THE WAITE GROUP'S®

WAITE GROUP
PRESS™

THE DEFINITIVE PROGRAMMER’S REFERENCE

JAMES L. CONGER T S

THE WAITE GROUP'S -

The Definitive Programmer’s Reference

James L. Conger

ESWAR BOOKS

COMPUTER & TECH. BOOKS
Archana Arcade, No.16, Natesan St.;
Next to Ranganathan St., T.Nagar,

Madras -600 017. © : 434 59 02

Gelgotia Publications pvt Ird

THE WAITE GROUP’S
WINDOWS APIBIBLE

JamesL Conger
The Definitive Programmer’s Reference 1996

© 1992 by The Waite Group, Inc..

Allrights reserved. No part of this manual shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, desktop publishing, recording, or otherwise, without -
permission from the publisher. No patent liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omiissions. Neither is any liability assumed for damages
resulting from the use ‘of the information contained herein.

All terms mentioned in this book that are known to be trademarks or service marks are listed below. In
addition, terms suspected of being trademarks or service marks have been appropriately capitalized. Waite
.=:Group Press cannot attest to the accuracy of this information. Use of a term in this book should not be
* ' regarded as affecting the validity of any trademark or servicc mark.

Mlcrosoft Windows, and MS-DOS are registered trademarks of Microsoft Corporanon
- Sound Blaster is a trademark of Creative Labs, Inc.
The Wa:t?e Group is a registered trademark of The Walte Group, Inc.

v

AUTHORIZED EDITION FOR SALE IN lNDIA ONLT
REPRINTED 1996 C ‘ -

,

Published by Suneel Galgotla for Galgotia Publications (P) L., S, Ansan Road Darya Ganj, -
: New Dethi - 110 002 and pnnted al Konark Press, 5/201-LajRa Park, I,axml 'Nagar, Delhi - 92

ISBN 81 — 85623 75 —

To Claire

Acknowledgments

I'wish I could say that I knew every aspect of Windows programming before I began to write this book. I was surprised
to find out how much of Windows I had never used, and in many cases, never noticed. Spelunking the remote corners
of Windows was an enjoyable experience, but I needed a lot of help.

I am particularly indebted to Mark Peterson, who edited the book and -provided many insights and useful ex-
amples. I also received help from Don Stegall, who kindly contributed a keyboard hook example and helped on several
weird problems I encountered. When I became desperate, I turned to Dennis Cook, Len Gray, Rudyard Merrian, and
many other contributors to the MSOPSYS forum on CompuServe.)

Although this book was processed almost exclusively through electronic media, it was amazing how much work
was needed to get the book in its final form. Scott Calamar supervised the entire operation, with a lot of help from
Julianne Ososke; Pat Rogondino, Kathy Carlyle, and K.D. Sullivan. Finally, I would like to thank Mitchell Waite for
proposing the book, guiding its design and content, and for being the constant champion of the project.

Introduction

The purpose of this book is to save Windows programers time. Most of us who have been programming with Windows
for a few years have become accustomed to having our desks cluttered with various books. Mine seems to always have
four or five Windows Software Development Kit manuals, a well thumbed copy of Charles Petzold’s excellent book
Programming Windows, several printouts of example programs, and perhaps a few other books buried under the
pile.

The Windows Bible is an attempt to assemble most of the information you need in one place. Following the
organization of the other Waite Group bibles, the Windows Bible is organized by subject. Each chapter covers a
separate topic. The chapter introductions cover basic concepts. The details are covered in the function and message
descriptions,

A key element to making the book useful is the use of short example programs. They are particularly important
with Windows, where functions are seldom used alone. Most functions require the support of a series of related
functions and messages to do their task. The example programs show a function or message in context, with support-
ing functions in place, and with variables properly declared.

The example programs in this book are different from examples used in Windows tutorials. Tutorials generally use
longer example programs, with many functions and messages demonstrated at one time. The examples in the Win-
dows Bible are as short as possible. Their only purpose is to demonstrate one function or message or at most a few
related functlons or messages. They do show the proper use of the function or message, without a lot of other dlstrac-
tions.

In some cases, the emphasis on keeping the examples short and clear caused me to write what borders onwriting _
simplistic code. For example, the preferred way to find out the corre:t text line spacing is to use the GetTextMetrics() -
function. It determines character heights on the screen. This assures that the spacing will be correct, regardless of
the video resolution used. In the Windows API Bible examples, fixed line spacing is used for demonstration output in
chapters that do not focus on display of text. This avoids the distraction of having GetTextMetrics() show up in every,
example. The correct usage of GetTextMetrics() is explained in the chapter on text output. ’

The structure of the book groups related subjects. Chapter 1 is ar introduction for those new to Windows. Chap-
ters 2 to 5 deal with the creation of windows, and the related menu and scrolling functions. Chapters 6 to 9 cover the
various aspects of Windows messages. Chapters 10 to 12 deal with output to the screen and printers. The remaining
" chapters cover separate topics which are only loosely related.

One disadvantage to the organization by related subjects is that it is not poessible to introduce the reader to each
subject in succession. For example, several of the message hook functions in Chapter 8, Message Processing Func-
tions, require the use of dynamic link libraries. DLLs are not covered until Chapter 28, Dynamic Lmk Libraries.
Cross references are included in these cases.

This book was completed using Windows version 3.0 and the Beta 1 pre-release of Windows version 3.1, Changes
and additions to version 3.0 functions and messages that occur in version 3.1 are documented. In most cases, version
3.1 adds optional features by providing new functions in dynamic lmk libraries. This assures compatibility with soft-
ware developed under version 3.0.

Size constrainté made it impossible to include all of the new Windows 3.1 features in one book. All of the funda-
-mental subjects and the material common to versions 3.0 and 3.1 are included. The new OLE (object linking and

embedding)-and True Type fonts are not covered. DDE (dynamie data exchange; is discussed using the message- ™

based protocals, but not using the version 3,1 DDEML library. I intend to cover these subjects in a separate volume,
which is currently.under development, The material in the Windows API Bible will remain valid and is common to all
Windows applications.

While writing the book I was surprised to find a number of functions that I had not run into in four years of
Windows programming. Some of these more obscure functions turned out to be remarkably useful. The experienced
reader may find the discussions of message hooks, communications and sound support, atoms, and dynamic data
exchange (DDE), and the multiple document interface (MDI) worth reviewing. '

Good luck with your Windows projects! .

] .IimCovniger

vi

Table of Contents : -
Introduction

Chapter 1 Overview of Windows Programming
Chapter 2 Creating Windows

12

Chapter 3 Windows Support Functions

109

Chapter 4 Menus -
Chapter § Scroll Bars

147

Chapter 6 Mouse and Cursor Functions

163

Chapter 7 Keyhoard Support.........ceeceeunereenesnense

161

Chapter 8 Message Processing Functions
Chapter 9 Windows Messages ‘

216
259

" Chapter 10 Device Contexts, Text Output, and Printing.

350

434

Chapter 11 Painting the Screen
Chapter 12 Color Palette Control

.28

Chapter 13 Dialog Boxes

552

Chapter 14 Memory Management : o

Chapter 15 Bitmaps

611
668

Chapter 16 Icons

710

Chapter 17 The Clipboard

...... 19 -

Chapter 18 Sound Functions
Chapter 19 Character Sets and Strings

741
768

Chapter 20 MS-DOS and Disk File Access

774

804

Chapter21 ~ Communications Functions
Chapter 22 Atom Functions

826

Chapter 23 Metafiles..

836

Chapter24 The Timer

849

Chapter 256 = Resources

855

Chapter 26 ~ Execution Profiling and Debugging

872

Chapter 27 Help File Support

....883

892

Chapter 28 Dynamic Link Libraries
Chapter 29 Multiple Document Interface (MDI)

905

Chapter 30 Dynamic Data Exchange (DDE)

918

Appendix A Bibliography and Sources of Additional Information
Appendix B Useful Macros from WINDOWS.H

937

939

Appendix C Mouse Hit Test Codes

940

941

AppendixD WINDOWS. H Listing....
Index /

v

vii

1003

Table of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

—

—_O W =] =] O DD e

viii

Qverview of Windows Programming
" Windows Programming Overview ..

" Structure of a Windows Program
GENERIC.C Example Windows Program
How Windows Programs Are Compiled and Linked
How Windows Programs Work i s e et
Windows Naming Conventions—WINDOWS.H
Improving GENERIC ...
Instances and Message Loops 1

_ Program Listing Conventions in This Book 1
Creating Windows 12
Using CreateWindow() Based on an Existing Class 12
Creating New Window Classes with Separate Message Processing 14
Messages Generated by CreateWindow() 17
Other Uses for Window Controlsecceerveereersssrrecsesssnsesisersecsons 17
Function Descriptions .. 18
Windows Support Functions
Direct Changes to Window Attributes 29
Changing the Class Data 29
Data Attached to a Window or Class 30
Notes: Enumeration Functions 30
CaUtIONS wevveveeseerermsrersseesrrenens B 33
Function Descriptions 33
Menus 109
Main Menus and Popup Menus 109
Building Menus in the Resource File .. 109
Adding a Menu to the Program’s Window....... 111
Changing Menus 111
Bitmaps as Menu Items 112
The Checkmark Bitmap 112
OWner-Drawn Menu IteIMSocevcevnvecierinsissiessssisssnssssssssssssssssssessssns 112
MENU MESSALES cvververrererranrrerienniaserssssssnsssssssiesssssssssssssessesssssssssssssssssersses 1156

" Menu FUNCHON SUIMIMALY ...vvecvvvveeesesisrisnssseressssasssssissessssssesssssssessstsessssssssssssessstssssssssassssssssssnssssssssss 115

! Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Scroll Bars.... ; 147
Scroll Bar Concepts 147
Scroll Bar Position and Range 148
Scroll Bar Messages 148
Seroll Bar Function Summary..... 149
Mouse and Cursor Functions
Mouse Message Overview 163
Common Mouse Messages /164
Mouse Functions 165
Caret Functions 165
Mouse and Cursor Function Summaries 166
Keyboard Support 191
Virtual Keys..... 191
Keyboard Messages 193
Messages with Non-English Keyboards 195
Keyboard Accelerators 195
Keyboard Function Spmmary 198
Keyboard Function Descriptions 198
Message Processing Functions 216
MESSABE FLOW ..cvurvrrrriineisrainnsssensinnssrsssssssssessiseesssanescess 216
Processing Messages 217
Program Control 21T
Sources of Messages 217
Reentrant Functions 218
Message Hook FUNCLIONS .uuvecrerrernircnsisicsinscssisssnsiinnisniensnnse s 218
Cautions 219
Message FUNCHON SUMIMALY ..inssismssisssisssessssnesssissismsssenssssensess 219
Windows Messages 259
Transmitted Messages 259
Transmitted Button Message Summary 260
Button Notification Codes 262
Button Notification Code Summary 263
Button Notification Code Descriptions ... 264
Combo Box Messages . 265
Owner-Redrawn Combo Boxes. 267
Combo Box Message Summary 269
Combo Box Message Descriptions 270
Combo Box Notification Codes Summary 277
Combo Box Notification Codes Descriptions........... 279
Dialog Box Window Messages 280
Edit Control Messages 280
Edit Control Message Summary 282
Edit Control Message Descriptions 283
Edit Control Notification Messages 290
Edit Control Notification Message Descriptions 291

168

Chapter 10

Cliapter 11

\ Chapter 12

Chapter 13

- SelectingObjects into the Device Context

List Box Messages il
List Box Message Summary

List Box Message Descriptions

List Box Notification Codes

List Box Notification Code Descriptions.....

Window Messages

Device Contexts, Text Output, and Printing
The Device Context

Handling WM_PAINT Messages

Selecting Objects into a Device Context
Private Device Contexts

Saving a Device Context

Mapping Modes

. Fonts

Printer Support

The Printer Device Driver ..

Text and Device Context Function Summary
Text and ngice Context Function Descriptions

Painting the Screen
The WM_PAINT Message

Invalid Rectangle

The Device Context

Default and Stock Objects

Colors

‘Regions ;

Painting Function Summary

Painting Function Descriptions

Color Palette Control

Hardware Palettes

Color Palettes in Windows

The Logical Palette

Creating a Logical Palette

Windows Color Palette Messages

Palette Function Summary
Palette Function Descriptions

Dialog Boxes ‘
An Example Dialog Box

Types of Dialog Boxes

Indirect and Parameter Dialog Box Functions
Communicating with Dialog Box Controls...

The Dialog Box Keyboard Interface

Dynamic Dialcg Boxes

Dialog Template Statement Description »

Dialog Box Control Statements

Dialog Box Function Simmaries

Dialog Box Function Descriptions

203
296
206
305
305
307

350
350
3Bl
351
352
352
352
354
354
357
358
360

434
434

435

435 -
436
437
438

438

439
441

528
528

528

529 .
529
530
530
531

552
552
556
556
556
558
558
560
561
565

...566

Chaptgr 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Memory Management

Local and Global Memory

Segments and Offsets......

Allocating Memory in the Local Heap
Allocating Memory in the Global Heap

Moveable, Fixed, and Discardable Memory Blocks

Traps to Avoid

Windows Memory Configurations

Moveable Program Code

Compiler Memory Models

Locked, Fixed, and Page-Locked Memory Blocks

Running Other Modules

Module-Definition Statements:.

Module-Definition Statement Descriptions

Memory Function Summary

Memory Function Descriptions

Bitmaps

DDB Bitmap Format

Using DDB Bitmaps....

Memory Device Contexts

Stretching and Painting Bitmap Images
Problems with the Old Bitmap Format,

Device-Independent Bitmaps (DIB).
Working with DIBs

DIB EXAMPIE oot e

Bitmap Function Summary

Bitmap Function Descriptions

Icons ...

Using Icons

Creating Icons at Run Time

Icon Function Summary

Icon Functiorr Descriptions

The Clipboard

Using the Clipboard

Clipboard Formats

Multiple Clipboard Formats

Delayed Rendering of Clipboard Data

Bitmap and Metafile Cliphoard Formats
Clipboard Viewer Programs

Clipboard Function Summary

Clipboard Function Descriptions

Sound Functions

Sound Sources

Sound Drivers

Voices and Voice Queues

Voice Thresholds

Sound Function Error Codes

Sound Function Summary

Sound Function Descriptions...

xi

611

611
612
612
613
614
615
615
616
616
617
617
617
618

..621

623

668
668
669
669
670
670
671

..673

673

675

676

710
710
711
712
712

719

719

720
721
721
722
722
723

723 .

741
741
M
742
743
43
743

T4

Chapter 19

Chapter 20

_Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chépter 25

-Communications Function Summary

" The Resource Compiler

Character Sets and Strings o

Character Sets

Character Set Conversions

Fonts and Character Sets

String Functions

- Character Set and String Function Summaxy
Character Set and String Function Descriptions

MS-DOS and Disk File Access

Disk Files.

Lists of File Names

Initialization Files

MS-DOS and Disk File Function Summary

M3-DOS and Disk File Function Descriptions

Communications Functions

Communications Support

Reading Data in the Receive Data Queue

Communications Function Descriptions

Atom Functions

Atom Tables

Atom Data Structure ...

Data Exchange ‘
Atom Function Descriptions

Metafiles

Creating and Playing a Memory Metafile

Creating and Displaying a Disk Metafile

Metafile Disk Format

Altering the Metafile Image

........

Metafile Limitations

Metafile Function Summary

Metafile Function Descriptions

The Timer

Using Timers

Timer Accuracy

Other Time Functions

Timer Function Summary

Function Descriptions

Resources

The Resource Script File
String Tables; i

Custom Resources
Resource Function Summary

Resource Function-Descriptions

N

xii

758
758
758
758
758
760
760

74
74
775
75
776
i

804
804
805
805
806

826
826
826
827
827

836
836
836
837
838
838
839
839

...349
...849

849
850
850
850

855
855
856
857
858
859
859

Chapter 26.

Chapter 27

Chapter 28

Chapter 29

. Chapter 30

- QOther DDE Data Transmission Messages

Execution Profiling and Debugging

‘ 872
How the Profiler Works 872
- Preparing to Run the Profiler 872
Using the Profiler 874
Debugging Functions 874
Execution Profiling and Debugging Function Summary 874
Execution Profiling and Debugging Function Descriptions 875
Help File Support 883
Building a Help File 883
Help Document Special Characters 884
Defining Hypertext Jumps and Index Entries 885
Adding Search Strings and Bookmarks 885
. Adding Bitmap Graphics 885
Compiling a Help File 886
Help Project File Options 886
Project [Files] Section 886
Project [Buildtags] Section
Project [Options] Section 887 .
Project [Alias] Section 888 -
Project [Map] Section 888
Project [Bitmaps] Section 888
Using the Help System 889
Dynamic Link Libraries 892
What Is a DLL? 892
Creating a DLL 802
Using the Functions in a DLL 8956
Other Ways to Call DLL Functions 806
Importing Windows Library Functions 897
Problems with Writing DLLs 897
Debugging DLLs 898
Dynamic Link Library Function Summary ..898
Dynamic Link Library Function Descriptions ...899
Multiple Document Interface (MDI) 905
MDI Frame and Child Windows 905
The Structure of an MDI Application 905
MDI Interface Bugs 907
MDI Example Program 907
MDI Function Summary 915
MDI Function Descriptions 915
Dynamic Data Exchange (DDE) 918
How DDE Data Is Exchanged w918
Applications, Topics, and Item Identifiers 919
Cold DDE Link 919 .
Hot DDE Link 920
Warm DDE Link 921
Generalized DDE Conversations sosenens 022
irearnnss 922

xiii

886 . -

Appendix A

Appendix B
Appendix C
Appendix D

Index

Adding a New Group to the Program Manager...

Obtaining File Names from Microsoft Excel 926
DDE MeSS2ZE SUMINATY ..vovuvvrevssionsrerssnssssessnsssssssnsassssssssasssssssenssssssmsssssssssssessasssasssssssssssssess S raagareesseens .929
DDE Message Descriptions 929
Bibliography and Sources of Additional Information 937
Books on Windows g 937
Other Programming Reference Books - <937
Sound Driver Support and Information ... 938
Useful Macros from WINDOWS.H 939
Mouse Hit Test Codes 940
WINDOWS.H Listing 941

1003

Xiv

This chapter introduces Windows programming and develops the GENERIC.C program. GENERIC.C will serve asthe
- basis for all of the examples in this book. :

Windows Programming Overview

If you have been programming in DOS or in a minicomputer environment, your first look at a Windows program may be
a little disconcerting. Windows programs are different. The differences boil down to a few basic principles.

1. Insteadof télling the computer what to do one step at a time, Windows programs are structured to wait there until
the program receives a message from Windows. Messages are statements like “The user just clicked a button with
the mouse pointer—do something!”

2. The Windows environment has built-in support for all the basic hardware such as the video display, memory,
mouse, keyboard, and printers. Microsoft takes care of worrying about all of the latest hardware—{reeing you to
create applications. Programmers spend their time learning and using the 600 Windows functions, rather than

" writing their own code to support multiple printers, video cards, etc.

3. Windows moves programs and data around in memory to make room for other program pieces and data. This
_ movement allows many programs to coexist in a fairly limited amount of memory, but it also means that the
programmer cannot assume that anything will stay put for long. Windows gives you all of the tools you need to deal
with moveable memory, but it takes a little getting used to.

Despite these differences, Windows is not a difficult envxronment in which to work. When you have gotten over
. the initial hurdle of writing a few simple programs, the tremendous built-in power of Windows will spoil you. It will be
difficult for you to ever go back to more primitive environments,

If you are new to programming with the Windows environment, my main advxce is to dive in and try it. You will find
that most Windows programs are remarkably similar, so that when you have one running, the second one is 2 matter -
of modxﬁcatmn One of the main goals of this book is to provide working examples for all of the Windows functions,
savmg you the time it takes by figuring out how every one of them is used. For efficiency, a simple “GENERIC” pro-
gram, which is described in the next section, is used as the basis for most of the programming examples.

Structure of a Windows Program .

" Most Windows programs have two C functions in common, WinMain() and WndProc(). Only WinMain() is required,
although WndProc() shows up in almost every Windows program. WndProc() can be named anything you want, but
most programmers name it WndProc(). WinMain() must be named “WinMain,” just like the main() function in a
conventional C program. Any large program will have many other functions doing tasks for WndProc(), but these two
functions will be there to begin,

WinMain() - Calls several functions that tell the Windows environment about the properties of the program’s main

window. This includes what color to paint the window, the name of the icon to show when the program is initial-

" ized, where to find the program’s menu, etc. WinMain() also contains some standard code to process Windows

messages to and from the program you are writing. WinMain() is also the entry and exit point of the program,
again like main() in a conventional C program.

WINDOWS -API BIBLE

genenc

Do it Quit

Ok, 1 did it!

Figiire 1-1. The GENERIC Program’s Window. " Figure 1-2." GENERIC After Clzckmg the “Do Itl”Mmu
Item.

WndProc() - This is where you write the program logic. This function is usually called the “message processing -
function” as Windows messages are interpreted and acted upon within this function. :

- Let’s take a look at a simple example. We will create a program that looks like Figure 1-1. The program creates a
window with the title “generic” and with two menu items, “Do It!” and “Quit”. When the program IS first run, it just sits
there.

.Moving the mouse pointer to “Do It!” and clicking the left mouse button causes text to appear in the window, as
shown in Figure 1-2. Cllckmg the “Quit” menu item causes the program to stop and the wmdow to disappear. The

mlmmlze and maximize buttons in the upper right corner work per standard Windows conventlons, as does the system
button in the upper left corner. ‘

GENERIC.C Example Windows Program

Listing 1-1 shows all of the C code needed to make GENERIC.C. Although the code looks complex at first glance, it is
remarkably short. Remember that this program creates a window that can be moved and smed onthe screen, shrunken
to an icon, expanded to the size of the screen, and which has a functioning menu. .

. Listing 1-1. GENERIC.C = .

/* generic.c - generic windows application */ - Ol

#include <windows.h> : /* window's header file - always 1ncluded */
ﬂ1nclude ‘generic.h"” /* the appl1cat1on s header f1le */
: 1nt PASCAL W1nMa1n (HANDLE hInstance, HANDLE hPrevInstance, LPSTR. lpszCmdLine, int nCmdShow)
{ . /* var1able types defined in w1ndows h */
HWND hwnd ; .-+ = /* a handle to a message */
MSG .. msg ; - /* a message */
WNDCLASS wndclass ; /* the window class */

ghinstance = hinstance ; /* store instance handle as global var. */

if ('hPrevInstance) ‘ /* lLoad data into window class struct. */

{ . .
undclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra

) wndclass.hInstance

IR wndclass,.hIcon ' i

: .. wndclass.hCursor ’ :

" wndclass. hbrBackground
wndclass. lpszMenuName o

S_HREDRAW | CS VREDRAH
ndProc,

oadlcon (hlnstance, gszAppName)
oadCursor . (NULL, IDC _ARROW) ;
etStockObject (HHITE _BRUSH) ;
szAppName,

Hu-unngnnn

C
)
0 ;
0 ;
hlnstance,
L
L
G
9

wndclass.lpszClassName

if (!'RegisterClass (&wndclass))
return FALSE ;

3 .

hWwnd = CreateWindow (/%
gszAppName, /*
gszAppNane, /*
WS_OVERLAPPEDWINDOW, /1*
CW_USEDEFAULT, /*
CW_USEDEFAULT, /%
CW_USEDEFAULT,) /%
CW_USEDEFAULT, /%
NULL, /*
NULL, 1%
hlInstance, /*
NULL) ; /*

ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd) ;

1. OVERVIEW OF WINDOWS PROGRAMMING ‘v

RS

= gszAppName ;
/* register the window class */

create the program's window here */
class name */

window name */

window style */

x position on screen */

y position on screen */
width of window */

height of window */

parent window handte (null =
menu handle (null =
instance handle */
Lpstr (null =

none) */
use class menu) */ -

not used) */

/* make window visible */
/* send first WM_PAINT message */

/* the next while() Loop is the "message loop" */

while (GetMessage (&msg, NULL, O, 0))

(.
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}

return msg.wParam ;

}

/* wait for a message */

/* does some key conversions */
/* sends message to WndProc() */

/* returns application's exit code */

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG. LParam)
< . o

/* device context handle */

/* process windows messages‘*l

/* proces$ menu items */

/* User hit the “Do it" menu item */
/* get device context */

"0k, I did it!", 13) ;

/* release device context */

/* send end of application message */

/* stop application */

/* default windows message process1ng */

return Defw1ndowProc (hWnd, 1Message, wParam, lParam) ;

HDC hbC ;
switch (iMessage)
<
case WM_COMMAND:
switch (wParam)
{
case IDM_DOIT:
hDC = GetDC (hWnd) ;
Textout (hdDC, 10, 20,
ReleaseDC (hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyW1ndou (hWnd) ;
break ;
3
break ;.
case WM_DESTROY:
PostQuitMessage (0) ;
break ; .
default:
3}

return (OL) ;

The WinMain() function looks more complex than it is The saving grace is that this function remains almost
unchanged from one program to the next. You just copy that part into your next project. I will explain what it does in

a moment. Let's deal with the WinProc() function first.

WinProc() processes messages from Windows. The messages are all integers, but for clarity they are gwen names
in the WINDOWS.H header file. The two messages that GENERIC.C has to process are WM_ COMMAND (a menu item -
* was pressed), and WM_DESTROY (stop the application and close its window). The menu items are labeled IDM_DOIT
- and IDM_QUIT. These names are defined in the program’s header file GENERIC.H, shown in Listing 1-2.

WINDOWS AP! BIBLE

<> Listing 1-2. GENERIC H Header File
/* generic.h ’
#define IDM_DOIT 1 /* menu item id values */
#define IDM_GUIT 2
/* global variables */
int ghlnstance ;
char gszAppName [] = "generic" ;
. /* function prototypes */
tong FAR PASCAL wndProc CHWND, unsigned, WORD, LONG) ;

When the user clicks the “Do It!” menu item, Windows sends the GENERIC program a WM_COMMAND message.
Part of this message is the menu item number, in this case IDM_DOIT which we defined equal to one in GENERIC H.
When the WndProc() function in GENERIC.C gets this message, it executes the code:

case IDM_DOIT:*/

hDC = GetDC ChWnd) ; © /* get device context */
TextOut (hpC, 10, 20, "ok, I did it!", 13) ;

ReleaseDdC (hwnd hdC3 ; /* release device context */
break ; :

The program uses the Windows function GetDC() to get some iriformation about the video screen. Using this
information (called the device context), the program writes the words “Ok, I did it!” using the Windows function
TextOut(). Finaliy, the memory tied up with the screen information is released by using ReleaseDC(). Those three
functions put the words on the screen.

Similarly, if the user clicks the “Quit” menu item, the program executes the DestroyWindow() function.
Destromedow() deletes the program’s window, causing the program to end. This is called “terminating” an applica-
tion. Windows sends the program the WM_DESTROY message, which is processed to exit the program.

We have covered the operation of the WinProc() function. What about all of the code in the upper WinMain()

function of GENERIC.C? Most of this code deals with creating the program’s main window. Creating a window isa

three step process: .

1. First, you have to create a window “class.” The class is descnbed by filling in 2 bunch of datain a structure called
wndclass. Here is an example of one of those lines.

undclass.hlcon = LoadIcon (hlnstance, gszAppName) ;

" Inthis case, every window created with this window class will fefér to an icon with the same name as the program
“generic.” The global variable gszAppName is defined in the GENERIC.H header file. Once all of the window class _

data is filled in, you notify Windows that you have created a new class of windows by using the function
RegisterClass().

2. - Second, you use the CreateWindow() function to create one or more windows based on the window class.

CreateWindow() passes more information on to windows, such as the style of the window, the background color,
etc.) .

3. Finally, you display the window by calling the ShowWindow() function. At the bottdm of the WinMain() function
you will see the rather odd loop:

while (GetMessage (8&msg, NULL, 0, 0)) /* the message Loop */ |
(.

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;
3 ‘ ’

This loop, called the message loop, is in every Windows program. Windows passes all of the messages to the
program via the functions in this loop. There are a few other functions that can be used in the message loop for special
purposes like menu accelerator keys, but usually the loop will look exactly like this one.

If you want to type in the GENERIC.C program, compile it, and run it, you will need a couple of other small files.
These files are the resource file that defines the menu, icon, and other resources used by the program; the definition

.

i

1. OVERVIEW OF WINDOWS PROGRAMMING ¥

file that gives the compiler some guidance when creating the program; and the make file, to help automate compiling
and linking the program.

The resource file GENERIC.RC is simple. It includes an icon file GENERIC.ICO that was created with the
SDKPaint application that comes with the Windows Software Development Kit. It also defines the program’s menu.
Note that the menu items are given ID numbers, which are defined in the header file.

> Listing 1-3. GENERIC.RC Resource File
/* generic.rc

#include <windows.h>

#include ‘“generic.h"

generic ICON generic.ico
generic MENU
BEGIN)
MENUITEM “&Do It!" IDM_DOIT
MENUITEM "&Quit", IDM_QUIT
END

The .DEF definition file provides the linker with information on how to assemble the finished program. Chapter
14, Memory Management, contains a full discussion of all of the statements that can be put in definition files, Here is
a brief description of this example file.

The DESCRIPTION string is added into the file, usually to contain copyright information. EXETYPE of WINDOWS
tells the linker that this will be a Windows 3.0 version program. The STUB line names a small file that ends up
becoming the beginning of the finished program. The WINSTUR file is the code that prints out a warning message if a
user tries to run a Windows program from DOS.)

The CODE and DATA statements control how memory will be managed for this program. Listing l 4. shows the
normal settings. HEAPSIZE and STACKSIZE control the amount of memory allocated for the program’s local data
heap and stack. Fmally, the EXPORTS section names all of the functions (besides the mandatory WmMam()) that the
program w1ll want Windows to call.

© Listing 1-4. GENERIC.DEF Definition File .

NAME GENERIC

DESCRIPTION ‘generic windows program*
EXETYPE WINDOWS -

STUB " 'WINSTUB.EXE®

CODE PRELOAD MOVEABLE

DATA . PRELQAD MOVEABLE MULTIPLE
HEAPSIZE 1024

STACKSIZE 5120

EXPORTS WndProc

NMAKE.EXE is a program that runs other programs, typically compilers and linkers. NMAKE automates compila-
* tion of a program based on an NMAKE control file. The corvention is to name the NMAKE control file the same as the
main C program, but without an extension. For example, the NMAKE file for GENERIC.C is GENERIC, shown in
Listing 1.5. The GENERIC listing starts with the ALL statement. This tells NMAKE that we are trying to create
GENERIC.EXE and that any file that has been saved more recently than GENERIC.EXE is going to need to be included -
in the next compilation.

The next two lines define macros. Anytime the CFLAGS word is found preceded by a dollar sign and parentheses,
the line of compiler switches “-¢ -D LINT_ARGS -A -Os -Gsw -W2" is substituted. These are the standard compiler
switches for compiling a small Windows C program. Similarly, LFLAGS is replaced by /NOD, a linker control switch.
These flags are discussed in Chapter 14 on memory management.

The remaining lines tell NMAKE which files to compare to decide if a file needs to be recompiled. For example, if
either GENERIC.C or GENERIC.H has been saved more recently than GENERIC.OBJ, the next line is executed. The
resource compiler, RC.EXE is controlled by the next group of commands. The last group controls the linker. Note that
RC is run again at the very end of the NMAKE file. The resource compiler adds the compiled resource data (from our
resource file above) to the program file and then marks the completed program as a Windows 3.0 version application.

r

WINDOWS AP! BIBLE

o> Listihg 1-5. GENERIC—The NMAKE File .
ALL: generic.exe '

CFLAGS=~c -D LINT_ARGS -AS Os ~Gsw —-W2
LFLAGS=/NOD

generic.obj : generic.c generic.h ; compile the C file
$(CC) $(CFLAGS) generic.c ' ’

generic.res: generic.rc generic.ico ; compile the resource file
rc -r generic.rc

generic.exe : generic.obj generic.def generic.res ; Link'm together
link $(LFLAGS) generic, , ,Libw slibcew, generic
rc generic.res

The last file you have to create is the program’s icon. This is done using the SDKPaint application, choosing the
icon file type. Save the icon you create as GENERIC.ICO. Once you have all of these files, you can create the working
program by typing the command .

NMAKE GENERIC

from within DOS. If you have not done all of this, I suggest you try it. The GENERIC application serves as the basis for
most of the programming examples in the rest of the book. You can run the program by double-clicking the
‘GENERIC.EXE file name from within the file manager, or by using the “Program Run” menu item from the program
manager, or by typing WIN GENERIC from the DOS command line.

‘How Windows Programs Are Compiled and Lmked
" Inaconventional C program, you build the program by first compiling all of the C language files and then lmklng them
to make the final executable file (an .EXE file in DOS). Windows works the same way, but with an added step: the
resource compiler, One of the many clever aspects of the Windows environment is the separation of programming
code (C code) from programming resources. In Windows, resources refer to things like menus, dialog box outlines,
icons, bitmaps, and blocks of text. They are stored in a resource file, separate from the C language files. Resource files
are compiled using the resource compiler, RC.EXE. '
If you look at the GENERIC.RC file, you will see that only two resources are included in this simple example. The
first is the icon. The resource compiler reads the line

generic , ICON generic.ico

and pulls in the icon data from the file GENERIC 1CO. The name “generic” on the left is then assomated thh the data
from this file.

Similarly the lines
generic MENU
BEGIN ' ' .
MENUITEM “&Do It!" IDM_DOIT

MENUITEM “8Quit”, _IDM_QUIT

END : : . L ,

define 2 menu with two items (“Do [t!” and “Quit”), which are associated with the menu item numbers IDM_DOIT and
IDM_QUIT (defined in GENERIC.H). Given this simple definition, Windows knows to space the menu items along the
menu line of the window, highlight the items when clicked with the mouse, etc. The only thing left for the programmer
to worry about is what action to take when the menu 1tems are activated. ‘

1. OVERVIEW OF WINDOWS PROGRAMMING V

The other added file needed for Windows programs is the definition file. GENERIC.DEF provides basic informa-
tion about how to build the Windows program. For example, you specify the amount of memory to reserve for the
program's stack and free memory area, how memory is to be managed (MOVEABLE...), and the name of the functions
that Windows will be passing messages to (EXPORTS...). We will discuss this file in the chapter on memory manage-
ment functions. For now, just realize that a file like this is needed for every Windows program and that .DEF files tend
to all be similar. The full sequence of events in the creation of the GENERIC.EXE program is as follows:

GENERIC.C —> compiled by CL —> GENERIC.OBJ
GENERIC.RC —> compiled by RC —> GENERIC.RES
GENERIC.OBJ + GENERIC.RES + GENERIC.DEF —> linked by LINK and RC —> GENERIC EXE

The NMAKE file takes care of all of this for us, so that you only have to issue one command (NMAKE GENERIC) to
create the complete program.

How Windows Programs Work |

If you check the file size of the GENERIC.EXE file, you will find that it is about 8200 bytes. This is remarkably small,
considering that you have a resizeable graphics window, icon and menu functions built in, and full mouse support. The
secret to this small size is that Windows programs do not contain even a fraction of the program code needed to do all
- of these operations. The program you create makes uses of a large collection of functions that are part of the Windows
environment when Windows is running on your computer. Every Windows program shares these working libraries of
functions for control of the screen, printers, keyboard, mouse, menus, bitmaps, and a long list of other functions.
This collection of working functions is maintained in files stored in the SYSTEM directory on your hard disk. The
SYSTEM directory was created when you installed Windows. The three primary files are :

GDI.EXE Video dlsplay and printer functions.
USER.EXE Mouse, keyboard, sound, communications port and timer support
KERNEL.EXE File and meinory management. .

Each of these programs in turn calls driver files (like DISPLAY.DRV) for specific functrons Wmdows only Ioads :
the modules it needs into memory and swaps them out of mermory when they are no longer needed. Besides saving you,
the programmer, from having to create all of this logic every time you write a complete program, Windows also greatly
reduces memory consumption. All of the% application programs runnmg at once share the same basic support library -
for the hardware.

As we will see in Chapter 14, Memory Management, Windows does even more than this to conserve memory. If
you write a large program with a number of C files linked together, Windows will load just the parts it needs to start up.
Later, as the user makes use of other functions, Windows will load the other parts as needed. Windows will also move
data and programs around in memory to make room for new material. All of this is transparent to the user. The bottom
line is: Our little GENERIC.C program may not look like much in its raw C language form, but when it is operating as
a running program, it has an army of Windows functions behind it. .

]
Windows Naming Conventions—WINDOWS.H

Windows has a lot of functions. To minimize the chance of passing the wrong kind of data to a function, the developers
of Windows developed a consistent naming convention so that the name of the variable indicates the type of data to
which it refers. This system of names is often call “Hungarian notation” in honor of its inventor, Charles Simonyi. The
basic system of prefixes is shown in Table 1-1.

WINDOWS API BIBLE .

DataType ' X
b’ BOOL int, use only TRUE and FALSE values, 1 and 0) :
by - BYTE (unsigned char)
c " Char
. 'dvy . DWORD (doubles word, an un‘signed long integer)
fr function
g global (the author’s use of “g")
h handle (exp}ained below)
i int (two byte integer)
I long
n short (int) ornear pointer
p pointer
s string
si string terminated by zero
w word {two bytes)

Table I-1. Variable name prefiz codes used in Hungarian notation

For example, the variable lpszBigName is a long pointer to a zera terminated string (1

= long, p = pointer, sz =

zero terminated string). Also note the use of capital letters in the name to make the word breaks clear without
wasting space. Extending this concept, Windows makes extensive use of the C language preprocessor to create and
use new data types, In many cases these data types are just another name for an integer or long variable. Using the
Windows name, rather than the underlym‘g data type, helps keep your program clear and reduces the chances of
making a silly mistake.
All of these typedefs and defines are in a large header file called WINDOWS.H. You can see a reference to this file
. at the top of GENERIC.C and GENERIC.H. Every program you wrife under Windows will need this header file at the
top, so that the compxler can keep track of all the preprocessor directives. Llstmg 1-6 provides a few examples from .

WINDOWS.H. ,
(=g Lxsting 1-6. WINDOWS.H Excerpt - B
typedef int BOOL;
typedef unsigned char BYTE;
typedef unsigned int WORD;
_typedef unsigned long DWORD;
‘typedef char near *PSTR;
typedef char far *LPSTR;
‘typedef WORD HANDLE; g
typedef HANDLE HWND ;
typedef HANDLE HICON;
typedef HANDLE HDC;
typedef HANDLE HMENU;
typedef HANDLE HFONT;
.typedef struct tagPOINT
;)
int .x;
int y;
} POINT;
typedef POINT *PPOINT;
.. typedef POINT NEAR *NPPOINT; -

typedef POINT FAR *LPPOINT;

1. OVERVIEW OF WINDOWS PROGRAMMING ¥

—

typedef struct tagRECT
['

int Left;

int top;

int right;

int bottom;
} RECT ; . .
typedef RECT *PRECT;
typedef RECT NEAR *NPRECT;
typedef RECT FAR *LPRECT;
#define WM_CREATE " 0x0001
#define WM_DESTROY . 0x0002
#define WM_MOVE 0x0003
#define WM_SIZE 0x0004

The first six lines in Listing 1-6 give shorthand names for common data types. This saves time by allowing you to
use the word “BYTE"” in place of “unsigned char” any time you declare a variable name. Note that the shorthand names
follow the prefix rules. For example PSTR is a pointer to a string, while LPSTR is a long (far) pointer to a string. The
next group of typedefs define “HANDLE" and then define a bunch of different handles for icons, menus, etc. If you
trace the lineage of typedefs, you will realize that all of these handles are just unsigned ints. Windows uses them to
keep track of all sorts of data in memory, including bitmaps, memory blocks, icons, logical brushes, etc. Handles are
definitely NOT addresses in memory.-Just think of a handle as an ID value for a data item. =~

The third group in the example shows the creation of a new data types POINT and RECT for points and rectangles.
In this case , the typedefs include the creation of structures to hold the z and y coordinates. Three pointer data types
are then based on the data types. The handy thing about complex data types like these is that you can refer to all four
- data points that define a rectangular area with a single variable name. The last group of defines in Listing 1-6 provides

names for the numeric values of a series of Windows messages. These names make it a lot easier to read the program.
A complete listing of WINDOWS.H is included at the end of this book. As you start programmmg in Windows, you will
_probably find yourself referring to this listing frequently.

Improving GENERIC ‘ :

If you try to resize the GENERIC program’s window, you will notice that the “Ok, I did it!” message disappears every
" time you change the window’s size. That is because Windows repaints the center of the window (called the client
-area) every time a part of the window is changed or resized. :

To keep some text on the client area, we can retype it every time the window is repainted. How do we know when
Windows wants to refresh the screen? Simple, we just look for the WM_PAINT message in our WinProc() function,
Listing 1-7 shows the WinProc() function for the modified GENERIC.C program. The changed portions are empha-
sized.

& Listing 1-7. GENER102 C—Changes to Process the WM_PAINT Message

Llong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

HDC ‘ hdC ; ' /* device context handle */
PAINTSTRUCT ps ; :
switch (iHessage) /* process windows messages */

* case WM_PAINT:
: ' “hbC = BeginPa1nt(thd, gps) ;
TextOut (hpC, 1, 1,
"I'm here because of WM_PAINT.", 29) ;
EndPaint (hWnd, &ps) ;
.. break ; L ondy
case HH COHHAND. /* process.menu items */
iu!tch (wParam) S

i‘case IDM_ DO!T. I USen.h{t the “Do it" menu item */

WINDOWS AP BIBLE

hDC = GetDC C(hWnd) ; ’ ' i
TextOut (hbDC, .10, 20, "0k, I did it!", 13) ;
ReleaseDC (hWnd, hDC) ; ’
B break ;
case IDM_QUIT:
Destroyw1ndou (hwnd)
break ;
}
break ;
case WM_DESTROY:
PostQuitMessage (0) ;
break ;
default:
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
3
return (OL) ;

Now when you run the GENERIC.EXE program, the window always shows the message “I'm here because of
WM_PAINT.” This message persists after resizing the window, as it is repainted every time a WM_PAINT message is
recelved The resilt looks like Figure 1-3. The old message “Ok, I did it!” still appears if you click the “Do It!" menu
" item, but continues to disappear if you resize the window.

