripting runtime. If complete.txt already exists, the exten­
sion overwrites it.

Folder Home Page for the Account Tracking Extension
Now that we've seen what the extension can do, let's see how the folder home page
implements the preferences set in the extension. The folder home page included with
the extension template is a slightly modified version of the Account Tracking tem­
plate you saw earlier. The key changes are the ability of the extension to check for
preferences set by the user, to implement those preferences, and to make sure those
preferences are implemented only once. The code for this functionality follows:

'Check to see whether there is a hidden message
'in the user's Inbox that corresponds to our application.
'If not, do the action and create the hidden message.
'If there is, skip this section.
set oInbox = oSession.Inbox
set oHidden = oInbox.HiddenMessages
'Clear out any filters
oHidden.Filter = Nothing
Set oFilter = oHidden.Filter
oFilter.Fields.Add "strEnt~yID", 8, strEntryID
'If count is I, then we don't want to do anything
'since we performed this action for the user already
If oHidden.count > 1 then

MsgBox "Error! Too many items meet the criteria!"
ElseIf oHidden.count = 0 then

'Check to see whether we need to add to Favorites
If boolAddtoFavorites = 1 Then
AddToFavorites
End If

(continued)

331

Part II Building Outlook Applications

332

If boolAddShortcut = 1 Then
AddOutlookShortcut

End If
'Create a hidden message stating that we already
'did all the work for this user so that next time
'they come in, we don't do it again!
'Assume everything was done.
CreateHiddenMessage

Else
'MsgBox "Hidden message already exists"

End If
End Sub

Function CheckOfflineStatus()
On Error Resume Next
If oInfoStore.Fields(&H6632000B).Value = True Then

CheckOfflineStatus = True
'MsgBox "Offline"

Else
CheckOfflineStatus False
'MsgBox "online"

End If
End Function

Sub AddToFavorites
'Check to see whether we're in the private store or a .pst file.
'Check to see whether we're working offline.
'If we are, don't try to add to Favorites
'since the folder should already be in the Favorites
'folder.
'Get the Favorites folder EntryID.
'MsgBox "Adding to Favorites"
Set oInfoStores = oSession.InfoStores
For Each otmpInfoStore In oInfoStores

Set oInfoStore = otmpInfoStore
boolPFStore = CheckForPFStore
If boolPFStore = True Then

'We found the Public Folder infostore
'MsgBox "Found PF"
Exit For

End If
Next
boolOffline = CheckOfflineStatus
strFavEntryID = oInfoStore.Fields(ActMsgPR-IPM_FAVORITES_ENTRYID).Value

Chapter 9 Outlook Team Folders Wizard

Set oFavFolder = oSession.GetFolder(strFavEntryID, Null)
'MsgBox oFavFolder.Name

If (boolPFStore = True And boolOffline = False) Then
'Add to Favorites
On Error Resume Next
oViewControl.AddToPFFavorites

El se
'MsgBox "not adding to favorites"

End If
End Sub

Function CheckForPFStore()
On Error Resume Next
Err.Clear
iMask = oInfoStore.Fields.Item(ActMsgPR-STORE_SUPPORT_MASK)
If lMask And ActMsgSTORE_PUBLIC_FOLDERS Then

'It's a Public Folder store
'MsgBox "PF"
CheckForPFStore = True

Else
'MsgBox "not a PF"
CheckForPFStore - False

End If
End Function

Sub AddOutlookShortcut()
Set oPane = oExplorer.Panes("OutlookBar")
Set oOLBarStorage = oPane.Contents
Set oOLBarGroups = oOLBarStorage~Groups

Set oNewOLGroup = oOLBarGroups.Add("Account Tracking (ext)", _
oOLBarGroups.Count + 1)

Set oNewOLShortcuts = oNewOLGroup.Shortcuts
oNewOLShortcuts.Add oAccountFolder, "Account Tracking (ext)"

End Sub

Sub CreateHiddenMessage()
On Error Resume Next
'MsgBox "Creat~ng Hidden Message"
Set oInbox = oSession.Inbox
Set oHidden = oInbox.HiddenMessages
Set oNewMsg = oHidden.Add("Acct Ext: " & oFolder.Name, _

"", "IPM.Post.AcctExt")
oNewMsg.Fields.Add "str£ntryID", 8, strEntryID
oNewMsg.Update

End Sub

333

Part II

The code checks in the user's Inbox for the existence of a hidden message that
matches the ID of the current folder. If the code finds that message, it doesn't attempt
to add the folder to the user's Favorites folder or the Outlook bar. However, if the
code doesn't find that message, it checks the values put into the global variables that
the Team Folders extension added.

If the user is online and has indicated to the extension to add the folder to the
user's Favorites folder, the code uses the AddtoPFFavorites method of the View con­
trol to do so. You check online and offline status in your code by using a property
on the InfoStore object. Since the application must be in the Favorites folder to be
accessible offline, the code does not attempt to add the folder to Favorites folder if
the user is working offline.

The code then adds the folder to the Outlook shortcut bar by using the Outlook­
BarShortcuts collection of the Outlook object model. Next, the code uses the
HiddenMessages collection of CDO in the user's Inbox to create a new item. This item
will prevent future hits on the folder home page that would cause these actions to
recur. This is a good way to store user customization or completion information
because you know the Inbox will roam with the user no matter what computer he
logs on from. As long as the user logs on to Exchange Server, you can access his Inbox
and retrieve your hidden message.

REGISTERING YOUR EXTENSION

334

Now that you know how to create an extension, let's examine how to register one.
You must register an extension for each template that will use it. Under the registry
key for the template that will use the extension, you must provide two new values:
ExtensionClass and ExtensionSteps. ExtensionClass is a string that specifies the ProgID
of your extension DLL. ExtensionSteps is an integer that specifies the number of steps
your extension will add to the wizard. You can have multiple steps in your exten­
sion, so this number is not limited to 1. However, you will need to code the naviga­
tion for your extension in order to call your Visual Basic forms. For example, if your
extension contains two Visual Basic forms, the first form must implement under its
Next button the code to hide itself and to show the second Visual Basic form.
Figure 9-24 shows the registration for the Account Tracking extension.

TeamContacts
i Te.!fIITi!lsI<s
~NorthwInd.Comect
j ...• otlookTodi!lyAddin,OltIookTodayLoc
!--iii O~r.Ubrar'l'
!~"liI outlookOffllneFB,CCf!1AckIn
[-iii 5IteSe.arcn.Ot..d:tooIoSear
, ...• Ste5erver,Ad ... ~d!
LiiJ ¥b6prOjectConbIctCoII!JI:ero!l,Addn

OMI Account Manager

"",ct
"'oro

Chapter 9 Outlook Team Folders Wizard

REG.JiZ
REG3Z
REG_SZ AcCOU'tTri!lc~,Extension

REG-DWCfID OxOOOOOOOl (1)
REG_SZ Accourt Tr!IIC~ (wth Extension)
REG..5Z AcCOU't Tracking
REG..5Z TFWEXT .pst
REGjiZ ExBook
REGJ)'uVORD OxOClOODllJ (0)

Figure 9-24. The registration for the Account Tracking extension as part of a custom
Team Folders template.

DEPLOYING YOUR EXTENSION
Deploying your extension is no different than deploying a custom template. You need
to register your ActiveX DLL on the user's computer and copy the DLL itself to the
local hard disk. You also must add custom registry settings to the templates on the
user's computer on which you want to use your extension. You have a number of
choices for achieving these steps. You can distribute your extension to your users by
employing Microsoft Systems Mapagement Server, the Visual Basic Package and
Deployment Wizard, or another !ool. Systems Management Server provides the easiest
and most powerful way to qjstribute your extension, but it requires that you have
its infrastructure already established in your organization. If you used Visual Basic
to create your extension, you'll probably use the Visual Basic Package and Deploy­
ment Wizard. This wizard is quite easy to use and can create customized setup pro­
grams for deploying your extension. For more information about this wizard, see the
Visual Basic documentation.

335

Chapter 10

Outlook 2000
in Action:

Enhancements
to the Account

Tracking Application

This chapter outlines Microsoft Outlook 2000 enhancements to the Account Track­
ing application. The main enhancement is the addition of a COM add-in that noti­
fies users when new tasks or accounts are assigned to them. The implementation of
this COM add-in will allow us to examine how to respond to events, how to add
custom toolbar buttons and event handlers for those buttons, and how to add custom
property pages to the Outlook environment. Before we discuss the COM add-in, we'll
add two folder home pages to the Account Tracking application, the second of which
uses the Outlook View control.

337

Part II Building Outlook Applications

FOLDER HOME PAGES

338

Folder home pages are a feature in Outlook 2000 that enable you to link an HTML
page to any folder in the Outlook environment. (You saw this capability in the Out­
look Today feature discussed in Chapter 7.) Folder home pages support offline view­
ing capabilities, so you can request Outlook to synchronize an HTML file that is
associated with a folder offline when a user synchronizes the folder. This ensures that
your HTML page is available whether the user is working offline ()r online. We will
look at two folder home pages in this chapter. One will use the Outlook View control.

The process of associating a folder home page with a folder is easy. Outlook
2000 provides a user interface for this connection, shown in Figure 10-1. You can
access this Properties dialog box in Outlook 2000 by right-clicking on a folder and then
choosing Properties.

Figure 10-1. Configuring a folder home page for a folder.

Since Outlook 2000 hosts Microsoft Internet Explorer in-frame, when a user
clicks on the folder, your folder home page can appear directly inside the Outlook
client. Furthermore, you can make the folder home page the default view for a par­
ticular folder. In the Web pages for your folder home pages, you might want to include
instructions for using the folder, a way to mail the folder owner, or a listing of links
related to that folder or to other folders.

You can also add script to the folder home page to access the Outlook object
model. Figure 10--2 shows the frrst example of a custom folder home page (Contacts.htm)
for the Account Tracking application.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

Account Task Name ~
Name ~

City Power Figure out

and Light ~ (None) -
• Create New Account

Figure 10-2. The folder home page (Contacts.htm) for the Account Tracking
application.

Setting Up the First Folder Home Page
To test the folder home pages, you'll need a machine that has Outlook 2000 with the
Visual Basic Scripting Support and Collaboration Data Objects components installed.
Follow these steps to set up the first folder home page:

1. If you haven't already set up the Account Tracking application, do so now
as explained in the section titled "Setting Up the Application" on page 157
in Chapter 6. If you want to use the Sales.mdb database, you will need
to make an additional change to the code for the Account Tracking form.
Since Office 2000 includes Data Access Objects (DAO) 3.6, you will need
to change the line

to

Set oDatabaseEngine = _
item.application.CreateObject("DAO.DBEngine.35")

Set oDatabaseEngine = _

item.application.CreateObject("DAO.DBEngine.36")

If you want the application to create sales charts and print account sum­
maries, install Microsoft Excel.

2. Copy the Webview folder from the companion CD to your local hard drive,
and clear the read-only flag for the files contained in this folder.

3. Open the Webview\Contacts.htm file in Notepad.

4. Find the first occurrence of oAccountFolder, and modify the path to the
location of your Account Tracking folder.

339

5. Save Contacts.htm, and close Notepad.

6. In Outlook, right-click on the Account Tracking folder, and choose Properties.

7. In the Address text box of the Home Page tab, specify the location of the
Contacts.htm file-for example, file:lIC: \ Webview\Contacts.htm.

8. Check the Show Home Page By Default For This Folder check box, and
click OK.

9. Click the Account Tracking folder in Outlook to display the folder home page.

Example Script for the Folder Home Page

340

The following shows the script for the folder home page (Contacts.htm) displayed
in Figure 10-2:

<SCRIPT ID=clientEventHandlersVBS LANGUAGE=vbscript>
'**
'In-line code

'These lines of code are run when the browser reaches
'them while parsing the document. They set up the global
'variables that are needed throughout the application.
'**
Set oApplication = window.external .OutlookApplication
Set oNS = oApplication.GetNameSpace("MAPI")

'Change this to your location for the Account Tracking folder
set oAccountFolder = oNS.Folders("Public Folders").Folders(_

"All Public Folders").Folders("Account Tracking")

'Set some global vars for the EntryIDs
Dim arrTaskEntryIDs()
Dim oTasks 'Restricted collection of Tasks
Dim arrAccountEntryIDs()
Dim oAccounts 'Restricted collection of Accounts

'**
'Sub CreateAccount

'This subroutine creates a new account info form and
'displays it for the user to fill in
'**
Sub CreateAccount()

set oAccount = oAccountFolder.Items.Add("IPM.Post.Account info")
oAccount.Display()

End Sub

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Applic.tion

'**
'Sub GetTask(lEntrylD)

'This subroutine gets
'in the HTML page and
'array of EntrylDs is

the task that the user clicked on . . .

displays it. An index into an
passed to this subroutine.

'**
sub GetTask(lEntrylD)

ITaskEntrylD = arrTaskEntrylDs(lEntrylD-l)
for each oltern in oTasks

if oltern.EntrylD = ITaskEntrylD then
~et otrnpTask = oltern

end if
next
otrnpTask.Display()

end sub

'**
'Sub GetAccount(lEntrylD)

'This subroutine gets the account that the user clicked on
'in the HTML page and displays it. An index into an
'array of EntrylDs is passed to this subroutine.
'**
sub GetAccount(lEntrylD)

lAccountEntrylD = arr~ccountEntrylps(lEntrylD-l)
for each oltern in oAccounts

if oltern.EntrylD = lAccountEntrylD then
set otrnpAccount = oltern

end if
next
otrnpAccount.Display()

end sub

sub Window_onLoad()
'***********************************~****************************
'All of the following lines are run when the ~TML page is
'loaded
'**

'Put the name of the folder in the bar
txtFolder.innerHTML = oAccountFoTder.Narne • " Folder"

'**
'Figure out the account tasks for the current user
'**

RestrictString =

RestrictString = "[Message Class] = ""lPM.Task""" &
" AND [Owner] = """ & oNS.CurrentUser.Narne & """ AND

(continued)

341

Part II

342

[Complete] = FALSE"
Set oTasks = oAccountFolder.ltems.Restrict(RestrictString)
oTasksCount = oTasks.Count
'Redim the EntryID array
ReDim arrTaskEntryIDs(oTasksCount-1)
strTaskList = "<TABLE Border=0 cellpadding=2 cellspacing=2 " & _
"class='calendarinfo'><TR><TD><U>" & _
"Account Name</u></TD><TD> </TD><TD>" & _
"<U>Task Name</U>" & _
"</TD><TD> </TD><TD><U>" & _
"(Due Date)</U></TD></TR>"
'Count the tasks using counter
counter = 1
oTasks.Sort "[ConversationTopic]", False
For each oTask in oTasks

boolOverDue = 0
if oTask.DueDate = "1/1/4501" then

strDueDate "None"
else

strDueDate oTask.DueDate
'Check to see whether the task is overdue
if DateDiff("d",CDate(strDueDate),Now) > 0 then

boolOverDue = 1
end if

end if
if boolOverDue then

'Turn red
strTaskList = strTaskList & "<TR><TD><FONT " & _
"COLOR='ffFF0000'>" & oTask.ConversationTopic & _
"</TD><TD> </TD><TD>" & _
"<A HREF=" onclick=GetTask(" & counter &_
");windoW.event.returnValue=false>" & oTask.Subject & _
"</TD><TD> </TD><TD><FONT " & _
"COLOR='#FF0000'>«Strong>" & strDueDate & _
"</Strong»
</TD></TR>"

else
strTaskList = strTaskList & "<TR><TD>" & _
oTask.ConversationTopic & "</TD><TD>" & _
" </TD><TD><A HREF=" onclick=GetTask(" & _
"counter & ");window.event.returnValue=false>" & _
oTask.Subject & "</TD><TD> </TD>" & _
"<TD>«Strong>" & strDueDate & "</Strong»
</TD></TR>"

end if
arrTaskEntryIDs(counter-1) = oTask.EntryID
counter = counter + 1

next
TaskList.innerHTML = strTaskList & "</TABLE>"

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

'**
'Figure out which accounts the current user is a team member of
'**

'Find accounts where this person is a team member.
'First restrict to only account items.
RestrictString = ""
RestrictString = "[Message Class] = "IPM.Post.Account info""
Set oAccounts = oAccountFolder.Items.Restrict(RestrictString)

'Now find accounts where this person is a team member
numFound = 13
strCurrentUser = oNS.CurrentUser.Name
numTotalRevenue = 13
strAccountHTML = "<table border=e width=lee% cellpadding=3 " & _
"cellspacing=e ID='Home' style='DISPLAY: inline; " & _
"MARGIN-TOP: 12px'>"
strAccountHTML = strAccountHTML & "<TR><TD " & _
"class='calendarinfo'><U>Account Name" & _
"</U></TD></TR>"

RestrictString = ""
RestrictString = "[Message Class] = ""IPM.Post.Account info""" & _
" AND [txtAccountConsultant] = """ & strCurrentUser & _

OR [txtAccountExecutive] = """ & strCurrentUser & _
OR [txtAccountSalesRep] = """ & strCurrentUser & _
OR [txtAccountSE] = """ & strCurrentUser & _
OR [txtAccountSupportEngineer] = """ & strCurrentUser & """"

Set oAccounts = oAccountFolder.Items.Restrict(RestrictString)
numFound = oAccounts.Count
ReDim arrAccountEntryIDs(numFound)
counter = 1
For Each oAccount in oAccounts

set oUserProps = oAccount.UserProperties
arrAccountEntryIDs(counter-l) = oAccount.EntryID
'Get the total revenue for the account for 1998 and 1999.
'Get the revenue and add it to the total.
num1998Total = oUserProps.Find("formI998ActualTotal")
num1999Total = oUserProps.Find("formI999ActualTotal")
if num1998Total <> "Zero" then

numTotalRevenue = numTotalRevenue + num1998Total
end if
if num1999Total <> "Zero" then

numTotalRevenue = numTotalRevenue + num1999Total
end if
strAccountHTML = strAccountHTML & "<TR><TD " & _
"class='calendarinfo'><A Href=" onclick=GetAccount(" & _

(continued)

343

Part II

344

DtIIUQllng Outlook

"counter & ");window.event.returnValue=false)" & _
oAccount.Subject & "(/A)(/TD)(/TR)"

counter = counter + 1
next
numTotalRevenue = CCur(numTotalRevenue)
numTotalRevenue = FormatCurrency(numTotalRevenue)
TotalRevenue.innerHTML = "(STRONG)" & numTotalRevenue & _

"(1ST RaNG)"
strAccountHTML = strAccountHTML & "(/TABLE)"
Accounts.innerHTML = strAccountHTML
YourTasks.innerHTML = "(Strong)" & oTasksCount & "(/Strong)"
YourAccounts.innerHTML = "(STRONG)" & numFound & "(/STRONG)"

end sub 'Window_OnLoad
--)

(/SCRIPT>

Looking at the code, you can see that you need to follow a few critical steps to
access the Outlook object model. The first step is to retrieve the Outlook Applica­
tion object. To do this, you use the Window.External.OutlookApplication syntax. Once
you have the Application object, you can retrieve the rest of the Outlook objects. For
example, by calling the ActiveExplorer method on the returned Application object,
you can retrieve the Explorer object that is hosting the folder home page.

The folder home page is a dynamic environment for the viewing of a folder,
as illustrated by the Account Tracking folder home page. In it, the user is presented
with a summary of her accounts, account revenue, and tasks. The home page allows
you to restrict account tasks to the person currently viewing the folder. (While you
could create a similar view in Outlook, you wouldn't be able to specify a filter based
on who is viewing the folder.) These account summaries are created by using the
Restrict method on the Outlook Items collection for the folder. For the Tasks restric­
tion, the code restricts only those messages in the folder that are tasks, where the
current user is the owner and the task status is incomplete. After receiving the re­
stricted set, the code sorts the tasks by their conversation topics, which are the names
of the accounts the tasks are for. The code loops through each task to see whether
it has a due date. If it does, the code checks to see whether the task is past due. Then
the code generates the HTML, which will be placed in the Open Account Tasks list.

For the revenue summary, the code first finds all account items to tally a total.
The code restricts the collection to all accounts for which the current user is a team
member. Then the code loops through each account and retrieves the revenue, which
is stored in the UserProperties collection as custom properties. Since the revenue prop­
erties are formula properties, they can contain text that indicates zero revenue from
the account. To compensate for this, the code checks whether the value of the prop­
erty is the string "Zero". The code then build~ a string for the restricted list of account
names and prints out the account revenue. The string of account names is hyperlinked,
as are the tasks, so that a user can quickly go to a specific account or task.

Chapter 10 Outlook 2000 inAction: Enhancements to the Account Tracking Application

From the code sample, you can see how you can include all the features of the
Outlook object model, or any object model for that matter, inside the HTML page you
create for your folders.

THE OUTLOOK VIEW CONTROL
The release of Outlook 2000 included an add-on product named the Outlook View con­
trol. The Outlook View control is an ActiveX wrapper around the Outlook views, such
as the Table, Calendar, Card, and Timeline views. You can use this ActiveX control
either inside a Web application, such as an Active Server Pages (ASP) application, or
inside your folder home page. This control prevents you from having to rewrite sig­
nificant portions of code to mimic Outlook functionality. Figure 10-3 shows the sec­
ond folder home page example (FullContacts.htm) hosting the View control.

Figure 10-3. A/older home page (FullContacts.htm) hosting the Outlook View
control.

The environment you place the View control in determines the control's func­
tionality. For example, when you place the View control in a folder home page, the
control provides full access to the Outlook object model as well as automatic merg­
ing of menu commands with the Outlook container, as shown in Figure 10-4. In
contrast, in a stand-alone Web page scenario, the control does not allow access to
any user data nor does it give you the entire Outlook object model. This restriction
prevents the control from downloading all the Outlook data when a user accesses
the Web page. In either scenario, the View control does require Outlook to be installed
on the machine. The control does not install Outlook for you.

345

Part II

Figure 10-4. When hosted in a folder home page, the View control automatically
merges menu commands with its Outlook container. Notice that the custom actions
appear in the Actions menu for an Account Tracking form selected in the control.

The View control allows you to programmatically change control properties so
that you can place more than one control on a single page in your application. For
example, you might want to show a side-by-side view of two calendars, or maybe a
contacts list and all tasks associated with the currently selected contact. When mul­
tiple View controls are on a single page, merging their menus is based on the con­
trol with the focus.

Setting Up the Second Folder Home Page

346

Using a machine that has Outlook 2000 with the Visual Basic Scripting Support and Col­
laboration Data Objects components installed, follow the next set of steps to set up
the second folder home page, which uses the Outlook View control:

1. Make sure you have the Outlook View control installed. The easiest way
to guarantee that the View control is installed on your machine is to in­
stall the Microsoft Outlook Team Folders Wizard.

NOTE The Outlook View control shipped after Outlook 2000. Microsoft made
the control available for downloading from the Outlook and Microsoft Exchange
Server Web sites. The control is also available on the companion CD. To use it,
install the Team Folders Wizard.

2. In Outlook, right-click on the Account Tracking folder and choose
Properties.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

3. In the Address text box of the Home Page tab, specify the location of the
FullContacts.htm file-for example,jile:!/C \ Webview\FullContacts.htm­
and click OK. (FullContacts.htm is available on the companion CD.)

4. Click the Account Tracking folder to display the folder home page.

The following section outlines how to add the View control to a web page and
how to program it.

Using the Outlook View Control
Adding a View control to your folder home page or web page is actually quite easy.
All you need to do is add the <OBJECT> tag to your page and give the control an ID
that you will use in your program. For the Account Tracking folder home page, this
Object tag was inserted into the HTML page:

<OBJECT ID="oViewControl" WIDTH=100% HEIGHT=84%
style="border-bottom:lpx silver solid"
CLASSID="CLSID:0006F063-0000-0000-C000-000000000046")

<param NAME="Namespace" VALUE="MAPI")
<param NAME="Folder" VALUE="")
<param NAME="View" VALUE="Accounts")

<IOBJ ECT)

This tag creates the View control object. Also notice the Param tags-you can
use these tags to pass parameters to the control. In this example, I pass in MAP! for
the Namespace parameter. I also pass in the folder. I pass a blank value for the folder
so that the control defaults to the default folder the user is currently looking at. Finally,
I pass in, as a string, the default view I want in the control. The Accounts view is the
default view for the Account Tracking folder.

After you insert the control, you can add code in the folder home page to grab
the Outlook Application object, Window.External.OutlookApplication, using the tech­
nique we saw earlier. Because I know this script must be running in the Account
Tracking folder (as this is the folder home page for that folder), I set a variable to
the current folder so that I can use that variable later in the script.

After the folder variable is set, my code needs to accomplish one more task.
Recall that the View control is going to bring up the default folder that the user is
viewing. This folder, however, might not be the Account Tracking folder. To ensure
that the control displays the Account Tracking folder, the code finds the full path to
the Account Tracking folder and passes this path as one of the control's properties,
Folder. For example, if the Account Tracking folder were a top-level folder in the
Favorites folders, the path would be \ \ Public Folders\Favorites\Account Tracking\.
The code then fills in the total number of accounts, contacts, and tasks in the folder.
The code for this process is shown on the following page.

347

Part II Building Outlook Applications

348

<SCRIPT ID=clientEventHandlersVBS LANGUAGE=vbscript>

'**
'In-line code

'These lines of code are run when the browser reaches
'them while parsing the document. They set up the global
'variables that are needed throughout the application.
'**

Set oApplication = window.external.OutlookApplication
Set oNS = oApplication.GetNamespace("MAPI")
Set oCurrentFolder = oApplication.activeExplorer.currentfolder
Set oAccountFolder = oCurrentFolder
'AvailWidth = document.body.clientWidth

'**
'Function StrFullPath

'This function creates and returns the full path to the
'folder
'**
function StrFullPath()

If oCurrentFolder Is Nothing Then
strFolderName =

End If
Set olCollabFolder = oCurrentFolder
strFolderName = ""
Set olRoot = oCurrentFolder
While (olRoot <> "Mapi")

strFolderName = oCurrentFolder.Name & "\" & strFolderName
Set olRoot = oCurrentFolder.Parent
If olRoot <> "Mapi" Then

Set oCurrentFolder = oCurrentFolder.Parent
End If

Wend
strFullPath "\\" & strFolderName

end function

'**
'Sub FillTotals()

'This subroutine gets the count for the different types
'of items in a folder, such as accounts, contacts, and
'tasks. It also fills in the HTML page with this
'i nformati on.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

'**
Sub FillTota 1 s ()

RestrictString = ""
RestrictString = "[Message Class] = ""IPM.Post.Account info"""
Set oAccounts = oAccountFolder.ltems.Restrict(RestrictString)
oAcctCount = oAccounts.Count
AccountTotal.innerHTML = "" & oAcctCount & ""
RestrictString = ""
RestrictString = _

"[Message Class] = ""IPM.Contact.Account contact"""
Set oContacts = oAccountFolder.ltems.Restrict(RestrictString)
oContactCount = oContacts.Count
ContactTotal .innerHTML = "" & oContactCount & ""
RestrictString = ""

RestrictString = "[Message Class] = ""IPM.Task"""
Set oTasks = oAccountFolder.ltems.Restrict(RestrictString)
oTasksCount = oTasks.Count
TaskTotal.innerHTML = "" & oTasksCount & ""

End Sub

Fullpath = StrFullPath()
oViewControl .Folder = FullPath

'**
'Sub Window_onLoad()

'This subroutine is called when the HTML page is loaded
'**
Sub Window_onLoad()

oVi ewControl . Fol der
'oViewControl.width
txtFolder.innerHTml
Fi llTotal s()

End Sub

Fullpath
AvailWidth
oAccountFolder.Name

Now that some of the information for the HTML page is filled in, we need to
add some buttons to the page to allow the user to call our subroutines, which auto­
mate the View control. I've left out the HTML code that actually creates the buttons
Cyou can look at this code in the FullContacts.htrn file on the companion CD), but
we will take a look at the automation code that drives the View control from these
buttons.

There are actually six buttons and a drop-down list from which the user can
change the View control. The drop-down list enables the user to change the view of
the control to one of the other views in the Outlook folder. Figure 10-5 shows another
view of the Account Tracking folder home page.

349

Part II

350

Figure 10-5. The folder home page for the Account Tracking application, which
contains the Outlook View control. This time the view is showing account contacts.

The View control has no methods to create new views, so the views must already
exist in the folder. To change the view by using code, set the View property on the
control as the name of the desired new view. Since a fully functional Outlook appli­
cation is running in the control, users can right-click on view columns to bring up
the Field Chooser or customize the view directly in the page. The following code
implements changing the views of the control:

'**
'Sub WhatView_onChange

'This subroutine changes the view of the Outlook control
'depending on what the user picked in the drop-down list
'**
Sub WhatView_onChange

oViewControl.view = WhatView.value
window.focus

end sub

Implementing the functionality for the buttons is actually pretty straightforward
as well. From the buttons, the user can create new accounts, expand groups, collapse
groups, add a folder to a favorites list, find an item in a folder, and view the address
book. Most of these actions are already contained in the View control as methods.
For example, to view the address book, all the code has to do is call the AddressBook
method on the View control. Same thing for adding the folder to the favorites-all
the code has to do is call the AddtoFavorites method on the View control. Here's the
code for the buttons:

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

'**
'Sub CreateAccount

'This subroutine creates a new account info form and
'displays it for the user to fill in
'**
Sub CreateAccount()

set oAccount = oAccountFolder.Items.Add("IPM.Post.Account info")
oAccount.Display()

End Sub

'**
'Sub Actions_onClick(Action)

'This subroutine executes the correct action depending
'on what the user picked in the Web page. such as
'finding an item. creating a new account. and so on.
'**
Sub Actions_onClick(Action)

Select Case Action
case "AddressBook"

oViewControl.AddressBook()
case "AddtoFavbrites"

oViewContr6l,AddtoFavorites()
case "ExpandAllGroups·

oViewControl.ExpandAllGroups()
case "CollapseAllGroups"

oViewControl.CollapseAllGroups()
case "AdvancedFind"

set oExplorer = oApplication.ActiveExplorer
set oCommandBar = _

oExplorer.CommandBars.Item("Menu Bar")
set oMenu = oCommandBar.Controls("Tools")
set oAF = oMenu~Controls("Advanced Find ... ")
oAF. Execut.e

case "CreateAccount"
CreateAccount()

End Select
End Sub

You can also take advantage of other methods and properties in your applications
that use the Outlook View control. To see a complete list of them, just add a refer­
ence.to me Outlook View control either in the VBA that ships with Outlook 2000 or
in Microsoft Visual Basic, and use the object browser. Most of the methods and
properties are self-explanatory, such as the ReplylnFolder and ReplyAll methods. On
the next page are a few of the more interesting properties and methods fbr the View
control that we haven't discussed yet and that you can use in your code.

351

Part II Building Outlook Applications

• FlagItem method. This method brings up the dialog box that flags an item
with a reminder. It will not work unless the user has selected a valid item
in the View control, such as a PostItem.

• Categories method. This method brings up the Categories dialog box in
which the user can select item categories. This is the same dialog box that
appears when the Categories button is clicked in an Outlook form.

• CustomizeView method. This method brings up the dialog box that lets a
user select fields, sortings, the filter, the automatic formatting, and the
grouping for the view. This is the same dialog box that is displayed by
selecting the View\Current View\Customize Current View menu option.

• ShowFields method. This method brings up the Show Fields dialog box.
Using this method, the user can quickly select the desired fields that the
View control will display for the current view.

• SynchFolder method. This rriethod attempts to synchronize the current
foider in the background. (I use the word attempts because your program
might call this method only to find that the connection to the Exchange
server is not available.) Consider creating a button on your HTML form
so that users can easily activate folder synchronization.

• Restriction property. This is a powerful property because it allows you to
filter the items you want to display in your view. It takes the sathe string
format as the Restrict method on the Items collection. For example, if you
want to restrict the view so that only Task items appear, you would pass
to the Restriction property the following string: [Message Class] = "IPM. Task".
You can also pass your restriction as a parameter by using the following
syntax when creating your View control:

<param NAME=Restrict VALUE="[Message Class] = 'IPM.Task'")

By using the Restriction property, you can place two View controls on a
single page and have one view control show a restricted set of items based
on what the users pick in the other View control.

THe ACCOUNT tRACKING COM ADD·IN

352

In the rest of this chapter, we will look at a COM add-in for the Account Tracking
application. We will start by looking at how the COM add-in works and then delve
into the code that implements the COM add-in. The Account Tracking COM add-in
has various features, which include the following:

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

• The add-in includes a property page that allows users to set different
options.

• On startup, the add-in checks whether an Account Tracking group and a
shortcut exist. If not, the COM add-in can automatically create the group
and shortcut.

• When creating the shortcut, the add-in can enable a folder home page for
the Account Tracking folder.

• The add-in includes custom buttons on the command bar.

• The add-in notifies users via e-mail when new tasks or accounts are as­
signed to them.

• The add-in notifies users when changes to an account are made.

Compiling and Registering the COM Add-In
To set up the Account Tracking COM add-in, we first have to compile and register
it. To compile it, you will need a machine with Outlook 2000 and Visual Basic 6.0
installed. Follow these steps to compile the add-in:

1. Copy the Account Admin folder from the companion CD to your local hard
drive, and clear the read-only flag for the files.

2. Open AccountPP.vbp in Visual Basic 6.0.

3. Make AccountPP.ocx. (This file is the ActiveX control property page. Com­
piling automatically registers it.)

4. Open AccountAdminDLL.vbp in Visual Basic 6.0.

5. Change the constant STRFOLDERHOMEPAGEPATH to the location of the
FullContacts.htm file.

6. Search for the second occurrence of oNS.Folders, and change the statement

Set oFolder = oNS.Folders("Public Folders").Folders(_
"All Public Folders").Folders("Account Tracking")

to the location of your Account Tracking folder.

7. Make AccountAdrninDLL.dll.

NOTE It might be necessary to specify the location of the AccountPP.ocx in
the References dialog box. If AccountPP is displayed as MISSING in the Refer­
ences dialog box, uncheck it, click OK to close, reopen the References dialog
box, and .browse for the location of AccountPP.ocx.

8. Double-click on AccountAdminDLL.reg to add the appropriate entries in
the registry.

353

Pari II Building Outlook Applications

9. Launch Outlook 2000.

10. From the Tools menu, select Options. Click on the Other tab, click the Ad­
vanced Options button, and then click the COM Add-Ins button. In the
COM Add-Ins dialog box, make sure that AccountAdmin is checked as an
available add-in.

11. Log off, and close Outlook.

12. Restart Outlook.

Testing the COM Add-In

354

To test some of the COM add-in options, you have to tum them on. To tum the options
on, you use the new Account Tracking tab, as shown in Figure 10-6. This property
page is the AccountPP control we compiled in Visual Basic 6.0. (Later in the chap­
ter, we will examine how it is constructed.) To display this property page, choose
Options from the Tools menu in Outlook 2000, and then click on the Account Tracking
tab. Make sure all options are cheeked, and click OK. (The Account Tracking tab is
also available from the folder Properties dialog box, which can be accessed by right­
clicking on the Account Tracking folder and choosing Properties.)

Figure 10-6. The new Account Tracking tab in the optiOns dialog box. This tab
makes it easy for users to select which features of the Account TraCking COM add-in
they want to use.

The Account Tracking settings selected by the user in either the Options or the
Properties dialog boxes are automatically written to the registry so that the COM add­
in can track the settings for each Outlook session. Figure 10-7 shows the registry with
the user's settings for the COM add-in.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

Figure 10-7 . . Tbe registry settings for the Account Tracking COM add-in. Tbe add-in
automatically persists the user settings to this portion of the registry.

Now that the COM add-in is set up and the options are turned on, let's see how
the add-in works. Select the Account Tracking folder in Outlook, and then choose
New Account Info from the Actions menu. Fill out the information for a new account.
Make sure you add yourself as a team member using your full name under the Account
Team tab. Then click the Account Tasks tab, and add a new task.

NOTE If you don't have the Outlook Visual Basic Scripting Support installed,
a message indicating that scripting is not supported will be displayed when you
try to display New Account Info. You can install the Outlook Visual Basic Script­
ing Support by re-running Setup for Outlook 2000.

If you left yourself as the task owner,once you add a new task, the COM add­
in. should send. two e-mail. messages to your Inbox. The first e-mail indicates that a
new account has been created with you as a team member. The second e-mail indi­
cates that a task was assigned to you. Figure 10-8 shows an example of the second
e-mail.

r •• k1

Figure 10-8. An e-mail notification stating that a task either has been assigned to the
current user or has changed in the evertt the current user is also the owner of the task.

355

Part II Bunding Outlook Applications

356

The COM add-in can notify a user when the user is added to the account team
or, if the user is already a member of the account team, when the account informa­
tion changes in the application. The information change notification can be triggered
by changing the revenue of the account, the team members on the account, or the
address of the account. Figure 10-9 shows the e-mail that is sent to the user when
his account changes.

T eot Account1

Figure 10-9. An e-mail notification stating that account information has changed.
Tbis notification will be triggered only when the current user is a member of that
account team.

The Account Tracking COM add-in also includes the ability to automatically
search for an Account Tracking Outlook group and shortcut. This option was acti­
vated on the Account Tracking tab of the Options dialog box. When the user starts
Outlook and an Account Tracking group or shortcut does not exist, the user is prompted,
as shown in Figure 10-10, about whether he wants to create a group or shortcut for
the Account Tracking application. If the user chooses Yes, a new Account Tracking
group and an Account Tracking shortcut are created on the Outlook Bar. If the
Account Tracking Group dialog box is not displayed, try restarting Microsoft Windows
and opening Outlook.

Figure 10-10. A message box asking if an Account Tracking Group and Shortcut
should be created.

If when creating the shortcut, the check box named When Creating Shortcut
Enable Folder Homepage As Default View On Folder is checked on the Account
Tracking tab, the folder home page will be set as the default view for the folder. For
the Account Tracking application, the folder home page is FullContacts.htm, which
was specified earlier in the AccountAdminDLL project.

Chapter 10 Outlook 2000 In Actidh: Enhancements to the Account Tracking Application

The COM add-in includes a new command bar and command buttons designed
specifically for the Account Tracking application. After restarting Outlook, the COM
add-in should display a message box asking if you want to create and display these
new buttons, as shown in Figure 10~ 11. If the message box is not displayed, try clicking
the newly created Account Trackirig shortcut in the Account Tracking group.

Figure 10-11. A message box asking if the Account Tracking application should
create new command buttons.

The buttonS make it easier for users to quickly create new accounts, contacts,
or tasks. Figure 10-12 shows you the new command bar in Outlook 2000. If these
buttons are not displayed, right-click on the command bar and select Account Tracking
from the context menu.

Figure 10-12. A command bar created programmatically by the COM add-in.

Implementing the COM Add,;,ln

Let's review assumptions I made about implementation of the Account Tracking COM
add-in .. To make the code easier to digest, I assumed that users would always load
the COM add-in at startup. For this reason, as you will see, the OnConnection event
for the COM add-in is left pretty bare. Since loading at startup calls both the
OnConnection and the OnStartupComplete events, most of the code is written in the
OnStartupComplete event for simplicity. If you want to impleme~t the ability to dis­
connect and reconnect the Account Tracking COM add-in, you will need to move
some of the code out of the OnStartupComplete event into a subroutine, and then
call that subroutine from both events. You will also need to revise the code to prop­
erly initialize some of the Outlook object variables.

The COM add-in options are stored in the registry. The registry path to these
options is included in a code module with the COM add-in. Therefore, to change the
registry location for the COM add-in options, you simply change this path.

Searching for the Account Tracking Group and Shortcut
The first section of the code we'll examine searches for the Accollnt Tracking group
and shortcut on the Outlook Bar. As mentioned earlier, this code occurs only when

357

Pari II Building Outlook Applications

358

the add-in is loaded and connected upon startup in Outlook 2000. The main portion
of this code is implemented in the OnStartupComplete event for the COM add-in.
Remember that you must place Implements IDTExtensibility2 in your project before you
can create code for this event. The following code is from the general declarations and
the OnStartupComplete event procedure:

Implements IDTExtensibility2

Dim WithEvents oApp11cation As Outlook.Application
Dim W1thEvents oNS As Outlook.NameSpace
Dim WithEvents oItems As Outlook. Items
Dim oFolder As Outlook.MAPIFolder
Dim WithEvents oExplorer As Outlook.Explorer
Dim oCommandBar As Office.CommandBar
Dim WithEvents oCreateAccountBHandler As Office.CommandBarButton
Dim WithEvents oCreateAcctContactBHandler As Office.CommandBarButton
Dim WithEvents oCreateAcctTaskBHandler As Office.CommandBarButton
Dim oAcctItem As Outlook.PostItem
Dim oFolders As Outlook.Folders
Oim prefLookForShortcuts As Integer
Dim prefMakeFolderHomepage As Integer
Dim prefNotifyWhenNewMember As Integer
Dim prefNotifyWhenNewTask As Integer
Dim prefEnableAcctToolbar As Integer
Dim oNewPage As Object

Const STRFOLDERHOMEPAGEPATH = _
"file:IIC:\Webview\fullcontacts.htm"
Private Sub IDTExtensibility2_0nStartupComplete(custom() As Variant)

On Error Resume Next
Set oNS = oApplication.GetNamespace("MAPI")
'Replace with your folder location.
'This is for offline users since they must put the folder
'in their Favorites folder.
Set oFolder = oNS.Folder~("Public Folders"). _

Folders("Favorites").Folders("Account Tracking")
If oFolder Is Nothing Then

'You may prefer to put in an EntryID here
Set oFolder = oNS.Folders("Public Folders").Folders(_

"All Public Folders").Folders("Account Tracking")
End If
If oFolder Is Nothing Then

Set oFolders = oNS.Folders("Public Folders").Folders(_
"All Public Folders").Folders

'The following code can be used if you want to search
'the entire public folder hierarchy for the folder.
'For performance reasons, this code is commented out.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

If Not (oFolders Is Nothing) Then
Set otmpFolder = oFolders.GetFirst
Do While Not (otmpFolder Is Nothing)

ListFolders otmpFolder
If otmpFolder Is Nothing Then

Set otmpFolder = oFolders.GetNext
Else

Exit Do
End If

Loop
End If
If you do use this code, you need to uncomment the
ListFolders subroutine as well as add a check here
to see if oFolder is nothing after finishing

MsgBox "You have the Account Tracking COM add-in loaded" & _
" but you have no Account Tracking folder. " & _

"You may wish to unload the COM add-in.", _
vbOKOnly + vbInformation, "Account Tracking COM add-in"

Exit Sub
End If
Set oItems = oFolder.Items
Set oExplorer = oApplication.ActiveExplorer
'See if the user wants us to check for shortcuts
If prefLookForShortcuts = 1 Then

'The following code checks to see if the user has
'an Outlook shortcut and group for the Account Tracking
'application
Dim oPane As OutlookBarPane
Dim oOLBarStorage As OutlookBarStorage
Dim oOLBarGroups As OutlookBarGroups
Dim oOLBarGroUp As OutlookBarGroup
Dim oOLBarShortcuts As Out1ookBarShortcuts
Dim oOLBarShortcut As OutibokBarShortcut
'Used if shortcut found with no group
Dim otmpOLAccountBarGroupIndex As Integer
Dim otmpbLBar6roup AsOutlookBarGroup
Dim otmpOLShortcuts AS OutlookBarShortcuts
Dim BarCounter As Integer
Dim ShortcutCounter As Integer
Set oPane = oExplorer.Panes(~OutlookB~r")
Set oOLBarStorage = o~ane.Contents
Set oOLBar6roups = oOLBarStorage.Groups
boolFoundAcctGrriup = 0
boolFoundAcctShortcut = 0
BarCounter = 1

For Each oOLBarGroup In oOLBarGroups
(continued)

359

Pari II Building Outlook Applications

360

'For debugging purposes
'MsgBOx "Group: " & oOLBa~G~bup.Name
If oOLBarGroup.Name = "Ac~ount Tracking" Then

boolFoundAcctGroup= BarCounter
End if
Set oOLBarShortcuts = oOLBarGroup.Shortcuts
ShortcutCounter = 1
For Each oOLBa~Shortcut In oOLBarShortcuts

'For debugging purposes

Next

'MsgBox oOLBarShortcut.Name
Err.Clear
If IsObject(oOLBarShortcut.Target) Then

'Check to See if this is the file target by
'checkjng error ,
If oOLBarShortcut.Target.Name = _
"Account Tracking" Th~h .

If Err.Number = -2147319765 Then
'File, Target

ElseIf Err.Number = 0 Then
'For Debugging purposes
'MsgBox _
"Account Tracking Folder: " & _
oOLBarShortcut.Target.Name
boolFoundAcctShortcut = _

ShortcutCounter
otmpOLAtcountBarGroupIndex = _

BarCounter
End If

End If
Else

'The target is a URL string
End If
ShortcutCounter = ShortcutCounter + 1

BarCounter = BarCounter + 1
Next
'For debugging purposes
'MsgBox boolFoundActtShortcut & boolFoundAcctGroup.
'Check, to see whether shortcut exists without group.
If (boolFoundAcctShortcut <> 0) And _
(boolFoundAtctGroup = 0) Then

'Check, to see whether they want to remove the
'ihortcut and move it to ~ new gro~p
Response. MsgBox("tou h~ve an Account" & _

"Tr~cking shortcut without in Account" & _
"Tracking group. Would you like to create a " & _
"new Account Tracking group and move the" & _
"Account T~acking shortcut there?", & _

Chapter 10 Outlook 2000 In Action: Enhancements to the Account Tracking Application

vbYesNo + vbOuestion, "Account Tracking")
If Response = vbYes Then

'Delete the old Account Tracking shortcut.
'Get the Outlook Bar for the shortcut.
Set otmpOLBarGroup = _

oOLBarGroups.Item(otmpOLAccountBarGroupIndex)
Set otmpOLShortcuts = otmpOLBarGroup.Shortcuts
otmpOLShortcuts.Remove boolFoundAcctShortcut
Dim otmp20LBarGroup As OutlookBarGroup
Dim otmp20LShortcuts As OutlookBarShortcuts
'Create a new Account Tracking group
Set otmp20LBarGroup = oOLBarGroups.Add(_

"Account Tracking", oOLBarGroups.Count + 1)
'For debugging purposes
'MsgBox "Group: " & otmp20LBarGroup.Name
Set otmp20LShortcuts = otmp20LBarGroup.Shortcuts
otmp20LShortcuts.Add oFolder, "Account Tracking"
'Check to see whether they want us to ~reate a
'Web view
If prefMakeFolderHomepage = 1 Then
• 'Create the Web vi ew

oFolder.WebViewAllowNavigation = True
oFolder.WebViewOn = True
oFolder.WebViewURL = STRFOLDERHOMEPAGEPATH

End If
End rf

'Check to see whether group exists with no shortcut
ElseIf (boolFoundAcctShortcut = 0) And _
(boolFoundAcctGroup <> 0) Then

'See if user wants to add shortcut to group
Response = MsgBox("There is an Account" & _

"Tracking Group without a shortcut to the" & _
"Account Tracking folder. Do you want" & _
"to add a shortcut to the Account Tracking" & _
"folder in this group?", _
vbYesNo + vbOuestion, "Account Tracking")

If Response = vbYes Then
Dim otmpOLGroup As OutlookBarGroup
Set otmpOLGroup = _

oOLBarGroups.Item(boolFoundAcctGroup)
'For debugging purposes
'MsgBox otmpOLGroup.Name
Set otmpOLShortcuts = otmpOLGroup.Shortcuts
otmpOLShortcuts.Add oFolder, "Account Tracking"
'Check to see whether user wants us to create a
'Web view
If prefMakeFolderHomepage = 1 Then

(continued)

361

Part II Building Outlook Applications

362

'Create the Web view
oFolder.WebViewAllowNavigation = True
oFolder.WebViewOn = True
oFolder.WebViewURL = STRFOLDERHOMEPAGEPATH

End If
End If

'Check to see whether there is neither
ElseIf (boolFoundAcctGroup = 0) And _
(boolFoundAcctShortcut = 0) Then

Response = MsgBox("You don't have an Account" & _
"Tracking Group or Shortcut. Would you like to " & _
"create them?", vbYesNo + vbQuestion, _

"Account Tracking Group")
If Response = vbYes Then

Set otmpOLGroup = oOLBarGroups.Add(_
"Account Tracking", oOLBarGroups.Count + 1)

'For debugging purposes
'MsgBox otmpOLGroup.Name
Set otmpOLShortcuts = otmpOLGroup.Shortcuts
otmpOLShortcuts.Add oFolder, "Account Tracking"
'Check to see whether user wants us to create a
'Web view
If prefMakeFolderHomepage = 1 Then

'Create the Web view
oFolder.WebViewAllowNavigation = True
oFolder.WebViewOn = True
oFolder.WebViewURL = STRFOLDERHOMEPAGEPATH

End If
End If

'There is one other scenario with an Account Tracking
'shortcut and an Account Tracking group.
'In this scenario, do nothing.

End If
End If

End Sub
Sub ListFolders(objFolder)

On Error Resume Next
If Not (objFolder Is Nothing) Then

'Check to see whether Account Tracking folder
If objFolder.Name = "Account Tracking" Then

Set oFolder = objFolder
Exit Sub

El se
'Check for child folders
Set objFolders = objFolder.Folders
Set objFolder = objFolders.GetFirst
Do While Not (objFolder Is Nothing)

Chapter 10 Outlook 2000 in Action: Enhanclmlnts to the Account Tracking Application

ListFolders objFolder
Set objFolder = objFolders.GetNext

Loop
End If

End If
End Sub

The first task the code performs is to set some of the variables in the applica­
tion to their correct values. The commented parts in the code show how you can
search for the Account Tracking public folder in the public folder hierarchy. Obvi­
ously, if the public folder hierarchy is large, completing the search could take a long
time, and you might decide not to implement the code. Instead, you could replace
the code in the event with code that retrieves the Account Tracking folder by EntryID,
which allows you to eliminate any hard-coded paths to the folder.

The code then checks to see whether the user wants to look for the Account
Tracking group and shortcut. This configuration information is pulled from the reg­
istry, as will be explained later in this section. If the user wants to search for the group
and the shortcut, the code uses some of the new objects and collections in the Out­
look 2000 object model.

The code grabs the OutlookBar pane from the current Explorer. Then the code
retrieves the OutlookBarStorage object for the contents of that pane, and it retrieves
the OutlookBarGroups in the storage object. From there, the code uses a For ... Each
loop to find the Account Tracking.group.

NOTE You could replace the For ... Each loop code with a simpler version that
uses the Item method on the OutlookBarGroups collection. By using the Item
method, you can retrieve the group by name. But to show you how to use this
collection, I used the For ... Each loop.

In the For ... Each loop, the code retrieves each shortcut in the group by using
the OutlookBarShortcuts collection. The code then loops through each shortcut to
determine whether the target for that shortcut is the Account Tracking folder by using
the Account Tracking name. You could also compare the EntryIDs of the target with
the original folder we set earlier in the code. It's really your choice how you want to
implement this.

You can see some error handling code in the IDTExtensihility2_0nStartup­
Complete procedure. We have to make sure we do not error-out on file system targets.
This error-handling code. skips me system. targets.

Counters in the code let the application know the index of the Account Track­
ing group as well as the index of the Account Tracking shortcut within that group, if
the shortcut exists. The code uses these counters to check a number of scenarios, such
as whether both the group and the shortcut exist. This checking scenario occurs when
both counters are o. The code also checks to see whether the shortcut exists but no
group does. If the shortcut does exist, the code can create a new group, remove the

363

Part II Building Outlook Applications

364

existing shortcut, and place the shortcut in the new group. The code counts where
the shortcut exists in a certain group to simplify removing the shortcut using its index.
If the group exists without a shortcut, the code can create a shortcut in the group
and associate the shortcut with the folder.

The code also checks the option settings to see whether it should make the default
view on the folder the folder home page. If the check box that enables the folder
home page on the Account Tracking tab of the Options dialog box is checked, the
code uses the Web ViewAllowNavigation, WebViewOn, and WebViewURL properties
to set up the folder home page. WebViewAllowNavigation returns or sets the navi­
gation mode for the folder if the user is viewing a folder home page. When this
property is set to True, Outlook allows users to navigate using the Forward and Back
buttons of the Microsoft Web Control. When this property is set to False, Outlook
displays the folder home page in Native mode, which makes the Forward and Back
buttons unavailable. By setting this property to True, the folder home page provides
more functionality to the user, although it runs a bit slower.

The WebViewOn property returns or sets the folder home page state. If you set
this property to True, as is done in the preceding code, Outlook displays the folder
home page as the default view for the folder.

The Web ViewURL property returns or sets the string that identifies the URL for
the folder home page. Any valid URL can be used in this property, such as a file or
an http URL. The application sets this property to a constant string, which is set in
the declarations section of the program.

Using Events to Notify Users of Changes
The next section of the code we will take a look at tracks when users add or change
account or task items in the folder. The application does not track deleted items since
Outlook does not pass the deleted item in its ItemRemove event, making it difficult
to figure out what was removed from the folder.

To track additions and changes to items, the code declares a variable oItems as
an Outlook.Items collection by using the WithEvents keyword. The WithEvents key­
word allows you to select the events you want to handle in the Visual Basic envi­
ronment for the collection. The code for this application implements the ItemAdd and
the ItemChange events for the Items collection. Let's first review the ItemAdd event,
which is shown here:

Private Sub oItems_ItemAdd(ByVal Item As Object)
Dim oUser As Variant
Dim oMail As Outlook.Mailltem
Dim oAttach As Outlook.Attachment
Dim oItem As Outlook.Taskltem
Dim oAccountltem As Outlook.Postltem
Dim oUserProps As Outlook.UserProperties

oUser = oNS.CurrentUser.Name

Chapter 10 Outlook 2000 In Action: Enhancements to the Account Tracking Application

'Check to see what type of item was just created
If Item.Class = olTask Then

'Check to see whether user wants notification
If prefNotifyWhenNewTask = 1 Then

'Transform into TaskItem
Set oltem = Item
'Check to see whether the current user is the owner
If oItem.Owner = oUser Then

'Send to the user a message with a link to the item
Set oMail = oApplication.CreateItemColMailltem)
With oMail

.To =oUser

.Subject = "New.Account Task for the" & _
Item.ConversationTopic & _
" account is assigned to you."

.Body = "A new task - " & Item.Subject & _
was a~signed to you. "&_

"To view this task, please click" _
& " on the link below."

End With
Set oAttach = oMail .Attachments.AddCltem, _

01 Embeddeditem)
oMail.Recipients.ResolveAll
oMail.Send

End If
End If

Elself Item.MessageClass = "IPM.Post.Account info" Then
'Check to see whether user wants notification
If prefNotifyWhenNewMember = 1 Then

Set oAccountltem = Item
boolAccountMember = 0
Set oUserProps = oAccountitem.userProperties
If oUserProps.FindC"txtAccountConsultant") = oUser Then

boolAccountMember = 1
Elself oUserProps.FindC"txtAccountExecutive")

oUser Then
boolAccountMemoer = 1

ElseIf oUserProps.FindC"txtAccountSalesRep")
ol)ser Then
boolAccountMember = 1

ElseIf oUserProps.FindC"txtAtcountSE") = oUser Then
boolAccountMembe~ = 1

Elself oUserProps.FindC"txtAccduntSupportEngineer")
oUser Then

boolAccountMember = 1
End If
If boolAccountMember 1 Then

'Send to the user a message with a link to the ite~
(continued)

365

Part II Building Outlook Applications

Set oMail = oApplication.Createltem(olMailItem)
With oMail

.To = oUser

.Subject = "A New Account - " & _
Item.ConversationTopic & _
" - has been created with you as a " & _
"team member."

.Body = "A new account - " & Item.Subject & _
- was created with you as a team member."

& " To view this account. please click" _
& " on the link below."

End With
Set oAttach = oMail.Attachments.Add(Item; _

01 Embeddeditem)
oMail.Recipients.ResolveAll
oMail . Send

End If
End If

End If
End Sub

The o/temsjtemAdd eveht procedure first retrieves the name of the current user.
Then the code checks the class of the· item that was added to the collection in the
foider. If the item is a task, the code coerces the item into an Outlook TaskItem object
before it attempts to call the methods and properties on that object type. If the cur­
rent user is the owner of the new task, the application creates an e-mail message with
the new task attached as a shortcut, and then sends the e-mail to the user. The user
receives the notification e-mail in the Inbox.

The code used to notify users of a new account in the folder is similar to the
task code, but instead of checking the owner property, the account code checks the
item's custom properties that correspond to the names of the team members for the
account. If the user is found in one of these properties, the code sends an e-mail to
the user indicating that she has a new account for which she is a team member.

The only aspect of this subroutine and the next subroutine that you might want
to change is the user who sends the item. In the current implementation, the user
serids the update. You can change this functionality so that the public folder is the
sender of the message by giving your users Send On Behalf Of permissions in your
Exchange Administrator program fot the folder. Then either expose the folder in the
address list so that it can be added into the From field, or place the address of the
folder in the From field. If you don't want the e-mail to come from the folder, you
can create a mailbox and assign it Send On Behalf Of permissions in the Exchange
Administrator program.

To notify the user that she has been assigned an existing task or that a task for
which she is the owner has changed, the code uses the ItemChange event for the Items

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

collection. This event is also used to notify the user when she is added to an account
team after the account is created, or when an account for which she is a team mem­
ber has been changed. The following code implements the ItemChange event:

Private Sub oItems_ItemChange(ByVal Item As Object)
Dim oUser As Variant
Dim oMail As Outlook.MailItem
Dim oAttach As Outlook.Attachment
Dim oTaskItem As Outlook.TaskItem
Dim oAccountItem As Outlook.PostItem
Dim oUserProps As Outlook.UserProperties

'Since the event doesn't show us how the item changed.
'we need to notify the user of the change but not what
'specifically changed on the item

oUser = oNS.CurrentUser.Name
'Check to see what type of item was just created
If Item.Class = olTask Then

'Check to see whether the user wants to be notified
If prefNotifyWhenNewTask = 1 Then

'Transform into TaskItem
Set oTaskItem Item

'Check to see whether the current user is the owner
If oTaskItem.Owner = oUser Then

'Send to the user a message with a link to the item
SetoMail = oApplication.CreateItem(olMailItem)
With oMail

.To = oUser

.Subject = "An Account Task for the" &
Item.ConversationTopic & _
" account is assigned to you."

.Body = "A task - " & Item.Subject & _
" - was assigned to you or was changed" & _
"by another user.
& "To view this task. please click" _
& " on the link below."

End With
Set oAttach = oMail .Attachments.Add(Item. _

01 Embeddeditem)
oMail.Recipients.ResolveAll
oMai 1 . Send

End If
End If

ElseIf Item.MessageClass "IPM.Post.Account info" Then
Set oAccountItem = Item

(continued)

367

Part II

368

Outlook

boolAccountMember = 0
Set oUserProps = oAccountItem.UserProperties
If oUserProps.Find("txtAccountConsultant") = oUser Then

boolAccountMember = 1
ElseIf oUserProps.Find("txtAccountExecutive") = oUser Then

boolAccountMember = 1
ElseIf oUserProps.Find("txtAccountSalesRep") = oUser Then

boolAccountMember = 1
ElseIf oUserProps.Find("txtAccountSE") = oUser Then

boolAccountMember = 1
ElseIf oUserProps.Find("txtAccountSupportEngineer")
oUser Then

boolAccountMember
End If

1

If boolAccountMember 1 Then
'Send to the user a message with a link to the item
Set oMail = oApplication.CreateItem(olMailItem)
With oMa il

.To = oUser

.Subject = "You have been assigned to the - " & _
Item.ConversationTopic & _
" - account as a team member."

.Body = "The account - " & Item.Subject & _
" now has you as a team member or someone " & _
"has changed a value" _
& "on the account. To view this account. "
& "please click on the link below."

End With
Set oAttach = _

oMail.Attachments.Add(Item. 01 Embeddeditem)
oMail.Recipients.ResolveAll
oMail.Send

End If
End If

End Sub

The code that handles the ItemChange event is very similar to the code for
ItemAdd, so I won't cover it in detail. The only difference between the two event
handlers is the text of the message that they send to the user. Since Outlook does
not pass the property that was changed on the item as a parameter to ItemChange,
the code can't know whether the user was assigned to an item or which property was
changed. For this reason, the message text notifies the user only that a change to the
item has occurred.

Adding and Handling Custom Command Bars and Buttons
The next section of code we'll take a look at adds a custom command bar and com­
mand buttons to the Outlook toolbar, and provides event handlers for the buttons
when users click them. The code for this functionality is shown here:

Private Sub oExplorer_BeforeFolderSwitch(_

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

ByVal NewFolder As Object, Cancel As Boolean)
'Add CommandBar buttons to the Outlook User Interface for easy
'creation
Dim oTempFolder As Outlook.MAPIFolder
Dim oCommandBars As Office.CommandBars
Dim oCommandBar2 As Office.CommandBar
Dim oControls As Office.CommandBarControls
Dim oControl As Office.CommandBarButton
Dim otmpCommandBar As Office.CommandBar

'Make sure they want to do this
If prefEnableAcctToolbar = 1 Then

'First check to see whether the folder is the
'Account Tracking folder
If Not (NewFolder Is Nothing) Then

Set oTempFolder = NewFolder
boolFoundCommandBar = 0
'You might want to put in the EntryID here rather than
'the name
If oTempFolder.Name = "Account Tracking" Then

'Check to see whether command bar already exists
Set oCommandBars = _

oApplication.ActiveExplorer.CommandBars
For Each oCommandBar In oCommandBars

If oCommandBar.Name = "Account Tracking" Then
boolFoundCommandBar = 1
Set otmpCommandBar = oCommandBar
Exit For

End If
Next
If boolFoundCommandBar = 0 Then

'Need to create the command bar
'Maybe add text box for searching for account
'or contacts
Response = MsgBox("The Account Tracking" & _

"application can create a toolbar with"
& "the most commonly used commands. Do " & _
you want to have the application create" _
& " the toolbar and display it?", _
vbYesNo + vbQuestion, "Account Tracking")

If Response = vbYes Then
'Create the command bar
Set oCommandBar = oCommandBars.Add(_

"Account Tracking", Temporary:=False)
Set oControls = oC6mmandBar.Controls
'Create the buttons, and set the
'event handler objects to the
'buttons.

(continued)

369

Part II Building Outlook Applications

370

'Create the first button.
Set oControl = oControls.Add(_

Type:=msoControlButton. 10:=1. _
Temporary:=False)

oControl.Caption = "Create New &Account"
oControl .Faceld = 609
oControl .Style = msoButtonlconAndCaption
Set oCreateAccountBHandler = oControl
'Create the second button
'Context menu
Set oControl = oControls.Add(_

Type:=msoControlButton. 10:=1. _
Temporary:=False)

oControl .Caption = "Create Account &Contact"
oControl.Faceld = 607
oControl.Style = msoButtonIconAndCaption
Set oCreateAcctContactBHandler = oControl
'Create the third button
'Context menu
Set oControl = oControls.Add(_

Type:=msoControlButton. 10:=1. _
Temporary:=False)

oControl .Caption = "Create Account &Task"
oControl.FaceId = 329
oControl.Style = msoButtonIconAndCaption
Set oCreateAcctTaskBHandler = oControl
'Make the command bar visible
oCommandBar.Visible = True
oCommandBar.Position = msoBarTop

End If
El se

'Account Tracking command bar already exists.
'See if they want to do this.
If prefEnableAcctToolbar = 1 Then

'Check to see if visible; if not. make
'visible
Dim oCBControls As Office.CommandBarControls
Dim oCBButton As Office.CommandBarButton
If otmpCommandBar.Enabled = False Then

otmpCommandBar.Enabled = True
End If
If otmpCommandBar.Vis1ble False Then

otmpCommandBar.Visible = True
End If

End If
End If

Else
'It's not the Account Tracking folder.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

'Look for the toolbar and disable it.
On Error Resume Next
Set oCommandBars = oApplication.ActiveExplorer. _

CommandBars
Set oCommandBar = oCommandBars("Account Tracking")
oCommandBar.Enabled = False

End If
El se

'It's a file system folder!
'Oisable·toolbar.
On Error Resume Next
Set oCommandBars = _

oApplication.ActiveExplorer.CommandBars
Set oCommandBar = oCommandBars("Account Tracking")
oCommandBar.Enabled = False

End If
End If
Set oTempFolder = Nothing
Set oCommandBars = Nothing
Set oCommandBar = Nothing
Set oControls = Nothing
Set oControl = Nothing

End Sub

The application includes the Outlook Explorer object's BeforeFolderSwitch
event, as shown in the preceding code .. The oExplorer _BeforeFolderSwitch event
procedure is passed, as a MAPIFolder, the folder that the user is trying to switch to.
The code checks the folder's name to see if it is the Account Tracking folder. You
could also perform this comparison by using the EntryID of the folder.

If the folder is the Account TJ!lcking folder, the code searches the CommandBars
collection of the Explorer object to see whether an Account Tracking command bar
exists. If the code finds the Account Tracking command bar, it simply makes the com­
mand bar visible.

If the code doesn't find the Account Tracking command bar, it creates the com­
mand bar if the user selected to do this as a preference. The code adds a new
CommandBar object to the CommandBars collection by passing the name of the
command bar as well as the Temporary parameter. The Temporary parameter indi­
cates that Outlook should persist the command bar between Outlook sessions. Then
the code starts creating the buttons on the command bar. .

To create the buttons, the code uses the Controls collection on the CommandBar
object. The code then adds three button controls to the collection. The control type
is identified with the msoControlButton constant. (You can create other types of
controls on your command bars besides buttons, such as drop-downs, combo boxes,
and popups.) The code also passes an ID of 1 for all the controls; this value indicates
that the control is a custom control and not built in. The code passes the Temporary

371

Part II Building Outlook Applications

372

parameter and sets it to False so that Outlook persists the buttons between sessions.
Depending on the type of control you specify, the Add method will return an
appropriate object, such as a CommandBarButton, a CommandBarComboBox, or a
CommandBarPopup object.

After the code receives the CommandBarButton object from the Add method
on the Controls collection, it starts setting properties on the CommandBarButton
object. The first property it sets is the Caption property, which is a string containing
the caption text for the control. Notice how you can place an ampersand before one
of the letters in the control caption to provide a shortcut key to the control. This
caption property is the default screen tip for the control.

The second property the code sets is FaceId, which specifies how the button
face should look. Office 2000 has a number of built-in faces that you can use. If you
want to use a custom face on your buttons, you must specify a 0 for this property
and copy your custom face to the clipboard. Then you can use the PasteFace method
on the CommandBarButton object to paste the face from the clipboard onto your control.

The final property the code sets is the Style property. This property can have
many different values, such as the msoButtonIconAndCaption constant, which dis­
plays the button face as well as the caption text. Or you could choose msoButtonCaption
to display only the caption. To enhance usability of the buttons, the code displays
both the icon and the caption in them. For a list of all the style values, refer to the
Office 2000 help me.

After the new CommandBarButtons are created and set, they are assigned to
other variables such as oCreateAccountBHandler. If you take a look at the declarations
section of the code earlier in the chapter, you'll notice that oCreateAccountBHandler
is declared as an Office.CommandBarButton using the WithEvents keyword. The
WithEvents keyword specifies that oCreateAccountBHandler is used to respond
to events for a CommandBarButton. The following code shows the event handlers
for the three buttons on the Account Tracking command bar:

Private Sub oCreateAccountBHandler_Click(ByVal Ctrl As _
Office.CommandBarButton. Cancel Default As Boolean)

Dim ~Account As Outlook.Postltem
Set oAccount = oFolder.ltems.Add("IPM.Post.Account info")
oAccount.Display

End Sub

Pri vate Sub oCreateAcctContactBHandl er _Cli ck(ByVa 1 Ctrl· As _
Office.CommandBarButton. Cancel Default As Boolean)

Dim oSelection As Outlook.Selection

On Error Resume Next
boolFoundAccountltem = 0
Set oSelection = oExplorer.Selection
For Each oItem In oSelection

Chapter 10 Outlook 2000 in Action: Enhancem.ents to the Account Tracking Applica.ion

If oltem.MessageClass = "IPM.Post.Account info" Then
boolFoundAccountltem = boolFoundAccountltem + 1
'Set the item found to a global variable just in case
'it is the only one fQund
Set oAcctltem = oltem

End If
Next
If boolFoundAccountltem = 0 Then

MsgBox "You have no atcount selected. Please select" & _
"an account and try again.", _
vbOKOnly + vbExclamation, "Create Contact"

Exit Sub
Elself boolFoundAccountltem > 1 Then

MsgBqx "You have more than one account selected. " & _
"Please select only one account and try' again.", _
vbOKOnly + vbExclamation, "Create Contact"

Exit Sub
Elself boolFoundAccountltem = 1 Then

Set AccountContactForm = oAcctltem.Actions(
"Create New A~count Contact").Execute

AccountContactForm.Display (True)
End If

End Sub
Private Sub,oCreateAcctTaskBHandler_Click(_
ByVal Ctrl As Office.Command~arButtGn, C~rcelDefault As Boolean)

On Error Resume Next
boolFoundAccountltem = 9
Set oSelection = oExplorer.$election
For Each oltem In oSelectio~

If oltem.MessageClass = "IPM.Post.Account info" Then
boolFoundAccountltem = boolFoundAccountltem + 1
'Set the item found to a global variaple just in case
'it is the only one found
Set oAcctltem ;= oltem

End If
Next

If boolFoundAccountltem ;= 0 T/1en
MsgBox "You have no accou~t selected. Please select" & _

"an account and try again.", _
vbOKOnl, + vbExclamation, "Create Contact"

Exit Sub
Elself boolFoundAccountltem > 1 Then

MsgBox "You have more than one account selected. ~ & _
·Please select only pne account a~d try agai~.", _
vbOKOnly + vbExclamation, ~Create Contact"

Exit SUb
Elself boolFoundAccountltem = 1 Then

(continued)

373

Part II Building Outlook Applications

374

Set AccountTaskForm = oAcctltem.Actions(_
"Create New Account Task").Execute

AccountTaskForm.Display (True)
End If

End Sub

Private Function CheckSelection(strMessageClass) As Integer
On Error Resume Next
boolFoundAccountltem = 0
Set oSelect;on = oExplorer.Selection
For Each oltem In oSelection

If oltem.MessageClass = strMessageClass Then
boolFoundAccountltem = boolFoundAccountltem + 1
'Set the item found to a global variable just in case
'it is the only one found
Set oAcctltem = oltem

End If
Next
CheckSelection = boolFoundAccountltem

End Function

Notice that we use the standard Outlook object model to implement all three event
handlers. The oCreateAccountBHandler_Click event handler is the simplest of the three
since it only adds a new account form to the folder and displays this form to the user.

The other two event handlers, oCreateAcctContactBHandler_Click and oCreate­
AcctTaskBHandler_Click, also use some of the features in the Outlook 2000 object
model. Before a user can create either an account contact or a task, the user must first
select an account. The code for these handlers uses the new Selection collection on
the Explorer object to determine what the user has selected in the user interface.

The oCreateAcctContactBHandler _Click and oCreateAcctTaskBHandler _Click
event handlers both loop through the collection of selected items to see whether any
are account items. Users can select multiple items in the user ir:tterface, so the code
remembers how many account items it sees in the Selection collection. Both handlers
set the last account item they see to a global variable just in case this account item
is the only one in the selection. Because the add-in cannot guess for which account
the user wants to create a new contact or task, the subroutines display error messages
when the user has more than one account selected in the user interface. If no accounts
are selected, the application displays an error message telling the user to select an
account. If oqly one account is selected, the application calls the custom actions on
the account form to cre;:tte either a new account contact or a new task.

Adding Custom Property Pages and Storing User Settings
The final section of code implements the property pages that allow users to pick their
custom settings for the application. We will also quickly look at how the registry is
used to sto;e these setti~gs fOf the user. While we examine this code, you will see

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

some interesting objects implemented in Outlook 2000, such as the PropertyPage
object, the PropertyPageSite object, and the PropertyPages collection object.

Custom property pages allow you to integrate your applications more tightly
into the Outlook application. They also make it easier for your users to configure your
application, because your customizations are part of the standard Outlook configu­
ration pages. The following code implements the property page extension code in
the COM add-in. Then we will look at the code for the ActiveX control, which cre­
ates the actual property page that appears.

Private Sub SetDefaultProps()
oNewPage.prefLookForShortcuts = prefLookForShortcuts
oNewPage.prefEnableAcctToolbar = prefEnableAcctToolbar
oNewPage.prefMakeFolderHomepage = prefMakeFolderHomepage
oNewPage.prefNotifyWhenNewMember = prefNotifyWhenNewMember
oNewPage.prefNotifyWhenNewTask = prefNotifyWhenNewTask

End Sub

Private Sub oNS_OptionsPagesAdd(ByVal Pages As _
Outlook.PropertyPages. ByVal Folder As Outlook.MAPIFolder)

If Folder.Name = "Account Tracking" Then
'Add the Options page to the folder
Set oNewPage = CreateObject("AccountPP.UCAdminPage")
SetDefaultProps
oNewPage.oAdminDLL = Me
Pages.Add oNewPage

End If
End Sub

Private Sub oApplication_OptionsPagesAdd(ByVal Pages As _
Outlook.PropertyPages)

Set oNewPage = CreateObject("AccountPP.UCAdminPage")
SetDefaultProps
oNewPage.oAdminDLL = Me
Pages.Add oNewPage

End Sub

Public Sub SetRegistryValues(prefShortcuts, prefAcctToolbar. _
prefFolderHomepage. prefNotifyMember. prefNotifyTask)

'This subroutine is called by the Property page to have the
'Options page persist its values
boolSuccess = SetAppRegValue("CheckShortcuts", REG_DWORD. _

prefShortcuts)
boolSuccess = SetAppRegValue("AcctToolbar". REG_DWORD. _

prefAcctToolbar)
boo1Success = SetAppRegValue("FolderHomepage". REG_DWORD. _

prefFolderHomepage)
boolSuccess = SetAppRegValue("NotifyTeamMember", REG_DWORD. _

(continued)

375

Part II

376

Outlook

prefNotifyMember)
boolSuccess = SetAppRegValue("NotifyAcctTask". REG_DWORD. _

prefNotifyTask)
End Sub

In this code, two subroutines handle the OptionsPagesAdd event. The first
subroutine uses the NameSpace object. The OptionsPagesAdd event fires for the
NameSpace object when the user clicks on a folder in the namespace you are moni­
toring and then selects Properties. The NameSpace OptionsPagesAdd event proce­
dure is passed two parameters: Pages, which is a collection of Outlook PropertyPages;
and Folder, which is the folder the user is trying to retrieve properties for.

The second subroutine uses the Outlook Application object. The OptionsPages­
Add event fires the Application object when a user selects Options from the Tools
menu to configure the overall application settings for Outlook. Both OptionsPagesAdd
event handlers call the same code because there is only one way to customize the
Account Tracking application. However, for your add-ins, you could have two dif­
ferent property pages for these two different events, depending on your needs.

The first step both event handlers perform is creating an object. This object is
an ActiveX control, which is the actual property page that the subroutine will add to
the PropertyPages collection. We'll look at the code for the control later in this chapter.

The next step the event handler performs is to set the default properties for the
new property page object we created. This is accomplished by setting some of the
variables on the control to the values that are currently stored in the add-in. All of
these values are originally retrieved from the registry.

After all properties are set for the controls on the form, the code passes a ref­
erence of the add-in to the new property page. You might be wondering why it does
this. The main reason is to allow the ActiveX control property page call back into the
add-in when a user makes a change and applies it. If the ActiveX control does not
call back into the add-in, the add-in will not know that something has changed and,
therefore, will not behave as expected.

The final step in the code is to add the new page to the PropertyPages collec­
tion. This is done using the Add method of the collection. You can call this method
in two ways. The first way, which is exemplified in the code, passes an object to the
method so that the object is displayed as a property page. The second way passes
in the ProgID of the control as a string, which enables Outlook to create the control.
If you use the second way, you can also pass an optional string that is the caption
for the property page. We'll see how to set the caption when we pass an ActiveX
controJ later on.

Now that we know how to add our pages to the PropertyPages collection, we
need to look at what the actual page should implement. The following code imple­
ments the ActiveX control, which is the property page extension. Figure 10-13 on page
380 shows the interface for the control in Visual Basic 6.0 design mode.

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

Implements Outlook.PropertyPage
Private oSite As Outlook.PropertyPageSite
Dim m_prefLookForShortcuts As Integer
Dim m_prefMakeFolderHomepage As Integer
Dim m_prefNotifyWhenNewMember As Integer
Dim m_prefNotifyWhenNewTask As Integer
Dim m_prefEnableAcctToolbar As Integer
Dim m_fDirty As Boolean
Dim m_AdminDLL As Object
Private boolInitializing As Boolean

Private Sub SetDirty()
If Not oSite Is Nothing Then

TlLfDirty = True
oSite.OnStatusChange

End If
End Sub

Public Sub RefreshControls()
checkNotifyAccount.Value = m_prefNotifyWhenNewMember
checkNotifyTask.Value = m_prefNotifyWhenNewTask
checkPerformCheck.Value = m_prefLookForShortcuts
CheckToolbar.Value = m_prefEnableAcctToolbar
CheckWebShortcut.Value = m_prefMakeFolderHomepage

End Sub

Private Sub checkNotifyAccount_Click()
If boolInitializing = False Then

SetDi rty
m_prefNotifyWhenNewMember = checkNotifyAccount.Value

End If
End Sub

Private Sub checkPerformCheck_Click()
If boolInitializing = False Then

SetDirty
TlLprefLookForShortcuts checkPerformCheck.Value

End If
End Sub

Private Sub checkNotifyTask_Click()
If boolInitializing = False Then

SetDirty
m_prefNotifyWhenNewTask = checkNotifyTask.Value

End If
End Sub

Private Sub CheckToolbar_Click()
If boolInitializing = False Then

SetDi rty
TlLprefEnableAcctToolbar = CheckToolbar.Value

End If
End Sub

(continued)

377

Pari II Building Outlook Applications

378

Private Sub CheckWebShortcut_Click()
If boolInitializing = False Then

SetDirty
m_prefMakeFolderHomepage = CheckWebShortcut.Value

End If
End Sub

Private Sub PropertyPage_Apply()
On Error GoTo PropertyPageApply_Err
m_fDirty = False
If Not mLAdminDLL Is Nothing Then

m-AdminDLL.SetRegistryValues m_prefLookForShortcuts. _
ffi-prefEnableAcctToolbar. m_prefMakeFolderHomepage. _
ffi-prefNotifyWhenNewMember. m_prefNotifyWhenNewTask

'Refresh the add-in DLL settings
m_AdminDLL.CheckRegistryValues

End If
Exit Sub

PropertyPageApply_Err:
MsgBox "Error in PropertyPage_Apply. Err!I" & Err.Number _

& " and Err Description: " & Err.Description
End Sub

Private Property Get PropertyPage_Dirty() As Boolean
PropertyPage_Dirty = ffi-fDirty

End Property

Private Sub PropertyPage_GetPageInfo(HelpFile As String. _
HelpContext As Long)

HelpFile = "nothing.hlp"
HelpContext = 102

End Sub

Private Sub UserControl_EnterFocus()
boolInitializing = False

End Sub
Private Sub UserControl_Initialize()

ffi-fDirty = False
boolInitializing = True

End Sub

Private Sub UserControl_InitProperties()
On Error Resume Next
Set oSite = Parent
RefreshControls

End Sub

Public Property Get prefLookForShortcuts() As Variant
prefLookForShortcuts = m_prefLookForShortcuts

End Property

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

Public Property Let prefLookForShortcuts(ByVal vNewValue As Variant)
m_prefLookForShortcuts = vNewValue

End Property

Public Property Get prefMakeFolderHomepage() As Variant
prefMakeFolderHomepage = m_prefMakeFolderHomepage

End Property

Public Property Let prefMakeFolderHomepage(_
ByVal vNewValue As Variant)

m_prefMakeFolderHomepage = vNewValue
End Property

Public Property Get prefNotifyWhenNewMember() As Variant
prefNotifyWhenNewMember = ffi-prefNotifyWhenNewMember

End Property

Public Property Let prefNotifyWhenNewMember(_
ByVal vNewValue As Variant)

m_prefNotifyWhenNewMember = vNewValue
End Property

Public Property Get prefNotifyWhenNewTask() As Variant
prefNotifyWhenNewTask = ffi-prefNotifyWhenNewTask

End Property

Public Property Let prefNotifyWhenNewTask(_
ByVal vNewValue As Variant)
m_prefNotifyWhenNewTask = vNewValue

End Property

Public Property Get prefEnableAcctToolbar() As Variant
prefEnableAcctToolbar = ffi-prefEnableAcctToolbar

End Property

Public Property Let prefEnableAcctToolbar(_
ByVal vNewValue As Variant)
ffi-prefEnableAcctToolbar = vNewValue

End Property

Public Property Get Caption() As Variant
Caption = "Account Tracking"

End Property

Public Property Get oAdminDLL() As Variant

End Property

Public Property Let oAdminDLL(ByVal vNewValue As Variant)
Set ffi-AdminDLL vNewValue

End Property

379

Part II

380

Figure 10-13. The ActiveX control that implements the property page extension in
Visual Basic 6.0 design mode.

As you can see from the preceding code listing, not much code is implemented
in the extension. Property page extensions are actually pretty easy to write. There
are just a few important elements you need to implement.

The first of these elements, which is at the top of the code, implements the
PropertyPage interface. To implement this interface, add a reference to the Outlook
2000 object model and then type Implements Outlook.PropertyPage in your declara­
tions section. Once you do that, you will be able to select the different methods and
properties you need to implement for your property page. You need to implement
only two methods, GetPageInfo and Apply, and one property, Dirty.

The GetPageInfo method is called by Outlook to retrieve for your users help
information about the property page. In this method, you can set two parameters:
HelpFile and HelpContext. HelpFile is a string that points to your help file. (In the code,
I point to a nonexistent help file.) The HelpContext parameter is a Long data type
that specifies the context ID of the help topic associated with your property page.

The Apply method and the Dirty property work together with another method
on the Outlook PropertyPageSite object, which we haven't discussed yet. The
PropertyPageSite object, which in my code you can see declared in the declarations
section, points to the container for your property page object. In this case, the con­
tainer that holds your object is Outlook.

Once you declare a variable to be a PropertyPageSite, you need to initialize it.
The best place to do this is in the intrinsic InitProperties event procedure of your
ActiveX control. As you can see in the code, oSite, which is the PropertyPageSite

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

variable, is set to the intrinsic Parent property of the ActiveX control. The Parent
property, in this case, returns an Outlook PropertyPageSite object.

Now that we know how to retrieve the PropertyPageSite, we can continue look­
ing at the Apply method and the Dirty property. When users make changes to your
page, the code must be able tell Outlook that the page has become dirty and the Apply
button should become active. To do this, you can keep some private variable that
tracks whether the user has changed an option-in essence, a dirty flag. When the
user does change an option, you set this flag to True and then call the OnStatusChange
method of the PropertyPageSite object.

The OnStatusChange method, in turn, forces Outlook to try to retrieve the Dirty
property for your property page. You can see this implemented in the Property Get
PropertyPage_Dirty procedure. The code sets the PropertyPage_Dirty variable to the
value of the private dirty flag, which should be True, and returns that value to Out­
look. Once Outlook receives a True value, it enables the Apply button.

So what happens when the user clicks this newly enabled Apply button? Well,
your PropertyPage_Apply subroutine is called. In this subroutine, you should take
whatever steps are necessary to apply the changes and also set your private dirty flag
back to False. You can see in the code for my property page that I set the dirty flag
to False, and then I attempt to save the values the user selected back to the registry.

You might be wondering what the m_AdminDLL object in this subroutine is. It
is the reference to the add-in, which we passed to the property page when we cre­
ated it. Since the registry functions are already implemented in the add-in, the prop­
erty page just calls back to the add-in. The CheckRegistryValues call forces the add-in
to refresh its internal values with the new values the user has selected.

The Apply method is also called when there is a dirty setting in your property
page and the user clicks OK in the Properties or Options dialog box. The Apply
method is not called when the user clicks Cancel.

The only other element that you must implement in your property page is its
caption. To set the caption, you must add a property to your application. You can
do this by selecting the Add Procedure option from Tools menu and then selecting
the settings for creating a new public property, as shown in Figure 10-14.

Once you've added the Caption property procedure, select the Procedure
Attributes option from the Tools menu, and select the property you just created from
the drop-down list. Click the Advanced button, and select the Caption procedure ID
in the Procedure ID dialog box, as shown in Figure 10-15. By doing this, you are
associating your property with the identifier for the caption property on a control.
Outlook will query this property ID for the caption for your property page. Then just
implement the code to set this property to the value you want for your caption. An
example of the Caption property procedure was shown in the previous code.

381

Part II Building Outlook Applications

Figure 10-14. Creating a new property for the caption of your property page.

Figure 10-15. Setting the Caption Procedure ID for your property.

THE AVAILABILITY
CHECKER SAMPLE APPLICATION

382

To make it easier for you to start building complex applications that leverage the
development features in Outlook 2000, I've included some sample applications on
the companion CD that are not covered in this chapter. One sample that you might

Chapter 10 Outlook 2000 in Action: Enhancements to the Account Tracking Application

find particularly useful is the Availability Checker application. By combining COM
add-ins, ActiveX controls, and custom Outlook forms, this sample allows you to
synchronize the information on availability of users at different points in time (free/
busy information) for all users in your organization. While working offline, the us­
ers can also create meeting requests that query the freelbusy information for other
users. Figure 10-16 shows the Property page you can use to set up the users you want
to synchronize offline, and Figure 10-17 shows the custom Outlook form and ActiveX
control that allow you to work with the synchronized freelbusy information.

Figure 10-16. The Property page o/the Offline Free/Busy sampfe application.

Figure 10-17. The custom Outlook/orm and ActiveX control that allow you to browse
the availability 0/ users while you work offline.

383

Chapter 11

Digital
Dashboards

While the Digital Dashboard is an exciting concept, it's also vety confusing. Your ideas
about how to use a Digital Dashboard probably differ from mine, and my ideas will
likely differ from another person's ideas, and so on. If you look at a Digital Dash­
board at its most rudimentaty level, you will see a set of dynamic Web pages that
consolidate personal, team, corporate, and Internet information into a single unit. The
way you implement those dynamic Web pages and configure your Digital Dashboard
are up to you.

In this chapter, we'll look at the different technologies that you can use to cre­
ate a Digital Dashboard as well as some Digital Dashboard samples. I'll suggest ways
you can integrate Microsoft Exchange Server, Microsoft Outlook information, and busi­
ness intelligence into your Digital Dashboard. After you've examined the ideas pre­
sented in this chapter, you'll be equipped to choose the best implementation for your
Digital Dashboard.

PRELIMINARY CONSIDERATIONS
A Digital Dashboard is similar .in concept to the dashboard of a car. Just as a driver relies
on the dashboard to check the car's speed, oil level, and engine temperature, a com­
puter user needs an easy way to quickly scan his computer for vital information. A Digital
.Dashboard combines an easy-to-use Web interface with. a complex series of back-end
systems such as Exchange Server, Microsoft SQL Server, or Web information systems.

385

Pari II Building Outlook Applications

When creating your Digital Dashboard, you should take into account the fol­
lowing considerations:

• Customizability. Imagine if the dashboard in your car displayed informa­
tion about the voltage of the rear tum signal-you wouldn't consider that
data terribly useful or important. In the same way that you want the dash­
board of your car to display information that matters, you want your Digital
Dashboard to display information that's pertinent to the current user.
Allowing users to fully or partially customize the information contained
in the Digital Dashboards makes their lives easier. If you're using Microsoft
Windows 2000, Active Directory is the logical choice for holding your
Digital Dashboard customization information.

• Offline capability. Usually the people who are the most interested in
dashboards are executives. And most executives are mobile, meaning the
ability to work offline is important to them. As you'll see later in the chap­
ter, offline capability is one of the reasons the Digital Dashboard samples
from Microsoft are hosted in Outlook 2000.

• Scalability. If you plan for 10,000 people to use your Digital Dashboard,
you want to be sure that if 5,000 of them hit the same data source at the
same time, your systems can handle the load. It's disheartening to try
accessing content with a Digital Dashboard that's not up to the task.

WHY HOST A DIGITAL
DASHBOARD IN OUTLOOK?

386

You might be wondering why you should host your dashboard in Outlook rather than
in a Web browser. There are a number of advantages and a couple of disadvantages
to using Outlook to host a Digital Dashboard. However, I think the pros far outweigh
the cons.

Outlook is usually the only application that users leave open the entire time
they're working on their computer-which is the first reason you should host your
Digital Dashboard there. What better way to encourage use of your dashboard than
to integrate it into the productivity application that users work with a majority of the
time? Besides, your users probably won't want to host a separate application to run
a Digital Dashboard. To improve your dashboard's accessibility, you can provide links
directly to it from the Outlook bar.

Second, the Outlook View control is locked down programmatically when it runs
inside a Web browser. You saw this in the discussion of the Team Folder Wizard in
Chapter 9. If you want to harness the full power of the View control-and for that

Chapter 11 Digital Dashboards

matter, the Outlook object model-you need to host your dashboard in Outlook. Also,
the Outlook Databinding control that you'll see later in this chapter does not work
outside the Outlook environment.

The ease of using COM add-ins is the third reason to host your Digital Dash­
board in Outlook. For example, you could build an add-in that provides a wizard to
customize your dashboard or that synchronizes content from databases or the Inter­
net. You could build similar technologies in a Web browser-only environment, but
you'd have to program them as ActiveX controls or server-side implementations. COM
add-ins give you the benefits of component technologies and offload the process­
ing to the client computer; in other words, your component can work in both a con­
nected state and a disconnected state.

Finally, hosting your Digital Dashboard in Outlook allows for the offline synchro­
nization of Exchange Server information and Web information. You can synchronize
Folder home pages offline so that users can work with them when disconnected from
the network. The only catch is that Outlook Today Web pages do not synchronize
offline. You'll see how to get around this when we discuss deployment of the Digi­
tal Dashboard later in this chapter.

As I mentioned, there are a couple of compelling reasons not to host your Digital
Dashboard in Outlook. Aside from not having the application, you might be inclined
to host your dashboard elsewhere if you have a need for a roaming dashboard. For
example, users who take a lot of business trips might frequently access information
from more than one computer. If you can't guarantee that the computer being used
by a dashboard user will have Outlook, you might want to host your dashboard
directly in a browser.

EXAMPLE: THE FINANCE DIGITAL DASHBOARD
The Microsoft Digital Dashboard Starter Kit on the companion CD contains six Digi­
tal Dashboard samples. All the Digital Dashboards on the companion CD are built
using Microsoft FrontPage, so you can open and modify them as needed. This starter
kit also includes white papers on more advanced topics and some examples of styles
and components you can use in your Digital Dashboard.

This starter kit isn't meant to be the standard you must follow for your own
Digital Dashboards; the examples offer one interpretation of how you mightbuild a
dashboard. In fact, you could skip all the HTML and use Microsoft Visual Basic to
build your dashboard as a client-side Microsoft ActiveX control hosted in a Web page.
The important thing is that you understand how to get the data from your data sources
and present that data coherently to your users.

In this section, we'll look at the Finance Digital Dashboard provided in the starter
kit. Figure 11-1 shows the home page of the Finance dashboard.

387

Pari II Building Outlook Applications

388

Figure 11·1. The Finance dashboard home page.

The home page of a Digital Dashboard includes a simple navigation bar at the
top of the page, with the contents of the page below it. The home page of this dash­
board includes the Microsoft Investor stock ticker, a chart created with the Microsoft
Office 2000 Web Components (OWC) that shows sales figures, the Outlook View
control showing the Inbox, traffic information from the Internet, and the Outlook
Databinding control showing the calendar. You'll see how to utilize all these com­
ponents when we discuss the Digital Dashboard architecture later in the chapter.

Figure 11-2 shows the Reports page of the dashboard, where the Office Web
Components enable you to provide business information, specifically corporate sales,
profits by warehouse, and costs by warehouse.

As you can see, it is possible to easily integrate business systems into the dashboard.
The users can access the information they need without having to know the names of
servers running SQL Server, connection strings, and other specific technical information.

THE OFFICE WEB COMPONENTS

The Office Web Components make up a set of ActiveX controls that provide
scaled-down Office functionality. The set of controls consists of a data source,
chart, pivot table, and spreadsheet component. You can embed these compo­
nents in Web pages or Windows applications. The components are distribut­
able, but to distribute them legally, you must procure an Office 2000 license on
the client's machine.

Chapter 11 Digital Dashboards

Figure 11-2. The Reports page of the Finance dashboard.

The Models page, shown in Figure 11-3, shows how you can use the PivotTable
control of the Office Web Components. This page allows savvy users to cut and slice
the data from the business systems and· drill down to specific information. The
PivotTable component could be using the data stored in a local replica of an OLAP
cube or directly to aSQL database. It all d~pends on how you build your dashboard.

Figure 11-3. The Models page 01 the Finance dashboard.

389

Part II Building Outlook Applications

390

Figure 11-4, the Taxes page, shows the Outlook View control pointing to an
Exchange Server folder. Here users can click on the hyperlinks at the top of the View
control to see different views of the information. By using the View control, users
can drag and drop content into the dashboard pane or quickly change how they view
information in the dashboard.

Figure 11-4. The Taxes page of the Finance dashboard.

The Projects page shown in Figure 11-5 integrates with the Team Folders Wiz­
ard. The projects on this page actually correspond to team project templates created
by the wizard. You can build powerful business applications by combining the power
of the Team Folders Wizard and the Digital Dashboard.

The Resources page in Figure 11-6 shows an easy way to provide the users of
the dashboard with common hyperlinks to widely used Web sites. Finance buffs can
quickly navigate from this page to MSN, MSNBC, and even Microsoft Expedia. The
Resources page is an excellent example of integrating Web content into the Digital
Dashboard.

Figure 11-7 on page 392, which shows the Investments page from the Finance
dashboard, illustrates how you can integrate the functionality of Office 2000 into a
Web page. The Resources page uses Microsoft Excel to display investment informa­
tion and features current prices pulled from the Internet.

Figure 11-8 on page 392 shows how to edit the Finance dashboard in FrontPage.
As mentioned earlier, all the Digital Dashboard examples on the companion CD were
built with FrontPage. Ho:wever, this doesn't mean you can't build your dashboard with
another program, such as Microsoft Visual InterDev. Notice that none of the pages
we just discussed require Microsoft Active Server Pages (ASP). This is because the
Digital Dashboard Starter Kit needs to run on client machines that don't require much
server infrastructure so that users can use the dashboards without setting up a server.

Chapter 11 Digital Dashboards

$778464 $567567 $96756756 Finish phase 2

Finished $64547 $1387655 $56756756 Fini5l'l aU reports 911S120018:00:00AM

Figure 11-5. The Projects page of the Finance dashboard;

Ol>AV·S HICHi-IGNT

Who's Next on

Earn'" n Calaiil8fr
Schedule of COmpany
annoyncements

Figure 11-6 .. ·.Tbe Resources page of the Finance dashboard.

The other five Digital Dashboard examples in the starter kit offer variations of
the features available in the Finance example. Rather than running through five more
examples here, you can look at them on the companion CD at your leisure. Now let's
take a look at how to actually build a Digital Dashboard.

391

Part II Building Outlook Appiications

Figure 11-7. The Investments page o/the Finance dashboard.

Figure 11-8. Editing the Finance dashboard in FrontPage.

BUILDING A DIGITAL DASHBOARD

392

in addition to the Digital Dashboard samples, the Digital Dashboard Starter Kit con­
tains two COM add-ins that extend Outlook and Microsoft FrontPage and that you'll
undoubtedly find useful. The first of these add-ins allows you to easily change the

Chapter 11 Digital Dashboards

Outlook Today URL without having to hack the registry. When you load this add-in,
you'll find a new option in the Tools menu called Set Outlook Today Page. When
you click on this menu option, you'll see the dialog box shown in Figure 11-9, in
which you can set the URL you want to use for your custom Outlook Today page.
However, this add-in is no way to deploy your Digital Dashboard to hundreds of users
if you plan to change the default Outlook Today page for everyone. Rather, you need
to use System Management Server (SMS), a setup program, or alogon script to modify
the registry setting for Outlook Today programmatically.

Figure 11-9. The Set Outlook Today Page dialog box.

The second COM add-in extends FrontPage, making·it easier to ifisert Outlook
information into your Web pages using either the Outlook View control or the Out­
look Databinding control. Go to the Insert menu and select Outlook Controls, as
shown in Figure 11-10. From the drop-down menu, you can select Outlook elements
for insertion.

Figure 11-10. Using the FrontPage COM add-in from the Digital Dashboard Starter Kit.

393

Pari II Building Outlook Applications

Digital Dashboard Architecture

394

The Digital Dashboard examples included in the starter kit on the companion CD are
predominantly composed of information nuggets that are exposed using DHTML
nugget windows, or uniform graphical interfaces in the form of small windows. You
can think of nuggets as self-contained applications or information. Client-side scripts
either expose or hide these nuggets, depending on whether the user maximizes or
minimizes the nugget window. Information nuggets usually consist of DHTML script
and possibly an <OBJECT> tag for ActiveX control nuggets.

Every nugget has a unique name. It's a good idea to use some sort of con­
vention to name your nuggets, such as nu~nuggetname_X. For example, if your
nugget displays information from the user's Inbox, you might want to name it
nug_inboxmessages_l.

Building Information Nuggets into the Dashboard
To better understand what a nugget is, let's look at some code. The following HTML
code shows the Inbox nugget from the Finance Digital Dashboard. Notice the <DN>
tag that uniquely identifies the nugget as nu~messages_l. Also notice that the nug­
get uses the Outlook View control to display its information.

<div class="wholeNugget" ID="nug_messageLl" href=''http://
www.microsoft.com .. >

<table CELLPADDING="l" CELLSPACING="0" BORDER="0" WIDTH="100%">
<tbody>
(tr TITLE="Messages" STYLE="height:17px;

font:bold 10pt arial" WIDTH="100%">
<td NOWRAP ID="title" CLASS="NuggetBar"

STYLE="padding-left:5px;border-left-style:solid;
border-left-width:lpx; border-top-style:solid;
border-top-width:lpx; border-bottom-style:solid;
border-bottom-width:lpx; text-decoration:underline">
Messages
</td>

<td NOWRAP ID="drag" CLASS="NuggetBar"
STYLE="border-top-style:solid; border-top-width:lpx;
border-bottom-style:solid; border-bottom-width:lpx">
<ltd>

<td NOWRAP ID="disp" TITLE="Hide" CLASS="NuggetBar"
onclick="displayNuggetCnug_messageLl)"
STYLE="border-top-style:solid; border-top-width:lpx;
border-bottom-style:solid; border-bottom-width:lpx;
border-right-style:solid; border-right-width:2px;
border-left-style:solid; border-left-width:2px;wtdth:16px">
</td>

</tr>
</tbody>

Chapter 11 Digital Dashboards

</table>
<div ID="content" CLASS="Nugget" STYLE="display:block;

padding:0px; position:relative; top:-2; width: 100%;
overflow-x:auto; margin:lpx; border-top-width:0px">

<table id="tblTopNavBar" border="0" cellpadding="0"
cellspacing="0" style="width:100%;">
<tr>

<td valign="top" nowrap id="tdNavBar">
<span id="spanMessages4"
onclick="HighPriorityMessages.view='Messages';
changeMessagesTab(this);" xonblur="LoseFocus"
xonFocus="changeFocus" id="FolderBtn2" class="btnFolder"
style="font-weight:bold">Messages
<span id="spanMessages3"

onclick="HighPriorityMessages.view='By Follow-up Flag';
changeMessagesTab(this);" xonblur="LoseFocus"
xonFocus="changeFocus" id="FolderBtnHome"
class="btnFolder" style="width:0px; ">By
Follow-up Flag <span id="spanMessagesS"
onclick="HighPriorityMessages.view='Unread Messages';
changeMessagesTab(this);" xonblur="LoseFocus"
xonFocus="changeFocus" id="FolderBtnS"
class="btnFolder">Unread

<span id="spanMessages2"
onclick="HighPriorityMessages.view='By Sender';
changeMessagesTab(this);" xonblur="LoseFocus"
xonFocus="changeFocus" id="FolderBtn3"
class="btnFolder">Sender

<!--End Folder Button Bar-->
</td>

</tr>
</table>

<div style="HEIGHT:200px;MARGIN-BOTTOM:0px;MARGIN-LEFT:0px">
<object ID="HighPriorityMessages"

CLASSID="CLSID:0006F063-0000-0000-C000-000000000046"
style="width:100%;height:100%"
codebase=" .. /outlctlx.CAB#ver=9.0.3024" width="192"
height="2S0">
<param NAME="View" VALUE>
<param NAME="Folder" VALUE="Inbox">
<param NAME="Namespace" VALUE="MAPI">
<param NAME="Restriction" VALUE>
<param NAME="DeferUpdate" VALUE="0">

</object>
</div>

<Idiv>
<Idiv>

395

Part II Building Outlook Applications

396

You should take note of another <DIY> tag in this code: the <Content> tag. You
can use this <DIY> tag in conjunction with some client-side JavaScript to hide or
display the content of the nugget when the user clicks the Minimize or Maximize
button. Here is the JavaScript code:

//---
// Function: displayNugget
/I
// Description: Alternately displays and hides the content
// of the nugget
/I
// Arguments: none
/I
// Returns: nothing
//---

function displayNugget(oNug)
{

}

var e oNug.all("disp"):
var f = oNug.all("content"):

ContentRegKey = "DD_CONTENL" + document. title +

// If contents are hidden. show them
if (f. style. display == "none")
{

e.title = "Hide":
e.children(0).src = "images/close.gif":
f.style.display = "block":
display = "0":

II " + oNug.id:

// If the page is not run in the correct security context.
try { window.external .SetPref(ContentRegKey."display"):}
catch (exception) {}

}

// If contents are showing. hide them
else
{

}

e.title = "Show":
e.ch1ldren(0).src = "1mages/open.g1f":
f.style.display = "none":
display = "1":
try { window.external.SetPref(ContentRegKey."hide"):}
catch (exception) {}

Chapter 11 Digital Dashboards

This code changes the image to reflect whether the content is visible or hid­
den. Also, the code updates the style for the HTML, indicating whether to display the
nugget. Furthermore, the SetPref method, which is provided by Outlook so that you
can easily write preferences to the registry, is called on window. external. SetPriftakes
two parameters: a string that specifies the key to which you want to write and a string
that specifies the value for that key. The Digital Dashboard uses the registry to store
the state of the nuggets as users open and close them. Figure 11-11 shows the reg­
istry location where these keys are stored. We'll discuss customizing the Digital
Dashboard in more detail later in this chapter.

REG~ outlook4.htm
REG_52 True
REG..5Z ,
REGjiZ display
REG3Z dlsplav
REG_52 display
REG..SZ dlsplav
REG_52 display
REG_SZ ~'"
REG...Sl h ..
REG-.5Z h''''
REG...Sl hide
REG..5Z --RE"-SZ .de
REG..SZ hIdo
REG..5Z display
REG..5Z display,
REG..SZ '"-REG_5Z ,
REG.."SZ Gr •• m
REG,..SZ Greoh
REG..5Z " •• m

Green
Green

Figure 11-11. Registry location for preferences stored using Outlook's SetPref method.

As you can see, the dashboard is.basically a wrapper for information nuggets.
Your goal should be to create useful nuggets to plug into your Digital Dashboard.
You can even create nuggets using <IFRAME> HTML tags rather than <DIY> tags.

WARNING Each <IFRAME> tag you use will open a new instance of Microsoft
Internet Explorer. If resources are limited on your client computers, use the <DIV>
tag instead.

As I mentioned earlier, the dashboards described in this chapter are only examples
to help you get started. You could scrap the entire idea of information nuggets and
implement your Digital Dashboard using·DCOM rather than HTML and JavaScript.
With that said, let's take a look at how to build some new nuggets and add them to
an existing dashboard.

397

Part II Building Outlook Applications

398

Creating New Nuggets
Creating new nuggets is as simple as creating new HTML sections in your dashboard
code. All you need to do to add your new nuggets of information is plug into the
existing nugget framework that we looked at earlier. In this section, we'll look at
adding two types of nuggets. The first is an ActiveX control provided in Windows
2000 that you can embed in your dashboard to view the information generated by
the performance monitor in a Web application. The second nugget type is the MSN
Messenger client for Microsoft Instant Messaging. The MSN Messenger client will
illustrate how we can take advantage of real-time collaboration as part of our dashboard.

The System Monitor Nugget
We're going to add the system monitor hugget to the Finance dashboard; you've
already seen the Finance dashboard, so the process will be easier for you to follow.
The techniques illustrated in our example can be used to add the nugget to any of
the dashboards. Figure 11-12 shows the System Monitor control integrated into the
Finance dashboard. The nugget has its own top-level button on the dashboard ban­
ner so that users can quickly get to system information. The great thing about the
System Monitor ActiveX control is that you can display your own system information
or a remote server's system information. This makes it a helpful addition to a dash­
board used by an administrator who has to monitor Windows 2000 servers, Exchange
servers, or any other Microsoft Windows NT-based services that expose performance
monitor counters. You will need Windows 2000 to use the System Monitor control
since it ships as part of that operating system.

Figure 11-12. The System Monitor ActiveX control integrated into the Finance
dashboard.

Chapter 11 Digital Dashboards

Creating the nugget for the System Monitor control is very straightforward. The
nugget is a full-screen nugget, so we don't have to create a <DIY> tag because users
will not be hiding or showing the nugget. CYou'lllearn how to enable hiding or
showing of nuggets with the Instant Messaging nugget.) The System Monitor nugget
does, however, use VBScript client-side code to load, save, and reset information in
the registry by using the GetPref and SetPref methods. These methods allow you to
set up the control the way you want to and then reload those settings every time you
revisit the page that displays the nugget.

You set up of the System Monitor ActiveX control by using its object model,
which is quite extensive. The System Monitor control supports methods and prop­
erties that allow you to lock down the control, adq new counters, and retrieve the
pathnames of the existing counters, as well as change tpe colors used throughout the
control. Rather than review all features of the System Monitor control, I will point you
to the Platform SDK to learn more about them.

Take a look at the following code for the nugget to quickly learn how to use
the System Monitor ActiveX control in your dashboards:

<HTML>
<HEAD>
<TITLE>Reports</TITLE>
<link rel="stylesheet" type="text/css"

href"'" .. /common/DigitalDashboard.css">

<meta name="Microsoft Border" content="t">
</HEAD>

<BODY><table border="0" cellpadding="0" cellspac1ng="0"
width="100%"><tr><!--msnavigation--><td valign="top">

<table border="0" width="100%" height="??">
<tr>

<TD width=31% align=left height="??">
Counter Operations

Load'Default Counters
Add New Counter

Reset Counter List (On Screen)
<ITO>
<TD width=69% align=left height="??">
Dis~ Operations
<~ href="" onclick="LoadCounterListDisk()">

Load Counter List from disk

Save Counter List to disk
(continued)

399

Part II Building Outlook Applications

400

<li)<A href="" onclick="ResetCounterListDisk()")
Reset Counter List on disk</A)

<lTD)
</tr)

</table)
<table width=100%)

<tr)
<td width="50%" height="100%")
<object
cl assid="CLSID:C4D2D8E0-DIDD-IICE-940F-008029004347"
name=SystemMonitor
id=SystemMonitorl v:shapes="_x0000_s1026"
class=shape width=687 height=405)
<param name="_Version" value="196611")
<param name="_ExtentX" value="18177")
<param name="_ExtentY" value="10716")
<param name="DisplayType" value="l")
<param name="ReportValueType" value="l")
<param name="MaximumScale" value="100")
<param name="MinimumScale" value="0")
<param name="ShowLegend" value="-l")
<param name="ShowToolbar" value="-l")
<param name="ShowScaleLabels" value="-l")
<param name="ShowHorizontalGrid" value="0")
<param name="ShowVerticalGrid" value="0")
<param name="ShowValueBar" value="-l")
<param name="ManualUpdate" value="0")
<param name="Highlight" value="0")
<pa~am name="ReadOnly" value="l")
<param name="MonitorDuplicatelnstances" value="-l")
<param name="Updatelnterval" value="l")
<param name="BackColorCtl" value="-2147483633")
<param name="ForeColor" value="-l")
<param name="BackColor" value="-l")
<param name="GridColor" value="8421504">
<param name="TimeBarColor" value="255")
<param name="Appearance" value="-l")
<param name="BorderStyle" value="0")
<param name="GraphTitle" value>
<par~m name="YAxisLabel" value)

- <param name="LogFileName" value)
<param name="AmbientFont" value="-l")
<param ndme="LegendColumnWidths"
value="6.6365007541478IE-02 7.08898944193062E-02
0.085972850678733 9.20060331825038E-02 7.69230769230769E-02
7.69230769230769E-02 9.80392156862745E-02")
<param name="LegendSortDirection" value="0")
<param name="LegendSortColumn" value="0">

Chapter 11 Digital Dashboards

<param name="CounterCount" value="0">
<param name="MaximumSamples" value="100">
<param name="SampleCount" value="0">
</object>

<ltd>
</tr>
</table>
<p> <!--msnavigation--></td></tr>
<!--msnavigation--></table></BODY>

<Script Language=VBScript>

Sub LoadCounterListDisk()
on error resume next
'Load from the registry
'Could also store this in the AD
'or in a hidden message
CounterCount = 0
CounterCount = _

window.external.getpref("DD_SYSMON_COUNTERCOUNT")
if CounterCount = 0 then

msgbox "There are no counters saved!"
else

'Clear the control
SystemMonitorl.Reset
for i = 1 to CounterCount

'Retrieve the registry path for each counter,
'and add it to the control
CounterPath = window.external .getpref(_

"DD_SYSMON_COUNTEIL" & i & "_PATH")
SystemMonitorl.Counters.Add CounterPath

next
end if
window.event.Returnvalue

End Sub

Sub SaveCounterListDisk()
on error resume next

False

'Scroll through each counter in the control and save it out
'First get the total and write it out
iCount = SystemMonitorl.Counters.Count
window.external.SetPref "DD_SYSMON_COUNTERCOUNT", CStr(iCount)
'Scroll through each counter, and write it out
if iCount = 0 then

msgbox "No counters to save!"
(continued)

401

Part II

402

else
i = 1
for each oCounter in SystemMonitor1.Counters

window.external.setpref "DD_SYSMON_COUNTEfL" & _
i & "_PATH", oCounter.Path

i=i+1
next

end if
window.event.Returnvalue

End Sub

Sub ResetCounterListDisk()
on error resume next
'Reset the counter list

False

'First get the total and see if we need to reset anything
iCount = window. external .getpref("DD_SYSMON_COUNTERCOUNT")
if iCount <> 0 then

'Let's clear it out!
for i = 1 to iCount

window.external.setpref "DD_SYSMON_COUNTEfL" &_
i & "_PATH", ""

next
end if
window.external .setpref "DD_SYSMON_COUNTERCOUNT", 0
window.event.Returnvalue = False

End Sub

Sub Reset()
SystemMonitor1.Reset
window.event.Returnvalue

End Sub
False

Sub AddNewCounter()
SystemMonitor1.BrowseCounters
window.event.Returnvalue = False

End Sub

Sub LoadDefaultCounters()
'You could pull the defaults from a network location
'or hidden message if you want
SystemMonitorl. Counters. Add "\Processor LTota 1) \% Processor Ti me"
SystemMonitor1.Counters.Add "\LogicalDiskLTotal)\Free Megabytes"
SystemMonitor1.Counters.Add "\Objects\Processes"
SystemMonitor1.Counters.Add "\Objects\Threads"
window.event.Returnvalue = False

End Sub

</Script>
</HTML>

Chapter 11 Digital Dashboards

Instant Messaging Nugget
One interesting nugget that you can add to your dashboard provides instant messaging
capabilities. The MSN Messenger client includes an ActiveX control as well as an object
model that you can use so that you can automate the client to log on, check who is
currently online, and send and receive messages from other online users. By inte­
grating this functionality into your dashboard, your users can monitor when other team
members come online and communicate with them. Figure 11-13 shows the Instant
Messaging nugget integrated into the Finance dashboard.

1 NC In:: Way
NV. N'I' 10000
E'IJshe:ss: '(212)555-1212
E-JMII: neiIcClnc.itt

15 stroo Way
Redmond. WA 96321
~I (-125)555-1212
E·mafl: $b'ooG)stroo.com

Figure 11-13. The Instant Messaging nugget integrated into the Finance dashboard.

Creating the instant messaging nugget involves creating an HTML <DIY> tag that
will contain the contents of the nugget. The reason we use a <DIY> tag is so that we
can hide and show the nugget according to the user's preferences. This nugget has
some helper files written in both VBscript and JavaScript that manipulate the MSN
Messenger object model. Note that Exchange 2000 will support Instant Messaging and
Presence technology, so you can use this nugget for both the internal and external
tracking of buddies. Instant Messaging is a great tool for corporations that want to
use instant communications.

In addition to showing the Instant Messaging nugget, the page in Figure 11-13
shows the Contacts nugget. The Contacts nugget shows either the contacts in the
current folder or the contacts from your default Contact folder by using the Outlook
View control. These two nuggets are used together, so if you have Instant Messag­
ing buddies who are in your Contact folders, you can quickly retrieve information
about them as well as see if they are available online. The Contacts nugget is also
implemented as a <DIV> tag, so the user can hide the nugget on the screen. The

403

Part II Building Outlook Applications

404

following listing shows the code for both the Instant Messaging nuggets and the
Contacts nugget. Note that I've left out the MSN Messenger code. You can find this
code on the companion CD.

<TABLE BORDER=l WIDTH=102% CELLPADDING=4 CELLSPACING=0
BGCOLOR='#ffffff' height=650>

<!------------------------ BEGIN HORIZONTAL PANE ------------------>

<TR>

<!------------------------ BEGIN LEFT PANE ------------------------>

<TD width=15% id=LeftColumn vAlign=top height=87%>

<div class="wholeNugget" ID="nug_IMUsers_1"
href="http://www.microsoft.com">

<table CELLPADDING="l" CELLSPACING="0" BORDER="0" WIDTH="100%">
<tbody>

<tr TITLE="Messages" STYLE="height:17px;
font:bold 10pt arial" WIDTH="100%">

<td NOWRAP ID="title" CLASS="NuggetBar"
STYLE="padding-left:5px;border-left-style:solid;
border-left-width:1px; border-top-style:solid;
border-top-width:1px; border-bottom-style:solid;
border-bottom-width:1px; text-decoration:underline">
MSN

Messenger</td>
<td NOWRAP ID="drag" CLASS="NuggetBar"

STYLE="border-top-style:solid; border-top-width:1px;
border-bottom-style:solid;

border-bottom-width:1px"> </td>
<td NOWRAP ID="disp" TITLE="Hide" CLASS="NuggetBar"

onclick="displayNugget(nug_IMUsers_1)"
STYLE="border-top- styl e: sol i d; border-top-wi dth: 1px;
border-bottom-style:solid; border-bottom-width:1px;
border-right-style:solid; border-right-width:2px;
border-left-style:solid;
border-left-width:2px;width:16px">

</td>
</tr>

</tbody>
</table>

<div ID="content" CLASS="Nugget" STYLE="display:block;
padding:0px; position:relative; top:-2; width: 100%;
overflow-x:auto; margin:1px; border-top-width:0px">

<div styl~="HEIGHT:200px;MARGIN-BOTTOM:0px;MARGIN-LEFT:0px">

Chapter 11 D!gital Dashboards

<script language="javascript">
var s
5=" :

s+=prepare_messenger()
document.write(s);

</script>
<Idiv>
<Idiv>
<Idiv>

<!--End Nugget-->

<lTD>

<!------------------------ END LEFT PANE ---------.----------------->

<!------------------------ BEGIN RIGHT PANE ------------------------>

<TD id=RightColumn VALIGN=top width=97% height=100%>

<div class="wholeNugget" ID="nug_ContactLl">
<table CELLPADDING="l" CELLSPACING="0" BORDER="0" WIDTH="100%">
<tbody>
<tr TITLE="Contacts" STYLE="height:17px;
font:bold 10pt arial" WIDTH="100%">

<td NOWRAP ID="title" C~ASS="NuggetBar"
STYLE="padding-left : 5px;border-left-style:solid;
border-left-wi~th:lpx; border-top-style:solid;
border-top-wid~h:lpx; border-bottom-style:sol;d;
border-bottom-widt~:lpx "><span ID="text"
STYLE="overflow:h;ctden">

Contacts</td>
<td NOWRAP ID="drag" CLASS="NuggetBar"
STYL~="border-top-stYle:solid; border-top-width:lpx;
border-bottom-style:solid; border-bottom-width:lpx"> </td>
<td NOWRAP I D=':di sp" TITLE="Hi de" CLASS="NuggetBa r"
onclick="displayNugget(nuQ_Contact,_l)"
STYLE="border-top-styl~;solid; border-top-width:lpx;
border-bottom-style:solid; bord~r-bottom-width:lpx;
border-right-style:solidi border-right-width:2px;

(continued)

405

Part II Building Outlook Applications

406

border-left-style:solid: border-left-width:2px:width:16px">
</td>
</tr>

</tbody>
</table>

<div id="content">
<form method="POST" action="">
<p><input type="checkbox" name="Cl" value="ON"

onclick="LoadContacts()">Use Contacts from Mailbox</p>
</form>
<p>
<object classid="clsid:0006F063-0000-0000-C000-000000000046"
id="OVCtll" width=100% height=500>

<param name="View" value>
<param name="Folder" value="Contacts">
<param name="Namespace" value="MAPI">
<param name="Restriction" value>
<param name="DeferUpdate" value="l">

<Iobject>
</div>

</div>
<!--End Nugget-->

<ltd>

<!------------------------ END RIGHT PANE ------------------------>
</TR>

</table>
 :<!--msnavigation--></td></tr><!--msnavigation-->
</table></BODY>

<script language="vbscript">
'on error resume next
Dim ContactContentValue
ApplyNuggetsStates
ApplyContactFolder
SetCheckBoxValue

Sub SetCheckBoxValue
document.all.Cl.checked ContactContentValue

End Sub

Sub LoadContacts
strChecked ~ document.all.Cl.checked
'Set the registry. and apply the changes

Chapter 11 Digital Dashboards

Window.external .SetPref "DD_CONTENT_CONTACTFOLDER",strChecked
ApplyContactFolder

End Sub

Sub ApplyContactFolder
Dim strFolder
'Check to see if they want the standard contact folder
'or this one
ContactContentValue =

Window.external.Getpref("OD_CONTENT_CONTACTFOLDER")
if ContactContentValue = "" then

'First time set it to False
Window.external .SetPref "DD_CONTENLCONTACTFOLDER",False

end if
if ContactContentValue = "True" then

'Show the default one
oVCTLl.Folder = "contacts"
strFolder = "outlook:contacts"

else
oVCTLl.Folder = "\\Digital Dashboard (Enhanced)\Finance\Contacts"
strFolder = "outlook:IIDigital Dashboard" & _

"(Enhanced)/Finance/Contacts"
end if
oVCTll.DeferUpdate = 0
'Set the hyperlink path
document.all.ContactLink.href strFolder

End Sub

Sub ApplyNuggetsStates()
Dim MyElement
for each MyElement in document.all
if MyElement.tagname="DIV" then

if MyElement.classname="wholeNugget" then
ContentRegKey = "DD_CONTENL" & document.title & _

"_" & MyElement.id
ContentValue=Window.external.GetPref(ContentRegKey)
select case ContentValue

case "display"
MyElement.all("content").style.display="block"
MyElement.all("disp").children(0).src

" .. /images/close.gif"
MyElement.all("disp").title = "Hide"

case "hide"
MyElement.all("content").style.display="none"
MyElement.all("disp").children(0).src

" .. /images/open.gif"
(continued)

407

ParI II

MyElement.all("disp").title "Show"
end select

end if
end if
next
End sub
</script>

USING OTHER COMPONENTS
IN INFORMATION NUGGETS

There is a wealth of other components you can use as the basis for your informa­
tion nuggets. In this section, we'll examine using the Office 2000 Web Components,
the Outlook View control, and the Outlook Databinding control to build information
nuggets. We'll also look at using Microsoft ActiveX Data Objects (ADO) as compo­
nents for accessing data in your nuggets.

Office Web Components

408

Office 2000 enables you to publish spreadsheets, charts, and databases to the Web
via a set of COM controls called the Office Web Components. You can use these
components in any container that supports the hosting of ActiveX controls. However,
you'll typically use these controls inside Web applications as client components, or
in ASP applications to generate charts and graphs for your Web applications. The
Finance Digital Dashboard that you saw earlier in the chapter used the Office Web
Components.

This set contains four controls, called components: Data Source, Spreadsheet,
PivotTable, and Chart. These components have an object library that you can pro­
gram with to create applications. We'll quickly look at each of these components in
this section; for more information, see the Office 2000 documentation.

Data Sourc~ Component
The Data Source component allows you to connect to external data sources to retrieve
information for the other components to disp~ay. Although this control is invisible,
it can establish data bindings to external data sources such as SQL Server or OLAP
cubes. Usually when you create interactive Web applications using Office 2000, this
control is automatically added and set up for you.

Spreadsheet Component
This component is like a miniature version of an Excel spreadsheet. It has a similar
user interface and can support many of the functions that Excel supports. The Spread­
sheet control enables you to load data programmatically using the Data Source con-

Chapter 11 Digital Dashboards

trol or any URL that points to an Excel spreadsheet saved as HTML. Once you retrieve
the data, you can sort or filter it according to your application needs.

The Spreadsheet control is useful in applications in which you want a grid-based
data entry model and calculation functionality such as expense reports or budgets.
This component even supports real-time updates that you could use to display real­
time information such as stock prices that are being fed from the Internet.

PivotTable Component
The PivotTable component is a small version of the Excel PivotTable. This compo­
nent can retrieve data from OLE DB data sources or even OLAP data sources. Users
of your application can model their data by filtering, grouping, and slicing it in nu­
merous ways. One of the nice features of the PivotTable component is that you can
link it with the Chart component (discussed next) so that when a user slices the data,
the Chart component automatically updates to reflect the filtering or grouping that
the user has selected.

Chart Component
The Chart component is the most flexible of the Office Web Components. The Chart
component provides charting functionality similar to that of Excel. It can retrieve its
data either by being filled with literal data, or by connecting to an ADO recordset or
to the Spreadsheet or PivotTable components. As implied earlier, once you bind the
Chart control to a data source, it will change whenever that data source is updated.

In addition to using the Chart control as a client-side component, you can use
it as a server-side component in ASP applications. Many Web applications strive to
provide data charting capabilities. Before the Chart control was developed, you either
had to buy a third-party tool to chart information or you had to try automating Excel
on your Microsoft Internet Information Services server, which is not a good idea. The
Chart control enables you to connect to a data source in your ASP, chart the infor­
mation, and then export that chart as a GIF image that you can embed in your web
page. The image won't be as interactive as if you'd run the Chart component client­
side in your application, but this solution works for browsers that do not support
running ActiveX controls.

WARN~NG Check your Office 2000 license to see if you need to buy any spe­
cial license in order to use the Chart component on your liS servers.

Outlook View Control
I won't cover the View control extensively here because we looked at it in great detail
in Chapter 10. The View control is a great source of information for the nuggets you
create for your Digital Dashboard. For more information on this control, refer back
to Chapter 10.

409

Part II

Outlook Databinding Control

410

In Outlook Today, Outlook uses an ActiveX data source control similar to the Data
Source control of the Office Web Components-the Databinding control. The differ­
ence is that the Outlook Databinding control works only in Outlook and can con­
nect only to Outlook data. Furthermore, the Databinding control supports only a
limited subset of fields from an Outlook data source. However, you can use the
Databinding control within your Digital Dashboard to display nuggets of Outlook
information. Figure 11-14 shows a not-so-pretty but functional example of hosting
the Outlook Databinding control in a folder home page.

Figure 11-14. The Outlook Databinding control in a folder home page.

The number 4 appearing on the calendar is actually a placeholder for the arrow
that normally points to the user's next appointment. You can use cascading style sheets
CCSS) to format this data so that it appears as it does in the standard Outlook Today
page. The code for this example page follows:

<html>
<HEAD>

<title>Outlook Databinding Control</title>

<OBJECT ID="CalList"

CLASSID="CLSID:0468C085-CA5B-IID0-AF08-00609797F0E0">
<PARAM NAME="Module" VALUE="Calendar"><IOBJECT>

Chapter 11 Digital Dashboards

<OBJECT ID="TaskList"

CLASSID="CLSID:0468C085-CA5B-IID0-AF08-00609797F0E0">
<PARAM NAME="Module" VALUE="Tasks"><IOBJECT>

<OBJECT ID="MailList"

CLASSID="CLSID:0468C085-CA5B-IID0-AF08-00609797F0E0">
<PARAM NAME="Module" VALUE="Inbox"><IOBJECT>

</HEAD>
<BODY>

<H3>Calendar</H3>

<table id=CalendarLiveTable border=l cellspacing=l cellpadding=2

valign=top width=100% name="CalendarCol" datasrc="'CalList"

style="display:;">
<tr>
<td nowrap valign=top width=10px align=left><div datafld="Next"

DATAFORMATAS="html"></DIV></TD>
<td valign=top nowrap><DIV DATAFLD="StartEnd" DATAFORMATAS="html"

class=CalendarStartEnd > </DIV></TD>
<td valign=top width=100%><div datafld="SubjectLocation"

DATAFORMATAS="html" class=CalendarSubjectLocation> </DIV></TD>
</tr>

</table>

<P><H3>Tasks</H3>

<TABLE border=l name="TaskCol" cellspacing=0 id=TasksLiveTable

datasrc="'TaskList" width=100% style="display:;">
<TBODY>

<TR>
<TD width=lpx><INPUT TYPE=checkbox DATAFORMATAS="Text"

(continued)

411

ParI II

412

DATAFLD="Complete" height=20px></TD>
<TD width=1px><DIV DATAFLD="Importance" DATAFORMATAS="html"

class=TaskImportance></DIV></TD>
<TD><DIV DATAFLD="Subject" DATAFORMATAS="html"

class=TaskSubject></DIV></TD>
</TR>

</TBODY>
</TABLE>

<P><H3>Folder List</H3>

<table border=1 name="MailCol" id=InboxLiveTable datasrc="fMailList"

cellspacing=0 style="display:;">
<TBODY>
<tr>
<td align=left valign=top class=borderBottom><DIV DATAFLD="Name"

DATAFORMATAS="html" class=Folder></DIV></td>
<td nowrap valign=top class=borderBottom align=right><DIV

DATAFLD="Count" DATAFORMATAS="html" class=InboxCount></DIV></td>
</tr>
</TBODY>
</table>

</body>
</html>

The code creates three Outlook Databinding objects of the same type that have
different module parameters. One object points at the calendar, another at the tasks
folder, and the third at the Inbox. The nice thing about using databinding objects is
that if the underlying Outlook folder changes, you don't need to refresh the page­
the databinding objects automatically refresh it for you.

These three databinding objects correspond to the three HTML tables in the
code. Each of the HTML rows has a <DIY> tag with a DATAFLD element. This DATAFLD
element tells the Databinding control which field to place in that row of the table.
The data sources of the Outlook Databinding control are limited to the fields shown
in this table:

Chapter 11 Digital Dashboards

Data Source

Calendar

Tasks

Mail

Fields

Next, StartEnd, and SubjectLocation

Complete, Importance, and Subject

Name, Count

NOTE You cannot change these fields nor their grouping or filtering by using
code in your application. This is one of the limitations of the Outlook Databinding
control.

You can customize the data source objects for the Calendar and Task data
sources to point to specific folders. Doing so allows you to quickly display public
calendar or task information in your nuggets. To customize the data source objects,
add the Path parameter to the object tag for the control. The Path parameter takes
as its value the path to the folder to which you want the Databinding control to bind.
The following example points the Databinding control at a calendar folder:

<object ID="CalList" CLASSID="CLSID:0468C085-CA5B-IID0-AF08-00609797F0E0")
<param NAME="Module" VALUE="Calendar")
<param NAME="Path"

VALUE="\\Public Folders\Favorites\Marketing Calendar">
</object)

ActiveX Data Objects

ADO is a high-level interface to OLE DB data sources. You can use ADO to connect
to a multitude of data sources that have OLE DB providers. In this section, we'll briefly
look at using ADO to connect to SQL databases. This section covers ADO 2.1 only.
When we discuss Exchange 2000 Server in Chapter 18, we'll examine ADO 2.5 and
its new features, one of which is the ability to understand hierarchical qata sources
such as those used in Exchange 2000 Server. In Chapter 18, we'll also discuss using
ADO 2.5 and the Exchange 2000 Server OLE DB provider to connect to Exchange
2000 Server data sources.

The ADO object model consists of seven objects-Connection, Command,
Recordset, Parameter, Field, Property, and Error-and four types of collections­
Fields, Properties, Parameters, and Errors. We won't cover each of these objects and
collections extensively in this chapter. Instead, I'll quickly walk you through the basics
of connecting to OLE DB data sources from your Digital Dashboard. For more infor­
mation on ActiveX Data Objects, refer to the ADO documentation.

Connection Object
Before you can manipulate data in a database, you need to connect to that database.
The Connection object enables you to do this. You specify your connection criteria,
such as the name of the database and the server it resides on, and then you attempt

413

Part II

414

to connect. The following code sample shows how to create a connection object, set
the connection properties, and then open the connection to the database:

Dim oConnection As ADODB.Connection
Set oConnection = CreateObject("ADODB.Connection")
With oConnection

.Provider = "SQLOLEDB"

.ConnectionString = "User ID=sa;Password=;" _
& "Data Source=Serverl;Initial Catalog=MyDB"

End With
oConnection.Open

The provider for SOL Server is SOLOLEDB. The provider for ADSI is
ADSDSOObject. The provider for Exchange 2000 Server and ADO 2.5 is
EXOLEDB.

Records.t Object
Once you have a connection, you can creqte a Recordset object that will contain the
records you want to retrieve from the data source. If the data source supports differ­
ent cursor and lock types, you can specify them-for example, in the Open method.
An example of a cursor type is a static cursor type, which allows you to see only a
snapshot of the data; any additions, changes, or deletions made to the data source
after you open the Recordset object won't be visible. Two lock type examples are
optimistic and pessimistic locking. You can also pass a SQL query to the Open method
on the Recordset object to filter or sort the Recordset before it returns to the server
or client. For more information on this, take a look at the ADO documentation or
Programming ADO (Microsoft Press, 2000).

The following code sample creates an ADO Recordset object, opens the user's
table from the MyDB database used in the previous code, and closes both the Recordset
and the Connection. You should close both when you complete your set of functions
on each object.

Dim oConnection As ADODB.Connection
Set oConnection = CreateObject("ADODB.Connection")
With oConnection

.Provider = "SQLOLEDB"

.ConnectionString = "User ID=sa;Password=;" _
& "Data Source=Serverl;Initial Catalog=MyDB"

End With
oConnection.Open

Dim oRS As ADODB.Recordset
Set oRS = CreateObject("ADQDB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic
oRS.Close
oConnection.Close

Chapter 11 Digital Dashboards

Getting at Recordset object data
Once you open your Recordset, you'll probably want to retrieve data from it. ADO
provides a Fields collection that represents the columns in a row from the data source.
Using the Fields collection, you can quickly and easily display data from a database
in your Digital Dashboard. The following code uses the Fields collection to retrieve
information from the database:

Dim oConnection As ADODB.Connection
Set oConnection = CreateObject("ADODB.Connection")
With oConnection

.Provider = "SQLOLEDB"

.ConnectionString = "User ID=sa;Password=;" _
& "Data Source=Serverl;Initial Catalog=MyDB"

End With
oConnection.Open

Dim oRS As ADODB.Recordset
Set oRS = CreateObject("ADODB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic

MsgBox oRS.Fields("UserName").Value
MsgBox oRS.FieldsC"UserEmail").Value
oRS.Close
oConnection.Close

Moving through the Recordset object
In addition to displaying information from the Recordset, you might want to move
from one row to another in the Recordset object. ADO provides five methods that
allow you to do this: Move, MoveFirst, MoveLast, MoveNext, and MovePrevious. The
Move method moves the number of records that you specify from the current record.
The MoveFirst and MoveLast methods move the cursor to the first or the last row of
the Recordset, respectively. MoveNext and MovePrevious methods move the cursor
to the next or the previous row, respectively.

For each of these methods, you need to use the BOF and BOF properties. The
BOF property is a Boolean that specifies whether the current cursor position precedes
the first record in the Recordset. The BOF property is a Boolean that specifies whether
the current cursor position follows the last record in the Recordset. The following
example shows how you can add navigation buttons to your application by using
some of these methods and properties:

Dim oRS As ADODB.Recordset
Dim oConnection As ADODB.Connection
Private Sub ConnectToDBC)

Set oConnection = CreateObject("ADODB.Connection")
(continued)

415

Part II

416

With oConnection
.Provider = "SQLOLEDB"
.ConnectionString = "User ID=sa;Password=;" _

& "Data Source=Serverl;Initial Catalog=MyDB"
End With
oConnection.Open

Set oRS = CreateObject("ADODB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic

End Sub

Private Sub cmdNext_Click()
oRS.MoveNext
If oRS.EOF Then

'Moved too far
oRS.MoveLast

End If
End Sub

Private Sub cmdPrevious_Click()
oRS.MovePrevious
If oRS.BOF Then

'Moved too far
oRS.MoveFirst

End If
End Sub

Filtering the Recordset object
You can use the Filter property to filter the rows returned in the Recordset. You pass
to the Filter property a criteria string that specifies the filter you want to impose on
the Recordset. You'll probably use the Filter property with the RecordCount property,
which specifies how many records the Recordset contains. The following example
sets the Filter property to filter only users from the United States. It also displays a
warning if the value of the RecordCount property is O. You can disable the filter by
setting the Filter property to the constant adFilterNone.

Dim oRS As ADODB.Recordset
Dim oConnection As ADODB.Connection
Private Sub ConnectToDB()

Set oConnection = CreateObject("ADODB.Connection")
With oConnection

.Provider = "SQLOLEDB"

.ConnectionString = "User ID=sa;Password=;" _
& "Data Source=Serverl;Initial Catalog=MyDB"

End With
oConnection.Open

Chapter 11 Digital Dashboards

Set oRS = CreateObject("ADODB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic
DoFi lter

End Sub

Private Sub DoFilter()
oRS.Filter = "Country = 'United States'"
If oRS.RecordCount = 0 Then

MsgBox "No records meet this criteria!"
End If

End Sub

Command Object
You can use the Command object to build and execute commands on your data
source. These commands can return Recordsets, execute bulk operations, or modify
the structure of the data source. In your Digital Dashboard, your Command object
will usually be returning Recordsets. The Command object has six properties­
ActiveConnection, CommandText, CommandTimeOut, CommandType, Prepared,
and State-and three methods-Cancel, CreateParameter, and Execute.

You'll probably use only the CommandText, CommandTimeOut, CommandType,
and Prepared properties. CommandText contains a string that is a SQL statement.or
the name of a stored procedure you want to run on the data source. Command­
TimeOut indicates how long, in seconds, you want the code to wait for the command
to execute before terminating the attempt and displaying an error.

The CommandType property is a string that specifies the type of command
contained in the CommandText property. CommandType is provided to optimize
performance so that ADO doesn't have figure out the type of command you want to
perform. This property can have the following values: adCmdText, indicating that
CommandText contains a SQL statement; adCmdStoredProc, indicating that Command­
Text contains the name of a stored procedure; or adCmdUnknown, if CommandText
is of unknown form.

The Prepared property is a Boolean value that specifies whether the provider
should compile the command for reuse. By setting this property to True for commands
you plan to reuse, you'll boost performance.

The Cancel method cancels the command that's currently executing. The Create­
Parameter method creates a Parameter object that you can use with stored proce­
dures. The Execute method executes the command, whether it's a stored procedure
or a SQL statement. Let's take a closer look at the capabilities of this method.

Execute Method
You can use the Execute method directly on the Connection object to add, delete,
or update data in your data source or in methods on the Recordset object. We'll dis­
cuss both techniques $0 that you can decide which one works best for your applications.

417

Pari II Bunding Outlook Applications

418

Updating records using the Connection object requires you to write some SQL
code. lhe following code snippet shows how to update the Users database to change
the type of user:

Set oConnection = CreateObjectC"ADODB.Connection")
With oConnection

.Provider = "SQLOLEDB"

.ConnectionString = "User ID=sa:Password=:" _
& "Data Source=Serverl:Initial Catalog=MyDB"

End With

oConnection.Open
strSQL = "UPDATE Users SET Type = " & _

"'Extranet' WHERE Type = 'Business Partner'"
oConnection.Execute strSQL

You can achieve the same result with the Recordset object by scrolling through
each record and updating the field manually, as shown here:

Set oRS = CreateObject("ADODB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic
oRS.MoveFirst
Do While Not CEOF)

If oRS.FieldsC"Type") "Extranet" Then
oRS.Fields("Type") "Business Partner"

End If
Loop
oRS.Update

Inserting new records can again be achieved with a SQL statement on the
Connection object. On the Recordset object, the object model supplies the AddNew
method for inserting new records. The following code example shows how to use
the Execute method on the Connection object to create a new record:

strSQL = "Insert UsersCName, Type, Country) " _
& "Values C'Tom','Internal','United States')"
oConnection.Execute strSQL

This code sample uses the Recordset object to achieve the same result:

Set oRS = CreateObjectC"ADODB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic
oRS.AddNew
With oRS

.FieldsC"Name") = "Tom"

.FieldsC"Type") = "Internal"

.FieldsC"Country") = "United States"
End With
oRS.Update

Chapter 11 Digital Dashboards

Deleting a record yet again can be achieved by using a SQL statement for the
Connection object, while the Recordset object provides the Delete method, which
deletes the current record in the Recordset. The following code shows how to delete
a record by using the Connection object:

Set oConnection = CreateObject("ADODB.Connection")
With oConnection

.Provider = "SQLOLEDB"

.ConnectionString = "User ID=sa:Password=:" _
& "Data Source=Serverl:Initial Catalog=MyDB"

End With
oConnection.Open
strSQL = "DELETE FROM Users Where Name = 'Tom Rizzo'"
oConnection.Execute strSQL

Using the Delete method on the Recordset object will delete the current record.
Make sure that you move the Recordset to a valid record after performing the dele­
tion. The following code deletes the current record and then moves the Recordset
to a valid record:

Set oRS = CreateObject("ADODB.RecordSet")
oRS.Open "Users", oConnection, adOpenDynamic, adLockOptimistic
oRS.Delete
oRS.MoveNext
If oRS. EOF Then

oRS.MoveLast
End If

This has been a quick overview of using ADO to access and manipulate rela­
tional database records. We'll take a closer look at using ADO with Exchange 2000
Server in Chapter 18. For more information on using ADO with SQL Server databases,
refer to the ADO documentation.

STORING CUSTOM INFORMATION
FOR THE DIGITAL DASHBOARD

Even though the dashboards in the starter don't provide personalization features, you'll
probably want to enable users to personalize their features to some degree. Person­
alization can range from providing simple ways for the user to filter out items in their
Inboxes on the dashboard, to providing wizards that allow users to customize the dis­
play and location of their nuggets. Once you provide personalization capabilities, you'll
need to store the personal information in a particular location. Since you'll probably
build your dashboard as a Web page, you can store the personalization information
for the dashboard in several ways. This section outlines some of your options.

419

Part II Building Outlook Applications

Using the Registry
You can personalize the content of the dashboard by using the registry, which is easy
because Outlook already allows you to get and set information in the registry by using
GetPref and SetPref methods. The starter kit uses the registry to remember the state
of the different nugget windows, that is, whether they were maximized or minimized.

There are a couple of problems with using the registry, however. First, if you
lock down the registry so that users cannot modify the registry at all, using GetPref
and SetPref will not work. (However, I've never found anyone who completely locks
down the entire registry so that the user population can't access it.) The second
problem is with roaming users. Unless you set up your client machines to support a
roaming registry, your settings will be machine-specific. Such settings are not useful
if you have people who check in and out laptops for travel or move to different
machines throughout the day.

Using Site Server Personalization and Membership
Another option for enabling personalization on the dashboard is to use the person­
alization capabilities of Microsoft Site Server. Site Server Personalization and Mem­
bership allow you to set up rules for personalizing Web content, and they allow users
to customize the way Web pages are displayed. Such personalization information is
stored for the user in a central repository. In your dashboard, you can query Site Server
to figure out what content should be displayed, where it should be displayed, and
for whom it should be displayed. Site Server Membership supports ADSI, so you can
query the preferences of the user using that interface.

NOTE If you're planning to implement Active Directory, you might just want to
use it as the default for storing your preferences.

Using the Active Directory

420

The Active Directory is Microsoft's strategic directory store, and you should use it to
store personalized information for your dashboard if it is available. Based on the
technology from the Exchange directory, the Active Directory provides a wealth of
features to store, query, and secure information about users, groups, and the organi­
zation. For example, you can query for a user's postal code or department to provide
customized content without the user ever having to enter any personal information.
The Active Directory is also extensible. This means that in addition to the basic
information it maintains, you can extend the directory with your own custom con­
tent or classes.

Chapter 11 Digital Dashboards

Using Cookies
Since your dashboard will probably be a Web page, you can use cookies to store user
preferences. The inherent problems with this approach are the possibility that your
users turn off cookies for security reasons and that users roam but their cookies don't.

UsingXML
Another possibility is to use XML to store preferences. You can then parse the XML
code to figure out what content to display on the dashboard as well as where to
display it. You can also use XSL to format the XML stream. Depending on your needs,
you could store the XML stream in Exchange Server, in the file system, or even in
the Active Directory.

Using Exchange Server
Storing the preferences directly in Exchange Server might be appealing if you don't
have the Active Directory installed on your system. This option allows you to use the
object models that you're used to-for e)Glmple, the Collaboration Data Objects model
(CDO). CDO allows preferences to roam with the user if the preferences are stored
in the user's mailbox or a public folder. With CDO, these preferences can also be used
offline. By using hidden messages in a user's mailbox or by sttlring hidden or vis­
ible preferences in a public folder, you. can allow users to customize the dashboard
and its content. For an example of storing configuration or personalization informa­
tion as hidden messages, take a look at the Offline Free/Busy application on the
companion CD. It uses hidden messages in your calendar folder to synchronize the
free/busy information for selected users when you work offline. It also allows you
to query that offline free/busy information by using CDO. Following is some code
from the Offline Free/Busy application. It retrieves configuration information from
a hidden message.

Private Function GetHiddenMessage(MsgClass As String) As Object
'Won't work online
'Set oCalendar = oSession.GetDefaultFolder(0)
On Error Resume Next
Set oMailbox = oSession.InfoStores(_

"Mailbox - " & oSession.CurrentUser.Name)
Set oCalendar = oMailbox.RootFplder.Folders("Calendar")
Set oHidden = oCalendar.HiddenMessages
'Clear the Filter
oHidden.Filter = Nothing
Set oFilter = oHidden.Filter
oFilter.Type = MsgClass
If oHidden.Count <> 0 Then

'Return the message
(continued)

421

Part II Building Outlook Applications

Set GetHiddenMessage = oHidden.GetFirst
Else

'Nothing: Try to do a hard search on it.
'Reset the filter
oHidden.Filter = Nothing
Debug.Print oHidden.Count
For Each oHiddenMsg In oHidden

If oHiddenMsg.Type = MsgClass Then
Set GetHiddenMessage = oHiddenMsg
Exit Function

End If
Next
Set GetHiddenMessage = Nothing

End If
Err.Clear

End Function

Private Sub GetAppSettings(boolFromPropPage As Boolean)
On Error GoTo errHandler
Er:r.Clear
'Get the hidden message
Set oFBMsg = GetHiddenM~s~age("IPM.Post.FBSetting")
If oFBMsg Is Nothing Then

'Create the message
Set oMailbox = oSession.InfoStores("Mailbox - " & _
oSession.CurrentUser.Name)
Set oCalendar = oMailbox.RootFolder.Folders("Calendar")
Set otmpHidden = oCalendar.HiddenMessages
Set oFBMsg = otmpHidden.Add(Subject:="FB Setting", _

Type:="IPM.Post.FBSetting")
'Add a Boolean to hold the setting
oFBMsg.Fields.Add "Enabled", 11, False
boolEnabled = oFBMsg.Fields("Enabled").Value
oFBMsg.Update True, True

Else
'Get the setting
boo 1 Enabled = oFBMsg.Fields("Enabled").Value

End If

End Sub

DEPLOYING A DIGitAL DASHBOARD

422

Depending on the technology you use to develop a Digital Dashboard, the method
for deploying the dashboard will differ-for example, locating your dashboard in
Outlook Today will demand a deployment that is different from one in which you
use Internet Explorer or an Outlook Folder Homepage. Let's take a look at these
different scenarios and some best practices for deploying your dashboard.

Chapter 11 Digital Dashboards

Outlook Today Digital Dashboard
When you create your dashboard as a replacement for the Outlook Today page, you
can force Outlook to start up in your dashboard by telling Outlook to always start in
the Outlook Today folder. Outlook supports starting up only in its default folders or
in Outlook Today, so unless the Folder Homepage dashboard is associated with a
default Outlook folder such as Contacts or Tasks, you cannot force your dashboard
to start up in the Folder Homepage.

When customizing Outlook Today, you can choose from a number of options
for deploying your solution. Your first option is to distribute your applications as a
local or remote DLL. By placing your Web resources in a DLL, you'll gain the benefit
of having your page load faster. However, deploying your DLL will be more difficult
and redeploying after making changes will be a problem, especially if you use a local
DLL. Furthermore, you will need Microsoft Visual Studio to create the resource DLL file.

Your second deployment option is to host your Outlook Today page on a Web
server. Doing so makes your dashboard easy to deploy and change, plus you can
leverage Active Server Pages. The only issue with Outlook Today and remote Web
servers is offline use. Outlook Today does not synchronize offline in the way that a
Folder Homepage does. If you need to use your dashboard offline, you can still use.
a Web server and Outlook today, but you will need to make the Folder Homepage
point to your dashboard so that the Folder Homepage can synchronize the Web
information offline. When working with offline Web pages, Outlook will look to the
Internet Explorer cache, which doesn't distinguish the Outlook folder associated with
the Web pages. Once you get the pages into the Internet Explorer cache, you can
use these pages both from the Folder Homepage or your Outlook Today page.

Folder Homepage Digital Dashboard
By making your dashboard a Folder Homepage for a private or public folder, you
get the benefit of automatic offline synchronization.· However, this benefit coines at
a price: you can't force Outlook to start in your dashboard as the default unless the
dashboard is associated with a standard Outlook folder. That said, you can use the
same deployment techniques for Outlook Today and for Folder Homepages such as
a DLL or Web server.

RECOMMENDATIONS FOR
ACCESSING EXCtiANGESEAVER

The Starter Kit uses the Outlook object model extenSively, which you might want to
avoid if performance is a concern for your dashboard. The following recommendations
will help you build dashboards that perform very well with Exchange data sources.

423

Part II Building Outlook Applications

424

• Use the databinding controls whenever possible. You'll want to take
advantage of the Outlook Databinding control when you need to display
calendar or task inforination and you don't need a way for the user to drag
and drop information contained in the HTML. The Databinding control
streams information quickly into the page and eliminates some of the
overhead of using the Outlook View control when displaying Outlook
information. If your users require interaction with the data in a robust way,
however, you'll want to use the View control in your application.

• Use CDO whenever possibte. CDO is very good at accessing Exchange data,
both online and offline, quickly, so try to use it wherever possible to
access, update, or create information in your dashboard. If you need to
interact with certain types of information in Outlook such as tasks or
contacts, you'll want to use the Outlook object model or the View con­
trol. Both of these technologies expose a much richer interface to data
types like tasks or contacts.

• Be smart about client~side scripting. Too much client -side script can slow
your dashboard to a crawl. If possible, leverage ASP or some form of server
component to display or retrieve data.

• Use COM add-ins. If you're going to host your dashboard in Outlook 2000,
you won't want to forget about COM add-ins. By offloading some work
to the add-in, you can take advantage of the speed with which the com­
piled code in the add-in can run. Plus, your add-ins can perform work
during an entire Outlook session, which makes your dashboard perfor­
mance even better. For example, in your dashboard, your add-in could
synchronize with an OLAF cube in the background rather than in the
foreground.

• Don't be afraid of ActiveX controls. If you're going to be hosting your
dashboard in Outlook, this is especially true. Why spend countless hours
tweaking HfML when you could write an ActiveX control that creates a
better layout or has more functionality than you could provide in a Web
page? Let your VB skills loose and write ActiveX controls when it makes
sense for your dashboard. The benefit is that you can leverage these
controls in other scenarios as well. The only drawback is deploying the
controls and securing them. You can deploy your controls from a Web
page, and if you use ActiveX control signing, you shouldn't have a prob­
lem with security.

Chapter 11 Digital Dashboards

WHAT ABOUT EXCHANGE 2000?

We're going to cover Exchange 2000 in much more detail in a later chapter.
However, I wanted to point out that any of the nuggets you generate in
Exchange 5.5 will work in Exchange 2000. This means the Outlook View con­
trol, the Databinding control, and the CDO and Outlook object model code you
write will work in Exchange 2000. You can enhance your dashboard with
Exchange 2000 technology because it offers richer security, Outlook Web Access,
and new workflow capabilities.

425

Part III

II r ti n ith
ic 0 ft E n

Chapter 12

Collaboration
Data Objects

As you saw in Chapter 7, you can use Microsoft Active Server Pages (ASP) to develop
powerful Web applications that are not dependent on the capabilities of the browser.
This power of ASP comes not from the built-in libraries of the ASP object model but
rather from Active Server components you call from your ASP programs. This chap­
ter covers one of those Active Server components-Collaboration Data Objects, or
CDO-which enables you to develop messaging and collaboration applications for
the Web. You can use CDO for other purposes as well, such as in client-based or
server-based applications that you develop. In this chapter, you will learn what CDO
is and how it compares to other technologies, what objects are in the CDO library,
and how you can start. developing ASP and Microsoft Visual Basic applications that
take advantage of this library.

WHATISCDO?
CDO is an object library that exposes the interfaces of the Messaging Application
Programming Interface (MAP!), but instead of requiring the C/C++ language as MAPI
does, CDO can be programmed using any development tool that creates COM objects,
such as ASP, Visual Basic, and Microsoft Visual C++.

CDO has had several incarnations, and previous versions shipped with differ­
ent names and functionality. For example, in Microsoft Exchange Server version 4.0,
CDO was named OLE Messaging, and in Exchange Server 5.0, CDO was named Active

429

Part III Collaboration with Microsoft Exchange

Messaging. With the advent of Exchange Server version 5.5 and Microsoft Outlook
98, the library was renamed Collaboration Data Objects to better describe its services­
CDO provides much more than messaging functionality. Even though the names have
changed from version to version, any older applications using a previous version of
CDO are compatible with the latest version of the library. (At the time this book goes
to press, the latest released version of CDO is CDO for Microsoft Windows 2000.)

You install CDO by installing either Outlook on your machine or Outlook Web
Access (OWA) on your Web server. CDO is actually divided into two dynamic link
libraries (DLLs): CDO.dll and CDOHTML.dll. CDO.dll contains the core collaborative
functionality of CDO, such as sending messages, accessing the directory, and view­
ing free/busy calendar information. CDOHTML.dll is the CDO Rendering library. This
library allows you to automatically convert information stored inside Exchange Ser­
ver to HTML by using custom views, colors, and formats. The CDO Rendering library
is installed when you install OWA on your Web server. Throughout this chapter, you
will learn how to use both CDO libraries in your applications.

CDO and the Outlook Object Library

430

CDO and the Outlook object library are complementary technologies. The Account
Tracking application discussed in Chapter 6 illustrates how the CDO library is used
in conjunction with the Outlook object library. You might be wondering when to use
each library. To help you make a decision, take into consideration account criteria
such as where the application will run and what type of information the application
will access. As yOU develop applications, you will find that deciding whether to use
the Outlook library or the CDO library will almost never be simple. Use the Outlook
object library to do the following:

• Access special information stored in Outlook, such as Tasks and Journal
items, that CDO does not support

• Open another user's information, such as the Calendar or Inbox

• Sort or filter complex Outlook properties

Use the CDO library to do the following:

• Render objects or data into HTML

• Create multiuser server-based applications

• Access detailed information stored in the directory or display address
books for users to pick from

Chapter 12 Collaboration Data Objects

CDO and the CDO for Windows 2000
When you install Microsoft Internet Information Services (lIS) 5.0, you have the option
to install an SMTP (Simple Mail Transfer Protocol) component and an NNTP (Network
News Transfer Protocol) component on your Web server. These components are
subsets, functionally, of the CDO library named Collaboration Data Objects for
Windows 2000 (CDOSYS). The CDO for Windows 2000 library allows you to quickly
build applications that do not require the complete functionality of CDO. For example,
if on your Web page you wanted to create a simple way for users to send comments
through e-mail, you would use the CDO for Windows 2000 object library rather than
CDO. If your application required looking up a user in a directory server, however,
you would want to use the advanced functionality of the full CDO library. Another
difference between CDO and CDO for Windows 2000 is that CDO for Windows 2000
uses only SMTP and NNTP to commllnicate with a server. The use of these proto­
cols to talk with the server limits the functionality that the CDO for Windows 2000
library can provide. With that said, you should use the CDO for Windows 2000 li­
brary to do the following:

• Send unauthenticated e~mail from a Web page

• Send bulk mailings via e-mail

• Support MHTML (Mime HTML)

Use the CDO library to do the following:

• Use authenticated or anonymous access to information, but not anony­
mous e-mails

• Access or create calendaring information

• Access a directory and its information

OVERVIEW OF THE CDO LIBRARY
The CDO library is a hierarchical library consisting of objects and collections. Through­
out this hierarchy, you can create child objects from their parent objects. As you read
the chapter, you'll find the same collection name for collections containing different
objects. While these collections might have the same name, the information each
accesses is specific to the object e'lch refers to.

In the CDO library, the Session object is the highest-level parent of all the other
objects and contains all objects and collections. This makes sense since you need some
type of session, either an Exchange Server session or an offline session, to start ac­
cessing information stored in an Exchange Server database. Figure 12-1 shows the
hierarchy of the CDO library, wj:lich begins with the Session object.

431

Pari III Collaboration with Microsoft Exchange

432

NOTE If you're familiar with ActiveX Data Objects (ADO), it might be helpful
to know that the Session object is similar to the ADO Connection object. How­
ever, do not confuse the Session object in ASP with the Session object in CDO.
They are two entirely different objects.

Figure 12-1. The CDO library hierarchy. Notice how all other objects are created as
children o/the CDO Session object.

As you can see from Figure 12-1, the CDO library is quite logical in its layout
of collectioqs and objects. Below the Session object are the major collections and
objects of the CDO library, such as the InfoStores collection, which contains the data
stores for your application, and the AddressLists collection, which contains the address
entries your application can use. Below these major collections are other collections

Chapter 12 Collaboration Data Objects

such as the Folders collection, which contains the folders for a particular InfoStore,
and the Messages collection, which contains the messages for a particular folder. The
CDO library is one of the most approachable Microsoft object libraries and allows
you to quickly build powerful collaborative applications.

Getting Help with the CDO Library
While this chapter provides an overview of the CDO library, you might also want to
look at the CDO help file, which provides useful information as well as code samples.
The CDO Windows Help file (cdo.hlp) can be found on the Exchange Server CD or
on the Outlook CD. The CDO compiled HTML Help file (cdo.chm) is available on
the companion CD. It is also available as part of the Platform Software Development
Kit (SDK) section of the MSDN Library, which can be accessed online at http://
msdn. microsoft. comldeveloperlsdkl. For additional CDO information, refer to the
"Programming Outlook and Exchange Supplement" on the companion CD. Use it to
learn about the CDO library methods and properties not discussed in this chapter.
Also refer to the section at the end of this chapter, which contains some tips and tricks
for building CDO· applications.

BACKGROUND FOR FOUR
SAMPLE ApPLICATIONS THAT USE CDO

The easiest way to learn any new object library is to look at the objects in action.
For this reason, the rest of this chapter shows you four sample applications that
demonstrate different technologies in the CDO library: a Helpdesk application, a
Calendar of Events application, an Intranet News application, and a CDO Visual Basic
application. From these four samples, you will learn how to use the CDO library in
your applications and become aware of the technical considerations encountered
when building CDO applications. Before we dive into the details of these four sample
applications, we'll first look at the necessary Exchange Server logon step.

Using the CDO Session Object
Whether you build CDO applications by using ASP or by using some other develop­
ment tool, the most important point to remember is that you cannot create any other
objects in the CDO library if you do not successfully create a Session object. Further­
more, you cannot access any data in Exchange Server unless you successfully log on
to the server using the Session object. Before we can look at the code in the CDO
applications, you need to understand how to log on to an Exchange server by using
the Session object.

433

Part III Collaboration with Microsoft Exchange

The Session object is the top-level object in the CDO hierarchy. It contains
session-wide settings and properties that return top-level objects. When using the
CreateObject method in your applications, you use the ProgID of the Session object­
MAPLSession-to create a CDO object. CDO does not allow you to access any other
objects in the library until you have successfully logged on using the Logon method
of the Session object. The only exception to this is the SetLocaleIDs method, which
sets the Locale and CodePage IDs for the user.

Using the Logon Method

434

The Logon method takes a number of parameters, as shown in the following code;
the parameter you use depends on the needs of your application:

objSessjon.Logon([Profj7eName] [. Profj7ePassword] [. ShowDja7og]
[. NewSessjon] [. ParentWjndow] [. NoMaj7] [. Profj7elnfo])

The two common ways to log on to a CDO session are by passing in a MAPI
profile name and by passing in the specific information CDO needs to dynamically
generate a profile. Dynamically generated profiles are the preferred method when
building ASP applications with CDO. Since ASPs cannot access client profiles, CDO
has no way to pull information from a profile located on the user's machine.

Authenticated Logon Using a Profile
To log on using a profile, pass the profile name as the first parameter, ProjileName,
to the Logon method. If you don't know which profile name to use, set the SbowDialog
parameter to True, and CDO will prompt the user to pick a profile. The second
parameter, ProjilePassword, specifies the profile password. You could leave this
parameter blank and set the SbowDialog parameter to True, and CDO will prompt
the user for a password. By setting the NewSession parameter to False, you can have
CDO take advantage of an existing MAPI session, eliminating the unnecessary over­
head from creating a new MAPI session on the user's machine. The following code
snippet shows you how to use the Logon method with a profile named MS Out­
look Settings:

oSession.Logon ProfileName:="MS Outlook Settings". _
showDialog:=True. NewSession:=True

Authenticated Logon Using a Dynamically Generated Profile
When your application is running in an environment where profiles or the ability to
prompt a user for a profile might not be available, CDO allows you to dynamically
generate a profile for the user by passing in the user's server name and mailbox name
to the Logon method. To get this information, you can have your application prompt
the user for his server name and mailbox name. Alternatively, CDO can pull the default
Exchange Server name from the registry by using the ConfigParameter properties in

Chapter 12 Collaboration Data Objects

the CDO Rendering library, which you will learn about later in this chapter. For now,
the code sample assumes that you know at least one Exchange Server name in your
organization. The following code shows you how to log on to CDO using a dynami­
cally generated profile:

strServer = "Exchange Server Name"
strMailbox = "User A7ias Name (Not Disp7ay Name)"
strProfileInfo = strServer + vbLf + strMailbox
oSession.Logon False. True.e. True. strProfileInfo
'Check for a valid logon
set oInbox = oSession.GetInbox

if err.number <> e then 'Not Successful
oSession.Logoff
Response.write "Unsuccessful Logon!"

end if

NOTE For the user's mailbox name, don't use the display name, such as Tho­
mas Rizzo. Instead use the alias of the user, such as thomriz. Also, when using
the Profilelnfo parameter, attempt to access an item in a COO message store,
such as the first message in the Inbox, since the Logon method will return suc­
cess even if the parameters in Profilelnfo are incorrect. If attempting to access
items returns an error, the user was not successfully logged on.

Anonymous Access
CDO also allows users to anonymously access the Exchange Server pubUc folder store
as well as the Exchange Server directory. Anonymous access must be enabled by the
administrator of the Exchange Server system. Also, the administrator or developer can
control which folders and which directory entries the anonymous user can see by
setting some options in the Exchange Administrator program. These options are dis­
cussed in more detail throughout this chapter.

To use anonymous access, you must pass in to the Profilelnfo parameter the
distinguished name of the Exchange Server and the Anon account. You do this by
using the following format:

server distinguished name. & vbLf & vbLf & ;'anon"

The server's distinguished name takes the form of:

10=enterpriselou"'si'ti!lcn=Configurption/cn=Servers/cn=server

The enterprise parameter corresponds to the Exchange Server organization, and
the site parameter corresponds to the Exchange Server site you want to access. The
following code shows you how to log on using anonymous access:

strProfi 1 eInfo "/0=" & ",Your Exchange Org'~ & .. lou=" & _
"Your Site" & "/cn=Configuration/cn=Servers/cn=",& _

(continued)

435

Part III Collaboration with Microsoft Exchange

.. Your Server" & vbLF & vbLF & "anon"
oSession.Logon False. True. 0. True. strProfileInfo
if err.number <> 0 then

oSession.Logoff
response.write "Unsuccessful Logon!"

end if

HELPDESK APPLICATION

436

Now that we know how to successfully log on to the Exchange Server, let's take a
look at our first sample application, the Helpdesk application. The Helpdesk appli­
cation is a Web-based application that allows users to submit new help requests. Help
technicians can, in turn, use their Web browser to view and answer help requests as
well as schedule meetings with the users to go on site to solve their problems. This
application allows the technicians to use different views for the help tickets stored
in the system so that they can quickly see who the ticket is from, when it was sent,
and its status. (A help ticket for the Helpdesk application is shown in Figure 12-2.)
When browsing help tickets, the technicians are presented with machine-configuration
information from a Microsoft Access database, making it easier for them to track down
whether the issue is related to hardware, software, or a user error.

- Please eI1er1he daleb'theappolt1ment: ;::1 ==~
Plea88 erEr 1he tme flJr tie appolnmert L

Figure 12-2. A help ticket in the Helpdesk application. Tbis is the DynamicHTML
version of the application.

This application is the most complex of all the sample applications in this book,
but the code for it is easy to follow and shows you how to use many of the objects
in the CDO library. There are actually two versions of the application on the companion

Chapter 12 Collaboration Data Objects

CD. The version you use depends on the Web browser you want to target One version
implements a user interface for the help tickets by using Dynamic HTML (DHTML).
The other version uses HTML tables. A screen fro!ll the non-DHTML version is shown
in Figure 12-3.

Help Request

Pleaalreviaarthlfolloll.WJg:

_ Pleaseeniertledaiefortle'4'PQl1bnerl: :====~ I •••••

Figure 12-3. The non-DHIML version of a belp ticJ?et:

Setting Up the Helpdesk Applicat.en
Before you can install the application, you must have a Windows NT 4.0 Server or
Windows 2000 server and a client with certain software installed. Table 12-1 outlines
the installation requirements.

To use the Helpdesk application, you will need to have some e-mail users. You
can either select currently set up e-mail users or add new ones using the Exchange
Administrator program. Be sure to fill in the directory information for your users; this
information should include their office locations, phone numbers, titles, and depart­
ments. The Helpdesk application dynamically retrieves tllls information using the CDO
library. If the information is not available in the directory, the application will dis­
play the text "None specified" for these fields.

To install the application, copy the Helpdesk folder from the companion CD
to your Web server where you want to run the application. If you are going to use
a browser that does not support DHTML, such as Microsoft Interpet Explorer 3.0, copy
the three .asp files from the Nondhtml subfolder to the' Helpdesk folder, overwriting
the current files. Th~se files wili replace the DHTML versions of th~ Helpdesk with
the HTML versions.

437

Part III Collaboration with Microsoft Exchange

438

Required Software

Exchange Server 5.5 with
Service Pack 1 or later in­
stalled with Outlook Web
Access
lIS 3.0 or higher with Ac­
tive Server Pages
CDO library (cdo.dll) and
CDO Rendering library
(cdohtml.dll)
ActiveX Data Objects

Access 97 (optional)

For the client:
A Web browser or
Outlook

Installation Notes

Service Pack 3 is recommended.

lIS 4.0 is recommended.

Exchange Server 5.5 Service Pack 1 installs CDO
library 1.21 and CDO Rendering library 1.21.
Outlook installs CDO library 1.21.
lIS 4.0 installs ADO 1.5. Visual Basic 6.0 installs
ADO 2.0. For more information on ADO, consult
http://www.microsoft·comldata!.
Install Access if you want to utilize the database
access feature. Access 2000 is recommended.

For the Web browser, Internet Explorer 5.0 is
recommended. You can run the client software
on the same machine or on a separate machine.

Table 12-1. Installation reqUirements/or the Helpdesk application.

Start the lIS administration program. The user interface you see depends on what
version of lIS you have. Create a virtual directory that points to the location where
you copied the helpdesk files, and name the virtual directory helpdesk. Make sure
you enable the Execute Permission for the virtual directory or you will receive an http
error when attempting to access the application. You will be able to use the follow­
ing URL to access your helpdesk: http://yourservernamelhelpdesk.

Included with the helpdesk files on the companion CD is a sample Access 2000
database (smsdata.mdb) that allows the application to query for system information
about the current user. To use this database, you must set up a system DSN for it on
the server machine by using the ODBC Data Source Administrator in the Control Panel.
Point the system DSN at the smsdata.mdb file, and name the DSN Helpdesk. Make
sure that the read-only flag is unchecked for the smsdata.mdb file. Open smsdata.mdb
in Access, and edit the UserID fields for all three tables to reflect the display names
of the users you have in Exchange.

NOTE Files copied from CDs have their read-only flags set. When setting up
the applications included with this book, be aware that you may need to clear
this read-only flag after copying files from the companion CD.

Launch Microsoft Outlook. (You can launch it on any machine because you are
going to create a public folder that will contain the help tickets for the application.
The only requirement is that the Exchange server with which the lIS server is
communicating can access the public folder you create.) Create a new public folder

Chapter 12 Collaboration Data Objects

under All Public Folders. Name the folder Helpdesk, and select Task Items as the
default item type for the folder.

NOTE You must install the Helpdesk folder under All Public Folders or the
application will not work. If you cannot install the application there, you can modify
the code contained in the Helpdesk application so that it looks for the folder in
another location, or you can retrieve the folder by using its EntrylD.

Among the helpdesk files, you will find a file named helpdesk.fdm. This file is
a form definition file that will be used to import the correct fields needed by the
Helpdesk application. In this case, the form is a Help Request task form with mul­
tiple custom fields.

To install the Help Request form, you need to import this file into the Helpdesk
public folder. To do this, right-click on the Helpdesk public folder and select Prop­
erties. Click on the Forms tab, and click Manage to display the Forms Manager, as
shown in Figure 12-4.

Figure 12-4. The Forms Manager dialog box.

In the Forms Manager dialog box, click Install to display the Open dialog box.
Select the All Files option from the Files Of Type drop-down list so that Outlook does
not search only for files with a .cfg extension. Locate and double-click on the
helpdesk.fdm file to display the Form Properties dialog box. Click Cancel, and then
click Close and OK. When you have the Helpdesk public folder selected, you should
see a new option on the Actions menu named New Helpdesk Request.

You will need to create some vi~ws in the Outlook client so that these views
are available to the Web browser client. This is one of the powerful features of CDO.
These views will include some of the custom fields from the Help Request form just
installed. Using the Define Views dialog box and the information in Table 12-2, cre­
ate the helpdesk, from, and status views for the Helpdesk public folder. (For information
about creating views, see the section titled "Views" starting on page 71 in Chapter 3.)

439

Part III Collaboration with Microsoft Exchange

440

View Name

Helpdesk

From

Status

Type

Table

Table

Table

Fields

Flag, From User (select from
Help Request form), Received,
Subject (select from All Mail
Fields)

Flag (select from Help Request
form), Received, Subject (select
from All Mail Fields)

From User (select from Help
Request form), Received, Sub­
ject (select from All Mail Fields)

Ta~le 12-2 Informationfor creating helpdesk, from, and status views.

Group By

None

From User,
in ascending
order

Flag, in as­
cending order

Using the Properties dialog box in Outlook for the Helpdesk public folder, set
the permissions for your users. Give regular users who will submit help tickets Cre­
ate Items permission. Give technicians who can submit, view, and resolve help tick­
ets Create Items and Read Items permissions. Figure 12-5 shows a sample permissions
setup for the Helpdesk folder. As you will see, the application checks the permis­
sions of the current user for the Helpdesk folder to determine whether the user is a
technician or just a regular user. If you do not give yourself at least Read Items per­
missions, you will not be able to see the menu option View Current Help Tickets in
the Helpdesk application.

Figure 12-5. The Permissions tab of the Properties dialog box for the Helpdesk public
folder. Regular users have Create Items permissions, ap,d technicians have Create
Items and Read Items permissions.

Chapter 12 Collaboration Data Objects

You're finished setting up the application. Try connecting your browser to http://
yourservernamelhelpdesk to access the application.

Helpdesk CDO Session Considerations
You need to be aware of certain issues when building ASP-based applications with
CDO, like the Helpdesk application. Recall from Chapter 7 that the ASP Session object,
which is created when a new user connects to your Web application, maintains the
user state for Web applications. ASP, in turn, runs the Session_OnStart subroutine in
the Global.asa file. When a user's session times out or the user abandons the session,
ASP runs the Session_OnEnd subroutine in the Global.asa file. This might seem simple
enough, but the most common problem developers run into with CDO applications
is not putting the correct code in the Session_OnStart and Session_OnEnd subrou­
tines in the Global.asa. If you do not put the correct code in these subroutines, you
could get an ASP 0115 error, which indicates that a trappable error has occurred in
an external object. Your ASP application will cease working until you restart the Web
server. To help you better understand what you need to do as a CDO developer, and
to help you avoid this error in your application, let me explain in more detail exactly
what happens when a user logs on and off an Exchange server in a CDO ASP appli­
cation. I'll do this by showing you the Global.asa file from the Helpdesk application:

<SCRIPT LANGUAGE=VBScript RUNAT=Server)
Sub Application_OnStart

On Error Resume Next
Set objRenderApp = Server.CreateObject("AMHTML.Application")
If Err = 0 Then

Set Application("RenderApplication") = objRenderApp
Else

Application("startupFatal") = Err.Number
Application("startupFatalDescription") = _

"Failed to create application object<br)" & _
Err.Description

End If
Application("hImp") = 0
'Load the configuration information from the registry
objRenderApp.LoadConfiguration I, _

"HKELLOCAL_MACHINE\System\CurrentControlSet\" & _
"Services\MSExchangeWeb\Parameters"

Application("ServerName") = objRenderApp.ConfigParameter("Server")
Err.Clear

End Sub

Sub Application_OnEnd
Set Application(ftRenderApplication") Nothing

End Sub
(continued)

441

Part III Collaboration with Microsoft Exchange

442

Sub Session_OnStart
On Error Resume Next
'This is a handle to the security context.
'It will be set to the correct value when a
'COO session is created.
Session("hlmp") = 0
Set Session("AMSession") = Nothing

End Sub
'While calling the Session_OnEnd event. lIS doesn't call us in
'the right security context.
'Workaround: current security context is stored in Session
'object and then gets restored in Session_OnEnd event handler.

'All COO and COO Rendering library objects stored in the
'Session object need to be explicitly set' to Nothing between
'the two objRenderApp.lmpersonate calls below.
Sub Session_OnEnd

On Error Resume Next
set objRenderApp = Application("RenderApplication")
fRevert = FALSE
hImp = Session("hlmp")
If Not IsEmpty(hImp) Then

fRevert = objRenderApp.lmpersonate(hlmp)
End If
'00 our cleanup. Set all COO and COOHTML objects inside
'the session to Nothing.
'The COO session is a little special because we need to do
'the Logoff on it.
Set objOMSession = Session("AMSession")
If Not objOMSession Is Nothing Then

Set Session("AMSession") = Nothing
objOMSession.Logoff
Set objOMSession = Nothing

End If
If (fRevert) Then

objRenderApp.lmpersonate(0)
End If

End Sub
</SCRIPT>

The Application_OnStart subroutine is run only once, when the first user con­
nects to the application. As you can see in the code, the first step is to create a new
CDO rendering application from the CDO Rendering library. The ProgID for the CDO
rendering application is AMHTML.Application. The rendering application is stored in
an application-level variable so that you avoid creating multiple AMHTML objects.
Your application will perform better if you create the AMHTML object once and then
use it throughout all user sessions.

Chapter 12 Collaboration Data Objects

NOTE COO was formerly named Active Messaging, so you will see both COO
and AM used throughout the COO library. Consider any objects that are prefixed
with AM to be COO objects.

The Application_OnStart subroutine initializes some variables and then uses a
method on the CDO rendering application object to retrieve the name of the Exchange
server from the Web server's registry. This method allows portability of the code. You
don't have to hard-code the name of the Exchange server; the Helpdesk application
pulls the information from the registry.

After the first user connects and Application_OnStart is finished running, ASP
runs the Session_OnStart subroutine forall users. Session_OnStart clears a session
variable named hlmp. This hlmp variable is a handle to the security context for the
current user. Remember that when a user first browses a Web page in lIS, she is
running in the security context of the IUSR_servername account. While this account
is useful for browsing Web pages anonymously, it is not useful for accessing Ex­
change Server objects and information because it has no implicit permissions on
Exchange Server·objects .. So when building an authenticated CDO application, you
need to force lIS to challenge the current user for the user's Microsoft Windows NT
credentials. lIS and CDO can use the Windows NT security context for that user to
attempt a logon to the Exchange server. The following code, taken from the Logon.inc
file of the Helpdesk application, checks the http variables to make sure that the current
user is authenticated by the Web server using the user's Windows NT credentials. In
the Helpdesk application, this section of code is called by every ASP page, just in case
the ASP session of the user has timed out.

Public Function BAuthenticateUser
On Error Resume Next
'Response.Write("In BAuthenticateUser
")
BAuthenticateUser = False
bstrAT = Request.ServerVariables("AUTH_TYPE")
If InStr(1, "_BasicNTLM", bstrAT, vbTextCompare) < 2 Then

Response.Buffer = TRUE
Response.Status = ("401 Unauthorized")
Response.AddHeader "WWW.Authenticate", "Basic"
Response.End

Else
BAuthenticateUser = True

End If
End Funct ion

This function searches the AUTH_TYPE server variable to see whether either
"Basic" or "NTLM" is contained anywhere in the string. If neither is, the user is
unauthenticated and the script sends back a "401 Unauthorized" response and a
header that will force the browser to challenge the user for credentials.

443

Part III Microsoft Exchange

Once authenticated, the security context of the user must be saved as a Session
variable. You must save this security context because lIS uses multiple threads of
execution and you cannot be guaranteed that the thread that tries to destroy the
session when the user logs off will be the same thread used to create the session. In
the Session_OnEnd subroutine, the script checks to see whether hImp is not empty,
implying it is a valid handle. If hImp is not empty, hImp is used to specify the Windows
NT security context to impersonate. Once the CDO and CDO Rendering objects are
set to Nothing and the session is logged off, the CDO Rendering application object
reverts from the authenticated thread to the unauthenticated thread by calling the
Impersonate method, with 0 as the parameter.

As we step through the Helpdesk application, you will see that every page in
the application checks to see whether the ASP session, and therefore the CDO ses­
sion, has been abandoned or has timed out. If the session has been abandoned or
has timed out, the application redirects the user to the logon page so that he can restart
his ASP and CDO sessions. Figure 12-6 shows the logon page.

6Helpdesk Submit Form!

Please emer your Microsoft E:o::hange email name below.

Please provide the fonowing information:

E-mail alias fiF~~.~!~. . .. ;

Figure 12-6. The logon page for the Helpdesk application.

Logging On to the Helpdesk

444

You've seen that both the Global.asa and the Logon.inc files help to authenticate users
and maintain sessions. We have not yet discussed, however, how you actually use
the Logon method of the CDO Session object in the Helpdesk application to create

Chapter 12 Cpllaboration Data Objects

a valid session with the Exchange server. The Logon method must be called before
you attempt to access any other CDO objects. The script that implements user logons
is contained in the Logon.inc file, shown here:

<%
'logon.inc. VBScript methods to create and check an
'ActiveMessaging session

'============================

'ReportError

'============================

Function ReportError(bstrContext)
ReportError= False
If Err.Number <> 0 Then

Response.Write("Error: " & bstrContext & " : " & _
Err.Number & ". " & Err.Description & "
")

Err.Clear
ReportError= True

End If
End Function

'============================

'BAuthenticateUser
'Ensures user is authenticated. Note that this implies that
'Basic authentication is enabled on the lIS server.
'============================

Public Function BAuthenticateUser
On Error Resume Next
'Response~Write("In BAuthenticateUser
")
BAuthenticateUser = False
bstrAT = Request.ServerVariables("AUTH_TYPE")
If InStr(1. "_BasicNTLM". bstrAT. vbTextCompare) < 2 Then

Response.Buffer = TRUE
Response.Status = ("401 Unauthorized")
Response.AddHeader "WWW.Authent~cate". "Basic"
Response.End

Else
BAuthenticateUser = True

End If
End Function
'============================

'CheckAMSession

'Checks for and returns the AM session in the Session object.
'If not found. calls NOSession.

(continued)

445

Pari III Collaboration with Microsoft Exchange

446

'Call this before emitting any HTML or any redirects.
'authentication. and so On.
'Returns True if session exists or can be created.
'============================

Public Function CheckAMSession(}
On Error Resume Next
'Response.Write("In GetSession
"}
Dim amSession
CheckAMSession= False
Set amSession= Session("AMSession")
If amSession Is Nothing Then

NoSession
amSession= Session("AMSession")

End If
If Not amSession Is Nothing Then

CheckAMSession= true
End If

End Function

'============================

'NoSession

'Called when the AM session cannot be found.
'Either creates a session or gets more info from the user.
'Returns only if the session was created.

'============================

Sub NoSession()
On Error Resume Next
Dim bstrMailbox
Dim bstrServer
Dim bstrProfileInfo
Dim objAMSessionl
Dim objRenderApp
Dim objlnbox
bstrServer = Application("ServerName")
if Session("mailbox") is Nothing then

bstrMailbox = Request.QueryString("Contact_Email")
else

bstrMailbQx = Session("mailbox")
end if
'Must be authenticated to successfully log on
BAuthenticateUser
Err.Clear
Set objAMSessionl = $erver.CreateObject("MAPI.Session")

Chapter 12 Collaboration Data Objects

If Not ReportError("create MAPI.Session") Then
set objRenderApp = Application("RenderApplication"
'Construct the ActiveMessaging profile from server
'and mailbox name
bstrProfileInfo = bstrServer + vbLF + bstrMailbox
Err.Clear
objAMSessionl.Logon "", "", False, True, 0, True, _

bstrProfileInfo
If Not ReportError("CDO Logon") Then
'To ensure that we are really logged on, we need to
'try retrieving some data

Err.Clear
Set objInbox = objAMSessionl.Inbox
'If ReportError("Get Inbox"), then
'the logon is no good. We'll do a little
'cleanup here.
If err.number <> 0 then

objAMSessionl.Logoff
Set objAMSessionl = Nothing
%>
<META HTTP-EQUIV="REFRESH" CONTENT="0;
URL=ema11 . asp"; TARGET="_top">
<%
'response. redirect "default.htm"

End If
'This will be retrieved in CheckSession.
'Note that if the logon failed, this is set to 'Nothing'.
Set Session("AMSession") = objAMSessionl
'Need this to re-create the proper security context
'in Session_OnEnd.
Session("hImp") = objRenderApp.ImpID

End If 'objAMSessionl.Logon
End If 'Server.CreateObject()

End Sub

The first function called on every ASP page in the Helpdesk application is the
CheckAMSession function, which checks to see whether the user already has a valid
CDO Session object with the Exchange server. If this function does not find a valid
object, it calls the NoSession subroutine to log the user on to CDO.

In the NoSession subroutine, the variable bstrServer is set to the Exchange Ser­
ver name, which is pulled from the registry in the Global.asa file. (Again, retrieving
the Exchange Server name from the registry allows the portability of the code to any
Web server and any Exchange server.) The script then checks to see whether the ASP
Session variable named mailbox contains a valid mailbox alias name. If this variable

447

Part III Collaboration with Micro$oft c.XGnii:i!u,qe

is empty, the script attempts to grab the mailbox name from the URL that was passed
to the Web server by the logon screen of the application.

The BAuthenticateUser function is called to ensure that the user is logged on
to Windows NT correctly before the code attempts the CDO Session Logon method.
After the CDO object is created, its Logon method is called. The variable bstrProfilelrifo
is set so that CDO can dynamically create a profile for the user. The script calls the
Logon method, and if that method returns no errors, the script tries to retrieve the Inbox
for the user. You should follow similar steps in your applications because the Logon
method can return successfully when called with dynamic profiles, even when the
server or mailbox name is not valid. If you do not try to retrieve information from
the server directly and assume the Session object is valid because the method returned
successfully, you will run into many problems.

If the code cannot retrieve the user's Inbox successfully, the code logs off and
redirects the user to the logon page. If the code can retrieve the Inbox, it stores the
handle to the security context for this user in the hlmp session variable.

Accessing Folders in the Helpdesk

448

You don't have much of a Helpdesk application if your users can't enter information
and your technicians can't retrieve information. This Helpdesk application uses a
public folder to store and retrieve information about ticket status. CDO provides access
to public folders through its InfoStores collection, which contains all the different
stores or databases that CDO can access. For example, with the InfoStores collection,
you can access not only public folders and server-based mailboxes, but also personal
folders stored in .pst files or offline replicated folders stored in .ost files. Of course,
to enable CDO to access some of these infostores, you must run your CDO applica­
tion on the client machine. Figure 12-7 shows the InfoStores collection with some
of its child objects.

In the Helpdesk application, the InfoStores collection is used to find the pub­
lic folder store. The following code from default. asp uses a For Each ... Next statement
to loop through the InfoStores collection and retrieve each store in the collection. Each
store is checked to see whether the store name corresponds to the public folder store.
If a corresponding store name is found, the For ... Each statement is exited.

Set objInfoStoresColl = objOMSession.InfoStores
For Each objInfoStore In objInfoStoresColl

If objInfoStore.Name = "Public Folders" Then
Exit For

End If
Next

Chapter 12 Collaboration Data Objects

Figure 12-7. The InfoStores collection in CDO. This collection is used to access data
stored in Exchange Server.

Now that the application has the correct infostore, the correct set of folders
needs to be accessed in that infostore. The InfoStore object in CDO has a RootFolder
property that returns a Folder object representing the root of all the folders. For
your mailbox and public folder stores, the RootFolder property returns a Folder
object named IPM_Subtree. By using that Folder object, you can traverse all fold­
ers in your mailbox or top-level public folders. However, there's one caveat with
this property: you cannot use the RootFolder property to access public folders
if your application is running as a Windows NT service. Instead, you need to
use the Fields collection on the InfoStores object with the specific property tag
PRjPM_PUBLIC_FOWERSJiNTRYID (&H66310102). Once you retrieve the EntryID
for the root public folder from the Fields collection, you can use the GetFolder method

449

Part III

to actually retrieve the root Public Folder. (An EntryID is like a globally unique iden­
tifier, or GUID, in that it uniquely identifies the folder in the Exchange Server data­
base.) After retrieving the root folder, you can then use the Folders collection of the
root public folder to retrieve the root folder's subfolders. The following code, taken
from default.asp, shows the Get Folder method in action. It retrieves the folders in the
public folder tree, and then recurses the top-level folders as it searches for the
Helpdesk folder.

'This is the EntryID for the root public folder·
bstrPublicRootID objlnfoStore.Fields.ltem(&H66310102).Value

Set myrootfolder objOMSession.GetFolder(bstrPublicRootID.
objlnfoStore.ID)

'Now get the Folders collection below the root
Set myfoldercollect = myrootfolder.Folders
Set recursefolder = myfoldercollect.GetFirst()
'Recurse it until we get the folder we are looking for
While recursefolder.Name <> "Helpdesk"

Set recursefolder = myfoldercollect.GetNext()
Wend
set objFolder = recursefolder
set Session(DHelpdeskFolder") = recursefolder
Session("InfoStoreID") = objlnfoStore.ID

Once the code finds the Helpdesk folder, it stores the CDO Folder object that
corresponds to the Helpdesk folder as well as the unique identifier for the public
folder InfoStore object because, from a performance standpoint, recursing the
InfoStores and Folders collection in every ASP page in the Helpdesk application to
find this information is expensive. Since we now have this information available across
the entire session, the other pages use the Session object for the folder whenever
access to the Helpdesk folder is required.

Implementing Helpdesk Folder Security

450

When a user logs on to the Helpdesk application, the options displayed depend on
the user's folder permissions. For example, if a user accesses the application and she
has only Create Items permission for the Helpdesk folder, the ASP will display only
the Submit A Help Ticket and Logoff options, as shown in Figure 12-8. However, if
a technician who has Read Items and Create Items permissions for the Helpdesk folder
logs on to the application, the ASP will display an additional menu option-View
Current Help Tickets, as shown in Figure 12-9.

{)Uelpdesk Menu!

Please choose an option:

Submit a help ticket

Logoff

Chapter 12 Collaboration Data Objects

Figure 12-8. The Helpdesk Menu page, where the user who has logged on has Create
Items permissions for the Helpdesk folder.

~Uelpdesk Menu!

Please choose an option:

Submit a help ticket

View current help tickets

Logoff

Figure 12-9. The Helpdesk Menu page, where the user logged on is a technician and
has Create Items and Read Items permissions for the Helpdesk folder.

451

Part III Conaboration with Microsoft Exchlall'lla@

452

This functionality is implemented in CDO by using the Fields collection on the
Folder object. The Fields collection, a common collection across many of the objects
in CDO, allows you to access specific properties stored for an object that CDO does
not have an explicit object or property for. With the Fields collection, you can pass
a unique identifier that corresponds to the properties you want to retrieve. In the next
section of Helpdesk code, which is from the default.asp file, we pass in the unique
identifier for the MAPI property ActMsgPR_ACCESS (&HOFF4003), which contains a
bitmask of flags corresponding to the user's permissions level for the current Folder
object. The code then performs a logical AND on the returned value from the Fields
collection by using the known bitmask of the MAPCACCESS_READ permission. If the
result does not equal zero, the user can read items in the folder, and the ASP displays
the View Current Help Tickets link in the helpdesk menu.

<h2>Please choose an option:</h2>
Submit a help ticket<P>

<%
'Check permissions on the folder to see whether the user has
'Read access. If the user does. the user must be a technician.
'so display the ability to view help tickets.
nAccess = objFolder.Fields.Item(ActMsgPR_ACCESS)
bCanPost = nAccess And MAPI_ACCESS_READ
If bCanPost <> 0 then
%>
View current help tickets
<% end if %>
<P>
Logoff

You can pass many types of identifiers to the Fields collection. The Helpdesk
application does not use the CdoPR_CONTAINER_CIASS (&H3613001E) property, but
I point it out to you because it demonstrates the type of information you can access
through the Fields collection on CDO objects. It contains the message class of the
default type of item contained in the folder. For example, if in Outlook you set the
default item type for a Public Folder as contacts, the CdoPR_CONTAINER_CIASS
property will contain IPF.Contact. How do you change the default item type in a folder
programmatically through CDO? By using the Fields collection on a folder and this
property, as shown in the next bit of sample code, the code changes the default item
type of a folder to tasks. The code uses the InfoStores collection to retrieve the mailbox
of the user. It then retrieves the root folder of the mailbox by using the RootFolder
property. From that root folder, it retrieves the contacts folder in the mailbox. The
next line of code uses the Fields collection on the folder to set a property that cor­
responds to the default item type for the folder. Finally, to make the default item-type
change permanent, the Update method of the Folder object is called, committing the
changes to the disk memory.

Chapter 12 Collaboration Data Objects

Set oStore = oSession.InfoStores("Mailbox - Thomas Rizzo (Exchange)")
Set oFolder = oStore.RootFolder.Folders("Contacts")
MsgBox "Before Update: " & oFolder.Fields(&H3613001E)
oFolder.Fields(&H3613001E) = "IPF.Tasks"
oFolder.Update
MsgBox "After Update: " & oFolder.Fields(&H3613001E)

NOTE. For the complete list of the identifiers you can use with the Fields col­
lection in your applications, refer to the cdo.chm on the companion CD. On the
Contents tab, look under the Appendixes section for the MAPI Property Tags
document.

Retrieving User Directory Information
If the user clicks on the Submit A Help Ticket option on the helpdesk menu, the file
default1.asp is called. This ASP file displays a Help Request form, which is shown in
Figure 12-10.

Figure 12-10. The Help Requestform allows users to post information to the Helpdesk
application.

As you can see in Figure 12-10, some information about the user is already
entered in the Help Request form. This information is dynamically pulled from the
Exchange Server directory to help users save time when filling out requests. The
enabling technology for this dynamic lookup involves primarily two CDO objects,
the Recipient object and the AddressEntry object. A diagram illustrating the hierar­
chy of these two objects is shown in Figure 12-11.

453

Part III Conaboration with Microsoft IF'viI"'hXlinmuy"

454

Figure 12-11. The Recipients collection and Recipient object in CDO.

The Recipient object represents a recipient of a message. You might be won­
dering why a Recipient object is used to retrieve directory information from Exchange
Server. There are two primary reasons for this. The first is that CDO does not explic­
itly support querying for directory information without first retrieving the AddressEntry
object for the desired user. The second is that adding the name of the user to a
message as a Recipient, and then using the Resolve method of the Recipient object,
is probably the easiest way to retrieve the AddressEntry object for a particular user.
After resolving the name, you can call the AddressEntry property on the resolved
Recipient object to retrieve the corresponding AddressEhtry object. Just make sure you
destroy the temporary objects you created for the Message and Recipient objects. The
AddressEntries collection and AddressEntry object in CDO are shown in Figure 12-12.

The AddressEntry object contains the directory and address information for a
user in the Exchange Server system. You can use the built-in properties of this object
to access the e-mail address information for a particular user, but to access directory
information (department, office location, and phone number), you must use the Fields
collection of the AddressEntry object with MAPI property tags. The following code
sample, which is taken from defaultl.asp, shows you how the Helpdesk application
implements directory lookup for users:

Chapter 12 Collaboration Data Objects

Figure 12-12. The AddressEntries collection and AddressEntry object in eno.

Set objmessage = objOMSession.Outbox.Messages.Add
'Create the recipient
Set objonerecip = objmessage.Recipients.Add
'Retrieve the e-mail address from the previous HTML form
objonerecip.Name = Session("mailbox")
'Resolve the name against the Exchange Server directory
objonerecip.Resolve
'Get the address entry so that we can pullout template information
Set myaddentry = objonerecip.AddressEntry
Set myfields = myaddentry.Fields
'The numbers in parentheses are the hard-coded IDs for department.
'title. and so on
Set mydept = myfields.ltem(974651422).value
set my title = myfields.ltem(974585886).value
set my work phone = myfields.ltem(973602846).value
set myoffice = myfields.ltem(974716958).value
if mydept "" then

mydept = "None specified"
end if
if my title "" then

my title "None specified"
end if
if my work phone

my work phone
end if
if myoffi ce

myoffice
end if

"" then
"None specified"

then
"None specified"

set objmessage = Nothing
set objonerecip = Nothing

455

Part III

First this code adds a new message to the Outbox of the user by calling the Add
method on the Outbox folder. Then the code adds a new Recipient object to the
message. Since the ASP session contains the display name of the current user, this
value is passed in as the Name property for the recipient. The code then calls the
Resolve method on the Recipient object to make CDO check for ambiguous names
in the directory. Once the user is resolved, the AddressEhtry object for the user is
retrieved using the AddressEntry property of the Recipient object.

From there, the Fields collection of the AddressEntry object is retrieved. The code
then uses some MAPI property identifiers to retrieve specific information from the
directory. If the information is unavailable in the directory, the code specifies that
the value for the variables be "None specified". To make sure that the temporary
Message and Recipient objects are released from memory, the code sets both objects
to Nothing.

Posting Information in the Helpdesk

456

Once the user fills in the help ticket information, such as a problem description, the
user clicks the Post Now! button on the HTML form. The action of this HTML form
sends the user information to another ASP file named posthelp.asp. The posthelp.asp
file uses the CDO library to post this information to the Helpdesk public folder by
creating a new Message object in the folder. The hierarchy for the Message object
and its parent collection, Messages, is shown in Figure 12-13.

Figure 12-13. The Messages collection and Message object in CDO.

The Messages collection is accessed by calling the Messages property on a Folder
object. The Messages collection consists of Message objects, which you can manipulate
to change items in folders or to create new items. To add a new message to a folder,
you use the Add method of the Messages collection--essentially, it adds a new item
to the collection. The type of message created depends on which folder you are calling
the Add method in. For example, if you call the Add method in your Inbox, CDO

Chapter 12 Collaboration Data Objects

will return a new Message object. If you call the Add method in your Calendar folder,
CDO will return a new AppointmentItem object.

After adding a new item to the collection, you can set the properties for the item
and then call the Send or Update method, depending on the type of item you cre­
ated. If you used the Add method in your Outbox, you would call the Send method,
because e-mail messages are created in the Outbox. In the Helpdesk application, the
script calls the Update method because the application does not e-mail new help
tickets into the folder but rather posts them into the folder. The following script from
posthelp.asp posts the information from the HTML form into the public folder:

set objFolder = Session("HelpdeskFolder")
set recursefolder = objFolder
'Add a new message to the public folder
Set oMessage = recursefolder.Messages.Add
'Set the message properties
oMessage.Subject = Request("Subject")
oMessage.Sent = True
oMessage.Unread = True
oMessage.TimeSent = Now
oMessage.TimeReceived = Now
oMessage.Type = "IPM.Task.Help Request"
oMessage.lmportance = Request("Priority")
oMessage.Fields.Add "From User", 8, Request.Form("Contact_Email")
oMessage.Fields.Add "Description", 8, Request("Description")
oMessage.Fields.Add "Problem Type", 8, Request("Type")
oMessage.Fields.Add "Product", 8, Re'quest("Product")
oMessage.Fields.Add "Phone", 8, Request("Phone")
oMessage.Fields.Add "User Location", 8, Request("Location")
oMessage.Fields.Add "Flag", 8, "Opened"
'Set the conversation properties
oMessage.ConversationTopic = oMessage.Subject
oMessage.ConversationIndex = objOMSession.CreateConversationIndex
'Post the message
oMessage.Submitted = FALSE
oMessage.Update
Set oMessage = Nothing

As you can see in the code, some properties on the new Message object, such
as the Sent, Unread, TimeSent, Time Received, and Submitted properties, are explic­
itly set. These properties need to be set because when you post an item into a pub­
lic folder as the Helpdesk does, the underlying messaging system does not set these
properties for you. They must be set before calling the Update method on the Mes­
sage object for posted items.

The Sent property is a Boolean that determines whether the message has been
sent through the system. Since we are posting information directly into the folder,

457

Part III

458

with Microsoft !l!iY~hann~

we need to set this property explicitly to True before calling the Update method. The
Submitted property is also a Boolean that needs to be set to True before we call the
Update method. The Submitted property determines whether the item has been sub­
mitted into the messaging subsystem.

The TimeReceived and TimeSent properties contain dates that tell the user when
the message was received by the folder and when the user sent the messages. You
should set both of these properties to the current date and time before posting the
item into the folder. The easiest way to do this is assign them to the value returned
by the Now function.

The Unread property is a Boolean that represents whether the current user has
read the item. This property is not set for you automatically by CDO when posting
an item to a public folder. For this reason, you must set this property to False before
posting your item into the public folder.

Now that we have set the required properties to successfully post a message
into a public folder, we can use some of the other properties on the Message object
to implement the functionality of our application. Notice in the script that the Type
property is set to IPM. Task.Help Request. The Type property corresponds to the
message class of the item. By setting this property to a custom message class, Out­
look and OWA users can use a custom form that handles that message class to open
up the item in the folder.

The Importance property in the script is set to the importance established by
the user in the Priority drop-down list in the HTML form. This property has three
possible values: CdoLow (0), CdoNormalO), and CdoHigh (2). Setting Importance
in CDO has the same effect as adding the exclamation point icon or the down ar­
row icon to an e-mail message in Outlook.

The Subject property is set to whatever the user types in the Problem text box
of the Helpdesk form. It is rendered as a hyperlink later in the application so that
from their Web browser, technicians can click on a specific problem and drill down
to the specifics about the help ticket and the user who submitted it.

The Fields collection on the Message object is used in the script to add custom
fields to the item programmatically-a powerful technique, because any items you
create in CDO can use it. These custom properties, or fields, are then accessible from
Outlook. Since the Exchange Server database is a semistructured database, you can
even change or add new properties to the items in a folder without worrying about
breaking a schema. This means that in your application, every item and its proper­
ties can hold different data. Your application can dynamically add new properties to
items depending on the input of the user.

The way you add new custom properties to an item is by using the Add method
of the Fields collection. This is the syntax for the Add method:

Set objField = objFieldsColl.Add (Name, Class [, Value] [, PropsetID])

Chapter 12 Collaboration Data Objects

SEMISTRUCTURED DATABASES

Exchange Server is a semistructured database, as compared to Microsoft SQL
Server, which is completely structured. With SQL Server, you need to defme your
schema before you can start adding data, and the schema is usually fixed. With
Exchange Server, every message can be different. For example, one message
might have 0 attachments and another might have 15 attachments. Exchange
Server is designed to efficiently handle this varying data.

Passing the last two parameters to this method and setting the value returned
by this method are optional. You can see in the preceding script that the code does
not set an object variable to the return value of this function.

The first parameter the Add method ~kes is the name of the custom property.
This name is limited to 120 characters, and if you attempt to exceed this limit, CDO
will return an error. The second parameter is the class, or data type, that you want
to store in the property. The class parameter should pass one of the following val-.
ues: vbArray (8192), vbBlob (65), vbBoolean (11), vbCurrency (6),vbDataObject
(13), vbDate 0), vbDouble (5), vbEmpty (0), vblnteger (2), vbLong (3), vbNull (1),
vbSingle (4), vbString (8), or vbVariant (12). The most common data type you will
use in your applications is vbString (8). As you can see in the Helpdesk script, all
custom properties on the posted item use the string data type.

The third parameter, which is optional, is the value for the property. Usually
you want to pass this parameter to the method so that you do not have to write extra
code to initialize the custom property with the value.

The fourth and final parameter is the PropsetlD. The PropsetID parameter is a
GUID that uniquely identifies the MAPI property set to which the custom field should
belong. In your applications, you will almost always use the default property set,
which is assumed if you omit the PropsetID parameter. Only if you are developing a
custom MAPI application that uses its own property sets will you ever need to set
PropsetID.

In addition to adding new custom properties, the script sets the CohversationTopic
and Conversationlndex properties for the help ticket before posting it into the folder.
These properties are used by both CDO and Outlook to allow you to create threaded
views of information in your folders. Since your .users might want to create these types
of views in your applications, you should set these properties in your code.

The Conversation Topic property is a string that describes the subject of the
conversation. All the items in the same conversation have the same property value,
and since Conversation Topic corresponds to the overall subject of the conversation,
the most logical value for it is the Subject property of your message.

459

Pari III Conaboratlon with Microsoft Exchange

The Conversationlndex property is a hexadecimal string that represents the
relationship between items in the same conversation. This property is used by CDO
and Outlook to determine which items are replies to other items and how to thread
these items in a view. Since you do not want multiple messages with the same in­
dex, CDO provides a method for you to generate unique conversation index values­
the CreateConversationlndex method on the CDO Session object. As you can see in
the Helpdesk code, all you need to do is call CreateConversationlndex and assign
its value to the Conversationlndex property for your item.

After setting all these properties, the script calls the Update method on the
Message object, and a new help ticket is created in the folder. If you do not call the
Update method, CDO will not commit your changes to the public folder.

Rendering the List of Helpdesk Tickets

460

When creating a Web application, one of the hardest aspects to design is the user
interface. You have to worry about using HTML tables to line up content, and you
have to make sure that these tables have the correct format and spacing to appear
properly in a browser. The beauty of CDO is that you do not have to worry about
the user interface. The CDO library has a companion library, named the CDO Ren­
dering library, that provides objects that automatically convert Exchange Server in­
formation to an HTML format in a preset layout. Figure 12-14 shows the relationships
among the objects and collections of the CDO Rendering library.

The CDO Rendering library can not only render simple types of information such
as your Inbox, but it can also leverage any custom table views you create in Outlook.
For example, you could use the CDO Rendering library to render your Inbox as HTML,
grouped by who sent you the message. The CDO Rendering library provides this
functionality with a minimal amount of coding, as you will see. Plus, the formats that
the library uses to render information to HTML are customizable, so if you want to
change the color or the font of items that meet particular criteria or contain particular
properties, you can easily do this by using the Rendering objects. Figure 12-15 shows.
an HTML view of help tickets in a folder, created using the CDO Rendering library.

Similar to the Session object in the CDO library, the RenderingApplication object
of the CDO Rendering library is the parent object from which all other objects in the
library are derived. To create a RenderingApplication object, you need to use the
CreateObject method and pass the ProgID of the CDO Rendering library, which is
AMHTML.Application. In the Helpdesk application, the RenderingApplication object
is created in the Global.asa file and given application scope in ASP so that all sessions
in the Helpdesk application can create individual objects from the global Rendering­
Application object. This is a good practice to use in your CDO ASP applications.

Chapter 12 Collaboration Data Objects

Figure 12-14. CDO Rendering library.

lI,'IPWflllllfilllPlpt"kf't ... ~1hln"'lltllllplrlPtr~f'lnIPI ! [-r~

~ ;~:,,-~-;~~

......................
Pagel 011

Opened Mike Nash Help! 6116100 7 :33 PM
Opened Don Hall Creating tables in 9122100 3 :66 PM

Word
Opened Frank Lee Formulas in Excel. .9122100 3:66 PM

Opened Jane Clayton Printing graphics in 9122100 3:56 PM
IE

Opened ScottCulp Outlook 2000 9}22100 3:68 PM
Location

Opened Thomas Rizzo Formatting an 9122100 369 PM
(Exchange) NTFS drive

Figure 12-15. An HTML view of the current help tickets in the folder. This was created
using the CDO Rendering library.

Part III Collaboration with Microsoft Exchange

462

The RenderingApplication object contains a number of properties that you can
set, such as the code page or virtual root, that can be used throughout all the ren­
dering objects created from RenderingApplication. When you first create your
RenderingApplication object, most of the properties on the object will be filled in with
default values. Most of these default values do not need to be changed unless you
are developing completely customized applications that cannot use the defaults.

The most important property and the two most important methods of the
RenderingApplication object to learn about are the ConfigParameter property, the
CreateRenderer method, and the LoadConfiguration method. This property and these
methods will be used in almost all of your ASP CDOapplications. The LoadConfiguration
method and the ConjigParameter property work together to tell the CDO Render­
ing library where to pull configuration information from-such as the registry or the
Exchange Server directory. This location information is used to retrieve specific con­
figuration data from the selected data source. In the Global.asa file for the Helpdesk
application, the name of the Exchange server that CDO communicates with is retrieved
by using the LoadConjiguration method and the ConfigParameter property. The
ConfigParameter property can retrieve other types of configuration parameters, such
as whether anonymous access is enabled on the Exchange server, the organization
and site names for the Exchange Server directory, and whether the http protocol is
even enabled on the Exchange server.

The CreateRenderer method creates a new rendering object, which is attached
to the clirrent RenderingApplication object. This method takes an integer argument
that specifies the type of rendering object to create. The values for this integer parameter
can be either CdoC/assContainerRenderer (3) or CdoClassObjectRenderer (2). In your
applications, use the object renderer to render only specific properties on items, such
as the subject or the text of the item. You should use the container renderer to ren­
der rows of information, such as all the messages in a folder.

In the render. asp file for the Helpdesk application, the following script first gets
the global RenderingApplication object and then calls the CreateRenderer method to
create a container renderer. The application uses a container renderer to display all
the items in the Helpdesk folder rather than specific properties on a specific item.

'Create Rendering Application
set objRenderApp = Application("RenderApplication")
'Create Container Renderer id=3
Set objrenderer = objRenderApp.CreateRenderer(3)

The application then sets the DataSource property for the container renderer
to the Messages collection in the Helpdesk folder. With any type of rendering object,
you need to set the DataSource property because it tells the rendering object what
data to actually convert to HTML. The container renderer can accept an Address­
Entries, a Folders, a Messages, or a Recipients collection as its data source.

Chapter 12 Collaboration Data Objects

Set oMsgCol = objFolder.Messages
'Set the data source for the Rendering object to the
'helpdesk public folder
objrenderer.DataSource = oMsgCol

The next step in the code figures out whether the application passed along a
custom Outlook view name with the query string. If it did, the script uses that cus­
tom view name as the default view for the Rendering object. This is an important point.
You can use custom Outlook views as views in your Rendering objects. This means
that you do not have to create views on the fly in your CDO applications, but can
instead create views in Outlook and then leverage those views in your application.
The Rendering object will support views that contain sorting, grouping, and filter­
ing-support that will save you many hours of coding custom views.

If the application did not pass a view name with the query string, the default
view named Helpdesk is used to render the tickets in the folder, as shown in the
following code:

'Get the requested view from the query string
requestedview = Request.QueryString("view")
'Get the Folder Views collection
set objviews = objrenderer.views
'If there is no selected view. set it to Helpdesk view
'created in Outlook
if requestedview "" then

requestedview = "Helpdesk"
end if
'Search the Views collection until you find the view
i=l
While objviews.item(i).Name <> requestedview

i=i+1
Wend
set objview = objviews.Item(i)

The next step in setting up the container renderer is to enable a hyperlink on
a field in the view so that technicians can click on the hyperlink to retrieve the
information contained in the ticket. If you do not include this step in your CDO
applications, the rendering objects will return HTML without any clickable links. To
create hyperlinks, we must first select the column in the view for which we want to
create the hyperlink. In the Helpdesk application, the third column in the view is
always used to create the hyperlink. The way you access the third column is by using
the Columns collection and the Column object of the TableView object that is repre­
sented by the custom Outlook view. The Column object has a property called
RenderUsing that allows you to specify the HTML code to use when rendering that
specific column. You specify not only the HTML but also substitution tokens within
percent signs in the RenderUsing property, which CDO will replace with actual values

463

ParI III Collaboration with Microsoft !l::AGnii*nge

464

when rendering the information to the Web browser. The two most common substi­
tution tokens you will use are %obj% and %value%.

Use the %obj% token when you want to place the unique identifier for the item
as a string in your HTML. This token is used in the Helpdesk application so that the
hyperlink on the third column passes the unique identifier for the ticket to the next
ASP file, framemsg.asp. Use the %value% token when you want to place the actual
value of the property into the HTML returned by the rendering object. The Helpdesk
application uses this token to display the actual third-column property value in the
view. For the Helpdesk view, this property value is the subject of the message. The
following code shows you how to use both these substitution tokens as well as the
RenderUsing property and Column object:

set objcolumns = objview.Columns
set objcolumn = objcolumns.1tem(3)
'Change the column renderer so that it renders the subject field
'as an ahref with the entry 1D of the message
objcolumn.RenderUsing = _

"(a href='framemsg.asp?entryid=%obj%')%value%(/a)"

The final step in enabling the container renderer is to set the CurrentView prop­
erty as the custom view just modified by the application. To do this, the application
sets the CurrentView property equal to the TableView object we just modified, as
shown in the following code:

'Set the current view equal to the view just selected
objrenderer.CurrentView = objview

To actually render the information to HTML and return it to the browser, you
must call the Render method on your ContainerRenderer object. The Render method
takes four parameters. The first parameter is a Long data type that determines the style
that the data should be rendered in. This parameter has two possible values­
CdoFolderContents (1) and CdoFolderHierarchy (2):

• CdoFolderContents is used to render the actual contents of the data source
and not the child objects.

• CdoFolderHierarchy is used to render child folders for a Folders collection.
If you wanted to build an HTML page that displays a folder hierarchy for
users to scroll through, you would use the CdoFolderHierarchy style.

The second parameter, which is optional, also is a Long data type and speci­
fies the page number at which rendering should begin. In the COO Rendering library,
you can have COO automatically break up the content of a data source into data pages
so that when the HTML is rendered by the library, the length of the resulting HTML
table is not massive. By default, COO will break the content at every 25 rows in the
HTML table. COO does this to enhance the performance of your application as well

Chapter 12 Collaboration Data Objects

as make it easier for your users to read the information. You can change the default
number of rows rendered by setting the RowsPerPage property on the Container­
Renderer object.

The third parameter is for internal use only by the CDO Rendering library. You
should always pass 0 as the value to it. The final parameter is the Active Server
Response object to which you want to send the HTML output from the Render method.
This parameter should always be Response if you want to render the information to
the browser.

When you have large amounts of information to render, you should be aware
that CDO does not automatically generate a way to navigate rows on multiple pages
nor will it tell you that there are multiple pages of information you need to render.
Therefore, in your application, you must provide navigation elements if the number
of rows in the table is larger than the value of the RowsPerPage property. You also
must remember which page the user is currently rendering as well as the total num­
ber of pages. If the number of help tickets exceeds the RowsPerPage property, the
render. asp file for the Helpdesk application will display graphical navigation arrows
as well as text indicating the current page of information. When a user clicks on the
Next Page or the Previous Page arrows, the current page variable is either incremented
or decremented, and this value is sent with the query string. The ASP script retrieves
the value and renders the correct content on the page. If there are no previous or
next pages, the graphical navigation elements are not displayed. The following code
from render. asp handles viewing help tickets on multiple pages:

'Calculate total number of pages
intMessageCount = oMsgCol.Count
numrows = objrenderer.RowsPerPage
intPages = (intMessageCount - 1) \ numrows
intPages = intPages + 1
intCurPage = CInt(Request.QueryString("curpage"))
if intCurPage > intPages or intCurPage < 1 then

, I n it i ali ze it
intCurPage = 1

elseif intMessageCount < 1 then
intCurPage = 1

end if

<% if intCurPage <> 1 then %>
<a href=
"render.asp?view=<%=requestedview%>&curpage=<%~intCurPage-1%>">

<% end if %>
 Page <%=intCurPage%> of <%=intPages%>
<% if intCurPage <> intPages then %>
<a href="render.asp?view=<% response.write requestedview %>

(continued)

465

Pari III Uabndl'a'IUn,ft with Microsoft

&curpage=<%=intCurPage+l%>")

<% end if %>
<table border="0" width="65%")

<tr>
<td><% objRenderer.Render l,intCurPage,0,Response %></td>

</tr>
</table>

Notice how you can easily calculate the total number of pages you need to
render to completely show all the information in your application, Take the number
of messages minus 1, integer divide that number by the number of rows per page
set for the ContainerRenderer object, and then add 1 to that value. Therefore, if the
number of messages is less than or equal to the number of rows per page, the inte­
ger division will return O. This value will be incremented by 1, indicating there is one
page of information.

Rendering the Actual Help Ticket

466

When the technician clicks on one of the hyperlinks in the rendered list of help tickets,
the application calls another ASP file, message.asp, to render the actual ticket for the
technician, as shown in Figure 12-16. The technician can then view a number of
different items for the ticket, resolve the ticket, or schedule a meeting with the cus­
tomer who submitted the ticket.

Please enter 1h8 time for tie appointment:

Figure 12-16. The DHTML version 0/ a help ticket rendered when a technician clicks
on a hyperlink/rom a list o/tickets.

Chapter 12 Collaboration Data Objects

The Helpdesk application uses DHTML to simplify navigating information con­
tained in a ticket. It also uses ADO and queries an Access database to pull out the
relevant information about the user's machine. This portion of the application shows
you how you can combine CDO and ADO to make rich Web applications that access
information from two types of data sources: Exchange Server and an ODBC database.

In the code for the help ticket page, the EntryID of the help ticket link that the
user clicked on is retrieved from the Request.QueryString collection. The script then
calls the GetMessage method of the CDO Session object to retrieve the message from
the Exchange Server database. The Get Message method is an easy and fast way to
retrieve information from Exchange Server if you know the unique EntryID for the
desired message. If you do not know the EntryID, you will need to search the folder
where the message is stored or uSe a MessageFilter object to filter out only your
message. The MessageFilter object is discussed in the Calendar of Events application
later in this chapter.

The script then sets the Unread property of the message to False and calls the
Update method of the Message object to save that property back to the database. Since
CDO does not automatically update the Unread property for you, you must set it in
code. After the code sets Unread, when the technician goes back to the table of tickets
in the folder, the code displays all messages read by the technician as nonbold tick­
ets. This functionality of not bolding read messages is automatically provided to you
by the Rendering objects and ultimately makes your application easier to use. Also,
the 'Exchange Server database maintains a per-user Unread property so that each
technician will receive different read and unread messages in the folder according
to what each has actUally read. The VBScript code for this functionality is shown here:

'Get the EntryID for the message frOm the query string
set objMessageID = Request.QueryString("entryid")
'Get the message bY'its ID
set oMessage = objOMSession.GetMessage(objMessageID. _

Session("IrtfoStoreID"»
'Set the message as read
oMessage.Unread = FALSE
'Update the message in the folder
oMessage.Update

The application then pulls out the status of the ticket, either Opened or Done,
and also the'ilame of the userwhb submitted the ticket. An ADO Connection object
is created, and a connection to the Access database is established by the application.
In ADO, you cim specify values for the Open method on the Connection object to
determine which OLE DB data source you want to open. In this case, the DSN name
Helpdesk, which we created earlier on the machine, is passed as the parameter for
the Open method. After establishing a connection, three queries are executed against

467

Part III Collaboration with Microsoft Exchange

three database tables to figure out the machine configuration for the current user. This
is accomplished by using the name of the user retrieved from the help ticket. These
queries use the Execute method of the ADO Connection object. This information is
then used later in the form. The following code shows the ADO connection and
queries. (For more information about ADO and its object library, you should visit the
Microsoft Web site at http://www.microsojt.com/data.)

'Start the ADO connection
on error resume next
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open "Helpdesk"
Set RS = Conn.Execute(_

"Select SystemChipType. SystemChipSpeed. SystemChipCount. " & _
"SystemOS. SystemRAM FROM tblMachine " & _
"WHERE Userid like '" & objuser & "';")

Set RSIP = Conn.Execute(_
"Select CompName. IPAddress FROM tblNetwork " & _
"WHERE Userid like '" & objuser & "';")

Set RSSoft = Conn.Execute(_
"Select SoftwareName. SoftwareVersion FROM tblSoftware " & _
"WHERE Userid like '" & objuser &"';")

The script retrieves the user information from the Exchange Server directory and
stores it in variables. (You saw this code earlier when submitting a help ticket.) Then
the body of the actual ticket is displayed using DlITML. The DlITML code includes some
JavaScript to allow the user to dynamically expand or collapse the different sections
of the help ticket, such as system information or the description of the problem.

Creating the Calendar Information

468

The one interesting section in the body of the HTML is the drop-down section of
calendaring information, shown in Figure 12-17. This drop-down section allows tech­
nicians to view the free/busy information for the user and for themselves. By pro­
viding the free/busy information at the bottom of the help ticket page, a technician
can quickly find time slots that are open for both the technician and the user.

NOTE To obtain up-to-the-minute calendar information for a user on the Help
Request page, it might be necessary to adjust the calendar settings in Outlook.
By default, Outlook updates the calendar free/busy information on the server
every 15 minutes. You can decrease this time in Outlook by choosing Options from
the Tools menu, Clicking Calendar Options, and then clicking Free/Busy Options.

Chapter 12 Collaboration Data Objects

HelpUck .. ~

De •• ~pUon ~

Figure 12-17. The help ticket showing the calendar information.

This calendar information is created by using the calendaring functionality of . ,
the CDO library. lhe code for th~ drop-down s~ction is shown here:

<%
bcGrayM - "'c0c0c0" 'gray
bcGrayD - "'9090Q0"
buildmonth - Request.QueryString("m")
buildday - Request.QueryString("d")
buildyear - Request.QueryString("y")
builddate - buildmonth & "I" & buildday & "I" & buildyear
dtCurrentDay - DateValue(builddate)
arrBGColors- _

Array(bcGrayM, "'99ccff", "'0000ff", "'940080", "'ff0000")
Dim MeetingPlanner(Z)
%>
<B)<SPAN style-"cursor~hand"
CLASS-ex TITLE-"Calendar Information"
ID-"Cal Info" oncl i ck-"checkExpand(I'! myArrow-4)Cal endar Informati on

<IM~ WIDTH-15 HEIGHT-13 SRC-"addarrow.gif" ID-"imgArrow4 P)<P)

<TABLE ID - "CalInfoChild" style-"display:none" BORDER - 0>
<TR)

(continued)

469

Part III Collaboration with Microsoft Exchange

470

<td nowrap=nowrap width="355" align="right">
<A href="message.asp?entryid=<%response.write objMessageID%>
&m=<%=Month(dtCurrentDay-l)%>&d=<%=Day(dtCurrentDay-l)%>
&y=<%=Year(dtCurrentDay-l)%>" target="main">
</td>
<td nowrap=nowrap width="10"></TD>
<td nowrap=nowrap border=0><i>
<%=MonthName(Mqnth(dtCurrentDay» & " " & Day(dtCurrentDay) & _
", " & Year(dtCurrentDay)%></i></TD>
<td nowrap=nowrap border=0 width="10"></td>
<td nowrap=nowrap width="2e" align="right">
<A href="message.asp?eptryid=<%response.write objMessageID%>
&m=<%=Month(dtCurrentDay+i)%>&d=<%=Day(dtCurrentDay+l)%>
&y=<%=Year(dtCurrentDay+l)%>" target="main">
</td>
</Table>

<table 10 = "CalInfoChild2" style="display:none" cols=50
bordercolor=#FFFFFF border=1 cellspacing=0 cellpadding=0>
<tr>
<td nowrap=nowrap width="102">
<td colspan=2> :</td>
<% For idx = 0 to 23 %>
<td bordercolor=#000000 colspan=2 align=left width="24">
 :<%= CStr««idx + 11) Mod 12) + 1»%>
</td>
<% Next %>
</tr>
</TABLE>
<%
'Loop from 3 to 4
for x = 3 to 4

%>

<%

if x = 3 then
set obj Reci p objOMSession.CurrentUser

else
set objRecip objonerecip

end if
'Initialize the string
aFB = ""
~FB = opjRecip.GetFreeBusy(dtCurrentDay, dtCurrentDay+1, _

40, true)
szFreeBusy = aFB

<table ID = "CalInfoChild<%=x%>" style="display:none" Border=0>
<tr bordercolor=#000000>
<td nowrap=nowrap bgcolor="#ffffff" width="100">
<%= objRecip.Name %>
</td>

Chapter 12 Collaboration Data Objects

if Len(szFreeBusy) = 0 then
%>

<TO>Free/Busy Information is not available
</TO>

<%
else

For idy = 1 to 48

%>

<%

sCell= Mid(szFreeBusy. idy. 1)

<td bgcolor=<%= arrBGColors(CInt(sCell)) %> width="9">
 </td>

Next
end if

Next
%>
</table>
<TABLE IO="CalInfoChild5" style="display:none" border=0>
<TR>
<td nowrap=nowrap width="100">Legend:</TO>
<TO bgcolor=<%= arrBGColors(l) %» </TO>
<TO> Tentative <ITO>
<TO bgcolor=<%= arrBGColors(2) %» </TO>
<TO> Busy <ITO>
<TO bgcolor=<%= arrBGColors(3) %» </TO>
<TO> Out of Office <ITO>
</TABLE>

First the code tries to retrieve, from the query string, the day, the month, and
the year values passed by the application. When the user first clicks on a hyperlink
from the list of help tickets, these date values are filled with the current day, month,
and year from the Web server machine. The code then builds a date from the val­
ues, such as 10/12/2000. This is done so that the string containing the date value can
be used as a parameter to the Date Value function in VBScript. This function will return
a Variant of the subtype Date so that we can use it in the rest of the code.

The application then builds an array of information. This array, named
arrBGColors, comprises background colors used to render the free/busy information
to the Web browser. These colors correspond to the Outlook colors for rendering
calendar information, such as blue for busy slots, light blue for tentative slots, and
purple for out-of-office slots in the calendar. You'll understand why we place these
colors into an array when we look at the GetFreeBusy method in CDO, and see how
the values are returned from this method and parsed by the application.

The next step in the code is to render the navigation elements to move to the
previous or next day in the calendar and also to print out the current day the techni­
cian is viewing. The navigation elements to move to the next and previous days are

471

Part III Conaboration with Microsoft ""' __ h"",

472

implemented using hyperlinks, which pass the next or previous date, broken up into
day, month, and year, across the query string to message.asp. To retrieve the day,
month, and year from the dtCurrentDay variable, which has the form 12/31/2000,
the VBScript functions Day, Month, and Year are used.

The code then uses a For ... Next loop from 0 through 23 to draw a table that
creates the time values across the top of the free/busy information. Starting at 12 AM,
this code draws table elements until 11:30 PM the same day. Adding 11 to the cur­
rent index of the loop, using the Mod operator to return the remainder when divided
by 12, and then adding 1 to that value produces the correct identifiers for the time
slots. The code uses the CStr function to convert the number returned by the formula
to a string value.

The next portion of the code uses the calendaring features of CDO. Figure 12-18
shows some of the calendar-related objects in the CDO library. The CDO library
provides extensive support for building calendaring applications: the Helpdesk appli­
cation shows how to use the GetFreeBusy method and the meeting request function­
ality of CDO, and the Calendar of Events application, which we'll examine later in
this chapter, shows appOintment filtering and rendering of calendars using the Ren­
dering library.

Figure 12-18. The calendar-related objects a/the CDO library.

Chapter 12 Collaboration Data Objects

A For ... Next loop is used to loop through the code twice. The loop starts at the
number 3 and continues through the number 4. The loop does not start at the num­
ber 1 because the index of the loop is used to create unique <DIV> elements in the
HTML code so that the JavaScript checkExpand function can find the tables using
them. Since this code is fairly generic, you can use it in other applications that ren­
der tens or hundreds of blocks of free/busy information for users rather than blocks
for only two users. All you need to do is change the ending point of the loop and
pass in the targeted users' free/busy information as an array of names.

The code uses the GetFreeBusy method of the CDO Recipient object to return
the free/busy calendaring information for the current user, which is retrieved using
the Current User property on the CDO Session object, and the name of the person
who submitted the help ticket, which is stored in the Recipient object named
objonerecip. The GetFreeBusy method in CDO is exactly the same as the GetFreeBusy
method in the Outlook object library. You need to pass these four parameters to
this method:

• The start time of the first slot you want to retrieve.

• The end time of the last slot you want to retrieve.

• The interval, in minutes, of each of the slots.

• A Boolean specifying whether you want to have CDO retum full format­
ting for the slots. Full formatting will inform you of the exact nature of busy
slots: CdoFree (0), CdoTentative (1), CdoBusy (2), or CdoOutOjOjJice (3).

If you do not enable full formatting, CDO will return 0 for free and 1 for
busy.

For GetFreeBusy, CDO will return the most committed value in the time slots.
This means that if a user has overlapping appointments in the slot and one is tenta­
tive and the other is out-of-office, CDO will return the out-of-office value. CDO will
not return "free" for time slots unless the entire time slot is free. Be careful when
working with free/busy information far beyond the current date. By default, free/busy
information is published only two months past the current date. If you query beyond
the published information for free/busy, CDO will return free slots even though the
user might have appointments during those slots. You can ask your Outlook users
to change the number of months to a maximum of 12 months past the current date
for free/busy information if you need longer term information. They can change this
number of months in Outlook by selecting Options from the Tools menu, clicking
Calendar Options, and clicking Free/Busy Options.

The return value for this method returns a string of numbers that correspond
to the free/busy status of the user for all the time slots you specified. Your code must
then parse the string and make a graphical representation of this information in your
application.

473

Part III conalbol'atiion with

The Helpdesk application parses this string by first looking at the length to make
sure it's not zero, which would mean there is no free/busy information for the user.
It then uses a For ... Next loop and the VBScript Mid function to retrieve each charac­
ter from the string and display the free/busy status for the user in an HTML table.
Notice in the code that the value from the retrieved free/busy status interval is used
as an index for the arrBGColors array of colors we created earlier: CdoFree (0) will
display light gray, CdoTentative (1) will display light blue, CdoBusy (2) will display
blue, and CdoOutOfOffice (3) will display purple. The For ... Next loop ranges from
1 through 48 because we specified 30 minutes as the interval for the time slots in the
call to the GetFreeBusy method. If you calculate the number of 30-minute intervals
from 12 AM to 11:30 PM, the result turns out to be 48.

Creating a Meeting with the User

474

Once a technician finds time slots in the Calendar Information section of a help ticket
that are open for both the technician and the user, the technician can schedule a
meeting with the user to troubleshoot on site. The technician can schedule a meet­
ing by first typing the date and the time for the appointment in the text boxes pro­
vided at the top of the help ticket, as shown in Figure 12-19.

appointment bO:3q,6,~L

Figure 12-19. The help ticket with the date and time for an appointment filled in.
Technicians can automatically schedule meetings with users to troubleshoot their
machines on site.

When a technician types in a date and a time and then clicks Create Appoint­
ment, createcal.asp is called by the application to create the actual meeting request,
as shown in this code:

<%
'Convert the passed-in date to a vbDate
set querydate = Request.Form("Date")
apptdate = CDate(querydate)

.set query time = Request.Form("Time")
appttime = TimeValue(querytime)
compdatime apptdate & " " & appttime
compdatime = CDate(compdatime)

Chapter 12 Collaboration Data Objects

'Add a new message to the user's calendar
Set calfolder = objOMSession.GetDefaultFolder(0}
set Cal Request = calfolder.messages.add

'Set the message properties
CalRequest.Subject = oMessage.Subject
CalRequest.StartTime = compdatime
CalRequest.EndTime = DateAdd("n", 90, Cal Request.StartTime}
Cal Request. Location = myoffice
CalRequest.ResponseRequested = TRUE
set meetingrecip = CalRequest.Recipients.Add
meetingrecip.Name = objUser
meetingrecip.Resolve
CalRequest.ReminderSet = True
Cal Request.ReminderMinutesBeforeStart 30
CalRequest.MeetingStatus = 1
Cal Request.Send
if err.number = 0 then

response.write "(SCRIPT LANGUAGE = 'JavaScript')"
response.write

"window.alert('Meeting successfully created!'};"
response.write "(/SCRIPT)"

else
response.write "(SCRIPT LANGUAGE = 'JavaScript')"
response.write "window.alert('Error: " & err.number & " " &

err.description &"'};"
response.write "(/SCRIPT)"

end if
%)

First the code converts the passed-in date to a Date data type and the passed­
in time to a Date. lhen it combines the two and converts the results to a Date so that
the date can be passed to the CDO property StartTime to indicate the start time of
the appointment. The code uses the GetDeJaultFolder method of the CDO Session
object to retrieve the calendar folder of the technician. lhe GetDeJaultFolder method
in CDO is similar to the GetDeJaultFolder method in the Outlook object library, but
be careful when using them because the values for the constants that represent the
folders are different in the two libraries.

By using the Add method on the Messages collection in the calendar folder, CDO
automatically adds a new AppointmentItem object to the collection. The code then
sets the properties for this new AppointmentItem object to turn it into a MeetingItem
object, which will be sent to the user.

To create a meeting request in CDO, you need to set some specific properties
on the AppointmentItem object to turn it into a MeetingItem object. First you need
to add some recipients to the inherited Message object by creating a Recipient object

475

Part III Conaboration with Microsoft Exchange

476

in the Recipients collection. In the Helpdesk, the name of the person who submitted
the help ticket is added and resolved against the address book as a recipient for the
MeetingItem object.

Then you need to set the MeetingStatus property to CdoMeeting (1) for the
AppointmentItem object you created. By setting this property, the current user, who
is the technician, is set as the meeting organizer in the Organizer property. The
MeetingStatus property can take other values as well:

• CdoNonMeeting (0) is the default and tells CDO that the appointment
being organized is a regular appointment and does not represent a meet­
ing.

• CdoMeetingCanceled (5) indicates that the meeting organizer has canceled
the meeting.

Although the capability to cancel a meeting is not used in the Helpdesk appli­
cation, here is some information about it. When canceling a meeting, call the Send
method again on the object to send the cancellation to all attendees. Also, make sure
you set the object that holds the meeting to Nothing. If you are the organizer of the
canceled meeting and Outlook is the main calendar store for your users, you also need
to call the Delete method on the Message object that is the parent of the MeetingItem
object you just canceled. If you do not do this, you might get unexpected results when
working with the folder and its contents in the future.

You should also set the ResponseRequested property. This property takes a
Boolean that tells CDO whether the meeting organizer wants responses to the meeting
request. You should set this property to False only if you want to send out an FYI
meeting request, which adds the item in a user's calendar, but does not need to track
whether the user has accepted or rejected the item. For example, you would set the
property to False if you sent out meeting requests for all the holidays in a year but
did not actually care which holidays your users decided to take off.

The preceding script sets some general properties for the appointment item such
as the Subject, which is the problem contained in the ticket. It also sets the StartTime
and EndTime properties of the appointment so that the EndTime is 90 minutes after
the StartTime. The Location property is set to the office location for the user, which
is pulled from the Exchange Server directory. The ReminderSet and ReminderMinutes­
BeforeStart properties are also set to True and 30 minutes before the appointment
starts to make sure both parties are aware that they need to meet.

The final step when you create any meeting request is to call the Send method
on the MeetingItem object, which sends the request to the recipients you invited to
the meeting. If any of the properties you set are incorrect or empty, CDO will return

Chapter 12 Collaboration Data Objects

an error after calling Send. For this reason, the code checks the Err object in VBScript.
Depending on whether or not an error occurred, the JavaScript client code will dis­
playa success message or an error message. Figure 12-20 shows the success mes­
sage. If a property is empty, such as the Office property for an Exchange user, the
error message "Error 448: Named argument not found" is displayed.

Figure 12-20. A JavaScript alert box indicating that the technician successfully
created a meeting with the user in the help ticket.

After the meeting request is sent, the user can use any client to accept or decline
the meeting request. You can even send meeting requests to users over the Internet,
and as long as they are using Oudook or OWA, they can view and accept or decline
meeting requests. You will not, however, be able to view the freelbusy information
of users on different systems. Figure 12-21 shows the scheduled meeting in the user's
Oudook calendar.

Figure 12-21. A meeting scheduled by a technician using the Helpdesk application.

477

Part III Collaboration with Microsoft lI!"ye;,hAnftil%

Resolving the Help Ticket

478

The technician can mark a help ticket as resolved. Resolving a help ticket consists
of setting the status of the ticket as Done and sending an e-mail message to the user
who submitted the ticket explaining that the issue has been resolved. The code that
resolves the help ticket is resolved. asp. This code shows you how to update fields
on a message and also how to send e-mail messages using the CDO library:

<%
if InStr(Request.Form("Action"), "Resol") then

set objFolder = Session("HelpdeskFolder")
set recursefolder = objFolder

set objMessageID = Request.QueryString("entryid")
set oMessage = objOMSession.GetMessage(objMessageID, _

Session("InfoStoreID"))
'Retrieve the message flag and set it
set msgstatus = oMessage.Fields("Flag")
msgstatusid = msgstatus.ID
oMessage.Fields(msgstatusid) = "Done"
oMessage.Update

'Send a resolved message to the user stating that the
'problem was resolved
Set objNewMsg = objOMSession.outbox.messages.add
objNewMsg.Text = "Your problem: " & oMessage.Subject & _

" was resolved on " & Now & chr(10) & chr(10) & _
"Please see the helpdesk FAQ at " & _
"http://exserver/faq/ for commonly asked questions."

objNewMsg.Subject = "Resolved: " & oMessage.Subject
Set objonerecip = objNewMsg.recipients.add
objonerecip.Name = oMessage.Fields("From User")
objonerecip.Resolve
'Send the message without showing a dialog box
objNewMsg.Send showDialog=False

end if
%>

The script retrieves the help ticket from the folder. Then it uses the Add method
on the Messages collection to add a new message to the Outbox of the technician.
The script sets the message text by using the Text property of the Message object.
The Text property can contain only plain text. It does not support formatted text.

The code then sets the Subject of the message and adds recipients to the Recipients
collection. The recipient for this message is the user who submitted the ticket. The
code uses the Resolve method of the Message object to make sure that there are no

Chapter 12 Collaboration Data Objects

ambiguous recipients on the message. Finally, it calls the Send method to send the
message to the user. Figure 12-22 shows a sample of the e-mail received by the user.

lea~e ~ee the helpdesk FAQ at http://exserver/faq! for
Ilco:mmo:n.ll asked quest ion" •

Figure 12-22. An e-mail message, sent to the user by the technician, indicating the
problem has been solved.

CALENbAR OF EVENTS APPLICATION
While the Helpdesk application showed you a little bit about the calendaring func­
tionality in the COO library, the Calendar of Events application demonstrates the full
power of COO calendating. The idea behind the Calendar of Events application is
to allow a corporation to publish, either internally or externally, a calendar of cor­
porate events. Since the application is based on Exchange Server and Outlo~k, it is
rich enough to support permissions for the creator or modifier of the calendar con­
tent and easy enough for users to add new content by employing familiar tools.

The Calendar of Events application shows how to create publicly accessible
calendars, use message filters in the COO library, and use more objects in the COO
Rendering library. You will also see some of the current limitations in the COO li­
brary and learn about ways to work around these limitations, particularly the limita­
tions of not supporting public folder calendars and not being able to filter by category
when using appointment items.

The monthly results page for the application is shown in Figure 12-23. As you
can see, the application is Web-based, but users can take advantage of Outlook's
calendaring features to create the contents for the Web-based calendar. The applica­
tion dynamically connects and retrieves the information that Outlook users create in
the Exchange Server database and exposes it to Web clients. Outlook users can also
use their Outlook client to retrieve calendar information, as shown in Figure 12:.24.

479

Pari III Collaboration with Microsoft Exchange

Figure 12-23. The monthly view of the Calendar of Events in HTML.

10 11
8:00am Hands-on

Figure 12-24. A monthly view in Outlook of the source calendar for the Calendar of
Events application.

Setting Up the Calendar of Events Application

480

Before you can install the Calendar of Events application, you must have a Windows
NT 4.0 Server or a Windows 2000 Server and a client with certain software installed.
Table 12-3 outlines installation requirements.

Chapter 12 Collaboration Data Objects

Required Software

Exchange Server 5.5 Service
Pack 1 or later with Outlook
Web Access

IIS 3.0 or higher with Active
Server Pages

CDO library Ccdo.dll) and
CDO Rendering library
Ccdohtml.dll)

For the cUent:
A Web browser or Outlook

InstaUation Notes

Service Pack 3 is recommended.

IIS 4.0 is recommended.

Exchange Server 5.5 Service Pack 1 installs
CDO library 1.21 and CDO Rendering library
1.21. Outlook 2000 installs CDO library 1.21.

You can run the client software on the same
machine or on a separate machine.

Table 12-3. Installation requirements for the Calendar of Events application.

To install the application, copy the Calendar Of Events folder from the com­
panion CD to the location on your Web server from which you want to run the
application.

Start the lIS administration program. Create a virtual directory that points to the
location where you copied the Calendar Of Events files, and name the virtual direc­
tory events. Enable Execute permissions on the virtual directory. This step allows you
to use the following URL to access your Events Calendar: http://yourservernamelevents.

Launch the Exchange Administrator program. Select Options from the Tools
menu and click the Permissions tab. Make sure that the Show Permissions Page For
All Objects check box is checked and the Display Rights For Roles On Permissions
Page check box is checked. Create a new mailbox that will contain the Events Cal­
endar by selecting New Mailbox from the File menu. In the Properties dialog box,
fill in the information for the mailbox, such as Events Calendar for Display and events
for Alias. Set the Primary Windows NT Account to the lIS anonymous user account
(IUSR_servername). Click on the Permissions tab, and add yourself as a user account
with permissions to this mailbox.

NOTE Your anonymous liS user account should be a domain account or at
least assigned as the owner of a mailbox in Exchange Server. Normally, the
account liS uses to log users on to your Web pages anonymously is named
IUSR_servemame. The Calendar of Events application uses this account when
starting an ASP session to automatically log on to the Exchange server without
prompting forcredentials:You will see how this is used when we step through
the application, If the liS anonymous user account is not a domain account or
cannot be assigned as an owner of a mailbox in Exchange Server, change the
account so that it can be aSSigned Owner permissions.

481

Part III Collaboration with Microsoft Exchange

482

If you use a different alias name for the Events Calendar mailbox, you will need
to modify the Global.asa file. Open the Global.asa file in the Calendar Of Events folder
on your IIS server. Find the line

Application("MailboxName") = "events"

and change the name to the alias name of the Events Calendar mailbox you created.
The application includes a file named cats. inc. Since the application allows you

to filter events based on Outlook categories, you might want to change cats.inc to
reflect the categories that are important to your application. If you do change the
categories, you will need to specify the total number of categories you want to filter
on. The following code is the sample file from the companion CD:

<% NumberofCats = 5
Dim strCategories(5)
strCategories(l) "Business"
strCategories(2) "Competitive"
strCategories(3) "Presentations"
strCategories(4) "Hands-On Training"
strCategories(5) "Social"
%>

To change the values for your categories, modify the NumberofCats integer to
be the total number of categories. Then change the Dim strCategories(5) statement
to reflect the number of categories, thus enabling VBScript to create an array of the
category names. Now type the name of the category as a string argument in one of
the cells of the array.

If you specified a name for the virtual root that is different from levents, find
the file named virtrootinc, open it, and change the virtual root you created for the
application.

Create a profile for Microsoft Outlook that connects to the Events Calendar
mailbox you created. You can create a new profile by opening the Mail control panel
applet and clicking Show Profiles on the Services tab. On the General tab of the
displayed Mail dialog box, you can add a new profile. You can also create a new
profile by clicking the New button on the Choose Profile dialog box when you start
Outlook. If the Choose Profile dialog box does not automatically display when you
start Outlook, choose Options from the Tools menu in Outlook and click on the Mail
Services tab. In the Startup Settings area, select the Prompt For A Profile To Be Used
option.

With Outlook opened to the Events Calendar mailbox, right-click on the Cal­
endar folder, select Properties, and click on the Permissions tab. Set permissions for
the users in your organization who need to create and edit appointments in the cal­
endar. You do not have to set the Default permissions on the folder, so you can restrict
the access permissions for each user in the organization and enable permissions for
creating and deleting items without giving permissions to everyone with access to

Chapter 12 Collaboration Data Objects

the calendar. This step will allow Outlook users with the proper permissions to view
and possibly edit the calendar for the Events Calendar mailbox. To open the Calen-
dar folder for the Events Calendar mailbox, other users would choose Open from the
File menu in Outlook and then select Other User's Folder. From the displayed Open
Other User's Folder dialog box, users can select and open the Calendar folder. You're J"i

fmished. You can now add events to the Outlook calendar for the Events Calendar
mailbox, and then test viewing those events from the URL http://yourservername/events.

CDO Sessions
The Calendar of Events application uses the Global.asa file of the Helpdesk applica­
tion with a few changes. The file is modified primarily because CDO does not sup­
port accessing calendars in public folders or delegated calendars at the time this book
went to press. Just a quick note, though-CDO for Exchange 2000 does support this
capability, but not with an Exchange 5.5 Server. It sUppol1:S it only on an Exchange
2000 Server. You can access calendars only when you are the primary Windows NT
account owner of the mailbox. With ASP, you can get around this limitation by as­
signing the anonymous lIS user account as the primary owner of a mailbox, thereby
making all users who browse your Web page automatically log on to CDO using this
mailbox as their default.

Because lIS uses the security context of this anonymous user account to browse
Web pages anonymously, you do not have to prompt the user for security creden­
tials to enable them to log on to the mailbox, as we had to in the Helpdesk applica­
tion. Instead, all you need to do is add a CDO logon to the Session_OnStart subroutine
in your Global.asa. This logon method will force every new Web user to log on to
the Exchange server using the mailbox you created as well as the security creden­
tials of the anonymous user account in IIS. The Global.asa code for the Calendar of
Events application is shown here:

<SCRIPT LANGUAGE="VBScript" RUNAT="Server")

Sub Application_OnStart
On Error Resume Next
Set objRenderApp = Server.CreateObject("AMHTML.Application")
If Err = 0 Then

Set Application("RenderApplication") = objRenderApp
Else

Application("startupFatal") = Err.Numb~r
Application("startupFatalDescription") = _

"Failed to create application object<br)" & _
Err.Description

End If

Application("hImp") Empty
(continued)

483

Pari III Collaboration with Microsoft Exchange

484

'Load the configuration information from the registry
objRenderApp.LoadConfiguration 1. _

"HKEY_LOCALMACHINE\System\CurrentControlSet\Services\" & _
"MSExchangeWeb\Parameters"

Application("ServerName") = objRenderApp.ConfigParameter("Server")
Application("MailboxName") = "testacct"
Err.Clear

End Sub

Sub Application_OnEnd
Set Application("RenderApplication") Nothing

End Sub

Sub Session_OnStart
'On Error Resume Next

Set objRenderApp = Application("RenderApplication")
hOldlmp = objRenderApp.lmpIO
Set Session("AMSession") = Nothing
set objOMSession = Server.CreateObject("MAPI.Session")
bstrProfilelnfo = Application("ServerName") + vbLF + _

Application("MailboxName")
objOMSession.Logon False. True. 0. True. bstrProfilelnfo
set Session("AMSession") = objOMSession
'This is a handle to the security context.
'It will be set to the correct value when the COO session is created.
Session("hlmp") = objRenderApp.lmpIO

End Sub
'While calling the Session_OnEnd event. lIS doesn't call us in
'the right security context.
'Workaround: current security context is stored in Session
'(look at logon.asp) and then gets restored in Session_OnEnd
'event handler.

'All COO and COOHTML objects stored in the Session object
'need to be explicitly set to Nothing between the two
'objRenderApp.lmpersonate calls below.
Sub Session_OnEnd

On Error Resume Next
set objRenderApp = Application("RenderApplication")
hImp = Session("hlmp")
If Not IsEmpty(hlmp) Then

objRenderApp.Impersonate(hImp)
End If
'00 our cleanup. Set all COO and COOHTML objects inside
'the session to Nothing.
'The COO session is a little special because we need to do
'the Logoff on it.
Set objOMSession = Session("AMSession")
If Not objOMSession Is Nothing Then

Chapter 12 Collaboration Data Objects

Set Session("AMSession") = Nothing
objOMSession.Logoff
Set objOMSession = Nothing

End If
End Sub
</SCRIPT>

Since all users of the application will be accessing the same mailbox, you might
be wondering why the code for logging on to the Exchange server is in the Session_
OnStart subroutine and not in the Application_OnStart subroutine. The main reason
for creating a new session for each user to the same mailbox is to improve the per~
formance of the applitation. If the application did not do this, all userS would use
the same CDO session to connect to the Exchange server.

Prompting tbe User for Input
After a CDO session has been created for the user but before the user can start viewing
the calendar, the application must ask which appointment types and month the user
wants to view in the calendar. To do this, the application presents a search page with
options to select the month, year, and event categories, as shown in Figure 12-25.

1MIo tn<;ofl I 'lj h"nn"1 \"'1 t f ,lpnd"l "110 t"-'~nfr TICtf'tnpt rl'Jllollf'1 r,~

~ :;-;----
Microsoft Exchange Events Calendar

Search our Events calendar to find :II .,acific event
This application Ie powered by Microsoft Exchange SBlV8rICDO and Outlook.

Note: This calendar is powered by Microsoft Exchange jarval;. When you submit a search request. the Web server dynamically
searches an Exchange Server calendar and generates the resUlt page according to your input. The appointments are actually
created by using the Microsoft Outlook client.

Figure 12-25. From the search page of the Events Calendar, the user can select the
month, year, and event categories to search for.

The next section of code is for the search page in Figure 12-25. Notice how the
code figures out the current month Qn the Web server machine a~d uses it as the
default value in the Select Month drop-down list box. Using the current year as the
point of reference, the code dynamically generates the previous year and next year

485

Part III Collaboration with Microsoft Exchange

486

in the Year drop-down list box. This page also uses a hidden control on the HTML
form that will indicate to the next ASP page, Events.asp, that the user originated from
the current page.

The HTML page does not have to check whether a valid ASP session exists for
the current user because the page does not use any CDO code. The CDO logon code
is handled in the Session_OnStart procedure, so when the user's session has timed
out, the user is automatically logged on again when he refreshes the screen or moves
to a different page. Here is the code for the search page:

<l--,include file=~cats.inc"-->
<Title>Microsoft Exchange Events Calehdar</Title>
<center>
<p>
Microsoft Exchange Events Calendar</P>
<Bil.>
<HR>

Search our Events Calendar to find a specific event.

This application is powered
by Microsoft Exchange Server/COO and Outlook.
<FORM METHOO=POST ACTION="events.asp">
<TABLE BOROER=2 Wi dth=60% Bordercolor="008000" cell paddi ng="2"
cellspacing="0" borderdarkercolor="008000" bgcolor="'FFCC00"
borderlightcolor="~08000">

<%

, * **.********************************
'Figure out the month

'***********************************
%>

<TR>
<TO>Select Month:</TO>
<TO>
<SELECT NAME="month" SIZE=l>
<%
Dim MonthArray(l2)
MonthArray(l)="January"
MonthArray(2)="February"
MonthArray(3)="March"
MonthArraY(4)="April"
MonthArray(5)="May"
MonthA~ray(6)="June"

MonthArray(7)="July"
MonthArray(8)="August"
MonthArray(9)="September"
MonthArray(10)="October"
MonthArray(ll)="November"
MonthArray(12)="Oecember" %>

Chapter 12 Collaboration Data Objects

<%

<% for i = 1 to 12 %>
<% if month(now) = i then %>

<OPTION Selected Value = <%=i%» <%= MonthArray(i) %>
<% Else %>

<OPTION Value = <%=i%» <%= MonthArray(i) %>
<% End if %>

<% Next %>
<ISELECT>

'*************~**********************
'Figure"out the year
'************************************
%>

<SELECT NAME="year" SIZE=l>

<% 'Figure out the current year, and go back and ahead 1 year %>
<% yearprevious = dateadd("yYYY",-l,date) %>

<OPTION> <% response.write year(yearprevious) %>
<OPTION SELECTEO> <% response.write year(date) %>

<% yearnext = dateadd("yyyy".l,date) %>
<OPTION> <% response.write year(yearnext) %>

<ISELECT>
</TO></TR>

<%
'**************************************
'Figure out the categories
'*******************~*~************,****
%>

<TR>
<TO>Category of Event:</TO>
<TO><SEUCT NAME="Type" SIZE=l>

<OPTION SELECTEO>All
<% for c = 1 to NumberofCats

response.write "<OPTION>" & strCategories(c)
next
%>

<ISELECT>
</TO></TR>

</TABLE>

<%
'**************************************
'Create a hidden field so that we know the
'request came from calendar.asp
'**************************************
%>

(continued)

487

Part III

<INPUT TVPE=HIDDEN NAME="fromcalendar" VALUE="fromcalendar">

<INPUT TVPE=SUBMIT VALUE="Submit Form"><INPUT TVPE=RESET
VALUE="Reset Form">
</FORM>

<HR>
</center>
</fol)t>

<P>Note: This calendar is powered by Microsoft
Exchange Server.
When you submit a search request, the Web server dynamically
searches an Exchange Server calendar and generates the
result page according to your input. The appointments are
actually created by using the Microsoft Outlook client.

</BODV>
</HTML>

Displaying Views of the Calendar

488

When the user clicks the Submit Form button on the HTML form, the application
passes the entered information to the next ASP page in the application, Events.asp.
This page creates a monthly view of the information stored in the Events Calendar,
as shown in Figure 12-26.

Figure 12-26. The code for this page is Events.asp. The code creates a monthly view of
the appointments in the calendar by using HTML.

Chapter 12 Collaboration Data Objects

Since the CDO Rendering library does not natively support monthly calendar
views, the page in Figure 12-26 creates a monthly view using only HTML tables and
data from the Events Calendar. However, the CDO Rendering library does support
daily and weekly views on calendars. Therefore, when the user selects to view all
events in the calendar, the application renders the calendar day numbers as hyperlinks
from which the user can drill down into either daily views of the calendar day or
weekly views of the events for the entire calendar week. Weekly views are available
only when the user clicks on the hyperlink for Sunday. Daily views are available on
all other calendar days. Both view types are generated by the CDO Rendering library.

This page also stores values for the month, day, and year in ASP-session scope
variables so that the application can remember the values in other pages. Storing these
values also enables the application to create filters on the appointments contained
in the calendar folder so that only the appointments for the specified month appear
in the calendar. Let's take a look at the application and associated CDO objects in
more detail.

Filtering Events from the Calendar
So that only certain events appear in the calendar, the application uses the MessageFilter
object in the CDO library. The MessageFilter object is available in any Messages
collection and allows you to specify the criteria that messages must meet before they
are added to the collection. When you instantiate a new Messages collection, by
default a MessageFilter object is created without filters on the content.

The MessageFilter object allows you to filter on built-in and custom properties
for message· objects in the Messages collection. There is one caveat, however, with
the MessageFilter object: if the collection contains AppointmentItem objects (and a
calendar folder does), the MessageFilter object offers only a limited subset of its
functionality. This subset is the ability to filter only on the start and end times for the
items in the collection. For this reason, in the source code for the Events.asp file, you'll
notice a MessageFilter object that uses the month selected by the user as the input
for the filter's start and end times. You will also notice that custom VBScript code
searches through the filtered set of appointments to figure out which appointments
actually have the category the user selected. This functionality is implemented as cus­
tom VBScript because the MessageFilter object lacks this functionality for appointments.
The following code creates and sets the MessageFilter object for the events calendar:

<%
'**
'Filter all appointments except the requested month's appointments
I******************~********************************** *************
'Get the Calendar folder
Set Session("objFolder") = objOMSession.GetDefaultFolder(.0)
set objFolder = Session("objFolder")

(continued)

489

Part III

490

set objAppointment = objFolder.messages.getfirst()
set objAppointments = objFolder.Messages
set objMsgFilt = objAppointments.Filter

'Calculate the start and end dates based on the month the
'user selected
StartDate = EventMonth & "j" & "1" & "j" & EventYear
EndDate = EventMonth & "j" & "1" & "j" & EventYear
End Date = DateAdd("m",l.EndDate)
objMsgFilt.Fields(ActMsgPR_START_DATE) EndDate
objMsgFilt.Fields(ActMsgPR_END_DATE) = StartDate

set Session("objAppointments") = objAppointments
Session("LastDayofMonth") = iLastDay
%>

As the preceding code illustrates, the first step in creating a filter is retrieving
the Messages collection you want to apply the filter to. Since the MessageFilter ob­
ject is a child of the Messages collection, you need to retrieve it by using the Filter
property on the Messages collection. If the collection you were filtering did not contain
appointments, you could create your filter by setting the properties on the Message­
Filter object.

Because we are retrieving the calendar folder for the events calendar mailbox,
we need to specify properties for the start and end times by using the Fields collec­
tion of the MessageFilter object. The specific identifiers for these two properties are
&H00600040 for the start date and &H00610040 for the end date. (These identifiers
are defined in the file Amprops.inc, which is included with the Calendar of Events
files on the companion CD.) To create the filter, all you need to do is set these iden­
tifiers, in the Fields collection, to your values.

Be careful when setting these properties-they don't work in the way you think
they should. For example, you would think that when you specified a value for the
start date, you would enter in the first day for the filter, which would make CDO return
every appointment starting from the day you entered and moving forward in time.
However, the way the code is implemented in the library, the MessageFilter object
actually returns any appointments that start on that day or occurred before that date.
For the end date, the filter returns any appointments that end on the date or occur
after that date. Therefore, in the Calendar of Events application, the first day of the
month selected by the user is specified as the start date value for the filter, and the
first day of the next month after the month selected by the user is specified for the
end date value. These values return all appointments in the specified month.

Now that we have all the appointments in the month, we need to manually filter
them by the category the user specified. For example, if the user speCified only hands­
on training events, we must provide a subroutine to filter and print only hands-on
training events. The next snippet of code does this for you. It uses the For Each ...

Chapter 12 Collaboration Data Objects

Next statement in VBScript to scroll through the filtered Messages collection we cre­
ated. While the code loops through the collection, it checks to see whether the cur­
rent appointment starts on the current day. If the appointment does start on the current
day, the code checks to see whether the user selected a specific category. If the user
did select a category, the code loops through the categories on the AppointmentItem
object, checking to see whether the object contains the specified category. If the
category is found, the application prints out the appointment. If the category is not
found, the code moves to the next appointment in the collection.

You might have noticed a variable in the code named AlreadyPrinted. I added
this variable to help you enable the application to support users who specify mul­
tiple categories to search on. Imagine that you have an event that is marked for the
Business and Hands-On Training categories. If you allow users to specify both search
categories such that any event categorized as either Hands-On Training or Business
is identified, you will run into problems with duplicate printing of events because
the values for appointment categories added in Outlook are not guaranteed to be in
a particular order. The Categories field for one appointment could have the values
Business, Hands-On Training, Competitive while another could contain the same
values but in a different order: Hands-On Training, Competitive, Business. When this
is the case, both events print.

The code uses a For Each ... Next loop to scroll through the categories collec­
tion. After it finds the targeted category value and prints the item on the calendar,
the code changes the AlreadyPrinted variable to True. Therefore, if this item meets
other subsequent categories the user selected, it won't be duplicated on the calen­
dar. Why does the code use a variable rather than contain an Exit For statement? I
used a variable because it gives you more flexibility if you want to change the code
to perform other functionality. However, an Exit For statement would work in this
case just as well. Here's the code that filters the appointment categories:

<%
'***
'Check to see whether event should be written
'***
%>
<%

AlreadyPrinted = FALSE
for each objappointment in objAppointments

StartTime = objappointment.StartTime
'Check the day of the message
oDay = DAY(StartTime)
'Figure out friendly start time
if Hour(StartTime) = 12 then '12:00 PM

if Minute(StartTime) = 0 then '0 minutes
(continued)

491

Part III

492

with Microsoft IF'y~h:\i:llnftA

dStartTime "12:00 PM"
else

dStartTime "12:" & Minute(StartTime) & " PM"
end if

elseif Hour(StartTime) > 12 then
if Hour(StartTime) > 11 then 'PM

if Minute(StartTime) = 0 then '0 minutes
dStartTime (Hour(StartTime)-12) & ":00 PM"

else
dStartTime (Hour(StartTime)-12) & "." & _

Minute(StartTime) & " PM"
end if

end if
else

if Hour(StartTime) = 0 then '12 AM
if Minute(StartTime) = 0 then '0 minutes

dStartTime "12:00 AM"
else

dStartTime

end if
else

II AM"
"12:" & Minute(StartTime) & _

if Minute(StartTime) = 0 then '0 minutes
dStartTime Hour(StartTime) & ":00 AM"

else
dStartTime Hour(StartTime) & "." & _

Minute(StartTime) & " AM"
end if

end if
end if 'Friendly start time

if oDay = (i-iDayMarker) then
'Check the categories if AllBit 0
if AllBit = 1 then

'Check to see if all-day event
if objappointment.AllDayEvent = True then

response.write "(B>All Day Event" & _
" (/B>(A HREF='details.asp?id=" & _
objappointment.id & _
"' style='color: rgb(255,0,0)')" & _
objappointment.Subject & "(/a>(BR>"

else
response.write "(B>" & dStartTime &
"(/B> (A HREF='details.asp?id=" & _
objappointment.id & _
"' style='color: rgb(0,0,255)')" & _
objappointment.Subject & "(/a)(BR)"

end if

Chapter 12 Collaboration Data Objects

else
'Check categories!

if IsEmpty(objappointment.Categories) then
'No categories
else

for each category in objappointment.Categories
if InStr(category.EventType) then

if Not(AlreadyPrinted) then
if objAppointment.AllDayEvent = True then

response.write _
"(B)All Day Event" & _
" " & _
dStartTime & "(/B) " & _
(A HREF='details.asp?id=" & _
objappointment.id & "' style" & _
"='color: rgb(255.0.0)')" & _
objappointment.Subject & _
"(/a)(BR)"

else
response.write "(B)" & _
dStartTime & "(/B) (A " & _
HREF='details.asp?id=" & _
objappointment.id & "' style" & _
"='color: rgb(0.0.255)')" & _
objappointment.Subject & _
"(/a)(BR)"

end if
AlreadyPrinted = TRUE

end if 'Not Already Printed
end if 'Categories Match

next
end if 'Check categories

end if 'All Bit
end if 'oDay

AlreadyPrinted = FALSE 'Reset Already Printed
Next

set objappointment nothing
n=l
%)

Displaying a Weekly View
When the user is not filtering by category and clicks on the hyperlink for any Sun­
day in the calendar, a weekly view appears showing events for the current week, as
illustrated in Figure 12-27.

493

Part III Conaboration with Microsoft Exchange

494

]\"Pf'klvll "',pS l M"'ol~rfi hoi ,nplb'l,I(II., ~~E2

~ ~~~"
Weekly Events for February 6, 2000

10:33 A" 1:2:00 P VisualCt+ TrMning(Room 314)

:3QA·I0:30A"t: SIBle' !!ndMwketingCgpfmpceCr41 :OOA.9:31AH8I"J.dfj-gnYisualByicTf'8ining
<2312) ~""""i" i" iRoiomillil! _____ •

Back to .An events
in~

Try another
search.

Daily View L8.end:

I Tenta1in ETent

IConfimtedEvent.

10000me Event.

Figure 12-27. 1be weekly view in the Events Calendar. 1bis view is reached by
clicking on the hyperlinkfor any Sunday in the calendar.

The weekly view is implemented in the events calendar by using the CDO
Ren.dering library. While you could create your own weekly view, it is much easier
to ieverage the CDO Rendering library and customize the way it renders the view
using the library's objects. The CDO Rendering library offers rich object support for
customizing what is rendered by the library.

As illustrated in the Helpdesk application, the way to get started with the CDO
Rendering library in an application is to create either a container or an object ren­
derer by using the CreateRenderer method on the RenderingApplication object. The
Calendar of Events application creates a container renderer because the items ren­
dered by the application are contained in a calendar folder. However, unlike the
Helpdesk application, which used TableView objects to render its data, the Calen­
dar of Events application uses CalendarView objects. The Calendar of Events appli­
cation also customizes the patterns and formats of the CalendarView object to
specify the graphics to be used when rendering information. The placement of the
CalendarView object in the CDO Rendering library is shown in Figure 12-28. Most
of the properties of the CalendarView object are filled in by default when you instan­
tiate a CalendarView object, so you don't have to set these properties unless you want
to customize the way CDO renders the information into HTML.

Chapter 12 Collaboration Data Objects

Figur~ 12-28. The CDO CalendarView object is a child object o/the Views collection
in the CDO Rendering library.

As with the Helpdesk application, we need to set a data source to be rendered.
In this case, the data source is the filtered set of appointments we created for the
calendar. To instantiate a CalendarView object, we retrieve from our data source a
view from the Views collection. Since the daily view always has an index of 1 in
the Views collection, the code grabs the daily view for the calendar using this inqex,
instead of scrolling through all the views in the collection. As you will see later, the
daily view is morphed into a weekly view by using the Mode property for the
CalendarView object.

Once we have a CalendarView object, we can manipulate the Format and Pat­
tern objects of the ContainerRenderer object to add c4stom HTML rendering. The
Format object controls how a particular property is rendered by the CDO Renderin~
library. For example, you can pass to the Formats collection either the ID of a built­
in property or the name of a custom property to create a custom BTML format for
that property when the property is rendered by the library. This code shows an
example from the weeklyview.asp file:

'Sensiti vity
Set objFormat = oCalContRenderer.Formats.Add(_

ActMsgPR-SENSITIVITY, Null)

495

Pari III Collaboration with Microsoft 1IO'"....,h211'118A

496

After adding the format, you can retrieve the Patterns collection on the Format
object to specify how a particular value for a property should be formatted. In the
previous example, if the sensitivity of the appointment in the calendar is set to
Private, an image of a key is placed before the text of the appointment. You can
make the patterns more complex because the values for the patterns will accept
any legal HTML tags.

You can specify a default pattern for the Pattern objects if a particular property
does not contain one of your values. To the Patterns collection, just add a Pattern
object that takes the asterisk character CO) as its value. You then specify the HTML
tags CDO should use to render the unspecified value types. The code for both speci­
fied and unspecified values is shown here:

Set objPatterns = objFormat.Patterns
bstrHTML = bstrImgSrc + _

"/images/private.gif WIDTH=13 HEIGHT=13 BORDER=0)"
objPatterns.Add I, bstrHTML 'personal
objPatterns.Add 2, bstrHTML 'private
objPatterns.Add 3, bstrHTML 'confidential
objPatterns.Add "*", , normal

The following code shows you the other Format and Pattern object settings for
the weekly view in the Calendar of Events application:

'Recurring
Set objFormat = oCalContRenderer.Formats.Add(_

AmPidTag_IsRecurring, Null)
Set objPatterns = objFormat.Patterns
objPatterns.Add 0,
bstrHTML = bstrImgSrc + _

"/images/recur.gif WIDTH=13 HEIGHT=13 BORDER=0)"
objPatterns.Add "*", bstrHTML

'Meeting status
Set objFormat = oCalContRenderer.Formats.Add(_

AmPidTag_ApptStateFlags, Null)
Set objPatterns = objFormat.Patterns
objPatterns.Add 0,
bstrHTML = bstrImgSrc + _

"/images/meeting.gif WIDTH=12 HEIGHT=13 BORDER=0)"
objPatterns.Add "*", bstrHTML

'Location
Set objFormat = oCalContRenderer.Formats.Add(

AmPidTag_Location, Null)
Set objPatterns = objFormat.Patterns
objPatterns.Add
objPatterns.Add "*", "(%value%)"

Chapter 12 Collaboration Data Objects

After you set your Format and Pattern objects, you can customize the way CDO
renders the HTML tables it creates. The properties you need to manipulate the
Container Renderer object are TablePrefix, TableSuffix, RowPrefix, RowSuffix,
Cell Pattern , and LinkPattern. The following code is taken from weeklyview.asp,
which sets these properties:

oCalContRenderer.TablePrefix = _
"(table columns=%columns% border=0 cellpadding=0 cellspacing=l "
& "WIDTH=100% HEIGHT=10% bgcolor="000000')" & Chr(10)

oCalContRenderer.TableSuffix = "(/table)" & Chr(10)
oCalContR~~derer.RowPrefix = "(tr)" & Chr(10)
oCalContRenderer.RowSuffix = "(/tr)" & Chr(10)
oCalContRenderer.CellPattern = "(font size=2)%value%(/font)"
oCalContRenderer.LinkPattern = "(a href='details.asp?id=%obj%' "

& "target='_top')%value%(/a)"

The TablePreftx property allows you to customize the HTML table that CDO
renders before CDO creates a separate table for the actual item content in the data
source. By customizing TablePrefix, you can add custom HTML tags before CDO
renders any content to the browser. This property works in conjunction with the
TableSuffix property, which specifies what to render at the end of the HTML table
created by the TablePreftx property.

The RowPriftx property allows you to customize the HTML that appears at the
begiimingof each HTML table row. You can use this property to change the way
the row is rendered-Jor example, modifying the height, width, or alignment of the
items in the row, RowSuffix specifies the HTML that should appear after the row and
is used ill conjunction with RowPrefix.

The CellPattern property specifies the HTML for every cell in each table row
that you render. In the code for the Calendar of Events application, the CellPattern
property is set to a font size of 2 and is set to display the value contained in the
appointment. This property does not affect any hyperlinked values in your cell, and
CDO always generates a link for exactly one cell in each row. So use CellPattern in
conjunction with LinkPattern to create fully functional table rows, because the
LinkPattern property affects only the hyperlink cell in your table. As you can see in
the code, the application sets the LinkPattern property for the hyperlinked cells so
that the hyperlink points at the details. asp file, and it passes the EntryID that corre­
sponds to the current appointment clicked on by the user to this ASP using the %obj%
token. It also dynamically prints out the subject of the appointment by using the
%value% token.

The final section of the code sets some options on the (:ontainerRenderer
object, such as the start and end times for the business day, and the time zone for
the appointment dates and times. This section also morphs the daily view into a
weekly view by setting the Mode property for the CalendarView object to be
CdoModeCalendarWeekly (1) rather than CdoModeCatendarDaily (0). The code then

497

Part III Collaboration with Microsoft Exchange

498

calls the RenderAppointments method on the CalendarView object, which takes as
its arguments the starting date for rendering information and the output stream used
to send the generated HTML. Normally for the output stream parameter, you would
type Response, which tells CDO to render the HTML to the Response object of the
ASP object library. The following code implements this functionality for the Calen­
dar of Events application:

oCalContRenderer.TimeZone = objOMSession.GetOption("TimeZone")
'Set Sunday as first day of week
oCalContRenderer.FirstDayOfWeek = 7
oCalContRenderer.Is24HourClock = _

objOMSession.GetOption("Is24HourClock")
oCalContRenderer.BusinessDayStartTime = _

objOMSession.GetOption("BusinessDayStartTime")
oCalContRenderer.BusinessDayEndTime = _

objOMSession.GetOption("BusinessDayEndTime")
oCalContRenderer.BusinessDays = _

objOMSession.GetOption("WorkingDays")
oCalView.NumberOfUnits = 1
curDay = CDate(curDay)
oCalView.Mode = 1
oCalView.RenderAppointments curDate,Response

Displaying a Daily View
When the user is not filtering by category and clicks on the hyperlink for any day in
the calendar week except Sunday, a daily view appears, as shown in Figure 12-29.

Daily View Legend:

I Ten161i.ve Event

ICO!IfinuedEvent.

IOffsne Event

Figure 12-29. The daily view for the Calendar of Events application allows users to
see more details about the events on a specific day.

Chapter 12 Collaboration Data Objects

The code for rendering the daily view in the file dailyview.asp is similar to the
code for rendering a weekly view except for two differences. First, we keep the daily
view as the view in the Mode property for the CalendarView object rather than change
it, as we did in the weekly view rendering code. Second, we must explicidy render
all-day events separately from appointments in the view. In the weekly view mode,
CDO automatically renders all-day events.

The way to render events separately from appointments in a daily view is to
explicidy call the RenderEvents method on the CalendarView object before calling
the RenderAppointments method. The RenderEvents method takes the same parame­
ters as the RenderAppointments method, which includes the date for which you want
to render the events and the output stream that will place the HTML code created
by the method. The following code shows you how to render both events and
appointments using RenderEvents and RenderAppointments:

oCalView.RenderEvents curDate.Response
oCalView.RenderAppointments curDate.Response

Displaying the Details of an Event

When a user clicks on any hyperlink (from monthly, weekly, or daily view) to get
the details for an event, details.asp is called. This ASP page displays details about the
event so that a user can find the event location and obtain any supporting materials.
The ASP page also automatically supports rendering and viewing attachments because
it uses the CDO Rendering library to display the text describing the event. The user
interface for this page is shown in Figure 12-BO.

Back to All events in February

Try another ~

Figure 12-30. The Details page for an event in the Calendar of Events application
can render rich text as well as hyperlinks because it uses the CDO Rendering library.

499

Part III Collaboration with Microsoft Exchange

500

The code in the details. asp page is pretty straightforward, but it shows you how
to use other objects in the CDO Rendering library, such as the ObjectRenderer object.
The ObjectRenderer object (as opposed to the ContainerRenderer object) is used
because you are displaying properties from an individual CDO object, such as an
appointment. You should use the ContainerRenderer object only if you are render­
ing a collection of items, such as all the messages in your Inbox. Figure 12-31 shows
the ObjectRenderer object hierarchy.

Figure 12-31. The ObjectRenderer object in the CDO Rendering ltbrary is used to
display properties of individual items rather than of collections.

To create an ObjectRenderer object, all we need to do is pass the constant
CdoClassObjectRenderer (2) to the CreaterRenderer method of the Rendering­
Application object. (There are a lot of "renders" in that last sentence!) Here is the code
from details.asp:

'Create an ObjectRenderer
set objObjRenderer = objRenderApp.CreateRenderer(2)

After creating the ObjectRenderer, we need to set the DataSource property for
it. This property is the same as the DataSource property for a ContainerRenderer object
except for one fundamental difference: the ObjectRenderer object can take only in­
dividual items as its data source, such as an AddressEntry, an Appointmentltem, or
a Message object.

Now that the data source is set, we can start using some of the methods on the
ObjectRenderer object. To render the details of the event, we need to render indi­
vidual properties off the Appointmentltem object, such as name, location, and details.
The ObjectRenderer object gives us a method, RenderProperty, that allows us to render
individual properties off the object. The RenderProperty method takes three arguments:

Chapter 12 Collaboration ~ata Objects

• The property ID for built-in properties, or the name of the property if it
is a custom property that we want to render

• A reserved argument for which you should always pass 0 as the value

• The output stream, to pass the HTML that the CDO Rendering library
generates

Normally, you would type Response for this argument to return the HTML to
the browser. The following code is taken from details.asp. It shows how RenderProperty
renders the different propeqies on an AppointmentItem object.

<table border="l" width="100%">
<tr>

<td wi dth="24%" bgco 1 or="IIFFFF80"><bi g>
Event Name:</big></td>
<td width="76%" bgcolor="#8000FF">
<% objObjRenderer.RenderProperty ActMsgPR-SUBJECT, 0, Response %>
 <ltd>

</tr>
<tr>

(td width="24%" bgcolor="#FFFF80"><big>
Event Location:</big></td>
<td wi dth="76%" bgco 1 or="118000FF">
<%
if objEvent.Location = "" then

response.write "None specified"
el se

objObjRenderer.RenderProperty AmPidTag_Location, 0, _
Response

end if
%>
</td>

</tr>
<tr>

<td width="24%" bgcolor="#FFFF80"><big>
Start Date:</big></td>
<td width="76%" bgcolor="#8000FF">
<% objObjRenderer.RenderProperty AmPidTag~pptStartWhole, 0, _
Response %>
</fpnt></td>

</tr>
<tr>

<td width="24%" bgcolor="#FfFF80"><big>
End Date:</big></td>
<td wi dth="76%" bgco 1 or="118000FF">

(continued)

501

Part III Collaboration with Microsoft Exchange

502

<% objObjRenderer.RenderProperty AmPidTag-ApptEndWhole, 0, _
Response %>
</td>

</tr>
<tr>

<td width="24%" bgcolor="'FFFF80"><big>
Duration:</big></td>
<td width="76%" bgcolor="'8000FF">
<% objObjRenderer.RenderProperty AmPidTag_ApptDuration, 0, _
Response %>
minutes</td>

</tr>

<tr>
<td width="24%" bgcolor="'FFFF80"><big>
Event Details:</strang></big></td>
<td wi dth="76%" bgco 1 or="ff8000FF">
<%
if objEvent.Text = "" then

response.write "None specified"
else

objObj~enderer.RenderProperty ActMsgPR-RTF_COMPRESSED, _
0, Response

end if
%>
</td>

</tr>
</table>

Most of the properties are pretty straightforward, but one of them requires careful
handling when rendering because it is quite powerful and can easily cause problems
if you do not handle the output correctly. This property is the last one rendered by
the application, ActMsgPR_R1F_COMPRESSED. It is the message body for the item.
When you use the RenderProperty method with this property, the CDO Rendering
library will automatically convert the rich-text formatting in the message to HTML.
This is a powerful feature and one of the primary reasons you should use the CDO
Rendering library to display the body of an item.

However, one aspect of this method to watch out for is that in addition to
converting the body of an item, the method also converts the attachments in the item
to hyperlinks. While this is useful and makes your application very powerful, CDO
defaults the hyperlinks it creates to retrieve a file named read. asp in the Exchange
virtual root on the lIS server. Remember how lIS defines A~P applications-by vir­
tual root. Now can you see the inherent problem in this? When the user clicks on
this default hyperlink, lIS starts a new ASP application under the Exchange virtual
root. This causes the Outlook Web Access logon screen to appear, since ASP appli­
cations cannot share session and application states, and OWA has no idea that the

Chapter 12 Collaboration Data Objects

user has already authenticated with the Calendar of Events application. Furthermore,
if the user enters her security credentials, the attachment will not appear in the
browser; instead, OWA will open the Inbox of the user-not the desired functionality.

To fix this problem, we must first change the default virtual root of Rendering­
Application, which is the Exchange virtual root. To do this, we use the VirtualRoot
property on the RenderingApplication. The VirtualRoot property takes a string argu­
ment that sets the beginning of the URL when you render items. In this case, we need
to change the VirtualRoot property to point to the virtual root we set in our virtroot.inc
file. The following code does this:

'Change the virtual root for the rendering application
Set objRenderApp = Application("RenderApplication")
objRenderApp.VirtualRoot = virtroot

The next proplem we have to resolve is what file to use for the read. asp file
that RenderingApplication is creating a hyperlink to. Well, OWA happens to provide
a read. asp file that renders attachments you click on. in its browser window. The OWA
read. asp will automatically download and open the attachment on the machine of
the user. In addition, the read. asp file will launch the application in place in the
browser if the user's browser supports this option. Otherwise, the read.asp file will
prompt the user to download and view the file.

To add the OWA read. asp to the Calendar of Events application, some code has
to be modified. The main code modification has to be done to session and local
variable names, because the default read.asp for OWA uses variable names different
from those in the Calendar of Events application. The code that checks for a valid
session also has to be modified since the two applications use different types of
seSSion-checking code.

The way attachments are rendered to the browser is the same for both appli­
cations. First, the application parses the query string, which contains an att variable.
This variable contains the attachment record key, which is a unique identifier used
to retrieve, from the Attachments collection of the Message object, the particular
attachment the user clicked on. Once this attachment is retrieved, the application
figures out the attachment's filename so that when the user chooses to save the file
after bringing it up, the browser uses the same filename as the filename of the origi­
nal item. Finally, the application adds a header to the Response object, which tells
the browser that it is going to send data to the browser. Then the application uses
the RenderProperty method of ObjectRenderer to stream the binary data of the
attachment to the browser. Once the data is streamed down, the attachment opens.
The followin~ code implements this functionality:

szAttach = Request.QueryString("att")
nPos InStr(l. szAttach. "_H. ~)

nPos = InStr(nPos+l. szAttach. "_H. 0)
(continued)

503

Part III Collaboration with Microsoft Exchange

nPos2 = InStr(nPos+l, szAttach, "-" 0)
If nPos2 0 Then

nPos2 = Len(szAttach)+l
End If

szRecordKey = Mid(szAttach, nPos+l, nPos2-(nPos+l»
szAttachName = Mid(szAttach, nPos2+1)
szObj = Request.QueryString("obj")
Set objOneMsg = Session("szObj")
If objOneMsg Is Nothing then

Set objOneMsg = OpenMessage(szObj)
If objOneMsg is Nothing then

ReportErrorl L_errCannotGetMessageObj_ErrorMessage
ElseIf objOneMsg.ID = "" then

ReportErrorl L-errMessageDeleted_ErrorMessage
End If

End If

Set objAttach
if objAttach is

objOneMsg.Attachments.Item(szRecordKey)
Nothing then
L_errFailGettingAttachment_ErrorMessage ReportErrorl

End If
bstrFileName = ""
bstrFileName= objAttach.Fields(ActMsgPR-ATTACH_LONG_FILENAME)
If bstrFileName "" then

bstrFileName = objAttach.Fields(ActMsgPR-ATTACH_FILENAME)
End If
'For short filename compatibility, add these lines

If bstrFileName "" then
bstrFileName = objAttach.Name

End If

Response.Addheader "Content-Disposition", "attachment;filename=" +
bstrFileName

Set objRenderAtt = GetMessageRenderer
objRenderAtt.DataSource = objAttach
objRenderAtt.RenderProperty ActMsgPR-ATTACH_DATA_BIN, 0,Response

INTRANET NEWS APPLIC~TION . .

504

The default pages of many intranets today contain corporate news and information.
Most of the time, however, the news and information is either manually entered by
a Web designer or pulled from some type of database that might not easily support
the rendering of attachments for news and general information items. Furthermore,
frequently a user must e-mail the Web designer to add new content to the news and
information page.

Chapter 12 Collaboration Data Objects

Using Exchange SelVer Public Folders facilitates the e-mailing of new content
for posting to a Web page. By using Public Folders, users can e-mail news items with
attachments as well as text using any standard mail client. Because Exchange SelVer
supports auto-expiring of items in Public Folders, users can set how long the item
should remain on the news site, which saves the Web designer time and effort. If the
user e-mails the news item using Oudook, the user can set the message category type
and thus control how the news item will be identified, or categorized, in the Intranet
News application. This solution doesn't require any user training because everyone
knows how to send an e-mail message!

Using Exchange SelVer Public Folders also simplifies administrative tasks for the
Web designer. The designer can easily set up a group of moderators for the content
by using the moderation features built into Exchange SelVer Public Folders. This allows
items to be screened and approved before they are published. (See Chapter 3 for more
information about moderating Public Folders.) Figure 12-32 shows the Intranet News
application in Internet Explorer. Note that this application is written specificaIiy for
the Internet Explorer 4.0 or higher browser and the marquee feature it contains. You
cali, however, add code to detect the browser you use in your organization and
employ the correct display mechanisms for that browser type.

=ncordla International

Hands.Dn Training
N

Welcome to the Concordia Intranet site. This site is designed to provide you with the
information you need to work efficiently at Concordia International. Regardless of what

------ type of job you do or which location you work at in the company, you11 find this
.. Outlook 2000

Hands-on Training

.. 401K Signup

Period Ends
Tomorrow

information valuable. We've designed this site as a way to find the latest information on
the corporation as well as schedule training courses and access HR information.

If you are:

Seerchlng for training. then you'll want to take a look at our calendar of events web
site. This web site allows you to find the different events by event type happening
throughout the corporation. If you want to add cpntent to this calendar of events
website, please use the MicrosQft Outlook client. For more information on Micrdsoft
Outlook, please visit http:Uwww.microsoft.comloutiook This site contains useful
information for both the novice as well as advanced Outlook user.

Figure 12·32. The Intranet NeWs application in Internet Explorer. The application
scrolls news and information on a corporation's intra net site and pulls the informa­
tion dynamically from an Exchange Seroer Public Folder.

505

Pari III

Setting Up the Application

506

Before you can install the application, you must have a Windows NT 4.0 Server or
Windows 2000 Server and a client with certain software installed. Table 12-4 describes
the installation requirements.

Required Software

Exchange Server 5.5 Service
Pack 1 with Outlook Web
Access

lIS 3.0 or higher with Active
Server Pages

CDO library Ccdo.dll)
CDO Rendering library
Ccdohtml.dll)

For the client:
A Web browser or Outlook

InstaUation Notes

Service Pack 3 is recommended.

lIS 4.0 is recommended.

Exchange Server 5.5 Service Pack 1 installs
CDO library 1.21 and CDO Rendering library
1.21. Outlook installs CDO Library 1.21.

You can run the client software on the same
machine or on a separate machine.

Table 12-4. Installation requirements/or the Intranet News application.

To set up the Intranet News application, you first need to install the applica­
tion. Copy the Intranet News folder from the companion CD to your Web server
location where you want to run the application.

Start the IIS administration program. Create a virtual directory that points to the
location where you copied the Intranet News files, and name the virtual directory
exchnews. Enable Execute permissions for the virtual directory. This allows you to
use the following URL to access your intranet news site: http;llyourservernamel
exchnews.

NOTE If you use a different virtual directory name, you will have to edit the file
virtrootinc accordingly.

Included with the Intranet News files is a file named Exchnews.pst. Make sure
the Read-Only flag for this file is unchecked. Launch Outlook and, from the File menu,
point to Open and then choose Personal Folders File c.pst). In the Open Personal
Folders dialog box, select the Exchnews.pst file, and click OK. In the Outlook Folder
List, expand the Exchange Intranet News file folder. While holding the Ctrl key, copy
the Exchnews folder to All Public Folders.

NOTE You must install the Exchnews folder to All Public Folders or the appli­
cation will not work. If you cannot install the application there, you can modify
the code contained in the Intranet News application so that it looks for the folder
in another location, or you can retrieve the folder by using its EntrylD.

Chapter 12 Collaboration Data Objects

Right-click on the Exchnews public folder and select Properties. Click on the
Permissions tab, and give the Anonymous user Read Items permissions. If you want
the folder to be moderated, click on the Administration tab and then click the Mod­
erated Folder button. Fill out the information in the Moderated Folder dialog box.
Any new items sent to the folder will first be sent to the moderators you select.

To make it easier for you and your users to e-mail information into the Exchnews
public folder, you can enable displaying the folder in the Global Address List (GAL).
To do this, launch the Exchange Administrator program. Expand the Folders tree and
then the Public Folders tree. Select the Exchnews public folder. Choose Properties
from the File menu, click on the Advanced tab, and uncheck the check box named
Hide From Address Book. Click OK.

To enable the Intranet News application to anonymously access the Exchnews
folder, expand the Configuration tree for your Exchange Server site while still in the
Exchange Administrator program. Select the protocols icon, and then double-click
HTTP (Web) Site Settings in the right pane. Make sure that the check box named Allow
Anonymous Users To Access The Anonymous Public Folders is checked. Then click
on the Folder Shortcuts tab. Click New, and select the Exchnews public folder in the
tree. Click OK twice.

You're finished. You can now add news to the Exchnews public folder. Test it
from the URL http://yourseniername!exchnews.

Anonymous Logon

The Intranet News application uses the anonymous logon capabilities of the CDO
library because the application does not require people to authenticate before being
able to read the news ticker on the site. The way anonymous access works in the
CDO library is that Exchange Server supports a new anonymous user permission
feature, which allows you to set the permissions for all users who access the server
anonymously. By using this feature, you can set whether anonymous users can cre­
ate, delete, read, or modify items in folders.

Developers typically forget that when they set up the application, they need to
actually publish the folder as an anonymous folder using the Exchange Administra­
tor program. Even though you might give users anonymous access to the folder, the
folder will not appear in the anonymous Public Folder hierarchy through CDO.
Exchange Server has a very good reason for making you take this explicit step to pub­
lish the folder anonymously: you probably do not want anonymous users browsing
through your Public Folder hierarchy. Exchange Server keeps a list of the published
anonymous folders in the Exchange Server directory so that ytm can retrieve them
by using the CDO Rendering library, as you'll see in the next section.

The Intranet News application logon is different from the previous two logon
methods we've seen because it uses anonymous logons. Instead of storing the CDO

507

Part III Collaboration with Microsoft Exchange

508

session in an ASP session variable, as in the Calendar of Events application, the Intranet
News application stores the CDO session in the Application object so that you can keep
sessions for different users distinct. You want to keep the sessions separate because
your users are operating in different security and configuration contexts.

With anonymous access, all users are treated in the same way. They have the
same security context and are not id~ntified individually by CDO. Anonymous access
assumes you do not care when an anonymous user logs on or logs off, because these
processes are not unique to the individual user. Therefore, to increase performance,
the application stores a valid anonymous CDO session in the ASP application scope
and makes all users who access the application share this session.

One more issue to consider for anonymous users is that they cannot access
folders other than Public Folders. This means that a user cannot access a mailbox when
logging in using the anonymous method. Instead, the user is allowed to access only
the published list of Public Folders that you set up in the Exchange Server Adminis­
trator program.

When a user logs on anonymously, you call the Logon method of the CDO
Session object, which is the same method you call to authenticate a user. However,
instead of passing in the server name and the mailbox as the profile information, you
must pass in the Exchange Server enterprise name, the site name, and the configura­
tion container; the server's container; and the server name. For example, if your Ex­
change Server organization was CompanyABC, your site was New York, and your
server name in that site was Exchangel, the profile information would look like this:

/o=CompanyABC/ou=New York/cn=Configuration/cn=Servers/cn=Exchangel

You do not have to hard-code the Exchange Server organization and site
information into your applications. Instead the CDO Rendering library allows you
to query this information dynamically from the registry or from the Exchange Ser­
ver directory service in your application. This query is accomplished by using the
LoadConjiguration method on the RenderingApplication object and then calling the
ConfigParameter method.

The first thing you must do when logging a user on anonymously is retrieve
the enterprise, site, and server name from the Microsoft Windows registry. You can­
not call the LoadConjiguration method with the Exchange Server directory as the
source without first retrieving the necessary information from the registry because
CDO must know which directory server to read the requested information from. This
step is accomplished in the following code:

Dim objRenderApp
Set objRenderApp= Application("RenderApplication")
'I means load configuration from the registry
objRenderApp.LoadConfiguration 1. _

"HKELLOCAL_MACHINE\System\CurrentControlSet\Services\" & _

Chapter 12 Collaboration Data Objects

MSExchangeWeb\Parameters"
If Not ReportError(_
"RenderingApplication.LoadConfiguration from registry") Then

bstrEnterprise= objRenderApp.ConfigParameter("Enterprise")
bstrSite objRenderApp.ConfigParameter("Site")
bstrServer objRenderApp.ConfigParameter("Server")

End If

Next you create the profile string, which specifies the anonymous account you
want the user to log on as, and create a valid CDO object. Then, you must call the Logon
method to actually create an anonymous session with the Exchange server. The fol­
lowing code implements these steps:

bstrProfilelnfo = "10=" + bstrEnterprise + "Iou=" + bstrSite + _
"/cn=Configuration/cn=Servers/cn=" + bstrServer + _
vbLF + "anon" + vbLF + "anon"

Err.Clear
Set objAMSessionl = Server.CreateObject("MAPI.Session")

If Not ReportError("create MAPI.Session") Then
Set objRenderApp= Application("RenderApplication")
Err.Clear
objAMSessionl.Logon '"", "", False, True, 0, True, bstrProfilelnfo

Now you have an anonymous session with the Exchange server. However, you
must remember to not only store the anonymous session object so that you can share
it throughout your ASP application, but also to store the security context handle for
the anonymous user session so that when your ASP application ends, CDO can kill
the current anonymous sessions cleanly. The following code implements storing the
security context handle in an Application scope variable:

If Not ReportError("Anonymous Logon") Then
Set Application("AMAnonSession") = objAMSessionl
Application("hlmp") = objRenderApp.lmpID

lIS will call the following code, taken from Global.asa, when ending the ASP
application to impersonate the correct security context for the anonymous session,
and then it will set the Application variable for the anonymous session to Nothing:

Sub Application_OnEnd
Set objRenderApp = Application("RenderApplication")
hlmp = Application("hImp")
If Not IsEmpty(hlmp) Then

objRenderApp.lmpersonate(hlmp)
End If
Set Application("AMAnonFolders")= Nothing
Set Application("AMAnonSession")= Nothing
Set Application("RenderApplication") = Nothing

End Sub

509

Part III Collaboration with Microsoft Exchange

After logging on, your application should attempt to open the Public Folder store
to make sure that the anonymous logon was successful. The easiest way to find the
Public Folder store with an anonymous logon is to scroll through the InfoStores
collection and use the property PR_STORE_SUPPORT_MASK (&H340D0003). This
property contains a bitmask of flags that describe the characteristics of an InfoStore
object. One of these flags, STORE_PUBLIC_FOLDERS (&H00004000), identifies a
Public Folder store. The following code shows you how to use these properties to
find the Public Folder store in your anonymous logon:

For i = 1 To objStores.Count
Set objStore = objStores.Item(i)
'PR-STORE_SUPPORT_MASK
lMask = objStore.Fields.Item(&H340D0003)
'Err.Clear
'STORE_PUBLIC_FOLDERS
If lMask And &H00004000 Then

Exit For
End If

Next

Retrieving the Folder and Messages

510

The next step in the application is to find the Exchnews public folder in the published
Public Folder list, access the messages the folder contains, and render the messages
to the Internet Explorer 4.0 marquee control. To access the Exchnews folder, you first
need to retrieve the list of published Public Folders for anonymous users. To do this,
you use the same method that we used to access the enterprise and site information,
the LoadConjiguration method. This time, however, we pass as a parameter the
number 2, which indicates that we want to load the information from the Exchange
Server directory rather than from the registry. Once CDO loads the information from
the directory, we can use the ConfigParameter method to retrieve specific parame­
ters from the Exchange Server directory. One of these parameters is the list of anony­
mously published Public Folders. This list is returned as a string array of EntryIDs
for the anonymous Public Folders. The following code implements this process:

'2 means load configuration from the Exchange Server Directory
objRenderApp.LoadConfiguration 2. ""
If Not ReportError(_
"RenderingApplication.LoadConfiguration from OS") Then

amFolders = objRenderApp.ConfigParameter(_
"Published Public Folders")

We then must add two items to the list of anonymous folders: a dummy folder,
which represents the root of all the public folders; and an InfoStore object, which
represents the Public Folder store. Even though we will not use either of these items
in this application, you should do this whenever you are accessing anonymous folders

Chapter 12 Collaboration Data Objects

using an anonymous logon. These two items allow the CDO Rendering library to
correctly render the anonymous Public Folder information store. If you do not add
these items, you might receive an error, or your folder hierarchy might look incor­
rect when rendered. The code for adding these items takes advantage of dynamic
arrays in VBScript, as you can see in this snippet of code:

iFolderCount = UBound(amFolders)
ReDim Preserve amFolders(iFolderCount + 2)
'To the list of folders. add two things:
'a name for the pseudofolder we're making up ...
amFolders(iFolderCount + 1) = "Public Folders"
'and a store interface so that the renderer can get
'data from the folders
Set objStores = objAMAnonSession.lnfoStores
For idx = 1 To objStores.Count

Set objStore = objStores.Item(idx)
'PR_STORE_SUPPORT_MASK
lMask = objStore.Fields.Item(&H340D0003)
'STORE_PUBLIC_FOLDERS
If lMask And &H00004000 Then

Set amFolders(iFolderCount + 2)
Exi t For

End If
Next
Application("AMAnonFolders")= amFolders

objStore

Now that we have the correct list of items in the array for all the anonymous
Public Folders, we need to find the Exchnews public folder. Scroll through the array
of folder EntryIDs, retrieve each folder, and then check the name of the folder against
the literal "Exchnews". When we find the Exchnews folder, we should break out of
the loop because hundreds or thousands of anonymous Public Folders could be
available. As you can see in the following code, when the Exchnews folder is found,
the folder is set to an object variable, its Messages collection is retrieved, and, using
the Sort method on the Messages collection, the items are sorted in descending or­
der so that the most recent messages are moved to the top of the Internet Explorer
marquee control.

If CheckAMAnonSession Then
Set objAMAnonSession= Application("AMAnonSession")

End If
If CheckAMAnonFolders Then

amFolders= Application("AMAnonFolders")
End If
For iFolder = LBound(amFolders) to (UBound(amFolders) - 2)

'amFolders is an array of folder IDs.
'Get the folder 10 of the Exchnews public folder.

(continued)

511

Part III with Microsoft IElf~hiah

Set objFolder= objAMAnonSession.GetFolder(amFolders(iFolder), _
NULL)

if objFolder.Name = "Exchnews" then
exchnewsid = amFolders(iFolder)
exit for

end if
Next
set objFolder = objAMAnonSession.GetFolder(exchnewsid,NULL)
set objMessages = objFolder.Messages
'Sort the messages descending so that newer messages are at the top
objMessages.Sort 2

Displaying the News Items

512

Once we have retrieved and sorted the items in the folder, we need to put the items
into the marquee control. Suppose some users want to categorize their news items so
that the items can be read in context. For example, the human resources department
might want to submit items to the folder that represent different human resources
offerings, which can be broken down into categories such as benefits, work and life
balance, and training. Human resources might also want to include a banner on the
screen before these messages appear to tell users which category the news corre­
sponds to. To implement this sorting, the application uses the Categories property
on Outlook messages. A user can assign a single category to a news item, and the
application will display the selected category in the marquee control. If the user does
not enter a category for the item, the application automatically displays the item as
a general news item.

The application automatically detects as newer items any items entered into the
news system within seven days of the current date. To highlight all new items in
the Public Folder, these items receive a new graphic next to their text.

The next chunk of code implements all of this. To scroll through all news items
in the folder, the application uses a For ... Each loop on the Messages collection for
the folder. The application then checks the Categories property on the item to see
whether any categories exist. (Remember that the Categories property is an array of
strings, and to access an individual member, you must specify the index using the
following syntax: objMessage.CategoriesOCIndex).) The application then checks the
date of the message, and if the message was received within the last seven days, the
application adds the new graphic to the item. The marquee control also has hyperlinks
to the messages. When the user holds the mouse pointer over a hyperlink or holds
the mouse button down while the mouse pointer is over the marquee, the control
will stop scrolling so that the user does not have to chase the hyperlinks and can read
the text.

Chapter 12 Collaboration Data Objects

(TO WIDTH="20%" VALIGN="Top")
(MARQUEE DIRECTION=UP ID="Marquee" BEHAVIOR=SCROLL SCROLLAMOUNT=10
SCROLLDELAY=500 TITLE=
"Hold the mouse down or over an item to stop the News Ticker."
ONMOUSEDOWN="this.stopC);"
ONMOUSEUP="this.startC);")
(% for each objMessage in objMessages %)

(DIV CLASS=big)
(%
on error resume next
strCatName = objMessage.Categories(0)C0)
if strCatName "" then

strCatName = "General"
end if
%)
(%=strCatName%) News(/DIV)
(hr)
(a href="details.asp?id=(%=objMessage.ID%)"
ONMOUSEOVER ="this.style.textDecorationUnderline=true;
document.all['Marquee'].stopC)"
ONMOUSEOUT="this.style.textDecorationUnderline=false;
document.all['Marquee'].startC)")
(% if CdatediffC"d". objMessage.TimeReceived. DateC» (= 7) then %)

(img src="newicon.gif" border=0 align="center")
(% end if %)
(FONT FACE="VERDANA. ARIAL. HELVETICA" SIZE="2")
(%=objMessage.Subject%)
(fFONT>
(fa)
(P)

(% strCatName
next %)

Reading the Details of a Specific News Item
Every news item scrolled through the marquee has a hyperlink to the file details.asp.
The details. asp file allows the user to drill into the specifics of a news item and to
see any rich text, attachments, or hyperlinks that the author of a news item entered
into the Outlook message sent to the Exchnews public folder. This information is
rendered to the browser by using the CDO Rendering library. An example of a details
page for an item is shown in Figure 12-33. Compare it to the same details page pre­
sented as an Outlook message, shown in Figure 12-34.

513

Part III Collaboration with Micro$oft I!§:Vr.cItii:#1Iil'Ilil'I#1I

514

iconcordia Int~~

• From Hands-on Training News: Outlook 2000
Back to In"",et H antis-on Training

The Internal Training Group is happy to bring you hands-on training for Microsoft
Oullook. To attend this training, you must read the Word and Powerpoint

documents shown below.

For more information, please visit http://training/Outlook%202000

~he Outlook Object Model.doc ~lntro to Oulook 2000.doc ~Olltlook 2000 Overvlew.ppt

Figure 12-33. The details of the intranet news item include rich text, hyperlinks, and
attachments.

Internal Training Group is happy to bring you hands-on training
Microsoft Outlook. To attend this training, you must read the

and Power Point documents shown below.

more information, please visit htt~:!ltraining/Outlook%202000

Intra to Oulook Outlook 2000
2000.doc Overview,ppt

Figure 12-34. The item in Figure 12-33, shown as an Outlook message. Notice how
the Web and Outlook versions look almost identical. This is due to the CDO Rendering
library's automatic conversion of rich text to HTML.

The Calendar of Events and Intranet News applications use similar code to
render information to the Web user, but the Intranet News application uses the CDO
Rendering library in a slightly different way. In the Calendar of Events application,

\j

Chapter 12 Collaboration Data Objects

the HTML generated by the CDO Rendering library is added to the Response object
of the ASP object model. In the Intranet News application, the HTML produced is not
added to the Response object but rather is placed into a string so that the applica­
tion can modify the HTML before it is presented to the user. This modification replaces
the generic paper-clip icon that CDO automatically renders for all attachments with
the specific application icons for Microsoft Office products. You will see how this
functionality is achieved a little later.

Before attempting to render the details of the news item to the browser, we first
need to change the virtual root of the Rendering application. If we do not change
this root, all virtual roots in the rendered hyperlinks will point to the IExchange vir­
tual root. Then we have to create an object renderer because we will be rendering
two specific properties on the item: the subject and the message body. The follow­
ing code shows you how to accomplish these tasks:

'Change the virtual root for the rendering application
Set objRenderApp = Application("RenderApplication")
objRenderApp.VirtualRoot = virtroot
'Create an object renderer
set objObjRenderer = objRenderApp.CreateRenderer(2)
objObjRenderer.OataSource = objMessage

To create the page, we have to render the rich-text message body into a string.
To do this, instead of passing a Response object to the RenderProperty method, we
set a string variable equal to the RenderProperty method, as shown here:

'Render the HTML into a string
strHTML = objObjRenderer.RenderProperty(ActMsgPR_RTF_COMPRESSED. 0)

Now that we have the HTML that the CDO Rendering library would normally
display in the browser, we need to check to see whether the message has any attach­
ments. If it does, then we need to scroll through the HTML and change the image
source to point to the Microsoft Word, the Microsoft Excel, or the Microsoft PowerPoint
icons instead of the generic paper-dip icons. The following code shows how to check
for attachments in the message by using the Attachments collection and Count property:

set oAttachments = objMessage.Attachments
intAttachCount = oAttachments.Count
if intAttachCount > 0 then
'Need to find .any Office documents by using the extensions

If there are attachments, we need to scroll through the attachments to deter­
mine what type of document they are. This is where the code gets into manipulat­
ing strings, and the degree to which it's confusing depends on how well you know
the string functions in VBScript! I built this code so that you can add your custom
extension and image types to it, which enables documents to be displayed with their
specific icons rather than with generic icons. If the code does not find the text for

515

ParI III

516

the application in the document, it leaves the generic icon. Following is the code for
replacing the images in the message text of an item for Word documents. The code
for PowerPoint and Excel attachments is very similar and can be found in the code on
the companion CD:

'Find all the Word documents
found = 1
Do while (found <> 0 or found <> Null)

found = instr(found, strHTML, ".doc")
if found <> 0 then

strIcon = "Iword.gif"
rev found = instrrev(strHTML, "generic.gif", found)
newstrHTML = Replace(strHTML, "generic.gif", strIcon, _

revfound,l)
origstrHTML = Left(strHTML, revfound-l)
strHTML = origstrHTML & newstrHTML
found = found + 1

end if
Loop

This code sets a variable named found equal to 1. The variable is used as the
starting point for the string and also as a Boolean for the Do ... While loop, which
parses the string. The Do ... While loop searches through the string until no .doc
extensions representing Word documents are found or until the InStr function returns
a Null value, which would indicate that the source or string being searched for is
Null-in other words, some weird condition has occurred in string processing. When
searching through the string, the application knows that the CDO Rendering library
always follows the .doc extension with an ending hyperlink tag. Adding to the
search string almost guarantees that the search will not return random .doc strings
in the text of the message.

If the application finds a location where the .doc</ A> string occurs, the appli­
cation uses the InStrRev VBScript function to perform a reverse lookup from the
location of .doc</ A> back through the string to the word documents corresponding
to the generic paper-clip icon. (The CDO Rendering library will always use the
generic.gif image for attachments because this image is hard-coded for use in the CDO
code.) The code then uses the Replace function of VBScript and replaces generic.gif
with the Word icon. The final parameter for the Replace function, 1, tells the code to
replace only one instance of generic.gif in the string. This stops VBScript from going
through the entire string and replacing all references to generic.gif.

You might be wondering why the code then takes the leftmost portion of the
string up to the point where the new image string was replaced. The reason is that
the Replace function does not return the entire string after making the replacements.
Rather, this function returns from the point where the replacement started to the end
of the string. This means that our HTML string is now missing its entire left-hand

Chapter 12 Collaboration Data Objects

portion up to the point where we replaced the image. For this reason, the code
combines the return value from the Replace function with the return value from the
Left function to re-create the original string with our new replacement. Then the code
increments the found variable so that we do not enter into an infinite loop, finding
the same .doc extension at the same point in the string.

To render the final HTML string that we create, the application calls the Write
method on the Response ASP object to send the string as HTML to the browser. The
code also uses the RenderProperty method of the CDO Rendering library to display
the subject of the news item from the message, as shown in the following code:

<td width="98e" height="422" valign="top" rowspan="3" align="center">
<p><hl>From <%=Request.QueryString("cat")%> News: <!B>
<! --
Render the Subject
-->
<I><%objObjRenderer.RenderProperty ActMsgPR-SUBJECT. e. Response%>
<II></hl></p>
<U>Oetails:<P></U>
<! --
Render the body with our replacements
-->
<%response.write strHTML%>

CDO VISUAL BASIC APPLICATION
The last application we will look at is a CDO application built USing Visual Basic. This
application allows users to log on to their Exchange server using CDO, query the
server for other users, and retrieve information about those users. This application
shows you how to program CDO with Visual Basic, which is different from program­
ming CDO with VBScript and ASP. This application also shows you how to use the
AddressEntryFilter object. Figure 12-35 shows the application in action.

Figure 12-35. The CDO Visual Basic application.

517

Part III

Setting Up the Application

Before you can install the application, you must have a Windows NT 4.0 Server or
Windows 2000 Server and a client with certain software installed. Table 12-5 describes
the installation requirements.

Software Requirements

Exchange Server 5.5 Service
Pack 1

CDO library (cdo.dll)

For the client:
Outlook

InstaUation Notes

Service Pack 3 is recommended.

Exchange Server 5.5 Service Pack 1 installs
CDO library 1.21. Outlook installs CDO li­
brary 1.21.

Table 12-5. Installation requirements/or the CDO Visual Basic Application.

To install the CDO Visual Basic application, run the Setup.exe file in the CDO
VB folder on the companion CD and follow the instructions.