Besides demonstratmg how the WM_PAINT message is used, this example is typical of how Windows programs
are developed. You start with a simple outline such as GENERIC.C, then gradually add the functlons you need for your
specific application. The end results can be as different as a spreadsheet and com-

"munications program: They all have their roots in the basrc structure of ey
GENERIC c. . Do oun

I'm here because of WM_PAINT.

Instances and Message Loops

We went over the code in GENERIC.C's WmMam() function pretty fast. Although
all of the functions used in WinMain() are discussed in more detail in later chap- ~ L

ters, there are a few points worth noting here. You may have noticed that both Figure 1-3. The Improved -
~ WinMain() and WndProc() are declared with the PASCAL statement. This saves a ~ GENERIC.C Processing the . ’
- few bytes when the compiler pushes the function’s parameters on the stack. The ~ WM_PAINT Messages.
trade-off is that the PASCAL convention does not allow functions to have a variable : :

number of parameters. Functions like printf() cannot use the PASCAL calling convéntion, as you do not know in
advance how many parameters will be passed to the function. Windows uses the PASCAL statement wherever p0551ble
to make the code as small and fast as possible, o

" The WndProc() function is also preceded by the FAR statements. This makes the address of the functmn a FAR
pointer. As Windows will use all ayailable memory to hold programs, FAR pointers are needed for functions that
Windows calls directly. }

The first two parameters passed by Wmdows to WinMain() when the program starts are hInstance and
hPrevinstance. These are “instance handles.” You can run more than one copy of a program at the same time under
Windows. Each version of the program is called a “program instance.” Windows keeps only one copy of the program’s
code in memory, but keeps separate data for each instance.

“GENERIC.C’s WinMairi() function stores the instance handle in a global variable ghinstance, defined in
GENERIC.H. This is done because the instance handle is frequently needed in calling other functions, and it saves a
little time if you keep a copy of the handle. If the program is starting for the first time (no other copy is running), the
hPrevinstance will be NULL (zero). If another copy is runmng, hPrevInstance will be an integer value. GENERIC.C
checks this and does not bother trying to register the window class for the program if another instance exists. That is
because the first instance of the program will have already registered the class. :

WinMain() passes two other parameters. nCmdLine is a pointer to a null-terminated character string containing
the command line that launched the program. You can set the command line from within the program manager using
the “File/Properties” menu item, This is rarely used in Windows. Windows programs tend to use initialization files
such as WIN.INT to pass data to the application on startup. Support for mltlallzatlon files is discussed in Chapter 20; .
MS DOS and Disk File Access.

10

1. OVERVIEW OF WINDOWS PROGRAMMING ¥

The nCmdShow parameter is an integer. This value is passed to the ShowWindow() function later in WinMain()
to control the initial appearance of the window. You do not have to use this value with ShowWindow(). The
ShowWindow() function descrlpnon in Chapter 3 discusses other options, such as startmg the windowina mmumzed
(iconic) state. N,

The WindProc() function also has four parameters. 2Wnd is the handle of the window receiving messages from
Windows. Windows maintains a list of all windows in memory, using the handle (an unsigned integer) as an index. We
will use this handle to refer to the window in many functions.

iMessage is the message from Windows. This is an unsigned integer, usually referred to by the symbolic name
defined in WINDOWS.H, such as WM_PAINT. The “WM” stands for Windows Message. The wParam and [Param
parameters are data that are passed along with each message. wParam is a WORD (two bytes), while [Param is a
LONG value (four bytes). Their meaning will depend on the message being sent. For example, if you change the size of
a window, Windows will send a WM_SIZE message. With this message, [Param will hold the new height and width of
the window after resizing. [Param and wParam have different meanings with every Windows message.

In the simple GENERIC example, only a few Windows messages are acted on by the WndProc() function. The rest
of the messages fall through to the bottom of WndProc() and end up sent to DefWindowProc(). This function does the
default actions for all Windows messages. Default actions are things like processing WM_SIZE messages to change the
window's size. You can stop the default action from occurring by intercepting the message in the WndProc() function,
and then just returning zero from WndProc(), rather than passing the message on to DefWindowProc(). More on this
in Chapter 8, Message Processing Functions.

Program Listing Conventions In This Book

The GENERIC application described above forms the basis for every example in this book. To save space, repeated
portions of the program listings are not shown unless some change must be made. In most cases, the only changes are
to the WndProc() function. If the example listing shows only the WndProc() function, you can assume that WinMain()
and the support files (GENERIC, GENERIC.H, GENERIC.DEF, GENERIC.RC) are all identical to those listed in this
chapter.

You will also note the use of two global variables in many of the examples. ghInstance and gszAppName are
defined in GENERIC.H. They contain the program’s instance handle and program name, respectively. The instance
handle and application name are used in many different function calls. You can easily write code that avmds the use
of these global variables. They are used in the examples to save space and improve clarity.

One final space saving trick is used in simple examples where only the top few lines of WndProc() are used to
demonstrate a function. If the rest of WndProc() is 1dentlcal to the GENERIC.C , the bottom portlon isreplaced with:
[Other program lines].

11

Usually the word “window” brings to mind the application program’s full client area, frame, menu, and caption bar. It
turns out that Windows uses the same low-level logic to control all sorts of similar objects, including windows, buttons,
list boxes and scroll bars. All of these are forms of “windows.” They are all created using the CreateWindow() function.
The main elements of a window are illustrated in Figure 2.1.

CreateWindow() is the most complex function in Windows. It is so complex because this one function can create
a wide range of objects. Within each family of objects, such as scroll bars and buttons, there are a range of options.
These options give you control over what the object looks like, where the text goes, it lists are sorted, and so on. The
different options are given names in the WINDOWS.H file. In many cases, you can use several of the options at once,
combining their effects. For example, a list box control, where you want the contents sorted and the parent window
notified of any selections, would have the series of Windows styles

LBS_NOTIFY | LBS_SORT

) Cantion . Minimize
The C language binary OR operator (I) combines System > 7 :‘naxim,ze :
these binary values before they are passed to the g’:f""” n FTA— Btns.

CreateWindow() function. :

The other important control over a window is the Dot Quit
- window class upon which it is based. There are two basic g"en“ :
- choices here: Use an existing window class such as “BUT- ar (The Client Area)
TON” or the parent window's base class, or create a new
‘class from scratch. We will look at an example using both Frame
methods in the next two sections. : Figure 2-1. Elements of a Window.

Using CreateWindow() Based on an Existing Class

Let's modify the GENERIC.C application to show some window types in the program’s client area (the work area
below the menu bar). The only changes will be in the WinProc() function. We will put in four calls to CreateWindow(),
making button, static text, edit, and scroll bar “windows” when the user clicks the “Do It!” menu item.

> Listing 2-1. Creating Different Windows Using the Same Base Class
Llong FAR PASCAL WndProc. (HWND hWnd, unsigned iMessage, WORD wParam, LONG {Param)
Pash

HWND hButton, hStaticText, hEdit, hscrotl ;
switch (iMessage) /* process windows messages */
{

case WM_COMMAND:) /* process menu items */
switch (wParam) ’ : :
{ .

case IDM_DOIT: /* User hit the "Do it" menu item */
’ . /* create and show a button */
hButton = CreateWindow (“BUTTON", "Button",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
. 10, 10, 100, 40, hWnd, CHILD1, ghlnstance, NULL) ;
ShowWindow (hButton, SW_SHOW) ; S
/* create and show static text */
hstaticText = CreateWindow (“STATIC", “Static Text",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

12

2. CREATING WINDOWS ¥

150, 10, 100, 15, hwnd, CHILD2, ghlnstance, NULL) ;
ShowWindow (hStaticText, SW_SHOW). ;
/* create and show an edit control */
hEdit = CreateWindow ("EDIT", "Edit Me",
WS_CHILD | WS_VISIBLE | WS_BORDER,
150, 40, 100, 25, hWnd, CHILD3, ghlnstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;
/* create and show a scroll bar */
hScrotl = CreateWindow ("SCROLLBAR", “",
WS_CHILD | WS_VISIBLE | SBS_HORZ,
10, 100, 200, 20, hWnd, CHILD4, ghInstance, NULL) ;
ShowWindow (hScroll, SW_SHoW) ;
break ; .

[Other progr'am lines] . p

The rest of the program is the same as GENERIC.C) : '

The button, scroll bar, static text, and edit controls are all called “child window controls.” The word “control”
means that they were created with a predefined window class such as BUTTON, rather than registering a new window
class. They are child windows because each is related to the parent window and will only be shown if the parent is
visible. The WS_CHILD flag used ineach call to CreateWindow() creates child windows. CreateWindow() was also passed
the parent window’s handle zWrd. This allows CreateWindow() to make the correct linkup of child and parent.

Notice that the first parameter in each of the calls to CreateWindow() is a word that specifies the type of child
window control being created: BUTTON, STATIC, EDIT, and SCROLLBAR. The second parameter is the text string
that will show up inside the control. Scroll bars do not have text, so a null string (“") is included. The series of
numbers, such as “10, 10, 100, 40", sets the size and location of the child window. The parameter third from the last is
the ID value for the window. In this case, the four controls have been numbered in sequence CHILD1, CHILD2,
CHILD3, CHILD4. These values are normally defined in the program’s header file

{'define CHILD1 100
#define CHILD2 101

#define CHILD3 102

Also note that the program’s instance handle (saved as the global vanable ghlnstance) is passed to Create-
Window(). .
Whenyou compile and run this program, clicking the

17 VM £ " “Do It!” button results in a screen like that shown in Fig- -

: Do it! Quit ure 2-2, Experienced programmers will note that this ex-

: ‘ : ample looks like a dialog box (the subject of Chapter 13).
However, this is a normal window containing child win-
dow controls. L

When you resize this window, the child windows in
the client area are automatically redrawn. This is a big |
improvement over our GENERIC.C program in Chapter
1, where we had to explicitly redraw the text every time a
WM_PAINT message was received. We have taken advan- -
tage of Windows’ built in iogic for child windows. Win- -

2 dows keeps track of child windows and updates them

Figure 2-2. Four Types of Child Window Controls. along with their parent. -

B If you click the “Edit Me” edit control with the

mouse, a beam cursor (caret) appears in the control, and you can type in new letters, backspace to delete, etc. There

is a lot of built-in logic in the edit control, which saves the programmer from doing a bunch of mundane code. You can
create a serviceable text editor with nothing more than a large edit control. Edit controls are covered in more detail
in Chapter 9, Windows Messages.

The example in Lisitng 2-1 does not do anything when you click one of the four controls. If you want to use the
button coritrol in a real program, you will rieed to process the messages Windows generates. If you click the button

13 ’ ‘ : .

WINDOWS API BIBLE

control with the mouse, Windows sends a WM_COMMAND with wParam equal to the ID value of the control. A code
fragment for this type of processing might look like Listing 2-2.

<> Listing 2-2. Example Code for Recognizing Button Controls

Long FAR PASCAL WndProc (HWND h¥Wnd, unsigned iMessage, WORD wParam, LONG lParam)
{)

switch (iMessage) /* process windows messages */
{ . .
case WM_COMMAND: ./* process menu items */
switch (wParam) g
{ .
case CHILD1: /* control 1 pressed */
/* do something here */
break ;
case CHILDZ2: /* control 2 pressed */
/* etc. */
[Other program lines]

This simple interception of WM_COMMAND messages is typically used for buttons. For more complex controls

such as the scroll bar and edit controls, a number of messages are possible, depending on what the user does with the

-control. Scroll bars are the subject of Chapter 5. Edit controls are discussed in Chapter 9 under the EM and EN
message section (Edit Message and Edit Notify). '

Creating New Window Classes with Separate Message Processing .
The previous example used four of the predefined control classes to create child window controls. We can also create
child windows that are complete windows, including menus, captions, minimize and maximize boxes, etc. The child
window becomes its own “little world” and can display information and process Windows messages independently
from its parent window. The best way to deal with more complicated child windows is to give them their own message
processing function. This allows you to break up your program
logic into a set of similar message processing functions, each
~modeled after WinProc().

To show how child windows can process their own mes-
sages, let's create a program that looks like Figure 2-3. The
WINDEXM2 program’s main window will be identical to the .
GENERIC.C program from Chapter 1. In the client area we will
put a child window. The child window will be built from a sepa- _
rate window class, and have its own message processing func-
tion to deal with screen updates, etc. A

Creating this program will require modifications to sev-"" M P AINT n Ch' d.
eral parts of the GENERIC.C application. It is best to make a
copy of all the GENERIC.* files and then modify each of them.

WINDEXM2.C (Llstmg 2-3) has an identical WmMam()
function to GENERIC.C. In the WinProc() function, WIN-
DEXM2 picks up the WM_CREATE message that Windows
sends when a program. is started. When this message is re-
ceived, WINDEXM2 creates a new window .class called
“SecondClass.” This class has several changes compared to the
base class we used to create the WINDEXM2 window. The fol-
lowing line sets the message processing function equal to. = Figure 2-3. WINDEXM2—A Child Window with '
“ChildProc.” .. o Separate Message Pracessmg

Dol Quit

wndclass. lpfnWndProc = ChildProc‘;

This function is shown at the bottom of WINDEXM2.C. The class also-uses a different cursor shape than the base
window class because we spe(:lﬁed the predefined IDC_CROSS ¢cursor shape. Similarly, a predefined “brush" used to .

14 ‘ ,

2. CREATING WINDOWS v

- paint the background color LTGRAY_BRUSH is loaded using the GetStockObject() function. Stock objects are pens
and brushes that are always available in Windows. Chapter 11, Painting J the Screens, explores creating custom pens
and brushes. Chapter 6 covers cursors.

wndclass,hCursor = LoadCursor (NULL, IDC_CROSS) ;
wndclass.hbrBackground = GetStockObject (LTGRAY_BRUSH) ;

The changes to the cursor and background brush mean that any time a window is created from the “SecondClass”
window class; the mouse will switch to a cross shape in the child window’s area and the background will be painted
light gray. '
> Listing 2-3. WINDEXM2.C

/* windexm2.c example of creating a child window with message processing */
#include <windows.h> /* window's header file - always included */

#include "windexm2.h" /* the application's header file */

int PASCAL WinMain (HANDLE hlnstance, HANDLE hPrevInstance, LPSTR lpszCmdLine,
int nCmdShow) B

{
/* Exactly the same as WinMain() in generic.c - chapter 1 */
} .
Long FAR PASCAL WndProc CHWND hWnd, unsigred iMessage, WORD wParam, LONG LParam)
{ .] .
HDC hdC ; /* device context handle */
static WNDCLASS wndclass ; . /* the window class */
static HWND hListBox ; /* the window handlte */
switch (iMessage) : /* process windows messages */
< . .

~case WM_CREATE: /* build child window when program starts */
wndclass.style = CS_HREDRAW | CS_VREDRAW |
' CS_PARENTDC ;

wndclass. lpfnWndProc ChildProc ;

wndclass.cbClsExtra 0;
wndclass.cbWndExtra 0,
wndclass.hInstance ghInstance ;
wndclass.hlcon NULL ;

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName NULL ;
wndclass.lpszClassName “SecondClass" ;

/* register the window class */
if(RegisterClass (&wndclass))
¢ .

LoadCursor (NULL, IDC_CROSS) ;
GetStockObject (LTGRAY_BRUSH) ;

[LI VO T I T (O

.

hListBox = CreateWindow ("SecondClass", "Child Window",
WS_CHILD ‘| WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;
. ShowWindow (hListBox, SW_SHOW) ;
3 S
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)

case IDM_DOIT: : /* User hit the Do it" menu item */
hDC = GetDC C(hWnd) ; /* get device context */
TextOut (hDC, 10, 20, * 0&', I did it!", 13) ;
Releasenc ChWnd, hDC) /* release device context */.

. break ; - .o

case IDM_QUIT: 1% stop application */
DestroyWindow (hWnd) ;. ~
break ;

} /

[

v

i

15

WINDOWS API BIBLE

. break ;
case WM_DESTROY:
: PostQuitMessage (0) ;
break ; »
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam; LParam) ;
return (OL) ;

/* Here is a separate message process;ing procedure for the child window */

Long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, UORD uParam,
LONG LParam)

<
HDC hbe ; /* device context handle */
PAINTSTRUCT ps ; /* paint structure */
switch (iMessage) * /* process windows messages */
{ . ' '
case WM_PAINT: /* just write in the window */
hDC = BeginPaint(hWnd, &ps) ;
Textout (hDC, 1, 1, “WM_PAINT in Child.", 18) ;
EndPaint (hWnd, &ps) ;
break ;
default: /* default windows message processmg */
return DefWindowProc ChWnd, message, wParam, LParam) ; .
}
return (OL) ;
}

The function ChildProc() at the end of Listing 2-3 looks similar to the WinProc() function from GENERIC.C. Any
message processing for our child window will be handled in this function. In this example, all we do is put some text
into the window every time a WM_PAINT message is received. We have to make a couple of other changes to files to
get all of this to work. One simple thing is to add the function prototype for ChildProc() to our header file so that the
compiler can figure out what data types are used. WINEXM2.H is shown in Listing 2-4.

> Listing 2-4. WINEXM2.H Header Flle

/* windexm2.h */

#define IDM_DOIT 1) © .. /* menu item id values */
#define 1DM_QUIT 2 C

/* global variables */ ‘
int ghlnstahce ; . L e
char gszAppName [J1= "“windexm2" ;

/* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG)
Long FAR PASCAL ChildProc (HWND, unsigned, WORD, LONG) ;

The other change is to put a reference to ChildProc() in our definition file, such as where shown in Listing 2-5.
This is needed only when the function will be accessed directly by Windows, processing Windows messages. That's
exactly what ChildProc() does, so it is important not to forget to add it to the .DEF file. Details on .DEF files are
covered in Chapter 13, Dialog Boxes. .

S Listing 2-5. WINDEXM2.DEF Definition File

NAME WINDEXM2

DESCRIPTION ‘'create u'indous example® '
EXETYPE WINDOWS

STUB 'WINSTUB.EXE"

CODE PRELOAD MOVEABLE ~
DATA PRELOAD MOVEABLE MULTIPLE !
HEAPSIZE 1024

2. CREATING WINDOWS v

STACKSIZE 5120
EXPORTS- UndProc
ChitdProc ‘
If you compile WINDEXM2.C and try it, you will notice that the child window is updated (painted) automatically
whenever the parent window is resized. The child window has a gray client area (from the class definition), and the
- cursor changes from the normal arrow to a cross shape when it is within the child window's bounds.

Messages Generated by CreateWindow()

In WINDEXM2.C, the WndProc() function processes the WM_CREATE message. It is at this pomt that WndProc()
creates-the child window. Where did WM_CREATE come from? It turns out that Windows sends five messages to
WndProc() when the program’s main window is created by calling CreateWindow() in WinMain(). WINDEXM2.C
chooses to act on one of them, WM_CREATE, but just passes the other four on to DefWindowProc(). Windows knows
to send the messages to WndProc(), as that was the name of the window message processing function specified in the
class definition for the program's main window. We also included WndProc() in the EXPORTS section of the program’s
.DEF definition file, so that Windows would have the full address.

The sequence of messages that are generated by CreateWindow() is shown in Table 2-1. The actions described for
each message are taken care of by the DefWindowProc() function at the bottom of WndProc(). You can get an idea of
how important DefWindowProc() is from the complexity of these actions. Fortunately, DethdowProc() comes with
Windows, so we can take advantage of all of these built-in features without any extra coding.

[Message . Meaning -~ - - TR A
WM_GETMINMAXINFO Determines the size and position of the window. B
WM_NCCREATE ~ . Window nonclient area about to be created. Memory for the window is allocated intemally by
Windows. Scroll bars are initialized.
WM_NCCALCSIZE Calculation of the window's client area and scroll bar positions.
WM_CREATE Notification that a window is about to be created.
WM_SHOWWINDOW Display the window.

Table 2-1. Messages Generated by CreateWindow().

An interesting point to mention her+ is the order of execuiion of uitferent parts of the WINDEXM2 program. If you
get into the CodeView For Windows debugger and set a fow Lreskpoints, 3oy will find that the five messages are
processed by WndProc() right after CreateWindovi() is called and before the next linc in WinMain() is executed.

This behavior is completely different from a C program running under DOS. Under DOS you can expect one
program line to be executed right after the previous one. Windows programs are different. Windows sends messages to
WndProc() when Windows feels like it, not necessarily when you might expect it. Function calls within WndProc()
may also generate messages that in turn are processed by WndProc(). Message processing functions such as
WndProc() are said to be “reentrant,” as they may be called many times in a single logical activity. More on this in
Chapter 8, Message Processing Functions. :

Other Uses for Wmdow Controls

In the function description for CreateWindow() that follows, there is a long table of window styles. There are so many
window styles available that it is difficult to keep track of them all. Here are a few unusual ones that might come in
handy.

The static class is normally used to display text on aiwindow. Using the static class is more convenient than
repainting the text every time a WM_PAINT message comes along because the static window class is automatically
redrawn. Some of the options for the static class allow items other than text. The SS_BLACKRECT style fills the region
with the system color for the edge of windows (usually black). Similarly, SS_GRAYRECT and SS_WHITERECT fill

17 ’ ’ I

WINDOWS API BIBLE
7 B

'
’

rectangles with the screen (desktop) background and window background colors (defaults are gray and white). You
can use a series of these controls to shade areas of your window’s client area, again with automatic updating.

If you use an ampersand character (&) in a button class, the letter after the & will be underlined. Windows then
uses this letter as an accelerator key. Pressing that letter on the keyboard is equivalent to moving to the button with
the mouse. If you need to display & characters in a window style, disable the accelerator functions by using the
SS_NOPREFIX style, or use a double && in the text string.

The scroll bar class has a couple of styles that are handy if you want to have the scroll bar along one of the sides of
the client area—typical for a word. processing application. The SBS_BOTTOMALIGN, SBS-TOPALIGN,
SBS_RIGHTALIGN, and SBS_LEFTALIGN styles all fit the scroll bar to the parent window’s client area, usmg the
default scroll bar width. More on this in Chapter 5, Scroll Bars.

If you want to have an icon on your parent window to pretty things up, there is an SS_ ICON style for the static
class. This will save you from having to use Drawlcon() on every WM_PAINT cycle. You can also create your own
custom buttor: x, Mmg bitmaps or painting on the button’s client area by using the BS_OWNERDRAW button stfle. You
will heve to er.. .. images for not only the button in its normal state, but also for an inverted image reflecting being
pressed and m::z\bled (no input focus) state. See the owner-drawn menu example in Chapter 4 for an example of
_ processik,; s Tac.:sages for owner-drawn items. :

Functicn e criptions
Table 2-2 suvamarizes the three window creation functions. The detailed descriptions follow.

| Functiza - Purpose _ X
CrecteVyrinw) Creates new windows and child window controls.
CregieViwlowEx() - Creates new windows with an extendied style.
Hcgis!s;:CiaséO . Creates new windows classes.

Table 2-2. Functions for Creating Windows and Controls.

CREATEWINDOW - BWin20 BEWn30d BWins.l

- Purpose Creates new windows and child window controls,
Syntax HWND CreateWindow(LPSTR {pClassName, LPSTR lpWindowName, DNORD dwStyle, int X,
int ¥, int nWidth, int nHezght HWND hWndParent, HMENU hMenu, HANDLE kinstance, LPSTR
;) lpParam);
Description CreateWindow() builds a window based on a window class created with RegisterClass() or based

on a predefined control class. The location, size, and style of window are passed to CreateWin-
dow() as parameters. ShowWindow() is used after the wmdow is created to display it on the
screen.

Uses " 'The CreateWindow function is used both in the WinMain() function to create the application’s
main window and also within the program to create child wmdows and child window controls
~ such as buttons and scroll bars.

Returns HWND, a handle to the window created. The handle is a unique identifier for the particular win-
: dow or control created with each call to CreateWindow().

See Also RegisterClass(), ShowWindow(), DestroyWindow(), CreateWindowEx()

Parameters : . ‘ .

ipClassName ~ * LPSTR: Pointer to a null-terminated string which contains the name of the window class. Classes

can either be created using RegisterClass(), or they can be chosen from one of the predefined
control classes described in Table 2-3. The class names are case sensitive.

18

2. CREATING WINDOWS. v

'
'

[Class Meaning ‘ ' . A]
"‘BUTTON A rectangular push button control.
COMBOBOX Combination of a list box, with an edit field on top.
EDIT Rectangular region where the user can enter and edit text.
LISTBOX Alist of character strings. If the I'st length overflows the length of the box, a vertical scroll control will automati-
- cally appear on the right hand side. The listbox can contain graphics items, if the LB_OWNERDRAWFIXED or
LBOWNERDRAWVARIABLE styles are used. See Chapter 9, Windows Messages.
MDICLIENT - A Multiple Document Interface window. This style is used for multiple overlapping child windows within the
parent window's client area. See Chapter 29, Muitiple Document Interface. :
SCROLLBAR = A scroll bar control.
STATIC Static text. This style is used to place text on the parent window.

Table 2-3. Predefined Windows Control Classes.

IpWindowName

dwStyle

 nWidth

nHeight

hWndParent

hMenu

hinstance
IpParam

LPSTR: Points to a null-terminated character string that contains the window’s name, For BUT-
TON styles this string becomes the button’s text. For EDIT and STATIC styles the string is shown
in the center of the control. For popup windows it is used as the title.

DWORD: Determines the style of window. The styles can be combined by using the C language
binary OR operator. For example: WS_CHILD | WS_HSCROLL. Styles can be any of those listed in -
Table 2-4.

int: The horizontal position of the upper left corner of the child window or'control. You can use
CW_USEDEFAULT to let Windows decide where to put a program's window.

The XY location is from the upper left corner of the screen or parent wmdow client area (for
child windows), measured in pixels (device units). :

int: The vertical position of the upper left corner or the child window or control. You can use
CW_USEDEFAULT to let Windows decide where to put a program's window.

int: The horizontal size of the window or control. You can use CW_| USEDEFAULT to let Windows -
decide what size to make a program’s window.

The width and height are measured in device units (pixels).

int: The horizontal size of the window or control. You can use CW_USEDEFAULT to let Windows
decide what size to make a program’s window.

HWND: A handle to the window's parent. Specifv NULL if there is no parent window. In this case

the window will not be destroyed automatically when the main program window is destroyed Use
DestroyWindow() to remove a window from memory.

HMENU: A handle to the window's menu. NULL if the class menu is to be used. Use the dwStyle
parameter to add or eliminate a menu from child windows.

For controls, kMenu is used to set an integer ID value. This value will be péssed as the wParam
parameter of a WM_COMMAND message when the control is activated by a mouse click or key-
press.

HANDLE: The instance handle for the program module creating the windows.

LPSTR: A long pointer to a data structure passed to the window. For example the MDI (Multiple
Document Interface) style passes the CLIENTCREATESTRUCT data here. Normally set to NULL
meaning that no data is passed via CreateWindow().

Related Messages WIVE_PARENTNOTIFY , WM_NCCREATE, WM_CREATE

19

WINUUWS API BIBLE

Example

14

This example shows the creation of a pushbutton control. The button will have the text “Press

Me” in the center. The upper left corner of the button will be at 10,10 rélative to the upper left
corner of the client area. The button will be 100 pixels wide and 40 high. The parent window’s
handle is ®Wnd, and has an instance handle of hlnstance. The button has an ID value of 101

HWND

hButton = CreateWindow ("BUTTON",

Creating a window does not make it visible; the ShowWindow() does.

hButton ;

"Press Me",

WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

10, 10, 100, 40, hWnd, 101,

hInstance, NULL) ;

ShowWindow (hButton, SW_SHOW) ;

Table 2-4 summarizes all of the values that can be used in the }iwstyle parameter.

| Button Styles Meaning .]

BS_AUTOCHECKBOX Small rectangular button with text to the right. The rectangle can either be open or
checked. This style toggles automatically between checked and open.

BS_AUTORADIOBUTTON Small circular button with text tothe right. The circle can either be filed or open. This style

: toggles automatically between checked and open.)
BS_AUTO3STATE Small rectangular button with text to the right. The button can either be filed, grayed, or

_ open. This style toggles automatically between checked, grayed, and open.

BS_CHECKBOX Small rectangular button with text to the right. The rectangle can either be open or

BS_DEFPUSHBUTTON

BS.GROUPBOX -

- checked.

Button with text in the center and with a defined (dark) border. This is the button that is
pressed when the user presses the (ENTER) key. There can be only orfe DEFPUSH-

"BUTTON on a window.

A box outline with text at the upper left. Used to group other controls.

CBS_DISABLENOSCROLL (Win 3.1)

'CBS_DROPDOWN

BS_LEFTTEXT Causes text to be on the left side of the button. Use this with other button styles.

BS_OWNERDRAW Designates a button that will be drawn by the program. Windows sends messages to
request paint, invert, and disable. Use this style for custom button controls. See the ex--
ample in Chapter 4 on owner-drawn menu items.

BS_PUSHBUTTON A rectangular button with text in the center.

BS_RADIOBUTTON Small circular button with text to the right. The circle can either be i Iled or open.

BS_3STATE Small rectangular button with text to the right. The buttort can either be filled, grayed, |

- -or open.
| ComboBoxStyles CaEam X
CBS_AUTOHSCROLL Combo box control. This is a list box with an edit control at the top to display the current

selection. Chapter 9, Window Messages, includes a combo box example and message
descriptions. With the CBS_AUTOHSCROLL style, the edit area at the top automatically
scrolls when typing fills the edit box. '

The list box of the combo box control shows a disabled vertical scroll bar when the list box
does not contain enough items to fill the list box window. Without this style, the scroll bar
disappears when there are not enough items.

Combo box control with a drop down scroll area. This reduces the space taken by the
combo box when the list is not needed.

20

CBS_DROPDOWNLIST
CBS_HASSTRINGS

CBS.OEMCONVERT

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

CBS_SIMPLE
CBS_SORT

2. CREATING WINDOWS V

Combo box control with a drop down scroll area. The edit area at top is a static text item

‘which only displays the current selection in the list box.

The combo box control maintains the list box strings in memory. Fetch them by sending a
CB_GETLBTEXT message.

Combo box edit text is converted to OEM character set and then back to ANSI. Useful for
lists of file names.

An owner-drawn combo box. The combo box items are of fixed height. See the combo
box example in Chapter 9, Window Messages, for an example owner-drawn combo box.

An owner-drawn combo box. The combo box items can be of different heights.
The combo box has a list box that is displayed at all times.
The combo box items are sorted automatically.

Dialog Box Styles

X

DS_LOCALEDIT
DS_MODALFRAME

DS_NOIDLEMSG

DS_SYSMODAL

Forces all memory used by dialog boxes into the application’s data segment.

Creates a dialog box with a modal frame. Note that this can be combined with the
WS_CAPTION and WS_SYSMENU styles.

“ No WM_ENTERIDLE messages are sent from the dialog box if created with this style.

Normally, WM_ENTERIDLE messages are used to alert the application that the dialog box
is displayed, but no user activity has happened vet.

System modal dialog box. No other window can gain the input focus until this style dlalog
box is closed. Used for serious error messages.

| Edit Control Styles

g

ES_AUTOHSCROLL
ES_AUTOVSCROLL

ES_CENTER
ES_LEFT
ES_LOWERCASE
ES_MULTILINE

ES_NOHIDESEL
ES_OEMCONVERT
ES_PASSWORD

ES_READONLY {Win 3.1)
ES_RIGHT
ES_UPPERCASE

Edit control with automatic horizontal scrolling if the text will not fit within the edit box.

Automatic vertical scrolling for an edit control. Used with ES_MULTILINE. See the ex-
ample in Chapter 9 of a multiline edit control with a vertical scrolt bar.

Text is centered within the edit control.
Text is left-aligned within the edit control.
All characters within the edit control are converted to lowercase as they are entered.

Allows multiple lines of input within an edit control. This type of control provides basic text
processing functions. The discussion of edit control messages that work with this control
style is in Chapter 9.

E/dat control where the text is left unchanged when the control loses the input focus.

Edit control text is converted to OEM character set and then back to ANSI. Useful for file
names.)

Displays typed-in letters as astersik characters “". The actual typed letters are stored by
the edit control. See the EM_SETPASSWORDCHAR message description in Chapter 9.

The edit text can be viewed, but not changed by the user.

Right-aligned letters within the edit control.

All characters within the edit control are converted to uppercase as they are entered.
I3

21 .

WINDOWS APTBIBLE .

[List Box Styles -

| | —

LBS_DISABLENOSCROLL (Win 3.1)

LBS_EXTENDEDSEL
LBS_HASSTRINGS
LBS_MULTICOLUMN
LBS_MULTIPLESEL |
LBS_NOINTEGRALHEIGHT

| vI:BS_NOREDRAW
LBS_NOTIFY

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT
LBS_STANDARD

LBS_USETABSTOPS

LBS_WANTKEYBOARDINPUT

The list box control shows a disabled vertical scroll bar when the list box does not contain
enough items to fill the list box window. Without this style, the scroll bar disappears when
there are not enough items.

List box control where more than one |tem can be selected by using the mouse and the
shift key.

List box control containing lists of strings. Send the LB_GETTEXT message to retrieve the
strings.

List box with multiple columns. Can be scrolied horizontally and vertically. Send
LB_SETCOLUMNWIDTH to set the column widths.

Any number of strings can be selected within the list box. Selection by mouse clicking,
deselection by double-clicking.

- Alist box of fixed size. The list box height is not scaled to match an even number of items

(the default case).

Alist box which is not automatically redrawn. Convert the control back to normal by send-
ing the WM_SETREDRAW miessage.

A list box that sends the parent window messages when the user selects one or more
items. The list box messages are discussed in Chapter 9.

A list box where the program is responsible for drawing all items. ltems are of fixed vertical
size. There is a similar example using an owner-drawn combo box in Chapter 9, Windows
Messages.

A list box where the program is responSIble for drawing all items. Items can be of different
vertical sizes. -

Alist box where the items are maintained in sort order.

A list box containing stings, automatically sorted, with messages sent to the parent win-
dow when selections are made:

A list box that recognizes and expands tab characters. By default, tabs are every eight
spaces. See the EM_SETTABSTOPS message to change this value. ..

The parent window receives WM_VKEYTOITEM and WM_CHARTOITEM messages from
the list box when it has the input focus and keys are pressed. Handy for setting key

~ combinations.

Scroll Bar Styles

X

SBS_BOTTOMALIGN

SBS_HORZ
SBS_LEFTALIGN

SBS_RIGHTALIGN

SBS_SIZEBOX

A scroll bar control, aligned with the bottom edge of the rectangle specified by the X, Y,
nWidth, and nHeight parameters used in calling CreateWindow{) for the parent window.

"The default scroll bar height is used.

A horizontal scrolf bar control. , 2

- Ascroli bar control, aligned with the left edge of the rectangle specified by the X, Y, nWiath,
- and nHeight parameters used in calling CreateWindow() for the parent wmdow The de-

fault scroll bar width is used.

A scroll bar control, aligned with the right edge of the rectangle specified by the X, Y,
nWidth, and nHeight parameters used in calling CreateWindow() for the parent window.
The defautt scroll bar width is used.

A scroll bar size box control. This is a small box that allows sizing of a w:ndow from one

location.

[
Y

- 22

2. CREATING WINDOWS ¥

SBS_SIZEBOXBOTTOMRIGHTALIGN

SBS_SIZEBOXTOPLEFTALIGN

SBS_TOPALIGN

SBS_VERT

Used with the 8BS_SIZEBOX style. A size box control, aligned with the lower right edge of
the rectangle ‘specified by the X, Y, nWidth, and nHeight parameters used in caliing
CreateWindow() for the parent window. The default size box size is used.

Used with the SBS_SIZEBOX style. A size box control, aligned with the top left edge of the .
rectangle specified by the X, Y, nWidth, and nHeight parameters used in calling
CreateWindqw() for the parent window. The default size box size is used.

Used with the SBS_HORZ style. Puts the scroll bar at the top of the parent window's client
area. ' ’

A vertical scroll bar control.

tatic Control Styles

SS_BLACKFRAME
SS_BLACKRECT

SS_CENTER
SS_GRAYFRAME

SS_GRAYRECT

SS_ICON

SS_LEFT
SS_LEFTNOWORDWRAP
SS_NOPREFIX
SS_RIGHT

SS_SIMPLE
SS_USERITEM
SS_WHITEFRAME
SS_WHITERECT

=

A static control with the entire center filled with the color used to draw the wmdow frame.
This is black with the default Windows color scheme.

A stalic text control with the text centered.

A static control with the frame color egual to the Windows desktop background. This is
gray with the default Windows color scheme. '

A static control with the entire center filled with the color used to draw the Windows
desktop background. This is gray with the default Windows color scheme

A static control with a black frame outline.

A static control containing an icon. The text name specifies the name of the icon to use.
A static text control with the text left-aligned.

A static text control. Text is flush left and truncated to the size of the control.

A static control when it is desirable to display ampersand§ (&) in the text of the control.
A static text control with the text string right-aligned.

A static text control.

A user-defined static control.

A static text control with a frame matching the Wiridows background color (defaull is white).

A static control with the entire center filled with the color used to draw the parent windows
oackground. This is white with the default Windows color scheme. ~ * ©

Window Styles Xl

WS_BORDER Specifies a border on a window .

WS_CAPTION Specifies a caption (titie) on a window. This cannot be used with the WS_DLGFRAME
style.

WS_CHILD Creates a chid window. This cannot be used with the WS POPUP style

WS_CHILDWINDOW
WS_CLIPCHILDREN

WS_CLIPSIBLINGS
WS_DISABLED
WS_DLGFRAME
WS_GROUP

» Same as WS_CHILD.

Used when creating the parent window. Specifies that child windows will not extend past
the boundary of the parent.

Use with WS_CHILD style. Keeps child windows from overlapping in painting operations.
Creates a window that is initially disabled (cannot receive the input focus).
A window with a double border. .

This style marks a control that the user can reach by using the direction (arrow) keys. Used
in dialog boxes.

23

WINDOWS API BIBLE

WS_OVERLAPPED
WS_OVERLAPPEDWINDOW

WS_POPUP

WS_POPUPWINDOW

[WindowStyles X
WS_HSCROLL A window with a horizontal scroll bar.
~ WS_ICONIC A window that is initially iconic. Use with the WS_OVERLAPPED style.
WS_MAXIMIZE A window that is initially maximized. v
WS_MAXIMIZEBOX A window with a maximize box in the upper right corner.
WS_MINIMIZE Same as WS_ICONIC.
WS_MINIMIZEBOX A window with a minimize box in the upper right comner.

A window with a caption and a border.

Combines the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, and WS_THICK-
FRAME styles. This is a standard parent window.

A popup window. Cannot be used with the WS_CHILD style. The window can be dis-
played outside of the parent’s boundaries.

Combines the WS_POPUP, WS_BORDER, and WS_SYSMENU styles. This is a standard
popup window. i

WS_SYSMENU A window with a system menu. This is the square at the upper left corner of the window.
Clicking the system menu reveals menu items for “Restore,” “Move,” etc.

WS_TABSTOP «Used in dialog boxes to specify at which control the tab key stops.

WS_THICKFRAME A window with a thick frame. The frame is used to size the window.

WS_VISIBLE ’ A window that is initially visible. Used with overlapped and popup windows.

WS_VSCROLL A window with a vertical scroil bar.

Table 2-4. Window Styles.

CRrREATEWINDOWEX BWin20 EWin30 BWinsl
Purpose Creates new windows with an extended style.
Syntax HWND CreateWindowEx(DWORD dwExStyle,LPSTR IpClassName, LPSTR lpWindowName,

DWORD dwStyle, int X, int Y, int nlWidth, int nlleight, HWND hWndParent, HMENU hMenu,
. HANDLE hInstance, LPSTR IpParam);
Description The CreateWindowEx() function is used to create child windows with a double border style and/
or with WM_PARENTNOTIFY messages disabled. Otherwise, it is identical to CreateWindow().
This is an addition to the 3.0 version of Windows.

Returns ! HWND, a handle to the window created.

See Also " RegisterClass(), ShowWindow(), DestroyWindow(), CreateWindow()

Parameters ,)

.dwExStyle DWORD: Specifies the extended style to use in creating the window. The only three styles cur-
: rently defined are: ,

| Sty Meaning, . 0 s e X
WS_EX_DLGMODALFRAME A window with a double border. You can use the WS_CAPTION style in the dwStyle parameter to

add aftitle.

WS_EX_NOPARENTNOTIFY Prevents WM_PARENTNOTIFY messages from being sent to the parent window when a child
with this style is created. ‘

WS_EX_TOPMOST Win 3.1) Windows created with this style remain above all other non-topmost windows, even when deac-
tivated. The SetWindowPos() function can be used to change this status. '
Table 2-5. Extended Window Styles.

N

24

2. CREATING WINDOWS ¥

' IpClassName LPSTR: Pointer to a null-terminated string which contains the name of the window class. Classes
can be created using RegisterClass().