Programming CDO with Visual BaSic

518

The main differences between programming CDO with VB Script and ASP and
programming CDO with Visual Basic is that Visual Basic allows you to use early
binding of objects in the CDO library. By declaring your variables as a specific type
of object, the variables will be bound early. For example, in Visual Basic, you can
use the Dim statement to declare a variable as a CDO Session object by using the
following statement:

Dim oSession as MAPI.Session

Once you declare a variable, you can take advantage of some of the powerful
features of the Visual Basic development environment, such as Auto List Members,
which lists the available properties and methods for an object, and Auto Quick Info,
which displays the syntax for a statement. For example, if in the code window you
start typing the name of the oSession variable and then the dot operator 0, Visual
Basic will automatically display the properties and methods for the CDO Session
object. Also, using early binding allows your application to execute faster. This is
because the binding takes place at compile time rather than at run time. VBScript and
ASP cannot use early binding and therefore always default to late binding when
creating objects.

To use CDO in Visual Basic, add a reference to the CDO library. By adding this
reference, you can declare variables of a specific CDO type in your code, and you
make the CDO objects appear in the Visual Basic object browser. You use the object

Chapter 12 Collaboration Data Objects

browser to view information about libraries, such as properties, methods, events,
constants, classes, and other information.

To add the reference to the CDO library, in Visual Basic select References from
the Project menu. Scroll down until you find Microsoft CDO 1.21 library, and add a
check mark next to it. If you want to add a reference to the CDO Rendering library,
add a check mark next to Collaborative Data Objects Rendering Library 1.2, and click
OK. Now you can take advantage of early binding with your CDO objects, and the
CDO library will be available in the Visual Basic object browser. Most of the time,
you will not use the CDO Rendering library in your client-based applications. Instead,
you will use this library in your Web-based applications.

Logging On the User
As we have discussed throughout this chapter, you cannot create any other objects
in the CDO library without first creating a CDO Session object and successfully log­
ging on with that Session object. Because we are developing a Visual Basic applica­
tion, we do not have to worry about a Global.asa file or authenticating the user-CDO
will leverage the Windows NT credentials of the user currently logged on. This
makes logging on as a user much easier, as you can see in the following authen­
ticated logon code:

Dim oRecipients As MAPI.Recipients
Dim oRecipient As MAPI.Recipient
Dim oInfoStores As MAPI.lnfoStores
Dim oInfoStore As MAPI.infoStore
Dim oInbox As MAPI.Folder
Dim boolUseCurrentSession. boolLogonDialog
Private Sub cmdLogon_Click()

On Error Resume Next
Err.Clear
'Check to see whether user wants to use a current session.
'If so. piggyback on that session.
If boolUseCurrentSession = 0 Then

If (txtServerName.Text <>) And _
(txtAliasName.Text <>) Then

strProfileInfo = txtServerName & vbLf & txtAliasName
oSession.Logon NewSession:=True. NoMail:=False. _
showDialog:=boolLogonDialog. ProfileInfo:=strProfileInfo
strConnectedServer = .. to .. & txtServerName.Text

Else
MsgBox "You need to enter ~ value in the" & ~

"Server or Alias name _
vbOKOnly + vbExclamation. "COO Logon"

Exit Sub
End If

(continued)

519

Pari III Conaboration with Microsoft Exchange

520

Else
oSession.Logon NewSession:=Fa1se, showDia10g:=boo1LogonDia10g
strConnectedServer = ""

End If
If (Err.Number <> 0) Or _
(oSession.CurrentUser.Name = "Unknown") Then

'Not a good logon; log off and exit
oSession.Logoff
MsgBox "Logon error!", vbOKOn1y + vbExc1amation, "CDO Logon"
Exit Sub

End If

'Check store state to see whether online or offline
Set oInbox = oSession.Inbox
strStoreID = oInbox.StoreID
Set oInfoStore = oSession.GetInfoStore(strStoreID)
If oInfoStore.Fie1ds(&H6632000B).Va1ue = True Then

strConnectedServer = " Offline"
End If

'Enable other buttons on the form
cmdLogoff.Enab1ed = True
cmdLogon.Enab1ed = False
txtUserName.Enab1ed = True
cmdSearch.Enab1ed = True
cmdViewAB.Enab1ed = True
1b1UserName.Enab1ed = True
'Change the label to indicate status
1b1Connected.Caption = "Connected" & strConnectedServer _

& " as " & oSession.CurrentUser.Name
End Sub

To support early binding, a number of variables are declared as specific CDO
object types. The code tries to log on to the Exchange server by using the CDO Logon
method. Unlike the ASP code we saw earlier, in this code we can leverage existing
sessions between the client and the Exchange server rather than always create new
sessions. The user can enable this functionality by checking the Use Existing
Exchange Session check box. (See Figure 12-35.) The existing session, typically an
Outlook client session, is used by CDO to connect to the Exchange server.

After the user logs on, the code finds the InfoStore object associated with the
user's mailbox. The Fields collection on InfoStore is used to look up a specific prop­
erty, PR~STORE_OFFllNE (&H 6632000B), which contains either True or False; True
indicates that the current InfoStore is an offline replica. The value for this property
is used in the status text, which indicates the connection state of the user, as shown
in Figure 12-36.

Chapter 12 Collaboration Data Objects

Figure 12-36. If the user is working offline, the connection status message displays
this information.

Finding the Details of the Specific User

After logging on, the user can type in a name in the User Name text box. The name
entered is used by the application to search the directory or distribution list. The search
is implemented by using the AddressEntryFilter object in the CDO library. The
AddressEntryFilter object is similar to the MessageFilter object, which we examined
in the Calendar of Events application. The only difference between them is that the
AddressEntryFilter object is used with objects in the directory, and the MessageFilter
object is used with messages in a folder. Following is' the code that searches for the
user by using the AddressEntryFilter object and displays the results:

Private Sub cmdSearch_Click()
On Error Resume Next
'The On Error is to handle the user canceling the
'details dialog box
Err.Clear
If txtUserName.Text = "" Then

MsgBox "No User Specified", vbOKOnly + vbExclamation, _
"User Search"

Exit Sub
Else

Set oAddressList = oSession.GetAddressList(CdoAddressListGAL)
Set oAddressEntries = oAddressList.AddressEntries
Set oAddEntryFilter = oAddressEntries.Filter
oAddEntryFilter.Name = txtUserName.Text
If oAddressEntries.Count < 1 Then

MsgBox "No entries found", vbOKOnly, "Search"
ElseIf oAddressEntries.Count > 1 Then

MsgBox "Ambiguous entries found", vbOKOnly, "Search"
Else

Set oAddressEntry = oAddressEntries.GetFirst
oAddressEntry.Details

End If
End If

End Sub

This code gets the GAL, either offline or online, by using the GetAddressList
method on the Session object. It then instantiates an AddressEntryFilter object by using

521

Part III

the Filter property on the AddressEntries collection. To specify the condition for the
filter, the Name property on the AddressEntryFilter object is set to the name typed
in by the user. This name can be either the user's display name, such as Tbomas Rizzo
(Exchange), or the alias of the user, such as thomriz. CDO also supports direct
matches when you place the equal sign (=) before your text, as in =Tbomas Rizzo.

Once the filter is set, the code retrieves the count of the newly restricted
AddressEntries collection to determine how many AddressEntry objects were returned.
If more than one AddressEntry object was returned, the code displays an ambigu­
ous name error to notify the user that more specific criteria is needed. If less than
one AddressEntry object is returned, the code displays that no entries meet the cri­
teria of the user. If exactly one AddressEntry object is returned, the code uses the
Details method of the AddressEntry object to display the information about the directory
object, as shown in Figure 12-37.

Figure 12-37. The details page of an AddressEntry object. You can see not only the
name and alias of the user but also organizational information such as the manager
of the user.

Finally, a subroutine is included to handle the run-time error thrown by CDO when
the user clicks Cancel in the Properties dialog box displayed by the Details method.

CDO TIPS AND PITFALLS

522

The CDO library is powerful and approachable, but you can run into problems if you
aren't careful when writing your code. This section introduces some tips and tricks
you should use, and some pitfalls you should avoid. Many of the pitfalls I outline are
from personal experience-they are quite frustrating, so I recommend you read this
section before attempting to write any CDO code.

Chapter 12 Collaboration Data Objects

Avoid the GetNext Trap
Let's jump right in! Look at the following code and try to figure out what is wrong:

MsgBox oSession.lnbox.Messages.GetFirst.Subject
For Counter = 2 To oSession.lnbox.Messages.Count

MsgBox oSession.lnbox.Messages.GetNext.Subject
Next

The same subject will appear in your message box as many times as the num­
ber of messages in your Inbox. Despite what the code looks like, it won't recurse
through your Inbox, because if you don't explicitly assign an object to a variable, CDO
will create needed temporary objects for each statement and then discard the object
after the statement. This means that you will instantiate a new object every time you
loop in the For ... Next loop. Each new object does not maintain the old state of the
previous temporary object, so the object will always point to the first message in the
collection. So you should set explicit variables to refer to a collection to get the
desired functionality. The following listing shows the rewritten code, which behaves
as expected:

Set oMessages = oSession.lnbox.Messages
Set oMessage= oMessages.GetFirst
MsgBox oMessage.Subject
For Counter~ 2 To oMessages.Count

Set oMessage = oMessages.GetNext
MsgBox oMessage.Subject

Next

Avoid Temporary Objects, If Possible
Whenever possible, avoid the use of temporary objects, as demonstrated in the pre­
vious pitfall. Don't spend a lot of time scouring your code to get rid of temporary
objects unless you are a major offender of this rule. Sometimes you'll want to use
temporary objects to represent the different CDO objects rather than declare variables.
However, using temporary objects should be an exception and not a rule in your
coding practices.

Use Early Binding with Visual Basic
To improve the performance of your Visual Basic CDO applications, always try to
use early binding by declaring your CDO variables as specific CDO objects. Not only
will you find that .wrlting your code is easier because Visual Basic can perform type­
checking as well as help you finish statements in your code, but you'll also find that
your users will thank you for the application's improved performance.

523

Pari III Collaboration with Microsoft Exchange

Use With Statements
You use the dot operator to set a property, call a method, or access another object.
Essentially, each dot represents additional code that must be executed. If you can
reduce the number of dot operators in your code, you can improve performance of
your application. One way to do this is to use With statements. For example, con­
sider the following code snippet, which has no With statements and is inefficient both
from a performance perspective and an ease-of-reading perspective:

MsgBox "Text: " & oSession.lnbox.Messages.GetFirst.Text
MsgBox "Subj: " & oSession.lnbox.Messages.GetFirst.Subject

Now consider the next bit of code, which does use the With statement. This
code will execute faster:

With oSession.lnbox.Messages.GetFirst
MsgBox "Text: " & .Text
MsgBox "Subj: " & .Subject

End With

The rule of thumb is to think of dots in your code as expensive.

Avoid the Dreaded ASP 0115 Error
When writing CDO applications using ASP, the best tip I can give you is to use the
code from this book to handle your logons and logoffs from CDO and ASP sessions.
The most common pitfall that new and even experienced CDO developers run into
when writing ASP applications is forgetting to insert the correct impersonation code
into the Global.asa, which properly destroys the CDO and ASP sessions. When a user
attempts to access your Web application after lIS attempts to use the wrong context
to destroy these objects, the application returns the ASP 0115 error, which means that
a trappable error has occurred in an external object.

Avoid the MAPIE_FaiiOneProvider
or CDOE_FaiiOneProvider Error

524

The final pitfall that I can help you avoid in your ASP applications is the CDOE]ail­
OneProvider error, which occurs when you try to access the root folder of the Pub­
lic Folder InfoStore object or a folder in the mailbox of a specific user. Many
developers have run into this error, especially those who are new to ASP program­
ming. The common cause of this error is not changing the security context that lIS is
using to access the Exchange server by authenticating the Web user using either
Windows NT Challenge/Response authentication or Windows NT Basic authentica­
tion. Therefore, the Web user is trying to access the root of the Public Folder store
or a user's mailbox using the Windows NT credentials of the anonymous lIS user

Chapter 12 Collaboration Data Objects

account. Frequently this anonymous account doesn't have security permissions to
access the Exchange server. When this is the case, CDO returns CDOE_FailOneProvider
to indicate an error in accessing the information.

The easiest way to solve this problem is to use the logon and logoff code from
the examples in this book. These examples, especially the Helpdesk application,
authenticate users by prompting them for their Windows NT credentials before
attempting to access any Exchange Server information.

Learn Your Properties and Their IDs Well
As you have seen throughout the chapter, many of the objects in the CDO library
support the Fields property. The Fields property returns a Fields collection, which
allows you to find custom and built-in properties using identifiers supplied by either
Exchange Server or MAPI. One of the most powerful yet elusive features is this set
of Exchange Server and MAPI properties. These properties allow you to perform
operations on Exchange Server and Outlook items in situations wl;tere CDO does not
provide objects. For example, in the Helpdesk application, user information is pulled
out of the AddressEntry property by using the unique identifiers for department name,
office location, and other properties. If you did not know these properties existed,
you would think that their information was inaccessible from CDO because CDO does
not provide explicit objects for them.

Another scenario illustrating why these unique properties are valuable is that
of setting up folders to work offline. The documentation on this process is hard to
find, but MAPI provides a property called PR_ OFFliNE_FLAGS (&H663D0003), which
contains a zero (0) if the folder is not currently set to synchronize offline and a 1 if
it is. By using this property, you can programmatically set any folder in the mailbox
of a user to synchronize offline-the user does not have to set synchronization
manually through Outlook. If this field does not exist in the Fields collection already,
you will need to add it to the collection by using the Add method.

The best place to fmd the information about the properties you can use with
the Fields collection is in the CDO help file under "MAPI Property Tags," or in the
Platform Software Development Kit (SDK) section of the MSDN Library under "Data­
base and Messaging Services," "Messaging API (MAPI)," "Reference," and then "MAPI
Properties." For Exchange Server properties, look in the MSDN Library and perform
a keyword find on the Index tab for "Microsoft Exchange Server Message Properties."
All of these properties combined can provide new functionality to your applications,
even though CDO may not provide explicit objects for this functionality.

525

Chapter 13

The Event
Scripting Agent

One of the most important additions to Microsoft Exchange Server 5.5 and Exchange
Server application development is the Microsoft Exchange Event Service and Event
Scripting Agent technology. This technology allows developers to write custom scripts
or custom agents to capture and respond to events generated by Exchange Server
folders. It extends the possibilities for what you can develop on the Exchange pl~t­
form-from automated administrative tasks to sophisticated workflow applications.
In this chapter, you will learn about the architecture of the Exchange Event Service,
how to set it all up, and how to develop your own agents and applications that take
advantage of the technology.

ARCHITECTURE OF
, , '~'

THE EXC"ANG, EVENT SERVICE
The Event Service is implemented as a Microsoft Windows NT service that receives
notifications from server-based folders about the state of folder items. The service
architecture is structured like this: the service~vents.exe-passes events, such as
the creation of a new message in a folder, to the correct event handler-an agent­
with some information about the source of the event, the message, and the folder
that caused the event. This architecture is shown in Figure 13-1.

527

Pari III Collaboration with

528

Agents

Exchange Event Service

Figure 13-1. Architecture o/the Exchange Event Service.

How does the Event Service know when an item is added, changed, or deleted
in a particular folder? The Event Service is built on the same technology that Microsoft
Oudook uses to perform local replication from the Exchange server to your Oudook
client. This technology is called Incremental Change Synchronization (ICS). ICS allows
the client-in this case, the Event Service-to query the information store on the server
and request'information about all changes that have occurred in a particular folder
since the last synchronization. By using ICS, the Event Service never misses an event,
even if it is taken offline. When the Event Service goes back online, it will query for
any changes to the folders it is monitoring and then fire the correct events to the
corresponding event handlers for that folder.

The Event Service fires events when an item is added, changed, or deleted in
a folder, or according to time intervals. The events for adding, changing, and delet­
ingitems are self-explanatory, but the fourth event, the timer event, requires a little
bit more explanation. You specify intervals indicating when to fire the timer event.
These intervals can be hourly, daily, or weekly, depending on the needs of your
application-for example, every 15 minutes, every 3 hours, or every week on Mon­
day at 3:00 PM. In the application in this chapter, you will see how to use an inter­
val to check the status of items in a folder.

Chapter 13 The Event Scripting Agent

The items that cause these folder events can be of any message class. For
example, dragging and dropping a Microsoft Word document into a monitored pub­
lic folder will fire the new message event. Notice that I say public folder. The Event
Service can monitor only folders stored on an Exchange server. It will not monitor
folders stored on the local machines of users. So you can monitor events on public
folders and in user mailboxes if the user mailboxes are stored on an Exchange ser­
ver. If you are using. pst ftles to store the mail of your users, you cannot monitor them
for events. Most developers wonder whether .ost ftles are able to fire events because
they are also stored on the client. They can if a user synchronizes her .ost ftle using
the built-in capabilities of the Outlook client. When changes made in her .ost ftle are
replicated to the server, the Event Service can fire events on those changes.

Once the Event Service realizes a change has occurred, it fires an event. Then
it looks for a corresponding event handler in the folder. Associating an event han­
dler with a specific event and folder is called binding. The Exchange Event Service
ships with one prebuilt event handler, named the Exchange Event Scripting Agent,
that you can bind to events. As you would guess by its name, the Event Scripting Agent
is an event handler that allows you to write both Microsoft Visual Basic Scripting
Edition (VBScript) and]Script scripts to perform actions when specific events occur.
These scripts can automatically call Microsoft Collaboration Data Objects (CDO) func­
tions. The scripts are passed a pre-logged-on CDO session, which we'll learn more
about later in this chapter. From these scripts, you c;:an also call other COM compo­
nents such as ActiveX Data Objects (ADO), Active Directory Services Interfaces (ADS!),
or even your own custom COM components that are written using Microsoft Visual
Basic or Microsoft Visual C++.

NOTE In addition to developing your own custom components to call in scripts,
you can write your own event handlers. These custom event handlers must imple­
ment the IExchangeEventHandler interface as well as register themselves with
the COM category CATID_ExchangeEventSink. Custom handlers are beyond
the scope of this book. If you are interested in developing custom handlers, you
should look at the help file named Agents.hlp, which is included with Exchange
Server 5.5.

EVENT SERVICE CAUTIONS
The Exchange Event Service fires events asynchronously rather than synchronously
in the context of the Exchange Information Store, so the Information Store won't block
your event script or other processes or people from working on the items in the folder
if your script hasn't run yet. A user or another process, then, could delete, move, or
change an item before an event based. on the item is fired and your script is executed.
Your scripts will receive the proper events in this situation, but the items might not
be available. For this reason, don't use the Event Service to monitor folders such as

529

Part III Collaboration with Microsoft Exchange

your Inbox and Outbox that have very high volumes of items entering, leaving, or
being deleted. In these types of folders, the chances are greater that the user or the
rules engine on the server will move or delete the item before your script is run.

You shouldn't use the Event Service to provide a mechanism for "house rules"
either. House rules are general rules containing business logic that you want installed
on every folder in the system. Using the Event Service for a system that uses house
rules will bog down the Exchange servers running the Event Service because of the
high volume of messages generating events. Also, you would have to manually in­
stall the agent in every folder because the Event Service does not provide this capa­
bility. The Agent Install application discussed later in this chapter will help you get
around the problem of manually installing scripts into folders. The Agent Install pro­
gram will show you how to programmatically create and bind agents using the com­
ponents that ship with the Exchange Event Service.

SETTING UP THE EVENT SERVICE

530

Before starting to work with the Event Service and writing agents, you first must install
the service and get it running correctly in your environment. By default, the Event
Service is installed when you install Exchange Server 5.5. However, if you are
upgrading from a previous version of Exchange Server, you will need to add the Event
Service during installation.

By default, the Event Service logs on using the credentials of the Exchange
Service Account. While this account has permission to access many of the items stored
in the Exchange server, it has very limited Windows NT permissions. You might want
to change the Windows NT account under which the Event Service runs to change
the access this account has and to audit the account. To change the account, change
the Log On As settings in the Services applet of the Control Panel for the Microsoft
Exchange Event Service, as shown in Figure 13-2.

If you do change the Windows NT account for the Event Service, make sure
that the account you specify for the Event Service truly does have the Log On As A
Service permission set in the User Manager For Domains. Also, make sure the account
has the proper Exchange permissions so that it can access any of the mailboxes or
public folders where scripts will be installed. By default, the Event Service passes a
logged-on MAPI session to the Event Scripting Agent, so you do not have to write
the logon code in the script. But the Event Service will try to log on to resources using
the Windows NT account you specify for the service. If this Windows NT account
does not have the proper permissions, your scripting agent will not work. You can
set the permissions (such as Mailbox Owner and Send As permissions) for all neces­
sary resources in the Exchange Administrator program.

Chapter 13 The Event Scripting Agent

Figure 13-2. You change the Windows NT account that the Event Service runs under
by using the Service applet in the Control Panel.

In addition to setting up the Windows NT account that the Event Service will
run under, you must also give users permission to create agents. This is a two-step
process. First, you must give users permission to create and bind agents in the sys­
tem. This is accomplished by setting their permissions for a system folder named
EventConfig....servername, which is shown in Figure 13-3.

Figure 13-3. The EventConfig_servernamefolder isfound under the Events Root
system folder. You must set user permissions for this folder if you want users to write
agents.

Locate this folder in your Exchange Administrator program, and select Proper­
ties from the File menu. Click the Client Permissions button, and in the Client Per­
missions dialog box shown in Figure 13-4, add users or distribution lists and assign
them Author or higher permissions.

After you have assigned the proper permissions for the EventConfig....servername

folder, the second step of the process is to configure the folder. To do this, start
Outlook, right-click on a public folder or an Exchange Server folder, and select

531

Part III Conaboration with Microsoft Exchange

532

Properties. On the Agents tab, as shown in Figure 13-5, you can create, change, dis­
able, or delete agents in your folder. For the Agents tab to appear, you must be the
owner of the folder and the Server Scripting add-in must be installed. By default,
Outlook does not install the Server Scripting add-in. To install the Server Scripting
add-in, select Options from the Tools menu, click on the Other tab, click Advanced
Options, and then click Add-In Manager. Check the Server Scripting check box to add
the Agents tab to the folders where you have permissions to create agents.

Figure 13·4. In the Client Permissions dialog box, you assign users or distribution
lists permissions to write agents. You must assign Author or higher permissions to these
users before they can create agents.

Figure 13·5. The Agents tab for the Expense Reports public folder. You must have
appropriate EventConfig_servemame permissions, be an owner of the folder, and have
the Server Scripting add-in installed to see the Agents tab in Outlook.

Chapter 13 The Event Sc:ripting Agent

REGISTRY SETTINGS FOR SCRIPT AUTHORS
Before creating your scripts, you should review settings for a few keys in the regis­
try to optimize the debugging and control capabilities in your sCripts. Th~se modifi­
cations can lower the notification interval for IeS, making events fire faster, and can
also increase the amount of information saved to the Windows NT event log. Fol­
low these steps to review the script registry settings:

1. Open the Registry Editor (regedit.exe) on your Exchange server.

2. Locate the following key:

HKEY_LOCAL-MACHINE\System\CurrentControlSet\Serv;ces\
MSExchangeES\Parameters

This key has a DWORD named Logging Level. Logging Level speci­
fies how much information is written to the Windows NT Event Log. The
value for Logging Level ranges from 0 through 5, where 0 is the default
value. If Logging Level is set to 5, the maximum amount of information
is logged. Adjust the Logging Level value according to your preference.
Normally when I am developing scripts, I set Logging Level to 5.

3. DWORD Maximum Execution Time For Scripts In Seconds sets the maxi­
mum time a script can execute. befcn·e it is terminated. When develop­
ing sCripts that need to access data sources at other locations or on the
network, such as databases or host systems, you might want to bump
up the default value of 900 a bit so that your scripts are not prematurely
terminated.

4. DWORD Maximum Size For Agent Log In KB sets the log size for your
agents. The default value for this key is 32 KB. The log automatically
overwrites older events as necessary when this size is exceeded.

5. Locate the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Serv;ces\
MSExchangeIS\ParametersSystem

If the DWORD value Ies Notificatipn Interval does not already ex­
ist, add it and set the value to the m~mber of seconds between each les
notification to the Event Service. The default value is 60 seconds. How­
ever, for testing and production servers, you might want to lower this value
to shorten the length of an interval between a change in the store and the
Event Service being notified.

533

Part III Collaboration with Microsoft Exchange

WRITING AGENTS BY USING SCRIPTS

534

The fIrst step in writing scripts that run as part of the Exchange Event Service is to
create an agent that acts as the event handler for certain folder events. To reach this
interface, however, you are required to run certain versions of Outlook. To be a script
writer for the Event Service, you must be running Outlook 97 version 8.03 or higher.
The interface for creating new agents in Outlook is the Agents tab in the Properties
dialog box, which was shown in Figure 13-5. To create a new agent, follow these
steps:

1. Start Outlook 8.03 or a later version.

2. Right-click on a folder you own where you want to create an agent, and
select Properties.

3. Click on the Agents tab, which should be visible if you have the correct
permissions for the folder and the Server Scripting add-in is installed. At
the bottom of the Agents tab is a drop-down menu from which you se­
lect the Exchange server where you want to run your agents. Make sure
that the correct server is selected in the drop-down list. Only servers with
the Event Service installed will appear in this list. Note that all agents in
the folder will run on that Event Service computer. You cannot run agents
that are in the same folder on different Event Service computers. Your
agents don't have to run on the same server as the folders they monitor.

4. To create a new agent, click the New button. The New Agent dialog box
appears, as shown in Figure 13-6.

Figure 13-6. The New Agent dialog box. This dialog box allows you to pick the
events that your agent will fire on.

Chapter 13 The Event Scripting Agent

5. Type in a name for your agent.

6. Select the events that your agent will handle. To create a timer-based agent,
select the first option, named A Scheduled Event Occurs, and click the
Schedule button. The Scheduled Event dialog box appears, as shown in
Figure 13-7.

Figl.lre 13-7. The Scheduled Event dialog box allows you to configure sched­
uled events for your agents.

7. In the Scheduled Event dialog box, you can specify that the event should
fire hourly, daily, or weekly, as well as limit the hours when the event fires.

. Limiting the hours when your agent runs is useful if you want to make
the agent run when the server is least taxed, usually late at night or early
in the morning.

8. After specifying which events the agent should handle, select which ac­
tion will occur for those events. To do this, select either the Script option
or the Other option in the bottom half of the New Agent dialog box. The
Other option enables the drop-down list of custom event handlers installed
on the server. For example, if you have the custom event handler Exchange
Routing Objects installed, the Microsoft Routing Engine Agent will appear
in the list.

9. To create a new script, select the Script option, and click the Edit Script
button. Windows Notepad will automatically display an ASP file that con­
tains the event procedures to handle the four events supported in the Event
Service, as shown in Figure 13-8.

535

Part III Collaboration with Microsoft Exchange

[ON: This event is fired when a new .. essage is added to the folder
Sub Folder _OnNessageCreated

[0": This event is fired .men a m!'5sage in the folder is changed
Message_DnChange

[ON: This event is fired .hen a Rl!'5sage is delet, .. frolll the folder
Sub Folder _Onl'lessageDeleted

[ON: This euent 1s Fired tlhen the ti.er on the folder expires
Folder _OnTi .. r

Figure 13-8. A new script shown in Notepad. Notice how the new agent
automatically contains four event procedures to handle the four events sup­
ported by the Event Service.

Supported Event Types

536

As mentioned earlier, the Event Service supports four different event types: message
create, change, delete, and timer. To write a script that implements your functional­
ity for these events, you must modify these four default stub subroutines:

• Folder _ OnMessageCreated

• Message_OnChanged

• Folder _ OnMessageDeleted

• Folder_On Timer

When you write an Event Scripting Agent, you can also use JavaScript. In
JavaScript, these would be the four functions:

• Folder::OnMessageCreated

• Message::OnChanged

• Folder:: OnMessageDeleted

• Folder:: On Timer

Chapter 13 The Event Scripting Agent

Intrinsic Objects for Scripts
CDO, which you learned about in Chapter 12, contains the intrinsic object model for
your scripts. When you are writing agents, the Event Service passes you some objects
and variables that you can use to quickly figure out what item triggered the event
and in what folder the item is located. To help you access these items quickly as well
as access other Exchange Server items, the Event Service also passes you a pre­
logged-on CDO session so that you do not have to log on to the Exchange server
yourself. The intrinsic objects passed to your script by the Event Service are discussed
in the following sections.

EventDetails.Session
The EventDetails.Session object represents the pre-logged-on CDO session for your
script. The Event Service decides which identity to use for logging on to your script
by using the identity of the author who most recently saved the script. This is important
to consider for two reasons. First, the functionality of your application might depend
on access to specific items in the Exchange Server Information Store. If the identity
of the most recent author does not have access to this information, your script will
not work.

Second, any mail you send from your script will use the name of the pre-logged-on
CDO session because the Event Service is logging in as this user. The sent messages
will also be saved in the Sent Items folder of that user. For these reasons, consider
creating unique identities for your agents, and log on as these users to save your script.
For example, if you are creating an expense report application, you might want to
create a user named Expense Report Administrator and log on to your Exchange server
as that user. Then create and save your script using that identity. Any of the e-mail
sent by the agent will appear to be from the Expense Report Administrator rather than
from your personal account.

Since the CDO Session object is pre-logged-on, you can start accessing CDO
objects directly from the EventDetails.Session object. It is a good idea in your script to
assign the EventDetails.Session object to another variable for use throughout your script.

EvenfDefails.FolderlD
The EventDetails.FolderID variable contains the entry identifier of the folder that the
event took place in. By using this variable with the CDO GetFolder method, you can
quickly retrieve the correct folder for the event. Again, it is a good idea to assign this
variable to another variable in your script.

EvenfDefails.AfessagelD
The EventDetails.MessageID variable contains the entry identifier of the message that
triggered the event. By using this variable with the CDO Get Message method, you can
qUickly retrieve the exact message that the event corresponds to. Be aware, however,
that timer events do not pass an EventDetails.MessageID variable because no message

537

Part III Conaboration

triggers the event; rather, an elapsed amount of time triggers the event. Keep this in
mind when creating scripts, because an error related to EventDetails.MessageID for
a timer event can be hard to track down when debugging.

Instantiating Other COM Objects from Your Scripts

538

In addition to using the CDO object library in your scripts, you can call other COM
components by using the CreateObject method in VBScript. These components can
include server-based object libraries such as ADO for database access and ADSI for
directory access. You can even instantiate your own COM components developed
using Visual Basic or Visual C++. There are two primary requirements for custom COM
components to be used with the Event Service:

• The components must not have any user interface elements. Because the
Event Service is running on the Exchange server without an interactive user
at the keyboard, the component can't, for example, display dialog boxes
or error messages.

• The component must be programmed as an apartment-threaded component.

By remembering these two requirements, you can offload much of the work
in your scripts to your COM components and include only the necessary script to
instantiate your components. Furthermore, if you write COM components in Visual
Basic or another tool, debugging will be much easier for your application because
these tools provide richer debugging features than the Microsoft Script Debugger, as
we will see shortly.

To send errors from your component to the event script, use the Error.Raise
method in your component. For debugging purposes, use the arguments of the Raise
method to pass back the correct error number as well as the source and deSCription
of the error.

If your components instantiate other remote COM components, make sure to
configure Distributed Component Object Model (DCOM) correctly so that the
Windows NT account the Event Service is running under can correctly instantiate them.
You can modify the permissions for DCOM using the DCOM Configuration program
(dcomcnfg.exe).

In your objects, you can also create custom COM components that use the
features of Microsoft Transaction Server (MTS) to make the components more scal­
able and robust. For example, components created with MTS can handle process
isolation, security identity, resource pooling, and distributed transaction coordination.
Your script can instantiate MTS objects using CreateObject in the same way it instan­
tiates other types of objects.

Chapter 13 The Event Scripting Agent

ERROR TRAPPING AND LOGGING
If you program like me, your applications probably don't work correctly the first time
you run them. To help us be more successful, Microsoft has created some error­
trapping tools, logging features, and applications that work with the Exchange Event
Service.

Microsoft Script Debugger

Your first line of defense against the bugs that always somehow find their way into
programs is the Microsoft Script Debugger. We looked at the Script Debugger in the
context of debugging Outlook scripts in Chapter 5. The same Script Debugger can
be used to debug Exchange event scripts as well. To force your script to hit a break­
point, use the Stop statement in VBScript and the Debugger statement in JavaScript.

Because the Script Debugger does not support remote debugging (at the time
of this writing), you must run the debugger on the machine where the script is exe­
cuting. For the Event Scripting Agent, this machine is the Exchange server where the
script is currently executing. Figure 13-9 shows the Microsoft Script Debugger
debugging a script.

iHsIJCount = ;f IdrTar~t. :Messages. Count
If Err .NUIlIber = 0 Then

VriteToLog 1, "Heesaqe Count Succeeded"
set ExpTotal = :ms:qTarget.rielas. Item("Total"l
Set =qReeponse "" f IdrOUtbox. Messages. Add ..
I Bodity thi~ line to chang~ El<pl!!!ll!l~ Amount
It IxpTotal > 5000 then

tilr 1 te:ToLog 1 r "Greater t.han max I!!xpensl!!! amount"
maqReepo~l5e.S'l.lbject '"' "The Total vae .. i ExpTotsl

set megRanager .. f IdrOuehox .l!Ie!l!lagee. Add 'Hessage eo Manager

set current user = lDSg-Target. Sender
set lJsersHanaqer .. curren'tUflel;. !le.nag~r
currentapprover '" UsersHanaqer. Name
mI!IgRe!lPODSI!. Text ... "This !xperule Report has been routed to your l!Ial:leiger:
'Get the spaces out
currentapprover .. Re:place!: (currentapprcver, II ", "+11')
It'I!Ig!Ia..tJ.ager. Subject • II' Approval Required for Expense Report!"
It'I!!Iql!lanager. Text .. current user . name , II has submitted an expense report for .. 0;

l'B!Ig!la.nager.Recipients.Add 11","",1, UsersBanaqer. ID
mI!Iq!lanager. Recipients. Resolve (False)
msql!lanager. Send
msqTarget.Fieldaj"Status") = "Awaiting Approval from .. 0; Usersman&ger.Name
msqTarget.Field:5 ("StatuslntPf-) .. 2

Figure 13-9. The Microsoft SCript Debugger allows you to step through your SCripts
runningon the Exchange sewer.

539

Part III Collaboration with Microsoft

Script.Response and Logging

540

The Script Debugger is an invaluable tool when developing your Event Scripting ap­
plications. However, once you deploy your solutions in your company, you probably
do not want to run instances of the Script Debugger on your production servers. This
is where your second line of defense comes in: you can call the SCript.Response
method in your scripts to write strings of text to the log files associated with your
agents. Figure 13-10 shows an example of an agent log file.

6:38:13 PM
6:31:13 PM
6:30:13 PM

18:45:1
6:115:13 PM
6:45:14 PM
6:45:14 PM

18:50:58
6:511:55 PM
6:51:55 PM
6:5B:56 PM
6:51:56 PM

18:53:56
6:53:55 PH
6:53:55 PM
6:53:55 PH
6:53:55 PH

19:16:12
7:00:11 PH
1:10:11 PH
7:80:11 PH
7:10:12 PH
7:80:12 PM

19:08:57
1:110:56 PM
7:00:56 PM
7:00:56 PM
7:00:56 PM

19:09:59
:119:58 PM

Tiller Euent Fired.:
There are U Re5sages in the folder.:
Tiller Event Ended:

Get Euents Succeeded: He", Expense Report frail! Don Hall 1/11/99 6:5
Message Created: Checking Total. . .: He. Expense Report fro. Don
Message Count Succeeded: Hew Expense Report fro .. Don Hall 1/11/99
Greater than flax expense alOOuRt: Hew Expense Report from Don

Get Events Succeeded: He. Expense Report frolll Don Hall 1/ /99
Message Created: Checking Total. . .: Neu Expil!'nse Report froll
Message Count Succeeded: New Expense Report frolll Don Hall
Less than IllaX npense alilount: Nelli Expense Report frolll Don Hall

Tilller Event Fired.:
There are 2 messages in the folder.:
Rerouting beginning: Helll! Expense RepDrt fron Don Hall 1/4/99
HD Hore Managers beyond Thollas Rizzo (Exchange) for this user.: He.
TiMr Euent Ended:

Get Events Succeeded: Helll Expense Report frOIll Frank Lee 1/4/99 7:
Message Created: Checking Total. . .: Helll Expense Report frolQ
Message Count Succeeded: Helll! Expense Report fron Frank Lee 1/ /99
Greater than max expense alllount: Helll Expense Report fron Frank

Get Events Succeeded: Helll

Figure 13-10. An agent logfile in Notepad. Each agent has an associated logfile in
which you can write your own status or error-logging information.

You can access the log file for your agent remotely in Oudook by accessing the
Agents tab for the folder, selecting the agent, clicking the Edit button, and then clicking
the Logs button. By default, your agents will log only errors that occur in your scripts,
but you can extend their functionality by using the Script.Response method to help
you debug problems or track the status of your scripts.

The Script.Response method takes a string argument, which allows you to write
information into the agent logs. As mentioned earlier, these log files, by default, are
32 KB in size, and older events are written over as necessary when this size limit is
exceeded. If you make multiple calls to the SCript.Response method, the code will write
only the most recent string passed to the method into the log. To avoid losing strings
when making multiple calls to Script.Response, prefix the previous response string
with a new response string. The Expense Report sample application shown later in
this chapter demonstrates how to use this technique in your applications.

Chapter 13 The Event Scripting Agent

The Windows NT Event Log
One other line of defense that you have in debugging your applications is the
Windows NT Event Log. When you set Logging Level in the registry to the maximum
value (5) for the Event Scripting Agent, the Windows NT Event Log provides not only
error information gleaned from your scripts but also general information about the
status of the Event Service and what notifications it has received from the Exchange
server. When you use the Script.Response method described earlier to track errors and
status information for your scripts, the information will be added to the description
field in the Event Detail dialog box for an Event Service entry in the Application Log,
as shown in Figure 13-11. (To view these entries in Event Viewer, be sure to select
Application from the Log menu.) This type of information can make it easier for you
to track down bugs or failures in your released application.

Figure 13-11. The event details for the Expense Report application. Since the
Script. Response method was used, the Description field has detailed information.

EXPENSE REPORT APPLICATIO"
Although the Event Service could be used for non-Exchange Server-related appli­
cations, most developers use the Event Service to automate administrative tasks such
as modifying user directory information and replicating data from Microsoft SQL Server
into Exchange or vice versa, or to write workflow applications. In this section, we
will look at a simple workflow application-an Expense Report application-that uses
the Event Service and some custom code written using VBScript.

541

Part III Collaboration with Microsoft Exchange

When most developers think of building a workflow application, the first type
that pops into their minds is an expense reporting application, because most expense
reporting applications require some type of report status tracking and approval rout­
ing, as well as a system of escalation for nonapproved reports. To help you better
understand how to write applications using the Exchange Event Service, let's look
at a sample expense report application using the Event Service technology.

Setting Up the Expense Report Application

542

Before you can install the application, you must have a Windows NT 4.0 Server and
a client with certain software installed. Table 13-1 describes the installation require­
ments for the application.

Minimum Software Requirements

Exchange Server 5.5 Service Pack1
or higher with Outlook Web Access

Internet Infonnation Server 3.0 or
higher with Active Server Pages

CDO library Ccdo.dll) and
CDO Rendering library Ccdohtml.dll)

For the client:
A Web browser and Outlook 98

Installation Notes

Service Pack 3 is recommended.

Internet Information Services 4.0 is
recommended.

Exchange Server 5.5 SPI installs
CDO library 1.21 and CDO Render­
ing library 1.21. Outlook installs
CDO library 1.21.

For the Web browser, Microsoft In­
ternet Explorer is recommended.
You can run the client software on
the same machine or on a separate
machine.

Table 13-1. Installation reqUirements for the Expense Report application.

To install the Expense Report application, copy the Expense Report folder
from the companion CD to the Web server where you want to run the applica­
tion. Start the lIS administration program. Create a virtual directory that points to
the location where you copied the expense report files, and name the virtual
directory expense. Enable the Execute permissions option for the virtual directory.
You will be able to use the following URL to access your Expense Report appli­
cation: http;//yourservername!expense.

Open the Exchange Administrator program. Open the Properties dialog box for
the Folders\System Folders\Events Root\EventConfi~servername folder. Click the
Client Permissions button, add a user who will administer the Expense Reports folder,
and grant the user Author permissions. Click OK twice. Start the Registry Editor on

Chapter 13 The Event Scripting Agent

your server, and then open the key named HKEY _LOCAL_MACHINE\System \
CurrentControISet\Services\MSExchangeES\Parameters. Set the Logging Level DWORD
to 5 to log the maximum amount of information.

NOTE Be sure to set Logging Level to 0 when you are finished testing the
Expense Report application. If you do not, your Application log will be quickly
filled up with MSExchangeES logging entries.

Launch Outlook using the user you selected earlier to administer the Expense
Reports folder. Create a new public folder na~ed Expense Reports under All Public
Folders. Right-click on the Expense Reports folder, and select Properties. On the
Agents tab, click the New button. Type Expense Agent as the Agent Name. Check the
A Scheduled Event Occurs check box and the A New Item Is Posted In This Folder
check box. Click the Schedule button, set a 15-minute interval, and click OK.

In the Expense Agent dialog box, click Edit Script to display the event script­
ing starter code in Notepad. On the companion CD, locate the file named Expertse­
AgentScript.txt in the expense report files. Open ExpenseAgentScript.txt, copy all of
the code, and paste it into the starter code in Notepad, replacing the existing code.
Petform a search in the fode, and replace the three instances of the text loealhost
with the name of your Web server. Save and close Notepad. At this point, the Expense
Agent dialog box should look like Figure 13-12. Click OK twice to return to Outlook.

Figure 13-12. The configured Expense Agent dialog box.

Open the Exchange Administrator program, and open the Properties dialog box
for the Expense Reports public folder. Click on the Advanced tab, and uncheck the
Hide From Address Book check box. Click OK. You can now access the Expense
Report application using the URL http://yourservername/expense.

543

ParI III Collaboration with Microsoft

NOTE Included with the Expense Report files on the companion CD is a .pst
file named Expense Reports.pst. This file shows some sample expense reports.
To see these samples, clear the read-only flag on Expense Reports.pst and open
it in Outlook.

Functionality of the Expense Report Application

544

After entering a valid mailbox, the main page of the Expense Report application is
displayed, as shown in Figure 13-13. From the main page, the user can click the Submit
A New Expense Report link to enter and submit an expense report, as shown in Figure
13-14. As you can see, users submit expense reports in this application by using a
simple Web page, but you can easily modify an Outlook form or a Microsoft Excel
document to implement the same functionality as the Web page.

Expense Report Intranet Application

Please select one of the following links

Submit a new expense report

Check the status of my expense reports

Figure 13-13. The main page of the Expense Report application,

Expense Reporting Form

Please fill in the form below, Please not.: Any expense reports that are over $5,000 will be routed to
your manager for approval.

Airfare:
Rental Car: 12001

Hotel: =---....,
Meals:

Figure 13-14. The page used to enter and submit expense reports.

Chapter 13 The Event Scripting Agent

After the user submits an expense report from the Web page, the report is
e-mailed to the Expense Reports public folder that contains the agent, named Expense
Agent. This agent fires on two of the four supported events. In the Expense Report
application, I assume that expense reports are not normally changed while in pro­
cess and are not deleted once submitted. Thus, the agent fires for these two events:
when a new expense item is created in the folder and when every 15 minutes pass
(this is a timer event).

The Expense Agent receives the new expense report and calls the Folder_
OnMessageCreated subroutine in its associated VBScript file. This subroutine checks
the amount of the expense report, and if the amount is over a specific limit-in this
case, $5,OOO-the agent looks up the manager of the user in the directory and sends
an e-mail to the manager with a link to the expense report, as shown in Figure 13-15.
If the amount is under the limit, the agent automatically approves the expense report
and routes it for payment.

Don Hall has submitted an expense report for 5631. Please
review it at http://exserver!expense!approve.asp?entryid=
oOOOOOOOlA117390AA6611CD9BC800AA002FC15A0900DA2DOEED3C8BD211
826COOOOF87555C800000000A8350000DA2DOEED3C8BD211826COOOOF875
55C800000000DA950000&Approver=Thomas+Rizzo+(Exchangel

Figure 13-15. E-mail, with a link to an expense report sent to a manager by the
Expense Agent, requesting approval a/the expense.

Now we all know that people sometimes get bogged down in their e-mail and
do not always quickly respond to requests for expense report approvals. To help
facilitate the responsiveness of managers who need to approve expense reports, the
agent fires on a 15-minute timer event. Every 15 minutes, the agent calls the
Folder_OnTimer subroutine, which checks the current status of all expense reports
in the folder. If the subroutine finds an expense report that has not been approved
yet and that has been sitting for more than 15 minutes, the agent automatically looks
up the manager of the current person who is supposed to approve the expense report
and routes the report to that person for approval. This process will continue every
15 minutes until either the expense report is approved or until the agent runs out of

545

Pari III Collaboration with Microsoft

546

managers to reroute the report to. Each rerouted report sends a polite message to
the manager who was supposed to approve the report and updates the user on the
status of the routing.

If a report is rerouted to other managers, any manager in the route-from the
first manager to the top person in the organization-can approve or reject the expense
report at any time. This flexibility allows anyone with authority that sees the report
to approve it, not just the current manager the report is routed to.

Throughout the entire application, users can go to a Web page to track the sta­
tus of their expense reports. As you can see in Figure 13-16, I have used familiar traffic
icons for expense report status. A stop sign means the expense report was rejected,
a yellow light means that it is currently waiting for approval, and a greet) light means
that the expense report was approved. Also included is text that describes the cur­
rent report status, such as whether the report is waiting approval, the name of the
person in the management chain currently reviewing the report, whether the report
was rejected or approved, and who rejected or approved it.

Your Expense Report status page
• Current Approved automatically and routed for Time 2120/00 12:45:07

Total: $1100
Status payment Submitted: AM

1111 Current Awaiting Approval from Thomas R.i:l:zo Time 2120/0012:45:18
Total: $10000

,,' Status: Submitted: AM

• Current Approved by Thomas Rizzo
Time 2120/00 12:45:51

Total: $8445
Status Submitted: AM

• Current
Rejected by Thomas Rizzo Time 2120/00 12:46:22

Total $11000
Status: Submitted: AM
Current

Submitted Time 2120/00 12:49:04
Total: $20240

Status Submitted: AM

Figure 13-16. The Expense Report Status Page. From this page, users can check the
status of their expense reports as well as find out who is currently reviewing the report.

Managers see a slightly different view of the information in the application's main
screen. By using a CDO MessageFilter object, the Web page figures out whether
managers have any reports waiting for approval in the Expense Reports public folder.
If there are reports awaiting approval, the page indicates how many, as shown in
Figure 13-17.

Chapter 13 The Event Scripting Agent

Expense Report Intranet Application

Please select one of the following links:

Check the status ofmv expense reports

There are 3 Expense Reports awaiting your approval.

Figure 13-17. The Web page for managers who have expense reports pending
approval. This Web page uses a CDO MessageFilter object to quickly find pending
expense reports.

Expense report status information such as the current approver's name; expense
amounts for items such as travel, hotel, and rental car; and which stage of approval
the report is in (J for Submitted, 2 for Awaiting Approval, 3 for Rejected, 4 for Ap­
proved) are all stored with the individual message as custom properties. This means
that the agent can update the status of the expense report using only CDO methods,
which you will see when we examine the Expense Agent script.

Expense Agent Script
Now that you understand some of the functionality of the Expense Report application,
let's look at the code that implements it. The two main pieces of the application are
the Web pages that constitute part of the interface and the agent that implements the
business logic. We will look at some of the. CDO code behind the Web pages for
the application, because these pages show you how to use some of the CDO objects
in a way that was not demonstrated in Chapter 12.

The Expense Agent, as mentioned earlier, fires. on only two events. The script
for the agent includes two helper functions, Get Event Details and WriteToLog.

GetEventDetails Function
The first helper function is the Get Event Details function, shown in the following code:

'DESCRIPTION: Get the details of the event that fired
Private Sub GetEventDetails

On Error Resume Next
Dim oStores
Dim Temp
Dim idTargetFolder
Dim idTargetMessage

(continued)

547

Part III

548

idTargetFolder = EventDetails.FolderID
idTargetMessage = EventDetails.MessageID
'Some of the above might not exist
Err.Clear
Set AMSession = EventDetails.Session
If Err.Number = 0 Then

'We're going to send a message, so let's get the
'Outbox here
Set fldrOutbox = AMSession.Outbox
If Err.Number = 0 Then

Set oStores = AMSession.InfoStores
If Err.Number = 0 Then

Set Temp oStores.Item(l).RootFolder
Set Temp = oStores.Item(2).RootFolder

Set fldrTarget = AMSession.GetFolder(_
idTargetFolder, Null)

If Err.Number = 0 Then
Set msgTarget = AMSession.GetMessage(_

idTargetMessage, Null)
If Not Err.Number = 0 Then

WriteToLog 0,"Session.GetMessage Failed: " & _
Err.Description

End If
Else

WriteToLog 0,"Session.GetFolder Failed: " & _
Err.Description

End If
El se

WriteToLog 0,"Session.InfoStores Failed: " & _
Err.Description

End If
Else

WriteToLog 0,"Outbox.Messages Failed: " & _
Err.Description

End If
El se

WriteToLog 0,"EventDetails.Session Failed: " & Err.Description
End If

End Sub

The GetEventDetails function pulls the intrinsic objects and variables passed to
the script and assigns them to other variables. The script then proceeds to get the
Outbox of the pre-logged-on CDO user and retrieve both the folder and the message
corresponding to the event. If any of these calls fail, the GetEventsDetails function
calls the second helper function, WriteToLog.

Chapter 13 The Event Scripting Agent

WrifeToLog Function
The WriteToLog function allows you tO,record custom messages in the agent log file.
Earlier in this chapter, we discussed the Script.Response method in the context of
helping you debug your agents, and you learned that if you make mUltiple calls to
this method, you have to keep building your string by passing it previous strings. The
WriteToLog function implements this functionality, and it takes two parameters that
allow you to customize how events are logged. The first parameter, when set to 1,
records the name of the message when recording your event in the log. The second
parameter is the string you want to place in the log. As you will see with the Expense
Agent, the WriteToLog function is used heavily to insert status messages for the agent
in the log. Here is the code for the WriteToLog function:

Private Sub WriteToLog(boolRecordName.strMessage)
Dim strResponse
strResponse = Now & vbTab & strMessage , ":"
if boolRecordName = 1 then,

strResponse strResponse & " " & msgTarget.Subject
else

strResponse strResponse &
end if
Script.Response = Script.Response & vbNewLine & strResponse

End Sub

Folder_OnMessageCreafed Function
The Folder _ OnMessageCreated function is called when a new expense report is placed
in the folder. When this function is called, it checks the expense total of the new
expense reports in the folder by using the Fields collection on the item and then
looking up the Total field.

If the expense total is greater than a certain amount, the script looks up the
manager of the user issuing the report by using the CDO AddressEntry object. The
script sends this manager a message containing a hyperlink to the current expense
report. Then the script updates the me1!sage's status fields to reflect that the report
has been routed to a new person. Finally, the agent e-mails a status update to the
user and indicates to whom the report was routed.

If the expense total is less than $5,000, the agent automatically approves the
expense report and updates its status. Although the application does not perform any
tasks beyond sending an e-mail and updating the status, you could, in your agent,
change this function to send an e~mail to the accounting department or update a
database to transfer the funds into the user's expense account. The Folder_OnMessage­
Created code is shown here:

'DESCRIPTION: This event is fired when a new message is added to
'the folder
Public Sub Folder_OnMessageCreated

(continued)

549

Part III Conaboration with Microsoft c __ "",_

550

On Error Resume Next
GetEventDetails
If Err.Number 0 Then

WriteToLog 1."Get Events Succeeded"
WriteToLog 1."Message Created: Checking Total ..
CheckTotal

Else
WriteToLog 0."GetEventDetails Failed"

End If
End Sub

'DESCRIPTION: Check the total of the expense report. and if it is
'less than a specific amount. automatically approve the expense
'report
Private Sub CheckTotal

Dim msgResponse
Dim iMsgCount
Dim msgManager
Dim UsersManager
Dim currentuser
Dim currentapprover

On Error Resume Next
iMsgCount = fldrTarget.Messages.Count
If Err.Number = 0 Then

WriteToLog 1."Message Count Succeeded"
set ExpTotal = msgTarget.Fields.Item("Total")
Set msgResponse = fldrOutbox.Messages.Add
'Modify this line to change Expense Amount
If ExpTotal > 5000 then

WriteToLog I."Greater than max expense amount"
msgResponse.Subject = "The Total was" & ExpTotal
'Message to Manager
set msgManager = fldrOutbox.Messages.Add
set currentuser = msgTarget.Sender
set UsersManager = currentuser.Mariager
currentapprover = UsersManager.Name
msgResponse.Text = "This Expense Report has been" & _

"routed to your Manager: " & currentapprover
'Get the spaces out
currentapprover = Replace(currentapprover." "."+")

msgManager.Subject = "Approval Required for" &
"Expense Report!"

msgManager.Text = currentuser.name & _
" has submitted an expense report for " & ExpTotal & _

Please review it at http://localhost/expense/" &
"approve.asp?entryid=" & msgTarget.ID & "&Approver=" & _
CurrentApprover

Chapter 13 The Event Scripting Agent

msgManager.Recipients.Add ""."".l.UsersManager.ID
msgManager.Recipients.Resolve(False)
msgManager.Send
msgTarget.Fields("Status") = _

"Awaiting Approval from" & UsersManager.Name
msgTarget.Fields("StatusInt") = 2
msgTarget.Fields.Add "Approver".8.UsersManager.Name
msgTarget.Update

Else 'Expense Report <= Max Amount
WriteToLog 1."Less than max expense amount"
msgResponse.Subject = _

"This Expense Report has been Approved"
msgResponse.Text = "Your expense report for" & _

ExpTotal & " has been automatically approved. " & _
"Funds are being transferred!"

msgTarget.Fields("Status") = _

"Approved automatically and routed for payment"
msgTarget.Fields("StatusInt") = 3
msgTarget.Update

End If
If Err.Number = 0 Then

msgResponse.Recipients.Add
msgTarget.Sender.ID

If Err.Number = 0 Then

"" 1. _

msgResponse.Recipients.Resolve(False)
If msgResponse.Recipients.Resolved = True Then

msgResponse.Send
If Not Err.Number = 0 Then

WriteToLog 0."Message.Send Failed: " & _
Err.Description

End If
Else

WriteToLog 0."Recipients.Resolve Failed: " & _
Err.Description

End If
Else

WriteToLog 0."Recipients.Add Failed: " & _
Err.Description

End If
Else

WriteToLog 0."Messages.Add Failed: " & _
Err.Description

End If
Else

WriteToLog 0."Messages.Count Failed: " & Err.Description
End If

End Sub

551

Part III Collaboration with Microsoft Exchange

552

Folder_OnTimer Function
After 15 minutes, the Folder_OnTimer function is called by the agent to check the
status of folder items. If any have the value 2, which indicates that the item is wait­
ing for approval, the script checks the tiine the item was sent into the folder (as
opposed to the current time) by using the VBScript DateDiff function. The DateDifj
function returns the difference between the two dates in numbers of seconds. Once
this value is returned, the script checks to see whether it is greater than 400 seconds.
(I picked an arbitrary number which is less than 900 seconds, or 15 minutes. In a
completed application, you will probably want to give managers more than 15 min­
utes to approve expense reports before escalating them.)

If the report has been sitting for more than the specified interval, the script looks
up the manager of the current approver by using the AddressEntry object in cno. If
this manager has no manager above her, the script sends a friendly reminder to the
current approver explaining that an expense report is awaiting approval. The script
also ihlorms the user that there are no other managers to route the report to.

lf there is a manager above the current approver, the script forwards the report
to this manager and informs the user and the current approver that the report has
been forwarded to a new manager. The script then updates the report status to reflect
the change in state.

Notice in the following code that the script does not try to retrieve the
EventDetails.MessageID variable because the variable does not exist for timer events.
You will receive an error if you attempt to retrieve this variable in your implementa­
tion for a timer event.

'DESCRIPTION: This event is fired when the timer on the folder
'expires
Publi~ Sub Folder_OnTimer
Dim oMessages
Dim oMessage
Dim Status
Dim currentdate
Dim elapsed
Dim timesent
Dim CurrentApprover
Dim NextApprover
Dim rilsgResponse
Dim objonerecip
Dim myaddentry
Dim currentuser
Dim msgNewApprover
Dim DestFolder
Dim idTargetFolder
Dim oStores
Dim Temp

Chapter 13 The Event Scripting Agent

Dim i
Dim StatusInt

'Since timer events do not return a specific message, all the calls to
'WriteToLog must not try to record the message name unless
'the variable msgTarget is explicitly set

On Error Resume Next
WriteToLog e,"Timer Event Fired."
'Set variables using event details
idTargetFolder = EventDetails.FolderID
'Clear errors
Err.Clear
Set AMSession = EventDetails.Session
fldrOutbox = AMSession.Outbox
If Err.Number = e Then

Set oStores = AMSession.InfoStores
If Err.Number = e Then

Set Temp = oStores.Item(I).RootFolder
Set Temp = oStores.Item(2).RootFolder
Set fldrTarget = AMSession.GetFolder(i~TargetFolder. ~

Null)
end if

end if

'Need to check all the messages in the folder to see if they
'are over the 15-minute limit and are awaiting approval
set oMessages = fldrTarget.Messages
WriteToLog e."There are" & oMessages.Count & _

" messages in the folder."

for i = 1 to oMessages.Count
'Retrieve the message
set oMessage = oMessages.Item(i)
'Check the time and status
StatusInt = oMessage.Fields("StatusInt")
if StatusInt = 2 then 'Got a live one

'Figure out how long it has been sitting
timesent = oMessage.TimeSent
currentdate = now()
elapsed = datediff("s". timesent.currentdate)
if elapsed> 4ee then 'been sitting for a while

'Set another variable to the current message
set msgTarget = oMessage
WriteToLog 1."Rerouting beginning"
set ExpTotal = oMessage.Fields("Total")
'Reroute the message

(continued)

553

Part III

554

lat~oratiion with

set CurrentApprover = oMessage.Fields("Approver")
set msgResponse = AMSession.Outbox.Messages.Add
'Create the recipient
Set objonerecip = msgResponse.Recipients.Add
objonerecip.Name = CurrentApprover
'Resolve the name against the Exchange directory
objonerecip.Resolve
'Get the address entry so we can pullout

'template information
Set myaddentry = objonerecip.AddressEntry
'Get the manager from the address entry
set NextApprover = myaddentry.Manager
if NextApprover = Empty then
'We don't have a manager!

'Send a message to the current user
set currentuser = oMessage.Sender
msgResponse.Subject = _

"No more manager to route to"
msgResponse.Text = currentuser.name &
" has submitted an expense report for" & _
ExpTotal & _

There are no other managers to route to!"
msgResponse.Recipients.Add I, _

oMessage.Sender.ID
msgResponse.Send
'Resend a message to the current approver
Set msgResendtoApprover = _

AMSession.Outbox.Messages.Add
CurrentApproverName = Replace(_

CurrentApprover," ","+")

msgResendtoApprover.Subject = _
"Repeat notice for Approval of an " & _
"Expense Report!"

'Change the following location to be
'your Web location
msgResendtoApprover.Text =
currentuser.name & " has submitted an " & _
"expense report for " & ExpTotal &

Please review it at http://localhost/" &
"expense/approve.asp?entryid=" & msgTarget.ID &
"&Approver=" & CurrentApproverName
'Create the recipient
set oRecip = msgResendtoApprover.Recipients.Add
oRecip.Name = CurrentApprover
oRecip.Resolve
msgResendtoApprover.Send

WriteToLog l,"No More Managers beyond" & _
CurrentApprover & " for this user."

Chapter 13 The Event Scripting Agent

else
NextApproverName = NextApprover.Name
'Got the next approver. Send a message to
'previous approver and user and reroute.
set currentuser = oMessage.Sender
msgResponse.Subject = "An Expense Report" & _
" has been rerouted"
msgResponse.Text = currentuser.name & _
" has submitted an expense report for" & _
ExpTotal & ".. It was rerouted because the" & _
"15 minute approval time limit has expired. " & _
" It is now routed to " & NextApproverName
msgResponse.Recipients.Add "", "", I, _

oMessage.Sender.ID
msgResponse.Send
if err.number = 0 then

WriteToLog l,"Successfully rerouted"
end if
'Now change the status and reroute to
'new person
oMessage.Fields("Status")

"Rerouted and awaiting Approval from" & _
NextApproverName

oMessage.Fields("Approver") = NextApproverName
oMessage.Update
'Now send a message
Set msgNewApprover = _

AMSession.Outbox.Messages.Add
'Create the recipient.
'Get the spaces out.
NextApproverName = Replace(_

NextApproverName," ","+")
msgNewApprover.Subject = _
"Approval Required for Rerouted Expense Report!"
msgNewApprover.Text = currentuser.name & _
" has submitted an expense report for" & _
ExpTotal &". Please review it at http://" & _
localhost/expense/approve.asp?entryid=" & _
msgTarget.ID & "&Approver=" & NextApproverName
msgNewApprover.Recipients.Add "","",1, _

NextApprover.ID
msgNewApprover.Recipients.Resolve(False)
msgNewApprover.Send

end if 'Manager!
end if 'El apsed

end if' Status
next
WriteToLog 0,"Timer Event Ended"

End Sub

555

Part III Conaboratlon with Microsoft II§'Y~hanna

CDO Code in the Application
The Expense Report application contains sections of CDO code that show how to
use CDO objects not discussed in detail in Chapter 12, which covers CDO develop­
ment. The most interesting section of the code is found in the file Logon.asp. The
code in this script uses custom properties in a MessageFilter object to filter out all
expense reports that have the current user as the current approver, as well as filter
out only those expense reports with a status of 2, which means that the expense report
is waiting for approval. As you can see in the following code, to filter custom prop­
erties on an item, you must use the Add method of the Fields collection for the
MessageFilter object. In the Add method, you need to specify the name of the cus­
tom property; the type, by using a Long constant; and the value that the property
should use for the filter. Once you set these properties, the messages collection will
contain only those items that meet your specified criteria.

<% 'Check to see whether any reports are waiting for this approver

set oMessages = objFolder.Messages
set oMsgFilter = oMessages.Filter
set oApprover = oMsgFilter.Fields.Add(_

"Approver",8,AMSession.CurrentUser.Name)
set oStatus = oMsgFilter.Fields.Add("StatusInt",8,"2")
iMsgCount = oMessages.Count
if iMsgCount > 0 then

response.write "<P)There are <B)" & iMsgCount & _
" Expense Reports awaiting your approval."

end if
%>

PROGRAMMATICALLY BINDING AGENTS
Now that you have learned how to create and program agents, you might be won­
dering how you can bypass the Agents tab in Outlook and programmatically install
and bind your agents to events in Exchange Server. The Exchange Event Service
provides an object library that allows you to create and delete agents and their re­
spective bindings on your server. This object library makes it easier for you to pull out
information about the agents in your system as well as install agents into multiple folders.
The following section describes the object library provided for these services and dis­
cusses a sample application, named Agent Install, that uses this object library to allow
you to programmatically create and delete agents on your Exchange server.

Exchange Event Service Configuration Library

556

The object library for the Event Service configuration is stored in a file named
Esconf.dll. This file is usually installed in the C:\exchsrvr\bin directory on your ser­
ver. When working with Visual Basic, you can add a reference to this type library either
by searching for Esconf.dll or by finding the name Microsoft Exchange Event Service

Chapter 13 The Event Scripting Agent

Config 1.0 Type Library in the Available References list box. Once you add a refer­
ence to it, you can use the object browser to browse through the different objects in
the library. Figure 13-18 shows the object hierarchy for the Exchange Event Service
Configuration library.

Figure 13-18. The object hierarchy for the Exchange Event Service Configuration library.

557

Part III Conaboration with Microsoft EXIC:h,::IJI!1IDA

AGENT INSTALL ApPLICATION

558

The easiest way to learn how to use the objects in the Event Service Configuration
library is to look at a sample application that uses them. I created a Visual Basic
program, named Agent Install, that allows you to select a folder on Exchange Ser­
ver, see how many agents are installed in the folder, add or delete agents, and view
the scripts of existing agents. (The Agent Install application is available on the com­
panion CD in the Agent Install folder.) The main interface for the application is the
tree view of Exchange folders, as shown in Figure 13-19. The interface is based on
code from the Exchange Routing Wizard, a sample application included with Exchange
Server 5.5 Service Pack 1 that uses Routing objects. (We will learn more about Rout­
ing objects in Chapter 14.) This wizard interface has been modified so that when you
click on a folder, the application lists the number of agents contained in the folder
as well as fills a list box with the names of all the agents. You can then add a new
agent to the folder or delete one of the listed agents.

Public F alders
. utm All Public Folders

Il&I Account Tracking
rilill Document library

, Illlil E~chnews

~-i. "Qlil Helpdesk
IilH Internet Newsgroups

. Ililll Outlook Discussion Group
Mailbo~· Thomas Rizzo (E~change)

Calendar

Figure 13-19. The main inteiface for the Agent Install application. The tree view
allows you to pick a folder that you want to peiform actions on.

If you select a folder that you own and click the Add New Agent button, a dialog
box similar to Outlook's New Agent dialog box appears, as shown in Figure 13-20.
The difference between the Agent Install New Agent dialog box and the one in
Outlook is that the Agent Install version allows you to browse for the script you want
to use in the agent. You can still select the events you want the agent to fire on as
well as set the schedule for timer events.

Chapter 13 The Event Scripting Agent

Figure 13-20. The Agent Install New Agent dialog box. This dialog box allows you to
browse for the script you want to install.

When the user checks the A Scheduled Event Occurs check box, the Schedule
button is enabled. The Scheduled Event dialog box, shown in Figure 13-21, mimics
the Scheduled Event dialog box found in Outlook. From the Scheduled Event dia­
log box, you can change when the scheduled agent will run: hourly, daily, or weekly.

Figure 13-21. The Scheduled Event dialog box for the Agent Install program. This
dialog box mimics the Scheduled Event dialog box in Outlook.

In the main interface, you can select to view the script for an agent by clicking
the View Script button. This option launches Notepad on the local machine and dis­
plays the script. The Agent Install application doesn't allow you to modify the script,
but the application could be modified to support this editing functionality.

559

Part III Collaboration with MBd"!II',I'll!!l:,l'llft Exchange

Using the Exchange Event
Service Configuration Library

The first task you need to accomplish when working with the Event Service Configu­
ration library is to successfully create an instance of the Events object. To do this, you
must call the CreateObject function and pass it the MSExchange.Events ProgID. The
following line of code shows you how to do this:

Set oEvents = CreateObject("MSExchange.Events")

After creating an instance of the Events object, you need to set the Session
property for the Events object to a valid CDO session. Normally, you would log on
to the CDO session before attempting to create an instance of the Events object. The
following code from the Agent Install program shows you how to perform this step:

If CDOClass.LogonStatus = True then
oEvents.Session = CDOClass.Session

End if

Once you set the Session property, you can begin to work with the other objects
in the library. The following sections step you through the most common tasks you
will perform with the library by using the code from the Agent Install application.

Accessing Existing Agents

560

As shown earlier in Figure 13-19, you can programmatically access the agents con­
tained in a folder on your Exchange server. The Event Service Configuration library
provides a number of objects, methods, and properties to help you do this. When
attempting to access existing agents, you first set an object variable to the folder
containing the bindings for the Event Service by using the BoundFolder property. You
pass two arguments to the BoundFolder property: the CDO Folder object for the folder
you are interested in and a Boolean value set to True. After setting this bound folder
variable, you need to get the actual bindings in the folder by using the Bindings
property. Your new bindings variable has a Count property, which is useful when
accessing existing agents because it tells you how many agents exist in the folder.
You can retrieve all the names of the agents by using a For ... Each construct in Visual
Basic. The following code from the Agent Install application shows how the label and
combo box on the main interface are initialized. Note that the variable oFolder is
already set to the CDO folder selected by the user.

Set oBoundFolder = oEvents.BoundFolder(oFolder. True)
Set oBindings = oBoundFolder.Bindings
If oBindings.Count = 1 Then

lblAgentCount.Caption = "There is " & oBindings.Count & _
" agent in this folder."

ElseIf oBindings.Count > 1 Then

Chapter 13 The Event Scripting Agent

lblAgentCount.Caption = "There are" & oBindings.Count & _
" agents in this folder."

Else
'0 agents
lblAgentCount.Caption = "There are" & oBindings.Count & _

" agents in this folder."
End If
comboAgents.Clear
If oBindings.Count > 0 Then

For Each oBinding In oBindings
comboAgents.Addltem CStr(oBinding.Name)

Next
comboAgents.ListIndex = 0

End If

Accessing the Scripts Contained in Agents
Once you have the agents (bindings) in a particular folder, you might want to access
the script for those agents. Before showing you how to do this programmatically,
however, I must first explain how the agents and their associated scripts are stored
in the folder.

When you create a new agent in a folder and associate a script with that agent,
the Event Service creates two hidden messages in the folder. The first has a message
class IPG.Microsojt.lCS.EventBinding. As you would guess by its name, this message
class contains the types of bindings you want the ICS interface to notify the agent
of. The second hidden message has a message class of IPCMicroso!t.EventBinding.
This hidden message class contains the script source in a special property
(&H7102001E), so before you can even access the script for an agent, you must first
retrieve the hidden message associated with the agent containing the script, and then
you must pull out the value for this property from that message.

When you have a binding in a folder, you find out the unique ID of the script
source message by using the EntryID property on the Binding object. The EntryID
property lets you use the CDO GetMessage method to quickly retrieve the script source
message in the folder.

The following code shows you how the AgentInstall program retrieves the script
for an agent by using the methods just described and then saves the script to a text
file and opens it in Notepad. Note that the oBinding variable already refers to a valid
agent in the folder.

If Not (oBinding Is Nothing) Then
On Error GoTo Script_Err
Set oMessage = oSession.Get~essage(oBinding.EntryID. lull)
bstrEventScript = oMessage.Fields.item(PR-EVENT_SCRIPT)
'Write the script to a temporary file with a unique name

(continued)

561

Part III Collaboration with Microsoft Exchange

tmpLocation = "c:\temp\"
Randomize
tmpFlleName = "scr" & Int«99999 - 1 + 1) * Rnd + 1) & ".txt"
tmpFullPath = tmpLocation & tmpFileName
Open tmpFullPath For Output As #1

Print #1. bstrEventScript
Close 111
'Notepad opens the temporary file
retval Shell ("notepad.exe " & tmpFullPath. vbNormalFocus)

End If

Creating Agents Programmatically

562

Once you understand how to access agents, creating agents is a pretty straightfor­
ward process. The. only challenge when creating agents is understanding what prop­
erties you need to set and what the values of these properties should be. To help you
with the latter problem, the Agent Install application has a Visual Basic module called
MSEventConstants that defines constants for all of the common values for the prop­
erties of your agents. Specifically, the module defines constants for the days of the
week and the type of events the agent should fire on, and for what the event han­
dler should be when the event is fired-either the scripting engine or the Exchange
Routing Objects. The code for the MSEventConstants module is shown here:

Public Const MSMonday = 1
Public Const MSTuesday = 2
Public Const MSWednesday = 4
Public Const MSThursday = 8
Public Const MSFriday = 16
Public Const MSSaturday = 32
Public Const MSSunday = 64
Public Const PR-EVENT_SCRIPT = &H7102001E
Public Const MSAllDayStart = 0
Public Const MSAllDayEnd = 0.9999
Public Const MSHourlyAgent = 1
Publ ic Const MSDailyAgent = 2
Public Const MSWeeklyAgent = 3
Public Const MSScheduledEvent = 1
Public Const MSNewItemEvent = 2
Public Const MSChangedltemEvent = 4
Public Const MSDeletedltemEvent = 8
Public Const MSAgentActive = True
Public Const MSAgentDisabled = False
Public Const MSScriptHandlerID = _

"{69E54151-B371-11D0-BCD9-00AA00CIABIC}"
Public Const MSRoutingObjectsHandlerID = _

"{69E64151-B371-11D0-BCD9-00AA00CIABIC}"

Chapter 13 The Event Scripting Agent

Once you have these constants, all you need to do to create an agent program­
matically is set the properties on a new binding in the desired folder. By setting an
object variable as the return type for the Add method on the Binding object, the object
model will return to you a new binding in the folder. From this object, you can set
all the required properties, in this order:

• Name. The Name property takes a string that specifies the name of your
agent.

• Active. The Active property takes a signed integer value which, if set to
0, specifies that the agent is disabled and will remain in the folder but will
not fire on any events. Setting this property to -1 means the agent is
enabled and will fire on its specified events. By default, the Agent Install
program sets this property to -1 to make all new agents active.

• EventMask. The EventMask property takes an integer that specifies which
events your agent should fire on, such as when a new item is added to
the folder or when an item is deleted in the folder. If you want to fire on
multiple events, such as when a new item is created or when an item is
changed, you should add together the values of the constants MSNew­
ItemEvent and MSChangedItemEvertt, and place this new value in the
EventMask property. You will see an example of this process in the code
you'll look at a little later in this chapter.

• HandlerClassID. The HandlerClassID property takes a string that corre­
sponds to the globally unique identifier (GUID) that the event handler calls
when events fire on the binding. By default, the constants in the sample
application include the script engine handler ID as well as the Routing
Objects handler ID. If you create your own event handler, you will need
to add your own GUID and specify it in this property.

• Schedule. The Schedule property is a Variant, and you must set an object
reference to it. Once you have done this, you can modify the properties
for the Schedule object. The main property you want to set is the Type
property for the schedule. The Type property can take the constants
MSHourlyAgent, MSDailyAgent, or MSWeeklyAgent. Your agent must be
hourly, daily, or weekly-you cannot have an agent that is greater than
one of these values.

The next property you want to set in the Schedule object depends
on what you specified for the Type property. For example, if you speci­
fied that your agent should fire a timer event hourly, then you need to set
only the Interoal property (which specifies, in minutes, the interv~l of time
between the firing of timer events) and the start and end times for these

563

Part III Collaboration with Microsoft Exchange

564

timer events to occur during the day. You use the StartTime and EndTime
properties, respectively. If you specify that you want a daily agent, you
need to specify only at what time each day you want the agent to fire. To
specify this, you use the At property. Finally, if you specify a weekly agent,
you need to set at what time you want your agent to fire during the day
by using the At property, and you need to set which days of the week the
timer event should fire on by using the Days property. To set the Days
property, use the constants MSMonday through MSSunday, and add the
values together to calculate the correct integer to place in this property.

After specifying these properties, you should call the SaveChanges method on
your new Binding object to request that the object model create the corresponding
hidden message for the script source. You can see the functionality we just exam­
ined implemented in the following code:

Private Sub SetAgentName()
AgentName = txtAgentName.Text

End Sub

Private Sub SetAgentType()
'Scroll through the events to fire on and set type
Dim tmp
tmp = 0
If boolSchedul~ Then

tmp = tmp + MSScheduledEvent
End If
If boolNewItem Then

tmp = tmp + MSNewItemEvent
End If
If boolChangeItem Then

tmp = tmp + MSChangedItemEvent
End If
If boolDeleteItem Then

tmp = tmp + MSDeletedItemEvent
End If
AgentType = tmp

End Sub

'Create the agent!
SetAgentType
SetAgentName
Set oBinding = oBindings.Add
oBinding.Name = AgentName
oBind1ng.Active = MSAgentActive
oBind1ng.EventMask = AgentType
oBinding.HandlerClassID = MSScriptHandlerID

Chapter 13 The Event Scripting Agent

'Need to create a schedule, if set
If boolSchedule Then

Set oSchedule'= oBinding.Schedule
oSchedule.Type = AgentScheduleType
Select Case AgentScheduleType

Case MSHourlyAgent
oSchedule.Interval = AgentInterval
oSchedule.S~artTime = Format(AgentStartTime. "hh:mm AM/PM")
oSche~ule.EndTime = Format(AgentEndTime. "hh:mm AM/PM")

Case MSDailyAgent
oSchedule.At = AgentAtTime

Case MSWeeklyAgent
oSchedule.Days = AgentDay~ofWeek
oSchedule.At = AgentAtTime

End Select
End If
'Save changes so message is created
oBinding.SaveChanges

After successfully saving the changes, you need to copy a script into the hid­
den message associated with the new agent. To do this, you must use the COO
GetMessage method a!1d the EntryID property of your new Binding object. As you
can see in the next snippet of code, the program tries to open the file selected by
the user to read it, and then it tries to copy the file into the PR_EVENT_SCRIPT property
in the hidden script source message. Notice, however, that a variable, tmplnProcess,
is set to True (1) after the SaveChanges call on the ~inding object. This .is to notify
the program that if the file cannot be correctly read-for example, when the file is a
bina:ry file--and an error occur~, the agent should be deleted from the folder because
it' is not a complete agent. In the error handler, you can see how the program calls
the Delete method on the Bindings collection 4nd passes in the object that corresponds
to the half-completed Binding object.

If the script is read properlY, you should call the COO Update method on the
script source message, the SaveChanges method on the Binding object, and the
SaveChanges method on the BouJ:ldFolder object. If these calls succeed, you have

, ,
programmatically created an agent that fires on events and has a script assQ~iated with
it. If you do not call the SaveChanges method, your agent will not be saved if the
Binding object goes out of scope. Calling SaveChanges is like calling the Update
method in COO-if you don't call Update after changing items, your changes will not
be saved.

'Enter in script here
'Set tmpInProcess to 1 for bad files
tmpInProcess = 1
Set oMessage = oSession.Getmessage(oBinding.EntryID. Null)
tmpFileLocation = fileCurFile.Path & "\" • f11eCurFile.FileName

(continued)

565

Pari III Collaboration with

Open tmpFileLocation For Input As #1
bstrEventScript = Input$(LOF(l), #1)
Close If!
oMessage.Fields(PR_EVENT_SCRIPT) = bstrEventScript
oMessage.Update
oBinding.SaveChanges
oBoundFolder.SaveChanges
MsgBox "Agent Successfully Created.", vbInformation + vbOKOnly, _

"Agent Created"

frmFolders.RefreshAgentCount
Unload Me
Exit Sub

cmdOICErr:
MsgBox "Error #" & Err.Number & vbLf & "Error Description: " & _

Err.Description, vbOKOnly, "Error in cmdOK"
Close If!
If tmpInProcess = 1 Then

'Find the half-created agent and delete it
oBindings.Delete oBinding
oBoundFolder.SaveChanges

End If
Exit Sub

End Sub

Disabling and Deleting Agents
In the section titled "Creating Agents Programmatically," you had a glimpse of how
to disable and delete agents. To disable an agent, all you need to do is set the Active
property on the Binding object to 0 and then call the SaveChanges method. To de­
lete an agent, find the Binding object that corresponds to the agent you want to delete,
and then call the Delete method on the Bindings collection and pass the Binding object
to Delete. Call the SaveChanges method to save the changes.

Agent Hosts

566

Althoug~ not used in the Agent Install application, you can enumerate the Exchange
Server hosts capable of running agents. The Event Service Configuration library of­
fers a Hosts collection, which provides you with a Count property for the number
of available hosts and an Item property that will return a specific Host object. The
following code fragment shows how you can print out the names of all the available
hosts in your system:

Set oEvents = CreateObject("MSExchange.Events")
oEvents.Session = oSession 'Assumes valid CDO Session

Chapter 13 The Event Scripting Agent

Set oHosts = oEvents.Hosts
Msgbox "Count: " & oHosts.Count
For each oHost in oHosts

Msgbox "Name: " & oHost.Name
Next

You can also figure out which host your agents will run on by using the HostName
property on the BoundFolder object. Remember that all agents in a particular folder
must run on the same host. You cannot have different agents in the same folder
running on different hosts.

If you want to move agents running on one host to another host system, you
must use the MoveBoundFolder method on the Events object. This method takes two
arguments:

• A string that contains the host name you want to move the bindings in
the folder to

• The BoundFolder object that contains the bindings you want to move to
the new host

Be careful when using this method, because it will move all bindings for a folder
to the new host you specify. They all must run on the same host!

EXCHANGE EVENT SCRIPTING AGENT SERVERS
The Exchange Event Service supports servers that can run only agents and that are
separate from the home server where the folders generating the events are located.
This support allows you to isolate the agent server from your other servers that host
mailboxes or public folder applications. It is good practice to set up these agent servers
so that errant scripts do not bog down your standard Exchange servers. While occa­
sionally logic errors might make your scripts enter infinite loops or generate errors,
the Event Service and agent technologies have built-in timeout capabilities that will
terminate bad scripts after a specified amount of time.

RUNNING THE SCRIPT ENGINE IN MTS
You can place the Event Scripting Agent (Scripto.dll) into MTS, which allows you to
run the Scripting Agent using a specific Windows NT account for security purposes
and also to run the Scripting Agent in a dedicated and isolated process. MTS will
manage instantiating the Scripting Agent as well as shutting it down if any anoma­
lies occur during processing. For those of you running Windows 2000, MTS has been
enhanced and its capabilities have been integrated directly into COM+. Therefore,
wherever you see MTS referenced here, it also refers to COM+. We'll learn more about

567

Pari III Collaboration with Microsoft Exchange

568

COM+ applications in Chapter 18 when we talk about the new event capabilities of
Exchange 2000.

To make it easier for you to install the Event Scripting Agent as an MTS com­
ponent, Exchange Server 5.5 includes a prebuilt MTS package for you to use. To install
the package, follow these steps:

1. If you are running Windows NT 4.0, make sure you have MTS installed
on the server where you are running the Event Service. (If you are run­
ning Windows 2000 Server, you will install MTS packages into COM+
instead.)

2. Start the MTS Explorer by accessing the Start menu and then selecting
Programs, Windows NT 4.0 Option Pack, Microsoft Transaction Server, and
Transaction Server Explorer.

3. Locate the name of your computer in the Computers tree.

4. Select the folder named Packages Installed, and from the Action menu,
select New and then Package.

5. Click the Install Pre-Built Packages button.

6. Click the Add button, and fmd the Scripto.pak file on the Exchange Ser­
ver 5.5 CD in the Server\Support\Collab\Sampler\Scripts folder. Select this
package, and click Open.

7. Click Next.

8. Click the This User option. Click the Browse button to find the Windows
NT account identity you want the script engine to run under. As discussed
earlier, this account should have Log On As A Service privileges. Once you
have specified an account, click Next.

9. Verify the Install Directory and click Finish.

The Exchange Scripting Agent package should now be installed in MTS, as
shown in Figure 13-22.

NOTE If you are interested in learning more about the Event Service and
the types of applications you cQn develop'with this technology, you should
look at the four sample scripts included on the Exchange Server 5.5 CD in
the Server\Support\Collab\Sampler\Scripts folder.

Chapter 13 The Event Scripting Agent

Figure 13-22. The Exchange Event Scripting Agent installed as an MTS component.

569

Chapter 14

Exchange Server
Routing Objects

In the previous chapter, we took a look at the Microsoft Exchange Server Event Ser­
vice technology, which can be used to solve many types of business problems, most
commonly those associated with automating administrative tasks and other processes.
Business processes usually involve some type of routing, approval, and overall
workflow strategy, and while the Scripting Agent technology can handle these rout­
ing and workflow applications, it requires developers to write large amounts of code
to handle common routing functionality. Most developers don't want to do that. Like
you, they'd rather focus on mapping out business processes and have built-in logic
implement the most common tasks. To help simplify your development of automated
business processes, Microsoft created the Exchange Server Routing Objects.

In this chapter, we will take a look at the architecture for the Exchange Server
Routing Objects, which is an extension of the structure for the Event Scripting Agent.
Your knowledge of the Event Scripting Agent and the process of creating bindings
will enhance your understanding of the Exchange Server Routing Objects architecture.

The easiest way for you to move from creating Event Scripting Agents to cre­
ating routing object applications is to convert an existing and applicable Event Script­
ing application to a routing object application. In this chapter, you will see how the
Expense Report application from Chapter 13 can be converted to a routing object
application with very little modification. When you first look at the changes, you might
wonder what the advantages of creating a routing object application are, but as you
look more carefully at the sample, notice how you can modify the flow and logic of
the application relatively easily.

571

Part III Collaboration with Microsoft Exchange

EXCHANGE SERVER ROUTING
Of course, before we can dive into the guts of the Exchange Server Routing Objects
technology, we first must take a look at the overall architecture. At its highest level,
Exchange Server routing technologies, which first shipped in Exchange Server 5.5
Service Pack 1, consists of three components. The first component is a routing engine,
which is implemented as a custom event handler for the Event Scripting Agent. The
engine itself is a state engine that executes and tracks process instances in a specific
Exchange Server folder. A process instance is essentially an item and a correspond­
ing routing map that are part of executing a route. A routing map is a high-level set
of instructions that describes the routing. The instructions in the routing map involve
intrinsic or custom actions, which are just routing functions to be executed. When
events fire within the folder, the engine will process those events and move the
process state according to the routing map.

The second component is a set of COM objects called the routing objects. These
objects allow you to manipulate the routing map as well as the process instances in
your application. Using these objects, you can control what the engine executes and
build tools to create routing maps and track current process instances. To demon­
strate some of the capabilities of the routing objects, the Agent Install program used
in Chapter 13 has been updated to use them. You will see an example of the updated
Agent Install program later in this chapter.

The third component is a set of actions. Actions are functions that the routing
engine calls as defined by the routing map. When the routing engine executes an
action, it will update the state of the process instance according to the results of that
action. Actions can be intrinsic actions that the engine understands, such as Goto or
Terminate, or they can be custom actions that you write yourself in Microsoft Visual
Basic Scripting Edition (VBScript). The Expense Report application from Chapter 13
has been converted to a routing application that uses intrinsic and custom actions.
We will look at this Expense Routing application later in this chapter.

Routing Architecture

572

When combined, these three components form a server-side hub and spoke archi­
tecture for routing. Figure 14-1 shows a diagram of Exchange Server routing. The hub,
in this case, is a server-based folder that contains your routing map, your custom script
for the engine, and an agent on the folder that has the engine as a custom event
handler. The hub must meet all the requirements of the Event Scripting Agent, so you
cannot create routes in a private folder stored on your local machine. The folders must
reside on the server and can be either public or private.

Chapter 14 Exchange Server Routing Objects

Exchange Server 5.5 SP1

Figure 14-1. A diagram of Exchange Server routing.

The spokes in this architecture are the e-mail messages sent from the hub to
the recipients or other applications in the route. To track the state of the item after
the recipient performs an action, a message must be sent back to the hub so that the
engine can update the state of the item and handle any errors that occurred. For this
reason, the logical view of your process might be very different· from the actual
implementation. For example, to route a message between users A, B, and C, the
logical view would be to send the message to A, then from A to B, and then from B
to C. However, in the actual implementation in the routing architecture, the message
must flow through the hub so that the engine can update its status and move the
process forward.

573

Part III Collaboration with Microsoft Exchange

Operation of the Routing Engine
As a custom event handler for Event Scripting, the routing engine is dependent on
the creation of an agent, or binding, in the folder where you want the engine to run.
When creating the agent, the routing engine really uses only two events provided
by Event Scripting: the message creation event and the timer event. Whenever a
message arrives in the folder or a timer has expired, the engine evaluates the event
and determines whether the state of the process needs to be updated.

Recall from the last chapter that the agents in a folder contain the script that
executes when the events on that agent occur. Because the routing engine is built
on top of the agent architecture, as you would expect, the custom actions you cre­
ate in VBScript for the engine must be contained in the script for the agent-if they
are not, you might receive the error indicating a connection point was not found for
the engine. This error usually occurs when you are calling a custom VBScript func­
tion, and the script in the agent does not contain it. This is an important point to
remember, because you might not immediately associate the script in the agent with
the script executed by the routing engine.

Processlnstance$

574

You might be wondering how the engine creates a new process instance, and how
it tracks these different process instances when hundreds are in the folder. A new
process instance is created by adding into a folder a new item that is currently not
associated with another process in that folder. For example, suppose you created a
new expense report in the folder. First, the engine receives the message creation event.
Then the engine tries to correlate the new message with an existing process instance
(that is, another message) in the folder.

The engine determines whether a new item is associated with another item in
the folder through a unique number called the Route Unique Ideqtifier (RUn. The
RUI is assigned to each process instance in a folder. When a new item arrives in a
folder, the routing engine can use the RUI to track which process instance the item
belongs to. For example, if the folder receives an approval message from a recipient
in the route of a process instance, the incoming message contains an RUI so that the
routing engine can associate that approval message with the correct process instance.
Then the routing engine can update the status and execute the action in the map to
perform the necessary functionality. In this example, the most common functional~
ity to execute would be adding the approval to the recipient table on the process
instance so that other users can see that the item has been approved.

If the engine cannot find an associated process instance for the new message,
it assumes that the new message is a new process instance, and it looks for a rout­
ing map on the new item. If a map is found, the engine turns the new message or

Chapter 14 Exchange Server Routing Objects

item into a new process instance by adding an RUI and some other properties. The
engine then starts executing the map on the newly transformed process instance. Since
a message can contain its own map, a folder can have items with different maps,
allowing routing to be specified for the current need or ad-hoc routing to be imple­
mented. The typical scenario for this type of application is document routing and
approval: a document is routed to various people for approval based on the document's
content or an individual's expertise. You can implement this functionality by creat­
ing a simple form that allows the user to select the document route and then add the
map for the route directly to the message.

If a new message does not contain a map, the engine adds to the message
the default map for the folder. The routing engine attaches other information to the
message, which transforms the message into a new process instance. The default map
in the folder is actually stored as a hidden message in the foider. This hidden mes­
sage contains two important named properties, RouteMap and RouteType. As you
might guess, the RouteMap property contains the default map for the folder, and
the RouteType property can hold the type of route the map is considered to be. With
the Routing Wizard sample application in Exchange Server 5.5 Service Pack 1, the
RouteType property is set by the wizard as either Sequential or Parallel. You can set
this type property to be any string you want. You will see later in this chapter how
to access the hidden messages in the folder and how to retrieve and set these two
properties on your folders.

One of the most important issues to remember is that every item in a particu­
lar folder with a routing engine enabled will have some type of map. If the message
does not contain a map, the engine will copy the default folder map o~to it.

Routing Maps
Now that you know how a new process instance is created and how a map is added
to a process instance, you need to take a look at exactly what is contained in a map
and how it works. A routing map is a high-level set of irtstructions written by you
that describes the routing process-in other words, a state diagram that contains
the logic and flow of a particular business process so that the routing engine can
execute it. In the same way that subroutines and functions perform tasks in a pro­
gram, routing maps reference actions, which are just routing functions that the
routing engine calls.

The easiest way to understand routing maps is to take a look at one. The fol­
lowing map in Figure 14~2 is the Expense Report application from Chapter 13, trans:­
formed into a routing application. This is a Simple example of a map. You can make
your maps extremely complex depending on the business process you are model­
ing in the map.

575

Part III Conaboration with Microsoft t:xcnange

Figure 14-2. A routing map for the Expense Routing application displayed with the
updated Agent Install program.

The maps in Exchange Server are required to have three primary fields: ActivityID,
Action, and Flags. The ActivityID field is a number value that uniquely identifies a
row in the map. It allows you to jump between different rows on the map. If you've
ever worked with a programming language that requires line numbering, the con­
cept of the ActivityID field will be very familiar to you.

The second field, Action, identifies the action the engine should perform. This
field is a string that must resolve either to an intrinsic action for the engine-such as
a Goto action or an OrSplit action-or a custom action, which is a VBScript subrou­
tine in the agent for the folder. (We'll discuss intrinsic actions in the next section.) If
neither of these two conditions is met, you will receive an error from the engine.

The final required field, Flags, specifies whether the action in the Action field
is an intrinsic action or a custom action. By setting this flag to 0, you are informing
the engine that the action is an intrinsic action. Setting this flag to 2 tells the engine
that the action is a VBScript subroutine you implemented.

Depending on the action you select, you can pass parameters in the map. For
example, in Figure 14-2, you can see that when the map calls the UpdateStatus sub­
routine, a parameter set to either True or False is passed to the subroutine, depend­
ing on which line of the map is executed. This parameter specifies whether the
expense approver approved or rejected the expense report. The VBScript subroutine
can then appropriately update the user on the status of the expense report. You are
not limited to only one parameter. In fact, you can have multiple parameters in your
maps, depending on the needs of your application.

Intrinsic Actions

576

In a routing map, you can use six intrinsic actions: AndSplit, Goto, New, OrSplit,
Terminate, and Wait.

Chapter 14 Exchange Server Routing Objects

AndSplit
The AndSplit action is used in your map for parallel branching. Parallel branching
enables new subprocesses to run independent of one another; the parent process
blocks itself until all the subprocesses have finished. The parameters for this action
are the ActivityIDs. The engine creates new processes for each of these ActivityIDs
in the array and then copies the current map to these new processes. The engine starts
execution in each of these new subprocesses at the ActivityID specified in the array.

These new subprocesses will execute until they hit a Terminate action. It is your
responsibility to make sure these subprocesses have a Terminate action. It is also your
responsibility to copy the necessary properties from the subprocesses and save them
onto the parent process before the subprocesses terminate.

Table 14-1 shows an example of a simple map with an AndSplit action. If exe­
cution starts at ActivityID 100, this map describes the following routing process. First
the process waits 10 minutes and then splits execution at 500 and 700. The 500 branch
will send the current message to Mailbox1 and return. The 700 branch will send the
current message to Mailbox2 and return. With both branches complete, execution
resumes at 300, where the process waits 10 minutes and then terminates.

ActivitylD Action Flags Parameterl Parameter2

100 Wait 0 10

200 AndSplit 0 500 700

300 Wait 0 10

400 Terrhinate 0

500 Send 2 Mailbox1

600 Terminate 0

700 Send 2 Mailbox2

800 Terminate 0

Table 14-1. Map using the AndSplit action.

Goto
Since we are all programmers, I don't need to explain too much about the Goto action.
When a Goto action is executed, the process jumps to a specified ActivityID in your
map and continues executing. Table 14-2 shows a map illustrating the use of mul­
tiple Goto actions-for example, if execution starts at ActivityID 100, the process will
jump to 300, then jump to 200, and then jump to 400, at which point it terminates.

577

Part III Conaboration with Microsoft Exchange

578

ActivitylD Action Flags

100 Goto 0

200 Goto 0

300 Goto 0

400 Terminate 0

Table 14-2. Map using multiple Goto actions.

New

Parameterl

300

400

200

The New intrinsic action creates a new process instance and begins executing it. As
with the AndSplit action, the routing engine copies the current map over to the new
process instance. The only parameter you pass to this action is the ActivityID in the
new process instance where the engine should start executing. The new process
instance will be created in the folder, and when the Terminate action is triggered for
the new process, the process instance will be removed from the folder. Both the
original and the new process instance run at the same time. Table 14-3 shows a map
using the New intrinsic action. Starting at ActivityID 100, this process creates a new
process and terminates. The new process begins execution at 300, executes the speci­
fied actions, and then terminates.

ActivitylD Action

100 New

200 Terminate

300 Your Action Here

400 Terminate

Table 14-3. Map using the New action.

OrSplit

Flags

o
o
2

o

Parameterl

300

The OrSplit intrinsic action is like an If statement in programming. You pass a pa­
rameter to this action that is the name of a VBScript subroutine that returns either
Trne or False. If the subroutine returns Trne, the line immediately follOwing the OrSplit
action executes. If the subroutine returns False, the next row in the map is skipped
and the row after that is executed. You can nest these actions to create nested If
statements. The map in Table 14-4 shows you how to use the OrSplit action. Start­
ing at ActivityID 100, if MySub returns Trne, the Goto action will be executed and
will jump to 400. If MySub returns False, the Terminate action at 300 will be executed.

Chapter 14 Exchange Server Routing Objects

ActivitylD Action Flags Parameterl

100 OrSplit 0 MySub

200 GotoO 400

300 Terminate 0

400 Terminate 0

Table 14-4. Map using the OrSplit action.

Terminate
The Terminate action ends the currendy running process instance. This action takes
no parameters and can occur anywhere in your map.

Wait
The Wait action causes the engine to wait until a specified amount of time has elapsed.
This action takes as its parameter the number of minutes to wait. After the time limit
is reached, the' next row executes. When you are in a Wait action, your map is not
blocked. Use the Wait action in your maps to program timeouts that give participants
a' finite amount of time in which to respond.

The map in Table 14-5 is a section from the Expense Report application map,
and it shows you how to use the Wait action. Starting at ActivityID 120,. the engine
will wait 60 minutes before executing the next line in the map, w.\1ich is the OrSplit
action. This wait time gives the manager of the. person who submitted the expense
report time to approve or reject the report. If the manager does not approve the report
in one hour,thetime limit for the Wait action will expire, and the report will be routed
to the manager's manager. If, however, the engine is waiting for the timeout to oc­
cur and an approval or rejection message is sent to the folder with the correct RUI
for the expense report, the ReceivedApprovalMsg subroutine will be called.

ActivitylD Action Flags

120 Wait 0

130 OrSplit 0

140 Goto 0

150 OrSplit 0

Table 14-5. Map using the Wait action.

Custom Script Actions

Parameterl

60
IsTimeout

5000

ReceivedApprovalMsg

While the six intrinsic actions control the flow of the .engine when processing the map,
they really do not implement any application functionality; to do that, you will have
to create custom script actions in VBScript. (You must write your script actions in

579

Pari III Conaboration with Microsoft Exchange

580

VBScript because currently it is the only supported scripting language for creating
custom actions.) The script actions can be used in your maps and will be called by
the routing engine during execution. In your script, you can also call COM objects
to perform your work.

Writing a script action requires that you properly name the VBScript subrou­
tine that implements the action. You must prefix the subroutine name with the text
Route_. For example, if you wanted to have a CheckTotal action, which checks the
total of an expense report to see whether it can be automatically approved, you would
name your subroutine Route_CheckTotal. If you don't use the Route_ syntax, the
engine will generate an error stating that a connection point could not be found.

To help you implement the most common types of actions you'll perform with
the routing engine, Microsoft provides a script file named Routing.vbs. This script file
contains 16 route actions and a number of helper functions. The Routing.vbs file is
available from the Microsoft Web site at http.//www.microsojt.comltechnetlresource!
download/exchange/misc under Routing Script Source Code (routingsrc.exe).
Table 14-6 lists the route actions and describes the functionality of each.

Action

AutoSet

CreateNote

Consolidate

FinalizeReport

IsApprovalMsg

IsApprovedTable

IsInvalidRecip

Description

Provides autoapprove and autoreject functionality for
your routes.
Converts an IPM.Post message to an IPM.Note message
so that the status of the message can be tracked using
Microsoft Outlook.
Takes the message body and any attachments of a reply
message and adds them to the original process instance
message.
Creates and sends a summary report about the status of
the process instance.
Checks the sender of a message to determine whether
the sender is on the recipient list for the route. If the
sender is on the list, the action checks whether the
sender has approved the item. It returns True for ap­
proval or False for rejection.
Tallies all approval or rejection votes. The action returns
True if the number of approvals is greater than the num­
ber of rejections or False if rejections are greater than
approvals.
Checks a received response message to make sure that
it is from the correct person in the routing sequence
and from a person from whom a response is expected.
If the message is not from the correct person, the mes­
sage is ignored.

Table 14-6. Route actions of Routing.vbs script file.

Table 14-6. continued

Action

IsNDR

IsOOF

IsPost

IsReceipt

IsTimeout

NOP

PreProcessing

Receive

Send

What About Roles?

Chapter 14 Exchange Server Routing Objects

Description

Checks to see whether the e-mail received is a nonde­
livery report. The action returns True if it is, False if it is
not.

Checks to see whether e-mail received is an out-of-office
message. The action returns True if it is, False if it is not.

Checks to see whether the item in the folder is a Post
message, or IPM.Post. The action returns True if it is,
False if it is not.

Checks to see if the e-mail received is a receipt message
such as a deiivery, a read, or a non-read receipt. Re­
turns True if it is, False if it is not.

Checks to see whether the process instance timeout has
expired. Returns True if it has, False if it has not.

Performs a No Operation. You can use this function as a
placeHolder if you want to modify a map in progress.

Perfofms initialization of the route, such as changing
IpM.Document and IPM.Post items into IPM.Note.

Processes reply messages that correspond to a current
process instance. This subroutine also handles voting
button responses.

Sends the routing message to the recipient. This .mes­
sage can include a work item as an attachment, or it can
have an Outlook Web Access (OWA) link to the work
item. You can specify either the address of the partici­
pant or the role.

When developing rotlting applications, you'll frequently want to use a dynamic lookup
to locate individuals to route items to. You could implement this lookup as a cus­
tom script function that searches in a database or in a flat file. But you could also
use Exchange Server's directory, which contains information about the recipients
inside or outside your system.

The Exchange Server directory provides one built-in role-Manager. This is the
most typically used role; when you use it, items are dynamically sent to the current
person's manager in the directory. This role is recognized automatically by the Routing
Wizard sample application. If you do not use the script actions from the Routing
Wizard in your own applications, you will need to recognize and look up the Man­
ager role in your own custom script.

581

Part III

582

NOTE The roles discussed in this section are different from the security roles
that you see on the Permissions tab in Outlook. The roles discussed in this sec­
tion are a special type of distribution list, where the owner is called the role per­
former. Security roles, such as Reviewer, on the other hand, make it easier for
you to set permissions on a folder.

You can extend the Exchange Server directory with your own custom roles.
Included with Exchange Server 5.5 Service Pack 1 is a Role Administrator program
for the Exchange Server directory. Using this program, you can create custom roles
that have a role performer, such as expense approver, and people for whom the role
performer performs the function, such as Frank, Jane, and Scott. The interface for the
Role Administrator program is shown in Figure 14-3.

Figure 14-3. The Role Administrator program is implemented as an Active Server
Pages (ASP) application.

Roles are implemented in the directory as nested distribution lists. The easi­
est way to understand the relationships between these nested distribution lists is
to look at an example of one. Let's imagine that Thomas is the expense approver
for Frank, Jane, and Scott. The expense approver role is represented as a distribu­
tion list in the directory. In that distribution list are nested other distribution lists
that contain the role performers as the owner of the distribution list. In one of those
nested distribution lists, Thomas is the owner. Frank, Jane, and Scott are members
of that nested distribution list. Thomas, then, is the role performer for Frank, Jane,
and Scott. Figure 14-4 shows the Properties dialog box of a nested distribution list
in the Exchange Administrator program, with Thomas as the expense approver for
Frank, Jane, and Scott.

Chapter 14 Exchange Server Routing Objects

Figure 14-4. The Properties dialog boxfor a nested distribution list that was auto­
matically created with the Role Administrator program. Thomas is the role performer
of the Expense Approver role, and Frank, Jane, and Scott are members of the Expense
Approver role.

Distribution lists representing roles are unique in that their property PR...;.GIVEN_
NAME (&H3A06001/!) contains the text ROLEPERFORMER. By using this property and
the CDO Address Entry Filter object, you can quickly create applications that find and
display all the roles in your Exchange Server directory.

EXPENSE ROUTING APPLICATION
To convert the Expense Report application from Chapter 13 to a routing application,
a few major changes were made to create a routing map, update the ASP pages so
that they send e-mail messages to the expense routing folder rather than update the
status of the expense items directly, and implement some custom script actions. Before
looking at the changes to the ASP pages and script, you need to set up the Expense
Routing application.

Setting Up the Expense Routing Application
Before you can install the application, YOll must have a Microsoft Windows NT 4.0
Server and a client with certain software installed. Table 14-7 describes the installation
requirements.

583

Part III Collaboration with Microsoft Exchange

584

Required Software

Exchange Server 5.5 Service Pack 1
with Outlook Web Access

Microsoft (lIS) 3.0 or later with
Active Server Pages

CDO library (cdo.dll),
CDO Rendering library (cdohtml.dll)

For the cHent:
A Web browser,
Outlook 2000,
Visual Basic 6.0

Installtition Notes

Exchange Server 5.5 Service Pack 1 or
later installs the routing engine and
touting objects.

ns 4.0 or later is recommended.

Exchange SerVer 5.5 Service Pack 1
installs CDO library 1.21 and CDO
Rendering library 1.21. Outlook in­
stalls CDO library 1.21.

For the Web browser, Microsoft Inter­
net Explorer 4.0 or later is recom­
mended. You can run the client soft­
ware on the same machine or on a
separate machine.

Table 14-7. installation requirements/or the Expense Routing application.

To iristall the Expense Routing application, copy the Expense Routing folder
from the companion CD to your Web server where you want to run the application.
Start the lIS administration program. Create a virtual directorY that points to the lo­
cation where you copied the expense routing files, and name the virtual directory
expenserouting. Make sure you enable the Execute permissions option for the vir­
tual directory. You will be able to use the following URL to access your Expense
Routing application: http://yourservername/expenserouting~

Open the Exchange Administrator program. Open the Properties dialog box for
the Folders\System Folders\Events Root\EventConfig_seroername folder. Click the
Client Permissions button, add a user who will administer the Expense Routing folder,
and grant the user Author permissIons. Click OK twice.

Launch Outlook using the user you selected to administer the folder Expense
Routing. Create a new public folder named Expense Routing under All Public Fold­
ers. Next, verify that the Server Scripting add-in is installed. By default, Outlook does
not install the Server Scripting add-in. To install the Server Scripting add-in, select
Options (rom the Tools menu, click on the Other tab, click Advanced Options, and
then dick Add-In Manager. Check the SerVer Scripting check box in the Add-In
Manager dialog box. In the. Exchange Administrator program, open the Properties
dialog box for the Expense Routing public folder. Click on the Advanced tab, uncheck
the Hide From Address Book check box, and click OK.

Start the Registry Editor on your server, and open this key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Serv;ces\MSExchangeES\
Parameters

Chapter 14 Exchange Server Routing Objects

Set Logging Level DWORD to 5, to log the maximum amount of information.

NOTE Be sure to set Logging Level to 0 when you are finished testing the
Expense Routing application. If you do not, your Application log will be quickly
filled up with MSExchangeES logging entries.

Next, you will create a. default map using the Exchange Routing Wizard. To
install the Routing Wizard on yOl,lr client machine, run Rwsetup.exe from the Exchange
Server 5.5 Service Pack 1 CD. For Microsoft Windows 95 and Windows 98, the loca­
tion for Rwsetup.exe is C:\Eng\Server\Support\Collab\Sampler\Routing\ Win95. For
Microsoft Windows NT and Windows 2000 Server, the location is C: \Eng\Server\
Support\Collab\Sampler\Routing\ Winnt\i386. You must have Outlook installed on
the machine on which you are installing the Routing Wizard.

After you have installed the-R.outing Wizard, run it by selecting it from the Pro­
grams menu. The Routing Wizard requires you to log on to Exchange Server. Use the
account that you used to create the Expense Routing public folder. In the Step 1
screen, choose the Expense Routing public folder as shown in Figure 14-5. Step
through the remaining screens of the wizard. Add recipients when necessary. Since
the Routing Wizard is being used only to create a default map, which we will modify
later, the remaining settings in .the wizard are not important.

Figure 14-5. Selecting the Expense Routing public folder to install a default routing
map.

Locate the RoutingAgentScript.txt file included with the expense routing files.
Be sure the read-only flag for the file is unchecked, and open it in Notepad. Perform
a search in the code, and replace all instances of the text loealhost with the name of
your Web server. Save and close Notepad.

585

Part III Collaboration with Microsoft Exchange

586

Run the updated Agent Install program in the Agent Install Updated folder on
the companion CD. Log on to your Exchange server using the account you used to
create the Expense Routing public folder. Select the Expense Routing public folder,
as shown in Figure 14-6.

Figure 14-6. Selecting the Expense Routing public folder in the updated Agent Install
program. The agent and map contained in the Expense Routing/older were added
using the Routing Wizard.

Click the Delete This Agent button, and then click OK to delete the agent in
the Expense Routing public folder generated by the Routing Wizard. Click No when
asked to delete the routing map. Click the Add New Agent button, click Yes when
asked to create a routing agent, and then click OK to select a script. In the Select Script
dialog box, shown in Figure 14-7, select the RoutingAgentScript.txt file that you
modified earlier, and click OK.

Figure 14-7. Selecting the sCript/or the Expense Routing agent.

Chapter 14 Exchange Sener Rouling Objects

In the main interface for the updated Agent Install program, click the View
Default Map button. Click the Delete All Rows button to clear the map. Use the Delete
Column button to delete all parameter columns except Parameter!. Click the Select
Script button. When asked whether you want to use the default script in the folder,
click Yes. Check the Parse Script For Functions check box, and click OK after the
program tells you how many new functions were added from the script. Enter the map
instructions shown in Figure 14-8. Double-click your mouse or press the Enter key
to edit a cell, and use the Add Row button to add rows. You will be able to select
intrinsic and custom actions from a combo box that is displayed in the Action col­
umn. When finished, click Save, and then click Exit.

Figure 14-8. The routing mapfor the Expense Routing agent.

To test the Expense Routing application, use the follOwing URL to submit expense
reports: http://yourservernamelexpenserouting. The application is used in the same
way as the Expense Report application in Chapter 13. Figure 14-9 shows the Expense
Report status page with some sample expense reports in different routing states. To
see sample expense reports, open the Expense Routing.pst file included with the
expense routing files in Oudook.

NOTE If the application does not work as expected, check that you have Ser­
vice Pack 1 of Exchange Server installed. Also, check the Application log of the
Event Viewer for any logged errors.

587

Part III Collaboration with Microsoft Exchange

)1 "I" "~l p, 1'",1 '-.1 ill]~ I' lO)("11(,,, ,,11 1"ll " I I "pl"to r --I "~~" :'", "'~'~"'~~"~ff ~ ~~~"" " ~~~,~~ ~ " :~~"~ ~'"~~, "~~ ~"'~~~:"'~":"""'"""""' '

E~~ ~=:~~~~~
Your Expense Report status page
_Current

Approved automatica117 and rll1lted for Time 2121/00 3:42:42 Totat$lOOO
Status: paymomt Submitted: PM _Current

Await:m; Approval from Don HaD Time 2121/00 3:42:52 Total: $10000
Status: Submitted: PM

• Current Rej.cted by Don ReO Tune 2121/00 3:43:01 Total: $6000
Status: Submitted: PM

Figure 14·9. The status page for the Expense Routing application, where expense
reports are in different routing states.

Changes to the ASP Section of the Application

588

The biggest changes to the ASP section of the application occurred in the approval
and rejection code for an expense report. The expense approval and rejection code
had to be changed so that it did not update the item directly with the approval or
the rejection of the expense report. Instead, the code was modified so that it sent e­
mail to the requesting user with the response of the expense approver, regardless of
whether this response was an approval or rejection. To implement this functional­
ity, the code creates an e-mail message, and it adds a subject containing the string
'!APPWF" for approval and ''REfWF'' for rejection, as well as the RUI number for the
process instance that this approval or rejection is for. The application appends
''RUI=number'' to the subject.

To retrieve the RUI on an approval or rejection in the ASP application, the
custom script action that sends the message to the manager for approval has to pass
the RUI to the ASP application. To do this, as you will see, the custom script action
calls into the Routing Object library and uses a specific property contained on the
ProcInstance object, named RUI.

Once the ASP application has all the necessary information, it can create a fully
formed approval or rejection message with the RUI and mail this to the Expense
Routing public folder. The next code segment, from finalapprove.asp, shows creat­
ing the approval or rejection message and sending it to the folder. The code used to
implement the Expense Report application in Chapter 13 is commented out in the
listing so that you can compare the two implementations.

Chapter 14 Exchange Server Routing Objects

(!--,include file="logon.inc"--)
(%
Dim oMessage
Dim AMSession

CheckAMSession
BAuthenticateUser
Set AMSession= Session("AMSession")
if AMSession Is Nothing Then

'CheckSession was unable to retrieve or create a session
Response.Write("GetAMSession returned nothing!(br)")

End If
Mailbox = Session("Mailbox")
set objFolder = Session("objFolder")
if objFolder is Nothing then

Response.Write(_
"Cannot access the Expense Report folder!(br)")

end if
objInfoStoreID = Session("objInfoStoreID")
'Get the EntryID for the message from the query string

objMessageID = Session("Entryid")
'Get the message by its ID

set oMessage = AMSession.GetMessage(objMessageID. objInfoStoreID)
'Get the Fields of the report

set Total = oMessage.Fiel~s("Total")
'Get the user who posted the message

set addentry = oMessage.Sender
set UserSManager = addentry.Manager
Approver = Session("ApproVer")

set newExpenseReport = AMSession.outbox.messages.add
set mynewrecipient = newExpenseReport.recipients.add
'Need to change this to a different folder if it is different
mynewrecipient.Name = "Expense Routing"
mynewrecipient.resolve
lRUI = Session("RUI")
if Request.Form("Approve") = "Approve" then

newExpenseReport.subject = "APPWF:.RUI=" & Cstr(lRUI)
'newExpenseReport.text = Approver & _
'" has approved the expense report. "&_
'"The total value of this report was" & Total
newExpenseReport.send,
'oMessage.Fields("StatusInt") = 3 'Approved
'oMessage.Fields("Status") = "Approved by " & Approve~
'oMessage.Fields("Approver") = Approver
currentstatus = 3

else
newExpenseReport.subject "REJWF: .RUI=~' & Cstr(l RUI)

(continued)

589

Part III Collaboration with Microsoft Exchange

'newExpenseReport.text = Approver & _
'" has rejected the expense report. "&_
'"The total value of this report was" & Total
newExpenseReport.send
'oMessage.Fields("StatusInt") = 4 'Rejected
'6Message.Fields("Status") = "Rejected by " & Approver
'oMessage.Fields("Approver") = Approver
currentstatus = 4

end if
'oMessage.Update TRUE. TRUE
%>
<head>
<meta http-equiv="Content-Type"
content="text/html: charset=iso-8859-1">
<% if currentstatus = 3 then %>
<title>Expense Report Approved Page</title>
<% else %>
<title>Expense Report Rejected Page</title>
<% end if %>
</head>

<body bgcolor="fFFFFFF">
<p>
<% if currents tat us = 3 then %>
Routing Final Approval to <%=addentry.Name%></p>
<hr>

The following funds have been successfully transferred:
<p align="center">$<%=oMessage.Fields("Total")%><1p>
<% else %>
Routing Rejection message to <%=addentry.Name%></p>
<hr>
<% end if %>
</body>
</html>

Changes to the Server Script

590

Whereas the changes to the ASP application were very minor, the changes to the
server-side script that runs on the Exchange server were somewhat more extensive.
The first change was to turn the scripting agent script into a routing agent script. We
did this by modifying the primary subroutine names so that they had the Route_
naming convention rather than the scripting agent convention. The script also had
to be updated so that Boolean values were returned by some of the subroutines. This
was necessary to implement branching using OrSplits in the routing map.

The script also needed functionality to update the status of the expense report
when an approval or rejection message is received in the folder-functionality originally
implemented in the ASP application. The status is defined as custom properties on
the message.

Chapter 14 Exchange Server Routing Objects

The following is the updated script code, RoutingAgentScript.txt, that turns the
Expense Report application into a routing application:

<SCRIPT RunAt=Server Language=VBScript>

'FILE DESCRIPTION: Expense Report Sample Script for routing objects

'Localized strings

'Put all localizable strings and constants here

'Global Variables

Dim AMSession
Dim fldrOutbox
Dim msgTarget
Dim fldrTarget
Dim ExpRentalCar
Dim ExpAirfare
Dim ExpHotel
Dim ExpMeals
Dim ExpTotal
Dim g_oMsgIn 'Incoming Message Object
Dim g_oProcInstance 'Process Instance
Dim g_oPIMsg 'Process Instance Message Object
Dim g_oSession 'Session Object
Dim g_oFolder 'Routing Folder Object
Dim g_oAgentAddEntry 'Address Entry Object used for Inbox mailings

'Route Subs

'DESCRIPTION: Check the total of the expense report, and if it
'is under a specific amount, automatically approve the expense
'report
Sub Route_CheckTotal(boolSuccess)

Dim msgResponse
Dim iMsgCount
Dim msgManager
Dim UsersManager
Dim currentuser
Dim currentapprover

(continued)

591

Part III Collaboration with Microsoft Exchange

592

On Error Resume Next
If InitializeObjects Then

WriteToLog I,"Message Count Succeeded"
set ExpTotal = msgTarget.Fields.Item("Total")
Set msgResponse = fldrOutbox.Messages.Add
'Get the RUI
lRUI = g_oProcInstance.RUI
'Modify this line to change Expense Amount
If ExpTotal > 5000 then

WriteToLog I,"Greater than max expense amount"
msgResponse.Subject = "The Total was" & ExpTotal

'Message to manager
set msgManager = fldrOutbox.Messages.Add
set currentuser = msgTarget.Sender
set UsersManager = currentuser.Manager
currentapprover = UsersManager.Name
msgResponse.Text = "This Expense Report has" & _

"been routed to your Manager: " & currentapprover
'Get the spaces out
currentapprover = Replace(currentapprover," ","+")

msgManager.Subject = _
"Approval Required for Expense Report!"

'Need to change this for your server and directory
msgManager.Text = currentuser.name & _
" has submitted an expense report for" & _
ExpTotal &". Please review it at http://" & _
localhost/expenserouting/approve.asp?entryid=" & _
msgTarget.ID & "&Approver=" & CurrentApprover & _
"&RUI=" & Cstr(lRUI)
msgManager.Recipients.Add "","",l.UsersManager.ID
msgManager.Recipients.Resolve(False)
msgManager.Send
msgTarget.Fields("strStatus") = "Awaiting" & _

"Approval from" & UsersManager.Name
msgTarget.Fields("Statuslnt") = 2
msgTarget.Fields.Add "Approver",8,UsersManager.Name
msgTarget.Update

Else 'Expense Report <= Max Amount
WriteToLog 0,"Less than max expense amount"
msgResponse.Subject = _

"This Expense Report has been Approved"
msgResponse.Text = "Your expense report for" & _

ExpTotal & " has been automatically approved." & _
"Funds are being transferred!"

msgTarget.Fields("strStatus") = "Approved" & _
"automatically and routed for payment"

msgTarget.Fields("StatusInt") = 3
msgTarget.Update

Chapter 14 Exchange Sener Routing Objects

boolSuccess = True
End If
If Err.Number = 0 Then

msgResponse.Recipients.Add
msgTarget.Sender.ID

I, _

If Err.Number = 0 Then
msgResponse.Recipients.Resolve(False)
If msgResponse.Recipients.Resolved = True Then

msgResponse.Send
If Not Err.Number = 0 Then

WriteToLog 0, _

End If

"Message. Send Failed: " & _
Err.Description

Else
WriteToLog 0, '"'-

"Recipients.Resolve Failed: " & _
Err.Description

End If
Else

WriteToLog 0,"Recipients.Add Failed: " & _
Err.Description

End If
Else

WriteToLog 0,"Messages.Add Failed: " & _
Err.Description

End If
Else

WriteToLog 0,"Initia11zeObjects Failed: " & _
Err.Description

End If
ReleaseGlobalObjects

End Sub

Sub Route_IsTimeout(boolSuccess)
On Error Resume Next
Dim boolRes 'Boolean Result

WriteToLog 0, "Starting IsTimeout"
boolRes = InitializeObjects
If Not boolRes Then

WriteToLog 0, "InitializeObjects Failed"
El se

boolSuccess = g_oProcInstance.Timeout
Set g_oProcInstance = Nothing

End If
WriteToLog "IsTimeout returns" & boolSuccess
ReleaseGlobalObjects

End Sub
(continued)

593

Part III Collaboration with Microsoft Exchange

594

Sub Route_RouteToNextManager()
On Error Resume Next
Dim boolRes 'Boolean Result

WriteToLog e, "Starting RouteToNextManager"
boolRes = InitializeObjects
If Not boolRes Then

WriteToLog e, "InitializeObjects Failed"
Else

'Get the RUI
lRUI = g_oProcInstance.RUI
'Clear errors
Err.Clear
WriteToLog e,"Rerouting beginning"
set ExpTotal = msgTarget.Fields("Total")
WriteToLog e,"The Total is: " & ExpTotal
'Reroute the message
set CurrentApprover = msgTarget.Fields("Approver")
WriteToLog e,"The current approver is: " & CurrentApprover
set msgResponse = AMSession.Outbox.Messages.Add
'Create the recipient
Set objonerecip = msgResponse.Recipients.Add
objonerecip.Name = CurrentApprover
'Resolve the name against the Exchange Server
'directory
objonerecip.Resolve
'Get the address entry so that we can pullout template
'information
Set myaddentry = objonerecip.AddressEntry
'Get the manager from the address entry
set NextApprover = myaddentry.Manager
if NextApprover = Empty then 'We don't have a manager!

'Send a message to the current user
set currentuser = msgTarget.Sender
msgResponse.Subject = "No more manager to route to"
msgResponse.Text = currentuser.name & _

" has submitted an expense report for" &
ExpTotal & ". There are no other managers" & _
"to route to!"

msgResponse.Recipients.Add "", "", I, _
msgTarget.Sender.ID

msgResponse.Send
'Resend a message to the current approver
Set msgResendtoApprover = _

AMSession.Outbox.Messages.Add
CurrentApproverName = _

Replace(CurrentApprover," ","+")
msgResendtoApprover.Subject = _

"Repeat notice for Approval of an Expense Report!"

Chapter 14 Exchange Server Routing Objects

msgResendtoApprover.Text = currentuser.name & _
" has submitted an expense report for" & ExpTotal & _
". Please review it at http://localhost/" & _
"expenserouting/approve.asp?entryid=" & _
msgTarget.ID & "&Approver=" & CurrentApproverName & _
"&RUI=" & Cstr(lRUI)
'Create the recipient
set oRecip = msgResendtoApprover.Recipients.Add
oRecip.Name = CurrentApprover
oRecip.Resolve
msgResendtoApprover.Send
WriteToLog 0,"No More Managers beyond" & _

CurrentApprover & " for this user."
else

NextApproverName = NextApprover.Name
tmpNextApproverName = NextApprover.Name
'Got the next approver. Send a message to previous
'approver and user and reroute.
set currentuser = msgTarget.Sender
msgResponse.Subject = _

"An Expense Report has been rerouted"
msgResponse.Text = currentuser.name & _
" has submitted an expense report for" & ExpTotal & _
". It was rerouted because the I-hour approval" & _
"time limit has expired. It is now routed to " & _
NextApproverName
msgResponse.Recipients.Add I, _

msgTarget.Sender.ID
msgResponse.Send
if err. number = 0 then

WriteToLog 0,"Successfully rerouted"
end if
'Now change the status and reroute to new person
WriteToLog 0, "Updating fields on Message"
msgTarget.Fields("strStatus") = "Rerouted and" & _

"awaiting Approval from" & NextApproverName
msgTarget.Fields("Approver") = NextApproverName
msgTarget.Update
'Now send a message
WriteToLog 0, "Creating message to next" & _

"approver: " & NextApproverName
Set msgNewApprover = AMSession.Outbox.Messages.Add
WriteToLog 0, "Added message to outbox"
'Create the recipient
'Get the spaces out
NextApproverName = Replace(NextApproverName," ","+")

WriteToLog 0, "Got the spaces out of the name"
msgNewApprover.Subject

(continued)

595

Part III Collaboration with Microsoft Exchange

596

"Approval Required for Rerouted Expense Report!"
WriteToLog 0. "Added Subject"
msgNewApprover.Text = currentuser.name & _
" has submitted an expense report for " & ExpTotal & _
". Please review it at http://localhost/" & _
"expenserouting/approve.asp?entryid=" & _
msgTarget.ID & "&Approver=" & NextApproverName & _
"&RUI=" & Cstr(lRUI)
WriteToLog 0. "Added Text"
Set tmpRecip = msgNewApprover.Recipients.Add
tmpRecip.Name = tmpNextApproverName
WriteToLog 0. "Added Recipient"
msgNewApprover.Recipients.Resolve
WriteToLog 0. "Resolved Address"
msgNewApprover.Send

end if 'Manager!
end if
WriteToLog 0."RouteToNextManager is done."
ReleaseGlobalObjects

End Sub

Sub Route_UpdateStatus(boolApproved)
On Error Resume Next

WriteToLog 0. "Starting UpdateStatus with value: " & _
boolApproved

boolRes = InitializeObjects
If Not boolRes Then

WriteToLog 0. "InitializeObjects Failed"
El se

'Check to see whether approved or rejected. update the
'status of the message. and send an e-mail
Approver = g_oMsgIn.Sender
WriteToLog 0, "Approver: " & Approver
set newExpenseReport = AMSession.outbox.messages.add
set mynewrecipient = newExpenseReport.recipients.add
mynewrecipient.Name = msgTarget.Sender 'Original Sender
mynewrecipient.resolve
Total = msgTarget.Fields("Total")
if boolApproved then 'Approved

WriteToLog 0. "Sending approve message because" & _
"boolApproved is " & boolApproved

msgTarget.Fields("strStatus") "Approved by " & _
Approver

msgTarget.Fields("StatusInt") 3
msgTarget.Fields("Approver") = Approver
newExpenseReport.subject = "Your expense" & _

"report has been Approved!"
newExpenseReport.text = Approver & _

Chapter 14 Exchang, Sener Routing Objects

" has approved the expense report. The total " & _
"value of this report was" & Total

newExpenseReport.send
WriteToLog 0, "Sent Approval Message"

else 'Rejected
WriteToLog 0. "Sending reject message because" & _

"boolApproved is " & boolApproved
msgTarget.Fields("strStatus") "Rejected by " & _

Approver
msgT~rget.Fields("StatusInt") 4
msgTarget.Fields("Approver") = Approver
newExpenseReport.subject = "Your expense" & _

"report has been R~jected!"

newExpenseReport.text = Approver & " has" & _
"rejected the expense ~epQrt. The total " & _
"value of this report was" & Total

newExpenseReport.send
WriteToLog 0. "Sent Rejection Message"

end if
msgTarget.Update TRUE. TRUE
WriteToLog 0. "Updated Message Status"

end if
ReleaseGlobalObjects

end sub

Sub Route_ReceivedApprovalMsg(boolSuccess)
On Error Resume Next
Dim varRet
Dim bool Res
Dim oRecipientEntry
Dim bstrUSubject

'Variant return value
'Booleap result
'VoteTable recipient entry object
'Uppercased ~ubject fro~ incoming message

WriteToLog 0. "Starting ReceivedApprovalMsg"
boolRes = InitializeObjects
If Not boolRes Then

WriteToLog 0, "InitializeObjects Failed"
Else

'Notes: Outlook approval/reject buttons place the string
Approve:" on the su~ject line, the URL version
places APPWF: on the subject line.
Check the subject line to find out whether
it's an Outlook message or a non-Outlook message.

'In expense routing sample. assume it will always be
'a non-Outlook message
bstrUSubject = UCaSe(g_oMsgIn.subject)
'Look for APPROVE in subject
If InStr(1, UCase(g_oMsgIn.subject). "APPWF") Then

WriteToLog 0, "Message Approval Found,"
boolSuccess = True

(continued)

597

Pari III Collaboration with Microsoft EIehanaA

598

'Otherwise look for REJECT in subject
ElseIf InStr(l, UCase(g_oMsgIn.subject), "REJWF") Then

WriteToLog 0,"Message Reject Found."
boolSuccess = False

End If
end if
ReleaseGlobalObjects
WriteToLog 0, "ReceivedApprovalMsg Exit returned" & _

boolSuccess
end sub

'Support Functions

'Description: WriteToLog
Private Sub WriteToLog(boolRecordName,strMessage)

Dim strResponse
strResponse = Now & vbTab & strMessage & ":"
if boolRecordName = 1 then

strResponse strResponse & " " & msgTarget.Subject
else

strResponse strResponse &
end if
Script. Response = Script.Response & vbNewLine & strResponse

end sub

'++
Name: InitializeObjects
Area: Utility
Desc: Set Message, Folder, and other globals.

Check store that agent is operating in.
Parm: None
Retn: Boolean Success

'+++
Private Function InitializeObjects()

On Error Resume Next
Dim bstrTemp
Dim oStores
Dim oStore
Dim bstrPStoreName
Dim lmask

'InfoStores Object
'Store Object
'Public Store Name
'Mask

'Get important session, folder, and message information
Set g_oProcInstance = RouteDetails.ProcInstance
Set msgTarget = g_oProcInstance.Message
idTargetFolder = EventDetails.FolderID
idTargetMessage = EventDetails.MessageID
Set g_oPIMsg = g_oProcInstance.Message

Chapter 14 Exchange Server Routing Objects

WriteToLog 0, "Subject: " & msgTarget.Subject
Set AMSession = EventDetails.Session
Set fldrOutbox = AMSession.Outbox
Set g_oSession = EventDetails.session
Set g_oMsgIn = RouteDetails.Msg
WriteToLog 0,g_oMsgIn.Subject
Set g_oFolder = ~outeDetails.Fol~er
WriteToLog 0,g_oFolder.Name
Set g_oAge~tAddEntry ; g_oSession.currentuser
'Set sender name. If it doe$ not exist (draft message),
'get originator name.
g_bstrMsgSender = g_oMsgIn.sender.Name
If Err Then

Err.Clear
g_bstrMsgSender = g_oMsgln.Fields.Item(g_PR-CREATOR-NAME)

End If
WriteToLog 0,9_bstr~sQSender
'Save message Subject for Trace reasons
g_bstrInMsgSubject = g_oPIMsg.subject
'Trap any untrapped failure.
If Err T~en

WriteToLog 0,"InitializeObjects returned False"
InitializeObjects = False

Else
WriteToLog 0,"InitializeObjects returned True"
InitializeObjects = True

End If
'Release objects
Set oStore = Nothing
Set oStores = Nothing

End Function
'+++++++++++++++++++++++++++++++++++++11111111111+++11111111++++++++

Name: Relea~eGlobalObjects

Area: Utility
Desc: Release global objects
Parm: None
Retn: None

'++++++ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ++++++++++++++++++++++++++++++++.1 1 1 1 1 1 1 ++++

Private Sub ReleaseSlobalObjects()
on errQr resume next
Set g_oMsgIn = Nothing 'Release in reverse order
Set g_oFolder = Nothing
Set g_oAgentAddEntry = Nothing
Set msdTarget = Nothing
Set fldrOutbox = Nothing
Set g_oPIMsg = Nothing
Set Item = Nothing

(continued)

599

Part III Conaboration with Microsoft Exchange

Set g_oSession = Nothing
Set AMSession = Nothing
Set g_oProcInstance = Nothing

End Sub
</SCRIPT>

ROUTING OBJECT LIBRARY

600

The Exchange Server Routing Object library is provided by Microsoft so that you can
create process instances, create and edit routing maps, and track the progress of your
process instances. The Routing Object library, which is provided in the file exrtobj.dll,
is a hierarchical object library like CDO. In fact, the Routing Object library was built
with the expressed intention to be used with the CDO object library. Figure 14-10
shows the objects contained in the Routing Object library.

Figure 14-10. The objects in the Routing Object library.

Chapter 14 Exchange Server Routing Objects

With this object library, you can create some interesting applications. To help
demonstrate how useful and powerful this object library is, we will take a look at an
update to the Agent Install program from Chapter 13. This program has been updated
to allow you to edit routing maps and track the state or process instances in a folder.
Before looking at the updated Agent Install program, however, you first must take a
look at the objects in the library so that you have a firm understanding of their func­
tionality. I'll provide the most important properties and methods you will likely use
in your applications. Refer to the Agents.hlp file on the Exchange Server 5.5 Service
Pack 1 CD for the full listing of properties and methods for the objects. Also, check
out the Exchserv.chm file on the companion CD and the Microsoft TechNet site
http;//www.rnicrosoft.comltechnet/downloadlexchangel.

RouteDetaiis Object
The RouteDetails object is a top-level object in the library. You should never explic­
itly create a RouteDetails object; it is passed to the VBScript subroutines that you write
for the folder in the same way that the EventDetails object is passed to your VBScript
event scripts. Since the routing objects are built on the Event Scripting technology,
both the RouteDetails object and the EventDetails object are passed to your VBScript
functions.

The RouteDetails object contains a number of properties that you will want to
use in your VBScript functions, including the follOWing:

• Proc/nstance property. This property, when set to an object variable,
returns the process instance object currently being executed. You can use
this object to retrieve process-specific information, such as the row in the
routing map that the process instance is currently executing.

• Msgproperty. This property, when set to an object variable, returns a CDO
Message object that corresponds to the message received by the folder for
the process instance. In your scripts, this message would be an approval
or a rejection, or some other type of status message sent to the folder. This
message would have an RUI number representing a currently executing
process instance.

• Folder property. This property, when set to an object variable, returns a
CDO Folder object that represents the current folder where the process
instance is running. You can use this Folder object in your script to per­
form actions on the folder or on messages inside the folder.

• Work/tern property. This property returns the WorkItem object for the
current process instance.

601

Part III Collaboration with Microsoft II:xcn:an:ge

As you can see, the RouteDetails properties return full CDO objects, unlike the
EventDetails object, which returns only EntryID properties for the message and the
folder. Using the RouteDetails properties avoids the need to bind to a message or a
folder in the Exchange Server store each time a script is run, so your scripts will
achieve greater performance.

That said, there is one important object that is not available through the
RouteDetails object and available only through the EventDetails object-the CDO
Session object, which is the pre-logged-on CDO Session that the script is running
under. To retrieve all the objects you want to use in your scripts, you must use both
the RouteDetails and EventDetails objects together. The following code shows how
to initialize your VBScript objects with all the RouteDetails properties:

Set 9_oSession = EventDetails.session
Set 9_oMs9In = RouteDetails.Ms9
Set 9_oFolder = RouteDetails.Folder
Set 9_oProclnstance = RouteDetails.Proclnstance

Proclnstance Object

602

The ProcInstance object is a top-level object that can be created independently of
any other objects in the Routing Object library, or that can be obtained by using the
Proclnstance property of the RouteDetails object. The ProcInstance object represents
a process instance that is a work item and some additional properties for state and
map information. When tracking processes in your routing object applications, you
will use the ProcInstance object extensively. Some of the important properties and
methods for this object include the following:

• CurrentRow property. This property returns a Long value that represents
the current row that the engine is executing. The value is not the same
as the ActivityID of the current row that the engine is processing. To find
the ActivityID, you must first scroll through the routing map and then
retrieve the specific row the property corresponds to. You can then use
the ActivityID property of the Row object, which you will see later in this
chapter.

• Log property. When set to an object variable, this property returns the
routing object's Log object. The Log object represents the custom log for
a particular process instance. Don't confuse this Log object with the agent
log that you saw in the previous chapter. These two logs are stored dif­
ferently. The Log object in the routing objects should be used to store
execution history and auditing information for the process. The Agent log
should be used for debugging information about agents as well as gen­
eral agent information, such as the time the agent completed execution.

Chapter 14 Exchange Server Routing Objects

Note that if you want to write debugging information to the Agent log from
a routing objects VBScript subroutine, you can use the Script.Response
method in exactly the same way you use it in an Event Agent script.

• Map property. This property, when set to an object variable, returns a Map
object that represents the map for the current process instance. Since you
can have maps for individual items that are different from the default folder
map, you should not assume that the default folder map and the process
instance map are the same.

• Message property. Set this property to an object variable to retrieve the
corresponding CDO message for the process instance. You can also set
this property to a CDO Message object to tell the Routing Object library
which process instance you want to work with-this is the most common
use for the Message property. You will see how to use this property in the
sample application later in this chapter.

• Participant property. This property returns the Participant object. The role
of the Participant object is to let you quickly resolve custom roles stored
in the Exchange Server directory.

• RUI property. This property returns a Long value that represents the unique
RUI number for this process instance.

• Terminated property. This property returns a Long value that represents
whether the process instance is terminated-O if the process instance is
not terminated and is still executing, or 1 if the process instance has hit a
Terminate command in the map.

• Timeout property. This property returns a Boolean that represents whether
the process instance has timed out during a Wait action in a map. Timeout
returns True if the process instance has timed out, and False if it has not
timed out. You should use this property and the Wait action together to
implement time outs in your applications. You can then call automatic
functions when the timeout occurs to either automatically move the item
to the next participant or remind the current participant of the time limit
for a response.

• VoteTable property. This property returns a VoteTable object that allows
you to create and consolidate Outlook voting-button-style messages.

• Wait property. This property returns a Long value that represents the time
when the process instance will expire. The Wait property is used by the
engine at run time to determine whether the process instance has timed
out. You probably will never use this property directly in your applica­
tions but instead will use the Timeout property just discussed.

603

Part III Collaboration with Microsoft Exchange

• open method. This method, when it has the Message property set and is
called on a ProcInstance object, opens the process instance on the spe­
cific CDO Message object. You must set the Message property and use the
Open method before attempting to use any of the other routing object
properties.

• Save method. This method saves any changes you make to the process
instance. You must also call the CDO Update method on the process in­
stance message to save your changes permanently.

The following code snippet, written in Visual Basic, shows you how to use
some of these properties and methods. It assumes you already have a valid CDO
Message object, named oMessage, that corresponds to the process instance you are
interested in.

Set oRTProclnstance = CreateObject("exrt.Proclnstance")
oRTProclnstance.Message = oMessage
oRTProclnstance.Open
msgbox "The current executing row is " & oProclnstance.CurrentRow
if oProclnstance.Terminated = 0 then

msgbox "The process is not terminated."
El se

Msgbox "The process is terminated."
End if
Msgbox "The RUI for this process instance is " & oProclnstance.RUI
'This shows how to retrieve the properties that require object
'variables
set oMap = oProclnstance.Map
set oLog = oProclnstance.Log

Map Object

604

The Map object represents the routing map that is evaluated and used by the engine
when executing process instances. There must be a default map in every routing
folder. This map is copied onto incoming messages when the messages do not al­
ready contain maps.

The Map object is a top-level object that can be created independently of other
objects in the library, so you can create maps and edit maps without creating a
ProcInstance object. The following are the major properties and methods for this
object:

• ActivityCountproperty. This property returns a Long value that represents
the number of activities in a particular map. You can use this property to
scroll through all the activities in a map to search for a specific activity or
parameter.

Chapter 14 Exchange Server Routing Objects

• Message property. This property gets or sets the CDO Message object
corresponding to the object you want to retrieve or save a map onto. You
must set this property before you call the methods on the Map object.
You can set this property to an individual message in a folder to retrieve
the map stored in the message, or to the event binding message in the
folder to retrieve the default map for the folder.

• CopyTo method. The CopyTo method copies the map from one message to
another message. This method takes as its argument the CDO Message
object, which corresponds to the process instance you want to copy the
current Map object to.

• DeleteActivity method. This method takes an ActivityID as its argument
and will delete the activity from the map. You must call the SaveMap
method and the CDO Message object Update method to save your changes
permanently.

• DeleteMap method. This method deletes the entire map from the current
CDO Message object.

• GetRow method. This method retrieves a specific row from the map. It
takes the row number as a Long argument and returns a Row object that
corresponds to that row.

• InsertActivity method. This method inserts a Row object into the current
map. It takes a Long value that indicates the row number preceding the
row you will insert. This method also takes a Row object as an argument
to indicate the source of the row to insert. The value -1 tells the library
to insert your new row after the last row in the map.

• OpenMap method. This method opens the map on the CDO Message
object you specify for the Message property. You can pass in a Long
argument, which takes the value 0 if you want to open the map as read­
only, and nonzero if you want to open the map as read/write.

• SaveMap method. This method saves the current map on the CDO Mes­
sage object specified in the Message property. Note that you must also
change a property on the item and call the CDO Message Update method
to permanently save the item. If you do not call the CDO Update method
after calling the SaveMap method, your changes will be lost when you de­
stroy the Map object.

The following code snippet shows you how to use some of these methods and
properties in your own programs. It assumes you have a valid CDO Message object,
named oMessage.

605

Part III Collaboration with Microsoft ""--"""-

Set oRTMap = CreateObject("exrt.map")
oRTMap.Message = oMessage
oRTMap.OpenMap 1 'Read/Write
msgbox "Activity Count is " & oRTMap.ActivityCount
'Retrieve a row by using the Get Row method.
'First. create the Row object.
set oRTRow = CreateObject("exrt.row")
oRTMap.GetRow 1. oRTRow 'Get the first row
'Change the Flags property on the row
oRTRow.Flags = 2
'Need to save the map now
oRTMap.SaveMap
'Need to change a property on the message to have the
'Update method work correctly
oMessage.Subject = oMessage.Subject & " "
'Need to call the COO Message Update method to persist changes on
'the message
oMessage.Update

Row Object

606

The Row object represents a single row in your map. You can create a Row object
independent of the other objects in the library. After creating a Row object, you should
set its properties and add it to your map. If you are retrieving a row from an existing
map, to store the row, you must pass in a variable that corresponds to your Row
object. The following are the most important properties and methods for this object:

• Action property. This property takes a String value and can either set or
retrieve the action for the current Row object. This action can be the name
of an intrinsic action or of a script subroutine you create in VBScript.

• ActivityID property. This property is a Long value that contains the unique
number that identifies the row in the map. Usually, you start ActivityIDs
in a new map at 100 and increment according to your preference for
numbering the subsequent rows.

• Flags property. This property is a Long value that contains a flag indicating
whether the Action property is an intrinsic action or a VBScript -implemented
action. The possible values for this property are a for an intrinsic action
and 2 for a VBScript action.

• CopyTo method. This method takes a Row object as its argument, and then
copies the current row to the new Row object.

Chapter 14 Exchange Server Routing Objects

• GetArgs method. This method returns the parameters for a Row object. The
parameters are returned in a string array along with a Long variable that
indicates the number of parameters for an action. See the next code snippet
to learn how to use this method.

• SetArgs method. The SetArgs method is the opposite of GetArgs. Instead
of retrieving the parameters for the Row object, the SetArgs method sets
the parameters for the Row object. You must pass in a Long value that is
the number of parameters for the Row object as well as a string array of
those parameters.

The following code snippet shows you how to use the Row object. Note that
you must convert to the correct format any arguments you pass to the methods and
properties. If a method is expecting a Long value, pass a Long value. This example
assumes you already have a valid Map object set to oRTMap.

'This example creates a row. fills it in. and adds it to a map
Set oRTRow = CreateObject("exrt.row")
Dim arrParameters(2) 'Two parameters
arrParameters(l) = "Test"
arrParameters(2) = "Test2"
'If the parameters are numbers. use CLng.
'See the AgentInstall update later in this chapter for more
'information.
oRTRow.SetArgs 2. arrParameters

'Use CLng if not already a Long
oRTRow.ActivityID = 100
'Use CStr if not a string
oRTRow.Action = "My Custom Action"
'Use CLng if not already a Long
oRTRow.Flags = 2
'Insert the Row into the Map
oRTMap.InsertActivity -1. oRTRow
oRTMap.SaveMap
'Then update the message. as shown in the previous code snippet

Log Object

The Log object allows you to log activities that execute in your map. This object stores
its iog differendy from the way logs are stored in the Event Agent log. The only way
you can retrieve the Log object is by using the Log property on the ProcInstance object.
You cannot create a separate instance of this object. The methods of the Log object
are shown on the following page.

607

Part III Conaboration with Microsoft Exchange

• AddLogEntry method. This method adds a new log entry to the current
log of the selected process instance. This method takes the application
name as a string (referred to as the name ID), which you can use to iden­
tify custom activities or functions as a string, the date/time as a Long
value, and the description you want to store as a string. You probably
will use this method to store route-specific information for a particular
process instance. This log is useful for storing audit trails and failures in
a particular process.

• GetLogEntry method. This method retrieves a log entry from the current
log of the process instance. It shares the same properties as the AddLogEntry
method, but it returns them instead of adding them. The parameters for
these two methods differ as well: the GetLogEntry method has an extra
parameter, which is for the LogIndex.

• OpenLog method. This method opens the log so that you can retrieve or
add items to it.

• SaveLog method. This method saves your changes to the current log.

The following code snippet shows you how to insert an item into the log. The
code assumes that you have a valid ProcInstance object named oRTProcInstance.

Set oRTLog = oRTProclnstance.Log
oRTLog. AddLogEntry "MyApp". "MyNameI D". CLng (10/1/1998). "MyDescri p"
'Save the log
oRTLog.SaveLog

Participant Object

608

The Participant object provides a way to refer to and manipulate addresses (which
can be actual e-mail addresses or roles) in your routes and resolve roles to actual
addresses. For example, you would use the Participant object to find out who the
manager or expense apI)f()ver for a certain user is by passing in the address of that
user. The Participant object would then return to you the address of the person who
performs the role you specified. The three important methods of this object include
the following:

• RoleName method. You pass the role name you want to resolve as a string
to this method. For example, to resolve the Expense Approver role for a
user, you would pass Expense Approver.

Chapter 14 Exchange Server Routing Objects

• MemberName method. You pass this method a string containing either the
unique address or unique name of a person. This string should contain
the information of the person for whom you want to find the role per­
former associated with the role name you specified in the RoleName method.
For example, if you wanted to find the expense approver for Frank Lee,
you would pass, as a string to this method, either the name Frank Lee or
the e-mail address of Frank Lee.

• ResolveRole method. This method returns to you the address of the per­
son who performs the role for the member you specified. You must set a
variable to this method to retrieve the address. For example, if Tom Rizzo
was the expense approver role performer for Frank Lee, thee-mail address
of Tom Rizzo would be returned by ResolveRole.

The following sample code shows you how to use this object in the VBScript
subroutines for your routes. It assumes that you already have a valid ProcInstance
object named oRTProcInstance.

Set oParticipant = oRTProcInstance.Participant
'This can also be Manager or another custom RoleName you make
oParticipant.RoleName = "Expense Approver"
'Or you could pass the address
oParticipant.MemberName = "Thomas Rizzo"
'Get the address of the expense approver
ExApproverAddress = ~Participant.ResolveRole

VoteTable Object
The VoteTable object allows server-based applications to create Outlook voting-button
messages. The Exchange Server Routing Objects do not need to rely on the Outlook
object model to do this; they include the functionality to create them. Being able to
create voting buttons makes it easy for your Outlook users to select custom responses,
such as Approve or Reject, for your routed items. The VoteTable object can also be
used to consolidate voting button response messages in the original process instance.
This consolidation saves time since you do not have to write this code yourself to
consolidate the responses. Furthermore, this object updates the Tracking tab in
Outlook without needing code from you. Remember that you can use this object
without using the rest of the Routing Objects functionality. This means you can add
voting capabilities to any Exchange Server application using this object, even if your
application has nothing to do with workflow.

609

Part III Collaboration with Microsoft Exchange

610

The VoteTable object can be created as a separate object or retrieved by using
the VoteTable property of a ProcInstance object. The VoteTable object is used in
conjunction with the RecipientEntry object, which is discussed later in this chapter.
The following list describes the properties and methods for the VoteTable object:

• Count property. This property returns the number of recipient entries in
the VoteTable object.

• Item property. By passing in a number specifying an index, this prop­
erty will return the corresponding, existing RecipientEntry object in the
VoteTable.

• PIMessage property. When creating a stand-alone VoteTable object, this
property must be set to the CDO Message object, which corresponds to
the process instance for which you want to check recipients' votes.

• Add Buttons method. This method adds voting buttons to your message.
The two parameters you must pass to this method are the CDO Message
object, which is the message you want to add the voting buttons to, and
a string of the voting options, separated by commas, as in "approve, reject,
undecided" .

• ConsolidateResponse method. This method consolidates the responses for
a voting button message received by the folder. This method takes two
parameters, the first being a CDO Message object, which is the voting
button response message. The second parameter is a Boolean specifying
whether to automatically add a RecipientEntry object to the VoteTable for
the user who responded to the voting button message, if one doesn't
already exist for the user.

• Save method. This method saves your changes to the VoteTable object.

The following code example shows you how to create a voting button message.
It assumes you already have a valid CDO Message object called oMessage.

Set oRTVoteTable = CreateObject("exrt.VoteTable")
'You could also use the VoteTable property on the ProcInstance
'object to get a VoteTable object.
'Create the buttons.
oRTVoteTable.AddButtons oMessage, "approve,reject,undecided"
'Send the message
oMessage.Send

The next code snippet shows you how to consolidate voting button responses
received in a folder. This example assumes you have a valid CDO Message object in
oMessage.

Chapter 14 Exchange Sener Routing Objects

'Use the ProcInstance VoteTable
set oRTVoteTable = oRTProcInstance.VoteTable
'oMessage is the voting response message. True means to autoadd
oRTVoteTable.ConsolidateResponse oMessage. True
oRTVoteTable.Save

RecipientEntry Object
The RecipientEntry object is always used to track the response of a recipient in the
route and the date that recipient responded. The RecipientEntry object is typically
used in conjunction with the VoteTable object. The following properties are avail­
able for the RecipientEntry object:

• Date property. This property is the date the recipient sent a response for
the process instance.

• Recipient property. This property is the name of the recipient who re­
sponded.

• Status property. This property contains the recipient's response, such as
Approve or Reject.

The following code shows you how to create and fill in a RecipientEntry ob­
ject. The code will also show you how to add this RecipientEntry object to the
VoteTable object. This code assumes you have a valid oRTProcInstance object.

Set oRTVoteTable =oRTProcInstance.VoteTable
Set oRecipientEntry = CreateObjectC"exrt.RecipientEntry")
oRecipientEntry.Recipient = "My Name"
oRecipientEntry.Date = "11/1/1998 10:00 AM"
oRecipientEntry.Status = "Approve"
oRTVoteTable.ConsolidateResponse oRecipientEntry. False
oRTVoteTable.Save

Workltem Object
The WorkItem object can be retrieved only as a property. of the RouteDetails object.
The WorkItem object can represent a new item in the folder before a related process
instance for the item is found, or a new item in the folder until that item is turned
into a process instance. Most of the time, your applications will not call the methods
and properties of the WorkItem object directly. Rather, the routing engine will call
the methods. The only exceptions to this are the following:

• Item property. This property specifies the CDO Message object you want
to assign to the WorkItem object. After assigning the CDO Message ob­
ject, you can use the methods of the WorkItem object with that CDO
Message object.

611

Part III Collaboration with Microsoft Exchange

• ItemConsolidate method. This method merges the message content of one
CDO Message object with another CDO Message object. To specify the
target message, set the Item property for the WorkItem object to it. The
ItemConsolidate method takes three parameters, the first being an array
of MAPI property tags that you want to merge with the target message.
These properties can be attachments, the message body, or your own
custom properties. The second parameter is the CDO Message object,
which is the source message you want to consolidate your specified prop­
erties with. The third argument, or parameter, is a Boolean value; you
specify True if you want to append the content to the target message, or
False if you want to overwrite any existing content in the target message's
properties. The next code snippet shows you how to use the Item­
Consolidate method.

• EmbedMsg method. This method makes it easier for you to embed the
CDO Message object into the CDO Message object you specify in the Item
property for the WorkItem object. The only parameter this message takes
is the source CDO Message object that you use to embed in the WorkItem
CDO Message object.

To illustrate how these methods and properties work, the following sample code
sets a WorkItem object to a CDO Message object. It then embeds another message
in the existing CDO Message. The code also consolidates all attachments from another
message into the WorkItem CDO Message object. This sample assumes you have a
RouteDetails object.