IpWindowName LPSTR: Ppints to a null-terminated character striné that contains the window’s name. For BUT-
TON styles, this string becomes the button’s text. For EDIT and STATIC styles, the string is shown
in the center of the control.

dwStyle DWORD: Determines the style of window. The styles can be combined by using the C language
binary OR operator (). For example: WS_CHILD | WS_HSCROLL. Styles can be any of those
listed in Table 2-4 of CreateWindow().

X int: The horizontal position of the upper left hand corner or the child window or control. You can

’ use CW_USEDEFAULT to let Windows decide yhere to put a program’s window.
The X and Y positions, as well as the nWdith and nHeight values, are given in device units
- (pixels).

Y int: The vertical position of the upper left corner or the child window or control. You can use
CW_USEDEFAULT to let Windows decide where to put a program’s window. ’

nWidth int: The horizontal size of the window or control. You can use CW_USEDEFAULT to let Windows

: decide what size to make a program’s window.

nHetght int: The horizontal size of the win‘d’ow or control. You can use CW_USEDEFAULT to let Windows
decide what size to make a program’s window.

hWndParent HWND: A handle to the window's parent. NULL if there is no parent window.

hMenu HMENU: A handle to the window’s menu. NULL if the class menu is to be used. Use the window
styles to add or eliminate a menu line from child windows.

_ hinstance HANDLE: The instance handle for the program module creating the windows.

IpParam LPSTR: Along pointer to a data structure passed to the window. Normally set to NULL, meaning
that no data is passed via CreateWindow(). -

Related Messages. WM_PARENTNOTIFY, WM_NCREATE

Example The following code fragment shows the creation of a window with an ext;mded style as the main
program window.

WNDCLASS l wndclass ;

wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_PARENTDC ;
wndclass.lpfnindProc = WndProc ;

wndclass.cbClsExtra =0;

wndclass.cbWndExtra =0;

wndclass.hlInstance = ghlInstance' ;

wndclass.hIcon = NULL ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) :
wndclass.lpszMenuName = NULL ,

wundclass.lpszClassName = "SecondClass" ;

/* register the window class */

if(RegisterClass (&wndclass))

{

hListBox = CreateWindow !\Ex(HS_EX_DLGMODALFRAHE
“SecondClass"”, "“Child Window",
WS_CHILD | WS_VISIRLE | WS_CAPTION,
10, 50, 200, 150, hund, NULL, ghInstance, NULL) ;
ShowWindow (hListBox, SW _SHOW) ;

25

WINDOWS API BIBLE

REGISTERCLASS BWin20 BWin30 SWindl

Purpose
Syntax ‘
Description

" Uses

Returns
See Also

Parameters
IpWndClass

style

Creates new Windows classes..
ROOL RegisterClass(LPWNDCLASS lpWndClass);

RegisterClass() creates a new Windows class that can be used (o cfeate any number of new win-,
dows and child controls.

Used in the WinMain() function to create the base class for the parent window. Can be used i in
the body of the program to create other Windows classes.

Non-zero (TRUE) if the new class was registered. Zero (FALSE) if the function failed.

CreateWindow(), CreateWindowEx(), UnregisterClass(), GetClassinfo(), GetClassLong(), Get-
ClassName(), GetClassWord(), SetClassLong(), SetClassWord()

LPWNDCLASS: A long pointer to a WNDCLASS data structure. This is defined in WINDOWS.H as:
typédef struct tagWNDCLASS
{

WORD style;
LONG (FAR PASCAL *tpfnWndProcl();
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPSTR LpszMenuName;
LPSTR . LpszClassName;
} WNDCLASS;
typedef WNDCLASS . *PWNDCLASS;
typedef WNDCLASS NEAR *NPWNDCLASS;
typedef WNDCLASS FAR = *LPWNDCLASS;

The elements of the WNDCLASS structure are as follows:

WORD: The style parameter can be any of those listed in Table 2-6, combined as desired using the
C language binary OR operator (1).

| style

Meaning ; |

CS_BYTEALIGNCLIENT Aligns a window's client area on the byte boundaries horizontally. This makes a smail savings in

memory consumed by Windows.

CS_BYTEALIGNWINDOW Aligns a window on the byte boundaries horizontally.

CS_CLASSDC

CS_DBLCLKS
CS_GLOBALCLASS

CS_HREDRAW
CS_NOCLOSE
CS_OWNDC

CS_PARENTDC
CS_SAVEBITS

CS_VREDRAW

Gives the window class its own davice context. Every window created from this class will share
! the DC.

Mouse double-click messages are'sent to the window.

Makes an application global class. Available to all applications while the program that created the
class is running.

Redraws the window if the honzonta! size changes.
Stops the close option on the system menu.

Gives each window instance its own device context. Note that each device context requues 806.
bytes of memory.

The window class uses the parent window’s device context.

Instructs window to save the butmap of parts of the window that may be obscurred by overlapping
windows.

Redraws the window when the vertical size changes.

-Table 2-6. RegisterClass() Window Styles

26

2. CREATING WINDOWS Vv

IpfuWndProc

¢bClsExtra

coWndExtra

hinstance
hlcon

hCursor

hbrBackground

IpszMenuName
IpszClassName

(FAR PASCAL #IpfnWndProc)(): Pointer to the window function. This is usually called
“WndProc” for the default window function, or another name for a separate message processing
function that you create for a class of windows. These functions should be referenced in the

EXPORTS section of the program'’s .DEF definition file. ‘

int: Sets the number of bytes to include at the end of the window class structure. These extra
bytes can be used to store information with the class. Sce the SetClassLong() function descrip-
tion.

int: Sets the number of bytes to include after each window instance. This allows data to be stored
with each window created. See the SetWindowWord() function description. Set this value to
DLGWINDOWEXTRA if you are using the CLASS directive in your resource (.RC) script file to
register a dialog box.

HANDLE: The instance handle of the module (application program) registering the class.
HICON: Handle for the class icon. If set to NULL, the program must draw the icon if the window
is minimized. Set to NULL for window classes that are never minimized.

HCURSOR: Handle to the class cursor. Usually set to the default arrow cursor, as shown in the
following example. May be set to NULL, if the application explicitly sets the cursor shape when
processing WM_MOUSEMOVE messages. This is typica! of an application that uses one or more
custom cursor shapes.

HBRUSH: Handle to the brush used to paint the background. Besides any of the stock brushes
(see GetStockObject()), the brush can also be set to any of the system colors:

COLOR_ACTIVEBORDER
COLOR_ACTIVE CAPTION
COLOR_APPWORKSPACE !
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_WINDOWFRAME
COLOR_WINDOWTEXT

Add 1 to these values in the class definition. Although unusual, you can set hbrBackground
to NULL. This requires that the application paint the background when a WM_ERASEBKGND
message is received. .

LPSTR: Points to the class menu name string. If NULL, the class of windows has no default menu.

LPSTR: Points to the class menu name string. This is the name that will be used i in the Create-
Window() function's IpClassName parametepwhen creating windows based on the class.

27

WINDOWS API| BIBLE

Example WNDCLASS wndclass ;

wndclass.style CS_HREDRAW | CS_VREDRAW ;
wndclass. lpfnWndProc WndProc ;
wndclass.cbClsExtra 0.

wndclass.cbWndExtra 0.

hinstance ; .

LoadIcon (hInstance, gszAppName) ;
LoadCursor (NULL, IDC_ARROW) ;
GetStockObject (WHITE_BRUSH) ;
"generic” ;

"generic” ;

wndclass.hInstance
wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

wowowaowannnn

/* register the window class */
RegisterClass (&wndclass) ;

.28

The Windows programming environment provides a wide range of support functions for manipulating windows and
the data that controls the window’s appearance and function. Essentially every aspect of a window’s behavior can be
determined and changed as the program operates. This frees you from having to keep track of where windows are or
what they are doing.

Direct Changes to Window Attributes

The simplest support functions act directly on a window's behavior or appearance. For example, GetWindowText()
retrieves the window’s title, while SetWindowText() changes the title to a new string constant.

You can check the status of a given window with the IsChild(), IsIconic(), IsWindow(), and IsWindowVisible()
functions. Of these, the IsIconic() is the most frequently used. It is commonly put into the WinProc() function to
change how the client area is painted for windows that do not use a class icon (the icon listed in the RegisterClass()
call in WinMain()). You can paint directly on the little bit of window shown when the program’s window is iconized
with the normal painting and text functions. Use IsIconic() to find out if Just the icon is showing or if the full window
is visible.

MoveWindow() can move and change the size of a window. This is handy if your program uses several child or
popup windows. You can use the SetFocus() function to change which window or control gets the keyboard input. The”
window receiving keyboard input is said to have the “input focus.” GetFocus() will tell you which window has the input
- focus. The SetActiveWindow() and GetActiveWindow() functions are similar. The active window is the parent window
that has the highlighted title bar and currently receives messages from Windows for mouse movements, etc. Active
status applies only to parent windows. Focus can apply to a parent or child window.

Changing the Class Data

As we saw in Chapter 2, creating a window is a two-step process. You first need to create a window class usin/g
‘RegisterClass(). Then you create one or more windows based on this class using the CreateWindow() function. As the
program operates, you may want to change some of the data in either the class structure or in the parameters passed
to the CreateWindow() function. The several functions reading or changing a class data structure work on the differ-
ent data types in the window class structure, WNDCLASS, as shown in Listing 3-1. :

&> Listing 3-1. WNDCLASS Definition in WINDOWS.H
typedef struct tagWNDCLASS
{

WORD style;

LONG (FAR PASCAL *LpfnWndProc)();
int cbClsExtra;

int cbWndExtra;

HANDLE hlnstance;

HICON hlcon;

HCURSOR hCursor;

HBRUSH hbrBackground;

LPSTR LpszMenuName;

LPSTR LpszClassName;

3 WNDCLASS;

GetClassWord() retrieves WORD long values, while GetClassLong() retrieves LONG values. To use these , you will
have to mentally convert between the Windows naming conventions defined in WINDOWS.H. For example,

29

WINDOWS API BIBLE

WORD = unsigned int, HANDLE, HICON, HCURSOR, HBRUSH = 2 Bytes

Changing a class value with SetClassWord() or SetClassLong() affects every window that was created from that class.
This is handy for globally changing the cursor shape or using a different color brush for every window's background.
Changes to an individual window are less drastic. SetWindowWord() and SetWindowLong() affect just one window,
not every one in the class. These modified windows are a “subclass.” An interesting possibility here is to change the
window message function referenced by a window to a new function. This is called “window subclassing.” The ex-
ample shown after the SetWindowLong() function description changes the default processing for a scroll bar to in-
clude the handling of arrow keys and page-up/page-down keys. These logic items are added to the normal Windows
processing of scroll bar messages, providing a custom version for that one window control.

Data Attached to a Window or Class

"Windows has a powerful ability to associate data with a window or window class. A typical use would be in an applica-
tion with several similar child windows. Each child window can store its own data to work on, while making use of a
single message processing function. For small amounts of data, the data can be made a part of the class definition. The
cbClisExtra element in the WNDCLASS structure sets the amount of extra data stored with the window class. This is
common to all windows created from the class. The coWndExira element in WNDGLASS sets the amount of extra data
stored with each window. This is the more common use.

The problem with using extra bytes in the WNDCLASS definition is that the data is not structured. The program-
must keep track of the meaning and location of each byte: A good way to use this data is to simply store a handle toa

" memory block with the window (memory allocation is discussed in Chapter 14). The memory block can then contain

a large amount of data, defined by a custom data structure. This technique is used in Chapter 29 for the child windows

in the MDI (Multiple Document Interface) example. -

‘A more elaborate way to store data with a window is provided with the “property” functions. Properties amount to
named data. Each property is given a name and a handle pointing to a memory area allocated to store the data. You
a‘ttach the property to the window with the SetProp() function. A typical call might be

SetProp (hWnd, “Prop1");
Any time the window hWnd wants tobget the handle to the data, it uses GetProp() something like
hbataHandle = GetProp (hWnd, "Prop1?") ;

The data is then extracted from memory after locking the data (see Chapter 14 on memory functions for details).
You can also release the property from the window using ReleaseProp(). There is also an EnumProp() function for
finding all of the properties associated with a window. With well-designed structures for your data, the property
facility will greatly improve the “object oriented” nature of your windows and reduce the need for global data structures.

Notes: Enumeration Functions

The most powerful, but most difficult to use of the windows support functions are the enumeration functions. They are

used in a series of situations where you want to get a list of information, but you do not know how many items there will

be in the list. For example, asking for a list of child windows attached to a parent: EnumChildWindows(); a list of property

data attached to a window's definition: EnumProps(); a list of the program “tasks” '

running on the system EnumTasks(); or just a list. of windows on the screen: [alaiSURITIEILE

EnumWindows(). (“Tasks” are application programs running on the system. This

does not include dynamic link libraries (DLL’s). “Modules” is the term Windows IS

uses for all running programs, including DLLs.) .
To deal with these problems, the enumeration functions require that you write EnomChitoWindows{) fend:

a short functicn in your program that the Windows enumeration function will call Button

every time it finds an item that needs to be remembered. You write the enumera- | StaticTed

tion function to make an ever-expanding list of the items, adding one to the list '

each time the function is called. In general, these items will be of equal length. The ~ Figure 3-1. Child Windows

following listings are provided to show an example. In this case, a list of all of the - Enumerated

Static Text

30

3. WINDOWS SUPPORT FUNCTIONS v

names of the child windows for a program are enumerated. When the user clicks the “Do It!” menu item, the names
are shown on the parent window's client area. The result is shown in Figure 3-1.

_ Noteinthe header file that a new data type is created, called ENUMER. This contains a handle pointer to memory
and count of the number of items which are stored in the memory location. Also note the declaration for the ehu-
meration function at the bottom, as shown in Listing 3-2.

> Listing 3-2. WINDENUM.H—Header File for Child Window Enumeration

/* windenum.h ' */

/* menu item id values */
#define IDM_DOIT 1
#define IDM_QUIT 2

/* definitions */
#define TITLEWIDE 20

typedef struct
<

GLOBALHANDLE hGMem ;
int nCount ;
} ENUMER ;

/* global variables */
int ghlnstance ; '
char . gszAppName [J = “WndEnum" ;

/* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL WndEnumFunc (HWHD, ENUMER FAR *) ;

The enumeration function must be declared in the EXPORTS section of the program’s .DEF definition file, as Win-
dows. (See Listing 3-3.)

& Listing 3-3. WINDENUM.DEF

NAME WINDENUM

DESCRIPTION 'windows enumeration example’

EXETYPE WINDOWS

sSTUB '"WINSTUB.EXE"

CODE PRELOAD MOVEABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE 5120 . .

EXPORTS . WndProc : ;
.WndEnumFunc

Note in the C language Listing 3-4 that the enumeration function must be registered with Windows using the
MakeProcInstance() function before it is used. Also note in the enumeration function that each new chunk of data is
added to the end of the last bit.

&> Listing 3-4. WINDENUM.C WndProc() Function

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ -

static HWND hButton ;

static HWND hStaticText ; :

static HWND hedit ;

static FARPROC LpfEnumProc ;

static ENUMER enuner ;

LPSTR-- LpUindName ;

HDC : hoC ;

int i; . AN

sWwitch (iMessage) | /* process windows messages */

case WM_CREATE:

hButton = CreateWindow ("BUTTON", "Button”,

31

WINDOWS API BIBLE

WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

10, 10, 100, 40, h¥nd, NULL, ghInstance, NULL) ;
ShowWindow (hButton, SW_! SHON) H

/* create and show static text */

hStaticText = Createw'lndou ("STATIC", "Static Text",

WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

150, 10, 100, 15, h¥Wnd, NULL, ghlnstance, NULL) ;
ShowWindow (hStaticText, SW_SHOW) ;

. /* create and show an edit control */

hEdit = CreateWindow ("EDIT", “Edit Me",

WS_CHILD | WS_VISIBLE | WS_BORDER,

150, 40, 100, 25, thd NULL, ghInstance, NULL)
ShowWindow (hEd1t, SU SHOH)

.
4§
LpfEnumProc = MakeProcInstance (WndEnumFunc,
ghlnstance) ;
break ;
case WM_COMMAND: /* process menu items */

switch (wParam)

case IDM_DOIT: /* User hit the "Do it'" menu jtem */
if (enumer.hGMem) /* if not first time tried */
GlobalFree (enumer.hGMem) ; /* free the memory */
/* initialize storage area */
enumer.hGMem = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT, '
1) ;
enumer.nCount = 0 ;
/* let Windows run callback func. */
EnumChildWwindows (hWnd, lpfEnumProc,
(DWORD) &enumer) ;
hDC = GetDC ChWnd) ; /* get ready to output */
LpWindName = GlobalLock (enumer.hGMem) ;/* Lock memory */
TextOut (hDC, 10, 100, "EnumChildWindows() found:", 25) ;
for (i =0 ; i < enumer.nCount ; i++) /* display window */
{ /* titles found */
TextOut (hDC, 15, 125 + (15 * i),
(LPSTR) (lpWindName + (i * TITLEWIDE)),
tstrlen (lpWindName + (i * TITLEWIDE))) ;
} i
GlobalUnlock (enumer.hGMem) ; /* unlock memory */
ReleaseDC ChWnd, hdDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd).;

: break ; !
2
break ; '
case WH_| DESTROY. ’ /* stop application */
’ GlobalFree (enumer.hGMem) ; /* release all memory */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */

return DefumdouProc (hWnd, iMessage, wParam, LParam) ;
}
return (OL) ;
} .

/* this is the enumeration function, called once for each window */

BOOL FAR PASCAL WndEnumFunc (HWND hWindow, ENUMER FAR *enumer)
< .

LPSTR tLpWindName ;

char cBuf [TITLEHIDE + 1]

if (!GlobaLReAlloc (enumer->hGHem,
(DWORD) TITLEWIDE * (enumer->nCount + 1),
GMEM_MOVEABLE)) /* make room for 10 more */
“return (0) ; /* quit if can't make room */

32

3. WINDOWS SUPPORT FUNCTIONS ¥

GetWindowText (hWindow, (LPSTR) cBuf, TITLEWIDE) ;

cBuf [GetWindowTextLength (hWindow)] = '\D' ; /* add end null */

lpHindName = GlobalLock (enumer->hGMem) ; /* Lock the memory area */
- /* put next name at end */

Lstrcpy (LpWwindName + ((enumer=>nCount) * TITLEWIDE), (LPSTR) cBuf) ;

GlobalUnlock (enumer->hGHem) ; /* unlock th‘e memory area */

enumer->nCount++ ; /* keep track of how many */

return (1) ;

/* get title */

All enumeration functions use this basic structure, although the parameters passed to the callback function w11]
be different.

Cautions . |
It is fairly easy to create an infinite loop of Windows messages, This bombs the program in a hurry. For example, if you
decide to create a number of child windows in the WM_CREATE portion of your WinProc() functl\on, you will have
trouble. Each time you create a new window, a WM_CREATE message is sent. Use a static BOOL variable to track if
this is the first time the WM_CREATE message was issued. Be careful when changing the background color of a
window class. The change will not show up immediately if you do not force the window to be repainted using

UpdateWindow().

- Funetion Descriptions
Table 3-1 summarizes the Windows support functions. The detailed function descriptions are immediately after the
table. _
| Function - Purpose Ll R e B e @l
AdjustWindowRect Computes how big the entire window must be to produce a window with a given client area size.
AdjustWindowRectEx Computes how big the entire window must be to produce a window with a given client area size
for a window with an extended style.
AnyPopup Determines if any popup windows are on the screen.
BeginDeferWindowPos Begins rapid movement of a window on the screen.
BringWindowToTop Makes a window visible, if it is undemneath other overlapping windows.
ChildwindowFromPoint Determine which child window occupies a given point on the parent window.
CloseWindow Minimizes a window.
DeferWindowPos Causes rapid movermnent of a window on the screen.
DestroyWindow Removes a window from the system.
EnableWindow Enables or disables mouse and keyboard input for the specified window.
EndDeferWindowPos Completes a rapid movement of a window on the screen, The movement occurs when this func-
tion is called. :
EnumChilaWindows Calls an enumeration function for all of the child windows of a parent.
EnumProps Retrieves all of the entries in the property list of a window.
EnumTaskWindows Lists alt of the top-level windows associated with a task.
EnumWindows Retrieves data on all of the parent windows running on the system.
FindWindow Retrieves a handle to a window.
FlashWindow Highlights the window’s caption bar.
"~ GetActiveWindow Finds which parent or popup window is active.
GetClassLong Retrieves a long value from a class structure.

33

i

\

WINDOWS API BIBLE

Table 3.1 continued
. | Function - T TPurpose]ZI

GetClassName . Retrieves the class name upon which a window is based.
GetClassWord | Retrieves information from a class.

GetClientRect l Retrieves a window’s client area size.

GetCurrentTask , Retrieves a handle to the currently executing task.
GetDesktopWindow Retrieves the handle of the background window that covers the entire screen.
GetFocus Finds which window has the input focus.
GetLastActivePopub\\ Finds which popup window was last z_active.

GetNextWindow - “Finds parent and child windows.

GetNumTasks Fmdsm number of tasks running in the system.

GetParent . Retrieves a handle to a parent window.

GetProp Retrieves a property (data) associated with a window.
GetSysModalWindow Retrieves a handle to a system modal window.

GetTopWindow Finds the child window on top of any other child windows.
GetVersion Retrieves the version number of Windows running on the system.
GetWindow -, Retrieves'a window’s handle. :
GetWindowlLong Retrieves a long value from a window's data.

GetWindowRect Retrieve aiuindow‘s outer dimensions.

GetWindowTask ' Retrieves a hande to a task. '

GetWindowText ~ Retrieves a'window’s title string. ‘
GetWindowTextLength Finds the nu\mber of characters in a window's title string.
GetWindowWord Retrieves a two byte value from a window's data.

GetWinFlags . Determines what computer CPU and memory model are in operation.
IsChild Determines if a window is the child of a given parent window.
Isiconic : Checks if a window is minimized. ,

IsWindow ; Checks if a window handle still points to a valid window. '
IsWindowEnabled Checks if a window is enabled for keyboard input.
IsWindowVisible Checks if a window has been made visible,

IsZoomed Checks if @ window is maximized.

MoveWindow Moves or resizes a window.

RemoveProp Removes a proverty (data) which was associated with & window.
SetActiveWindow Makes a window visible.

SetClassLong Changes one of the LONG values in a window class.

-SetClassWord - Changes a WORD sized value in a window class.

SetFocus R Gives a window the input focus.

SetParent - Changes the parent window of a chifd window.

SetProp , ~ Attaches named data to a window.

SetSysModalWindow Makes a window spstem-modal.

34

-] ' 3. WINDOWS SUPPORT FUNCTIONS . ¥

SetWindowLong '

Changes a LONG value associated with a window.

SetWindowPos Simultaneously changes the size, position, and ordering of windows.

SetWindowText " Changes thé title of a window. '

SetWindowWord Changes a WORD value associated with a window's class structure.

ShowOwnedPopups Shows or hides all popup windows associated with the parent window.

ShowWindow Displays, hides, or changes the size of a window.

SystemParametersinfo Determines and/or changes system wide parameters.-

UnregisterClass " Frees the memory holding an unneeded class description. ‘

WindowFromPoint ﬁnds which window (if any) is at a given poim on the screen.
Table 3-1. Windows Support Functions Summary. L -
ApjustTWINDOWRECT mWin20 ®mWin30 ®Win3.l
Purpose Computes how big the entire window must be to produce a window with a given client area size.
Syntax void AdjustWindowRect (LPRECT IpRect, LONG dwStyle, BOOL bMenu);
Description Changes the contents of the lpRect from those of the client rectangle to that of the bounding

rectangle. The bounding rectangle encloses the caption, menu bar, and window frame.
Uses Generally used with CreateWindow() to make a new window of a given size.
Returns No return value (void).
See Also AdjustWindowRectEx(), CreateWindow(), MoveWindow().
Parameters
IpRect LPRECT: A pointer to a RECT rectangle structure.
dwStyle DWORD: The window style. This includes any of the window style values from the
CreateWindow() function (Chapter 2).

bMenu BOOL: Specifies if the window size calculated should include space for a menu. Set to TRUE to
.) include the menu space, FALSE to omit.
Example In this example the adjusted rectangle is used in the CreateWindow() function. The final window

in this case is convertedfrom the client size of 50, 50 150, 150 to the total window dimensions 49,
30, 151, 151,

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

hdC ; . /* device context handle */

HDC .
static WNDCLASS wndclass ; /* the window class */
- static HWND hListBox ; ’ /* the window handle */
' RECT rWindRect ; : .
switch (iMessage) ' /* process windows messages */
< .
case WM_CREATE: /* build the child window when program starts */
ru1ndRect top = 50 ; /* client area size desired */

rWindRect.left = 50
rWindRect.bottom = 150 ;
rWindRect.right = 150 ;

AdjustUindouRect(&rNihdRect, /* rectangle to convert */
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,

FALSE) ; / /* no menu */

undclass.stylé)
wndclass.{pfnWndProc

CS_HREDRAW | CS_VREDRAW | CS_PARENTDC ;
ChildPfoc ;

35

WINDOWS API BIBLE

.wndclass.cbClsExtra 0.,
wndclass.cbWndExtra 0,
wndclass.hInstance ghlnstance ;
wndclass.hlcon NULL ;

wndclass.hCursor
wndclass.hbrBackground
wndclass. lpszMenuName
wndclass.lpszClassName

LoadCursor (NULL, IDC_CROSS) ;
GetStockObject (LTGRAY BRUSH)
NULL ;
"SecondCLass ;

/* register the window class */
if(RegisterClass (&wndclass))
{

"

hListBox = CreateWindow (“SecondClass", "Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
rWindRect.left, rWindRect.top,
rWindRect.right, rWindRect.bottom,
hWnd, NULL, ghlnstance, NULL) ;

ShowWindow (hListBox, SW_SHOW) ;

break ;

[Other program lines]

ApjusTWINDOWRECTEX ' mWin20 ®Win30 mWind.l

Purpose Computes how big the entire window must be to produce a window with a given client area size

- for a window with an extended style.
Syntax void AdjustWindowRectEx(LPRECT lpRect, LONG dwStyle, BOOL bMenu, DNORD dwExStyle);
Description Changes the contents of the /pRect from those of the client rectangle to those of the bounding
. rectangle. The bounding rectangle encloses the caption, menu bar, and window frame.

Uses Generally used with CreateWindowEx() to make a new window of a given size.

Returns No returned value (void): :

See Also - AdjustWindowRectEx(), CreateWindowEx(), MoveWindow().

Parameters BT

- IpRect LPRECT: A pointer to a rectangle structure.

dwStyle DWORD: The window style. This includes any of the window style values from the
CreateWindow() function.

bMenu BOOL: Specifies if the window size calculated, should include space for amenu. Set to TRUE to
include menu space, FALSE to omit.

dwExStyle DWORD: The extended style values used in the CreateWindowEx() function.

Examgple Note that the adjusted rectangle is used in the CreateWindowEx() function. The final window in

this case is converted from the client size of 50, 50, 100, 100-to the total window dimensions 45,
29, 165, 165.

Long FAR PASCAL WndProc (HHND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
I's . R

HDC hbC ; /* device context handle */

static WNDCLASS ~ wndclass ; /* the window class */

static HWND hTextBox ; /* the window handle */

RECT - . rWindRect ;

switch (iMessage) ' 1* process windows messages */ N
{

case WM_CREATE: /* build the child window when program starts */
rWindRect.top = 50 ; /* client area size desired */
rWindRect.left = 50 .
rWindRect.bottom = 150 ;
rWindRect.right = 150 ;

AdjustWindowRectEx(&rWindRect, '

. 38

3. WINDOWS SUPPORT FUNCTIONS Vv

WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
FALSE, WS_EX_DLGMODALFRAME) ;

CS_HREDRAMW | CS_VREDRAW | CS_PARENTDC ;
ChildProc ;

wndclass.style
wndclass.lpfnWndProc

wndclass.cbClsExtra 0;
wndclass.cbWndExtra 0.
wndclass.hInstance ghlnstance ;
wndclass.hicon NULL ;

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

LoadCursor (NULL, IDC_CROSS) ;
GetStockObject (LTGRAY_BRUSH) ;
NULL ;
"SecondClass" ;

/* register the window class */

if(RegisterClass (&wndclass))
{

hTextBox = CreateWindowEx (WS_EX_DLGMODALFRAME,
"SecondClass", "Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
rWindRect.left, rWindRect.top,
rWindRect.right, rWindRect.bottom,
hWnd, NULL, ghInstance, NULL) ;

ShowWindow (hTextBox, SW_SHOW) ;

zreak ;

{Other program lines|

AnyPorup : ' BWin20 ®@®Win30 ®=Winl.l

Purpose Determines if any popup windows are on the screen.

Syntax 800L AnyPopup(void);

Uses v Popup windows can overlap any portion of the parent’s window. This function will tell you if any
popups exist,

Returns " BOOL, TRUE, or FALSE.

Parameters None (void). .

Example This fragment shows a WndProc() function checking if there is a popup window before starting to
refresh the screen. It may be desirable to close the popup window before painting to eliminate

hidden areas. ’
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

HDC hbC ;

static BOOL bPopupExist ;

sWwitch (iMessage) /* process windowWws messages */
{

case WM_PAINT: .
if (AnyPopup()) . T~
bPopupExist = TRUE ; :

else .
bPopupExist = FALSE ;
break ; .
[Other program lines|
BEGINDEFERWINDOWPOS ‘ OWin20 ®Win30 @Win3.l
Purpose Begins rapid movement of a window on the screen. ' ' '
Syntax - HANDLE BeginDeferWindowPos(int nNumWindows); ,
Description This function is the first step in the sequence of functions BeginDeferWindowPos(), Defer-
WindowPos(), and EndDeferWindowPos(), used to move one or more windows in a single screen
refresh cycle.

37

"~ WINDOWS API| BIBLE

Animation of windows byrepeatedly

Figure 3-2. BeginDeferWindowPos() Example.

that will be affected by the window movement. This initializes the data structure. Getting the
correct value is not critical, as the data structure will be expanded (with some loss of speed) if

Uses

moving them, or just fast movement ‘

of a single window to a new location. Doit! Quit
Returns A handle to the multiple-window

data structure used by Defeer-

dowPos().
See Also BeginDeferWindowPos(),

DeferWindowPos(),

EndDeferWindowPos(),

" MoveWindow(), SetWindowPas()

Parameters . ’ ‘
nNumWindows int: Sets the number of windows

DeferWindowPos() requires more windows to be updated.
Example This example, illustration Figure 3-2, creates two button child windows at the bottom of the

client area. When the user clicks the “Do It!" menu item, both buttons are relocated to the top of

the client area.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< ‘ . -

hTestBox1,
hDeferData H

HUND
static HANDLE

switch (iMessage)
<

case WH_CREATE:
hTestBox1

hTestBox2 ;

A handle for DeferH1ndowPos() */

/* process windows messages */

/* create a button when program starfs */
= CreateWindow (“BUTTON",

‘Moving Button 1",

WS_CHILD | WS_VISIBLE ,
200, 200, 150, 50, hWnd, NULL, ghInstance, NULL) ;
sﬁouvindow (hTestBox1, SW_SHOW) ;

hTestBox2 = CreateWindow ("BUTTON",
WS_CHILD | WS_VISIBLE ,

“Moving Button 2",

0, 200, 150, 50, hWnd, NULL, ghlInstance, NULL) ;
ShowWindow (hTestBox2, SW_SHOW) ;
hbeferData = BeginDeferWindowPos (2) ;

hbeferData =

beferWindowPos (hbeferData, hTestBox1,

hTestBox2, 10, 10, 200, 50, SWP_NOSIZE) ;

hbeferData =

break ; -
case WM_COMMAND: =

switch (wParam)

{
case IDM_DOIT:

EndbeferWindowPos (hDeferbata) ;
InvalidateRect (hWnd, NULL, TRUE) ;

break ;
case IDM_QUIT:

DeferWindowPos (hdeferData, hTestBox2,
NULL, 180, 10, 200, 50, SWP_NOSIZE) ;

/* process menu items */

/* move the button */
/* move windows */
/* force paint */

DestroyWindow (hWnd) ;

‘ break ;
}
break ;
case WN_DESTROY:

PostQuitMessage (0) ;

break ;
default:

/* stop-application */

/* default windows message processing */

U return DefWindowProc C(hWnd, iMessage, wParam, LParam) ;

B/ '
return (OL) ;

3. WINbOWS SUPPORT FUNCTIONS v

BrINgWINDowT0ToP Win2.0 EBWin3.0 Win 3.1

Purpose Makes a window visible and activates it (for a popup or top-level window) if the window is under-
neath other overlapping windows.,

Syntax void BringWindowToTop(HWND hWnd);

Descripticn The window chosen is superimposed over any other overlappmg windows on the screen. The
window is activated if it is a popup or top-level window. :

Uses Most often used with popup windows.

Returns No return value (void).)

See Also] SetFocus(), IsWindowVisible(), SetActlveWmdow(), EnableWindow()

Parameters

hWnd HWND: Handle of the window to bring to the top.

Example This example swaps the superposition of the two button controls on the screen when the “Do It!"
menu item is clicked.

Llong FAR PASCAL WndProc C(HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

< -
static HWND hTestBox1, hTestBox2 ; - /* the window handles */
switch (iMessage) 1* process windows messages */
¢ .

case WM_CREATE: /* build the child windows when program starts */

hTestBox1 = CreateWindow (“BUTTON", “BUTTON 1",

WSs_| CH!LD | WS_VISIBLE ,

10, 50, 110, 100, hWnd, NULL, ghlnstance, NULL) ;
ShouMindow (hTestBox1, SW_SHOW) ;
hTestBox2 = CreateWindow ("BUTTON", “BUTTON 2",

WS_CHILD | WS_VISIBLE ,

30, 70, 130, 130, hwnd, NULL, ghInstance, NULL) ;
ShowWindow (hTestBon, SW_SHOW) ;

break ;
case WH COHHAND. /* process menu items */
suitch (wParan)
< . .
case IDM_DOIT: /* User hit the "“Do it" menu item */
BringWindowToTop (hTestBox2) ; /* no 1 to top */
St.owWindow (hTestBox1, SW_HIDE) ; /* refresh screen */
ShowWindow (hTestBox1, SW_SHOWNORHKAL) ;
break ; ’
[Other program lines]
CHLDWiINDOWFROMPOINT , " mWin20 ®|Win30 @Win3.l
Purpose - Determines svhich child window occupies a given point on the parent window.
Syntax HWND ChildWindowFromPoint(HWND s WndParent, POINT Point);
Description Returns a handle to the child window at a given point.
Uses Handy if the application uses several child windows, which may be obscuring data on the screen.

Typically used with the mouse cursor to determine which child the cursor is over, independent of
the mouse buttons being pressed.

Returns Ahandle to the child window, NULL if no clnld window is at the pomt

See Also WindeowFromPoint(), ScreenToClient() o
Parameters , i
hWndParent HWND: The parent window’s handle.

Point POINT: The client area coordinates to check. .

Related Messages WM_MOUSEMOVE .

39

WINDOWS API BIBLE

Cautions This function will not work properly over pushbl_ltton controls.

Example This example, as shown in Figure 3-3, displays the name of the
window the mouse is pointing to as the cursor is moved over
the client area. Two static text windows are placed on the cli-
ent area. The figure shows the mouse cursor over the lower
one. The handle of the child window is retrieved using
ChildWindowFromPoint(). The name of the window (the cap-

Dolt! Quit
Child Window = Static Text 2

Gtatic Text 1
Static T%d 2

Figure 3-3. ChildWindow-

tion string) is determined with GetWindowText(). FromPoint()Example.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
£

HWND hStatic1l, hStatic2, hWndTest ;

HDC ~ hbe ;

POINT pMouse ;

char cBuf [£1281, cBuf2 £256] ;

switch (iMessage) ' /* process windows messages */

< >

case WM_CREATE:

hStaticl = CreateWindow (“STATIC", “Static Text 1",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON, :
10, 40, 100, 20, hWnd, 100, ghInstance, NULL) ;

Showwfndou (hStatic1, SW_SHOW) ;

hStatic2 = CreateWindow ("STATIC", "Static Text 2",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10, 60,100, 20, hwnd, 101, ghlnstance, NULL).;

‘ShowWindow (hStatic2, SW_SHOW) ;
break ;

case WM_MOUSEMOVE:
pMouse = MAKEPOINT (lParam) ;
hDC = GetDC (hWnd) ;

hWndTest = ChildWindowFromPoint (hWnd, pMouse) ;

if (hWndTest)

else
tLstrcpy (cBuf, "<none>") ;

Textout (hDC, O, 0, cBuf2, wsprintf (cBuf2,

GetWindowText (hWndTest, cBuf, 127) ;

"Child Window = %s", (LPSTR) cBuf)) ;

ReleasebC (hWnd, hDC) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ; ’
}
break ;
case WM_DESTROY:/* stop application */
PostQuitMessage (0) ;

break ;
default: /* default windows nmessage processing */
return befWindowProc (hWnd, iMessage, wParam, LParam) ;
-} f :
return (OL) ;
}
CrLoseWiNDow - N : ' . BWin20 Win3.0 ®mWin3.l
Purpose / . Minimizes a window.
Syntax -void CloseWindow(HWND hWnd);
Description If the window's class structure contains an icon, the minimized window will display the icon

image. Otherwise, the. minimized window will be a blank client area, which will receive
WM_PAINT messages and can be painted on using normal painting functions. '

40

3. WINDOWS SUPPORT FUNCTIONS v

Uses Used in applications with several child windows. The closed windows remain on the bottom of the
parent’s client area. Double-clicking the minimized windows automatically restores them to their
previous size.

Returns No return value (void).

See Also IsIconic(), IsWindowVisible(), IsZoomed(), Openlcon()

Parameters .

hWnd HWND: The window’s handle.

Related Messages WM_SIZE, WM_PAINT

- Example In this example, clicking the “Do It!” menu item causes the button child window to be minimized

to the bottom of the parent window’s client area. Double-clicking the minimized button restores it.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{
static HWND hButton ;

switch (iMessage) /* process windows messages */
< .
case WM_CREATE:
hButton = CreateWindow ("BUTTON", "Button",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hButton, SW_SHOW) ;
break ;) .
case WM_COMMAND: /* process menu items */
switch (wParam)

case IDM_DOIT:

CloseWindow (hButton) ;. /* minimize button */
break ; :
[Other program lines]
DEeFERWINDOWPOS . DWin20 EWin30 mWind.l
Purpose Produces rapid movement of a window on the screen.
Syntax HANDLE DeferWindowPos(HANDLE hWndPosInfo, HWND hWnd, HWND kWndInsertAfter, int
z, int y, int cz, int cy, WORDwFlags);
Description This is the second function in the series BeginDeferWindowPos(), DeferWindowPosO, EndDefer-

WindowPos() that allows rapid movement of a window on the screen, all within one screen
refresh cycle. DeferWindowPos() sets values in an internal data structure created by BeginDefer-
WindowPos(). These values are then used by EndDeferWindowPos() to do the actual movement

of the window on the screen.
Uses Animation of windows by repeatedly moving them, or just fast movement of a single window to a
' new location. :
Returns A handle to the data structure used by DeferWindowPos().
See Also BeginDeferWindowPos(), EndDeferWindowPos()
Parameters)
hWindPosInfo HANDLE: The handle to the internal data structure returned by BegiilDeferWindowPos().
hWnd ' HWND: The window handle of the window to be moved.
hWandInsertAfter HWND: The window handle of the previous window to be moved. NULL if ®Wad is the first one.
x int: The X-coordinate of the upper left corner of the window after it has been moved in client
coordinates (pixels from the upper left corner of the client area).
] int: The Y-coordinate of the upper left corner of the window after it has been moved in client

coordinates.

41

WINDOWS API BIBLE -

& ‘int: The new width of the window in pixels.
c " int: The new height of the window in pixels.
wFlags WORD: One of the values in Table 3-2.

SWP_DRAWFRAME Draws the frame specified in the window's class description when redrawn.

SWP_HIDEWINDOW Hides the window when redrawn.
SWP_NOACTIVATE Does not activate the window.
SWP_NOMOVE - Does not move the window, but the size can be changed with the cx,cy parameters.
SWP_NOREDRAW Does not redraw the window at the new size/location.

"~ SWP_NOSIZE ' Does not resize the window, but the position can be changed with the x,y parameters.
SWP_NOZORDER _ . Retains the current ordering in the reposition list. If hWndinsertAfter is NULL, hWnd is placed at

the top of the list. If AWndinsertAfter is 1, hiWnd is placed at the bottom of the list.

SWP_SHOWWINDOW Displays the window when redrawn.

Table 3-2. DeferWindowPos() Flags.

Example See the example under the BeginDeferWindowPos() function description. ™

DEsTROYWINDOW EWin20 ®BWin30 ®Wind.l

Purpose Removes a window from the system. '

Syntax BOOL DestroyWindow(HWND kWnad); -

Description The window referenced by 2Wnd is deleted. Any child windows of ZWnd are deleted first, fol-

: lowed by the parent. The window’s class is not affected unless this is the last window on the

-system using the class.

Uses -+ Removing popup and child windows from the screen when not needed. Also used to stop an appli-
cation by destroying the parent window.

Retoms BOOL. TRUE if the window was destroyed FALSE if the function failed (normally meaning that

. hWnd did not exist).
See Also - - UnreglsterClass(), CreateWindow()
" v : o

hWnd HWND: Handle of the window to be destroyed

Related Messages WM_DESTROY, WM_NCDESTROY, WM_t OTHERWlNDOWDESTROYED

Example In this example, clicking the “Do It!” menu item causes the popup window to be destroyed and its
class to be unregistered.

The ChildProc() function needs to, be listed in the EXPORTS section of the program’s .DEF
file, and a function prototype needs to be added to the header file to use this example code. ~

tong FAR PASCAL WndProc (HWND hWnd, unsigned 1Hesuge, WORD wParam, LONG LParam)
< ¥

static WUNDCLASS wndclass ; /* the window class */

static HWND hPopup ;

suitch (iMessage) /* process uindoué messages */
¢]

case HH_CkEATE: /* bbitd the child uir;dou when program starts */

42

IREEE - . ' 3. WINDOWS SUPPORT FUNCTIONS v

CS HREDRAW | CS_VREDRAW | CS_PARENTDC;
ChildProc ;

wndclass.style
wndclass.lpfnWndProc

wndclass.cbClsExtra 0;
wndclass.cbWndExtra 0;
wndclass.hInstance ghlnstance ;
wndclass.hlcon NULL ;

LoadCursor (NULL, IDC_ARROW) ;
GetStockObject (LTGRAY_BRUSH) ;
NULL ;
“SecondClass” ;

/* register the window class */
if(RegisterClass (&wndclass))
<

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

nuwsnnaLe nan ll

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, h¥Wnd, NULL, ghlnstance, NULL) ;
ShowWindow (hPopup, SW_SHOW) ;
}
break ;
case WM_COMMAND: . /* process menu items */
switch (wParam)

case IDM_DOIT: /* User hit the Do it" menu item */
DestroyWindow (hPopup) ;
UnregisterClass (“SecondClass”" ghlnstance) ;
break ;

case IDM_QUIT: /* terminate this application */
DestroyWindow (hWnd) ;
break ;

}

break ;

- case WM_DESTROY:
PostQuitMessage (0)
break ; :
default: /* default windous message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (OL ;

. . ./'/'
/* Here is a separate message processing procedure for the child window */
Long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

suitch (iMessage) /* process windows messages */

case WM_DESTROY:

b k ; .
default: res /* default windows message processing */
~ return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
return (OL) Iy

)

ENABLEWINDOW _ ®Win20 ®Win30 ®Win3.l

Purpose Enables or disables mouse and keyboard input or the specified window.

Syntax BOOL EnableWindow(HWND hWnd, BOOL bEnable);

Uses . , Handy for controlling where a user is allowed te input data. For example, an edit control may be
enabled to input a file name only after a subdirectory has been chosen. A window must be en-
abled before it can be activated. Windows are automatically enabled when created.

Returas BOOL. TRUE if successful, FALSE if the function failed.

43

WINDOWS API BIBLE

See Also SetFocus(), GetFocus(), SetActiveWindow()

Parameters : ‘ ‘

hWnd HWND: The handle of the window to affect.

bEnable . BOOL: TRUE to enable, FALSE to disable.

Example * This example shows the creation of an edit control. The control is initially disabled and shows

gray text inside the edit area. When the user clicks the “Do It!” menu item, the edit control is
enabled (can be edited), and digplays normal color text inside the edit area.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{
static HWND hEdit ;
switch (iMessage) /* process windows messages */
{ .

case UM _CREATE: .
hEdit = CreateWindow ("EDIT", "Edit Me",
WS_CHILD | WS_VISIBLE | WS_BORDER, ’)
150, 40, 100, 25, hWnd, NULL, ghlInstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;
EnableWindow (hEdit, FALSE) ; /* disable input */
break ; . r
case WM_COMMAND: /* process menu items */
switch (wParam) R »
(. . " .
case IDM_DOIT: /* User hit the "Do it" menu item */

EnableWindow (hEdit, TRUE) ; /* enable input */
break ;
[Other progra:n lines|)
ENpDErerWinDowPos OWin20 ®Wind0 ®Win3.l
Purpose Completes a rapid movement of a window on the screen. The movement occurs when thls func-
tion is called.
Syntax void EndDeferWindowPos(HANDLE kWinPosInfo);
Description This is the last of the sequence of three functions BeginDeferWindowPos(), DeferWiridowPos().

and EndDeferWindowPos(). These functions work together to update the position and size of the
one or more windows in a single screen refresh cycle. The actual movement is done when
EndDeferWindowPos() is called..

Uses Animation of windows by repeatedly moving them, or for fast movement of a smgle window to a
new location.
Returns No returned value (void). ‘
" See Also BeginDeferWindowPos(), DeferWindowPos()
Parameters ' :
hWindPosInfo HANDLE: Handle to the window position data structure created with BeginDeferWindowPos().
Example See the example under the BeginDeferWindowPos() function description.
ENumMCHILDWINDOWS : BWin20 ®Win30 ®Win3l
Purpose . Calls an enumeration function for all of the child windows of a parent.
Syntax ' BOOL EnumChildWindows(HWND kWndParent, FARPROC lpEnumFunc, LONG [Param);
Description Enumerates data from all child windows of the parent. You must supply an enumeration function.

The enumeration function is called once for each child window. The child window’s handle and
the [Param value are passed to the enumeration function each time it is called. Typically, the
enumeration function collects data for a child window, and stores it in a memory area. [Param

44

3. WINDOWS SUPPORT FUNCTIONS v

can be used to pass a handle to the memory area to the enumeration function. Note that although *
the child window handle will be different each time the enumeration function is called, the
IParam value remains the same.

Uses Retrieving handles to all child windows, or other data associated with the child window. You do
not need to know how many child windows there are in advance.

Returns BOOL. TRUE if all child windows have been enumerated, FALSE if not.

See Also See the description in the Notes section at the beginning of this chapter.

Parameters

hWndParent HANDLE: Handle to \the parent window.
IpEnumFPunc FARPROC: Pointer to the enumeration function.
{Param DWORD: This is the value to be ‘péssed to each processing of the enumeration function.
The enumeration (callback) function must have the form
BOOL FAR PASCAL EnumFunc (HWND ihWndChild, DWORD [Param)

This function will be called for each child window. You must include the EnumFunc() in the
EXPORTS portion of the .DEF file. The EnumFunc() must also be registered with Make-
ProcInstance() prior to use. The enumeration function will return TRUE if enumeration contin-
ues, FALSE if enumeration stops

The meaning of the parameters on each call is

hWndChild HWND: The handle of a child window.

lParam DWORD: This is the [Param value passed by EnumChild- -
Windows(). It can be used to pass any data, including a handle | [y ™
to a memory block that can be used by the enumeration func- ‘ [Eame]

tion to store or retrieve data about the child windows.
. EnumcChildWindows() found:
Example This example creates a window with three children, as shown Bution !

in Figure 3-4. When the user clicks the “Do It!” menu item, the Static Text
enumeration function is called to store the names of each of
_the children. The names are then displayed on the parent Figure 3-4. -EnumChild- .
window’s client area. Windows() Example.
Note that the enumeration function keeps expandmg the
memory area allocated, and adds each new child window name to the end of the memory space

© WINDENUM.H Header File

/* windenum.h */

#define IDM_DOIT 1 /* menu item id values */
Hdefine IDM_QUIT 2 .
/* definitions */
#define TITLEWIDE 20
typedef struct
<

GLOBALHANDLE hGMem ;
int nCount ;
3} ENUMER ;
/* global variables */
int ghlnstance ;

char gszAppName €] = "WindEnum" ;

/* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL WndEnumFunc (HWND, ENUMER FAR *) ;

& WindProc() Portion of C Program
tong MR PASCAL WndProc (HWND hWnd, unsigned inassage, WORD uPnram, LONG I.Param)

WINDOWS API BIBLE

<
statfic HWND hButton ;
static HWND hStaticText ;
static HWND hEdit ;
static FARPROC LpfEnumProc ;
static ENUMER enumer ;
LPSTR LpWindName ;
HDC hDC:; :
int i;
switch (iMessage) :) /* process windows messages */ ' oy
< . ; :
case WH_CREATE: : o . . Lo
hButton = CreateWindow ("BUTTON", "Button”, : :)
) WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10, 10, 100, 40, h¥nd, - NULL, ghlnstance, NULL) ;
Shouwindow (hautton, SW_SHOW) ;
* create and show stat1c text */
hStaticText = CreateWindow ("STATIC", “Static Text”,
WS_CHILD | WS_VISIBLE | as_Pususunon,
‘150, 10, 100, 15, h¥Wnd, NULL, ghlnstance, NULL) ;
~ ShowWindow (hStat'ncText, SW_ SHOH)
s -/* create and show an edit control */
hEdit = Createuindou ("EDITY, "Edit Me",
. WS_CHILD | WS_ VISIBLE | WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;
lpfEnumProc = nakeProclnstance (UndEnumFunc,
: " ghlnstance) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam) . .
{ .
case IDM_DOIT: /* User hit the "Do it" menu item */
if (enumer.hGMem) /* if not first time tried */
GlobalFree (enumer.hGMem) ; /* free the memory */
/* in'it'lalize storage area */
enumer.hGMem = GlobalAlloc
(GMEM_MOVEABLE | GMEM_ZEROINIT,) ;
enumer.nCount = 0 ; ;
/* let Windows run callback func. */
EnumChi ldbhndous Chund, LprnumProc,
(DHORD) &enumer) ;
hDC.= GetDC C(hWnd) ; /* get ready to output */
LpWindName = GlobaLLock (enumer.hGMem) ; /* Lock memory */
Textout (hpC, 10, 100, “EnumChil Hindous() found:", 25) ;
for (i =0 ; 1 < enumer.nCount ; i++) /* display window. */
{ /* titles found */
TextOut (hDC, 15, 125 + (15 * i),
(LPSTR) (lpWindName + (i.* TITLEWIDE)),
Lstrlien (LpWindName + (i * TITLEWIDE))) ;
GlobalUnlock (enumer.hGMem) ; /* unlock memory */
ReleaseDC C(hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
}
. break ; -
case WM_DESTROY: - B /* stop appllcanon */
GlobalFree (enumer.hGMem) ; . /* release all memory */
PostQuitMessage (0) ;
break ;
default: - /* default windows message processing ¥/
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3)
return (OL) ; \
)

, 3. WINDOWS SUPPORT FUNCTIONS Vv

BOOL FAR PASCAL WndEnumFunc C(HWND hWindow, ENUMER FAR *enumer)
{ \
LPSTR LpWindName ;

char cBuf CTITLEWIDE + 1] ;

1f (!GlobatReAlloc (enumer->hGMem, ~
(DWORD) TITLEWIDE * (enumer->nCount + 1),
GMEM_MOVEABLE)) /* make room for 10 more */)
return (0) ;) /* quit if can't make room */
GetWindowText (hWindow, (LPSTR) cBuf, TITLEWIDE) ; /* get title */
cBuf [GetWindowTextLength (hWindow)l = '\0* ; /* add end null */
LpWindName = GlobalLock (enumer->hGHem) H /* Lock the memory area */

. /* put next name at end */
Lstrcpy (LpWindName + ((enumer->nCount) * TITLEWIDE), (LPSTR) cBuf) ;

GlobalUnlock (enumer->hGMenm) ; /* unlock the memory area */
enumer->nCount++ ; /* keep track of how many *~/
return (1) ; .

)
ENumPRrops EWin20 ®Win30 m®mWind.l
Purpose Retrieves all of the entries in the property list of a window.
Syntax int EnumProps(HWND 2 Wnd, FARPROC ipEnumFunc); -
Description Uses a callback function to repeat-
ediy fetch properties (data) associ- [T T vandprops 0T T
ated by the fvindow with the .Qo lt' Qui ’
SetProp() function.
_ GetPropf) found:
Uses Allows any amount of data to be as This data tied to Window
sociated directly with the window.
Returns int. -1 on error. Otherwise returns E;‘um:’ropu '°;’:;': data tied to Wind
. op S data tiea to indow
;‘;ﬁ;ﬁnﬁ:ﬁmmm"d by the call Prop2 This data also linked to Window
See Also EnumChildWindows(), SetProp(), - Figure 3-5. Properties Retrieved from a Window.
GetProp() ,
Parameters
hWnd HWND: Handle of the window that has a property list to be enumerated.

IpEnumPunc FARPROC: Pointer to the enumeration function. The enumeration function must be of the form: .
int FAR PASCAL EnumFunc (HWND hWnd, LPSTR IpString, HANDLE hData);

The enumeration function must be listed in the EXPORTS section of the program’s .DEF definition

file. The enumeration function is called once for each property associated with the window. The

enumeration function should return zero to stop enumeration, or a non-zero value (1) to continue.
The parameters passed to the enumeration function have the following meanings:

hWnd HWND: The handle of the window that has a property list to be enumerated.

ipSting LPSTR: The character string that was used by SetProp() to name the data. This can also be an
atom, In this case, the atom is the LOWORD, while the HIWORD is set to zero. Atoms are dis-

. cussed in Chapter 22, Alom Functions. ‘

hDATA HANDLE: Is a data handle, pointing to the memory where the data is stored.

Example In this case, two properties are associated with the window. Each of the properties (called
“Propl” and “Prop2™) is associated with a handle to memory containing a string. The WinProc()
function demonstrates recovering the property data with both the GetProp() and EnumProp()
functions. Note that the enumeration function WindPropFunc() must be referenced in the EX-
PORTS section of the program’s .DEF file. When this program executes the “Do It!” menu item,
the program window appears as shown in Figure 3-5.

vy) 47

WINDOWS AP! BIBLE

C> Header File
/* windprop.h *x/

#define IDM_DOIT 1 /* menu item id values */
#define IDM_QUIT 2
/* definitions */
#define PROPSTRINGWIDE 10
#define MAXPRCP 30
/* global variables */
typedef struct
{

HANDLE hPropbata ;

char - cPropName CPROPSTRINGWIDE] ;
} PROPERTY ; ..
PROPERTY e gPropertyList [MAXPROP] ;
int gnPropertyCount ;
int ghlnstance ;

char gszAppName [J = “windprop" ; .
: /* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL WindPropFunc (HWND hWindow, WORD nDummy,
PSTR pString, HANDLE hbData) ; ')

> WindProc() Portion of C Program
tong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
< i ;

static HANDLE hMemory ;

static FARPROC LlpfEnumProc ;

LPSTR LpName ; .

HDC hDC ;

int i;

char cBuf 1281 ;)

switch (iMessage) ' ‘ /* process windous messages */
{

case WM_CREATE: :
strcpy (cBuf, "This data tied to Window") ;
hMemory = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT,
(LONG) strlen (cBuf)) ;
LpName = GlLobalLock (hMemory) ;
Lstrcpy (lpName, cBuf) ;
GlobalUnlock (hMemory) ; .
SetProp (hWnd, "Prop1”, hMemory) ; /* Llink data to window */

strcpy (cBuf, “This data also Linked to Window") ;
hMemory = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT,
¢ (LONG) strien (cBuf)) ;
LpName = GloballLock (hMemory) ;
GlobalUnlock (hMemory) ;
Lstrcpy (lpName, cBuf) ;
SetProp (hWwnd, “Prop2", hMemory) ;
LpfEnumProc = MakeProcInstance (WindPropFunc, ghlnstance) ;

break ;)
case WM_COMMAND: = /* process menu items */
switch (wParam) ’
<
case IDM_DOIT: . /* User hit the “Do it"” menu item */

hMemory = GetProp (hWnd, “Prop1") ; C

LpName = Globallock (hMemory) ;

hDC = GetDC (hwnd) ; /* get ready to output */
Textout (hpc, 10, 10, “GetProp() found:", 16) ;

Textout (hdC, 15, 25, LpName, Lstrlen (LpName)) ;
GlobalUnlock (hMemory) ;

ReleaseDC ChWnd, hDC) ;

.

3. WINDOWS SUPPORT FUNCTIONS ¥

gnPropertyCount = 0 ;
: /* Let Windows run callback func. */
EnumProps (hWnd, lprnumProc)
hDC = GetDC (hUnd) /* get ready to output *l
Textout (hbdC, 10, 50, “"EnumProp() found:", 17) ;
for (i =0 ; i < gnPropertyCount ; i++)
{ /* display titles found */
TextOut (hDC, 15, 70 + (15 * i),
(LPSTR) gPropertyList Lil.cPropName,
strlen (gPropertyList Cil.cPropName)) ;
LpName = GLlobalLock (gPropertyList Lil. hPropDatu)
TextOut (hDC, 100, 70 + (15 * i), LpName, :
Lstrien (LpName)) ;
Globalunlock (gPropertyL1st Cil. hPropData)
}
ReleasedC (hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
RemoveProp (hWnd, "User Prop") ;
PostQuitMessage (0) ;
. break ;
default: /* default windows message process1ng */
return DefH1ndouProc (hWnd, iMessage, wParam, LParam) ;
b
return (OL) ;

BOOL FAR PASCAL WindPropFunc (HWND hU1ndou, WORD nDummy, PSTR pString,
HANDLE hData)

{
gPropertyList [LgnPropertyCountl.hPropData = hData ;
strcpy (gPropertylist [gnPropertyCountJ cPropName, pString) ;
gnPropertyCount++ ;
return (1) ;
3
ENuMTASKWINDOWS "BWin20 .MWin30 ®mWin3.l
Purpose . Lists all of the top-level windows assocxated with a task. -
"Syntax BOOL EnumTaskWindows(HANDLE hTask, FARPROC IpEnumFunc, LONG lPardm);
Description Calls an enumeration function to collect the handle for every top-level window associated with a
task. Tasks are running applications in memory. Windows keeps track of all running tasks in the
“task handler.” Note that dynamic link libraries (DLLs) are not tasks. Each instance of a program
is a separate task.
Returns BOOL. TRUE if all tasks were successfully enumerated, FALSEifnot. . .
See Also EnumChildWindows(), GetCurrentTask(), GetWindowTask() \ ,.;'
Parameters - - '
hTask HANDLE: The handle to the task. Use GetCurrent’[‘ask() to retrieve the handle of the currently

running task, or GetWindowTask() to retrieve the task handle of a specific window.
IpEnumFunc FARPROC: Pointer to the enumeration function.

lParam DWORD: The 32-bit value that is to be sent to the eallback function each time a task is found
This can be data or a handle to a memory block.
The enumeration function must be in the form:

49

WINDOWS API BIBLE .

BOOL FAR PASCAL EnumFunc (HWND hWnd, DWORD [Param);

/‘The function name must be listed in the EXPORTS section of the program’s .DEF definition
file. The enumeration function must return TRUE to continue enumeration, FALSE to stop enu-
meration (such as if an error is detected). The meaning of the SN —

" parameters passed to the enumeration function are as follows: generc Fl—

Doitl Quit
hwnd - HWND: Handle to the parent window for a task. This value will J= e
" 5. . _ bedifferent each time the callback function is called. Found -> File Manager
IParam DWORD: The data or pointer that is passed on each call to the § ound-> File Manager
enumeration function. This is the [Param value set when

EnumTaskWindows() was called. It will be the same eachtime Figure 3-6. EnumTask-
the callback function is called. ‘ Windows() Example.

Example Here the enumeration function is used to determine the top-
level windows associated with the Windows File Manager application. There turn out to be three
tasks. The first is related to a hidden unnamed window, while the second two are related to a
‘window titled “File Manager.” (See Figure 3-6.)

© GENERIC.H Header File

/* generic.h */

fidefine IDM_DOIT 1 /* menu item id values */
Hdefine IDM_QUIT 2 '
/* definitions */
#define TITLEWIDE 20
typedef struct
{

GLOBALHANDLE hGMem ;
int nCount ;
} ENUMER ; :
/* global variables */
int ghInstance ;
char gszAppName [J = “generic" ;

/* function prototypes */
long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL WindTaskFunc (HWND, ENUMER FAR *) ; ~

long FAR PASCAL WndProc C(HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static FARPROC LpfEnumProc ;
. static ENUMEP enumer ;
"HANDLE hTaskWind, hFileMgr ;
int iy
-~ HDC - hdC ;
LPHANDLE LpTaskMem ;
char cBuf [128], cWindName [64] ;
switch (iMessage) /* process windows messages */
{ : :
case WM_CREATE: /* tell windows about WindTaskFunc() */

LpfEnumProc = MakeProclInstance (WindTaskFunc,
ghlnstance) ;
break ;
case WM_COMMAND: /* process menu items */

switch (wParam)

< v

case IDM_DOIT: /* User hit the "Do it" menu item */

' if (enumer.hGMem) . /* if not first time tried */ =
\ GlobatFree (enumer.hGMem) ; /* free the memory */
' : /* initialize storage area */
enumer.hGMem = GlobalAlloc '

50

3. WINDOWS SUPPORT FUNCTIONS v

(GMEM_MOVEABLE | GMEM _ZEROINIT, 1L) ;
enumer.nCount =0 ;

/* Llet Windows run callback func.
hFileMgr = FindWindow (NULL, “File Manager") ;
hTaskWind = GetWindowTask ChFileMgr) ;
EnumTaskWindows (hTaskWind, pfEnumProc,

(DWORD) (LPSTR) &enumer) ; .

hDC = GetDC (hWnd) ;. /* see which tasks were found */

LpTaskMem = (LPHANDLE) GlobalLock (enumer.hGMem) ;
for (i =0 ; i < enumer.nCount ; i++)

{
hTaskWind = * (LpTaskMem +
(i . * sizeof (HANDLE))) ;
GetWindowText (hTaskWind, cWindName, 63) ;
TextOut (hDC, 0, 20*i, cBuf, wsprintf (cBuf,
“found -> %s'", (LPSTR) cWindName)) ;
}

GlobalUnlock (enumer.hGMem) ;
ReleaseDC (hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;

break ;
}
break ;
case WM_DESTROY: /* stop application */

Globalfree (enumer.hGMem) ; /* release memory */
FreeProcInstance (lprnumProc) -
PostQuitMessage (0) ;

break ;

default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
3 h
return (OL) ;
}

/* here is the function to find all of the asks running */
BOOL FAR PASCAL WindTaskFunc (HWND hWind, ENUMER FAR *enumer)

’ LPSTR LpMemory, lpDest ;

if (!GlobalReAlloc (enumer->hGMem,
(DWORD) sizeof (HANDLE) * (enumer->nCount + 1,
- GMEM_MOVEABLE)) /* make room for 1 more */

return (0) ;. /* quit if can't make room */
LpMemory = GlobalLock (enumer->hGMem) ; /* Lock the memory area *
Lpbest = LpMemory + ((enumer =>nCount) * sizeof (HANDLE)) ;
(HANDLE) *ipDest = hWind - /* store handle to task \nndou */
GlobalUnlock (enumer—>hGHem) ;. /* unlock the memory area */
enumer->nCount++ ; /* keep track of how many */
return (1) ;

EnumMWInNDOWS MWin20 mWin3.0

B Win 3.1

_ Purpose Retrieves data on all of the parent windows running on the system.
, Syntax BOOL EnumWindows(FARPROC ipEnumFunc, LONG [Param);

Description Calls an enumeration function for every parent window running on the system. The enumeration

function can collect whatever data is desired from each window as it is processed.
Uses - Useful for determining what other applications are ruxming.
Returns TRUE if all parent windows were enumerated, FALSE if not.
See Also EnumChlldWmdows(l), EnumTaskWindows()

51

WINDOWS AP! BIBLE

. Parameters - :)
IpEnumFunc FARPROC: The procedure instance address of the enumeration callback function. Use
' s MakeProcInstance() to create this pointer.
{Param DWORD: The 32-bit va]ue to be passed to the callback function. This can elther be data or a
pointer.
The enumeration callback function must be in the follow-
_ ing format:) 7
BOOL FAR PASCAL EnumFunc (HWND 4 Wnd, DWORD Popup Window’
lParam); , Do lt! Quit
The function must be declared in the EXPORTS section of Class value = 1 23
the program’s .DEF definition file. The function must return '
TRUE to continue enumeration, FALSE to stop. The param-.
eters have the following meanings:
hWnd HWND: The window handle for each window enumerated.
lParam DWORD: The [Param value passed in the call to Enum- == :
Windows(). This value will be the same each time the enu- Figure 3-7. EnumWindows()
meration function is called. Example.
Example This example, as shown in Figure 8-7, llsts all of the windows active on the screen when the user

' clicks the “Do It!” menu item.

< WINDENUM.H Header File

/* uindenum h */

#define IDM_DOIT 1. /* menu item id values */
#define IDM_QUIT 2 .

/* definitions */

#define TITLEWIDE 20

typedef struct)

{

GLOBALHANDLE
int
} ENUMER ;

hGMem ;
nCount ;

A g{obal var1ables *

ghInstance ;

gszAppName [J = “windenum" ;

/* function prototypes */

Long FAR PASCAL WndProc (HWND, unsigned, HORD, LONG)
BOOL FAR PASCAL WndEnumFunc '(HWND, ENUMER FAR *) ;

int
char

> WINDENUM.C WindProc() Function and Enumeration Function from C Source File
long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< . . .

static FARPROC

LpfEnumProc ;
static ENUMER

enumer ;
LPSTR LpWindName ;
HDC hdC ;

int : iy

’

. 'switch (iMessage)- /* process windows messages */

{
case WM_CREATE:) .
LpfEnumProc = MakeProcInstance (WndEnumFunc,
ghlnstance) ;
break ;

casé WM_COMMAND : /* process menu items */

52

3. WINDOWS SUPPORT-FUNCTIONS v

switch (wParam)
case IDM_DOIT: /* Uéer hit the "Do it" menu item */

if (enumer.hGMem) /* if not first time tried */
GlobalFree (enumer.hGMem) ; /* free the memory */
/* initialize storage area */
enumer.hGMem = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT,
10 ;
enumer.nCount =0 ; .
/* Let Windows run callback func. */
EnumWindows (LprnumProc, (DWORD) &enumer) ;
hDC = GetDC (hwnd) ; E /* get ready to output */
LpWindName = GlobaLLock C(enumer.hGMem) ; /* lock memory */
TextOut (hDC, 10, 100, “EnumWindows() found:", 20) ; .
for (i =0 ; i < enumer.nCount ; i++) /* d1splay window */
{ - /* titles found */ '
TextOut (hdDC, 15, 125 + (15 * {),
(LPSTR) (LpWindName + (i * TITLEWIDE)),
Lstrlen (LpWindName + (i * TITLEWIDE))) ;

}
o™
GlobalUnlock (enumer.hGMem) ; /* unlock memory */
ReteasedC (hWnd, hDC) ; .
break ;
case IDM_QUIT:
DestroyWindow (hwnd) ;
break ;
} - 4
break ;
case WM_DESTROY:/* stop application */
Globalfree (enumer.hGMem) ; /* release all memory */ -
PostQuitMessage (0) ; -
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;.
) ;
return OL ;
}
700L FAR PASCAL WndEnumFunc (HWND hWindow, ENUMER FAR *enumer)
(.
LPSTR LpWwindName ;
char cBuf CTITLEWIDE + 1] ;
1f (!GlobalReAlloc (enumer~>hGMem,
(DWORD) TITLEWIDE * (enumer—>nCount +1), .
GHEM MOVEABLE)) /* make room for 10 more */
return (0) ; /* quit if can't make room */
GetWindowText (hWindow, C(LPSTR) cBuf, TITLEWIDE) ; /* get tvitle‘ */
cBuf [GetWindowTextlength (hWindow)l = '\0°' ; /* add end null */
LpWindName = GlobatLock (enumer->hGMem) ; /* Llock the memory area */
“/* put next name at end */
Lstrcpy (LpWindName + ((enumer->nCount) * TITLEWIDE), (LPSTR) cBuf) ;
GlobalUnlock (enumer->hGMem) ; /* unlock the memory area */
enumer~->nCount++ ; /* keep track of how many */
return (1) ;
}
FinoWmnnow e BWin20 ®Win30 ®Win3l
Purpose Retrieves a handle to a window.
Syntax HWND FindWindow (LPSTR ipClassName, LPSTR IpWindowName);
Description Finds the window’s handle given the class name and/or the window’s title.
\

53

WINDOWS AP| BIBLE

Uses

Useful to find specific applications in memory. For example, an application méy need to load the

notepad application if it is not already in memory.
Returns HWND, a handle to a window. Returns NULL if a match was not found.
See Also ChildWindowFromPoint(), WinExec(), GetClassName(), GetWindowText()
Parameters ‘ ' ‘
IpClassName LPSTR: Pointer to a null-terminated string containing the window's-class name. If this param-
: eter is NULL, all classes will be searched to find the window name.
IpWindowName LPSTR: Pointer to a null-terminated string containing the window’s title. If this value is NULL
all names will be searched to find the class name.
Example This example checks to see if the Windows file manager is runnmg
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG {Param)
<
HDC hDC ; /* device contxt handle */
" HWND hWindow ;
» switch (iMessage) /* process windows messages */
< . -
case WM_COMMAND:. /* process menu items */
switch (wParam) !
< . .
case IDM_DOIT: /* User hit the "Do it" menu item */
hWindow = FindWindow (NULL, "File Manager") ;
hDC = GetDC ChWnd) ;
i f (hWindow)
Textout (hDC, 10, 20,
"1 found the file manager!’, 25) ;
. else . :
Textout ChdDC, 10, 20,
L "file manager not found."”, 22) ;
ReleaseDC (hWnd, hDC) ;
break ;
[Other program lines|
FrassWiNDow Win20 ®Win30 ®Wind.l
Purpose Highlights the window's caption bar if the window is not minimized, or flashes the window’s icon
; if minimized.
‘Syntax BOOL FlashWindow (HWND hWnd, BOOL bInvert);
Uses Informs the user that a window needs attention, even if it does not have the input focus
Returns TRUE if the window was active before the call, FALSE if not.
See Also CetFocus(), SetActiveWindow()
Parameters
hWnd HWND: Handle to the window to flash. :
bInvert BOOL: If TRUE, the window is toggled between the active appearance and inactive on each call

to FlashWi dow(). If FALSE, the window is returned to the same state it started (active or in-
active).

Related Messages WM_SETFOCUS, WM_KILLFOCUS

Example .
Long FAR PASCAL WndProc (HWND hWnd, unsigned 1Hessage, WORD wParam, ‘LONG LParam) -
{

switch (iMessage) R /* process windows messages */

case WM_COMMAND: /* process menu items */
_ switch (wParam) .

. 54

3. WINDOWS SUPPORT FUNCTIONS ¥

<
case IDM_DOIT: /* User hit the “Do it" menu item */
FlashWindow (hWnd, TRUE) ;
’ break ;
[Other program lines]
GETACTIVEWINDOW EBWin20 ®mWin30 ®mWin3.l
Purpose Finds which parent or popup window is active,
Syntax HWND GetActiveWindow(void); .
Description Retrieves a handle to the parent or popup window that is currently active. Active windows have

highlighted title bars. Windows are made active by the user selecting the window (the window
gets the input focus) or by calling SetFocus().

Uses ‘ In applications with multiple popup windows. Your program can use GetActiveWindow() to find
which popup is active.)

Returns A handle to the active window.

See Also SetActiveWindow(), SetFocus()

Parameters None (void).

Example This example changes the title of the currently active window to “I'm Active!” when the user

clicks the “Do It!” menu item.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static HWND hActive ;
switch (iMessage) ' /* process windows messages */
{

case WM_COMMAND: /* process menu items */

switch (wParam)
< ;

case IDM_DOIT: ' /* User hit the “Do it" menu item */
hActive = GetActiveWindow() ;
SetWindowText (hActive, "I'm Active!") ;

. break ;
[Other program lines]
GETCLASSINFO OWin20 ®Win30 mWin3l
Purpose Retrieves information about a window class.
Syntax BOOL GetClassInfo(HANDLE hinstance, LPSTR lpClassName, LPWNDCLASS IpWindClass);
Description Fills in the data in a WNDCLASS structure, based on the instance handle and class name.
Uses Handy if you are modifying a class with SetClassWord() and SetClassLong() as the program oper-

ates. Eliminates the need to keep track of what is in the operating version of the class. .

Returns BOOL. Returns TRUE if a class was found and the data loaded, FALSE if not. The class data is

copied into WNDCLASS structure pointed to by the lpWndClass parameter. The IpszClassName,
IpszMenuName, and hinstance fields are not filled in by this function,

typedef struct tagWNDCLASS
{
WORD style;
LONG * (FAR PASCAL *lpfnWndProc)();

int cbClsExtra;
int cb¥ndExtra;
HANDLE hInstance; /* no */

HICON hicon;
HCURSOR hCursor;
HBRUSH hbrBackground;

55

WINDOWS API BIBLE

LPSTR lpszMenuName; ‘ /* no */

. LPSTR {pszClassName; /* no */
} WNDCLASS;
typedef WNDCLASS *PUNDCLASS;
typedef WNDCLASS NEAR *NPWNDCLASS;
typedef WNDCLASS FAR *LPWNDCLASS;
See Also ’ SetClassWord(), SetClassLong(), GetClassLong(), GetClassWord() Reglster(‘lass() Unreglster~
Class()
Parameters
hInstance HANDLE: The instance of the program that created the window class. Set to NULL if you would

like to retrieve information on classes defined by Windows (buttons, list boxes, etc.).

IpClassName LPSTR: Points to a null-terminated string containing the class name. If the high order word is
NULL, the function assumes that the low order word is a value returned by the MAKE-

- INTRESOURCE macro.
IpWndClass LPWNDCLASS: Points to the memory irea reserved to hold the window class data.
Example This example determines the handle to the brush used to paint the background for the

application’s window class.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<) .

static WNDCLASS WndClass ;
static HBRUSH - hbrWindBrush ;
switch (iMessage) . /* process windows messages */
{
case WM_COMMAND: - /* process menu items */

switch (wParam)
{

case IDM_DOIT: /* get the class background brush */
GetClassInfo (ghInstance, gszAppName, &WndClass) ;
hbrWwindBrush = WndClass.hbrBackground ;

. break ;

[Other program lines]

GETCLASSLONG: A Win20 ®Win3.0 mWin3.l

Purpose . Retrieves a long value from the class structure.)

Syntax LONG GetClassLong(HWND hWnd, int nfndex);

Uses Used to retrieve a poiﬁer to the class message processing function. If the class was created
reserving space for extra four-byte data, GetClassLong() can be used to retrieve it.

Returns The value requested, usually the message processing function address.

See Also ~ GetClassInfo(), SetClassWord(), SetClassLong(), GetClassWord()

Parameters

hWnd HWND: A handle to the window using the class.

nindex int: Set to one of the values in Table 3-3.

GCL_WNDPROC Retrieve a far pointer to the window's message processing procedure.
GCL_MENUNAME Retrieve a far pointer to a character string containing the menu name.

Table 3-3. GetClassLong() Index Values.

56

3. WINDOWS SUPPORT FUNCTIONS ¥

These index values are defined as negative values in
WINDOWS H. Alternatively, if you are retrieving the extra four-
byte data from the window class; set n/ndex equal to the byte
number to retrieve (0, 4, 8...). '

* Popup Window ;|

Example This example creates a new window class and uses the class to Class value = 1238
Y create a popup window. The class definition contains extra R

space for four bytes (DWORD). These values are set to the inte-
ger “123" as the popup is created. ‘

In the popup’s own message processing procedure
ChildProc(), the class value is recovered and displayed in the
popup’s client area every time a WM_PAINT message is re-
ceived. (See Figure 3-8.)

Figure 3-8, GetClassLong()
Example.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
(.

WNDCLASS wndclass ; /* the window class */

HWND hPopup ;

switch (iMessage) - /* process windows messages */
{

case WM_CREATE: /* build the child window when program starts */

wndclass.style CS_HREDRAW | CS_VREDRAW | CS_PARENTDC;
wndclass. lpfnWndProc ChildProc ; ’
wndclass.cbClsExtra sizeof (DWORD) ;
wndclass.cbWndExtra® ;
wndclass.hInstance ghlnstance ;
wndclass.hIcon NULL ;
wndclass.hCursor LoadCursor (NULL, IDC_ARROW) ;
wndctlass.hbrBackground GetStockObject (LTGRAY_BRUSH) ;
wndclass.lpszMenuName gszAppName ;
wndclass.lpszClassName “SecondClass" ;)

/* register the window class */
if(RegisterClass (&wndclass))
< h

Huwnunpwennn

hPopup = CreateWindow ("SecondClass", "Popup Window",
WS_POPUP | WS_VISIBLE | WS_BORDER I'US_CAPTION,
10, 50, 150, 150, hWnd, NULL, ghInstance, NULL) ;
SetClassLong (hPopup, 0, 123) ;
ShowWindow (hPopup, SW_SHOW) ;
}
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{

case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;

default:) /* default windows message processing */
: return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
}
: return (OL) ;
}
/*7 Here is a separate message processing procedure for the chitd window */

Long FAR PASCAL ChildProc (HWND hWnd, unsigned ineésage, WORD wParam, .

57

WINDOWS AP| BIBLE

LONG LParam)

< .
char cBuf [1281] ;
int . n;
PAINTSTRUCT . ps ;
switch (iMessage) /* process windows messages */
< , .
’ case WM_PAINT:
BeginPaint (hWnd, &ps) ;
n = (int) GetClassLong C(hWnd, 0) ; .
TextOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf,
. “Class value = %d", n)) ;
EndPaint (hWnd, &ps) ;
- break ; . .
" case WM_COMMAND: /* process menu jtems */
switch (wParam)
{ .
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
3)
break ; . -
default: ’ /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam,' LParam) ;
) : :
. return (OL) ;
3} ,
GETCLASSNAME ‘ MWin20 ®\Win30 ®mWin3.l
Purpose ~Retrieves the class name upon which a window is based . '
Syntax int GetClassName(HWND hWnd, LPSTR IpClassName, int nMaxCount);
Description Copies the class name to a meraory area pointed to by lpClassName.
Uses - Generally used before GetClassInfo() to load the class name into a string array.
Returns The number of characters read. Zero if sWnd is not a valid window handle.
See Also - GetClassInfo() '
.Parameters ‘ _ :
‘hWnd ~ -~ HWND: Handle to the window which was created based on the class.
IpClassName LPSTR: Pointer to a memory area to hold the class name.
nMaxCount int: The maximum number of bytes to retrieve. This allows'you to keep the class name from
overflowing the ipClassName area.
Example This example displays the class name when the user clicks the “Do It!" menu item.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG tParam)
{
char cBufl[128] ;

int nLenStr ;
HDC hDC ;
“"switch (iMessage) /* process windows messages */
{ . ’
case WM_COMMAND: /* process menu items */
switch (wParam)
{ . . .
case IDM_DOIT: /* User hit the "Do it"” menu item */

nlLenStr = GetClassName (hWnd, cBuf, 127) ;

hDC = GetDCChWnd) ;

TextOut (hDC, 10, 10, "The class name is:", 17) ;
TextoOut (hDC, 10, 25, cBuf, nLenStr) ;

58

3. WINDOWS SUPPORT FUNCTIONS ¥

ReleaseDC (hWnd, hdC) ; |

, break ;
[Other program lines]
GETCLASSWORD . EmWin20 mWin30 ®mWin3l
Purpose Retrieves information from a class.
Syntax WORD GetClassWord(HWND hWnd, int nindex);
" Description Returns two-byte data from a class. . . Dolt! Quit
Uses Generally used to retrieve the class cursor, icon, or back-

ground brush. More efficient than GetClassInfo() if you are
only retrieving one value.

Returns The twb-byte data value requested.
See Also GetClassWord(), GetClassLong(), GetClassName(), SetClass-
Long(), SetClassWord(), GetClassInfo() Figure 3-9. GetClassWord()
Parameters) Example.
hnd HWND: The handle of the window that was created based on
. the class. ‘
nindex int: The byte offset for the specific data item. It can be any of the values described in Table 3-4.

“§

GCW_CBCLSEXTRA

. Retrieve the number of bytes of extra data associated with the class. A second call to
- GetClassWord() can be used to retrieve a word of data. Use an nindex value of 0, 2, 4... for the
first, second, third... words of extra data. ‘

' GCW_CBWNDEXTRA Retrieve the number of bytes of extra data associated with the window. GetWindowWord() can be

" usedto retrieve aword of data. Use an nindex value of 0 2, 4... for the first, se‘éonybird. ..words
of extra data. _ - »
GCW_HBRBACKGROUND Refrieve a handle to the class background brush.
GCW_HCURSOR Retrieve a handie to the class cursor. .
GCW_HICON - Retrieve a handle to the class icon. ' L o
GCW_HMODULE Retrieve a handle to the class module, L '
GCW_STYLE - - Retrieve the window class style.

Table 3+4. GetClassWord() Index Values.

The GCW_values are defined as negative values in WINDOWS.ﬁ. This is how the function differ-
entiates between positive offsets you supply to retrieve extra data stored with the class and a
request for a predefined element of class data.

) Example This example retrieves the class icon, as shown in Figure 3-9, in order to display the icon in the
: window’s client area.

‘Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
b !

HICON hlcon ; .
HDC hdC ;
switch (iMessage) ») /* process windows messages */ :
case WM_COMMAND:) A prdce"ss menu items */
switch (wParam) ' :
{

59

WINDOWS. AP1 BIBLE

case IDM_DOIT: '/* Paint the program's icon */
hlIcon = Getclassword (hWnd, GCW_| HICON)
hdC = GetDC (hWnd) ;
brawIcon (hdC, 10, 10, h!con) H
ReleaseDC (hwnd, hbC) ;

. : break ;

[Other program lines] »

GETCLIENTRECT EWin20 mWin30) HWin3.l

Purpose Retrieves a window’s client area size.

Syntax void GetClientRect(HWND hWnd, LPRECT IpRect);

Description The client area dimensions are copied into the RECT structure pointed to by {pRect. As client
coordinates are used, the upper left corner is always 0,0. The bottom right corner gives the client
area dimensions in device units (pixels).

Uses - Use at the start of WM_PAINT refresh cycles to find out how big an area is visible.

Returns No returned value (void).

See Also InvalidateRect(), UpdateWindow(), Islcon(), BeginPaint(), GetWindowExt(), GetWindowRect()

Parameters

hWnd . HWND: Handle to the window.

IpRect LPRECT: Long pointer to a RECT rectangle data structure.