'Get the Workltem object
Set oWorkltem = RouteDetails.Workltem
'Set the Item property to the current process instance
oWorkltem.ltem = oProclnstanceMessage
'Embed another message into the oProclnstanceMessage
oWorkltem.EmbedMsg oAnotherMessage
'Consolidate all the attachments from another message into
'the Workltem message.
'Create an array of property IDs.
PropArray = Array(&HE13000D) 'For message attachments
'Append items by selecting True
oWorkltem.ltemConsolidate PropArray, omsgSource, True

UPDATED AGENT INSTALL APPLICATION

612

Now let's take a look at the updated Agent Install application. I added some new
functionality that allows you to view and edit maps, copy the maps into other fold­
ers, and track process instances in folders. The code in this section uses objects in

Chapter 14 Exchange Server Routing Objects

the Routing Object library and the Event Config library. I had to make a number of
enhancements to make the program work with process instances and routing maps.

Overview of the Updated Agent Install Application
The enhancements for the Agent Install application fall into four main areas:

• Agent enhancements, such as creating and deleting routing agents

• Routing map enhancements, such as the ability to edit and delete maps

• Process instance enhancements, such as the ability to view process in­
stances and see which row in the map the process instance is currently
executing

• User interface enhancements, such as being able to see which folders
contain agents, routing maps, or nothing

Now we'll examine the code that implements each type of enhancement.

Agent Enhancements
When you start the new version of Agent Install, you'll notice more options to choose
from on the main page. These new options, shown in Figure 14-11, include viewing
the default map for the folder, deleting a map, and viewing the processes. executing
in the folder. System enhancements also include the counting of messages contained
in the folder, which will help you estimate how long opening all processes will take
when you click the View Processes button.

Figure 14-11. The updated Agent Install program, which includes routing object
functionality ..

613

Part III Collaboration with Microsoft Exchange

614

Detecting Default Routing Maps in a Folder
When you select a folder that does not contain a routing map, the enhancements,
with the exception of viewing processes, will be disabled. The functionality to de­
tect a default routing map iri. the. folder is implemented in the RefreshAgentCount
subroutine. This subroutine is able to detect not only agents in the folder but also
maps, as shown in the following code listing:

Public Sub RefreshAgentCount()
On Error GoTo RefreshAgentCount_Err

GetMessageCount

Dim bRouteMap
Dim bRouteType
Dim intFoundRoutingMap. intFoundRoutingAgent
intFoundRoutingMap = 0
intFoundRoutingAgent = 0
lblMap.Caption = ""
Set oRouteBinding = Nothing
Set oRTMessageMap = Nothing
cmdViewMap.Enabled = False
cmdDeleteMap.Enabled = False
cmdAddAgent.Enabled = True
cmdDeleteAgent.Enabled = True
cmdViewScript.Enabled = True

Set oBoundFolder = oEvents.BoundFolder(oFolder. True)
Set oBindings = oBoundFolder.Bindings
If oBindings.Count = 1 Then

lblAgentCount.Caption "There is 1 agent in this folder."
Else

lblAgentCount.Caption "There are" & oBindings.Count & _
" agents in this folder."

End If
comboAgents.Clear
'Clear the binding
If oBindings.Count > 0 Then

For Each oBinding In oBindings
comboAgents.Addltem CStr(oBinding.Narne)
'Assume there is one binding in the folder
'for routing
Set oRouteBinding = oBinding

Next
End If

'Check for routing maps as well
On Error Resume Next
If Err.Number = 0 Then

'Found one

Chapter 14 Exchange Server Routing Objects

Set oHidden = oFolder.HiddenMessages
For Each oHide In oHidden

Err.Clear
tmpTest = oHide.Fields("RouteAgent")
If Err.Number = 0 Then

intFoundRoutingAgent = 1
End If

Err.Clear
bRouteMap = oHide.Fields("RouteMap")
If Err.Number = 0 Then

cmdViewMap.Enabled = True
cmdDeleteMap.Enabled = True
intFoundRoutingMap = 1
Set oRTMessageMap = oHide

End If

Err.Clear
bRouteType = oHide.Fields("RouteType")
If Err.Number = 0 Then
End If

Next
If intFoundRoutingMap Then

lblMap = "There is a routing map in this" & _
"folder." & vbLf & "The type of route" & _
"is a " & bRouteType & " route."

End If
End If

Err.Clear
comboAgents.ListIndex 0

Exit Sub

RefreshAgentCount_Err:
tf Err.Number = -2147221245 Then

MsgBox "Outlook Calendar folders are not supported.", _
vbOKOnly + vbExclamation, _

"Select Folder"
lblAgentCount.Caption = "Not Supported"
lblMap.Caption = ""
comboAgents.Clear
cmdAddAgent.Enabled = False
cmdDeleteAgent.Enabled = False
cmdViewScript.Enabled = False
Exit Sub

End If
End Sub

615

Part III Collaboration with

616

As you can see in the code, to detect default routing maps in the folder, we first
must get the HiddenMessages collection from the CDO Folder object. All default
touting maps are stored as hidden messages with a special property, so after we
tetrieve the HiddenMessages collection, all we need to do is traverse it to look for
the RouteMap custom property.

In the code, we also look for the RouteType property on any hidden message.
Both the Routing Wizard sample application and this application insert a string to tell
the user the route type contained in the folder. In the Routing Wizard application,
the only possible values are Sequential arid Parallel. In this application, when we
modify a map created by the Routing Wizard, the RouteType property changes to
Custom so that you know it is not the Original map.

If a default routing map is found in the folder, some of the other command but­
tons, such as the one for viewing the default map, are enabled. The RefreshAgentCount
subroutine also sets some variables that will be used throughout the rest of the appli­
cation, such oRTMessageMap, which correspond to the hidden message containing
the default message map as well as to oRoutef3inding, which stores the binding for
the folder. Recall from earlier in the chapter that the default map is copied onto all
incoming messages that do not correspond to a process instance in the folder, or onto
items that do not currently contain a RouteMap property with an ad-hoc routing map.

Adding New Agents That
Already Have a Routing Map in the Folder
Now that the code can detect default routing maps in the folder, the program has to
be able to detect when a user is adding an agent to the folder when a routing map
is in the folder-you do not want users to add multiple agents to a folder if they want
to use the folder for routing. Instead, you want in the folder only one agent, which
fires on all the events. This agent should also contain the default script for the cus­
tom actions for the routing map.

To prevent users from adding an arbitrary number of agents to a folder with a
routing map, the cmdAddAgenCClick subroutine had to be updated to detect the
routing map. A snippet of this code is shown here:

'Check for message map
If Not (oRTMessageMap Is Nothing) Then

'Check for existing agent
If Not (oRouteBinding Is Nothing) Then

MsgBox "An Agent alr~ady exists in this folder with a " & _
"Routing Map. You cannot add another one." _

vbOKOnly + vbExclamation, "Add Agent"
Exit Sub

Else
result MsgBox("There is already a Routing Map in " & _

the folder. This application can" _

Chapter 14 Exchange Server Routing Objects

& " only create Routing Agents in folders that" & _
have Routing Maps already installed." _
& vbLf & "00 you want to create a Routing Agent?", _
vbYesNo + vbQuestion, "Routing Map Found")

If result = vbYes Then
MsgBox "You must now select a script to associate" & _

"with your Routing Map and Agent. Please use" _
& " the following dialog box to select a script.", _
vbOKOnly + vbInformation, "Add Agent"

intCaller = 2
Load frmSelectScript
frmFolders.Visible = False
frmSelectScript.Visible = True
Exit Sub

Else
'They said no
Exit Sub

End If
End If

End If

This code ftrst checks to see whether oRTMessageMap exists. If it does, a default
routing map is in the folder. Then the code checks to see. whether oRouteBinding
exists. If oRouteBinding does exist, a routing agent is in the folder. This code stops
the user from adding another agent to the folder.

If only the default message map exists in the folder without an agent, the code
prompts the user to select a script, which the system will associate with the new agent
it will create by opening the frmSelectScript form. After the user has selected the script
to associate with the new routing agent in the folder, the code creates a new agent
that uses. the default message map in the folder, as shown inthi~ code from the
MSRTVars module for the Agent Install program:

Public Sub CreateRoutingAgent_MapExists(otmpFolder)
Set otmpEvents = oEvents
Set otmpBoundFolder = otmpEvents.BoundFolder(otmpFolder, True)
Set otmpBindings = otmpBoundFolder.Bindings
Set otmpBinding = otmpBindings.Add
otmpBinding.Name = "Routing Agent"
otmpBinding.Active = MSAgentActive
otmpBinding.EventMask = MSScheduledEvent + MSNewItemEvent + _

MSChangedItemEvent + MSOeletedItemEvent
otmpBinding.HandlerClassIO = MSRoutingObjectsHandlerIO
otmpBinding.SaveChanges

Set otmpSchedule = otmpBinding.Schedule
otmpSchedule.Interval = 60

(continued)

617

Pari III Collaboration with Microsoft Exchange

618

otmpSchedule.Type = MSHourlyAgent
otmpSchedule.Days = MSMonday + MSTuesday + MSWednesday + _

MSThursday + MSFr1day + MSSaturday + MSSunday
otmpSchedule.StartT1me = MSAllDayStart
otmpSchedule.Endtime = MSAllDayEnd
otmpBinding.SaveChanges

'Get the new binding message
Set oSaveAsMessage = CDOClass.Session.GetMessage(_

otmpBinding.EntryID, Null)

'Add the RouteAgent property
oSaveAsMessage.Fields.Add "RouteAgent". VLBOOL. True
bstrEventScript = OpenScriptFile(strFileLocation)
oSaveAsMessage.Fields.item(PR-EVENT_SCRIPT) = bstrEventScript
oSaveAsMessage.subject = "Routini Agent"
oSaveAsMessage.Update
otmpBinding.SaveCustomChanges oSaveAsMessage
otmpBinding.SaveChanges
otmpBoundFolder.SaveChanges
MsgBox "Successfully created new Agent with the existing" & _

"Routing Map in Folder.", vbOKOnly + _
vbInformation, "Create Agent"

End Sub

The only difference between this code and the code for creating event agents,
which we looked at earlier, is that this code adds a custom property to the agent,
named RouteAgent, which identifies the agent as a routing agent. Other than that, all
this code should be familiar to you from the previous chapter.

Deleting an Agent with a Default Routing Map in the Folder
Now that we have taken care of adding a new agent when a default routing map is
in the folder, what do we do about deleting an agent when the same condition ex­
ists? We could ignore the routing map in the folder and just delete the agent. But to
give the user more control, after deleting the agent, we should prompt the user about
whether she also wants to delete the default routing map in the folder.

Implementing this functionality is quite easy. Because we have the variable
oR1MessageMap, which is a CDO Message object containing the default map, all we
need to do is call the Delete method on oR1MessageMap to delete the map, as shown
here:

Private Sub cmdDeleteAgent_Click()
On Error GoTo cmdDeleteAgentClick-Err
If comboAgents.Text <> "" Then

'Agent is selected

Chapter 14 Exchange Server Routing Objects

response = MsgBox("Are you sure you want to delete the" & _
comboAgents.Text & " agent?", vbQuestion + vbOKCancel, _
"Delete Agent")

If response = vbOK Then
'Delete agent
For Each oBinding In oBindings

If comboAgents.Text = CStr(oBinding.Name) Then
Exi t For

End If
Next
oBindings.Delete oBinding
oBoundFolder.SaveChanges
MsgBox "Agent Successfully Deleted.", vbInformation +

vbOKOnly, "Delete Agent"
'Check for map as well
If Not (oRTMessageMap Is Nothing) Then

result = MsgBox("There is a Routing Map in this" & _
folder. Do you want to delete it as well?", _
vbYesNo+ v.bQuestion, "Routing Map Found")

If result = vbYes Then
oRTMessageMap.Delete

End If
End If
RefreshAgentCount

Else
MsgBox "The Agent will not be deleted.", vbInformation +_

vbOkOnly, "Cancel Deletion"
End If
Else
MsgBox "You must first select an agent.", vbExclamation +

vbOKOnly, "No agent selected."
End If
Exit Sub

cmdDeleteAgentClick-Err:
If Err.Number = &H46 Then

MsgBox "You do not have permission to delete agents in" & _
"this folder. Please choose another folder.", vbOKOnly + _
vbCritical, App.Title

Else
Call CDOClass.MapiErrorHandler("cmdAddAgent execution" & _

"i n frmFol ders whil e tryi ng to access fol der " & _
"information.")

End If
Exit Sub
End Sub

619

Part III Collaboration with Microsoft Exchange

Routing Map Enhancements

620

The enhancements to this application include new code that implements routing map
editing functionality. This functionality includes the ability to view routing maps, edit
them, parse their script for routing functions, and save them to other folders.

The user interface for viewing and editing the routing maps is a grid control in
Visual Basic. This grid control, shown in Figure 14-12, makes it easy for you to scroll
through and look at your maps as well as add or delete rows and columns to maps ..

Figure 14-12. The grid control in the updated Agent Install program to view and edit
routing maps.

I do not want to dive into the ins and outs of using the grid control, but I will
tell you that it is very useful. You should consider learning more about it either by··
examining the code for this program or by reading the online help.

Viewing a Map
When you click on the view default map command on the main screen of the appli­
cation, you open the default map form called frmRouting. This form contains a lot
of code to implement the map viewing, editing, and save features in the application.
The first feature we'll look at is the map viewing functionality.

As we saw with the Routing Object library, we can retrieve the activity count
and individual rows as well as other information about a routing map in a folder. The
viewing capabilities of the Agent Install application are implemented through these
routing objects. This is the code for the Form_Load function:

Chapter 14 Exchange Server Routing Objects

Private Sub Form_Load()
Dim arrArgs As Variant

MAX COLUMNS = 5
COLCONSTANT = 5
IsDi rty = 0
cTab = Chr(9)
'Clear the grid
flexMap.Clear
'Add the headers to the grid
FormatColumnHeaders
'Fill intrinsic actions array
Fill IntrinsicActionsArray
'Populate the commands combo box.
'This should also pull from script.
PopulateCombo
'Set bValidScript to indicate no script
bVa]idScript = 0
If oRouteBinding Is Nothing Then

lblScriptLocation.Caption = "None"
End If
bstrEventScript = ""
'Fill in folder name
lblCurrentFolder.Caption = oFolder.Name

'Load the map and the activities into the grid
Set oRTMap = CreateObject("exrt.map")
If intMapViewer = 0 Then

oRTMap.Message = oRTMessageMap
ElseIf ;ntMapViewer = 1 Then

oRTMap.Message = oRTMessageMap
End If
oRTMap.OpenMap TBL_OPEN_READWRITE
lActivityCount = oRTMap.ActivityCount
For i = 1 To oRTMap.ActivityCount

Set oRTRow = Cr~ateObject("exrt.row")
oRTMap. Get Row i - 1. oRTRow
flexMap.AddItem ""
flexMap.TextMatrix(i. 1) CStr(oRTRow;ActivityID)
flexMap.TextMatrix(i. 2) oRTRow.Action
flexMap.TextMatrix(i. 3) CStr(oRTRow.Flags)
'Figure out how many parameters there are
arrArgs = Array()
oRTRow.GetArgs 1. arrArgs
If (UBound(arrArgs) + COLCONSTANT) > MAXCOLUMNS Then

flexMap.Cols = UBound(arrArgs) + COLCONSTANT
MAXCOLUMNS = UBound(arrArgs) + COLCONSTANT
FormatColumnHeaders

End If

621

Pari III Conaboration with Microsoft Exchange

622

For tmpCounter = 0 To UBound(arrArgs)
tmpArg = arrArgs(tmpCounter)
flexMap.TextMatrix(i. tmpCounter + (COLCONSTANT - 1))

CStr(tmpArg)
Next

Next
If intMapViewer = 1 Then

'Point to the current row
tmpCurrentRow = oRTProcInstance.CurrentRow
flexMap.Col = 0
'If it can't figure out the current row,
'skip to the next one
On Error Resume Next
flexMap.Row = tmpCurrentRow
Set flexMap.CellPicture = LoadPicture("Arw0Srt.ico")
flexMap.CellPictureAlignment = flexAlignRightCenter
flexMap.Col = 1
flexMap.Row = tmpCurrentRow

;Disable SaveAs
cmdSaveAs.Enabled = False

'Check to see if there is a RouteBinding object.
'If there is, enable Open Script.
If Not (oRouteBinding Is Nothing) Then

cmdOpenScript.Enabled = True
Else

cmdOpenScript.Enabled = False
End If

End If
End Sub

First the code clears the grid so that no previous map information is shown. Then
the code calls the FormatColumnHeaders function, which places the names of the
columns such as ActivityID at the top of the grid. FilllntrinsicActionsArray is called
next, and then PopulateCombo is called. These two functions are not critical-all they
db is fill an array with the name of the intrinsic map actions and then populate a
combo box with those actions. However, they do provide convenient features for users
of the application, who can quickly select the different actions for the map by using
the newly populated combo box.

The interesting part of the code occurs after the FilllntrinsicActionsArray and
PopulateCombo functions are called. Some variables are set so that the application
knows the user hasn't yet selected a valid script. Then, after more initialization, the
grid is filled in with the rows from the map. This is accomplished by creating a Map
object and setting its Message property to the correct CDO Message object. Why is
there an intMap Viewer variable? This variable tells the frrnRouting form which map
to view: the default map in the folder, or a specific map on a particular message. You

Chapter 14 Exchange Server Routing Objects

will see how this is implemented in the "Process Instance Enhancements" section of
this chapter.

After setting the Message property, we need to open the map by using the
OpenMap method and specifying that we want to open the map as read/write. Then
we use the ActivityCount property to find out how many activities are in the map. A
For ... Next loop is created using the ActivityCount property as the control variable.
This loop creates a new Row object. The Get Row method is called on the Map object;
the row number is passed in as well as the new Row object in which the row will be
placed. Specific information is pulled from the returned Row object using the ActivityID,
Action, and Flags properties for the Row object.

To retrieve the parameters for the rows, the program creates a new array vari­
able. Then it gets the parameters by passing the array variable to the GetArgs method
on the Row object. Now that the program has the rows,. it needs to see whether the
number of parameters returned is greater than the number of columns in the grid
control. If it is, the code adds the required number of new columns and reformats
the column headers.

Let's skip the If statement, which checks to see whether intMapViewer = 1, for
right now. We will look at this later in the chapter, because this section of the code
implements custom functionality for process instances rather thanthe default rout­
ing map in the folder.

Editing the Map
The code for editing the map, which involves adding qr deleting rows and columns
and changing the text in a specific cell, does not have much routing object func­
tionality because it's mostly automation of the grid control. por this reason, this
functionality will not be covered. However, you can look at the source code for the
application on the companion CD to see how it is implemented.

Se~ecting .nd Parsing Scripts
To allow users of the application to change the script they want to use with the routing
map, the application allows selection of a script from the file system. It also allows
the user to decide whether to save the script in the agent as the default script for the

. I

folder. This option is available only when an agent is actually in the folder, and not
when just a routing map is in the folder without an agent. The application will also
allow you to parse the script for route functions.

To select a script, the user clicks the Select Script button on the map viewer.
The application detects whether an agent is already in the folder and asks the user
whether he wants to use the default script already in the folder.]f the user chooses
not to, the application launches a separate form that allows the user to select a script
from the file system, as shown in Figure 14-13. Once the user selects the script, the
application tries to read the script and prompts the user about whether he wants to
save the script in the agent binding or try to parse rpe script for functions.

623

Part III Collaboration with Microsoft Exchange

624

Figure 14-13. The Select Script dialog box allows users to find and select scripts from
the file system.

The code that implements the Select Script button is shown here:

Private Sub cmdOpenScript_Click()
If intMapViewer = 1 Then

MsgBoX "You can load only the default script for the" & _
"folder. This script will be loaded. You can" & _
"then parse the script for functions.", vbOKOnly _
+ vbInformation, "Select Script"

strFileLocation = "Message"
checkParseScript.Value = vbUnchecked
checkParseScript.Enabled = True
checkSaveScript.Value = vbUnchecked
checkSaveScript.Enabled = False
lblScriptLocation.Caption = "Default script in Folder"
Exit Sub

End If
If Not (oRouteBinding Is Nothing) Then

'There is actually an agent in the folder
result = MsgBox("Do you want to use the default script" & _

"in the folder?", vbYesNo + vbInformation, _
"Use Default Script")

If result = vbYes Then
strFileLocation = "Message"
'Enable only Parse Script. and remove old script actions
checkParseScript.Value = vbUnchecked
checkParseScript.Enabled = True
checkSaveScript.Value = vbUnchecked
checkSaveScript.Enabled = False
lblScriptLocation.Caption = "Default script in Folder"
Exit Sub

End If
End If
frmRouting.Visible = False
intCaller = 1
frmSelectScript.Visible = True

End Sub

Chapter 14 Exchange Server Routing Objects

When the user clicks the OK button in the Select Script dialog box, frmSelect­
Script, the following code is called:

Private Sub cmdOK-Click()
'Check for script selected
If fileCurFile.FileName = "" Then

MsgBox "You must first select a script for the agent.", _
vbExclamation + vbOKOnly, "No Script Selected"

Exit Sub
End If
tmpFileLocation = fileCurFile.Path & "\" & fileCurFile.FileName
'Try to open the script
bstrScriptTest = OpenScriptFile(tmpFileLocation)
If bstrScriptTest <> "" Then

strFileLocation = tmpFileLocation
If intCaller = 1 Then
'Remove old script functions
frmRouting.checkParseScript.Value vbUnchecked

'Only for frmRouting
If Not (oRouteBinding Is Nothing) Then

result = MsgBox("When saving your map, would" & _
"you like to save this script with it?", _
vbYesNo, "Save Script with Map")

If result = vbYes Then
frmRouting.checkSaveScript.Value vbChecked

Else
frmRouting.checkSaveScript.Value vbUnchecked

End If
Else

frmRouting.checkSaveScript.Value = vbUnchecked
End If
result = MsgBox("Would you like the program to try" & _

"and parse the script for functions?", _
vbYesNo, "Parse Script")

If result = vbYes Then
frmRouting.checkParseScript.Value vbChecked

End If
'Mark that we have a valid script
bValidScript = 1
frmRouting.checkParseScript.Enabled = True
If Not (oRouteBinding Is Nothing) Then

frmRouting.checkSaveScript.Enabled = True
Else

frmRouting.checkSaveScript.Enabled = False
End If
'Replace the \\ in the location
strFileLocation = Replace(strFileLocation, "\\", "\", _

(continued)

625

Part III Collaboration with Microsoft Exchange

626

1. 1)

'Display it in the form
frmRouting.lblScriptLocation = strFileLocation
If Not (oRouteBinding Is Nothing) Then

frmRouting.MakeDirty
End If

End If
If intCaller = 2 Then

CreateRoutingAgent_MapExists oFolder
frmFolders.RefreshAgentCount

End If
Unload Me

End If
End Sub

One of the neat aspects of the application is that it parses the script for route
functions because it can easily find them. How? Recall that all route functions must
begin with the word Route_ before the function name. All the code has to do is search
for the script me for Sub Route_, and then grab the characters appearing between
the location for Sub Route_ and a Return or an open parenthesis, which would indi­
cate that an argument list is corning next. The application then populates the same
combo box populated by the intrinsic script actions so that you can easily select either
an intrinsic action or a custom action from the script without having to look at ref­
erence materials or the script itself. The code for this is shown here:

Sub ParseScriptforFunctions(tmpFileLocation)
'Return value is array of Sub and Function names found in
'the script.
'If none are found, returns empty.
Dim arrSubNames(100)
arrSubNames(0) = ""
arrCounter = 0
If tmpFileLocation = "Message" Then

Set oMessage = oSession.GetMessage(_
oRouteBinding.EntryID, Null)

bstrEventScript oMessage.Fields.item(PR-EVENT_SCRIPT)
Else

bstrEventScript OpenScriptFile(tmpFileLocation)
End If
found = 1
Do While (found <> 0 Or found <> Null)

found = InStr(found, bstrEventScript, "Sub.Route_")
If found <> 0 Then

'Got one, now look for the name after the _.
'First look for a (after found.
tmpUnderScore = 0
tmpUnderScore = InStr(found, bstrEventScript, "_H)
If tmpUnderScore <> 0 Then 'Is should never be 0

'Now start picking off characters until you

Chapter 14 Exchange Server Routing Objects

'hit a left parenthesis or a new line.
'Move to next character.
tmpCurLocation = tmpUnderScore + 1
tmpChar = MidCbstrEventScript. tmpCurLocation. 1)
tmpSubName =
Do While tmpChar <> "c" And tmpChar <> Chr(13)

tmpSubName = tmpSubName & tmpChar
tmpCurLocation = tmpCurLocation + 1
tmpChar = Mid(bstrEventScript. tmpCurLocation. 1)

Loop
arrSubNamesCarrCounter) = tmpSubName
arrCounter = arrCounter + 1

End If
found = found + 1
End If

Loop
PopulateComboCustomActions arrSubNames. arrCounter
If arrSubNames(0) <> Then

MsgBox "Successfully added" & arrCounter & _
.. functions from the script _
vbOKDnly + vbInformation. "Parse Script"

Else
MsgBox "No Route functions were found when parsing" & _

End If
End Sub

.. the script vbOKOnly + vbInformation. "Parse Script ..

Sub PopulateComboCustomActions(arrActions. arrCounter)
For t = 0 To arrCounter - 1

frmRouting.comboCommands.AddItem arrActions(i)
Next

End Sub

Function OpenScriptFile(tmpFileLocation) As Variant
On Error GoTo OpenScri ptFil e_Err

Open tmpFileLocation For Input As #1
bstrEventScript = Input$CLOF(1). #1)

Close 111
OpenScriptFile = bstrEventScript
Exit Function

OpenScriptFile_Err:
MsgBox "There was an error opening the script file ... & _

"Please select a different file." & vbLf & _
Err.Description. vbOKOnly + vbExclamatfon. _
"Open Script"

bValidScript = 0
Close 111
OpenScriptFile =

End Function

627

Part III Collaboration with. Microsoft Exchange

628

An example of this functionality is shown in Figure 14-14.

Figure 14-14. The combo box populated with the intrinsic as well as custom script
actions for a routing map.

If you uncheck the Parse Script For Functions check box, the code will auto­
matically remove the custom actions from the combo box and leave only the intrin­
sic actions.

The application also makes it easier for you to create new maps after deleting
all the rows in the old map because it automatically calculates the ActivityIDs for your
rows starting at 100 and incrementing by 10. You should be careful when using this
functionality, because the code cannot detect whether a Goto has jumped to the
correct place after you run the calculation.

The application can automatically detect when you type a custom action or
intrinsic action in the Action column, and it will set the Flags property correctly for
you (to a for an intrinsic action and 2 for a custom action). You must parse the script
for functions to make the custom action detection code work. This action detection
functionality, illustrated in the following code, is implemented using the string func­
tions provided in Visual Basic. The code shows you how to perform an exact match
of names by using the InStr function and flipping the arguments.

Private Sub Applylntrinsic(tmpNum)
'This subroutine applies the flags and any custom settings
'for intrinsic objects
flexMap = arrlntrinsic(tmpNum)
SetFlag RLFlag_Intrinsic

End Sub

Private Sub ApplyScriptAction(tmpNum)
'This subroutine applies the flags and any custom settings

Chapter 14 Exchange Server Routing Objects

'for intrinsic objects
flexMap = comboCommands.List(tmpNum)
SetFlag RT_Flag_VBFunction

End Sub

Private Sub SetFlag(intFlag)
tmpNextCol = flexMap.Col + 1 'Should be flags

tmpCurRow = flexMap.Row
flexMap,TextMatrix(tmpCurRow, tmpNextCol) = intFlag

End Sub

Private Sub CheckforIntrinsic()
'Checks to see if user typed Intrinsic Action
tmpString = comboCommands,Text
If tmpString <> "" Then

tmpString = UCase(tmpString)
For i= 0 To (intNumIntrinsicActions - 1)

result ~ InStr(I, UCa~e(arrIntrinsic(i», tmpString)
If result = 1 Then . "

resultotherway'= InStr(l, tmpString, _
UCase(comboCommand~.List(i»)

If resultotherway = 1 Then
ApplyIntrinsi~ ~i~
'Set the flags a,u~omaticallY for the user
Exit Sub

End If
End If

Next
'No intrinsic
SetFlag RT_Flag_VBFunction

End If
End Sub

Private Sub Chec~forScriptAction()
'Checks to see if user typed Intrinsic Action
tmpStrfng = comboCommands.T~xt
If tmpString <>"" Then

tmpString = UCase(tmpString)
If intNumIntrinsicActions comboCpmmands,ListCount Then

'No script actions
Exit Sub

Else
For i = intNumIntrinsicActions To _
(comboCqmmands.ListCount - 1)'

'Check the strings both waYS to get an exact match
result = InStr(l,"UCase(comboCommands.List(i», _

tmpString)
(continued)

629

Part III Collaboration with Microsoft Exchange

630

If result = 1 Then
resultotherway = InStr(l. tmpString. _

UCase(comboCommands.List(i»)
If resultotherway = 1 Then

ApplyScriptAction (i)
Exit Sub

End If
End If

Next
End If

End If
End Sub

Saving the Routing Map
The application automaqcally detects when the user makes changes to a cell in the
map and enables the Save' button. To save your map in the folder, click the Save
button. If you have the chec!<: box named When Saving, Save Script In Agent Bind­
ing enabled, the application will also save the selected script as the new script for
the agent. Here is the code that handles this functionality:

Private Sub PrintoutMapError(strError)
MsgBox strError. vbOKOnly. "Map Error"

End Sub

Private Function CheckforValidMap() As Boolean
'This subroutine checks to make sure the map is somewhat
'valid before saving.
'It checks to make sure columns with activities have IDs.
'It also checks to make sure the first 3 columns - 10.
'Flags. and Actioh ~ 'are still available by checking the
'column headers.
'You should never be able to delete these columns anyway.
If flexMap.TextMatr1x(0. 1) <> "ActivityID" Then

PriritciutMapError "You do not have an'ActivityID column" &_
"in the right place!"

CheckforValidMap = False
Exit Function

End If
If flexMap.TextMatrix(0. 2) <> "Action" Then

PrintoutMapError "You do not have an Action column in " & _
"the righF'place!"

CheGkforV~lidMap = False
Exit' Function

End If
If flexMap.TextMatrix(0. 3) <> "Flags" Then

Priritout~apError "You do not have a Flags column in the" & _
';right place!"

Chapter 14 Exc"ange S~rver Routing Objects

CheckforValidMap = False
Exit Function

End If

tmpNumRows = flexMap.Rows - flexMap.FixedRows
tmpNumCols = flexMap.Cols - flexMap.FixedCols
For ltmpRow = 1 Tq tmpNumRows

tmpDataExists = ~
For ltmpCol = flexMap.FixedCols To tmpNumCols

If flexMap.TextMatrix(ltmpRow. ltmptoll <> "" Then
'tmpDataExists contains the first column with data
tmpDataExists = ltmpCol
Exit For

End If
Next
If tmpDataExists Then

'Check for ActivityID
If flexMap.TextMatrix(ltmpRow. 1) = "" Then

PrintoutMa~Error "No Activity IDs for Row #:~ & ~
ltmpRow & vbLf & "The first set of data in " & _
"this row is " & flexMap.TextMatrix(_
ltmpRow. tmpDataExists) _
& vbLf & "The map will not be saved."
CheckforValfdMap = False

Exit Function
End If
If flexMap.TextMatrix(ltmpRow. 2) = "" Then

P~intoutMapError "No Activily set for Ro~ I:" & _
lt~pRow & vbLf& "The fi~st set of data ip " & _
"thii rqw is " & flexM~p.TextMatr1x(_
ltmpRow. tmpDataExists) _
& vb~f & "The map will not be saved."
CheckforValidMap = False

Exit Function
End If . ,
If flexMap.TextMatrix(ltmpRow. 3) =."" Then

PrintoutMapError "No Flag is set for Row I:" & _
ltmPRow & vbLf & "The first set of d~ta " & _
"1n'this row is'" & flexMa~.TextMatrix(_
ltmpRow. tmpDataExists) _' . .
&'vbLf & "The map will not be .aved,"
CheckforValidMap = F~lse

Exit FUrJCti on
End If

End If
Next
CheckforValidMaP ~ True

End F!lnct 1 on
(continued)

Part III

632

lat~o .. atllon with

Public Sub SaveCurrentMap(otmpMessage)
Dim oRTRow As Variant
Dim oRTTmpMap As Object
Dim lParamCount As Long
Set RTTmpMap = Nothing
Dim tmpArr As Variant
'Array to hold current row parameters
Dim arrParameters As Variant
tmpRowCount = flexMap.Rows - flexMap.FixedRows
tmpParamColumns = MAXCOLUMNS - COLCONSTANT
Set oRTTmpMap = CreateObject("exrt.map")
'Clear the map
oRTTmpMap.DeleteMap
If otmpMessage = -1 Then

oRTTmpMap.Message oRTMessageMap
Else

oRTTmpMap.Message otmpMessage
End If
oRTTmpMap.SaveMap
oRTTmpMap.OpenMap TBL_OPEN_READWRITE
'Scroll through all the rows in the table and
'write them out
For tmpRow = 1 To tmpRoWCount

'Create the Row object
Set oRTRow = Nothing
Set oRTRow = CreateObject("exrt.row")
'Get columns with data in current row. skip blanks
intFoundSomething = 0
ReDim arrParameters(tmpParamColumns)
ReDim tmpArr(0)
For tmpCol = flexMap.FixedCols To (flexMap.Cols - 1)

If flexMap.TextMatrix(tmp~ow. tmpCol) <> "" Then
intFoundSomething = 1
Exit For

End If
Next
If intFoundSomething Then

lParamCount = 0
tmpArrayCount = 0
For tmpCol = (COLCONSTANT - 1) To (MAXCOLUMNS - 1)

tmpdata = flexMap.TextMatrix(tmpRow. tmpCol)
If tmpdata <> "" Then

'Data in the column
arrParameters(tmpArrayCount) = tmpdata
'Increase the parameter/argument count
lParamCount = lParamCount + 1
tmpArrayCount = tmpArrayCount + 1

End If

Chapter 14 Exchange Sener Routing Objects .

Next 'Column
If lParamCount <> 0 Then

ReDim tmpArr(lParamCount - 1)
For i = 0 To (lParamCount - 1)

If IsNumeric(arrParameters(i» Then
tmpArr(i) CLng(arrParameters(i»

Else
tmpArr(i) CStr(arrParameters(i»

End If
Next

End If
oRTRow.SetArgs lParamCount. tmpArr
oRTRow.ActivityID = CLng(flexMap.TextMatrix(tmpRow. 1»
oRTRow.Action = CStr(flexMap.TextMatrix(tmpRow. 2)
oRTRow.Flags = CLng(flexMap.TextMatrix(tmpRow. 3»)
oRTTmpMap.InsertActivity -1. oRTRow

Else
'Didn't find anything
Set oRTRow = Nothing

End If
Next 'Row

'Need to change something on the message
If otmpMessage ~ -1 Then

oRTMessageMap.Fields.Add "RouteType". vbString. "Custom"
oRTTmpMap.SaveMap
oRTMessageMap.Update

El se
On Error Resume Next
Dim strRouteType As String
strRouteType = oRTMessageMap.Fields.item("RouteType")
If strRouteType Then

strRouteType = "Custom"
End If
otmpMessage.Fields.Add "RouteType". vbString. strRouteType
oRTTmpMap.SaveMap
otmpMessage.Update

End If
End Sub

Private Sub RemoveDirtyFlag()
'Reset dirty bit. and disable save until next change
IsDirty := 0
cmdSaveChanges.Enabled = False

End Sub

Private Sub cmdSaveChanges_Click()
If CheckforValidMap() Then

(continued)

633

Part III Collaboration with Microsoft Exchange

634

If intMapViewer = 1 Then
SaveCurrentMap oRTMessageMap

Else
SaveCurrentMap -1 'Don't need to pass a message

End If
If checkSaveScript.Value = vbChecked Then

SaveRoutingAgentScript
lblScriptLocation.Caption = "Default script in Folder"

End If
RemoveDirtyFlag

End If
End Sub

Private Sub SaveRoutingAgentScript()
Set otmpMessage = oSession.GetMessage(_

oRouteBinding.EntryID. Null)
bstrEventScript = OpenScriptFile(strFileLocation)
otmpMessage.Fields.item(PR-EVENT_SCRIPT) = bstrEventScript
otmpMessage.Update
oRouteBinding.SaveCustomChanges otmpMessage
oRouteBinding.SaveChanges
oBoundFolder.SaveChanges

End Sub

The first subroutine called is cmdSaveChanges_Click. It calls the ChecliforValid­
Map function, which tries to ensure the user is not entering invalid information into
the map. (Note that the ChecliforValidMap function does not check every possible
error the user could make when creating maps.) After checking for errors, the code
checks the intMap Viewer value. This value is 0 if the map being viewed is the default
folder map, and it is 1 if the map is for a particular process instance.

The next subroutine called is SaveCurrentMap, which has a parameter of -1.
A -1 value indicates that SaveCurrentMap should use oRTMessageMap as the CDO
Message object as the location in which to save the current routing map. This sub­
routine then performs the opposite function of the Form_Load subroutine; rather than
reading in the information from a map, it writes it out.

You should be aware of a few key issues for the SaveCurrentMap code. First,
notice that the SaveCurrentMap subroutine creates an array to keep track of the
number of filled-in parameters for each row. If there are seven total columns for
parameters in the map and a particular row has only two parameters, the array cre­
ated is only two items long. If you created an array that is seven items long with
five empty items, you would probably get an error when trying to insert your row
into a map.

Second, the code converts all the variables in the array to either Long or String.
It is a good idea to do this so you do not get errors when executing your maps after
saving them.

Chapter 14 Exchange Server Routing Objects

The third issue to keep in mind involves the last part of the SaveCurrentMap
code. The application either adds the field RouteType if it does not already exist on
the message or it updates the field if it does exist to indicate the type of route this
routing map implements.

If the check box When Saving, Save Script In Agent Binding is enabled and
checked, the final subroutine SaveRoutingAgentScnpt is called in cmdSaveChanges_
Click. This subroutine gets the agent message, opens the script file and reads it into
a variable, replaces the script on the agent message, and saves the changes.

Process Instance Enhancements
One of the most powerful aspects of the updated Agent Install program is that it gives
you the ability to see which messages are process instances in a folder, which users
have responded to messages, what the users' responses are, and where in the rout­
ing map the process instance is currently executing.

The user interface for the process instance enhancements are shown in Figure
14-15. You can see all the messages in a particular folder and whether or not each
message is a process instance. From this interface, you can also view the routing map
on the selected process instance as well as view the recipient table for the process
instance.

I I
Don Hall New Ellpense Report from Don Hall1/819B 3 1/8/993:24:34 PM
Don Hall New E:<pense Report from DonHa~ 1;8/99 3 1/81993:29:24 PM

Figure 14-15. The View Process Instances form, which allows you to quickly see all
the process instances in a folder.

Detecting Process Instances
To implement the process instance enhancements, the application must be able to
detect in a particular folder which messages are process instances and which are not.
To do this, the application, or more specifically, the frmViewProcInstances form,

635

Part III

636

with

creates a ProcInstance object and sets the current message it is looking at in the folder
as the object for the Message property on the ProcInstance object. Then the applica­
tion tries to open the map on the message by using the Map property on the
ProcInstance object. If the application fails to open the map, the item is marked as
not being a process instance, as the following code illustrates:

Private Sub Form_Load()
'Update the status

Set tmpoRTMessageMap = oRTMessageMap
frmProgress.pbMessages.Min 0
frmProgress.pbMessages.Max = intMsgCount
frmProgress.Visible = True
frmProgress.Refresh
lblCurrentFolder.Caption = oFolder.Name
Dim arrTest()
ReDim arrTest(intMsgCount - 1, 4)

On Error Resume Next
For i = 1 To intMsgCount

frmProgress.pbMessages.Value i
arrTest(i - 1, 1) oMessages. item(i) .Sender.Name
arrTest(i - 1, 2) oMessages.item(i).subject
arrTest(i - 1. 3) oMessages.item(i).TimeReceived
arrTest(i - 1, 4) oMessages.item(i).ID
'Check for maps on the message
Set oProcInstance = Nothing
Set oProcInstance = CreateObject("exrt.ProcInstance")
oProcInstance.Message = oMessages.item(i)
oProcInstance.Open
'An error will be raised. Just ignore it.
Err.Clear
Set tmpoMap = oProcInstance.Map
tmpoMap.OpenMap TBL_OPEN_READONLY
If Err.Number = 0 Then

'Found another one
arrTest(i - 1, 0) "Yes"

Else
arrTest(i - 1, 0) "No"

End If
Next
lbMessages.List() = arrTest
Unload frmProgress
frmViewProcInstances.Refresh
lbMessages.Listlndex = 0

End Sub

Chapter 14 Exchange Server Routing Objects

Viewing the Recipient Table for a Process Instance
After figuring out which items are process instances and which are not, the applica­
tion allows the user to view the responses on the Recipient Table tab of the View
Process Instances dialog box. Figure 14-16 shows the Recipient Table tab for a sample
created with the Routing Wizard in a folder named Routed Documents. This tab shows
the responses received from the people in the route.

NOTE The users and their responses in your application are shown by the
Agent Install program only if your application uses the RecipientEntry object
to track user responses. Because the Expense Routing application does not
use the RecipientEntry object to track responses, the Recipient Table tab will
display "Unknown" for the status when viewing the Expense Routing folder.
However, because applications generated by the Routing Wizard use the
RecipientEntry object, you can view users and their responses on the Recipient
Table tab for applications generated by the Routing Wizard.

Figure 14-16. The Recipient Table tab on the View process Instances dialog box
shows responses received for a sample created with Routing Wizard. Since the Expense
Routing application does not use the RecipientEntry object, the Recipient Table tab will
not display recipient information.

To retrieve the response information, the application uses the VoteTable and
RecipientEntry objects. The application scrolls through the number of recipient entries
contained in the message and sets a variable to a RecipientEntry object by using the
Item method of the VoteTable object. Once the RecipientEntry object is set, the appli­
cation pulls off the properties for that recipient, such as the recipient name, the sta­
tus, and time that status was updated.

Private Sub ssTabProcInstance_Click(PreviousTab As Integer)
If SSTabProcInstance.Tab = 1 Then

'Clicked on Recipient Table
'Check to see if user selected a message
If lbMessages.ListIndex = -1 Then

'No selected message
MsgBox "Please select a message before clicking on " & _

"the Recipient & "Table tab.", vbOKOnly +
(continued)

637

Part III

638

vbExclamation, "Recipient Table"
SSTabProcInstance.Tab = 0
Exit Sub

Else
Dim arrRecips()
Set oRTVote = CreateObject("exrt.VoteTable")
'Get the message
tmpID = lbMessages.Column(4, lbMessages.ListIndex)
Set otmpMessage = oSession.GetMessage(tmpID, Null)
oRTVote.PIMessage = otmpMessage

If oRTVote.Count = 0 Then
MsgBox "There is no Recipient Table for this" & _

"message.", vbOKOnly + vbInformation. _
"Recipient Table"

Else
ReDim arrRecips(oRTVote.Count, 2)
For i = 1 To oRTVote.Count

Set oRTRecipient = oRTVote.item(i)
arrRecips(i - I, 0) = oRTRecipient.Recipient
If oRTRecipient.Status "" Then

arrRecips(i - I, 1) "Unknown"
Else

arrRecips(i - I, 1) oRTRecipient.Status
End If
If oRTRecipient.Date = "" Then

arrRecips(i - 1, 2) "Unknown"
Else

arrRecips(i - I, 2) oRTRecipient.Date
End If

Next
lbRecips.List() arrRecips

End If
End If

End If
End Sub

Viewing the Currently Executing Row in Process Instance
When working with Exchange Server Routing, one of the problems you might nm
into is not knowing which row a particular process instance is executing. To help you
debug your application, you might wantto know which row the engine is currently
at and see the surrounding rows. The Agent Install application allows you to view
the map for a process instance, and it places an arrow next to the currently execut­
ing row in the map of the process instance so that you know exactly which row the
engine is executing. This arrow is shown in Figure 14-17. When you view the map
of a process instance, you will find that almost every time, the current row is either
a Terminate or Wait action.

Chapter 14 Exchange Server Routing Objects

Figure 14-17. Viewing the routing map for a particular process instance. The arrow
points to the current state of the process instance.

To indicate which row is executing, the application changes the intMap Viewer
variable to 1 so that the frmRouting for#! kn9ws that the form calling it is a process
instance map rather than the default map iri. 11 folder. The frmROltting form points to
the currently executing row and disables some functionality that shouid not be used
on process instance maps. The following code, first taken from frm ViewProcInstances
and then from frmRouting, creates a process instance object and sets the Message
property to be the currently.seleded ihessage in the list box on the frmViewProc­
Iristances form. Then the code figures out the cllrrently executing row by using the
CU"entRow property on the .ProcInstance object, and it loads an arrow graphic to
point to that row.

Private Sub cmdViewMapttlick()
'This is from frmViewProclnstances
intMapViewer= 1
tmpID = lbMessages.Co]Umn(4. lbM~ssages.Listlndex)
Set oRTMessageMap = oSession.GetMessage(tmpID. Null)
Set oRTProclnstance = Nothing
Set oRTProclnstance = CreateObjectC"exrt.Proclnstance")
Set otmpMessage = oSession.GetMessageCtmpID. Null)
oRTProclnstance.Message = otmpMessage
oRTProclnstance.Open
Load frmRouting
frmViewProclnstances.Visible False
frmRouting.Visible = True

End Sub

Private Sub For~Load()
'This is from frmRouting
Dim arrArgs As Variant .

M.A.~COLUMNS = 5
COttONSTANT = 5
IsDirty = 0
crab = Chr(9)
'Clear the grid
flexMap.Clear
'Add the headers to the grid

(continued)

639

Part III Collaboration with Microsoft Exchange

640

FormatColumnHeaders
'Fill Intrinsic Action array
Fill IntrinsicActionsArray
'Populate the commands combo
'This should also pull from script
PopulateCombo
'Set bValidScript to indicate ho script
bValidScript = 0
If oRouteBinding Is Nothing Then

lblScriptLocatton.Caption = "None"
End If
bstrEventScript = ""
'Fill in folder name
lblCurrentFolder.Caption = oFolder.Name

'Load the map and the activities into the list box
Set oRTMap = CreateObject("exrt.map")
If intMapViewer = 0 Then

oRTMap.Message = oRTMessageMap
ElseIf intMapViewer = 1 Then

oRTMap.Message = oRTMessageMap
End If
oRTMap.OpenMap TBL_OPEN_READWRITE
lActivityCount = oRTMap.ActivityCount

For i = 1 To oRTMap.ActivityCount
Set oRTRow = CreateObject("exrt.row")
oRTMap.GetRow i-I. oRTRow
flexMap.AddItem ""
flexMap.TextMatrix(i. 1) CStr(oRTRow.ActivityID)
flexMap.TextMatrix(i. 2) oRTRow.Action
flexMap.TextMatrix(i. 3) CStr(oRTRow.Flags)
'Figure out how many parameters there are
arrArgs = Array()
oRTRow.GetArgs 1. arrArgs
If (UBound(arrArgs) + COLCONSTANT) > MAXCOLUMNS Then

flexMap~Cols = UBound(arrArgs) + COLCONSTANT
MAXCOLUMNS = UBound(arrArgs) + COLCONSTANT
FormatColumnHeaders

End If
For tmpCounter = 0 To UBound(arrArgs)

tmpArg = arrArgs(tmpCounter)
flexMap.TextMatrix(i. tmpCounter + (COLCONSTANT - 1»

CStr(tmpArg)
Next

Next

Chapter 14 Exchange Server Routing Objects

If intMapViewer = 1 Then
'Point to the current row
tmpCurrentRow = oRTProcInstance.CurrentRow
flexMap.Col = 0
'If it can't figure out the current row.
'skip to the next one
On Error Resume Next
flexMap.Row = tmpCurrentRow
Set flexMap.CellPicture = LoadPicture("Arw05rt.ico")
flexMap.CellPictureAlignment = flexAlignRightCenter
flexMap.Col = 1
flexMap.Row = tmpCurrentRow

'Disable SaveAs
cmdSaveAs.Enabled = False

'Check to see if there is a RouteBinding object.
'If there is. enable Open Script.
If Not (oRouteBinding Is Nothing) Then

cmdOpenScript.Enabled = True
Else

cmdOpenScr1pt.Enabled = False
End If

End If

End Sub

User Interface Enhancements
The final set of enhancements we'll discuss is the user interface enhancements to the
Agent Install application. You might be asking yourself, "Who cares about user in­
terface enhancements?" You should! These enhancements show you how to detect
agents and routing maps in folders as well as how to copy maps ,and agents to other
folders. The main enhancement is in the frmSaveTo form, which is similar to the folder
list main screen of the application except that the images representing folders with
only routing maps and folders with agents installed differ, as shown in Figure 14-18.
This form can be accessed from the ma~ interface of the updated Agent Install appli­
cation by clicking the View Default Map button and then the Save As button.

The user interface enhancements are implemented only in the Save Routing
Agent To Folder form, because they have performance implications in that every folder
must be checked for a routing agent and a routing map-imagine the amount of time
it would take to check each folder if you had hundreds of folders. The code on the
following page shows how these enhancements are implemented.

641

Pari III Collaboration with Microsoft Exchange

642

Tracking
Document Libr8IY
EllpenseReportc
EllpenseRoulilg
Internet Newtgroups
Oullook Discut8ion Group
ROYting Map Test
RoulingTest

. Thomoo Riz2oIE_J

Figure 14-18. Thefolder list for thefrmSaveToform. Notice the different icons
indicating which folders have agents and which folders have only routing maps.

Private Sub SetFolderImage(tmpAgent)
Select Case tmpAgent

Case 0 'Nothing
tmpImgClosed
tmpImgOpened

Case 1 'Agent
tmpImgClosed
tmpImgOpened

Case 2 'Map

FOLDER-CLOSED_IMG
FOLDER-OPENED_IMG

ROUTINGAGENT_CLOSED_IMG
ROUTINGAGENT_OPENED_IMG

tmpImgClosed
tmpImgOpened

End Select

ROUTINGMAPEXISTS_IMG
ROUTINGMAPEXISTS_IMG

End Sub

'**
, Sub: LoadStores

'Description: Loads the stores into the FolderView.

'***~******************
Private Function LoadStores() As Boolean

On Error GoTo LoadStores_Err:
Dim bReturnStatus As Boolean

'Messaging Objects
Dim objFoldersCol As Object
Dim objFolder As Object
Dim objstore As Object
Dim objStoreRoot As Object

'Folders Collection
'Folder Object
'Store Object
'RootFolder Object

Chapter 14 Exchange Sener Routing Objects

Dim objInfoStores As Object
Dim objChildFoldersCol As Object
Dim objChildFolder As Object
Dim objTemp As Object
Dim nodTopofStore As Object
Dim lmask As Long
Dim iStoreKey As Integer
Dim strFolderID As String
Dim iLoop As Integer
Dim sLongTermID As String

Me~MousePointer = vbHourglass
'Assume successful
bReturnStatus = True
'Clear Treeview control
tvwFolders.Nodes.Clear
'Get InfoStore object

'InfoStores Collection
'Folders Collection
'Folder Object
'Temporary Object
'Node Object

Set objInfoStores = CDOClass.Session.InfoStores
'Open all stores to speed access later
For Each objstore In objInfoStores

Set objTemp = obj store. Roo.tFol der
Next
'Iterate through stores
For Each objstore In objInfoStores

If objstore.ProviderName = "Person~l Folders" Then
'We don't allow them to place agent in a personal folder

Else
Set objStoreRoot = objstore.RootFolder
'Exit if store or root isn't found
If (objstore Is Nothing) Or (objStoreRoot Is Nothing) Then

'Problem here
bReturnStatus = False
GoTo ObjectCleanup

End If
'Set the top node.
'Loop through main folders.
Set nodTopofStore = tvwFolders.Nodes.Add(.

objstore.ID. objstore.Name. ROOLIMG. ROOLIMG)
iStoreKey = nodTopofStore.Index
Set objFoldersCol - objStoreRoot.Folders
Set objFolder = objFoldersCol.GetFirst
If Not objFoldersCol Is Nothing Then' loop through All

'Add first-level folders to outline
While Not objFolder Is Nothing

'Don't display favorites
If objFolder.Name <> "Favorites" Then

sLongTermID = objFolder.1D
(continued)

643

Part III Collaboration with Microsoft Exchange

644

If (Left$(sLongTermID, 2) = "EF") Then
'High: PR-LONGTERM_ENTRYID_FROM_TABLE =
'&H6670
'Low: PT_BINARY = &H0102
sLongTermID = objFolder.Fields.item(_

&H66700102)
End If
tmpIsAgent = CheckForRoutingAgent(objFolder)
tmpIsAgent = CheckforRoutingMap(objFolder, _

tmpIsAgent)
SetFolderImage tmpIsAgent
'Add node to Treeview control
Set nodTopofStore = tvwFolders.Nodes. _

Add(objstore.ID, tvwChild, sLongTermID,
objFolder.Name, tmpImgClosed, _
tmpImgOpened)

'Check for subfolders
Set objChildFoldersCol = objFolder.Folders
'May not have access
If Not (objChildFoldersCol Is Nothing) Then

'Add the subfolders for this node
LoadFolders objstore.ID, _

nodTopofStore.Key, _

End If
End If

nodTopofStore.lndex

Set objChildFoldersCol = Nothing
Set objFolder = objFoldersCol,GetNext

Wend
End If

End If
Next 'store

ObjectCleanup:
Set objFoldersCol = Nothing
Set obj Fol der = Nothi ng
Set objstore = Nothing
Set objStoreRoot = Nothing
Set objInfoStores = Nothing
Set objChil~FoldersCol = Nothing
Set objChildFolder = Nothing
Set objTemp = Nothing
Set nodTopofStore = Nothing
LoadStores = bReturnStatus
Me.MousePointer = vbNormal
'Make the Treeview control visible
tvwFolders.Visible = True
Exit Function

Chapter 14 Exchange Server Routing Objects

LoadStoreLErr:
AppActivate App.Title
Select Case E~r.Number

Case CdoE_NO-ACCESS. CdoE_NOT_FOUND. CdoE_FAILONEPROVIDER. _
35602

Err.Clear
Resume ObjectCleanup

Case Else
Call CDOClass.MapiErrorHandler(_

"LoadStor&s in FrmFolders")
Err.Clear
'Resume next
Me.MousePointer ~ vbNormal
bReturnStatus = False
Resume ObjectCleanup

End Select
End FUnct ion

Public;Function CheckForRoutingAgent(objFolder) As Integer
'This function checks for any type of agent in the folder.
'It returns 1 if there is an agent or 0 if there is not.

Dim otmpEvents
Dim otmpBoundFolder
Dim otmpBindings
On Error GoTo CheckForRoutingAgent_Err
Set otmpEvents = .0Events
Set otmpBoundFolder = otffipEvents.BoundFolder(objFolder. True)
Set otmpBi~dfngs.= otmpBoundFolder.Bindings
If otmpBindings.Count > 0 Then

CheckForRoutingAgent = 1
Eise

CheckForRoutingAgent = 0
End If

Exit Function

CheckForRoutingAgent_Err:
'Most. likeiy the error is from hitting the user's Outlook
'calendar folder
CheckForRoutingAgent = False

End FunCti on

Public Function CheckforRoutingMap(objFolder. tmpCurrentType) _
As Integer
'This checks for routing maps only in the folder.
'It returns 2 if there is only a map.

On Error Resume Next
If tmpCurrentType <> 1 Then

(continued)

645

part III Collaboration with Microsoft Exchange

646

'Check only folders with no agents
Set oHidden = objFo1der.HiddenMessages
For Each oHide In oHidden

Err.C1ear
tmpRouteMap = oHide.Fie1ds("RouteMap")
If Err.Number = 0 Then

'There is a map
CheckforRoutingMap = 2
Exit Function

End If
Next

End If
CheckforRoutingMap = tmpCurrentType

End Function

Chapter 15

Programming
Exchange Server

Using ADSI

Messaging and cammunicatian technalagies are necessary to' build callabarative
applicatians, but they are nat the aniy technalagies yO'Il need. Having a robust directary
is a key requirement for almast any callabarative applicatian, whether it be a simple
messaging applicatian ar a full-blawn warkflaw system. A directary not anly halds
cammunicatian informatian such as e-mail addresses and phane numbers, but alsO'
halds arganizatianal and hierarchical infarmatian, such as managers and direct reparts.
It stores facility and persanal informatian, such as building lacatian, cast center, and
pictures af users.

Being able to' retrieve this range af infarmatian is impartant functianality far the
applicatian and beneficial to' any arganizatian. Recall aur Callabaratian Data Objects
(CDO) Helpdesk applicatian in Chapter 12, which used a directary to' abtain a user's
persanal infarmatian. In Chapter 13, the directary in the Event Scripting Expense
Repart applicatian figured aut the identity af the manager whase direct repart sub­
mitted an expense repart. Because Microsaft Exchange Server supports an extensible
directary, yau can add yaur own fields to' the directary to' store the type af custam
infarmatian we've retrieved in the applicatians we've laaked at sa far.

647

Part III Collaboration with Microsoft Exchange

WHAT IS ADSI?
We've seen one way to access the directory-by using the CDO library. CDO pro­
vides a set of objects that allows you to query information stored in the Exchange
Server dir~ctory uhder the AddressEntry section of the CDO hierarchy. Another way
to access the Exchange Server directory is to use Microsoft Active Directory Services
Interfaces (ADSI).

ADSI is a set of COM interfaces that allow you to manipulate objects in differ­
ent directories, including Exchange Server 5.5. ADSI supports different protocols
including Lightweight Directory Access Protocol (LDAP), NetWare Directory Services
(NDS), and Microsoft Windows NT Directory Services (NTDS). The advantage of ADSI
is that it is not designed based on a specific Application Programming Interface (API),
which makes it more flexible. Also, ADSI can be used with multiple programming
languages, such as Microsoft Visual Basic, Microsoft Visual Basic Scripting Edition
(VBScript), Java, and Microsoft Visual C++.

ACCESSING THE DIRECTORY: CDO OR ADSI?

648

The big question is how to accesS the directory provided by Exchange Server. Con­
sider using CDO to access the Exchange Server directory when you are running earlier
versions of Exchange Server such as Exchange Server 4.0, because Exchange Server
4.0 does not support LDAP, which is required to support the ADSI object library. CDO
offers you a limited subset of features because it can access oillythe properties that
have corresponding messaging API (MAPI) unique IDs. Therefore, if CDO provides
access to the directory properties that you need in your application, you should use
it for directory access. Using CDO has the benefit of allowing you to write your
application using a familiar object library, and you do not have to write to a second
object iibrary, which can save debugging time.

The other way to access the Exchange Server directory is by using the ADSI
object library, which gives you more flexibility. Using ADSI, you can access not only
the properties used by CDO but also other properties stored in the Exchange Server
directory-for example, configuration itlformation, such as which connectors are in­
stalled on the Exchange Server, and whether the Exchange Server is anonymously
publishing its directory entries to http clients.

To use ADSI, you have to run a version of Exchange Server that supports LUAP.
Exchange Server 5.0 supports LDAP read-oilly access, and Exchange Server 5.5 sup­
ports LDAP read/write access. I recommend that if you want to use ADSI with your
Exchange Server, you should install or upgrade to Exchange Server 5.5. With CDO,
you can use any version of Exchange Server, from version 4.0 through version 5.5.

Chapter 15 Programming Exchange Server Using ADS.

DESIGN GOALS OF THE ADS. OBJECT LIBRARY
The ADSI library is the strategic library for accessing directory objects and informa­
tion from Microsoft, and it doesn't matter whether this information is in Exchange
Server or in Active Directory. When designing ADSI, Microsoft had three primary goals
in mind. First, ADSI had to be based on COMand on providers to access directory
information. In a provider-based model, the client interacts with the COM interfaces
exposed by the ADSI library, and the installed providers convert the calls in the
interfaces into function calls that access the targeted directory provider. The provider
model allows the same calls to be used in an ADSI client application to access any
type of directory with an ADSI provider. ADSI ships with four primary directory
providers-a Microsoft Windows NT directory provider for Windows NT 4.0, a Novell
NDS provider, a Novell NetWare Binding provider for NetWare versions before 4.x,
and an LDAP provider-but you can write your own because the ADSI provider archi­
tecture is extensible. We will focus on the built-in LDAP provider in this chapter
because it supports accessing and updating the Exchange Server directory.

WHAT IS ACTIVE DIRECTORY?

Active Directory is the directory technology integrated into Microsoft Windows
2000 Server products. It is the next generation of directory services offered by
Microsoft. Because Active Directory is built on Exchange Server technology, you
will already be familiar with some of its capabilities and APls. By placing in­
formation in the Exchange Server directory, you can easily migrate to Active
Directory by using the replication capabilities of the Exchange Active Directory
Connector, which is included with Windows 2000 Server.

Microsoft's second goal for ADSI was to allow developers to use any COM-based
development tool with the object library, including Visual Basic, Visual C++, Java,
VBScript, andJavaScript. You can decide which tool is the best for creating your ADSI
Exchange Server applications. In this chapter, I use VBScript and Microsoft Active
Server Pages (ASP) to create a Web-based administrator program for Exchange Ser­
ver. However, this application easily could have been written in Visual Basic or Java.

The third goal of ADSI was to provide you with a single directory API as a
replacement for multiple directory APls. With Exchange Server, you can use CDO or
Directory API (DAP!) to access information stored in the Exchange Server directory.
With the Windows NT directory, you can use the Win32 directory functions to access
information stored in the Windows NT directory. However, depending on your

649

Pari III Collaboration with Microsoft Exchange

application, you canmore easily write to a single set of interfaces and use different
providers for these directory services rather than learn two or three different APIs.
With ADSI, you need to learn only one API to use a multitude of directory services.

ADS. OBJECT LIBRARY ARCHITECTURE
The ADSI object library is a very approachable object library. Although it does not
contain many objects, you can perform many functions with them. The only poten­
tially difficult aspect of using the ADSI object library is understanding how to access
the objects in your applications using distinguished pathnames. At first, these
pathnames can be a little intimidating, but after you experiment with ADSI and its
objects, you will understand how to exploit the power of these paths. Creating paths
is discussed later in this chapter in the section "Creating Paths to Exchange Server
Objects and Attributes."

In the ADSI architecture, every element in a directory service, such as the
Exchange Server directory service, is represented by an ADSI object. The interfaces
supported by the ADSI object are determined by the underlying functionality of the
directory object. For example, a mailbox in Exchange Server, which does not con­
tain directory objects under it, supports the lADs interface. In contrast, a Recipients
container in the Exchange Server directory, which can hold objects such as mailboxes,
distribution lists, and other Recipients containers under it, implements the lADsContainer
interface. Since the requirements for a directory object that contains other directory
objects are different from those for a single directory object, ADSI provides more
methods and properties through extra interfaces for them.

lADs and IADsContainer Interfaces

650

The primary interfaces you will use when working with ADSI objects are the lADs
interface and the lADsContainer interface. The lADs interface is required for all ADSI
objects. It provides properties that describe the object-in essence, the metadata of
the object-and methods that allow you to manage the actual directory information
the object contains. ADSI stores this directory information in a property cache, which
gives you a mechanism to batch changes or additions to a specific object in a tem­
porary location and then burst this information to the directory service in one call.
This property cache is useful because some programmitlg languages such as Visual
Basic do not proVide native batching mechanisms, and without a property cache, every
change you make to an ADSI object is put over the wire, decreaSing performance of
your application.

The property cache is useful, but only if you remember to use it! The most
common mistake new ADSI developers make is not calling the specific ADSI method

Chapter 15 Programming Exchange Server USing ADSI

Setlnfo to flush the cache and submit to the directory service the modifications to the
object. If you do not call this method and then exit your application, the changes you
make will not be persisted in the directory. The second most common mistake new
ADSI developers make is not calling the Getlnfo method to refresh the cache after
making changes. The Setlnfo method does not automatically refresh the cache for you.

In addition to supporting the Getlnfo and Setlnfo methods, the lADs interface
supports the Get, GetEx, GetlnfoEx, Put, and PutEx methods. As you would expect,
Get and Put do exactly what their names imply: Get retrieves a specific property from
the directory, and Put saves the value for a specific property. The versions of these
methods with the Ex suffix allow you to get or put a multivalued property. A multivalued
property can contain multiple values of the same type. The best example of a
multivalued property in the Exchange Server directory is the Reports property. Since
one person can have many direct reports, the Reports property in the directory is a
multivalued property-multiple direct report names can be stored in a single prop­
erty for the directory object named reports. To access this property from ADSI, you
must use. the GetEx method. GetlnfoEx is provided so that you can specify which
properties to refresh in the property cache, preventing you from having to reload the
entire cache from the underlying directory service.

The properties that the lADs interface implements are Name, AdsPath, Class,
Schema, and Parent. (For our purposes, the Schema and Parent properties are not
as important as the other three, so this discussion will focus on Name, AdsPath, and
Class.) The Name property returns the relative name of the object. The AdsPath
property returns the path to the object. In Exchange Server, this would be the LDAP
query string that is used to access the object. The Class property is important because
it returns the schema class name of the object. This property and its return value
deserve a bit more attention in the next section.

IADsConfainer Interface
As mentioned earlier in this chapter, if a directory object contains other objects, the
directory object is considered a container. In ADSI, a container implements not only
the lADs interface but also the lADsContainer interface. The lADsContainer interface
provides you with more methods than those provided by the. lADs interface so that
you can traverse the child objects in the container as well as modify the container's
properties. As you will see in the sample application in this chapter, you can use
the For ... Each conStruct in Visual Basic or VBScript to easily loop through all the
child objects below a container object and retrieve individual properties from each child
object. By traversing the individual objects under the container, you can easily build a
hierarchical view of the information stored in the Exchange Server directory.

651

Part III Collaboration with Microsoft Exchange

OTHER ADSIINTERFACES

Covering the other ADSI interfaces is beyond the scope of this book, but you
should know that ADSI does provide a powerful feature set so that you can build
not only directory applications that work with Exchange Server but also appli­
cations that work with other directory services. For example, ADSI defines an
IADsComputer interface that lets you store information about a computer in a
directory service. ADSI also defines interfaces such as IADsPrintQueue and
IADsPrintjob, which enable you to list printers available in the directory ser­
vice and store specifics about the actual print jobs taking place on those print
queues. For more information on the other types of ADSI interfaces that you
can use, refer to the "Getting Help with ADSI" section at the end of this chapter.

Exchange Server Object Classes
In Exchange Server, there are some important class names you should be aware
of when developing your applications, the most common of which are container,
groupOfNames, organizationalPerson, person, and remote-address:

• The container class identifies the object as a container for other objects
in the directory.

• The groupOfNames class corresponds to distribution lists in the Exchange
Server directory.

• The organizationalPerson class is used to represent recipients in the
directory.

• The person class is an abstract class. It is used to represent any object that
can receive mail, so other objects such as a distribution list inherit some
attributes from the person class. Because the person class is an abstract
class, you can never create an explicit object from it.

• The remote-address class corresponds to a custom recipient in the
directory.

EXCHANGE SERVER SCHEMA

652

To write applications using ADSI for the Exchange Server directory, you must first
understand the Exchange Server directory schema. This schema defines the available
object classes as well as the relationship between these objects in the directory. This
schema also contains the attributes for each object class.

Chapter 15 Programming Exchange Server Using ADS.

To access the Exchange Server directory schema, you need to run the Exchange
Administrator program in raw mode. To do this, run the file admin.exe with the Ir
switch. After the Exchange Administrator program starts, select Raw Directory from
the View menu. You should see a container named Schema appear in the left pane.
When you select the Schema container, you will see all the attributes and classes
defined by the Exchange Server schema in the right pane, as shown in Figure 15-I.
In the Exchange Administrator program, attributes have a folder icon marked with
an A and classes have a folder icon marked with a C. To view and edit information
about attributes and classes, select the object and choose Raw Properties from the
File menu.

NOTE Be careful when modifying the Exchange Server schema because you
could cause unwanted behavior in your Exchange server. For example, if you
change a schema property and set it incorrectly. Exchange Server will replicate
the incorrect information to all your Exchange servers.

Activation-SI.'JIe:
MHo
Ackbts-Entry-DisPa,v-T able
Admes:s-EnlJy-Dillpla,v-TabJe.MSDOS
.6.dmss-Home
AddrelS-SyntaK
Address-T~B
Address-TlIP!!!
Ada·Type
MlMD

1214198 1~30AM
1214I9B 12:~AM
1214I9B 12:3DAM
1214193 12:3DAM
12/4198 12:30AM
1214/98 12,30AM
1214/98 12,30AM
1214198 12030AM
1214/98 12030AM
1214191l1~30AM

1214198 12:3IJAM
1214100 12:30AM
1214$ 12:30AM

Figure 15-1. The Schema container in the Exchange Administrator program. You
can search for attributes and classes defined by the Exchange Server schema using
this view.

Three specific properties on the items contained in the schema are important
when writing ADSI applications: the Access-Category property, the Description prop­
erty, and the Heuristics property.

Access-Category Property
The Access-Category property specifies the rights needed by a user to modify an item
on the Exchange server. This property contains an integer value:

• The value 0 specifies that only the system can modify· an item.

• The value 1 allows users with the Exchange Modify Admin Attributes right
to modify an item.

653

Pari III Collaboration with Microsoft Exchange

• The value 2 allows users who have the Exchange Modify User Attributes
right to modify an item.

• The value 3 specifies that users who have the Exchange Modify Permis­
sions right can change an item.

By default, users assigned as owners of a mailbox automatically have the Modify
User Attributes right on their mailbox. When working with ADSI, however, check the
Access-Category property for any attributes you want to modify before attempting to
call your code. Exchange Server sets administrator access on some of the common
properties that you might want to allow users to modify in your programs. The best
example is the office attribute on a mailbox. By default, the office attribute has an
Access-Category value of 1, which specifies that only users with the Modify Admin
Attributes permission on the mailbox can change it. Users by default do not have this
right, so your ADSI code cannot modify the office attribute if it is running in the
security context of the current user. You can modify the Access-Category property in
the schema so that users can modify certain properties without having the Modify
Admin Attributes right.

Description Property
The Description property specifies the LDAP name of the item. Sometimes in the
Exchange Server directory, the LDAP name for an attribute or class is different from
the Exchange Server directory name for that attribute or class. Because ADSI uses the
LDAP provider when accessing the Exchange Server directory, you should always use
the LDAP name of an attribute or class when working with ADSI.

Heuristics Property

654

The Heuristics property contains configuration information about the item. The value
for this property is an integer, which represents a total of 5 bits. For example, a
value of 3 stored in this property represents setting bit 0 to the value 1, and setting
bit 1 to the value 1. Figure 15-2 shows how settihg the bits for this property works.

o o o 1 1 =3

!Sit 4 bit 3 bit 2 bit 1 bitO

Figure 15-2. Bits used with the Heuristics property.

Chapter 15 Programming Exchange Server Using ADSI

The following list describes the effects of changing bit values for the Heuris­

tics property:

• Bit 0 in this property specifies whether to replicate the property between
Exchange Server sites. Setting the property to 0 makes Exchange Server
replicate the property. A setting of 1 prevents the property from being
replicated.

• Bit 1 controls the visibility of an item to LDAP clients. Setting this bit to 0
prevents LDAP clients from seeing the item. Setting this bit to 1 allows both
anonymous and authenticated LDAP clients to find and query the item.

• Bit 2 provides control over visibility of the item based on authentication
of the client. If you set this bit to 0, only anonymous clients can view the
item; authenticated clients will not be able to view it. If you set this bit to
1, only authenticated clients will be able to see the item.

• Bit 3 sets whether the item is an operational item. Setting this bit to 0 tells
Exchange Server to not make the item an operational item. A setting of 1
specifies that the item is an operational item. If this bit is set to 1, the item
will not be visible through ADSI, even though you can set the properties
on the item. To access the values in an operational item, you must use
the OLE DB provider that is provideq by ADSI and a MicrosoftActiveX
Data Objects (ADO) query, which is described later in the chapter for the
sample ADSI application.

• Bit 4 sets whether the item should be visible in the Exchange Adminis­
trator program user interface. A setting of 0 makes the item invisible, and
a setting of 1 makes the item visible.

LOOKING FOR OTHER ADS~ PROPERTI~S

If you prefer not to browse the attributes and classes of the Exchange Server
schema using the raw mode option in the Exchange Administrator program,
the MSDN Library includes a section that describes the layout of the Exchange
Server schema. This section can be found under the Platform SDK\Datapase
and Messaging Services\Microsoft Exchange Server\Microsoft Exch<J.nge
Server Programmer's Reference\Reference\Directory Schema portion of the
MSDN Library.

655

Part III Collaboration with Microsoft Exchange

CREATING PATHS TO EXCHANGE
SERVER OBJECTS AND ATTRIBUTES

The first step in developing any ADSI application that accesses the Exchange Server
directory is creating a valid instance of ADSI and passing this instance a valid path
to the object you want to access. When writing Java, Visual Basic, VBScript, or VBA
applications, the easiest way to create a valid instance of the ADSI library is to use
the GetObject(AdsPath) syntax. The AdsPath parameter contains a valid ADSI path
to a specific object. For example, to access a specific Exchange Server object named
ExSeroer, a specific Organization in Exchange Server named Microsoft, and a specific
site in the Organization named ExSite, you would pass in the following AdsPath to
the GetObject method:

LDAP:IIExServer/ou=ExSite. o=Microsoft

The IDAP at the beginning of the path specifies the ADSI provider to use. If you
just want to set an object variable to a specific ADSI provider without attempting to
open an opject, you can also use the GetObject(ADSIProvider) syntax. For example,

olADs = GetObject("LDAP:")

sets the oIADs variable to the LDAP provider. To specify a different provider, you
would replace the LDAP string with WinNT or NDS. To access a specific recipient in
a specific container on the ExServer Exchange Server, you would use the following
AdsPath:

LDAP:IIExServer/cn=RecipientName. cn=RecipientContainer.
ou=ExSite. o=Microsoft

As you can see from both examples, the syntax for creating a valid path fol­
lows this structure:

LDAP:IIExchange NT Server Namelcn=Bottommost object.
cn=next 7eve7 of object. ou=Exchange Site. o=Exchange Organization

Throughout the sample application in this chapter, you will see examples of how
to use this syntax to query different parts of the Exchange Server directory.

ADSi AppLicATioN

656

The best way to learn about using ADSI to program with the Exchange Server direc­
tory is to examine a sample application. I developed one that demonstrates how to
create mailboxes, custom recipients, distribution lists, and recipient containers, and
how to query for recipient directory information such as a user's name, address, and
phone number, There is one caveat with this application-since it uses Dynamic H1ML
(DHTML) to mimic the Exchange Administrator program, the portion of the application

Chapter 15 Programming Exchange Server Using ADS.

that queries the attributes of a specific user will not work with Netscape browsers
and will work only in Microsoft Internet Explorer 4.0 or later.

Setting Up the ADS. Application
Before you can install the application, you must have a Windows NT 4.0 Server and
a client with certain software installed. Table 15-1 describes the required software for
setting up the application.

Minimum Software Requirements

Exchange Server 5.5 Service Pack 1
with Outlook Web Access

Internet Information Server (US) 3.0
or later with Active Server Pages

CDO library (cdo.dll)
CDO Rendering library (cdohtml.dll)

ADSI2.0

ActiveX Data Objects

For the cUent:
Internet Explorer 4.0, Outlook 98

Installation Notes

Exchange Server SP3 is recom­
mended.

Internet Information Services (lIS)
4.0 is recommended.

Exchange Server 5.5 Service Pack 1
installs CDO library 1.21 and CDO
Rendering library 1.21. Outlook
installs CDO library 1.21.

ADSI 2.5 is available as a free
download from
http://www.microsojt.com/adsi.
Windows 2000 installs ADSI 2.5 by
default.

Internet Information Services 4.0
installs ADO 1.5. Visual Basic 6.0
installs ADO 2.0. For more informa­
tion on ADO, consult
http:/www.microsojt.com/data/.

You can run the client software on
the same machine or on a separate
machine.

Table 15-1. Installation requirements for the ADSI application.

To install the ADSI application, first copy the ADSI folder from the companion
CD to the Web server where you want to run the application. Start the lIS adminis­
tration program. Create a virtual directory that points to the location where you copied
the ADSI files, and name the virtual directory adsi. Make sure you enable the Exe­
cute permissions option for the virtual directory. You will be able to use the follow­
ing URL to access your ADSI application: http://yourservername/adsi.

Included with the ADS! files on the CD is a dynamiC link library (DLL) named
AcctCrt.dll. Use the Regsvr32 utility to register it:

regsvr32 acctcrt.dll

657

Part III Collaboration with Microsoft Exchange

658

The first page displayed in the ADSI application is the Logon page, as shown
in Figure 15-3. Once a user enters logon information and verifies the dynamically
generated Exchange Server information, the application presents a menu of available
administrative options for the user, as shown in Figure 15-4.

) I ,r:I-"nOlf> "Ill I 1IilpiL APli, ~trnll M" tl "fl IntLlf" l f pl"IPI F0~i-

I":~;~
Exchange ADSI Sample Application

Note: Please enter the fonowjpg information about your Windows NT usemam.e and password. The Exchange
Server infomultion is automalicollypuUedfrom the Web server using the CDO Renderinglibrory. ModifY OIlY
incQrrect information and then submit the form.

Wuuhnn NT Domain: 11:l<[)()~r-I§f'\'I .. m .J
Windows NT Usemame: [~,:"i~i.~r mm ••• J

Password:~ I
Exdulllge Se""" 1E:)(~~f'\\'E'f'\ J
Organization (0): [~i~.~g~m .. J

Site (OU): IEXDOMAlNSRV]

RedpieJlts Cnntainer (CN): 1f\03~i~i~n~ .mm mJ_

Figure 15·3. The Logon page for the ADSI application. The Exchange Server name,
organization, and site information are pulled dynamically using the CDO Render­
ing library.

Create a Mailbox

Query for Information from an Existing Mailbox

Create a Custom Recipient

Create a Distribution List

Add a User to a Distribution List

Remove a User from a Distribution List

Display the Users in a Distribution List

Display Objects in a Recipients Container

Figure 15-4. The main menu of the ADSI application. Users can create or modify
objects in the Exchange Server directory as long as they have the proper permissions on
the object.

Chapter 15 Programming Exchange Server Using ADSI

Now let's step through the actual code that makes up these different menu items
and see how to use the ADSI object library with an Exchange Server directory.

Logging On to ADS.
The most common operation in the code for the menu items is the object binding
code for ADS!. This binding code is dispersed throughout all the code modules in
the application, rather than being centralized and performed only once, to make it
easier for you to browse the code and understand exactly what is happening.

To bind successfully to an object in the Exchange Server directory using ADSI,
you must use the openDSObject method after using the GetObject method to set an
object variable to the ADSI library. The openDSObject method takes four parameters:

• AdsPath. The path of the object you want to bind to. We saw how to create
this path earlier in the chapter.

• The Windows NT user name. This is used to attempt authentication against
the directory service.

• The password for the Windows NT user name you specify.

• Aflag that specifies the binding option to use. You can use two possible
flags: &HOOOOOOO1 specifies to use secure authentication, and &HOOOOOO10

specifies to use encryption.

Depending on the provider used, these flags specifying the binding option might
or might not be supported. On the LDAP provider, if you set both flags and pass in
a user name and a password, ADSI will perform a simple bind over Secure Sockets
Layer (SSL) sessions, which is a secure authentication over a secure channel. The
sample application does not use either flag, so a a is passed in as the value for the
final parameter to indicate that no encryption and no secure authentication should
be used.

The following code example shows how to set an object variable to the LDAP
provider and log on using the openDSObject method:

Set olADs = GetObject("LDAP:")
oIADs.OpenDSObject(AdsPath. UserName. Passwo.rd. 0)

Creating a Mailbox
Using ADSI, you can create mailboxes easily in the Exchange Server directory, but
they are not fully functional. ADSI does not provide a way for you to specify a
Windows NT account as the primary owner of the mailbox, nor does it allow you to
change the permissions on the mailbox so that the primary owner has permission to

659

Part III Collaboration with Microsoft Exchange

660

open it. You must perform these operations by using a separate program or the
Exchange Administrator program. To specify a Windows NT account and to change
user permissions on the mailbox in the sample application, I used a DLL named
AcctCrt.dll. This COM component is discussed in detail in Chapter 16.

"Figure 15-5 shows the interface in the ADSI application that prompts the user
for information about the mailbox she wants to create. This information is needed
by the ADSI code to set specific properties in the Exchange Server directory. The
application also asks for Windows NT account information so that a corresponding
Windows NT user account can be created and identified as the primary account for
the Exchange Server mailbox. Be sure to enter information in all text boxes; other­
wise, an error will be displayed.

"] (["'{ll, ~ '1IIh., ~I(I,), It It,t,-m. t! .:plorr:(r 1 ~

~I
Create Mailbox Sample

Please enter themailboxinfonnationbelow.This mailbox 'WiD. be created in the Recipients container. Change
cootain,,, by clicking the Select Different Cootainer button.

F~st Name: IfuliBn ____ ...--l

LastNmne: ;::1E.i";:;:;~~,,;:;:;,,,,:,;:. ===:;;;.;,
DisPlaYName:;=!SU::ZBn::::H::::,n::e ==~

Alias N arne: l~.~~.~
DirectoryName:r-lsu-,.-n ---..,

NT Domain for prim..,. owner: [~~[)()~I\II\I§I'\\I

NT User Description: ~~~~~f'~~~.~ J
NT Password: B _...J

Figure 15-5. The page where the user can enter information about the mailbox she
wants to create using ADSI.

After the mailbox information is submitted, the ASP page called by the appli­
cation sets a reference to the ADSI library. The ASP page also retrieves the Recipi­
ents container, where it will create the mailbox and the private mailbox store so that
it can parse out the correct domain name for the user's SMTP address. The applica­
tion creates proxy addresses for the user just in case the Exchange server has a Lo­
tus cc:Mail or Microsoft Mail connector installed. The application also sets other
properties as shown in this code:

Chapter 15 Programming Exchang" Server Using ADS.

<%
bstrAT = Request.ServerVariablesC"AUTH_TYPE")
If InStrC1, "_Basi cNTLM" , bstrAT, vbTextCompare) < 2 Then

Response.Buffer = TRUE
Response.Status = C"401 Unauthorized")
Response.AddHeader "WWW.Authenticate", "Basic"
Response.End

end if

dim arrOtherAddresses(1)
'Make sur~ to set error checking
on error resume next
err.clear
'Retrieve the items from the previous form
fn SessionC"FN")
In SessionC"LN")
dn SessionC"DN")
al SessionC"AL")
dir = SessionC"DIR")
NTDomain = SessionC"NTDomain")
NTDescrip ~ SessionC"NTDescrip")
NTPassword = SessionC"NTPassword")

'Create the Windows NT account.
'Use the new AcctCrt component.
set oNTContainer = CreateObject("MSExchange.AcctMgmt")
oNTContainer.NtAccountCreat~ NTDomain, al, NTPassword,

'Get the server Ip and descriptor
call oNTContainer.GetSidFromName(NTDomain, al, SecuritylD)
call oNTContainer.GenerateSecDescriptor(NTDomain, al, _

SecurityDescriptor)

'Create the Exchange Server mailbox
'Get a reference to the ADSI library
Set olADS = GetO~ject("LDAP:~)'
'Query to the Exchange server
bstr1 = "LDAP://" + Session("Server") + "/cn=" + Session("CN") +

",ou=" + Session("OU") + ",0=" + Session("O")
bstr2 = Sessfon("bstr2")
bstr3 = Session("bstr3")
'Query tQ the private MDB file on the Exchange server
bstrMDB = "LDAP://" + Session("Server") + _

"/cn=Microsoft Private MDB,cn=" + Session("Server") +
",cn=Servers ,cn=Configuration,ou=" + Session("OU") + ",0=" +
SessionC"O")

(continued)

661

Part III Collaboration with Microsoft Ex.ch,anlae

662

Set oContainer = oIADS.QpenDSObject(bstrl, bstr2, bstr3, 0}
Set oMDB = oIADS.OpenDSObject(bstrMDB, bstr2, bstr3, 0}

'Create a new mailbox (class = organizational Person) with the
'correct directory name
Set olADS = oContainer.Create("organizationalPerson", "cn=" +

CStr(di r»
oIADS.Put "NT-Security-Descriptor", (SecurityDescriptor)
oIADS.Put "Assoc-NT-Account", (SecurityID)

'Retrieve the information from the private .mdb
oMDB.Getlnfo
'Retrieve the SMTP address for the private .mdb so that it can be parsed
'for the domain name
strSMTPAddr = oMDB.Get("mail"}
'Get up to the @ sign
Pos = InStr(strSMTPAddr, "@"}
'Parse out the domain name
SMTPExt = Mid(strSMTPAddr, Pos, Len(strSMTPAddr}}
strUserSMTPAddr = replace(al, " ", ""} + SMTPExt
'Create the domain name for the Message Transfer Agent of the user
strDNMTA = "cn=Microsoft MTA,cn=" + Session("Server"} +

",cn=Servers,cn=Configuration,ou=" + Session("OU"} + ",0=" +
Session("O"}

'Set the array of other addresses such as CCMAIL, MSMAIL,
'Profs, and so on
arrOtherAddresses(0} = "MS$" + Session("O"} + "I" + _

Session("OU"} + "I" + al
arrOtherAddresses(l} = "CCMAIL$" + al + " at " + Session("OU"}
'arrOtherAddresses(2} = "Your other addresses"

'Use the Put command to have ADSI write all of these values to
'the new mailbox.
'mailPreferenceOption must always be 0.
oIADS.Put "mailPreferenceOption", 0
oIADS.Put "givenName", CStr(fn}
oIADS.Put "sn", CStr(ln}
oIADS.Put "cn", CStr(dn}
oIADS.Put "uid", CStr(al}
oIADS.Put "Home-MTA", CStr(strDNMTA}
oIADS.Put "Home-MDB", "cn=Microsoft Private MDB,cn=" + _

Session("Server"} + ",cn=Servers,cn=Configuration,ou=" +
oIADS.Put "mail", CStr(strUserSMTPAddr}
olApS.Put "MAPI-Recipient", True
oIADS.Put "MDB-Use-Defaults", True
oIADS.PutEx 2, "otherMailbox", (arrOtherAddresses)
oIADS.Put "rfc822Mailbox", CStr(strUserSMTPAddr}

Chapter 15 Programming Exchange Server Using ADS.

oIADS.Put "textEncodedORaddress", CStr("c=US;a= ;p=" +
Session("O") + ";0=" + Session("OU") + ";s=" + In + ";g=" +
fn + ";")

oIADS.Setlnfo

if err.number 0 then
'Success!

%>
(SCRIPT LANGUAGE="JavaScript">

alert("Successfully created mailbox and account!
Please click OK to continue.");

window.location="menu.asp";
(/SCRIPT>
(%
else

'Failure!
%>
(SCRIPT LANGUAGE="JavaScript">

alert("Error! Error Number: (%=err.number %> Description:
(%=err.Description%>");

window.location="menu.asp";
(/SCRIPT>
(%
end if
%>

As you can see in the code, the main properties set on the mailbox include
mailPrefeneeOption, givenName (first name), sn (last name), en (display name), uid
(alias name), Home-MTA, Home-MDB, mail (SMTP address), MAPI-Reeipient, MDB­
Use-Defaults, other Mailbox (other addresses for the mailbox such as CCMAIL and
MSMAIL), rfe822Mailbox (SMTP address), and textEneodedORaddress (X.400 address).

The example shows how to use the ADSI method PutEx to enter a multivalue
property into the Exchange Server directory. To create the value for a multivalue
property, you must use an array in VBScript. When passing this array as an argument
to the PutEx call, you must place parentheses around the array to de-reference it.
Recall that the Put and PutEx methods will modify the copy of the attributes in the
property cache but not in the actual directory service. For this reason, the last state­
ment in the code calls SetInfo to take all the changes in the cache and commit them
to the directory service.

Querying for Information frolll an Existing Mailbox
The ADSI application also shows you how to query for information from an existing
Exchange Server mailbox. The user interface, shown in Figure 15-6, allows you to
type in the first name of the user to find the mailbox.

663

Part III

664

Query for Information from an Existing
Mailbox

Please enter at least the first name oftbe user you want to find. For an exact match, please enter in the full
name of the user. You can leave the name field blank. and display the names of all the users in all the
containers on the server. However, populating the list may take a long time depending on the number of users
in the containers. '

Figure 15-6. The page allows you to type the first name of the user in the directory to
locate the mailbox.

After the user types in a name, the application uses ADO to query the direc­
tory service using LDAP. You might be wondering why ADO is used rather than the
OpenDSObject method we saw in the code for creating a mailbox. The reason is that
to use the OpenDSObject method, the user must know the exact name of the desired
object in the directory. ADO is more forgiving. When the user is looking for an ex­
isting mailbox, the user is not typing in the exact name of the user he is looking for
but rather some portion of the first name. Also, since many times users do not know
the alias name of users they are querying, forcing users to type in aliases does not
make sense. The code to create the ADO object and perform the query is shown here:

bstrSearchCriteria = Request.Form("UserName")
bstrServer = Session("Server")
'Create an ADO object
Set ADOconn = CreateObject("ADODB.Connection")
If Err.Number = 0 Then

ADOconn.Provider = "ADSDSOObject"
ADOconn.Open "ADs Provider"
'Create a query using ADO to find all users across all containers
bstrADOQueryString = "(LDAP:II" + bstrServer + _

">;(&(objectClass=organizationalPerson)(cn=" + _

bstrSearchCriteria + "*));cn.actspath;subtree"
Set objRS = ADOconn.Execute(bstrADOQueryString)
If Err.Number = 0 Then

If objRS.RecordCount > 0 Then %>
(p>Please select one of the following names from the
list of names.(/p>
(p>(em>(strong>Returned Names:(/strong>(/em>(/p>
(SELECT NAME='MailboxPath'>

Chapter 15 Programming Exchange Server Using ADS I

%)

<%

<%
'Builds the select control of the queried records
While Not objRS.EOF

bstrSelectStatement = bstrSelectStatement & _
"<OPTION VALUE='" & objRS.Fields(iCN).Value & _
"')" & objRS.Fields(iADSPATH)

obj RS. MoveNext
Wend
Response.Write bstrSelectStatement & "</SELECT)"

Else %)

<%

<B)<I)No entries match your search criteria.
Try again using a different value.<II)</B)

End If
Else

If Hex(Err.Number) = 80070044 Then
Response.Write "<FONT FACE='Arial. Helvetica' " +

"SIZE=2)Error " + Hex(Err.Number) + _
". Too many entries match your search" +
"criteria!</FONT)"

Err.Clear
Else
%)

<SCRIPT LANGUAGE="JavaScript")
alert("Error Number: <%=Hex(Err.Number)%) \n

Error Description: <%=Err.Description%)")
history.back()
</SCRIPT)
<%
Err.Clear
End If

End If
Else

<SCRIPT LANGUAGE="JavaScript")
alert("Error Number: <%=Hex(Err.Number)%) \nError Description:

<%=Err.Description%)")
history.back()
</SCRIPT>

Err.Clear
End If
%)

This code creates an ADO Connection object and sets the Provider property to
ADSDSOObject, which specifies the LDAP provider for ADSI. You can specify any
string for the connection string argument to the Open method of the ADO Connec­
tion object. In this case, the application specifies ADs Provider as the argument. The

665

Part III

666

code then creates an LDAP query, which consists of four elements separated by
semicolons. This is the format:

<LDAP://server/adsidn>; 7dapfi7ter;attributescsv;scope.

The server argument specifies the name or the IP address of the server where
the directory is hosted. The adsidn argument specifies the distinguished name in the
directory where we want to start our query. You should pass in a correctly formed
path, which we saw how to create earlier in the chapter. The filter parameter speci­
fies the LDAP filter string to use. In this case, the LDAP filter states that the object
class must be organizationalPerson and the name of the object must match the let­
ters typed in by the user. The next argument, attributescsv, is a list of attribute names,
separated by commas, that you want returned for each row in the recordset. In our
example application, we want the name of the person and the AdsPath to the object
that corresponds to that person returned so that we can place this information in the
HTML form, as shown in Figure 15-7. The final argument, scope, informs the direc­
tory service how deeply in the hierarchy to search for the information being queried.
The scope argument can be one of three values: base, onelevel, or subtree. Since we
want to query for all mailboxes that match our specified criteria across all recipient
containers in the directory, subtree is specified for this argument. The subtree argu­
ment causes the directory service to search for the information in every subtree under
the starting object. The base argument searches only the currently specified object,
and onelevel searches one level below the current object in the hierarchy.

If the query successfully returns records that match the filter, the code uses the
standard ADO methods to scroll through the recordset and place the records in the
HTML form.

Search results from all containers

Please select one of the following names from the list of names.

RBtJlmed Names:

!Thorn McCann 11 .a;::;,M ___

Figure 15-7. After performing the query, the HTMLform is populated with the
corresponding recordsets so that a user can pick the person she is interested in finding
more information about.

Chapter 15 Programming Exchange Server Using ADSI

After the user selects the name of the person she wants to fmd more informa­
tion about in the fITML form, the application opens the directory object for this person
and retrieves information such as the address, phone number, manager, and direct
reports. This information is then represented using a DfITML tabbed dialog box in
the browser, as shown in Figure 15-8.

Figure 15-8. The tabbed dialog box that shows the directory information for a
specific user.

The next section of code retrieves the user information from the directory. I
intentionally left out some of the DHTML code from the listing to highlight how ADSI
is used in the code. Also, only a portion of the ADSI code is listed here because the
structure of the code throughout this part of the application is very similar. Only the
specific properties retrieved from the directory using ADSI are different. The full code
is included on the companion CD.

On Error Resume Next

if Request.OueryString("Path") - "" then
bstrMailboxPath Request.Form("MailboxPath")

else
bstrMailboxPath Request.Ouerystring("Path")

end if
bstrServer - Session("Server")
Set objIADs - GetObject(bstrMailboxPath)
strCustomAttributes - "LDAP://" & Session("Server") & _

"/cn-Attribnum" & ",cn-" & "Microsoft DMD" & ",ou-" & _
Session("ou") & ",o~" & Session("o")

(continued)

667

Part III Collaboration with Microsoft Exchange

668

Function GetAttribName(AttribName)
strAOsPath = Replace(strCustomAttributes."Attribnum". _

AttribName.l.l)
set objAttributeName = GetObject(strAOsPath)
strAttributeName = objAttributeName.Get("Admin-Oisplay-Name")
GetAttribName = strAttributeName & "."

end Function

<TR>
<TO VALIGN=MIOOLE ALIGN=RIGHT>
First Name:</TO>
<TO VALIGN=TOP>
<%=Server.HTMLEncode(objIAOs.Get("givenName"»%></TO>

<TO VALIGN=MIOOLE ALIGN=RIGHT>
Initials:<ITO>
<TO VALIGN=TOP>
<%=Server.HTMLEncode(objIAOs.Get("initials"»%></TO>

<TO VALIGN=MIOOLE ALIGN=RIGHT>
Last Name:</TO>
<TO VALIGN=TOP>
<%=Server.HTMLEncode(objIAOs.Get("sn"»%></TO>
</TR>
<TR>
<TO VALIGN=MIOOLE ALIGN=RIGHT>
Oisplay Name:</TO>
<TO VALIGN=TOP>
<%=Server.HTMLEncode(objIAOs.Get("cn"»%></TO>
<TO> :</TO>
<TO> :</TO>
<TO VALIGN=MIOOLE ALIGN=RIGHT>
Alias:</TO>
<TO VALIGN=TOP>
<%=Server.HTMLEncode(objIAOs.Get("uid"»%></TO>
</TR>

<TR>
(TD WIDTH="100%" COLSPAN="10") :<HR)
<ITO>
<ITR>

<TR>
<TO VALIGN=TOP ALIGN=RIGHT>
Address:</TO>
<TO VALIGN=TOP>
<%=Server.HTMLEncode(objIAOs.Get("postalAddress"»%>
</TO>

Chapter 15 Programming Exchange Server Using ADS.

<TO> :</TO>
<TO> :</TO>

<TO ALIGN-RIGHT>
Title:</TO>
<TO ALIGN=LEFT>
<%=Server.HTMLEncode(objIAOs.Get("title"»%></TO>
</TR>

<TR>
<TO> :</TO>
<TO> :</TO>
<TO> :</TO>
<TO> :</TO>

<TO ALIGN=RIGHT>
Company:</TO>
<TO>
<%-Server.HTMLEncode(objIAOs.Get("Company"»%>< IFONT></TO>
</TR>

<TR><TO ALIGN'CRI GHT>
City:</TO>
<TO VALIGN=TOP>
<%-Server.HTMLEncode(objIAOs.Get(~l"»%><ITO>

<TO> :</TO>
<TO> :<ITO>

<TO ALIGN-RIGHT>
Oepartment:</TO>
<TO>
<%=Server.HTMLEncode(objIAOs.Get("department"»%><1B></TO>
</TR>

<TR>
<TO ALIGN=R[GHT>
State:</TO>
<TO>
<%-Server.HTMLEncode(objIAOs.Gett"st"»%></TO>

<TO> :</TO>
<TO> :</TO>

<TO ~LIGN=RIGHT>
Office:(/FONT></TO>
<TO>
<%-Server.HTMLEncode(objIAOs.Get("physicalOeliveryOfficeName"»%>
</TO>
</TR>

(continued)

669

Part III Collaboration with Microsoft Exchange

670

<TR>
<TD ALIGN=RIGHT>
Zip Code:</TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("postalCode"»%><1B>
</TD>

<TD> </TD>
<TD> </TD>

<TD ALIGN=RIGHT>
Assistant:</TD>
<TD>
<%=Server.HTML~ncode(objIADs.Get("secretirY"»%></TD>
</TR>

<TR><TD ALIGN=RIGHT>
Country:</TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("co"»%></TD>
<TD>~nbsp;</TD>

<TD> <ITD>

<TD ALIGN=RIGHT>
Phone:</TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("telephoneNumber"»%>
</TD>
</TR>
</TABLE>
<IDlY>

<DIV CLASS=conts ID=t2Contents>

<1-- Draw out the tab for Organization -->
<TABLE WIDTH=600>
<TR>
<TD WIDTH=100% COLSPAN="S">

<%=Server.HTMLEncode(objIADs.Get("cn"»%></TD>
</TR>

<TR> </TR></TABLE>
<TABLE BORDER=0>
<TR>
<TD ALIGN=LEFT NoWrap>
Ma~ager Name:</TD> I

Chapter 15 Programming Exchange Server Using ADS.

<TR> :</TR>
<%

%>

strManager = objIADs.Get("manager")
strManagerPath = hLDAP:II" & Session("Server") & "I" & strManager
set oIADsManager = GetObject(strManagerPath)
strManagercn Server.HTMLEncode(oIADsManager.Get("cn"»

<TR>
<Tti>
<A Href='MBINFOTABS.ASP?Path=<%=strManagerPath%>'>
<%=strManagercn%></TD>
</TR>
<TR><TD> :</TD></TR>
<TR><TD ALIGN=LEFT>
Direct Reports:</TD></TR>

<% err.clear
strReports = objIADs.GetEx("Reports")

%>

<%

for i = LBound(strReports) to UBound(strReports)
'Get each Directory Service object to return the friendly name
strDirectPath ~ "LDAP:II" & Session("Server") & _

"I" & strReports(i)
set oIADsReports = GetObject(strDirectPath)
strReportscn = _

Server.HT~LEncode(oIADsReports.Get("cn"»

<TR><TD>
 :
<A Href='MBINFOTABS.ASP?Path=<%=strDirectPath%>'>
<%=strReportscn%>
</TD></TR>

next
%>
</TR></TABLE>
</DIV>
<DIV CLASS=conts ID=t4Contents>
<1-" Draw out the tab for Custom Attributes -->
<Table width=600>
<T~>

<TO width=100% colspan="S"><ifug srt="mailbox.jpg" align="middle">
 :
<%=Server.HTMLEncode(objIADs.Get("cn")%></TD>
</TR>

<TR> :</TR>
</TABLE>
<Table>

(continued)

671

672

<TR><TD ALIGN=RIGHT NoWrap>
<%~GetAttribName("Extension-Attribute-l")%></TD>

<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-l"))%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-2")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-2"))%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-3")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-3"))%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-4")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-4"))%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-5")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-5"))%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-6")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-6"))%>
</TD>
<ITR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-7")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-7"))%>
</TD>
<ITR>

<TR><TD ALIGN=RIGHT NoWrap>

Chapter 15 Programming Exchange Server Using ADSI

<%=GetAttribName("Extension-Attribute-8")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-8"»%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-9")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-9"»%>
</TD>
</TR>
</TABLE>
<I FORM>
<IDIV>

The mailbox that the user wants to query is passed to the ASP page. Using the
GetObject method, the code opens that mailbox in the Exchange Server directory and
sets an object variable, obj/ADs, to that mailbox. Throughout much of the remaining
code, the Get method of the objIADs object is used to retrieve specific attributes on
the mailbox.

The most interesting pieces of code besides the code for retrieving attributes
include those that retrieve the user's manager and direct reports from the directory.
In the application, the manager's name is displayed as a hyperlink on the Organiza­
tion tab so that users can quickly look up the manager's directory information. The
direct reports of the current user are also displayed as hyperlinks on the Organiza­
tion tab so that users can look at the direct report's directory information as well.
Figure 15-9 shows a sample of these hyperlinks.

Figure 15-9. The Organization tab for a queried mailbox displays the manger and
direct reports as hyperlinks.

673

Part III

674

The following code implements the hyperlink functionality:

<Table border=0>
<TR>
<TD ALIGN=LEFT NoWrap>
Manager Name:</TD>
<TR> <ITR>
<%

strManager = objIADs.Get("manager")
strManagerPath = "LDAP:II" & Session("Server") & "I" & strManager
set oIADsManager = GetObject(strManagerPath)
strManagercn = Server.HTMLEncode(oIADsManager.Get("cn"))

%>
<TR>
(TD>
<A Href='MBINFOTABS.ASP?Path=<%=strManagerPath%>'>
<%=strManagercn%></TD>
</TR>
<TR><TD> </TD></TR>
(TR><TD ALIGN=LEFT>
Direct Reports:</TD></TR>
<%
err.clear
strReports = objIADs.GetEx("Reports")
for i = LBound(strReports) to UBound(strReports)

%>

<%

'Get each DS object to return the friendly name
strDirectPath = "LDAP:II" & Session("Server") & "I" & _

strReports(i)
set oIADsReports = GetObject(strDirectPath)
strReportscn = Server.HTMLEncode(oIADsReports.Get("cn"))

<TR><TD>

<A Href='MBINFOTABS.ASP?Path=<%=strDirectPath%>'>
<%=strReportscn%>
</TD></TR>

next
%>
<ITR></TABLE>

When you retrieve the manager property from the Exchange Server directory,
the directory returns the distinguished name of the manager. To retrieve the display
name of the manager, the code uses the distinguished name to create a full AdsPath
to the directory object that corresponds to the manager. Then the code opens that
object and retrieves the display name of the manager.

Chapter 15 Programming Exchange Server Using ADS I

To retrieve the direct reports, the code uses the GetEx method in ADSI. (Recall
that the reports attribute is a multivalued property. You must use GetExwhen retrieving
multivalued properties from the Exchange Server directory.) The GetEx code returns
an array of distinguished names for all direct reports of the current user. The code
scrolls through each direct report in the array, and it displays as a hyperlink an image
and the full name of each direct report.

The next code snippet includes some interesting code that retrieves the custom
attribute names and the values for these custom attributes. The Exchange Server
directory contains 15 customizable attributes that developers or administrators can
use to specify custom properties for each entry in the directory. Because you can cus­
tomize the attribute names so that they correspond to the value types you store in
the attribute, such as cost center or social security number, the application queries
the Exchange Server directory for the names of the custom attributes. The applica­
tion also queries the directory for the actual values in the attributes. All of this func­
tionality is implemented in the following section of code:

strCustomAttributes = "LDAP:II" & Session("Server") & _
"/cn=Attribnum" & ",cn=" & "Microsoft DMD" & ",ou=" & _
Session("ou") & ",0=" & Session("o")

Function GetAttribName(AttribName)
strADsPath = Replace(strCustomAttributes,"Attribnum", _

AttribName,l,l)
set objAttributeName = GetObject(strADsPath)
strAttributeName = objAttributeName.Get("Admin-Display-Name")
GetAttribName = strAttributeName & "."

end Function

<Table>
<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-l")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-l"»%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-2")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-2"»%>
</TD>
</TR>

(continued)

675

Part III Collaboration with Microsoft Exchange

676

<TR><TD ALIGN=RIGHT NoWrap><FDNT FACE="Arial. Helvetica" SIZE=2>
<%=GetAttribName("Extension-Attribute-3")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-3"»%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-4")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-4"»%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%-GetAttribName("Extension-Attribute-5")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-5"»%>
</TD>
</TR>

<TR><TD ALIGN-RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-6")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-6"»%>
</TD>
</TR>

<TR><TD ALIGN=RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-7")%></TD>
<TD>
<%-Server.HTMLEncode(objIADs.Get("Extension-Attribute-7"»%>
</TD>
</TR>

<TR><TD ALIGN-RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-8")%></TD>
<TD>
<%-Server.HTMLEncode(objIADs.Get("Extension-Attribute-8"»%>
</TD>
</TR>

<TR><TD ALIGN-RIGHT NoWrap>
<%=GetAttribName("Extension-Attribute-9")%></TD>
<TD>
<%=Server.HTMLEncode(objIADs.Get("Extension-Attribute-9"»%>
</TD>
</TR>
</TABLE>

Chapter 15 Programming Exchange Server Using ADS.

Notice that in the strCustomAttributes string, the container Microsoft DMD is
specified. This container corresponds to the actual schema defInitions for the Exchange
Server directory. To retrieve the names of any custom attributes, we must query the
schema. To make the querying easier, I created a function that takes a string that
specifies the name of the custom attribute you want to query. The function in turn
grabs that attribute in the schema and figures out the corresponding custom name
of the attribute-for example, cost center. The code then uses the standard Get method
on the user's mailbox to retrieve the attribute value for that particular user and attri­
bute, as shown in Figure 15-io.

Figure 15-10. The Custom Attributes tab that shows the custom attributes for the
queried mailbox and the custom names of those attributes from the Exchange Sewer
schema.

Creating a Custom Recipient
The code for creating a custom recipient in the Exchange Server directory is similar
to the code for creating a mailbox, as you would expect. The main differences are
these:

• You must specify remote-address as the object class for a custom recipi­
ent rather than specify organizationalPerson, which is the object class for
a mailbox.

• You need to set different properties when creating a custom recipient. For
example, you must set the target-address property of the custom recipi­
ent, which specifies the actual address of the recipient.

677

Part III Collaboration with Microsoft Exchange

The following code creates a custom recipient using ADSI:

Dim arrOtherAddresses(l)

on error resume next
err.clear
smtp = Request.Form("SMTP")
fn = ReqUest.Form("FN")
In = Request.Form("LN")
dn = Request.Form("DN")
al = Request.Form("AL")
dir = Request.Form("DIR")

Set olADs = GetObject("LDAP:")
bstrl = "LDAP:II" + Session("Server") + "/cn=" + Session("CN") +

",ou=" + SessiOn("OU") + ",0=" + Session("O")
bstr2 Session("bstr2")
bstr3 = Session("bstr3")

Set oContainer = oIADs.OpenDSObject(bstrl, bstr2, bstr3, 0)
Set olADs = oContainer.Create("remote-address", "cn=" + CStr(dir»

arrOtherAddresses(0) = "MS$" + Session("O") + "I" + _
Session("OU") + "I" + al

arrOtherAddresses(l) = "CCMAIL$" + al + " at " + Session("OU")

olADs.Put "target-address", "SMTP:" + CStr(smtp)
olADs.Put "givenN~me", CStr(fn)
olADs.Put "sn", CStr(ln)
olADs.Put "cn", CStr(dn)
olADs.Put "uid", CStr(al)
olADs.Put "MAPl-Recipient", False
olADs.Put "mail", CStr(smtp)
olADs.PutEx 2, "otherMailbox", (arrOtherAddresses)
olADs.Put "rfc822Mailbox", CStr(smtp)
olADs.Put "textEncodedORaddress", CSti-("c=US;a= ;p=" +

Session("O") + ";0=" + Session("OU") + ";s=" + In +
";g=" + fn + II;")

olADs.Setlnfo

Creating a Distribution Lisi

678

Creating a distribution list, like creating a custom recipient, is again very similar to
creating a mailbox. The object class for a distribution list is groupOtNames, and the
properties you need to set for the distribution list are a little different from the prop­
erties you set for a mailbox. For example, for a distribution list, you can set the
report-to-owner and the report-to-originator properties, which specify whether reports

Chapter 15 Programming Exchange Server Using ADS.

should be sent to the distribution list owner or to the message originator, respectively.
You can also set the distribution list owner property, as shown in the next snippet
of code, by placing the distinguished name of a user into the owner property. This
code creates a distribution list:

<%
dim arrOtherAddress(l)
on error resume next
err.clear
cn = Request.Form("cn")
uid = Request.Form("uid")

owner = Request.Form("owner")
Set oIADs = GetObject("LDAP:")
bstrl = "LDAP:II" + Session("Server") + "/cn=" + Session("CN") + _

",ou=" + Session("OU") + ",0=" + Session("O")
bstr2 = "cn=" + Se~sion("UserName") + ", cn=" + Session("Domain")
bstr3 = Session("Password")
bstrMDB = "LDAP:II" + Session("Server") + _

"/cn=Microsoft Private MDB,cn~" + Session("Server") +
",cn=Servers ,cn=Configuration,ou=" + Session("OU") +
",0=" + Session("O")

bstrOwner = "LDAP:II" + Session{"Server") + "/cn=" + owner + _
",cn=" + Session("CN") + ",ou=" + Session{"OU"l +
",0=" + Session("O")

Set oContainer = oIADs.OpenDSObject(bstrl, bstr2, bstr3, 0)
Set oObject =oIADs.OpenDSObject(bstrMDB, bstr2, bstr3, 0)
set oOwner = oIADs.OpenDSObject(bstrOwner,bstr2,bstr3,0)
Set oIADs = oContainer.Create("groupOfNames", "cn=" + uid)
oIADs.Put "cn", Cstr(cn)
oIADs.Put "uid", CStr(Oid)
oIADs.Put "owner", oOwner.distinguishedName
oObject. GetInfo
Mail = oObject.Get("mail")
Pos = InStr(Mail, "@")
SMTPExt = Mid(Mail, Pos, Len(Mail»
iaddr = replace(uid, " ", "H) + SMTPExt
arrOtherAddress(0) = CStr("MS$" + Session("O") + "I" + _

Session("OU") + "I" + uid)
arrOtherAddress(l) = Cstr("CCMAIL$" + uid + " at " +

Session("OU"»
oIADs.Put -distinguishedName", CStr("cn=" + uid + ",cn=" +

Session("CN") + ",ou=" + Session("OU") + ",0=" + Session("O"»
oIADs.Put "mail", CStr(iaddr)
oIADs.PutEx 2, "otherMailbox", (arrOtherAddress)
oIADs.Put "Report-To-Originator", True
oIADs.Put "Report-to-Owner", False

(continued)

679

Part III Collaboration with 1iIInC!l'i!ll~;!lIn i!i:xcnan,ge

olADs.Put "Replication-Sensitivity", Clnt(20)
olADs.Put "rfc822Mailbox", CStr(iaddr)
olADs.Put "textEncodedORaddress", CStr("c=US;a= ;p=" + _

Session("O") + ";0=" + Session("OU") + ";s=" + uid + ";")
olADs.Setlnfo
if err.number 0 then

'Success!
%>

(%

(SCRIPT LANGUAGE="JavaScript">
alert("Distribution List successfully created.
Please click OK to continue.");
window.location="menu.asp";

(/SCRIPT>

else
'Failure!

%>
(SCRIPT LANGUAGE="JavaScript">

alert("Error! Error Number: (%=err.number%>
Description: (%=err.Description%>");
window.location="menu.asp";

(/SCRIPT>
(%
end if
%>

Adding and Removing Users from a Distribution List

680

ADSI provides another interface that you can take advantage of when working with
directory objects that manage group memberships such as a distribution list: the
IADsGroup interface. It provides methods such as Add and Remove that make it easy
to add and remove members from the group. All you need to specify to these meth­
ods is the AdsPath that corresponds to the object you will either add or remove. To
remove a user from a distribution list, you would just replace the Add method call
with the Remove method.

This interface also provides a Members method that returns a collection of the
current members of the group. The following code checks to see whether a user is
already a member of a distribution list and, if the user is not, the code adds the user
to rhe list:

(%
Set olADs = GetObject("LDAP:")
bstrl Session("strDLName")
bstr2 Session("bstr2")
bstr3 Session("bstr3")

Chapter 15 Programming Exchange Server Using ADS.

'Open the Exchange Server OS object
Set objDL = oIADs.OpenDSObject(bstrl. bstr2. bstr3. 0)
strAlias = Request.Form("USERSELECT")
bstrl strAlias
bstr2 Session("bstr2")
bstr3 Session("bstr3")

'Open the object in the Exchange Server OS that corresponds to
'the user
set objUser = oIADs.OpenDSObject(bstrl. bstr2. bstr3. 0)
booluserdoesnotexist=true
for each item in objDL.Members

if item.ADSPath = strAlias then
booluserdoesnotexist = false

end if
next
if booluserdoesnotexist then

'User does not exist in the Distribution List already. so add the user
objDL.Add objUser.ADSPath

%)

(%

%)

(%

if err.number = 0 then

(SCRIPT LANGUAGE="JavaScript")
alert("Successfully added user to DL.

Please click OK to continue.");
window.location="menu.asp";

(/SCRIPT>

else
'Failure!

(SCRIPT LANGUAGE="JavaScript")
alert("Error! Error Number: (%=err.number %)

Description: (%=err.Description%)");
window.location="menu.asp";

(/SCRIPT>

end if
else

%)

(%

'User does exist!

(SCRIPT LANGUAGE="JavaScript")
alert("User already is a member of this DL.

Please click OK to continue.");
window.location="menu.asp";

(/SCRIPT>

end if
%)

681

Part III

Displaying the Users in a Distribution List

682

The sample application allows you to display the users contained in a distribution
list in an HTML table, as shown in Figure 15-11. This table is generated by using a
For. .. Each construct to scroll through the collection returned by the Members method
of the IADsGroup interface. After retrieving the object that corresponds to each
member, the code checks the object class and displays the correct identifier for
each member, such as mailbox, distribution list, or custom recipient. Remember that
distribution lists can hold different types of objects. The code that displays users in
a distribution list is shown here:

<HTML>
<HEAD>
<TITLE>Display users in Distribution List</TITLE>
</HEAD>
<BODY>
<hl>The members of this Distribution List are:</hl>
<hr>
<form METHOD-"POST" NAME-"INFO" ACTION-"">
<input TYPE-"button" VALUE-"Back to Main Menu"

OnClick-'window.location-"menu.asp";'>
<input TYPE-"button" VALUE-"Select different container"
OnClick-'window.location-"logon.asp?diffcont-l";'>

</FORM>
<P>
<TABLE BORDER-l bgcolor-"'79AA86">
<%
dim oIADs
dim MyContainer
dim obj Reci pi ents
dim item

on error resume next
err.clear
strDLName - Request.Form ("DLSELECT")
Set oIADs - GetObject("LDAP:")
bstrl strDLName
bstr2 - Session("bstr2")
bstr3 - Session("bstr3")
Set objDL - oIADs.OpenDSObject(bstrl. bstr2. bstr3. 0)
Response.Write "<TR><TD>Class</TD><TD>Display Name</TD>
<TD>Alias</TD><TD>Directory Name</TD></TR>"
for each item in objDL.Members

set objitem - oIADs.OpenDSObject(item.ADSPath. bstr2. bstr3. 0)
select case item.class

case "organizational Person"
Response.Write "<TD>MailBox</TD><TD>" & _

Chapter 15 Programming Exchange Server Using ADSI

objitem.get("cn") & "(/TD)(TD)" &objitem.get("uid") & _
"(/TD)(TD)" & item.name & "(/TD)(/TR)"

case "Remote-Address"
Response.Write "(TD)Custom Recipient(/TD)(TD)" & _
objitem.get("cn") & "(/TD)(TD)" & objitem.get("uid") & _
"(/TD)(TD)" & item.name & "(/TD)(/TR)"

case "groupOfNames"
Response.Write "(TD)Distribution List(/TD)(TD)" & _
objitem.get("cn") & "(/TD)(TD)" & objitem.get("uid") & _
"(/TO)(TO)" & item. name & "(/TO)(/TR)"

case else
Response.Write "(TO)" & item.class & "(/TO)(TO)" & _
objitem.get("cn") & "(/TO)(TO)" & objitem.get("uid") & _
"(/TO)(TO)" & item.name & "(/TO)(/TR)"

end select
next
%)
(/TABLE)
(/FONT>

The members of this Distribution List are:

Figure 15-11. An HTML table of the users in a specific distribution list. The table is
generated by parsing the return value of the Members method of the IADsGroup
interface.

Creating a Recipients Container

The code that creates a Recipients container is probably the easiest to write in ADSI
because you don't need to set many properties on it. Just remember to specify Con­
tainer as the object class when creating the new Recipients container. The only gotcha
when creating a ReCipients container is that if you want the container to appear in
the address book, you must set the Container-Info attribute to -2147483647 or

683

Pari III Conaboration with Mmell'(IlS;llft Exehanaa

&H80000001. The following code creates a Recipients container based on the val­
ues specified by the user:

<%
on error resume next
err.clear
strDisplayName = Request.Form("display")
strDirectoryName = Request.Form("dir")
Set olADs = GetObject("LDAP:")
bstr1 = "LDAP://" + Session("Server") + "/ou=" + Session("OU") +

",0=" + Session("O")
bstr2 = Session("bstr2")
bstr3 = Session("bstr3")
Set oContainer = oIADs.OpenDSObject(bstr1, bstr2, bstr3, 0)
Set oIADs = oContainer.Create("Container", "cn=" + strDirectoryName)
oIADs.Put "Container-Info", -2147483647
olADs.Put "Admin-Display-Name", Cstr(strDisplayName)
oIADs.Put "rdn", CStr(strDirectoryName)
olADs. Set! nfo
if err.number = 0 then

'Success!
%>

(%

(SCRIPT LANGUAGE="JavaScript">
alert("Recipients Container successfully created.

Please click OK to continue.");
window.location="menu.asp";

(/SCRIPT>

else
'Failure!

%>
<SCRIPT LANGUAGE="JavaScript">

alert("Error! Error Number: <%=err.number %> Description:
(%=err.Description%>");

window.location="menu.asp";
(/SCRIPT>

(%

end if
%>

Displaying the Objects in a Recipients Container

684

The final code we'll look at in this section is similar to the code that displays the
members of a distribution list. This code, however, displays the objects contained in
a specific Recipients container in the directory. The first part of the code displays the
list of available Recipients containers in the directory by scrolling through the avail­
able objects below the Organizational Unit (OU), or Exchange Server site, and then

Chapter 15 Programming Exchange Server Using ADS.

parses out only the objects whose class name is Container. Since the configuration
portion of Exchange Server, which contains settings for connectors, protocol settings,
and monitor settings, also has an object class of Container, and you do not want users
trying to display all the objects in the Configuration container, the code skips this
Configuration container. The code then displays all the remaining Recipients contain­
ers so that the user can select the container whose contents they want to display.

on error resume next
err.clear
Set olADs = GetObject("LDAP:")
bstrl = "LDAP:II" + Session("Server") + "/ou=" + Session("OU") +

",0=" + Session("O")
bstr2 = Session("bstr2")
bstr3 = Session("bstr3")
Set oRecips = oIADs.Op.enDSObject(bstrl, bstr2, bstr3, 0)
for each child in oRecips

select case child.class
case "Container"

'Block out the Configuration container
if instr(child.name,"Configuration") = 0 then

Response.Write "<OPTION VALUE='" & child.Name & _
"'>" & Replace(child.name,"cn=", "H)

end if
end select

next

Next the code scrolls through all the objects in the selected container and dis­
plays the class, display name, alias, and directory name of the object by using a For
Each ... Next loop. The result of this code is shown in Figure 15-12.

<%
on error resume next
err.clear
Set olADs = GetObject("LDAP:")
bstrl = "LDAP:II" + SesSion("Server") + "I" + Request.Form("cn") +

".ou~" + Sess~on("OU") + ".0=" + Session("O")
bstr2 = Session("bstr2") .
bstr3 = Session("bstr3")
Set oRecipObjects = oIADs;OpenDSObject(bstrl, bstr2, bstr3. 0)
Response.Write "<TR><TO><BHype</TD><TD>Display Name</TO>
<TD>Alias<!TD><TD><B)Directory Name</TD></TR>"
for each item in oRecipObjects

set objitem = oIADs.OpenDSObject(item.ADSPath. bstr2, bstr3. 0)
select case item.class

case "organizational Person"
Response.Write "<TD>MailBox</TD><TD>" +

(continued)

685

Part III

686

with Microsoft

objitem.get("cn") + "(/TO)(TO)" + objitem.get("uid") +
"(/TO)(TO)" + item.name + "(/TO)(/TR)"

case "Remote-Address"
Response.Write "(TO)Custom Recipient(/TO)(TO)" +
objitem.get("cn") + "(/TO)(TO)" + objitem.get("uid") +
"(/TO)(TO)" + item.name + "(/TO)(/TR)"

case "groupOfNames"
Response.Write "(TO)Oistribution List(/TO)(TO)" +
objitem.get("cn") + "(/TO)(TO)" + objitem.get("uid") +
"(/TO)(TO)" + item.name + "(/TO)(/TR)"

case "Container"
Response.Write "(TO)Container(/TO)(TO)" +
objitem.get("rdn") + "(/TO)(TO)" + + "(/TO)(TO)" +
item. name + "(/TO)(/TR)"

case else
Response.Write "(TO)" + item.class + "(/TO)(TO)" + _
objitem.get("cn") + "(/TO)(TO)" + objitem.get("uid") +
"(/TO)(TO)" + item.name + "(/TO)(/TR)"

end select
next
%)

Display Recipient Container Objects

The following are the objects from the Recipients container. Select a different container by using the Select
Different Container button. Please note that if the container contains ill large number of objects this operation
can take a while. Please be patient.

Figure 15-12. The HTML table, which is dynamically generated/rom the object in a
Recipients container.

Chapter 15 Programming Exchange Server Using ADS.

RAISING THE NUMBER OF

RESULTS RETURNED FOR LDAP QUERIES

By default, Exchange Server will return only 100 results, so you might want to
raise the number of results the Exchange server returns for LDAP queries. To
do this, launch the Exchange Administrator program, and under the Configu­
ration object for your site, select the Protocols icon. Double-click the LDAP
(Directory) Site Defaults icon in the right pane. In the displayed Properties dialog
box, click on the Search tab. Increase the number in the text box named Maxi­
mum Number Of Search Results Returned to the number of results you want
to return from an LDAP query. If you do not raise this number and your LDAP
query has more than the default 100 results, Exchange Server will not return
any results.

ACTIVE DIRECTORY AND ADS.
To show how you can use your ADSI skills against the Exchange Server 5.5 direc­
tory and Active Directory, I've created a simple Web application that draws an
organizational chart from both these directories. As you'll see in the code, you can
easily query both directories. You'll also see that programming both directories usirtg
ADSI is similar. The only differences. are the path you need to provide for LDAP
binding and some of the property names. Obviously, more differences arise when
you start performing more complex operations, such as setting securities and creat­
ing users.

Figure 15-13 shows the Logon page for the Web-based application. On this page,
the user can select which directory he wants to connect to, thereby executing an ASP
page that sets the correct credentials for the directory and then calls to the organiza­
tional chart ASP program. The JavaScript in the Web page displays or hides text boxes
that ask for the alias or full user name.

NOTE There is a difference between Exchange Server and Active Directory
in the form of LDAP paths they expect. Exchange Server expects the alias of
the user (for example, Thomriz), while Active Directory expects the name of the
user (for example, Thomas Rizzo). Watch out for this in your applications.

687

Part III Collaboration with Microsoft Exchange

688

Exc:hange/Active Directory Org Chart Sample

C Use the Exchcnge DteclDry

<!l Use the Active DireclDry

PI"""" typ" th" Full N_ of the person you wish to chart: !II1E"'~_f3ii:Z~L_~.J -
Figure 15-13. The Logon page for the organizational chart ADS! sample.

Figure 15-14 shows how to pull organizational information from the Exchange
Server directory. The Web page uses a Java applet that displays the organizational
chart and provides hyperlinks so that you can click on the hyperlink for another user
to see that user's organizational information.

)' o.;!J aiel Chelll Ill. l.1 r lUl\] 1.11 [osott Ir,lmn, II xplOlR1 t [

W~~j
From the Exchange Directory

Select a different aHa. by ,liddnl here.

Figure 15-14. The organizational informationfrom an Exchange Server 5.5
directory.

Chapter 15 Programming Exchange Server Using ADSI

The code to perform this functionality is straightforward. It first connects to the
Exchange server-specifically the object that corresponds to the alias passed in. Then,
the code retrieves the user information, such as office location, phone number, title,
and alias name. Next, the code tries to retrieve the same information for the user's
manager by querying the manager property. The code then attempts to open the
manager's object from the directory and retrieve the same information from that object.
Finally, the code performs the same functions for the specified user's direct reports
and passes this information into the Java applet. I've left some of the debugging state­
ments in the code; you can uncomment them and see exactly what's happening at
your leisure.

if Session("Type") = "EXCHANGE" then
'Get if from Exchange!

Set oIADs = GetObject("LDAP:")
bstrl = "LDAP:II" + Session("Server") + "/cn=" + strUser + ".cn="

+ Sessi~n("cn") + ".ou=" + Session("OU") + ".0=" + Session("O")
'bstr2 = Session("bstr2")
'bstr3 = Session("bstr3")
'Response.Write bstrl
'Response.Write "bstr2=" & bstr2
'Response.Write "bstr3=" & Session("bstr3")
'Attempt an anonymous bind; if this doesn't work. you'll need
'to uncomment the line following the one below
Set objIADs = oIADs.OpenDSObject(bstrl 0)
'Set objIADs = oIADs.OpenDSObject(bstrl.bstr2.bstr3.0)

'Get the current person's information
strOffice = objIADs.Get("physicalDeliveryOfficeName")
strTelephone = objIADs.Get("telephoneNumber")
strTitle = objIADs.Get("title")
strcn = objIADs.Get("cn")
strrdn = objIADs.Get("rdn")

strManager = objIADs.Get("manager")
'Response.WritestrManager
strManagerPath = "LDAP:II" & Session("Server") & "I" & strManager

set oIADsManager = oIADS.OpenDSObject(strManagerPath.""."".0)
'Anonymous bind; uncomment the line below if it doesn't work
set oIADsManager

oIADS.OpenDSObject(strManagerPath.bstr2.bstr3.0)
strManagercn = oIADsManager.Get("cn")

(continued)

689

Part III Collaboration with Microsoft Exchange

690

strManagerrdn = oIADsManager.Get("rdn")
'Response.Write "mcn=" & strManagercn
'Response.Write "crdn=" & strManagerrdn
strManagerOffice = oIADsManager.Get("physicalDeliveryOfficeName")
strManagerTelephone = oIADsManager.Get("telephoneNumber")
strManagerTitle = oIADsManager.Get("title")

strReports = objIADs.GetEx("Reports")
'Response.Write "Upper: " & UBound(strReports)
'Response.Write "Lower: " & lbound(strReports)

%>
(!DOCTVPE HTML PUBLIC "-IIIETFIIDTD HTML 3.21IEN">
(HTML>
(HEAD>
(Title>Web Org-Chart (java version)(/Title>
(/HEAD>
(center>(font face=Verdana size=6>(B>From the Exchange

Directory</center)</font)

(p align="CENTER">

(applet
codebase="java"
code=JOrgChart.class
id=JOrgChart
width=480
(% if UBound(strReports)

iHeight = 0
else

LBound(strReports) then

iHeight = UBound(strReports)
end if

%>
height=<%=(Int«(iHeight)/2)+3)*65)%»
(param name=HostName value="(% =ROOTURL %>?Alias=")
<param name=Root value="(%=strManagerrdn%)?

(%=strManagercn%>?
<%=EmptyToNA(strManagerTitle)%>?
<%=EmptyToNA(strManagerOffice)%)?
<%=EmptyToNA(strManagerTelephone)%>">

(param name=LINode

val ue="(%=strrdn%>?<%=strcn%>?<%=strTitl e%>?<%=strOffi ce%>?(%=strTelephon

e%>">
(%

Chapter 15 Programming Exchange Server Using ADS.

on error resume next

for i = LBound(strReports) to UBound(strReports)
strLogonName = _

left(strReports(i),(instr(l,strReports(i),",")-l»

'Get each DS object to return the friendly name
strDirectPath = "LDAP:II" & Session("Server") & _

"I" & strReports(i)

set oIADsReports =

oIADs.OpenDSObject(strDirectPath, "","",0)
'Anonymous bind; uncomment if it doesn't work
set oIADsReports = _

oIADs.OpenDSObject(strDirectPath, bstr2,bstr3,0)

strReportscn = oIADsReports.Get("cn")
'Response.Write "en" & strReportscn
strReportsOffice =

oIADsReports.Get("physicalDeliveryOfficeName")
strReportsTelephone = _

oIADsReports.Get("telephoneNumber")

%>

strReportsTitle = oIADsReports.Get("title")
strReportsrdn = oIADsReports.Get("rdn")

<param name=L2Node<%=i%> value="<%=strReportsrdn%>?
<%=strReportscn%>?
<%=EmptyToNA(strReportsTitle)%>?
<%=EmptyToNA(strReportsOff1ce)%>?

<%=EmptyToNA(strReportsTelephone)%>">
<%

Next

%>

</applet>
</p>

(continued)

691

Part III Collaboration with Microsoft Exchange

692

<P>
Select a different alias by clicking <a href-"logon.asp">here.

</BODY>

Figure 15-15 shows how to query similar information from Active Directory using
LDAP, and the code for this query follows. Notice in the code that the LDAP path is
a bit different from the one specified in the earlier code. Instead of specifying
a (organization) and au (organizational unit), you specify DC (domain controllers).
If you want to simply grab information from Active Directory, you'll find your
Exchange Server directory ADSI skills quite useful.

From the Active Directory

Select a different alias by clickiDa; here.

Figure 15-15. Querying information/rom Active Directory.

<% else %>

<%

'Get if from Active Directory

Set olADs - GetObject("LDAP:")
bstrl - "LDAP:II" + Session("Server") + "/cn-" + strUser + ",cn-"

+ Session("cn") + ",dc-" + Session("Domain") + ",dc-" + Session("DC") +

",dc-" + Session("OU") + ",dc-" + Session("o")
'bstrl - "LDAP:II" + Session("Server") + "I" +

Chapter 15 Programming Exchange Se!'Ver Using ADS.

"cn=thomriz,cn=Users,dc=ADCDEMO,DC=extest,DC=Microsoft,DC=com"
'bstrl = "LDAP:II" + Session("Server") + "I· + Request.Form("cn")

+ ",ou=" + Session("OU") + ",0=" + Session("O")
bstr2 = Session("bstr2")
bstr3 = Session("bstr3")
'Response.Write bstrl
'Response.Write "bstr2=" & bstr2
'Response.Write "bstr3=" & Session("bstr3")
Set objIADs = oIADs.OpenDSObje~t(bstrl, bstr2, bstr3, 0)

'Response.Write objIADs.Get("manager")
'Get the current person's information
strDisplayName = objIADs.Get("displayName")
strOffice = objIADs.Get("phys1~alDeliveryOfficeName")
strTelephone = objIADs.Get(~t~leph6neNumber")
strTitle = objIADs.Get("title")
strcn = objIADs.Get("cn")
'Try to retrieve the Mail property
strmail = ""
strm6il = objIADs.Get("mail")
if strmail = "" then

'Try getti~g mail Nickname
strmail = objIADs.Get("mailNiGkname")

end if '
'Response.Write "strcn= " & strcn
strManager ='objIADs.Get["manager")
'Response.Write strManager
strMan~gerPath = "LOAp:ll" & Session("Server") & "I" & strManager
'Response.Write strManqgerPath
set oIADsMan6ger = '

oIADS.OpenDSObject(strManagerPath,bstr2,bstr3,0)
strManage~cn = oIADsManager.Get("cn")
'Try to, retrieve the M~il property
strManagerMail = ""
strManagerMail = oIADsManager.Get("mail")
if strManagerMail = "" then

strManagerMail = oIADsManager.Get("mailNickname")
end if" .
'Response.Write "mcn=" & strManagercn
strManagerbffice = o~ADsManager.Get("physicalDeliveryOfficeName")
strManagerielephone = oiAcisManager.Get("telephoneNumber")
strManigerTitle = oIADs~a~ager~Get("iitle")
strManagerDi spi ayName=' oiADSManager. Get("di spl ayName")

(continued)

693

Part III Collaboration with Microsoft Exchange

694

strReports = objIADs.GetEx("directReports")
%>

(!DOCTVPE HTML PUBLIC "-IIIETFIIDTD HTML 3.21IEN">
(HTML>
(HEAD>
(Title>Web Org-Chart (java version)(/Title>
(/HEAD>
(center>(font face=Verdana size=6>(B>From Active

Directory(/B>(/center>(/font>
(p align="CENTER">

(applet
codebase="java"
code=JOrgChart.class
id=JOrgChart
width=480
(% if UBound(strReports) LBound(strReports) then

iHeight = 0
else
iHeight UBound(strReports)
end if

%>
height=(%=(Int(iHeight/2)+3)*65%»
(param name=HostName value="(% =ROOTURL %>?Alias=">
(param name=Root value="(%=strManagerDisplayName%>?

(%=strManagerMail%>?
(%=EmptyToNA(strManagerTitle)%>?
(%=EmptyToNA(strManagerOffice)%>?
(%=EmptyToNA(strManagerTelephone)%>">

(param name=LINode

value="(%=strDisplayName%>?(%=strMail%>?(%=EmptyToNA(strTitle)%>?(%=Empty

ToNA(strOffice)%>?(%=EmptyToNA(strTelephone)%>">
(%

for i = LBound(strReports) to UBound(strReports)

strLogonName =

left(strReports(i),(instr(l,strReports(i),",")-l»

'Get each OS object to return the friendly name
strDirectPath = "LDAP:II" & Session("Server") &

Chapter 15 Programming ExchanQe Server Using ADSI

"I" & strReports(i)
set oIADsReports

oIADs.OpenDSObject(strDirectPath. bstr2.bstr3.0)
strReportscn = oIADsReports.Get("cn")
'Try to get the mail address
strReportsMail = ""
strReportsMail = oIADsReports.Get("mail")
if strReportsMail "" then

strReportsMail =

oIADsReports.Get("mailNickname")
end if
strReportsOffice =

oIADsReports.Get("physicalDeliveryOfficeName")
strReportsTelephone =

oIADsReports.Get("telephoneNumber")
strReportsTitle = oIADsReports.Get("title")
strReportsDisplayName =

oIADsReports.Get("displayNa~e")

%>
<param name=L2Node<%=i%> value="<%=strReportsDisplayName%)?

<%=strReportsMail%>?
<%=EmptyToNA(strReportsTitle)%>?
<%=EmptyToNA(strReportsOffic~)%>?

<%=EmptyJo~A(strReportsTelephone)%>">

<%
Next

%>

</applet>
</p>
<P>
Select a different alias by clicking here.
</BODY>

6$S

Part III

GETTING HELP WITH ADS.
This chapter provides you with examples of the most common features that you will
want to program using ADSI with the Exchange Server directory, but you can pro­
gram a lot more functionality. If you want to learn more about ADSI and the Exchange
Server directory, my recommendation is to review the ADSI information in the MSDN
Library under the section Platform SDK\Networking and Distributed Services\Active
Directory\Active Directory Services Interfaces (ADSI). Also, to make it easier to visu­
alize the relationships among the objects in the Exchange Server hierarchy, I would
recommend using the program named Active Directory Browser (adsvw.exe), which
is available on the companion CD. This program draws out the hierarchy of any
directory service using ADSI and <lllows you to query and browse the objects and
properties contained in a specific directory as shown in Figure 15-16. This program
is an invaluable tool to help you discover the available objects and attributes con­
tained in the Exchange Server directory.

los011
. ill 1) 011= _ABViews_

I' 21 ,,",EXSERVER
i .. ···n .. , J cn=Configuratjon

!a 2) cn=Microsoft OMD "",.1"_ '-"!, ~Sch
I .. !,iII 2) cn=D avid

:iiIII 3) cn .. EXPENSE
i. ,·i" 4) cn=EXPENSE
: iitl 5) cn..Jane
:".,.!. 6) cn...lennyL

Figure 15-16. The Active Directory Browser program. ibis program displays graphi­
cally the relationships and attributes o/the objects contained in any directory that you
can connect to using ADSI.

LDP

696

As part of the Windows 2000 Resource Kit, LDP provides a graphical, low-level interface
for LDAP operations such as Bind, Search, Modify, and Delete. You can use LDP with

Chapter 15 Programming Exchange Server Using ADSI

any LDAP-compliant directory, such as Active Directory or the Exchange Server 5.5
directory. Figure 15-17 and Figure 15-18 show the LDP tool working with an Exchange
Server 5.5 directory.

Figure 15-17. WP at work, connecting to an Exchange Server 5.5 directory. This tool
is more low-level than the Active Directory Browser.

Figure 15-18. Using LDP to search for distribution lists in Exchange Server 5.5.

697

Pari III

ADS. Edit

ADSI Edit is a Microsoft Management Console (MMC) snap-in that allows you low­
level access to Active Directory by using ADSI interfaces. You can use this tool, shown
in Figure 15-19, to browse and modify information in Active Directory.

Figure 15-19. ADS] Edit working with Windows 2000 Server.

What About ADS. 2.5?

698

All the applications discussed in this chapter work with ADSI 2.5. While ADSI 2.5
greatly improves the capabilities of using ADSI with Windows 2000 Server, no great
enhancements exist for using ADSI with Exchange 5.5 servers. I've included the
redistributable version of the ADSI 2.5 object library as well as the programmer's guide
on the companion CD so that you can get more information about ADSI 2.5. For those
of you running Windows 2000, don't install the redistributable version of ADSI 2.5
since Windows 2000 comes with ADSI 2.5 installed.

Chapter 16

Enhancing Your
Exchange Server
Applications with
COM Components

Throughout this book, we've looked at ways to develop applications that take advantage
of the collaborative functionality of both Microsoft Exchange Server and Microsoft
Outlook. And by now you're probably wondering how to work around the function­
ality not provided by the Microsoft Collaboration Data Objects (CDO) and Outlook
object models discussed in this book. For example, how do you programmatically
change permissions on folders from a Web page when users don't have Outlook on
their machines? And how do you programmatically create, delete, and edit rules
on the server so that your applications don't require the user to set rules through Out­
look? Perhaps you can save time by using rules rather than the Event Scripting Agent
for simple tasks like automatically forwarding new messages or returning unwanted
messages to the sender. Or maybe you need the ability to create, delete, and modify
Microsoft Windows NT accounts and programmatically set the security descriptors
for newly created Active Directory Services Interfaces (ADS!) Exchange Server

699

Pari III Collaboration with Microsoft Exchange

accounts. CDO and the Outlook object model do not automatically provide these
capabilities, but Microsoft has released three COM components that do: AcctCrt, ACL,
and Rules. Because Exchange Server is extensible, you can use these components
in your applications. You can pretty much guess the functionality of these compo­
nents by their names:

• AcctCrt is an· account creation component that was used in the ADSI
application in Chapter 15. It allows you to create and associate Windows
NT accounts with Exchange Server mailboxes so that you can use ADSI
to create functional mailboxes in Exchange Server.

• ACL is a component that allows you to programmatically query, create,
or change permissions on folders for users or distribution lists.

• Rules allows you to programmatically create, change, or delete rules on
your folders.

These components ship as part of the Microsoft Platform Software Development
Kit, but to make obtaining and using these components easier, I've included them
on the companion CD in a folder named COM Components. I have also included
sample applications from the Platform SDK that use the components. This chapter
describes all three components and then shows a sample application named Project
that uses two of them-Rules and ACL. Because AcctCrt was used in Chapter 15, we'll
just look at some simple samples.

ACCTCRT COMPONENT
The AcctCrt component provides services for creating mailboxes in Exchange Ser­
ver version 55 using ADS!. ADSI does not provide a mechanism to associate Windows
NT accounts with Exchange Server mailboxes, but the AcctCrt COM component does.
It ,also allows you to programmatically create and delete Windows NT accounts in
your Windows NT domain. The AcctCrt component is very straightforward-it supports
only six methods: CbangeOwnerojSecDescriptor, NTAccountCreate, NTAccountDeiete,
GetSidFromName, GetNameFromSid, and GenerateSecDescriptor. Let's take a look at
how to create an instance of the AcctCrt component and use the methods it supports.

Creating an Instance of the AcctCrt Component

700

Creating an instance of the AcctCrt component is actually very easy. The ProgID for
the component is MSExchange.AcctMgmt. The following line of code shows how to
create an instance of the component and store it in a variable named mntAcct:

Set mntAcct = CreateObject("MSExchange.AcctMgmt")

Once you have an instance of the component, you can call its available methods.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

Creating a Windows NT Account
by Using the AcctCrt Component

The AcctCrt component contains a method named NTAccountCreate that allows you
to programmatically add a new account to your Windows NT domain as long as you
have the proper permissions in that domain. This method takes five arguments:
Domain, Login, Password, UserComment, and Loc(lIGroup. If you don't specify the
domain name, AcctCrt defaults to using the local machine domain. If you don't specify
the local group, the component automatically adds the user to the domain user group.
The following code example shows you how to create a Windows NT account us­
ing NTAccountCreate:

Set mntAcct = CreateObject("MSExchange.AcctMgmt")
'NTAccountCreate takes Domain,Login,Password,UserComment,LocalGroup
MntAcct.NTAccountCreate "", "Test User", "password", "", ""

NOTE You need the proper permissions to create the Windows NT account
using NT AccountCreate. If you want to use the AcctCrt component from an Active
Server Pages (ASP) page, you must authenticate the user by challenging the
user's credentials in the browser; otherwise, ASP will use the anonymous
Microsoft Internet Information Services (liS) account to attempt creating the
Windows NT user account. This attempt will most likely fail.

Deleting a Windows NT Account
by.Using the AcctCrt Component

Deleting a Windows NT Account using the AcctCrt component is as easy as creating
a Windows NT account. To delete a Windows NT account, you use the.NTAccountDelete

method, which takes two arguments: Domain and UserLogin. If you don't specify the
domain parameter, the component will use the local machine domain. Here's how
you delete the account we added in tJte previous example code:

MntAcct.NTAccountDelete "","Test User"

Associating Windows NT Accounts
with Exchange Server Mailboxes

Now that you've seen how to create and delete a Windows NT account, you need
to learn how to associate a new Windows NT account with a mailbox and change
a Windows NT account associated with a mailbox (in cases where you delete the
Windows NT account). The AcctCrt component provides these capabilities through
its remaining four methods. The following subroutine shows you all four of these
methods.

701

Part III Collaboration with Microsoft: Exchange

702

Public Sub ManageSids(oldSid. oldDescriptor. NTDomain. _
NTAccountName. NewSid. NewDescriptor)
'Check to see if modifying existing ~ID
If IsEmpty(oldSid) then

'Generate new SID
mntAcct.GenerateSecDescriptor NTDomain. NTAccountName. _

NewSecDescriptor
'NewSecDescriptor now contains the new security descriptor.
'We can then use the new security descriptor for our
'mailbox in ADSI.

else
mntAcct.GetNameFromSid NTDomain, (oldSid). oldNTDomain. _

oldNTAccountName
mntAcct.ChangeOwnerofSecDescriptor oldNTDomain. _

oldNTAccountName. NewNTDomain. NewNTAccountName, _
(oldSid), newSecDescriptor

'Just to show how to use it
mntAcct.GetSidFromName NewNTDomain. NewNTAccountName. testSid

end if

The ManageSids subroutine takes a number of parameters. If you pass in a
security descriptor for the oldSid variable, the subroutine expects you to also pass
in a domain name (Ind an account name representing the new account you want to
assign the security identifier (SID) to. The subroutine then modifies the security
descriptor to reflect the new account and domain. It does this by retrieving the name
of the old Windows NT domain and account for the security deSCriptor using the
GetNameFromSid method. This method takes the domain name and a current SID
as its parameters. (Be sure to enclose the variable for your SID in parentheses so that
the value is passed by reference to the method. If you don't do this, you will receive
an error.) The final two parameters are variables that the method fills in for you. They
contain the Windows NT domain and the user name that the SID corresponds to.

SECURITY DESCRIPTORS AND SECURITY IDENTIFIERS

Understanding the difference between a security descriptor and a security iden­
tifier might be a little confusing. A security descriptor is a structure that contains
..... 1_ _ _ _ __ _'L • _ r_ _ __ L' _ 1 • 1'. 1.1 1 •
lIle liecuruy 1I1iUrInaUUn aUUUl an UUJeCl, liucn ali me uwner anu prmlary gruup,

and users who have permissions to access the object. A SID is a structure that
uniquely identifies a user or a group in Windows NT. Exchange Server requires
the security deSCriptor to be placed in the NT-Security-Descriptor attribute and
the SID to be placed in the Assoc-NT -Account attribute.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

The ManageSids subroutine needs to change the ownership of the security
descriptor to the new Windows NT domain and account passed in by the user by using
the ChangeOwnerOjSecDescriptor method. This method 1;flkes six parameters. The first
five are values that you pass in, such as the Windows NT domain and account, which
is the current account for the security descriptor; the new Windows NT domain and
account you want to change the descriptor to; and the descriptor you want to modify,
enclosed in parentheses. The sixth parameter is a variable where the new security
descriptor is returned. You can then take the new security descriptor and use it to
update permissions on the Exchange Server mailbox to reflect a new user using ADSI.

I included the GetSidFtomName method in the subroutine to show you how
to use it. It retrieves the SID for a Windows NT account if you know only the name
and domain of .the account. Use GetSidFromName when you want to quickly find
an account arid retrieve its SID so that you can place it into an Exchange Server
mailbox to assign ownership for the mailbox. GetSidFromName takes three parame­
ters, the first two being the Windows NT domain and the account name that you want
to find the SID for. Assuming the method could find the ac;count, the third parame­
ter is a variable that the method fills in with the value of the SID.

If you do not pass in the SID to the ManageSids subroutine, the subroutine
assumes that you want to generate a new security descriptor for the Windows NT
domain and account name that you passed to· the parameter. The subroutine gener­
ates this new security descriptor by using the method GenerateSecDescriptor. The
GenerateSecDescriptor method takes the Windows NT domain, the user name that
you want to generate a security descriptor for, and a return variable for the new
security descriptor. You can use this new security deSCriptor in your ADSI code for
mailboxes you create.

RULES COMPONENT
Exchange Server includes excellent facilities to run rules on the server, which fire
depending on the conditions you set. If you've looked at the Rules Wizard in Out­
look, you have a sense of the complex rules you can create on your Exchange ser­
ver. In the past, rules could only be created programmatically with C/C++, but with
the Rules COM component, Microsoft Visual Basic developers can create complex
rules for their application folders in Exchange Server. The Rules COM component
provides an extensive object library, which we'll look at later.

Storing Rules
Before diSCUSSing the Rules component, we first must take a look at how rules are
stored in the Exchange Server' system. The Exchange Server system stores rules as

703

Pari III Collaboration with Microsoft Exchange

hidden messages inside folders. To find rules in the CDO HiddenMessages collec­
tion for a folder, search for the message class IPM.Rule.Message. This message class
specifies that the item is a rule item, and the properties on the item contain the vari­
ous conditions for the rule. The easiest way to see the different rules is to use the
MDB Viewer Test Application (MDBVUE) tool included on the companion CD. This
tool allows you to see hidden messages in folders as well as retrieve the properties
of all items in the Exchange Server store. Figure 16-1 shows a screen from the MDB
Viewer Test Application.

Figure 16-1. The MDB Viewer Test Application proVides functionality to investigate
the objects stored in your Exchange Server system. This tool can even be used to
investigate the properties on rule items stored as hidden messages in your folders.

Creating an Instance of the Rules Component
To create an instance of this component, all you need to do is pass the ProgID for
the component, MSExchange.Rules, to the CreateObject method, as shown in the
following line of code. The Rules component contains other instantiable objects,
which you will see later in this chapter, that correspond to conditions you can set
for the component.

Set myRules = CreateObject("MSExchange.Rules")

Using the Rules Component

704

The easiest way to show you how to use the Rules component is to step through some
snippets of code. These snippets show you many of the objects and methods that
constitute the component. The first sample we'll review, written in Visual Basic,
illustrates the major issues you'll confront when using the Rules component to cre­
ate rules that compare a single property to a specified value. The sample creates a

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

new rule, named Imp Rule, that looks for low-importance messages sent to the Inbox.
When the rule finds a low-importance message in the Inbox, it moves it to a subfolder
of the Inbox named To Me.

Dim oSession As MAPI.Session
Set oSession = CreateObject("MAPI.Session")
oSession.Logon
Set oRules = CreateObject("MSExchange.Rules")

'This can also be Public Folders.
'You need Owner permissions on the folder to create
'and enable a rule.
oRules.Folder = oSession.lnbox

'Set the property value for a condition in the rule
'to the importance of the message
Set ImpProp = CreateObject("MSExchange.PropertyValue")
ImpProp.Tag = CdoPR-IMPORTANCE
ImpProp.Value = 0

'Set a condition so that this rule
'looks for all nonimportant messages
Set ImpCond = CreateObject("MSExchange.PropertyCondition")
ImpCond.Value = ImpProp
ImpCond.PropertyTag = CdoPR-IMPORTANCE
ImpCond.Operator = 7

Set oFolder = oSession.lnbox.Folders("To Me")

'Set the action for the rule
Set oAction = CreateObject("MSExchange.Action")
oAction.ActionType = 1
oAction.Arg = oFolder

'Create the actual rule
Set oRule = CreateObject("MSExchange.Rule")
oRule.Name = "Imp Rule"
oRule.Actions.Add 1. oAction
oRule.Condition = ImpCond

'Add it to the Rules collection
oRules.Add • oRule
oRules.Update

oSession.Logoff

When using the Rules component, you need to make sure you have a valid CDO
session with the server so that you can pass in a CDO Folder object to the Folder

70s

Part III Collaboration with Microsoft Exchange

706

property on the Rules component, which tells the Rules component which folder to
create your rules in.

Your next step is to set ilp conditions that must be met by the incoming mes­
sage to make the rule fire. The Rules component supports many similar types of
conditions. We'll cover the major ones you'll use: Bitrnask, Comment, CompareProps,
Content, Exists, Logical, Property, Size, and Sub. We'll look in detail at Bitmask,
Content, Logical, and Property.

In the preceding code example, you saw a property condition in action. To
create a PropertyCondition object, the code calls the CreateObject method with the
ProgID for a property condition. After you create the condition object, you have to
set its properties. For the PropertyCondition object, you need to set the Value,
PropertyTag, and Operator properties.