Related Mes_»'sages WM_PAINT

Example This example shows an explicit erasure of the client area rectangle. The client rectangle is passed

to InvalidateRect(). The same functionality can be achieved without using GetClientRect(), but
having the second parameter in the InvalidateRect() call set to NULL. This causes the entire
client area to be updated. ’

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< :

HDC hbC ; .
RECT rClient ;
int i,
o switch (iMessage) /* process windows messages */
{
case WM_COMMAND: /* process menu items */
switch (wParam)
case IDM_DOIT: /* User hit the "“Do it" menu item */
hDC = GetDC ChWnd) ; /* put text in client area */
for (i =0; 1 <10 ; i++)
{
‘ TextOout (hdDC, 10, 10 + (i*15),
’ “This text will be erased.”, 25) ;
¥) .
ReleaseDC (hWnd, hDC) ;
GetClientRect (hWnd, &rClient) ;
InvalidateRect (hWnd, &rClient, TRUE) ;
UpdateWindow (hWnd) ; /* force WM_PAINT now */
' break ;
[Other program lines]
GETCURRENTTASK EWin20 ®mWin30 ®Win3.l
. Purpose’ Retrieves a handle to the currently executing task.
Syntax HANDLE GetCurrentTask(void);

60

3. WINDOWS SUPPORT FUNCTIONS ¥

Uses A task is an application program running on the system. Windows keeps track of all running tasks
in the “task handler.” Each instance of a program is a separate task. This function is used to
initialize a callback function made for EnumTaskWindows(). Also used to return the task handle

for PostAppMessage().
Returns ~ HANDLE, a handle to the task executing, !
See Also EnumTaskWindows(), PostAppMessage(), GetWindowTask()
Parameters None (void).
Example This example is similar to the example under EnumTaskWindows(). In this case, the handle to

the currently executing task is passed to the enumeration function, rather than the task handle
for the file manager. The remainder of the program is identical to the example under the
EnumTaskWindows() function description.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static FARPROC LpfEnumProc ; . .
static ENUMER enumer ; ;
static HANDLE hTask, hFoundTask ; '
int i
HDC hbC ;
" LPHANDLE LpTaskMen ;
switch {iMessage) /* process windows messages */
case WM_CREATE: /* tetl windows about WindTaskFunc() */
LpfEnumProc = MakeProcInstance (WindTaskFunc, ghiInstance) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_DOIT: /* User hit the "Do it" menu item */
if (enumer.hGMem) /* if not first time tried */

Globalfree (enumer.hGMem) ;/* free the memory */
/* initialize storage area */
enumer.hGMem = GlobalAlloc .
(GMEM_MOVEABLE | GMEM_ZEROINIT, 1L) ;
enumer.nCount = 0 ;
hTask = GetCurrentTask () ;
. /* Let Windows run callback func. */
EnumTaskWindows (hTask, tpfEnumProc, (DWORD) &enumer) ;

[Other program lines] .

GETDESKTOPWINDOW ' " [OWin20 ®@Wind0 #=EWindl

Purpose Retrieves the handle of the background window that covers the entire screen.

Syntax HWND GetDesktopW!ndow(void); .

Uses ‘Painting on the Windows deskfop background. Some specialized utility programs paint on the
desktop window to provide utilitarian buttons, such as disk icons and button controls, to launch
applications. i

Returns A handle to the desktop background window.

Parameters - None (void).

Comments The background on which all windows are shown is another window. You can use all painting and

- text output functions on it, as you would the client area of any other window. This area should be
reserved for special purposes such as screen “saving” and printing programs, as painting on the
background violates the basic principle of sharing the screen resources between applications.

61

WINDOWS API BIBLE

. Example This example prints the string “This text will be on the background.” on the upper left corne, of
’ the background. It is for demonstration purposes only. Prmtmg text on the background isnota
good practlce

-

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD-wParam, LONG LParam)
{ : . .

HDC hdC ;
HWND hDesktop ;
switch (iMessage) /* process windows messages */
{
case WM_COMMAND: /* process menu items */

switch (wParam).

{

case IDM_DOIT: /* User hit the "Do it" menu item */

hDesktop = GetDesktopWindow () ;
hDC = GetDC (hDesktop) ;
Textout (hDC, 0, O,
"This text will be on the background.", 36) ;
ReleaseDC (hDesktop, hdC) ;

o s . ’ o D - break T
* " [Other program lines/ " : S
GEeTFocus EWin20 ®WWin30 MWin3.l.
Purpose - Finds which window has the input focus.
Syntax - HWND GetFocus(void);
Description Retrieves a handle to the window that has the input focus. The window with the input focus will
be the next one to receive keyboard input.
Uses Handy if you have multiple edit controls. Determines which one the user has selected to receive
text input.
Returns - HWND, a handle to the window with .
the input focus. i . SR &
SeeAlso ~ SetFocus() ' - . SCRerE r'—l—r '
Paramebeis None (void). : , Dolt! Quit : '
Related Messages WM_SETFOCUS, WM_KILLFOCUS ' i Static Text
Example This example checks which window : -
has the input focus when the user

clicks the “Do It!” menu item. (See [The window with the focus is: Edit Me
Figure 3-10.) Note that this is as-

sured to be either the parent win- Figure 3-10. GetFocus() Example.

dow or one of the children, as S

clicking the menu will force the focus back to the application. In other circumstances, the focus
may be in an outside window when GetFocus() is called. Use SetActiveWindow() to make sure -
the application is active before calling GetFocus().

Long FAR PASCAL WndProc (HWND hWnd, unsigried iMessage, WORD wParam, LONG LParam)
{

static HWND hButton ;

static HWND hStaticText ;

static HWND hEdit ;

HWND hFocus ;

HDC “hDC ;.

static char cBuf [25]

switch (iMessage) } /* process windows messages */
{

62

3. WINDOWS SUPPORT FUNCTIONS ¥

case WM_CREATE:

hButton = CreateWindow ("BUTTON", "Button”,
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10, 10, 100, 40, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hButton, SW_SHOW) ;
/* create and show static text */
hStaticText = CreateWindow ("STATIC", "Static Text",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
150, 10, 100, 15, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hStaticText, SW_SHOW) ; .
/* create and show an edit control */
hEdit = CreateWindow ("EDIT", “Edit Me",
WS_CHILD | WS_VISIBLE | WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;

break ;
case WM_COMMAND: /* process menu items */
sWwitch (wParam)
{
case IDM_DOIT: /* User hit the "Do it" menu item */
:hFocus = GetFocus () ; = - ’ ; : :
GetWindowText (hFocus, cBuf, 24) ;
hDC = GetDC C(hWnd) ;
TextOut (hpC, 10, 65, “The window with the focus is:", 29) ;
Textout (hDC, 15, 80, cBuf, strlen (cBuf)) ;
ReleaseDdC (hWnd, hDC) ;
break ;
[Other program lines]
GEeTLASTACTIVEPOPUP OWin20 ®Win3.0 ®Win3.1
Purpose Finds the popup window that was active last.
Syntax HWND GetLastActivePopup(HWND hwndOwner);
Uses In programs with multiple popup windows. ‘ was Activel
Returns * Ahandle to the popup window that was active last. Active win- WM_PAINT in Child JEES
dows have their title bars or outline borders highlighted. Will A " :

return hwndOwner if hwndQwner does not own any popups or
hundQwner was the last active window, or if huwndOwner is
not a top-level window (if it is owned by another window).

See Also GetActiveWindow(), SetActiveWindow()

Parameters i Figure 3-11. GetLast- .

hwndOuner HWND: The handle of the parent window that spawned the ActivePopup() Example.
popup windows.

Example This example creates a popup child window. When the user clicks the “Do It!” menu item on the

parent window, a handle to the last active popup window is retrieved. This handle is used to
change the popup window’s caption to “I was Active!”. (See Figure 3-11.)

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG L(Param)
c .

HDC hoc ; /* device context handle */

static WNDCLASS wndclass ; /* the window class */

static HWND hPopup, hActive ; :

switch (iMessage) . /* process windows messages */
¢) .

case WM_CREATE: /* build the chiltd window when program starts */

wndclass.style =
CS_HREDRAW | CS_VREDRAW | CS_PARENTDC ;

63

WINDOWS API BIBLE

)

wndclass.pfnWndProc PopupProc ;

wndclass.cbClsExtra 0;
wndclass.cbWndExtra 0;
wndclass.hInstance ghlnstance ;
wndclass.hIcon NULL ;

LoadCursor (NULL, IDC_ARROW) ;
GetStockObject (LTGRAY_BRUSH) ;
NULL ;
"SecondClass” ;

/* register the window class */
if(RegisterClass (&wndclass))

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

nnwwnnunn

<
Co " hPopup = = CreateWindow ("SecondClass", “Popup Window",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hwWwnd, NULL, ghInstance, NULL) ;
ShowWindow (hPopup, SW_SHOW) ;
}
break ; .
case WM_COMMAND: /* process menu items */
switch (wParam)
{ .
case IDM_DOIT: /* User hit the "Do it" menu item */
SetFocus (hPopup) ;
hActive = GetLastActivePopup (hWnd) ;
SetWindowText (hActive, "1 was Active!") ;
break ;
case IDM_QUIT: /* send end of application message */
' DestroyWindow (hWnd) ;
. break ;
)
break ;
case WM_DESTROY: . /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

Y
. return (OL) ;

/* Here is a separate message processing procedure for the popup window .*/

Long FAR PASCAL PopupProc. (HWND hWnd, unsigned iMessage, WORD wParam,

{

LONG LParam)

HDC . hdC ; /* device context handle */

. PAINTSTRUCT ps ; . /* paint structure */
~ switch (iMessage) : /* process windows messages *7
case WM_PAINT: /* just write in the uiﬁdou */

hDC = BeginPaint(hWnd, &ps) ;
TextOut (hdC, 1, 1, "UH_PAINT in Chitd.”, 18)
EndPaint (hWnd, &ps) ;

break ;
case WM_DESTROY: - /* stop the apptication */
PostQuitMessage (0) ; .
. break ;) |]
- default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, (Param) ;
}
return (OL) ;

3. WINDOWS SUPPORT FUNCTIONS v

GETNEXTWINDOW : BWin20 ®mMWin30 ®Win3.l

Purpose Finds parent and child windows. ‘

Syntax HWND GetNextWindow(HWND ki¥nd, WORD wFlag);

Description Searches the window manager's list for the next or previous window. If hWnrd points to a top-level
window, GetNextWindow() looks for other top-level windows. If kWnd points to a child window,
GetNexthdow() looks for other child windows.

Uses To locate child windows in applications with only two or three child windows. EnumWindows()

, and EnumChildWindows() are more efficient where there are many windows.

Returns HWND, a handle to the next or previous window in the window manager’s list.

See Also EnumWindows(), EnumChildWindows(), GetWindow()

Parameters ’

hWnd HWND: Handle to a window. If 2Wnd points to a top-level window, GetNextWindow() looks for
other top-level windows. If kWnd points to a child window, GetNextWindow() looks for other
child windows.

wklag WORD: Specifies if the handle returned is to be for the next or previous window. It can be either

; GW_HWNDNEXT or GW_HWNDPREV.
Example '

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

HDC hdC ;
HWND hNextWindow ;
char cBufl25] ;
switch (iMessage) ' /* process windows messages */
P 4
case WM_COMMAND: /* process menu items */
switch (wParam) N
{
case IDM_DOIT: /* User hit the "Do it" menu item */
hNextWindow = GetNextWindow (hWnd, GW_HWNDNEXT) ;
hDC = GetDC C(hWnd) ;
TextOut C(hdC, 10, 10, "The next window is:", 19) ;
itoa (hNextWindow, cBuf, 10) ;
TextOut (hdC, 15, 30, cBuf, Lstrlen (cBuf)) ;
GetWindowText (hNextWindow, cBuf, 24) ;
TextOut (hDC, 15, 50, cBuf, Lstrlen (cBuf)) ;
ReleaseDC (hNextWindow, hdDC) ;
break ;
[Other program lines]
GETNuMT ASKS " " @MWin20 ®Win30 ®Win3.l
Purpose Finds the number of tasks running in the system. .
Syntax int GetNumTasks(void);
Description The number of tasks is the number of unique program instances in operation. If more than one
copy of the same program is operating, each will count as a separate task.
Uses Used in shell applications such as the Program Manager. The shell can determine if it is the only
task running by seeing if the returned value from GetNumTasks()is one.
Returns int, the number of running tasks. i
See Also EnumTaskWindows() ~
None (void).

Parameters

65

WINDOWS API.BIBLE

Example

This example displays the number of tasks running on the system in the example pr;)gram’s client
area. The example assumes that the C library STRING.H has been included.

Long FAR PASCAL wndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ : ’

HDC hoe ;
char cBufl25] ; -
. int . nNumTasks ;
switch (iMessage) /* process windows messages */
< _ . ‘ ‘ ,
case WM_COMMAND: /* process menu jtems */
switch (wParam)
{ .
case IDM_DOIT: /* User hit the "Do it" menu item */
nNumTasks = GetNumTasks () ;
hDC = GetDC ChWnd) ;
TextOut (hDC, 10, 10,
“The number of tasks runn\ng is:", 31) ;
itoa (nNumTasks, cBuf, 10) ;
Textout ChDC, 15, 30, cBuf, strlen (cBuf)) ;
ReleasebC (hWnd, hDC) ;
_ break ;

[Other program lines] '

GETPARENT BWin20 ®Win30 ®Win3.l

Purpose Retrieves a handle to a parent window.

Syntax HWND GetParent(HWND hWnd),

Description - Windows maintains a table of window handles, and their linkages between parent and children,

: in memory at all times. Any degree of nesting (children of children of children...) is possible.
GetParent() looks for the parent of the wipdow whose handle is 2Wnd.

Uses Useful if a child or popup window has a separate message processing function. GetParent() al-
lows the child window to retrieve its parent’s handle for sending messages to the parent’s mes-
sage function.

Returns HWND, a handle to the parent window. NULL if #Wnd does not have a parent.

See Also ChildWindowFromPoint(), EnumWindows(), GetWindow().

Parameters ; '

hWnd HWND: The startmg wmdow S handle ‘

Example In this example, the parent window creates a popup wmdow. The parent sends the popup window

Long FAR PASCAL WndProc (HWND hWnd, unsigned 1Message, WORD wParam, LONG LParam)
< . : .

- HDC -
static

static

switch
{

aWM USER message when the user clicks the “Do It!” menu item. The WM_USER message has
the parent’s window handle set as wParam, so that the popup window can print out the parent’s
name. GetParent() could just as easily been used within the popup window’s message processing
function to retrieve the parent window’ s handle

L hbe ;. o
WNDCLASS B wndclass ;
HWND - - hPopup, hParent;
‘(iMessage)) : ' Ty process windows messages */

case WM_CREATE: /* bu1ld the child window when program starts */
TWndclass.style CS_HREDRAW | CS_VREDRAW | CS_PARENTDC;
~ wndclass.lpfnWndProc ChiLdProc;
wndclass.cbClsExtra 0,
wndclass.cbWndExtra 0,
wndclass.hlnstance ghlnstance ;

66

3. WINDOWS SUPPORT FUNCTIONS v

wndclass.hIcon
wndclass.hCursor

NULL ;
LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground GetStockObject (LTGRAY_BRUSH) ;
wndclass.lpszMenuName NULL ;
wndctass.lpszClassName = "SecondClass" ;

/* register the window class */
if(RegisterClass (&wndclass)) '

{) ¢
hPopup = CreateWindow ("SecondClass", “Popup Windouw",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hPopup, SW_SHOW) ;
b
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{

case IDM_DOIT: /* User hit the "Do it" menu item */
: hParent = GetParent (hPopup) ;
/* Tell popup window its parentage */
SendMessage (hPopup, WM_USER, hParent, OL) ;
break ;
case IDM_QUIT:
DestroyWindow (hwnd) ;
break ; .
b ‘ ~
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ; . .
defautt: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

-

3
return (OL) ;
}

/* Here is a separate message processing procedure for the popup window */

Llong FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hDC ;
HWND hParent ;
char cBuf [25] ;
switch (iMessage) /* process windows messages */
{ P :
case WM_USER: /* message from parent - wParam is parent handle */

hDC = GetDC (huWnd) ;

Textout ChDC, 1, 1, "My Parent window is:", 21) ;
GetWindowText ((HWND) wParam, cBuf, 24) ;
TextOut (hDC, 1, 15, cBuf, strlen (cBuf)) ;
ReleaseDC (hWnd, hDC) ;

break ;
case WM_DESTROY: /* stop the application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
) .
return (OL) ;
}
GETPROP - ' EWin20 ®Win30 mWin3l
Purpose Retrieves a property (data) associated with a window. '
Syntax . HANDLE GetProp(HWNDhWnd, LPSTR IpString);
Description Retrieves a handle to the memory area associated with the property named by IpSiring.

67

WINDOWS API BIBLE ‘ ' .

Uses The property functions allow data to be associated with a window. This is an excellent way to deal
with data that is specific to a certain window, avoiding the need for global data storage.

Returns HANDLE, a handle to the memory area containing the data. The data must have been previously
stored with SetProp()

See Also . ‘SetProp(), EnumProp, RemoveProp()

Parameters

hWnd HWND: Handle to the window which has property data associated with it.

IpString LPSTR: Pointer to a null-terminated string that contains the name associated with the data. This

can also be an atom. In that case the high-order word must be set to zero, while the low-order
i word should contain the atom value,

Example "~ This example stores a handle to a global memory block as a
window property. The memory block contains the string “This

data tied to Window,” as shown in Figure 3-12. When the user S

. clicks the “Do It!” menu item, the handle to the memory block | poiti Quit

s retrieved and the string is displayed in the window's client

area. Real uses of property data are most frequent in applica- WS CAPTION

tions that have a number of similar child windows, such as MDI WS_HSCROLL

applications (see Chapter 29). Note that deleting the property

does not remove the data pointed to by the memory handle.

The memory block is deleted separately from the property Figure 3-12. GetProp()

The window styles for parent:

when processing the WM_DESTROY message. : Example.
long FAR PASCALlwndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{
HANDLE - hMemory ;
LPSTR LpName ;
HDC - hdC ;
char cBuffl = “This data tied to Window";
switch (iMessage) /* process windows messages */]
£ .

case WM_CREATE:
hMemory = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT,
(LONG) lstrlen (cBuf)) ;
LpName = GlobalLock C(hMemory) ;
Ustrcpy (LpName, cBuf) ;
* GlobalUntock (hMemory) ;
SetProp (hWnd, “User Prop", hMemory) ;
break ; .
case WM_COMMAND: /* process menu items */
switch (wParam)

_ case IDM_DOIT: /* User hit the "Do it" menu item */
hMemory = GetProp (hWnd, "User Prop") ;
LpName = Globallock (hMemory) ;
hDC = GetDC (hWnd) ;
TextOut (hdDC, 10, 10, "GetProp() found:", 16) ;
TextOut (hDC, 10, 30, LpName, Lstrlen (lpName)) ;
GlobalUnlock (hMemory) ;
ReleaseDC (hWnd, hDC) ;
: break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
>
break ; :
case WM_DESTROY: /* stop application */
hMemory = GetProp (hWnd, "User Prop") ;
GlobalFree (hMemory) ; ’
RemoveProp (hWnd, "User Prop") ;

68

3. WINDOWS SUPPORT FUNCTIONS ¥

PostQuitMessage (0) ;

default: break ; /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, tParam) ;
:e turn (OL) ;

}
GETSYsMopALWINDOW : MWin20 ®Win30 ®WWin3.l
Purpose Retrieves a handle to a system modal window. ‘
Syntax HWND GetSysModalWindow(void);
Description System modal windows take over the input focus from all other windows. GetSysModalWindow()

allows you to get a handle to this window and send it messages if desired.
Uses Passing messages to system modal windows.
Returns HWND, a handle to the system modal window. NULL if none exists.
See Also SetSysModalWindow()
Parameters None (void). .
Example This example shows the creation of a system modal dialog box. A timer is set up in the parent

window’s message function that checks every ten seconds if a system modal window exists. If so,

the timer is shut down and the system modal window is sent a WM_DESTROY message. This saves

the user from having to hit the “OK” button to cancel the dialog box. Note that this example will
delete any system modal window. A more complete application would discriminate between the
window handle(s) of system modal windows created by the application and those belonging to
other programs. The GetParent() function is frequently useful in doing these checks.

<> Header File
/* timer.h’ */
#define IDM_DOIT 1 /* menu item id values */
#define IDM_QUIT 2
/* global variables */
int ghinstance ;
char gszAppName L1 = “timer" ;
/* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;
BOOL FAR PASCAL DialogProc (HWND hDlg, WORD wMess, WORD wParam, LONG LParam) ;

Note that the resource file contains the dialog box definition. The style DS_SYSMODAL has
been added to the definition to force the dialog box to be a system modal window.
&> Resource File
/* timer.rc */

#include <windows.h>
#include "timer.h"

timer . ICON generic.ico

timer MENY

BEGIN ' -
MENUITEM “&Do It!" IDM_DOIT
MENUITEM “RQuit", IDM_QUIT ‘

END

TimerDiaLog DIALOG 20, 20, 160, 80
CAPTION "SYSTEM MODAL"
STYLE DS_SYSMODAL

{
CTEXT “Timer Example” -1, 0, 12, 160, 10
CTEXT “This window will go away if you wait.”,
-1, 0, 30, 160, 10
ICON . “timer" -1,10,10, 0, 0
DEFPUSHBUTTON “oK” ’ 1DOK, 50, 50, 30, 14
3 .
69

WINDOWS AP! BIBLE

> C Listing for WindProc() and Dialog Box Functions

Llong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ ,

HWND hSysModal ;
static FARPROC LpfnDlgProc ;
switch (iMessage) ~ /* process windows messages */
{ . .
case WM_TIMER: /* kill sys modal window - if any */

hSysModal = GetSysModalWindow() ;
if (hSysModal) .
SendMessage (hSysModal, WM_DESTROY, 0, OL) ;
KillTimer (hWnd, 1) ; :
SetActiveWindow (hWnd) ;
break ;)
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_DOIT:)
/* set timer 1 to every 10 sec. */
if (1SetTimer (hWnd, 1, 10000, NULL))
{

MessageBox (hWnd, "Too many clocks or timers!",
“Warning",
MB_ICONEXCLAMATION | HB_OK) ;

}
else /* Create a system modal dialog box */
{ . '
LpfnblgProc = MakeProclInstance (DialogProc,
ghinstance) ;
DialogBox (ghInstance, “Timerbialog'", hWnd,
LpfnDLgProc) ;
FreeProcInstance (LpfnDlgProc) ;
) .
break ;

case IDM_QUIT:
bestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
default: /* /default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;-
: 3
" return OL ;
}

BOOL FAR PASCAL DiatogProc (HWND hDlg, WORD wMess, WORD wParam, LONG LParam)
{

switch (wMess)

case WM_INITDIALOG:
return TRUE ; .
case WM_COMMAND: /* there is only one command - quits */
d case WM_DESTROY:
’ EndDialog (hDlg, 0) ;
return TRUE ;
}
return FALSE ;
3

GeETToPWINDOW S BWin20 ®Win30 ®Win3.l
Purpose Finds the Host child window of a parent. "
. Syntax HWND GetTopWindow(HWND hWnd);

..

70

3. WINDOWS SUPPORT FUNCTIONS ¥

Description

Returns

See Also

Parameters
hWnd

Example

Windows maintains a list of window handles in memory, including the linkage from parent to
child. GetTopWindow() can be called repeatedly to find “children of children.” This function
searches for the first child window in a parent window's internal list of linked child windows.

HWND, a handle to the top level child window. Returns NULL if the parent does not have child
windows.

ChlldWmdowFromPomt(), GetWindow()

HWND: The handle to the parent window.

This example displays the name to the first child window when the “Do It!” menu item is clicked.
In this case, there is only one child window: a pushbutton with the window text “Button.”

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

4 .
static HWND hButton ;
HWND hTopWindow ;
HDC hdC ;
. char cBuf C[25] ;
switch (iMessage) /* process windows messages */
p .
case WM_CREATE:
hButton = CreateWindow ("BUTTON", "Button",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10, 10, 100, 40, hwnd, NULL, ghlnstance, NULL) ;
ShowWi ndou (hButton, SW_ SHON)
break ;
case WM_ COMMAND /* process menu items */
switch (wParam) ' .
{
case IDM_DOIT: /* User hit the "Do it" menu item */
if (hTopWindow = GetTopWindow (hWnd))"
{ .
GetWindowText (hTopWindow, cBuf, 24) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 60, "The top window is:", 17) ;
TextOut (hDC, 15, 75, c3uf, Lstrlen (cBuf)) ;
ReleasebC (hWnd, hDC) ;.
} ‘
break ;

[Other program lines]

- GETVERSION _ @Win20 ®mWin3.0 ®mWin3l

Purpose Retrieves the version number of Windows and DOS running on the system.

Syntax DWORD GetVersion(void);

Description Both the major and minor version numbers (before and after the decimal point) are returned

Uses Disabling part of a program if an older version of Windows is in operation.

Returns DWORD. The high-order word contains the DOS version number. The low-order word contains
the Windows version number. In both cases, the high-order byte of the word contains the minor
version number, while the low-order byte contains the major version number. For example, Win-
dows version 3.1 running under DOS 5.0 would be coded 0x 00050103 hexadecimal.

See Also GetWinFlags()

Parameters None (void)

Note This function was incorrectly documented in the Windows 2.0 and 3.0 SDK documents and
WINDOWS.H file.

Example - This example displays the Window's version number when the user clicks the “Do It!” menu item.

71

WINDOWS API BIBLE

ldng FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

HDC hoC ;

char cBuf(25] ;

int nWindVersion, nMajor, nMinor ;

switch (iMessage) : /* process windows messages */
{
case WM_COMMAND: /* process menu items */
switch (wParam)
{ .
case IDM_DOIT: © /* User hit the "“Do it" menu item */ R
\ nWindVersion = (int) GetVersion () ;-
nMajor = LOBYTE (nWindVersieon)
nMinor = HIBYTE (nWindVersion)
nbC = GetDC ChWnd) ;
TextOut ChdC, 10, 10, B
"The current version of Windows:", 31) ;
itoa (nMajor, cBuf, 10) ;
TextOut (hDC, 15, 30, cBuf, lstrlen (cBuf)) ;
TextOut ChdC, 25, 30, “.", 1) ;
itoa (nMinor, cBuf, 10) ;
TextOut (hdC, 35, 30, cBuf, lstrlen (cBuf)) ;
ReleaseDC (hWnd, hDC) ;
break ;'

s
’

[Other program lines|

GETWINDOW - EWin20 ®Win30 @mWin3.l

Purpose Retrieves a wind(_)w’s handle. ’

Syntax HWND GetWindow(HWND k2 Wnd, WORD wCmd);

Description Searches the window manager’s list of parent and child windows for the next entry matching the
search criteria specified in.the wCmd parameter.

Uses . An alternative to EnumWindows() and EnumChildWindows(). GetWindow() is simpler to use if

. “there are not very many windows involved in the search.

Returns HWND, a handle to the window retrieved from the search. NULL if the end of the window
manager’s list was found, or if the function failed (wrong wCmd parameter).

See Also EnumWindows(), EnumChildWindows(), EnumTasks()

Parameters '

hWnd HWND: The handle of the window from which to base the search.

‘wCmd WORD: The search criteria value. This can be any of the values in Table 3-5.

5L

GW_CHILD- Find the window’s first child window.

GW_HWNDFIRST Find a child window's first sibling window. If none found, it returns the first top-level window in the
window manager’s list. :

GW_HWNDLAST Find a child window's last sibling window. If not found, it returns the last top-levei window in the
window manager’s lst. ‘ ‘

GW_HWNDNEXT Retumns the next window in the window manager's list.

GW_HWNDPREV Retumns the previous window in the window manager's list.

GW_OWNER Returns the owner of a window.

Table 3-5. GetWindow() Criteria.

72

3.vW|NDOWS SUPPORT FUNCTIONS v

Example This-example creates a child window from the parent window’s class when the WM_CREATE
‘ message is processed. When the user clicks the “Do It!” menu item, the child window handle is
found with GetWindow(), and its caption string determined with GetWindowText(). The child

name is displayed in the parent's client area.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

- HDC hDC ;
HWND hChild, hGotWind ;
char cBuf £25] ;
static BOOL bFirstTime = TRUE ;
sWwitch (iMessage) /* process windows messages */
<
case WM_CREATE: " /* build the child window when program starts */
if (bFirstTime)
{

bFirstTime = FALSE ;

hChild = CreateWindow (gszAppName, "Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlInstance, NULL) ;

ShowWindow (hChild, SW_SHOW) ;

}
break ;
case WM_COMMAND: /* process menu items */

switch (wParam)

{

case IDM_DOIT: /* User hit the "Do it" menu item */
hGotWind = GetWindow (hWnd, GW_CHILD) ;
hDC = GetDC C(hWnd) ; /* get device context */

TextOut (hdC, 10, 20, "My child is:", 12) ;
GetWindowText (hGotWind, cBuf, 24) ;

TextOut (hDC, 15, 40, cBuf, strien (cBuf)) ;
ReleaseDC (hWnd, hDC} ; /* release device context */

break ;
[Other program lines]
!
- GETWINpOwWLoNG mWin20 ®mWin30 ®mMWin3l
Purpose Retrieves a long value from a window’s data.
Syntax LONG GetWindowLong(HWND hWnd, int nindex); ,
Uses Useful where one or more windows has been subclassed by modifying the basic class structure
with SetWindowLong(). Also used to retrieve 32 bit values saved with SetWindowLong().
Returns The LONG value specified.
See Also GetWindowWord(), SetWindowLong(), SetWindowWord(), GetClassLong(), GetClassWord()
Parameters ' -
hWnd HWND: The window’s handle.~ = -)
nindex int: The index to the value to retrieve. This can be any of the values in Table 3-6.

GWL_EXSTYLE . Retrieve the extended window style.
GWL_STYLE Retrieve the window style.
GWL_WNDPROC _ Retrieve a long pointer to the window's message processing funetion.

Table 3-6. GetWindowlLong() Index Values.

73

WINDOWS AP! BIBLE

These GWL_ values are all defined as negative offsets in

WINDOWS H. To retrieve extra four-byte data associated with m
a window’s class structure, use a positive byte offset for Dol Quit 1

nindex. 0 for the first value, 4 for the second, etc. The window styles for parent:
Related Messages GetWindowWord(), SetWindowLong(), SetWindowWord() WS_CAPTION
. . , T WS_HSCROLL
Example This example displays the style parameters of the main win-
) dow when the user clicks the “Do It!” menu item. (See Figure
3-13.) ' , Figure 3-13. GetWindow-

Long() Example.

Long FAR PASCAL WndProc (HWND hWnd, 'unsigned iMessage, WORD wParam, LONG LParam)
¢ b

HDC hDC ;

char cBufl[25] ;

LONG LStyle ;

sWwitch (iMessage) /* process windows messages */
{ -
case WM_COMMAND: /* process menu items */
switch (wParam)
< .
case IDM_DOIT: /* User hit the “Do it" menu item */

LStyle : GetWindowLong (hWnd, GWL_STYLE) ;
hDC = GetDC ChWnd) ;
Textout ¢hDC, 10, 10, \
“The window styles for parent:", 29) ;
if (LStyle & WS_CHILD) .
TextOut (hDC, 15, 20, "WS_CHILD", 8) ;
if (LStyle & WS_CAPTION)
TextOut (hDC, 15, 30, "WS_CAPTION", 10) ;
if (LStyle & WS_HSCROLL)
TextOut (hDC, 15, 40, "WS_HSCROLL", 10) ;

/* etc */
ReleaseDC (hWnd, hDC) ;
break |
[Other program lines] o
GETWINDOWRECT ‘ mWin20 mWin30 mWin3.l
Purpose | Retrieves a window's outer dimensions. :
Syntax void GetWind()wRect(HWND hWnd, LPRECT IpRect); _
Description Copies the dimensions of the bounding rectangle that exactly encompasses the window into the

rectangle structure pointed to by [pRect. The dimensions are in screen coordinates (pixels mea-
sured from the upper left corner of the screen).

Uses Window movement and sizing.
Returns No returned value (void).
See Also : GetClientRect()
Parameters
hWnd HWND: A handle to the window.
- lpRect ' LPRECT: A pointer to a RECT structure that will contain the window's bounding rectangle. The

points will be computed in screen coordinates, with 0,0 being the upper left corner of the screen.
Related Messages WM_SIZE

Example) This example moves a window across the screen diagonally. GetWindowRect() is used to provide
the initial window position and size. ' ‘

74

3. WINDOWS SUPPORT FUNCTIONS v

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

RECT rWindow ;

int i}
sWwitech (iMessage) | /* process windows messages */
case WM_COMMAND: /* process menu items */
switch (wParam)
Ease IDM_DOIT: /* User hit the "Do it" menu item */

GetWindowRect (hWnd, &rWindow) ;
for (i =0; 1 <10 ; i++)

4
MoveWindow (hWnd, rWindow.left + i*10,
rWindow.top + i*10,
rWindow.right + i*10,
rWindow.bottom + i*10, TRUE) ;
}
break ;

[Other program lines/

GETWINDOWTASK ' EWin20 ®Win30) MEWin3.l

Purpose Retrieves a handle to a task.

Syntax HANDLE GetWindowTask(HWND kWnd); :

Description A task is any operating program. Each instance of a program M%‘;:;k nﬁ:::,er T
running is a separate task. This function finds the task handle ‘
when given the window handle. | Popup Window

Uses Used to determine the task handle, when given the window | LA

handle. This may be done before calling EnumTaskWindows()
to provide the hTask parameter.

_Returns © HANDLE to the task.
See Also . EnumTaskWindows() Figure 3-14. GetWindow-
Parameters) Task() Example.
hWnd HWND: The window's handle.
Example This example creates a parent window and a popup window. Both windows display their task

handle number. Figure 3-14 provides a graphical example illustrating that all of a top-level
window's child windows are part of the same task.

The popup window’s message processing function ChildProc() must be listed in the EXPORTS
section of the program’s .DEF definition file. A functlon prototype should also be placed in the
program’s header file.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

PAINTSTRUCT pPs ;

WNDCLASS wndclass ;

HWND hPopup ;

HANDLE hTask ;

char | cBuf £128] ;

switch (iMessage) /* process windows messages */

case WM_CREATE: /* build the child window when program starts */
wndclass.style
= CS_HREDRAW | CS_VREDRAW | CS_PARENTDC ;
wndclass.lpfnWndProc = ChildProc ;
wndclass.cbClsExtra =0;

75

WINDOWS API BIBLE

wndclass.chWndExtra

0;
" wndclass.hInstance ghlnstance ;
wndclass.hlIcon NULL ;

case WM_|

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.i{pszClassName

LoadCursor (NULL, IDC_ARROW) ;
GetStockObJect (LTGRAY BRUSH) H
NULL ;
"Secondclass" H

/* register the window class */

nhwoanowun

if(RegisterClass (&wndclass))

{
. hPopup = CreateWindow (“SecondClass", "Popup Window",
’ WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
110, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hPopup, SW_SHOW) ;
3 .
break ;
PAINT:-

BeginPaint ChWnd, &ps) ;

hTask = GetWindowTask (hWnd) ;

TestOut (ps.hdc, 0, 0, cBuf, wspr1ntf (cBuf,
~My ‘task number is: %dﬂ, hTask)) ;

EndPa1nt ChWnd, &ps) ;

break ;

case HN_COMHAND: /* process menu items */

switch (wParam)
¢ .

case IDM_QUIT:

DestoryWindow (hWnd) ;
break ; ’

}

break. ;

case WM_DESTROY: /* stop application */

default:

}
return (OL) ;

PostQuitMessage (0) ;
break }

/* default windows message processing */
return DefWindowPrac (hWnd, iMessage, wParam, LParam) ;

/* Here is a separate message processing procedure for the popup window *

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam

LONG LParam

PAINTSTRUC ps
HANDL hTask
cha cBuf £1281]
switch (iMessage . YA process windows messages *
case WM_PAINT
BeginPaint (hWnd, &ps)
hTask = Getw1ndouTask Chwnd)
Textout (ps.hdc, 0, 0, cBuf, wsprintf (cBuf
"My task number is: %d", hTask))
EndPaint (hWnd, &ps)
break
case WM_DESTROY /* stop the application *
Post@QuitMessage (0)
~ break
default /* default windows message processing *

return (OL)

return DefWindowProc (hWnd, iMessage, wParam, LParam)

76

3. WINDOWS SUPPORT FUNCTIONS v

GETWINDOWTEXT BWin20 ®mWin30 mWin3.l

Purpose Retrieves a window's caption (title string)

Syntax int GetWindowText(HWND ~2Wnd, LPSTR IpString, int nMaxCount);

Uses For parent, popup, and child windows, the title string shows above the menu bar. For buttons, the
title string shows in the center of the button.

Returns The number of characters copied. Zero if there is no caption.

See Also SetWindowText(), GetWindowTextLength()

Parameters '

hWnd HWND: The handle to the window with a title. ‘

lpString LPSTR: A pointer to the memory area that will contain the title string.

nMaxCount int: The maximum number of characteTs to copy. This helps avoid overrunning the end of the

character buffer set aside to hold the title string.
Example _This example displays the title of the window in the window's client area.
’ /
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hoC ;
char cBufl25] ;
sWwitch (iMessage) /* process windows messages */
{
case WM_COMMAND: /* process menu items */
switch (wParam) :
{

case IDM_DOIT: /* User hit the “Do it" menu item */
GetWindowText (hWnd, cBuf, 24) ; :
hpC = GetDC (hWnd) ;
TextOut (hdC, 10, 10, "T’he window title for the parent:",
32) ;
TextOout (hDC, 15, 25, cBuf, GetWindowTextLength (hWnd)) ;
ReleaseDC (hWnd, hDC) ; ’

break ;
[Other program lines]
GETWINDOWTEXTLENGTH BmWin20 mMWin30 mMWin3.l
Purpose Finds the number of characters in a window’s title string.
Syntax int GetWindowTextLength(HWND kiWnd);
Uses Used prior to GetWindowText() to set up a memory buffer big enough to hold the title string.
Returns int, the number of characters in the window's title. This can be zero if the window does not have
a title.
See Also GetWindowText(), SetWindowText()
~ Parameters
hWnd HWND: The handle of the window with the title. »
Example See the previous example under the GetWindowText() function description.
GETWINDOWWORD : . EWin20 ®Win30 mWin3l
Purpose Retrieves a two-byte value from a window's data. '

Syntax WORD GetWindowWord(HWND hWnd, int nindex);

77

WINDOWS API BIBLE

Uses - Most commonly used to get the window’s instance handle (2/nstance). Can also be used to deter-
mine the ID value of a child control, or retrieve 16-bit data stored with the window data by
, SetWindowWord().
Returns WORD, the value specified by the n/ndex parameter. !
See Also GetWindowLong(), SetWindowWord(), SetWindowLong()
Parameters)
hWnd HWND: The handle to the window.
nindex int: Specifies which value to retrieve. This can be any of the values described in Table 3-7.
[Vel eaning
GWW_HINSTANCE Retrieve the window’s instance handle.
GWW_HWNDPARENT Retrieve the handle of the parent window.

GWW_ID ’ Retrieve a child window’s control ID value.
Table 3-7. GetWindowWord() Index Values. . '

The GWW_ index values are defined as negative numbers in WINDOWS.H. To retrieve extra
16-bit data stored with the window's class definition, use a positive offset for n/ndex. 0 for the
first entry, 2 for the second, etc. The amount of space available is set by the coWndExtra element
of the WNDCLASS structure passed to RegisterClass() when the class was registered. 16-bit data
is added to the extra data area with SetWindowWord(). .

Example

Long FAR PASCAL WndProc (HWND hWnd, {unsigned iMessage, WORD wParam, LONG LParam) ‘
< I

HDC hoe ; |
char cBufl251 ;'
HANDLE hInstance ; "'
switch (iMessage) . /* process windows messages */
<
case WM_COMMAND: /* process menu items */

switch (wParam)

case IDM_DOIT: /* User hit the "Do it" menu item */
hInstance = GetWindowWord (hWnd, GWW_HINSTANCE) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10,

"“The instance handle of the parent:", 35) ;

itoa (hinstance, cBuf, 10) ;
TextOut (hDC, 15, 25, cBuf, strien (cBuf)) ;
_ReleaseDC (hWnd, hDC) ; !

. . break ;
[Other program. lines]
GETWINFLAGS mWin20 mMWin30 mWin3.1
Purpose Determines what computer CPU and memory model are in operation.
Syntax DWORD GetWinFlags(void);
Uses Convenient for determining the approximate performance of the system. :
Returns DWORD value with the parameters encoded as bit values. They may be any of the values de-
' scribed in Table 3-8. -

78

3. WINDOWS SUPPORT FUNCTIONS v

alue’ T Meaning T T
WF_80x87 The system has a math coprocessor.
WF_CPU086 The system has an 8086 CPU.
WF_CPU186 The system has an 80186 CPU.
WF_CPU286 The system has an 80286 CPU.
WF_CPU386 The system has an 80386 CPU.
WF_CPU486 The system has an 80486 CPU.
WF_ENHANCED Windows is running in Enhanced Mocde.
WF_LARGEFRAME Windows is running with the EMS large-frame memory configuration.
WF_PMODE Windows is running in protected mode. This is always set if the mode is WF_ENHANCED or
WF_STANDARD.
WF_SMALLFRAME Windows is running with the EMS small-frame memory configuration.
WF_STANDARD Windows is running in standard mode.

Table 3-8. GetWinFlags() Flags.

You can detect if Windows is running in Real Mode by verifying that neither WF_ENHANCED
nor WF_STANDARD has been set.

See Also GetVersion()
Parameters None (void).
Example

Long FAR PASCAL wﬁdProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

HDC | hdC ;
DWORD dwWinFlags ;
“switch (iMessage) . /* process windows messages */
{ . 4
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_DOIT: /* User hit the “Do it” menu item */
: dwWinFlags = GetWinFlags () ;
hDC = GetDC (hWnd) ; /* get device context */
Textout (hDC, 10, 20, "GetWinFlags Found:", 18) ;
if (dwWinFlags & WF_CPU286) -
Textout C(hDC, 10, 40, 80286 CPU", 9) ;
else if (dwWinFlags & WF_CPU386) '
Textout (hDC, 10, 40, 80386 cPU", 9) ;
else if (dwWinFlags & WF_CPU486)
TextOout (hDC, 10, 40, 80486 CPU", 9) ;
if (dwWinFlags & WF_ENHANCED)
Textout (hDC, 10, 60, “Enhanced Mode', 13) ;
if (dwWinFlags & WF_80x87)
Textout (hDC, 10, 80, "Math Coprocessor”, 16) ;
ReleaseDC (hWnd, hDC) ; /* release device context */
break ; .
[Other program lines]

79

WINDOWS API BIBLE

IsCHiLD BWin20 ®MWin30 ®mWindl

Purpose Determines if a window is the child of a given parent window.

Syntax BOOL IsChild(HWND hWndParent, HWND hWnd);

Description Finds out if hWnd is the direct descendant of the 2WndParent window. Windows maintains the
relationship of child windows to their parents in memory at all time. Descendents may also be
popup windows.

Uses Useful in determining the relatlonshlp of a series of child windows located with
EnumChildWindows()

Returns BOOL. TRUE if kWnd is a child of hWndParent FALSE if not.

See Also EnumChildWindows(), ChildWindowFromPoint(), WindowFromPoint()

Parameters

hWndParent HWND: A handle to the potential parent window.

hWnd HWND: A handle to the child window to be checked as a descendant of AWndParent.

Example . The parentage of the child window is checked and dxsplayed in the pa,rent’s cllent area when the

user types the “Do It!” menu item.

tong FAR PASCAL WndProc (HWND hWnd, unsigned 1Message, WORD uParam, LONG LParam)
{

HDC

hDC ;

static HWND hchitd ;

char cBuf1 [25]1, cBuf2 [25] ;
static BOOL bFirstTime = TRUE ;
BOOL bIsChild ;
sWwitch (iMessage) /* process windows messages */
{ : ’ .
case WM_CREATE: /* build the child window when program starts */
if (bFirstTime) !
{ . ;
bFirstTime = FALSE ;
hChild = CreateWindow (gszAppName, "Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
100, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hChild, SW_SHOW) ;
}
break ;
case WM_COMMAND: /* process menu items */
switch (wParam))
case IDM_DOIT: /* User hit the "Do it" menu item */
bIsChild = IsChild (hWnd, hChild) ;
GetWindowText (hWnd, cBufl, 24) ;
GetWindowText (hchild, cBuf2, 24) ;
hDC = GetDC (hwWnd) ;
TextOut (hDC, 10, 10, cBuf2, strlen (cBuf2)) ;
if (bIsChild)
; TextOut (hDC, 10, 30, “Is a child of:", 14) ;
' else
TextOut (hDC, 10, 30, “Is NOT. a child of:", 18) ;
TextOut (hDC, 15, 50, cBuf1, strien (cBuf1)) ;
ReleaseDC ChWnd, hDC) ; /* reltease device context */
break ;
[Other program lines]
IsIconic mWin20 m®mWin30 mWin3.l
Purpose Checks to see if a window is minimized
Syntax

BOOL IsIconic(HWND AWnd);

80

Description

Uses

Returns
Parameters
hWnd

3. WINDOWS SUPPORT FUNCTIONS v

Normally, windows that are to be minimized have an icon as part of their class definition, When
the window is minimized, the icon is displayed. If the class definition has NULL for the class icon,
the program is expected to paint in the little bit of client area that is displayed when the window
is minimized. -

Handy in processing WM_PAINT messages If the window is minimized, a separate painting rou-
tine can be used.

BOOL. TRUE if the window is minimized, FALSE if not!

IIWND: The handle to the window which may be minimized.

Related Messages WM_PAINT, WM_SIZE

Example .

In this example, the parent’s window class does not have an icon. Instead the program detects il
the window is iconized and writes different text if it is during the WM_PAINT cycle.

#include <windows.h> /* window's header file ~ always included */
#include “generic.h" /* the application's header file */

int PASCAL WinMain (HANDLE hinstance, HANDLE hPrevInstance, LPSTR lpszCadLme,
int nCmdShow) .)

<
HWND hwnd ; - /* a handle to a message */
NSG . msg ; /* a message */
WNDCLASS wndclass ; /* the window class */
ghinstance = hinstance ; /* store instance hand/le as global var., */
. it ('hPrevinstance) - /* load data into window cl.ass struct. */
{ .
) _sndclass.style = CS_HREDRAW | CS_ VREDRAH oo
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra =0; /
wndclass.cbWndExtra =0;
wndclass.hInstance = hInstance ;
wndclass.hlcon = NULL ; .
wndclass.hCursor = LoadCursor (NULL, IDC_ ARROH) ,'
wndclass.hbrBackground = GetStockfhject (HHITE BRUSH) ;
wndclass.lpszBenuName = gszAppMdame ;
undclass.lpszClnsNue = gszAppNane ;
/% reghter the uindow class */
it (!'RegisterClass (Iundclass))
, ‘return FALSE ;
hind = CreaceWindow (/* create the program's window here */
gszAppName, /* class name */
gszAppName, /* window name */
WS_OVERLAPPEDWINDOW, /* window style */
CW_USEDEFAULT, /* x position on screen */
CW_USEDEFAULT, ' /* y position on screen */
CW_USEDEFAULT, /* width of window */
CW_USEDEFAULT, . /* height of window */
NULL, /* parent window handle (null = none) */
NULL, * /* menu handle (null = use class menu) */
hInstance, /* instance handle */
NULL) ; . /* Lpstr (null = not used) */
ShouWindow (hWnd, nCmdShow) ;
UpdateWindow (hund) ; /* send first Ull PAINT nessage */
) :h‘l le (Geilessage (hsg, NULL, 0, 0)) ;o Y A4 thc nusage Loop */.

Translatenesuge (znsg)
Dispat cl\l!essage (hsn)

B

WINDOWS API BIBLE

} .

return msg.wParam ;
)) . o }) : :
loﬁg FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
€. .)

HDC ' hdC ;
"PAINTSTRUCT psPaintStruct ;

switch (iMessage) /* process windows messages */
{ :

case WM_PAINT:
hDC = BeginPaint (hWnd, &psPa1ntstruct)
if (IsIconic (hWnd))
TextOut (hoc, 1, "Icon", 4) ;
else :
’ TextOut (hDC, 10, 10, "Not 1conized nou.", 17)
EndPaint (hWnd, &psPa1ntStruct) '

break ;
case WM_ COMMAND. C /* process menu items */
" switch (wParam) .
(.
case IDM_DOIT: - " /* User hit the "Do it" menu item */
Closewindou (thd) K /* minimize window */
break ;
case IDM_QUIT: - A send end of appl1cat1on message */
Destroyw1ndou (thd)
break ;
>
break ; o
case WM_DESTROY: . /* stop application */
PostQuitMessage (0) ;
break ;
default: B /* default windows message processing */
" return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3.) s
return (OL) ;
} . .
IsWinbow - L MWin20 mMWin30 mWindl
Purpose " Checks to see if a window handle still points to a vahd window.
Syntax . " BOOL IsWindow (HWND kWnd); ‘
Description ~ Windows keeps a list of all active windows in the system Tlus functlon compa.res the handie to
the list of windows to see if the window exists. .
Uses © . Usefulin apphcatlons where the user can destroy child windows or popups.
Returns - - BOOL. TRUE if 2Wnd refers to a valid window, FALSE if not.
See Also IsWindowEnabled(), IsWindowVisible(), DestroyWindow() .
- Parameters . ,
hWnd - .. HWND: The window handle to check.
Example h

2ong>FAR PASCAL WndProc (HVND'hUnd, unsigned iMessage, WORD wParam, LONG LParam)

HDC hbC ;

static HWWD hchild ;

char. : cBuf £257 ;

static BOOL bfirstTime = TRUE ;

BOOL bisﬂindou 2

:witch‘ (iMessage) /* process windows messages */-

caseWM_CREATE: /* build the child uindou when program ‘starts */

- 7

3. WINDOWS SUPPORT FUNCTIONS V.

if (bFirstTime)
{

bfirstTime = FASLE ;
hchild = CreateWindow (gszAppName, "Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION
/ 100, 50, 200, 150, hWnd, NULL, ghInstance, NULL);
. ShowWindow (hChild, SW_SHOW) ;
)} .
e break ;
case WM_COMMAND: . /* process menu items */
switch (wParam) '
< ;

case 1DM_DOIT: /* User hit the “Do it" menu item */
] hDC = GetDC ChWnd) ;
! ‘ . bIsWindow = IsHmdou (hChild) ;
if (bIsWindow)

<
o ' GetWindowText (hch1ld, cBuf, 24) ;
\ . TextOut (hDC, 15, 20, cBuf, strlen (cBuf)) ;
) : TextOut (hDC, 10, 40, "was created 0K.", 15) ;
)
ReleaseDC (hWnd, hDC) ;
. : break ;
[Other program lines|
IsWINDOWENABLED EWin20 AWin30 ®Win3l
Purpose Checks to see if a window is enabled for keyboard input.
Syntax BOOL IsWindowEnabled(HWND hWnd);
Uses Most often used with edit controls to see if the control is enabled for keyboard mput
Returns -~ BOOL. TRUE if the window is enabled, FALSE if not.
See Also EnableWindow(), IsWindowVisible(), IsWindow()
Parameters _ _
hWnd HWND: A handle to a window (or child window control).
Related Messages WM_ENABLE
_Example . Here the edit control is initially disabled. The text in the edit control shows up grayed and cannot

be edited. After the user clicks the “Do It!” menu item, the control is enabled and can be edited.
Llong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
<

static HWND hEdit ;
static BOOL bFirstTime = TRUE ;
‘_ switch (iMessage) ’ /* process windows messages */

case HM;_CREATE: -
if (bFirstTime)

<) B
hEdit = CreateWindow ("EDIT", “This is edit text”,
WS_CHILD | WS_VISIBLE,
10, 10, 100, 40, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;
EnableWindow (hEdit, FALSE) ; /* starts disabled */ .
o bFirstTime = FALSE ; !
)
break ; :
case WM_ COMMAND. : /* process menu items */
rzu'itch (wParam) ‘
case 1DM_| DOIT: /* User hit the “Do it" menu item */
. if (11sWindowEnabled ChEdit)) /* 1f disabled */
" EnableWindow (hEdit, TRUE) /* enable */ :
break ;

{Other program lines]

83

‘WINDOWS API BIBLE -

IsWINDOWVISIBLE . ‘ BWin20 ®Win30 mWin3l
Purpose ~ Checks to see if a window has been made visible. -

Syntax BOOL IsWindowVisible(HWND kWnd);

Description Windows are made visible by calling ShowWindow(). IsWindowVisible() will return TRUE for any

window that has been activated with ShowWindow(), even if the window i is completely obscured -
on the screen by other windows.

Uses Use if you want to reduce Window's overhead workload by not “showing” the window until it is
needed, or if you need to know if the window was hidden with a call to ShowWindow().
Returns BOOL. TRUE if ShowWindow() has displayed the window, FALSE if not or if the window does not -
exist. ‘ : .
See Also ShowWindow()
Parameters
hWnd HWND: A handle to the window to check
Related Messages WM_CREATE
_Example ° This example toggles a child window from hidden to visible each time the “Do It!" menu item is
o clicked.
Long FAR PASCAL WndProc (HWND ﬁHnd, unsigned iMessage, WORD wParam, LONG LParam)
< K)
. HDC hdC ;
static HHND "hehild ;
- char - cBuf [25] ; .
static BOOL bFirstTime = TRUE ;
BooL bIsVisible ;
switch (iMessage) /* process windows messages */
¢ ' :
case WM_CREATE: | /* build the child window when program starts */
if (bFlrstTime) ' : ' S
A

bF1rstT1me = FALSE ; : ’
hCh1ld = Createwindow (gszAppNane, “Child Wwindow", .
- WS_CHILD | WS_VISIBLE | WS_BORDER | WS CAPTION,
100 50, 200, 150, hund, NULL, ghlnstance, NULL) ;
ShowWindow (hchild, SW__ SHOU)

}
break ;
case WM_COMMAND: /* process menu ftems */
switch (wParam) '
<
case IDM_DOIT: 1* User hit the "Do it" menu item *l
hDC = GetDC (hWnd) ; .
bIsVisible = IsHindouvis1ble (hChild)
if (bIsV1s1ble)
L
GetHindouText Chchild, cBuf, 24) ;
TextOut Chpc, 10, 20, cBuf, strlen (cBuf)) ;
TextOut ChdC, 10, 40, "is now visible.”, 15) ;
TextOut (hbC, 10, 60, “Now hiding Child...", 19) ;
ShowWindow (hChild, SW_HIDE) ;
} .
. _ else
~ TextOut (hbC, 10, 20,

“Child window not v151ble.", 25) ;
ReleaseDC ChWnd, hDC) ; /* release device context 'l
break ; -

[Other program tines]

3. WINDOWS SUPPORT FUNCTIONS ¥

IsZooMED EWin20 ®Win30 ®mWindl

Parpose Checks bo seeifa wmdow is maximized.

Syntax BOOL IsZoomed(HWND hWnad);

Uses Many programs do not show the full client region data if their window is not ma.xlmu.ed ‘This
' functlon checks to see if the window fills the screen,

Returns - BOOL. TRUE if the window is maximized, FALSE if not.

SeeAlso. . Islconic(), MoveWindow(), CloseWindow(), Openicon()

hWnd HWND: A handle to the window to check.

Related Messages WM_SiZE

Example - The main window displays a text string indicating if the window is maximized or not when the

user clicks the “Do It!” menu item.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam) -
¢ k

HOC hdC ;
switch ‘(iMessage)) ‘ ' /* process windows messages */
case WM_CONMAND: /* process menu items */
switch (wParam) .
case IDM_DOIT: " /*/User hit the “Do it" menu item */
hDC = GetdC (hund) ; ‘
it (IsZoomed (hWnd)))
TextOut ChDC; 10, 10,
“Window is now maximized.", 24) ;
else
TextOut (hdC, 10, 10,
: "\lindou is NOT maximued ", 24) ;
ReleasedC (hWnd, hDC) ; .
, break ; t
[Other program lines] : ' :
MoveWINDOW ' BWin20 BWin30 @Win3.l
Purpose Moves or resizes a window '
Syntax ' void MoveW‘mdow(HWND hWnd, int X, int Y, int nWidth, int nHeight, BOOLbRepamt),
Description ~ Sends WM_SIZE and/or WM_MOVE messages to the window’s message processing function. The

nWidth and nHeight parameters are passed with the WM_SIZE message. The X,Y values are
‘passed with the WM_MOVE message. The default message processing logic in DefWindowProc()
will handle these messages if the program does not intercept them.

Uses : Moving, resizing, or repainting a window.

Returns © " Noreturned value (void).

See Also ShowWindow(), GetClientRect(), GethdowRect(), Sethdowsze()

Parameters

hWnd HWND: A handle to the window. .

X ' int: The new horizontal position of the window's upper left corner. For parent and popup win-

dows, X is in screen coordinates For child wmdows Xisin client coordmates

85

WINDOWS API BIBLE

Y int: The new vertlcal position of the window’s upper left corner. For parent and popup wmdows,

. Y is in screen coordmates For child windows, Y is in client coordmates

nWidth . int: The new client area width. ‘ ‘

nHeight int: The new client area helght

bRepaint BOOL: Specifies if the window should be repainted. TRUE if yes, FALSE if not.

Related Messages WM_SIZE, WM_MOVE

Example Thls program fragment shows a wmdow being moved ten times, each time changing its size. Note

how GetWindowRect() is used to determine the window's initial size.

Long FAR PASCAL WndProc (HWND hWnd, unsigned 1Hessage, HORD wParam, LONG LParam)
{ : o : .

static RECT rWindow ;
static int i
switch (iMessage) /* process windows messageé */
H .
case WM_COMMAND:’ : /* process menu items */

switch (wParam) .

1 ! !)

case IDM_DOIT: /* User hit the "Do it" menu item */

GetWindowRect (hWnd, &rWindow) ;.
for (i =0 ; 1 <10; i++)

4
MoveWindow (hWnd, rWindow.left + i*10,
rWindow.top + i*10,
rW¥indow.right + i*10,
: rWindow.bottom + i*10, TRUE) ;
}
break ;
[Other program lines]
ReMoVEPROP , , Win20 ®Win3.0 ®Win3.l
Purpose Removes a property (data) that was associated with a window.
Syntax HANDLE RemoveProp(HWND kWnd, LPSTR ipString);
Description Frees the memory associated with the properties data.
Uses Use when the property is no longer needed, or when shutting down an application (processing a
) : WM_DESTROY message). _
Returns ~ Ahandle. The handle points to the property name if the function was successful. Otherwise, the
function returns NULL.
See Also SetProp(), GetProp(), EnumProp().
Parameters
hWnd HWND: A handle to the window which has property data. '
IpString LPSTR: A pointer to the string that contains the property name. If atoms are used to name the
nroperty, the high-order word wﬂl be zero, and the low-order word will be equal to the atom'’s
value.) :
Example This example uses a window property value to hold a handle fox a global memory block containing

a character string. The property is removed when the program termmates Note that the memory
block must be separately freed using GlobalFree().

N

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
¢ . }))

static HANDLE. hMemory ;
. LPSTR LpName ;

char - cBufll = "Th1s data tied to Window";

3. WINDOWS SUPPORT FUNCTIONS Vv

switch
{ .

(iMessage) . /* process windows messages */ -

case WM_CREATE: . o
hMemory = GlobalAlloc (GMEM_MOVEABLE | GMEM_ZEROINIT,
.CLONG) strlen (cBuf)) ;
LpName = GlLobalLock ChMemory) ;
Lstrcpy (LpName, cBuf) ;
GlobalUnlock (hMemory) ;
SetProp’ (hwnd, “User Prop", hMemory) ;
break ;
case WM_ COHMAND' /* process menu items */
switch (wParam)

case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
b i
break ;
case WM_DESTROY: . /* stop application */
GlobalFree (hMemory) ;
RemoveProp (hWnd, "“User Prop") ;
Post@QuitMessage (0) ;
break ;
default: o /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

.
return (OL) ;

p)

SETACTIVEWINDOW » EBWin20 ®Win30 ®mWinsl

Purpose Makes a window active. ' '

Syntax HWND SetActiveW‘mdow(HWND hWnd);

Description - Sets the active window. The active window is the parent window with the input focus. The actlve
window can be iconic.

Uses Used in applications that coordinate the actions of several independent windows. See Chapter 30

: on dynamic data exchange (DDE) for how to exchange data and commands between running
applications.

Returns HWND, a handle to the previously active window. o

Comments This function should not normally be used, as it risks violating one of the basic principles of

‘ Windows programing: letting the user determine which window should be active at any time. You

may find it useful when a function key or key combination activates a window, as an alternatlve to
mouse control.

See Also GetActiveWindow(), GetLastActivePopup(), EnableWindow(), BringWindow'I‘o’l‘op() _

Parameters o

hWnd HWND: A handle to the window to activate.

Related Messages WM_ACTIVATE ‘

Example This code example creates a window that refuses to be covered up. Ten seconds after the “Do It!"

menu item is clicked, this program will come back to the top, even if it has been covered. by
several other windows.

Long FAR PASCAL WndProc (HWND hwnd,‘qnsigned iMessage, WORD wParam, LONG LParam)
{

-

switch (iMessage) - o /* process windows messages */

case WM_TIMER: -
KillTimer ChWwnd, 1) ;
SetActiveWindow (hWnd) ;/* make window reappear */

87

WINDOWS API BIBLE

break ; - . : o
. case WM_COMMAND: . - /* process menu items */

switch (uParam) - : :

< .

case IDM_DOIT:
. /* set timer 1 to every 10 sec. */
if (!setTimer ChWnd, 1, 10000, NULL)) ’
HessageBox Chwnd, “Too many clocks or timers!",-
"Uarmng", MB_ICONEXCLAMATION | MB_¢ OK)

- Co break ;

[Other program lines]

SerCLassLoNG " mWin20 ®Win30 ®Windl

Purpose Changes one of the LONG values ina wmdow class, '

Syntax LONG SetClassLong(HWND kWnd, int nindez, LONG dwNewLong);

Uses -~ Allows you to change tlie window procedure or menu for an existing class. This allows you to make
use of an old class, with a new window procedure or menu applied to all subsequent windows
created from the class.

Also allows you to set the values of extra four-byte data that was allocated as part of the class
data when the class was registered. Room is made for these values as the chCisExtra element of
the WNDCLASS data structure is passed to ReglsterCIass() GetClassLong() can be used to re-

trieve the values set. ‘
Returns . Returns the previous value held by the wmdow class. A :
*. SeeAlso SetClassWord(), GetClassLong(), GetClassWord(), RegisterClass, SetWindowLong()
Parameters . '
hWnd - . HWND: A handle to a window.

nindex ‘ int: The index of the value to change. This can be either of the values in Table 3-9.

GCL_MENUNAME Set anew Icng pomter to the menu name.
GCL_WNDPROC- Seta new long pointer to the window function.

Table 3-9. SetClassLony(') Flags.

The GCL_ flags are defined as negative values in WINDOWS.H. To change extra four-byte data in
the class definition, use a positive byte offset for n/ndex. Zero for the first value, 4 for the second, -

etc.
dwNewlong =~ LONG: The new four-byte data to insert into the class data.
Notes - Using the GCL_WNDPROC index to set a new window message processing function is called “win-

dow subclassing.” All windows created from the class after the window function is changed will
use the new message processing function.

Do not change the class settings for predefined child wmdow controls, such as buttons and
scroll bars, as these global classes are used by other applications. Instead, change the values for
the individual controls using SetWindowLong(). :

Example . . This program modifies the existing window class by changmg the window procedure name. All
. subsequent calls to CreateWindow() create child windows referencing WindProc2(). Note that
WindProc2 must be added to the EXPORTS section of the program's .DEF definition file, and a.
B . function prototype must be added to the header file.

:png FAR PASC‘L UndProc (HWND h¥nd, unsigned iﬂessagé; WORD n?ai-un, LONG LParam)
WoC s hbe ;. o

3. WINDOWS SUPPORT FUNCTIONS ¥

}

PAINTSTRUCT - =~ PS;
HUND hChild ;

suitch (iMessage) /* process windows messages */

< : '

case WM_PAINT:)
hDC = BeginPaint (hWnd, &PS) ; N
TextOut (hdDC, 10, 10, “Nou in prinary ¥ndProc.", 23) : s
EndPaint (hWnd, &PS) o :
break ; ’

case WM_COMMAND: /* process menu items */
suitch (wParanm) .

case IDM_DOIT: /* create a child window - use sWindProc2() */
SetClassLong ChWnd, GCL_WNDPROC, (LONG) WndProc¢2) ; :
hChild = CreateWindow (gszAppName, “Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
100, 50, 200, 150, hwnd, NULL, ghlnstance, NULL) H
" ShowWindow (hChild, SW_SHOW) ;
. break ; '
case IDM_QUIT:
Destloyuindou (hund)

break ;
} .
break ;
case WN _DESTROY: . /* stop application */
PostQuitMessage (0) ; ‘
break ; C =
default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

}
© return (OL) ;

/% This is the new WindProc() referenced by the SetClassLong() function. */
/* KLL new children created use this one. */
long FAR PASCAL WndProc2 (HHND hWnd, unsigned iHessage, WORD wParam, LONG LParan)

woe » hbe ;
PAINTSTRUCT S ;

switch (iMessage) . k '] /* process windowus uessagés */

case WM_PAINT:
hdC = BeginPaint (hWnd, &PS) ;
TextOut <(hDC, 10, 10, "Nou in SECOND UndProc.”, 22) ;
EndPaint (h¥nd, QPS) '

break ;
case WM DESTROY- /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

}
return (OL) ;

SE'ICLASSWORD ' BWin20 ®Win30 ®Win3l
Purpose Changes a WORD sized value ina wmdow class. C :
Syntax 'WORD SetClassWord(HWND hWad, int nindex, WORD wNewWord);

Description ' Thisfunction allows you to change the properties of every window created from an existing class.

- It is often used to change the cursor shape, but can also be used to change any of the extra two-
byte wide data stored with the window class structure. _

Retumsthepreviousvalue. e IR

vruivew WYy A DIDLE

See Also ’ . SetClassLong(), GetClassWordO, GetClassLong()

Parameters -
hWnd : HWND: Handle to the wmdow that was created based on the class.
nindex a mt The byte offset for the specnﬁc data item. It can be any of the values in Table 3-10.

GCOW_ CBCLSEXTRA Retrieve the number of bytes of extra data associated with the class. A second call to-
" GetClassWord() can be used to retrieve a word of data. Use an nindex value of 0, 2, 4... for the

~ first, second, third... words of extra data.
GCW_CBWNDEXTRA Retrigve the number of bytes of extra data associated with the window. A second call to
GetClassWord() can be used to retrieve a word of data. Use an nindex value of 0, 2, 4... for the

first, second, third... words of extra data.

GCW_HBRBACKGROUND Retrieve a handle to the class background brush.

GCW_HCURSOR " . Retrieve a handle to the class cursor.
GCW_HICON * Retrieve a handle to the class icon.
GCW_HMODULE * Retrieve a handle to the class module.
GCW_STYLE * Retrieve a handle to the window class styl.

Table 3-10. SetClassWord() Flags. \

The GCW_ flags are deﬁned as negative values in WINDOWS.H. To change extra word-smed data
associated with the window, use a positive offset for nindex. Zero for the first byte, 2 for the

second, etc.
wNewWord WORD: The new word-sized value to insert into the class structure.

Note Do not change the class settings for predefined child window controls such as buttons and scroll
: bars, as these global classes are used by other applications. Instead, change the values for the
individual controls using SetWindowWord().

Example Here the “Do It!” menu item causes the window’s class to be altered to a hght gray background
' : This affects all of the child windows created and also affects the parent window's client area on
the next refresh (WM_PAINT) cycle.

loné FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam) ’
< - C
HWND hCchild ;

switch (iMessage) /* process windouws messages */

case WM_COMMAND: /* process menu items */
switch (wParam) ’
< : : -
case IDM_DOIT: . /* User hit the "Do it" menu item */

SetClassWord (hWnd, GCW_HBRBACKGROUND,
(WORD) GetStockObject (LTGRAY_BRUSH)) ;
hCh1ld = CreateWindow (gszAppName. "Child Window", .
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
. 100, 50, 200, 150, hund, NULL, ghInstance, NULL) ;
. ShowWindow (hChild, SW_SHOW) ;
break ;

case IDM_QUIT:)
. DestroyWindow (hWnd) ;
break ;
2 .
: .- break ;- : o : .
" case WM_DESTROY: . . .~/* stop application */ .

- 90

~ 3. WINDOWS SUPPORT FUNCTIONS ¥

PostQu‘l tHessage) ;

break ;
default: °) /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
return (0L) ;
3
SerFocus @Win20 WWin30 ®EWin3.l
- Purpose Gives a window the input focus
Syntax HWND SetFocus(HWND £Wnd);
Description A window with the input focus gets all of the keyboard mput.
Uses Frequently used where there are multlple child windows. Controls which one has the input focus.
Returns . A handle to the window that prevmusly had the input focus NULL if h#Wnd is not a valid window
- handle, or if the window is dlsabled ’

See Also - GetFocus(), EnableWindow()
Parameters : ' ,
hWnd HWND: A handle to the window which is to receive the input focus.
Related Messages WM_ SETFOCUS, WM_GETFOCUS
Examplc Here the “Do It!” menu item causes the keyboard input focus to be moved to the edit control. This

shows up in the changed appearance of the edit line in the edit box. The text in the edit control
goes from gray to black, and an edit cursor appears inside the control. This is the same eﬁ'ect that
clicking the edit control with the mouse would have,

Long FAR PASCAL ‘WndProc (HWND hvwnd, unsigned iMessage, WORD wParam, LONG LParam)
(B

static- HWND hEdit ;
" static BOOL) bFirstTime = TRUE ;
switch (5Hessage) . /* process windows messages */
case WM_CREATE: /* create and show an edit control */
if (bF1rstT1me)
{

hEdit = CreateWindow ("EDIT", "Edit Me",
WS_CHILD | WS VISIBLE | WS_BORDER,
150, 40, 100, 25, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;
bFirstTime = FALSE ; ’
> .

break ; .
case WM_COMMAND: - /* process menu items */ -
switch (wParam))
{ .
case IDM_DOIT: /* User hit the "Do it" menu item */
SetFocus (hEdit) ;
break ;
[Other program lines]
SETPARENT MWin20 EWn30 mWindl
Purpose Changes the parent window of a child window. '
Syntax HWND SetParent(HWND kWndChild, HWND hiWndNewParent);
Child windows can be children of child windows, to any desired level of nesting. The advantage is

Uses

_ that child windows do not exceed the bounds of their parent's client area and are moved thh the

parent.

91

WINDOWS APIBIBLE -~ -~ - s . \

Returns HWND, a handle to the previous parexit window of kWndChild. - _ w
See Also - GetParent(), GetNextWindow(), IsWindow() °°“ ' -
B . . Wd Window 1
. N . i . . R) . B N . N -
hWndChild - HWND: A handle to the child window which is to receive.a new par- | ierm—"r

kWndNewParent HWND: A handle.t/o the new parent window of kWndChild.

ent.

"In'this example, two child windows are created, Initially, they overlap Figure 3-15. Child
each other on the screen, as both have the same parent window. When - Windows After "
the user clicks the “Do It!” menu item, the second child window be- - Clicking “Do It!". .

" comes the child of the first child window, forcing child2 to be visible

. only within the client area of childl. Note that these child windows share the message processmg
function WndProc() of their parent, as they are based on the parent’s class. Real child windows
would have thelr own message processmg functions. (See anure 3-16.)

Long FAR PASCAL WndProc (HWND hWnd, unsigned iNessage, WORD uParam, LONG lParam)
<

static HWND hCh1ld1 hchilde ;
static. BOOL bFirstT1me = TRUE

switch (iMessage) B /* process windows messages */
case WM_CREATE: ‘ /* build the child window when program starts */
if (bFirstTime)
<

bFirstTime FALSE ;
‘hChild1 = CreateWindow (gszAppName, “Child Hindou 1",
: WS_CHILD | WS_VISIBLE | WS_BORDER | WS CAPTION,
10, 50, 300, 250, hWnd, NULL, ghInstance, NULL)
- ShowWindow (hChild1, SW_SHOW) ;
hChild2 = CreateWindow (gszAppName, “Child Window 2",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS CAPTION,
10, 50, 200, 150 hWnd, NULL, gh!nstance, NULL)
showHindou Chchild2, SW_SHOW) ;

Seedlso

¥
‘break ; , ‘
case WM_COMMAND: . /* process menu items */
* _switch (wParam)
A . :
case IDM_DOIT: "% user hit the “Do it" menu item */
. SetParent (hChild2, hChild1) ;
. break ;
. [Other program lines]
SexProp j B s , '-\mnz.o " @mWin30 ®WWin3d.l
Purpose Attaches named data to a window. L o oo
Syntax BOOL Sethp(HWND hWnd, LPSTR lpStrmy, HANDLE IzData), . -
Description ~ SetProp() allows any data to be associated with the window hWnd. The data is given a name, e
pointed to by IpString, to make recall simple. Normally kData is a handle toa memory block -
v containing the actual data. hDala can be a 16-bit value.
Uses An excellent way to keep track of data that is specific to a given wmdow Avoids the use of global ’
variables in many cases.
Returns __ BOOL. TRUE if the data was added to the window’s property list, FALSE if not.
: GetPropO, Release?ropo, EnumProp()

.92

3. WINDOWS SUPPORT FUNCTIONS v .

Parameters ‘ ' :

hWnd HWND: A handle to the window which is to receive the property data.

IpString LPSTR: A pointer to a string containing the.name to be used Tor the data. This can also be an

‘ atom. In that case the high-order word of IpString should be zero, while the low-order word
contains the atom’s 16-bit value.

hData HANDLE: A 16-bit value. Normally a handle to a memory block allocated with either LocalAllocO
or GlobalAlloc(). _

Example See the example under the GetProp() functlon descrlptxon e

‘SBTSYSMODALWINDOW ‘ EWin20 ®Win30 ®Win3l

Purpose Makes a window system-modal.

Syntax. - HWND SetSysModalWindow(HWND kWrd);

Description - System-modal windows take over the sereen, so only they can have the input focus. A typlcal
example is the final message from Windows' program manager, which confirms that the user
wants to exit Windows. If a system-modal window creates another system-modal child window,
the new window takes over the system. Control retums to the ﬂrst system—modal window aner

A the second one is destroyed
Uses For critical messages and responses m/from the user. This function is seldom cailed directly, as
’ normally system-modal windows are created as dialog boxes. The window style DS_SYSMODAL
automatically creates a system~modal dialog box, ehmmatmg the need to call SetSysModal-
Window().
Returns HWND, a handle to the previous system-modal window (if any)
~ See Also- GetSysModaledow()
Parameters
hWnd HWND: A handle to the wmdow which is to become system-modal.
Example In'this example, the focus can be switched back and forth between the parent and: c]ient window

until the “Do It!” menu item is clicked. After that, the popup window becomes a system-modal

. window and will not give up the focus. Hitting a key deletes the window, and stops the program.

Long FAR PASCAL \lndPréc (HWND hWnd, unsigned iMesgage, WORD wParam, LONG'VlPll‘II)
< .)

HOC hoc ; . /* device context handle */
static WNDCLASS " wndclass ; /* the window class */
static HWND hPopup, hParent ;

switch kinessage) ’ : /* process windows messages */

case WM_CREATE: /* build the child window when program starts */
undclass.style
= CS_HREDRAW | CS_VREDRAW-| CS_PARENTDC;
wndclass.lpfniWndProc ChildProc ; ’

wndclass.cbClsExtra =0; - .)
wndclass.cbWndExtra =0; : .
wndclass.hInstance ‘= ghInstance ;
undctass.hlcon) = NULL ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

: uhdclass.herackground = GetStockObject (LTGRAV BRUSH) ;
wndclass.lpszMenuName = NULL ; 4
wndclass.lpszClassName = “SecondClass" ; H

/* register the uindou ¢lass */
if(RegisterClass (&wndclass))-
{

hPopup = Createuindou‘("Secondclass", “Popup Window",

. " o

WINDOWS API BIBLE

WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghInstance, NULL) ;
) ", ShowWindow (hPopup, SW_SHOW) ;
'y
break ;° =~ .-
case HH;COHHAND:‘ "./* process menu ftems */
switch (wParam) :

“case IDM_| DbIT- /* User hit the "Do 1t" menu item */
SetSysHodalHindou (hPopup)

break ;
case IDM_QUIT: /* send ‘end of appl1cat1on message *I
N . Destroyu1ndou (hUnd)
- break
")
break ; . . X
case WM_DESTROY: S I* stbp application */
PostQuitMessage (0) ; .
break ;
default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

) .
~return (OL) ;
3 :

/* Here is a separate message processing procedure for the popup window */
long EAR PASCAL ChildProc (HWND thd, unsigned iMessage, WORD wParam,
LONG lParam)

{0 -
NDC : ’ hdC ;
PAINTSTRUCT : PS ;
suitéh (iMessage)) /* process uindous messages */
< - R
case WM_PAINT:
hDC = BeginPaint (h¥Wnd, &PS)
Textout (hdC, 5, 5, "H1t a key.", 10)
EndPaint (hWnd, &PS) ;
break ;
case UL KEYDOHN. o
case WM_DESTROY: /* stop the appl1cation */
Post0u1tnessage (0) } :
break ;
default: /* default u1ndous message processing */
. return DefWindowPrac (hWnd, iMessage, wParam, LParam)-;
return’(0L) ;
} » L)
.SETWINDOWLONG _ . mWin20 ®mWin30 . mWin3l
Purpose . . Changes a LONG value associated with a window. '
- Syntax LONG SetWindowLong(HWND hWnd, int nindex, LONG dwNewLong);
- Description Used to change the style f ‘@ window, or to change the window's message processing function.

Can also set extra 16-bit data stored with the window if the window’s class definition includes
space as the coWndExtra element of the WNDCLASS data structure passed to RegisterClass().

- Uses Mostoftenusedtodo window subclassing. It allows you to add to, or replace the existing window's.

‘ . - message processing logic by passing a new window message function to the specific window or

"~ control. Also used to associate extra data with the window. It can be-used in place of setting
‘.ywmdow property data, if the amount of data stored with each window is small.,

- Returns R - The previous LONG value. -
' :SeeAlgo L SetWindowWord(),GetWindowLong(), GetWindowWor_d()

. 94

3. WINDOWS SUPPORT FUNCTIONS ¥

Parameters
hWnd HWND: A handle to the window.
nindex int: An integer offset, determining which value is to be changed. This can be any of the values in

Table 3-11.

GWL EXSTYLE Sets anew extended window style. See CreateWindowEx() in Chapter 2, Creatlng Windows, for a st of styles
GWL_STYLE Sets a new window style. See CreateWindow({} in Chapter 2 for a list of styles.
GWL_WNDPROC Sets a new long pointer to the window procedure. \

Table 3-11. SetWindowLong() Flags.

"The GWL_ values are defined as negative values in WINDOWS.H. To access any extra four-
byte data defined in the window’s class structure, use a positive n/ndex value. Zero for the first
value, four for the second, etc.

dwNewLong "~ DWORD: The new 32-bit value.

Problems . . - Take care not to include functions in the new message processing function that cause Windows to
: call the function again. This sets up an infinite loop and overflows the stack. For example, adding
the GetScrollPos() function into NewScrollPos() shown below will fail, as GetScrollPos() ends up

forcing another call to the subclassed NewScrollPos() function.

Example In this example, a scroll bar is placed at the bottom of the window’s client area. After clicking the
“Do It!” menu item, the scroll bar has the input focus. The scroll bar window is subclassed, provid-
ing additional message processing logic from the NewScrollPos() function listed at the bottem.
The scroll bar thumb responds to both the left and right arrow keys and the page-up and page-
down keys. Note that the NewScrollPos() function must be added to the EXPORTS section of the
program'’s .DEF definition file. A function prototype must also be added to the program’s header

file. ,
FARPROC tpfnoldScrollProc ; ' /* static to hold old proc b&inter.*/
int nScrollPos ; S /* static to hold thumb position */

Long FAR PASCAL WndProc (HWND hWnd, uhsigned iMessage, WORD uParam,'LONG LParam))
{ ') ‘ : .-

static HWND hScroll ;
FARPROC lpaneuScrollProc,

HbC . hDC ;
RECT rClient ;
switch (iMessage) /* process windows messages */

case WM_CREATE:

GetClientRect (hWnd, &rClient) ;

hScroll = CreateWindow ("SCROLLBAR" e, ' -
WS_CHILD | WS_VISIBLE | SBS_| BOTTOMALIGN | SBS HORZ,
rClient.left, rClient.top, rClient.right,

: rClient.bottom, hund, NULL, ghlnstance, NULL)

ShowWindow (hScroll, SW_| SHOU) .

SetScrollRange (hScroll, SB CTL, 0,9, FALSE)

SetScrollPos (hScroll, SB_CTL, o, TRUE)

nScrollPos = 0 ;

/* subclass the scroll bar to a new procedure */
LpfnNewScrollProc = MakeProcInstance .

C(CFARPROC) NewScrollProc, ghlnstance) ;
LpfnoldScrollProc = (FARPROC) GetWindowlong (hScpo[l,

95

WiNDO\VS AP| BIBLE

GWL_WNDPROC) ; ’
e SQtHindovLong (hScroll, GWL, HNDPROC,
- . . C(LONG) lpaneuScrollProc) . .
break ;) . \
case WM_ SETFOCUS:
SetFocus (hScroll)
break ; ‘ -
case UH_COHHAND. /* process menu items %/
switch (wParam) .) ’) co
<.

case IDM_DOIT: /* User hit the "Do it” menu item */°
-hDC = GetDC ChWnd). ;
TextOut (hDC, 10, 10,
"Try left/right arrow and pg upldn.”, 35 ;
' ReleaseDC (hWnd, hDC) ;
SetFocus (hScroll) ;

break ;))
.. case IDM_QUIT: /* send end of application message */
DestroyWindow (hvnd)
- break ;
¥
break ;
case WM_DESTROY: /* stop application */
Postnuitﬂessage Q) ;
) break ;
default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

}
return (OL) ;
) .

Llong FAR PASCAL,Nengrol[Proc C(HWND hWnd, WORD mess, WORD wParam, LONG LParam)
¢ ‘ int) noldScrollPos ; ‘ ‘
noldScrollPos = nScrollPos ;
:uitch (mess)

case WN_KEYDOWN: :
suitch (wParam)
R4

case VK_RIGHT: : /* process left and right arrow keys */

case VK_NEXT: : " '/* and page~up, page-down keys */
. nScrollPos++ ; .
break ;

case VK_LEFT:

.case VK_PRIOR:

' nScrollPos~~- ;
break ;

) .
1f (nOtdScrollPos != nScrollPos) .
SetScrollPos (hWnd, SB_CTL, nScrollPos, TRUE) ;

b3
N return CallWindowProc (lpanl#ScrollProc, hwnd,_neés, wParam, (Param) ;
SmenowPos o e ®MWin20 &Win30 ®SWindl
Purpose Slmultaneously changes the size, positmn, and ordering of windows.
Syntax void SetWindowPos(HWND kWnd, HWND hWndInsertAfter, int X, int ¥, int ¢z, int cy, WOBD

wFlags);

Mﬁm . Windows are ordered in Windows internal list based on their appearance on the screen. The
- . - window on top of all the others is the hi@estmnked.’l‘hisﬁmction changes that otdering,allow

s ingyoutobringawmdowtothetop

3. WINDOWS SUPPORT FUNCTIONS v

SWP_NOREDRAW
SWP_NOZORDER

SWP_SHOWWINDOW

Uses Used with applications that have multiple child and popup windows that can become obscured.
Use GetTopWindow() to find the current top window.