For the Value property, you have to pass a PropertyValue object that contains
the value you want to compare to the desired property. For this reason, before a
PropertyCondition object is created, a PropertyValue object is created, with its Tag
property set to the CDO property identifier that we're interested in, CdoPR_
IMPORTANCE. The Value property for the object is set to the value we want satis­
fied by the condition. In this case, the Value property is set to 0, which specifies a
low-importance message in CDO.

When I tested the code for the Rules component on different machines,
I sometimes had trouble getting the importance and sensitivity properties to be
identified. If you have trouble getting your rule to fire, try testing your rule with
different message properties.

Now that we have a valid PropertyValue object, we can pass it to the Value
property for the PropertyCondition object. Then we need to set the PropertyTag

. property on our condition. This property should contain the same property identi­
fier as the PropertyValue object.

Next, the Operator property must be set. The Operator property can have seven
possible values, described in Table 16-1.

Name Value Description

REL_GE 1 Greater than or equal to

REL_GT 2 Greater than

REL_LE 3 Less than or equal to

REL_LT 4 Less than

REL_NE 5 Not equal to

REL_RE 6 Like

REL_EQ 7 Equal to

Table 16-1. Valuesfor the Operator property.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

We want the importance level for the Operator property to equal the value
specified earlier for the PropertyValue object. The code sets the Operator value to 7,
which is the EQUALTO operator.

The code's next step is to create the Action object, which contains the action
that Exchange Server should take if the property condition equals the property value
we specified. The Action object has two properties we need to set: ActionType and
Arg. ActionType specifies the type of action to take on the item. For example, you
can automatically delete the item, move the item to a different folder, or bounce the
item back to the person who submitted it. Table 16-2 shows you the possible values
for the ActionType property.

Name Value Description

ACflON_MOVE 1 Move the message to the folder object
specified in Atg.

ACflON_COPY 2 Copy the message to the folder object
specified in Atg.

ACflON_DELETE 3 Delete the mess~ge.

ACflON_REPLY 4 Respond to the message with the mes-
sage specified in Atg.

ACflON_OOFREPLY 5 Respond to the message with the Out-
of-office message specified in Atg.

ACflON]ORWARD 6 Forward the message to the recipient list
specified in Atg.

ACflON_DELEGATE 7 Delegate the message to the recipient
list specified in Atg.

ACTIONJ30UNCE 8 Return the message to the sender for the
reason specified in Atg.

ACTION_TAG 9 Tag the message to set the property
specified in Atg.

ACTION_MARKREAD 10 Mark as read.

ACflON~DEFER 11 Defer action.

Table 16-2. Values/or the ActionType property.

In the code, the ActionType property was set to 1, which moves the item to the
folder we specify in the Arg property. Depending on the value specified for Action Type,
you might need to set the Arg property to a value. If you pick the delete action, you
do not have to specify the Arg property on your Action object.

As you can see, the Arg property and the Action property work together to create
the action for your rule. In our example, the code finds the specific folder we're
moving items to by using CDO, and then it sets the Action object'S Arg property to
the CDO Folder object. If we do not specify this folder, the rule will not work.

707

Part III Collaboration with Microsoft !!"£YCIi'I.@!In,o@!)

After we have a condition and an action for the rule, we need to create the actual
rule by creating a Rule object. The Rule object has a large number of properties that
you can use, but we'll look at only a subset of them-Actions, Name, and Condition.

The Name property contains the friendly name for the rule. The Action prop­
erty returns the Actions collection, which contains all the Action objects for the rule.
We add a new rule to the collection by using the Add method on the collection. The
Add method takes two parameters, the first being the position in the collection where
the Action object should be placed. You can have multiple actions for a rule such as
a forward action and a reply action. The second parameter for the Add method is
the Action object you want to add to the collection.

The final property we need to set on the Rule object to successfully create the
object is the Condition property. The Condition property should be set to the con­
dition object we created for the rule. As you will see later, you can have multiple
conditions for a rule, but there is a catch-you need to link all the conditions together
using another type of object, the LogicalCondition object.

Now that the properties for the new Rule object are set, all we need to do is
add the object to the Rules collection. To do this, we pass our Rule object to the Add
method on the Rules collection. The first parameter of this method, which is blank
in the code, is an optional integer that specifies the position before the insertion point
for the new rule. Since this parameter is not specified, the new rule is inserted at the
end of the collection. If you do specify a position for this property, you must update
the indices for the Rules object by calling the Updatelndices method and then the
Update method on the object.

The second parameter of the Add method is the object that contains the new
Rule object you want to add. We already created and set the properties of this object
in the code, so that's it! We just created a new rule. Now we're going to look at some
of the other condition objects we can use to set more complex conditions for our rules.
Because a lot of the steps are similar for these other types of conditions, I'm going
to highlight only the steps that differ and are required for each condition type.

Specifying a Logical Condition

708

Most of the time, when you create rules, you will not use only one property as your
condition. You'll have multiple conditions, such as specifying only those messages
that are of !ov/ importance and sent directly to you. To create multiple conditions,
you need to use the LogicalCondition object in conjunction with the other condition
objects. The next example shows how a LogicalCondition object is used in conjunc­
tion with two PropertyCondition objects to create a rule that checks to see whether
messages are of low importance and sent directly to you. If the rule finds a mes­
sage that meets these conditions, the message is moved to the To Me subfolder of
the Inbox.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

Dim oSession As MAPI.Session
Set oSession = CreateObject("MAPI.Session")
oSession.Logon
Set oRules = CreateObject("MSExchange.Rules")

'This can also be Public Folders.
'You need Owner permissions on the folder to create
'and enable a rule.
oRules.Folder = oSession.lnbox

'Set the property value for a condition in the rule
'to the importance of the message
Set ImpProp = CreateObject("MSExchange.PropertyValue")
ImpProp.Tag = CdoP~IMPORTANCE

ImpProp.Value = 0

'Set a condition so that this rule
'looks for all nonimportant messages
Set ImpCond = CreateObject("MSExthange.PropertyCondition")
ImpCond.Value = ImpProp
ImpCond.PropertyTag = CdoPR_IMPORTANCE
ImpCond.Operator = 7

'Set a property value for messages sent to me
Set MeProp = CreateObject("MSExchange.PropertyValue")
MeProp.Tag = CdoP~MESSAGE_TO_ME

MeProp.Value = True
'Set a condition so that this rule
'looks for all messages sent to me
Set MeCond = CreateObject("MSExchange.PropertyCondition")
MeCond.Value = MeProp
MeCond.PropertyTag = CdoP~MESSAGE_TO_ME

MeCond.Operator = 7

Set LogCond = CreateObject("MSExchange.LogicalCondition")
LogCond.Operator = 1
LogCond.Add ImpCond
LogCond.Add MeCond

Set oFolder = oSession.lnbox.Folders("To Me")

'Set the action for the Rule object
Set oActioh = CreateObject("MSExchange.Action")
oAction.ActionType = 1
oAction.Arg = oFolder

'Create the actual rul e
Set oRule = CreateObject("MSExchange.Rule")
oRule.Name = "Imp Rule"

(continued)

709

Part III Collaboration with Microsoft !!o"V·;t':m'!i;:i!HIRA

oRule.Actions.Add 1. oAction
oRule.Condition = LogCond

'Add it to the Rules collection
oRules.Add • oRule
oRules.Update

oSession.Logoff

In the code, two PropertyCondition objects and two PropertyValue objects are
created to specify the conditions for the rule. To link the two conditions, the code
creates a LogicalCondition object. The LogicalCondition object is actually a collec­
tion of other condition objects from which you can add or delete objects.

To add the two conditions to the LogicalCondition object, the code uses the Add
method of the LogicalCondition object. The Add method takes a Condition object as
its parameter and will add the object to the collection. Once all the condition objects
are added to the collection, the logic that links the two or more conditions must be
set. To do this, we use the Operator property on the LogicalCondition object. This
property has three possible values: I_AND (1), I_OR (2), and I_NOT (3). Since we
want all messages sent directly to the person and messages of low importance to be
the only messages moved to the folder, we set the Operator property on the
LogicalCondition object to be 1, or I_AND, which causes Exchange Server to fire the
rule only if both conditions are met on the item.

Searching for Specific Content

710

The Rules component provides the ContentCondition object so that you can search
for specific content. This object allows you to search for specific text in either the
message body or the message subject. You can use this searching capability to fire
off rules that perform specific actions. For example, you can use the ContentCondition
object to create a simple profanity filter for a discussion application. If any offensive
words are placed into the message body or message subject, you can automatically
delete the message or move it to a folder for an administrator to look at.

To show you how to use the ContentCondition object, the code example we
have been working with has been updated to search the message body of incoming
items for the phrase New Policy. Now our rule fires only when an item is of low
imponance, sem directiy to the person, and conlains lhe phrase lv'ew Policy in the
message body. If the rule finds a message that meets these conditions, the message
is moved to the To Me subfolder of the Inbox. Here is the code that creates this rule:

Dim oSession As MAPI.Session
Set oSession = CreateObject("MAPI.Session")
oSession.Logon
Set oRules = CreateObject("MSExchange.Rules")

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

'This can also be Public Folders.
'You need Owner permissions on the folder to create
'and enable a rule.
oRules.Folder = oSession.lnbox

'Set the property value for a condition in the rule
'to the importance of the message
Set ImpProp = CreateObject("MSExchange.PropertyValue")
ImpProp.Tag = CdoPR_IMPORTANCE
ImpProp.Value = 0

'Set a condition so that this rule
'looks for all nonimportant messages
Set ImpCond = CreateObject("MSExchange.PropertyCondition")
ImpCond.Value = ImpProp
ImpCond.PropertyTag = CdoPR_IMPORTANCE
ImpCond.Operator = 7
'Set a property value for messages sent to me
Set MeProp = CreateObject("MSExchange.PropertyValue")
MeProp.Tag = CdoPR-MESSAGE_TO_ME
MeProp.Value = True

'Set a condition so that this rule
'looks for all messages sent to me
Set MeCond = CreateObject("MSExchange.PropertyCondition")
MeCond.Value = MeProp
MeCond.PropertyTag = CdoPR_MESSAGE_TO_ME
MeCond.Operator = 7

'Set a property value for messages with New Policy
Set ContProp = CreateObject("MSExchange.PropertyValue")
ContProp.Tag = CdoPR-BODY
ContProp.Value "New Policy"

'Set a condition so that this rule
'looks for all with the New Policy keywords
Set ContCond = CreateObject("MSExchange.ContentCondition")
ContCond.Value = ContProp
ContCond.PropertyType CdoPR_BODY
ContCond.Operator = 1 'Substring

Set LogCond = CreateObject("MSExchange.LogicalCondition")
LogCond.Operator = 1
LogCond.Add ImpCond
LogCond.Add MeCond
LogCond.Add ContCond

Set oFolder = oSession.Inbox.Folders("To Me")
(continued)

711

Part III

712

with Microsoft ii:yehannill'l'

'Set the action for the Rule object
Set oAction = CreateObject("MSExchange.Action")
oAction.ActionType = 1
oAction.Arg = oFolder

'Create the actual rul e
Set oRule = CreateObject("MSExchange.Rule")
oRule.Name = "Imp Rule"
oRule.Actions.Add 1, oAction
oRule.Condition = LogCond

'Add it to the Rules collection
oRules.Add , oRule
oRules.Update

oSession.Logoff

As you can see from the code, to successfully create a ContentCondition ob­
ject, you must perform two steps. First you must create a PropertyValue object and
fill in its properties with the CDO property you're interested in searching, and then
you must fill in three properties on the ContentCondition object-Value, PropertyType,
and Operator. Set the Value property to contain the PropertyValue object that you
create. The Value property tells the ContentCondition object the value for which the
rule should search in incoming messages. Set the PropertyType property to the same
CDO property set for the Value property on the PropertyValue object. PropertyType
tells the ContentCondition object which CDO property to search in for the value. The
Operator property contains a hex value that specifies the type of search to perform
for the specified value. This search can be an exact match, a substring, or a prefix.
You can have only one of these three types of searches. Table 16-3 shows the set­
tings for the Operator property. However, you can combine the last three settings in
the table-IGNORECASE, IGNORENONSPACE, and LOOSE-with the search type.
For example, to specify a search that looks for a substring and ignores cases and
nonspaces, you would set the Operator property to &H30001.

Name Hex Value Description

FULLSTRING 0 Full string

SUBSTRING 1 Substring

PREFIX 2 Prefix

IGNORECASE 10000 Ignore case

IGNORENONSPACE 20000 Ignore nons pace

LOOSE 40000 Ignore high bits (maps Unicode to
corresponding ANSI values)

Table 16-3. Values/or the Operator property.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

Searching for a Particular Bitmask
Sometimes you'll want to retrieve a particular property on a message-most com­
monly, the CdoPR_MESSAGE_FIAGS property-to see if the property meets a certain
criterion. The CdoPR_MESSAGE_FIAGS property contains a bitmask that describes
whether the message has attachments or was sent from the Internet. The following
example adds to the rule we've been creating a condition that searches incoming
messages to determine whether they have attachments:

Dim oSession As MAPI.Session
Set oSession = CreateObject("MAPI.Session")
oSession.Logon
Set oRules = CreateObject("MSExchange.Rules")

'This can also be Public Folders.
'You need Owner permissions on the folder to create
'and enable a rule.
oRules.Folder = oSession.Inbox

'Set the property value for a condition in the rule
'to the importance of the message
Set ImpProp = CreateObject("MSExchange.PropertyValue")
ImpProp.Tag = CdoPR-IMPORTANCE
ImpProp.Value = 0

'Set a condition so that this rule
'looks for all nonimportant messages
Set ImpCond = CreateObject("MSExchange.PropertyCondition")
ImpCond.Value = ImpProp
ImpCond.PropertyTag = CdoPR-IMPORTANCE
ImpCond.Operator = 7

'Set a property value for messages sent to me
Set MeProp = CreateObject("MSExchange.PropertyValue")
MeProp.Tag = CdoPR-MESSAGE_TO_ME
MeProp.Value = True

'Set a condition so that this rule
'looks for all messages sent to me
Set MeCond = CreateObject("MSExchange.PropertyCondition")
MeCond.Value = MeProp
MeCond.PropertyTag = CdoPR-MESSAGE_TO_ME
MeCond.Operator = 7

'Set a property value for messages with New Policy
Set ContProp= CreateObject("MSExchange.PropertyValue")
ContProp.Tag = CdoPR-BODY
ContProp.Value = "New Policy"

(continued)

713

Part III Collaboration with Microsoft Exchange

714

'Set a condition so that this rule
'looks for all with the New Policy keywords
Set ContCond = CreateObject("MSExchange.ContentCondition")
ContCond.Value = ContProp
ContCond.PropertyType CdoPR-BODY
ContCond.Operator = 1 'Substring

'Create a condition for messages with attachments
Set BitCond = CreateObject("MSExchange.BitmaskCondition")
BitCond.Value = 16
BitCond.PropertyTag = CdoPR-MESSAGE_FLAGS
BitCond.Operator = 2

Set LogCond = CreateObject("MSExchange.LogicalCondition")
LogCond.Operator = 1
LogCond.Add ImpCond
LogCond.Add MeCond
LogCond.Add ContCond
LogCond.Add BitCond

Set oFolder = oSession.lnbox.Folders("To Me")

'Set the action for the Rule object
Set oAction = CreateObject("MSExchange.Action")
oAction.ActionType = 1
oAction.Arg = oFolder

'Create the actual rule
Set oRule = CreateObject("MSExchange.Rule")
oRule.Name = "Imp Rule"
oRule.Actions.Add I, oAction
oRule.Condition = LogCond

'Add it to the Rules collection
oRules.Add , oRule
oRules.Update

oSession.Logoff

As you can see in the code, when creating a bitmask condition, you need to
set three properties on the object: Value, PropertyTag, and operator. The Value prop-
elTy takes the value with which tJle PropertyTag value is masked. In this example,
we placed the value 16 in the Value property to create a rule that looks for attach­
ments. The PropertyTag value specifies the CDO property that you want to mask with
the Value property. In this example, we used the CdoPR_MESSAGE_FIAGS property.
The Operator property specifies the bitmask operator for the property and can take
one of two values: B_EQZ (1) or B_NEZ (2). B.-.EQZ creates a bitmask and checks to
see whether the returned value is zero. B_NEZ creates a bitmask and checks to see

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

whether the returned value is nonzero. In this example, we created the bitmask and
checked to see whether the value was nonzero.

In this section, we've seen some of what the Rules component can do. In the
section titled "Project Application," we'll see how to create rules that fire on all in­
coming messages. The Rules component has other conditions that you can set and
other capabilities-it doesn't just create rules but also reads and modifies existing rules.
To learn more about these other capabilities, refer to the Exchserv.chm file on the
companion CD.

ACL COMPONENT
To provide you with the ability to query and modify access control lists (ACLs) on
folders, Microsoft offers an ACL COM component. This component works in conjunc­
tion with the CDO library to allow you to change permissions on folders for which
you are the owner. Before the ACL component was available, you had to either
manually hack the hex properties on the folder or write a C/C++ program to manipu­
late folder permissions by using Extended Messaging Application Programming
Interface (MAPI). The fIrst of those solutions is not desirable since future versions of
the product could break your code and make your code more error prone, and the
second solution is hard to implement unless you know the C/C++ programming lan­
guage. The Project sample application, which we're about to examine, uses the ACL
component extenSively, so you'll learn about it in context.

PROJECT APPLICATION
To help you learn how to use the Rule and ACL components in a full application rather
than in code snippets, I put together an application named Project. This application
shows you the new COM components and ties together the CDO objects that we've
learned about, such as the core messaging and rendering CDO objects. From this
application, you can get an idea of how to build your own fully featured CDO
applications. First, we'll examine what the application does and highlight some of
the programming behind it. I won't go over the CDO portions of the code in great
detail, so you should set up the application and browse through its sample code to
get a better understanding of the CDO library.

The Project application allows users to collaborate in a virtual project workspace
on the Web, where they can create new folders in which they post documents or
messages. In these folders, users can discuss items and view information using dif­
ferent view types. Project owners can modify permissions for project members either
at the project level or at the individual folder level, and they can set up autonotification
for team members when new items are placed in the project folders.

715

Pari III Collaboration with Microsoft Exchange

Setting Up the Project Application

716

Before you can install the application, you must have a Windows NT 4.0 Server or
Windows 2000 Server with certain software installed. Table 16-4 describes the instal­
lation requirements for the application.

Minimum Software Requirements

Exchange Server 5.5 Service Pack 1
with Outlook Web Access

Internet Infonnation Server 3.0 or
later with Active Server Pages

CDO library (cdo.dll),
CDO Rendering library (cdohtml.dll)

Microsoft Posting Acceptor

For the client:
Microsoft Internet Explorer 4.0,
Outlook

Installation Notes

Service Pack 3 is recommended.

Internet Infonnation Services 4.0 or
later is recommended.

Exchange Server 5.5 Service Pack 1
installs CDO library 1.21 and CDO
Rendering library 1.21. Outlook in­
stalls CDO library 1.21.

Posting Acceptor 1.01 is available as
a subcomponent of the Microsoft
Site Server Express 2.0 component
with the Windows NT 4.0 Option
Pack. The Posting Acceptor DLL
(Cpshost.dll) is also available with
the Project files. If you do not have
the Posting Acceptor properly in­
stalled, you will not be able to up­
load attachments to new messages.

You can run the client software on
the same machine or on a separate
machine.

Table 16-4. Installation requirements for the Project application.

To install the Project application, first copy the Project folder from the companion
CD to your Web server where you want to run the application. Start the lIS admin­
istration program. Create a virtual directory that points to the location where you
copied the Project files, and name the virtual directory project. If you want to be able
to attach files to messages, make sure you enable the Execute and Write permissions
for the virtual directory. Execute permissions are necessary because the Posting
Acceptor DLL (Cpshost.dll) in the Project folder is used for uploading files. Write
permissions are necessary because attachments are uploaded by default to the Temp
subfolder of Project. Since enabling both Execute and Write permissions for a direc­
tory is potentially dangerous, you will want to set up a completed application to avoid
this configuration.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

Included with the Project mes is a me named Project.pst. Make sure the read­
only flag for this me is unchecked. Launch Outlook, and from the File menu, point
to Open and then choose Personal Folders File (.pst). In the Open Personal Folders
dialog box, select the Project.pst me, and click OK. In the Outlook Folder List, ex­
pand the Project Application me folder. While holding the Ctrl key, copy the Projects
folder to All Public Folders. Right-click on the Projects public folder and select Proper­
ties. On the Permissions tab of the Properties dialog box, set the permissions for us­
ers. For users who can create projects, assign at least Publishing Author permissions.

NOTE You must copy the Projects folder to All Public Folders or the applica­
tion will not work. If you cannot install the application there, you can modify the
code contained in the Project application so that it looks for the folder in another
location, or you can retrieve the folder by using its EntrylD.

Included with the Project files is a Components folder, which contains the
AcctCrt, Rules, and ACL components. Since AcctCrt is not used in this application,
just register Rule.dll and ACL.dll using the Regsvr32 utility:

regsvr32 rule.dll
regsvr32 acl.dll

To start the Project application, enter the following URL in Internet Explorer:
http://yourservernamelproject.

NOTE When the Project application was tested on different configurations,
some pages initially were not displayed; If this happens to you, try clicking the
Refresh button or pressing F5.

Architecture of the Application

The architecture for the Project application is centered around Public Folders. The
Projects public folder contains the main project folders, as shown in Figure 16-2. Under
each main project folder are the folders that contain the project's content, such as a
document database or a discussion group.

To create projects, the user must have permission to create subfolders under
the Projects folder. If a user has this permission, a Create A New Pr()ject hyperlink
(also referred to as a button) appears on the user's Projects page (informally known
as the project workspace page). The Projects page is shown in Figure 16-3. This page
shows all projects for which the user has top-level permission to view items.

When the user clicks on the Create A New Project button, an HTML wizard,
which walks the user through creating a new project, appears. The steps in the wiz­
ard ask the user to name the project, write a project description, and set default
permissions for both authenticated and anonymous users. The fourth page in the
wizard is shown in Figure 16-4.

717

Part III Collaboration with Microsoft

718

Figure 16-2. The folder structure for the Project application, shown in Microsoft
Outlook.

*' I PrOjects I.,.,,,ff

All of your projects are accessible through this section. Projects will show up in the
frame below.

The Project WorkSpace is a great place to collaborate and find information on all
aspects of a project. It allows everyone on a project to work on centrally located files
so everyone is working on the most up to date documents.

To add a new project, please click on the "Create New Project" Button. Before
creating projects, make sure you talk with your system administrator to make sure you
have permissions to create a new project,

To see a description of a project, hold your mouse over the project name.

Project Name:

IliilMEC 1998

IIiiI Outlook Marketipg

1IiiI~
Outlook and Exchange

Project Owner:

Thomas Rizzo

Thomas Rizzo

Thoma,Rizzo

New Items:

- Create a new
project

Figure 16-3. The Projects page, also known as the project workspace page, shows all
projects for which the current user has permissions. Users who have proper permissions
can create new projects.

When a user clicks on the hyperlink: for a project for which they have permis­
sions, the chosen project page appears. It contains folders for the current project, as
shown in Figure 16-5: The options that appear are determined by the permissions
set for the current user of the project. For example, if the user is the project owner,

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

the user can modify the project permissions for the folder. Figure 16-6 shows the
Assign Permissions page, where project owners can set permissions.

Figure 16-4. The Create New Project Wizard. On this page of the wizard, the project
owner can set permissions for anonymous users who can browse through the project.

The following are the current folders for the project'

Unread Items ~ DateLastMDd:i:fied - Project Member List

Document
Database

fI&lProject Documents ~~t~:;~t

@]Team Discussion Discussion

[illTeam Repository
Document
Database

- Email entire ProjectTeam
12116198 5126199

11110198 5125199
- Modll\; Project

11116/98 2n!99 Permissions

11116198 1111199

Figure 16-5. A selected project page. From this page, . users can view the folders
contained in a project.

Users who want to view project members for the current project can select the
Project Member List link from the Project page. The project member list, shown in
Figure 16-7, is created by querying the project permissions using the ACL object.

When a user clicks on a folder to view the project content, a Web interface that
allows the user to see folder documents and discussions appears. By default, the folder
contains a number of views from which the user can select. Figure 16-8 shows the
threaded discussion view for a folder.

The project folders support autonotification. Autonotification is implemented
by creating a rule in the Projects public folder that automatically forwards any new

719

Part III Conaboration with Microsoft Exchange

720

items to project members. This part of the application uses the Rules object, which
we discussed earlier.

:i,~ Iqfl I 'I III ,Uri, M'LlU,! It lrot, HILI Explull':l r-p "'" rs ~~'~1f ~fl
'w I ASSign Permissions '''',H' "".,,' ,,,,,,If

.-
llemNome: MEC l.998

This page allows you to assign permissions for users in
your organization. By using this page, you can allow
others to be able to see information about your project,
If you do not want users to see individual document
libraries or discussions, you should set folder
permissions for your individual folders using this
interface.

FiglJre 16-6. The Assign Permissions page for a project. From this page, owners can
assign permissions for users.

:iPIJI' t.:l MEC 1411::: MI In uft Intune! [Hllhllf;[~t V

Iii B:~~
:, , PrOject MEC 1998 '·n., .. """H' , .,,"

.-
The following are the project members for the lY.IEC 1998 project. Click on any name to retrieve the details about the
member.

FIe ••• N ... : All diotribution lists will have (OL) following the name of the distribution list You can view the distribution list
membership from. this application by clicking on the name of the distnbution list Some users may appear twice since they can
be a member ora distnbutionlist as wen as a stand-alone project member.

Jfyou are not the owner of the project, you wiD. be presented with the name of the project contact person.

D T.,hnk (OL)

IiIII Fronk Le.

II Thomas Rizzo
IiIII Don H.n

Figure 16-7. A project member list. If the user is not an owner of the project folder,
the user will see only the main contacts for the project and not the actual project
member list.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

]1 old I r I'I(W' t I),,, wnp.nt Mh ro~lltt l£it, In t I Xplolfd [TIS ~ w=

~; m~~:~
• Folder Project Documents '''",B'' " .. ,,'" ,,,""ff

.. -

• MEC 1998 S1neY Re,ults.xls
til @ Thoma, RW:o
iii Kai Ichikawa
! H Aaron Stone

iiI StanSorensen
itl Dave Malcom

IHQThom .. RW:o
• MEC 1998 OWview.ppt

'Ii l'J ThomIIS RW:o

MEC 1998 Survey R.,ults.xls
RE: MEC 1998 Survey Results.xIs

RE: MEC 1998 S1neY Re,ults.xls
RE: MEC 1998 S1neY Results.xIs

RE: MEC 1998 Survey Results.xls
He just must be super-smart!

MEC 1998 Ov"';ew.ppt

MEC 1998 Objectives. doc

11122198 9:47 PM

11122/98 9:48 PM

Figure 16-8. Viewing the information in a project folder using the threaded discus­
sion view.

To post a new item or reply to an item in the folder, the user employs the
composition' form. In this form, users type information they want to post. The post
form includes an option to upload file attachments to a Web server by using the
Posting Acceptor. There's one caveat when using the Posting Acceptor: a bug in
the component destroys a user's session variables the first time the user successfully
uploads a file. To provide a workaround for this bug, the application tells the user
that when she uploads a file for the first time, she will need to log on to the appli­
cation again to reestablish the ASP session variables. Figure 16-9 shows the Reply To
Group form.

Note that the application can be expanded to include support for searching all
items in the folder or in the project. I've set up the application so that it can be
integrated with Microsoft Site Server. Site Server provides full-text indexing and
retrieval of both items in a Public Folder and the attachments in those items. Further­
more, Site Server automatically indexes custom properties on your messages so that
you can create search pages that search by these custom properties.

In Chapter 17, we'll examine Site Server in detail. I've also included on the
companion CD an example that demonstrates how to use Site Server and Exchange
Server together to implement full-text indexing and search capabilities. (Figure 16-10
shows a custom search page to be used with Site Server.) Using this information, you
should have a great start in creating custom search applications that use the collabo­
rative technology of Exchange Server.

721

ParI III

722

with Microsoft

lN~w'tF!m Mlcrosott~nt:lrleIElI~~1 _ _ _ ~~ _ ~~~~rn

~, '''" '

Post To:

CoJlVersatiell:

ImpOJ1aJlce:

Subject:

Project Documents (in the MEC 1998 Project)

MEG 1998 Swvey Re suits .x1s

[~,~,~n:!~I,.

Can you send Itlore information?

-----Original Ressage----­
From: Thomas Rizzo
Posted At: 11/22/98 9:48 PM
Conversation: HEC 1998 Survey Results.xls
Subject: HEC 1998 Survey Results.xls

Please select an attaclunent below

Figure 16-9. The Reply To Group form allows users to post their responses in a
discussion format as well as upload files to the server as attachments.

Figure 16-10. A custom search page built using Site Server. This search page,
included on the CD, allows you to search across Public Folders using built-in and
custom properties on items.

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

Implementing the Projects Application
Most of the Project application is CDO-based, so in the book I won't be covering the
parts that deal with CDO. But take a look at the source code for the application on
the companion CD because it illustrates well how to use different CDO components­
it customizes the Rendering objects, uses CDO properties, and uses many core CDO
messaging objects. I'll focus my discussion here on the implementation of the new
COM components discussed in this chapter, ACL and Rules.

The best example of using the ACL component in the Project application is in
the file permlist.asp. The permlist.asp file is used to update the permissions for a user
on a folder based on the options selected by the project owner. Other files also use
parts of the ACL component. For example, when a user first accesses the Web page
where all the projects are listed, the ACL component retrieves the project owner
from the list. The following code, from the permlist.asp file, highlights how to use
the ACL component:

'Retrieve the ID for the current address entry
strAEID = Request.OueryString("AEID")

If Request.OueryString("Command") = "Update" then
'Check to see if user or built-in account.
'If not built-in, do the CompareIDs.
boolSameID = False
if Not(strAEID = "IDJCL_ANONYMOUS" or _
strAEID = "ID-ACL_DEFAULT") then

'Check to make sure users are not trying to update
'permissions for themselves.
'If they are, do nothing.
'If you want to allow this, remove the comparison code.
boolSameID = oSession.CompareIDs(strAEID, _

oSession.CurrentUser.ID)
end if
if boolSameID = False then

set aclobject = server.createobject("MSExchange.acJobject")
aclobject.cdoitem = oCurrentFolder
set fldr_aces = aclobject.aces
'For users, convert the ID to a string for it to
'work correctly
set ACE = fldr_aces.item(cstr(strAEID»

'More of this code is discussed later in the chapter ...
End If

End If

The first task the code performs is to retrieve the AddressEntry ID of the user,
whose ACL on the folder will be updated. This ID is used later to obtain the access

723

Part III Collaboration with Microsoft Exchange

724

control entry (ACE) for the user. Next, the code checks to see whether the update
command is sent along with the query string. If it is, the code knows that it must
update the ACL for the user of the folder.

Next, the code checks the AddressEntry ID to make sure it's not a built-in
account such as Default or Anonymous. Checking the AddressEntry ID enables the
code to stop any errors that would occur later when the CompareIDs method is called
on the CDO Session object.

NOTE Every folder has two built-in accounts, Default and Anonymous. Default
is used to set permissions for any user accessing the folder who doesn't already
have explicit permissions. Anonymous is used when users are accessing the
folder anonymously through Outlook Web Access (OWA) or other anonymous
COO applications. You can set permissions on these two built-in accounts pro­
grammatically using the ACL component.

In the Project application, I added code to prevent the owner of a folder from
changing his own permissions on the folder, ensuring that the creator of the folder
remains the owner. If the owner wants to change his own permissions, he can change
them through Outlook, or he can remove the code that checks whether the passed­
in ID and the ID for the current user of the application are the same.

After the code checks the AddressEntry ID, the code creates an instance of the
ACL object by calling the Server.CreateObject method in ASP with the ProgID
MSExchange.ACLObject. Once the object is created, the code sets the CDOItem prop­
erty of the ACLObject to be the current folder for which we want to modify permis­
sions. The CDOItem property must be set before you try to retrieve the collection of
user permissions on the folder.

The code then sets an object to the ACEs collection using the ACES method on
the ACLObject. The ACEs collection contains all permissions on the folder for all users.
You can scroll through this collection to see who has permissions on the folder. The
file members.asp allows you to do this.

The ACEs collection contains some methods and properties you will want to
use in your code, such as the Item method, the Count property, the Add method, and
the Delete method. In the preceding code, the Item method retrieves the specific ACE
object for the user, whose ID is passed along the query string.

NOTE The AddressEntry and ReCipient objects in CDO return short-term
EntryiDs, which are vaiid oniy for the current COO session, whereas the ACL
component uses long-term EntrylDs. You can pass a short-term EntrylD to the
component, and the ACL component will be able to find the correct ACE object
for the user. However, when you ask for the ID property on the ACE object, the
code will return the long-term EntrylD for the user. Watch out for this functional­
ity, especially if you store the short-term EntrylD in a variable and then try to
compare it to the long-term EntrylD in your code.

Chapter 16 Enhancing V.,ur Exchange Server Applications with COM Components

The following code snippet, taken from the selectuser.asp file, shows you how
to add a new user to the ACEs collection. The code creates a new ACE object and
sets the object's properties, such as the desired rights and the ID of the user for whom
the rights should apply. (Note that the ID property can also take the constants
ID_ACL_ANONYMOUS and ID_ACL_DEFAULT to set the rights for the Anonymous
and Default built-in accounts.) After the ACE object's properties are set, the code uses
the Add method on the ACEs collection to add the new object to the collection. When
it's done, it will call the Update method on the ACLObject.

elseif strCommand = "Add" then
on error resume next
'Retrieve the 10 for the new user.
'Remember address entry 10 (AEIO) is a short-term EntryIO.
strAEIO = Request.Ouery~tring("A~IO")
'Get the user name '
strText = Request.OueryString("Text")
'Create the user in the ACE collection and don't give permissions
set acls = server.createobject("MSExchange.aclobject")
acls.cdoitem = oCurrentfolder
set fldr_aces = acls.aces
'Create a new ACE and add member
set newace = createQ~j~ct("M~EXchange.ACE")
newace.IO = strAEIO
'Since people can see only folder contacts. create all new users
'with the Folder contact permissio~. If you ~on't want this.
'use the line that gives no permissions.
newace.Rights ~ &H0600 !Folder contact
'newace.rights =~H0400 'no pe~missions
fldr_aces.add ne~ace
acls.Update
'Update strAEIO with the long-term EntryIO
strAEID = newace.ID
'Now write some client scrip~ to add to list box
Response.write _

"<SCRIPT DEFER FOR=window EVENT=OnLQad LANGUAGE=vbscript>" & _
chr(0)

Response.write "<1--" & chr(10)
Response.write "set memberframe

window.Parent.fram~~.1tem~""members"")" & chr(10)
Response.write _

"set oMemberList = memberframe.document.all .Members" & _
chr(0)

Response.write "set newelement = _
document.createElement(""OPTION"")" & chr(10)

Response.write "newelement.yalue = """ & strAEIO & """" & chr(10)
Response.write "riewelement.text = """ & strText & """" & chr(10)

(continued)

725

Part III Collaboration with Microsoft lI:I'xcnan,ge

726

Response.write "oMemberList.Add(newelement)" & chr(10)
Response.write "//--)" & chr(10)
Response.write "(/SCRIPT)"

end if

You use the Delete method in much the same way you use the Update method.
The following code, taken from the members. asp file, shows you how to use the Delete
method. To delete a user's folder permissions, you pass the ID of the user for whom
you want to delete permissions from the folder. Then you call the Update method
on the ACLObject.

NOTE If you granted the Default or Anonymous built-in accounts permission
to access a particular folder, when you delete permissions on that folder, the user
or distribution list might still be able to access it and its items.

if Request.QueryString("Command") = "Delete" then
strAEID = Request.QueryString("AEID")
'Check that user is not trying to delete herself.
'If she is. do nothing.
if not(oSession.CompareIDs(strAEID. oSession.CurrentUser.ID» then

set aclobject = server.createobject("MSExchange.aclobject")
aclobject.cdoitem = oCurrentFolder
set fldr_aces = aclobject.aces
'Must convert the ID to a string for it to work correctly
fldr_aces.delete cstr(strAEID)
aclobject.Update
set aclobject = Nothing

end if
end if

The last code snippet we'll examine, which follows, is taken from the permlist.asp
file. It shows you how to use the ACE object and its properties. You actually set user
permissions on the ACE object by using different Boolean properties, such as
Create/terns and FolderVisible, and then committing the changes to the Exchange
server by calling the Update command on the ACLObject. The one property that the
next example does not show how to use is the Rights property, which returns a
bitmask containing the user's rights on the folder. The include file, named acl.inc,
contains the specific values for this bitmask.

'Scroll through the form and update the ft~L

if Request.Form("CreateItems") = "on" then
ACE.CreateItems = True

else
ACE.CreateItems = False

end if
if Request.Form("ReadItems") "on" then

ACE.ReadItems = True

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

else
ACE.ReadItems = False

end if
if Request.Form("CreateSubFolders") "on" then

ACE.CreateSubFolders True
else

ACE.CreateSubFolders False
end if
if Request.Form("FolderOwner") "on" then

ACE.FolderOwner = True
else

ACE.FolderOwner = False
end if
if Request.Form("FolderVisible") "on" then

ACE.FolderVisible = True
else

ACE.FolderVisible = False
end if
if Request.Form("FolderContact") "on" then

ACE.FolderContact = Tru~
else

ACE.FqlderContact = False
end if

Select Case Request.Form("EditItems")
Case "EditNone"

ACE.EditOwn False
ACE.EditAll False

Case "EditOwn"
ACE.EditOwn = True

Case " EditAll "
ACE.EditAll = True

End Select

Select Case Request.Form("DeleteItems")
Case "Del ItemsNone"

ACE.DeleteOwn = False
ACE.peleteAll = False

Cqse ~D~lItemsOwn"
ACE.DeleteOwn = True

Case "DelItemsAll"
ACE;DeleteA1T = True

End Select

'Update the object
aclobject.Update
set aclobject = Nothing

end if

727

Part III Collaboration with Microsoft Exchange

Using the Rules Compone"t
to Fir~ on All Incoming Messages

728

When we examined the Rules component earlier, we did not review one aspect of
it-the ability to fire rules on all incoming messages, not just messages that meet
certain criteria. The sample application uses this capability to autoforward any new
items posted to the folders in the project to all the team members. The following code
snippet, taken from ProjectMain.asp, shows you how to create a rule that Ores on every
incoming message:

elseif Request.QueryString("Command") = "AddNotify" then
set oProjectFolder = Session("Projectfolder")
strProjectFolderIO = oProjectFolder.IO
'On error resume next

'Need to scroll through each subfolder in the current project
set oFolders = oProjectFolder.Folders

for each oFolder in oFolders
'Create Rules object
set oRules = Server.CreateObject("MSExchange.Rules")
oRules.Folder = oFolder
'Check to make sure the rule doesn't already exist
Oi mint Found it
intFoundit = 0
'Just in case user is not the owner of the folder,
'on error resume next
for each oRule in oRules

if oRule.Name "AutoNotify" then
intFoundit = 1

end if
next

if intFoundit = 0 then
'Create the new rule
IOCount = 0
'We can always assume there is at least one person in the
'ACLs for the folder who is the owner.
'If there is no one in the ACLs, a user probably
'wouldn't even get to this Web page.
Redim strIDs(0)
set acls = server.createA~ject("MSExchange.aclobject")
acls.cdoitem = oFolder
set fldr_aces = acls.aces
if fldr_aces.count > 0 then

'On error resume next
for each fldr_ace in fldr_aces

strID = fldr_ace.ID

Chapter 16 Enhancing Your Exchange Server Applications with COM Components

if not(strID = "ID_ACLANONYMOUS" or _
strID = (ID_ACLDEFAULT") then
'Get the AddressEntry object

set oAE = oSession.GetAddressEntry(strID)
if Not(oAE is Nothing) then

'Redim the array
Redim Preserve strIDs(IDCount)
strIDs(IDCount) = cstr(oAE.ID)
'Bump the count of the array
IDCount = IDCount + 1

end if
end if

next
end if

'Create new Action for Rule object
set oAction = Server.CreateObject("MSExchange.Action")
oAction.ActionType = 6 'Forward
oAction.Arg strIDs

Set oExists CreateObject("MSExchange.ExistsCondition")
oExists.PropertyTag = ActMsgPR-MESSAGE-CLASS

'Create a new Rule object
set oNewRule = Server.CreateObject("MSExchange.Rule")
oNewRule.Name = "AutoNotify"
oNewRule.Actions.Add 1.oAction
oNewRule.Condition = oExists

'Add the new Rule object to the Rules collection
oRules.Add • oNewRule
oRules.Update
Set oRules = Nothing

end if
next

This code creates a new instance of the Rules component, and then scrolls
through the collection of rules for the component to see whether the AutoNotify rule
already exists. If the rule does exist, the code does not perform any action.

If the AutoNotify rule does not exist, the code uses the ACL component to re­
trieve all the users who have permissions on the folder. By using the ID property on
the ACE object, which we discussed earlier, the code creates an array of EntryIDs for
all the users. This array is used later as an argument to a method in the Rules object.

Once the array of EntryIDs is initialized, the code creates an Action object for
the new rule we're creating. The action for the rule is to forward all new items to a
group of users. To specify the users, the Arg property on the Action object is passed
the array of EntryIDs that we created.

729

Part III Collaboration with Microsoft Exchange

730

Once the Action object is created and initialized, the code creates an Exists­
Condition object, which is used in the Rules object to determine whether a particu­
lar property exists on the incoming item. (Note that the component does not check
whether the value in the property is valid, only that it exists.) To specify which prop­
erty to look for, you must set the PropertyTag property on the ExistsCondition ob­
ject. The code sets the PropertyTag property to be the message class of the item,
because this property is always guaranteed to exist on an item. Then the code uses
the methods we discussed earlier to create the actual rule and add it to the Rules
collection on the component.

NOTE This chapter gave you a brief introduction to the power of the three new
COM components available for Exchange Server in the Microsoft Platform SDK.
These components help round out the already extensive development environ­
ment of Exchange Server. For more information on any of these components
as well as the other technologies included with Exchange Server, refer to the
Exchserv.chm file on the companion CD, as well as the Platform SDK section
of the MSDN Library.

Chapter 17

Search Solutions
Using Site Server 3

Microsoft Exchange Server allows you to store a multitude of document types,. but
while it's a great mechanism for storing information, it doesn't allow you to easily
search for this information. And your Exchange Server public folder hierarchy can
quickly get hairy. Faced with these two limitations, your users will undoubtedly have
a hard time finding the information they need.

This information retrieval problem isn't only a problem for Exchange Server. In
your organization, you probably have a broad scale of information repositories such
as file shares, databases, and Web sites. Since different types of data exist in these
locations, it's hard to normalize search parameters. Plus, you might even have multi­
lingual documents stored in a single location, so you might not find the information
simply because it is in a different language or a different format and your search
doesn't fmd a match.

ENTER SITE SERVER
Have no fear-Microsoft Site Server can help you solve this search dilemma. Site
Server not only provides full-text indexing of the most common document types,
including Microsoft Office documents, but it also supports a rich object library that
you can use to build some powerful search applications for Exchange Server and
Microsoft Outlook.

731

Part 11/ Collaboration Microsoft ~Yr.:hantliA

In this chapter, we'll quickly look at the requirements for Site Server. We'll also
look at the object model included with Site Server that makes building search appli­
cations easy. This object model extends the Microsoft ActiveX Data Objects (ADO)
object model, so if you're already familiar with ADO, you've got a head start on cre­
ating Site Server solutions.

WHAT ABOUT INDEX SERVER?

There are some key differences between Microsoft Index Server and Site Server.
Index Server is a good solution only if you're searching file-based content and
don't need to search multiple data types, such as Exchange Server data. In
contrast, Site Server can easily search such multiple data types. Furthermore,
Site Server provides a better enterprise solution than Index Server.

Whereas both these products use the same search engine, Site Server has
many features that Index Server doesn't have. These include a distributed,
multithreaded crawler that can gather content from multiple data sources includ­
ing file, Web (intranet and Internet), database, and Exchange Server data sources;
and a configurable schema that you'll learn to use in your programming. (See
the "Site Server Search Object Model" section later in this chapter.) Finally, you
can disperse your Site Server catalog to multiple machines so that users can
search it much more quickly.

SEARCH CAPABILITIES OF SITE SERVER

732

Site Server supports full-text and property searching of multiple data sources. These
data sources include http, file, Exchange Server, and ODBC-compliant databases. Site
Server implements searches using a flexible and powerful distributed process called
a crawler. Once the crawler has indexed the data sources you specify, the newly
created catalogs are compiled and propagated to the search servers you specify. Since
you can have multiple search servers, you can gain the best performance by load
balancing users' queries across these search servers.

At the Microsoft Windows NT level, Site Server runs two services: Gatherer and
Search. The Gatherer service crawls the content, extracts the information, compiles
the catalog, and then propagates the catalog to the required hosts. The Search ser­
vice allows you to search the catalog for data.

When crawling content, the Gatherer service extracts the full-text content, prop­
erties, and links. One advantage of the Gatherer service is that it contains built-in filters
for Office documents. This means the Gatherer service can open Office documents
and pull out custom properties as well as built-in Office document properties such

Chapter 17 Search Solutions Using Site Server 3

as Author or Last Save Time. The Gatherer service retrieves these properties by using
a plug-in filter. Certain filters, such as Office document filters, come with Site Server.
However, because the plug-ins implement the lFilter interface documented in the
Platform Software Development Kit (SDK), you can create your own filters for the
specific types of documents you use. The Adobe PDP filter, available from Adobe's
Web site, is an example of such a custom filter. This filter allows Site Server to index
PDP files stored in data sources that Site Server can crawl.

Once you've finished indexing the content, the real fun begins. Now you're
ready to search the content. Site Server is a powerful search product. Its Search ser­
vice supports wildcard, free-text, and regular expression searches. You might be
thinking to yourself that no user would want to use a regular expression search. But
don't think of Site Server's features from the perspective of a user performing a search.
Instead, think of the applications you can build that leverage these powerful features.

The Search service is also multilingual. Site Server determines the language of
the document it's crawling. The Search service then uses the correct word-breaking
module, which identifies specific words in a document, and the correct word-stemming
module, which identifies grammatically correct variations of each word. (This is an
example of word stemming: fly, flying, flown, and flew.) Site Server will also ignore
noise words such as "the," "a," or "do"-that is, words that are unlikely to carry search­
able information. You can configure and add to the noise word lists that Site Server
proVides by using a text editor.

If you do scan multilingual documents, you can have Site Server search in mul­
tiple languages or you can specify a single language for the search. In your search ap­
plications, you can even detect the language of the person attempting the search
and automatically default to that language when querying the Site Server catalog.

All the capabilities we've just discussed are available in the object model that
Site Server provides for searching. To help you get more acquainted with some of
the finer capabilities of Site Server Search, I included the Site Server help files on the
companion CD. You'll find a lot of useful information about regular expression, free­
text, and word-stemming searches. I highlY recommend that you look at the docu­
mentation and give some of these types of searches a try.

INFRASTRUCTURE REQUIfIEME"TS
FOR SITE SERVER

Let's look at the Exchange Server-specific features and requirements of using Site
Server and Exchange Server together. We'll also exarpine how to configure a host,
how to set up a crawl, and how to begin searching Exchange Server information. Plus,
we'll discuss the security implications of using Site Server and Exchange Server together.

733

Part III Collaboration with Microsoft Exchange

Exchange Server Requirements for Site Server

734

When using Exchange Server and Site Server together, you need to run the two prod­
ucts on different computers. When setting up Site Server, tell the product which
machine running Exchange Server it should point to in order to crawl for content.
The machine that Site Server is pointing to should have all the public folders either
homed or replicated to the Exchange server or to another Exchange server on the
same site.

You can use Site Server to index and search the public folders homed on other
sites. Then you need only set up public folder affiniW correctly to achieve the best
performance and set the default timeout period to crawl the content accordingly. You
don't want Site Server to time out while trying to obtain Exchange Server content.

NOTE Site Server can index only Exchange Serv~r public folders, not pri­
vate folders.

Figure 17-1 shows how to set the Exchange Server information in the Microsoft
Management Console (MMC) administration for Site Server Search. Notice that you
must also set the Exchange Server organization and site.

Figure 17-1. Setting the properties o/the Exchange server that Site Server will talk to.

Once you set the properties for the Exchange server you want Site Server to
use for public folder access, you can specify the Outlook Web Access (OWA) server
used to read information returned from Exchange Server searches. This specification

Chapter 17 Search Solutions Using Site Server 3

is optional because you can also use Outlook to view information returned by the Search
service. Site Server includes an ActiveX control that detects whether the user has Out­
look installed and launches the appropriate method of reading the search results. As a
developer, you can force this ActiveX control to default to Outlook Web Access or
Outlook depending on your needs. You'll see how to do this later in this chapter.

Setting Up Your Search Hosts

Before attempting to crawl a public folder, you need to configure some accounts and
the security on all your systems, including Exchange Server, Site Server, and Windows
NT. Different accounts, such as administrative access accounts, exist for propagating
completed catalogs and content access acc()unts. We'll look at content access accounts
oniy, because they cause problems for many developers and IT professionals who
configure Site Server and Exchange Server.

Default Content Access Account
When Site Server crawls an Exchange server, the Search service either uses the default
content access account specified on your. search server or it uses a site-specific
account. I don't recommend using site-specific access accounts for Exchange Server
unless it's completely necessary-for example, when Exchange Server sites span
untrusted Windows NT domains. It's better to use a single content access account­
so that you make administration easier-and to track the use of this account when
crawling content.

Your content access account must be configured with a domain account that
has administrative rights on the Configuration object for each site that hosts the public
folders you plan to crawl. This account must also have administrator privileges on
the computer running Site Server and must be a member of an administrative group
such as Site Server Administrators. For more information on this topic, see the Site
Server documentation.

Search Service Account
Besides the default content access account, you need to configure the Windows NT
account used by the Search service. This account must meet the same criteria as the
default content access account mentioned earlier.

WARN~NG By default, the Search service will run as the System account.
Since this account has no permissions on the Exchange Server public folders,
your crawling and searches will fail on Exchange Server properties. Watch out
for this! To set the Windows NT account for the Search service, use the Service
dialog box shown in Figure 17-2.

735

Part III Collaboration with Microsoft Exchange

Figure 17-2. Configuring the Windows NT account used by the Search service.

Timeout Periods
You need to increase the default timeout for crawling in the Site Server administra­
tion program. By default, the timeout is 10 seconds. For Exchange Server data, change
this to at least 60 seconds. If you're going to crawl replicated public folders in other
sites, you'll need a longer timeout to allow Site Server to crawl those folders.

Setting Site Server to Crawl
an Exchange Server Public Folder

736

Once you've completed the infrastructure work, setting up Site Server to start crawl­
ing Exchange Server information is a snap. Site Server provides two administration
modes: MMC mode and Web-based mode. I'll show you the technique using the MMC
administration, but you can also perform these steps using the Web-based one.

The first step is to create a new catalog build definition, which is where you
specify the starting addresses of the items you want to crawl in your catalog. Site Server
supports multiple start addresses for multiple document types, meaning that in a single
catalog you can have Exchange Server, file, and http information and you can use a
single query to search all this data. Figure 17-3 and Figure 17-4 show how to use the
New Catalog Definition Wizard to set up a crawl of Exchange Server information. You
can rerun these steps to add other types of crawls to your catalog.

After you're finished with the wizard, Site Server can start building the catalog
for your data sources. You can then set up a build schedule so that Site Server can
recrawl the information in your data sources at the times you specify. Note that Site
Server supports incremental crawls so that changes are put into the catalog. Also, be
careful if you have any slash (j) or percent (%) characters in your public folder names.
If you use such names for start addresses, you'll need to replace the slash with %2F
and the percent with %25.

Chapter 17 Search Solutions Using Site Server 3

Figure 17-3. Using the New Catalog Definition Wizard to define the type of informa­
tion you want to crawl.

Figure 17-4. Specifying the start address for your data source.

737

ParI III Collaboration with Microsoft

Security Implications

There are two security implications of using Site Server and Exchange Server together
that you should know about. Be assured that Site Server doesn't compromise an
Exchange Server system. Site Server will return only the Exchange Server information
that a specific user requests, and only that user will be able to see the search results.

First, Site Server does not store the access control lists (ACLs) of Exchange Server
items in the catalog. Instead, it queries the Exchange Server for the permissions at
search time. To improve performance, Site Server refreshes a cache of these ACLs only
every 8 hours. After you change Exchange Server public folder permissions and then
create a full or incremental build, users will retain their old permissions for 8 hours.
You can configure the interval Site Server uses to refresh Exchange Server permis­
sions by modifying the registry. Instead of listing the gory details here, I'll point you
to Knowledge Base article Q198892.

Second, if you require https access to your Outlook Web Access servers, this
can affect the default search pages and your custom-built search pages when using
Outlook Web Access to view content. By default, Site Server will return links to
Exchange Server content using only http. You'll have to modify the returned links
programmatically to change http to https for your applications.

CREATING CUSTOM SEARCH ApPLICATIONS
Site Server provides some powerful indexing and search capabilities. However, Site
Server does not proVide a targeted way for users to search the information contained
in its catalogs. Fortunately, Site Server has an object model that you can use to build
search applications that allow users to target the information in their searches. We'll
take a look at this object model and the different user interfaces from which you can
use it to allow users to search Exchange Server information.

Site Server Search Object Model

738

Site Server includes an object model that makes building your search applications
easier. This object model consists of two objects: Query and Util. The ProgID for the
Query object is MSSearch.Query; for the util object, it's MSSearch.Util. While the Util
object library is interesting, only a few of its methods are useful for Exchange Server
developers. Therefore, we won't look at the Util object library; instead, we'll focus
on the Query object library because this is primarily the one you'll use to build search
applications. Figure 17-5 shows the object model for the Query object library.

Chapter 17 Search Solutions Using Site Server 3

Figure 17-5. The Query object library with methods and properties.

Query Object Model
Using the Query object model, you can create powerful search applications. You use
the Query object model to create and execute queries against a Site Server catalog.
This object model extends the ADO object model, providing a mechanism by which
you can count, retrieve, and view the results of your queries.

Let's take a look at the properties of the Query object.

• Allow Enumeration. By setting this property to True, you allow your query
to enumerate parts of the catalog recursively. This means you can perform
more complex queries-but at a performance cost. This property defaults
to False because most searches can be performed without enumeration.
Set this property to True only in rare instances such as when using mul­
tiple wildcards or advanced regular expression searches.

739

Part III Collaboration with Microsoft Exchange

740

• Catalog. This string property specifies the Site Server catalog you want
to search. If you have selected a default catalog, you don't have to set this
property. You can specify multiple catalogs to search by separating their
names with a comma.

• Columns. This string property specifies the columns from the search cata­
log that you want to display in your search results. The names of the
columns are case insensitive and should be separated by commas.

• LocaleID. This number property specifies the Win32 Locale ID. Based on
this number, Site Server uses the word breaker and word stemmer of that
language for your search. If you're building Web-based search applica­
tions, this property will default to the Locale ID of the browser.

• MaxRecords. This number property allows you to limit the number of
search results returned per page. By default, this property is 0, which
returns all search results. You should deftnitely modify this property in your
applications if you want to perform your queries faster. For best results,
set this property to 25 or less to help your users limit their searches to items
that most closely match their criteria.

• OptimizeFor. This string property tells Site Server how to optimize its
searching of a catalog. You have a few different options for this property
that will affect the results displayed for your search. The default values
for this property are recall and hitcount. Let me explain what recall means.
When you specify recall, results are trimmed when the query is execut­
ing, which might make performance slower but will result in an accurate
hit count. (Result trimming is the removal of items that don't match the
criteria or for which the user doesn't have authorization to view.)

Instead of recall, you can specify peiformance, which conducts its
security checks after the maximum number of hits is calculated. You might
get an inaccurate hit count total because the user might not be able to view
some of those hits due to the lack of authorization on the items. You can
alternate between peiformance and recall, but you cannot use both in this
property at the same time.

The hitcount and nohitcount values specify whether you want to
calculate the total number of matches found. If you specify hitcount,
performance will be a little slower because the entire catalog must be
processed before displaying the first result.

Chapter 17 Search Solutions Using Site Server 3

• Query. This string property specifies the query you want to use to search
the catalog. For example, this property might appear this way:

"(@FileWrite < 1999/11/26 AND> 1999/11/
24) & (@DocTitle Outlook) _

& (@MessageClass IPM.Note.* Or IPM.Post*)"

Usually in your application you won't generate the string for the
Query property directly. Instead, you'll use the conventional query string
variables, which we'll discuss later in this chapter.

• StartHit. This humber property can be a single number or an array of
numbers, depending on whether you're searching multiple catalogs in a
single query. The StartHit property specifies the starting result number for
each catalog and is commonly used with paged results. StartHit allows you
to determine which result to start with if more results are available than
displayed in your search application. For example, if you display only 50
results at a time and provide a More Results button in your application,
you shouldsetthe Start Hit property to 51. This property is used in con­
junction with the ADO extended property NextStartHit, which you'll see
later in this chapter.

• SortBy. This string property specifies which columns you want to sort by
and whether to sort in ascending or descending order. You can sort only
by columns that are retrievable by Site Server. The catalog schema speci­
fies whether a column can be retrieved. Site Server supports sorting by
up to four columns. You specify each column using its name followed by
either [a] or [d] for ascending or descending and use commas to separate
multiple columns-for example, Rank[d], Title. Try to sort by rank or
another column that applies to the type of items your users are search­
ing; otherwise your sorting might not make sense to users of your appli­
cation.

• QueryTimedOut (read-only). This property is available only after you use
the CreateRecordset method. This property returns True if the query
exceeded the time limit you specified for the catalog and False if the query
didn't exceed the time limit.

741

Part III Collaboration with Microsoft Exchange

742-

• Querylncomplete (read-6nly). lhis property is available only after you use
the CreateRecordset method. Also, it should be used only if the enumera­
tion property is set to False. If enumeration is set to True, Querylncomplete
always returns False. This property can tell you whether the query was
resolved. A query might not be resolved for a number of reasons, such
as being too complex or referring to nonexistent columns. If you can't
successfully create a r~cordset for your query results, check this property
to see whether the query itself is at fault.

Now let's look at the methods of the Query object:

• CreateRecordset. This method takes one argument, Sequential, because
Site Server Search can create only sequential, forward-only cursors. When
you call this method, make sure that all the properties of the Query ob­
ject are set to your preferences. lhis method will create an ADO recordset
containing the search results from your query. You can then use standard
ADO methods and properties to scroll through the recordset. You'll see
how to do this later in the chapter in the sample applications. Also, Site
Server extends the ADO object model with some extra properties that we'll
look at later in this chapter.

• DefineColumn. This method defines a new display name for a column
in your query. You need to pass this method the data type, property set
ID, property Ib, and property name as a string to specify the column you're
interested in. You can reassign names for built-in or custom properties that
you've already defined. Instead of using this method, if you plan to de­
fine a new name for a column or a new column, it's better to modify the
definecblumns.txt me that's under the Site Server directory. This will make
your column changes permanent so that you don't have to define the
column with each query. Furtherrhore, this text me will give you the list
of property set IDs and property IDs. (A property ID can either be a unique
number or name.) lhe Site Server property set IDs and property IDs are
different from the Exchange Server ones, so be careful not to confuse them.
Here's an example of using the DefineColumn method:

Q.DefineColumn "CustomColumn (DBTYPCVECTOR I OR DBTYPE_I2) =
dlb5d3f0-c0b3-11cf-9a92-00a0c908dbfl CustomColumn"

• Reset. lhis method clears the settings in the Query object. If you want to
start with a fresh Query object, call this method.

Chapter 17 Search Solutions Using Site Server 3

• QueryToURL. Call this method when you want to convert the settings of
the Query object to a URL-encoded string. This is useful if you want to
pass the query from one Web page to another. You'll see the format of
this URL-encoded string when we discuss conventional query string vari­
ables later in this chapter. The following is an example of this method:

strOuery = O.OueryToURL

• SetQueryFromURL. Since Site Server can change the settings into a query
string, it can also set the Query object from the variables in a URL query
string. This is what SetQueryFromURL does. This method expects a URL
encoded string. Site Server then parses the string, looks at the values, and
overwrites any settings already present on the Query object with the set­
tings from the string, ignoring unrecognized settings. Here's an example
of using this method from Microsoft Active Server Pages (ASP):

<% O. SetOueryFromURL("ct=MyCata 1 og&c2=@A11 &q2=Out1 ook") %>

ADO Recordset Extensions
In addition to the standard methods of the Recordset object, such as Move, and the
properties of the Recordset object, such as BOF and EOF, Site Server adds some
extensions that are useful for search applications. However, Site Server does not
support the full range of ADO Recordset methods and properties. Table 17-1 lists
which methods and properties are supported and unsupported.

Supported

Methods Close, GetRows, Move
(forward-only), MoveNext,

Supports

Properties BOF, CacheSize,CursorType,
EOF, Filter, MaxRecords,
Source, Status

Unsupported

AddNew, CancelBatch, Cancel­
Update, Clone, Delete, Move­
First, MoveLast, Move Previous,
NextRecordset, Open, Requery,
Resync, Update, UpdateBatch

ActiveConnection, Absolute­
Position, AbsolutePage,
Bookmark, EditMode, Lock­
Type, PageCount, PageSize,
RecordCount

Table 17-1. ADO Recordset methods and properties supported and unsupported by Site
Server.

743

Pari III Collaboration with Microsoft Exchange

744

Site Server adds five extended properties to the Recordset object, and these are
described in the following list. To use these properties, use the following syntax:
Recordsetobj.Properties("ExtendedProperty").

• CatalogSeqNums. This property should be used only for multiple catalog
searches. It holds new entries in the catalogs between searches. It maps
to the CrawlLastModified properly in the Search Gatherer Property Set. If
you're searching only a single catalog, use the CrawlLastModijied prop­
erty and specify it as one of your query variables. Once you retrieve this
property, whose value is a set of numbers separated by semicolons, store
the values for each user. Then you can offer a search that displays only
items that have been modified since the last catalog search. The follow­
ing shows an example of searching only new items if CatalogSeqNums
returned 10; 15 for two catalogs. Note that this search uses the standard
query syntax rather than the conventional query string variables you'll see
later in the chapter.

(@All Outlook) & (@CatalogSeqNums > 10;15)

• MoreRows. Use this Boolean property after you create your recordset. It
returns True if more search results are available than are currently being
displayed arid False if no more search results are available. You can use
this property to determine whether you need enable the More Results
button in your search application.

• NextStartHit. You can use this method to determine where the display of
the next batch of results should start, with respect to the results currently
being displayed on the page. You will receive a comma-delimited string
of numbers for multiple catalog searches. You should then feed those
numbers into the Start Hit property of the Query object so that you can
display successive pages of search results.

• RowCount. If you have set the OptimizeFor property on the Query object
to the HitCount value, the RowCount property will return the total num­
ber of records found in all catalogs searched. Because determining total
number of hits might be time consuining, Site Server defaults to return-
ing orJy 200 hits per search. Don't be alarmed if you knoVo! your search
has more than 200 hits. You can configure Site· Server to return all hits,
either by setting the calculated number of results for each cataiog in Site

Chapter 17 Search Solutions Using Site Server 3

Server administration to a large number or by setting the MaxRecords
property of the Query object to O. For catalogs that contain Exchange
Server information, keep the number of results returned fairly low. You
should use this property in conjunction with the Row Limit Exceeded property.

• RowLimitExceeded. This Boolean property specifies whether the RowCount
for the catalog was exceeded. Since you can determine whether there are
more results than yielded by the RowCount property, you can use the
Row Limit Exceeded property to display results such as "1 - 50 items of more
than 200 found". If you specify nohitcount for the OptimizeFor property
on the Query object, RowLimitExceeded will always return False.

Building an ASP Search Application
The most common way that developers build search pages for Site Server is by using
ASP applications. This allows you to provide your search application with a Web
interface while taking advantage of the Site Server object model's easy-to-use, Web-based
methods. We'll take a look at leveraging public folders for a knowledge base appli­
cation and providing a rich search of this knowledge base using Site Server.

Before we dive into the code, I'd like to point out a few things about the sample
application. This application includes a custom Outlook form for submitting infor­
mation into the knowledge base and for reading information from the knowledge
base. Figure 17-6 shows this form.

To make it easy for Web users to work with the knowledge base application,
the form is also converted into an ASP-based form using the Outlook HTML Form
Converter. This makes it possible for non-Outlook users to view the knowledge base
articles. Figure 17-7 shows this version of the form.

The knowledge base form in Figure 17-6 and Figure 17-7 implements some
custom Outlook fields such as Category, which specifies the type of information
contained in the knowledge base article-for instance, best practice, idea, issue, or
resolution. The form also uses a field called Product, which specifies the product called
out in the knowledge base article-for example, Exchange Server, Outlook, or Office.
Finally, the form uses a field called Industry, which specifies the industry that the
knowledge base article refers to. You'll see how Site Server allows you to search
these custom properties with minimal effort. Figure 17-8 shows the ASP solution
for this search.

745

Part III Collaboration with

746

Figure 17-6. The Outlook form for the knowledge base application.

developing Exchange Server Solutions, be sure to use IlJicrosofc Site Server for
search capabilities.

Figure 17-7. The HTML version of the Outlook knowledge base form.

Chapter 17 Search Solutions Using Site Server 3

Figure 17-8. The ASP solution that allows you to search the knowledge base
application.

Conventional Query String Variables
When building custom search applications, you first need to look at Site Server's
capabilities for conventional query string variables, which are two-letter tags that you
can specify along with a Web address. From these two-letter tags, Site Server Gan create
and populate query variables used in searching catalogs. Even though these variables
are targeted toward Web search pages, you can leverage them in other applications,
as you'll see momentarily.

The conventional query string variables are designed to identify the property
you want to query and the value to use for the query criteria. You can also use these
two-letter tags to specify properties on the Query object. For example, the "et" tag
identifies the catalog to use for the search. In the "qn" tag, q specifies the conven­
tional query string variable and n specifies a number. You should use the "qn" tag in
conjunction with the "en" tag because the "en" tag specifies the column you want to
search for the "qn" value. You should use the "on" tag only with numeric and date
columns. Here is an example query string from a typical search:

ql=&c2=@DocAuthor&q2=&c3=@filewrite&o3=%3E%3D&q3=ly&c5=

@MessageEmailAddress&q5=&o4=@DocTitle&q4=&c6=@MessageFolder&q6=

&ct=Discussion&c7=@META_Type&q7=&c8=@META_Industry&q8=&c9=

@META]roduct&q9=

747

ParI III Collaboration with

748

Table 17-2 specifies the different values you can have for these query string tags;
each corresponds to a Query object property. In addition to tags that correspond to
Query object properties, this table also includes query string tags that correspond to
multicolumn searches. This is where the "qn/cn" tags come into play. If you use the
"qu" tag to set the Query property on the Query object, you should not use the
multicolumn search tags as well.

Tag Description

"ae" Allows enumeration. If you pass a nonzero digit, enumeration will
be allowed for the query.

"ct" Identifies the catalogs to search. You should pass a string specifying
catalogs separated by commas for multiple catalog searches.

"mh" Specifies the maximum number of hits. By setting this to 0, you
specify that all records should be returned.

"oP" Indicates what to optimize for. The value x specifies performance, r
specifies recall, and an optional h specifies no hitcount.

"au" Specifies the full query that you want to perform. For example, you
could pass "(@FileWrite < 1999/11/22)" using this tag to search for
all items written before 11/22/1999.

"sh" Specifies the starting result number for each catalog.

"sd" Associated with the SortBy property on the Query object. Sorts in
descending order-for example, sd=rank.

"so" Sorts in ascending order, for example, so=rank.

"en" Specifies a column that you want in your query. If you leave this
blank but specify a corresponding "qn" tag, Site Server will assume
that you want to query the contents of the full-text index for the
catalog. You should precede your column names with an at sign (@)
when using this tag-for example, @FileWrite.

"on" Operator that specifies which comparison operator you want to use.
You should use this tag for numeric and date queries only. The valid
operators for this tag are =, !=, >, >=, <, and <=.

"qn" The query term you want to search for. If you specify a "qn" tag with­
out a "cn" or an "on" tag, Site Server will search the full-text contents
for this query term.

Table 13-2. Tagsfor conventional query string variables.

Chapter 17 Search Solutions Using Site Server 3

USING OPERATORS WITH DATE VALUES

Site Server provides the ability to perform searches on dates using both rela­
tive and absolute values. Relative dates express the current date and time. You
express these dates using the minus sign (-) and an integer unit followed by a
time unit. The time units ~an be years (y), months (m), weeks (w), days (d),
hours (h), minutes (n), and seconds (s). For relative dates, you can use the
operators less than «), greater than (», less than or equal to «=), or greater
than or equal to (>=). An exampie of a relative date query is @FileWrite >= -

2y. This query would return any documents that were last saved on a date
greater than or equal to the current date/time two years ago. Relative date
queries are probably the most common queries that you'll perform.

Site Server also supports absolute date queries. When using this type of
query, you must specify a date in one of these formats:

• yyyy/mmidd hh:nn:ss

• yyyy-mm-dd hh:nn:ss

You might not want to use absolute date queries because of this formatting and
because Site Server assumes the date you pass in is relative to the Universal Time
Coordinate (UTC), formerly Greenwich Mean Time (GMT). Your users might
get confused if they enter a specific date and values they didn't expect to meet
that date are returned because of time zone differences.

Note that the equal sign (=) should not be used with absolute dates. Site
Server will try to perform an exact match on the date and time, including milli­
seconds, for your documents. Instead, if you need to target a specific time period,
use less than «) and greater than (». For example, to show all documents saved
on November 25, 1999, you would use the following query syntax:

@FileWrite < 1999/11/26 AND> 1999/11/24

Exchange Server Property Set
Before you start building a search application, you need to understand which
Exchange Server properties Site Server can index. By default, Site Server indexes only
five Exchange Server-specific properties and maps a number of its built-in proper­
ties to Exchange Server values. Let's take a look at the Exchange Server property set
in Site Server and see how to search custom Exchange Server properties.

749

Part III Collaboration with Microsoft Exchange

750

The five Site Server properties that directly support Exchange Server are
MessageClass, MessageDisplayName, MessageDisplayCC, MessageFolderName, and
MessageFolderPath. All these properties are indexed, but the only one that is retriev­
able as a column, by default, is MessageFolderName. Although you can query on the
other properties, you can't retrieve them for display in your resultset. Table 17-3
describes each of these properties in more detail.

Name

MessageClass

Description

Message class of the item. This can be IPMNote,
IPM.Post, or any valid Exchange Server message
class. This property is useful to query on if you
want to limit your search to only messages, posts,
documents, or other types of items stored in an Ex­
change Server public folder.

MessageDisplayName Display name of the recipient. For posts, you might
want to use MessageFolderName instead to allow
users to search by the folder the item was posted
into.

MessageDisplayCC

MessageFolderName

MessageFolderPath

Display name of any carbon copy recipients.

Name of the folder the message was posted into.

Path to the folder that the message was posted into.
You might want to specify a wildcard to search for
items posted into a particular section of your public
folder hierarchy.

Table 17-3. Built-in Exchange Server properties.

The built-in Site Server properties shown in Table 17-4 are mapped to Exchange
Server values for Exchange Server data sources. These properties are indexed and
retrievable by Site Server.

Name

Doc Title

DocAddress

Description

Description

Subject of the message.

URL of the message. This property leverages the Outlook
Web Access server name you put into the Site Server admin­
istration program.

First 300 characters of the message. You can use this prop­
erty to provide an autopreview feature for your search
applications.

Table 17-4. Built-in Site Server properties.

Chapter 17 Search Solutions Using Site Server 3

Free Documents in Public Folders
Besides supporting built-in Exchange Server properties, you can have Site Server index
Office document properties of the free documents in public folders. These proper­
ties include the author and category properties. Note that in order to provide Office
document support for documents stored in Exchange Server, you need to have Site
Server Service Pack 3 installed on a computer running Site Server.

Exchange Serve, and Outlook Custom Properties
Site Server also supports automatic searching on Exchange Server or Outlook cus­
tom properties. You don't have to specify custom properties to search on them; Site
Server will automatically provide this capability to your search application. Site Ser­
ver uses the HTML META property set for searching on these properties. To use the
META property set, you must preface the name of your cus!Om property with a
@META_propertyname. For example, if your custom property in Exchange Server is
named Username, to search on that property for a value of Tom, you would specify
in your query @META_Username Tom. If your Exchange Server custom property
contains spaces, wrap your META tag in quotes, as in "@META_Uset name".

By default, Site Server indexes string and date properties but not numbers.
Furthermore, these properties are not retrievable. This means you can search using
custom properties, but you cannot display the values contained in those properties
as part of the results returned in the ADO recordset. Your best bet when using Site Server
and Exchange Server together is to try to use only string properties wherever possible
because you'll have to modify the definecolurnns.txt file to search date properties.

When using custom properties, you can also tag HTML documents with the sa~e
display name for your custom properties using the HTML META property format. This
allows you to use the META property search capabilities across HTML and Exchange
Server documents in your Site Server searches. You'll see how to use the capabili­
ties of Site Server and Exchange Server custom properties later in this chapter.

NOTE You can find a list of all Site Server columns in the Site Server help file
included 011 the companion CD.

SecuriJy Requirements for the ASP Search Application
When setting up your virtual directory to allow searches against Exchange Server
information, you must authenticate the user before Site Server can return informa­
tion to the browser. This authentication is required so that the search doesn't return
information that a particular user shouldn't see. Because of this authentication require­
ment, you should disable anonymous access to the virtual directory where you place
your search pages and require Basic or Windows NT Challenge/Response authenti­
cation, or you should add code to your search page to authenticate the user directly
in Microsoft Visual Basic Scripting Edition (VBScripO or JavaScript code.

751

Part III Collaboration with Microsoft Exchange

752

If you don't authenticate the user in your code or through the directory secu­
rity in Microsoft Internet Information Services (lIS), such a user will be able to search
and view any Exchange Server information contained in the Site Server catalog that
anonymous users are allowed to view. The only problem you might run into would
be when search results are returned to the user and that user tries to browse those
search results using Outlook Web Access. If you haven't added the particular public
folder where that search result resides into the anonymous folders in the Exchange
Server administration program, the user won't be able to see the results.

Getting Input from the User
The first section of search. asp processes existing input from the user. Since the appli­
cation divides the search results into groups of 10 hits, it uses session variables in
ASP to remember the criteria the user entered for his search across multiple search
result pages. If you customize this application to search on additional properties, be
sure to modify this section so that when the user clicks to see more search results,
the search criteria are not lost at the top of the HTML page. The code that follows
gathers the input from the user and sets the ASP session variables appropriately if
the page being displayed is a More Results page of a query:

<% 'Process Input Section %>
<% if Request.QueryString <> "" then %>
<% 'Initialize or set nonpredefined variables

'from information posted to page
'Purpose of DisplayText variable is to have only the words from
'the query for display in the introductory sentence and in the More
'Results link

if Request("DisplayText")= then
DisplayText= Request("ql")

else
DisplayText = Request("DisplayText")

end if

'Purpose of RecordNum variable is to display which records
'are displayed on each results page
if Request("RecordNum") = "" then

RecordNum=l
else

RecordNum=Request("RecordNum")
end if

'Purpose of session variables is to store information for use in
'editing a search. Only information from the initial query is stored:
'these variables are not updated on More Results pages.
'.If you add search criteria in your search page. make sure
'to add their initial values to the Session object.
'Server.HTMLEncode is required to store queries with double quotes.
if Request("sh") = "" then

%>

Chapter 17 Search Solutions Using Site Server 3

Session("ql")=Server.HTMLEncode(Request("ql"»
Session("q2")=Request("q2")
Session("ct")=Request("ct")

Session("c3")=Request("c3")
Session("o3")=Request("o3")

Session("q3")=Request("q3")
Session("o4")=Request("o4")

Session("q4")=Request("q4")
Session("c5")=Request("c5")

Session("q5")=Request("q5")
Session("c6")=Request("c6")

Session("q6")=Request("q6")
Session("c7")=Request("c7")

Session("q7")=Request("q7")
Session("c8")=Request("c8")

Session("q8")=Request("q8")
Session("c9")=Request("c9")

Session("q9")=Request("q9")
end if
'Read session object into variables

ql=Session("ql")
q2=Session("q2")
ct=Session("ct")

c3=Session("c3")
o3=Session("o3")

q3=Session("q3")
o4=Session("o4")

q4=Session("q4")
c5=Session("c5")

q5=Session("q5")
c6=Session("c6")

q6=Session("q6")
c7=Session("c7")

q7=Session("q7")
c8=Session("c8")

q8=Session("q8")
c9=Session("c9")

q9=Session("q9")

<% end if %>

The second section of the search.asp file is the search initiation section. This
section displays the form in which the user can specify the criteria for the search.
Notice that the inputs on the form are assigned specific names. This allows the ASP
page to leverage the conventional query string variables. Be aware that Site Server
supports only nine columns for the conventional query string variables. So don't try
adding a c10/ql0 combination to the ASP search page. It won't work.

753

Part III Collaboration with Microsoft Exchange

754

You can see the use of the HTML META property set in this next section of code.
The search. asp file allows users to search using three custom properties from the
knowledge base application. You can also see the use of the Exchange Server prop­
erty set.

<% 'Search Initiation Section

%>

'Show the search form. If the search is being edited. read
'the information that has been previously stored in the
'Session object.

<p>

<table cellpadding=5 border=0>
<form action="Search.asp" method="get">
<tr>

<td nowrap>
<% L_QueryLabeLtext = "Search for:" %>
<% = L_QueryLabel_Text %>
<I font>

<ltd>
<td>
<input type="hidden" name="cl" value="@All">

<input type="text" name="ql" size="25" maxlength="100"
value="<% = ql %>">

<ltd>
<td width=5></td>
<td>

<%
'Author
LAuthorLabeLtext = "Sent by"
%>
<% = L_AuthorLabel_text %>:

<ltd>

<td>
<input type="hidden" name="c2" value="@DocAuthor">
<input type="text" maxlength=100 size=25 name="q2"

value="<% = q2 %>">
</td></tr>

<tr>
<td>

Sent in the last:

<ltd>
<td>
<i nput type=hi dden name="c3" va 1 ue="@fil ewri ten>
<input type=hidden name="o3" valu~=">=">

Chapter 17 Search Solutions Using Site Sarver 3

<select name="q3">
<option value="" <%if Request("q3")="" then %>selected<%end if%> >
<option value="-ld" <%if q3="-ld" then %>selected<%~nd if%> >day
<option value="-lw" <%if q3="-lw" then %>selected<%end if%> >week
<option value="-lm" <%if q3="-lm" then %>selected<%end if%> >month
<option value="-ly" <%if q3="-ly" then %>selected<%end if%> >year
</select>
<ltd>
<td></td>
<td>
Sent to: (alias)
</td>
<td>

<input type=hidden name="c5" value="@MessageFolderName">
<input type=text name="q5" size=25 maxlength=50 value="<% = q5 %>">
<ltd>
</tr>
<tr><td>
Subject:
<ltd>
<td>
<input type=hidden name="o4" value="@DocTitle">
<input type=text name="q4" size=25 maxlength=50 value="<% = q4 %>">
<ltd>
<td></td>
<td>
Folder;
</td>
<td>

<input type=hidden name="c6" value="@MessageFolderName">
<input type=hidden name="q6" size=25

maxlength=50 value="<% = q6 %>">
<select name="ct" value="ct">

<% 'Enter new catalog names here
%>

<1-- Use the following syntax for to search all catalogs
<option value="Discussion,ProductKnowledge,Business,list_Servers">

All Indexed Folders
-->
<1-- You need to put your catalog name here -->

<option value="Discussion"> \Discussion

</Select>
<ltd>
</tr>

(continued)

755

Part III Conaboration with Microsoft Exchange

756

<tr>

<1-- Add search by category -->
<td>
Category:
</td>

<td><input type=hidden name="c7" value="@MET~Type">
<select name="q7">
<option value="" <%if q7="" then %>selected<%end if%> >
<option value="Best Practice" <%if q7="Best Practice" then %>

selected<%end if%> >Best Practice
<option value="Idea" <%if q7="Idea" then %>selected<%end if%> >Idea
<option value="Issue" <%if q7="Issue" then %>

selected<%end if%> >Issue
<option value="Resolut1on" <%if q7="Resolution" then %>

selected<%end if%> >Resolution
</select>

. <ltd>
<td></td>

<1-- Add search by industry -->
<td>
Industry:
</td>

<td><input type=hidden name="ca" value="@MET~Industry">
<select name="qa">
<option value="" <%if qa="" then %>selected<%end if%> >
<option value="Communication and Entertainment"

<%if qa="Communication and Entertainment" then %>
selected<%end if%> >Communication and Entertainment

<option value="Distributed Services"
<%if qa="Distributed Services" then %>
selected<%end if%> >Distributed Services

<option value="Financial Services" <%if qa="Financial Services"
then %>selected<%end 1f%> >F1nancial Services

<option value="Government" <%if qa="Government" then %>
selected<%end if%> >Government

<option value="Healthcare" <%if qa="Healthcare" then %>
selected<%end if%> >Healthcare

<option value="Information Systems(
Hardware/Software)" <%1f qa="Informat1on Systems(
Hardware/Software)" then %>selected<%end if%> >
Information Systems(Hardware/Software)

<option value="Manufacturing" <%if qa="Manufacturing" then %>
selected<%end if%> >Manufacturing

<option value="Professional Services" <%if qa="
Professional Services" then %>selected<%end if%> >
Professional Services

<option value="Transportation" <%if qa="Transportation" then %>

Chapter 17 Search Solutions Using Site Server 3

selected<%end if%> >Transportation
</select>

<ltd>
</tr>
<tr>

<1-- Add search by product --)
<td>
Product:
</td>

<td><input type=hidden name="c9" value="@MET~Product .. >
<select nam~="q9">
<option value= <%if q9= then %>selected<%end if%) >
<option value="COther)" <%if q9="COther)" then %>

selected<%end if%> >(Other)
<option value="Access" <%if q9="Access" then %>

selected<%end if%> >Access
<option value="Excel" <%if q~="Excel" then %>

selected<%end if%> >Ex~el
<option value~"Exchange Server" <%if q9="Exchange Server" then %>

selected<%~nd if%? '>Exchange Server
<option value="Mai'" <%if q9="Mail" then %>selected<%end if%> >Mail
<o~tion value=~Office" <%if q9="Office" then %>

selected<%end if~> >Offfce
<option va1ue="Ou~100k" <;if q9="Outlook" then %>

selected<%end if%> >Outlook
<option value="PowerPoint .. <%ff q9="PowerPoint .. then %>

selected<%end if%> >PowerPoint '
<option value="Visu~l aa~ic'" <iif q9="Visual Basic" then %>

selected<%end if%> >Visual Basic
<opti on val ue="Vi su~ 1 ~++" <%1f q9="Vi sua 1 C++" then %>

selected<%end if%> >Visual C++
<option value=~Word" <%if q9="Word" then %>selected<%end if%> >Word

</select>
<ltd>

<td colspan=5 align=right>

<% 'Links to tips and search button
L_SearchButton_l abel '" "Search"
L_SearchTipLlink = "Tips"

%>

<input type",,"submit .. value="<% = LSearchButton_label %> .. >

<% = LSea rchTi pLl i nk %>

<ltd>

(continued)

757

Part III

758

</tr>
</table>

</form>
<% 'End of Search Initiation Section %>

The next section of the code checks whether the user has an ActiveX control
installed on his computer to launch Outlook to view the item. This ActiveX control
is provided with Site Server. The filename for the control is exciol.ocx, and the
CodeBase property for the control points to C:\siteserver\knowledge\search\
controls\exciol.ocx by default.

This control has one method that you can call: DisplayMsg. The DisplayMsg
method takes the URL to the item, which you can obtain from the Doc Address prop­
erty in the ADO recordset of results. Then the ActiveX control will automate Out­
look to display the item. If the user doesn't have Outlook, or if you don't want to
let the user view the results using Outlook, she can use Outlook Web Access to view
the item.

<% if Request.QueryString <> "" then %>
<%
'If site visitors use Outlook to view Exchange Server messages.
'the Exciol control is installed on their computers
if ExchangeViewer="both" or ExchangeViewer="outlook" then %>
<object id="Exciol" height=0 width=0

CLASSID="CLSID:DAFD7A40-73FF-IIDI-A811-00AA006EAC9D"
CODEBASE="/siteserver/knowledge/search/controlsl

exciol.ocx'version=5.5.2148.0"
TYPE="application/x-oleobject">

</object>

<script language="vbscript">
Sub DisplayMsg(EntryID)

Exciol.DisplayMsg(EntryID)
End Sub

</script>
<% end if %>
<% if ExchangeViewer="both" or ExchangeViewer="owa" then %>
<% 'When linking to Outlook Web Access. open the link in a new window %>
<script language="javascript")
function openNewWindow(fileName.theWidth.theHeight) {

window.open(fileName."NewWindow"."toolbar=0.1ocation=0.directories=0.
status=l.menubar=l.scrollbars=l.resizable=l.width="+theWidth+".
height="+theHeight)

}

</script>
<% end if %>

Chapter 17 Search Solutions Using Site Server 3

The next section of code creates the user's query by using the Site Server Query
object. As you saw earlier, the Query object has a number of properties that you can
use to create complex queries against Site Server catalogs. In the search. asp code,
the first step is to create the Query object by calling Server.CreateObject with the
ProgID of the Query object, MSSearch.Query. Since the application passes all the
information about the query along the URL query string, you can use the method
SetQueryFromURL to have the Query object automatically parse the URL query string
and set the Query object properties according to the specified conventional query
string variables.

<% 'Set query object properties
set a = Server.CreateObject("MSSearch.auery")
'Define all required query properties: the query itself. and all columns
'that will be used in the results
a.SetaueryFromURL(Request.aueryString)
a.Catalog = request("ct")
a.OptimizeFor="nohitcount.performance"
a.MaxRecords = 10
a.Columns = "DocAuthor.DocTitle.DocAddress.Description.Size.FileWriteR
%>

The next step in creating the search results is to actually create the recordset
of items that match your criteria. To do this, you need to call the CreateRecordset
method on the Query object. This method will create an ADO sequential, forward­
only recordset that you can use to display your results. As you can see in the code,
different properties are pulled from the Site Server catalog to display the resultset.
The code uses standard ADO methods and properties to scroll through the resultset.

<% 'Create the recordset holding the search results
on error resume next
set RS = a.CreateRecordSet("sequential")
if err <> 0 then
createerror = err.description
end if

'If the query can't be executed. print out the error description
if err then

Response.write " " & createerror

'If no matches are found. display a message
elseif RS.BOF and RS.EOF then

Response.write "<p>"
if a.aueryIncomplete=true then
L_TooComplex_Error = "The query is too complex. " & _

"Try using a simpler query. For information on search" & _
"syntax. see Search Tips."

(continued)

759

Part III Collaboration with Microsoft Exchange

760

%>

Response.write LTooComplex~Error & "<p>"
else

L~NoMatch~Error = "No messages matching your query were" & ~
"found. For suggestions on how to broaden your search ... & _
"see Search Tips."

Response.write L_NoMatch_Error & "<p>"
'Display link for a new search
L_NewSearch_link = "New Search"
%>
 : :<% = LNewSearch_Link %>
<%

end if

else 'If query could be executed. display results

'Set up the table for displaying results

<table cellpadding=0>
<tr>
<td colspan=2>

<% 'Make introductory s~ntences match the information
'displayed
if Request("sh") = then

L_Match_text
"Here are the messages found matching the query"

else
L_Match_text

"Here are more messages found matching the query"
end if

Response.write L_Match_text & " .. & _
DisplayText & "."

%>

 :

<% if ExchangeViewer="both" then
L_OWA_Info = "For Microsoft®: Exchange messages ... & _

"click the author's name to view the message" & _
"using Microsoft Outlook. Click the" & _
"<img srC=html.gif width=16 height=16 .. & _
"border-0 aliqn=middle align=middle> .. & _
"icon to view the m~ssage using Microsoft" & _
"Outlook Web Access."

Response.write LOWA_Info
end if %>

 :
</td>

</tr>
</table>

Chapter 17 Search Solutions Using Site Server 3

<table cellpadding=0 cellspacing=0>
<tr bgcolor=cccccc>

<%

L_KBytes_text = "KB"
L_Received_text = "Received"
L_SubjecLtext = "Subject"
L_Size_text = "Size"
L_From_text = "From"

%>
<td></td>
<td><% = L_Froffi-text %></td>
<td></td>
<td><% = L_Subject_text %></td>
<td></td>
<td><% L_Received_text %></td>
<td></td>
<td><% L_Size_text %></td>
<td></td>

</tr>
<%
'Set up loop to iterate throug~ results

Do while not RS.EOF

'Determine format type; set up title for and URL for links
if InStrCRSC"MimeType") ... text/exch") then

DocType="exchange"
else

DocType="doc"
end if

'If message title is blank. use "No subject" instead
if RSC"DocTitle") <> then

Title = RSC"DocTitle")
else

LUntitled_text = "No subject"
Title = LUntitled_text

end if

'Provide alternate text if no author exists. HTMLEncode is
'required to handle author fields with < or >.

if RSC"DocAuthor") <> then
Author = Server.HTMLEncodeCRSC"DocAuthor"»

else
(continued)

761

Part III Collaboration with Microsoft Exchange

762

%>

L_NoAuthor_text = "Author unknown"
Author = L_NoAuthor_text

end if

'Set up link itself. Link depends on whether item is document or
'Microsoft Exchange Server message.
if DocType="doc" then

Link = RSC"DocAddress")
Image = "html.gif"

elseif DocType="exchange" then
Image = "owa.gif"
if ExchangeViewer="owa" then

Link = "JavaScript:self.openNewWindowC" & chr(34) & _
RSC"DocAddress") & "&usemainwnd=I" & chr(34) & ", 640.500)"

elseif ExchangeViewer="outlook" or ExchangeViewer="both" then
Link = "VBScript:self.DisplayMsgC" & chr(34) & _

RSC"DocAddress") & "=1" & chr(34) & ")"
end if

if ExchangeViewer="both" then
OWALink = "JavaScript:self.openNewWindowC" & chr(34) & _

RSC"DocAddress") & "&usemainwnd=l" & chr(34) &" 640,500)"
end if

end if

<% 'Create table row for each result %>
<tr><td> </td></tr>

<tr>
<% if DEBUGINFO=true or RequestC"debug") <> "" then %>
<% 'Display column with record number %>

<td valign=top><% = RecordNum %>.</td>
<% end if %>
<td valign=top>

<a href='<% Link %>'><img src="<% = Image %>" hspace=6 border=0>

<ltd>
<td width=20% valign=top>

<a href='<% = Link %>'><% = Author %>
<% if ExchangeViewer = "both" and DocType="exchange" then %>

<a href='<% = OWALink %>'>

<% end if %>
</td>
<td width=5> </td>
<td width=55% valign=top>

<% = Title %>
</td>

Chapter 17 Search Solutions Using Site Server 3

<td width=5> </td>
<td valign=top nowrap>

<% = RS("FileWrite") %>
</td>
<td width=5> </td>
<td valign=top>

<% iSize = CInt(CLng(RS("Size"»/1024) %>
<% Response.write iSize & " "& L_KByteLtext%>

</td>

</tr>
<tr>
<td></td>
<td colspan=6>
<table cellpadding=0 cellspacing=0>
<td width=30> </td>
<td>
<% = RS("Description") %>
</td>
</tr>
</table>
<ltd>
</tr>
<% 'Increment the results

RS.MoveNext

%>

RecordNum = RecordNum + 1
Loop

<% 'If query times out, display message stating that more results are
'available %>

<%
if O.OueryTimedOut = TRUE then
Response.write "<tr><td></td><td colspan=8>"
L_OueryTimedOut_error = "Not all matching messages were returned." & _

"To,see all the messages, at the top of the page, " & _
"click Search again."

Response.write " <p>" & L_OueryTimedOuLerror
Response.write "</td></tr>"

end 1 f
%>
</table>

The final section of code implements the More Results functionality at the bottom
of the Web page. Since 10 results appear on a page, you need to implement this
functionality so that the user can, look at all the results returned in the query. This
section of code uses the MoreRows property to determine whether there are more
results than currently displayed. If there are more rows, the Start Hit property is set

763

Part III Collaboration with Microsoft !!O'Y~hJl&nnA

on the Query object to the start hit on the next page. Then the code generates the
hyperlink for the More Results text to pass the same query string to search. asp so that
the application performs the same query on the catalog but returns the next resultset.

<hr>
<table cellpadding=4>
<tr><td>

<% 'Display a More Results link if there are more results pages

if RS.Properties("MoreRows") = true then

Q.StartHit = RS.Properties("NextStartHit")

'Repeat query with new start hit. The query must include any
'custom variables you've used: in this case, Text and RecordNum.
Response.write "<a href=search.asp?" _

& Q.QueryToURL & "&" _
& "Category=" & Request("Category") & "&" _
& "DisplayText=" & Server.URLEncode(DisplayText) & "&" _
& "RecordNum=" & RecordNum _
& ">"

L_MoreResultLl ink = "More Results"
Response.write L_MoreResultLlink & " "

end if
%>

<% 'Display link for a new search %>
<% L_NewSearch_link = "New Search" %>
 <% = L_NewSearch_Link %></a)

</td></tr>
</table>

EXTENDING OUTLOOK WITH SITE SERVER

764

You can leverage Site Server from your Outlook 2000 applications in a number of
ways. These methods range from simply hosting the Web Browser control in an
Outlook form to perform your queries, to writing a full-blown COM add-in t.~at
leverages the Site Server object model to create a rich search application.

In this section, we'll examine four methods for integrating Site Server into
Outlook. First, you'll see how you can host your ASP search application as a folder
home page. Next, you'll discover how to easily host the Web Browser control in order
to host a customized version of an ASP search page. Then, you'll learn how to add
controls to an Outlook form in conjunction with the Web Browser control to make

Chapter 17 Search Solutions Using Site Server 3

your Outlook application more powerful. We will also take a close look at add-ins
and their features. Finally you'll see a custom COM add-in that performs a total search
solution for Outlook users by using Site Server catalogs.

Hosting the ASP Search
Application as.a Folder Home Page!

One option for integrating your Web-based Site Server search applications into Out­
look 2000 is to host your search application as a folder home page. While this is the
easiest way to quickly provide search capabilities in Outlook, it leaves a lot to be
desired from the standpoint of Outlook integration. Users would have to navigate to
the folder hosting the Web page to use the search capabilities.

Hosting the ~SP Search
Application in an Outlook Form

Another option for integrating Site Server into your Outlook environment is to host
the Web'Browser control in an Outlook form. This makes it easy for users to initiate
a search; rather than going t6 a folder, they can simply bring up a form. Figure 17-9
shows an Outlook form that implements this solutiop.

Figure 17-9. The Web Browser control hosted insidf? an OutlookfQrm to proVide
search capabilities.

Notice in the. figure how all the command bars that are usually available in the
form have been disabled: You can use some VBScript code behind the Outlook form

765

Pari III Collaboration with Microsoft Exchange

to disable the command bars, as the following code shows. This code also grabs
the Web Browser control on the form and forces it to navigate to the ASP search
application.

Function Item_Open()
'Disable the command bars
for each commandbar in Item.Getlnspector.CommandBars

commandbar.enabled = False
next
set oBrowser = _

Item.Getlnspector.ModifiedFormPages("Search").Controls("WebBrowserl")
oBrowser.Navigate "http://airliftone/search/search.asp"

End Function

Extending the ASP Search
Application Using Outlook Controls

766

While the previous example is better than a folder home page, you can take the
integration a bit further by adding some custom controls to the form with the Web
Browser control. For example, instead of a user having to guess the display name of
the person who sent or posted the message, why not use the Global Address List
(GAL) of Exchange Server and allow your users to select the person? Figure 17-10
shows a version of the Oudook form that uses Collaboration Data Objects (CDO), a
tool that helps you implement a better user interface that's more integrated with
Exchange Server and Oudook functionality.

Figure 17-10. An enhanced version of the Outlookform that proVides controls for
selecting users and search criteria.

Chapter 17 Search Solutions Using Site Server 3

Once the user selects her criteria, she can click the Search Now button and the
form will generate a query string using Site Server's conventional query string vari­
ables. The form will then automate the Web Browser control to navigate to a modi­
fied version of the ASP search application that has only the Web-based version of
selecting criteria for the search removed. One nice thing about using this Outlook
form is that the user can type in a name for the query and save the query into the
folder for later use. Here is the code behind this Outlook form:

Dim oBrowser
Dim strURL
strURL = ""
strServerName = "airliftone"

Function Item_Open()
'Disable the command bars
for each commandbar in Item.GetInspector.CommandBars

commandbar.enabled = False
next
set oBrowser = _

Item.Getlnspector.ModifiedFormPages("Search").Controls("WebBrowserl")
oBrowser.Navigate ''http://'' & strServerName & "/search/olsearch.asp"

End Function

Sub AddtoURL(strString)
strURL = strURL & strString

End Sub

Sub cmdSearchNow_Click()
'Initiate the search
'Buil d the URL
'Grab each component and pop it into the URL
AddtoURL "cl=@All&ql=" & Item.UserProperties("SearchFor").Value
AddtoURL "&c2=@DocAuthor&q2=" & Item.UserProperties("Sent By").Value
'Figure out what time frame the user selected
strTime = Item.UserProperties("Sent in the Last").Value
if strTime = "" then

q3 = ""

elseif strTime "day" then
q3 = "-ld"

elseif strTime "week" then
q3 = "-lw"

elseif strTime "month" then
q3 = "-1m"

elseif strTime "year" then
q3 = "-ly"

end if
AddtoURL "&c3=@FileWrite&o3=>=&q3=" & q3

(continued)

767

Pari III Collaboration with Microsoft !E':Y~h,an'nil1'!

AddtoURL "&o4=@DocTitle&q4=" & Item.UserProperties("strSubject").Value
AddtoURL "&c5=@MessageFolderName&q5=" & _

Item.UserProperties("Sent To").Value
AddtoURL "&c6=@MessageFolderName&q6=&ct=" & _

Item.UserProperties("Folder").Value
AddtoURL "&c7=@META_Type&q7="& Item.UserProperties("strCategory").Value
AddtoURL "&c8=@META_Industry&q8=" & _

Item.UserProperties("Industry").Value
AddtoURL "&c9=@META_Product&q9=" & Item. UserPropert i es (" Product") . Va 1 ue
oBrowser.Navigate ''http://'' & strServerName & "/search "&_

"olsearch.asp?" & strURL

End Sub

Sub cmdSentByAddress_Click()
FindAddress "Sent By", "Search for Sent By", "Sent By"

End SLlb

Sub cmdSentToAddress_Click()
FindAddress "Sent To", "Search for Sent To", "Sent To"

End Sub

Sub FindAddress(FieldName, Caption, ButtonText)
On Error Resume Next
Set oCDOSession = application.CreateObject("MAPI.Session")
oCDOSession.Logon "", "", False, False, 0
txtCaption = Caption
if not err then

set orecip = oCDOSession.addressbook (_
Nothing, txtCaption, True, True, I, ButtonText,

end if
if not err then

item.userproperties.find(FieldName).value orecip(l).Name
end if
oCDOSession.logoff
oCDOSession = Nothing

End Sub

0)

Building an Outlook 2000 COM Add·in for Site Server

768

The final and best option in my opinion is to leverage the COM add-in capabilities
of Outlook 2000 to create a well-integrated search solution. Before discussing the code
for the COM add-in, let me first describe the features of the add-in because we won't
look at all the code.

Chapter 17 Search Solutions Using Site Server 3

The add-in extends the menus and toolbars of Outlook to provide users with
quick access to its interface. The add-in also provides a rich set of querying capabili­
ties. Users can create AND or OR clauses in their searches. Once the criteria are set,
the add-in uses the Flexgrid control to display the results, as shown in Figure 17-11.

Figure 17·11. The COM add-in with multiple AND clauses and the results of the
query in the Flexgrid control.

The add-in displays the most common search fields for Site Server information,
but it also allows you to automatically detect custom fields contained in the folders
being cataloged by Site Server. This feature makes it easier for users to determine all
the custom fields that they can search on in the Site Server catalog. Figure 17-12
illustrates this feature.

In addition to detecting custom fields, the add-in allotomatically detects all your
Site Server catalogs. This allows the user to quickly decide which catalog to search,
while giving you the ability to add new catalogs without modifying the form. This
capability uses an object model for Site Server that we haven't discussed yet. In a
moment, you'll learn how to leverage the Site Server SearchAdmin object model to
add some great features to your search add-in.

When viewing the results of the query, the add-in supports showing the rank­
ing as both graphics and numbers. It also supports autopreviewing messages us­
ing the DeSCription property you learned about earlier. The add-in also provides
sorting on the column headings in the Flexgrid control. Figure 17-13 shows the
autopreview feature.

769

Part III Collaboration with Mlell'dl')AIl')n Exchange

Figure 17-12. Automatically detecting custom fields in the COM add-in.

Figure 17-13. Autopreviewing an item in the search results.

770

Chapter 17 Search Solutions Using Site Server 3

Another feature this add-in provides is a customizable interface that lets you try
different configurations in Site Server, such as choosing different optimization settings,
allowing enumeration, and printing the query string variables before sending them
to Site Server for debugging purposes. Figure 17-14 shows the configuration page of
the add-in.

Figure 17-14. The configuration page of the add-in, where you can set different
options to test your queries.

Finally, this add-in can easily be enabled for DCOM. The only way you can run
this add-in without DCOM support is to install Outlook 2000 on a computer running
Site Server and perform all your queries there. It's unlikely that your users will want
to walk to the server machine to perform their queries. Enabling the add-in for
DCOM allows your users to take advantage of the power of Site Server from their
own computers.

I want to point out one thing before you look at the code for the add-in. Every­
thing you'll see in the following section you can leverage from ASP, COM add-ins,
or event-scripting agent applications. For example, you could add a timer-based event­
scripting agent to a top-level folder, and as subfolders are added beneath that top­
level folder, you could create new catalogs that index the contents of those folders.
Note that you can have a maximum of 32 catalogs on a search server, and each cata­
log can have a maximum of 5 million documents.

771

Part III

772

Enabling the Add·in for DCOM
Let's first look at the code that will enable the add-in for DCOM. Building the code
to enable the add-in for DCOM actually is straightforward in Microsoft Visual Basic 6.
Since the CreateObject method in Visual Basic 6 takes an optional string value that
specifies the server on which you want to create the object, the add-in simply lever­
ages that capability and passes in the name of the computer running Site Server. This
name is a global constant set in the Visual Basic project. The code to create the
MSQuery object in the add-in looks like the following, with strDCOMServer holding
the string that specifies the computer running Site Server on which to create the object:

Set q = CreateObject("MSSearch.query.l", strDCOMServer)

You might think this is easy and wonder why I mentioned it. The reason I did
is that simply putting this code in your add-in won't magically create the component
on the computer running Site Server. You need to make sure that the client machine
attempting to create the remote component has information in its registry about this
remote component; otherwise, the add-in can't create the remote component.

The easiest way to get this information into the client computer's registry and
host the remote component is to leverage Microsoft Transaction Server (MTS). By
adding a new package to MTS that contains both the MSSearch object and the
SearchAdmin object, you can have MTS create a client setup program that will install
the correct information about the remote components into the registry. To do this,
click on the package in the MTS administration console and choose the Export pack­
age option. (See Figure 17-15.)

Figure 17-15. Exporting a package/rom Microsoft Transaction Seroer.

Chapter 17 Search Solutions Using Site Server 3

As part of the exported package, you'll find the Clients subdirectory. In the
subdirectory, you'll find an executable that you can run on your client computers.
This executable will install the necessary information into the registry to allow the
client to remotely create the component on another server. Unfortunately, I could not
include an exported package for you on the companion CD. Since MTS puts some
server-specific information into the client setup program, you don't want my server
name as the remote server you're creating the objects on.

When you add the objects to MTS, keep a couple of issues in mind. First, the
MMC administration console of Site Server might tell you that search services are not
correctly installed. This means you'll have to use the Web-based administration for
Site Server to configure your catalogs. Second, you might want to change the iden­
tity that the components run under. By default, they'll run under the interactive user
on your Windows NT server. If you keep your computers in a data center or reboot
them without logging on, it might be difficult to have an interactive user always logged
on to the server. Most likely, you wouldn't be able to create the components until
someone logs in to the server as an interactive user. Instead, you might simply want
to specify a Windows NT or Windows 2000 Server account that has the correct per­
missions for both components.

Automatically Detecting the Site Server Catalogs
The ASP search application does not provide the ability to automatically detect Site
Server catalogs, meaning that as new catalogs get created, the application must be
modified to reflect them. The add-in automatically detects all catalogs by using the
SearchAdmin object model in Site Server. You'll see some information about the
SearchAdmin object model here, but if you want the full documentation of the ob­
ject model, see the Site Server SDK in the Platform SDK. The SearchAdmin object
model can do much more than you'll see here.

Figure 17-16 displays the SearchAdmin object model. As the figure shows, you
can reach the build and search servers for Site Server. Under those servers, you can
access the properties for those catalogs, the catalog start pages, and other informa­
tion that might be useful to your application.

773

Part III Collaboration with Microsoft Exchange

774

Figure 17-16. The SearchAdmin object hierarchy. Every subordinate object must be
created under the SearchAdmin object.

Chapter 17 Search Solutions Using Site Server 3

The catalog names are retrieved by using the SearchServer object under the
SearchAdmin object. From the SearchServer object, the SearchCatalogs object is used.
The Search Catalogs object contains SearchCatalog objects that identify each catalog
on the server. In the SearchCatalog object, the name property is retrieved and added
to the drop-down list in the add-in. Here is the code for retrieving catalog numbers:

If objHost Is Nothing Then
If checkDCOMEnabled = vbChecked Then

Set objHost CreateObject("Search.SearchAdmin.l", strDCOMServer)
Else

Set objHost CreateObject("Search.SearchAdmin.l")
End If

End If

For Each cat In objHost.SearchServer.SearchCatalogs
Cataloglist.AddItem cat.Name

Next

You'll see how to leverage more of the SearchAdmin object model when we
discuss retrieving the custom fields for a catalog later in this section. However, you
could create catalogs, delete them, or even query their current properties using the
SearchAdmin object model. If you plan to build search solutions with Site Server, I
recommend you become very familiar with this object model.

Working with Message Types
By using the MessageClass column, the add-in allows a user to pinpoint the exact
type of item that she's looking for in the catalog. Through this capability, the user
can specify only Outlook items of a certain type-such as mail, post, or contact
items--or she can specify any type of item-including Web pages, files, or database
information contained in the catalog.

Note that when you're testing the add-in, it defaults to messages only. If you
have any free documents, HTML pages, or other nonmessage items contained in the
catalog, those items will not appear. For a long time, I thought the add-in wasn't
working before realiZing my mistake; I then changed the item type to allow all types
of items in the Search For drop-down list.

Speaking of item types, Site Server will crawl contacts, appointments, and other
Outlook item types stored in Exchange Server public folders. The only catch is that
Site Server won't index all the properties on these types of items; Site Server will index
only the properties in the Exchange Server property set, and it will map other prop­
erties into the corresponding Site Server property set. Therefore, you can search only
on Outlook properties that map to well-known Site Server properties. For example,
the full name for a contact maps to the subject field in Outlook, so you can search
by that full name using Site Server. However, you cannot search by the address or
company name of the contact because these do not map to any of the properties that
Site Server indexes for Exchange Server.

775

Pari III Collaboration with Microsoft Exchange

776

If you were to implement all the contact properties as custom properties, instead
of using the built-in Outlook properties, you could search those contact and custom
properties using the HTML META property set. Another option would be to create a
"shadow form"-a hidden copy of the data from your contact form in another folder,
which contains the contact fields as custom properties. Then you could have Site
Server index and search the shadow forms. With the shadow forms, you need to
implement code to redirect Outlook to the real contact form.

Working with Dates
One of the things you need to watch out for when specifying the Site Server search
parameters is using dates in your application. As mentioned earlier, you need to put
dates into a recognized format, such as yyyy/mm/dd. Since most users probably won't
enter their dates in this format when performing their searches, the add-in automati­
cally detects dates and formats them. The following code shows how the add-in
formats the dates:

boolIsDate = False
boolIsDate = IsDate(conditionlist.Column(3. i»
If boolIsDate = True Then

'Start flipping; first convert to date
dDate = CDate(conditionlist.Column(3. i»
dNewDate = Year(dDate) & "I" & Month(dDate) & "I" & Day(dDate)

End If
'Check to see whether IsDate and operand is =
'Need to set for On (or =) < Day after and> Date before
'becau~e Site Server will try to match the hour and minute
'as well!
If boolIsDate And operand = "=" Then

boolNeedAdditionalOperand = True
'Change to a new operand
strNewop~rand = "<a
strNewop~rand2 = a>"
querystring querystring & "&0" + CStr(argnum) & "=" & strNewoperand

Else
querystring querystring & "&0" + CStr(argnum) & "=" & operand

End If
If boolIsDate = False Then

querystrind = querystring & "&q" + CStr(argnum) & _
".n & conditionlist.Column(3. i)

ElseIf operand <> "." Then
querystring = querystring & "&q" + CStr(argnum) & "=" & dNewDate

ElseIf operand = "." Then
'Add a day to the date
dDatetoLookFor • DateAdd("d". 1. dNewDate)
'Flip the date
dDatetoLookFor = Year(dDatetoLookFor) & "I" & ~onth(dDatetoLookFor) _

& "I" & Day(dDatetoLookFor)

Chapter 17 Search Solutions Using Site Server 3

querystring = querystring & "&q" + CStr(argnum) & "=" & dDatetoLookFor
'Get the field name so we remember it later
strGlobalFieldName = fieldname

End If

As mentioned earlier in the chapter, dates in Site Server are stored according
to UTe. Most users will not enter UTC dates but instead will enter dates correspond­
ing to their own time zone. This can yield strange results; the returned values might
not look correct to the user but in fact will be correct according to the UTC.

While the add-in doesn't solve this discrepancy for users, I have some sugges­
tions for how you can remedy the problem. First, grab the local time zone informa­
tion from the user's computer. You have two choices for doing this. You can go to
the registry under the key C:\HKEY_LocaLMachine\SYSTEM\CurrentControlSet\
Control\ TimeZonelnformation. The Bias value under this key specifies the current
bias, in minutes, between the local time and UTC time. You can use this value to
change the date the user entered into a UTC date.

The second way you can solve this problem is by using the Win32 API func­
tion GetTimeZonelnjormation. Then you can retrieve the Bias value and figure out
the UTC time. The UTC time will be local time + Bias.

Searching for Custom Fields
The COM add-in provides a nice feature of scrolling through the public folders con­
tained in the catalog and displaying any custom fields contained in those folders. The
add-in implements this feature by combining the SearchAdmin object model, a Site
Server DCOM helper object, and CDO.

The Site Server DCOM helper object plays an important role in determining the
custom fields in the folder. You might run into a situation in which the SearchAdmin
object model doesn't allow you to enumerate certain properties or objects contained
in the object model. This can happen for a number of reasons, but I've found the
primary reason to be enabling authorization checking in MTS. To help circumvent
this, I created the Site Server DCOM helper object. This object uses the SearchAdmin
object model to retrieve all the Exchange Server start pages contained. in the cata­
log. You need to do this to determine which Exchange Server public folders to search
for the custom fields. This is the only way you can locate those folders with Site Server.
Here is the code that performs this search:

Dim objHost

Public Function GetStartPageURL(strCatalogName) As Variant
On Error Resume Next
Dim url()
Dim boolFoundExchange
iCount = -1

, Found an Exchange Server start page
, Number of Exchange Server start pages

boolFoundExchange = False
(continued)

777

Pari III Collaboration with Microsoft Exchange

778

If strCatalogName <> "" Then
Set objHost = CreateObject("Search.SearchAdmin.l")
Set objCatalogBuilder = objHost.BuildServer 'CatalogBuilder
Set objCatalogs = objCatalogBuilder.BuildCatalogs
Set objSelectedCat = objCatalogs.Item(strCatalogName)
Set objStartPages = objSelectedCat.StartPages
For Each startpage In objStartPages

If InStr(startpage.url, "exch://") = 1 Then
boolFoundExchange = True
, Redim the array
iCount = iCount + 1
ReOim Preserve url(iCount)
url(iCount) = startpage.url + "I" +_

CStr(startpage.enumerationdepth)
End If

Next
If boolFoundExchange = False Then

ReOim Preserve url(0)
url (0)

End If
Else

ReOim Preserve url(0)
url(0) = ""

End If
GetStartPageURL = url

End Function

The Site Server DCOM helper object provides one function, GetStartPageURL.
This function takes the catalog name and then uses the SearchAdmin object model
to fmd that catalog and enumerate its start pages, which are formatted for Exchange
Server as exch:\ \Public Folders\AlI Public Folders\FolderName. When enumerating
the start pages, the component figures out whether Site Server is also crawling all the
subfolders of the starting folder and appends a pipe character (I) and then the enu­
meration depth. If Site Server doesn't crawl the subfolders of the starting address, the
enumeration depth will be -1. This value causes the helper object to place all the
paths to the Exchange Server folders into an array; the object then passes that array
back to the COM add-in.

The CDO code takes the array passed back by the helper object and parses the
_______ ___ ..LLL _ £'_1...1 ____ LL ____ ...1 _. ___ • ___ • __ !_._ -'1_._ 1-_ £'_ L ____ L1~_ £'_1...1 ____ """T"'\.I""""\. _1 __
arrdY LU geL Ule IUluer paUl/; allu ellUlueraLlUll uepulI:i Iur Ule PUUHL lUlUt::l/;. ~.LIV al/;U

allows you to use the Fields collection to query the items contained in a pubic folder
to see whether the items contain custom properties. You want to add these custom
properties to the user interface and then search on those custom properties using the
HfML META property set format we discussed earlier in the chapter. I won't dig deeply
into the CDO code here because Chapter 12 will cover CDO in great detail. How­
ever, you should look at the code in Chapter 12 because it shows you how to enu­
merate subfolders and scan for custom properties contained in a folder.

Chapter 17 Search Solutions Using Site Server 3

Working with Ranks
Site Server also provide a helpful feature that ranks returned search results. The Rank
column, a column calculated by Site Server, contains a number from 0 through 1000
that specifies how well the returned value matches the search criteria. The larger the
number ranking, the better the match.

To help users better interpret the ranks, the COM add-in can show the ranks
as either numbers or graphics. The user can customize the rank display and can
sort by ranking. The following code illustrates how to show the ranking in the
Flexgrid control:

If checkShowRankPicture = vbUnchecked Then
'Set the column alignment to left. center
Flexl.ColAlignment(l) = 1
'Unload any pictures
Flexl.Col = 1
Fl exl. Row = i
Set Flexl.CellPicture = Nothing
If rs("Rank") < 1000 Then

Flexl.TextMatrix(ii 1) = Mid("0000". 1._
4 - Len(Trim(CStr(rs("Rank"»») & Trim(CStr(rs("Rank"»)

Else
Flexl.TextMatrix(i. 1) = Trim(CStr(rs("Rank"»)

End If
ElseIf checkShowRankPicture = vbChecked Then

'Show pictures for the ranks
Fl exl. Col = 1
Fl exl. Row = i
'Set the alignment for the column to center. center
Flexl.CellPictureAlignment = 4
i Rank = 0
iRank = CInt(rs("Rank"»
'Make sure we should even load the picture
If iRank <> 0 Then

If (iRank > 750) Then
Set Flexl.CellPicture imgRanks.ListImages(4).Picture

ElseIf (iRank > 500) Then
Set Flexl.CellPicture = imgRanks.ListImages(3).Picture

Elself (iRank > 250) Then
Set Flexl.CellPicture imgRanks.ListImages(2).Picture

Else
Set Flexl.CellPicture imgRanks.ListImages(I).Picture

End If
End If

End If

The code determines whether to display the graphic or number representation
of the rank. If the user wants the graphic representation, the code uses an Imagelist

779

Part III Collaboration with Microsoft Exchange

780

control containing four images of bullets. The more bullets in the ranking, the bet­
ter the match. You might want to modify the add-in to also allow users to filter by
ranking. For example, you might want to allow users to show only items with a rank­
ing of two bullets or higher.

Working with Non-Exchange
Server Data in the Same Catalog
The final feature of the COM add-in that we'll discuss is working with non-Exchange
Server data in the same catalog as Exchange Server data. You might want to provide
a single catalog that spans Exchange Server, the file system, and the Web so that users
can retrieve all that information with a single query. While you could provide this
capability using multiple catalogs and Site Server, the add-in allows only a single
catalog search. Therefore, the add-in must determine whether the user wants Exchange
Server data or non-Exchange Server data.

To implement this, the add-in assesses whether the MessageFolderName col­
umn is empty for the record in the ADO recordset. If this column is empty, the item
must be non-Exchange Server data. The following code implements this portion of
the add-in:

If rs("MessageFolderName") = "" Then
Flexl.TextMatrix(i, 5) = CStr(rs("DocAddress"»
strType "Not Exchange"

Else
strType "Exchange"
Flexl.TextMatrix(i, 5) = CStr(rs("MessageFolderName"»

End If

The add-in uses a hidden column in the Flexgrid control for each row to iden­
tify the type of data (Exchange Server or otherwise) by using the strType variable.
This column is accessed when the user double-clicks on the item in the Flexgrid
control or selects the row and clicks the item open. The COM add-in checks the type
of item, and if the item is a non-Exchange Server item, the code prompts Microsoft
Internet Explorer to open the item. If it's an Exchange Server item, the add-in uses
the Outlook object model to open the item in Outlook. If you want to, you can use
the Exciol.ocx control to open the item from the add-in. However, this probably isn't
necessary because the add-in is running in Outlook, and users probably will prefer
to view the item usi."lg Outlook radler t.lJ.an Outlook Web Access. The code for iliis
functionality follows:

Private Sub flexl_DblClick()

Dim wshell As IWshShell_Class
'See if it's an Exchange Server item
If Flexl.TextMatrix(Flexl.Row, 8) = "Not Exchange" Then

'Not an Exchange Server item

Chapter 17 Search Solutions Using Site Server 3

Screen.MousePointer = 11
If InStr{Flexl.TextMatrix{Flexl.Row, 0), "=") 0 Then

On Error Resume Next
Set wshell = CreateObject{"Wscript.Shell")
If Err.Number <> 0 Then

MsgBox "Can't Create Windows Scripting Host on this machine"
Else

wShell.Run "iexplore " & """" &_
Flexl.TextMatrix{Flexl.Row. 0) &

End If
Set wshell = Nothing

End If
Screen.MousePointer = 0

El se
On Error Resume Next

I, False

Set alpffolder = olns.Folders{"Public Folders").Folders{ _
"All Public Folders")

Set citem = Nothing
Set citem = _

olns.GetltemFromID{UCase{Mid{Flex1.TextMatrix{Flexl.Row, 0), _
InStr{Flexl.TextMatrix{Flex1.Row, 0), "~") + 1». _
alpffolder.StoreID)

Screen.MousePointer = 0
If citem Is Nothing Then

MsgBox "The item could not be displayed. The EntryID is " _
& (UCase{Mid{Flexl.TextMatrix{Flex1.Row, 0), "=~») & _
" and the store ID is " & alpffolder.StoreID

Else
citem.Display

Erld If
End If

End Sub

781

Part IV

Chapter 18

Developing
with Exchange

Server 2000

Microsoft Exchange Server 2000, which builds on the extensive collaborative features
of Exchange Server 5.5, offers many exciting new capabilities. This chapter and
Chapter 19 will discuss the main enhancements made to the Exchange Server plat­
form. In both these chapters, we'll use a sophisticated sample program, called the
Training application, to highlight these new development capabilities.

These are some of the most significant Exchange Server 2000 enhancements:

• OLE DB and Microsoft ActiveX Data Objects (ADO) support

• Friendly URL access to every item in the Exchange Server database­
meaning no nlore globally unique identifiers (GUIDs)!

• XML support

• A richer events model in the types of events supported and the program­
ming of events

• A new version of Collaboration Data Objects (CDO)

785

Part IV Exchange Server 2000 Development

• A new version of Microsoft Oudook Web Access (OW A) that's much easier
to reuse

• An enhanced platform for real-time collaboration development

• A gready improved and built-in workflow engine for building workflow
applications

NOTE This chapter assumes you are running RC1 of Exchange Server 2000;
its samples and code were written to work with RC1. Please note that the
semantics and features listed in this chapter may change for the released ver­
sion of Exchange Server 2000. Be sure to check the Microsoft Press Web site,
http://mspress.microsoft.com, for any Knowledge Base articles that highlight new
code samples for this book.

WHAT IS THE WEB STORAGE SYSTEM?
You might have heard the term Web Storage System. What does the Web Storage
System technology mean for you as a developer?For the past few years, Microsoft's
Exchange Server group has been developing a great data storage technology. The
one problem with this database technology is that it shipped only with Microsoft
Exchange Server, so it was limited to products bearing the Exchange Server name.
However, Microsoft has since renamed this database technology Web Storage System
and ripped it out of Exchange Server. Not only is the Web Storage System technology
now identifiable by name, it can be embedded into other Microsoft products. This
means you can use the Web Storage System in situations that require a rich, semi­
structured, Web-aware database you can access from a number of different client
access methods. Furthermore, the Web Storage System technology provides a rich set
of development services, which we'll look at in this chapter.

Exchange Server 2000 will be the first Microsoft product to ship with the Web
Storage System technology. Following Exchange Server 2000, you'll see a number of
other products shipping with this technology. If you learn the basics of Web Storage
System development now, you'll have a great foundation for building applications
on both Exchange Server 2000 and other products that ship with the Web Storage
System.

tem technology. The core features fall into three main areas: data access, program­
mability, and security.

Data Access Features

786

One of the major new data access features of the Web Storage System is that it pro­
vides a native OLE DB 2.5 provider. This allows developers to write direcdy to OLE

Chapter 18 Developing with Exchange Server 2000

DB interfaces to get or set information contained in the Web Storage System. Further­
more, it allows developers familiar with ADO to write ADO applications using the
Web Storage System as the data store. We'll look closely at the ADO 2.5 support
provided by the Web Storage System later in this chapter.

Another data access feature is Web Distributed Authoring and Versioning
(WebDAV) support. Since the Web Storage System is tightly integrated with Microsoft
Internet Information Services (lIS), the Web Storage System can provide rich access
to data over Web protocols such as Hypertext Transfer protocol (http). However,
standard http commands, such as GET and POST, cannot provide you with a rich
enough set of features to build collaborative applications. For this reason, the Inter­
net Engineering Task Force (IETF) came up with WebDAV-extensions to http 1.1
that allow you to move, copy, query, and delete resources. For example, with WebDAV,
you could create a new folder in the Web Storage System, create a new item in that
folder, and then query for the new item using WebDAV and requests formatted in a
specific XML format that WebDAV understands. You'll see some examples of using
WebDAV in the next chapter when we examine the Training application.

The final way-and in my opinion, one of the most interesting ways-to get
data from the Web Storage System is by using its Installable File System (IPS) pro­
vider. The IFS provider allows you to provide access to your data in the Web Stor­
age System using standard file system programs or interfaces. For example, you can
make the documents you create in the Web Storage System available to your appli­
cation users via Microsoft Windows Explorer. Furthermore, without having to write
a single line of code, you can tum any file system-aware application into an inter­
face for your application's data. The Training application we'll look at later in the
chapter will show you some ways you can use the IFS provider in your applications.

Programmability Features
The Web Storage System allows both Web and Windows developers a great amount
of flexibility in their programming. Programmability features fall into five key areas:
schema, form, event, workflow, and XML support. This section will give you an
overview of each of these areas; you'll see more in-depth coverage when we look
at the Training application.

Schema Support
Built directly into the Web Storage System is an extensive array of schema support.
By having the ability to create a schema, developers can defme sets of properties that
are common to a certain type of item in the Web Storage System. Such support is
similar to that of objects that support certain properties. The Web Storage System
defines some built-in schemas you can take advantage of, such as a schema for an
object or an item. Exchange Server 2000 specifically defines a schema for messages,
appointments, and contacts.

787

Part IV Exchange Server 2000 Development

788

One of the neat things about the Web Storage System schema support is that
schemas are inheritable. This means that you can inherit schema properties from
another schema collection and extend the inherited properties with your own prop­
erties. For example, suppose I want to create a customer schema definition that in­
cludes properties similar to those of the built-in contact schema as well as some
custom properties for my application. I simply tell the Web Storage System that I want
to inherit the properties from the built-in contact schema and extend it with my own
properties.

By creating a custom schema, you are guaranteed that the correct properties
will be returned when you submit searches using the SQL SELECT * syntax. This allows
other application developers to simply traverse the ADO fields collection rather than
know the actual names of your properties. For performance reasons, however, you
might not want applications that use SELECT *, because the Web Storage System will
have to return all the properties on the items contained in your search. For most Web
Storage System items, this can be in excess of 100 properties.

Even though using schemas isn't required to build applications on the Web
Storage System, I highly recommend that you use schemas in your applications, as
appropriate. Most of the time, using schemas will be appropriate. However, using a
schema might not make sense if you're only creating a one-off, single-use item for
which you don't care whether the properties are reused on other items, or for which
the property definitions are lost if the item is deleted. Furthermore, you might find
creating a schema more tedious than simply appending new fields onto the item using
ADO. The code for the workflow process in the Training application will show you
an example of this. In that sample, it was easier to just append items onto the pro­
cess instance in the workflow than to create a full-fledged schema definition for the
process instance itself. However, you'll see other code samples in this chapter in which
schema and their definitions play an important role.

Web Storage System Forms
The Web Storage System supports an HTML-based forms technology. This technology
is divided into three key components: HTML markup for the forms, a server-side
Internet Server API (ISAPI) filter, and a forms registry.

To create Web Storage System forms, you need to add some special markup to
your HTML-based forms, indicating to the Web Storage System that the fields you're

We'll drill into what this markup actually consists of when we look at the Web Stor­
age System form used in the Training application.

Beyond client-side markup, the Web Storage System forms technology also
includes a server-side ISAPI extension. This extension captures requests sent to your
Web server and checks to see whether the Web browser is requesting an item that

Chapter 18 Developing with Exchange Server 2000

has an associated Web Storage System form. If the item does have an associated Web
Storage System form, the ISAPI extension finds that form, and returns the form to the
Web browser. Since Web Storage System forms support both standard HTML 3.2
browsers and XML-aware browsers, data binding can occur in one of two places: on
the server or on the client. For HTML 3.2 clients, you'll want to do your data binding
on the server. This forces the Web Storage System to pull the values for the fields in
the form, perform the data binding on the server side, and return only the form's HTML
3.2 representation.

For XML-aware browsers, such as Microsoft Internet Explorer 5, you can per­
form server-side or client -side data binding. If you perform client-side data binding,
the forms engine will return the form and you can perfqrm the data binding on the
client side rather than on the server side. This allows you to provide easier manipula­
tion of the data without having to make an extra round-trip to the server each time.
For example, you could re-sort or change the format of the data representation to suit
your application's needs without incurring the cost of returning to the server to do this.

The final component of the Web Storage System forms technology is the Web
Storage System forms registry. By allowing you to specify which forms should appear
for specific items, the Web Storage System enab~esyou to customize the default ren­
derings of items. Each built-in item has some default forms that will be rendered for
it. Since the forms registry is flexible, you can register forms based on the browser
type requesting the item, the language of the browser cliept, or the type of item that
the user requests from the Web Storag~ System. This flexibility allows you to build
different forms for different clients. For example, you could create a microbrowser
form for cell phone clients browsing your application using the Microsoft microbrowser
technology. We'll look at the forms registry in more detail when we examine the
Training application.

Web Storage System Even~s
Exchange Server 5.5 introduced an event mechanism that allowed application devel­
opers to write code to handle events occurring in the Exchange Server database. The
Web Storage System further improves on this concept. In Exchapge Server 55, events
are asynchronous, meaning that the event fires after the item is committed to the
database. The Web Storage System also supports asynchronous events; however, it
supports synchronous and systeIll events too. Synchronous events fire before the item
is committed to the database, ~nabling YOllr application to decide whether the item
should be committed qr aborted (ill which cllSe the item won't be s~ved). Synchro­
nous events guarantee that the application is the only process making this decision
for the item. Users or other processes ate blocked until the application fhushes pro­
cessing. The system events notify the applications about key ocq.lIT~nces ip ¢.e Web

789

Part IV

Storage System-for example, a system event might fire after the Web Storage Sys­
tem starts up. Developers could write code to either begin replication or start pro­
cessing their custom application when this event occurs. These two new classes of
events allow you to build even richer applications on the Web Storage System.

Workflow Support
A workflow application is an excellent example of an application you can build with
Web Storage System events. The Web Storage System ships with a built-in workflow
engine that uses synchronous and system events to perform its functionality. This built­
in workflow support enables developers to start writing workflow applications as soon
as they obtain a product containing the Web Storage System.

XMLSupport
The Web Storage System is very Web-centric, which explains how it got its name. The
Web Storage System natively supports XML, and you can use it to retrieve and set
data. We'll look at the XML support of the Web Storage System more closely in the
Training application.

Security Features
Since information security is always a major concern for developers and users, the
Web Storage System supports securing data at both the item level and the property
level. This allows you to select which users or groups of users can access data con­
tained in the Web Storage System. Furthermore, you can query or modify this access
programmatically.

Additional Features

790

Besides the standard Web Storage System features, Exchange Server 2000 provides
some additional features in its implementation of the Web Storage System technology.
These features include Messaging Application Programming Interface (MAP!) support,
multiple top-level hierarchies (TLH), and a set of management objects that allow you
to programmatically manage information in Active Directory and the Exchange Ser­
ver 2000 Web Storage System. Let's take a look at each of these features.

MAPI Support
Exchange Server 2000 continues to ftllly support the l\1...A.J>! interfaces. This means
clients that use MAPI, such as Microsoft Outlook 2000, will run against the Web Storage
System without modification. As an application developer, you should realize that the
applications you have written to MAPI will continue to work. As always, you should
nevertheless test your applications to ensure that all functionality continues to behave
as expected.

Chapter 18 Developing with Exchange Server 2000

Multiple Top-Level Hierarchies
You might be wondering what a top-level hierarchy, or TLH, is. A top-level hierar­
chy is simply a tree of folders that has a top-level root folder. So the Public Folder
hierarchy that starts with Public Folders and continues to All Public Folders is a top­
level hierarchy. To make application development easier, Microsoft has enabled you
to have TLHs besides the Public Folder one in your Exchange Server environment.
This support allows you to break your applications into multiple hierarchies so that
users can avoid crawling through the Public Folder tree to find the desired applica­
tion. This change also makes it easier for administrators to manage your applications,
because they can separate the applications into independent TLHs. You should, when
possible, place your applications in a top-level hierarchy other than the Public Fold­
ers hierarchy because other top-level hierarchies provide more functionality. How­
ever, if you require Outlook access to your application, you will need to keep your
application in the Public Folder hierarchy. Outlook cannot view hierarchies other than
the Public Folder hierarchy.

Figure 18-1 shows the Exchange System Manager (which replaces the Exchange
Administration program) displaying multiple TLHs on a single Exchange server. Notice
how the multiple TLHs also allow developers to place applications into different
naming contexts.

iii Group
Serllers

(:::1,·5) THOMRIZNT5SRV
8:J"JilljJ Protocols
l±l--rPl FilSt Storage Group
a 'tlfJ Application Storage Group

lthjj! Applications Store
l$},{1~ Routing GrolJPs
E}-@J Folders

$"~'"
'-MJ El!penie Reports

ffi"[illI Human Resources
, l~}a Web Sites
l~"~ Pub~c Folde;s

FB"eToois

Figure 18-1. The Exchange System Manager with multiple nH support. Multiple
nHs greatly benefit application developers.

CDO for Exchange Management
To provide a programmatic way for developers to manage recipients and servers, the

791

Part IV Exchange Server 2000 Development

792

new version of CDO in Exchange Server 2000 has been extended with a set of man­
agement objects called CDO for Exchange Management Objects (EMO). With EMO,
you can create, modify, or delete recipients or groups of recipients. Furthermore, with
EMO you can manage the structure of the information stored in Exchange Server 2000.
Notice I said strncture and not content. EMO doesn't give you the ability to create
items, change properties, or perform other such content-related tasks. Instead, you
should use CDO and ADO to attain such functionality. EMO is there to help you create
storage groups and folder hierarchies, as well as change storage quotas and deleted­
item recovery periods.

You'll want to use EMO where appropriate in your applications. Furthermore,
if you plan to write any administration components fpr Exchange Server 2000, such
as Microsoft Management Console (MMC) snap-ins, you'll need to learn about and
use the EMO object model. We won't discuss EMO any further in this chapter because
its interfaces are so straightforward. However, I will point you to the Exchange Ser­
ver Software Development Kit (SDK), included on the companion CD, so you can
learn more about it.

Outlook Web Access
The Web Storage System in Exchange Server 2000 directly supports a new version of
OWA. OWA is no longer based on A~ve Server Pages (ASP) as in previous versions.
Instead, the OWA code is directly compiled into the Exchange Server, and the HfML
files are generated by the server instead of by interpreted script running on lIS.

There are also a number of enhancements to OWA that you should be aware
of. The most Significant one is that differept versions of OWA exist for different brows­
ers. For non-Internet Explorer 5 browsers, OWA uses standard HTML 3.2 to render
information from Exchange Server, as shown in Figure 18-2. In this c(lse, all HfML
rendering and data binding take place on the server side.

If you are using Internet Explorer 5, OWA and the Exchange Server are smart.
Instead of forcing all the rendering and data binding to occur on the server, OWA
takes advantage of the XML and WebDAV support in Internet Explorer 5 to offload
processing and rendering to the browser. OWA will push down Exchange Server data
as XML and will utilize Internet Explorer to format the XML data by using extensible
style sheets (XSL). If the user needs a different set of data, OWA will request only
the data from the server and won't have to reload the l'!ntire page in the browser. By
doing this, the Internet Explorer 5 version of OWA ~ayt::~ you ruund-lrips io fit:: ser­
ver to re-sort or group the existing XML data on the client. Furthermore, if data is
needed from the server, OWA is efficient at retrieving just that data rather than the
entire page. Figure 18-3 shows the new version of OWA. Later in this chapter, you'll
see how to extend OWA by using URL parameters and Web Storage System forms.

Chapter 18 Developing with Exchange Server 2000

:no1:ItIeUh_@UIUbI.c8 ..

noti1kat:ions~t'I.omsin.com NewCouneAvailab1e:WorkingwithAOO Thu3f16/2000 l1:01PM

notificlltions@domein.com Survey Available fotCoun;e: LeamingCDO Thu3f1612OO0 l1:OOPM

notification:J@domein.com Coune:LeamingCDO Wed3115llOO0 11:56 PM

notificsti.ons@domsin.com NewCoune Avlililab1e: nl Wed3115llOOO 11:46 PM

notificatiom@d.omsin.com NewCQuoeAvElilable:n2 Wed31l5l'lOOO 11:45 PM

notificllti.om@domsin.com NewCouneAvlililllble:nl Wed3115llOO0 11:.:IlPM

notifications@domain.com NewCouneAvlililllb1e:n2 Wed3115n01l0 11:411 PM

notffi.catt.oru;@domain.com NawCoua:eAva:ilable:nl Wed3/1512000 11:36 PM

notificat.i.ons@domain.com NewCoun:eAva:ilable:n2 Wed 3/1512000 11:3.SPM

notificati.o:ns@dom.ai:n..com NawCoun:eAva:ilable:nl Wed3/1112000 11:31 PM

notificati.ons@dotMin.com NawCoua:eAva:ilable:n2 Wed 3/1512000 11:30 PM

notificati.onll@d01Min.com NewCoUfJe Ava:ilabla: nl Wed3f1.mooO 11:26 PM

Figure 18-2. The Netscape Navigator version of Outlook Web Access.

Figure 18-3. The Internet Explorer 5.0 version ofOWA. This version supports XML
and WebDAV.

793

Part IV

WHAT ABOUT EXCHANGE SERVER 5.5 ApPLICATIONS?

You might be wondering what will happen to the existing Exchange Server 5.5
applications you've written using MAPI, CDO, ADSI, or even the Event Script­
ing Agent. Have no fear-those applications should continue to run without
modification, except for some cases that I'll describe here.

First, MAPI, CDO 1.21, and the Event Scripting Agent are all supported by
Exchange Server 2000. Microsoft even supports running the Exchange Server
5.5 version of OWA against Exchange Server 2000. This demonstrates that CDO
1.21 works fine with Exchange Server 2000. In terms of MAPI support, Outlook
2000 uses MAPI and since Outlook continues to work with Exchange Server
2000, it shows how MAPI still works as well.

If you've written applications that use the Directory API (DAPI), you'll need
to rewrite your code to use ADSI since Active Directory replaces the Exchange
Server directory in Exchange Server 2000. Furthermore, if you've written admin­
istration extensions to the Exchange Server administration program, you'll need
to rewrite these extensions to the MMC since this is the way you administer
Exchange servers.

The major hurdle of moving your Exchange Server 5.5 applications to
Exchange Server 2000 is the conceptual differences between the two versions
of Exchange Server. While you can continue to run your Exchange Server 5.5
applications as is on Exchange Server 2000, you'll at least have to look at the
features of Exchange Server 2000 to see where you can enhance your existing
applications. For example, if you have an Outlook forms-based application, you
might want to extend it using the new server events in Exchange Server 2000
to add workflow or other functionality. Throughout the rest of this chapter, we'll
look at the new features Exchange Server 2000 offers developers. If you have
Exchange Server 55 applications, as you read this information, look for ways to
enhance or migrate existing parts of your applications to Exchange Server 2000.

THE TRAINING APPLICATION

794

The best way to understand the development capabilities of Exchange Server 2000
is to see an application that takes advantage of the product's new capabilities. That's
why I designed the Training application. This application is pretty complex; it con­
tains ASP, XSL, server events, and workflow components. This sample application
manages an internal training program site. It also provides a Web interface via which
students and instructors can register for, critique, and discuss training courses and
materials. I've created a setup program for this application, which will make it easier

Chapter 18 Developing with Exchange Server 2000

for you to get this application started and will show you how to perform some
administrative functions for Exchange Server 2000. The setup program will also show
you how to perform COM+, lIS, and Active Directory administrative tasks.

Before examining the code and technologies used throughout the Training
application, let's discuss exacdy what this application does. That way, when we cover
each of the application's implementation sections, you'll understand what each imple­
mentation actually does within the context of the rest of the application.

Setting Up the Training Application
When you launch the setup for the Training application, the first thing you'll see is
the Microsoft Visual Basic setup program I've created. Figure 18-4 shows the user
interface for the setup program.

Figure 18-4. The user interface for the setup program. It requires you to fill in
information about where you want the Training application to be placed.

The setup program takes the information you provide in your setup interface
and sets up the Training application, so you don't have to perform any extra steps.
The setup program performs the following steps:

1. Establishes an ADO Connection to the Exchange Server so that the Con­
nection object can be used throughout the setup and certain parts of the
setup can be transacted and rolled back.

2. Creates the Exchange Server folders.

3. Creates the custom schema, including custom content classes and properties.

795

Part IV 2000 Development

4. Creates messages in the Emails folder, which contains the HTML templates
for the notification e-mails sent by the application.

5. Prompts you for the categories you wish to create for your training events
and then stores those categories in the Configuration folder.

6. Creates a security group in Active Directory that will contain the users who
are instructors for the application.

7. Creates the lIS virtual directory and copies the Web files to it.

8. Creates a Windows 2000 file share for the course materials.

9. Copies and registers the event dynamic link libraries (DLL).

10. Registers the event DLL files as a COM+ application.

11. Creates the event registrations for the application that will handle new
course notification, survey notification, and survey result compilation.

12. Imports, registers, and enables the workflow process definition.

13. Creates the event registrations for the workflow process.

Although the setup program is quite extensive in what it provides, I won't detail
here the non-Exchange Server or noncritical application deployment steps, such as
creating virtual directories in lIS using ADS!. To learn more about such steps, look
at the source code for the setup program, which you'll find on the companion CD.
We'll look closely at the code behind the setup program throughout this chapter.

NOTE You will need to run the setup program of the Training application directly
on your Exchange server. You will also need to be an administrator of both the
Windows 2000 and Exchange Server systems.

Using the Training Application

796

Once you're done running the setup program, you can start using the Training appli­
cation. The application uses a series of Public Folders that store all the application's
information. Figure 18-5 shows the folder hierarchy of the Training application. As
you can see, the different types of folders in the application range from standard
message folders to contact folders and calendar folders.

I'T"L __ 1 ___________ ._.&._~. __ ..J ~._ 1 __ "'_1 __ ...1 __ 1_ 1:_1..J __ . __ L~l __ ... _..J_._ _._...l ~. __ ___ _._
IHe: u<tI>I>e:1> <tIe: LUlll<tllle:U III Ule: 0LHe:UUle: IUIUe:I, WllUe: I>lUUe:Ul <tllU 11ll>UULlUl

information are contained in their respective contact folders. The interface of the
application is the default training page, which is different for instructors and for stu­
dents. The instructor home page is shown in Figure 18-6.

Chapter 18 Developing with Exchange Server 2000

Figure 18-5.· The folder hierarchy for the Training application as it appears in
Microsoft Outlook.

ThiS Web site is dedicated to providin'g you i the tr~ning reSources that yqu
need to m~ke yo~ more productive! ptease-prov:ide suggestions' using the link'
at the bottom of the ~ge.

Find training to fit my
schedule
See whelt collrses are happening:

BToday
fII This week
BThismonth

View the current
courses I'm signed up
for
Browse through the current"courses; that you
na¥1!I signed up for and sae wni!lt you h~.ve
already takenl

View Information abc)u~1lII1
the Instructors
view information about the differentinstTuctors,
""hat eourn5 they have given and their overall
rating.

il View Instructor Ust

Instructors Only!
You are reQimred as an instructor. Below lIr6
links to help get you started.

@) Create a new course

il View your current courses

~ ~:~b~~r pre ... io~5 ,courses including

Figure 18-6. The Training application home page for the sample application as
viewed by an instructor.

797

Part IV Exchange Server 2000 Development

798

From the home page, you can retrieve the schedule of classes; view informa­
tion about instructors; change your notification preferences; or if you are an instruc­
tor, create a new course. The application determines whether you are an instructor
by using Windows 2000 Security Groups. The application searches the security group
you specify in the setup program and checks to see whether the user accessing the
application is a member of that security group. If the user is a member of that security
group, the instructor-specific content appears on the Web page. Figure 18-7 shows the
Active Directory Users And Computers snap-in with the Instructors security group open.

Figure 18-7. The Instructors security group controls access to instructor-specific
functions.

One thing to note is that the Training application creates its folders in the Pub­
lic Folder hierarchy. I coded the application this way so that you could see the fold­
ers in Outlook. However, if I was to really deploy this application, I would not create
the folders in the Public Folder hierarchy because it's Web-based. Instead, I would
create a new top-level hierarchy, not visible by Outlook, to contain my application.
There are a number of reasons to create separate top-level hierarchies for your
applications, including the ability to conduct deep searches of the folders using ADO,
and not providing access to the application from Outlook.

Chapter 18 Developing with Exchange Server 2000

Creating a Course
The application allows you to create courses and register students for them. When
an instructor creates a course, the application asks the instructor whether she wants
to create a file share for course materials or a discussion group for the course. This
functionality demonstrates how you can utilize the IFS components of the Web Stor­
age System through the file share capabilities and also illustrates the reusability of
OWA. Figure 18-8 shows a course listing that contains links to both the course materials
and a discussion group for a particular course.

Training room 3

Developer

3/13/2000
iO:U():OO AM

12:00:00 PM
Some understanding of ADO 2.5 and previous versions of
CDO
This course des:cribes how to program with CDO for
Exchange 2000

Figure 18-8. A course listing that shows how you can utilize both IFS and OWA
extensibility in your Exchange Server 2000 application.

Mter an instructor creates a course, an asynchronous or timer event (depending
on which you specified in the setup program), fires in the Schedule folder. This event
checks to see whether any students have asked to be notified when new training is
avail<ible in the specific course category. As the application administrator, you must
specify these categories-for example, Developer, End User, and IT. If the application
locates students who need to be notified about the training, it sends the students an
HTML-formatted message, as shown in Figure 18-9.

799

Part IV

800

2000

A New Course Is Available

Name:
Category:
Date:
Stan: Time;

End Time:
Location:
Prerequisites:
Description:

Course Materials:

Using CDO Calendaring
Developer
3/8/2000

10:00:00 AM

12:00:00 PM
Room 3

None

Learn COO Calendaring!
Not available

For more information on this course or to register. please click~,

Figure 18-9. An HTML-jormatted message sent to students who want to be notified
about new training events.

The notification preferences of each student are stored on their respective
contact record in the Students folder. Students can change their preferences for no­
tification through the application's Web interface, as shown in Figure 18-10.

You can use this form to change your preferences for notification when new courses
are created. Your current preferences are:

Do you wantto be notified when
new courses are available:

please select the category of the
course you wish to be notified for:

P.: Developer

~ End User

w: IT

Figure 18-10. The Web page/or changing student notifications.

Chapter 18 Developing with Exchange Server 2000

Registering for a Course
You might be wondering how a student goes about registering for a class. The appli­
cation provides two ways for students to browse through the available courses in the
Schedule folder. First, a student can specify date ranges from a Date Picker and view
the courses in a simple list. The student can then re-sort the list by title, date, or
category. The page containing this simple list is shown in Figure 18-11.

NOTE There are two ways you can generate this simple list page. One way is
to use ADO inside ASP pages. The other technique involves using the XMLHTTP
component of Internet Explorer 5 and requesting XML data from the Exchange
server. The Training application then renders that XML data locally, thereby elimi­
nating a round-trip to the server if the user wants to re-sort the list of classes .

• Notify (3/13/2000)
• WorkiDQ with CPO {3/131200Q1

Figure 18-11. The page showing a simple list of courses for a specific date range.

The second way the Training application allows students to browse through the
available courses is by leveraging the extensibility of oWA. By passing OW A-specific
parameters (which you'll learn about later in this chapter), you can make oWA dis­
play information. Figure 18-12 shows how the Training application employs the rich
calendar views of OWA to display the schedule of courses.

When a user double-clicks on one of the calendar items in the view, the appli­
cation displays a custom Web Storage System form instead of displaying the standard
OWA appointment form. The ability to replace OWA forms with your own is a pow­
erful one. Figure 18-13shows the Web Storage System form displayed when a user
clicks on a training event in the calendar.

801

Part IV

802

lOyS"!hllllnnA 5all"VtI!u' 2000 Development

Figure 18-12. Using OWA and the calendar view to display a list of available
courses.

Coune Details:

Course Name: 'Working with COO
Location: Training room 3
Instructor: Thomas Rizzo (thomrf?@thDmrjzntSdom ext.e~t micro!jQf!'".£Q1ll)

Category: De¥eloper
Date: 3/13/2000
start Time: 10:00:00 AM
End TIme: 12:00:00 PM
Prerequi!lilhs: Some understanding of ADO 2.5 and previous versions of coo
De5cription: This course describes how to progrl!lm with COO for Exchl!lnge 2000
Course Matl!lrlals: Ftle link to me-Wda!'; HIT? !h!:: to mgWriq!f
Rating: Not rated yet.
[ourse Comments: No comments available.
View PiD'iCLJg"oo Gro:JO

Figure 18-13. The Web Storage System form that is displayed when a user clicks on
an item in the Training application's calendar.

Chapter 18 Developing with Exchange Server 2000

Searching for a Course
The Training application also offers students and instructors two ways to quickly find
course information: via quick search, and via advanced search. Both types of search
eventually follow the same code path, but the advanced search provides the user with
a more powerful interface for specifying search options. Figure 18-14 shows the Ad­
vanced Search page of the Training application. The search capabilities can take
advantage of the built-in content indexing of Exchange Server 2000, if you enable con­
tent indexing. We'll learn about content indexing and how to leverage it in Chapter 19.

Scope of search:

R! All of Training Site

Cl Training offered -=
DInstructors

Figure 18-14. The Advanced Search page for the Training application.

Using a Workflow Process for obtaining approvals
The Training application utilizes the built-in workflow engine and the graphical
Workflow Designer of Exchange Server 2000. If an instructor specifies that a course
requires approval, the application starts a workflow process when a student attempts
to register for the course. The application next sends an e-mail to the student's man­
ager. The manager can then approve the student to take the course. If the manager
rejects the request or doesn't approve it in time, the student can't take the course.

Figure 18-15 shows the workflow process in the Workflow Designer for
Exchange Server 2000. Figure 18-16 shows the e-mail that the manager receives when
an approval is required for a student to take a course.

803

Part IV

804

I:xcn,an:ge §AI'V'~r 2000 Development

Figure 18-15. The workflow process shown in the WorJiflow Designer for Exchange
Server 2000.

Approval required for student: Thomas Rizzo

[Dune Information:

Name: Learning CDO
CateQory: Developer
Date: 312/2000

5tart Time: 10:00:00 AM
End Time: 11:00:00 AM
Location: 43
De!IiCriptlon: I

To approve or reject this student to ~ke this course, pleo!lse click here,

Figure 18-16~ The e-mail sent to the manager who needs to approve a student who
wants to take a course.

Providing a Survey
The Training application also provides a survey component. Atimer-based event fires
on the Exchange server every night to implement the course survey component. This
event checks to see whether any courses have been completed on that day. If a course

Chapter 18 Developing with Exchange Server 2000

has been completed, the timer agent e-mails a notice to the students who were reg­
istered for the course, as shown in Figure 18-17. The students can then click on a
link in the e-mail message and fill out a survey to rate both the course and the
instructor. The application checks to make sure that students don't fill out multiple
surveys for either the course or the instructor. Figure 18-18 shows a survey form
for a course.

Thank you for taking the following course. Please fill out the survey for this
course by clicking on the hypertink below.

Name: Learning COO
Date: 3/16/2000
Start Time: 10:00:00 AM
End Time: 5:00:00 PM
Location: Training Room 3

To fill out a !:ur",,,,y cn the CQun;:e end the instructor please click.ll!lm.

Figure 18-17. The e-mail notice that a survey is available for a course.

please fill out the following survey about course: learning COO

~:~:!~~ (;~i~~~~~ ~a~hj:~;st) 1.f? .. ~~.~.1iI

Q2: Comment:i about thili

Q3: Can your comments be
made public?

Q4: Would you Uke to rate the
instructor a5 well?

~An--ex-ce~'-'e-~--co-=-.-e!--r-'-e.-rn-'-d-ev-e-r.-t'-i-~-I-'m
needed to knOll' about CDO!

@. Allow my oomments to be mo!!lde public for other students

o Keep my comments private. only for the instnJctor

@Yes

o No

Figure 18~18. A survey for a course that the student can fill out.