Returns No returned value (void).

See Also GetTopWindow(), MoveWindow()

Parameters .

hWnd HWND: A handle to the window that will be affected. - .

hWndInsertAfter HWND: The handle of the window after which the 2Wnd window is to be inserted. Can be set to
NULL, which places hWnd at the top- most position. Set to one to place 2Wnd above all top-most
windows, even when deactivated.

X int; The new horizontal position of the ®Wnd’s top left corner. For child windows this is in client
coordinates. For popup windows, this is in screen coordinates. Can be zero if the SWP_NOMOVE
value is used for wFlags, meaning no change to the window’s position after reordering.

Y int: The new vertical pﬁsition of the kWnd’s top left corner. For child windows, this is in client
coordinates. For popup windows, this is in screen coordinates. Can be zero if the SWP_NOMOVE
value is used for wFlags, meaning no change to the window's position after reordering.

o7 int: The new width of the hWnd window. Can be zero if the SWP_NOSIZE value is used forwFlags,
meaning no change in the window’s size after reordering.

cy int: The new height of the kI¥nd window. Can be zero if the SWP_NOSIZE value is used for wFlags,
r\neamng no change in the window’s size after reordering.

wFlags WORD: Can be any combination of the flags shown in Table 3-12, combined using the C language
binary OR operator (1).

- [Vl X]|
SWP_DRAWFRAME * Draw the window's frame when redrawing. The frame style i is defined in the wmdow s class deﬂ-
i nition. See RegisterClass(). -
SWP_HIDEWINDOW Hide the window after reordering.
SWP_NOACTIVE Do not make the window active after reordering.
SWP_NOMOVE Do not charge the position of the window after reordering. The X and Y.parameters are ignored if
. this flag is used.
SWP_NOSIZE Do not change the size of the window after reordering. The cx and cy parameters are ignored if

this flag is used.
Do not redraw the window after reordering.

Do not change the window's order in the window list. This makes SetWindowPos() equivalent to
MoveWindow(). , . /

Redraw the window after reordering.

Table 3-12. SetWindowPos() Flags.

Related Messages WM_SIZE, WM_MOVE, WM_PAINT

Example

Two popup windows are created in the following WndProc() fragment. If the user cllcks the “Do
It!” menu item, the first child window is positioned above the second. Because of the three SWP_
parameters used in SetWindowPosition(), the-size and location of the window is not affected.
This is why the four size parameters are set to zero.

tong FAR PASCAL ¥ndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

]

97 !

WINDOWS API BIBLE

HDC hbe ;
static HWND hChild1, hchild2 ;
char cBuf L2571 ;
static BOOL bFirstTime = TRUE ;
BOOL blsVisible ;
switch (iMessage) /* process windows messages */
. case WM_CREATE: "/* build the chitd window when program starts */
if (bFirstTime)
<
bFirstTime = FALSE ;
hChild1 = CreateWindow (gszAppName, "Child Window 1",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 10, 300, 250 hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hCh1 Ld2, SW_! SHOH)
hChild2 = CreateWindow (gszAppName, "Chi ld Window 2",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_ CAPTION,
20, 20, 200, 150, *hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hChild2, SW_SHOW) ;
3}
break ; ,
case WM_COMMAND: /* process menu items */
sWwitch (wParam)”
{ -
case IDM_DOIT: /* User hit the "Do it" menu item */
SetWindowPos (hChild1, hchild2, 0, 0, 0, O,
SWP_NOSIZE | SWP_DRAWFRAME | SWP_NOMOVE) ;
E break ;
[Other program lines]
SETWINDOWTEXT - EWin20 BWind0 BWndl
Purpose Changes the caption (title) of a window.
Syntax void SetWindowText(HWND k2Wrd, LPSTR IpString);
Description For windows with a title bar, the title shows up in the center of the caption area. For buttons, the
- title is inside of the button. i
Uses: Changes a window’s title. Note that the title string is displayed at the bottom of the window icon
when the window is minimized. You can use this function to shorten the title when the window is
minimized so that the title string fits under the icon, rather than running into other icons’ titles.
Returns No returned value (void).
See Also GetWindowText()
Parameters
hWnd HWND: A handle to the window.
IpString LPSTR: A pointer to a null-terminated string containing the new title. Wmdows will truncate the
title if it does not fit within the title area of hWnd.
Example This example changes the caption of the main window when the user clicks the “Do It!” menu

item.

tong FAR PASCAL HndProc CHWND hwnd, uns1gned iMessage, HORD wParam, LONG LParam)

:witch (inessage) L process windows messages */

case WM_COMMAND: * s process menu ftems */
switch (wParam) .

case IDM_DOIT: /* User hit the "Do it" menu item */
SetWindowText (hWnd, "“I'm the new title!") ;
break ;

[Other program lines]

I

98

3. WINDOWS SUPPORT FUNCTIONS v

SETWiNDOoWWORD ~ mWin20 ®Win30 ®AWin3l
Purpose Changes a WORD value associated with a window's class structure. ’

Syntax WORD SetWindowWord(HWND kWnd, int nindex, WORD wNewWord);

Uses Normally used to change the control ID of a child window control. Can also be used to set 16-bit

data associated with the window. This assumes that room for the data provided by the
cbWndExtra element of the WNDCLASS data structure was set large enough to hold the data
when the class was registered with RegisterClass().

Returns WORD, the previous value.

See Also GetWindowWord(), SetWindowLong(), GetWindowLong()

Parameters , '

hWnd HWND: A handle to the window. '

nindex int: An index to the value to be changed. This can be either of the values in Table 3-13.

g
GWW_HINSTANCE Change the instence handle of the module that owns the window.
GWW_ID Change the control 1D of a child window control.

Table 3-13. SetWindowWord() Flags.

The GWW_ values are defined as negative integers in WINDOWS.H. To change extra WORD sized
data defined in the window’s class structure, use a positive n/ndex offset. Zero for the firsi value,
2 for the second, etc.

wNewWord WORD: The new 1G-bit value.

Example The button control’s ID value is changed to 1000 when the user clicks the “Do It!” menu item.

tong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static HWND hButton ;
HDC hbe ;-
int nid ;
char cBuf [25] ;
switch (iMessage) /* process windows messages */
« .
case WM_CREATE: " /* initially created with ID = 99 */

hButton = CreateWindow ("BUTTON", "Button",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
10, 10, 100, 40, hWwnd, 99, ghInstance, NULL) ;
ShowWindow (hButton, SW_SHOW) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)

case IDM_DOIT: /* User hit the "Do it" menu item */
hDC = GetDC (hWnd) ; -
TextOut (hDC, 10, 60, “The button's ID was:", 20) ;
nlb = GetWindowWord (hButton, GWW_ID) ;
itoa (nID, ¢Buf, 10) ;
TextOut (hDC, 10, 80, cBuf, strien (cBuf)) ;
TextOout (hdC, 10, 100, “The new ID is:", 14) ;
SetWindowWord (hButton, GWW_ID, 1000) ;
nID. = GetWindowWord (hButton, CWW_ID) ; .
ttoa (niD, cBuf, 10) ;
TextOut (hDC, 10, 120, cBuf, strlen (cBuf)) ;
ReleaseDC (hund, hdDC) ;
break ;

[Other program lines]

- 98

WINDOWS API BIBLE

SHowOwNEDPOPUPS - ' @Win20 ®Win30 ®Wind.l

Purpose Shows or hides all popup windows associated with the parent window.

Syntax void ShowOwnedPopups(HWND s Wad, BOOL bShow);

Uses ~ Allows a “one shot” update of all the popup windows, thhout needing to individually call _
, ShowWindow() for each one.

Returns =~ - Noreturned value (void).

See Also ShowWindow()

Parameters ’ _ '

hWnd . HWND: A handle to the parent window which may own popups.

bShow BOOL: TRUE to show all owned popup wmdows, FALSE to hide ali of them

Related Messages WM_SHOWWINDOW

Example -~ Here the two popup windows created vanish and reappear when the user repeatedly clicks the

' : “Do It!"” menu item.. '

. B

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)'
¢ .

. static HWND hChitd1, hchild2 ;
static BOOL bFirstTime = TRUE ;
static BOOL bPopupsShowing = TRUE ;

switch (iMessage) /* procesé windows messages */
(“

case “N_CREATE&) v/* build the child window when progr'an starts */
it ¢ IirstTime)
{

bFirstTime = FALSE ;

hChildl = CreateWindow (gszAppNane, “Popup Window 1",

. WS_POPUP | WS_VISIBLE | WS_BORDER | WS CAPTION,
10, 10, 300, 250, hWwnd, NULL, ghInstance, NULL) ;

ShowWindow (hChild2, SW_SHOW) ;

hChild2 = CreateWindow (gszAppName, "Popup Window 2",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
20, 20, 200, 150, h¥Wnd, NULL, ghlnstance, NULL) ;

ShowWindow.(hChild2, SW_SHOW) ;

)
break ; Lo
case WM_COMMAND: /* process menu items */
switch (wParam) ¢
< ¢
case IDM_DOIT: : /* User hit the "“Do it"” menu item */
it (bPopupsShowing)
{
bPopupsshouing = FALSE ;
. ShowOwnedPopups (hWnd, FALSE) ;
¥ . .
else '
{
bPopupsShowing = TRUE ;
ShowOwnedPopups (hwWnd, TRUE) H
y -
) break ;
[Other program lines] . .
SHowWinpow =~ L BWin20 ®Win30 ®Winil
Purpose Displays, hides, or changes the size of a window. :
Syntax BOOL ShowWindow(HWND 2 Wid, int nCmdShow);
Description ShowWindow() is normally called right after a window 1s created to make it visible.

100

3. WINDOWS SUPPORT FUNCTIONS v

Uses Minimizing and maximizing the window, as weil as mﬁking the window visible. Note that calling
ShowWindow() does not guarantee that the window will not be obscured by other windows on the
screen. Use SetActiveWindow() or SetWindowPos() to bring windows to the top.

Retnrns BOOL. TRUE if the window was visible, FALSE if the window was hidden.

See Also CreateWindow(), SetActiveWindow(), SetWindowPos()

Parameters °

hWnd HWN: The handle to the window.

nCmdShow int: An integer value specifying the action to v taken. It can be any one of the values in Table 3-
14 (not a combination). '

SW_MINIMIZE
SW_RESTORE
SW_SHOW _
SW_SHOWMAXIMIZED
SW_SHOWMINIMIZED
SW_SHOWMINNOACTIVE
SW_SHOWNA
SW_SHOWNOACTIVE
SW_SHOWNORMAL

dees the wmdow The top window on Wndow s list is actlvated
Minimizes the window. The top window on Window's list is activated.
Activates and displays the window (same as SW_SHOWNORMAL).
Activates and displays the window in its current size and position.
Activates and maximizes the window.

Activates and minimizes the window to an icon.

Displays and minimizes the window. The currently active window remains active.
Displays the windB"w but does not change which window is active.

Displays the window, but does-not change which window is active.

Activates and displays the window. If the window was minimized or maximized, the wmdow IS
returned to its previous size and position.

Table 3-14. ShowWindow() Flags.

Related Messages WM SHOWWINDOW

Example This example hides a child window when the user chcks the “Do It!" menu item.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

HDC hoC ;
static HWND hChild ;
char cBuf [25] ;
static BOOL bFirstT1me = TRUE ;
sooL bIsVisible ;
suitch (iMessage) /* process windous messages */
{
. case WM_CREATE: /* build the child windou when program starts */
if (bFirstTime)
{
bFirstTime.= FALSE ;
hChild = Createdindow (gszAppName, "“Child Window",
WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CAPTION,
100, 50, 200, 150, thd, NULL, ghlnstance, NULL)
ShowWindow (hchild, SW_SHOW) ;
>
break ; i
case UH_COHHAND: /* process menu items */
switch (wParam)
< .
case IDM_DOIT: IAd User hit the “Do it" menu item %/

hDC = GetDC (hund) ;
blsVisible = lsH1ndouV1sibls (hchild)
if (blsVisible)

101

WINDOWS API BIBLE

< .
GetWwindowText (hChild, cBuf, 24) ;
TextOut (hDC, 10, 20, cBuf, strlen (cBuf)) ;
TextOut ChDC, 10, 40, "is now visible."”, 15) ;
TextOut C(hDC, 10, 60, “Now hiding Child...", 19) ;
i ShowWindow (hChi'd, SW_HIDE) ; -
X : -
else

TextOut (hDC, 10820,
“child window not visible.", 25) ;
ReleaseDC (hWnd, hDC) ;

. . break-;
[Other program lines]
SYSTEMPARAMETERSINFO OWin20 OWin30 ®Win3.l
Purpose Determines and/or change ssystem wide parameters.
Syntax BOOL SystemParametérsinfo (WORD wAction, WORD wParam, LPVOID !pvParam, WORD
JWinIni); v
Description This function allows a wide range of system parameters that control the way applications look
and behave to be checked and changed. The changes can optionally be written to the WIN.INI
, file, making the changes effective in subsequent Windows sessions.
Uses Used in replacing the Windows Control Panel program.
Returns BOOL. TRUE if successful, FALSE on error.
See Also GetSystemMetrics(), WriteProfileString()
Parameters
wAction WORD: Any of the following values. The wParam and lpvPamm values are used dlfferently for

each value of wAction, so their meanings are listed together.

SPI_GETBEEP Determine if the warning beeper is on or off.

wParam Setto .

lovParam A pointer to a BOOL variable that will receive TRUE if the beeper is on, FALSE If the beeper is
off.

SPi_GETBORDER De(enniné the width of window.sizing borders.

wParam Setto 0. '

lpvParam A pointer to an integer that will receive the border muniplying factor.

SPI_GETGRIDGRANULARITY
wParam
lpvParam

Determine the spacing bétween items placed on the Windows desktop.
Setto 0. _
A pointer to an integer that will receive the current spacing {granularity) factor.

SPI_GETICONTITLELOGFONT
wParam
lpvParam

Retrieve the logical font data foricon titles.
Set to the sizeof{) a LOGFONT structure.

A pointer to a LOGFONT structure that will be filled in when the function retums. See the
CreateFontindirect() function description for a description of the LOGFONT data structure.

SPI_GETICONTITLEWRAP
wParam
lpvParam

Determine if icon title wrapping is set on or off.
Setto0..

A pointer to @ BOCL variable that will receive TRUE if title wrapping is on, FALSE if title wrap-
ping is off.

102

3. WINDOWS SUPPORT FUNCTIONS ¥

SPI_GETKEYBOARDDELAY Determine the current keyboard repeat speed.

wParam Setto 0.
IpvParam A pointer to an integer that will receive the current keyboard repeat-delay.

SPI_GETKEYBOARDSPEED Determine the current keyboard auto-repeat speed.

wParam Setto 0.

IpvParam A painter to an integer that will receive the current keyboard auto-repeat speed.

SPI_GETMENUDROPALIGNMENT Determine if popup menus appear left-aligned or right-aligned relative to the top menu-bar
item.

wParam Setto 0-

IpvParam A pointer to a BOOL variable that will receive TRUE if popup menus are right-aligned, FALSE
if popup menus are left-aligned.

SPI_GETMOUSE Determine the mouse speed and the X and Y mouse threshold values. Movements smaller
than the threshold do not result in mouse activity.

wParam Setto 0.

IovParam A pointer to a three integer array (int value[3]) where:

value[0] = X direction mouse threshold;
value[1] = Y direction mouse threshold;
value[2] = The mouse speed value.

SPI_GETSCREENSAVEACTIVE Determine if screen saving is on or off.

wParam Setto 0. \
lpvParam A pointer to a BOOL variable that will receive TRUE if screen saving is on, FALSE if screen
‘ saving is off.
SPI_GETSCREENSAVETIMEOUT Determing the screen save time period.
wParam Setto 0.
lpvParam o A pointer to an integer that will receive the current screen save delay in seconds.
SP|_lCONHOR|ZONTALSPACING Changes the horizontal icon spacing.
wParam Set to the horizontal icon spacing in pixels.
lpvParam Set to NULL. '
SPI_ICONVERTICALSPACING ~ Changes the vertical icon spacing.
wParam Set to the vertical icon spacing in pixels.
"lpvParam Set to NULL.
SPI_LANGDRIVER Determing the language driver.
wParam . SettoO. i
IpvParam A pointer to a character buffer that will contain the language driver file name.
SPI_SETBEEP . Tum the system beeper on or off.
wParam Set to TRUE to turn the beeper on, FALSE to turn the beeper off.
IpvParam Set to NULL.
SPI_SETBORDER ’ Change the window sizing border width.
wParam Set to the new border multiplier factor.
IpvParam Set to NULL.

103

WINDOWS API BIBLE. . . . : .

Table 8-15. ccmtmued ’ » B .

SPI SETDESKPA‘ITERN Sets the desktop background pattem by readung the “Pattern— parameter in the WIN INI ﬁle
Use WriteProfileString() to change the WIN.IN! fie.

wParam ‘ Setto 0.

lpvParam B Set to NULL.

SPI_SETDESKWALLPAPER - Change the bitmap used for the desktop background.

wParam - SetioO.

lpvParam A pointer to a character string that contains the name of the bitmap file.

SPI_SETDOUBLECLKHEIGHT Cheange the vertical distance within wh:ch a second mouse button click must occur to be
registered as a double-click.

wParam Set to the double-click vertical height in pixels.

- |pvParam i "Set to NULL.

SPI_SETDOUBLECLICKTIME Change the maximum number of milliseconds between two mouse button clicks to have the
second click register as a double-click.

wParam . t to double-click time in miliseconds.
IpvParam Set to NULL.])
SPI_SETDOUBLECLKWIDTH Change the horizontal distance within which a second mouse button click must occurtobe =
reglstered s a double-click.
wParam Set to the double-click horizontal height in plxels ,
IpvParam Set to NULL. :
SPI_SETGRIDGRANULARITY Change the size (granularity) of the desktop sizing grid.
wParam Set to the grid size.
IpvParam ‘ ~ SettoNULL.
SPI_SETICONTITLEWRAP Tum title wrapping of icon title strings on or off.
wParam ' Set to TRUE to tum title wrapping on, FALSE to tum title wrapping off.
JovParam _ . SettoNULL.
SPI_SETKEYBOARDDELAY Change the keyboard delay setting..
wParam Set to the new delay value.
" lpvParam) Set to NULL.
SPi_SETKEYBOARDSPEED Change the keyboard autc-repeat speed.
wParam Set to the new auto-repeat speed.
lpvParam Set to NULL. .
SPI_SETMENUDROPALIGNMENT Change the aiignment of popup menus relative to the corresponding item in the top menu bar,
wParam Set to TRUE for right alignment, FALSE for left alignment.
IpvParam Set to NULL.
SPI_SETMQUSE Change the mouse speed and the X and Y mouse threshold values. Movements smaller than

the threshold do not result in mouse activity.

104

3. WINDOWS SUPPORT FUNCTIONS Vv

wParam Setto 0.

lpvParam Set to a pointer to a thiee integer array (int value[3]) where:
. value{0] = new X direction mouse threshold;
value[1] = new Y direction mouse threshold;
value[2] = new mouse speed value.

Table 3-15. SystemParametersinfo() wActionValues.

JWinIni WORD: This value determines if any changes made to system settings are recorded in the WIN.INI
file, and if the WM_WININICHANGE message is broadcast to all applications after the change is
made. Changing WIN,INI causes the new system settings to be used in subsequent Windows ses-
sions, as WIN.INI is read when Windows starts. Possible settings are shown in Table 3-16.

v Meaning X
NULL) No change to WIN.INI.
SPIF_UPDATEINIFILE Writes the new system parameters to the WIN.IN! file,

SPIF_SENDWININICHANGE ~ Writes the new system parameters to the WIN.INI file, and broadcasts the WM_WININICHANGE
- message to all applications running on the system.

Table 3-16. SystemParametersinfo() Flag Seitings.

Related Messages WM_WININICHANGE\

Example This example increases the width of the border of every win-
dow running on the system when the user clicks the “Do It!”
menu item. The borders are all restored to normal width when — EESSEN B EREGRASSTEN RE
the application exits. (See Figure 3-16.) . Figure 3-16. SystemPara-

metersinfo() Example.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD
wParam, LONG LParam)

(1
static int noldBorderWide ;
switch (iMessage) . /* process windows messages */
< .
case WM_CREATE: /* save original window border width */
SystemParametersInfo (SPI_GETBORDER, O, &ndldBorderWide,
NULL) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{ /* increase border width * 5 */

case IDM_DOIT:
. SystemParametersInfo (SPI_SETBORDER,
€ 5 * noldBorderwide, NULL, NULL) ;
break ; ’
case IDM_QUIT:
DestroyMindow (hWnd) ;

break ;
}
break ;)
case WM_DESTROY: /* set border width back to normal */

SystemParametersInfo (SPI_SETBORDER, nOldBorderWide,
NULL, NULL) ;

PostQuitMessage (0) ;

break ; .

105

~ WINDOWS API BIBLE

default:
return DetWindowProc (hWnd, iMessage, wParam, LParam) ;
}
return (OL) ;

3

UNREGISTERCLASS , OWin20 OWin30 ®\Wind.l

Purpose Frees the memory holding an unneeded class description.

Syntax BOOL UnregisterClass(LPSTR IpClassName, HANDLE hinstance);

Description " This function completely removes the window class from the system. Make sure all windows based
on the class are destroyed before the class is eliminated.

Uses In applications with several modules. UnregisterClass() can be used to free memory space if the
new module does not need certain classes. Classes registered within an application are destroyed
automatically when the application terminates.

Returns BOOL. TRUE if the class was removed, FALSE if the class could not be found, or if a window exists
that uses this class.

See Also RegisterClass()

Parameters

IpClassName LPSTR: A pointer to a null-terminated character string containing the class ndme. Do not at-
tempt to remove predefingd window classes, such as buttons and edit controls.

hInstance HANDLE: The handle to the program instance that created the class.

Example - Inthis example, clicking the “Do It!" menu item causes the popup window to be destroyed, and its

class to be unregistered. Note that the child window’s procedure does not issue a
PostQuitMessage() function call when it gets a WM_DESTROY message. If it did, removing the
popup would close the parent application program as well.

The ChildProc() function needs to be referenced in the EXPORTS section of the program’s
.DEF definition file, and a function prototype added to the header file.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, NDRD wParam, LONG LParam)
{

static
static

switch
{

LoadCursor (NULL, IDC_ARROW) ;
GetStockObject (LTGRAY_BRUSH) ;
NULL ;
"SecondClass" ;

/* register the window class */
if(RegisterClass (&wndclass))
(.

wndclass.hCursor
wndclass.hbrBackground
wndclass.ipszMenuNam
wndclass.lpszClassNa

WNDCLASS wndclass ; /* the window class */

HWND hPopup ;

(iMessage) /* process windows messages */

case WM_CREATE: /* build the child window when program starts */

wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_PARENTDC;
wndclass.lpfnWndProc = ChildProc ;

- wndclass.cbClsExtra =0;

’ wndclass.cbWndExtra =0;
wndclass.hInstance = ghInstance ;
wndclass.hIcon = NULL ;

hPopup = CreateWindow (“SecondClass", "Popup Window",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlInstance, NULL) ;
ShowWindow (hPopup, SW_SHOW) ;
)

break .
caé; WM_COMMAND : : /* process menu items */
switch (wParam)

106

\ }

}

3. WINDOWS SUPPORT FUNCTIONS ¥

{
case IDM_DOIT: /* User hit the "Do it" menu item */
DestroyWindow (hPopup) ;
UnregisterClass ("SecondClass", ghlnstance) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;. ’
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;

return (OL) ;

/* Here is a separate message processing procedure for the child window */

long FAR PASCAL ChildProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

switch (iMessage) /* process Wwindows messages */
{
case WM_DESTROY:
break ; :
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3
return (OL) ; .
)
WinnowFroMPoOINT ~ OWin20 ©OWin3.0 ® Win
Purpose Finds which window (if any) is at a given point on the screen.
Syntax HWND WindowFromPoint(POINT Point);
Description Finds a window based on the screen coordinates given in Poind.
Returns A handle to the window occupying the given point on the screen. NULL if no window is at that
point.)
See Also ChildWindowFromPoint()
Parameters -
Point POINT: A point structure holding the x and y coordinates of the screen coordinates to check.
POINT is defined in WINDOWS.H as
typedef struct tagPOINT
€
int X7 .
int y;
} POINT;
typedef POINT *PPOINT; -
Example This example shows the title of the window located at screen coordinates 100,100 (from the top

left corner) when the “Do It!” menu item is clicked.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hbe ;

char cBuf [2537 ;

HWND FoundWindow ;

POINT pScreen ;

switch (iMessage) /* process windows messages */
{

107

WINDOWS API BIBLE

case WM_COMMAND:
switch (wParam)

[Other program lines]

/* process menu items */

PRt .
case IDM_DOIT: /* User hit the "“Do it" menu item */

pScreen.x = 100
pScreen.y = 100 ;
hFoundWindow = WindowFromPoint (pScreen) ;
hDC = GetDC (hwWnd) ;
TextOut C(hDC, 10, 10,

“At 100, 100 is the window:", 26) ;
if ChFoundWindow)

. o

{
GetWindowText (hFoundWindow, cBuf, 24) ;
TextOut (hDC, 15, 25, cBuf, strlen (cBuf)) ;
}
else

TextOut (hDC, 15, 25, “None found"”, 10) ;
ReleaseDC (hWnd, hdDC) ;
break ; ’

108

Menus are used in essentially every Windows program to allow the user to select actions as tlie program is running.
The Windows Software Development Kit (SDK) provides a comprehensive set of tools for building menus and modify-
ing them as the program runs.

Main Menus and Popup Menus
Windows recognizes two basic types of menus: top-level menus and popup menus. The top-level menu (also called the
“main” menu of a program is the series'of commands that are visible in the window’s menu bar at ail times, assuming
the program has a menu. For simple programs, the menu bar will contain all of the program’s menu options. If there
is not enough room for all of the menu items on one line, Windows will automatically “break” the line, creating a two-
line menu bar. For more complex programs, there is not enough space on the menu bar for all the commands you may
need. This is where popup menus (sometires called submenus, “pull down,” or “drop down” menus come in. When
clicked, the top menu bar items can spawn popup menu items with many more options from which to choose. Figure
4-1 shows a typical example.

Building Menus in the Resource File

For most programs, defining a menu is simply a matter of writing a few lines in the resource .RC file. Here is an
example which produces the menu structure shown in Figure 4-1.

© GENERIC.RC Resource Script File
/* genmenu.rc 1 */
#include <windows.h>
#include "genmenu.h”

genmenu 1CON generfic.ico

genmenu MENU

BEGIN - ‘ . Popup Mem
POPUP "&Top Item", } pup Menu
BEGIN i

MENUITEM "Item 20ne" I0M_POP1 .

' MENUITEM "Item &Two". IDM_POP2 Figure 4-1. Top Level Menus
END and Popup Menus.
MENUITEM "gauit”, 1DM_QUIT
MENUITEM “\agHelp", IDM_HELP

END

In this case there are three items on the top level menu bar, “Top Item,” “Quit,” and “Help.” The first item is a
headline for a popup menu containing “Item One” and “Item Two.” The values behind the menu item ID numbers
(IDM_POP1, etc.) are defined in the prograr’s header file as a series of integers. They should be numbered between
0 and 0x7FFF. The numbering sequence is not important.

There are a few extra things to notice about this menu definition. The ampersand (&) characters are used to
create keyboard alternatives to clicking menu items with the mouse. The letter following the ampersand is underlined
in the menu. Holding down the @@ key and the key for the underlined letter causes that menu item to be selected.
This amounts to an almost instant keyboard interface. If you need to display the ampersand character, use a double
ampersand (&&). If more than one menu item has the same letter preceded by an ampersand, the first one will be

109

o

.

WINDOWS API BIBLE

underlined and will respond to the key combination. A double quote (“”) will insert a single quote mark in a
. string. Within popup menus, you can also use it for a tab character. This will not work on top-level menus. Also note
that the “Help” item is preceded by “\a”. This moves that item to the nght side of the window’s menu bar. This is
typically used for help information menus.
Menu definitions can also include commands for changing the way a menu item is displayed. “Graymg" a menu
item causes Windows to display the menu letters with gray text, rather than the usual black. Graying is used to give a
* visible indication-that a menu item is not operating at a given time. Typically grayed items are also disabled, so that no
Windows' messages are sent if the user attempts to select the item. Menu items can also be checked, which means
that a small checkmark is displayed to the left of the menu item. This is handy when there are options that the user
can turn on or off, but not enough options to justify a dialog box with radio buttons to make the selection. You can also
control where menus and submenus break, if you use multiline menus.
The control over graying, checking, etc. within the resource .RC file menu definition is achieved by adding the
control word to the end of a MENUITEM statement. For example, here is a menu definition with two levels of popup
menus, a grayed item, a checked item, and a specificaticn of a break in a popup menu.

2> Resource Scrint File with Menu Items Grayed and Checked
/* genmenu.rc x;

#include <ujndows.h>

#include “genmenu h"

genmenu ICON generic.ico..

genmenu MENU : . t
- BEGIN '
POPUP "&First Menu"
BEGIN .
MENUITEM "§Top Item", IDM_TOP1
MENUITEM “&1st Option", IDM_OPT1, CHECKED
MENUITEM "&2nd Option", IDM_OPT2, GRAYED
MENUITEM SEPARATOR
POPUP "&Popup"
BEGIN . : . .
MENUITEM “&Left One", IDM_POP1 .
MENUITEM “&Right One", IDM_POP2, MENUBREAK
END .
END . :
MENUITEM "&Quit", IDM_QUIT

MENUITEM "“\a&Help", DM_HELP, HELP
END .

The full list of menu item options is given in Table 4-1.

Option Meaning
CHECKED The item has a checkmark next to it.
. GRAYED The item’s text is inactive and appears in gray letters.
HELP ‘ The item has a vertical fine to the left. You may also want to put the characters “\a” at the beglnnmg of the
menu text to force this item to the menu bar’s far right side.
INACTIVE The item name is displayed, but cannot be selected. No WM_COMMAND messages are sent from this

item until it is enabled.

MENUBARBREAK For menus, places the item on a new line, creating a multiine menu. For popups, places the new itemon a

new column, creating a multicolumn {rectangular) popup menu. A line is used to separate this item from the
previous one.

MENUBREAK Same as MENUBARBREAK, except for popup menus. For menus, places the item on & new line, creating a
. muitine menu. For popups, places the new item on a new column, creating a multncolumn {rectangular)
popup menu without a dividing line.

Table 4-1. Menu Item Options—Used to the Right of the Menu Item.

110

4. MENUS Vv

Popup menu names (the line that says “POPUP” in the resource file} can also use all of these parameters, but do
not have a menu item 1D value associated with them. Only the items within the popup menus have ID values for
selection. You can also place a line between any two menu items by using MENUITEM SEPARATOR as a menu item.
The line cannot be selected, but can help it to clarify long popup menus by breaking the list into logical sections.

Adding a Menu to the Program’s Wihdow

Defining a menu in the resource .RC file does not automatically make it visible, or make it a part of the prograrn’s
window. Normally, you will attach the program’s menu to the window’s class definition in the WinMain() function.
This is done by setting the ipszMenuName element of the wndclass structure to point to the menu name.
RegisterClass() then associates this menu name with any window created from the class

undclass.st)'le CS_HREDRAW | CS_VREDRAW ;

wndclass.lpfnWndProc wndProc ;
wndclass.cbClsExtra 0;
wndclass.cbWndExtra 0;

wndclass.hInstance
wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

hinstance ;
LoadIcon (hInstance, gszAppName) ;
LoadCursor (NULL, IDC_ARROW) ;
GetStockObject (WHITE_BRUSH) ;
“genmenu" ;
“generic" ;
/* register the window class */

if (IRegisterClass (&wndclass))

return FALSE ;

The menu name can be any valid name. The name in the class definition must match the one defined in the
resource file for the menu.

Changing Menus

Normally, you will use the resource .RC file to deﬁne the menu. If your program allows the user to add new menu
options (such as macro names), you may need to modify menu items or build entire new menus after the program
starts running, New menus are created with the CreateMenu() function. The new menu is initially empty. Menu items
are added to the menu using AppendMenu() and InsertMenu(). As soon as the menu is built, you can attach it to the
window using SetMenu(). The memory associated with an old, unneeded menu can be freed using DestroyMenu().
You can also create new popup menus by using CreatePopupMenu(). Items are added to the popup menu using
AppendMenu() and InsertMenu(), just like 2 main menu. When the popup is built, it can be added to the menu using
AppendMenu() or InsertMenu(). If your program switches between a few fairly constant menus, you will probably find
it simpler to define all of the menus in the resource .RC file. Each menu is given a different name. During the execu-
tion of the program, you can switch between menus by calling LoadMenu() to make the menu available and SetMenu()
to attach it to the program’s window. LoadMenu() only loads one copy of the menu into memory. You can call it
multiple times without wasting memory. If you use two or more predefined menus, only one will be attached to the
application’s main window at any one time. Only the attached menu will end up removed from memory when the
application terminates. Use DestroyMenu() to remove any other menus as the program exits, to avoid tying up
memory.

Essentially, every aspect of a menu can be changed as the program is running. The most common changes are to
change a menu's character string, check and uncheck menu items, gray and disable them, and to delete items.
ModifyMenu() allows several of these operations to be carried out in one function call. There are also more specific
functions for single operations, such as DeleteMenu() to remove an item, CheckMenultem() to add and remove-
checkmarks, and EnableMenultem() to enable and disable items. If you change the top-level menu, be sure to call
DrawMenuBar(). This causes the menu bar to be redrawn. Otherwise, the changes will not become visible until the
user attempts to select a menu item. This is not necessary if the changes are made while processing the WM_CREATE
message, as that message is processed before the window is drawn for the first time,

11

WINDOWS API BIBLE

'Bitmaps as Menu Items ST genmeni. i
Menu items are normally text strings. In some cases it may be far better to have a | lepltem Quit Help

visual image for the menu items, rather than using words. Good examples are the
“tools” items for paint programs. A picture of a brush is more intuitive than the
word “Brush.” Figure 4-2 shows a simple example with two menu items, a2 pen and a

pair of scissors ‘
You cannot define a bitmap menu item in the resource .RC file. Instead, you /

add or insert the bitmap item into the menu using AppendMenu() and Insert-

Menu(). Typically, the menu bitmaps are created using the SDKPaint program that

comes with the software development kit. A 32 by 32 pixel bitmap is good forasmall Figure -2 thmapsAx Menu

menu item, while 64 by 64 pixels makes a big one. The bitmaps are referenced in Items.

the top of the resource file. A typical series of AppendMenu() function calls to load

in a menu containing bitmaps is

hMenu = CreateMenu () ;

hSubMenu = CreatePopupMenu () ;

hPenBm = LoadBitmap (ghInstance, (LPSTR) “pen”) ;

hCutBm = LoadBitmap (ghlnstance, (LPSTR) “cut") ;

AppendMenu (hSubMenu, MF_BITMAP, IDM_POP1, (LPSTR)(LONG)hPenBm) ;
AppendMenu (hSubMenu, MF_BITMAP, IDM_POP2, (LPSTR)(LONG)hCutBm) ;
AppendMenu (hMenu, MF_POPUP, hSubMenu, (LPSTR) “&Tools") ;
AppendMenu (hMenu, MF_STRING, IDM_QUIT, (LPSTR) “&Quit'") ;
AppendMenu (hMenu, MF STRING, IDM_HELP, (LPSTR) "&Help") ;
SetMenu (h¥nd, hMenu) ;

In this case, the bitmaps are loaded into a popup menu. The popup menu is then appended to the main menu with
the popup heading of “Tools.” Two normal menu items “Quit” and “Help” are then added, before the menu is attached
- to the program’s window with SetMenu(). The resulting menu structure is shown in Figure 4-2. A more complete
listing of this program is given in the AppendMenu() function description.)
Windows automatically sizes the popup menu to accommodate the largest bitmap loaded Windows does not put
a border around the bitmaps, so you may want to draw the borders when you create the bitmaps in SDKPaint. -

The Checkmark Bitmap

A new addition with Windows version 3.0 is the ability to change the bitmap used to show a checkmark next toa
checked menu item. This gets a little involved, as the size of the checkmark depends on the video resolution of the
screen on which the program is displayed.

GetMenuCheckmarkDimensions() retrieves the size of the menu item checkmarks, while SetMenultemBitmaps()
establishes a new bitmap for a menu item to use for checkmarks. You can go wild and have a different checkmark
bitmap for each menu item. Don't confuse these functions with loading bltmaps as

“the menu items themselves.

e

Owner-Drawn Menu Items ‘ Tools _Quit Help
The most flexible, but most complex, of the menu options is the owner-drawn style ﬁﬁ%ggg
In this case your program paints directly on a popup menu, which is a little win- ’
“ dow. This allows you to scale graphics images to match the resolution of the screen
or the size of the parent window. As an example, consider a program that has two
graphics images for the first two popup selections. For simplicity, we will use a °
blue rectangle and ared ellipse as the choices. The window will appear asshownin Figure 4-3. Owner-Draun
Figure 4-3 when the first top-level menu item is selected. Menu Items. A
Like bitmaps, this type of menu cannot be created from within a resource ‘
script file. The menu must be built from within the program. The key to creating owner-drawn menu items is to use the
MF_OWNERDRAW flag when AppendMenu () is used to add the items. Listing 4-1 shows the code to create and usethe
‘menu shown in Figure 4-3.

112

4. MENUS ¥

& Listing 4-1. WndProc() Function Creating Owner-Drawn Menu Items
tong FAR PASCAL WndProc (HUND hlnd, unsigned iMessage, WORD wParam, LONG LParam)
<

HHERNU hMenu, hSubMenu ;
LPMEASUREITEMSTRUCT MIS ;
LPDRAWITEMSTRUCT DI1S ;

static DWORD .
HBRUSH
static int

dwRColor, dwEColor ;
hBrush ;
nCheckWide ;

switch (iMessage) /* process windows messages */

<

case WM_|

CREATE:
hMenu = CreateHenu () ;
hSubMenu = CreatePopupMenu () ;
AppendMenu (hSubMenu, MF_OWNERDRAW, IDM_POP1,

(LPSTR) (DWORD) RGB (0, 0, 255)) ;
AppendMenu (hSubMenu, MF_OWNERDRAW, IDM_POP2,

C(LPSTR) (DWORD) RGB (255, 0, 0)) ;
Appendfenu (hMenu, MF_POPUP, hSubMenu, (LPSTR) “&Tools")
AppendMenu (hMenu, MF_STRING, IDM_QUIT, (LPSTR) “&auit")
AppendMenu (hMenu, MF_STRING, IDM_HELP, (LPSTR) "“&Help")
SetMenu (hdWnd, hMenu) ;
nCheckWide = LOWORD (GetMenuCheckMarkDimensions ()) ;
bresk ;

N N

case WM_MEASUREITEH:

case WM_|

MIS= (LPMEASUREITEMSTRUCT) LParanm ;
if (MIS->itemID == IDM_POP1) /* rectangle item */
{
HIS->itemWidth = 64;
MIS->itemHeight = 64 ;
duRColor = MIS->itemData ;
)
else if (MIS->itemID == IDM_POP2)/* ellipse */
{

MIS->itemWidth = 64;
MIS->itemHeight = 64 ;
dwEColor = MIS->itemData ;
}
return (OL) ;
DRAWITER:
DIS = (LPDRAWITEMSTRUCT) LParam ;
if (DIS->itemID == IDM_POP1) /* rectangle */
< .
if (DI1S~>itemState == ODS_SELECTED)
" hBrush = GetStockObject (BLACK_BRUSH) ;
else ’ .
hBrush = CreateSolidBrush (dwRColor) ;
SelectObject (DIS->hDC, hBrush) ;
Rectangle (DIS->hDC, nCheckWide, O,
64 + nCheckWide, 64) ;

}
else if (DIS->itemID == IDM_POP2)
{
if (DIS->itemState == ODS_SELECTED)
hBrush = GetStockObject (BLACK_BRUSH) ;
else :
hBrush = CreateSolidBrush (dwEColor) ;
SelectObject (DIS~>hDC, hBrush) ;
ElLlipse (DIS~->hDC, nCheckWide, 65, 64 + nCheckWide,
128) ;
}
SelectObject (DIS->th, GetStockObject (BLACK_BRUSH))
DeleteObject ChBrush) ;
break ;

case WH_COMMAND: ' /* process menu items */

switch (wParam)
< ‘

113 o {

WINDOWS AP BIBLE

case IDM_POP1:
Hessageaox (hWnd, "The rectangle uas selected”,
“Message’, MB_0K) ;
break ; o
case IDM_POP2:
MessageBox (hWnd, “The ellipse was selected"
"Message”, MB_OK) ;
break ;
case IDM_QUIT:
PostQuitMessage (NULL) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
.PostQuitMessage (0) ; .
break ;
default' . " 1* default windows message proces:ing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
b

return (OL) ;

The menu is created when the WM_CREATE message is processed. Two of the menu items are set to
MF_OWNERDRAW. AppendMenu() has the ability to associate a 32-bit value with the menu item. This ability does not
have to be used, but it is a convenient way to pass the color of an owner-drawn menu item. This is done in the example

. code, using the RGB() macro to specify the desired color value.