805

Part IV

Once the student fills out the survey, the survey is saved into one of the Sur­
veys folders, depending on whether the survey is a course or instructor survey and
on whether another agent fires. This agent collates all surveys received for the course
and the instructor and determines an overal1 rating for each. The agent also takes
any comments the users have and adds them to the course or the instructor rating.
Figure 18-19 shows how the final results look after the agent completes its process­
ing. Other students can then view ratings and comments about either the instruc­
tor or the course.

Rating:

Course
Comments:

This course has
already taken
place.

Thomas Rizzo (ttmnj",l':Qru:!0.iDl.:idDnl&2.Jm.!IJg:o<j)ft,glm)
Developer

3/16/2000
10:00:00 AM

5:00:00 PM
Some programming skills required. VB preferred.
This courses teaches you how to use coo in your applications.
We'll look at the coo object model as well as real-world uses for
CDO.

received,

Comment 1: An excellent coursel I learned everything I needed to
knowaboutCDO!

Figure 18-19. Ratings and comments are shown in the main views for both the
instructor and the course. Here, we see the ratings for a course.

Now that you've had a quick overview of some of the features of the Training
application, let's take a look at how the Training application was actually built. We'll
look at the technologies used in our programming and at some code snippets from
both the setup program and the application itself.

THE WONDERFUL WORLD OF SCHEMAS

806

Your first consideration when building an Exchange Server 2000 application is whether
you need to use the schema support that's built into the product. As mentioned
earlier in the chapter, Exchange Server 2000 allows you to create schemas for your
applications-meaning you can define classes of items, such as myproject or
mycontact. On those classes of items, you can have default sets of properties, such
as myna me or mylocation.

Chapter 18 Developing with Exchange Server 2000

You don't have to create schemas in order to use built-in or custom proper­
ties on items in Exchange Server 2000. For example, you could append new properties
to an item using ADO and store that item in Exchange Server. You'll need to create
a custom schema if you want to reuse your properties across multiple items, rather
than with a single, one-off item. Also, if you want your users to easily discover your
properties, you'll need to use a schema. This discoverability can be achieved through
ADO when you run a SQL SELECT statement against your application, or it can be
with the· Web Storage System forms you create. Since the Training application uses
many custom properties across many items, it. creates schemas in its setup program.
Let's discuss this part of the program now.

Overview of the Exchange Server Schemas

You need to know a few things before you attempt to create schemas. First, Exchange
Server 2000 ships with some schemas already in place for the default items it under­
stands, such as messages, documents, appointments, and contacts. The schemas for
these items are stored in a hidden folder in your Exchange server. You can view this
hidden folder either by writing a simple program or by looking at the folder through
the Mdbvue utility. Figure 18-20 shows how to view the Schema folder using MDBVUE.

NOTE You'll find the Schema folder under the Public Folders tree, in the non­
ipm subtree. This folder contains XML files that define the Exchange Server 2000
schemas. Exchange Server 2000 does support defining schema through XML.
However, in the setupprogram for the Training application, I used ADO to cre­
ate my schema definitions.

Figure 18-20. MDBVUE browsing the hidden Schema folder for Exchange Server 2000.

Second, as part of the base Exchange Server schema, there is the idea of a
content class. For example, a message has a content class of urn:content-classes:rnessage.

807

Part IV

Content classes are groupings of properties that define a certain type of item. If you
set the content class of a particular item to message, the item receives all the prop­
erties from your schema that are associated with the message content class.

If you're coming from the Exchange Server 5.5 development environment, you
might be wondering how content class and message class correspond. There really
is no explicit relationship between content class and message class; you can have a
content class that's entirely independent from a message class. If you need to sup­
port Outlook or previous versions of OWA, just be sure to explicitly set both the
content class and the message class in your application. Don't worry about the cus­
tom properties in your content class. Exchange Server makes those available in the
PS_PUBLIC_STRINGS name space in MAPI so that Outlook or any MAPI application
can retrieve those custom properties.

NOTE Outlook supports field names of up to 32 characters in length in its Field
Chooser. So if you create a property with a name longer than 32 characters, you
might not be able to retrieve it from Outlook.

Creating Custom Content Classes

808

The first step when creating a custom content class is to decide what to call it. Make
sure that the name you select for your content class doesn't clash with other content
class definitions. Once you determine the name of your content class, you'll want to
think about the properties contained in it. Since Exchange Server supports a wide
range of built-in content classes, it allows you to inherit your content class from an
existing one. For example, the Training application has training events. These events
require properties that already exist on the appointment content class. However, the
training events also need some extra properties that will exist on all training event
items. Using inheritance, the Training application inherits the properties from both
the appointment content class and the item content class.

Exchange Server 2000 supports both single and multiple inheritance for con­
tent classes. The following list contains all the default content classes supported by
Exchange Server 2000:

• urn:content-classes:appointment

• urn:content-classes:calendaifolder

III urn:content-classes:calendarmessage

.. urn: content-classes: contactfolder

• urn:content-classes:contentclassdef

• urn:content-classes:document

• urn:content-classes:dsn

Chapter 18 Developing with Exchange Server 2000

• urn:content-classes.folder

• urn:content-classes.freebusy

• urn:content-classes:item

• urn:content-classes.journaifolder

• urn: content-classes: maiifolder

• urn: content-classes: mdn

• urn: content-classes: message

• urn:content-classes:noteJolder

• urn:content-classes:object

• urn: content-classes:person

• urn:content-classes.propertydeJ

• urn: content-classes: recallmessage

• urn:content-classes:recallreport

• urn: content-classes: taskJolder

Once you figure out which content classes you want to inherit from, you'll need
to create some property definitions for your content class. Property definitions de­
scribe the name, type, value, and special characteristics of the properties you want
in your content class. Be aware that when you do create a property definition, it can
be used across multiple content classes. You'll see this in the Training application,
where both instructors and training events share survey result property definitions.

Let's look at some code from the setup program that creates the property defini­
tions for a training event. We'll then step through exactly what's happening in the code.

CreateSchemaPropDef "instructoremail", "string", False, True, _
False, CStr("")

CreateSchemaPropDef "prereqs", "string", False, True, False, CStr("")
CreateSchemaPropDef "seats", "string", False, True, False, CStr("")
CreateSchemaPropDef "authorization", "string", False, True, False, _

CStr("")
CreateSchemaPropDef "category", "string", False, True, False, CStr("")
CreateSchemaPropDef "surveycount", "string", False, True, False, CStr("")
CreateSchemaPropDef "discussionurl", "string", False, True, False, _

CStr("")
CreateSchemaPropDef "materialsfilepath", "string", False. True, _

False, CStr(· .. ·)
CreateSchemaPropDef "materialshttppath", "string", False, True, _

False, CStr("")
(continued)

809

Part IV

810

Private Sub CreateSchemaPropDef(strName. strType. bMultiValued. _
blndexed. bReadOnly. varDefaultValuel
Dim rec As New ADODB.Record
With rec

.Open strAppSchemaFolder & "I" & strName •• adModeReadWrite. _
adCreateNonCollection + adCreateOverwrite

End Sub

'Create new property definition
.Fields("DAV:contentclass") = "urn:content-classes:propertydef"

'Give it a name
.Fields("urn:schemas-microsoft-com:xml-data'name").Value

strSchema & strName

'Set the data type for the property
.Fields("urn:schemas-microsoft-com:datatypes'type").Value

strType

'Set the other fields for the property
.Fields("urn:schemas-microsoft-com:" & _

"exch-data:ismultivalued").Value = bMultiValued
.Fields("urn:schemas-microsoft-com:" & _

"exch-data:isindexed"l.Value = blndexed
.Fields("urn:schemas-microsoft-com:" & _

"exch-data:isreadonly"l.Value = bReadOnly
.Fields("urn:schemas-microsoft-com:" & _

"exch-data:default"l.Value = varDefaultValue
.Fields.Update
.Close

End With

This code creates a new item for my property definition in the Schema folder
for the Training application. My recommendation is that, unless absolutely necessary,
you don't modify the built-in schema for Exchange Server 2000. Instead, create a
Schema subfolder for your applications, and place your property and content class
definitions in it. You can inherit from the built-in schemas in Exchange Server 2000
rather than modifying them.

You need to create property definition names in a unique name space.
The setup program asks you what name space you want to use. By default,
you should include your Internet domain name, if you have one, since it's
guaranteed to be unique. For example, a good name space might be http://
yourdomainname/schema!. You can then append to that name space the names
of the custom properties for your application.

You should also be aware that property names are case sensitive. I recomrnend
lowercasing your entire property name to make your coding easier.

Chapter 18 Developing with Exchange Server 2000

Once the new item is created, the code sets the content class property in the DAV
name space to urn:content-classes:propertydif, Exchange Server 2000 defmes a num­
ber of new name spaces for properties, such as DAV, http://schemas.microsoft.coml
exchange/, or urn:schemas-microsoft-com:office:office. The code then sets the
urn:schemas-microsoft-com:xml-data#name property to the fully qualified name of
the property. Next, the code sets the data type, which can be one of a number of
different values. The most common ones that you'll use are String, Float,· Boolean,
DateTime, i2, i4, i8, Uuid, Int, and Bin.base64. I've used strings throughout the Training
application to shield me from changes in the underlying builds of Exchange Server.
This is definitely not a best practice; after Exchange Server 2000 is released, I'll update
the code to use the correct data type for the properties. You should always use the
correct data type depending on the needs of your application.

Once the data type is set, you can set other values for your properties. One such
value is the ismultivalued property. By setting this property to True, you tell the Web
Storage System that this property supports multiple values of the data type you speci­
fied. When working with multivalued properties, you'll want to set and get the values
using arrays. Examples of built-in multivalued properties are urn:schemas-microsoft­
com:xml-data#element and urn:schemas-microsoft-com.~xml-data#extends, which are
properties on the content class definition item. We'll discuss creating a content class
definition item in a little bit.

Another property you can set is the isindexed property. This property has
nothing to do with content indexing (which we'll look at later); instead, it corresponds
to the Exchange Server database index. If you set this property to True, Exchange
Server will create an index for the property so that sorting, grouping, and other
operations on it execute quickly. One caveat for using isindexed: if you are concerned
about load on your Exchange server, don't set this property to True for all your prop­
erties. Instead, just determine which properties you really need indexing on, and set
this property to True for those properties. To create the index for your custom properties,
you will have to issue the CREATE INDEX command in ADO. We'll learn more about
this command and ADO access to Exchange Server 2000 . later in this chapter.

The next property you can set is the isreadonly property. You don't need to set
this property because only properties provided by the Web Storage System can be
set to read-only. However, I threw this property in here just to expose you to it. You
can query the value of this property from your applications to see whether a Web
Storage System property is read-only.

The final property that you'll want to set is the default property. This property
specifies what the default value, if any, should be for your property when it's cre­
ated by the application or user. Although you don't have to set this property, you will
want to do so in order to initialize your properties to a ddault value.

Once the code finishes setting these properties using ADO, a call to the Update
method of the Fields collection is required. When we talk about ADO support in

811

Part IV Exchange Server 2000 Development

Exchange Server 2000 later in the chapter, we'll discuss the use of transactions with
ADO and Exchange Server. I highly recommend that you use transactions where
appropriate in your application. For example, you should use transactions in case you
receive an error while processing your ADO commands. This allows you to roll back
the transaction rather than leaving your application's data in an inconsistent state.
Although the previous code segment doesn't show it, the entire schema creation
process is wrapped in a local OLE DB transaction.

Creating Content Class Definition Items

812

Now that we've created the custom property definitions for our content class, we need
to create a content class definition in our schema. To do this, we must create an item
in the Schema folder that has the correct content class and properties set so that
Exchange Server knows we want to create a custom content class. The following code
shows how to create a definition of a custom content class:

arrTrainingEventProps = BuildSchemaArray(Array("instructoremail", _
"prereqs", "seats", "authorization", "category", "surveycount", _
"discussionurl", "materialsfilepath", "materialshttppath", _
"publ iccomments" , "overallscore"»

CreateContentClass "trainingevent", _
"urn:content-classes:trainingevent", _
Array("urn:content-classes:item", "urn:content-classes:appointment~), _
arrTrainingEventProps

Private Function BuildSchemaArray(arrProperties)
Dim tmpArray()
For i = LBound(arrProperties) To UBound(arrProperties)

ReDim Preserve tmpArray(i)
tmpArray(i) = strSchema & arrProperties(i)

Next
BuildSchemaArray = tmpArray

End Function

Private Sub CreateContentClass(strltemName, strContentClassName, _
arrExtends, arrFields)
Dim rec As New ADODB.Record
With rec

'Create item in application Schema folder
.Open strAppSchemaFolder & "I" & strltemName, , adModeReadWrite, _

adCreateNonCollection + adCreateOverwrite

'Create new content class definition

.Fields("DAV:contentclass") = "urn:content-classes:contentclassdef"

Chapter 18 Developing with Exchange Server 2000

'Name the content class
.Fields("urn:schemas-microsoft-com:xml-data'name").Value

strContentClassName

'Enter what other content classes this one extends
.Fields("urn:schemas-microsoft-com:xml-data'extends").Value

arrExtends

'Enter the fields that exist on the content class
.Fields("urn:schemas-microsoft-com:xml-data'element") arrFields

'Save change
.Fields.Update
.Close

End With
End Sub

The code first calls the function BuildSchemaArray to create an array contain­
ing the custom schema properties that the new content class will contain. This is an
example of how you create values for a multivalued property.

Once the array is built, the code calls the CreateContentClass subroutine, which
creates a new item in the Schema folder using ADO. The code sets the content class
of the item to urn:content-classes:contentclassdef, which tells Exchange Server that
this is a new content class definition item. The code then sets the name of the new
content class definition to the name passed to the subroutine. In this example, the
content class name is urn: content-class: trainingevent.

The code next sets the extends property. This multivalued string property con­
tains a list of all the other content classes that this content class inherits from. A content
class can either have no inheritance or can inherit from one or more content classes.
What you want to accomplish in your application and the set of properties you need
on your custom content class will dictate which content classes you inherit from. Since
the trainingevent content class is so similar to the appointment content class in terms
of properties required, the code inherits from the appointment content class. The code
also inherits from the item content class, which most other content classes inherit from.

Finally, the code sets the element property. This property is multivalued and
should contain all the custom fields that your content class implements. Once this
property is set, you can call the Update method on the ADO Fields collection to write
the data to Exchange Server.

You can also use XML to create content class definitions and property defini­
tions. If you create a correctly structured XML document and place it into the schema
folder for your application, Exchange Server will allow you to use these new con­
tent classes and properties. The example on the following page shows what two XML
files-one for the content class definition and one for the property definition-look
like in XML.

813

Part IV Exchange Server 2000 Development

This XML file would be for the content class definition

<?xml version="1.0"?>
<Schema name='ExchangeSchema' xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:d="DAV:" xmlns:ex="http://schemas.microsoft.com/exchange/"
xmlns:cc="urn:content-classes:"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:s="urn:schemas-microsoft-com:exch-data:"
xmlns:m="urn:schemas:httpmail :"
xmlns:h="urn:schemas:mailheader:" xmlns:cs="http://customschemaname/">

<ElementType name="cs:customprop" d:contentclass="cc:contentclassdef">
<extend~ type="cc:item"l>

<element type="cs:mycustompropname"l>

</ElementType>
</Schema>

This XML file would be for the property definition
<?xml version="1.0"?>
<Schema name='ExchangeSchema' xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:d="DAV:" xmlns:cc="urn:content-classes:~
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:s="urn:schemas-microsoft-com:exch-data:"
xmlns:m="urn:schemas:httpmail:" xmlns:cs="http://customschemaname/">

<ElementType name="cs:PNAC" dt:type="string" s:ismultivalued="0"
d:contentclass="cc:propertydef" s:isindexed="l"
s:isreadonly="0" s:isrequired="0" s:isvisible="l">

</ElementType>
</Schema>

Setting the expected-content-c.ass Property

814

You need to take a few more steps when using custom schemas. First, you must set
the property urn:schemas-microsoft-com:exch-data:expected-content-class on the
folders for your application. This multivalued property tells Exchange Server what
content classes to expect in the folder. This property can specify multiple content
classes. The query processor in Exchange Server will use this list of expected con­
tent classes when you issue a SELECT * statement in the folder to determine which
properties-besides the built-in schema ones-the query should return.

You should try to limit your use of SELECT * statements if possible, because the
query processor will have to retrieve every built-in and custom property in your
content class, which can take a long time. If you know the specific properties you

Chapter 18 Developing with Exchange Server 2000

need to retrieve as part of your resultset, you should specify them in your query.
Here's an example of setting the expected-content-class property in code:

oFolderRecord.Fields _
("urn:schemas-microsoft-com:exch-data:expected-content-class").Value
Array("urn:content-classes:appointment", _
"urn:content-classes:mycontentclass")

Setting the schema-collection-rei Prop,rty
In addition to setting the expected content class property, you neeq to set the
urn:schemas-microsoft-com:exch-data:schflma-collection-ref property on your
application's folders. This property contains a URL that links to the first folder in which
you want the Exchange server to look for schema definition items. In your custom
applications, you'll set this property to the Schema subfolder. When we discuss us­
ing ADO with Exchange Server later in the chapter, you'll see how to determine the
URL to set the value of this property to. If you do not set this property on your fold­
ers, Exchange Server will default to its built-in Schema folder in the non-ipm subtree.
Here is an example of setting this property in code:

oFolderRecord.Fields _
("urn:schemas-microsoft-com:exch-data:schema-collection-ref").Value
"file:ll./backofficestorageldomain/public folders/myapp/schema"

Setting the baseSchema Property
You have one final task to perform to make your application's schema work well:
you need to set the urn:schemas-microsoft-com:exch-data:baseschemq property on
your schema subfolder. This multivalued property provides URLs that Exchange Server
will search if it doesn't find schema definitions in your schema subfolder. The server
will search the set of URLs you provide in the order they're set in the property. So if
Exchange Server finds the correct schema defmition, it will stop searching subsequent
URLs. By setting the schema-collection-ref property for your folders, you can have
Exchange Server search your schema folder first and then search the built-in schema
folder. The following is an example of setting this property:

strBaseSchemaFolder = _
"file:II./~ackofficestorageldomainname/public folders/" & _
"non_ipm_subtree/schemal" .

With oSchemaFolder
.F; el ds ('!urn: schemas -mi crosoft- com: exch -data: base~chema")

Array (strBaseSchemaFolder)

.Fields.Update
End With

815

Part IV Exchange Server 2000 Development

USING ADO 2.5 AND OLEDB 2.5
WITH EXCHANGE SERVER 2000

While Windows 2000 ships with OLEDB 2.5 and ADO 2.5, Exchange Server 2000
includes the OLEDB 2.5 provider for Exchange Server. If you've done any develop­
ment with Microsoft SQL Server, you know how easy to use and powerful the ADO
object model is. The OLEDB provider in Exchange Server 2000, called EXOLEDB,
capitalizes on this ease and power. In this section, we'll take a quick look at some
of the new features in ADO 2.5. Then, using the Training application, we'll examine
how to build ADO applications with Exchange Server.

Note that the OLEDB provider should be used only server-side with Exchange
Server 2000. Do not attempt to use the provider remotely from client-side applica­
tions, including using the new version of CDO on the client-side. For those applications
that require client-side interaction, you can leverage WebDAV or previous versions
of CDO or the Oudook Object Model.

New ADO 2.5 Features

816

Two major enhancements of ADO 2.5 should be of interest to Exchange Server
developers: URL binding support, and Record and Stream support. These enhance­
ments are why ADO 2.5 works so well with the type of data stored in an Exchange
Server application. There are two reasons these enhancements make using ADO with
Exchange Server easy:

• Exchange Server is best at storing semistructured data rather than struc­
tured, relational data.

• Exchange Server supports URL addreSSing for every record in the Exchange
Server database.

URL Binding Support
In my opinion, one of the most annoying things about the earlier versions of ADO
is all the setup work required to open a data source connection. You have to create
a Connection object, set the properties on that object, and then issue a query and
retrieve your Recordset from the data source. However, ADO 2.5 lets you bypass all
the setup work. You simply provide a URL for the data you want to retrieve, and
OLEDB sets up all the connections and manages all the security for you. Following
is an example of binding direcdy to art Exchange Server resource with this new URL
support:

'You can achieve the binding like this:
Set oRec = CreateObject("ADODB.Record")
oRec.Open "http://server/public/myfolder/myitem".

Chapter 18 Developing with Exchange Server 2000

adReadWrite. adOpenlfExists
'Or with one statement. like this:
oRec.Open "file:II./backofficestorage/domain/" & _

"public folders/myfolder/myitem" •• adReadWrite. _
adOpenlfExists

Notice how I don't have to create a Connection object. OLE DB does this auto-
. matically. The technology that makes this URL binding work is the new Root Binder
in OLE DB 2.5. The Exchange Server OLE DB provider and other OLE DB providers
register themselves with the Root Binder, specifying which types of URLs they sup­
port. For example, the Exchange Server OLE DB provider registers for the URL
'file:// Jbackofficestorage". Using the file protocol, you can access mailboxes and Pub­
lic Folders via 'file:! / Jbackofficestorage/domainlpublic" folders/myfolder.

Be aware that EXOLEDB does not register for the URLs that begin with http;//.
However, the Microsoft OLE DB Provider for Internet Publishing does. Therefore, if
you want to use http;//in the URLs to connect to Exchange Server data, you must
explicidy specify that you want to use the EXOLEDB provider. Todo so, you might
want to create or grab an explicit Connection object that sets the provider to EXOLEDB
and then use that object in your ADO methods; In order to work with Exchange Server
using the EXOLEDB provider and http://URLs, the code similar to the code just shown
now looks like this:

Set oConnection = CreateObject("ADODB.Connection")
'Open a connection to the Exchan~e server by using a throwaway
'Record
Set oThrowAwayRec = CreateObject("ADODB.Record")
oThrowAwayRec.Open "http://server/public/"
set oConnection = oThrowAwayRec.ActiveConnection
oConnection.Provider = "EXOLEDB.DataSource~
Set oRec ~ CreateObject("ADODB.Record")
oRec.Open "http://server/public/myfolder/myitem". _

oConnection. adReadWrite. adOpenlfExists

NOTE There are other ways to create the Connection object. Keep in mind that
if you want to use http://URLs,you have to make sure the provider is EXOLEDB.
Also, notice that to get at puplic Folders, you do not use Public Folders in the
http://URL like you do the File:IIURL.lnstead, Exchange automatically creates
a public virtual directory that points at your Public Folders. If you create other
top-level hierarchies, and you are going to access folders using the http://URL,
you will want to create virtual directories that point at the hierarchY that contains
those folders.

If you plan to use OLE DB transactions in your code, you might want to con­
tinue to explicidy create Connection objects. In ADO, you accomplish this by using
the BeginTrans, CommitTrans, ,and RollbackTrans methods.

817

Part IV Exchange Server 2000 Development

Because you'll be using URLs extensively with Exchange Server 2000, there is
one property that you should commit to memory quickly: the DAV.·href property,
which is available on every item in Exchange Server. This property contains the URL
to the associated item, making it easy for you to retrieve the URL and pass it to pro­
cedures or functions in your application.

Record and Stream Support
Previous versions of ADO allowed you to create only Recordsets. Yet ADO 2.5 enables
you to create Records and Streams. Creating Recordsets is useful for relational data
sources because Recordsets are very "rectangular," meaning that the data in the data
sources will be uniform. However, nonrelational data sources such as Exchange Server
are not very rectangular in nature. In fact, one row in an Exchange Server database
could have many more or many less columns than the next row, since Exchange
Server provides very flexible schema support even within a table (or folder, as it's
called in Exchange Server). This is why creating Records and Streams of information
is a welcome addition to ADO 2.5.

Record object
In previous versions of ADO, if you wanted to open a single row, you had to create
an entire Recordset to contain that single row. However, with Record support, ADO
allows you to pass the URL to a unique item in Exchange Server, and without requiring
you to create a Connection or Recordset object, ADO opens that item into your Record
object. You can then use the properties and methods of the Record object to manipu­
late the data. You'll see the Record object used extensively throughout the code samples
for the Training application shown later in the chapter.

Stream object
You can use the Stream object to manipulate streams of data, either text or binary.
An Exchange Server message is a good example of a stream. When you retrieve the
stream of a message, you're given the entire message, its headers, and its content as
serialized data. You can then manipulate the data using the methods on the Stream
object. Later in Chapter 19 when we look at how to set up the workflow process
defmition programmatically, you'll see an excellent example of working with streams.

Putting ADO 2.5 to Work with Exchange Server 2000

818

You'll predOminantly use ADO 2.5 to access data in Exchange Server. Exchange Server
supports the major features of ADO, including the ability to perform queries with
clauses such as WHERE or ORDER BY. However, there is one major restriction for
issuing SQL queries against Exchange Server: Exchange Server does not provide JOIN
support, meaning you cannot join two Exchange Server folders into a single Recordset.

SELECT Statement
Exchange Server 2000 supports SQL SELECT statements. This is the basic format of
a SELECT statement:

Chapter 18 Developing with Exchange Server 2000

SELECT * I select-list
FROM SCOPE(resource-list)
[WHERE search-condition]
[order-by-clause]

Remember, you should not use SELECT • if you can avoid it. Instead, pass in
the property listthat you want to retrieve from Exchange Server as part of your SELECT
statement. An example of retrieving a specific set of properties from Exchange Ser­
ver is shown here. Notice that you will need to place property names in quotes in
order to retrieve them.

'Build the SOL statement
strURL = "file:II./backofficestorage/domain/public folders/myfolder/"
strSQL = "SELECT ""urn:schernas:httpmail:subject"" " &_

"FROM scope('shallow traversal of """ & strURL &_
"""') WHERE ""DAV:iscollection"" = false AND ""DAV:ishidden"" false"

'Create a new Recordset object
Set rst = New Recordset
With rst

'Open Recordset based on the SOL string
.Open strSQL

End With

If rst.BOF And rst.EOF Then
Debug.Print "No Records!"
End

End If

rst.MoveFirst
Do Until rst.EOF
Debug.Print rst.Fields("urn:schemas:httpmail:subject").value

rst.MoveNext
Loop

You'll notice that the SELECT statement contains a SCOPE clause and a WHERE
clause. The SCOPE clause identifies the resource at which you want the search to
begin, such as the URL of a folder. Exchange Server supports deep and shallow tra­
versals of the scope. Requesting a deep traversal of the URL means that Exchange
Server will search not only the specified folder, buta1so all subfoldersit contains. As
you'd expect, requesting a shallow traversal means Exchange Server will search only
the specified folder.

NOTE Deep traversals are not supported in the MAPI Public Folder top-level
hierarchy, but shallow traversals are. Deep traversals are supported in other
TLHs, or in Mailbox folders, however. If your application requires deep travers­
als, this is something you should take into consideration.

819

Part IV Exchange Server 2000 Development

820

With the SCOPE clause, you can request multiple folders as long as the traversal
is the same for all the folders. For example, you might want to perform deep travers­
als of multiple folders that do not have a parent-child relationship. This means that
a single-level deep traversal would not search all the folders. Using the SCOPE clause,
you can specify multiple URLs to search. The following example searches multiple
folders using a shallow traversal. Please note, though, that your traversal must be the
same for all URLs and that this technique will not work in the Public Folder hierarchy.

'Build the SQL statement
strURL = "file:ll./backofficestorage/domain/myTLH/myfolder/Events/"
strURL2 = "file:ll./backofficestorage/domain/myTLH/myfolderIStudents/"

strSQl = "SELECT ""urn:schemas:httpmail:subject"" " &_
"FROM SCOPE('shallow traversal of """ & strURl & _

'shallow traversal of """ & strURL2 & _
"""') WHERE ""DAV:iscollection"" = false AND ""DAV:ishidden"" = false"

Use of the SCOPE clause is optional. If you do not specify the clause, the shal­
low traversal is used. When you have a SCOPE clause without a traversal, the default
traversal is the deep traversal. The following example illustrates this:

'Build the SQl statement
strURL = "file:ll./backofficestorage/domain/myTLH/myfolder/Events/"

'Shallow traversal is used
strSQL = "SELECT ""urn:schemas:httpmail:subject"" " &_

"FROM """ & strURL &

'Deep traversal is used
strSQL = "SELECT ""urn:schemas:httpmail:subject"" " &_

"FROM SCOPE('"'''' & strURL & """')"

The WHERE clause in your Exchange Server queries can be as complex or simple
as you want. The examples above simply check whether the items are collections,
which is really a check to see whether the items are folders or whether they are hid­
den. If either of these checks is true, the item is not returned from the query.

The Training application uses some very complex WHERE clauses in its searches.
For example, the following SQL statement is taken from this application's show­
courses.asp file, which shows the available courses that a student can take:

Function TurnintoISO(dDate,strType)
'Format should be "yyyy-mm-ddThh:mm:ssZ"
strISO = Year(dDate) & "-"
if Month(dDate)(10 then

strISO strISO & "0" & Month(dDate) & "-"
else

strISO strISO & Month(dDate) & "-"
end if

Chapter 18 Developing with Exchange Server 2000

if Day(dDate)<10 then
strISO = strISO & "0" & Day(dDate) & "T"

else
strISO = strISO & Day(dDate) & "T"

end if

if strType = "End" then
'Make it 23:59:59 PM on the day
strISO = strISO & "23:59:59Z"

else
'Make it first thing i~ the morning 00:00:01
strISO = strISO & "00:00:01Z"

end if

TurnintoISO = strISO
End Function

'Figure out the sort order from a QueryString variable
if Request.QueryString("SortBy") = "" then

strSortBy = """urn:schemas:mailheader:subject"""
elseif Request.QueryString("SortBy") = "0" then

strSortBy = """urn:schemas:mailheader:subject"""
elseif Request.QueryString("SortBy") = "1" then

strSortBy ~ """urn:schemas:calendar:dtstart"""
elseif Request.QueryString("SortBy") = "2" then

strSortBY = """~ & strSchema , "category"", _
""urn:schemas:mailheader:subject"""

else
strSortBy = """urn:schemas:mailheader:subject"""

end if

'Figure out the date to show from QueryString

if Request.QueryString(~DateStart") = "" then
dDateStart Date

else
dDateStart CDate(Request.QueryString("DateStart"»

end if

if Request.QueryString("DateEnd") "" .then
dDateEnd Date

else
dDateEnd CDate(Request.QueryStri~g~"DateEnd"»

end if

'Put this date into an ISO format
dISODateEnd = TurnintoISO(dDateEnd,"End")
dISODateStart = Turni~toISO(dDateStart."Start")

(continued)

821

Part IV Exchange ::!!ISI'YE!!!' 2000 DevellODlmE~nt

822

'Build the SQL statement
strSQL = "Select ""urn:schemas:mailheader:subject""," _ &

"""DAV:href"",""urn:schemas:calendar:dtstart""," _ &
"""urn:schemas:calendar:dtend"" FROM scope('shallow traversal of
& strScheduleFolderPath & _
"un,) WHERE (""DAV:iscollection"" = false) AND" & _
"(""DAV:ishidden"" = false) " & _
"AND (""urn:schemas:calendar:dtstart"")= " & _
"CAST(""" & dISODateStart & """ as 'dateTime'»" & _
"AND (""urn:schemas:calendar:dtstart"" (= " & _
"CAST(""" & dISODateEnd & """ as 'dateTime'»" & _
"ORDER BY " & strSortBy

Notice that the SELECT statement uses the CAST clause to cast the date speci­
fied from the URL to the ASP page into a dateTime data type. This is necessary if you
plan to compare dates in your SQL statements. You'll find that you also need to use
the CAST clause to set the correct data types for multivalued properties. The format
for a multivalued string would be CAST(''Properties'' as 'mv. string 'J. Use the CAST
clause for your custom properties that are not strings, except for Booleans. Other­
wise, your custom properties will be evaluated by Exchange as strings.

You'll also notice that the date data type must be formatted into a standard
IS08601 format, such as yyyy-mm-ddThp:mm:ssZ. Exchange Server stores all dates
in Universal Time Coordinate (UTC) and expects your date queries to use the IS08601
format. Therefore, when working with ADO, all dates will be returned as UTC dates
rather than in the client's local time zone. If you want time-zone conversion performed
for you automatically, you need to use CDO instead.

ORDER BY Clause
Exchange Server supports the ORDER BY clause. To see how to use ORDER BY, see
the next code sample taken from the Training application. Exchange Server enables
you to sort your records by multiple columns in both ascending and descending order.
In the Training application, for example, the user can sort the list of courses by sub­
ject, by date, or by category and then by date. You can specify a list of properties in
your ORDER BY clause. If you do not specify 4 sorting order for your property, the
default sorting order is ascending. To specify ascending or descending order, use ASC
or DESC, respectively.

'Figure out the sort order from a querys~rlng variable
if Request.QueryString("SortBy") = "" then

strSortBy = """urn:schemas:mailheader:subject"""
elseif Request.QueryString("SortBy") = "0" then

strSortBy = """urn:schemas:mailheader:subject"""
elseif Request.QueryString("SortBy") = "1" then

strSortBy = """urn:schemas:calendar:dtstart"""
elseif Request.QueryString("SortBy") = "2" then

Chapter 18 Developing with Exchange Server 2000

strSortBy = """a & strSchema & "category""," & _
""urn:schemas:mailheader:subject"""

else
strSortBy = """urn:schemas:mailheader:subject"""

end if

'This will eventually become part of the overall SELECT
'statement, such as:
'SELECT prop FROM URL WHERE condition
'ORDER BY strSortBy

LIKE Predicate
Exchange Server 2000 supports the LIKE predicate, which allows you to perform
quedes using pattern matching of wildcard characters. The format for the LIKE predi­
cate follows:

SELECT Select_List I *
FROtLClause
[WHERE Column_Reference [NOT] LIKE 'String_Pattern']
tORDER-BY_Clau~e]

You can specify any column you want, as long as its data type is compatible with
the stdng pattern specified. Table 18-1 shows the wildcard characters you can use.

Wildcard

Percent

Underscore

Square brackets

Caret

Character
Symbol

%

[]

1\

Description

Matches one or more characters

Matches exactly one character

Matches any single character in the
range or set you specify in the brackets

Matches any single character not within
the range

Table 18-1. Wildcard characters you can use with the llKE predicate.

The following code is taken from the search page for the Training application.
This code uses the % wildcard to perform a full-text search on certain properties to
see whether !pey contain a substriq.g of the search cdteda specified in strText.

strFullText - " AND (""urn:sc~,mas:mailhe~der:subject"" LIKE '%" _
& strText & "%' OR " & _
" ""urn:schemas:httpmail:textdescription"" LIKE '%" & strText &_
"%' OR " & _
" ""urn:schemas:calendar:location"" LIKE '%" & strText & "%' OR " & _
" "H" & strSchema & "instructoremail"" LIKE '%" & strText & "%' OR " & _
" ""a & strSchema & "prereqs"" LIKE '%" & strText & "%')"

823

Part IV

824

Be aware that the LIKE predicate uses the Exchange Server query processor.
This is different than the CONTAINS and FREETEXT statements, which we'll exam­
ine when we look at content indexing. Both CONTAINS and FREETEXT require you
to turn on content indexing before you can use them in your SQL statement. The LIKE
predicate is not as fast as CONTAINS or FREETEXT because the Exchange Server query
processor must search each item to see whether one of its columns contains the value
you specified.

GROUP BY Predicate
Exchange Server 2000 supports the GROUP BY predicate, allowing you to group all
rows that have the same value into a single row. This is useful for cases in which you
might want to obtain distinct counts based on a specific value. For example, you could
use GROUP BY to count the number of people listed in your Inbox who sent you
e-mail. Instead of having to scroll through your Inbox and count the different From
addresses, you can use the GROUP BY statement, as shown here:

strURL = "file://./backofficestorage/domain/mbx/mailbox/inbox/"

'Build the SOL statement
strSOL "Select ""urn:schemas:mailheader:from"" " & _

"From scope{'shallow traversal of """ & strURL & _
"un,) GROUP BY ""urn:schemas:mailheader:from"""

Set conn = New ADODB.Connection
With conn

.Provider = "exoledb.datasource"

.Dpen strURL
End With

'Create a new Recordset object
Set rst = New Recordset
With rst

'Open Recordset based on the SOL string
.Open strSOL. conn

End Wi th

If rst.BOF And rst.EOF Then
Msgbox "No values found!"
End

C'........ T.c
L..IIU .L I

iCount = 0
rst. MoveFi rst
Do Until rst. EOF

iCount = iCount + 1
strFrom = rst.Fields{"urn:schemas:mailheader:from").Value
Debug.Print "From: " & strFrom

Chapter 18 Developing with Exchange Server 2000

rst.MoveNext
Loop
Debug.Print "There are" & iCount & _

" distinct FROM addresses in your inbox."

Here is the output from this code sample:

From: "System Administrator"
<postmaster@thomriznt5dom.extest.microsoft.com>

From: "Thomas Rizzo" <thomriz@thomriznt5dom.extest.microsoft.com>
From: <notifications@domain.com>
There are 3 distinct FROM addresses in your Inbox.

CREATE INDEX Predicate
You might be wondering how you actually force Exchange Server to create a data­
base index on the properties for which you specified the isindexed property to be
True. The current way in RCI is to specify a SELECT * statement on the folder. The
post-RCI method and the preferred way to do this is to use the CREATE INDEX state­
ment. Here is the format for this statement:

CREATE INDEX * ON scopeURL (*)

A command that uses this statement would look like this:

CREATE INDEX * ON
file://./backofficestorage/domain/public folders/my folder/ (*)

Note that the scope of this statement is the folder, so if you have multiple applica­
tion folders, you'll want to run the statement multiple times with the different scopes.
One issue to note is that the index created by Exchange is kept around permanently,
so you need to issue this statement only once per folder. You cannot explicitly name
or delete the index. Creating the index should give your applications faster performance.
This index is different from the full-text index, which we'll discuss in the next chapter.

Aliasing Column Names
To make it easier for you to work with the long schema names that Exchange Server
provides, the Exchange Server OLE DB provider supports aliasing column names. This
means you can give friendly names to the column names of the schema in your
SELECT statements. The following is an example of such aliasing:

strURL = "file:/I./backofficestorage/domain/mbx/thomriz/inbox/"

'Build the SQL statement

strSQL = "Select ""urn:schemas:mailheader:from"" AS " & _
"EmailFrom From scope('shallow traversal of """ & strURL &
"""') ORDER BY EmailFrom"

(continued)

825

Part IV

'Create a new Recordset object
Set rst = New Recordset
With rst

'Open Recordset based on the SOL string
.Open strSOL

End With

If rst.BOF And rst.EOF Then
End

End If

rst.MoveFirst
Do Until rst. EOF
Debug.Print "From: " & rst.Fields("EmailFrom").Value

rst.MoveNext
Loop

As you'll notice in the code, aliasing requires you to use the AS keyword and
then the name of the alias you want for the column. You'll also notice that aliasing
is supported in the ORDER BY clause. However, it is not supported in the WHERE
or GROUP BY clauses. Also, you'll see that aliasing is supported when using the Fields
collection. This makes it easy to create short, memorable aliases for the schema names
in your applications.

NOTE Aliasing will work only for a specific SELECT statement; it is not global
in nature.

WHICH SQL STATEMENTS ARE NOT SUPPORTED?

Exchange Server 2000 does not support the following SQL statements: SET,
DISTINCT, DELETE, INSERT, CONVERT, DATASOURCE, CREATE VIEW, COUNT,
SUM, AVG, MIN, and MAX. Also, remember that Exchange Server does not
support JOIN.

Common Tasks Performed with ADO

826

This section describes the eight most common tasks you'll perform when using ADO
v,riL~ Exchange Server: creating folders, crcatL.ig itcrns, deleting folders or iteillS, copy-
ing folders or items, moving folders or items, working with the Fields collection, working
with Recordsets, and handling errors.

Creating New Folders
To create a new folder using ADO, you need to construct the URL to the folder
and then use the Open method on the ADO Record object with the parameter
adCreateCollection. The following code, taken from the setup program of the Train­
ing application, creates the application folders by using ADO:

Chapter 18 Developing with Exchange Server 2000

Private Sub CreateFolder(strFolderPath, strFolderName, _
strExpectedContentClass, strMAPIFolderClass)
Dim oFolderRecord As New ADODB.Record
oFolderRecord.Open strFolderPath & strFolderName, _
oConnection, adModeReadWrite, adCreateCollection
oFolderRecord.Fields("urn:schemas-microsoft-com:exch-data:" & _

"expected-content-class").Value = Array("urn:content-classes:" & _
strExpectedContentClass)

'Set the Schema collection reference to our schema folder
'even though it may not exist yet
oFolderRecord.Fields("urn:schemas-microsoft-com:exch-data: u & _

"schema-collection-ref").Value = strFolderPath & "schema"
oFolderRecord.Fields("DAV:contentclass").Value

"urn:content-classes:folder"
'Set the PR-CONTAINER-CLASS
'so that Outlook displays it correctly
oFolderRecord.Fields("http://schemas.microsoft.com/mapi/proptag/" & _

PR-CONTAINER-CLASS).Value = strMAPIFolderClass
oFolderRecord.Fields.Update
oFolderRecord.Close

End Sub

Private Sub CreateFolders()
On Error GoTo errHandler
'Create all the folders in a local OLE DB transaction
'so that all are created or none are created
oConnection.BeginTrans
'C~eate the root folder fi~st
Dim oRecord As New ADODB.Record
oRecord.Open strExchangeServerFilePath & txtFolderPath, _

oConnection, adModeReadWrite, adCreateCollection
oRecord.Fields("DAV:contentclass").value = "urn:content-classes:folder"
oRecord.Fields("http://schemas.microsoft.com/mapi/proptag/" & _

PR-CONTAINER-CLASS).Value = "IPF.Note"
strPath = oRecord.Fields("DAV:href")
oRecord. Close
strPath = strPath & "I"
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,
CreateFolder strPath,

"Categories", "message". "IPF.~ote"
"Configuration", "message", "IPF.Note"
"Course Materials", "message", "IPF.Note"
"Discu~sions", "message", "IPF.Note"
"Emails", "message", "IPF.Note"
"Instructors", "instructor", "IPF.Contact"
"Pending", "message", "IPF.Note"
"Schedule", "trainingevent", "IPF.Appointment"
"schema", "message", "IPF.Note H

"Students", "student", "IPF.Contact~
"Surveys", "message", "IPF.Note~

(continued)

827

Part IV

828

CreateFolder strPath. "Surveys\Courses". "survey". "IPF.Note"
CreateFolder strPath. "Surveys\Instructors". "survey". "IPF.Note"
If Err.Number = 0 Then

oConnection.CommitTrans
End If
Exit Sub

errHandler:
MsgBox "Error in CreateFolders. Error" & Err.Number & " " & _

Err.Description
oConnection.RollbackTrans

End Sub

Notice that the code wrapped in an OLE DB transaction. The CreateFolder
subroutine takes the full URL to the new folder to be created, creates a new Record
object, and calls the Open method on that object with the URL. The Open method
takes several parameters. The syntax for the Open method is shown here:

Open Source. ActiveConnection. Mode. CreateOptions. Options. _
UserName. Password

To create the folder, you need to pass the Mode parameter the value adReadWrite,
and the CreateOptions parameter the value adCreateCollection. Exchange 2000 does
not support passing a username and password.

If you're using schema, you can set the expected-content-class and schema­
collection-ref fields on the folder. You should set the content class of the folder to
urn:content-classes.folder. Also, if you plan to display the folder in Outlook, you
need to set the PR_CONTAINER_CLASS property in the MAPI name space, which is
"http.//schemas.microsoft.comlmapi/proptag/". You should pass the unique hex iden­
tifier to the property you're interested in without the leading O. For example, Ox00212
would be x00212. If you don't want to set the MAPI property yourself, you could
instead set http.//schemas.microsoft.comlexchangeloutlookfolderclass to IPFNote or
another value.

If you're trying to access custom properties you created in Outlook via ADO,
you need to use a slightly different format. The following code shows you how to
get a custom property, called MyProp, that you set through MAPl. This property can
be created using MAPI itself, CDO, or Outlook. The long Gum that you see in the
code is the m for the PS PUBLIC STRINGS property set, where public properties are
created in MAPl.

strSOL = "Select ""http://schemas.microsoft.com/mapi/string/" & _
"{00020329-0000-0000-c000-000000000046}/MyProp"" AS MAPIProp" & _
" From scope('shallow traversal of """ & strURL & """')"

'Create a new Recordset object
Set rst New Recordset

Chapter18 Developing with Exchange Server 2000

With rst
'Open Reeordset based on the SOL string
.Open strSOL
End With

If rst.BOF And rst.EOF Then
End

End If

rst.MoveFirst
Do Until rst.EOF

Debug.Print "MyProp: " & rst.Fields("MAPIProp").Value
rst.MoveNext

Loop

Note that this format is not the only format you can use to query for MAPI
properties. One format requires that you know the propset ID and the hexadecimal
value for the property, and it is illustrated in the next bit of code. The other two formats
are easier to use, but the one I just mentioned can be used to access, properties in
your own namespaces beyond the public strings namesp~ce.

http://sehemas.mierosoft.eom/mapi/id/{propset GUID}/value

Example:

http://sehemas.mierosoft.eom/mapi/id/{3f0a69e0-7f56-11q2-b536-
00aa00bbb6e6}/0xfeedfaee

Creating New Items
Creating new items in Exchange Server using ADO is very similar to creating folders
with ADO. The only difference is that you will pass as the Createoptions parameter
the value adCreateNonCollection. Other than that, it's pretty much the same code.
The following code from the setup program of the Training application shows how
to create a new item. The code creates e-mail messages for different notifications for
the application, such as a new course or an authorizatipn requirement. This makes
the application fairly easy to configure, depending 011 which settings you specify. Note
that I set the MAPI property tag for the message class. You could also set the prop­
erty http://schemas.microsojt.com/e:;cchange/outloqkm,essageciass to the correct mes-
sage class for your item. ," .

Private Sub CreateEma11Templates()
On Error GoTo errHandler:

oConneetion.BeginTrans
'Open the Emails folder
Dim oRee As New ADODB.Reeord
oRee.Open strPath & "Emails". oConneetion. adModeReadWrite. _

adFailIfNotExists
(co,ntinuedJ

829

Pari IV Exchange Server 2000 Development

830

'Create a new post in the folder by using ADO
Dim oErnail As New ADODB.Record
oErnail.Open strPath & "Ernails/New Discussion Group Email", _

oConnection, adModeReadWrite, adCreateNonCollection

'Open the text file on the hard drive
'and read the data

Open App.Path & "\discussio~ernail.txt" For Input As #1
Dim strMessage
Do While Not EOF(l)

Input #1, strLine
strMessage = strMessage & strLine

Loop
Close In

oErnail .Fields("urn:schernas:httprnail:textdescription").Value
strMessage

oErnail .Fields("DAV:contentclass") = "urn:content-classes:rnessage"
oErnail .Fields("http://schernas.rnicrosoft.com/rnapi/proptag/" & _

PR-MESSAGCCLASS).Value = "IPM.Post"
oErnail.Fields.Update
oErnail.Close

oErnail.Open strPath & "Ernailsl " &_
"Survey Email", oConnection, adModeReadWrite, adCreateNonCollection

'Open the text file on the hard drive
'and read the data

Open App.Path & "\surveyernail.txt" For Input As #1
strMessage =
Do While Not EOF(l)

Input #1, strLine
strMessage = strMessage & strLine

Loop
Close IH

oErnail.Fields("urn:schernas:httprnail:textdescription").Value
strMessage

oErnail.Fields("DAV:contentclass") = "urn:content-classes:rnessage"
oErnail.Fields("http://schernas.rnicrosoft.com/rnapi/proptag/" &_

PfU1ESSAGE_CLASS). Val ue = "IPM. Post"
oErnail.Fields.Update
oErnail.Close

oErnail.Open strPath & "Ernails\New Course Email", oConnection, _
adModeReadWrite, adCreateNonCollection

'Open the text file on the hard drive
'and read the data

Chapter 18 Developing with Exchange Server 2000

Open App.Path & "\courseemail.txt" For Input As 'I
strMessage =
Do While Not EOF(l)

Input 'I. strLine
strMessage = strMessage & strLine

LooP.
Close III

oEmai]~Fields("urn:schemas:httpmaii:textdescription").Value
,strMessage ,

oEmaii .Fields("DAV:contentclass") ~ ~~rn:content-classes:message"
oEmajl.Fields("http://schemas.microsott.com/mapi/proptag/" &_

,P~MESSAGE_CLASS).Value = "IPM.Post"
oEmail.Fields.Update
oEmail.Close

'Create a new post in the folder by using ADO
oEmail.Open strPath & "Emails/Workflow~essage". oConnection. _

adModeReadWrite. adCreateNonCollection

'Open the text file on the hard drive
'and read the data

Open App.Path & "\workflowmessage.txt" For Input As III
strMessage = ""
Do While Not EOF(l)

Input 'I. strLine
strMessage = strMessage & strLine

Loop
Close III

oEmail.Fields("urn:schema~:httpmail:textdescription").Value

strMessage
oEmail.Fields("DAV:contentclass") = "urn:content-classes:message"
oEmail.Fields("http://schemas.microsoft.com/mapi/proptagI" & _

P~MESSAGE_CLASS).Value = "IPM.Post"
oEmail.Fields.Update
oEmail.Close

oRec.Close

If Err.Number = 0 Then
oConnection.CommitTrans

End If

Exit Sub
(continued)

831

Part IV

832

errHandler:
MsgBox "Error in CreateEmailTemplates. Error" & Err.Number & _

" " & Err.Description
oConnection.RollbackTrans
End

End Sub

When creating items using ADO, you have to watch out for conflicting names.
Check to see whether you receive an error when trying to create an item or folder.
If so, pick a different name or add a random number to the end of the name. The
following code shows you how to do this:

On Error Resume Next
Set rec = Server.CreateObject("ADODB.Record")
With rec

. Open strStudents Fo 1 derPath & "I" & st rName. • 3. 0
if err.number = &H80040e98 then
'Already exists; try to open with a random name!

err.clear
Randomize
iRandom = Int«50000 * Rnd)+l)
.Open strScheduleFolderPath & "I" & strName & iRandom •• 3.0

end if
End With

Deleting Folders or Items
To delete a folder or an item, you cart use the DeleteRecord method on an ADO Record
object. If you delete a folder, all items in the folder also will be deleted. The follow­
ing code sample shows you how to delete a folder called MyFolder:

Set Rec = CreateObject("ADODB.Record")
'This URL is for a public folder
strURL = "file:ll./backofficestorage/" & DomainName & "I" & strFolderPath

Rec.Open strURL
Rec.DeleteRecord
'Or you could do
'Rec.DeleteRecord strURL
Rec.Close

If you want to delete items using a Recordset instead of the Record object, you
can use the Delete method of the Recordset object. The following example deletes
all items in a folder:

'Create a query with a WHERE clause to delete only items
strQ = "SELECT * FROM scobe('shallDw traversal of " & Chr(34) & _

strURL & Chr(34) & "'I"
strQ = strQ & " WHERE ""DAV:isfolder"" = FALSE"

Chapter 18 Developing with Exchange Server 2000

'Open the Recordset
Rs.Open strQ

Rs.MoveFirst

Do Until RS.EOF

'Delete current record (row); 1 is parameter for adAffectCurrent
RS.Delete 1
Rs.MoveNext

Loop

Copying Folders or Items
To copy folders or items, use the CopyRecord method on the Record object. If you
copy a folder, all items and subfolders will be copied as well. Note that you cannot
copy folders or items between Exchange Server databases. Therefore, you cannot copy
between private or public databases because they reside in different Exchange Ser­
ver databases. However, you could create a new item in the separate database, copy
the properties from the original item to the new item, and save the new item. The
creator, creation time, and other properties on the item will not be the same as those
of the original item, however. The following code copies an item named MyItem from
one folder to another:

Set Rec = CreateObject("ADODB.Record")
strURL = "file:ll./backofficestorage/" & DomainName & "I" & _

strPath & "/MyItem"
Rec. Open s trU RL
Rec.CopyRecord ."file:ll./backofficestorage/" & DomainName & _

"I" strDestination

Moving Folders or Items
To move items, you can call the MoveRecord method. Moving has the same restric­
tions as copying in that you cannot move between Exchange Server stores. Moving
a folder moves all the items in the folder as well. The following code sample moves
an item:

Set Rec = CreateObject("ADODB.Record")
Rec. Open URLFrom. • adModeReadWrite
NewURL = Rec.MoveRecord URLFrom. URLTo. " .. "" .

This is the syntax for the MoveRecord method:

adMoveOverWrite

URL = MoveRecord (Source. Destination. UserName. Password. Options. Async)

This method typically returns the Destination parameter, which is a string value
of the destination the item was moved to. The Options parameter allows you to pro­
vide options for the move. The most common option you'll provide is the
adMoveOverWrite option.

833

Part IV

834

Using the Fields Collection
You've already seen how to get properties using the Fields collection in ADO. You
might want to set properties on an item or folder using the Fields collection. If you do
so, remember that the property is available only on the specified item rather than on
every item in the folder. Adding new fields using the Fields collection is not like adding
custom schema. When you add to the Fields collection, your properties are not
included when a SELECT * statement is issued. Unlike schema, new properties added
to the Fields collection cannot be shared among multiple items in a folder unless you
explicitly create the property on every item. With schema, you can set the content
class of your items to be of a particular type, and those items will implement the
properties that you specified in your schema.

The Fields collection supports the Append method, which allows you to add cus­
tom fields to a Recordset or a Record object. Here is the syntax for the Append method:

fields.Append Name, Type, DefinedSize, Attrib, FieldValue

The Type parameter specifies the data type of the field. This parameter can have
one of many different values; however, you'll probably use one of the following:
adWChar, adBStr, adDate, ad/nteger, or adBoolean.

The De!inedSize parameter specifies the size of the new field. Normally, you
would leave this parameter blank because ADO will base the size of the new field
on the data type you specify.

The Attrib parameter allows you specify attributes of the field-for example,
whether the field is nullable or contains fixed-length data. Normally, you would leave
this parameter blank too, unless your field really needs special handling.

The final parameter is a value for the field. Instead of having to create the field
and then use another line of code to set the value, ADO allows you to simply assign
the value to the field right in its parameter.

The following code shows you how to add new fields to a record:

'Assumes oNewRecord is a new item in Exchange Server
oNewRecord.Fields.Append "MyNewProp",adInteger",12
oNewRecord.Fields.Update

Notice how the code calls the Update method on the Fields collection. If you
do not call the Update method, your changes won't be saved to Exchange Server-

for your fields might have changed while you were working with your data, you can
call the ReSync method to have ADO requery Exchange Server for the latest values
for your data.

Working with Recordsets By Using ADO
One of the most common tasks you'll perform with ADO is working with Recordsets.
To efficiently work with the Recordset object, you'll need to know about some of its

Chapter 18 Developing with Exchange Server 2000

methods. For example, you'll need to know how to scroll through records in the
recordset as well as detect the end of the recordset.

The first thing that you will want to know about your Recordset after you have
Exchange perform a query for you is the number of items returned in the Recordset.
ADO provides a Recordcount property on the Recordset object so that you know how
many records are contained in the Recordset. This number depends on the cursor
type you use for your Recordset. Table 18-2 outlines the different cursor types and
how they affect the Recordcount property.

Cursor Type

Dynamic

Keyset

Static

Forward Only

Recordset Count
Description Returned

Dynamic collection of records that is -1
the most flexible of all cursors. Add-
itions, changes, and deletions by you
or other users are immediately visible.
You can scroll forwards or backwards
through the records.

Like a Dynamic cursor except that
you cannot see the records added
by other users. You cannot access
the records that other users delete.

A copy of the records. Additions,
changes, and deletions by other
users are not reflected, but any type
of movement is allowed.

Very similar to static except that you
can only scroll forward through the
records. This is the default type of
cursor created.

-1

Actual number

Actual number

Table 18-2. Cursor types and their effect on the Recordcount property.

Using the Recordcount property's value, you can decide whether you need to
scroll through the records if any were returned. To make scrolling the records easy
in a Recordset, ADO provides the BOF and BOF properties on a Recordset object. BOF
is a Boolean that, if True, indicates that the current record position is before the first
record-in effect, it indicates that you are at the beginning of the Recordset. BOF is
a Boolean that, if Tru(!, indicates that the current record position is after the last record
in the Recordset. To ensure you do not read beyond the end or the beginning of your
Recordset, you can use these two properties while scrolling through the Recordset
either forwards or backwards.

To actually scroll through the recordset, you'll need to use the MoveFirst,
MoveNext, MoveLast, and MovePrevious methods of the Recordset object. Depending

835

Part IV

on the cursor type you specify, these methods will provide you with differing degrees
of usability. The method names are pretty self-explanatory. MoveFirst moves you to
the first record, MoveNext moves you to the next record if it exists (and returns an
Error object if it doesn't exist), MoveLastmoves you to the last record, and MovePrevious
moves you to the previous record.

Handling Errors in ADO
You always have to be prepared to handle errors in your code. ADO provides built­
in error-handling capabilities through its Errors collection on the Connection object.
The Errors collection contains Error objects. These Error objects have three proper­
ties of interest to Exchange developers:

• Description. The default property for the Error object. This is a string
representation of the error text.

• Number. A long integer that contains the number associated with the error.
You can look at the ErrorValueEnum constants in ADO to see whether
this number matches one of the ADO-defined errors.

• Source. A string that contains the name of the object that raised the error.

You can use the Errors collection in your error handling to scroll through all
the Error objects contained in the collection. When you find the errors, you can then
take action on them. For example, you can rollback a transaction, which we'll see
shortly, or print an error message for the user.

Using OLE DB Transactions

836

The Exchange Server OLE DB provider supports local OLE DB transactions. This
allows you to treat your ADO operations as tranasactions when working with Ex­
change Server. If for some reason an operation fails during the transaction, you can
roll back the entire transaction without leaving your Exchange Server application in
an inconsistent state. Since Exchange Server transactions are different than SQL Ser­
ver ones, there are a few things you need to know.

First, as you would expect, for the transactions to work you must perform all
your ADO operations on the same connection to the Exchange server. Therefore,
'~VllelYUsing the methods of the Record or Rccordsct object, alvvays pass as a parameter
the Connection object that you created at the beginning of the transaction.

Second, transactions in Exchange Server are not supported across Exchange
Server stores. This means transactions will not work if performed on folders or items
located in different Exchange Server stores. The most common examples of differ­
ent Exchange Server stores are the private store and the public store.

Chapter 18 Developing with Exchange Server 2000

Finally, Exchange Server does not support distributed transactions with SQL
Server. You cannot wrap in a single transaction ADO commands between the two
databases, nor can you use the distributed transaction coordinator with both data­
bases. Therefore, you should use local transactions in each database and should
perform all your SQL Server work before doing your Exchange Server work. That way,
you guarantee that i:he SQL Server transactions go through, and you don't have to
worry about rolling back your Exchange Server transactions.

You will work with a transaction by using one ADO Connection object. On this
Connection ,object, you wili first need to call the BeginTrans method, which starts a
transaction. when your ADO methods are complete, you cali the CommitTrans method,
which attempts to commit the transaction to the Exchange database. If you find that
an error occurred during your ADO calis, you can use the RollBackTrans method to
roll back the entire transaction. The following example, taken from the Training
application setup program, shows you how to use these methods:

Private Sub CreateCategoryMessage()
On Error GoTo errHandler:

oConnection.BeginTrans
'Open the Categories folder
Dim oRee As New ADODB.Reeord
oRee.Open,strPath & "Categories". oConneetion. adModeReadWrite. _'

adFaillfNotExists

'Create a new post in tn~ folder by using ADO
Dim oEmail As New ADODB.Reeord
oEmail.Open strPath & "Categories\Categories". oConneetion. _

adModeReadWrite. adCreateNonColleetion

oEmail.Fields("urn!sehemas:~ttpmail:textdeseription~).Value =_
strCategories ,

oEmail.Fields("http://sehemas.mierosoft.eom/mapi/proptag/~ &_
PILMESSAGE_CLASS).Value = "IPM.Post"

oEmail.Fields.Update
oEmail.Close

oRee.Close

If Err.Number = 0 Then
oc.onneetion.CommitTrans

End If
(continued)

837

Part IV Exchange Server 2000 Development

Exit Sub
errH!lndler:

MsgBox "Error in CreateEmailTemplates. Error" & Err.Number & _
" " & Err.Description

oConnection.RollbackTrans
End

End Sub

Best Practices for Using ADO

838

There are three best practices for working with ADO and Exchange Server 2000. First,
learn your Exchange Server properties well. When working with ADO, you'll need
to remember all the different properties in all the different name spaces that Exchange
Server provides. The most common ones that you will work with are listed here.
For the full list of properties, refer to the Exchange Server SDK included on the
companion CD.

• DAV:href

• DA V·contentclass

• DA V·displayname

• DA V·iscollection

• DA V:isfolder

• DA V·ishidden

• DA V·isreadonly

• urn:schemas-microsoft-com:office:offlce#Author

• urn:schemas-microsoft-com:office:offlce#Category

• urn:schemas-microsoft-com: office: office#Comments

• urn:schemas:httpmail:to

• urn:schemas:httpmail:subject

• urn:schemas:httpmail:cc

• urn: schemas:httpmail: hasattachment

• urn:schemas:httpmailfrom

The second best practice is to use transactions wherever appropriate. There are
a number of reasons for this. First, it allows you to roll back the Exchange Server
database to the original state in case of an error. Second, using transactions is key

Chapter 18 Developing with Exchange Server 2000

when working with events. If you create an item in the database using ADO, Exchange
Server will fire an event. If you then update the fields after creating the item, Ex­
change Server will fire another event. You don't want this to happen; you want only
one event to fire. (The problem of multiple events firing can be a tough one to debug.)
When you use transactions, the information automatically is entered into the Exchange
Server database, thereby causing only one event to fire.

The third best practice for working with ADO is to reuse a connection that
already exists. Creating new connections to the Exchange Server database taxes your
computer's resources because Exchange Server needs to keep open the connections
you create. Therefore, you should reuse the same Connection object in a session
variable-especially if you're writing ASP applications.

CDO FOR EXCHANGE SERVER 2000
Exchange Server 2000 contains a new version of CDO called CDO for Exchange 2000.
This version of CDO builds on OLE DB, meaning that its object model is different
from that of previous versions. For example, instead of having navigational objects,
such as InfoStore, the new version of CDO relies on ADO for record navigation.
Therefore, if you want to query Exchange Server for a specific set of records, you
need to rely on ADO. However, if you want to perform collaborative fUnctions on
those records, you need to use CDO. You can retrieve items using ADO, and then
open and process each item using CDO.

CDO adds collaborative functionality above and beyond that provided by ADO.
If you need to create recurring meetings, ADO won't be very helpful-for example,
you would have to determine which properties to set to make an appointment recur
on the third Tuesday of every month. With CDO, however, you set some properties,
save the appointment, and suddenly you have a recurring meeting. CDO does all the
hard coding for you behind the scenes.

CDO and ADO were designed to work together. Both object models have the
same Fields collection. Furthermore, CDO objects can be bound directly to ADO
objects. This allows you to use the same connection with the Exchange server.

CDO Design Goals
Microsoft had a number of design goals in mind for the CDO object library. First, as
just discussed, integrating with and extending ADO was key. Second, having learned
from previous versions of the CDO object model, the CDO design team knew the
model needed to be dual interfaced. Making the CDO object model dual interfaced
meant that different development environments, such as Visual Basic, Microsoft Visual
C++, and ASP, could take advantage of it. The third goal was that CDO adhere to
Internet standards. Internet standards are now critical to CDO since it uses vCard, iCal,

839

Part IV

Lightweight Directory Access protocol (LDAP), Multipurpose Internet Mail Extensions
(MIME), MIME Encapsulation of Aggregate HTML Documents (MHTML), Simple Mail
Transfer Protocol (SMTP), and Network News Transfer Protocol (NNTP). The final and
probably most important goal when designing CDO was to make the developer's job
easier by providing a rich set of objects on top of OLE DB for building collaborative
applications.

CDO FOR WINDOWS 2000

You might have seen CDO for Windows 2000. Consider this object model the
little brother of CDO for Exchange Server 2000. CDO for Windows 2000 pro­
vides SMTP and NNTP support. CDO for Windows 2000 also provides support
for protocol events such as SMTP events. However, CDO for Windows 2000 does
not provide mailbox support or public folder support. CDO for Exchange Ser­
ver 2000 provides these features and extends CDO for Windows 2000. If you
get started with CDO for Windows 2000, you'll have a working knowledge of
the basics of CDO for Exchange Server 2000.

CDO Object Model

The CDO object model consists of five main components. Notice I say components
rather than objects, since the CDO object model contains dozens of objects. The five
main components are messaging, calendaring, contacts, workflow, and management.
well cover the most common tasks you'll perform with the CDO library in each of
these areas, with the exception of management. I won't cover the specific proper­
ties and methods of these CDO object model components in great detail. Since the
Exchange Server SDK proVides extensive documentation on this subject, I'll refer you
to the SDK on the companion CD for specific information.

NOTE To see how you can use the COO library to perform management tasks,
such as setting storage limits and creating stores, look at the COO for Exchange
Management object model on the Exchange Server SDK, included on the com­
panion CD.

Frequently Used Objects in CDO

840

You'll commonly work with two objects, the Configuration object and the DataSource
object, on all CDO objects you use in your applications. Before we look at the most
typical CDO functionality you'll use, let's examine these two objects.

Chapter 18 Developing with Exchange Server 2000

Configuration Object
The Configuration object allows you to customize the parameters CDO uses and the
way CDO works. For example, using the Configuration object, you could set the e­
mail address of the message sender, set the proxy server to use, set the username
and password if you require authentication via SMTP or NNTP, or select other con­
figuration options. The following code, taken from the workflow process, sets the
sender e-mail address for a meeting request to the notification address you specified
in the setup program of the Training application:

'Create a throwaway appointment
set oAppt = CreateObject("CDO.Appointment")
set oConfig = CreateObject("CDO.Configuration")
strNotificationAddress = GetWorkflowSessionField("notificationaddress")
oConfig.Fields(http://schemas.microsoft.com/cdo/ & _

"configuration/sendemailaddress") = strNotificationAddress
oConfig.Fields.Update

oAppt.Configuration = oConfig

As you can see in the code, you use the Fields collection on the CDO Configu­
ration object to set your properties. All the properties you can set are contained in
the ''http://schemas.microsoft.comlcdolconfiguration'' name space.

Another common scenario that you'll use the Configuration object for is setting
the time zone for viewing appointments from Exchange Server. Remember that
Exchange Server stores dates in UTe. Any dates you retrieve through ADO will be
returned in UTe. However, you can use CDO to change UTC dates to local time zone
dates for the client. Sometimes you might want to use a different time zone in your
application than the one originally detected by CDO. The Configuration object allows
you to do this. The following code changes the time zone to Mountain:

Dim objAppt As New CDO.Appointment
Dim objConfig As New CDO.Configuration
objConfig.Fields(cdoTimeZoneID) = cdoMountain
objAppt.Configuration = objConfig

DataSource Object
The DataSource object provides access from CDO objects to data sources, such as
the Web Storage System or Active Directory. You can use the DataSource object to
open or save items to data sources from CDO. There are six methods on the DataSource
object that you should become familiar with: Open, OpenObject, Save, Save To,
SaveToContainer, and SaveToObject.

841

Part IV

842

Open method
The DataSource object's Open method is similar to the Open method on the ADO
Record object. The only difference is that ADO can create items using the Open
method, while CDO cannot. This is the syntax for the Open method:

Open(
ByVal SourceURL as String.
ByVal ActiveConnection as Object.
[ByVal Mode as ConnectModeEnum].
[ByVal CreateOptions as RecordCreateOptionsEnum].
[ByVal Options as RecordOpenOptionsEnum].
[ByVal UserName as String].
[ByVal Password as String]

A code example that uses the open method in conjunction with an ADO Recordset
is shown here:

Dim rs as New Recordset
Dim msg as New Message

fldr = "file:ll./backofficestorage/domain/MBX/user/inbox"

rS.Open "Select * from" & _
"scope('shallow traversal of " & _
" & fldr & "')" &_
"where urn:schemas:mailheader:subject

rs.MoveFirst

'hello'"

msg.DataSource.Open rs("DAV:href").rs.ActiveConnection

OpenObject method
You can use the OpenObject method to open data from another object rather than
from a data source such as Exchange Server. A common use for Open Object is to open
an embedded message in another message. This is the syntax for Open Object:

OpenObject(ByVal Source as Object. ByVal InterfaceName as String)

The following code sample opens an embedded message within another mes­
sage. The code assumes you already retrieved the object that represents the embed­
ded 111eSsage in a variable named oBodY.1nart.

oDataSource.OpenObject oBodyPart. "IbodyPart"

Save method
The Save method writes back data to the currently opened data source. This method
is so simple that we won't even look at a code sample. You should, however, call
this method if you change any values that need to be written back. You should also

Chapter 18 Developing with Exchange Server 2000

make sure you open the data source with the read/write flags; otherwise, you will
receive an error.

SaveTo method
The SaveTo method allows you to save an item to a URL you specify. As you will see
momentarily, this method differs from the SaveToContainer method, which doesn't
let you specify a URL to the item that you want to create. Instead, the SaveToContainer
method lets you specify the URL to the container where you want to save the item.
When you use SaveToContainer, CDO generates a GUID to identify your item. This
is actually quite useful because you do not have to worry about conflicting URLs when
saving items. The syntax for the SaveTo method is shown here, along with a code
sample:

SaveTo(
ByVal SourceURL as String.
ByVal ActiveConnection as Object.
[ByVal Mode as ConnectModeEnum].
[ByVal CreateOptions as RecordCreateOptionsEnum].
[ByVal Options as RecordOpenOptionsEnum].
[ByVal UserName as String].
[ByVal Password as String]

'Assume oMsg is a valid message
Set oDataSource oMsg

oDataSource.SaveTo "PATHTOFOLDER/myitem.eml". _
MyCONN. _
adModeReadWrite. _
adCreateOverwrite

SaveToContainer method
The SaveToContainer method, as just discussed, saves the item to a container you
specify and assigns a GUID as the identifier for the item. Here is the syntax for the
SaveToContainer method, along with a code sample taken from the Training appli­
cation that saves a new course to the schedule folder:

SaveToContainer(
ByVal ContainerURL as String.
ByVal ActiveConnection as Object.
[ByVal Mode as ConnectModeEnum].
[ByVal CreateOptions as RecordCreateOptionsEnum].
[ByVal Options as RecordOpenOptionsEnum].
[ByVal UserName as String].
[ByVal Password as String]

(continued)

843

Part IV

wi th i Appt
.Fields("DAV:contentclass").Value

"urn:content-classes:trainingevent"
.Fields(strSchema & "instructoremail").Value

Cstr(Request.Form("email"))
.Fields(strSchema & "prereqs").Value = CStr(Request.Form("prereqs"))
.Fields(strSchema & "seats").Value = CStr(Request.Form("seats"))
.Fields(strSchema & "authorization").Value = _

Cstr(Request.Form("authorization"))
.Fields(strSchema & "category").Value = cStr(Request.Form("category"))

.Fields("http://schemas.microsoft.com/mapi/proptag/" & _
"x001A001E").Value = "IPM.Appointment"

.Fields.Update
end with

iAppt.DataSource.SaveToContainer strScheduleFolderPath

SaveToObject method
The SaveToObject method allows you to save data to a run-time object rather than
to a data source. SaveToObject works the same way as the OpenObject method, except
that you're saving information rather than opening it.

CDO Messaging Tasks

844

In this section, we'll look at some of the most common CDO messaging tasks you
can perform. But first you need to know how MIME works, since CDO leverages MIME
to read and store content.

The MIME specification divides a message body into parts separated by bound­
ary tags. This enables a mail reader to discern where the logical breaks between parts
occur. The message body parts can contain child parts or data. MIME body parts can
have one of two content types: singular parts or multiple parts. The nice thing about
CDO is that, unless you really want to, you don't have to deal with the MIME stream
itself; CDO provides an easy object model to manipulate MIME. By supporting MIME,
CDO allows you to send complex messages, such as embedded messages, as well as
messages that contain HTML pages. The following is an example of a MIME message:

From: "Thomas Ri zzo" <thomri z@microsoft.com>
To: ~~acy- (5Lacy@LesL.com >
Subject: Text and HTML Message
Date: Tue, 7 Mar 2000 3:32:48 -0700
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="----=_123"
------=_ 123
Content-Type: text/plain; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
This is a multipart/alternative text & html message.

Chapter 18 Developing with Exchange Server 2000

------=_ 123
Content-Type: text/html; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<HTML>
<BODY>This is a multipart/alternative text & html message.
</BODY></HTML>
------=_123--

Now we're ready to discuss the various CDO messaging tasks.

Sending a Standard Message
Sending an e-mail using CDO is straightforward. You simply create the CDO mes­
sage object, address the message, set the subject and body, and then send the message.
We'll look at some of the more complex tasks you can perform with CDO messages
in a moment. The code for sending a simple message is shown here:

set oMsg = createobject("CDO.message")
oMsg.To = "stacy@test.com"
oMsg.From = "bob@test.com"
oMsg.Subject = "Hello world!"
oMsg.AutoGenerateTextBody = True
oMsg.MimeFormatted = True
oMsg.HTMLBody = "<HTML><BODY>This is HTML!</BODY></HTML>
oMsg.Send

Sending an MHTML Message
In addition to sending a simple HTML message, CDO allows you to send a message
with an entire Web page embedded in it. The MHTML standard enables you to take
HTML content, convert it into MIME, and embed it in an e-mail message. In CDO,
creating an MHTML message is as easy as calling a single method: CreateMHTMIBody.
This method takes the following parameters: the URL of the Web resource you want
to embed; flags that specify arty content you don't want to embed, such as sounds
or images; and if the Web site that you're embedding requires authentication, a
username and password. The following code embeds the Microsoft Exchange Web
site into an e-mail and mails it:

Set oMsg = CreateObject("CDO.Message")
oMsg.To = "test@test.com"
oMsg.Subject = "Exchange Web site"
oMsg.CreateMHTMLBody "http://www.microsoft.com/exchange"
oMsg.Send

Adding an Attachment
CDO makes adding attachments easy too. CDO supports an Addattachment method,
which takes as a parameter a URL for the resource you want to add, and if that
resource requires authentication, a username and password. If successful, CDO will

845

Part IV

846

return to you the MIME body part that corresponds to the new attachment. Adding
an attachment is shown here:

Dim oMsg as New CDO.Message
Dim oBp as CDO.IBodyPart
Set oBp oMsg.AddAttachment("http://www.microsoft.com/myfile")
Set oBp iMsg.AddAttachment("c:\docs\my.doc")
Set oBp iMsg.AddAttachment("file:llmypublicshare/docs/mydoc.doc")
iMsg.Send

Adding Mail Headers
You can now access mail headers directly from CDO. Most of the properties that you'll
want to access in the mail header already are exposed as top-level properties in CDO.
For example, you could look in the mail header to see who a message is from and
who it will be sent to. However, CDO already has two properties that perform this
service for you: From and To. You instead might want to access the mail headers for
a message you're having a problem with, if CDO doesn't provide an object for the
header you're interested in or if you want to get and set custom headers. The fol­
lowing code sets some built-in and custom headers in an e-mail message:

Dim oMsg as New CDO.Message
Dim oFlds as ADODB.Fields
Set oFlds = oMsg.Fields

With oFl ds
.Item("urn:schemas:httpmail :to") "test@test.com"
.Item("urn:schemas:httpmail:from")="stacy@test.com"

.Item("urn:schemas:mailheader:mycustomheader") = "test"

.Update
End With

Resolving Addresses
Before adding addresses to the To, ee, or Bee properties on a CDO Message object,
you might want to resolve the address against a directory or the Contacts folder to
make sure the address is correct. The way to resolve addresses is to use the CDO
Addressee object. This object has a number of properties such as the DisplayName
Of ErnailAddress properties that you can fill out to try'" and resolve an address. The
names of these properties clue you in to what values should go in them. Once you
create the Addressee object and fill in one of the two properties described above,
you can call the eheckName method, which takes either an LDAP path to your Ac­
tive Directory or the file path to a Contacts folder contained in Exchange Server 2000.

If the address can be resolved without ambiguous names, you can use some
other properties on the Addressee object to get more information about the person.
For example, the DirURL property returns either the Active Directory path or the File

Chapter 18 Developing with Exchange Server 2000

path to a contact, depending on whether you are validating the address against the
Active Directory or the Contacts folder. You can also call the ResolvedStatus property,
which will contain a a for unresolved, 1 for resolved, and 2 for ambiguous. If you
get an ambiguous address, you can use the AmbiguousNames property to return the
Addressees collection, which is made of Addressee objects that are ambiguous with
respect to your current Addressee object.

The following sample shows you how to use the properties and methods just
described:

Dim oAddressee as New CDO.Addressee

'Use the Display Name
oAddressee.DisplayName = "Thomas Rizzo"

'Use the Active Directory

oAddressee.CheckName "LDAP://thomrizntSsrv"
if oAddressee.ResolvedStatus = 1 then

'Resolved
msgbox oAddressee.DirURL & vblf & oAddressee.EmailAddress

end if

'Use the E-mail Address

Dim oAddressee2 as New CDO.Addressee
oAddressee2. Email Address=!·thomriz@thomrizntSdom.microsoft.com"

'Use a Contact folder

oAddressee2.CheckName "file://./backofficestorage/" & _
"thomrizntSdom.microsoft.com/public folders/contacts"

if oAddressee2.ResolvedStatus = 2 then
'Ambiguous
set oAddressees = oAddressee2.AmbiguousNames
for each otmpAddressee in oAddressees

'Scroll through the ambiguous addressees
msgbox otmpAddressee.EmailAddress

next
end if

CDO Calendaring Tasks
The new version of CDO provides some invaluable calendarjng features. For example,
if you have the correct permissions, you can open other users' calendars and per­
form operations on those calendars. Also, you can use public folder calendars. Plus,
CDO direcdy supports iCalendar, which allows you to send meeting requests in a
standard format that other clients can understand. The follOwing sections show you
the most common tasks you'll perform with the CDO calendaring component.

847

Part IV Exchange Server 2000 Development

848

Creating Appointments
Creating appointments by using CDO is as easy as creating a new CDO Appointment
object, specifying some properties, and using the Datasource interface on the
Appointment object to save the appointment into a folder. This process is shown in
the following sample:

Dim oAppt As New Appointment
sCalendarURL = "file:ll./backofficestorage/thomriz.com/MBX/User/Calendar/"

'Set the appointment properties
oAppt.StartTime = #2/14/2000 12:30:00 PM#
oAppt.EndTime = #2/14/2000 1:30:00 PM#
oAppt.Subject = "Shop for Valentine's Day present!"
oAppt.Location "Gift Store"
oAppt.TextBody = "Don't forget this year!!!!"

'Save the appointment
oAppt.DataSource.SaveToContainer sCalendarURL

Creating Meeting Requests and Checking Free/Busy Information
In addition to creating appointments in a calendar, you can create meeting requests.
To do so, create an appointment and then add the names of the desired attendees.
When generating a meeting request, you can also retrieve the free/busy information
for all attendees. The following code creates a meeting request, finds the first avail­
able slot of free/busy time for an attendee, and sends the meeting request to the
attendee:

Dim oAppt As New CDO.Appointment
Dim oAttendee As CDO.Attendee
Dim oAddressee As New CDO.Addressee

oAddressee.EmailAddress = "bobw@thomriznt5dom.extest.microsoft.com"
'Check the address against the local directory
'You could also specify any LDAP path
oAddressee.CheckName ("LDAP:llthomriznt5dom.extest.microsoft.com")

If oAddressee.ResolvedStatus = cdoResolved Then
'Create an hour meeting sometime on March 7th
'Get the free/busy information.
strFB = oAddressee.GetFreeBusy(CDate("3/7/2000 9:00:00 AM"), _

CDate("3/7/2000 5:00:00 PM"). 60)
'Returns a string of 0.1.2.3
'0 - Free. 1 - Tenative. 2 - Busy. 3 - OOF. 4 - No FIB data
'Find the first free spot by looking for 0
bFoundFB = False
For i = 1 To 8

'Look for a free spot
If Mid(strFB. i. 1) = 0 Then

Chapter 18 Developing with Exchange Server 2000

dStart = DateAdd("h", i, CDate("3/7/2000 8:00 AM"»
dEnd = DateAdd("h", I, dStart)
bFoundFB = True
Exit For

End If
Next

If bFoundFB = True Then
Dim oConfig As New CDO.Configuration
oConfig.Fields("http://schemas.microsoft.crim/cdo/" & _

"configuration/sendemailaddress") = _
"thomriz@thomrizntSdom.extest.microsoft.com"

oConfig.Fields("http://schemas.microsoft.com/cdo/" & _
"configuration/calendarlocation") = _
"file://./backofficestorage/" & _
"thomrizntSdom.extest.microsoft.com/MBX/thomriz/calendar"

oConfig.Fields.Update

oAppt.Configuration = oConfig
oAppt.StartTime = dStart
oAppt.EndTime = dEnd
oAppt.Subject = "Meeting"
oAppt.Location = "Your office"
oAppt.TextBody = "Meeting with you!"
Set oAttendee = oAppt.Attendees.Add
oAttendee.Address = oAddressee.EmailAddress
oAttendee.Role = cdoRequiredParticipant
Set oCalMsg = oAppt.CreateRequest
oCalMsg.Message.Send

strCalendarURL = _
"file://./backofficestorage/" & _
"thomrizntSdom.extest.microsoft.com/MBX/thomriz/calendar"

'Save to organizer calendar
oAppt.DataSource.SaveToContainer strCalendarURL

End If
End If

Notice that the code uses the Addressee object. This object allows you to cre­
ate and resolve addresses using LDAP with a directory server. Once the attendee is
resolved, the free/busy information is retrieved for the attendee by using the
GetFreeBusy method. This method takes the start time, end time, and the interval in
minutes that you want to break the freelbusy information into.

The code then checks for the first time when the attendee is free. Next, the code
creates an appointment, fills out the appropriate fields, and then calls the Create Request
method. This method returns a CalendarMessage object. You can then call the con­
tained Message object's methods, such as Send. Finally, the code then saves the
appointment to the calendar.

849

Part IV Exchange Server 2000 Development

850

Creating Recurring Meeting Requests
To create a recurring meeting request, you simply add a RecurrencePattern object to
the appointment and set some properties on it. If you want to get more complex, you
can add an Exception object to the RecurrencePattern object to specify that a certain
date should be excluded from the meeting request. The following code shows how
to create a simple recurring meeting request:

Oim oAppt As New COO.Appointment
Oim oAttendee As COO. Attendee
Oim oAddressee As New COO.Addressee
Oim oRP As COO.IRecurrencePattern

oAddressee.EmailAddress = "bobW@thomriznt5dom.extest.microsoft.com"
'Check the address against the local directory.
'You could also specify any LOAP path.
oAddressee.CheckName ("LOAP:llthomriznt5dom.extest.microsoft.com")

If oAddressee.ResolvedStatus = cdoResolved Then
Oim oConfig As New COO.Configuration
oConfig.Fields(''http://schemas.microsoft.com/cdo/" & _

"configuration/sendemailaddress") = _
"thomriz@thomriznt5dom.extest.microsoft.com"

oConfig.Fields(''http://schemas.microsoft.com/cdo/'' & _
"configuration/calendarlocation") = _
"file:ll./backofficestorage/" & _
"thomriznt5dom.extest.microsoft.com/MBX/thomriz/calendar"

oConfig.Fields.Update

oAppt.Configuration = oConfig
oAppt.StartTime = dStart
oAppt.EndTime = dEnd
oAppt.Subject = "Meeting"
oAppt.Location = "Your office"
oAppt.TextBody = "Meeting with you!"
Set oRP = oAppt.RecurrencePatterns.Add("AOO")
'Make it weekly
oRP.Frequency = cdoWeekly
oRP.Interval = 1
oRr. Instances 10

Set oAttendee oAppt.Attendees.Add
oAttendee.Address = oAddressee.EmailAddress
oAttendee.Role = cdoRequiredParticipant
Set oCalMsg = oAppt.CreateRequest
oCalMsg.Message.Send

Chapter 18 Developing with Exchange Sen.rer 2000

strCalendarURL = _
"file:ll./backofficestorage/" & _
"thomriznt5dom.extest.microsoft.com/MBX/thomriz/calendarB

'Save to organizer calendar
oAppt.DataSource.SaveToContainer strCalendarURL

End If

The code creates the RecurrencePattern object by using the RecurrencePatterns
collection on the Appointment object. The Add method of this collection has only
two values that you can pass to its parameter: ADD and DELETE. Once the new
RecurrencePattern object has been added to the collection, the code sets the prop­
erties on the object to make the recurrence weekly, specifying only 10 recurrences.
If you do not specify the instances, CDO will make the meeting occur indefinitely.

Creating Exceptions
You can create exceptions to your recurring meetings or appointments by using the
CDO Exceptions and the Exception object. I'll show you a simple example here of
adding a single Exception to a recurring appointment, but you can do more complex
operations with. the CDO Exception object. The following code sample uses the CDO
Exceptions collection to add a new exception to a recurring meeting. You can also
delete and modify exceptions using the CDO Exceptions collection.

Set oException = oAppt.Exceptions.Add("Add")
oException.StartTime = "5/2/2000 10:00AM"
oExceptioh.EndTime = "5/2/2000 11:00 AM"

Responding to a Meeting Request
You can use CDO calendaring to accept, decline, or mark tentative a meeting request.
Since this operation is quite easy, I'll just show you the code. This code sample
assumes that the meeting request you want to process is in your Inbox and is already
assigned to the oAppt object:

Set oMsg = oAppt.Accept
'You can then modify the response message by modifying oMsg
oMsg.Message.Send
'Save the appointment to your calendar
oAppt.DataSource.SaveTo URLTOYOURCALENDAR

Opening Other User's Mailbox Folders
To open another user's folder or folders, all you need to do is pass in the path to that
folder either to a Record object or to a query that returns an ADO Recordset. The
following example opens up Neil Charney'S Calendar folder. To open another user's
folder, you must have permissions on that user's folders.

Dim oRecord as New ADODB.Record
oRecord.Open "file:ll./backofficestorage/domain/MBX/neilc/calendar/"

851

Part IV Exchange Server 2000 Development

852

Working with Time Zones
One the first issues you have to deal with when working with CDO calendaring
functionality, and even when working with ADO, is the storage of dates in UTC in
Exchange. CDO will offset the UTC date to the local time zone specified in the CDO
Configuration object. If you do not explicitly set a time zone, CDO will use the time
zone of the machine. This functionality is different from the way in which ADO
handles time zones; ADO does no offset at all and will return the date in UTC. You
can run into some very strange debugging issues if you forget this fact-if you cre­
ate event registrations or calendar appointments using ADO and then look at those
items through CDO, you will see different dates.

Time zones play an important role in the Training application when setup cre­
ates event registrations for the survey and creating course notification events. To use
ADO to create the event registrations so that the events fire daily at 10 PM local time
on the server, the application has to figure out the offset from 10 PM local time to
UTC time. The following code does this by leveraging CDO to create an appointment
at 10 PM local time. The code then retrieves that appointment using ADO, which
returns the start time for the appointment at UTC, not at 10 PM local time. The code
then figures out the offset between UTC and local time on the server by using the
DateDifjfunction. This information is used by the application event handlers to make
sure that the ADO query to find all items created in the last 24 hours finds those items
with the correct date and time. You need to figure out the UTC offset because Ex­
change stores the creation dates of items in UTe. Otherwise, you will not really query
for items created in the past 24 hours in local time.

'Figure out start time for timer events.
'Since the start time needs to be UTC, we need to figure
'out the local server time and then figure out the UTC
'time to tell the event to fire so that it is 10 PM.

Dim oAppt As CDO.Appointment
Set oAppt = CreateObject("CDO.Appointment")
oAppt.Subject = "Delete me"
If DateDiff("n", Now, Date & " 10:00 PM") < 60 Then

If DateDiff("n", Now, DateAdd("h", I, Date & " 10:00 PM")) <= 60 Then
'We're paSSing 10 PM for the current day
dDate DateAdd("d", I, Date)

Else
dDate Date

End If
Else

dDate Date
End If

oAppt.StartTime = DateValue(dDate) & " 10:00 PM"
oAppt.EndTime = DateAdd("n", 60, oAppt.StartTime)
strTime = TimeValue(oAppt.StartTime)

Chapter 18 Developing with Exchange Server 2000

'Dump the appt into the root folder
oAppt.DataSource.SaveToContainer strPath
strdeletehref = oAppt.Fields("DAV:href").Value
Set oAppt = Nothipg
'Get it back
Dim oDeleteRecord As New ADODB.Record
oDeleteRecord.Open strdeletehref •• adModeReactWrite
strNow = oDeleteRecord.Fields("urn:schemas:calendar:dtstart").Value

'Figure out the offset from 'UTC to the local time zone.
'This is needed for the survey notification event handler
'so that it knows how 'much to offset its query for items created
'during the current day.
strDate = oDeleteRecprd.Fields("urn:schemas:calendar:dtstart").Value

strLocDate = dDate & " " & strTime
iDiff = DateDiff("h". strDaie. strLocDate)

'Delete it
oDeleteRecord.DeleteRecord

CDO Contact Tasks

CDO imple!llents a Person object for working with contacts in both the Exchange
SelVer store and Active Directory. LJsing this object, you can create and query con­
tact objects in Exchange SelVer and Active Directory. CDO will handle all the prop­
erty mapping between Exch~nge SelVer and Active Directory. The CDO Person object
is very straightforward, so instead of telling you all the properties you can' set on this
object, I'll just show you some code samples

Creating a Conta~t in Exchange Server
Creating a contact in Exchange SelVer is as easy as creating a CDO Person object,
setting several properties,and then calling SaveToContainer. The following code
shows these steps:

Dim oPerson As New CDO.Person

strContactURL = _
"file://./backofficestorage/thomriznt5dom.extest.microsoft.com/" & _
"pu~lic folders/group contacts/"

oPerson.FirstName = "Thomas"
oPerson.LastName = nRizzo"
QPerson.Company = "Microsoft"
oPerson.WorkStreet = "1 Mi~rosoft Way"
oPerson.WorkCity = "Redmond"
oPerson.WorkState = "WAH'
oPerson.WorkPostalCode = "98052"
oPerson. Email ="thomriz@microsoft.com"

(continued)

853

Part IV Exchange Server 2000 Ufl~Vfl~IO!Dn1e9't

854

oPerson.WorkPhone = "425 555 1212"
oPerson.Emai12 = "test@test.com"

'Save the Person objectto the folder
oPerson.DataSource.SaveToContainer strContactURL

Creating a Contact in Active Directory
Creating a contact in Active Directory is similar to creating a contact in an Exchange
Server folder. The only difference is that you provide an LDAP URL rather than a file
URL, as shown here:

strContactURL = "LDAP:llthomriznt5srv/cn=tomrizzo,cn=users," & _
"dc=extest,dc=microsoft,dc=com"

oPerson.FirstName = "Thomas"
oPerson.LastName = "Rizzo"
oPerson.Company = "Microsoft"
oPerson.Wor~Street = "1 Microsoft Way"
oPerson.WorkCity = "Redmond"
oPerson.WorkState = "WAH
oPerson.WorkPostalCode = "98052"
oPerson.Email ="thomriz@microsoft.com"
oPerson.WorkPhone = "425 555 1212"
oPerson. Ema il2 = "test@test.com"

'Save the Person object to the folder
oPerson.DataSource.SaveToContainer strContactURL

Saving Your Contact as a vCard
CDO allows you to access or create vCard information for your contacts. vCard is a
standard way of describing contact information on the Internet. CDO vCard support
allows you to send or save your contacts to any compliant vCard system. You get the
vCard information by using the GetVCardStream method, which returns the informa­
tion about a contact in vCard format to an ADO Stream object. The following code
uses the GetVCardStream method to retrieve the vCard information and print it to
the screen for a contact:

Dim oPerson as New CDO.Person
qperson.DataSource.Open "file:ll./backofficestorage/domain/folder/name.eml"

_ oPerson.GetVCardStream.SaveToFile "c:\vcard.txt"

The output from running the preceding code, which is contained in the text file
vcard.txt, is shown here:

BEGIN:VCARD
VERSION:2.1
N:Rizzo:Thomas
FN: Thomas Ri zzo
ORG:Microsoft Corporation

Chapter 18 Developing with Exchange Server 2000

TITLE:Product Manager
NOTE;ENCODING=QUOTED-PRINTABLE:=0D=0A
TEL;WORK;VOICE:(425) 555-1212
ADR;WORK:;;1 Microsoft Way;Redmond;WA;98052;United States of America
LABEL;WORK;ENCODING=QUOTED-
PRINTABLE:l Microsoft Way=0D=0ARedmond. WA 98052=0D=0AUnited States of America
URL:
URL:http://www.microsoft.com/exchange
EMAIL;PREF;INTERNET:thomriz@microsoft.com
REV:20000410T033803Z
END:VCARD

CDO Fol~er Tasks
CDO provides a Folder object that allows you to create or access folders contained
in the Exchange database. Using the Folder object, you can retrieve the number of
read and unread items contained in the folder. You will interact most with the Folder
object's properties. These properties include the following: Configuration, ContentClass,
DataSource, Description, DisplayName, EmailAddress, Fields, HasSubFolders,
IternCount, UnreadltemCount, and VisibleCount.

Most of these properties are straightforward.· The only one that really needs
explaining is the VisibleCount property. This property is the total number of hidden
items in the folder. Hidden items are created in the associated Contents table. These
items can be created by setting the DAV:ishidden property to True.

Creating a Folder
To create a folder using the CDO Folder object, you need to first create a CDO Folder
object and th~n use the Datasource property to save the folder. The following ex­
ample shows you how to create a folder using CDO:

Dim oFolder As New CDO.Folder

oFolder.Description = "This is my folder"
oFolder.ContentClass = "urn:content-classes:contactfolder"

oFolder.Fields("http://schemas.microsoft.com/exchange" &_
"/outlookfolderclass") = "IPF.Contact"

oFolder.Fields.Update
oFolder.DataSource.SaveTo "file://./backofficestorage/" &_

"thomriznt5dom.extest.microsoft.com/public folders/my contact folder"

lIIail-Enabling Folders
With the addition of new top-level hierarchies, Exchange Server 2000 does not, by
default, mail.;.enable folders in the new hierarchies. Tperefore, you will want to mail­
enable the folders either through the administrative VI or programmatically. To
programmatically mail-ep.able a folper is quite easy. All you need to do is use the

855

Part IV

856

IMailRecipient interface from the CDO for Exchange Management library. To retrieve
the interface, set a variable to the IMailRecipient interface. Then set the value of that
variable to be your CDO folder. Call the MailEnable method on the folder. Make the
changes to the properties on the IMailRecipient interface. For example, set up the
alias, establish the smtp e-mail aqdress, and decide whether the new address should
be hidden from the address book. Once you are finished setting the properties, just
save the folder back to the Exchange database. Remember that you will need to open
the folder in the read/write mode using the CDO Folder object, as shown in the
following code:

Dim oFolder As New CDO.Folder
Dim oRecip As CDOEXM.IMailRecipient

oFolder.DataSource.Open "file://./backofficestorage/" & _
"thomriznt5dom.extest.microsoft.com/public folders/my contact folder", _
, adModeReadWrite

Set oRecip = oFolder
oRecip.MailEnable
oReci p. SMTPEmail ="contacts@domain.com"
oRecip.HideFromAddressBook = False
oRecip.Alias = "My Contacts Folder"
oFolder.DataSource.Save

Chapter 19

Putting It
All Together

USING XML WITH EXCHANGE SERVER
One of the biggest buzzwords in the industry has been XML. XML provides an easy
way to describe data and share it among applications. Microsoft Exchange Server 2000
directly supports XML, making it a great Web development platform. In other words,
you can use XML to get and set data directly in Exchange Server.

I couldn't possibly attempt to cover all aspects of XML in this chapter. However,
many good books on the topic exist. Instead, I'll discuss how to get, set, search, and
format using XSL, XML data in Exchange Server 2000. Since you'll just be querying
for data, I won't cover how to create an XML document from scratch.

XMLHTTP Component
You can retrieve XML data from Exchange 2000 in a number of different ways. The
technique you'll probably use the most is to employ the Web Distributed Authoring
and Versioning (WebDAV) protocol. WebDAV is an extension to the http protocol that
specifies how to perform file processing, thus making the Web extremely readable
and writable. Using WebDAV commands, you can lock a resource, get a property,
or change a property. This is a powerful capability-WebDAV can work through
firewalls and proxy servers because it piggybacks on http.

857

Part IV

858

You might be wondering how to use to a protocol such as WebDAV within your
Web applications. Microsoft Internet Explorer 5 ships with a component called
XMLHTTP, to work with the WebDAV protocol. You will still have to send correctly
formatted WebDAV requests, but the XMLHTTP component simplifies this. Be aware
that you should use the XMLHTTP component only on the client side since the com­
ponent was built for that environment. If you're writing code on the Exchange ser­
ver, you should write to OLE DB or ADO.

We'll take a look at the most important properties and methods of the XMLHTTP
component so that you can use them in your applications. These properties and methods
are Abort, OnReadyStateChange, Open, ReadyState, responseBody, responseStream,
responseText, responseXML, Send, SetRequestHeader, Status, and StatusText. All other
properties and methods of XMLHTTP are fully documented on the Microsoft
Developer's Network (MSDN), http://msdn.microsoft.com.

Open Method
The first method that you'll probably use with the XMLHTTP component is the Open
method. This method takes five parameters: Method, URL, Async, User, and Password.
The Method parameter specifies which http method to use: GET, POST, PROPPATH,
SEARCH, or another method. The URL parameter is the absolute URL to the resource­
for example, http://myserverldocuments. The Async parameter is a Boolean that
specifies whether the call is asynchronous. If set to True, which is the default, the
call returns immediately. Finally, you can use the User and Password parameters to
pass the username and password with which you want the component to access
secured sites. The following code example, taken from the coursexml.asp file in
the Training application, shows you how to create an XMLHTTP object and use the
Open method:

request = new ActiveXObject("microsoft.xmlhttp");

/IExample propfind
/lrequest.open("PROPFIND". URLSchedule. true);

request.open("SEARCH". URLSchedule. true);

SetRequestHeader Method
The Set Request Header method allows you to specify the name and value for an http
header. The most common headers that you wHl set are depth and content-type. A
depth header specifies how deep in a hierarchy the request applies. For example,
setting the depth header to <;$QD> 1, noroot<;$QD> means that the method will be
applied to all the children of the specified URL, but not to the URL itself. If you do
not specify a depth, Exchange will default to an infinite depth. A content-type header
specifies the content type you plan to send to the server. The following code snip­
pet shows you how to use this method:

Chapter 19 Putting It All Together

IIFor propfind you can select a depth
Ilrequest.setRequestHeader("depth". "l.noroot");
request.setRequestHeader("Content-type". "text/xml");

ReadyState Property
The ReadyState property contains the state of the request object. This property can
contain one of the five values shown in Table 19~1.

Value Description

UNIM71ALIZED The object has been created, but the Open method has not
been called.

LOADING The object has been created, but the Send method has not
been called.

LOADED The Send method has been called, but the response is not
yet available.

INTERAC11VE The object is not fully loaded yet, but the user can already
interact with it. Partial results can be viewed in the browser.

COMPLETED All data has been received and can be viewed in the browser.

Table 19-1. Values of the ReadyState property.

OnReadyStateChange Prope.-ty
This property allows you to specify which event handler to call when the ReadyState
property changes. The following code sets the function to be called to dostate­
change. We'll see what dostatechange does in a moment, when we look at the
responseXML property.

request.onreadystatechange dostatechange;

Send Method
As you would guess, this method sends the request to the server. You specify the
request as a string parameter to this method. The following code sends the body of
our request to the server. We'll see what this body looks like later in the chapter, when
we examine WebDAV requests.

request.send(body);

response8ody, responseStream,
response Text, and responseXAfL Properties
All of these properties allow you to retrieve the response· in each format specified.
You'll most commonly use responseText and responseXML in your applications. The
responseText property returns the XML response as a text string. The responseXML
property returns the response as an XML document parsed by the XML Document
Object Model (XMLDOM), meaning you'll receive an object that you can format using

859

Part IV Exchange Server 2000 Development

XSL or you can call methods on the XMLDOM to interact with the data. You'll use
these properties in the event handler you specified for the onreadystatechange prop­
erty. The following code gets the XML response and sends it to be formatted by XSL:

thexml = request.responseXML;
datediv.innerHTML = "(B)Showing Courses from (%=dDateStart%)

to (%=dDateEnd%)(/B)(BR)"
//Check for empty body
if (thexml.selectSingleNode("a:multistatus/a:response")

msgdiv.innerHTML = "(B)No courses found.(/B)";
request = null;
return;

}

//For debugging purposes
//alert(request.responseText);

null) {

msgdiv.innerHTML = thexml.transformNode(reportXSL.documentElement);

Status and Status Text Properties
Both of these properties contain status information about the request. Status contains
the http status returned by the request. This is an integer that corresponds to one of
the http status codes. StatusText returns a string that represents the status returned
by the request. The following code checks to see whether the Status property has a
value of 207, which indicates that the request was successful. If Status does not have
a value of 207, the code prints out the values of the Status and StatusText properties
as an error.

if(request.status 1= 207) {
msgdiv.innerText = "Error. status = " + request. status + .. " + request.statusText;
msgdiv.style.fontFamily = "verdana"

Abort Method
The Abort method will cancel the current http request and restore the XMLHTTP
component to the UMNI71ALIZED state.

WebDAV Commands

860

Now that you know about the object model of XMLHTTP, which allows you to send
commands to the Exchange server, you're probably wondering what these commands
are. WehDAV supports a number of commands, including MKCOL, PROPPATCH,
PROPFIND, DELETE, MOVE, COPY, SEARCH, LOCK, UNLOCK, SUBSCRIBE, and
POLL. Each of these commands serves a distinctive purpose in your applications. For
example, MKCOL allows you to create a collection (or a folder) on your server.
PROPPATCH and PROPFIND allow you to set and get properties on resources. Let's
look at some typical tasks you'll perform with WebDAV so that you can see each of
these commands in action.

Chapter 19 PuHiOg It All Together

Creating Folders
To create a folder using WebDAV, you need to issu~ the MKCOL command and pass
the URL of the new folder that you want to create. If the creation is successful, you'll
receive the Status of 201 and the StatusText of Creqted. The following code uses
XMLHTrP to create a new folder: '

<HTML>
<BODY>

<SCRIPT LANGUAGE=javascript>
< 1 --

var strURL = ''http://localhost/public/my new folcjer":
var request = new ActiveXObjectC"Microsqft.XMLHTTP"):
request. open C "MKCOL" • strURL. fa 1 se) :
request.sendC):
alertCrequest.status + + request.statustext~:

II -->
</SCRIPT>

</BODY>
</HTML>

Cre .. ting Items
To create an item, you'll use the http PUT 1l1ethod anq pass to it the URL of the new
item that you want to create. If successflIl, you'l~ get the Status of 201 and the
StatusText of Created. The following code crtlares anew post in the PlIblic Folder
we created earlier:

<HTML>
<BODY>

<SCRIPT LANGUAGE=javascript>
<1--

var strURL = ''http://localhost/pubHc/IlIY new folder/my new item.eml/":
var request = new ActiveXObjectC"Micro~oft,XMLHTTP"):
request,openC"PUT".strURL.false):
request.setRequestHeacjerC .. Translate f");
request.sendO:
alertCrequest.status + ""+ r.que~t.statHstext):

II -->
</SCRIPT>

</BODY>
</HTML>

861

Part IV Exchange Server 2000 Development

862

Copying Folders and Items
To copy both items and folders, use the COpy command. This command takes as a
parameter the source URL of the copied item. As part of your request headers, you
need to specify the destination URL for the copied item. If you are copying a folder,
all the contents of that folder will be copied as well. The following code copies the
newly created folder and item from the earlier example into another folder. If suc­
cessful, you should receive the Status value of 201.

<HTML>
<BODY>

<SCRIPT LANGUAGE=javascript>
<! --

var strSourceURL = ''http://localhost/publ;c/my new folder/";
va r strDestURL = ''http://l oca 1 host/publ i c/my new fol der 2/";
var request = new ActiveXObject("Microsoft.XMLHTTP");
request.open("COPY",strSourceURL,false);
request.setRequestHeader("Destination",strDestURL);
request.send();
alert(request.status + " " + request.statustext);

II -->
</SCRIPT>

<I BODY>
</HTML>

Moving Folders and Items
Moving folders is as easy as copying them. All you need to do is change the com­
mand from COpy to MOVE. The following code shows you how to move a folder:

<HTML>
<BODY>

<SCRIPT LANGUAGE=javascript>
<!--

var strSourceURL = ''http://localhost/public/my new folder/";
var strDestURL = ''http://localhostipublic/my new folder 3/";
var request = new ActiveXObject("Microsoft.X~LHTTP");
request.open("MOVE",strSourceURL,false);
request.setRequestHeader("Destination",strDestURL);
request.send();
alert(request.status + " " + request.statustext);

II -->
</SCRIPT>

</BODY>
</HTML>

Chapter 19 Putting It All Together

Deleting . Items and Folders
To delete items or folders, you use the DELETE command and pass to it the URL of
the item to be deleted. If successful, you'll receive the Status of 200 and a StatusText
of OK. The following code deletes a folder:

<HTML)
<BODY)

<SCRIPT LANGUAGE=javascript)
< 1 --

var strURL = ''http://localhost/public/my new folder 3/";
v§r request = n~w ActiveXObjectC"Microsoft.XMLHTTP");
request.openC"DELETE",strURL,false);
request.sendC);
alertCrequest.status + " " + request.statustext);

11--)
</SCRIPT>

</BODY)
</HTML)

Setting Properties
To set properties, you'll need to use the PROPPATCH command. To use this com­
mand, you must create an XML document to send that will list the properties you want
updated. You can generate this XML document in a number of ways. The two easi­
est ways are to use the XMLDOM, or to sirnply generate the XML yourself by using
JavaScript code. The following example generates the XML directly and sends it to
the server to update the properties:

<HTML>
<BODY)

<SCRIPT LANGUAGE=javascr1pt)
<1--

var strURL = ''http://localhost/public/my hew folder2/my new item.eml/";
reque~t = new ActiveXObjectC"microsoft.xmlhttp");
request.openC"PROPPATCH", strURL, false);
request.setRequestHeaderC"Content-type", "text/xml");

proplist = "<M:subject)My New Message</M:subjeCt)";
proplist = "<M:textdescription)This is my body</M:textdescription)";

body = "<?xml version='1.0'?)";
body += "<D:propertyupdate xmlns:D='DAV:' xmlns:M='urn:schemas:httpmail')";

(continued)

863

Part IV Exchange Server 2000 Development

864

body += "<D:set><O:prop>":
body += proplist:
body += "</D:prop></D:set>":
body += "</D:propertyupdate>":

request.send(body):
alert(request.status + " " + request.statustext):

1/- ->
</SCRIPT>

</BODY>
</HTML>

Retrieving Propetties
To retrieve properties, you need to use the PROPFIND command. PROPFIND can
request a single property, all properties, or all property names. When working with
PROPFIND, you need to set the depth header value to the depth you want the request's
scope to be. The value for depth can be 0, which indicates only the entity in the URL
specified; 1, which signifies the target uRi and any of its immediate children; or In­
finity, which indicates the target URL, its children, and its children's children, all the
way down to the leaves of the tree. Also, you need to send an XML document that
specifies the property list you want to retrieve from the resource. The following code
requests some DAV properties and Microsoft Office properties from a Microsoft Word
document in a Public Folder:

<HTML>
<BODY>
<TEXTAREA rows=i0 cols=20 id=textareal name=textareal>

</TEXTAREA>
<SCRIPT LANGUAGE=javascript>
<!--

va r strURL = ''http://l oca 1 host/publ i c/my new fol der/my word doc. docl":

request = new Activ~Xdbj~ct("microsoft.xmlhttp"):
request.open("~kPPFIND". strURL. false):
request.setRequest~~ader("d~pth", "l,noroot"):
request.setReqUestHeader(~Cbntent-type". "text/xml");

proplist = "<D:isco1lection/><D:displayname/><D:getlastmodifiedl>
<D:creationdate/><O:Author/><O:Manager/><O:Title/>":

body = "<?xml ~~rsion='1.0'?>":

body += "<D:propfind xmlns:D='DAV:'
xmlns:O='urn:schemas-microsoft-com:office:office'>":

body += "<D:prop>":

Chapter 19 Putting It All Together

body += proplist;
body += "</D:prop>";
body += "</D:propfind>";

request.send(body);

alert(request.status + " " + request.statustext);
textareal.value = request.responseText;

II - ->
</SCRIPT>

</BODY>
</HTML>

The returned XML stream that is placed into the TEXT AREA follows. Notice that
it is a multistatus response.

<?xml version="1.0"?><a:multistatus xmlns:b="urn:uuid:c2f41010-65b3-
Ildl-a29f-00aa00c14882/" xmlns:c="xml:" xmlns:d="urn:schemas-microsoft­
com:office:office" xmlns:a="DAV:"><a:response><a:href>http://localhost/
public/my%20new%20folder/my%20word%20doc.doc</a:href><a:propstat>
<a:status>HTTP/l.l 200 OK</a:status><a:prop><a:iscollection b:dt="boolean">
0</a:iscollection><a:displayname>my word doc.doc</a:displayname>
<a:getlastmodified b:dt="dateTime.tz">2000-03-09T10:33:04.532Z
</a:getlastmodified><a:creationdate b:dt="dateTime.tz">2000-03-
09T10:33:04.372Z</a:creationdate><d:Author>Thomas Rizzo</d:Author>
<d:Manager>Some Manager</d:Manager><d:Title>This is my word
doc</d:Title></a:prop></a:propstat></a:response></a:multistatus>

To retrieve all properties in the DAV namespace, you would issue the follow­
ing WebDAV command:

<?xml version="1.0" ?>
<D:propfind xmlns:D="DAV:">

<D:allprop/>
</D:propfind>

Locking a Resource
You might want to lock a resource, such as a file or collection so that no other
WebDAV requests can access it. You can acquire an exclusive or shared lock on a
resource. Each lock has a timeout, affording you a precise window of opportunity
to make your changes before the lock expires. If a lock does expire, you can always
request another lock on the resource from the server. The following code requests
an exclusive write lock on a Word document in a Public Folder. As you'll see in the
code, the lock remains in effect for 3,000 seconds, and the XML body holds an Owner

865

Part IV

866

property. If another application tries to modify the Word document, it will receive
an XML document that contains a lockdiscovery property, which contains the Owner
property of the person who currently has a lock on the resource. The application can
use this property to request that the current lock owner disable the lock or notify the
application when the lock is released.

<HTML>
<BODY>
<TEXTAREA rows=10 cols=80 id=textareal name=textareal>

</TEXTAREA>
<SCRIPT LANGUAGE=javascript>
<! --

var strURL = ''http://localhostipublic/my new folder/my word doc.doc/";
request = new ActiveXObject("microsoft.xmlhttp");
request.open("LOCK". strURL. false);
request.setRequestHeader("Content-type". "text/xml");
request.setRequestHeader("timeout". "Second-3000");

body = "<?xml version='1.0'?>";
body += " <a:lockinfo xmlns:a='DAV:'>"
body += "<a:lockscope><a:exclusive 1></a:lockscope>";
body += "<a:locktype><a:write 1></a:locktype>";
body += "<a:owner><a:href>mailto:thomriz</a:href>";
body += "</a:owner></a:lockinfo>";

request.send(body);
alert(request.status + " " + request.statustext);
textareal.value = request.responseText;

11-->
</SCRIPT>

<I BODY>
</HTML>

After this request is sent to the server, the following response will be received:

<?xml version="1.0"?><a:prop xmlns:a="DAV:"><a:lockdiscovery>
<a:activelock><a:locktype><a:write/></a:locktype><a:lockscope>
<a:exclusive/></a:lockscope><a:owner xmlns:a="DAV:"><a:href>
mailto:thomriz</a:href></a:owner><a:locktoken><a:href>
opaquelocktoken:9641CB50-729A-4966-B904-6F55773AA5B7:
10654405112102912001</a:href></a:locktoken><a:depth>infinity

Chapter 19 Putting It All Together

</a:depth><a:timeout>Second-3000</a:timeout></a:activelock>
</a:lockdiscovery></a:prop>

If the lock is successful, you'll receive the Status of 200 OK, along with the XML
just shown. The most important property to be aware of is the locktoken property.
The locktoken property uniquely identifies your lock and must be used in future
requests. Because http is stateless, you need to pass the locktoken with your future
requests so that the server knows who is attempting to write to the resource. You'll
also need this property for the PUT, PROPPATCH, and other requests you send, and
to unlock the file.

NOTE If the resource is already locked when you try to lock it, you will receive
the Status of 423 Locked.

Unlocking a Resource
Unlocking a resource is easy if you have a unique lock token. Simply send the
UNLOCK command to the server and add a header that contains your lock token. If
successful, the server will return the Status of 204 No Content. This means the com­
mand completed successfully but the server had no text to return except for the sta­
tus. The following code uses a specific lock token to unlock a resource:

<HTML>
<BDDY>
<SCRIPT LANGUAGE=javascript>
<! - -

var strURL = ''http://localhost/public/my new folder/my word doc.doc/";
request = new ActiveXDbject("microsoft.xmlhttp");
request.open("UNLDCK", strURL, false);
request.setRequestHeader("Lock-Token",

"<opaquelocktoken:9641CB50-729A-4966-B904-
6F55773AA5B7:10582347518064984065>");

request. send();
alert(request.status + " " + request.statustext);

11-->
</SCRIPT>

</BDDY>
</HTML>

Subscribing to a Resource
You can use WebDAV to subscribe to a resource. As a subscriber, you can receive
notification about changes to a resource in one of two ways: you can have the ser­
ver inform you when the resource changes, or you can poll the server for any changes
to the resource. To create a subscription, use the SUBSCRIBE command and pass the
URL you want to subscribe to, as in the following example. This example also sets
the timeout for a subscription.

867

Part IV

868

<HTML>
<BODY>
<SCRIPT LANGUAGE=javascript>
< ! - -

var strURL = ''http://localhostlpublic/my new folder/my word doc.doc/";
request = new ActiveXObject("microsoft.xmlhttp");
request.open("SUBSCRIBE", strURL, false);
request.setRequestHeader("Subscription-lifetime", 1000);

request.send();
alert(request.status + " " + request.statustext);

//-->
</SCRIPT>

</BODY>
</HTML>

If your subscription is successful, the server will return a Subscription-id, which
you should keep because you'll need to pass it when you later poll the server or
unsubscribe from the resource.

Polling the Server
To poll the server to see whether any of the resources you've subscribed to have
changed, you need to use the POLL command. This command requires that you pass
the Subscription-id that the SUBSCRIBE command gave you when you subscribed to
the resource. The following code checks whether anything has changed on a resource.
If no changes were made to the resource, the server will return a 204 status code. In
addition to polling, you can listen on a TCP lIP port for a UDP notification of changes.
See the sample included on the companion CD to learn how to use this technique.

<HTML>
<BODY>
<SCRIPT LANGUAGE=javascript>
< ! - -

var strURL = ''http://localhost/public/my new folder/my word doc.doc/";
request = new ActiveXObject("microsoft.xmlhttp");
request.open("POLL", strURL, false);
req~est_setReq~estHeader("Subscription-id". "SomeID");

request.send();
alert(request.status + " " + request.statustext);

//-->
</SCRIPT>

</BODY>
</HTML>

Chapter 19 Putting It All Together

Querying with WebDAV SEARCH
One of the neat things that you can do with WebDAV is perform SQL syntax queries
against Exchange Server and have your results formatted as XML. Having your query
returned to the client as XML is a very powerful capability because it allows you to
perform client-side formatting with XSL. Furthermore, since the XML is already on
the client, you can re-sort the data very quickly. The following code is taken from
the coursexml.asp file in the Training application. This code sends a SEARCH request
to the Exchange server and receives the data from the server as XML.

request = new ActiveXObject("microsoft.xmlhttp");

IIExample propfind
Ilrequest.open("PROPFINO", URLSchedule, true);

request.open("SEARCH", URLSchedule, true);

IIFor propfind you can select a depth
Ilrequest.setRequestHeader("depth", "l,noroot");
request.setRequestHeader("Content-type", "text/xml");

proplist = "<O:iscollection/)<O:displayname/)
<O:getlastmodified/)<O:creationdate/)
<C:instructoremail/)<CAL:location/)<O:Author/)
<O:Manager/)<O:Title/)<H:subject/)";

IIYou can also do a propfind to find specific properties
Ilbody = "<?xml version='l.0'?)";
Ilbody += "<O:propfind xmlns:O='OAV:'
Ilxmlns:O='urn:schemas-microsoft-com:office:office'
Ilxmlns:C='<%=strSchema%)' xmlns:CAL='urn:schemas:calendar:'
I Ixml ns: H=' urn: schemas: httpmail: ')";

body = "<searchrequest xmlns='OAV:')";
body += "<sql)";
body += "SELECT \"<%=str~chema%)materialshttppath\" as materialshttppath,"
body += "\"<%=strSchema%)overallscore\" as

overallscore,\"<%=strSchema%)rating\" as rating,";
body += "\"<%=strSchema%)materialsfilepath\" as

materialsfilepath,\"<%=strSchema%)surveycount\" as surveycount,";
body += " \"<%=strSchema%)diScussionurl\" as

discussionurl,\"<%=strSchema%)prereqs\" as prereqs,";
body += "\"urn:schemas:httpmail :textdescription\" as

description,\"<%=strSchema%)category\" as category,";
body += "\"urn:schemas:calendar:dtstart\" as

starttime, \"urn:schemas:calendar:dtend\" as endtime,";
body += "\"OAV:iscol1ection\" as iscollection,\"OAV:href\" as

href,";
(continued)

869

Part IV

870

body += "\"urn:schemas:httpmail :subject\" as
subject,\"urn:schemas:calendar:location\" as location,
\"(%=strSchema%>instructoremail\" as instructoremail
FROM scope('shallow traversal of \"(%=strURLToSchedule%>\"')
where \"DAV:ishidden\" = false AND \"DAV:isfolder\" = false";

IIAdd date restriction
body += " AND \"urn:schemas:calendar:dtstart\" Igt;leq;

CAST(\"(%=dISODateStart%>\" as 'dateTime')";
body += " AND \"urn:schemas:calendar:dtstart\" Ilt;leq;

CAST(\"(%=dISODateEnd%>\" as 'dateTime')";

body += "(/sql>";
body += "(/searchrequest>";
IIFor debugging
I lalert(body);

IIPropfind example
Ilbody += "(D:prop>";
Ilbody += proplist;
Ilbody += "(/D:prop>";
Ilbody += "(/D:propfind>";

request.onreadystatechange = dostatechange;
msgdiv.innerHTML = "(font face='verdana' size='+l'>Loading ... (/font>";
request.send(body);

The SELECT statement in this code uses column aliasing, which will make it
easier to format the data using XSL. You'll see how to use XSL to format the XML data
returned later in this section. The following code sample shows the raw XML data
returned from this query, illustrating how custom and built-in schema can be que­
ried and returned with XML:

(?xml version="1.0"?>(a:multistatus xmlns:b="urn:uuid:c2f41010-65b3-11dl­
a29f-00aa00c14882/" xmlns:c="xml:" xmlns:d="urn:schemas-microsoft-com:
office:office" xmlns:a=''DAV:''><a:response><a:href>http://thomriznt5srvi
public/140/Training/Schedule/{8C35C44B-68EB-4651-AC3E-5C475923A7Al}
.EML(/a:href>(a:propstat>(a:status>HTTP/l.l 200 OK</a:status>(a:prop>
<materialshttppath>http://thomriznt5srv/public/140/Training/Course
Materials/Leveraging XML in Exchange 2000/?Cmd=contentslamp;View=Messages
</materialshttppath><materialsfilepath>file:IITHOMRIZNT5SRV/Course
Materials140/Leveraging XML in Exchange 2000(/materialsfilepath>
<discussionurl>http://thomriznt5srv/public/140/Training/Discussionsl
Leveraging XML in Exchange 2000/?Cmd=contentslamp;View=By Conversation
Topic</discussionurl>(prereqs>fejio(/prereqs>(description>fjeoj
(/description>(category>dev(/category><starttime b:dt="dateTime.tz">
2000-03-08T21:00:00.000Z</starttime><endtime b:dt="dateTime.tz">2000-03-

Chapter 19 Putting It All Together

08T23:00:00.000Z</endtime><iscollection b:dt="boolean">0</iscollection>
<href>http://thomriznt5srv/public/140/Training/Schedule/{8C35C44B-68EB-
4651-AC3E-5C475923A7Al}.EML</href><subject>Leveraging XML in Exchange
2000</subject><location>43</location><instructoremail>thomriz@thomriznt
5dom.extest.microsoft.com</instructoremail></a:prop><1a:propstat>
<a:propstat><a:status>HTTP/l.l 404 Resource Not Found</a:status><a:prop>
<overallscore/><rating/><surveycount/></a:prop></a:propstat></a:_response>
<a:response><a:href>http://thomrilnt5srv/public/140/Training/Schedulel
{75BD5A83-09E7-47B7-A9FI-A75DD62F5BA7}.EML</a:href><a:propstat>
<a:status>HTTP/l.l 200 OK</a:status><a:prop><prereqs>fjoi</prereqs>
<descriptioh>fei</description><category>dev<lcategory><starttime
b:dt="dateTime.tz">2000-03-08TI8:00:00.000Z</starttime><endtime
b:dt="dateTime.tz">2000-03-08TI9:00:00.000Z<lendtime><iscollettion
b:dt="boolean">0</iscollection><href>http://thomriznt5srv/public/1401
Training/Schedule/{75BD5A83-09E7-47B7-A9FI-A75DD62F5BA7}.EML
</href><subject>CDO and You</subject><location>43</location>
<instructoremail>thomriz@thomriznt5dom.extest.microsoft.com<1
instructoremail></a:prop></a:propstat><a:propstat><a:status>HTTPI
1.1 404 Resource Not Found</a:status><a:prop><materialshttppath/>
<overallscore/><rating/><materialsfilepath/><surveycount/><discussionurl/>
</a:prop></a:propstat></a:response></a:multistatus>

Persisted Search Folders
When using WebDAV, you can use the WebDAV search methods that we looked at
earlier. Exchange 2000 provides the capability to create persisted search folders when
using WebDAY. These search folders are like standard folders in that you can use a
URL to access them and query them. Search folders can be created in any of your
application hierarchies. You cannot, however, create search folders in the MAPI All
Public Folders hierarchy. Also, you cannot create search folders using ADO.

Search folders allow you to offload to the server the task of finding new items
that meet your SQL search criteria. For example, imagine you have an application
that spans 10 folders under the root folder. In each folder, you need to find all the
items with a specific property, such as items whose content classes are a certain type­
say,urn:c(jntent~classes:mycc. Rather than querying Exchange every time you need
to find items that meet this criterion, you could create a top-level search folder. This
search folder would asynchronously add links to new items that meet the criterion
(or criteria) you specified in the search folder. Your application could query the search
folder rather than perform a deep traversal of all the application folders. Plus, search
results are stored and dynamically updated by Exchange without requiring the cli­
ents to be connected or having to requery the Exchange database. Search performance
should be much greater with a search folder.

871

Part IV

872

Creating a Search Folder
To create a search folder, all you need to do is issue an MKCOL command. The
MKCOL command also specifies a DAVsearchrequest property that contains the SQL
statement you want the search folder to perform. The following example shows how
to create a search folder:

function SearchFolderCreate(folderURL. SQLQuery) {
var oXMLHTTP;

}

oXMLHTTP = new Activ~XObject("Microsoft.XMLHTTP");

oXMLHTTP.Open("MKCOL". folderURL. false);
strR = "<?xml version='l.0'?>";
strR += "<d:propertyupdate xmlns:d='DAV:'>";
strR += "<d:set><d:prop><d:searchrequest><d:sql>" + SQLQuery+ "</d:sql>";
strR += "</d:searchrequest></d:prop></d:set></d:propertyupdate>";
oXMLHTTP.SetRequestHeader("Content-type:", "text/xml");

oXMLHTTP.send(strR);

if(! Req.Status == "207") { II Multistatus response
alert("An error has occurred!!");

}

If the command is successful, the server returns a 207 Multistatus response.
Search folders are just like regular folders in that they contain properties, but

they are different in that they contain properties unique to them. Table 19-2 outlines
the special properties for search folders.

Property

DA Vresourcetype

DA Vsearchrequest

Description

If the folder is a search folder, the value of this prop­
erty will be <DAVcollection/><DA v.·searchresultsl>.

This property contains the original SQL query for the
persisted search. You cannot change this property. If
you need to modify your search, you must delete your
search folder and re-create it, or create a new search
folder.

System.

Table 19-2. Properties unique to search folders.

Searching a Persisted Search Folder
To query your search folder, all you need to do is use either the WebDAV Search or
PropFind methods that we looked at earlier, and then specify the search folder URL.

Chapter 19 Putting It All Together

Optionally, you can specify a Range header in your Search queries to return a cer­
tain number of rows. For example, you can specify that you want only the first 10
rows or the last 10 rows. The following examples show you how to use the Range
header with XMLHTTP.

'Rows 10-20 and 40-50
Req.setRequestHeader "Range", "rows=10-20,40-50"
'Last 10 rows
Req.setRequestHeader "Range", "rows=-10"
'From Row 10 to the end of the resultset
Req.setRequestHeader "Range", "rows=10-"
'Rows 1-10 and the last 10 rows
Req.setRequestHeader "Range", "rows=I-10,-10"

Using ADO to Retrieve
XML Data from Exchange Server

There are two other ways you can retrieve XML data from Exchange Server. First, you
can generate the XML data yourself by using ADO. For example, you could gener­
ate an XML document for your data and simply plug the values in this document for
the properties from the ADO Fields collection. Not too pretty or easy a technique,
although it is functional.

The second way you can retrieve XML data from Exchange Server is to lever­
age the XML persistence feature in ADO. ADO allows you to both load and save data
in an XML format. The XML format must, however, adhere to the structure expected
by ADO. To save data as XML, you just call the Save method of the Recordset object
and pass in a location and adPersistXML (1).

The cool thing about using ADO with XML is that ADO can persist to the file
system or directly to the ASP Response object. This means you can either save your
Recordset to an XML file or blast the data to the browser in ASP applications. You
can also reload a Recordset from a correctly formatted XML document. We'll cover
that feature later in the chapter when we talk about deploying the workflow portion
of the Training application. The following XML document comes from the Training
application data saved by ADO's XML features:

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11dl-A2A3-00AA00CI4882'
xmlns:dt='uuid:C2F41010-65B3-11dl-A29F-00AA00CI4882'
xmlns:rs='urn:schemas-microsoft-com:rowset'
xmlns:z='#RowsetSchema')

<s:Schema id='RowsetSchema')
<s:ElementType name='row' content='eltOnly' rs:updatable='true')

<s:AttributeType name='c0' rs:name='urn:schemas:mailheader:subject'
rs:number='I' rs:nullable='true' rs:write='true')
<s:datatype dt:type='string' dt:maxLength='32768'/)

(continued)

873

Part IV Exchange Server 2000 Development

</s:AttributeType>
<s:AttributeType name="cl' rs:name='DAV:href' rs:number='2'

rs:nullable='true'>
<s:datatype dt:type='string' dt:maxLength='3276S'I>

</s:AttributeType>
<s:AttributeType name='c2' rs:name='urn:schemas:calendar:dtstart'

rs:number='3' rs:nullable='true' rs:write='true'>
<s:datatype dt:type='dateTime' rs:dbtype='filetime'

dt:maxLength='16' rs:precision='19' rs:fixedlength='true'l>
</s:AttributeType>
<s:AttributeType name='c3' rs:name='urn:schemas:calendar:dtend'

rs:number='4' rs:nullable='true' rs:write='true'>
<s:datatype dt:type='dateTime' rs:dbtype='filetime'

dt:maxLength='16' rs:precision='19' rs:fixedlength='true'l>
</s:AttributeType>
<s:extends type='rs:rowbase'l>

</s:ElementType>
</s:Schema>
<rs:data>

<z:row c0='CDO and You' cl='file:II./backofficestoragel
thomriznt5dom.extest.microsoft.com/Public Folders/140/Trainingi
Schedule/{75BD5AS3-09E7-47B7-A9Fl-A75DD62F5BA7}.EML'
c2='2000-03-0ST1S:00:00' c3='2000-03-0ST19:00:00'1>

<z:row c0='Leveraging XML in Exchange 2000' cl=
'file:II./backofficestorage/thomriznt5dom.extest.microsoft.coml

Public Folders/140/Training/Schedule/{SC35C44B-6SEB-4651-AC3E-
5C475923A7Al}.EML'

c2='2000-03-0ST21:00:00' c3='2000-03-0ST23:00:00'1>
</rs:data>
</xml>

Using XSL to Format XML

874

Now that you've retrieved your XML data from Exchange Server, you're probably
wondering how to display this data in your application. This is where XSL comes in.
While XML provides a great way to describe data, it doesn't provide a way to display
data. And while HTML provides a great way to display data, it doesn't provide a good
method for describing data. XSL bridges the gap between XML and HTML so that you
can support rich descriptions of data, while also supporting rich viewing of that data.

The following code, taken from coursexml.asp in the Training application, shows
you how to use XSL to format the XML data returned from Exchange Server. Although
I don't have room to cover everything XSL allows you to do, I will point out the major
tasks you can perform with XSL. This code should help you get started:

<SCRIPT LANGUAGE="javascript">
var thexml;
function Resort(){

Chapter 19 Putting It All Together

}

var strProp = document.all .SortByProp.innerText:
//Call sortfield
sortfield(strProp):

</SCRIPT>
<LABEL ID="SortByProp" style="display:none"

onpropertychange="javascript:Resort()"></LABEL>
<DIV id="datediv"></DIV>

<div id=msgdiv>
</div>

<xml id=reportXSL>
<xsl:template

>

xmlns:xsl="uri:xsl"
xmlns:d="DAV:"
xmlns:o="urn:schemascmicrosoft~com:office:office"

xmlns:c="<%=strSchema%>"
xmlns:h="urn:schemas:httpmail :"
xmlns:cal="urn:schemas:calendar:"

<xsl:script)
function getMyDate(objThis. szDateFormatString. szTimeFormatSTring)
{

var m_objDate = new Date():
var 1ILX=0:
var gszDateString = "n . .
var szDate
var szSubStr

objThis.text:
szDate.substring(5.7):

if(szSubStr.charAt(0) == "0")
{

szSubStr = szSubStr.charAt(l):
}

~objDate.setUTCFullYear(szDate.substring(0.4»:

m_objDate.setUTCMonth(Number(szSubStr)-l):
~objDate.setUTCDate(szDate.substring(8.10»:

~objDate.setUTCHours(szDate.substring(11.13»:

m_objDate.setUTCMinutes(szDate.substring(14.16»:
m_objDate.setUTCSeconds(szDate.substring(17.19»:

var iNumHours = m_objDate.getHours():

//Set Year
//Set Month
//Set Date
//Set Hours
IISet Minutes

//Set Seconds

var szFormattedTime = formatTime(mLobjDate.getVarDate(). szTimeFormatSTring):
var szFormattedDate = formatDate(mLobjDate.getVarDate(). szDateFormatString):

(continued)

875

Part IV Exchange Server 2000 Development

876

gszDateString =
szFormattedDate.substring(0,szFormattedDate.length-l) + " " +
szFormattedTime;

return (gszDateString);

}

<fxsl:script>

<table id="XMLTable">
<TBODY>
xsl:for-each select="d:multistatusfd:response"

order-by="<%=Request.QueryString("SortBy")%>">
<xsl :if test="d:propstatfd:propfhref[.!="]">
<xsl :if test="d:propstat/d:prop/iscollection[.='0']">
<xsl:if test="d:propstat/d:prop/subject[.!=' ']">
<TR><TD>

<A HREF='detaildrop.asp' title='Click to view more information

about this course' onclick="vbscript:ExpandCollapse()">
<xsl :attribute name="ID"><xsl :value-of

select="d:propstat/d:prop/href" 1></xsl :attribute>
<xsl :value-of select="d:propstat/d:prop/subject" I>

<Ill>
</TD><ITR>

<TABLE style="display: none"><xsl :attribute name=
"ID")Details<xsl:value-of select="d:propstat/d:prop/href"
1></xsl :attribute>

<TR><TD>
Location:<fB></TD><TD>
<xsl :value-of select="d:propstat/d:prop/location" I>

<ITO><fTR>

<TR><TD>Instructor:<fB></TD><TD>
<!--turn into mailto-->
<A><xsl :attribute name="href">mailto:<xsl:value-of select=

"d:propstatfd:propfinstructoremail" f><fxsl :attribute>
<xsl:value-of select="d:propstatfd:propfinstructoremail" f>
<fA>
<fTD><ITR>
<TR><TD>Category:<fB><fTD><TD>
<xsl:value-of select="d:propstatfd:propfcategory" f>

Chapter 19 Putting It All Together

<ITO><fTR>

<!--convert to the correct timezone -->
<TR><TO>Start Time:<fB><fTO><TO>

<xsl:for-each select="d:propstatfd:propfstarttime">
<xsl:eval>getMyOate(this,"MM-dd-yyyy",
"h:mm tt~)<fxsl:eval><fxsl :for-each>

<fTO><fTR;>
<TR><TO>End Time:<fB><fTO><TO>
<xsl :for-each select="d:propstatfd:propfendtime">

<xsl:eval>getMyOate(this,"MM-dd-yyyy","h:mm
tt")<fxsl:eval><fxsl:for-each>

<fTO><ITR>
<TR><TO>Prerequisites:<fB><fTO><TO>
<xsl:value-of select="d:propstatfd:propfprereqs" f>

<ITO><fTR>
<TR><TO>Oescription:<fB><fTO><TO>
<xsl:value-of select~"d:propstatfd:propfdescription" f>

<fTO><fTR>
<xsl :if test="d:prbpstatfd:propfmaterialsfilepath[.!="]">

<TR><TO>Course Materials:<fB><fTO>
<TO>

<xsl:attribute name="onclick"
>javascript:window.open('<xsl :value-of select=
"d:propstatfd:propfmaterialsfilepath" f>'):
window.event.returnValue=false:<fxsl :attribute>

File link to materials
<fA>
&1F160 :

<xsl:attribute name="onclick"
>javascript:window.open('<xsl:value-of select=
"d:propstat/d:propfmaterialshttppath" f>'):
window.event.returnValue=false:<fxsl:attribute>

HTTP link to materials
<fA>

<fTO><fTR>
<fxsl:if>

(continued)

877

Part IV Exchange Server 2000 Development

878

<xsl:if test="d:propstat/d:prop/discussionurl[.!=' 'J">
<TR><TD>

</xsl:if>

<A style="color: olive" href="" title="Click here to
view the discussion for this course.">
<xsl:attribute name="onclick"
>javascript:window.open('<xsl :value-of select=
"d:propstat/d:prop/discussionurl" I>');
window.event.returnValue=false;</xsl:attribute>

View Discussion. Group

</TD></TR>

<TR><TD>
<xsl :cpoose>
<xsl:wheh test="d:propstat/d:prop/starttime[. &It;

'<%=TurnIntoIso(Date(),"end")%>'J">
<!--Course has already taken place work -->

This course has already taken place.
</xsl:when>
<xsl :otherwise>

<A style="color: olive" href="" title="Click here
to register for this course."><xsl:attribute
name="onclick">javascript:window.
open('register.asp?FullCourseURL=<xsl:value-of
select="d:propstat/d:prop/href" I>');
window.event.returnValue=false;</xsl:attribute>

Register for this course

</xsl:otherwise>
</xsl :choose>

</TD></TR>

<TR><TD>
</BR></TD></TR>

</TABLE>

</xsl :if>
</xsl:if>
</xsl:if>

Chapter 19 Putting It All Together

(/xs1:for-each>
(/TBODY>

(/tab1e>
(/xs1 :temp1ate>
(/xm1>

(script 1anguage="javascript">

var URLSchedu1e ="<%=strURLToSchedu1e%>";

function sortfie1d(sortby)
{

thenode =
reportXSL.se1ectSing1eNode("xs1:temp1ate/tab1e/TBODY/xsl :for-each");

thenode.setAttribute("order-by", sortby);
if (thexml .selectSingleNode("a:multistatus/a:response") == null) {

msgdiv.innerHTML = "(B>No courses found.(/B>";
}

e1se{
msgdiv.innerHTML = thexml.transformNode(reportXSL.documentElement);

}

}

You'll notice that the code contains an XSL template that combines XSL com­
mands with HTML. The template also contains embedded JavaScript that allows the
XSL to transform the XML data into correcdy formatted HTML.

XSL Elements
Let's take a look at some of the most frequendy used XSL elements.

XSL Value-of
Value-of will be one of the XSL elements you use the most. This element places the
value of the node you specify as part of the element. Here is an example of this
element, taken from the code in the previous section:

(xsl :va1ue-of select="d:propstat/d:prop/category" I>

XSL If·
As you can guess by the name, the If ~lement implements simple, conditional logic.
You can pass in the Language parameter for this element indicating the scripting
language you want to use to evaluate script in your condition testing. The Test

879

Part IV Exchange Server 2000 Development

880

parameter is the actual condition you want to test for. The following code checks to
see whether the subject of the item returned is not empty. You can test for multiple
conditions by using the Choose, When, and Otherwise elements discussed next.

<xsl :if test="d:propstatfd:propfsubject[.!="]")

XSL Choose, When, and Otherwise
Use these three elements together when you require more complex conditional test­
ing. You can use these three elements to implement an If ... ElseIf...Else structure. The
following code checks to see whether the start time of the course is less than the
current time, which would mean the course has already taken place. If the start time
is after the current time, a registration link is created for the course.

<xsl:choose)
<xsl:when test="d:propstatfd:propfstarttime[. &It;

'<%=TurnlntoIso(Date()."end")%)']")
<!--Course has already taken place work --)
<B)This course has already taken place.<fB)

<fxsl:when>

ffAnother xsl :when cQuld go here

<xsl :otherwise)
<A style="color: olive" href=""
title="Click here to register for this course.")
<xsl:attribute name="onclick")
javascript:window.open('register.asp?FullCourseURL=<xs1 :value-of
select="d:propstatfd:propfhref" f)');

window.event.returnValue=false;<fxsl:attribute)
Register for this course

<fA)

<fxsl :otherwise)
<fxsl:choose)

XSL Attribute
Notice in the previous code example the use of the XSL Attribute element. This ele­
ment allows you to put an attribute on an HTML element inside your XSL template.
You should do t.his if, as part of your HTML element, you want to evaluate anot.her
XSL element as the HTML element's value. In the previous example, the onclick at­
tribute is added to the A element in the HTML. The href to the item is added as the
valu~ for the onclick attribute by using the Value-of XSL element.

Chapter 19 Putting It All Together

XSL For-Each
The XSL For-Each element is similar to Visual Basic's For Each ... Next loop. The For­
Each element allows you to apply a template to an element. The best example of how
you can use For-Each can be found in the first For-Each element that appears in the
previous section's code. This For-Each element uses a Select clause and pattern
matching to select only the response nodes in the XML. Furthermore, this example
uses the Order-by criteria to support sorting the data by a specific node in the XML.
The code example from the previous section follows:

<xsl:for-each select="d:multistatus/d:response"
order-by="<%=Request.QueryString("SortBy")%)")

XSL Script and XSL Eval
You'll probably want to use the XSL Script and Eval elements together in your tem­
plate. The Script element allows you to specify a global script that the rest of your
XSL template can call. You can pass the Script element a Language parameter that
specifies the scripting language, such as JavaScript, for your script code.

The Eval element evaluates a script expression and generates a text string. You'll
usually need to call a script you defined by using the Script element in your Eval
element and have that script return a text value. You can, however, place in-line script
in the Eval element as well. The following code gets the date of the course and
correctly formats it using the Script and Eval elements:

<xsl :script)
function getMyDate(objThis. szDateFormatString. szTimeFormatSTring)

{

var m_objDate = new Date():
var mJ,=0:
var gszDateString = "":

var szDate
var szSubStr

objThis.text:
szDate.substring(5,7):

if(szSubStr.charAt(0) == "0")
{

szSubStr = szSubStr.charAt(l):
}

m_objDate.setUTCFullYear(szDate.substring(0.4»:
m_objDate.setUTCMonth(Number(szSubStr)-l):
m-objDate.setUTCDate(szDate.substring(S.10»:
m_obj Date. setUTCHours (szDate. substri ng (11.13» :
m-objDate.setUTCMinutes(szDate.substring(14.16»:
m_objDate. setUTCSeconds (szDate. substri ng (17.19» :

IISet Year
IISet Month
IISet Date
II Set Hours
IISet Minutes
IISet Seconds

(continued)

881

Part IV Exchange Server 2000 Development

var iNumHours = ffi-objOate.getHours();
var szFormattedTime = formatTime(m_objOate.getVarOate(),

szTimeFormatSTring);
var szFormattedDate = formatDate(m_objDate.getVarDate(),

szOateFormatString);

gszOateString =
szFormattedDate.substring(0,szFormattedDate.length-l)
+ " " + szFormattedTime;

return (gszOateString);

}

</xsl :script>

<!--convert to the correct time zone -->
<TR><TD>Start Time:</TD><TO>

<xsl:for-each select="d:propstat/d:prop/starttime">
<xsl :eval>getMyOate(this,"MM-dd-YYYY","h:mm tt")
</xsl:eval></xsl:for-each>

</TD></TR>
<TR><TD>End Time:</TO><TO>
<xsl:for-each select="d:propstat/d:prop/endtime">

<xsl:eval>getMyOate(this,"MM-dd-yyyy","h:mm tt")
</xsl :eval></xsl :for-each>

While I've barely begun to scratch the surface of XSL, this overview should help
you get started in transforming your XML using XSL. The best resource I have found
on XSL is the MSDN library at bttp;llmsdn.microsoft.coml. Check out the Web Work­
shop sectio~ in the Platform SDK. Not only does it include lots of documentation on
XML, it includes a wealth of information on XSL.

THE XML DOCUMENT OBJECT MODEL

882

I won't cover the XML Document Object Model here, but it's important for you to
knrnXT >;Ihnl1t it 1'11,0 Y1\tfT n{)1..A' nrf"\1.T1r1p~ ":l nrnO'f"llfYlrn-::lt1r TlT'l,(T fnr "Un.l1 tn (l'~1" ,....h'lnop
............ _ __ -- 1.1,. _ y, y,o "" •• _,,.a. ,-'-'" "...., 0 ' "" _.&..1..0 ,

and create XML nodes in an XML document. Using the XMLDOM, you can display
the data returned to you from WebDAV and avoid using XSL. However, the XMLDOM
will most likely be slower than XSL because you will have to traverse through all the
elements in the XML document and print them out using script. XSL is implemented
by Internet Explorer natively, so you pass your XSL template to Internet Explorer and
it transforms the XML document using your XSL template.

Chapter 19 PIIIting It All Together

REUSING OUTLOOK WEB ACCESS
One of the great things about the new version of Outlook Web Access is that it lets
you customize the client by either using Web Storage System forms, which we'll look
at momentarily, or simply adding some parameters to the URL you pass to OWA. In
this section, we'll take a quick look at the parameters you can pass to OWA to make
it perform the functionality you want. Table 19-3 shows these parameters.

Command

Cmd=

View=

M=

D=

y=

supported Parameters

Navbar

Contents

New

Options

Open

Edit

Reply, Reply All, Forward

A string that specifies a
view in the folder-for
example, "By Conver­
sation Topic", "Dailj',
"Monthly"

A number that corre­
sponds to a month

A number that corre­
sponds to a day

A number that corre­
sponds. to a year

Description

Displays only the left-hand navi­
gation of OWA, including the
Outlook bar, Outlook icons, and
the folder list.

Displays only the right-hand con­
tents of OWA without navigation
bar.

Creates a new item in the folder.

Displays the Options page.

Opens an item for reading. Be
careful because e-mail messages
end with .EML. If you pass just
the.subject of the e-mail message
without the trailing .EML, OW A
will not be able to fmd the item.

Opens an item for editing.

Performs the specific operation
on the item.

Shows the items in the folder us­
ing the view you specify.

The month value you want to
display.

The day value you want to display.

The year value you want to display.

Table 19-3. The parameters you can use to customize Outlook Web Access.

883

Part IV Exchange Server 2000 oeVellOll:!lm4!!!nt

The Training application takes advantage of the cmd=Contents, the view=, and
the date semantics, such as m=, d=, and y=. For example, this URL from the Train­
ing application shows a public folder calendar with a monthly view, without the
navigation bar:

http:// server/ pfpathl?cmd=contents&view=monthly&d= 15&m=4&y=2000

You can take these URL parameters and use them as hyperlinks or even as
sources for frames within your applications. This extensibility of OWA allows you to
quickly add Web services, such as calendaring, without having to write a single line
of code.

WEB STORAGE SYSTEM FORMS
While OWA provides an extensibility model in the form of the URL string, one of the
key requirements for customizing OWA is the ability to replace the default forms that
it displays for items contained in Exchange Server. Imagine that you created an ASP
application that stored information in Exchange Server. Now suppose that, when using
OWA to access your application's content, your users got the default OWA forms
instead of getting your application's forms. This wouldn't make for a great user ex­
perience. That's why Exchange Server supports Web Storage System forms and a Web
Storage System forms registry.

Creating a Web Storage System Form

884

Since Web Storage System forms can be ASP forms or simply HTML forms, there is
no custom tool you need to learn to create them. Instead, you can create your forms
by using common HTML development tools, such as Microsoft FrontPage or Microsoft
Visual InterDev.

When creating Web Storage System forms, you have two choices for rendering.
First, you can simply use an ASP file and generate all the code and HTML yourself
without getting any help from Exchange Server. Second, you can use HTML forms
and the Web Storage System Forms Renderer. This option does not require you to
write any code.

Using ASP Forms
The Training application uses the first approach of creating a Web Storage System
form because of the flexibility that ASP provides. When a user chooses OWA as her
interface to the Events Calendar page and opens an item from the calendar, Exchange
Server checks the Web Storage System forms registry and sees that an ASP page is
registered for the calendar. Instead of displaying the default calendar form, Exchange
Server hands over execution of the application to the ASP application and passes it

Chapter 19 Putting It All Together

some parameters within the URL. As part of the URL, Exchange Server passes the
data urI parameter. The dataurl parameter is the full path to the item that the user
requested from Exchange Server. By using the value in this dataurl parameter, you
can open the item via ADO and perform the necessary operations for your applica­
tion. The following code is taken from eventwsform.asp, which is the ASP file called
in the Training application:

'Figure out display from a querystring variable
set rec = Server.CreateObject("ADODB.Record")

strFullURL = request.querystring("dataurl")
set oConnection = Server.CreateObject("ADODB.CQnnection")
oConnection.ConnectionString = strFullURL
oConnection.Provider = "ExOledb;Datasource"
oConnection.Open
rec.Open strFullURL.oConnection

Response.Write "(B>Course Details:

"
'Open the connection
set iAppt = Server.CreateObject("CDO.Appointment")

Dim strhref
'Load the appointment irito COO
'Response.Write strhref
strhref = rec.Fields("DAV:href")
iAppt.DataSource.Open strhref.oConnection.l

Using HTML Forms
Creating an HTML form that supports data binding is easy with Exchange Server 2000
and Web Storage System forms. By using some special HTML markup, you can turn
ordinary HTML elements into data~bound elements. The markup that you'll need to
implement consists of two attributes to set. First, you must set the name attribute of
the HTML element as the schema name that. you want to bind to the element. An
example of this is urn:schemas:httpmail:subject. The second ;:tttribute that you need
to set on the HTML element is named class. You always set this attribute to a value
of field to tell the Web Storage System Form Renderer that this is a data-bound field.
The follOWing HTML sets a text box to suddenly be data bound to a Web Storage
System field named myprop:

My Prop; (input type="text"
name="urn:schemas:myschema:myprop" class="fi~ld">

885

Part IV

You also receive the dataurl parameter as you would in an ASP Web Storage
System form. Using dataurl, you can set the action of your form to post the data back
to the URL from which the data is retrieved. The following code permits a user sub­
mitting a form to have that form post back to Exchange Server and then redirect the
Web page to the application's default page:

(form elass="form" method="post"
aetionspee="%dataurl%?Cmd=saveitem&redir=%dataurl%I .. 1")

That's it. As you can see, creating a Web Storage System data-bound HTML form
is pretty simple.

Registering a Web Storage System Form

886

Now that you've created a Web Storage System form, you need to tell Exchange Server
what to do with it. For example, you might want your form to replace another form.
Or, you might want your form to process commands sent to a specific server. In order
to tell Exchange Server how to use your form, you must add a form registration to
your application. A form registration is just another item in the Exchange Server
database; however, it contains some special properties, which we'll examine momen­
tarily. Normally, you will want to save your form registrations in the schema folder
for your applications in the same place you store your custom content classes and
properties.

The following code shows you how to register a form using ADO. This particular
registration will display the custom form whenever a user browses to the folder over
http, either by typing a URL in Internet Explorer or by browsing through the folders
of OWA and selecting a folder.

Set oRee = CreateObjeet("ADODB.Reeord")
oRee.Open "default.reg", oCon, 3, 0

oRee.Fields("DAV:eontentelass") =_
"urn:sehemas-mierosoft-eom:offiee:forms'registration"

oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'eontentelass")
"urn:eontent-elasses:folder"

oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'request")="GET"
oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'emdB) = "*"

oRee.~ields("urn:sehemas-mierosoft-eom:offiee:forms'formurl") = _
"default. htm"

oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'exeeuteurl")
"/exehweb/bin/exwform.dll"

oRee.Fields_
("urn:sehemas-mierosoft-eom:offiee:forms'exeeuteparameters") = ""

oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'eontentstate") = "*"
oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'platform") = "WINNT"
oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms'browser") = "*"
oRee. Fi el ds ("urn: sehemas -mi erosoft- eom: offi ee: formsffmaj orver") = "*"

Chapter 19 Putting It All Together

oRec. Fi el ds ("urn: schemas -mi crosoft-com: offi ce: forms/lmi no rver") = "*"
oRec.Fields("urn:schemas-microsoft-com:office:forms#version") =
oRec. Fi el ds ("urn: schemas -mi crosoft-com: offi ce: forms/lmessagestate") = "*"
oRec.Fields("urn:schemas-microsoft-com:office:forms#language") = "*"
oRec.Fields.Update

oRec.Close

The code simply creates a new item in Exchange Server. It sets the content class
of the item as urn:schemas-microsoft-com:officeforms#registration, which tells Ex­
change Server that the item is a form registration. Then the code sets some proper­
ties that tell Exchange Server which c01lU11ands and requests the form should handle,
what languages the form should be used for, and which type the form is. You can
have multiple form registrations in a single folder that target similar types of requests

) ,

but display different forms baseq on the criteria you set, such as browser, language,
or content state. Table 19-4 describes each of these properties in more detail. Be aware
that, when appropriate, properties can support wildcards that allow all values.

Property Name

um:scbemas-microsoft­
com:office:forms#browser

um:scbemas-microsoft­
com:o.ffice:forms#cmd

um:scbemas-microsoft­
com:office:forms#contentclass

um:scbemas:microsoft­
com:office:forms#contentstate

Descrlption

Indicates the type of browser. This property
is useful if you want different forms for dif­
ferent browsers. For example, you can de­
tect a cell phone microbrowser making a
request and return an appropriate version of
the form for that type of browser.

This corresponds to a URL query string Cmd
parameter, such as Myurll?cmd=contents.
You can also set this property to custom
commands that you implement and register.
For example, you could have a parameter
named NewEvent, which you register for
when the urI contains Myurll?cmd=NewEvent.

The content class the form is registered for.
You can specify a built-in content class or a
custom one;

This checks the form against the um:scbemas:
microsoft-com:office·forms#contentstate
property; You can set this property to any
value you want. For example, you could set
contentstate to approved, and have a form
display the item differently depending on
whether the contentstateproperty is ap­
proved or not approved.

Table·19-4. Form registration properties. (continued)

887

Part IV Exchange Server 2000 Development

888

Table 19-4 continued

Property Name

urn: scbemas-microsoft­
cQm:pfficeforms#executeparameters

urn: scbemas-microsoft­
com:officeforms#executeurl

urn: scbemas-microsoft­
com:officeforms#formurl

urn: scbemas-microsoft­
com;officeforms#language

urn:scbemas-microsoft­
com:office·forms#majorver

urn: scbemas-microsoft­
com:officeforms#messagestate

urn: scbemas-microsoft­
com:officeforms#minorver

urn: scbemas-microsoft­
com:officeforms#platjorm

urn: scbemas-microsoft­
com:officeforms#request

Description

Parameters to pass to the form rendering
engine.

The URL from which to execute the form. If
you're using the puilt-in renderer, this URL
will be lexcbweblbinlexwform.dll. However,
if you're using ASP, you'll want to use the
URL of your ASP page as this value.

The URL to the form that should be used to
render the data.

Allows you to specify the language of the
browser client for which the form should be
rendered. This property can be any lan­
guage code that is valid for http headers.

The browser major version.

The message state. An example of this value
can be read or submitted.

The browser minor version.

Indicates the platform of the browser, such
as WINNT or UNIX.

Specifies whether the form is the default for
a GET or POST request.

Since I showed you an example of registering a form by using the built-in forms
renderer, I thought I should show you an example of a registration that uses an ASP
page. This code is taken from the setup program for the Training application. No­
tice how the jormurl and executeurl parameters differ from wh!=n we registered to
use the built-in forms renderer.

'Create the registration in the schema fol~er

Set oRee = CreateObjeet("ADODB.kecord")
oRee.Open strPath & "schema/web~t6reform.reg", oConneetion, 3, 0

oRee.Fields("DAV:eontentelass") = _
"urn:sehemas-microsoft-eom:offiee:forms'registration"

oRee. Fi el ds ("urn: schemas -mi crosoft -cOm: offi ee: formslleontentel ass")
"urn:eontent-elasses:appointment"

oRec.Fields("urn:schemas-microsoft-com:offiee:forms'request") = "GET"
oRec.Fields("urn:sehemas-mierosoft-com:office:forms'emd") = "*"

Chapter 19 Putting It All Together

'Put full URL to Web Store forms
oRee.Fields("urn:sehemas-mierosoft-eom:offiee:forms,formurl")

strHTTPURL & "/eventwsform.asp"
oRee.Fields("urn:sehemas-mierosoft-com:office:forms'executeurl")

strHTTPURL & "/eventwsform.asp"
oRee.Fields _

("urn:sehemas-mferosoft-eom:office:forms'executeparameters") = ""
oRee.Fields("urn:sehemas~~ierosoft-com:offiee:forms'contentstate") = "*"
oRec.Fields("urn:schemas-microsoft-com:office:forms'platform") = "WINNT"
oRee.Fields("urn:sehemas-mierosoft-com:offiee:forms'browser") = "*"

oRee.Fields("urn:schemas-mierosoft-com:offiee:forms'majorver") = "*"

okee.Fields("urn:sehemas-mierosoft-com:offiee:forms'minorver") = "*"
oRee. Fi el ds ("urn: sehemas -mi erosoft- com: offi ee: forms/Ivers ion") = ""
oRee.Fields("urn:sehemas-mierosoft-com:offiee:forms'messagestate") = _

n*"

oRee.Fields("urn:sehemas-mierosoft-com:offiee:forms,language") = "*"

oRee.Fields.Update
oRee.Close

Another way you can register a new form for a folder is by using the
DAV'defaultdocument property. This property takes a string that specifies the Web
page to open when the user browses to the folder by using OWA. Instead of displaying
the contents of the folder when this property is set, OWA displays the custom form.
You can easily set this property by using ADO or WebDAV.

FrontPage 2000 Support
Although you can create and register your forms manually, you can also take advan­
tage of the support Exchange Server 2000 provides for FrontPage 2000. You can create
and run FrontPage Web pages inside Exchange Server 2000 folders. Since Exchange
2000 has some FrontPage tools that don't require you to do any development (they're
pretty much point and click), I won't cover them at length. However, I will show you
what the tools look like so that you can understand their capabilities.

First, let's examine the Schema Picker, shown in Figure 19-1. You can drop any
HTML element on your Web page into FrontPage and use the schema picker to data
bind the element to Ex:change Server. If you only name your element and don't use
the schema picker, the FrontPage add-ins will generate the schema on the fly when
you publish your form.

You can also use the tools in FrontPage to set the properties for your form. In
the Choose Content Class dialog box, shown in Figure 19-2, you can change the
content class that your application's custom schema uses. If you don't use any cus­
tom schema but instead use one from built-in properties, you can simply select an
existing content class as your default.

889

Part IV

890

um:~contactd!)Site

um:schemas:contackgender _ Ii.
um:schemas:contacts:governmenlid

....... rf1 um:~contacb:hobbie;
_.r61 urnchemas:contaru:homeCity

... r6J um:schema!::contacts:hOlTll!lCountlY
um:~:contacls::hornefo!uc

um:&ehernas::cont~homelatitude

Figure 19·1. Selecting the property to data bind to an element from the Schema
Picker.

Figure 19·2. The Form Properties dialog box in FrontPage.

Another tool offered in FrontPage is the View Design-Time Control (DTC),
shown in Figure 19-3. This DTC makes it easy for you to reuse the OWA view capa-

Chapter 19 Putting It All Together

bilities in your application without having to write code. The View DTC also gives
you all the features of the OWA View control, such as sorting and grouping.

Figure 19-3. The View DTC in FrontPage.

After you specify your options for the DTC, it generates some HTML and an Xl\1L
data island on your Web.page. An Xl\1L data island describes the view that you want
to use with the OWA View control. The values in the Xl\1L data island determine which
columns and fannats will be displayed on your page. You also can generate your own
HTML and XML to perform the functionality of the DTC in your applications. The
HTML and XML generated by the DTC is shown here:

<SPAN id-"Viewl" class="view"
style="width:544:height:296"
URL="/public/webapps/webapps2"
storeType="l"

>

RowsPerPage="5"
viewDescriptor="Viewl_XML"
viewClass="/exchweb/views/standardv1ew.xsl"
linkspec="%DataUrl%"

<XML id","ViewLXML">
<view

xmlns:v'''"http://schemas.microsoft.com/schemas/v1ew"
xmlns:d"'"urn:uuid:c2f41010-65b3-11dl-a29f-00aa00c14882">
<baseroot>/exchweb/img/</baseroot>
<name>Normal</name>
<column><heaciing>Subject</heading>

<prop d: dt="stri ng">urn: schemas: httpma11: subj ect</prop>
(continued)

891

Part IV

892

<width>40</width>
<sortable>l</sortable>
<bitmap>0</bitmap><multivalued>0</multivalued>
<style></style>

<Icolumn>
<filter id="filternode">

"DAV:ishidden" = false AND "DAV:isfolder" false
</filter>
<groupby>

<order>
<heading>From</heading>
<prop d:dt="string">urn:schemas:httpmail :from</prop>
<sort>ASC</sort>
<style></style>

<Iorder>
</groupby>
<headerstyle>background-color:#c0c0c0</headerstyle>
<rowstyle>background-color:#c0c0c0</rowstyle>

</view>
</XML>

FrontPage also provides the Folder Tree DTC, shown in Figure 19-4. Think of this
DTC as the Web equivalent of the Outlook folder picker. Using the Folder Tree DTC,
you can select the root folder that the folder picker will start at in your hierarchy.

Figure 19-4. The Folder Tree DTC in FrontPage.

Chapter 19 Putting It All Together

FrontPage provides one more DTC, the Outlook Web Access DTC, which is
shown in Figure 19-5. This DTC lets you set some properties, and then it provides a
link to Outlook Web Access using the correct URL parameters. Again, you can achieve
the same result yourself, but the DTC makes it easier.

Figure 19-5. The Outlook Web Access Dre in FrantPage.

CONTENT IN.DEXING
Exchange Server 2000 proVides built-in support for content indexing. 1f you plan to
use Exchange Server as a repository for a large amount of information, or if you think
that your users will require extensive search features, you should consider using
content indexing. You can also use content indexing to search for text in attachments
on items. Content indexing supports indexing Office and HTML documents as well
as standard text attachments. My only cayeat for content indexing is that you make
sure the requirements for processor arid disk resources don't affect the performance
of your server; You can schedule incremental crawls of the clata sources for content
indexing through the Exchange System Manager, shown in Figure 19-6.

Content indexing allows you. to perform qUick queries against a full-text index
inside your Exchange Server applications. lJsing the full-text index is as easy as gen­
erating ADO code that uses the CONTAINS orFREETEXT predicate. You cannot use
these predicates until you turn on content indexing for your Exchange server. Be
aware that content indexing operates on a per~store basis, meaning there is no top­
level index that allows you to search across stores. Let's see how a query containing
the CONTAINS or FREET:EXT predicate looks.

893

Part IV Exchange Server 2000 Development

Figure 19~6. Using the Exchange System Manager for content indexing.

CONTAINS Predicate

894

The CONTAINS predicate allows you to perform text-matching operations against the
full-text index. With CONTAINS, you can perform simple queries, such as "Show me
all items that contain the word Bob in the subject," as well as complex q1Jeries with
weighting on the terms they contain. (You can use a weighted query to indicate rela­
tive importance of the terms you search for.) The following code snippet shows several
ways you can use the CONTAINS predicate. The code includes a simple version of
CONTAINS; it also shows you how to use the NEAR keyword, prefix matching, lin­
guistic matching (such as drive, driving, and so on), and weighted queries.

'Contains Bob
strSOL = "Select ""urn:schemas:httpmail:subject"" From" &_

"scope('shallow traversal of """ & strURL & _
"""'I WHERE CONTAINS(""urn:schemas:httpmail:subject"",' ""Bob"" ')"

'Contains Bob AND Cool, could also be OR
strSOL = "Select ""urn:schemas:httpmail:subject"" From" &_

"scope('shallow traversal of ""~ I strURL & _
"""'I WHERE CONTAINS(""urn:schemas:httpmail:subject"",' ""Bob"" " &_
"AND ""Copl""')"

'Word prefix match
strSQ~= "Select ""urn:schemas:httpmail:subject"" From" &_

"scope('shallow traversal of ""~ & strURL & _
"""'I WHERE CONTAINS(""urn:schemas:httpmail:subject"",' ""*Bob*"" 'I"

'Linguistic matching
strSOL = "Select ""urn:schemas:httpmail:subject"" From" &_

scope('shallow traversal of n"" & strURL &_
"""'I WHERE CONTAINS('FORMSOF(INFLECTIONAL,""drive"") 'I"

Chapter 19 Putting It All Together

'Bob NEAR cool, where ~ is same as NEAR (within 50 words)
strSQL = "Select ""urn:schemas:httpmail :subject"" From" & _

"scope('shallow traversal of """ & strURL & _
"un,) WHERE CONTAINS(""urn:schemas:httpmail :subject""," & _
'tlll"Bob"" - ""caal""')"

'Weighted Match
strSQL = "Select ""urn:schemas:httpmail :subject"" From" & _

"scope('shallow traversal of """ & strURL & _
"un,) WHERE CONTAINS(""urn:schemas:httpmail :subject""," & _
"'ISABOUT (""Bob"" WEIGHT(0.9), ""Cool"" WEIGHT(0.1))')"

FREETEXT Predicate

You can use the FREETEXT predicate to search columns based on the meaning of
the search words rather than the exact wording. When you use FREETEXT, the query
engine breaks the string you specify into a number of search terms, assigns weights
to the terms, and then attempts to find a match. The following code performs a search
for the meaning "best server on the planet." Since I have in my Inbox a message with
the subject "Exchange Server is the best server in the world," the search finds that
message even though the wording is slightly different.

NOTE You can use the AND, OR, and FREETEXT predicates together.

'Freetext
strSQL = "Select ""urn:schemas:httpmail :subject"" From" & _

"scope('shallow traversal of """ & strURL & _
"un,) WHERE FREETEXT(""urn:schemas:httpmail:subject""," & _
"'best server on the planet')"

Working with Ranking

When using content indexing with a query, you might want to retrieve the rank value
of a document as compared to the search terms in your query. The search engine
will assign a rank of 0-1000 to your items depending on how well they match the
query. In your ADO SELECT statement, you can request the rank property by add­
ing the property urn:schemas.microsoft.com.julltextqueryinfo:rank. You can use the
ORDER BY predicate with this property to sort the items returned from the query
based on their relevance to the search terms. Also, you can force Exchange to coerce
the values for the rank either by using clause weighting or by using rank coercion.

The idea of clause weighting is similar to the idea used in the weighted col­
umn example we examined earlier. The difference is that instead of applying the
weight to only the column, you apply the weight to the entire search term using
the RANK BY predicate. This predicate takes a number of options such as WEIGHT
and COERCION.

895

Part IV

896

The next example uses clause ranking, so the WEIGHT option is used. This
option takes a decimal value from 0 through 1 plus up to three digits past the deci­
mal, such as 0.832. Using the technique of clause weighting, you can assign certain
search terms a fraction of the weight that other search terms have. The following
example searches all properties on the items for the term transportation and the terms
heavy and trains. As you can see by the ranking, if the search engine finds only trans­
portation, it should rank that item at one-quarter the value of an item containing heavy
trains. When using weighting in this manner, the search engine applies weighting
to the terms in the preprocessing stage.

StrSOL = "Select ""urn:schemas:httpmail :subject"", " _ &
"""urn:schemas.microsoft.com:fulltextqueryinfo:rank"" FROM" _ &
"scope('shallow traversal of "file://./backofficestorage/ _ &
"thomriznt5dom.extest.microsoft.com/apps/items/""') WHERE" &
"CONTAINS(*,'""transportation""') RANK BY WEIGHT(B.25) OR " _ &
"CONTAINS(*,'""heavy trains""') RANK BY WEIGHT(l.B)"

Coercion, especially rank coercion, is a post-processing concept in which after
the search engine finds matches for the search terms, your application can tell the
search to recalculate the rank according to your specifications. Coercion is best
illustrated with an example. Suppose you are searching for a document that contains
the word Exchange. If the word Exchange is in a particular property that you think
will make the item containing the word very relevant, such as the subject property,
you can coerce the search engine into ranking the item you are searching for very
high. If the search engine finds an item with the word Exchange in another prop­
erty (that is, a property other than the subject property), you can have the search
engine readjust the ranking so that the items containing Exchange found in the other
properties are ranked lower than those found in the subject property.

You can perform the coercion using one of two approaches. One approach is
absolute coercion, in which you assign an absolute value such as 500 to the items
that meet your criteria for coercion. But what if you have more complex scenarios
and absolute coercion will not meet your needs? For example, you want items with
the word Exchange in the subject property to be ranked from 900 through 1000.
(Remember that rank can range from 0 through 1000.) Using a coercion formula­
the second approach-you can tell the search engine to make the coerced rank of
these items according to this formula: 900 plus the uncoerced rank multiplied by O.L
For the items containing the word Exchange in a property different from subject, you
can coerce the rank to be in the range of 0 through 900 by making the coerced rank
equal to the uncoerced rank multipled by 0.9.

Chapter 19 Putting It All Together

Using a coercion formula requires that your users know which columns they
should have the search engine rank higher when their search criterion involves those
columns. You could implement some logic in your application to take a shot at de­
fining which columns should be coerced as ranking higher if search terms are found
in those columns. The following code shows both absolute coercion and using a
coercion formula for the example we just looked at:

'Use absolute coercion
'1000 - Exchange in Subject
'S00 - Exchange anywhere else
StrSQL = "Select ""urn:schemas:httpmail :subject""," _ &

"""urn:schemas.microsoft.com:fulltextqueryinfo:rank"" FROM" _ &
"scope('shallow traversal of "file://./backofficestorage/" _ &
"thomrizntSdom.extest.microsoft.com/apps/items/""') WHERE" _ &
"CONTAINS(""urn:schemas:httpmail :subject"",'""Exchange""') " _ &
"RANK BY COERCION(ABSOLUTE,1000) OR CONTAINS(*,'""Exchange""') " _ &
"RANK BY COERCION(ABSOLUTE,S00)"

'Use coercion formula
'900 - 1000 - Exchange in Subject using MULTIPLY and ADD
'0 - 900 - Exchange anywhere else using MULTIPLY
'MULTIPLY takes a decimal number from 0 to I, with 3 digits after
'the decimal
'ADD takes an integer
'You cannot go above 1000
StrSQL = "Select ""urn:schemas:httpmail :subject""," _ &

"""urn:schemas.microsoft.com:fulltextqueryinfo:rank"" FROM" _ &
"scope('shallow traversal of "file://./backofficestorage/ _ &
"thomrizntSdom.extest.microsoft.com/apps/items/""') WHERE" _ &
"(CONTAINS(""urn:schemas:httpmail :subject"",'""Exchange""') " _ &
"RANK BY COERCION(MULTIPLY,0.l) RANK BY COERCION(ADD,900) OR" &
"CONTAINS(*, ""'Exchange""') RANK BY COERCION(MULTIPLY,0.9)"

Indexing Default Properties

The content indexing engine by default indexes a certain set of built-in properties,
which are listed in Table 19-5. Note that at this time, there is no simple way to tell
the engine to index your custom properties, such as setting a fulltextindexed prop­
erty in your schema. The only way to ensure that your custom properties are full­
text indexed is to create a text file, such as http://thomriz.com/schema/myprop, that
contains the fully qualified names for your properties on separate lines. You then need
to set the following registry key to point at that text file:

HKLM\Software\Microsoft\Search\I.0\ExchangeParameters\SchemaTextFilePathName

Note that if any of the keys do not exist, you must create them.

897

Pari IV

898

MAP] Property

PR_SUBJECT, PR_SUBJECT_ W

PR_BODY, PRj30DY_ W

PR_SENDER_NAME,
PR_SENDER_NAME_ W

PR_SENDER_NAME_ W

PR_SENT_REPRESENT1NG_NAME,
PR_SENT_REPRESENT1NG_NAME_ W

PR_DISPLA V_TO, PR_DISPLA V_TO _ W

PR_DISPLAY_CC, PR_DISPLAY_CC_W

PR_DISPLAY_BCC,
PR_DISPLA Y_BCe W

PR_SENDER_EMAIL_ADDRESS,
PR_SENDER_EMAIL_ADDRESS_ W

urn:schemas:httpmail Property

urn: schemas: httpmail:subject

urn:schemas: httpmail:textdescription

urn:schemas:httpmail:textdescription

urn: schemas: httpmail:sendername

urn:schemas:httpmail.jromname

urn: schemas: httpmail:displayto

urn:schemas: httpmail:displaycc

urn: schemas: httpmail:displaybcc

urn:schemas:httpmail:senderemail

Table 19-5. The set of built-in properties indexed by the content indexing engine by
default.

The following code, taken from the Training application, can be used when
you turn on content indexing for the application. For right now, I've commented
out this code.

'Enable this if you have content indexing enabled on your system
'Uses CONTAINS instead of LIKE
'***************************** BEGIN
'strCategoryText = "CONTAINS (""" & strSchema & "category"","

'if strCategories = "all" then
arrCategories = Session("arrCategories")

'Select the first one
'Generate the rest
'strCategoriesSQL = strCategoryText
for i=lbound(arrCategories) to UBound(arrCategories)

if i=LBound(arrCategories) then
'First one, start the'
strCategoriesSQL = strCategoryText & ","un & arrCategories(i)
if lbound(arrCategcries) = UBound(arrCategories) thpn

'Only one, end the statement
strCategoriesSQL strCategoriesSQL & "un')"

else
strCategoriesSQL strCategoriesSQL & """ OR "

end if

Chapter 19 Putting It All Together

elseif (i<UBound(arrCategories) AND i>LBound(arrCategories» then
strCategoriesSQL = strCategoriesSQL & ""un & _

arrCategories(i) & """ OR "
else

'It's the last one, drop the OR
if Right(arrCategories(i),l) = chr(10) then

'Must be a carriage return/linefeed
arrCategories(i) = Mid(arrCategories(i).

l,(len(arrCategories(i»C2»
end if
strCategoriesSQL = strCategoriesSQL & ""un & _

Trim(Cstr(arrCategories(i») & "un')"

end if
next

'else
'Need to create the category search string
'Grab the querystring value which should be separated by $
strCats = Request.QueryString("Categories")
arrCats = Split(strCats."$")

'Always going to be at least one
for i=lbound(arrCats) to UBound(arrCats)

if i=LBound(arrCats) then
'First one, start the'
strCategoriesSQL = strCategoryText & & arrCats(i)
if lbound(arrCats) = UBound(arrCats) then

'Only one, end the statement
strCategoriesSQL strCategoriesSQL & "un')"

else
strCategoriesSQL strCategoriesSQL & """ OR "

end if
elseif (i<UBound(arrCats) AND i>LBound(arrCats» then

strCategoriesSQL = strCategoriesSQL & ""un & arrCats(i) & _
""" OR "

else
'It's the last one, drop the OR
if Right(arrCats(i),l) = chr(10) then

'Must be a carriage return/linefeed
arrCats(i) = Mid(arrCats(i).l,(len(arrCats(i»-2»

end if
strCategoriesSQL = strCategoriesSQL & ""un & _

Trim(Cstr(arrCats(i») & "un')"

end if
next

'end if
'************************************** END

899

Part IV

EXCHANGE SERVER EVENTS
Being able to capture and program events in Exchange Server 2000 opens up a world
of possibilities when writing applications. Because the events are server side, it doesn't
matter which client puts items into the database; no matter what the client, the events
will fire and your code will run. This means that if a user drags and drops a Word
document into Exchange Server using the new file system capabilities, your events
will fire.

Exchange Server 5.5 took an impressive first step toward utilizing events. As
you've seen in this book, the Event Scripting Agent provides countless possibilities
for Exchange Server 5.5 applications to add workflow, data validation on the server,
and other server-side programming capabilities. However, the Exchange Server 5.5
Event Scripting Agent supports only asynchronous events, meaning events are fired
after the item has been committed into the Exchange Server database. This makes it
hard to prohibit users from moving, copying, deleting, or modifying items since you're
notified after they have already performed these activities. Fortunately, any applica­
tions you've written using the Exchange Server 5.5 event architecture will run in
Exchange Server 2000.

Besides supporting asynchronous events, Exchange Server 2000 adds synchro­
nous events, which are called before the item is committed to the database. Your
application can look at the item, and then either accept it or prevent it from being
committed into Exchange Server.

Be aware that events are fired when items are moved, copied, created, or deleted
in Exchange Server. The scope of these events is scoped to a folder, and you can write
event handlers that are passed ADO or OLE DB interfaces, depending on the pro­
gramming language you use. You can write your event handlers in script, Microsoft
Visual Basic, or Microsoft Visual C++. I'll concentrate on Visual Basic in this discus­
sion. I recommend that you write your event handlers in this language, unless of
course your language of choice is Visual C++.

I don't recommend writing the event handlers in script because it's harder to
write and debug. However, if you don't have permissions on the server to install your
event handlers, using scripts can be helpful. Since your event handler is a script that
you can store directly in Exchange and not a COM component you need to install
on the Exchange server, as long as you have permissions to register for events, your
scripts can fire.

Firing Order of Events

900

When an item is saved into Exchange Server, events are fired in a fixed order in the
system. This firing order is important to understand because multiple entities can be
working on the items in your folders, which can make it look as though your application

Chapter 19 Putting It All Together

isn't working. Synchronous events fire first, followed by any folder rules, and finally
by asynchronous events. As you might have guessed, these events build on one
another. For instance, if your synchronous event aborts the item from being saved,
then the rules and asynchronous events will not be notified of the item. Furthermore,
if any events that are higher up in the chain move or delete an item, the other events
should be prepared to not have access to the item.

Security Requirements

There are some security requirements that you should know about before you write
your event handlers. First, you must be a folder owner to register an event handler
in a folder. Plus, Exchange Server provides an extra security precaution: if you're
registering someone else's event handler, he can implement the ICreateRegistration
interface, which is called when you attempt to register his component as the object
to handle events in your folder. If the component writer wants, he can prohibit you
from registering his event handler.

Second, if you're writing COM components to implement your event handlers,
you must have access to install components on the Exchange server. Exchange Ser­
ver does not support instantiating and running remote components via DCOM as event
handlers. Although there is nothing stopping you from doing this in your event han­
dler, you must remember that the EXOLEDB provider is not remotable. Therefore,
you should run your code on the same server the data is on. You can, however, use
DCOM to connect to another component residing on another server that accesses data
on that server. Getting the security contexts to support this will be the hard part. If
you use COM+ applications (which we'll talk about later in this section), you can have
your components run in a specific security context, making this easier.

Supported Events

As mentioned earlier, Exchange 2000 supports a wide range of events, including
synchronous events, asynchronous events, and system events. We will cover these
in this section.

Synchronous Events
Synchronous event handlers are called twice by Exchange Server. The first time, the
event handler is called before the item is committed into the Exchange Server data­
base. The second time the event handier is called, the item either has been commit­
ted or aborted. On the first pass, the item is read/write. You can modifY properties
or copy the item somewhere else. However, on the second pass, after the transac­
tion has been committed, the item is read-only. Be aware that the item is not a true
item in the database on the first pass. Since the item is not yet committed, you

901

Part IV

902

shouldn't grab any properties that could ch~lllge in the future-between the time you
access the item and the time it is committed. For example, the URL to the item is not
valid on the first pass since the item is not yet in the database. Since many factors
could change the URL, you shouldn't query or save it during the first pass.

In synchronous events, your event handler runs in the context of a local OLE
DB transaction. Therefore, any changes that you make to the item will not trigger other
events. However, you also must realize that the work performed in your event han­
dler can be undone if another event handler rejects the item from being committed.
All the event handlers that act on an item in a folder must commit for the action to
occur. If any event handler rejects the transaction, the action will not occur. If your
event handler has already run, it will be called a second time and will be notified
that the action has been aborted. Your event handler can then perform any neces­
sary cleanup.

For example, let's say you have two event handlers registered in a folder for
the OnSyncSave event. One of them opens the item and saves attachments to another
location. The other validates data in the item before allowing it to commit. Based on
the priority you set for your event handlers, if the validation occurs after copying the
attachments, the validation could fail and the transaction for saving the item could
be aborted. Now, any good developer obviously would make validation precede the
other events. However, since multiple developers can register event handlers (as long
as they meet the security requirements mentioned earlier), you should be aware that
other event handlers can abort transactions. In this case, your event handler for
copying the attachments will be notified that the transaction was aborted, and you
should clean up your work by deleting the attachments from the other location.

You also should be aware that synchronous event handlers, while running, are
the only process that can access an item. Exchange Server will block any other threads,
processes, or applications from accessing that item while your event handler is run­
ning and working on it. This is critical because if you write an inefficient event han­
dler, you can degrade the performance of other applications and Exchange Server.
For example, if your event handler takes 10 seconds to run, each time an Outlook
user saves an item that triggers your event handler, Outlook will show an hourglass
for 10 seconds. Therefore, if you can use asynchronous events to implement your
functionality, you should do so. If the Outlook scenario had been with an asynchro­
nous event, Outlook would have returned immediately and allowed the user to
continue working.

Synchronous events are also expensive for Exchange Server to perform. The
server needs to stop its processing on the item, call your event handler, wait, and then
figure out whether to commit or abort the transaction for the item based on your event
handler. All this creates temporary copies of the item before committing and forcing
the Exchange Server threads to wait, which affects performance.

Chapter 19 Putting It All Together

Continuing with the Outlook scenario, if you abort the transaction, different
clients will display different error messages. Outlook will probably display an error
message stating that the item couldn't be saved. You cannot show user interface
elements in your event handlers because they are running on the server. Instead, you'll
have to find a way to notify your users that they submitted the item incorrectly, or
that the action they're trying to perform is not allowed. You can perform this notifi­
cation via e-mail or another method.

Exchange Server 2000 supports two synchronous events: OnSyncSave and
OnSyncDelete. As you can guess from their names, the OnSyncSave and OnSyncDelete
events support save and delete operations. However, both events are called as part
of move and copy operations. For example, if you move an item from one folder to
another,a save event will be fired in the new folder and a delete event will be fired
in the old folder. If either is aborted, the move will not occur. With a copy, you will
get a save event in the location where the copy is supposed to be placed. You should
know that the OnSyncDelete event is not called on an item when the item's parent
folder is moved or deleted. Also, OnSyncDelete can distinguish between hard and
soft deletes. A hard delete is a deletion in which the item is completely removed from
the Exchange database. A soft delete is a deletion in which the item is moved into
the dumpster. (An analogy would be the deleted items subfolder for every folder') A
user can recover an item from the dumpster. You are notified of the deletion type
by the flags that are passed to the OnSyncDelete event.

OnSyncSave is not called for items in a folder when the parent folder for the
items is being moved or copied. The event will be called, however, for the parent
folder; you can abort the transaction if you don't want the items moved or copied.

You might be asking yourself, "If only Save and Delete are supported, how do
I get notified of a change?" If a user makes a change to an item (such as modifying
the subject or any property) and saves the item, you will receive the OnSyncSave
event. The flags that are passed to the event will notify you that the item has been
modified. However, you will not receive notification of which property the user
changed in the item. You will have to scan the item to see what changed. To do this,
you must have an original copy of the item, which you can obtain by copying the
item in your event handler to another folder.

When you register your event handler, if you do not specify criteria for the types
of items for which you want to receive events, Exchange Server will notify you of
all new items being put into the folder. Folders store some surprising items that you
might not expect to handle in your event handler. For example, when someone
publishes a form or adds a field to a folder in Outlook, a hidden item is added to
the folder. This will trigger an event. You should set the criteria for your event regis­
tration, which we'll learn about in a little while, so that only the items your event
handler is interested in can trigger events.

903

Part IV

Asynchronous Events
Exchange Server 2000 supports two asynchronous events, OnSave and OnDelete.
These asynchronous events are called after an item has been committed to the data­
base, and they fire in no particular order. Although these events are guaranteed to be
called, another process or user could delete or move the item before the event handler
even sees it. Exchange Server doesn't guarantee when it will call your event han­
dler, but usually your event handler will be called as soon as the item is committed to
the Exchange Server database. Furthermore, if multiple asynchronous event handlers
are registered for a single folder, Exchange does not guarantee in which order the event
handlers will be called. To set the firing order for synchronous event handlers, you can
use the priority property, which we will discuss in a little while. Again, you should use
asynchronous events rather than synchronous events whenever possible.

System Events
The three system events of Exchange Server 2000 are OnMDBStartup, OnMDB­
Shutdown, and OnTimer. OnMDBStartup and OnMDBShutdown are called whenever
an Exchange Server store starts or shuts down. This is useful for event handlers that
want to scan the database or perform some sort of activity whenever the database
starts or shuts down. (An event handler is an object whose methods Microsoft Windows
uses to notify an application about events). Because these two events are asynchro­
nous, Exchange Server won't wait for your event handler to finish before continu­
ing execution of the item in question.

The OnTimer event fires according to your configured parameters. For example,
you can have a timer event fire every five minutes, daily, weekly or monthly. It all
depends on the requirements of your application. We'll see how the Training appli­
cation uses timer events for notification about new courses and student surveys for
courses that already have taken place.

Registering an Event Handler

904

I'm going to do this a little bit backwards. Since writing event handlers involves
working with registration parameters, I'll discuss the registration process first. That
way, things will be clearer to you when we talk about writing actual event handlers
later in this section.

Registering an event handler is quite easy. Exchange Server 2000 provides a
script program called regevent.vbs, which allows you to pass some parameters to the
program and regevent.vbs registers for all the event types you specify. Besides using
regevent.vbs, you can create event registration items for your applications just by cre­
atihg new items in Exchange using ADO. In the setup program for the Training appli­
cation, the three event handlers for the application are registered automatically using
the ADO method. We'll look at the code for this registration at the end of this section.

Chapter 19 Putting It All Together

Event Registration Properties
When registering events, you need to set some criteria to tell Exchange Server what
events you're interested in, what the ProgID or script location of the event handler
is, and so on. Table 19-6 shows the criteria required to register an event handler. All
these properties are contained in the http;llschemas.microsoft.comlexchange!eventsi
name space.

Property Naml!

criteria

enabled

eventmethod

matchscope

priority

scope

sCripturl

sinkclass

timerexpirytime

timerinterval

timerstarttime

Required

No

No

Yes

No

No

Yes (Note that this property is in RCI but will not be in
the RTM product. Therefore, if you are working with
RCI of Exchange 2000, you will have to set this prop­
erty. In the final version of Exchange 2000, this property
will no longer exist.)

Yes (for script event handlers only)

Yes

No (for timer events only)

Yes (for timer events only)

Yes (for timer events only)

Table 19-6. Criteria required by Exchange Server 2000 to register an event handler.

criteria property
The criteria property allows you to specify a SQL WHERE clause that will act as a
filter for your event handler so that the handler is called only when items meet your
criteria. This property allows you to avoid being called for items that you're not in­
terested in. For example, the Training application uses the following criteria so that
it doesn't get called when hidden items or folders are created:

WHERE "DAV:ishidden" = false and "DAV:isfolder" = false

You can use AND, OR, NOT, or EXISTS as part of your WHERE clause. CON­
TAINS is not supported, however. Also, if you plan to check custom schema, you must
explicitly cast your custom property to the right data type. For example, if you want
to make sure that your event handler is called only in an application in which a
property on items submitted is greater than 100, you would set the criteria property
for your event registration to the value at the top of the next page.

905

Part IV Exchange Server 2000 Development

906

"WHERE cast($"MySchema/MyNumber"$ as '14'»100"

Notice how the $ character is used to avoid using double quotation marks.

enabled property
This Boolean property allows you to specify whether your event handler is enabled.
Rather than deleting an event registration, if you plan to reuse it in the future, you
can set this property to False.

eventmethod property
This property is a multivalued string that allows you to specify the types of events
you are interested in receiving, such as OnSyncSave and OnDelete. You can register
for event methods of the same type, within the same event registration. For example,
one event registration can be used for OnSyncSave, OnSyncDelete, OnSave, or
OnDelete but cannot include OnTimer. You must register OnTimer and the other
system events separately. However, your event handler COM component could imple­
ment the interfaces for all the events.

matchscope property
This property allows you to specify the scope of the event. The values for this prop­
erty can be any,jldonly, deep, exact, and shallow. You'll use only the value any with
database-wide events. The scope of the exact value is a specific item. This is similar
to shallow, which fires for items only in the exact folder you specify. The jldonly value
will notify you only of changes to the folder itself, such as modifications to a prop­
erty on the folder. The deep value notifies you of changes in the current folder as well
as any items in subfolders. By setting the property to deep, even new subfolders and
items created in them will trigger your event handler. This capability is an improve­
ment from Exchange Server 5.5, in which there was no concept of a deep scope. If new
folders were created in Exchange 5.5, you would have to explicidy register new event
handlers in them. Exchange Server 2000 system events do not support this property.

priority property
This integer property allows you to specify a number that indicates the priority of
your event handler, compared to other event handlers. The number for this property
can range from 0 to FFFFFFFF. By default, your event handler is registered with a value
of 65,535 (OxOOOOFFFF). This property is valid only for synchronous events and tells
the system what order you want these events to ftre in. If you give two synchronous
events the same priority, it is undetermined which one will get called first. When
registering your event handlers, you might want to check to see whether other event
registrations exist in the folder. If they do, check their priority before registering your
event handler.

Chapter 19 Putting It All Together

scope property
The scope property provides a URL to the folder where the event handler wants to
be notified of events. This can be in the form of afile:11 or http://URL.This property
is valid only for store events, not for system events. Please note that this property,
while required in RCI of Exchange 2000, will be removed from the final product.

scriptur' property
When you write script for your event handler, this property holds the URL to the script
file. Exchange Server supports thefile:ll and http./IURLformats in this property. The
script file can live in Exchange Server or in another location accessible via a URL, as
long as the location is on the same machine as the Exchange server. When using script
handlers, be aware that you must specify ExOleDB.ScriptEventSink for the sinkclass
property in addition to filling out the sCripturl property.

sinkc.ass property
This property holds the CLSID or the ProgID of your event handler. Exchange Ser­
ver will then instantiate the object when an event is triggered. By default, Exchange
Server will cache your object so that it doesn't have to instantiate the object mul­
tiple times.

timerexpiryfime property
This integer property specifies the number of minutes after the timerstarttime prop­
erty that the event handler should stop receiving OnTimer notifications. If you don't
specify this property, your event handler will never stop receiving notifications. This
property is valid only for OnTimer event registrations.

timerinterva' property
This integer property specifies the amount of minutes to wait to notify your event
handler of another OnTimer event. If you do not set this property, Exchange Server
will call your event handler only once after the creation of your registration item for
the OnTimer event.

timerstartfime property
This property allows you to specify the date and time to start notifying your event
handler of OnTimer events. If you do not specify this property, Exchange Server will
start notifying your handler immediately. Note that this value can be affected by
Exchange storing date and time values as UTC values. Therefore, you're going to want
to set the UTC time, not the local time, when you want your timer event to start fir­
ing. For example, the Training application setup program needs to create the event
registration for survey notifications. The survey notification event handler should be
called at 10 p.m. local time every night. To create the correct timerstarttime property

907

Part IV Exchange Server 2000 Development

908

value, the setup program has to figure out what 10 p.m. local time is in UTe. Then
it registers to be notified at the correct UTe time, which will be converted by Exchange
to 10 p.m. local time depending on the server machine's time zone.

Creating an Event Registration Item
The easiest way to register your event handler with Exchange Server is to use ADO
to create an event registration item in the Exchange Server database and set the prop­
erties we just discussed on that item. Be aware that when you create your event
registration item, you should do it in the context of an OLE DB transaction. Why?
Because Exchange Server utilizes its own events to provide an event registration event
handler, which is installed by default. This event handler looks for items with a spe­
cial content class, urn:content-class:storeeventreg. The event handler then takes those
items, scans the properties, and performs its magic, making the items valid event
registrations. This magic includes turning the item into an invisible message in the
folder by making it part of the associated contents table. This table is the same place
that views, forms, and rules are stored.

If you don't use OLE DB transactions, you might trigger the event handler when
you first attempt to create your registration item using ADO and set the
DAVcontentclass property to urn:content-class:storeeventreg. If this happens and you
haven't set the properties for your registration item yet, the event handler will think
that your event registration item is invalid. By using an OLE DB transaction and atomi­
cally creating and setting your properties at the same time, you avoid this problem.

The following code, taken from the setup program for the Training application,
shows you how easy it is to create an event registration item:

'Create the Survey Notification Event Registration
'Ti mer event
strNow = Now
arrRequired = GenerateRequiredEventArray("". "ontimer". _

"EventSink.SurveyNotify". "H. "H)

arrOptional = GenerateOptionalEventArray("".
1440. strNow. "H)

CreateEvtRegistration oConnection. strPath & _
"Schedule/surveynotification". arrRequired. arrOptional. False

'Event Registration Helper Sub
Sub CreateEvtRegistration(cn. strEventRegPath. arrRequiredParameters. _

Optional arrOptionalParameters. Optional bWorkflow)
On Error GoTo errHandler

Chapter 19 Putting It All Together

'Create the event registration.
'cn - Connection to Exchange Server database for transaction purposes
'strEventRegPath - Full file path to the event item
'arrRequiredParameters - Required parameters for all event registrations
'arrOptionalParameters - Optional parameters such as criteria

Const propcontentclass "DAV:contentclass·
Const propScope = "http://sche~as.microsoft.com/exchange/events/Scope"

Dim rEvent As New ADODB.Record

cn.BeginTrans
rEvent.Open strEventRegPath, cn, 3, _

adReadWrite + adCreateOverwrite + adCreateNonCollection

'Set the properties in the item
With rEvent.Fields

.Item(propcontentclass) = "urn:content-class:storeeventreg"

'Scroll through and commit requlred parameters.
'Scroll through and commit optional parameters.
If IsArray(arrRequiredParameters) Then

For i = LBound(arrRequiredParameters, 1) To _
UBound(arrRequiredParameters, 1)
'Use Dimension 1 since the second dimension should
'always be the same
If Not (IsEmpty(arrRequiredParameters(i, 0») Then

.Item(arrRequiredParameters(i,0»
arrRequiredParameters(i, 1)

End If
Next

End If

If IsArray(arrOptionalParameters) Then
For i = LBound(arrOptionalParameters, 1) To _

UBound(arrOptionalParameters, 1)
'Use Dimension 1 since the second dimension should always
'be the same
If Not (IsEmpty(arrOptionalParameters(i, 0») Then

.Item(arrOptionalParameters(i, 0»
arrOpttonalParameterS(i, 1)

End If
Next

End If

'Add custom properties that the event sink can use to
'determine the context of this event registration

(continued)

909

Part IV Exchange Server 2000 Development

910

If bWorkfloW = False Then
strConfigurationFolderPath strPath & "Configuration/"
Dim propname As String
'Hard-code this one property so that we can always find it!
propname = "http://thomriz.com/schema/configurationfolderpath"
'For a case switch in the event sink
.Append propname. adVariant ••• strConfigurationFolderPath

End If

.Update 'Get the ADO object current

End With
cn.CommitTrans

Exit Sub

errHandler:
MsgBox "Error in CreateEvtRegistration. Error" & Err.Number & " " & _

Err.Description
End

End Sub

Function GenerateRequiredEventArrayCstrCriteria. strEventMethod. _
strSinkClass. strScriptURL. strSinkList)

Const propCriteria = _
"http://schemas.microsoft.com/exchange/events/Criteria"

Const propEventMethod = _
"http://schemas.microsoft.com/exchange/events/EventMethod"

Const propSinkClass = _
"http://schemas.microsoft.com/exchan~e/events/SinkClass"

Const propScriptURL = _
"http://schemas.microso+t.tom/exchange/events/ScriptUr1"

Const propSinkList = _
"http://schemas.microsoft.com/exchange/events/SinkList"

'Generate the array by checking the passed arguments.
'Note dynamic arrays only support redimensioning the last dimension.
'This causes a problem. so dimension an array and fill in blanks if
'necessary.
'Flip-flop value - propname
Dim arrRequiredC4. 1)
i ArrayCount = 0
If strCriteria <> "" Then

arrRequiredCiArrayCount. 0)
arrRequiredCiArrayCount. 1)

propCriteria
strCriteria

Chapter 19 PuHing It All Together

iArrayCount = iArrayCount + 1
End If
If strEventMethod <> "" Then

arrRequired(iArrayCount. 0)
arrRequired(iArrayCount. 1)
iArrayCount = iArrayCount + 1

End If

propEventMethod
strEventMethod

If strSinkClass <> "" Then
arrRequired(iArrayCount. 0) = propSinkClass
arrRequired(iArrayCount. 1) = strSinkClass
iArrayCount = iArrayCount + 1

End If
If strScriptURL <> "" Then

arrRequired(iArrayCount. 0) = propScriptURL
arrReq~iredCiArrayCount. l) = strScriptURL
iArrayCpunt = iArrayCount + 1

End If
If strSinkList <> "" Then

arrRequiredCiArrayCount. 0) = propSinkList
arrRequiredCiArrayCo~nt. 1) = strSinkList
iArrayCount = iArrayCount + 1

End If
GenerateRequiredEventArray = arrRequired

End Function

Function GenerateOptionalEventArrayCbEnabled. strMatchScope. lPriority. _
bReplicateReg. iTimerInterval. iTimerStart. iTimerStop)
Const propEnabled = _'

"http://schemas.microsoft.com/exchange/events/Enabled"
Const propMatchScope = _

"http://schemas.microsoft.com/exchange/events/MatchScopen
Const propPriority = _

"http://schemas.microsoft.com/exchange/events/Priority"
Const propRepl;cateEventReg = _

"http://sthemas.~icrosoft.com/exchange/events/ReplicateEventReg"
Const propTimerInterval = _

"http://schemas.microsoft.com/exchange/events/TimerInterval"
Const propTimerStartTime = _

"http:/)schemas.microsoft.com/exchange/events/TimerStartTime"
Const propTimerExpir~Time~= _

"http://schemas.m;crosoft~com/exchange/events/TimerExpiryTime"

Dim arrOptionalC6. 1)
iArrayCount = 0
If bEnabled <> "" Then

arrOptionalCiArrayCount. 0)
arrOptionalCiArrayCount. 1)

propEnabled
bEnabled

(continued)

911

Part IV Exchange Server 2000 Development

912

iArrayCount = iArrayCount + 1
End If
If strMatchScope <> nn Then

arrOptional(iArrayCount. 0) = propMatchScope
arrOptional(iArrayCount. 1) = strMatchScope
iArrayCount = iArrayCount + 1

End If
If lPriority <> nn Then

arrOptional(iArrayCount. 0) = propPriority
arrOptional(iArrayCount. 1) = lPriority
iArrayCount = iArrayCount + 1

End If
If bReplicateReg <> nn Then

arrOptional(iArrayCount. 0) = propReplicateEventReg
arrOptional(iArrayCount. 1) = bReplicateReg
iArrayCount = iArrayCount + 1

End If
If iTimerInterval <> nn Then

arrOptional(iArrayCount. 0)
arrOptional(;ArrayCount. 1)
iArrayCount = iArrayCount + 1

End If
If iTimerStart <> nn Then

propTimerInterval
iTimerInterval

arrOptional(;ArrayCount. 0) = propTimerStartTime
arrOptional(;ArrayCount. 1) = iTimerStart
iArrayCount = iArrayCount + 1

End If
If iTimerStop <> nn Then

arrOptional(iArrayCount. 0) = propTimerStopTime
arrOptional(iArrayCount. 1) = iTimerStop
iArrayCount = iArrayCount + 1

End If

GenerateOptionalEventArray arrOptional

End Function

As you can see in the code, ADO is used to create an event registration item.
Using the Fields collection, the properties needed to make the item a valid event regis-
.... __ L.!_. _ ____ C!11_...l !. ____ ..J L_ ! ... ____ ! ______ ..J !._ ... _ T':' ___ 1 _____ C"' _____ A.l ... L ____ L L! ___ _
uaUUll aH; 1111t::U 111, allU Ult:: lll::lU 1:; :;avt::u lULU .c.x~uall~t:: ':>t::l Vt::l. .tUUIUU~U UU:; i-'"u-

ticular application uses events in public folders, you can register and fire events from
private folders as well.

Registering a Database-Wide Event
In addition to scoping your event handlers to just one folder, you can scope them to
the entire store or MDB. However, you cannot scope your event handler to the en­
tire server. All types of event registrations are per individual MDB (database) only.

Chapter 19 Putting It All Together

To create an MDB-wideevent registration, you need to change the value for the
matchscope property and the location in which you put your registration item.

You should specify any as the value of the matchscop~ property. This indicates
that any scope is valid for notifying your event handler. All other properties can stay
the same, based on the type of event you're registering for.

As just mentioned, the location in which you put the registration item will change.
Instead of throwing the item into the folder where you want the scope of the event
notifications to begin, you need to place the registration item in the Globalevents folder.
This folder is located in Public Folders in the non-ipm subtree in a folder called
StoreEvents{MDBGUID}, where MDBGUID is the unique identifier for the MDB. The
easiest way to retrieve the MDBGUID is to use the StoreGUIDFromURL method in
EXOLEDB. The follOwing code sample shows you how to use this method:

set oStoreGUID=CreateDbject("Exoledb.StoreGuidFromUrl")
'Get the GUID
strguid = oStoreGUID.StoreGuidFromUrl("file:ll./backofficestorage/" & _

somestoreitem)

A valid path to save your registration item to would look something like this:

file:ll./backofficestorage/ADMIN/domain/public
folders/non_ipffi-sub

tree/StoreEvents{GUID}/globaleventsl

'For a mailbox database
File:II./backofficestorage/ADMIN/domain/MBX/SystemMailbox{GUID}/_

Storeevents/GlobalEvents

Only the Administrator account, which is a member of the Domain Adminis­
trators group, or users in the Exchange Administrators role can register global events.
It is not enough to be a member of the Administrators group or the Exchange Serv­
ers group.

Using the ICreateRegistration Interface
If you're writing global event handlers that you think other developers will register
for, or if you want to protect your application event handlers, you can implement the
ICreateRegistration interface. This interface will be called whenever a user tries to
register for your event handler. ICreateRegistration passes you the event registration
information, including the registration item for the particular user. You can grab
information from this. item, or you can also retrieve from the item information about
the user who's trying to register for your event handler. You can then decide whether
to permit or reject the user's registration.

To implement this interface, you need to add an Implements ICreateRegistration
line to your Visual Basic code and put your validation code in the ICreateRegistration_
Register function.

913

Part IV Exchange Server 2000 Development

Writing an Event Handler

914

The code samples containing event handlers that you'll see in this section are taken
from the Training application. All these event handlers are written in Visual Basic.
When writing Visual Basic event handlers, you first should create an ActiveX DLL.
In addition, make sure to add references to the various object libraries your applica­
tion might need to access. You definitely will need a reference to the EXOLEDB type
library; libraries such as Microsoft ActiveX Data Objects 2.5 and Microsoft CDO for
Exchange Server 2000 also might come in handy.

Once you've added the references, you need to use the Implements keyword.
Depending on the type of event handler that you plan to write, you'll need to imple­
ment the IExStoreSyncEvents, IExStoreAsyncEvents, or IExStoreSystemEvents interface.
You can implement all three in a single DLL if you want.

Next, you must implement the subroutines for the events you're interested in.
The following code, taken from the course notification event handler, shows the
OnSave and OnTimer events being implemented. I won't list all the code for the
implementation of these two events because I mainly want to show you the parame­
ters that are passed your functions.

Implements IExStoreAsyncEvents
Implements IExStoreSystemEvents
Const strHTMLMsgSubject = "New Course Email"

Dim oEventRegistration

Dim bShowPreviousDay

'Global that holds the event
'registration record
'Global that holds whether to show
'new courses only
'From previous day. just in case timer
'event runs after midnight

Dim oRecord As ADODB.Record 'Global record to hold item that
'triggered event

Dim strHTMLBody 'Global string that holds HTML message body
'Add Discussion group. file. and http link notification as part of
'the message.
'Update HTML message to incorporate file and http link. as well as
'discussion group.

Private Sub IExStoreAsyncEvents_OnDelete(ByVal pEventInfo As _
Exoledb.IExStoreEventInfo. ByVal bstrURLItem As String. _
ByVal lFlags As Long)
'Not implemented

End Sub

Chapter 19 Putting It All Together

Private Sub IExStoreAsyncEvents_OnSave(ByVal pEventInfo As _
Exoledb.IExStoreEventInfo, ByVal bstrURLItem As String, _
ByVal IFlags As Long)
If (IFlags And EVT_NEW_ITEM) > 0 Then

'New item put in.
'Get the ADO Record object for the item.
'Set oRecord = dispInfo.EventRecord
Set oRecord = CreateObject("ADODB.Record")
oRecord.Open bstrURLItem
'Check to see whether the item happened very recently.
'If it did, just exit since the training event is
'probably having its survey information updated by
'a user. Don't notify people of old training events.
If DateDiff("d", Now, _

oRecord.Fields("urn:schemas:calendar:dtstart").Value) > 0 Then
'It's OK; event happens in future.
'Load the global settings.
LoadAppSettings oRecord, pEventInfo
If bEventLogging Then

App.LogEvent "Event Notification OnSave event called for" & _
"training event. Path:" & bstrURLItem

End If
strCategory = GetCourseCategory(oRecord)
QueryPreferences strCategory

End If
End If

End Sub

Private Sub IExStoreSystemEvents_OnMDBShutDown _
(ByVal bstrMDBGuid As String, ByVal IFlags As Long)
'Not implemented

End Sub

Private Sub IExStoreSystemEvents_OnMDBStartUp _
(ByVal bstrMDBGuid As String, ByVal bstrMDBName As String, _
ByVal IFlags As Long)
'Not implemented

End Sub

Private Sub IExStoreSystemEventLOnTimer(ByVal bstrURLItem As String, _
ByVal IFlags As Long)
Dim rec As ADODB.Record
Dim rst As ADODB.Recordset
Dim conn As ADODB.Connection

(continued)

915

Part IV Exchange Server 2000 Development

916

Set oBindingRecord = Nothing
'Get the registration
On Error Resume Next
Set oBindingRecord = CreateObject("ADODB.Record")
oBindingRecord.Open bstrURLItem
On Error GoTo 0
If Err.Number = 0 Then

'Could retrieve the item
LoadAppSettings oBindingRecord

If bEventLogging Then
App.LogEvent "Event Notification: OnTimer event called at " & Now

End If
'Get the folder in which the timer is running.
'This is never used since we know the folder already.
'However, this shows you how to retrieve the folder if you need to.
strFolder = oBindingRecord.Fields.Item("DAV:parentname")
'Figure out all the courses created in the current 24 hours or
'previous 24 hours
curDate = Date
If bShowPreviousDay Then

'Subtract a day
curDate = DateAdd("d", -I, curDate)

End If
dISODateStart = TurnintoISO(curDate, "Start")
dISODateEnd = TurnintoISO(curDate, "End")

strSQL = "Select ""urn:schemas:mailheader:subject""," & _
""DAV:href"",""urn:schemas:calendar:dtstart""," & _
""urn:schemas:calendar:dtend"" FROM scope('shallow " & _
"traversal of """ & strScheduleFolderPath & _
"""') WHERE (""DAV:iscollection"" = false) AND" _ &
"(""DAV:ishidden"" = false) " & _
"AND (""urn:schemas:calendar:dtstart"")= CAST(""" & _
dISODateStart & """ as 'dateTime'))" &_
"AND (""urn:schemas:calendar:dtstart"" (= CAST(""" & _
dISODateEnd & """ as 'dateTime'))"

Set conn = CreateObject("ADODB.Connection")
Set rst = CreateObject("ADODB.Recordset")
Set oRecord = CreateObject("ADODB.Record")

With conn
.Provider "exoledb.datasource"

Chapter 19 Putting It All Together

.Open strScheduleFolderPath
End With

'Create a new Recordset object

With rst
'Open Recordset based on the SOL string
.Open strSOL. conn. adOpenKeyset

End With

Dim iAppt As COO.Appointment

If Not (rst.BOF And rst.EOF) Then
Set iAppt = CreateObject("COO.Appointment")
'On Error Resume Next
rst.MoveFirst
Do Until rst.EOF

'Set oRecord to the current item in the Recordset
On Error Resume Next
oRecord.Close
Err.Clear
On Error GoTo 0
oRecord.Open rst.Fields("OAV:href").Value. co~n

strCategory = GetCourseCategory(oRecord)
OueryPreferences strCategory

rst.MoveNext
Loop

rst.Close

Set iAppt = Nothing
Set rst = Nothing
Set rec = Nothing
Set conn = Nothing

Else
If bEventLogging Then

App.LogEvent "Event Notification: No students need to be " & _
"notified of training event."

End If
End If

End If
End Sub

917

Part IV Exchange Server 2000 Development

918

As you can see in the code, your application is passed different parameters for
the different events. However, all events have some common parameters. For ex­
ample, you are always passed a URL to the item that triggered the event. For system
events such as OnTimer, this is the event registration item itself. If you need to, you
can add custom properties to the event registration item so that when your OnTimer
event handler is called, you can retrieve that custom property.

I use this trick in the Training application. When I register the OnTimer event
handler for the application's workflow process, I add a custom property that is the full
URL to the application's configuration folder. Since you can customize where the
application is installed, you need to tell the workflow process where to look for
the customization information that you select during setup. Because I added an extra
property, I can grab it in my workflow code, get the configuration message contained
in the folder the property specifies, and determine the value for the customized fields
in the application, such as which e-mail address to send notification messages from.

For nontimer events, the URL you receive is the path to the item that's trigger­
ing the event. You can then retrieve the item and look at its properties.

An event handler also receives a parameter called IFlags. This parameter cor­
responds to flags that tell you exactly what's happening to the item. For example,
one of the flags, EVT_NEW _ITEM, tells you that the item triggering the event is a new
item rather than an item that already existed in the folder and had some properties
changed. You should use a bitwise AND with the IFlags parameter and one of the
identifiers from Table 19-7 to determine the values of flags in the !flags parameter.
The flag names are included in the EXOLEDB type library.

Not all flags are supported by all events. For example, the delete flags
are supported only by the delete events.

When using server events, in addition to the flags and the URL, you will receive
a pEventlnjo variable of type Exoledb.lExStoreEventInjo. You should set this variable
to another variable of type Exoledb.IExStoreDtspEventlnjo, which is the IDispatch
version of the interface. From this interface, you can control the transaction state for
the event handler for synchronous events and get more information about the con­
text of the event. Table 19-8 outlines the elements you retrieve and call on the
IExStoreDispEventlnjo interface.

Flag

EVCHARDDELETE

EVT_MOVE

EVT_COPY

EVT_SYNC_BEGIN

EVT_SYNC_ABORTED

EVT_INV ALlp_URL

Chapter 19 Pufling It All Together

Description

The item being saved is new rather than an
existing, modified item.

The item being saved is a collection
(folder).

The item being saved is the result of a repli­
cation event, which occurs when the item is
replicated using Exchange Server replica­
tion.

The item being saved is the result of a mes­
sage delivery.

A soft delete has occurred, meaning the
item has been moved to the dumpster.

A h:J,rd delete has occurred, meaning the
item has been removed from the store.

This is the nrst tiJ11e that the event handler
has been called. ThiS allows you to perform
any necessary initialization procedures. Your
event handler is passed this flag only once
during its lifetime.

The event is the result of a move operafion.

The event is the result of a copy operation.

The event handler is being called in the
begin phase of a synchronous event. This is
the point at which you can abort the item
being saved into the database. Also, the
URL you receive for the item is illvalid at
this point, since the item is not in the data­
base yet.

The event handler is being called in the
commit phase of a synchronous event, after
the transaction has been committed to the
database.

A synchronous event has been aborted.

This tells the event handler that the URL
passed to it is invalid.

The source URL could not be obtained dur­
ing a move operation.

Some error occurred in the event.

Table 19-7. Flag values for the lFlags parameter:.

919

Part IV Exchange Server 2000 Development

920

Element

AbortChange

EventBtnding

EventConnection

EventRecord

SourceURL

StoreGUID

UserGUID

UserSID

Data

Description

Aborts the transaction in which the event is currently
executing. Exchange Server will not commit the item to
its database. You pass a long value, which specifies the
error code you want returned.

Returns as an object the registration item for the event
handler. You can use the returned object to retrieve the
custom properties that you set on the event registration
item.

The ADO Connection object under which the event is
executing.

The ADO Record object bound to the item that trig­
gered the event.

The original source URL in an OnSyncSave event. This
propertY is· valid on~y for a move operation.

The GUID for the MDB where the item that triggered
the event is located.

The GUID for the user that triggered the event. You can
use this in conjunction with the Win32 APIs to look up
the user's name.

The Security Identifier (SID) of the user who triggered
the event.

This property aUows you to save in-memory data be­
tween the begin ;tnd commit or abort phase of a syn­
chronous event. This property is useful for passing to
your event sink the· variables between the different calls
in a transaction; you don't have to save those variables
to Exchange or on disk.

Table 19-8. Elements o/the IExStoreDispEventInfo interface.

Chapter 19 Putting It All Together

CREATING COM+ ApPLICATIONS

If you plan to write your event handlers in Visual Basic, you should definitely
install your DLLs as COM+ applications. There are a number of reasons for
doing this. First, Exchange Server won't let you try to run an event handler
for synchronous events written in VB that are not COM+ enabled. Second, if
your event handler has problems, making it into a COM+ application isolates
it and allows you to shut it down without affecting other parts of the system.
Finally, by making your DLLs COM+ applications, you can take advantage of
COM+ roles and security.

This last point is key-it allows you to retrieve the SID of the user who's
triggering the event. Using the COM+ Services Type Library and the SID, you can
employ COM+ roles-based security. For example, you can use the IsSecurity­
Enabled function to check whether COM+ security is enabled. You can also use
the IsUserlnRole function to see whether the user is in a particular role. For more
information on COM+ security issues, refer to the Platform SDK on MSDN at
http://msdn. microsoft. com.

The Training application places its event handlers into a COM+ application.
The Training application's setup program deploys the COM+ application with
the built-in COM+ deployment tools. When you export your COM+ application
from the COM+ user interface, as shown in Figure 19-7, COM+ will create a
Windows Installer file. You can then shell out to this file or run it directly if you
want to install the COM+ application on your computer.

: l.. Package
: !4rtWOIkfIOWEvertSirk

! rIHm DistributedTr~Cool'ctinator
$-Q E¥erfViewer (local)
~Servces(locaO

Figure 19-7. Exporting the COM+ application/or the Training sample.

921

Part IV Exchange Server 2000 Development

Debugging an Event Handler

922

When you set up the Training application, it asks if you want to enable event han­
dler debugging. Debugging your event handler is easy if you use COM+ applications.
The only three things you need to do to debug your event handler is set the identity
of your COM+ application so that it uses the interactive user, add some breakpoints
to your VB event handler, and then put the Visual Basic event handler in run mode.
At that point, you'll be able to take advantage of all the great VB debugging. Figure
19-8 shows an example of an event handler in the Visual Basic debugger.

Private Sub IEx3torebyncEvents OnSave (ByVal pEvl!!:ntIMo AI!! Exolll!!!db. ,..':eoro,Ev",.eI, _,."W*fflE'.'Ui "ea i •••• M
'New Item put in
'Get the ADO Record for the item
'Set oRecord = displnfo. EventRecord
Set oRecord .. CreateCl:lject(IPADODB.Rl!!:cord")
oRecord. Open bstrURL Item
I Check to see if the item happened before right now
I If it did, jW!lt exit !!Iinel!!: the training event is
'prohably having it's survey into updated by

, it.':!l= ok. event happens in future
'Load up the global seet iugs
LOlldApp5etting15 oRec:ord, pEventlnfo
If blVen'tLogglnq Then .

App.LoqEven't "Event Notification OnSave event called for training
End. If
strCateqory = GetCourseCateqory(oRecord)

Figure 19-8. One a/the Training application event handlers in the Visual Basic
debugger.

In addition to using the debugger, you can also leverage VB's LogEvent method
on the App object. Using this method, you can have VB place entries into the Windows
2000 event log. The Training application, when you set it up, asks if you want to
enable event handler debugging. This is the sort of debugging that it uses. Figure 19-9
shows an example from the event log of an event handler from one of the Training
application's event handlers.

Chapter 19 Putting It All Together

Figure 19-9. A message posted by Visual Basic into an event handler's log.

WORKFLOW CAPABILITIES
Exchange Server 2000 allows you to build applications that model and automate
business processes. You could hard-code a workflow process by using server events
and Visual Basic, but the built-in workflow engine-Workflow Designer-and CDO
workflow objects of Exchange Server 2000 simplify this development task by providing
specialized workflow tools.

With these tools, you can build both database workflows and e-mail workflows
on Exchange Server 2000. You can also enable the user to connect directly to the data,
or to an application that directly touches the data to update state information in the
workflow. The Training application is a database workflow. When a manager approves
a user to take a course, an ASP page updates a property on the pending approval
message to the student, which in turn triggers the workflow engine to change the
state of the pending approval message to Approved. This change of state causes the
application to register the student for the course and then notify the student. Data­
base workflows are great if your users have direct access to the process instances of
the workflow, and, in effect, to the items undergoing the workflow process, so that
they can update the state.

923

Part IV

In e-mail workflows, instead of having the user directly interact with the data,
notifications and data copies are sent to the user via e-mail. The user can then per­
form an action, such as approve or edit the data, and return it to the application via
e-mail. The Exchange Server workflow engine directs the e-mail to the correct pro­
cess instance in your workflow folder, and you can update your process instance
accordingly. This style of workflow is useful if you can't guarantee that your users
have direct access to your data, or if you want to provide an easy transmission method
for data and approval. Since most users can access some form of e-mail.this solu­
tion works well for business processes that extend beyond a corporation and over
the Internet. Please note that to use e-mail-style workflow, you must be running
Microsoft Outlook on your client.

How Is Workflow Implemented in Exchange Server?

924

Exchange Server 2000 uses four main components to implement workflow: CDO for
Workflow (CDOWF), server event sinks (handlers), action tables, and script meso The

. workflow engine in Exchange Server 2000 is stored in CDOWF. This engine works
in conjunction with the other components to evaluate and maintain the workflow state,
such as Approved or Rejected. Plus, CDOWF provides the object model you can use
to interact with the engine to change states or validate workflow properties.

The workflow engine works in conjunction with the action table, which is
basically a finite state machine that describes transitions between states in the workflow.
Table 19-9 shows an example of an action table based on the Training application.
In this action table, a request for approval of user's enrollment is e-mailed to the user's
manager, and the workflow engine waits 15 minutes for a response. If a response
isn't received from the manager within 15 minutes, the engine e-mails the user that
the request was not processed. If the manager approves the course request, the engine
registers the user and sends an e-mail that tells the user of the approval.

Expiration
State New State Event Type Condition Action Interval

Created OnCreate CheckValidity SendMail-
toManager

Created OnEnter True 15
Created Approved OnChange ApprovalState- RegisterUser

ofltem SendMailtoUser

Created NoResponse OnExpiry True SendNoRe-
sponsetoUser

Table 19-9. A Simple action table based on the Training application.

Chapter 19 Putting It All Together

To determine what changes have been made to workflow items and evaluate
whether they are valid according to the action table, the workflow engine implements
both synchronous and OnTimer event handlers. When you drop a new document
into a folder where a workflow process is enabled, the Workflow event handler in
that folder fires before the item is committed to Exchange Server database. If workflow
is enabled, the event handler creates the process instance for your item in the folder
and determines the initial state of the item. If a user changes that item, the event
handler checks the change against the valid state changes in the action table. If the
state change is not valid, it is not committed to Exchange Server. If the time expires
for a specific state and there is a state transition for that event in the action table, the
OnTimer event will move the workflow item to the next state. Figure 19-10 shows
the Workflow event handler that's installed by default as a COM+ application.

Figure 19-10. The Worliflow event handler installed as a COM+ application.

The script file is used in conjunction with CDOWF, the server event handlers,
and the action tables. Your script implements the conditions for the state transitions
and the actions that occur at the time of those transitions. For example, to check the
validity of an item before posting it in the workflow folder, you write script to check
the necessary properties and return to the workflow engine a Boolean that indicates
whether the item is valid. You must use condition functions in your script. If a con­
dition is valid, for example, you might want to send an e-mail to the user who needs
to approve the item. You would have to write script for the action portion of your
workflow in order to send the e-mail.

925

PartlY Exchange Server 2000 Development

Developing Workflow Applications

926

Enough talking about what workflow is-let's take a look at how to write a workflow
application with Exchange Server 2000. In this section, I'll concentrate on the Workflow
Designer for Exchange Server 2000 because it makes creating workflow applications
easier. Everything we'll discuss in this section can be performed programmatically
using CDOWF.

Setting Up the Workflow Environment
To start writing workflow applications, you first need to set up the workflow en­
vironment for Exchange Server 2000. I won't go into the gory details of how to set
up all the accounts and infrastructure. You can find all this information in the Ex­
change Server 2000 SDK, in a section called "Adding the Workflow System Account."
Essentially, you need to create an account and make it your default workflow sys­
tem account.

Next, you need to add yourself to the Can Register Workflow role for the Workflow
Event Sink COM+ application. This role lists all the users or groups that can actually
register for the event handlers we discussed earlier. Figure 19-11 shows this COM+
application with the roles populated.

COM+ {;Ie De.!d Letter Queue Lislenel
COM+ Utilities
EJ<OIedbSc~H8ndlet
IISln-Pioce$$Appic.ations
liS O~·Of·Proces8 PooledApPications
IISUtllities:
Sl'$temApplication
TrainingEYentAppHcation
ViNal SttdoAPE Package
Workflow Event Sink

Figure 19-11. The Can Register Workflow role populated with users and groups.

Chapter 19 Putting It All Together

If necessary, you aiso should add yourself to the Privileged workflow Authors
role. If you are not in this role, your workflow scripts will be sandboxed. In other
words, they will only be able to modify the item undergoing workflow, send notifi­
cation mail, or write to the workflow audit trail. They will not be able create objects
at all. If you add yourself to the Privileged Workflow Authors role, you'll be able to create
objects and access other items you have permissions for in Exchange Server 2000.

NOTE If you are a privileged workflow author, you will be running under the
workflow system account you initially specified. Also, Exchange 2obo supports
ad-hoc workflows. This means that items coming into the folder where workflow
is enabled must already have a workflow definition on them. Only restricted mode
workflows can be run as ad-hoc. You cannot allow ad-hoc workflows and enable
privileged mode.

Using the Workflow Designer
As mentioned, the Workflow Designer for Exchange Server 2000 makes building and
deploying your workflow applications easier. The graphical user interface (GUI),
shown earlier in Figure 19-14, simplifies the process of visualizing your workflow
while automating the process of creating the event handler registrations and action
tables in your workflow-enabled folders.

I won't cover all the GUI elements of the Workflow Designer; you can find that
information easily in the Exchange Server 2000 documentation or just read the
Workflow Designer screen. However, I will cover three important elements that make
up your workflow in the designer: states, actions, and script. Thestates are the boxes
in the GUI that indicate whether your workflow is pending, approved, rejected, or
expired. The actions provide the transitions between the states. These actions, which
I'll detail momentarily, can be found in your action table and include OnEnter, OnExit,
OnCreate, among others. The script implements the condition checking and the
actions.

The states in the Workflow Designer are not very interesting because they don't
perform any task; they only serve as a destination for the workflow item to move to
during the workflow process. Therefore, your only concern with states should be that
your scripts allow you to check which state the workflow item is in, to see whether
it's being approved or rejected or placed in any other state you specify.

Actions are one of the most important aspects of the Workflow DeSigner since
they are associated with the transitions between states. These transitions define how
the work in your workflow is performed. Figure 19-12 shows how to create actions
in the Workflow Designer.

927

Part IV Exchange Server 2000 Development

928

Figure 19-12. Creating actions in the Workflow Designer.

Table 19-10 presents the actions in the Workflow Designer and their uses. Be
aware that some actions, such as the OnChange action, can appear multiple times
on a state. But each time it appears for the same state, it must have different con­
ditions that make the action valid for a workflow item-for example, a property
changes value.

Workflow
Designer Name

Create

Enter

Exit

Action
Table Name

OnCreate

OnEnter

OnExit

Description

An item was created. You must have at
least one Create action in your workflow;
otherwise, no items can be created in
the folder.

This action manages the time used by
the Expiry action. As soon as the state is
entered using this action, the timer is
started for the expiration interval you
set. Entry into states is impHcitly allowed,
so you don't have to add this action to
every state. You will normally use this
action for timer-based workflow require­
ments only.

The state is transitioning to a new state.

Table 19-10. Actions of the Workflow Designer.

Chapter 19 Putting It All Together

Table 19-10 continued

Worliflow
Designer Name

Delete

Change

Receive

Expiry

Action
Table Name

OnDelete

OnChange

OnReceive

OnExpiry

Description

The document is deleted. If you do not
have a Delete action, workflow items
cannot be deleted. If that's the case, Ex­
change Server will return an error if an
application or user attempts to delete an
item.

The document is modified. You can have
multiple Change actions on a single state.
If you have no Change actions, docu­
ments cannot be modified.

The workflow has received an e-mail
message that correlates to a workflow
item. This action allows your workflow
to respond to e-mail.

The document has passed its time limit
for the current state. This action is useful
for time-based tasks, such as reminder
notifications to managers to approve
workflow items.

The following code is the XML representation of a real action table generated
by the Workflow Designer. Notice the action and state names in the XML code. You'll
see how to use XML action tables to simplify deploying workflow processes in the
"Deploying Workflow Solutions" section.

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11dl-A2A3-00AA00C14882'
xmlns:dt='uuid:C2F41010-65B3-11dl-A29F-00AA00C14882'
xmlns:rs='urn:schemas-microsoft-com:rowset'
xmlns:z='#RowsetSchema'>

<s:Schema id='RowsetSchema'>
<s:ElementType name='row' content='eltOnly' rs:updatable='true'>

<s:AttributeType name='ID' rs:number='l' rs:write='true'>
<s:datatype dt:type='string' dt:maxLength='4294967295'

rs:precision='0' rs:long='true' rs:maybenull='false'/>
</s:AttributeType>
<s:AttributeType name='Caption' rs:number='2' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='State' rs:number='3' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

(continued)

929

Part IV Exchange Server 2000 Development

930

</s:AttributeType>
<s:AttributeType name=' NewState' rs:number='4' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name=' EventType' rs:number='5' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='Condition' rs:number='6' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='Action' rs:number='7' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='Expirylnterval' rs:number='8' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name=' RowACL' rs:number='9' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='TransitionACL' rs:number='10' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='DesignToolFields' rs:number='ll'

rs:write='true'>
<s:datatype dt:type='string' dt:maxLength='4294967295'

rs:precision='0' rs:long='true' rs:maybenull='false'/>
</s:AttributeType>
<s:AttributeType name='CompensatingAction' rs:number='12'

rs:write='true'>
<s:datatype dt:type='string' dt:maxLength='4294967295'

rs:precision='0' rs:long='true' rs:maybenull='false'/>
</s:AttributeType>
<s:AttributeType name='Flags' rs:number='13' rs:write='true'>

<s:datatype dt:type='string' dt:maxLength='4294967295'
rs:precision='0' rs:long='true' rs:maybenull='false'/>

</s:AttributeType>
<s:AttributeType name='EvaluationOrder' rs:number='14'

rs:write='true'>
<s:datatype dt:type='string' dt:maxLength='4294967295'

rs:precision='0' rs:long='true' rs:maybenull='false'/>
</s:AttributeType>

Chapter 19 Putting It All Together

<s:extends type='rs:rowbase'l>
</s:ElementType>

</s:Schema>
<rs:data>

<rs:insert>
<z:row 10='1' Caption='Create' State=" NewState='Pending'

EventType='OnCreate' Condition='TRUE' Action="
Expiry1nterval='0' RowACL=" TransitionACL="

OesignToolFields='-l:l:' CompensatingAction=" Flags='0'
EvaluationOrder='1000'1>

<z:row 10='2' Caption='Oelete' State='Pending' NewState="
EventType='OnOelete' Condition='true' Action="
Expiry1nterval='0' RowACL=" TransitionACL="
OesignToolFields='l:-2:' CompensatingAction=" Flags='0'
EvaluationOrder='7000'1>

<z:row 10='3' Caption='StartTimer' State=" NewState='Pending'
EventType='OnEnter' Condition='TRUE' Action='sendMailToManager'
Expiry1nterval='15' RowACL=" TransitionACL="
OesignToolFields='0:1:' CompensatingAction=" Flags='0'
EvaluationOrder="/>

<z:row 10='5' Caption='ManagerApproved' State='Pending'
NewState='Approved' EventType='OnChange'
Condition='workflowsession.fields

("http://thomriz.com/schema/approvalstatus").value
"Approved":'

Action='strCourseName = GetCourseName
strStudentEmail = GetStudentEmail
strManagerEmail = GetManagerEmail
strBody = "Your manager approved you for the course: " &

strCourseName
sendMail strBody.strStudentEmail & "," &

strManagerEmail ,":Approved for course: " & strCourseName
addregistration
sendcalendarmessage'

Expiry1nterval='0' RowACL=" TransitionACL=" OesignToolFields=
'1:3:' CompensatingAction=" Flags='0' EvaluationOrder='3001'1>
<z:row 10='6' Caption='ManagerRejected' State='Pending'

NewState='Rejected' EventType='OnChange'
Condition='workflowsession.fields

("http://thomriz.com/schema/approvalstatus").value
"Rejected"'

Action='strCourseName = GetCourseName
strStudentEmail = GetStudentEmail
strManagerEmail = GetManagerEmail
strBody = &1fx22;Your manager rejected you for the course: &1fx22;

& strCourseName
sendMail strBody.strStudentEmail & "," &

(continued)

931

Part IV

932

Exch,an,ae l!!Iell'VII!!!1I' 2000 Development

strManagerEmail ."Rejected for course: " & strCourseName '
Expirylnterval='0' RowACL=" TransitionACL=" OesignToolFields=

'1:2:' CompensatingAction=" Flags='0' EvaluationOrder='3000'1>
<z:row 10='7' Caption='NoResponse' State='Pending' NewState=' Expi red'

EventType='OnExpiry' Condition='TRUE'
Action='strCourseName = GetCourseName

strStudentEmail = GetStudentEmail
strManagerEmail = GetManagerEmail
strBody = "Your manager did not approve your attending of the course:

&1fx22; &1fx26; strCourseName &1fx26; &1fx22; in enough time. You will not
be registered for this course."

sendMail strBody. strStudentEmail & "." &
strManagerEmail. "Approval not received for course: " &
strCourseName

Expi ryI nterva 1 =' 0' RowACL=" Trans iti onACL=" Oesi gnTool Fi el ds=
'1:4:' CompensatingAction=" Flags='0' EvaluationOrder='5000'1>
<z:row 10='8' Caption=" State='Rejected' NewState=' ,

EventType='OnOelete' Condition='TRUE' Action=" ExpiryInterval="
RowACL=" TransitionACL=" OesignToolFields='2:-2:'

CompensatingAction=" Flags='0' EvaluationOrder='7001'1>
<z:row 10='10' Caption=" State='Approved' NewState="

EventType='OnOelete' Condition='TRUE' Action=" ExpiryInterval="
RowACL=" TransitionACL=" OesignToolFields='3:-2:'

CompensatingAction=" Flags='0' EvaluationOrder='7002'1>
<z:row 10='11' Caption=" State='Expired' NewState="

EventType='OnOelete' Condition='TRUE' Action=" ExpiryInterval="
RowACL=" TransitionACL=" OesignToolFields='4:-2:'

CompensatingAction=" Flags='0' EvaluationOrder='7003'1>
</rs:insert>

</rs:data>
</xml>

Instead of using the Workflow Designer to create your workflow process, you
could programmatically create your action table by using just ADO and CDOWF.
However, in most cases, you'll want to take advantage of the Workflow Designer and
generate your action tables to XML, as shown in the preceding example. You can then
import the XML action table into ADO and use that data to programmatically gener­
ate your workflow process.

Creating Event Scripts
You have a workflow engine, event handlers, and an action table, but you don't have
a true workflow application yet. The real foundation of the workflow application is
the script you write for the actions in your action table. Whether you want to send
a message, change a property, or update an item, you need to implement this action
in your script. Writing your workflow script is pretty straightforward; you'll probably

Chapter 19 PuHing It All Together

call ADO or CDO to perform functions in Exchange Server. The Workflow Designer
includes a script editor, shown in Figure 19-13.

Figure 19-13. The script editor built into the Workflow Designer.

You don't have to use the Wbrkflow Designer script editor to write your scripts.
You instead can use anothe~ editor, such as Visual InterDev, and save the scripts to
a common location or even write the handlers for your actions using COM compo­
nents. You can then point the Workflow Designer, or a workflow process you pro­
grammatically create, to this common script file. The following script file is used in
the Training application to impiement the workflow process:

Dim strHTMLBody
Dim bWroteDebugging

Sub AddAuditEntry(strString. lResult)
workflowsession.AddAuditEntry strString. lResult

End Sub

Function DebugWorkflow
'Check to see whether debug~ing is ~nabled
bWorkflow = cBool(workflowsession.fields _ &

("http://thomriz.com/schema/debugworkflow").value)
if bWroteDebugging <> True then

if bWorkflow then
AddAuditEntry "Workflow Debugging Enabled",0
bWroteDebugging = True

(continued)

933

Part IV Exchange Server 2000 Development

934

end if
end if
DebugWorkflow = bWorkflow

End Function

Function GetSchema
if DebugWorkflow then

AddAuditEntry "In GetSchem~".0
end if
GetSchema = _

workflowsession.fields("http://thomriz.com/schema/schema").value
if DebugWorkflow then

AddAuditEntry "In GetSchema -) Schema: " & _
workflowsession.fields("http://thomriz.com/schema/schema").value.0

end if
End Functi on

Function GetWorkflowSessionField{strField)
if DebugWorkflow then

AddAuditEntry "In GetWorkflowSessionField -) Value: " & strField.0
end if
GetWorkflowSessionField = _

workflowsession.fields("http://thomriz.com/schema/" & strField).value
End Function

Function GetCourse(bReadOnly)
if DebugWorkflow then

AddAuditEntry "In GetCourse".0
end if
set oRec ~ CreateObject("ADODB.Record")
if DebugWorkflow then

AddAuditEntry "Course URL: " & workflowsession.fields _ &
("http://thomriz.com/schema/fullcourseurl").value.0

end if
if bReadOnly then

iAccess 1
else

iAccess 3
end if
oRec.Open workflowsessirin.fields("http://thomriz.com/sche" & _

" ma/fullcourseurl").value.workflowsession.ActiveConnection.iAccess
if DebugWorkflow then

AddAuditEntry "In GetCourse -) CourseName: " & _
oRec.Fields("urn:schemas:httpmail:subject").value.0

end if
Set GetCourse = oRec

End Function

Chapter 19 Putting It All Together

Function GetCourseName
'Returns the name of the course
set oRec = GetCourse(True)
if DebugWorkflow then

AddAuditEntry "In GetCourseName -) CourseName = " & _
oRec.Fields("urn:schemas:httpmail :subject").value,0

end if
GetCourseName = oRec.Fields("urn:schemas:httpmail :subject").value

End Function

Sub ReplaceString(strToken. strReplacement)
'Take the token and replace it in the global strHTMLBody
strHTMLBody = Replace(strHTMLBody, strToken, strReplacement)

End Sub

Function GenerateHTMLBody()
'Generates the HTML to send in the message.
'Retrieve the message containing the HTML~
'The HTML template must always be called WorkflowMessage.
if DebugWorkflow then

AddAuditEntry "In GenerateHTMLBodY",0
end if
strHTMLBody = ""

'Build the SOL statement.
'Ouery for the e-mail message.
strEmailsFolderPath = GetWorkflowSessionField("stremailsfolderpath")
strSOL = "Select ""urn:schemas:httpmail :textdescription"" From" &

"scope('shallow traversal of """ & strEmailsFolderPath & _
"""') Where ""DAV:iscollection"" = false AND ""DAV:ishidden"" "&_
"false AND ""urn:schemas:httpmail :subject"" LIKE '%WorkflowMessage%'"

'Create a new Recordset object
Set rst = CreateObject("ADODB.Recordset")
With rst

'Open Recordset based on the SOL string
.Open strSOL, workflowsession.ActiveConnection

End With

If rst.BOF And rst.EOF Then
GenerateHTMLBody
Exit Function

End If

'On Error Resume Next
r.st. MoveFi rst
strHTMLBody = rst.Fields("urn:schemas:httpmail :textdescription").Value

(continued)

935

Part IV

936

'Get the course
set oCourse = GetCourse(True)
'Load it into CDO Appointment
set iAppt = CreateObject("CDO.Appointment")
iAppt.OataSource.Open _

oCourse.Fields("DAV:href").value,workflowsession.ActiveConnection,l

strSchema = GetSchema
'Replace the tokens with real values
ReplaceString "%StudentName%", _

GetWorkflowSessionField("strstudentfullname")
ReplaceString "%Name%", _

iAppt.Fields("urn:schemas:httpmail :subject").Value
ReplaceString "%Category%", iAppt.Fields(strSchema & "category").Value
strDate = Month(iAppt.StartTime) & "I" & Day(iAppt.StartTime) & "I" & _

Year(iAppt.StartTime)
ReplaceString "%Date%", strDate
ReplaceString "%StartTime%", TimeValue(iAppt.StartTime)
ReplaceString "%EndTime%", TimeValue(iAppt.EndTime)
ReplaceString "%Location%", iAppt.Location
ReplaceString "%Description%", iAppt.TextBody

strHTTPURL = GetWorkflowSessionField("strrootdirectory") & _
"workflow.asp?CourseID=" & iAppt.Fields("DAV:href") & _
"&student=" & GetWorkflowSessionField("fullstudenturl")

ReplaceString "%URLLink%", strHTTPURL

If strHTMLBody <> "" Then
GenerateHTMLBody strHTMLBody

Else
GenerateHTMLBody

End If

rst.Close

Set rst = Nothing

End Function

Sub sendMail(strMsg , strAddress. strSubject)
set msg = createobject("CDO.message")
msg.To = strAddress
msg.From = GetWorkflowSessionField("notificationaddress")
msg.subject = strSubject
msg.textbody = strMsg
if DebugWorkflow then

AddAud1tEntry "In SendMa11: Address -> " & strAddress & vblf &
"Subject -> " &. strSubject & vblf & "Message: " & strMsg,0

end if

Chapter 19 Putting It All Together

msg.send
End sub

Function GetStudentEmail
if DebugWorkflow then

AddAuditEntry "In GetStudentEmail",0
end if
GetStudentEmail = GetWorkflowSessionField("studentemail")

End Function

Function GetManagerEmail
if DebugWorkflow then

AddAuditEntry "In GetManagerEmail",0
end if
GetManagerEmail = GetWorkflowSessionField("manageremail")

End Function

Sub SendMailToManager
'Get the manager's e-mail
strManagerEmail = GetWorkflowSessionField("manageremail")
if DebugWorkflow then

AddAuditEntry "In SendMailToManager -) Manager: " & strManagerEmail ,0
end if
set oMsg = createobject("CDO.message")
set oRecord = GetCourse(True)
oMsg.To = strManagerEmail
oMsg.From = GetWorkflowSessionField("notificationaddress")
oMsg.Subject = "Approval Required for course: "&_

oRecord.Fields("urn:schemas:httpmail :subject").value
oMsg.AutoGenerateTextBody = True
oMsg.MimeFormatted = True
oMsg.HTMLBody = GenerateHTMLBody
oMsg.Send

End Sub

Function GetStudent(bReadOnly)
if DebugWorkflow then

AddAuditEntry "In GetStudent",0
end if
set oRec = CreateObject("ADODB.Record")
if DebugWorkflow then

AddAuditEntry "Student URL: " & workflowsession.fields _
("http://thomriz.com/schema/fullstudenturl").value,0

end if
if bReadOnly then

iAccess 1
else

iAccess 3
end if

(continued)

937

ParI IV

938

oRec.Open workflowsession.fields("http://thomriz.com/sche" & _
"ma/fullstudenturl").value.workflowsession.ActiveConnection.iAccess

if DebugWorkflow then
AddAuditEntry "In GetStudent -) StudentName: " & _

oRec.Fields("urn:schemas:httpmail :subject").value.0
end if
Set GetStudent = oRec

End Function

Sub addregistration
set oRecord = GetStudent(False)
strSchema = GetSchema
strCourseURL = GetWorkflowSessionField("shortcourseurl")
oRecord.Fields(strSchema & "registrations") = _

oRecord.Fields(strSchema & "registrations") & strCourseURL &
oRecord.Fields.Update
oRecord.Close
set oRecord = Nothing

End Sub

Sub sendcalendarmessage
if DebugWorkflow then

AddAuditEntry "In SendCalendarMessage".0
end if
'Get the original appointment
set oOriginalAppt = CreateObject("CDO.Appointment")
oOriginalAppt.Datasource.Open _

GetWorkflowSessionField("fullcourseurl")._
workflowsession.ActiveConnection.l

'Create a throwaway appointment
set oAppt = CreateObject("CDO.Appointment")
set oConf1g = CreateObject("CDO.Configuration")

" " .

strNotificationAddress = GetWorkflowSessionField("notificationaddress")
oConfig.Fields("http://schemas.microsoft.com/cdo/config" & _

"uration/sendemailaddress") = strNotificationAddress
oConfig.Fields.Update

oAppt.Configuration = oConfig

oAppt.StartTime = oOriginalAppt.StartTime
oAppt.EndTime = oOriginalAppt.EndTime
oAppt.Subject = "Course: " & oOriginalAppt.Subject
oAppt.Location = oOriginalAppt.Location
strSchema = GetSchema

Chapter 19 Putting It All Together

oAppt.TextBody = "The Instructor is " & _
oOriginalAppt.Fields(strSchema & "instructoremail").Value

'Don't ask for a response since we don't care if they accept or decline
oAppt.ResponseRequested = False

Set oAttendee = oAppt.Attendees.Add
strEmail = GetStudentEmail

oAttendee.Address = strEmail
oAttendee.Role = 0

Set oMtg = oAppt.CreateRequest
oMtg.Message.Send

end sub

This script uses ADO and CDO to perform its functions. However, another object
is at work in the script: WorkflowSession. This intrinsic object (which you don't have
to create) is passed to your script by the workflow engine. It allows you to access
properties on the process instance as well as the audit trail specified for the workflow.
Table 19-11 shows the most important properties and methods of this object. For more
information on the properties and methods, refer to the Exchange 2000 Platform SDK.

I want to offer more explanation for some of the properties and methods in Table
19-11. One method that will be very useful for you in your development is the
GetUserProperty method. This method takes three parameters. The first is the distin­
gUished name of the object in the Active Directory, which can be either the Active
Directory path to the object or the unique e-mail address of the object. The second
parameter is the Active Directory attribute you want to get off the object. The third
parameter works in conjunction with the first and tells CDO whether the first parame­
ter is an Active Directory path (1) or an e-mail address (0). Probably the most com­
mon use for this method is to retrieve the manager of the owner of the item that is
undergoing the workflow to get approval. You would retrieve the manager by get­
ting the manager property off the current user's Active Directory object. You can get
the e-mail address of the current user by using the WorkflowSession.Sender property.
You can then retrieve the mail property from the manager's Active Directory object.
The manager property will return to you the Active Directory path to the manager.
The following example illustrates this scenario:

with WorkflowSession
strUserAddress = "username@company.com"
mgrDN = .GetUserProperty(strUserAddress,"manager",0)
strUserMgrEmail = .GetUserProperty(mgrDN, "mail", 1)

end with

939

ParI IV

940

Property or
Method Name

ActiveConnection

AddAuditEntry

DeleteReceivedMessage

Delete WorkflowItem

Domain

ErrorDescription

ErrorNumber

Fields

GetNewWorkjlowMessage

GetUserProperty

Description

This property returns an ADO Connection object. You
should use this Connection object in your script's ADO
and CDO functions, especially if you want them to
take part in transactions.

This method allows you to add an audit entry to the
selected audit entry provider of the workflow process.
You pass a string and a Long value to specify what the
entry should say and the custom result you want for
the value. By default, Exchange Server ships with one
audit trail provider which writes to the Windows 2000
Event Log. You can create custom audit trail providers
by creating COM components that implement the
IAuditTrail interface.

This method deletes the received e-mail, if one exists,
for the workflow item. You will usually call it in the
Receive action.

This method deletes the workflow item.

This property returns the domain of the server. This
property works in conjunction with the Server prop­
erty to make it easier for you to generate file:! / or
http:// URLs.

This property is used in conjunction with the
ErrorNumber property. ErrorDescription contains a
description of the error to report to the audit trail
provider.

This property holds the number of the errors to report
to the client and the audit trail provider.

This property returns the ADO Fields collection for the
workflow item. Using Fields, you can access built-in
and custom schema on the workflow item.

This method creates and returns a new Work­
flowMessage object. The WorkflowMessage object
allows you to send e-mail messages from restricted
workflows, since you cannot create a CDO Message
object in a restricted workflow.

This method gets an Active Directory attribute off an
Active Directory object.

Table 19-11. Properties and methods o/the Workflowsession object.

Table 19-11 continued

Property or
Method Name

IsUserlnRole

ItemAutbors

ItemReaders

Properties

ReceivedMessage

Sender

Server

StateFrom

StateTo

TrackingTable

Chapter 19 Putting It All Together

Description

TIlls method checks to see whether a user is in a folder
role. You pass to this method the user's e-mail address
and the name of the role. The method will return a
Boolean indicating whether that user is in that particular
folder role. A folder role is a grouping of users who per­
form a particular function that you define for the folder.
The roles are stored on the folder, so to implement roles­
based workflow, you do not need permissions to modify
or add properties to the Active Directory.
Since Exchange Server 2000 supports item-level per­
missions, you might want to set such permissions on
workflow items. This property contains a collection
that contains a list of all users with authoring ability
on the workflow item.

This property contains a collection of users who should
have Reader permissions on the workflow item.

This property returns an ISessionProps interface to you
so that you can add properties you need persisted for
a single session, that lasts for one Processlnstance tran­
sition. Here's a good example of using this property:
Suppose you have multiple actions that need to be
evaluated to make a state transition. You do not want
each action to check multiple times whether a certain
property on the item already exists as part of the
evaluation criteria. So use this property to cache the
value and share the value between multiple condition
scripts.

This property returns the e-mail message that WaS re­
ceived in correlation to a workflow item.

This property contains the SMTP address of the person
who initiated the state transition.

This property contains the name of the server and is
used in conjunction with the Domain property.
This property contains the name of the state before
the current process transition.

This property holds the name of the state after the cui~
rent transition.

Used with e-mail workflows.this property contains a
Recordset object that has a number of properties relating
to the current workflow item. Refer to the Exchange 2000
Platform SDK for more information, on this property.

941

Part IV

942

Two properties in Table 19-11, ItemAuthors and ItemReaders, also demand more
explanation. ItemAuthors is a collection used to specify per-item modify and delete
permissions. If you add any users to this collection, only those users can modify or
delete the item as well as read it. If you remove all users from this collection, the
default permissions on the folder apply.

With ItemReaders, you can specify per-item read access. If you add users to this
collection, only those users can read or view the item, but they cannot necessarily
modify the item. This means that even when other users query, know the URL of the
item, or try to retrieve a specific property on the item, they will not be able to modify
the item unless they are in the ItemReaders collection. When you clear the collec­
tion, default folder permissions will apply.

Both ItemAuthors and ItemReaders return an !Members interface. This interface
supports one property and three methods: the Count property, and the Add, Clear,
and Delete methods. Count returns the number of members in the collection. Add adds
a new member by taking two parameters, Name and Type. Name must be a string
that either specifies the e-mail address of the user or a role. Exchange supports the
string literals "Role 1" through "Role 16" for adding roles. The Type parameter is an
integer that specifies the type of user you are adding, whether it is an e-mail address
(0) or a role (1). The Clear method clears all members from the collection. Finally,
the Delete method deletes a member from the collection. You need to pass either a
numbered index into the collection or a string that uniquely identifies a member of
the collection. This string can be a role name such as "Role 1" or the e-mail address
of the user you want to remove from the collection. The following example shows
you how to add two different users to the ItemAuthors and ItemReaders collections
on a workflow item.

strAddress = "user@domain.com"
WorkflowSession.ltemAuthors.Add strAddress. 0 'cdowfEmailAddress
strAddress = "user2@domain.com"
WorkflowSession.ltemReaders.Add strAddress. 0 'cdowfEmailAddress

DEBUGGING YOUR WORKFLOW SOLUTIONS

You can debug your workflow solutions by using either the audit trail provider
.:_,..l..,~L:It..rl r:rh 'O~,...'hn_o ')(\{\{) "" "',..,.~_t- rl.ah rrrri TA an"hl.a Cl"'rt-nt ~.ahl1nn.; rr
llJ.\,.,.lUU\,.,U VVJ.U.l .l....d".\,...J..lGl.1.15\,.., .t..4VVV V.l ..:J\"'.l.ll-'L U.\,...UU55.L.L.lo, .LV \,.,.l.lU/J.L"-',\,....L.L.l:-"!,.. '-"'vl .. Jl o 5,U..L5'

you need to either select the script debugging option in the Workflow Designer
or set to True the property on your workflow's event handler registration called
http://schemas.microsqft.com/cdolworkjlow/enabledebug. In order for the debugger
to work, you must make sure that just-in-time QIT) debugging is enabled in
Windows 2000. You can do this by modifying a key in the registry under
HKCU/Software/MicrosoftlWindows Script/Settings/]ITDebug and setting it to 1.

Chapter 19 Putting It All Together

Deploying Workflow Solutions

Once you've drawn out your process, implemented your conditions and actions, and
written your script, the next step is to deploy your workflow process to a folder. The
Workflow Designer makes this step easy because you can save the workflow pro­
cess into any folder in which you have permissions to create a workflow. Figure 19-14
shows how to Save Workflow Process To Folder in the Workflow Designer.

Figure 19-14. The Save Workflow Process To Folder tool makes it easy to deploy
workflow solutions.

In some cases, you might need to programmatically deploy your solutions.
Unfortunately, the Workflow Designer doesn't have an object model that you can
automate to use the Save Workflow Process To Folder tool. Instead, you'll neeq to
write some code to deploy your workflow process. If so, you should first use the
Workflow Designer to export to XML the action table for your workflow process.

The following code, taken from the Training application setup program, shows
how to deploy your workflow application programmatically. You'll notice the follow­
ing steps in the code:

1. Create your common script file (if necessary).

2. Create a workflow ProcessDefinition object.

3. In the ProcessDefinition object, add your action table. To do so, create a
new Recordset object, and use the XML features of ADO to load the XML
version. of the action table that the Workflow Designer saved for you.

943

Part IV Exchange Server 2000 Development

944

4. As part of creating your ProcessDefinition object, select your audit trail
provider, set the location of your common script file, and set the mode
that the workflow process should run under (restricted or privileged).

5. Save the Process Definition object into the folder.

6. Create the event registration items for the OnSyncSave, OnSyncDelete, and
OnTimer events. On the server events registration item for OnSyncSave
and OnSyncDelete, set the properties in the http://schemas.microsoft.coml
cdolworliflowl name space-for example, the pointer to the default pro­
cess definition for the folder, whether ad hoc workflows are allowed in
the folder, whether to enable script debugging, and whether to log to the
audit trail provider successful state transitions.

Private Sub AddWorkflowProcess()
Dim oRS As New ADODB.Recordset
Dim oPD As New CDOWF.ProcessDefinition

On Error GoTo errHandler

'Add the common script file
Dim oScriptRec As New ADODB.Record
Dim oStream As New ADODB.Stream
'Load the script file
Dim fso As New Scripting.FileSystemObject
Dim ofile As TextStream

Set ofi 1 e = fso. OpenTextFil e(App. Path & "\commonscri pt. txt")

strCommonScript = ofile.ReadAll

oScriptRec.Open strPath & "/Pending/commonscript", oConnection, _
adModeReadWrite, adCreateNonCollection

oStream.Open oScr1ptRec, adModeReadWr1te, adOpenStreamFromRecord
With oStream

.Charset = "unicode"

.Type = adTypeText

.Position = 0

.SetEOS

.WriteText strCommonScript

.Position = 0

. Fl ush

.Close
End With
strScriptURL = oScriptRec.Fields("DAV:href").Value

'Load the action table
oRS.Open App.Path & "\actiontable.xml"

Chapter 19 PuHing It All Together

With oPD
.ActionTable = oRS
.AuditTrailProvider = "CDOWF.AuditTrailEventLog"
.CommonScriptURL = strScriptURL
.Mode = cdowf~rivilegedMode
.FieldsC"DAV:ishidden") = True

End With

oPD.DataSource.SaveTo strPath & "/Pending/WFDEF", oConnection, _
adModeReadWrite, adCreateNonCollection

strPDHREF = oPD.FieldsC"DAV:href").Value

'Create the event registrations

'First create the timer event
arrRequired = GenerateRequiredEventArrayC"", "ontimer", _

"CdoWfEvt.EventSink.l", "", "H)
strNow = Now
arrOptional = GenerateOptionalEventArrayC"",

strNow, "H)

IS, _

CreateEvtRegistration oConnection, strPath & "Pending/timer", _
arrRequired, arrOptional, True

'Create the OnSyncSave and onSyncDelete registration
arrRequired ; GenerateRequiredEventArrayC"WHERE ""DAV:ishidden""

false AND ""DAV:isfolder"" = false", "onsyncsave;onsyncdelete", _
"CdoWfEvt.EventSink.l", "", "H)

'Create a new array and add some further properties for workflow
Dim arrWorkflowRequiredC6, 1)
For i = LBoundCarrRequired) To UBoundCarrRequired)

arrWorkflowRequiredCi, 0) arrRequiredCi, 0)
arrWorkflowRequiredCi, 1) = arrRequiredCi, 1)

Next
'Add workflow properties
arrWorkflowRequiredC3, 0)

"http://schemas.microsoft.com/cdo/workflow/defaultprocdefinition"
arrWorkflowRequiredC3, 1) = strPDHREF
arrWorkflowRequired(4, 0) = _

"http://schemas.microsoft.com/cdo/workflow/adhocflows"
arrWorkflowRequired(4, 1) = 0
arrWorkflowRequired(5, 0) = _

"http://schemas.microsoft~com/cdo/workflow/enabledebug"

arrWorkflowRequiredC5, 1) = False
arrWorkflowRequired(6, 0) = _

"http://schemas.microsoft.com/cdo/workflow/disablesuccessentries"
arrWorkflowRequiredC6, 1) = False 'Enable success entries

(continued)

945

Part IV Exchange Server 2000 Development

946

CreateEvtRegistration oConnection, strPath & "Pending/workflowreg", _
arrWorkflowRequired, arrWorkflowOptional, True

Exit Sub
errHandler:

MsgBox "Error in AddWorkflowProcess. Error" & Err.Number & " " & _
Err.Description

End
End Sub

Workflow Security and Deployment Gotchas
I want to point out one gotcha you should be aware of when deploying workflow
solutions. It's a feature that can trip you up if you don't understand it. The workflow
event handlers have two COM+ roles that they implement, which we saw earlier:
CanRegisterWor!iflow and PrivilegedWor!iflowAuthors. If you don't understand what
these roles are used for and how the workflow engine leverages them, you might
run into some issues. This section outlines how these two roles and the workflow
engine work together.

The CanRegisterWor!iflow role is used when someone attempts to register for
the Workflow event handler. The Wor!iflow event handler implements ICreate­
Registration, so when someone attempts to register for the Workflow event handler,
the event handler is called to verify whether it wants to allow the registration to go
through. The Wor!iflow event handler calls the COM+ method IsUserlnRole(Can­
RegisterWorkflow) to determine whether the user attempting the registration is autho­
rized to do so. If this call returns True, the Workflow event handler allows the
registration to go through.

The PrivilegedWorkflowAuthors role is used to ensure that any executable
workflow code to be run in Privileged mode was not tampered with by an unautho­
rized person. Here's the scenario: User A has privileged permissions and registers a
new workflow that contains a script to run in privileged mode. User B is allowed to
write only sandboxed workflows, but he does have write access to user A's script file.
User B later inserts malicious script into these workflow files, knowing it will be run
in Privileged mode since User A has privileged workflow permissions.

To prevent this, at run time, the Wor!iflow event sink checks to see which user
last modified the process defmition, the script, and the event handler registration item.
For each of these SIDs, the event sink calls COM+ IsUserlnRole(Privi!egedWorkjlowAuthors).
yC-~~ c +1.... ,... A ~_ _+ ~~ _ 1 _l:t'.:l t.... _ __ -! !1 _l _ _ +t,..;. TVT IOL..J7,..A ••
11 C::UIY Vi U,1'Ii;::;"~ UU\....UUU;:::;111A) Wt:::l'11;;; la.~L I11VUllJC;:U uy c:111UUJ.J.11VllC;~'CU l't;;l'::>VU, Ult::: WVIIGJ"VW

engine knows the files have been tampered with. The Wor!iflowengine immediately
stops execution and logs a security error.

So if you want to run privileged mode workflows, you must make sure that the
account used to save all the critical documents, such as the process definition, scripts,
and event registrations, must be members of the PrivilegedWorkflowAuthors role.

Chapter 19 Putting It All Together

EXCHANGE 2000 AND SECURITY
One feature that Exchange 2000 offers is the ability to set permissions at both the item
and property levels for documents or other sorts of objects contained in the Exchange
2000 database. This functionality is different from Exchange 5.5, which allows you
to set permissions only at the folder level. Imagine what kind of impact this ability
will have on your applications. Now you can secure your applications even further
when data is stored in even a single folder. This section outlines how to use the new
security features in Exchange 2000 and shows you a Web application that allows you
to try out these new security features.

NOTE If you set item level security in Exchange 2000 and the item is replicated
to an Exchange 5.5. server, your security will not be enforced since Exchange
5.5 does not support item level security.

Security Features
Exchange 2000 supports native Windows 2000 security descriptors. Using these de­
scriptors, you can allow or deny access to an item or the item's properties, grant this
access using Windows 2000 security identifiers, and access and set permissions by
viewing and modifying the descriptor in an XML format from WebDAV or ADO/
OLEDB. By providing you with an XML representation of the security descriptor,
Exchange 2000 makes it very easy for you to work with security settings; you do not
have to learn Windows API programming to change permissions. Furthermore, the
technology in Exchange 2000 takes your XML descriptor and turns it into the correct
binary representation of the descriptor in the Exchange database. You can access the
XML-formatted descriptor by querying for the property http://schemas.microsojt.com/
exchange/security/descriptor. The following code is an example of what is returned
on an item when you query for this property from ADO:

'ADO code
Dim oRecord As New ADODB.Record
oRecord.Open "file:/I./backofficestorage/domain/apps/items/exchange.eml"

Following are the XML results:

<S:security_descriptor
xmlns:S="http://schemas.microsoft.com/security/"
xmlns:D="urn:uuid:c2f41010-65b3-11dl-a29f-00aa00cI4882 I"
D:dt="microsoft.security_descriptor")
<S:revision)I</S:revision)
<S:owner S:defaulted="0")
<S:sid)
<S:string_sid)S-I-5-21-1659004503-152049171-1202660629-1110
</S:string_sid)

(continued)

947

Part IV Exchange Server 2000 Development

948

<S:nt4_compatible_name>THOMRIZNT5DOM\thomriz</S:nt4_compatible_name>
<S:user_principal_name>thomriz@thomriznt5dom.extest.microsoft.com<1

S:user_ '
principaLname>

<S:display_name>Thomas Rizzo</S:display_name>
</S:sid>

</S:owner>
<S:primary_group S:defaulted="0">
<S:sid>
<S:string_sid>S-1-5-21-1659004503-152049171-1202660629-513
</S:string_sid>
<S:nt4_compatible_name>THOMRIZNT5DOM\Domain Users
</S:nt4_compatible_name>

</S:sid>
</S:primary_group>
<S:dacl S:defaulted="l" S:protected="0" S:autoinherited="l">
<S:revision>2</S:revision>
<S:effective_aces>
<S:access_allowed_ace S:inherited="l">
<S:access_mask>lfcfff</S:access_mask>
<S:sid>
<S:string_sid>S-1-5-21-1659004503-152049171-1202660629-1110
</S:string_sid>
<S:nt4_compatible_name>THOMRIZNT5DOM\thomriz</S:nt4_compatible_name>
<S:user_principal_name>thomriz@thomriznt5dom.extest.microsoft.com
</S:user_principal_name>
<S:display_name>Thomas Rizzo</S:display_name>

</S:sid>
</S:access_allowed_ace>
<S:access_allowed_ace S:inherited="l">
<S:access_mask>lfcfff</S:access_mask>
<S:sid>
<S:string_sid>S-1-5-21-1659004503-152049171-1202660629-1105
</S:string_sid>
<S:nt4_compatible_name>THOMRIZNT5DOM\Domain EXServers
</S:nt4_compatible_name>

</S:sid>
</S:access_al 1 owed_ace>
<S:access_allowed_ace S:inherited="l">
<S:access_mask>lfcfff</S:access_mask>
<S:sid>
<S:string_sid>S-1-5-21-1659004503-152049171-1202660629-500
</S:string_sid>
<S:nt4_compatible_name>THOMRIZNT5DOM\Administrator<1

S:nt4_compatible_name>
<S:display_name>Administrator</S:display_name>

</S:sid>

Chapter 19 Putting It All Together

</S:access_allowed_ace>
<S:access_allowed_ace S:inherited="I">
<S:access_mask>lfcfff</S:access_mask>
<S:sid>
<S:string_sid>S-I-5-21-1659004503-152049171-1202660629-519
</S:string_sid>
<S:nt4_compatible_name>THOMRIZNT5DOM\Enterprise Admins
</S:nt4_compatible_name>

</S:sid>
</S:access_allowed_ace>
<S:accesLallowed_ace S:1nherited="I">
<S:access_mask)lfcfff</S:acceSLmqsk>
<S:sid>
<S:string_sid>S-I-5-21-1659004503-152049171-1202660629-512
</S:string_sid>
<S:nt4_compatible_name>THOMRIZNT5DOM\Domain Admins
</S:nt4_compatiblLname>

</S:sid>
</S:access_allowed_ace>
<S:access_allowed_ace S:inherited="I">
<S:access_mask>12088f</S:access_mask>
<S:sid>
<S:string_sid>S-1-1-0</S:string_sid>
<S:nt4_compatible_name>\Everyone</S:nt4_compatible_name>

</S:sid>
</S:access_allowed_ace>

</S:effective_aces>
</S:dacl>

</S:security_descriptor>

This XML code is for a nonfolder security descriptor-specificaUy, for an item.
A folder security descriptor is a little bit different, but as you can see in the XML
structure shown in the code above, a security descriptor is made up of a Discretion­
ary Access Control List (DACL), which in turn is m~de up of Access Control Entries
(ACE). Each ACE in the DACL either grants or denies a trustee a C~rt4ip set of rights
to the object. The access mask, which you see def~ed in the XML, describes the set
of rights that are granted or denied to a user. Access masks are 32-bit numbers where
the upper 16 bits describe generic rights and the lower 16 bits describe object­
specific rights.

Tables 19-12, 19-13, and 19-14 outline the ciifferent sets of access rights you can
have: standard access rights, access rights on folders, and on nonfolders (items),
respectively. Values from each table can be combined atld put into the access mask
to create the correct security deSCriptor for the user.

949

Part IV Exchange Server 2000 Development

950

Name Value (Hex) Description

jsdrightDelete OxOO010000 Delete

jsdrightReadControl OxOO020000 Read access to security descriptor
and owner

jsdrightWriteSD OxOO040000 Write DACL permissions

JsdrightWriteOwner OxOO080000 Used to assign write owner

jsdrightSynchronize Ox00100000 Used to syp.chronize access to the
object

Table 19-12. Standard rights (non-Exchange, Windows 2000).

If you were to create an access mask with all the properties in Table 19-12, the
value would be OxlFOOOO.

Name Value (Hex) Description

jsdrightListContents OxOOOOOOOl Right to list contents of the
directory.

JsdrightCreateltem OxOOOOOO02 Right to add a file to the folder.

jsdrightCreateContainer OxOOOOOO04 Right to add a subfolder

jsdrightReadProperty OxOOOOOO08 Right to read extended
attributes

jsdrightWriteProperty OxOOOOO010 Right to write extended
attributes

jsdrightReadAttributes OxOOOOO080 Right to read file attributes.
Currently unused.

jsdrightWriteAttributes OxOOOO0100 Right to change file attributes.
Currently unused.

JsdrightWriteOwnProperty OxOOOO0200 Right to modify own items
(Exchange-specific property)

jsdrightDeleteOwnltem OxOOOO0400 Right to delete own items

jsdrightviewItem OxOOOO0800 Right to view items (Exchange-
specific property)

JsdrightOwner OxOOO0400Q Owner of the folder. Provided
for backwards compatability.

jsdrightContact OxOOO08000 Contact for the folder. Pro-
vided for backwards com-
patability.

Table 19-13. Folder rights.

If a user has all tigp.ts in Table 19-13, the value of the l11ask would be OxCFFF.

Chapter 19 Putting It All Together

Name Value (Hex) Description

fsdrightReadBody OxOOOOOOOl Right to read data from a file.

fsdrightWriteBody OxOOOOOOO2 Right to write data to a file.

fsdrightAppendMessage OxOOOOOOO4 Same as fsdrightWriteBody.
Not currently used.

fsdrightReadProperty OxOOOOOOO8 Right to read extended at-
tributes.

fsdrightWriteProperty OxOOOOOO10 Right to write extended at-
tributes.

fsdrightExecute OxOOOOOO2O Right to execute a file. Cur-
rently not used.

fsdrightReadAttributes OxOOOOOO80 Right to read file attributes.

fsdrig h t WriteAttributes OxOOOOO100 Right to change file attributes.

fsdrightWriteOwnProperty OxOOOOO2OO Right to modify own item
(Exchange-specific property).

fsdrightDeleteOwnItem OxOOOOO400 Right to delete own item
(Exchange-specific property).

fsdrightViewItem OxOOOOO800 Right to view item (Exchange-
specific property).

Table 19-14. Item rights.

If a user has all the rights in Table 19-14, the value would be OxOFBF.

As you can see in the preceding XMLcode example, you can have an access_
allowed_ACE, which contains the access mask for the rights you are going to allow
for the user on the item or folder. You can also have an access_denied_ACE, which
specifies an access mask that contains the rights you are going to deny for the user
on the folder or item. If the user has all rights, as in the preceding XML example, the
access mask will be 1FCFFF, which means all rights from all the tables above are
granted to the user. Creating the access mask is just a matter of adding the hexidecimal
values from the tables together and creating the ACE for the user. We'll see an ex­
ample on how to create an ACE later in this chapter using the XMLDOM.

One fact you need to know even before we drill down into a sample appli­
cation is that there are certain rights that the user needs to be able to access the
security descriptor. These rights are fsdrightReadControl, fsdrightWriteSD, and
fsdrightWriteOwner.

951

Part IV

Sample Security Application

952

One of the sample applications included on the companion CD will, I know, make
using the XML security descriptor much easier for you. The security sample applica­
tion is a Web application that highly leverages the XMLDOM, XSL as well as WebDAV
to show you how to work with and set the XML security descriptors in Exchange 2000.
Figure 19-15 shows the main interface for the security application.

Figure 19-15. The main inteiface for the security application.

One task to try when working with the security application is restricting who
can view items in an Exchange folder. The way to do this in the application is in­
clu'ded in the next bit of code. As you qn see in Figure 19-16, the user can view the
document named ADO and Exchange 2000. However, after applying the setting that
denies this user access to the document, as shown in Figure 19-17, the user can no
longer see that specific document but can see all the other documents contained in
the folder. Figure 19-17 shows what the user sees after applying the security change.

The application works by combining the XMLDOM, XSL, and WebDAV to get,
display, and set both item-level and property-level security in Exchange. As you cim
see from the following code snippet, when you click the OK button to retrieve the
security for an object in Exchange, the application does a PROPFIND on the http.';1
schemas.microsojt.comlexchangelsecurityldescriptor property. The application then
uses XSL to display the HTML that you see ip the browser.

Chapter 19 Putting It All Together

Figure 19-16, Before applying the security settings, the user can view the full list of
documents.

Figure 19-17. After applying the security settings, the user can no longer view the
restricted files.

953

Part IV Exchange Server 2000 Development

954

function cmdGetSec.onclick()
{

var strReqBody = "";

if(txtUrl .value == "H)
{

}

alert("Please Enter or select a valid URL.");
return;

strReqBody = "(?xml version=\"1.0\" encoding=\"utf-8\"?)" +
"(propfind xmlns=\"DAV:\")" +
"(prop xmlns:r=\"http://schemas.microsoft.com/exchange/security/\")"
+" (r:descriptor/)" +
"(/prop)" +
"(/propfind)"

DAVRequest.open("PROPFIND", txtUrl.value, false);
DAVRequest.setRequestHeader("Content-Type", "text/xml");
DAVRequest.setRequestHeader("Depth", "0");
DAVRequest.setRequestHeader("Translate", "f");
DAVRequest.send(strReqBody);

if(chkMultiStatusForErr(DAVRequest))= 0)
{

}

xmlResponse = DAVRequest.responseXml;
perm_entries_dest.innerHTML =

xml Response.transformNode(xsl Perffi-Entries);
ace_entr1eLdest.innerHTML = "(div/)";
ace_edit_dest.innerHTML = "(div/)";
add_dest.innerHTML = "(DIV/)";

xmlResponse.transformNodeToObject(xslAceEntries.documentElement,
xmlAceEntries);

HiLitePermsTable();
propfindForResources();

cmdAdd.disabled = false;
cmdRemove.disabled = true;
cmdAceApply.disabled = true;
cmdAceCancel .disabled = true;

strOwner = owner.innerText;

Chapter 19 Putting It All Together

To add a new Access Control Entry, all the application does is take your en­
tered data and turn it into a new XML node that it adds to the XML security descrip­
tor. To do this, the application fills in the required properties to correctly generate a
new ACE such as an NT4-compatible name, the access mask, as well as the ACE type.
The code that does the XML work is shown here:

function addAce(strUserName. strMask. strPropName. strApplyTo. _
strRoleProp. strRoleScope. fbAllow)

{

// Basic variable declarations.
var baseNode = nUll;
var nodeFirstAce = null;
var nodeSubNode = null;
var nodeNewNode = null;
var nOrder = 0;

nOrder = getAceOrder(strUserName. nUll. strPropName. strApplyTo.
strRoleProp. strRoleScope. fbAllow);

while(nOrder > -1)
{

removeAce(nOrder);
nOrder = getAceOrder(strUserName. strMask. strPropName. strApplyTo.

strRoleProp. strRoleScope. fbAllow);
}

// Establish the base node.
baseNode = xmlAceEntries.documentElement;

/1 Create the ace node.
nodeNewNode = xmlAceEntries.createNode(l. "ace". "H);

II Add the NT4_Compatible_Name sub node.
nodeSubNode = xmlAceEntries.createNode(l. "NT4_Compatible_Name". "H);

nodeSubNode.text = strUserName;
nodeNewNode.appendChild(nodeSubNode);

II Add the Access_Mask sub node.
nodeSubNode = xmlAceEntries.createNode(l. "Access_Mask". "H);
nodeSubNode.text = strMask;
nodeNewNode.appendChild(nodeSubNode);

II Add the Ace_Type sub node.
nodeSubNode = xmlAceEntries.createNode(1. "Ace_Type". "");

nodeSubNode.text = getAceType(strPropName. fbAllow);
(continued)

955

Part IV Exchange Server 2000 Development

956

}

nodeNewNode.appendChild(nodeSubNode):

II Add the ApplY_To sub node.
nodeSubNode = xmlAceEntries.createNode(1. "Apply_To". ""):
nodeSubNode.text = strApplyTo:
nodeNewNode.appendChild(nodeSubNode):

II Add the Property_Name sub node.
nodeSubNode = xmlAceEntries.createNode(l. "Property_Name". ""):
nodeSubNode.text = strPropName:
nodeNewNode.appendChild(nodeSubNode):

if(strRoleScope != null && strRoleScope != "")
{

}

nodeSubNode = xmlAceEntries.createNode(1. "Role_Scope". ""):
nodeSubNode.text = strRoleScope:
nodeNewNode.appendChild(nodeSubNode):

if(strRoleProp != null && strRoleProp != "")
{

}

nodeSubNode = xml AceEntri es. createNode(1. "Rol e_Property". • ...):
nodeSubNode.text = strRoleProp:
nodeNewNode.appendChild(nodeSubNode):

baseNode = xmlAceEntries.documentElement:
baseNode.appendChild(nodeNewNode):

refreshAceList():

To set the security, the application does a PROPPATCH to the same property
but with the new security descriptor formatted as XML and the new security added
as XML nodes.

function cmdAceApply.onclick()
{

var xmldomAce = new ActiveXObject("Microsoft.XMLDOM"):
var xmlAccessMaskNode = null:
var xmlAceTypeNodes = nUll:
var xmlAceTypeNode = null:
var xmlUserNameNode = null:
var xmlApplyToNode = null:
var xmlPropNode = nUll:

cmdAceApply.disabled = true:
cmdAceCancel .disabled = true:

addAcesOutstandingAcesToXML():

Chapter 19 Putting It AU Together

}

xmlAceEntries.transformNodeToObject(xslProppatch.documentElement.
xmldomProppatch);

DAVRequest.open("PROPPATC~". txtUrl.value. false);
DAVRequest.setRequestHeader("Content-Type". "text/xml");
DAVRequest.setRequestHeader("Translat~"~ "f");
DAVRequest.send(xmldomProppatch);

if(chkMultiStatusForErr(DAVRequest) >= 0)
{

}

HiLitePermsTable();

if(nCurrentAce > -1)
{

}

xmldomAce.loadXML(
x~lAceEntries.childNodes(0).childNodes(nCurrentAce).xm1);

ace_entries_dest.inner~TML =
xm1domAce.transformNode(xs1Dips-ACE_Info);

ace_edit_dest.innerHTML =
xmldomAce.transformNode(xslACE_Eqit.documentElement);

perffi-entries_dest.;nnerHTML =
xmldomProppatch.transformNode(xs1Perffi-Entries);

HiLiteRow(thetab1e. nCurrentAce+1);

cmdGetSec.onc1ick();

return "" . .

INSTANT MESSAGING
The final topic that we'll cover in the book is instant messaging. Instant messaging
provides two sets of services. The first service is the ability to send and receive instant
messages. Instant messages are different from e-maifin that they pop up on the
receiving user's screen immediately after the message is sent-there is no delay. They
also differ from e-mail because a user can actually block another user from sending
the message. The only way you can "block" people from sep.ding you e-ma.il is by
automatically deleting the message. . ..

The second and perhaps the most interesting servi~e is the ability to track and
display "presence" information about specified contat::ts. For example, a user could
track its team, that is, determme whether team member/! are Qnline, away from their
computers; and so on. With presence technology, however, a user can track the
availability and status of virtual teams across the Ipternet. This is where the power
of presence technology shines.

957

Part IV Exchange §4'!!II'V'U' 2000 Development

958

Another great feature of instant messaging is that it is included with Microsoft
Exchange 2000. When a user installs Exchange, the user has the option of installing
instant messaging and setting up an instant messaging infrastructure. The instant
messaging infrastructure leverages Active Directory and allows the user to extend the
services he can offer and develop in the Exchange environment. Furthermore, the
MSN Messenger Service client can be installed on workstations so that users in an
organization can leverage instant messaging technology.

At this pOint, the main question you probably have is, "How does instant mes­
saging relate to developers?" You can take advantage of these features in your col­
laborative Exchange applications by integrating instant messaging, presence technology,
or both. A number of controls produced by Microsoft make the process of integrat­
ing instant messaging in your applications very easy. In this chapter, we will take
a look at one of these controls, the 1M Contact View control. This control provides a
user interface to display presence information and send instant messages as well as
a programmatic interface and event model that you can use in your applications.

Before we look at the details of the control, I need to show you the main page
of the Training application, which has been updated with instant messaging function­
ality. As you can see in Figure 19-18, students can now see which instructors are
online, and they can filter the list to view only those instructors for their courses.
Students can send instant messages to their instructors. The instructors can block
students from seeing their availability.

Cj Only 5hDW my Instn.ll:ton:

8 .. Indructoq Online
.I Flo!InkLee

.I_
E! .. lnatruclon: OIf~ne

.I D",H"
J,J.!IneCla,Yton
!. MikeNash

This website Is dedicated to providing you with the training resources that you
need to make you more productive I - Please provide suggestions using the link
at the bottom ofthe page,

Find t:l"lIlll'iill'il:l to fit my
IIdu~dul~
See who!lt courses are happening:

mil Today

iii This week

!IJ This month

CIHII"SeS I'm signed up
for

View Information ____ ,
the Instructors
view informo!ltion about the different instructors j

what courses they have gi en .!ind their overall
rating,

il View Instructor List

You are registere4 .!liS .!In instructor. Below are
links to help get you started.

f) Create a new course

courses that you il View your current courses
what you have iJ previous courses including --------Figure 19-18. The updated Training application main page With instant messaging

technology added.

Chapter 19 Putting It All Together

Programming the 1M Contact View Control
The 1M Contact View control is an ActiveX control that you can place on your Web
pages to implement 1M functionality. This control has a number of properties and
methods that you can use to customize the control's interface. You can set proper­
ties for the control by using an HTML Object tag, or you can set properties pro~
grammatically. The 1M View Control is put onto the main. asp page in the application
by using an OBJECT tag, as shown here:

<OBJECT
codebase="msimcntl.cabfVersion=l.0.0~00l"

classid=CLSID:B06EDBC7-287D-405C-A899-9C7F8358EF26
codeType=appllcation/x-oleobject
id=MSIMContactList
name=MSIMContactList VIEWASTEXT height=500>
<PARAM NAME="Service" VALUE=0>
<!--<PARAM NAME,:,,"List" VALUE="UMesseliger\Contact">-->
<PARAM NAME="HotTracking" VALUE=FALSE>
<PARAM NAME="AllowCollapse" VALUE=TRUE>
<PARAM NAME="ShowSelectAlwayS" VALUE=TRUE>
<PARAM NAME="ShowLogonButton" VALUE="l">

<PARAM NAME="OfflineColl~psed" VALUE=TRUE>
<PARAM NAME="Oni i neColl apsed" VALUE=FALSE>
<PARAM NAME="OnlirteRootLabel" VALUE="Instructors Online">
<PARAM NAME="OfflineRootLabel" VALUE="Instructors Offline">

<PARAM NAME=" Fil terOffl i ne" VALUE=FALSE>
<PARAM NAME="Group" VALUE=True>

</OBJECT>

As you can see, the PARAM tags pass the name of a property and the value for
that property. Table 19-15 describes the available properties on the 1M Contact View
control.

The control supports seven methods and one function, all of which are very
straightforward. Table 19-16 describes them.

The final aspect of the 1M Contact View control that you should be aware of is
its event support. You can place the control on a Web page, so the control supports
events that tell you when users of your application have instantiated the control, are
adding new contacts, or are requesting menus, or even when the control is shutting
down. Using these events, you can customize many aspects of the control. In the
Training application, the menu events are used to add a custom menu item to the
control so that right from the 1M list, users can get details about instructors such as
their office locations, phone numbers, and areas of expertise. This enhancement is
shown in Figure 19-19 on page 962.

959

Part IV Exchange -Server 2000 Development

960

Property Name

AllowCollapse

ExtentHeight

ExtentWidth

FilterOjJline

Group

HotTracking

LoggedOn

List

Description

This Boolean property specifies whether the user is
allowed to collapse the root nodes in the contact
list. If set to False, the user cannot collapse the root
nodes.

This read-only long value returns the optimal height
the control needs to be in order to be displayed
without a scrollbar. You can then use DHTML to
readjust your Web page to properly fit the control.

This read-only long value returns the optimal width
the control needs to be in order to be displayed
without a scrollbar. You can use DHTML to readjust
your Web page to properly fit the control.

This Boolean value specifies whether offline con­
tacts should be displayed in the list. True means
that you want to fllter offline contacts.

This Boolean value specifies whether online and
offline contacts should be grouped within their
respective nodes in the tree. True means that you
do want the contacts grouped. Note that you can
change the text, as I did, for the tree nodes that the
contacts are grouped under by using the OjJline­
RootLabel and OnlineRootLabel properties, which
I'll discuss later.

This· Boolean specifies whether the 1M list will track
the cursor as it moves over the list. True means that
as the mouse cursor moves over contacts in the list,
a hyperlink hand icon and an underline appear.

A Boolean that indicates whether the user is
logged on.

This· string is the identifier for the collection of con­
tacts to be used in the control. In the preceding
sample code, the usage of this property is shown as
comtnehted out, but you could have the control
autortkHcally load the MSN Messenger contact list
as its default. You can also create and identify your
own lists in the code and load tho:se as well. If you
don't specify the value for this property, the control
generates a rahdom value for the property.

Table 19·15. The 1M Contact View control properties.

Table 19-15 continued

Property Name

OfflineCollapsed

OfflineRootLabel

OnlineCollapsed

OnlineRootLabel

SelectedMenuOptions

Service

ShowIcons

ShowLogonButton

ShowSelectAlways

Chapter 19 Putting It All Together

Description

This Boolean value specifies whether the offline
contact list will be expanded or collapsed upon
loading. True means that the offline contacts should
be collapsed.

This string property allows you to customize the
text that appears for the offline contact list. In the
Training application, this property is set to Instruc­
tors Offline.

This Boolean is the same as the OfflineCollapsed
property, except that it affects the online contact
list.

This string property allows you to customize the
text that appears for the online contact list. In the
Training application, this property is set to Instruc­
tors Online.

This read-only Long value specifies which menu
options can be performed for a user. This property
is not useful unless a contact is selected in the user
interface when you quety the property on the control.

This property returns the Service interface. Provid­
ing more details about this interface is beyond the
scope of this book.

This Boolean property specifies whether the state
icons should be shown. True means to show the
state icons, such as the green person icon indicat­
ing available and the red person icon indicating
offline.

This Boolean specifies whether to show a logon
prompt if the local user is not logged onto the 1M
service. True means that you want the logon prompt
to be displayed.

This Boolean specifies whether to show the selec­
tion in the list even if the control does not have
focus. True means that even if the user is typing
into a form in a separate part of your application
window, the current contact selection in the control
will remain highlighted.

961

Part IV Exchange Server 2000 Development

962

Method Name

Add

AddMenultem

BlockSelected

EmailSelected

1MSelected

InviteSelected

Remove

UnblockSelected

Description

Adds a list of contacts by using each contact's list !D. For MSN Mes­
senger contacts, this would be $$Messenger\Contact. You can
specify your own custom list here as well. You can also add con­
tacts using a contact's 1M address such as usemame@imaddress.com.
Finally, you can add a number of contacts by passing a Variant array of
strings that represent the 1M addresses of all the contacts you want to
add.

This function adds a menu item to the context menu that is displayed
when contacts are right-clicked. (This method is covered in more de­
tail in the programming samples at the end of this chapter.)

Adds the selected contacts in the VI to the blocked list. These con­
tacts will no longer be able to send instant messages to the user.

Initiates an e-mail message to the selected contacts in the ill.

Sends an 1M message to the selected contacts in the UI.

Initiates an invitation to the selected contacts in the UI to join an
application.

Removes a list or contact from the 1M list. You need to pass the ad­
dress of the 1M user or name of the list as a parameter.

Removes the selected contacts in the VI from the blocked list.

Table 19-16. 1M Contact View Control methods andfunctions.

ThiS website is dedlC8ted to providing you With the training resources that you
need to make you more productive I Please provide suggestions USing the link
at the bottom of the page.

for
Browse through the current courses that you
heve signed up for and see what you have
already taken I

View Il1fcmnllltiol1 abo
the Instructors:
View information about the different instructors,
what courses they have gi",en and their overall
rating.

@) View Instructor List

Il'lstnu:tors: Only!
You are re~istered 115 an instructor. Below are
links to help get you started.

@) Create a new coutse
@) View your current courses

il ~;~b~:r previous courses including

Figure 19-19. Adding a custom menu option for your application to the 1M Contact
View control.

Chapter 19 Putting It All Together

Table 19-17 highlights the events you can receive from the 1M Contact View
control.

Event Name

OnAddContactUI

OnAddResult

Description

This event is called when a user attempts to add a new contact using
the Messenger Add Contact User Interface. The user can add a new
contact by right-clicking on a node and selecting Add Contact. You
are passed a Boolean variable pfEnableDifault, which, if you set it to
False, cancels the user's action and prevents the user interface for
adding a contact from appearing.

This event is called when a contact or list has been added or an at­
tempt has been made to add it. You are passed a Long value named
IResult, which is the result of the attempt, as well as a Variant named
vUser. This Variant holds either the list or contact that was added.

OnEmailContact This event indicates that e-mail is being sent to the selected contacts.
You are passed a Variant named vUser, which is the contact or con­
tacts. You are also passed pfEnableDejault, which you can set to
False to cancel the action.

OnExtentsChange This event is called when the size of the list has changed. You are
passed two Long values, nWidth and nHeight, which indicate the new
width and height.

OnLocalStateChange This event is called when the user changes the 1M local state. This
state can be online, offline, out to lunch, and so on. You are passed a
variable vState, which is an Integer that identifies the new state.

OnLogOff This event is called when the user logs off an 1M service. You are
passed a variable IResult, which is the result of the logoff attempt, and
also a string bstrService, which is the service the user is logging off of,

OnLogon

OnMenuRequest

whether it be MSN or Exchange Instant Messaging.

This event is called when a user logs on to an IM service. You are
passed a Long value, IResult, which is the result of the logon attempt,
usually 0 for successful. You are also passed a string called bstrService,
which is the service the user logged on to.

This event indicates that a context menu is about to be displayed.
We'll cover this event in more detail when we drill down into the
Training application.

OnMenuSelect This event indicates that a context menu item has been selected.
We'll look at this event in more detail when we look at the Training
application.

OnNewIMSession This event is called when the user receives a request for an IM ses­
sion from another user. You are passed a Variant, vUser, which is the
user attempting to initiate the new session, as well as a Boolean,
pfEnableDifault, which you can set to False to prevent the session
from being initiated.

Table 19·17. Eventsjor the 1M Contacts View control. (continued)

963

ParI IV

Table 19-17 continued

Event Name

OnReady

OnRemoveResult

OnSclect

OnShutdown

Description

This event is called when the 1M control is initialized and ready.

This event is called when a contact or list is removed. You are passed
IResult, which is the result of the removal, and vUser, which is the
contact or list that was removed.
This event fires when a contact on the 1M list is selected. The variable
vUser is passed to indicate who was selected.

This event fires when the control is shutting down.

One issue to note about the events is that a bunch of them are passed a vUser
variable. This variable actually corresponds to an 1MContact object. The 1MContact
object has some properties that are very useful, such as FriendlyName, EmailAddress,
LogonName, and State. You can guess by their names what they mean: FriendlyName
is the friendly name of the user in the control, EmailAddress is the e-mail address,
LogonName is the logon name, and State returns a number that indicates the user's
state. For State, the most common states and values are: online(2), busy(10), idle(18),
and away(34).

Putting It All Together

964

Now that I've provided some information on the 1M Contacts View control, we can
look at the Training application implementation of the control. I'm going to highlight
certain code sections of the implementation to kick-start your development efforts
with the 1M Contacts View control.

Getting Contacts into the List Programmatically
To figure out who the instructors are and get them into the list, the application uses
ASP code on the server side to query the instructors folder and retrieve the entire list
of instructors. The code then figures out which instructors are teaching classes that
the current student is taking or has completed. Both sets of lists are stored in ASP
session variables so that this query does not have to occur on every load of the page.
The list is streamed out to the Web browser as two local VB Script arrays, one called
arrlnstructorsIM and the other called arrMylnstructorsIM. I stream them into an array
so that I can pass the array to the Add method of the control and add all the instruc­
tors at once.

The addition is performed only if the user is logged onto an 1M service and after
the 1M control has initialized. We can check both requirements programmatically by
first checking the LoggedOn property for a True value. To make sure that I am attempt­
ing to add contacts only after the control has successfully initialized, the code listens
for the OnReady event. Once both of these conditions have been satisfied, the code

Chapter 19 Putting It All Together

programmatically adds either all instructors or only my instructors to the control,
depending on what I check in the check box for the application. The code that
performs these steps is shown here:

<SCRIPT LANGUAGE="vbscript">

<%

%>

'Check the session variables to see if the array of instructor contacts
'is available
'By using session variables, the 1M contacts will refresh
'only after a new session starts. If you want to refresh
'every time the user hits the page, remove the session
'variables.
'There are two arrays, one for all instructors
'and one for just this user's instructors.
if IsEmpty(Session("arrInstructorsIM"» then

dim arrInstructorsIM()
i=0
'Query the store for the list of available instructors

strQuery = "Select ""urn:schemas:contacts:emaill"" FROM" & _
"scope('shallow traversal of " & chr(34) _
& strInstructorsFolderPath & chr(34) & "') WHERE" & _
"""DAV:ishidden"" = false" _
& " AND ""DAV:iscoll~ction"" = false"

set oRS = Server.CreateObject("ADODB.Recordset")
oRS.Open strQuery,Session("oConnection")
Do Until oRS.EOF

'Fi 11 in the array with thi s info
Redim Preserve arrInstructorsIM(i)
arrInstructorsIM(i) = _

oRS.Fields("urn:schemas:contacts:emaill").Value
i=i+l
oRS.MoveNext

Loop
oRS.Close
set oRS = Nothing

on error resume next
err.clear
'Check UBound
iThrowAway = UBound(arrInstructorsIM)
if err.number = 0 then

(continued)

965

Part IV

966

on error resume next
dim arrlnstructorsIM«%=UBound(arrlnstructorsIM)%»

<%
for y=LBound(arrlnstructorsIM) to UBound(arrlnstructorsIM)

response.write vblf & "arrlnstructorsIM(" & y & ") = """ & _
arrlnstructorsIM(y) & ""un

next
else

arrlnstructorsIM=""
%>
arrlnstructorsIM=""

<%
end if
if err.number = 0 then

'Save the local array into the Session variable
Session("arrlnstructorsIM") arrlnstructorsIM

else
Session("arrlnstructorsIM")

end if

else
'Traverse the list of available instructors. and store them
'in local VBScript vars

arrlnstructorsIM = Session("arrlnstructorsIM")

on error resume next
err.clear
'Check UBound
iThrowAway = UBound(arrlnstructorsIM)
if err.number = 0 then

%>

on error resume next
dim arrlnstructorsIM«%=UBound(arrlnstructorsIM)%»

<%

for y=LBound(arrlnstructorsIM) to UBound(arrlnstructorsIM)
response.write vblf & "arrlnstructorsIM(" & y & ") = """ & _

arrlnstructorsIM(y) & ""un

next
else

%>
arrlnstructorsIM

Chapter 19 PuHlng It All Together

<%
end if

end if

if IsEmpty(Session("arrMyInstructorsIM"» then
dim arrMyInstructorsIM()
'Query the store for the list of my instructors.
'Do this by querying the store for the courses
'the user is registered for, and then pull off the instructor
'e-mail. This shows all courses, both past and present.
'You could also limit this to current courses only.
strUserEmail ~ Session("UserEmail")

strQuery = "Select ""a & st~Schema & "registrations""," & _
"""DAV:href"" FROM scope('shallow traversal of " & chr(34) _
& strStudentsFolderPath & chr(34) & "') " & _
"WHERE ""DAV:ishidden"" = false" _
& " AND ""DAV:iScollection"" = false AND" _ &
""urn:schemas:contacts:emaill""" _
& "='" & strUserEmail &~'"

set oRS = Server.Cr~ateObject("ADODB.Recordset")
oRS.Open strOuery,Session("oConnection")

if oRS.RecordCount <> 0 then
'Actually has a student record
strRegistrations = oRS.~ieldS(strSchema & "registrations")

'on error resume next
if Not(IsNull(strRegistrations» then

arrRegistrations = Split(strRegistratiohs,",")
strSQL = "Select ""a & strSchema & "instructoremail"", " & _

"""urn:schemas:mailheader:subject""," _ &
"""DAV:href"",""urn:schemas:calendar:dtstart""," & _
"""urn:schemas:calendar:dtend"" " & _
"FROM scope('shallow traversal of ""a & _
strScheduleFolderPath & _
"""'I WHERE (h"DAV:iscollection"" = false) AND" & _
(""DAV:ishidden"" = false)"

set rst = Server.CreateObject("ADODB.Recordset")
With rst

'Open recordset based on the SQL string
.Open strSQL, SesSion("oConnection")

End With
(continued)

967

Part IV Exchange Server 2000 Development

968

y=-l
If Not(rst.BOF And rst.EOF) Then

rst.MoveFi.rst
Do Until rst. EOF

for i = LBound(arrRegistrations) to UBound(arrRegistrations)
'Print out the course
if UCASE(rst.fields("DAV:href").Value)

UCASE«strSchedul~FolderPath & _
arrRegistrations(i») then
'Found a course the user is registered for
'Add it to an array
y=y+l
Redim Preserve arrMyInstructorsIM(y)
arrMyInstructorsIM(y) = _

rst.Fields(strSchema & "instructoremail").Value
end if

next
rst.MoveNext

loop
rst.Close
set rst=Nothing

end if
end if

on error resume next
err.clear
!Check UBound
iThrowAway = UBound(arrMyInstructorsIM)
if err.number = 0 then

%>
on error resume next
dim arrMyInstructorsIM«%=UBound(arrMyInstructorsIM)%»

<%
for y=~Bound(arrMYInstructorsIM) to UBound(arrMyInstructorsIM)

response.write vblf & "arrMyInstructorsIM(" & y & ") = " & _
& arrMyInstructorsIM(y) & """a

next
else
%>

<%
end if
if err.number = 0 then

'Save the local array into the Session variable
Session("arrMyInstructorsIM") = arrMyInstructorsIM

Chapter 19 Putting It All Together

else
Session("arrMyInstructorsIM")

end if

end if
else

'Traverse the list of my instructors. and store them
'in local VBScript vars
arrMyInstructorsIM Session("arrMyInstructorsIM")

on error resume next
err.clear
'Check UBound
iThrowAway = UBound(arrMyInstructorsIM)
if err.number = 0 then

%>
dim arrMylnstructorsIM«%=UBound(arrMyInstructorsIM)%»

<%
for y=LBound(arrMyInstructorsIM) to UBound(arrMyInstructorsIM)

response.write vblf & "arrMyInstructorsIM(" & y & ") = """ & _
arrMyInstructorsIM(y) & """"

%>

next
else
%>

arrMyInstructorsIM
<%
end if

end if

SUB MSIMContactList_OnReady()
'Only display if available
if MSIMContactList.LoggedOn = True then

document.all .IMSection.style.display = ""
end if
settimeout "AddIMContacts".1000."vbscript"

end sub

SUB MSIMContactList_OnLogOn(BYVAL lResult. BYVAL bstrService)
document.all .IMSection.style.display = ""
settimeout "AddIMContacts";1000,"vbscript"

End SUB
(continued)

969

Part IV Exchange Server 2000 Development

970

SUB MSIMContactList_OnLogOff()
document.all.IMSection.style.display "none"

End SUB

SUB EvaluateCheckbox()
if document.all.myinstructors.checked = True then

AddMyIMContacts
else

AddIMContacts
end if

End Sub

SUB AddIMContacts()
'Adds all instructors
'Check to see if the user is logged on
if MSIMContactList.LoggedOn = True then

err.clear
'Clear the list
Randomize
lRandomNumber = Int«30000 * Rnd)+l)
MSIMContactList.List = CStr(lRandomNumber)
if IsArray(arrInstructorsIM) then

AddSelectedContact(arrInstructorsIM)
end if

end if
end sub

SUB AddMyIMContacts()
'Adds only my instructors
on error resume next
err.clear
if MSIMContactList.LoggedOn = True then

'Clear the list
Randomize
lRandomNumber = Int«30000 * Rnd)+l)
MSIMContactList.List = CStr(lRandomNumber)
if IsArray(arrMyInstructorsIM) then

AddSelectedContact(arrMyInstructorsIM)
end if

end if
end sub

sub AddSelectedContact(vUserAddress)
MSIMContactList.Add vUserAddress
if err.number <> 0 then

msgbox "Add Contact: An error occured: " + err.number + ". " +

Chapter 19 Putting It All Together

err.description
err.clear

end if
end sub

Adding Dynamic Menu Items
The other task the Training application performs is dynamically adding a menu item
to the context menu of the control. This menu item, as we saw, allows users to dis­
play instructor details as a menu option. The way to implement this functionality is
to leverage the OnMenuRequest and OnMenuSelect events.

The OnMenuRequest event is fired when a user requests a context menu from
the control. This event passes you a variable vSelected, which is the currently selected
user in the control for which the menu was requested. Using this variable, you can
decide whether you want the menu to appear. The instantiation of the menu is con­
trolled by the next variable pjDejaults, which you can set to False if you do not want
the menu to appear.

Inside of your event handler for the OnMenuRequest event, you can use the
AddMenultem function to add custom menu items. The AddMenultem function takes
a string that specifies the name of the menu for the new item. If you send an empty
string, the control creates a new divider. This function also takes a Long value, which
is the index of the location in the menu where you want the new item to appear. If
you do not specify this location, the new menu item appears at the bottom of the
menu list. Finally, this function will return to you a Long value that is a unique iden­
tifier for your menu item. You should retain this value so that you can use it with the
next event we're going to cover, OnMenuSelect.

The OnMenuSelect event fires when a user selects a menu item from a context
menu. This event passes you a vSelected variable, which is the user object of the
currently selected user. This method also passes you a Long value, ICmd, which
identifies which menu item was selected. If you saved the value returned from
AddMenultem, you can compare the identifier passed by OnMenuSelect with the
custom menu identifier you saved. If they match, you should perform the custom
action required by your application. In my case, I get the friendly name of the user.
I could have retrieved the e-mail address of the user if I had used the EmailAddress
property on the vSelected variable that is passed by the OnMenuSelect event. I then
launch a new instance of IE to an ASP page I created and pass the friendly name of
the selected contact to that ASP page. The ASP page finds and displays the details
for the selected contact. All the code for this scenario is shown here:

SUB MSIMContactList_OnMenuRequest(BYVAL vSelected. BYREF pfDefaults)
throwaway = MSIMContactList.AddMenuItem("")
DetailsCmd = MSIMContactList.AddMenuItem("View Instructor Details")

End Sub
(continued)

971

Part IV Exchange Server 2000 Development

972

Sub MSIMContactList_OnMenuSelect(BYVAL vSelected, BYVAL lCmd)
If lcmd = DetailsCmd then

on error resume next
err.clear
'Try to grab the friendly name; if an error, then
'not a valid selection
strFriendlyName = vSelected.FriendlyName
'Could also be strEmail = vSelected.EmailAddress
if err.number = 0 then

'Open a new window to show instructor details
window.open "iminstructordetail.asp?InstructorName=" &_

vSelected.FriendlyName,null, _
"location=false,menubar=false,toolbar=false"

end if

end if
End Sub

Index

Note: Page numbers in italics refer to figures or tables.

Special Characters and Numbers
& (ampersand), 102
* (asterisk), 496
A (caret), 823
. (dot operator), 134, 524
= (equal sign), .193, 522, 749
/ (forward slash), 736
> (greater-than sign), 749
< (less-than sign), 749
- (minus sign), 749
() (parentheses), 626
% (percent sign), 736, 823
I (pipe character), 778
; (semicolon), 59
[1 (square brackets), 823
_ (underscore), 823
0115 error, 524
401 Access Denied error, 206, 443

A
<A> tag, 516
AADL (Administrative Agent Distribution List).

See (Administrative Agent Distribution
List (AADL)

Abandon method, 195-96, 199
AbortChange element, 920
Abort method, 860
About dialog box, 116
absolute date queries, 749
Access (Microsoft). See Microsoft Access
Access-Category property, 653-54
access control entries (ACEs), 723-25, 729,

949-51, 955
access control lists (ACLs), 208, 715, 738
Account Contact form, 154
Account Contacts list box, 165-67, 166
Account Contacts view, 152, 153
Account Task form, 154--55, 155

Account Tasks tab, 160
Account Tracking application, 8-10, 9, 12-14,

53-57, 141
automating Excel with, 169-75
building, 151-83
CDO and, 149
connecting to the sales database with, 162-63
creating account contacts with, 165
creating actions for, 124--25
creating folders for, 49-50
displaying address books with, 163-64
enhancements to, 337-83
extension, 322-34
filtered replication and, 69-71
global variables and, 159
initialiZing, 160-62
MultiPage control for, 110
Outlook HTML Form Converter and, 220-21
OutlookToday page and, 179-83, 179
performing default contact actions with,

167-69
permissions, 56
public folders and, 61-63
refreshing the contact ListBox control with,

165-67
setting permissions for, 53-56, 55
setting up, 157-58.
techniques employed by, 158-78
template for, 322-34, 322
user settings, storing, 374-82

Account Tracking folder, 71, 152-57, 156,
182, 347, 355, 371

Account Tracking form, 153-56, 156, 160-62,
175-76,176

Account Tracking group, 353, 356-64
Account Tracking tab, 354, 364
AcctCrt component, 700-703
AcctCrt.dll, 657-58, 660

973

Index

ACE object, 724-25, 729
ACEs (access control entries). See access

control entries (ACEs)
ACEs collection, 724, 725
ACEs method, 724
ACL component

basic description of, 700
enhancing applications with, 700, 715, 723-27
used in the Project application, 723-27

ACL.dll, 717
ac1.inc, 726-27
ACLs (access control lists). See access control

lists (ACLs)
ACTION_BOUNCE value, 707
ACTION_COPY value, 707
ACTION_DEFER value, 707
ACTION_DELEGATE value, 707
ACTION_DELETE value, 707
Action field, 576
ACTION_FORWARD value, 707
ACTION_MARKREAD value, 707
ACTION_MOVE value, 707
Action object, 707-8, 707, 729-30
ACTION_OFREPLYvalue, 707
Action property, 606, 623, 707
ACTION_REPLY value, 707
actions. See also actions (listed by name)

creating, 124-28
custom script, 579-81,579-80
disabling, 128
intrinsic, 576-79
modifying, 128
performing default, 167-69

actions (listed by name). See also actions
AndSplit action, 576-78,577
AutoSet action, 580
Change action, 929
CheckTotal action, 580
Consolidate action, 580
Create Account Sales Charts action, 169
Create action, 928
CreateNote action, 580
Delete action, 60-61, 929
Enter action, 928
Exit action, 928
Expiry action, 929
FinalizeReport action, 580
Goto action, 576-78,578-79, 628
IsApprovalMsg action, 580

974

actions (listed by name), continued
ISApprovedTable action, 580
IsInvalidReceipt action, 580
IsNDR action, 581
IsOOF action, 581
IsPost action, 581
IsReceipt action, 581
IsTimeout action, 581
New action, 576, 578
NOP action, 581
OnCreate action, 928
OnEnter action, 928
OnExit action, 927, 928
OrSplit action, 576, 578-79,579, 590
PreProcessing action, 581
Receive action, 581, 929
Reply action, 125, 126-27
Reply All action, 128
Reply To All action, 125, 127
Reply To Folder action, 125, 127
Reply With action, 61-62
Return To Sender action, 60
Send action, 577,581
Tenninate action, 576, 577-79, 638
Wait action, 576, 577, 579, 603, 638

Actions page, 125, 128
Actions property, 708
Actions tab, 125
action tables, 924, 929-30, 932, 943
ACTION_TAG value, 707
ActionType property, 707
Activate event, 265
Activate method, 265
Activate subroutine, 330
Active Desktop, 187
Active Directory. See also Active Directory

Services Interface (ADSI)
ADSI and, 649, 687-95, 692
basic description of, 649
Browser, 696-97
CDO and, 846-47
Connector, 649
creating contacts in, 854
Digital Dashboards and, 420
instant messaging and, 958
querying information from, 692
Web Storage System and, 790

Active Directory Services Interface (ADS!), 26,
27,307. See also Active Directory

Active Directory and, 649, 687-95, 692
ADO and, 655,657, 664-65, 666
application, 656-87
ASP and, 649, 673, 687
COM components and, 699, 700, 703
creating a Recipients container with, 683-84
Digital Dashboards and, 414, 420
displaying objects in a Recipients container

with, 684-87, 687
Exchange Server 2000 and, 790, 794, 796,

854, 939, 958
Event Scripting Agent and, 529
getting help with, 696-98
interfaces, 650-52
logging on to, 658-59
object classes and, 652
object library, 648, 650-52, 698
programming using, 647-98
server schema and, 652-55
Site Server Membership and, 420
version 2.5, 698

ActiveConnection property, 417, 940
ActiveExplorer method, 344
ActiveExplorer property, 283
Active Messaging, 429-30, 443
Active property, 563, 566
Active Server Pages (ASP), 6, 42. See also

Active Server Pages (ASP) search
application; Outlook Web Access (OWA)

0115 error, 524
ADSIand, 649, 673, 687
basic description of, 191-204
CDO and, 32, 33-34, 429, 524, 839
COM components and, 701, 721
debugging and, 136
Digital Dashboards and, 390, 408, 423, 424
forms, 884-85
fundamentals, 192-93
Global.asa and, 193-96
improved support for, 209-10
instant messaging and, 964, 971
objects, building, 196-203
Outlook HTML Form Converter and, 211,

214, 222-23
routing objects and, 582, 583, 588-90
security and, 206-8, 751-52

Index

Active Server Pages (ASP), continued
server components and, 203-4
server-side include files and, 203
Training application and, 801
views and, 84

Active Server Pages (ASP) search application
building, 745-65, 746-47
detecting Site Server catalogs with, 773-75
expanding, using Outlook controls, 766-68,

766
hosting, as a folder home page, 765
hosting, in an Outlook form, 765-66, 765

ActiveSync technology, 41
ActiveWindow method, 260
ActiveX controls. See Microsoft ActiveX

controls
ActiveX Data Objects (ADO), 408-9, 413-19,

467-68, 732,742-45, 751, 759
action tables and, 932
ADSland, 655, 657,664-65, 666
ASP and, 203
basic description of, 413-19
best practices for using, 838-39
CDO and, 841
common tasks performed with, 826-36
copying folders with, 833
creating folders with, 826-29
creating items with, 829-32
deleting folders/items with, 832-33
Event Scripting Agent and, 529, 538
Exchange Server 2000 and, 795, 798-800,

816-39,912,932-33,939
Fields collection and, 834
handling errors in, 836
helpdesk application and, 467
object model, 742
recordset extensions, 743-45, 743
retrieving XML data with, 873-74
schemas and, 807
search folders and, 871
security and, 947
setting properties with, 811-12
Training application and, 795, 798, 800
transactions and, 836-37
Web Storage System and, 787, 788
workflow capabilities and, 932, 933, 939
working with recordsets using, 743-45,

743; 834-36

975

Index

Activities tab, 257-58
ActivityCount property, 604, 623
ActivityID field, 576
ActivityID property, 606, 623
Activity Tracking, 257-59
adCmdStoredProc statement, 417
adCreateCollection parameter, 826, 828
Addattachment method, 845-46
AddAuditEntry property, 940
Add Buttons method, 610
Add-In Manager, 532, 584
AddLogEntry method, 608
Add Members method, 242, 243
AddMenultem function, 971
AddMenultem method, 962
Add method, 249, 252-53, 255-58, 456-59, 475

ADSI and, 680
COM components and, 707, 710, 724, 725
CommandBar controls and, 372
Exchange Server 2000 and, 850, 962
Event Scripting Agent and, 563, 556
instant messaging and, 962
Permissions control and, 295
property pages and, 376

AddNew method, 418
Add/Remove Programs, 93
AddressBook method, 149,350
address books, 149,350. See also addresses

displaying, 163--64, 164
saving folder addresses to, 52

AddressEntries collection, 139, 455, 522
AddressEntryFilter object, 521, 522
AddressEntry property, 454, 456, 525
AddressEntry object, 139,453--56, 455, 522,

549, 552, 724
addresses. See also address books

fields for, 96, 126-127
resolving, 846-47, 849

AddressList object, 139
AddressLists collection, 139, 432
AddStore method, 263
AddtoFavorites method, 350
Add Users dialog box, 54
admin.exe, 653
admin.htm, 279
Administrator accounts, 913
Administration Extension

architecture of, 300
basic description of, 299-314
installing, 300--301, 301

976

Administration tab, 51-52, 57, 62, 507
Administrative Agent Distribution List (AADL),

300
adMoveOverWrite option, 833
ADO (ActiveX Data Objects). See ActiveX

Data Objects (ADO)
Adobe PDF filter, 733
Adobe Web site, 733
Ad Rotator component, 204
ADSI (Active Directory Services Interface). See

Active Directory Services Interface (ADSI)
AdsPath parameter, 656, 659
AdsPath property, 651
adsvw.exe, 696, 698
Advanced Properties window, 117
Advanced Options button, 91, 225
Advanced Search page, 803
Advanced tab, 70, 81
adWChar value, 834
Agent Install application, 558--67

agent enhancements for, 613--19, 613
grid control, 620
main interface for, 558
New Agent dialog box, 558, 559
process instance enhancements for, 613,

635-41, 635
routing objects and, 572,576, 586-87,586,

601,612-46, 620
updated, 612-46, 613
user interface enhancements for, 613, 641-46
viewing routing maps in, 620--23

Agent log, 602-3
agents

accessing, 560--61
accessing scripts contained in, 561--62
disabling/deleting, 566
hosts for, 566--67
log files for, 540
programmatically binding, 556-57
writing, 534-38, 534

Agents.hlp, 601
Agents tab, 532, 534, 556
alert boxes, 477
aliasing, 825-26, 869
alignment, of controls on forms, 227
All Files option, 439
AllowCollapse property, 960
Allow Enumeration property, 739

All Users With Access Permissions option, 52
AlreadyPrinted variable, 491
Always use Microsoft Word As the E-Mail

Editor property, 116
AmbiguousNames property, 847
Amprops.inc, 490
AndSplit action, 576-78, 577
angle brackets «», 98
anonymous access, 435-46, 462, 507-10,

524-25
AnswerWizard property, 260
APIs (Application Program Interfaces). See

Application Program Interfaces (APIs)
Append method, 834
applets, 191. See also Java
Application Event Log, 541
Application log, 585, 587
Application object, 139, 143-44, 196-98, 344,

376, 347
Account Tracking application and, 167
basic description of, 260-62
CreateItem method and, 252
enhancements to, 260-62
Intranet News application and, 508
Outlook View control and, 292
View property and,282

Application_OnStart subroutine, 194-95, 485,
443

Application parameter 233
Application Program Interfaces (APIs), 129,

43,650
)J)SIand, 648, 649
Directory API (DAPI), 649, 794
security and, 947

Application variable, 509
Apply button, 381
Apply method, 380, 381
AppointmentItem object, 139,457,475-76,

489, 491, 500
appointments. See also AppointmentItem

object
creating, 848
forms for, 89, 91

Approved state, 924
A'l? property, 707, 729
arrBGColors array, 471, 474
.asa file extension, 193

Index

ASP (Active Server Pages). See Active Server
Pages (ASP)

ASPError object, 210
AsSign Permissions page, 719, 720
asterisk (*), 496
Async parameter, 858
At property, 564
Attach Link To Original Message option, 126
AttachmentAdd event, 269
Attachment object, 269
AttachmentRead event, 269
attachments

adding, 845-46
Intranet News application and, 513-16, 514
Message field and, 97-99
rendering, 503-4

Attachments collection, 503-4, 515
Attach Original Message option, 126
Attribute element, 880
attributes

)J)SI and, 675-77, 677
creating paths to, 656
custom, 24-25, 25, 675-77,677
security descriptors and, 702

attributescsv argument, 666
AUTH_TYPE variable, 443
authentication. See also logon

basic, 207, 208, 210, 524
CDO and, 443-44
Challenge/Response, 204, 207-8, 524, 751
digest, 210
Outlook Web Access and, 204, 207-8

Author permissions, 542, 584
Author property, 62, 66, 67
Automatically Generate Microsoft Exchange

Views option, 51, 84
Automatic Formatting button, 82
automation

Account Tracking application and, 169-75
of documents, 146-48

autonotification, 719-20
AutoNotify rule, 729
autopreview feature, 284, 769-70, 770
AutoPreview view, 284
AutoSet action, 580
AutoSize property, 106, 111, 228
Availability Checker application, 382-83, 383
AVG statement, 826

977

Index

B
Back button, 324-25, 330-31, 364
Backeolor property, 102, 113
background

colors, 102-3, 113, 471
images, converting, to HTML, 213

BackStyle property, 113
backup copies, of applications, 48
base argument, 666
baseschema property, 815
basic authentication, 207, 208, 210, 524. See

also authentication
Bee property, 846
BeforeAttachmentSave event, 270
BeforeCheckNames event, 270
BeforeFolderSwitch event, 265--66, 371
BeforeGroupAdd event, 250
BeforeGroupRemove event, 250
BeforeGroupSwitchevent, 247
BeforeNavigate event, 247-48
BeforeShortcutAdd event, 253
BeforeShortcutRemove event, 253, 254
BeforeViewSwitch event, 263, 266
BeginTrans method, 817
binding

AJ)SIand, 659, 687
agents, 556-57
basic description of, 186
controls, 103, 105, 106, 113
data types and, 135
early/late, 135, 520, 523
forms and, 92, 211
LDAP and, 687, 696
Outlook HTML Form Converter and, 211
Outlook Today and, 186-187, 191
URLs and, 816-18
variables, 135

Bindings collection, 565, 566
Bindings property, 560, 561
bitmap (bmp) files, 111
Bitmask condition, 706, 713-15
bitmasks, 706, 713-15, 726
BlockSelected method, 962
BOF property, 415, 835
Boolean data type, 261, 415, 417

BOF property and, 835
content classes and, 811
Exchange Server 2000 and, 822, 835, 858
Project application and, 726
routing objects and, 590, 603

978

Boolean data type, continued
Site Server and, 744
XML and, 858

BorderColor property, 114
borders, for controls, 114
BorderStyle property, 114
BoundFolder object, 567
BoundFolder property, 560
branching, parallel, 577
breakpoints, setting, 137
Browse button, 568
Browser Capability component, 204
browsers, 4, 189-91, 194-95. See also

Microsoft Internet Explorer browser; Web
browser control

ASP and, 194
Calendar of Events application and, 503
CDO and, 464
document libraries and, 8
Intranet News application and, 506
Netscape Navigator, 211
security and, 207
Web Storage System and, 789

bstrProfllelnfo variable, 448
btn_Next subroutine, 330-31
bullets, images of, 780
buttons. See also buttons (listed by name)

Account Tracking application and, 368-74
adding, 368-74
assigning captions to, 102
custom, 368-74

buttons (listed by name). See also buttons
Advanced Options button, 91, 225
Apply button, 381
Automatic Formatting button, 82
Back button, 324-25, 330-31, 364
Browse button, 568
Cancel button, 324-25, 327-28
Client Permissions button, 584
Custom Forms button, 225-26
Delete All Rows button, 587
Delete Column button, 587
Edit button, 68
Edit Script button, 535
Field button, 66--68, 70
Filter button, 70, 80, 81
Function button, 68
Help button, 279-80

buttons (listed by name), continued
Manage button, 53

c

Maximize button, 396
Minimize button, 396
Moderated Folder button, 52, 57
New button, 63
Next button, 324-25, 330-31
Now button, 458
Post Now button, 456
Save As button, 641
Save button, 630
Select Script button, 587, 623-26
Template button, 62
View Default Map button, 587, 641
View Script button, 559

C programming, 230, 429, 703, 715
C++ programming, 230, 241, 429, 703, 715
CAB files, 213
caches, 91, 423, 650-51
calculated fields, 214
Calendar folder, 279-80, 290, 457, 482-83
calendaring tasks, 847-53. See also Calendar

of Events application
CalendarMessage object, 849
Calendar of Events application, 467, 472

basic description of, 479-504
Details page, 499-504, 499
monthly view, 479-80, 480
Rendering library and, 481, 489-93, 501,

514-15
setting up, 480-83
views, displaying, 488--99, 494, 498

CalendarView object, 494, 495, 497-99
call stacks, tracing, 137-38
Can Register Workflow role, 926
Cancel button, 324-25, 327-28
Cancel parameter, 247-48, 250, 253-54, 266,

270
Cancel property, 417
CanRegisterWorkflow role, 946
Caption property, 102, 263, 372, 381
captions, assigning, to controls, 102
card views, 71
caret (A), 823
case-sensitivity, 810
CAST clause, 822

Catalog property, 740
CatalogSeqNums property, 744
Categories field, 491
Categories filter, 81
Categories method, 352
Categories property, 512
Category field, 745
Category property, 115
Category view, 63
CC property, 846
CDO (Collaboration Data Objects). See

Collaboration Data Objects (CDO)
CdoClassContainerRenderer value, 462
CdoClassObjectRenderer value, 462
CdoFolderContents value, 464
CdoHigh value, 458
CDOHTML.dll, 430
CDOltem property, 724
CdoLow value, 458
CdoMeetingCanceled value, 476
CdoNonMeeting value, 476

Index

CdoNormal value, 458
CdoPR_MESSAGE1LAGS property, 713-14
CDOWF (CDO for Workflow), 924-25, 924,

932
CellPattern property, 497
Certificate Server, 35
Certificate Trust Lists,35
Challenge/Response authentication, 204,

207-8, 524, 751. See also authentication
Change action, 929
Change Large Icon property, 116
ChangeOwnerofSecDescriptor method, 700,

703
Change Small Icon property, 116
Chart component, 408--9
charts, 155, 156, 169-75, 408--9
CheckBox controls

assigning captions to, 102
basic description of, 108
converting, to HTML, 213
creating, 95, 102

checkExpand function, 473
CheckforValidMap function, 634
CheckName method, 846
CheckTotal action, 580
Choose Content Class dialog box, 889-90,

890
Choose element, 880

979

Index

Choose Form dialog box, 116, 119, 125
Choose Profile dialog box, 215, 482
classes

abstract, 652
content, 808-12, 812-14
for forms, 90-91
names of, 652
object, 652

class parameter, 459
Class property, 651
Click event, 145
Client Permissions button, 584
Client Permissions dialog box, 531-32, 532
clients

available choices of, 41-42
choosing, factors to consider when, 42-43
collaborative systems and, 4
server-to-client, replication, 22

Close event, 234, 267
cmdAddAccountContact subroutine, 165
cmdAddAgenCClick subroutine, 616-17
cmdAddTasks subroutine, 165
cmdCreateSalesChart subroutine, 169-75
cmdPrintAccountSummary subroutine, 169-75
cmdRefreshContactsList subroutine, 165
cmdSaveChanges_Click subroutine, 634
cn property, 663
CodeBase property, 281, 300-301, 758
CodePage property, 198
coercion, 895-97
Collaboration Data Objects (CDO), 32-34, 51,

148-49
Account Tracking application and, 163-64
ADSland, 647-48, 649, 657
ASP and, 192, 202-3
basic description of, 429-525
calendaring tasks, 847-53
COM components and, 700, 704-5, 707, 716
contact tasks, 853-55
design goals, 839-44
determining which views are contained in

folders with, 284-88
Digital Dashboards and, 421-22, 424, 425
Event Scripting Agent and, 529, 537
for Exchange Management (EMO), 791-92
Exchange Server 2000 and, 794, 839-56
Expense Report application and, 556
folder home pages and, 346, 339
folder tasks, 855-56
frequently used objects in, 840-44

980

Collaboration Data Objects (CDO), continued
messaging tasks, 844-47
object library, 431-33, 438, 472, 478-79,

506,600
object model, 840
objects, creating, 163
Outlook HTML Form Converter and, 211
Outlook Permissions control and, 295
Outlook Web Access and, 204-9
routing objects and, 583-584, 600-603, 605,

610-12, 622, 634
sessions, 483-85
Site Server and, 766, 777, 778
tips/pitfalls, 522-25
Visual Basic application, 517-22, 517
for Windows 2000, 840
for Workflow (CDOWF), 924-25, 924, 932

collaborative systems
broader definition of, 3-14
building blocks for, 47-48
examples of, 7-14
introduction to, 3-43
knowledge management applications and,

13-14
real-time applications and, 12-14
tools for building, 4-5
tracking applications and, 8-10
workflow applications and, 10-12

Collabra Share, 41
collections

accessing specific items in, 142
ACEs collection, 724, 725
AddressEntries collection, 139, 455, 522
AddressLists collection, 139, 432
Attachments collection, 503-4, 515
Bindings collection, 565, 566
COMAddins collection, 238-39, 260-61
CommandBars collection, 283, 371
Contents collection, 196-97
Controls collection, 139
Exceptions collection, 850
Explorers collection, 255-56
Fields collection, 415, 452-59, 520, 556,

834, 873
Folders collection, 139, 267-68, 450
Form collection, 199
HiddenMessages collection, 616, 704
InfoStores collection, 432-33, 448-50, 449
Inspectors collection, 256-257

collections, continued
ItemAuthors collection, 942
ItemReaders collection, 942
Items collection, 139, 268, 344, 364, 366
Links collection, 257-59
Messages collection, 456, 475, 478, 489-91,

510
Pages collection, 139, 246-47
Patterns collection, 496
PropertyPages collection, 260, 376
QueryString collection, 199, 201
Recipients collection, 139, 454, 476
Rules collection, 708
Selection collection, 374
ServerVariables collection, 199-200
StaticObjects collection, 196-97
SynchObjects collection, 244-46
UserProperties collection, 139, 344
Views collection, 282, 495

color
for controls, 102-3
helpdesk application and, 474

Column object, 464
columns

adding new, 75-76
deleting, 76
formatting, 76-77
names of, aliasing, 825-26
in views, 75-77

Columns property, 740
COM (Component Object Model). See

Component Object Model (COM)
COMAddins collection, 238-39, 260-61
COM Add-Ins dialog box, 232-35, 233
COMAddlns property, 260-61
combination fields, 64-67, 66, 67
ComboBox control, lOB, 212
CommandBar object, 167
CommandBarPopup object, 372
command bars

adding, 368-74
creating, 357
custom, 368-74

CommandBars collection, 283, 371
CommandBars property, 283
CommandButton controls

actions and, 127
assigning captions to, 102
basic description of, 109

CommandButton controls, continued
converting, to HTML, 213
images on, 228
variables and, 132-33

Command object, 417
Commands. asp, 223
Commands tab, 72
CommandText property, 417
CommandTimeOut property, 417
CommandType property, 417
Comment condition, 706
CommitTrans method, 817
CompareIDs method, 724
CompareProps condition, 706
Complete field, 413
COMPLE7ED value, 859

Index

Component Object Model (COM), 27, 229-41.
See also Distributed Component Object
Model (DCOM)

Account Tracking application and, 337,
357-82

add-ins, compiling, 353-54
ADSI and, 648, 649, 660
advantages of, 272
debugging and, 237-38
deciqing when to write, 230-31
Digital Dashboards and, 387, 392-93, 424
enhancing appliclltions with, 699-730
Event Scripting Agent and, 39
implementing, 357-83
objects, instantiating, 538
Registry settings for, 235-237
routing objects and, 572, 580
searching for specific content with, 71 0-12
Site Server and, 764, 765, 768-81, 769, 779
specifying logical conditions with, 708-10
testing, 354-57
trusting, 237

Component Object Model + (COM+), 567-68,
796

applications, creating, 921
Exchange Server 2000 and, 901, 921-22,

925, 926, 946
events and, 946
Services Type Library, 921
workflow process and, 925, 926

components (listed by name)
AcctCrt component, 700-703
Ad Rotator component, 204

981

Index

components (listed by name), continued
Browser Capability component, 204
Chart component, 409
Content Linking component, 204
Content Rotator component, 204
Conversion wizard component, 211
Data Source component, 408
File Access component, 204
Page Counter component, 204
Permission Checker component, 204
PivotTable component, 389, 408-9
Rules component, 703-15, 723--30
Spreadsheet component, 408-9
XMLHTIP component, 857-61

compose mode, 159-60
ComposeMode variable, 160
conditional formatting, 82-83
Condition method, 708
Condition property, 707
conditions, specifying multiple, 59-60
ConfigParameter method, 508, 510
ConfigParameter property, 462
Configuration container, 685
Configuration object, 840-41
conflict management, 21
Conflict Message dialog box, 38, 39
Connection object, 413--19, 432, 467-68, 795

ADSI and, 665
Exchange Server 2000 and, 817, 836
transactions and, 836

connectivity tools, 40-41
Connect Mode parameter 233
Connect property, 234
Consolidate action, 580
ConsolidateResponse method, 610
constants. See also constants (listed by name)

Account Tracking application and, 371
COM add-ins and, 233--34
in VBScript, 135

constants Oisted by name). See also constants
MSDailyAgent constant, 563
MSHourlyAgent constant, 563
msoButtonkonAndCaption co~stant, 372
msoControlButton constant, 371
MSWeeklyAgent constant, 563
STRFOLDERHOMEPAGEPATH constant, 353

982

Contact folder, 403
Contact forms, 88-91, 89. See also contacts

Account Tracking application and, 151-52,
154

customizing the first page of, avoiding, 228
events and, 144

ContactItem object, 139, 141
Contact nugget, 403--4
Contact property, 116
contacts. See also Contact forms

creating, 853--54
saving, 854-55
tasks for, 853--55

Contacts folder, 257
Contacts.htm, 338, 339, 340-45
Contact View control, 958-64, 960-63
container class, 652
ContainerRenderer object, 464-66, 495, 497,

500
containers, grouping controls with, 109
CONTAINS predicate, 824, 893, 894-95
ContentCondition object, 710-12
content indexing, 893--99
Content Linking component, 204
Content Rotator component, 204
Contents collection, 196-97
Contents property, 247
Contents tab, 453
<Content> tag, 396
Control object, 139
Control Panel, 438, 530, 531
controls. See also specific controls

accessing, from the Control Toolbox,
100-101

adding, to forms, 95-100
advanced properties for, 113-14
assigning captions to, 102
binding, 103, 105, 106, 113
built-in, 105-13
color settings for, 113
creating a list of values for, 107
custom, 112-13
display settings for, 103
grouping, 109
layering, on forms, 114-15
properties for, 100, 106
renaming, 101-2

controls, continued
setting font and color for, 102-3
setting initial values for, 104
tab order for, 114
third-party, 112-13
using, 100-115

Controls collection, 139
ControlTipText property, 114
Control Toolbox, 100-101, 113
conversation fields, 84-85
conversation indexes, 84-85
ConversationIndex property, 459-60
Conversation Topic property, 459
Conversion wizard component, 211
CONVERT statement, 826
cookies, 194, 199, 421
COPY command, 862
copying

databases, 157-58
folders, 833, 862
items, 833, 862

CopyRecord method, 833
CopyTo method, 605, 606
Count field, 413
Count method, 942
Count property, 255, 515, 560, 566, 610, 724

Panes collection and, 347
SyncObject object and, 244
workflow capabilities and, 942

COUNT statement, 826
Create Account Sales Charts action, 169
Create action, 928
createcal.asp, 474-75
CreateFolder subroutine, 828
CREATE INDEX command, 811
CREATE INDEX predicate, 825-26
CreateItem method, 167, 242
Create Items permission, 440, 450, 451
CreateIterns property, 726
CreateMHTMLBody method, 845
Create New Account Contact command, 165
Create New Folder dialog box, 49
Create New Project Wizard, 717-19, 719
CreateNote action, 580
CreateObject function, 142, 560
CreateObject method, 149, 163, 202-3, 288,

460, 704, 706
CreateOptions parameter, 828, 829

Create Parameter property, 417
CreateRecordSetmethod, 741, 742, 759
CreateRenderer method, 462, 494, 500
CreateRequest method, 849
Create Sales Chart control, 169
Create Sales Chart link, 155, 156
CREATE VIEW statement, 826
criteria property, 905-6
CStr function, 134, 472
CTICodeBase Registry key, 322
CUR files, 111
currency fields, 64
CurrentGroup property, 247
CurrentlyNotified function, 310-11
Current Row property, 602, 639
CurrentStep parameter, 3~6
Current View control, 282
Current View option, 77, 78
CurrentView property, 263-64, 464
cursor types, 835
Custom Attributes tab, 677
Custom Forms button, 225-26
CustomizeView method, 352
Custom parameter, 233, 234, 235
CustomShell function, 240

D

Index

DACL (Discretionary Access Control List). See
Discretionary Access Control List (DACL)

dailyvjew.asp, 499
DAPI (Directory API). See Directory API

(DAPI)
Data Access Objects (DAO), 155, 162-63, 339
databases

collaborative systems and, 3, 4
copying, 157-58
core features of, 18-23
engines for, reliable, 24
knowledge management applications and,

14
replication and, 21-22
retrieving information from, 162-63
schema flexibility and, 23
storage capacity of, 18-19, 19

Databinding control, 191, 388, 393, 408,
410-13, 410, 424-25

Data element, 920
DATAFLDelement, 412

983

Index

Data Source component, 408
Datasource interface, 848
DataSource object, 840-44
DataSource property, 462, 500
DATASOURCE statement, 826
data types. See also data types (listed by name)

binding and, 135
content classes and, 811
in VBScript, 134

data types Oisted by name). See also Boolean
data type; data types

Date data type, 475, 822
DateTime data type, 811
Float data type, 811
Long data type, 233-34, 245, 255, 326, 464
MAPIFolder data type, 254
String data type, 320, 811
Variant data type, 134, 135, 234
Yes/No data type, 95, 108

dataurl parameter, 885, 886
Date data type, 475, 822. See also date values
DateDifj function, 552
Date property, 611
DateTime data type, 811
Date/Time Fields dialog box, 74
date values, 64, 74, 749, 776-77. See also Date

data type
Days property, 564
DCOM (Distributed Component Object

Model). See Distributed Component
Object Model (DCOM)

Deactivate event, 266
debugging, 196-97, 538. See also errors

ADSI and, 689
COM add-ins, 237-38, 237
event handlers, 922-23
JIT (just-in-time), 942
Outlook HTML Form Converter and, 217
routing objects and, 638
Site Server and, 771
time zones and, 852
workflow solutions, 942, 944

Debugging tab, 237
deep traversals, 819
defaultl.asp, 453, 454
default. asp, 452
default.htrn, 279, 280
default property, 811
DefaultTargetFolder Registry key, 322

984

DefaultTargetURL Registry key, 322
DeferUpdate parameter, 282
Deferupdate property, 289
DefineColumn method, 742
Define Views dt<tlog box, 72, 83, 439
Delete <tction, 60--61, 929
DeleteActivity method, 605
Delete All Rows button, 587
Delere Column button, 587
DELETE command, 863
DeleteMap method, 605
Delete method, 419, 565-66, 476, 724, 726

routing objects and, 618-19
workflow capabilities and, 942

DeleteReceivedMessage property, 940
DeleteRecord method, 832
DELETE statement, 826
DeleteWorkflowltem property, 940
deleting

accounts, 701
actions, 128
folder permissions, 726
folders, 832-33, 863
itep1s, 832-33, 863
messages, 60--61
process instances, 635-36

delivery receipts, 16-17, 17
deployment

of Digital Dashboards, 422-23
of extensions, 335
of templates, 321-22

Description parameter, 245
Description property, 116, 653-54, 750, 769,

836
Description Registry key, 321
Design Form dialog box, 93
Design-Time Control (DTC), 890-93, 891~93
Destination parameter, 833
details.asp, 499-504, 513
Details method, 522
details page, 522
dialog boxes

About dialog box, 116
Add Users dialog box, 54
Choose Content Class dialog box, 889-90,

890
Choose Form dialog box, 116, 119, 125
Choose Profile dialog box, 215, 482

dialog boxes, continued
Client Permissions dialog box, 531-32, 532
COM Add-Ins dialog box, 232-35, 233
Conflict Message dialog box, 38, 39
Create New Folder dialog box, 49
Date/Time Fields dialog box, 74
Define Views dialog box, 72, 83, 439
Design Form dialog box, 93
Edit Rule dialog box, 61, 62
Event Detail dialog box, 541
Filter dialog box, 70
Folder Assistant dialog box, 62
Form Action Properties dialog box, 128
Form Properties dialog box, 439
Forms Manager dialog box, 53, 439
Insert Event Handler dialog box, 131
Moderated Folder dialog box, 57,58
New Agent dialog box, 534-35,534,558
Open dialog box, 439
Open Outlook Template dialog box, 215, 216
Open Other User's Folder dialog box, 483
Options dialog box, 354, 364
Other Settings dialog box, 81-82
Procedure ID dialog box, 381,382
Project Properties dialog box, 237-38, 237
Project/References dialog box, 231, 232
References dialog box, 148, 353
Scheduled Event dialog box, 535, 559
Select Script dialog box, 623-24, 624
Show Fields dialog box, 352
Sort dialog box, 79-80, 80
Tab Order dialog box, 114
View Process Instances dialog box, 637-38,

637
Web Services dialog box, 225-26

Digest authentication, 210. See also authentication
Digital Dashboards

architecture, 394-408
basic description of, 385-425
building, 392-408
building nuggets into, 394-97
deploying, 422-23
offline capabilities of, 386
reasons for hosting, 386-87
starter kit, 387,.390-93
storing custom information for, 41~22

digital signatures, 3
Dim statement, 131-32
Directory API (DAPI), 649, 794

Index

Dirty property, 380-81
DirVRL property, 846
Discretionary Access Control List (DACL), 949
Discussion Forum template, 273
Display method, 255-57
DisplayMsg method, 758
DistListItem object, 242
Distributed Component Object Model

(DCOM), 397, 538. See also Component
Object Model (COM)

events and, 901
Site Server and, 771-73, 772, 777-78

distribution lists, 307, 582-83, 583
adding/removing items from, 242-43,

680-81
counting the number of users in, 243-44
creating, 678-80
displaying users in, 682-83
names of, retrieving, 243
removing members from, 243
searching for, with the LDP tool, 697

<DIY> tag, 394-99, 397, 403, 412, 473
DLLs (dynamic link libraries). See dynamic

link libraries (DLLs)
DIName property, 243
Doc Address property, 750
Doc Title property, 750
Document Library application, 66, 273

conditional formatting for, 82-83, 83
folders for, 4~57, 61-63
setting permissions for, 53-56
views and, 73-81, 75, 78

Domain Administrators group, 913
Domain argument, 701
domain controllers, 692
Domain property, 940
Do Not Include Original Message option, 126
Do Not Process Subsequent Rules condition, 60
dot (.) operator, 134,524
Drag/Drop Posting option, 51
DTC (Design-Time Control). See Design-Time

Control (DTC)
dtCurrentDay variable, 472
duration fields, 64
DWORD values, 236, 237, 322, 533, 543, 585
Dynamic HTML (DHTML)

ADSland, 656, 667
CDO and, 437, 466-68, 466

985

Index

Dynamic HTML (DHTML), continued
Digital Dashboards and, 394
Outlook Team Folders Wizard and, 279
Outlook Today and, 187
version of a help ticket, 466-67, 466

dynamic link libraries (DLLs)
AJ)SIand, 657-58, 660
CDO and, 430

E

COM and, 716, 717
creating, 324-28, 335
Digital Dashboards and, 423
events and, 914
installing, as COM+ applications, 921
Outlook Today and, 187

early binding, 135, 520, 523
Edit button, 68
Edit Compose Page option, 95
Edit Read Page option, 95
Edit Rule dialog box, 61, 62
Edit Script button, 535
element property, 813
elements. See also tags

AbortChange element, 920
Attribute element, 880
Choose element, 880
Data element, 920
DATAFLD element, 412
Eval element, 880--81
EventBinding element, 920
EventConnection element, 920
EventRecord element, 920
For-Each element, 881
If element, 879-80
Otherwise element, 880
Script element, 880--81
SourceURL element, 920
StoreGUID element, 920
UserGUID element, 920
UserSID element, 920
Value-of element, 879, 880
When element, 880

EmailAddress property, 971
EmailSelected method, 962
EmbedMsg method, 612
Enabled property, 103, 905, 906
Enable Offline Access option, 56

986

encryption. See also security
collaborative systems and, 3
HTTPS and, 98
Outlook Web Access and, 35, 207-8

EndTime property, 476, 564
Enter action, 928
EntryID property, 561, 565
EOF property, 415, 835
equal sign (=), 193, 522, 749
EQUALTO operator, 707
Err object, 135-36
ErrorDescription property, 940
Error Number property, 940
errors. See also debugging

0115 error, 524
401 Access Denied error, 206, 443
Account Tracking application and, 363
AJ)O and, 836
Agent Install application and, 565
ASP and, 202, 206-7
checking the Application log for, 587
CDO and, 524-25
Event Scripting Agent and, 539-41,539
handling, 135-36, 363, 836
helpdesk application and, 441
logging, 539-41, 539, 540
Outlook HTML Form Converter and, 212
routing objects and, 587, 634
trapping, 539-41, 539
variables and, 132, 133
VBScriptand, 132-33, 135-36

Esconf.dll, 556-57
Eval element, 880--81
EventBinding element, 920
EventConfi~servemame folder, 531
EventConnection element, 920
Event Detail dialog box, 541
EventDetails object, 601-2, 602
EventDetails.FolderID variable, 537
EventDetails.MessageID variable, 537-38, 552
EventDetails.Session object, 537
event iogs, 34
EventMask property, 563
EventMetbod property, 905, 906
EventRecord element, 920
events. See also events (listed by name);

Microsoft Exchange Event Scripting
Agent; Exchange Event Service

Account Tracking application and, 155
asynchronous, 904

events, continued
basic description of, 144-46
database-wide, 912-13
disabling, 144-45
Exchange Server 2000 and, 900-923
firing order of, 900-901
handlers for, 144,904-25,922-23,925
notifying users of changes with, 364-68
registration items for, 908-12
registration properties for, 905-8, 905
scripts for, creating, 932-42
supported, 901-4
synchronous, 901~3
system, 904
Web Storage System and, 789-90

events (listed by name), See also events
Activate event, 265
AttachmentAdd event, 269
AttachmentRead event, 269
BeforeAttachmentSave event, 270
BeforeCheckNames event, 270
BeforeFolderSwitch event, 265-66, 371
BeforeGroupAdd event, 250
BeforeGroupRemove event, 250
BeforeGroupSwitch event, 247
BeforeNavigate event, 247-48
BeforeShortcutAdd event, 253
BeforeShortcutRemove event, 253, 254
BeforeViewSwitch event, 263, 266
Click event, 145
Close event, 234, 267
Deactivate event, 266
FolderAdd event, 267-68
FolderChange event, 267-68
FolderSwitch event, 266
GroupAdd event, 250-51
InitProperties event, 380
ItemAdd event, 268, 364-65, 368
ItemChange event, 366-68
Item_Close event, 145, 155, 175-78
Item_CustomAction event, 145, 169
Item_CustomPropertyChange event, 145
Item_Forward event, 145
Item_Open event, 145, 155, 160-72, 230
Item_PropertyChange event, 145
Item_Read event, 145, 159-60
ItemRemove event, 268
Item_ReplyAll event, 145
ItemSend event, 145, 261-62

Index

events (listed by name), continued
Item_Write event, 145
NewExplorer event, 256
NewMail event, 262
oCreateAccountBHandlecClick event, 374
oCreateAcctContactBHandlec Click event,

374
oCreateAcctTaskBHandlecClick event, 374
OnAddContactUI event, 963
OnAddInsUpdate event, 232, 234-35
OnAddResult event, 963
OnBeginShutdown event, 232, 234
OnChange event, 924, 929, 928
OnConnection event, 232-33, 357
OnCreate event, 924, 927
OnDe1ete event, 904, 906, 929
OnDisconnection event, 232, 233-34
OnEmailContact event, 963
OnEnter event, 924, 927
OnError event, 244, 245
OnExpiry event, 924, 929
OnExtentsChange event, 963
OnLocalStateChange event, 963
OnLogoff event, 963
OnLogon event, 963
OnMDBShutdown event, 904
OnMDBStartup event, 904
OnMenuRequest event, 963, 971
OnMenuSe1ect event, 963, 971
OnMessageCreated event, 40
OnMessageDeleted event, 40
OnNewIMSession event, 963
OnReady event, 964
OnRemoveResult event, 964
OnSave event, 904, 906, 914
OnSelect event, 964
OnShutdown event, 964
OnStartupComplete event, 232, 234, 357, 358
OnSyncDe1ete event, 903, 944
OnSyncSave event, 902-3, 906, 944
OnTimer event, 40, 904, 906, 914, 918, 925,

944
OptionsPagesAdd event, 262, 263, 376
Progress event, 244, 245
Quit event, 262
Reminder event, 262
Se1ectionChange event, 266
Session_OnEnd event, 195-96
Session_OnStart event, 194-95

987

Index

events (listed by name), continued
ShortCutAd event, 253, 254
Startup event, 262
SyncEnd event, 244, 245
SyncStart event, 244, 245
ViewSwitch event, 263, 266
Workflow event, 946
Write event, 144

Events.asp, 488, 489
Event Scripting Agent. See Microsoft Exchange

Event Scripting Agent
events.exe, 527-28
Events object, 560
Events Root system folder, 531
eventwsform.asp, 885
EVCCOPY flag, 919
EVCERROR flag, 919
EVf_HARDDELETE flag, 919
EVf_INI1NEW flag, 919
EVf_INVALID_SOURCE_URL flag, 919
EVf_INVALID_URL flag, 919
EVf_IS_COLLECTION flag, 919
EVf_IS_DELIVERED flag, 919
EVf_MOVE flag, 919
EVf_NEW _ITEM flag, 919
EVf_REPLICATED_ITEM flag, 919
EVf_SOFTDELETE flag, 919
EVf_SYNC_ABORTED flag, 919
EVf_SYNCBEGIN flag, 919
EVf_SYNC_COMMITTED flag, 919
ExBook.pst, 157
Excel (Microsoft). See Microsoft Excel
Exception object, 850
exceptions, creating, 850
Exceptions collection, 850
Exchange Administrator, 96, 655-87, 913

ADSIand, 655-56, 687
anonymous logon and, 507
CDO and, 435, 507
Event Scripting Agent and, 530, 531, 543
Expense Report application and, 543
Heuristics property and, 655
LDAP queries and, 687

Exchange Client Extensions, 230
Exchange Event Service

architecture of, 527-29, 528
COM components used with, 538

988

Exchange Event Service, continued
Configuration library, 556-57, 557, 560,

566-67
event types supported by, 536
intrinsic objects passed to scripts by,

537-38
setting up, 530-32

Exchange Information Store, 529-30
Exchange Routing Wizard, 558, 585-88, 588
Exchange Server directory (Microsoft). See

Microsoft Exchange Server directory
Exchange System Manager (Microsoft). See

Microsoft Exchange System Manager
Exchnews folder, 506-7, 510-13
Exchserv.chm, 601, 730
Execute method, 167,417-19
Execute permissions, 481, 506, 542, 584, 657,

716
Execute property, 417
executeurl parameter, 888
Exists condition, 706, 730
ExistsCondition object, 730
Exit action, 928
Exit For statement, 491
Exit Function statement, 136
Exit Sub statement, 136
EXOLEDB, 817, 901
expected-content-class property, 814-15
Expedia, 390
Expense Agent, 543, 545, 547-56
Expense Approver role, 583, 608
Expense Report Administrator, 537
Expense Report application, 11-12, 12. See

also workflow capabilities
ADSI and, 647
basic description of, 541-56
converting, to a routing application,

571-72, 591-600
event details, 541
functionality of, 544-47
main page of, 544
MessageFilter object and, 546,547
page used to enter and submit reports with,

544
routing objects and, 571, 575-76,576, 579,

588-90, 591-600
server script, changes to, 590-600
setting up, 542-544

Expense Reports public folder, 532, 543
Expense Routing application

ASP section of, changes to, 588-90
basic description of, 583-600
installation requirements, 584
server script, changes to, 590--600
setting up, 583-88
status page, 588

Expense Routing public folder, 584-86,
585-86,588

Expires property, 202
Expiry action, 929
Explorer object, 139, 234, 238, 263-67
Explorers collection, 255-56
Explorers property, 261
exporting packages, 772-73, 772
Export package option, 772
exrtobj.dll, 600--612
ExServer object, 656
Ex suffix, 651
ExtCancel function, 327
ExtCancel interface, 326
extends property, 813
extensibility, 24-25
eXtensible Markup Language (XML)

action tables and, 929-30, 943
content classes and, 813-14
data, retrieving, 873-74
data islands, 891
Digital Dashboards and, 421
Document Object Model (XMLDOM), 863,

882, 952
OWA and, 792
schemas and, 807
security ancl, 947, 949, 952, 955-56
Training application and, 801
using, 857-82
Web Storage System and, 789-90

eXtensible Style Sheets (XSL), 792, 860, 869
elements, 879-82
formatting XML with, 874-79
security and, 952

ExtensionClass value, 334
ExtensionSteps value, 334
ExtentHeight property, 960
ExtentWidth property, 960
ExtExc function, 326-27
extobj.dll, 600. See also Routing Object library

Index

ExtUndo function, 327
ExtUndo interface, 326

F
FaceId property, 372
failover capabilities, 16, 21, 24
Fcsetup.exe, 211
Field button, 66-68, 70
Field Chooser, 63-64, 350

adding controls to forms with, 95-100,95
adding fields to forms with, 95-96, 95
adding properties with, 123
creating combination fields with, 65-67
creating formula fields with, 68-69
customizing views with, 75-76
formatting columns with, 76-77
seiecting, 65
setting filtered replication with, 69-71

fic;:lds. See also fields Oisted by name)
addblg, 23,95, 834
.binding controlSto, 103, 105, 106, 113
combination, 64-67, 66, 67
creating, 63-69
custom, 24, 6~4, 69-70, 777-78
formula, 68-6<), 69
important default, 96-99
pamins,lOl
overView~ of, 47~8, 63-71
requiring and validating information in,

104-5
schema flexibility and, 23
searching for custom, 777-78
shareel,96
types of, 96-99
used in filtered replication, 69-70

fields (listed by name). See also fields
Action fieJeI, 576
ActivityID field, 576
Categories field, 491
Category field, 745
Complete fi~ld, 413
Count field, 413
Flag field; 440
Flags field, 576
From field, 66
From LIser field, 440
importance field, 413
LastName field, 214

989

Index

fields (listed by name), continued
Message field, 97-99
Name field, 413
Next field, 413
StartEnd field, 413
Subject field, 97, 104, 413, 440
SubjectLocation field, 413
Total field, 123

Fields collection, 415, 452-59, 520, 556, 834,
873

Fields property, 525, 940
File Access component, 204
FillIntrinsicActionsArray function, 622
Filter button, 70, 80, 81
Filter dialog box, 70
filtered replication, 22, 69-70
FilterOffline property, 960
Filter property, 416, 490, 522
filters, 80--81, 489-93
finalapprove.asp, 588
FinalizeReport action, 580
Finance Digital Dashboard application

architecture, 394-408
building nuggets into, 394-97
home page, 387--88, 388
overview of, 387-425
storing custom information for, 419-22

FindAddress subroutine, 163-64
FindControl method, 167
Flag field, 440
FlagItem method, 352
Flags field, 576
Flags property, 606, 623, 628
Flexgrid control, 769, 779, 780
Float data type, 811
Fm20.dll, 138
FolqerAdd event, 267-68
Folder Assistant, 59-63, 59
Folder Assistant dialog box, 62
FoiqerChange event, 267-68
Folder Forms Library, 37, 119-20, 212
folder home pages, 338-47, 422-23

for the Account Tracking application; 331-34
basic description of, 338-46, 338--39
configuring, 338
Olltlook Databinding control and, 410
Outlook View control and, 34~46
Team Folder templates and, 315

990

FolderList pane, 246-47
Folder object, 452, 456, 855-56
Folder_OnMessageCreated function, 536, 545,

549-51
Folder _On Timer function, 536, 552-55
Folder option, 70
Folder parameter, 282
Folder Path text box, 52
Folder property, 288--89,601, 705-6
folders. See also public folders

accessing, 448--50
adding new agents that have routing maps

in,616-18
availability of views in, determining, 282--88,

282
availability settings, 52
copying, 833, 862
creating, 826-29, 855, 861
custom views and, 19-20,20
default type of items in, setting, 49
deleting, 832-33, 863
deleting agents in, 618--19
detecting default routing maps in, 614-616
hierarchy of, created by the Team Project

application, 279
limiting views to specific, 83--84
lists of, 641-42, 642
mail-enabling, 855-56
moderated, 52, 57-58
moving, 833, 862
naming, 49
opening, 850
overview of, 47--85
permissions for, 52, 158
persisted search, 871-73, 872
preaddressing forms to, 96
properties for, customizing, 50-57
replication and, 21-22
retrieving, 510-12
rules for, 52
searching, 257-58
security for, 450-53
setting up, 57-58
size settings for, 51
storing mulriple objects in a single, 19
views of, 19-20, 84--85

Folders collection, 139, 267-68, 450
FolderSwitch event, 266

FolderVisible property, 726
fonts

changing, in Outlook Today pages, 190-91
conditional formatting for, 82-83, 83
controls and, 102-3
views and, 82-83

For-Each element, 881
For...Each loops, 363, 448, 490-91, 651, 685
For. .. Next loop, 472-74, 523
Form Action Properties dialog box, 128
Form collection, 199
Form.ini, 223, 224-25
Form_Load function, 620-21, 634
Form Number property, 116
Form Properties dialog box, 439
forms. See also Microsoft Exchange HTML

Forms Converter
adding controls to, 99
adding fields to, 95
aligning controls on, 227
COM add-ins from, 238-41
creating, 94
cross-platform support for, 210-11
custom, 238-41
data binding and, 92
definitions of, saving, 119, 120-21, 228
designing, 92-99
display properties for, 94-95
enhancing, 121-28
hidden, 128
how they work, 90-92
layering controls on, 114-15
libraries for, 91-92, 119-120
message classes for, 90-91
opening, in design mode, 93-94
the Outlook 2000 object model and, 241
overview of, 87-128
page/layout for, 94-95
properties for, 114-17, 123-24
publishing, 118-21
registering, 886-89, 887-88
synchronization of, for offline use, 56-57
testing, 118
types of, 87-90
Web Storage System and, 788-89

forms libraries
basic description of, 35-38
Forms 2.0 object library, 138-41, 139

forms libraries, continued
multitiered, 35-38
viewing, 216

Forms Library view, 216
Forms Manager, 53, 439
Forms Manager dialog box, 53, 439
Forms tab, 53, 439
formula fields, 64, 69
formulas, 64, 69, 214
formurl parameter, 888
forwarding items; 58, 61
forward slash (/), 736
Forward option, 51, 61, 125, 127, 364
found variable, 517
Frame control

assigning captions to, 102
basic description of, 109
converting, to HTML, 213

frames, 102, 109, 213, 222
freelbusy information, checking, 848-49
FREETEXT predicate, 824, 893, 895
FriendlyName Registry key, 321
FrmRoot.asp, 222, 225
frmSaveTo form, 641-42, 642
From field, 66
From property, 846
From User field, 440
From view, 440
FrontPage (Microsoft). See Microsoft

FrontPage

Index

FuIlContacts.htm, 345-49, 345-46, 350, 353,
356-57

FULLSTRING setting, 712
fulltextindexed property, 897
Function button, 68
functions. See also subroutines

AddMenultem function, 971
checkExpand function, 473
CheckforValidMap function, 634
CreateObject function, 142, 560
CStr function, 134, 472
CurrentlyNotified function, 310-11
CustomShell function, 240
DateDif.{ function, 552
ExtExc function, 326-27
ExtUndo function, 327
FilllntrinsicActionsArray function, 622

991

Index

functions, continued
Folder_OnMessageCreated function, 536,

G

545,549-51
Folder_OnTimer function, 536, 552-55
Form_Load function, 620-21, 634
GetEventDetails function, 547-48
GetStartPageURL function, 778
GetTimeZonelnjormation function, 777
InStrfunction, 516,628
IsSecurityEnabled function, 921
IsUserlnRole function, 921
Left function, 517
Mid function, 474
Now function, 192
PopulateCombo function, 622
Replace function, 516, 517
RequestDeleteTeam function, 306
Shell function, 238, 240
StrFullPath function, 289
WriteToLog function, 547-49

GAL (Global Address List). See Global
Address List (GAL)

Gatherer service, 732-33
General tab, 50-51, 482
GenerateSecDescriptor method, 700, 703
generic.gif, 516
German language, 214
GetAddressList method, 521
GetArgs method, 607, 623
GetDatabaselnjo subroutine, 162-63
GetDejaultFolder method, 475
GetEventDetails function, 547-48
GetEx method, 651, 675
Get Folder method, 449-50, 537
GetFreeBusy method, 471-73, 849
getinfo.asp, 200
GetlnjoEx method, 651
Getlnjo method, 651
GetLogEntry method, 608
Get Message method, 467, 537, 561, 565
Get method, 199, 200-201, 677

ADSI and, 651, 673
Web Storage System and, 787
XML and, 858

GetNameFromSid method, 700, 702
GetNewWorkflowMessage property, 940

992

GetObject method, 147, 239, 656, 659, 673
GetPagelnjo method, 380
getprej method, 399, 420
GetRow method, 605, 623
GetSidFromName method, 700, 703
GetStartPageURL function, 778
GetTimeZonelnjormation function, 777
GetUserProperty method, 939
GetUserProperty property, 940
GetVCardStream method, 854
GIF (Graphics Interchange Format) images.

See Graphics Interchange Format (GIF)
images

giveName property, 663
Global Address List (GAL), 52, 96, 274, 521,

766
Global.asa, 193-96, 441-42, 444, 460, 462,

482-85
globally unique identifiers (GUIDs), 199, 261,

563, 828
CDO and, 450, 459, 843
he1pdesk application and, 459

global variables, 132-33, 159-60
GMT (Greenwich Mean Time). See Greenwich

Mean Time (GMT)
Goto action, 576-78, 578--79, 628
graphical user interface (GUO, 927-28, 928
graphics. See also Image controls

adding, to Outlook Today pages, 191
bitmap (bmp), 111
on CommandButtons, 228
file formats for, 111
GIF (Graphics Interchange Format), 111,

409, 516
Joint Photographics Expert Group (JPEG),

111,225
properties for, 111

Graphics Interchange Format (GIF) images,
111,409, 516

greater-than sign (», 749
Greenwich Mean Time (GMT), 749
grid control, 620
GroupAdd event, 250-51
GROUP BY predicate, 824-26
GroupName property, 109
groupOjNames class, 652, 678
Group parameter, 247

Group Tasks folder, 85
GUI (graphical user interface). See graphical

user interface (GUI)
GUIDs (globally unique identifiers). See

globally unique identifiers (GUIDs)

H
HandlerClassID property, 563
hashing algorithms, 210
hcal.htm, 279
hcon.htm, 279
Height property, 264
help

files, location of, 138
for handling objects, 138-39, 140
for Team Folders applications, 279-280

Help button, 279--80
HelpContext parameter, 380
Helpdesk application, 9-10, 10, 13,483

accessing folders in, 448-50
actions and, 128
ADSI and, 647
appointments, 474-78, 474, 477
basic description of, 436-79
calendar information, creating, 468-74,

469,472
folder security, 450-53
help tickets in, 436-37, 460-68, 478-79,

479
logon and, 443-48
Outlook HTML Form Converter and, 221-22
posting information in, 456-60
scheduling meetings with, 474-78, 474, 477
setting up, 437-41

Helpdesk public folder, 437, 439, 440
Helpdesk view, 440, 464
HelpFile parameter, 380
Help Request form, 439, 453
Heuristics property, 653-55, 654
hidden controls, converting, to HTML, 213
HiddenMessages collection, 616, 704
Hide From Address Book option, 96, 543, 584
hlmp variable, 443, 444, 448
HKEY _LOCAL_MACHINE Registry key, 533,

543
HKEY_CLASSES_ROOTRegistry key, 235
HKEY_CURRENT_USER Registry key, 190,

321-22

Index

Home-MDB property, 663
Home-MTA property, 663
home pages, folder, 338-47,422-23

for the Account Tracking application, 331-34
basic description of, 338-46, 338-39
configuring, 338
Outlook Databinding control and, 410
Outlook View control and, 345-46
Team Folder templates and, 315

Host object, 566
HostName property, 567
HotTracking property, 960
HTML (HyperText Markup Language). See

HyperText Markup Language (HTML)
HTML Forms Converter. See Microsoft

Exchange HTML Forms Converter
HTTP (HyperText Transfer Protocol). See

HyperText Transfer Protocol (HTTP)
HTTPS (Hypertext Transfer Protocol, Secure).

See Hypertext Transfer Protocol, Secure
(HTTPS)

H11P _USER_AGENT variable, 200
hyperlinks. See also Uniform Resource

Locators (URLs)
adding, to Outlook Today pages, 191
ADS! and, 688
COM components and, 717-19
creating, 463-64
for the helpdesk application, 463-64, 471,

472
Intranet News application and, 512-515,

514
mailbox queries and, 673-74
mailto: links, 98
Message field and, 97-99

HyperText Markup Language (HTML). See
also Microsoft Exchange HTML Forms
Converter

ASP and, 33, 194, 199, 200
CDO and, 844
COM and, 717
Digital Dashboards and, 397, 398, 403, 424
files, specifications for, in Templates.ini,

319-20
forms, 37-38, 38, 666, 667, 746, 884-86
instant messaging and, 959
mailbox queries and, 666-67
~TAproperty, 751, 754,776,778

993

Index

HyperText Markup Language (HTML),
continued

Outlook Team Folders Wizard and, 301-6
Outlook Today and, 179-83, 185-91
OWA and, 792
ready applications, tips for developing,

227-28
source code, viewing, 189-91
tables, 682, 683, 686
Training application and, 799-800, 800
Web Storage System and, 789
wizards, 216, 717-19, 719
XSL and, 874

HyperText Transfer Protocol (HTTP), 209, 732
ASP and, 193, 200
basic description of, 32-34
helpdesk application and, 462
Message field and, 98
public folders and, 30, 32-34
security and, 210
WebDAVand,21O
Web Storage System and, 787

Hypertext Transfer Protocol, Secure (HTTPS),
97-98

IADsComputer interface, 652
IADsContainer interface, 650-52
IADsGroup interface, 680, 682
lADs interface, 650-51
IADsPrinfjob interface, 652
IADsPrintQueue interface, 652
IBM (International Business Machines), 41
iCalendar, 847
ICO files, 111
Icon.jpg, 224, 225
icon views, 72, 82, 116
ICreateRegistration interface, 901, 913, 946
IDispatch interface, 918
ID property, 725, 729
IDTExtensibility interface, 231-35, 232
IETF (Internet Engineering Task Force). See

Internet Engineering Task Force (IETF)
IExchangeEventHandler interface, 529
IExStoreAsyncEvents interface, 914
IExStoreDispEventInjo interface, 918-20, 920
IExStoreSyncEvents interface, 914
IEXStoreSystemsEvents interface, 914

994

If element, 879-80
If statements, 578, 623
IFilter interface, 733
<IFRAME> tag, 397
IGNORECASE setting, 712
IGNORENONSPACE setting, 712
ns (Microsoft Internet Information Services).

See Microsoft Internet Information
Services (nS)

Image controls. See also images
AutoSize property for, 228
basic description of, 111-12, 112
converting, to HTML, 213

Imagelist control, 779-80
images. See also Image controls

adding, to Outlook Today pages, 191
bitmap (bmp), 111
on CommandButtons, 228
file formats for, 111
GIF (Graphics Interchange Format), 111,

409,516
Joint Photographics Expert Group (TPEG),

111, 225
properties for, 111

IMailRecipient interface, 856
lMAP4 (Internet Mail Access Protocol version

4). See Internet Mail Access Protocol
version 4 (IMAP4)

IMembers interface, 942
Impersonate method, 444
Importance field, 413
Importance property, 458
IMSelected method, 962
Inbox

Calendar of Events application and, 503
counting the number of people listed in,

824-25
Digital Dashboards and, 412
e-mail notifications, 355-56, 366
Event Scripting Agent and, 40, 530
helpdesk application and, 448, 456-57, 503

in-cell editing, 82, 145
Include And Indent Original Message option,

126
Include Original Message option, 126
Incremental Change Synchronization (ICS),

528, 533, 561
infinite loops, 48
information management tools, 38-40

information nuggets
building, 394-98
System monitor, 398-402
using other components, 408-19

InfoStore object, 510, 520-21
InfoStores collection, 432-33, 448-50, 449
.ini (initialization) files, 315-20
InitProperties event, 380
InitSucceeded property, 294, 295
InsertActivity property, 605
Insert command, 110
Insert Event Handler dialog box, 131
Insert Message As An Attachment option, 61
INSERT statement, 826
Inspector object, 139, 234, 238, 267-68
Inspectors collection, 256-257
Inspectors property, 261
installing

the Account Tracking application, 157-58
the ADSI application, 657-59, 657
the Calendar of Events application, 480-83
the CDO Visual Basic application, 518
the Exchange Event Scripting Agent,

567-69,569
the Exchange Event Service, 530-32
the Expense Report application, 542-544
the Expense Routing application, 583-88, 584
the Intranet News application, 506-7
Microsoft Outlook 8.03, 209
Microsoft Outlook Web Access, 204-6
the Project application, 716-17, 716
the Script Debugger, 136-37
the Team Folders Wizard Administration

Extension, 300-301,301
the Training application, 795-96

Instant Messaging, 13, 957-72
InStr function, 516, 628
integer fields, 64
INTERACTIVE value, 859
interfaces (listed by name)

Datasource interface, 848
ExtCancel interface, 326
ExtUndo interface, 326
fADsComputer interface, 652
IADsContainer interface, 650-52
IADsGroup interface, 680, 682
fADs interface, 650-51
IADsPrinifob interface, 652

Index

interfaces (listed by name), continued
IADsPrintQueue interface, 652
ICreateRegistration interface, 901, 913, 946
IDispatch interface, 918
IDTExtensibility interface, 231-35, 232
IExchangeEventHandler interface, 529
IExStoreAsyncEvents interface, 914
IExStoreDispEventInjo interface, 918-20,

920
IExStoreSyncEvents interface, 914
IEXStoreSystemsEvents interface, 914
IFilter interface, 733
IMailRecipient interface, 856
IMembers interface, 942
PropertyPage interface, 380

Internet Engineering Task Force (IETF), 787
Internet Explorer browser. See Microsoft

Internet Explorer browser; Web browsers
Internet Mail Access Protocol version 4

(IMAP4), 30-31, 41
Internet Server Application Programming

Interface CISAP!), 192, 788-89
intMap Viewer variable, 622, 639
Intranet News application

anonymous logon and, 507-10
basic description of, 504-17
displaying news items with, 512-13
reading news item details with, 513-17
retrieving folders and messages for, 510-12
setting up, 506-7

intrinsic actions, 576-79
inventory management, 9
Investments page, 390, 392
InviteSelected method, 962
IPM.Contract messages, 212
IPM.Note messages, 212, 228, 580-81
IPM.Post messages, 212, 224, 580-81
ISAPI (Internet Server Application

Programming Interface). See Internet
Server Application Programming
Interface CISAP!)

IsApprovalMsg action, 580
IsApprovedTable action, 580
isindexed property, 825
IsInvalidReceipt action, 580
IsNDR action, 581
IsOOF action, 581
IsPaneVisible method, 265

995

Index

IsPost action, 581
isreadonly property, 811
IsReceipt action, 581
IsSecurityEnabled function, 921
IsTimeout action, 581
IsTimeout parameter, 579
IsUserInRole function, 921
IsUserInRole property, 941
ItemAdd event, 268, 364-65, 368
ItemAuthors collection, 942
ItemAuthors property, 941, 942
ItemChange event, 366-68
Item_Close event, 145, 155, 175-78
ItemConsolidate method, 612
Item_CustomAction event, 145, 169
Item_ CustomPropertyChange event, 145
Item_Forward event, 145
Item method, 239, 244, 246, 249-50, 252-58,

637, 724
Item object, 143-44
Item_Open event, 145, 155, 160-72, 230
Rem property, 259, 566, 610-12
Item_PropertyChange event, 145
ItemReaders collection, 942
ItemReaders property, 941, 942
Item_Read event, 145, 159-60
ItemRemove event, 268
Item_ReplyAll event, 145
items

copying, 833, 862
creating, 829-32
deleting, 832-33
forwarding, 58, 61
types of, characteristics of, 269-71

Items collection, 139, 268, 344, 364, 366
ItemSend event, 145, 261-62
Items object, 228
Item_Write event, 145

J
Japanese language, 37
Java, 648, 649, 656, 688, 689
JavaScript, 649, 687, 863

alert boxes, 477
CDO and, 473, 477
Digital Dashboards and, 396-97, 397, 403
Event Scripting Agent and, 536
Site Server and, 751

996

job candidate tracking application, 8-10, 9, 50.
See also Account Tracking application

Joining Fields And Any Text Fragments To
Each Other option, 65

JOIN statement, 826
Joint Photographics Experts Group (JPEG)

files, 111, 225
Journal form, 89, 91
JPEG (Joint Photographics Expert Group)

files. See Joint Photographics Experts
Group (JPEG) files

JScript, 6, 32, 192
Event Scripting Agent and, 39
Outlook Today and, 191
Outlook Web Access and, 210

K-L
keywords fields, 64
label controls

assigning captions to, 102
basic description of, 105
color settings for, 102-3, 103
converting, 212

languages, localiZing words in multiple, 320
LanguageSettings object, 261
LanguageSettings property, 261
laptop computers, 47
LastName field, 214
Launch Custom Forms window, 219, 223, 224
Layout Debug Mode check box, 217
LCID property, 198
ICmd value, 971
LDAP (Lightweight Directory Access Proto­

col). See Lightweight Directory Access
Protocol (LDAP)

LDP tool, 696-97, 697
Leave Message Intact option, 61
Left function, 517
Left property, 264
less-than sign «),749
IFlags parameter, 918, 919
license agreements, 409
Lightweight Directory Access Protocol

(LDAP), 26, 27, 648, 654-56
Active Directory and, 687, 692
ADSI and, 648-49, 651, 655-56, 659, 666,

687,692
binding, 687, 696
CheckName method and, 846

Lightweight Directory Access Protocol,
continued

CDO and, 839-40, 854
creating mailboxes and, 664-66
filters, 666
Heuristics property and, 655
LDP tool for, 696-97, 697
logging on and, 659
paths, 687, 692
queries, raising the number of results

returned for, 687
resolving addresses and, 849

liKE predicate, 823, 824
Link object, 257-59
LinkPattern property, 497
links. See also Uniform Resource Locators (URLs)

adding, to Outlook Today pages, 191
ADSI and, 688
COM components and, 717-19
creating, 463-64
for the helpdesk application, 463-64, 471,

472
Intranet News application and, 512-515, 514
mailbox queries and, 673-}4
mailto: links, 98
Message field and, 97-99

Links collection, 257-59
Links property, 269
ListBox control

Account Tracking application arid, 165--07
basic description of, 106-7, 107
converting, to HTML, 213
refreshing, 165-67

List method, 295
List property, 960
load balancing, 16,21,24
LoadConftguration method, 462,508, 510
LOADED value, 859
LOADING vahie, 859
LocaleID property, 740
LocalGroup argument, 701
local variables, 132-,.33
Location property, 476
lockdiscovery property, 866
Lock method, 196-97
locktoken property, 867
LogEvent method, 922
LoggedOn property, 960, 964
Logging Level settings, 585

Log object, 602, 607-8
Log On As settings, 530
Log On Locally right, 205, 207
Log property, 602-3, 607
Logical conditions, 706, 708-10
LogicalCondition object, 708-10
Login argument, 701
Logoff method, 149
logon. See also authentication

ADSIand, 658-59, 658,687-88, 688
anonymous, 507-10, 524-25

Index

CDO and, 434-45, 443-48, 481, 483-86,
519-21

using dynamically generated profiles, 434-45
Logon.asp, 556
Logon.inc, 444
Logon method, 149, 434-36, 445; 448, 508-9,

520
Logon page, 658-59,658,687-88,688
LOGON_USER variable, 200
Long dam type, 23~34, 245, 255, 326, 464
Lotus cc:Mail, 41, 660
Lotus Notes, 41

M
Macintosh, 42-43, 210
Macro option, 271
macros, 271-72, 272
mailboxes

associating accounts with, 701-3
COM components and, 700, 701-3
creating, 659-77, 660
folders for, opening, 850
querying for information from, 663-77,

664, 66~6~ 673, 677
Mail control panel applet, 482
mail headers, adding, 846
rriailing lists, 8, 30
MailItem object, 139, 142
mail property, 663, 939
Mail Services mb, 56
mailto: links, 98
Manage button, 53
manager property, 939
Manager tole, 581-83
ManageSids subroutine, 702, 703
MAPI (Messagirig Application Programming

Interface). See Messaging Application
Programming Interface (MAPI)

997

Index

MAPCACCESS_READ permission, 452
MAPCFaiiOneProvider error, 524-25
MAPIFolder data type, 254
MAPIFolder object, 139, 189, 227, 252, 255

enhancements to, 268
FolderAdd event and, 267
FolderChange event and, 267-68

MAP/-Recipient property, 663
Map object, 604-6
Map property, 603, 636
marquee control, 511, 512
Matchscope property, 905, 906, 913
Maximize button, 396
Maximum Number of Search Results Returned

option, 687
Max parameter, 245
MaxRecords property, 740
MAX statement, 826
MDBGUID, 913
MDB-Use-Defaults property, 663
MDBVUE tool, 704, 807
MeetingItem object, 139, 475-76
meeting requests, 848-51
MeetingStatus property, 476
MemberCount property, 243-44
MemberName method, 609
Members method, 680, 682
memory

Item_Close event handler and, 176
release of objects from, 456

message.asp, 466-468
MessageClass property, 750
MessageDisplayCC property, 750
MessageDisplayName property, 750
Message field, 97-99
MessageFilter object, 288, 467, 489-90, 521,

546,547,556
MessageFolderName property, 750
Message form, 87-88, 91, 94-96
Message object, 456-58, 475-78, 503, 604-5,

610-19, 622, 846-47
Message property, 603-5, 622-23, 636, 639
messages

classes for, 90-91, 124
deleting, 60-61
delivery receipts for, 16-17
Exchange Server infrastructure for, 15-18
read receipts for, 16-17, 17
security and, 34-35

998

messages, continued
size limits for, 21
time limits for, 40
tracking, 17-18

Messages collection, 456, 475, 478, 489-91,
510

Messages view, 284
Messaging Application Programming Interface

(MAP!), 612, 715
ADSI and, 648
CDO and, 429, 434, 452, 454, 456, 459, 525
content indexing and, 898
deep traversals and, 819
Event Scripting Agent and, 530
Exchange Server 2000 and, 790, 794, 808,

819,828-29,871,898
name spaces, 828
properties, 454, 456, 459, 525
schemas and, 808
search folders and, 871

META property, 751, 754, 776, 778
methods (listed by name). See also Add

method; update method
Abandon method, 195-96, 199
Abort method, 860
ACes method, 724
Activate method, 265
ActiveExplorer method, 344
ActiveWindow method, 260
Addattachment method, 845-46
Add Buttons method, 610
AddLogEntry method, 608
AddMembers method, 242, 243
AddMenultem method, 962
AddNew method, 418
AddressBook method, 149,350
AddStore method, 263
AddtoFavorites inethod, 350
Append method, 834
Apply method, 380, 381
BeginTrans method, 817
BlockSelected method, 962
Categories method, 352
ChangeOwnerojSecDescriptor method, 700,

703
CheckName method, 846
CommitTrans method, 817
CompareIDs method, 724
Condition method, 708

methods (listed by name), continued
ConfigParameter method, 508, 510
ConsolidateResponse method, 610
CopyRecord method, 833
CopyTo method, 605, 606
Count method, 942
Createltem method, 167, 242
CreateMHTMLBody method, 845
CreateObject method, 149, 163, 202-3, 288,

460, 704, 706
CreateRecordSet method, 741, 742, 759
Create Renderer method, 462, 494, 500
Create Request method, 849
CustomizeView method, 352
DefineColumn method, 742
DeleteActivity method, 605
DeleteMap method, 605
Delete method, 419, 565-66, 476, 618-19,

724, 726, 942
DeleteRecord method, 832
Details method, 522
Display method, 255-57
DisplayMsg method, 758
EmailSelected method, 962
EmbedMsg method, 612
Execute method, 167, 417-19
FindControl method, 167
FlagItem method, 352
GenerateSecDescriptor method, 700, 703
GetAddressList method, 521
GetArgs method, 607, 623
GetDefaultFolder method, 475
GetEx method, 651, 675
GetFolder method, 449-50, 537
GetFreeBusy method, 471-73, 849
GetInfoEx method, 651
GetInfo method, 651
GetLogEntry method, 608
Get Message method, 467, 537, 561, 565
Get method, 199,200--201, 651, 677, 787, 858
GetNameFromSid method, 700, 702
GetObject method, 147, 239, 656, 659, 673
GetPageInfo method, 380
getpref method, 399, 420
GetRow method, 605, 623
GetSidFromName method, 700, 703
GetUserProperty method, 939
GetVCardStream method, 854

Index

methods (listed by name), continued
Impersonate method, 444
IMSelected method, 962
InviteSelected method, 962
IsPane Visible method, 265
ItemConsolidate method, 612
Item method, 239, 244, 246, 249-50, 252-58,

637, 724
List method, 295
LoadConjiguration method, 462, 508, 510
Lock method, 196-97
LogEvent method, 922
Logoff method, 149
Logon method, 149, 434-36, 445, 448,

508-9, 520
MemberName method, 609
Members method, 680, 682
MoveBouridFolder method, 567
MoveFirst method, 415, 835-36
MoveLast method, 415, 835-36
Move method, 415
MoveNext method, 415, 835-36
M6vePrevious method, 415, 835-36
MoveRecord method, 833
NTAccountDelete method, 700, 701
OnStatusCbange method, 381
OpenDSObject method, 659, 664
Open method, 414,467, 604, 665, 826, 828,

841,842,858
OpenLog method, 608
OpenMap method, 605, 623
OpenObject method, 841
OpenSbaredDefaultFolder method, 289-93,

290
PasteFace method, 372
Post method, 199, 200, 201; 787, 858
PropFind method, 872
PutEx method, 651, 663
Put method, 651, 663, 8(51
QueryToURL method, 743
Raise method, 538
RemoveMembers method, 243
Remove method, 249-50, 252-53, 258-59,

295, 680, 962
RenderAppointments method, 498, 499
RenderEvents method, 499
Render method, 464-65
RenderProperty method, 500-503, 515, 517
ReplyAll method, 351
ReplyInFolder method, 351

999

Index

methods Oisted by mime), continued
Request method, 200
Resolve method, 454, 456, 478
ResolveRole method, 609
Restrict method, 289, 344, 352
ReSync method, 834
RoleName method, 608
RollbackTrans method, 817
SaveChanges method, 564-66
SaveLog method, 608
Save method, 176, 604, 610
SaveToContainer method, 841, 843, 853
SaveTo method, 841, 842-43
SaveToObject method, 841, 844
SCript.Response method, 540, 541, 549
Send method, 457, 476-77, 479, 859-60
Server. Transfer method, 210
SetAr.gs method, 607
Setlnfo method, 651; 663
SetLocaleIDs method, 434
SetPrefmethod, 397, 399, 420
SetQueryFromURL method, 743, 759
Set Request Header method, 858-59
ShowFields method, 352
ShowPane method, 265
Sort method, 511
Start method, 245
Stop method, 245
StoreGUIDFromVRL method, 913
SyncbFolder method, 352
UnblockSelected method, 962
Unlock method, 196-97
Updatelndices method, 707-8
Write method, 193, 202

MHTML (MIME Encapsulation of Aggregate
HTML Documents). See MIME Encapsula­
tion of Aggregate HTML Documents
(MHTML)

Microsoft Access, 7, 157-58
Collaboration Data Objects (CDO) and, 438
This Computer From Network right, 205, 207

Microsoft ActiveX controls, 6, 33, 213, 735,
758,914,959

Account Tracking application and, 152,
153, 155

adding, to the Control Toolbox, 101
adding, to forms, 112-13
Availability Checker application and, 293

1000

Microsoft ActiveX controls, continued
CDO and, 288, 438
COM add-ins and, 231
Digital Dashboards and, 387, 394, 398-99,

403-8, 410, 424
DLLs and, 324-28
Event Scripting Agent and, 39
nuggets, 394
Outlook Today and, 191
Team Folders Wizard and, 281, 288,

300-302, 310, 319, 324-28, 394
Microsoft Add-In Designer, 231-32,232
Mierosoft BackOffice, 5-6
Microsoft Excel, 339, 544

Account Tracking application and, 155,
156,169-75

Account Summary sheet, 172
automating, 146-48, 169-75
Digital Dashboards and, 390, 408-9
formsand,90, 122, 124
Intranet News application and, 515-16
Spreadsheet component and, 408-9
viewing object libraries from, 140-41

Microsoft Exchange Event Scripting Agent,
39-40, 99, 231, 300

basic description of, 306-10, 527-69
Exchange Server 2000 and, 794, 900
log from, 307
routing objects and, 571, 572-74
servers, 567
writing, by using scripts, 534-38

Microsoft Exchange HTML Forms Converter,
91, 191, 210-29

chOOSing conversion options with, 216-17,
217

components of, 211-12
conversions, examples of, 220-21
convertible features, 212-14
form types supported by, 212
launching, 215
selecting form locations with, 215
selecting specific forms with, 215-16
software requirements of, 211
stepping through a conversion with, 215-19
successful conversion with, 217-18
templates, 212
unconvertible features, 214-215
viewing forms converted with, 219
Wizard, selecting forms with, 215-16

Microsoft Exchange Server directory
accessing, 423-25, 435--46, 648
AJDSIand, 648, 651, 656-87, 696-97
basic description of, 23-27
creating custom recipients in, 677-78
customizable attributes and, 24-25
custom recipients in, 26
extensibility and, 25-26
industry standards and, 26-27
Internet standards and, 26-27
LDP tool and, 697
multimaster capabilities and, 24
replication capabilities and, 24
routing objects and, 581--83
security and, 25-26

Microsoft Exchange System Manager, 791
Microsoft FrontPage, 190, 211

COM add-ins that extend, 392-93, 393
Digital Dashboards and, 387, 390,392
Exchange Server 2000 and, 884, 889-93

Microsoft Index Server, 732
Microsoft Internet Explorer browser. See also

Web browsers
Account Tracking application and, 155
browsing ASP pages with, 33
cache, 423
categorization of, as a tool for building

collaborative systems, 4-5
CDO and, 437-38
Digital Dashboards and, 422, 423
folder home pages and, 338
hosting the Outlook View control in,

293-95,284
lITML Form Converter and, 211
Intranet News application in, 505, 511
marquee control, 511, 512
NTLM and, 208
Outlook Today and, 187, 189-91
OWA and, 208, 792
registering forms and, 886
Site Server and, 780
Team Folders Wizard and, 277
viewing source code with, 189-91
XSL and, 882

Microsoft Internet Information Services (lIS)
AJDSI and, 657
ASP and, 192, 193, 206

Index

Microsoft Internet Information Services (US),
continued

categorization of, as a tool for building
collaborative systems, 4-6

CDO and, 32, 33, 430, 443, 482, 481, 502,
524

COM and, 716
Digital Dashboards and, 409
forms libraries and, 37
HTML Form Converter and, 211
Outlook Web Access and, 207-10
routing objects and, 584
Site Server and, 752
Training application and, 796, 799

Microsoft Mail, 660
Microsoft Management Console (MMC), 698,

734, 736, 773, 792
Microsoft NetMeeting

Account Tracking application and, 153,
167--69

forms and, 88
real-time applications and, 12-14, 13
starting meetings with, 167

Microsoft Office
document forms, 90, 121-24
documents, automating, 146--48
help files, 138--39
properties, specifying, 19-20, 20
Site Server and, 732-33
views and, 19-20

Microsoft Outlook for the Macintosh, 42
Microsoft Outlook object library, 138--40, 149,

430, 475
adding references to, 148
object hierarchy in, 141--42;142
viewing, 140--41

Microsoft Outlook object model, 241-72
Microsoft Outlook shortcut bar, 334
Microsoft Outlook Today, 387, 393, 423
Microsoft Outlook Web Access (OWA)

adding lITML applications to, 187
AJDSI and, 657
appearance of, when logging on as an

Exchange user, 206
ASP and, 203
basic description of, 32-34, 32, 204-9
CDO and, 430, 458, 477, 502-3
COM and, 716, 724
HTML Form Converter and, 215,219

1001

Index

Microsoft Outlook Web Access (OWA) ,
continued

installing, 204-6
Internet Explorer version of, 792, 793
logon, 502
Netscape version of, 793
parameters used to customize, 883
Projects application and, 724
registering forms and, 886
reusing, 883--84
schemas and, 808
server, installing Outlook 8.03 on, 209
Site Server and, 734-35, 738, 752, 758, 780
special considerations for setting up, 208-9
Training application and, 799, 801, 802
view capabilities, 890-91
Web forms library and, 223-24
Web Storage System and, 792-93

Microsoft Platform Software Development Kit,
399, 525, 433

COM components and, 700, 730
Site Server and, 733, 773
Web Workshop section, 882

Microsoft PowerPoint
forms and, 90, 123
Intranet News application and, 515-16
viewing object libraries from, 140-41

Microsoft Script Debugger, 93, 136-38, 137,
538-40, 539

Microsoft Site Server, 4, 6
ADO recordset extensions and, 743-45
building an ASP search application with,

745-65
creating custom search applications with,

738--81, 721-22, 722
entering, 731-32
Exchange Server property set in, 749-50
extending Outlook with, 764--81
Index Server and, differences between, 732
infrastructure requirements for, 732-38
Personalization and Membership, 420
Project application and, 721, 722
properties, 750
search capabilities of, 732-33
search object model, 738-45
Search service, 732-33, 735-36, 736
search solutions using, 731--81

1002

Microsoft Site Server, continued
server requirements for, 734-35, 734
setting, to crawl a public folder, 736-37
setting up search hosts for, 735-36
working with message types and, 775-76

Microsoft SQL Server, 4-6, 158, 459, 837
Digital Dashboards and, 388--89, 408, 414
Event Scripting Agent and, 541
Exchange Server and, comparison of, 459

Microsoft Systems Management Server (SMS),
235, 335, 393

Microsoft TechNet site, 601
Microsoft Transaction Server (MTS), 538,

567--69, 772, 777
Microsoft Visual Basic, 4, 6, 703-4, 839, 900,

921
Account Tracking application and, 182,

328-31, 334-35, 339, 351, 353-55, 376,
380

ADSI and, 648-51, 650, 651, 656
application, 517-22
BeforeAttachmentSave event and, 270
CDO and, 429, 438, 518-19, 523
COM add-ins and, 231-32, 232, 235,

237-38, 240
design mode, 376, 380
Digital Dashboards and, 387, 424
Event Scripting Agent and, 529, 538, 560, 562
folder home pages and, 339
forms and, 90, 93, 112
formulas and, 64
grid control, 620
help files, 93
ICreateRegistrationinterface and, 913
object browser, 518-19
Outlook 2000 object model and, 241
Package and Deployment Wizard, 335
programming with, overview of, 518-19
routing objects and, 584, 604, 620, 628
Scripting Support, 346, 355
Site Server and, 772
string functions, 628
Team Folders Wizard and, 277, 281,

325-26,325,328-31,325,335
using early binding with, 523

Microsoft Visual Basic for Applications (VBA),
131, 241, 656

applications, creating, 271-73
architecture, 271

Microsoft Visual Basic for Applications (VBA),
continued

BeforeAttachmentSave event and, 270
forms and, 90, 122
Object Browser, 113, 140-41, 141
Outlook 2000 object model and
Outlook View control and, 351
programs, initialiZing, 262
support in Outlook 2000, 271-272
using, with Outlook Office documents, 147

Microsoft Visual Basic Scripting Edition
(VBScript)

Account Tracking application and, 155,
163, 167, 179

AJ)SIand, 648-49, 651, 656, 663
ASP and, 192
automating Office documents and, 146-48
basic description of, 117
BeforeAttachmentSave event and, 270
CDO and, 32, 467, 471, 477, 482, 489, 491,

518
COM add-ins and, 237
constants in, 135
controls and, 112
data types in, 134
debugging with, 136--38
Digital Dashboards and, 399, 403
Event Scripting Agent and, 39, 538, 539,

541,545
forms and, 112-13, 117, 120, 122
fundamentals, 131-36
handling events with, 144-46
helpdesk application and, 467, 472
HTML Form Converter and, 214, 220
infinite loops and, 48
instant messaging and, 964
Intranet News application and, 515, 516
key enhancements in, 210
learning more about, 130, 131
Outlook 2000 object model and, 241, 246
Outlook Today and, 191
Outlook Web Access and, 210
routing objects and, 572, 574-580, 601-3,

606,609
Site Server and, 751, 765-66
Team Folders Wizard and, 277, 279
working with, overview of, 129-49

Index

Microsoft Visual C++, 6, 112, 238, 839, 900
AJ)SIand, 648, 649
CDO and, 429
Event Scripting Agent and, 529, 538
Outlook 2000 object model and, 241

Microsoft Visual Interdev, 4, 6--7, 281, 390, 884
Microsoft Visual Studio, 4, 6
Microsoft Web site, 468, 580, 786
Microsoft Windows 3.1, 42-43
Microsoft Windows 95, 43, 210
Microsoft Windows 98, 43
Microsoft Windows 2000, 43, 840

controls and, 108-9
Digital Dashboards and, 398
Event SCripting Agent and, 567
Outlook Web Access and, 209-10
Professional Edition, 108

Microsoft Windows 2000 Server,S, 35, 480
AJ)SI and, 649, 698
helpdesk application, 437
Intranet News application and, 506
Outlook HTML Form Converter and, 210

Microsoft Windows CE, 41
Microsoft Windows for Workgroups, 42-43
Microsoft Windows NT, 34, 43, 109, 200, 649

AJ)SI and, 649, 657, 659-60
basic authentication, 524
CDO and, 437, 443, 448-49, 48Q-..81, 483,

506, 519, 524
Challenge/Response authentication, 204,

207-8, 524, 751
COM and, 700-703, 716
Digital Dashboards and, 398
event log, 533, 541
Event Service and, 527
Event Scripting Agent and, 530-31, 533,

538, 541-42, 567-68
Expense Routing application and, 583
HTML Form Converter and, 210
Option Pack, 568
Outlook Web Access and, 204, 207
Service Pack 4, 204-5
Site Server and, 732, 735
version 4 domain-based directory, 26,27

Microsoft Windows NT Server
AJ)SI ~nd, 657
Calendar of Events application and, 480
routing objects and, 583

1003

Index

Microsoft Word
Account Tracking application and, 154, 167
documents, automating, 147-48
Event Scripting Agent and, 529
forms and, 90, 123, 124
Intranet News application and, 515-16
Letter Wizard, 167
permissions and, 55
viewing object libraries from, 140-41

Mid function, 474
migration tools, 40-41
MIME (Multipurpose Internet Mail

Extensions). See Multipurpose Internet
Mail Extensions (MIME)

MIME Encapsulation of Aggregate HTML
Documents (MHTML), 430, 840, 845

Minimize button, 396
MIN statement, 826
minus sign (-), 749
MKCOL command, 861, 872
MMC (Microsoft Management Console). See

Microsoft Management Console (MMC)
mntAcct variable, 7.00
Models page, 389
modems, 16
Mode property, 495, 497, 499
Moderated Folder button, 52, 57
Moderated Folder dialog box, 57,58
I\1ore Choices tab, 80
More Results page, 752, 764
MoreRows property, 744
Mouse/con property, 114
MousePointer property, 114
MoveBoundFolder method, 567
MOVE command, 862
MoveFirst method, 415, 835-36
MoveLast method, 415, 835-36
Move method, 415
MoveNext method, 415, 835-36
MovePrevious method, 415, t$:55-:56
MoveRecord method, 833
MSDailyAgent constant, 563
MSDN Library, 433, 525, 921, 858

infonnation on ADSI, 696
infonnation on COM components, 730
information on schema, 655
infonnation on XSL, 882

1004

MSEventConstants module, 562
Msg property, 601
MSHourlyAgent constant, 563
MSNBC, 390
MSN Messenger client, 398, 403-8
MSN Messenger Service, 958
msoButtonlconAndCaption constant, 372
msoControlButton constant, 371
MSQuery object, 772
MSTRVars module, 617-18
MSWeeklyAgent constant, 563
MTS (Microsoft Transaction Server). See

Microsoft Transaction Server (MTS)
Multiline property, 103, 106
multilingual documents, 733
multimaster capabilities, 24
MultiPage controls, 102, 110,213
Multipurpose Internet Mail Extensions

(MIME), 840, 844
MultiSelect property, 107
MyDB database, 414-17
mylnformation variable, 134
MyProp property, 828

N
Name field, 413
Name property, 247, 251, 259, 456, 522, 563,

651, 707-8, 775
Namespace parameter, 282, 347
NameSpace object, 139, 160, 262-63
name/value pairs, 236
navigation bars, 319-20, 388
NDS (Netware Directory Services). See

Netware Directory Services (NDS)
NetMeeting (Microsoft). See Microsoft

NetMeeting
Netscape Communicator, 30
Netscape Navigator, 211
Netware Directory Services (NDS), 26,27,

648-49
Network News Transfer Protocol (NNTP),

30-31,31,41,430,840-41
New action, 576, 578
New Agent dialog box, 534-35, 534, 558
New button, 63
New Catalog Definition Wizard, 736, 737
NewExplorer event, 256
New Folder command, 49
New Letter To Contact option, 167

NewMail event, 262
NewSession parameter, 434
Next button, 324-25, 330-31
Next field, 413
NextStartHit property, 744
NNTP (Network News Transfer Protocol). See

Network News Transfer Protocol (NNTP)
non-English forms, 214
NOP action, 581
Notepad, 182, 190, 559, 561, 585

agent log file in, 540
handling event scripting code in, 543
new script shown in, 535-36, 536

notification/subscription functionality,
310-14,310,312

Novell Groupwise, 41
Novell Netware

Bindery, 26, 27, 649
Directory Services (NDS), 26,27, 648-49

Now button, 458
Now function; 192
NTAccountDelete method, 700, 701
nuggets

building, 394-98
System monitor, 398-402
using other components, 408-19

number fields, 63
Number property, 836

o
oRinding variable, 561
Object Browser, 135, 140-41, 141
Object property, 239
Object Renderer object, 500
objects. See also objects (listed by name)

basic description of, 242-46
binding variables with, 135
classes for, overview of, 652
creating paths to, 656
events for, 260-68
getting help with, 138-39, 140
handling, with VBScript, 138-44
hierarchy of, 141-44
methods for, 260-68
properties for, 260-68
temporary, avoiding, 523
working with, 134-35

Index

objects Oisted by name). See also Application
object; Connection object; MAPIFolder
object; objects; Session object

ACE object, 724-25, 729
Action object, 707-8, 707, 729-30
AddressEntryFilter object, 521, 522
AddressEhtry object, 139, 453-56, 455, 522,

549, 552, 724
AddressUst object, 139
AppointmentItem object, 139, 457, 475-76,

489, 491, 500
ASPError object, 210
Attachment object, 269
BoundFolder object, 567
CalendarMessage object, 849
CalendarView object, 494, 495, 497-99
Column object, 464
CommandBar object, 167
CommandBarPopup object, 372
COmrrland object, 417
Configuration object, 840-41
ContactItem object, 139, 141
ContainerRenderer object, 464-66, 495, 497,

500
ContentCondition object, 710-12
Control object, 139
DataSource object, 840-44
DistListItem object, 242
Err object, 135-36
EventDetails object, 601-2, 602
EventDetails.Session object, 537
Events object, 560
Exception object, 850
ExistsCondition object, 730
Explorer object, 139, 234, 238, 263-67
ExServer object, 656
Folder object, 452, 456, 855-56
Host object, 566
InfoStore object, 510, 520-21
Inspector object, 139, 234, 238,267-68
Item object, 143-44
Items object, 228
LanguageSettings object, 261
Link object, 257-59
Log object, 602, 607-8
LogicalCondition object, 708-10
MailItem object, 139, 142
Map object, 604-6

1005

Index

objects (listed by name), continued
MeetingItem object, 139, 475-76
MessageFilter object, 288, 467, 489-90, 521,

546, 547, 556
Message object, 456-58, 475-78, 503, 604-5,

610-19, 622, 846-47
MSQuery object, 772
NameSpace object, 139, 160, 262-63
Object Renderer object, 500
OFT-HTML object, 211
Page object, 160
Participant object, 608-9
Person object, 853
PostItem object, 141, 139
ProcessDefinition object, 943-44
ProcInstance object, 588, 604, 607, 609-10,

636,639
PropertyCondition object, 706, 710
PropertyPage object, 260, 375
PropertyPageSite object, 260, 375, 380-81
PropertyValue object, 707, 710, 712
Query object, 739-45, 739, 748, 759, 764
RecipientEntry object, 610-11, 637
Recipient object, 139, 453, 454, 456, 473,

724
Record object, 818, 832, 833
Recordset object, 414-17, 419, 835
RecurrencePattern object, 850-51
RenderingApplication object, 460-62, 494,

'::;08
Rendering object, 463
Request object, 196, 199-202
Response object, 196, 202, 515
RouteDetails object, 601-2, 611
Row object, 605, 606-7, 623
Selection object, 255
Server object, 196, 202-3
Stream object, 818, 854
SyncObject object, 244-46
TableView object, 463, 464, 494
TaskItem object, 139, 141, 366
Template processor object, 212
UserProperty object, 139
VoteTable object, 602-3, 609-11, 637
WorkflowSession object, 939-42, 940-41
WorkItem object, 611-12

<OBJECT> tag, 196, 281-82, 289, 347, 394, 959
objIADs variable, 673
oCreateAccountBHandlecClick event, 374

1006

oCreateAcctContactBHandlec Click event, 374
oCreateAcctTaskBHandlecClick event, 374
ODBC (Open Database Connectivity). See

Open Database Connectivity (ODBC)
Office (Microsoft). See Microsoft Office
Office Web Components (OWC), 388, 408, 410
OfjlineCollapsed property, 961
Offline Free/Busy application, 421-22
OfjlineRootLabel property, 961
offline support, 42, 56-57, 421-23

CDO and, 431
filtered replication and, 69-70

OFT files, 119, 121, 211-12
OFT-HTML object, 211
OLAP cubes, 389, 408, 424
oldSid variable, 702
OLE DB

ADO and, 413
ADSI and, 655
CDO and, 840
Digital Dashboards and, 409, 413
Exchange Server 2000 and, 786-87, 816-39,

900, 902, 908, 947
events and, 900, 902, 908
helpdesk application and, 467
transactions, 836-38

Olform.hlp, 138
OnAddContactUI event, 963
OnAddInsUpdate event, 232, 234-35
OnAddResult event, 963
OnBeginShutdown event, 232, 234
OnBeginShutdown procedure, 238
OnChange event, 924, 929, 928
OnConnection event, 232-33, 357
OnCreate action, 928
OnCreate event, 924, 927
OnDelete event, 904, 906, 929
OnDisconnection event, 232, 233-34
onelevel argument, 666
OnEmailContact event, 963
OnEnter action, 928
OnEnter event, 924, 927
OnError event, 244, 245
OnExit action, 927, 928
OnExpiry event, 924, 929
OnExtentsChange event, 963
OnlineCollapsed property, 961
OnlineRootLabel property, 961
OnLocalStateChange event, 963

Onlogoff event, 963
Onlogon event, 963
Only Items That Do Not Match These

Conditions option, 62
Only Show Views Created For This Folder

option, 83, 84
OnMDBShutdown event, 904
OnMDBStartup event, 904
OnMenuRequest event, 963, 971
OnMenuSelect event, 963, 971
OnMessageCreated event, 40
OnMessageDeleted event, 40
OnNewIMSession event, 963
OnReady event, 964
OnReadyStateChange property, 859, 860
OnRemoveResult event, 964
OnSave event, 904, 906, 914
OnSelect event, 964
OnShutdown event, 964
OnStartupComplete event, 232, 234, 357, 358
OnStatusChange method, 381
OnSyncDelete event, 903, 944
OnSyncSave event, 902-3, 906, 944
OnTimer event, 40, 904, 906, 914, 918, 925,

944
Open Database COl)1lectivity (ODBC), 438,

467, 732
Open dialog box, 439
openDSObject method, 659, 664
Open method, 414, 467, 604, 665

CDO and, 841, 842
creating new folcfers with, 826, 828
XMl and, 858

Open Other User's Folder dialog box, 483
Open Outlook Template dialog box, 215, 216
OpenLog method, 608
OpenMap method, 605, 623
OpenObject method, 841
GpenSharedDefaultFolder method, 289-93, 290
operator property, 705-7, 706, 710, 712, 714
OptimizeFor property, 740, 744
OptionButton controls

assigning captions to, 102
basic description of, 108-109, 109
converting, to HTMl, 213

options
adMoveOverWrite option, 833
All Files option, 439

Index

options, continued
All Users With Access Permissions option, 52
Attach Link To Original Message option, 126
Attach Original Message option, 126
Automatically Generate Microsoft Exchange

Views option, 51, 84
Current View option, 77, 78
Do Not Include Original Message option, 126
Drag/Drop Posting option, 51
Edit Compose Page option, 95
Edit Read Page option, 95
Enable Offline Access option, 56
Export package option, 772
Folder option, 70
Forward option, 51, 61, 125, 127, 364
Hide From Address Book option, 96, 543,

584
Include And Indent Original Message

option, 126
Include Original Message option, 126
Insert Message As An Attachment option, 61
Joining Fields And Any Text Fragments To

Each Other option, 65
Leave Message Intact option, 61
Macro option, 271
Maximum Number of Search Results

Returned option, 687
New letter To Contact option, 167
Only Iterns That Do Not Match These

Conditions option, 62
Only Show Views Created For This Folder

option, 83,84
Other option, 535
Owners Only option, 52
Parse Script For Functions option, 587, 628
Post Reply To This Folder option, 85
Post The Document In This Folder option, 94
Prefix Each Line Of the Original Message

option, 126 '
Prompt For a Prome To be Useq option,

482
Publish Form As option, 120
Reply option, 126
Reply To New Items With option, 57
Respect User's Default option, 126
Script option, 53,5
Send The Document To Someone option, 94
Separate Read layout option, 94-95

1001

Index

options, continued
Set Folder Up As A Moderated Folder

option, 57
Show Action On option, 127
Show Field In View option, 79
Show Profiles option, 482
Standard option, 61
Submit A Helpdesk Ticket option, 453
This Folder, Visible Only To Me option, 72
This Folder, Visible To Everyone option,

72, 73, 74
This Folder Is Available To option, 52
This User option, 568
Use Existing Exchange Session option, 520,

521
View Code option, 130
View Current Help Tickets option, 440,

450-52
WEIGHT option, 895-96
When Saving, Save Script In Agent Binding

option,630,635
Options.asp, 222
Options dialog box, 354, 364
OptionsPagesAdd event, 262, 263, 376
Options parameter, 833
Options tab, 222
ORDER BY clause, 818, 822-23, 826
ORDER BY predicate, 895
Organizational Forms Library, 36-37, 91,

111)-20, 212
organizational Person class, 652
Organizational Units (OUs), 684-85, 692
Organization tab, 673
Organizer property, 476
OrSplit action, 576, 578--79,579, 590
oSession variable, 202, 518
.ost files, 448
other Mailbox property, 663
Other option, 535
Other Settings dialog box, 81-82
Other tab, 225, 532
Otherwise element, 880
OUs (Organizational Units). See Organiza­

tional Units (OUs)
Outlook for the Macintosh. See Microsoft

Outlook for the Macintosh
Outlook object library. See Microsoft Outlook

object library

1008

Outlook object model. See Microsoft Outlook
object model

Outlook shortcut bar. See Microsoft Outlook
shortcut bar

Outlook Today. See Microsoft Outlook Today
Outlook Web Access (OWA). See Microsoft

Outlook Web Access (OWA)
Owner permiSSions, 481
Owner property, 866
Owner rights, 306
Owners Only option, 52

p
Page Counter component, 204
Page object, 160
Pages collection, 139, 246-47
Panes property, 264
parallel branching, 577-78
parameters

adCreateCollection parameter, 826, 828
AdsPath parameter, 656, 659
Async parameter, 858
Cancel parameter, 247-48, 250, 253-54,

266, 270
class parameter, 459
CreateOptions parameter, 828, 829
CurrentStep parameter, 326
Custom parameter, 233, 234, 235
dataurl parameter, 885, 886
DeferUpdate parameter, 282
Description parameter, 245
Destination parameter, 833
executeurl parameter, 888
Folder parameter, 282
formurl parameter, 888
Group parameter, 247
HelpContext parameter, 380
HelpFile parameter, 380
IsTimeout parameter, 579
IFlags parameter, 918, 919
Max parameter, 245
Namespace parameter, 282, 347
NewSession parameter, 434
Options parameter, 833
Password parameter, 858
Profllelnfo parameter, 435
ProflleName parameter, 434
PropsetID parameter, 459

parameters, continued
RemoveMethod parameter, 233
Restriction parameter, 282
Shortcut parameter, 248
ShowDialog parameter, 434
State parameter, 245
TempDirectory parameter, "326
Temporary parameter, 371
TotalSteps parameter, 326
Type parameter, 834
URL parameter, 858
User parameter, 858
UserPerms parameter, 326
Value parameter, 245
View parameter, 282

<P ARAM> tag, 959
parentheses, 626
Parent property, 381, 651
Parse Script For Functions option, 587, 628
Participant object, 608-9
Participant property, 603
Password argument, 701
PasswordChar property, 114
Password parameter, 858
passwords. See also authentication; logon;

security
ADS! and, 659
ASP and, 206-7
COM and, 701
Digest authentication and, 210
for form designs, 116
Outlook Web Access and, 207
placeholder characters for, specifying, 114
XML and, 858

PasteFace method, 372
paths, creating, 656
Patterns collection, 496
PDF files, 733
percent sign (%), 736, 823
Permission Checker component, 204
permissions. See also permissions (listed by

name); security
ACLs and, 208
ADS! and, 657, 659-70
CDO and, 440, 481, 482
COM components and, 701, 716, 726
deleting, 726
Event Scripting Agent and, 530, 531-32

permissions, continued
Exchange Server directory and, 24-25
global, 29-30
group, 29-30
helpdesk application, 440

Index

Outlook Web Access and, 205, 208, 209
per user, 29-30
public folders and, 29-30
routing objects and, 584
selecting individual, 55
updating, 296

permissions (listed by name). See also
permissions

Create Items permission, 440, 450, 451
MAPLACCESS_READ permission, 452
Read Items permission, 440, 450, 451, 507
Write permission, 716

Permissions control, 277,278
basic description of, 294-99
methods, 295
programming, 294-95
properties, 295
specifying the location of, 319

Permissions tab, 53-56,54-55, 440, 481--82,
582, 717

permlist.asp, 723, 726
Personal Forms Library, 37, 91, 212

publishing forms in, 119-20
selecting forms from, 215

person class, 652
Person object, 853
pEventlnfo variable, 918
Picture Alignment property, 111
Picture property, 111, 112, 114
PictureSizeMode property, 111
Picture Tiling property, 111
PIMessage property, 610
PivotTable component, 389, 408-9
Platform SDK (Software Development Kit).

See Microsoft Platform Software
Development Kit

POLL command, 868
PopulateCombo function, 622
Post forms, 88, 89, 91, 94-95

Account Tracking application and, 151-52, 153
adding controls to, 95

posthelp.asp, 456, 457
Posting Acceptor, 716, 721
PostItem object, 141, 139

1009

Index

Post method, 199, 200, 201, 787, 858
Post Now button, 456
Post Reply To This Folder option, 85
Post The Document In This Folder option, 94
PowerPoint (Microsoft). See Microsoft

PowerPoint
PR_CONTAINER_CLASS property, 288
PR_DEFAULT_ VIEW_ENIRYID property, 288
Prefix Each Line Of The Original Message

option, 126
PREFIX setting, 712
Prepared property, 417
PR_EVENT_SCRIPT property, 565
PreProcessing action, 581
Preview pane, 246
PR_GIVEN_NAME property, 583
print interfaces, 652
priority property, 904, 905, 906
private folders, 734
PrivilegedWorkflowAuthors role, 927, 946
Procedure ID dialog box, 381, 382
procedure-level variables, 132-33
ProcessDefinition object, 943-44
process instances

Agent Install application and, 635-41, 635
currently executed rows in, viewing,

638-41,639
deleting, 635-36
detecting, 635-36
Recipient table for, viewing, 637-38, 637
routing objects and, 574-575
viewing rows in, 638-41

ProcInstance object, 588, 604, 607, 609-10,
636, 639

Proclnstance property, 601, 602-4
ProductCode property, 261
Profllelnfo parameter, 435
ProflleName parameter, 434
profiles, 434-45, 482
PrOgIDS, 202, 239, 334

CDO and, 442, 460
property pages and, 376
of the Session object, 434

Progress event, 244, 245
ProjectMain.asp, 728-30
Project Properties dialog box, 237-38, 237
Project.pst, 717
Project/References dialog box, 231, 232

1010

Projects application
architecture, 717-22, 718-22
basic description of, 715-30
folder structure in, 717-18, 718
implementing, 723-27
project member list in, 719, 720
setting up, 716-17, 716

Projects page, 390, 391, 717, 718
Prompt For A Profile To Be Used option, 482
prompting users, for input, 485-88, 485
Prompt User Before Opening Each Form

check box, 226
properties (listed by name). See also Count

property
Access-Category property, 653-54
Action property, 606, 623, 707
Actions property, 708
ActionType property, 707
ActiveConnection property, 417, 940
ActiveExplorer property, 283
Active property, 563, 566
ActivityCount property, 604, 623
ActivityID property, 606, 623
AddAuditEntry property, 940
AddressEntry property, 454, 456, 525
AdsPath property, 651
AllowCollapse property, 960
Allow Enumeration property, 739
Always Use Microsoft Word As The E-Mail

Editor property, 116
AmbiguousNames property, 847
AnswerWizard property, 260
AQ? property, 707, 729
At property, 564
Author property, 62, 66, 67
AutoSize property, 106, 111, 228
BackColor property, 102, 113
BackStyle property, 113
baseschema property, 815
BCC property, 846
Bindings property, 560, 561
BOF property, 415, 835
BorderColor property, 114
BorderStyle property, 114
BoundFolder property, 560
Cancel property, 417
Caption property, 102, 263, 372, 381
Catalog property, 740
CatalogSeqNums property, 744

properties (listed by name), continued
Categories property, 512
Category property, 115
CC property, 846
CDOItem property, 724
CdoPR_Message_Flags property, 713-14
Cell Pattern property, 497
Change Large Icon property, 116
Change Small Icon property, 116
Class property, 651
cn property, 663
Code Base property, 281, 300-301, 758
CodePage property, 198
Columns property, 740
COMAddIns property, 260-61
CommandBars property, 283
CommandText property, 417
CommandTimeOut property, 417
CommandType property, 417
Condition property, 707
ConfigParameter property, 462
Connect property, 234
Contact property, 116
Contents property, 247
ControlTipText property, 114
ConversationIndex property, 459-60
Conversation Topic property, 459
CreateIterns property, 726 .
CreateParameter property, 417
criteria property, 905-6
CurrentGroup property, 247
Current Row property, 602, 639
CurrentView property, 263-64, 464
DataSource property, 462, 500
Date property, 611
Days property, 564
default property, 811
DeferUpdate property, 289
DeleteReceivedMessage property, 940
DeleteWorlqlowItem property, 940
Description property, 116, 653-54, 750, 769,

836
Dirty property, 380--81
DirVRL property, 846
DLName property, 243
DocAddressproperty,750
DocTitle property, 750
Domain property, 940
element property, 813

properties (listed by name), continued
EmailAddress property, 971
Enabled property, 103,905,906
EndTime property, 476, 564
EntryID property, 561, 565
EOF property, 415, 835
ErrorDescription property, 940
ErrorNumber property, 940
EventMask property, 563

Index

EventMethod property, 905, 906
Execute property, 417
expected-content-class property, 814-15
Expires property, 202
Explorers property, 261
extends property, 813
Extent Height property, 960
ExtentWidth property, 960
FaceId property, 372
Fields property, 525, 940
FilterOffline property, 960
Filter property, 416, 490, 522
Flags property, 606, 623, 628
Folder property, 288-89, 601, 705-6
FolderVisible property, 726
Form Number property, 116
From property, 846
fulltextindexed property, 897
GetNewWorlqlowMessage property, 940
GetUserProperty property, 940
giveName property, 663
GroupName property, 109
HandlerClassID property, 563
Height property, 264
Heuristics property, 653-55, 654
Home-MDB property, 663
Home-MTA property, 663
HostName property, 567
HotTracking property, 960
ID property, 725, 729
Importance property, 458
InitSucceeded property, 294, 295
InsertActivity property, 605
Inspectors property, 261
isindexed property, 825
isreadonly property, 811
IsUserInRole property, 941
ItemAuthors property, 941, 942
Item property, 259, 566, 610-12

1011

Index

properties Oisted by name), continued
ItemReaders property, 941, 942
LanguageSettings property, 261
LCID property, 198
Left property, 264
LinkPattern property, 497
Links property, 269
List property, 960
LocaleID property, 740
Location property, 476
lockdiscovery property, 866
locktoken property, 867
LoggedOn property, 960, 964
Log property, 602-3, 607
mail property, 663, 939
manager property, 939
Map property, 603, 636
MAP/-Recipient property, 663
Matcbscope property, 905, 906, 913
MaxRecords property, 740
MDB-Use-Defaults property, 663
MeetingStatus property, 476
MemberCount property, 243-44
MessageClass property, 750
MessageDisplayCC property, 750
MessageDisplayName property, 750
MessageFolderName property, 750
Message property, 603-5, 622-23, 636, 639
lWETAproperty, 751, 754, 776, 778
Mode property, 495, 497, 499
MoreRows property, 744
MouseIcon property, 114
MousePointer property, 114
Msg property, 601
Multiline property, 103, 106
MultiSelect property, 107
MyProp property, 828
Name property, 247, 251, 259, 456, 522,

563, 651, 707-8, 775
NextStartHit property, 744
Number property, 836
Object property, 239
OjjlineCollapsed property, 961
OjjlineRootLabel property, 961
OnlineCollapsed property, 961
OnlineRootLabel property, 961
OnReadyStateChange property, 859, 860

1012

properties Oisted by name), continued
Operator property, 705-7, 706, 710, 712,

714
OptimizeFor property, 740, 744
Organizer property, 476
other Mailbox property, 663
OWner property, 866
Panes property, 264
Parent property, 381, 651
Participant property, 603
PasswordChar property, 114
Picture Alignment property, 111
Picture property, 111, 112, 114
PictureSizeMode property, 111
PictureTiling property, 111
PIMessage property, 610
PR_CONTAINER_CLASS property, 288
PR_DEFAULT_ VIEW_ENIRYID property,

288
PR_EVENT_SCRIPT property, 565
PR_GIVEN_NAME property, 583
Prepared property, 417
priority property, 904, 905, 906
ProcInstance property, 601, 602-4
ProductCode property, 261
Properties property, 941
PropertyTag property, 706, 730
PropertyType property, 712
Protect Form Design property, 116
Provider property, 665
Put property, 663
QueryIncomplete property, 742
Query property, 741, 748
QueryTimeOut property, 741
Read Only property, 103
ReadyState property, 859
ReceivedMessage property, 941
Recipient property, 611
RecordCountproperty,416,835
ReminderMinutesBeforeStart property, 476
ReminderSet property, 476
RenderUsing property, 463-64
report-to-originator property, 678
report-to-owner property, 678
Reports property, 651
Reset property, 742
Resize with Form property, 103
ResolvedStatus property, 847

properties (listed by name), continued
responseBody property, 859-60
ResponseRequested property, 476
responseStream property,859-60
responseText property, 859-60
responseXML property, 859-60
Restriction property, 289, 323, 352
Rights property, 726
RootFolder property, 449, 452
RouteMap property, 575, 616
RouteType property, 575, 616
RowCount property, 744-45
RowLimitExceeded property, 745
RowPrefzx property, 497
RowsPerPage property, 465
RowSufJix property, 497
Ru/ property, 603
SaveMap property, 605
Schedule property, 563, 564
schema-collection-ref property, 815
Schema property, 651
Scope property, 905, 907
ScriptTimeout property, 202-3
sCripturl property, 905, 907
SelectedMenuOptions property, 961
Selection property, 264
Sender property, 941
Send Form Definition With Item property,

116-17, 120-21
Sent property, 457
Server property, 941
Service property, 961
SessionID property, 198
Session property, 560
Shortcuts property, 251
ShowIcons property, 961
ShowLogonButton property, 961
ShowSelectAlways property, 961
sinkclass property, 905, 907
sn property, 663
SortBy property, 741
Source property, 836
SpecialEfJect property, 114
StartHitproperty, 741, 744
StartTime property, 475, 476, 564
StateFrom property, 941
State property, 417
StateTo property, 941

properties (listed by name), continued
Status property, 611,860
StatusText property, 860
Style property, 372
Sub-Category property, 115
Subject property, 142,458,459,896
Submitted property, 457, 458
Sunken property, 103
SyncObjects property, 263
TablePrefix property, 497
TableSufJix property, 497
Tag property, 706

Index

target-address property, 677
TargetAdminFolder property, 294, 295, 296
TargetFolder property, 294,295, 296
Target property, 254
Template property, 116
Terminated property, 603
textEncodedORaddres~ property, 663
Text property, 478
TimeOut property, 195, 198, 199, 603
TimeReceived property, 457, 458
timerexpirytime property, 905, 907
timerinteroal property, 905, 907
timerstarttime property, 905, 907--8
TimeSent property, 457, 458
timerstarttime property, 905, 907--8
TimeSent prQperty, 457, 458
To property, 846
Top property, 264
TrackingTable property, 941
Type property, 259, 458, 563
utd property, 663
Unread property, 457-58, 467
UserName property, 134
Value property, 706,712, 714
VElr5ion property, 116
View property, 282--88, 350
ViewType property, 251
VirtualRoot property, 503
VtsibleCount property, 855
Visible property, 103,247
VoteTable property, 603, 610
Wait property, 603
WebViewAllowNavigation property, 189,

268, 364
WflbViewOn property, 268, 364
WevViewURL property, 268, 364
Width property, 264

1013

Index

properties (listed by name), continued
WindowState property, 264-65
WordWrap property, 106
WorkflowSession.Sender property, 939
Work/tem property, 601

Properties page, 115-17, 115
Properties property, 941
property caches, 650-51
PropertyCondition object, 706, 710
PropertyPage interface, 380
PropertyPage object, 260, 375
property pages, 260, 375-76, 374-82
PropertyPages collection, 260, 376
PropertyPageSite object, 260, 375, 380-81
PropertyTag property, 706, 730
PropertyType property, 712
PropertyValue object, 707, 710, 712
PROPFIND command, 864-65, 952
PropFind method, 872
PROPPATCH command, 863-64, 867, 956
PropsetlD parameter, 459
Protect Form Design property, 116
Provider property, 665
PSTAppRoot Registry key, 321
.pst files, 119, 315, 448, 506, 544
PSTName Registry key, 321
PSTTide Registry key, 322
Public Folder application, 310-14
public folders. See also folders

accessing, 435-46, 448-50
Mfinity option for, 28, 29
auto-expiring of items in, 505
basic description of, 27-34
content control for, 29-30
copying the Account Tracking folder to,

157
creating, 49-50
Event Scripting Agent and, 40, 529
free documents in, 751
helpdesk application and, 438-39, 457,

448-50
Internet standards and, 30-34
Intranet News application and, 505-8,

5lO-13
moderated, 29
Project application and, 715-30
rules and, 38-39, 59-63
searching, 736-37

1014

public folders, continued
security for, 29-30
Site Server and, 734, 736-37, 751
threaded discussion view for, 719, 721
Training application and, 796-97, 797
tree view of, 28
updating permissions in, 296
Web Storage System and, 791

Publish Form As option, 120
PutEx method, 651, 663
Put method, 651, 663, 861
Put property, 663

Q
Querylncomplete property, 742
Query object, 739-45, 739, 748, 759, 764
Query object library, 738-45, 739
Query property, 741, 748
QueryString collection, 199, 201
query string variables, 747-49, 748
QueryTimeOut property, 741
QueryToURL method, 743
Quit event, 262

R
Raise method, 538
RANK BY predicate, 895
ranking, 779-80, 895-97
raw mode, 653
read. asp, 503
Read Items permission, 440, 450, 451, 507
read mode, 159-60
read-only flags, 438, 506
Read-Only permissions, 55, 438, 506
Read Only property, 103
read receipts, 16-17, 17
Read right, 215
ReadyState property, 859
Receive action, 581, 929
ReceivedApprovalMsg subroutine, 579
ReceivedMessage property, 941
RecipientEntry object, 610-11, 637
Recipient object, 139, 453, 454, 456, 473 724
Recipient propertY, 611 '
RecipieI1ts collection, 139, 454, 476
Recinients container

ADSIand, 650-41, 660, 683-87
creating, 68:}-s4
displaying objects in, 684-87, 687

Recipient tables, viewing, 637-38, 637
Recipient Table tab, 637
RecordCount property, 416, 835
Record object, 818, 832, 833
Recordset object, 414-17, 419, 835
recordsets. See also Recordset object

extensions for, 743-45, 743
working with, by using ADO, 834-36

RecurrencePattern object, 850-51
References dialog box, 148, 353
RejreshAgentCount subroutine, 614
registering

COM add-ins, 353-54
extensions, 334-35

Registry, 182-83, 374-82, 717
Account Tracking application and, 354-55,

355
ADSI and, 657-68
CDO and, 443, 508
COM add-ins and, 235-237
Digital Dashboards and, 397, 420
Event Scripting Agent and, 533, 542-43
Expense Routing application and, 584-85
HKEY_CLASSES_ROOT Registry key, 235
HKEY_CURRENT_USER Registry key, 190,

321-22
HKEY _LOCAL_MACHINE Registry key, 533,

543
Intranet News application and, 508
Outlook Today and, 190, 393
Project application and, 717
Team Folders Wizard and, 275, 276
templates and, 321

Registry Editor, 190, 533, 542-43, 584-85
regular expressions, 210
Rejected state, 924
Reminder event, 262
ReminderMinutesBejoreStart property, 476
ReminderSet property, 476
remote-address class, 652
RemoveMembers method, 243
Remove method, 249-50, 252-53, 258-59, 295,

680,962
RemoveMethod parameter, 233
RenderAppointments method, 498, 499
render.asp, 465-66
RenderEvents method, 499

Index

RenderingApplication object, 460-62, 494,
508

Rendering library, 430, 435, 442
ADSI and, 658
Calendar of Events and, 481, 489-95, 495,

500-501, 514-15
CDO Visual Basic application and, 519
filtering events from, 489-93
helpdesk application and, 460-66, 461
Intranet News application and, 506, 510,

513,514, 516
rendering views with, 494, 495

Rendering object, 463
Render method, 464-65
RenderProperty method, 500-503, 515, 517
RenderUsing property, 463-64
Replace function, 516, 517
replication, 21-22, 21, 24, 35-38
Reply action, 125, 126-27
Reply All action, 128
ReplyAll method, 351
ReplylnFolder method, 351
Reply option, 126
Reply To All action, 125, 127
Reply To Folder action, 125, 127
Reply To Group form, 721-22, 722
Reply To New Items With option, 57
Reply With action, 61-62
report-to-originator property, 678
report-to-owner property, 678
reports, creating, 155
Reports property, 651
Reports page, 388, 389
RequestDeleteTeam function, 306
Request method, 200
Request object, 196, 199-202
required fields, 213
Reset property, 742
Resize with Form property, 103
resolved. asp, 478-79
ResolvedStatus property, 847
Resolve method, 454, 456, 478
ResolveRole method, 609
resources

locking, 865-67
subscribing to, 867-68
unlocking, 867

1015

Index

Resources page, 390, 391
Respect User's Default option, 126
responseBody property, 859-60
Response object, 196, 202, 515
ResponseRequested property, 476
responseStream property, 859-60
responseText property, 859-60
responseXML property, 859-60
Restriction parameter, 282
Restriction property, 289, 323, 352
Restrict method, 289, 344, 352
ReSync method, 834
Return To Sender action, 60
Revenue tab, 155, 156, 169
Reviewer role, 582
Rich Text mail format, 97
Rights property, 726
Role Administrator program, 582-83
RoleName method, 608
roles

basic description of, 10-11
public folders and, 55
routing objects and, 581-83
workflow applications and, 10-12

RollbackTrans method, 817
Root Binder, 817
RootFolder property, 449, 452
Route_CheckTotal subroutine, 580
RouteDetails object, 601-2, 611
RouteMap property, 575, 616
Route_ naming convention, 580, 590, 626
RouteType property, 575, 616
Route Unique Identifier (RUI), 574-75, 579,

588, 603
Expense Routing application and, 588
Msg property and, 601

RoutingAgentScript.txt, 585-586, 591-600
routing maps, 575-76, 576, 587. See also

routing objects
Agent Install application and, 613, 620-35
deleting, 618-19
deleting agents with, 618-19
adding new agents that have, 616-18
detecting, in folders, 614-16
editing, 623
saving, 630-35
viewing, 620-23, 620

1016

Routing Object library, 588, 600-612, 600
routing objects

architecture, 572-574, 573
basic description of, 571-646
custom script actions for, 579-81, 580-81
diagram of, 573
engines, operation of, 574-75
intrinsic actions and, 576-79
process instances and, 574-75
.roles and, 581-83
routing maps for, 575-76, 576, 587

Routing Script Source Code, 580
routingsrc.exe, 580
Routing.vbs, 580-81
Routing Wizard application, 575, 581-83,

585-86, 616, 637
RowCount property, 744-45
RowLimitExceeded property, 745
Row object, 605, 606-7, 623
RowPrefix property, 497
RowsPerPage property, 465
RowSuffix property, 497
RUI (Route Unique Identifier). See Route

Unique Identifier (RUI)
RUI property, 603
Rule component, 715-30
Rule.dll, 717
rules

applying, 61
basic description of, 10-11, 38-39
creating, 59-63
firing, on all incoming messages, 728-30
implementing, 61-63
public folder, 59-63
setting actions for, 60-61
setting conditions for, 59-60
storing, 703-15

Rules collection, 708
Rules component, 703-15, 723-30

basic description of, 700
creating an instance of, 704
firing incoming messages with, 728-30
searching for bitmasks with, 713-15
searching for specific content with,

710-12
storing rules with, 703-4
using, 704-8

Rules Wizard, 703
run mode, testing forms in, 119
run time, viewing/changing values at, 137
Rwsetup.exe, 585

S
Sales.mdb, 157-58
satellite links, 16
Save As button, 641
Save button, 630
SaveChanges method, 564--66
SaveCurrentMap subroutine, 634, 635
SaveLog method, 608
SaveMap property, 605
Save method, 176, 604, 610
Save Routing Agent To Folder form, 641
SaveToContainer method, 841, 843, 853
SaveTo method, 841, 842--43
SaveToObject method, 841, 844
Save Workflow Process To Folder tool, 943--46
saving

contacts, 854-55
form definitions, 228
form templates, 119, 121
routing maps, 630--35
source code, 190

scalability, of Digital Dashboards, 386
Scheduled Event dialog box, 535, 559
Schedule property, 563, 564
schema, 23, 652-55

Training application and, 806--15
Web Storage System and, 787-88

schema-collection-ref property, 815
Schema container, 653
Schema Picker, 889-90, 890
Schema property, 651
scope argument, 666
SCOPE clause, 819, 820
Scope property, 905, 907
Script Debugger. See Microsoft Script

Debugger
Script Editor, 130-33, 144
Script element, 880-81
sCript-level variables, 132-33
Script option, 535
scripts

controlling the execution of, 137
debugging, 93, 136-38, 137, 538--40,539

scripts, continued
instantiating objects from, 538
intrinsic objects for, 537-38
parsing, 623-30, 628
selecting, 623-30, 624
used with routing maps, 623-30

SCript.Response method, 540, 541, 549
ScriptTimeout property, 202-3
sCripturl property, 905, 907
ScrollBar control, 214

Index

SearchAdmin object model, 773--75, 774,
777-78

SEARCH request, 869-71
Search service, 732-33, 735-36, 736
Secure Sockets Layers (SSL), 34, 35, 659

HTTPS and, 98
Outlook Web Access and, 207

security. See also encryption; passwords
ASP and, 206-8, 751-52
CDO and, 443, 450--53
certificates, revoking, 35
collaborative systems and, 3
COM+ and, 921
descriptors, 702
events and, 901
Exchange Server 2000 and, 798, 901, 921,

946--57, 950-51
Exchange Server directory and, 24-25
groups, 798
identifiers (SIDs), 702, 921, 946
integrated, 34-35
Internet standards-based, 34-35
Outlook Today and, 187, 188--189
Outlook Web Access and, 204-8, 210
public folders and, 29-30
sample application, 951-57, 951-52
SSL and, 34, 35, 98, 207, 659
Web Storage System and, 790

SelectedMenuOptions property, 961
Selection Change event, 266
Selection collection, 374
Selection object, 255
Selection property, 264
Select Script button, 587, 623-26
Select Script dialog box, 623-24, 624
SELECT statement, 788, 807, 814-15, 818-22,

834, 869
Fields collection and, 834
ranking and, 895

1017

Index

SELECT statement, continued
SCOPE clause, 819, 820
WebDAV search requests and, 869

Select Where to Place The Folder box, 49
semicolon (;), 59
Send action, 577, 581
Sender property, 941
Send Form Definition With Item property,

116-17,120-21
Send method, 457, 476-77, 479, 859-60
Send On Behalf Of permissions, 366
Send The Document To Someone option, 94
Sent property, 457
Separate Read Layout option, 94-95
Server object, 196, 202-3
Seroer property, 941
Server Scripting add-in, 532, 584
server-side include files, 203
Seroer. Transfer method, 210
ServerVariables collection, 199-200
Seroice property, 961
Services applet, 530, 531
Services tab, 482
SessionlD property, 198
Session object, 195-96, 431-34, 432, 460, 473

basic description of, 198-99
CDO Visual Basic application and, 519, 521
helpdesk application and, 441-44
Project application and, 724
routing objects and, 602
using, 433-34

Session_OnEnd event, 195-96
Session_OnEnd subroutine, 441, 444
Session_OnStart event, 194-95
Session_OnStart subroutine, 441-43, 483, 485,

486
Session property, 560
SetArgs method, 607
Set Folder Up As A Moderated Folder option, 57
SetInfo method, 651, 663
SetLocalelDs method, 434
SetPref method, 397, 399, 420
SetQueryFromURL method, 743, 759
SetRequestHeader method, 858-59
SET statement, 134,826
shading effects, for controls, 102-3
shared fields, 96
Shell function, 238, 240

1018

ShortcutAd event, 253, 254
Shortcut parameter, 248
shortcuts

Account Tracking application and, 356,
357-64

for notification e-mail, 311
Outlook Bar, 251-55
searching for, 357-64

Shortcuts property, 251
Show Action On option, 127
ShowDialog parameter, 434
Show Field In View option, 79
Show Fields dialog box, 352
ShowFields method, 352
ShowIcons property, 961
ShowLogonButton property, 961
ShowPane method, 265
Show Profiles option, 482
ShowSelectAlways property, 961
SIDs (security identifiers), 702, 921, 946
sinkclass property, 905, 907
Simple Mail Transfer Protocol (SMTP), 34-35,

430, 660, 840, 841
Site Server (Microsoft). See Microsoft Site Server
Size condition, 706
SMS (Microsoft Systems Management Server).

See Microsoft Systems Management
Server (SMS)

smsdata.mdb, 438
SMTP (Simple Mail Transfer Protocol). See

Simple Mail Transfer Protocol (SMTP)
sn property, 663
SortBy property, 741
Sort dialog box, 79-80, 80
Sort method, 511
Source property, 836
SourceURL element, 920
SpecialEffect property, 114
SpinButton control, 111, 214
Spreadsheet component, 408-9
SQL (Structured Query Language). See

Structured Query Language (s~L)
square brackets ([]), 823
SSL (Secure Sockets Layers). See Secure

Sockets Layers (SSL)
Standard option, 61
StartEnd field, 413
StartHit property, 741, 744
Start method, 245
StartTime property, 475, 476, 564

Startup event, 262
StateFrom property, 941
State parameter, 245
State property, 417
StateTo property, 941
StaticObjects collection, 196-97
Status property, 611, 860
StatusText property, 860
Status view, 440
Stop method, 245
Stop statement, 136, 137, 539
StoreGUID element, 920
StoreGUIDFromURL method, 913
Stream object, 818, 854
STRFOLDERHOMEPAGEPATH constant, 353
StrFullPath function, 289
String data type, 320, 811
strtName variable, 134
strType variable, 780
Structured Query Language (SQL), 14, 871.

See also SELECT statement
Digital Dashboards and, 417-19
events and, 905
search folders and, 872
SET statement, 134, 826

Style property, 372
style sheets. See also eXtensible Style Sheets

(XSL)
SubCategory property, 115
Subject field, 97, 104, 413, 440
SubjectLocation field, 413
Subject property, 142, 458, 459, 896
Submit A Helpdesk Ticket option, 453
Submitted property, 457, 458
subroutines. See also functions

Activate subroutine, 330
Application_OnStart subroutine, 194-95,

485, 443
btn_Next subroutine, 330-31
cmdAddAccountContact subroutine, 165
cmdAddAgent_Click subroutine, 616-17
cmdAddTasks subroutine, 165
cmdCreateSalesChart subroutine, 169-75
cmdPrintAccountSummary subroutine,

169-75
cmdReJreshContactsList subroutine, 165
cmdSaveChanges_Click subroutine, 634
CreateFolder subroutine, 828

subroutines, continued
FindAddress subroutine, 163-64
GetDatabaselnjo subroutine, 162-63
ManageSids subroutine, 702, 703
ReceivedApprovalMsg subroutine, 579

SUBSCRIBE command, 867-68

Index

subscription! notification functionality, 310-14,
310,312

subtree argument, 666
SUM statement, 826
Sunken property, 103
SyncEnd event, 244, 245
SynchFolder method, 352
SynchObjects collection, 244-46
synchronization, 41, 56-57, 387, 423

enabling, 56
filtered replication and, 69-71
groups, 244-46
replication and, 22
starting/stopping, 245

Synchronization tab, 56-57, 70
SyncObject object, 244-46
SyncObjects property, 263
SyncStart event, 244, 245
System Manager, 893-94, 894
System Monitor control, 398-402, 398

T
TablePreJix property, 497
tables

action, 924, 929-30, 932, 943
HTML, 682, 683, 686
rendering, 497
views of, 71

TableSuffix property, 497
TableView object, 463, 464, 494
tab order, 114
Tab Order dialog box, 114
TabStrip control, 109, 110, 214
Tag property, 706
tags. See also elements

<A> tag, 516
<Content> tag, 396
<DIV> tag, 394-99, 397, 403, 412, 473
<IFRAME> tag, 397
<OBJECT> tag, 196, 281-82, 289, 347, 394,

959
<P ARAM> tag, 959

1019

Index

target-address property, 677
TargetAdminFolder property, 294, 295, 296
TargetFolder property, 294, 295, 296
Target property, 254
Task form, 89, 91, 151-52, 154--55, 155
TaskItem object, 139, 141, 366
Taxes page, 390
Team Calendar template, 273
Team Contacts template, 273
Team Folders Wizard

Administration Extension, 299-314,301
architecture of, 275-78
basic description of, 273-334
Dashboards and, 390
extending, 278--80, 324--35, 325
features of, 273--75
modifying HTML pages with, 278--80
Outlook View control and, 346
Registry entries for, 275, 276
templates, building, 315-24
templates, custom, 315-24
templates, deploying, 321-22
templates, modifying HTML for, 301--6,302-3
templates, selecting, 274

Team Project application, 274--334
hierarchy of folders created by, 279
home page of, 276
Team Calendar page, 276, 277

TempDirectory parameter, 326
Template button, 62
Template.ini, 315-20
Template processor object, 212
Template property, 116
templates, 116, 119, 121

building, 315-24
custom, 315-24
deploying, 321-22
modifying HTML for, 301--6,302-3
selecting, 274

Temporary parameter, 371
Terminate action, 576, 577-79, 638
:rerminated property, 603
testing

applications, importance of, 48
COM add-ins, 354--57
folder home pages, 339
forms, 118

text. See also TextBox controls
adding, to Outlook Today pages, 191
fields, 63

1020

TextBox controls
basic description of, 106
converting, to HTML, 212
creating, 95
renaming, 101-2
SpinButton control and, 111
validation and, 104-5

textEncodedORaddress property, 663
Text property, 478
This Folder, Visible Only To Me option, 72
This Folder, Visible To Everyone option, 72,

73, 74
This Folder Is Available To option, 52
This User option, 568
Threaded Discussion application, 49-50, 56,

57-58
threaded views, 84--85, 85
timecard application, 105
timeline view, 71, 74, 75
timeout periods, 195, 198, 199, 736, 603
TimeOut property, 195, 198, 199, 603
TimeReceived property, 457, 458
timer event, 575
timerexpirytime property, 905, 907
timerinterval property, 905, 907
timerstarttime property, 905, 907-8
TimeSent property, 457, 458
time zones, working with, 852-53
tmplnProcess variable, 565
To property, 846
toggle button controls, 102, 108, 214
top-level hierarchies, 790, 791
Top property, 264
Total field, 123
TotalSteps parameter, 326
TrackingTable property, 941
Training application, 785, 794--806, 888

action table based on, 924
CDO and, 841
COM+ and, 921
content classes and, R09-10
content indexing and, 898--99
creating a course with, 799-800, 799
creating new folders for, 826-29
debugging and, 922-23
events and, 904, 905, 913, 918
home page, 796--98, 797
instant messaging and, 958, 964-72
OWA and, 884
registering for a course with, 801-2

Training application, continued
searching for a course with, 803
setting up, 795-96
survey component, 804-6
using, 796-806
workflow capabilities and, 803-6, 924
XML and, 873-74

transactions, 23, 836-38
TreeView control, 113
type checking, 213
Type parameter, 834
Type property, 259, 458, 563

U
uid property, 663
UnblockSelected method, 962
Uniform Resource Locators (URLs), 818, 854,

872, 902, 918. See also links
absolute, 858
addressing, 816
for ADS! applications, 657
binding support for, 816-18
for the Calendar of Events application, 503
for containers, 843
for Excel spreadsheets, 409
for the Expense Report application, 543, 587
for folders, 828
file, 854
for the Helpdesk application, 438
identifying, for folder home pages, 364
for the Project application, 717
query strings and, 759
SELECT statement and, 819-20
shortcuts to, on the Outlook Bar, 252-54
string values which specify, in the Registry,

322
XML and, 858, 863-65

Universal Time Coordinate (UTC), 749, m, 822
CDO and, 841, 852
local time, calculating the offset between, 852

UNIX, 42-43, 210
UNLOCK command, 867
Unlock method, 196-97
Unread property, 457-58, 467
Update command, 726
Updatelndices method, 707-8
Update method, 295, 452, 457, 460, 467,

565,834
COM components and, 707-8, 725-26

Update method, continued
content classes and, 811-12, 813
Permissions control and, 295
Project application and, 726
routing objects and, 604, 605

UpdateStatus subroutine, 576
URL parameter, 858
URLs (Uniform Resource Locators). See

Uniform Resource Locators (URLs)

Index

Use Existing Exchange Session option, 520, 521
user

getting input from, 752-64
settings, storing, 374-82

UserComment argument, 701
UserGUID element, 920
UserLogin argument, 701
User Manager For Domains, 207, 530
UserName property, 134
User parameter, 858
UserPerms parameter, 326
UserProperties collection, 139, 344
UserProperty object, 139
UserSID element, 920
UseWelcomeScreen Registry key, 322
UTC (Universal Time Coordinate). See

Universal Time Coordinate (UTC)
Util object library, 738

V
validation, 104-5
Validation tab, 105
Value-of element, 879, 880
Value parameter, 245
Value property, 706,712, 714
values

ACflON_BOUNCE value, 707
ACflON_COPY value, 707
ACflON_DEFER value, 707
ACflON_DELEGATE value, 707
ACflON_DELETE value, 707
ACflON_FORWARD value, 707
ACT[ON_MARKREAD value, 707
ACflON_MOVE value, 707
ACflON_OFREPLYvalue, 707
ACJ10N_REPLY value, 707
ACflON_TAG value, 707
adWChar value, 834
CdoClassContainerRenderer value, 462
CdoClassObjectRenderer value, 462

1021

Index

values, continued
CdoFolderContents value, 464
CdoHigh value, 458
CdoLow value, 458
CdoMeetingCanceled value, 476
CdoNonMeeting value, 476
CdoNormal value, 458
COMPLETED value, 859
ExtensionClass value, 334
ExtensionSteps value, 334
INlERACflVE value, 859
ICmd value, 971
LOADED value, 859
LOADING value, 859
vbArray value, 459
vbBlob value, 459
vbBoolean value, 459
vbCurrency value, 459
vbDataObject value, 459
vbDate value, 459
vbDouble value, 459
vbEmpty value, 459
vbInteger value, 459
vbLong value, 459
vbNull value, 459
vbSingle value, 459
vbString value, 459
vbVariant value, 459

Value tab, 103, 104, 107-9, 113
variables. See also variables (listed by name)

ASP and, 194--95, 197, 200, 202
binding, to objects, 135
converting, to different subtypes, 134
declaring, 131-132
global, 132-33, 159-60
initialization of, 194--95
lifetime of, 132-33
local, 132-33
names, 131
obtaining the current subtype of, 134
query string, 747-49, 748
scope of, 132-33

variables (listed by name). See also variables
AlreadyPrinted variable, 491
Application variable, 509
AU11i_TYPE variable, 443
bstrProflleInfo variable, 448
ComposeMode variable, 160
dtCurrentDay variable, 472

1022

variables (listed by name), continued
EventDetails.FolderID variable, 537
EventDetailsMessageID variable, 537-38, 552
found variable, 517h
HI7P _USER_AGENT variable, 200
Imp variable, 443, 444, 448
intMapViewer variable, 622, 639
LOGON_USER variable, 200
mntAcct variable, 700
myIriformation variable, 134
oBtnding variable, 561
objJADs variable, 673
oldSid variable, 702
oSession variable, 202, 518
pEventInfo variable, 918
strtName variable, 134
strType variable, 780
tmpInProcess variable, 565
vSelected variable, 971

Variant data type, 134, 135, 234
VBA (Visual Basic for Applications). See

Microsoft Visual Basic for Applications
(VBA)

vbArray value, 459
vbBlob value, 459
vbBoolean value, 459
vbCurrency value, 459
vbDataObject value, 459
vbDate value, 459
vbDouble value, 459
vbEmpty value, 459
vbInteger value, 459
vbLong value, 459
vbNull value, 459
VBscript (Visual Basic Scripting Edition). See

Microsoft Visual Basic Scripting Edition
(VBScript)

vbSingle value, 459
vbString value, 459
vbVariant value, 459
vCard, 839, 854-55
VeriSign, 35
Ver.sion property, 116
View Code option, 130
View control, 277, 280, 323-24, 334

Account Tracking application and, 337,
345-52

basic description of, 281-94
Digital Dashboards and, 386-87, 390,

393-94, 408-9, 424--25

View control, continued
dragging and dropping content with, 390
hosting, in Internet Explorer, 293-95
instantiating, 281-92
programming, 281
specifying the location of, 319
using, 347-52

View Current Help Tickets option, 440, 450-52
View Default Map button, 587, 641
viewing. See also views

Recipient tables, 637-38, 637
routing maps, 620-23
rows in process instances, 638-41, 639

View parameter, 282
View Process Instances dialog box, 637-38, 637
View Process Instances form, 635
View property, 282-88, 350
views. See also viewing; views (listed by name)

Account Tracking application and, 152-54,
153

automatically generating, 51
Calendar of Events, 488-99, 494
conditional formatting for, 82-83
creating, 72-76, 439-40, 440, 463
custom, 19-20, 23, 72-76, 439-40, 440, 463
disabling, 84
displaying, 488-99, 488
filtering information in, 80-81
formatting columns in, 76--77
grouping items in, 77-79
handling, overview of, 47-48; 71-85
limiting, to only those created for a folder,

83-84
public folders and, 28
settings for, editing, 81-85
sorting items in, 79-80
threaded views, 84-85, 85
timeline views, 71, 74, 75

views (listed by name). See also views
Account Contacts view, 152, 153
AutoPreview view, 284
Category view, 63
Forms Library view, 216
From view, 440
Helpdesk view, 440, 464
Messages view, 284
monthly view, 479-80, 480
Status view, 440

Views collection, 282, 495
View Script button, 559

View Source command, 189
ViewSwitch event, 263, 266
ViewType property, 251
VirtualRoot property, 503
VisibleCount property, 855
Visible property, 103, 247
Visual Basic (Microsoft). See Microsoft

Visual Basic

Index

Visual Basic for Applications (VBA). See
Microsoft Visual Basic for Applications
(VBA)

Visual Basic Scripting Edition (VBScript). See
Microsoft Visual Basic Scripting Edition
(VB Script)

Visual C++ (Microsoft). See Microsoft Visual C++
Visual Interdev (Microsoft). See Microsoft

Visual Interdev
Visual Studio (Microsoft). See Microsoft Visual

Studio
VoteTable object, 602-3, 609-11, 637
VoteTable property, 603, 610
vSelected variable, 971

W
Wait action, 576, 577, 579, 603, 638
Wait property, 603
warning messages, 99, 120-21, 121
Web-based application, using ADSI, 687-95
Web browser control, 160, 167, 764, 765-67,

765
Web browsers, 4, 189-91, 194-95. See also

Microsoft Internet Explorer browser; Web
browser cpntrol

ASP and, 194
Calendar of Events application and, 503
CDO and, 464
document libraries and, 8
Intranet News application and, 506
Netscape Navigator, 211
security and, 207
Web Storage System and, 789

WebDAV (Web Distributed Authoring and
Versioning). See Web Distributed
Authoring and Versioning (WebDAV)

Web Distributed Authoring and Versioning
(WebDAV), 210, 787, 792, 857-58, 882,
947

commands, 860-71
search methods, 871-73

1023

Index

Web Distributed Authoring and Versioning
(WebDAV), continued

search requests, 869-71
security and, 952

Web Forms Library, 37-38, 91, 119-20,
223--27, 224

Web Services dialog box, 225--26
Web Storage System

basic description of, 786-94
data access features, 786-87
forms and, 788--89, 793, 801, 802, 884--93
programmability features, 787-90
schema support, 787--88
security features, 790
Training application and, 799

WebViewAllowNavigation property, 189, 268,
364

WebViewOn property, 268, 364
WebViewURL property, 268, 364
weeklyview.asp, 495
WEIGHT option, 895-96
When element, 880
When Saving, Save Script In Agent Binding

option, 630, 635
WHERE clause, 818, 819, 820, 826, 905
"white pages," 24--25
white papers, 387
Width property, 264
wildcard characters, 823, 886
Win32 directory, 649
Windows 3.1 (Microsoft). See Microsoft

Windows 3.1
Windows 95 (Microsoft). See Microsoft

Windows 95
Windows 98 (Microsoft). See Microsoft

Windows 98
Windows 2000 (Microsoft). See Microsoft

Windows 2000
Windows 2000 Server (Microsoft). See

Microsoft Windows 2000 Server
Windows CE (Microsoft). See Microsoft

Windows CE
Windows for Workgroups (Microsoft). See

Microsoft Windows for Workgroups
Windows NT Server (Microsoft). See Microsoft

Windows NT Server
WindowState property, 264--65
With statement, 210, 524
WMF files, III

1024

Word (Microsoft). See Microsoft Word
WordWrap property, 106
workflow capabilities, 10--12, 16-17, 24, 923--46.

See also Expense Report application;
Workflow Designer

debugging, 942
deploying, 943-46
developing applications for, 926-42
event scripts and, 932-42, 933
environment for, setting up, 924--26, 924
implementation of, 924--25, 924

Workflow Designer, 803--6, 803, 923
creating event scripts with, 932-42, 933
deploying workflow solutions with,

943-46,943
GUI elements, 927-32, 928-29
using, 927-32

Workflow event, 946
WorkflowSession object, 939-42, 940-41
WorkflowSession.Sender property, 939
WorkItem object, 611-12
WorkItem property, 601
Write event, 144
Write method, 193, 202
Write permission, 716
Write right, 215
WriteToLog function, 547-49

X
X.500 standard, 26
X.509 standard, 35
XML (eXtensible Markup Language). See

eXtensible Markup Language (XML)
XMLDOM (XML Document Object Model),

863, 882, 952
XMLHTTP component, 857-61
XSL (eXtensible Style Sheets). See eXtensible

Style Sheets (XSL)

Y-z
Yes/No data type, 95, 108
Yes/No fields, 64, 95, 108
z-order (depth) axis, 115

THOMAS RIZZO

Thomas Rizzo is a product manager in the Microsoft
Exchange Server product group, where he focuses
on helping developers learn about the Exchange
and Microsoft Outlook development platform.
Before working in the Exchange Server group, Tom
worked as a systems engineer in Microsoft's Wash­
ington, D.C., office. There he helped the United
States government develop and deploy Microsoft
technologies. Tom holds a Bachelor's degree from
Georgetown University in Washington, D.C.

T he manuscript for this book was prepared

using Microsoft Word 2000. Pages were com­

posed by Microsoft Press using Adobe PageMaker

6.52 for Windows, with text in Garamond and display

type in Helvetica Black. Composed pages were de­

livered to the printer as electronic prepress files.

Cover Graphic Designer
Girvin I Branding & Design

Cover Illustrator
Glenn Mitsui

Interior Graphic Artist
Rob Nance

Principal Compositor
Daniel Latimer

Principal Proofreader/Copy Editor
Roger LeBlanc

Indexer
Liz Cunningham

MICROSOFT LICENSE AGREEMENT
Book Companion CD

IMPORTANT-READ CAREFULLY: This Microsoft End-User License Agreement ("EULA") is a legal agreement between you (either
an individual or an entity) and Microsoft Corporation for the Microsoft product identified above, which includes computer software and
may include associated media, printed materials, and "on-line" or electronic documentation ("SOFTWARE PRODUCT'). Any compo­
nent included within the SOFTWARE PRODUCT that is accompanied by a separate End-User License Agreement shall be governed
by such agreement and not the terms set forth below. By installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree
to be bound by the terms of this EULA. If you do not agree to the terms of this EULA, you are not authorized to install, copy, or otherwise
use the SOFTWARE PRODUCT; you may, however, return the SOFTWARE PRODUCT, along with all printed materials and other items
that form a part of the Microsoft product that includes the SOFTWARE PRODUCT, to the place you obtained them for a full refund.

SOFTWARE PRODUCT LICENSE

The SOFfW ARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intellectual
property laws aod treaties. The SOFfW ARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA graots you the following rights:

a. Software Product. You may install and use one copy of the SOFTWARE PRODUCT on a single computer. The primary user of the
computer on which the SOFTWARE PRODUCT is installed may make a second copy for his or her exclusive use on a portable
computer.

b. Storage/Network Use. You may also store or install a copy of the SOFTWARE PRODUCT ori a storage device, such as a network
server, used only to install or run the SOFTWARE PRODUCT on your other computers over an internal network; however, you must
acquire and dedicate a license for each separate computer on which the SOFTWARE PRODUCT is installed or run from the storage
device. A license for the SOFTWARE PRODUCT may not be shared or used concurrently on different computers.

c. License Pak. If you have acquired this EULA in a Microsoft L.icense Pak, you may make the number of additional copies of the
computer software portion of the SOFfW ARE PRODUCT authorized on the printed copy of this EULA, and you may use each copy in
the maoner specified above. You are also entitled to make a corresponding number of secondary copies for portable computer use as
specified above.

d. Sample Code. Solely with respect to portions, if any, of the SOFfW ARE PRODUCT that are identified within the SOFfW ARE
PRODUCT as sample code (the "SAMPLE CODE"):

i. Use and Modification. Microsoft graots you the right to use aod modify the source code version of the SAMPLE CODE, provided
you comply with subsection (d)(iii) below. You may not distribute the SAMPLE CODE, or any modified version of the SAMPLE
CODE, in source code form.

ii. Redistributable Files. Provided you comply with subsection (d) (iii) below, Microsoft grants you a nonexclusive, royalty-free right
to reproduce and distribute the object code version of the SAMPLE CODE and of aoy modified SAMPLE CODE, other thao
SAMPLE CODE (or aoy modified versioh thereof) designated as not redistributable in the Readme file that forms a part of the
SOFTWARE PRODUCT (the "Non-Redistributable Sample Code"). All SAMPLE CODE other than the Non-Redistributable
Sample Code is collectively referred to as the "REDISTRIBUTABLES."

iii. Redistribution Reqrtirements. If you redistribute the REDISTRIBUTABLES, you agree to: (i) distribute the
REDISTRIBUTABLES in object code form only in conjunctioli with and as a part of your software application product; (ii) not use
Microsoft's name, logo, or trademarks to market your software application product; (iii) include a valid copyright notice on your
software application product; (iv) indemnify, hold harmless, imd defend Microsoft from and against any claims or lawsuits,
including attorney's fees, that arise orresult from the use or distribution of your software application product; and (v) not permit
further distribution of the REDISTRIBUTABLES by your end user. Contact Microsoft for the applicable royalties due aod other
licensing terms for all other uses and/or distribution of the REDISTRIBUTABLES.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or disassemble
the SOFfW ARE PRODUCT, except aod only to the extent that such activity is expressly permitted by applicable law notwithstaoding
this limitation.

• Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated
for use on more thao one computer.

• Rental. You may not rent, lease, or lend the SOFTWARE PRODUCT.

• Support Services. Microsoft may, but is not obligated to, provide you with support services related to the SOFTWARE PRODUCT
("Support Services"). Use of Support Services is governed by the Microsoft policies aod programs described in the user manual, in
"on-line" documentation, aod/or in other Microsoft-provided materials. Any supplemental software code provided to you as part of the
Support Services shall be considered part of the SOFTWARE PRODUCT and subject to the terms and conditions of this EULA. With
respect to technical information you provide to Microsoft as part of the Support Services, Microsoft may use such information for its
business purposes, including for product support aod development. Microsoft will not utilize such technical information in a form that
personally identifies you.

• Software Transfer. You may permanently transfer all of your rights under this EULA, provided you retain no copies, you transfer all
of the SOFTWARE PRODUCT (including all component parts, the media and printed materials, any upgrades, this EULA, and, if
applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this EULA.

• Termination. Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with the terms and
conditions of this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

3. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,
animations, video, audio, music, text, SAMPLE CODE, REDISTRIBUT ABLES, and "applets" incorporated into the SOFTWARE
PRODUCT) and any copies of the SOFTWARE PRODUCT are owned by Microsoft or its suppliers. The SOFTWARE PRODUCT is
protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE PRODUCT like any other
copyrighted material except that you may install the SOFTWARE PRODUCT on a single computer provided you keep the original solely
for backup or archival purposes. You may not copy the printed materials accompanying the SOFTWARE PRODUCT.

4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and documentation are provided with RESTRICTED
RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(\)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(l) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Microsoft Corporation/One Microsoft WaylRedmond,
WA 98052-6399.

5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE PRODUCT, any part thereof, or any
process or service that is the direct product of the SOFTWARE PRODUCT (the foregoing collectively referred to as the "Restricted
Components"), to any country, person, entity, or end user subject to U.S. export restrictions. You specifically agree not to export or re­
export any of the Restricted Components (i) to any country to which the U.S. has embargoed or restricted the export of goods or services,
which currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria, or to any national of
any such country, wherever located, who intends to transmit or transport the Restricted Components back to such country; (ii) to any end
user who you know or have reason to know will utilize the Restricted Components in the design, development, or production of nuclear,
chemical, or biological weapons; or (iii) to any end user who has been prohibited from participating in U.S. export transactions by any
federal agency of the U.S. government. You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended,
revoked, or denied your export privileges.

6. NOTE ON JAVA SUPPORT. THE SOFTWARE PRODUCT MAY CONTAIN SUPPORT FOR PROGRAMS WRITTEN IN JAVA.
JAVA TECHNOLOGY IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED, OR INTENDED FOR USE OR
RESALE AS ON-LINE CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE,
SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR
TRAFFIC CONTROL, DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF JAVA
TECHNOLOGY COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL
DAMAGE. SUN MICROSYSTEMS, INC. HAS CONTRACTUALLY OBLIGATED MICROSOFT TO MAKE THIS DISCLAIMER.

DISCLAIMER OF WARRANTY

NO WARRANTIES OR CONDmONS. MICROSOFT EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDITION FOR THE
SOFTWARE PRODUCT. THE SOFTWARE PRODUCT AND ANY RELATED DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OR CONDITION OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

:ru~ g:~~R5~J3lliThdi1WiM~~Mr~~ifc)~~~~:~w~~rmEMENT. THE ENTIRE RISK

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR Loss OF BUSINESS PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MICROSOFT HAS
BEEN ADVISED OF THE POSSlliILITY OF SUCH DAMAGES. IN ANY CASE, MICROSOFT'S ENTIRE LIABILITY UNDER ANY
PROVISION OF THIS EULA SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE
SOFTWARE PRODUCT OR US$5.00; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES
AGREEMENT, MICROSOFT'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF
THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

MISCELLANEOUS

This EULA is governed by the laws of the State of Washington USA, except and only to the extent that applicable law mandates governing law
of a different jurisdiction.

Should you have any questions concerning this EULA, or if you desire to contact Microsoft for any reason, please contact the Microsoft subsidiary
serving your country, or write: Microsoft Sales Information Center/One Microsoft WaylRedmond, WA 98052-6399.

PN 097-0002297

7

Programming

Mautlook'
~irxchai1ge

Second Edition
Build collaborative business solutions that
bridge-and extend-enterprise resources.
Develop and run core business services across the enterprise using
Microsoft's powerful messaging and collaboration tools-Outlook
2000, Exchange Server 5.5, and Exchange 2000 Server. This book
delivers detailed guidance-plus the Digital Dashboard Starter Kit
and a full cache of code on CD-to help you build rich , extensible
solutions for tracking, messaging, workflow, knowledge management,
and real-time collaboration.

• Understand key Outlook building blocks-including folders
and forms-and begin constructing solutions using the Outlook
Object Model and Microsoft Visual Basic", Scripting Edition
(VBScript)

• Create a digital dashboard that gives users single-click access
to the company's knowledge sources

• Write custom scripts and agents and expand your development
potential using Microsoft Exchange Event Service and scripting
agents

• Learn how the Active Directory~ Services Interface (ADSI) can
increase your control of Exchange Server

• Extend your application's reach to the Web by using Microsoft
Internet Information Services, Site Server, Outlook HTML Form
Converter, Outlook Web Access, and Active Server Pages

• Use Collaboration Data Objects (CDO) to write applications
that interact with Exchange Server and also render content
in HTML for the Web

• Expand your Outlook 2000-based applications by creating
COM add-ins

• Start building applications for Exchange"'2000-including
working with new Web Store technology

• Begin preparing fQr MCSD EX~'R':':7Q\~05-~. ~
,: " ~ . : 'i;~/!;:nt ~;.£f~~::~ .~:~ .:-

. ~ ~1';llirllli"';l~r · ~
901 Aficrosott~