Drawing the owner-drawn menu items is a matter of processing two Windows messages. WM_MEASUREITEM is
sent when a menu is activated that contains owner-drawn items. This is the same message used for owner-drawn
buttons, list boxes, and combo boxes. The {Param value passed with the message points to a MEASUREITEMSTRUCT
structure. This is defined in WINDOWS.H as '

/* MEASUREITEMSTRUCT for ownerdraw */ -

typedef struct tagMEASUREITEMSTRUCT

< .
WORD CtiType; - /* ODT_MENU, ODT_LISTBOX, ODT_COMBOBOX, ODT_BUTTON */
WORD Ctl1D; " /* not used with menu items */ -
WORD itemID; /* the menu item's id number */
WORD itemWidth; /* the program fills in these two values to set */
WORD itemHeight; /* the size of the menu item in pixels */ -
DWORD itemData; /* the 32-bit data from AppendMenu ends up here */

} MEASUREITEMSTRUCT;
typedef MEASUREITEMSTRUCT NEAR *PMEASUREITEMSTRUCT;
typedef MEASUREITEMSTRUCT FAR *LPHEASUREITEHSTRUCT'

The program must set the zteszdth and itemHeight values when it processes the WM, MEASUREITEM mes-
sage, and then it must return to Windows. This is how the program specifies how big the owner-drawn menu item(s)
will be. This message is processed once for each owner-drawn menu item in the currently active menu. The actual
drawing of the menu items occurs when WM_DRAWITEM messages are sent from WINDOWS. This is a iittle more
complex than you might expect, as the owner-drawn menu item can do graying, checking, changing shape or color on
selection, etc. The [Param value passed with WM_DRAWITEM is a pointer to a DRAWITEMSTRUCT data structure
" defined in WINDOWS.H as

/* DRAWITEMSTRUCT for ownerdraw */
typedef struct tagDRAWITEMSTRUCT
{

WORD CtlType; /* ODT NENU, 0oDT, LISTBOX, ODT_COMBOBOX, ODT, BUTTON */

WORD ctLID; /* not used with menu items */

WORD itemlD; /* the menu item's id number */

WORD itemAction; /* ODA_DRAWITEM, ODA_SELECT, or ODA_FOCUS */

WORD jtemState; /* ODS_SELECTED,ODS_GRAYED,ODS_DISABLED,0DS_CHECKED */

HWND hwndItem; /* the item's handle */ : /* or ODS_FOCUS */
- HDC hdC; /* the item's device context */

RECT rcltem;. /* the bounding rectangle of the item */

DWORD itembData; /* here is where the 32-bit data goes */

114

4. MENUS V¥

3} DRAWITEMSTRUCT;
typedef DRAWITEMSTRUCT NEAR *PDRAWITEMSTRUCT;
typedef DRAWITEMSTRUCT FAR *LPDRAWITEMSTRUCT;

This is a convenient structure, as it contains both the menu window's handle (the menu is a window), bounding
rectangle, and device context. The 32-bit value set by AppendMenu() is also available. The program can modify the
painting operation depending on the state of the menu (grayed, selected, checked, etc.). In the simple example above,
the objects are painted black to show selection. One point of confusion here is that the entire popup menu is a single
window. The painting operations for separate items must determine the correct location to paint each item within the
menu. In the example, each menu item is 64 pixels high, so spacing is simple. Note that the items are offset to the nght -
by the width of a menu item checkmark, to be consistent with the normal shape of menu items.

Menu Messages

As mentioned above, Windows sends the WM_COMMAND message every time a menu item is selected. This is nor-
mally the only message that you will process front'a:menu, However, you may find use for the WM_INITMENU and
WM_INITMENUPOPUP messages. They are sent ngli’t ‘before a main menu or popup menu is activated. They provide
some advance warning, in case the application needs to ‘change the status of items from enabled to disabled, re-create
bitmaps, etc. The WM_MENUCHAR message is sent if the user attempts to use a keyboard shorteut key that does not
nmatch any of the menu names preceded by an ampersand character (&). This allows more than one keyboard shortcut
to be programmed per menu item, or it can be used to display an error message. The WM_MENUSELECT message is
also sent when a menu item is selected. This message is more versatile than the WM_COMMAND message, as it is sent
even if the menu item is grayed. Normally, this message is used for warning messages. The messages are documented
in Chapter 9, Window Messages. ,

Menu Function Summary

Table 4-2 summarizes the menu support functions. The detailed function descrlptlons follow immediately after the
table.

[Function . Purpose . | ; L o ' J
AppendMenu Adds a new menu item to the end of a menu. '
CheckMenultem Checks or unchecks a menu item, '
CreatePopupMenu Creates a popup menu
CreateMenu Create a new, empty menu.
DeleteMenu Removes an item from a menu.
DestroyMenu Removes a menu from memory.
DrawMenuBar Forces a window's menu bar to be repainted.
EnableMenultem ‘ Changes a menu item to/from enabled and grayed.
GetMenu Retrieves a handle to a window’s menu.
GetMenuCheckMarkDimensions Retrieves the size and width of the bitmap used to create checkmarks next to menu items.
GetMenuitemCount " Gets the number of menu items in 2 menu. ”
GetMenuitem!D Retrieves the ID value associated with a menu item.
GetMenuState Finds the number of items in a menu, or the status of an item.
GetMenuString) Retrigves the label displayed in a menu item. »
GetSubMenu Retrieves a haxj_dle to a popup menu. \
GetSystemMenu Retrieves a handle to the system menu.
Hili@eMenuItem Highlights a top-level menu item.

InsertMenu _ Inserts a new menu item into an existing menu. -

11§

WINDOWS API BIBLE

Table 4-2. continued

Function ~ " Pumose B T E”
LoadMenu Retrieves a handle to a menu defined in the resource .RC file.
ModifyMenu Changes the properties of a menu item.
“RemoveMenu Removes a menu item from a menu.
SetMenu Attaches a menu to a window.
SetMenultemBitmaps Replaces the default menu checkmark bitmap with a custom bitmap.
TrackPopupMenu

Displays a submenu anywhere on the screen.

Table 4-2. Menu Function Summary.

ArPENDMENU OWin20 ®EWin30 ®Windl
Purpose Adds a new menu item to the end of a menu. ' '
Syntax BOOL AppendMenu(HMENU hMenu, WORD wFlags, WORD wIDNewltem, LPSTR lgNmItem);
Description Similar to InsertMenu(), except that AppendMenu() only adds menu items to the end of the
menu. ‘
Uses Creating menus from within the body of the program, mstead of building them in the resource
file. Also useful in modifying existing menus.
Returns BOOL. TRUE if the new menu item was added successfully, FALSE if not.
See Also InsertMenu(), CreateMenu(), SetMenu(), DrawMenuBar()
Parameters
hMenu HMENU: A handle to the menu bemg changed. Use GetMenu() to retrieve a window’s menu
' handle. -
wFlags WORD: Specifies how the wIDNewltem and lpNewltem parameters are to be mterpreted These-
values can be combined using the C language binary OR operator (I)with any of the menu item
control flags in Table 4-3. :
Value Meaning R N K|
MF_BITMAP The menu item will be a bitmap. The low-order word of the leew/tem parameter should contain a
] handle to the bitmap.
MF_CHECKED Places a checkmark next to the menu item.
MF_DISABLED Makes it impossible to select the menu item. Does not gray the menu item,
MF_ENABL_ED Makes it possible to select the menu item. This is the default.
MF_GRAYED Grays the menu item text and disables the menu item so that it canniot be selected.

MF_MENUBARBREAK
MF_MENUBREAK
MF_OWNERREDRAW

MF_POPUP
MF_SEPARATOR

In popup menus, it separates anew column of items and displays a separator bar between them. In
main menus, it starts a new line of menu items.

In popup menu, it separates a new column of items. No separator bar is displayed. [n main menus, it
breaks the menu into a new line of menu items {two rows of menu items at the window's top).
Specifies that the parent window is to paint the menu item each time it is needed. ‘This is not possible
for the top menu line, but can be done for drop-down and popup menu items. The parent window will
receive WM_MEASUREITEM and WM_DRAWITEM messages to update the drawing area.

Specifies a popup menu. The wiDNewltem parameter will be a handle to the nopup menu.

" Draws a horizontal ling in the menu. This line cannot be selected, checked, enabled, or grayed. The

loNewitern and wiDNewitem parameters are ignored.

116 . L

4. MENUS Vv

s

MF_STRING Specifies that the new itemis a chéracter string. [pNewitem points to the string.
MF_UNCHECKED Does not place a checkmark next to the menu item, This is the default.
Table 4-3. AppendMenu() Flags.
IpNewltem LPSTR: Points to the contents of the new menu item. The type of data depends on the wFlags
setting, as described in Table 4-4,
[whlags = - IpNewitem . X
MF_STRING Long pointer to a chara(\:ter string.)
MF_BITMAP A bitmap handle. The bitmap handle is stored in the low-order word of [pNewltem. Use
LoadBitmap() to retrieve this value.
MF_OWNERDRAW You specify to what the 32-bit value joNewitem points. Windows will send WM_MEASUREITEM '

and WM_DRAWITEM messages to the window's message processing function when the menu
item needs to be redrawn. The value in the [pNewitem parameter will end up passed to the
window's function as an element of the structures pointed to by the iParam value. See the
example owner-drawn menu at the beginning of this chapter.

Table 4-4. AppendMenu() Data Types.

Tods Quit Help

Related Messages WM_MEASUREITEM, WM_DRAWITEM

Example Here the program does not have a menu specified in the re-
source .RC file. Instead, the menu is created when the pro-

gram starts up. Figure 4-4 illustrates the following example. \ko
> The Program HeaderrFile

/* genmenu.h */
#define IDM_TOP1
#define IDM_QUIT
#define IDM_POP1
#define IDM_POP2
f#idefine IDM_HELP
/* global variabltes */
int ghlnstance ;
char gszAppName [1 = “genmenu"
/* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

/* menu item id values */

Figure 4-4. AppendMenu()
Example.

NN =

The Resource .RC File ‘
Note that the two bitmaps which will be used in the menu are named here. Also note that no menu is defined, as it w111
be created within the program logic.

> Resource File
/* genmenu.rc */
#include <windows.h>
#include "genmenu.h™

genmenu ICON generic.ico .

pen . BITMAP pen.bmp
cut * BITMAP cut.bmp
The WinProc() Function

The menu is created when the program starts execution (WM_CREATE message received). The main menu, and the
popup menu containing the bitmaps, are created one item at a-time. DrawMenuBar() is not required in this case, as
the WM_CREATE message is processed before the window and menu bar are painted the first time.

17

WINDOWS API BIBLE .

Long FAR PASCAL WndProc (HWND hWnd, unsigned iHe,ss‘age, WORD wParam, LONG LParam)
<

, HMENU hMenu, hSubMenu ;
static HBITMAP hPenBm, hCutBm ;
switch (iMessage) /* process windows messages */

}
return (OL) ;

.case WM_CREATE: /* build the program's menu at startup */

hMenu = CreateMenu () ;
hSubMenu = CreatePopupMenu () ; S .
- hPenBm = LoadBitmap (ghInstance, (LPSTR) “pen")

L4
hCutBm = LoadBitmap (ghInstance, (LPSTR) “cut") ;
AppendMenu (hSubMenu, MF_BITMAP, IDM_POP1,
(LPSTR) (LONG)hPenBm) ; '
AppendMenu (hSubMenu, MF BITHAP, IDM_POP2,
C(LPSTR)(LONG)hCutBm) ;
AppendMenu ChMenu, MF_POPUP, hSubHenu,
. (LPSTR) "&Tools") ;
AppendMenu (hMenu, MF STRING, IDM QUIT,
(LPSTR) "gQuit") ;
AppendMenu (hMenu, HF_STRING, IDM_HELP,
(LPSTR) "&Help™) ;
SetMenu (hWnd, hMenu) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam) '
.,))
case IDM_POP1: /* Prove that bitmap menu item works! */

MessageBox (hWnd, "The pen tool was selected”,
"Message'", MB_0K) ;
break ; .
case IDM_| POPZ. .
MessageBox (hWnd, "The cut tool was selected" .
"Message', MB_0K) ;
break ;
case IDM_QUIT:
DestroyWindow ChWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
DeleteObject (hPenBm) :
DeteteObject (hCutBm)
PostQuitMessage (0) ;
break ; . .
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

Ne No

)

CHECKMENUITEM : ‘ BWin20) ®mWin30 ®mWin3l

Purpose Checks or unchecks a menu item.

Syntax BOOL CheckMenuItem(HMENU hMenu, WORD wIDCheckltem, WORD w(}?zeck),

Description * Works for both main menu items and popup menus.

Uses Checkmarks generally are used to signify that an option has been tumed on or off. For lmge
numbers of options, use a dialog box with radio buttons for selections.

Returns Returns the previous value of the item, MF_CHECKED or MF_UNCHECKED. Returns—1 on error.

See Also GetMenuState(), EnableMenultem(), ModifyMenu() '

Parameters . S

hMenu HMENU: A handle to thg menu. Use GetMenu() to retrieve a window's menu.

118

4. MENUS v

wIDCheckltem WORD: The menu item number to be checked or unchecked.

wCheck WORD: Specifies how the command is to be executed. Two of the following four possibilities, see

Table 4-b, are always combined with a C language binary OR operator (I) to make the wCheck
parameter. .

Value - .~ Moaning ~ - X

MF_BYCOMMAND ~ TheniDCheckitern value is the menu item ID value. / '

MF_BYPOSITION The niDCheckitem value is interpreted relative sequential numbenng of existing menu items: 0

o is the first item, 1 the second, etc.

MF_CHECKED Places a checkmark next to the menu item.

MF_UNCHECKED Does not place a checkmark next to the menu item.

Table 45. CheckMenultem() Flags.
Related Messages WM_MENUSELECT

Example Here the menu item IDM_OPT! toggles between being checked and unchecked each time it is
selected. Note that GetMenuState() is used to find the current menu item status (checked or
unchecked). L
long FAR PASCAL WndProc (HUND hUnd, uns1gned iMessage, WORD wParam, LONG LParam)
HMENU : hHenu,
BOOL bChecked H
~switch (iMessage) /* process windows messages */
(.
case WM_COMMAND: /* process menu items */
switch (wParam)
{

case IDM_OPT1: X
hMenu = GetMenu (hwWnd) ;
bChecked = GetHenuState (hMenu, IDH 0PT1,
HF_BYCOMMAND) ;
if (bChecked & HF_CHECKED)‘
CheckMenultem (hMenu, IDM_OPT1,
MF_BYCOMMAND | MF_UNCHECKED) ;

L ,
e CheckMenultem (hMenu, IDM_OPT1,
, MF_BYCOMMAND | MF_CHECKED) ;
break ;
[Other program lines] _ .
CrEATEPOoPUPMENU : , ‘OWin20 ®Win30 ®Win3l
Purpose Creates an empty popup menu. g C
Syntax HMENU CreatePopupMenu(void); - Py
Description Any menu other than the top menu bar is consndered to be a popup menu. This functlon creates
. an empty popup menu, ready to have items added using AppendMenu() and InsertMenu().
Uses . Creating menus within the body of a program. Can be used with TrackPopupMenu() to create
' + floating popup menus (menus not attached to 6ther menus).
Returns * Ahandle to the menu created. NULL if a menu cannot be created

‘SeeAlso .~ CreateMenu(), AppendMenu(), InsertMenu() O
Parameters - None (void). ‘

i ' e e , T

WINDOWS API BIBLE

Example Here the program creates its menu on startup. The popup menu is created with two items, a text
item “First Popup” and a bitmap “pen.” The main menu is then created. The popup menu is added
. as the second item in the main menu. Finally, the completed menu is attached to the wmdow

with SetMenu().

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< s

HMENU hMenu, hPopup ;
HBITMAP hBitmap ;
switch (iMessage) /* process windows messages */

case WH_CREATE:
hPopup = CreatePopupMenu () ;
hBitmap = LoadBitmap (ghlInstance, "“pen") ;
AppendMenu (hPopup, MF_STRING, IDM_OPT1, "“First Popup") ;
AppendMenu (hPopup, MF_BITMAP, IDM_OPTZ,

(LPSTR) (LONG) hBitmap) ;

hMenu = CreateMenu () ;
AppendHenu (hMenu, MF_STRING, IDM_TOP1, “First Main") ;
AppendMenu (hMenu, MF_POPUP, hPopup, "Popup Item") ;
AppendMenu (hMenu, MF STRING, IDM_QUIT, "Quit") ;
SetMenu Ch¥Wnd, hMenu) ;

break ;

[Other program lines] ‘
CREATEMENU BWin20 @Win30 ®@Win3.l
Purpose Creates a new, empty menu. ' '
Syntax . HMENU CreateMenu(void);
Description This is the first step in creating a menu within the body of an application program. Use

AppendMenu() to add items to the menu, and use SetMenu() to attach the menu to a window.
Uses Typically used to create menus for child windows. An alternative to defining all menus in the

program’s resource .RC file. Menus created with this function cannot be floating menus. Use
CreatePopupMenu() to create floating menus.

Returns - HMENU, a handle to the menu created.

See Also CreatePopupMenu(), AppendMenu(), SetMenu(), ModifyMenu()

Parameters None (void).

Example Here the program does not have a menu specified in the resource .RC file. Instead, the menu is

created when the program starts. In this case, there are only two menu items. The IDM_TOP1
and IDM_QUIT values need to be defined in the header file for this example to function.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< .

HHENU hMenu ; .
switch (iMessage) /* process windows messages */
{

case WM_CREATE:
hMenu = CreateMenu() ;
AppendMenu (hMenu, HF _STRING, IDH TOP1, "First Menu Item") ;
AppendMenu C(hMenu, MF STRING, 1DM QUIT, "quit") ;
SetMenu (hWnd, hMenu) ; .

break ;
case UH_COHMAND: /* process menu items */
switch (wParam)-
{ .
case IDM_TOP1: /* Ucer hit the "Help" menu item */

MessageBox (hWnd, "The first menu item was clicked”,
“Message”, MB_OK | MB_ICONASTERISK) ;
break ;

[Other program lines]

120

4. MENUS v

DELETEMENU OWin20 ®Win30 ®@Win3l

Purpose Removes an item from a menu.
Syntax BOOL DeleteMenu(HMENU ~Menu, WORD nPosition, WORD wFlags);
Description This function is poorly named, as it sounds like DestroyMenu(), which removes the entire menu

from memory. DeleteMenu() only deletes a single menu item. If the menu item is a popup menu,
the popup is destroyed, and its memory freed. Use DrawMenuBar() after this function to repaint

the menu bar.
Uses Small changes to menus as a program runs, This is an alternative to having more than one menu
and switching between them.
Returns BOOL. TRUE if the item was deleted, FALSE otherwise.
~ See Also InsertMenu(), AppendMenu(), GetMenu(), DrawMenuBar()
_Parameters ’
hMenu HMENU: A handle to the menu. Use GetMenu() to retrieve a window's menu.
nPosition WORD: The menu item ID value.
wFlags WORD: Specifies how the nPosition parameter is to be interpreted, as shown in Table 4-6.
Nalue, - Meaning . oo K
MF_BYCOMMAND The nPosition value is the menu item ID value.
MF_BYPOSITION The nPosition value is interpreted relative sequential numbering of existihg menu items: O 'is the

first item, 1 the second, etc.

Table 4-6. DeleteMenu() Flags.

. Example " Note that DrawMenuBar() is used immediately after DeleteMenu() to repaint the ménu bar.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, UbRp wParam, LONG LParam)
<

HMENU hMenu ;
switch (iMessage) ‘/* process windows messages */
¢ case WM_COMMAND: . /* process menu items */
sWwitch (wParam) '
f:ase IDM_TOP1: /* Delete a menu item */

hMenu = GetMenu (hWnd) ;
DeleteMenu (hMenu, IDM_TOP1, MF_BYCOMMAND) ;
DrawMenuBar (hWnd) ;

break ;
{Other program lines]
DEesTROYMENU BWin20 ®Win30 ®EWinil
Purpose Removes a menu from memory.
Syntax BOOL DestroyMenu(HMENU Adenu);
Description Removes menus created in the resource .RC file and those created within the body of a program
with the CreateMenu() function. ’
Uses Used with applications that have more than one menu. Only the menu attached to the

application’s window will be deleted when the application texminates. Any other menus will re-
main in memory. Use DestroyMenu() before the application terminates to free the memory con-
sumed by the unattached menus.

Returns BOOL. Non-zero if the menu was destroyed, NULL otherwise.

121

WINDOWS API BIBLE '

See Also CreateMenu(), CreatePopupMenu(), GetMenu()
Parameters . S
hMenu HMENU: A handle o the menu to remove. Use GetMenu() to find a window’s menu.
The resource .RC file contains two menus that are loaded as resources into the program. The

Example

“genmenu” menu is attached to the program’s window in the WinMain() function. The second
menu “genmenu?” is held in reserve until it is time to change menus.

/* genmenu.rc */

#include <windows.h>
#include "genmenu.h" :
generic.ico

genmenu ICON
genmenu MENU
BEGIN
" POPUP "&First Menu")
BEGIN -
MENUITER "&Top Item (Change Menu)”, IDM_TOP1
MENUITEM "&1st Option”, IDM_OPT1, GRAYED
MENUITEM "&2nd Option", IDM_OPT2
END :
MENUITEM “gQuit", IDM_QUIT

MENUITEN “\a&Help",

-IDM_HELP, HELP .

END
genmenu2 MENU
BEGIN
’ POPUP "&Second Menu"
BEGIN
MENUITER “&Revised Items"”, IDM_TOP1
MENUITEM “&1st Option", IDM_OPT1
MENUITEM "&2nd Option", IDM_OPT2, GRAYED
MENUITEM "&3rd Option", IDM_OPT3
END .
MENUITEM “&Quit", IDM_QUIT
MENUITEM "\a&Help", IDM_HELP, HELP
END
Part of the WndProc() Function

Note that the old menu is destroyed only if the new menu is successfully added to the window with SetMenu().
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, HdRD wParam, LONG LParam)
€ S | .

HMENU hMenut, hMenu2 ;
BooL bStatus ;
switch (iMessage) /* process windows messages */
(.
case WM_COMMAND: . =
switch (WParam)
¢ .
case IDM_TOP1: /* swap menus, destroy old one */
hMenu1 = GetMenu Chiind) ;
hMenu2 = LoadMenu (ghInstance, “genmenu2") ;
bStatus = SetMenu (hWnd, hMenu2) ;
if (bStatus)
DestroyMenu (hMenul) ;

/* process menu items */

else ,
MessageBox (hWnd, “Could not change menus.” v
“Warning”, MB_OK] NB_ICONINFORMATION) ;
. break ;
[Other program lines]
DRrAWMENUBAR S " mWin20 ®Win30 mWin3l
Purpose Forces repainting of the window’s menu bar. o ‘ S

Syntax vold DrawMenuBar(HWND kWnd);

i,

122 ' _ ;

. 4. MENUS V¥

Description The menu bar is not part of the client region of the window and, therefore, is not updated when

you use UpdateWindow().
Uses Use right after any change to the top-level menu.
Returns No returned value (void).
See Also DeleteMenu(), GetMenu()
Parameters
hWnd HWND: A handle to the window which has the menu. Use GetMenuO to retrieve the window's
 menu handle.
Related Messages WM_NCPAINT
Example
Long F‘R PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
¢ HMENU hMenu ; ' 4 -
suitch (iMessage) ‘ /* process windows messages */
case WM_COMMAND: . . /* process menu items */

switch (wParam)
< .
case IDM_TOP1: /* Delete a menu item */:

hMenu = GetMenu (hWnd) ;
DeleteMenu (hMenu, IDM_TOP1, MF_BYCOMMAND) ;

DrawMenuBar (huWnd) ;

break ;
[Other program lines] TNl
! L e :
ENABLEMENUITEM T~ BWin20 WWin30 mWin3l
Purpose Changes a menu item to/from enabled and grayed T ——
Syntax WORD EnableMenultem(HMENU hMenu, WORD wIDEnableltem, WORD wEnaEIE), N

Description Menu items are normally enabled, meaning that selecting a menu item causes a WM_COMMAND ™
message to be sent to the window’s message function. Menu items can be disabled, stopping the
" messages from being sent. Normally disabled menu items are shown in gray text so that the user
‘can easily see which commands function.

Uses Some menu actions may not be possible under all situations in a program. For example, it should
not be possible to paste data if no data has been cut or copied into the clipboard. In these situa-
tions, it is best to disable and gray the menu items that have no function, so that the user intu-
itively knows that certain actions are not possible.

Returns WORD holding the previous state of the menu item (MF_GRAYED, etc.). -1 is returned if the
menu or menu item_ does not exist.

See Also GetMenuState(), ModifyMenu(), GetMenu()

Parameters '

hMenu "~ HMENU: A handle to the menu. Use GetMenu() to retrieve a window's menu.

wiIDEnableltem = WORD: The menu item number to change.

wEnable "WORD: The action to take, and how wIDEnableltem is to be interpreted. The values shown in
. . Table 4-7 can be combined with the C language binary OR (1) operator.

123

WINDOWS API BIBLE

‘Value -+ ':Meaning : [Sl
MF_BYCOMMAND The niDEnableltem value is the menu item ID value.

MF_BYPOSITION The niDEnableitem value is interpreted relative sequential numbering of the menu items: 0is the first item,
1 the second, etc.

MF_DISABLED The menu item is disabled.
MF_ENABLED The menu item is enabled (and not grayed).
MF_GRAYED The menu item is grayed.

Table 47, EnableMenultem() Flags.

Related Messages WM_COMMAND

Example This example’s window has a menu with one drop-down popup menu, The second item on the
drop-down menu (IDM_OPT1) alternately disables and enables the third menu item
(IDM_OPT2). When disabled, the menu item is also grayed. Here is the resource file. Note that
the menu items all start enabled, the default condition.

X

/* genmenu.rc */
#include <windows.h>
#include "genmenu.h”

genmenu ICON -generic.ico
genmenu ’ MENU
BEGIN
POPUP "&First Menu"
BEGIN
MENUITEM “&Top Item", IbM_TOP1
MENUITEM “&Disable 2nd", - IDM_OPT1
MENUITEM SEPARATOR /
MENUITEM "&2nd Option", -IDM_OPT2
END
MENUITEM “&Quit", IDM_QUIT

END

The following code is the first part of the WndProc() function. GetMenuState() is used to .
find out whether the IDM_OPT2 menu item is currently enabled. If so, EnableMenultem() is
used to disable it. Also, the IDM_OPT1 menu item text is changed with ModifyMenu() to switch
between “Enable 2nd” and “Disable 2nd” as appropriate.

Long FAR PASCAL WndProc (HWND hWnd, uns1gned iMessage, WORD wParam, LONG LParam)
< .

. HMENU hMenu ;
- WORD wStatus ;

switch (iMessage) . /* process windows messages */
{

case WM_COMMAND: /* process menu items */
switch (wParam) .

case IDM_OPT1: /* Toggle menu item enable/disable */
. hMenu = GetMenu (hWnd) ;
wStatus = GetMenuState (hnenu, IDM_OPT2,
MF_BYCOMMAND) ;
"§f (wStatus == MF ENABLED)
{
EnableMenuItem (hMenu, IDM_OPTZ2,
MF_DISABLED | MF_GRAYED |
MF_BYCOMMAND) ;
ModifyMenu (hMenu, IDM_OPT1,
MF_BYCOMMAND | MF_STRING,
IDM_OPT1, "Enable 2nd") ;

124

4. MENUS v

else
{
EnableMenultem (hMenu, IDM_OPTZ2,
MF_ENABLED | MF_BYCOMMAND) ;
ModifyMenu (hMena, IDM_OPT1,
MF_BYCOMMAND | MF_STRING,
IDM_OPT1, “Disable 2nd") ;
3
break ;
[Other program lines]
GETMENU EWin20 EWin30 ®mWin3.l
Purpose Retrieves a handle to a window's menu.
Syntax HMENU GetMenu(HWND kiWWnd); .
Uses Used prior to modifying or destrovmg the menu. This function will not return a valid handle for
child windows with menus,
" Returns - HMENLU, a handle to the menu. NULL if the window does not have a menu.)
See Also SetMenu(), AppendMenu(), DeleteMenu(), DestroyMenu(), InsertMenu(), ModifyMenu(),
RemoveMenu,
Parameters
- hWnd . HWND: A handle to the window that has the menu.
Example This example deletes the IDM_TOP1 menu item when it is selected.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
(- .
HMENU hMenu ;
switch (iMessage) /* process windows messages */
{ : ,
case WM_COMMAND: /* process menu items */

switch (wParam)

{

case IDM_TOP1: /* Delete a menu item */
hMenu = GetMenu (hWnd) ;
beleteMenu (hMenu, IDM_TOP1, MF_BYCOMMAND) ;
DrawMenuBar (hWnd) ;
break ;

[Other program lines]

GETMENUCHECKMARKDIMENSIONS : BWin20° mWin30 mEWin3d.l
Purpose Retrieves the size and width of the bitmap used to create checkmarks next to menu items.
Syntax DWORD GetMenuCheckMarkDimensions(void);

Description Windows uses a default checkmark bitmap to check menu items. This can be replaced with cus-

tom bitmaps using the SetMenultemBitmaps() function. GetMenuCheckMarkDimensions() is
- used to find the size of the bitmap to use for custom checkmarks.

Uses : Custom checkmarks can dress up an application program, with little penaity in memory con-
‘ sumption. As soon as the new bitmap is assigned to the menu item, the CheckMenultem() func-
tion will automatlcally use this bitmap when checking or unchecking an item.,

Returns DWORD, the HIWORD contains the bitmap height in pixels, the LOWORD contams the bltmap
width in pixels.

See Also SetMenultemBitmaps(), CheckMenultem()

o125

WINDOWS AP| BIBLE

Parameters None (vond)

Example In this example, a bitmap called “pen” is to be used as the checkmark for the IDM_t OP'ﬂ menu
item. As the program does not know in advance how big the menu checkmarks are going to be
(this depends on the video display resolution), the bitmap must be sized to fit the dimensions
found when the program starts running. Size the bitmap by copying the bitmap from one device
context to another using the StretchBIt() function. The resource .RC file loads the “pen” bitmap.

/* genmenu.rc */
#include <uindows.h>

#include “genmenu.h” ;e
genmenu ICON generic.ico

pen BITMAP smallpen.bmp
genmenu MENU .
BEGIN 2ol
POPUP "&First Menu"” |
BEGIN :
'MENUITEM "&Top Item", © IDN_TOP1
MENUITEM “8Check Me!", IDK_OPT1
MENUITEM SEPARATOR
MENUITEM “&2nd Option”, © IDM_OPT2
END
MENVITER “gauit”, IDM_aulT

The new menu item bitmap is sized and loaded when the WM_CREATE message is received
at program startup. In this simple example, the IDM_OPT1 menu item just toggles between being
- checked with the “pen” bitmap, and being unchecked.

Long FAR PASCAL ¥ndProc (mmb hWnd, unsigned iMessage, WORD wParam, LdNG LParam)
{

.

HMENU hMenu ;
DWORD duCheckSize ; —
HDC hdC, hSourcedC, hDestDC ;
static HBITMAP hPenBitmap ;
HBITHAP - hMemBitmap ;
BITMAP bm ;
int ' nBx, nBy ;
- BooL bChecked ;
switch ({Message) ./* process windows messages */
<

case WM_CREATE:"
/* find out how big the checkmarks are */
hMenu = GetMenu (hWnd) ;
dwCheckSize = GetﬂenuCheckHarkbimensions Q ;
nBx = LOWORD (dwCheckSize) , .
nBy = HINORD (dwCheckSize) ;
. /* load a bitmap 1nto a device context */
hDC = GetDC ChuWnd) ;
hSourcedC = CreateCompatibleDc (th)
hPenBitmap = LoadBitmap (ghlnstance, "pen") ;
SelectObject (hSourcedC, hPenBitmap) ;
GetObject ChPenBitmap, sizeof (BITHAP), (LPSTR) Gbn)
- /* create a second DC for scaled bitmap */
hDestDC = CreateCompatibleDC (hDC) ;
~ hMemBitmap = Create(:onpatibleaitmap (hbestDC, an, nBy) ;
SelectObJect (hDestDC, hMemBitmap) ;
/* fit the bitmap into the menu sized DC */
stretchBl.t ChbpestdC, 0, 0, nBx, nBy, hSourcenc, 0, O,
bm. bmlﬂdth, bm. aneight, SRCCOPY) ;
» . I* attach the sized bitmap to the menu item */
SetHenultemBHmaps (hMenu, IDM_OPT1, MF_BYCOMMAND, NULL,
hnelBitnap)
/* release unneeded memory consumers */

~ -

C - -

126 SR

4. MENUS v

ReleaseDC ChWnd, hDC) ;
DeleteDC (hSourcedC) ;
DeleteDC (hDestDC) ;
DeleteObject (hPenBitmap) ;

break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{
‘case IDM_OPT1: . /* Toggle menu item checked/unchecked */

hMenu = GetMenu (hWnd) ;
bChecked = GetMenuState (hMenu, IDM_OPT1,
MF_BYCOMMAND) ;
41 (bChecked & MF_CHECKED)
. CheckMenultem (hMenu, IDM_OPT1,
~ “MF_BYCOMMAND | MF_UNCHECKED) ;
else
CheckMenultem (hMenu, IDM_OPT1,
NF GYCOHHAND | MF_CHECKED) ;
break ;
case IDM_QUIT:
Destroywindow Chwnd) ;
break ;
}
break ;
case WM_| DESTROY /* stop application */
DeleteObject (hPenBitmap) ;
. PostQuitMessage (0) ;
break ; ,
default: ’ /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

y -
return (OL) ;

)
GETMENUITEMCOUNT @Win20 ®Win30 ®Win3.l
Purpose Gets the number of menu items in a menu.
Syntax - WORD GetMenultemCount(HMENU hMenu);
Description GetMenultemCount() counts the nuinber of menu items. This includes the top-level heading of
any popup menus, but does not include the popup items themselves.
Uses Used to find out how many menu items there are, prior to retrieving data on the menu items such
‘ as their ID numbers, strings, etc.
" Returns WORD, the number of menu items. Returns -1 on error.
See Also GetMenu(), GetMenultemID(), GetMenuState(), GetMenuString()
Parameters
hMenu HMENU: A handle to the menu. Use GetMenu() to find a win-
2’ T EirstMenu Quit
dow’s menu handle. D Checked String
Example . This example uses several menu functions to determxne the z‘ 33:3::, 22‘.'.:' Mena
' number, IDs, status, and menu strings associated with the

program’s main menu. After execution of the first popup menu Fzyure 45. GetMenu-
selection under “First Menu,” the window looks like Figure 4-5. ItemCount(') Example.

Note that the string “First Menu” is a popup menu name,
s0 it does not have a selectable ID value (shown as —1). The “Quit” option is selectable, withanID
value of 2. The popup menu items are not displayed and must be separately examiried using -
GetSubMenu(). Also note that the ampersand characters used to define t&le @3)-key combina-
tions are extracted with GetMenuString().

127

WINDOWS API BIBLE

& The Resource File
/* genmenu.rc */
#include <windous.h>
#include “genmenu.h”

genmenu ICON . generic.ico
genmenu MENU
BEGIN
POPUP “&First Menu"
BEGI ’) .
MENUITEM “&Display Items", IDM_TOP1
MENUITEM “&1st Option", IDM_OPTS
MENUITEM SEPARATOR
MENUITEM "&2nd Option”, IDM_OPT2
END
10M_QUIT

MENUITEM “&Quit",
END . -

< The Top of the WndProc() Function

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

<
HMENU hMenu ;
HDC hdC ;
char cBuf [128], cNumBuf [10] ;
int i, nltems, nValue, nChecked, nChars ;
switch (iMessage) /* process windows messages */
{ . ~
case WM_COMMAND: /* process menu ftems */
switch (wParam) '
case IDM_TOP1: /* Show menu item attributes */
hDC = GetDC ChWnd) ;
hMenu = GetMenu (hWnd) ;
nitems = GetMenultemCount (hMenu) ;
TextOut C(hdC, 0, O, “ID Checked String”, 19) ;
for (i =0 ; i <nltems ; i++)
nValue = GetMenultemID (hMenu, 1) ;
nChecked = GetMenuState (hMenu, i,
MF_BYPOSITION | MF_CHECKED) ;
nChars = GetMenuString (hMenu, i, cBuf, 127,
MF_BYPOSITION) ;
\ itoa (nvalue, cNumBuf, 10) ;
TextOut (hdC, 10, 15 + (i * 15), cNumBuf,
strlen (cNumBuf)) ;
if (nChecked == MF_CHECKED)
k TextOut C(hDC, 30, 15 + (i * 15),
. "Checked", 7) ; :
else o
TextOut (hdC, 30, 15 + (i * 15),
"Unchecked”, 9) ;
TextOut (hdC, 150, 15 + (i * 15), cBuf, nChars) ;
, .
ReleaseDC (h¥Wnd, hDC) ;
‘break ; -
[Other program lines]
GETMENUITEMID @Win20 ®Wn30 ®=Win3.l
Purpose Retrieves the ID value associated with a menu item. :
Syntax -WORD GetMenultemID(HMENU kMenu, int nPos); - _
Description The menu ID values are associated with each item when the menu is defined, either in the re-

source .RC file or when the menu items are added during program execution with the

AppendMenu() and InsertMenu() functions.

128

4. MENUS v

Uses ID values remain constant, even as other menu items are added and deleted. Retrieving the menu
item IDs can be useful in programs which allow the user to add and subtract custom menu items
such as macro names.

Returns WORD, the ID value for the menu item at position 2Pos. —1 on error.

See Also GetMenultemCount(), GetMenuState(), GetMenuString().

Parameters : '

hMenu HMENU: A handle to the menu. Use GetMenu() to retrieve a handle to a window’s menu. Use
GetSubMenu() to retrieve a handle to a popup menu.

Example See the previous example under the GetMenultemCount() function description.

GETMENUSTATE = - BWin20 ®@Win30 ®EWin3.l

Purpose Finds the number of items in a menu or the status of an item.

Syntax WORD GetMenuState(HMENU kMenu, WORD wID, WORD wFlags);

Uses Most often used to determine if a menu item is checked, grayed, or disabled.

Returns WORD. Returns —1 on error. If wID identifies a pupup menu, the high-order byte contains the

number of items in the popup menu. The low-order byte contains a combmatlon of the flags
shown in Table 4-8, logically ORed together.

i, Value - Meaning = ' SR @l

MF_CHECKED There is a checkmark next to the menu item.

MF_DISABLED The menu item is disabled and cannot be selected.

MF_ENABLED The menu item is enabled, so it can be selected.

MF_GRAYED The menu item text is grayed and disabled so that it cannot be selected.

MF_MENUBARBREAK In popup menus, it separates a new column of items and displays a separator bar between

’ them. In normal menus, it starts a new line of menu items.

MF_MENUBREAK - In popup menus, it separates a new column of items. No separator bar is displayed In normal
menus, it breaks the menu into a new ling of menu items (two rows of menu items at the
window's top).

MF_SEPARATCR A horizontal line in the menu.

MF_UNGHECKED No checkmark next to the menu item.

Table 4-8. GetMenuState() Return Flags.

See Also CheckMenultem(); GetMenu()

Parameters

hMenu HMENU: A handle to the menu. Use GetMenu() to obtain a window's menu.

wiD WORD: The menu item ID value.

wFlags WORD: Specifies how the wID is to be interpreted, as shown in Table 4-9.

Vawe ~ .~ Meamng - . X
MF_BYCOMMAND The wiD value is the menu item ID value. ’
MF_BYPOSITION The wiD value is interpreted refative sequential numbering of existing menu items: 0 is the first

item, 1 the second, etc.
Table 4-9. GetMenuState() wFlags Settings.

129

WINDOWS AP! BIBLE

Example

Here the menu item IDM_OPT! toggles between being checked and unchecked each time it is

. selected. Note that GetMenuState() is used to find the current menu item status (checked or

unchecked).

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HMENU hMenu ;
BOOL bChecked ;
switch (iMessage) ‘ /* process windows messages */
{) '
case WM_COMMAND: /> process menu items */
switch-{wParam)
{

case IDM_OPT1:
hMenu = GetMenu (hWnd) ;
bChecked = GetMenuState (hMenu, IDM_OPT1,
MF_BYCOMMAND) ;
if (bChecked & MF_CHECKED)
CheckMenultem (hMenu, IDM_OPT1,
MF_BYCOMMAND | MF_UNCHECKED) ;

else
CheckMenultem (hMenu, IDM_OPT1,
’ MF_BYCOMMAND | MF_CHECKED) ;
. break ;
[Other program lines]
GETMENUSTRING BWin20 BWin30 mWin3l
Purpose Retrieves the label displayed in a menu item. ‘
Syntax int GetMénuString(HMENU hMenu?WORD wIDItem, LPSTR IpString, int nMaxCount, WORD
wklag); ' ' ,
Description The menu item’s string, including the ampersand (&) character used to specify the accelerator
' key, is retrieved into a character buffer.
Uses Handy in programs that allow the user to add and subtract menu items for user-defined functions
such as macros.
Returns int, the number of characters retrieved.
See Also GetMenu(), GetMenultemCount(), GetMenuItemID(), GetMenuState(), GetSubMenu()
Parameters
hMenu HMENU: A handle to the menu. Use GetMenu() to obtain a window's menu.
wiDItem WORD: . The menu item ID value. :
IpString LPSTRING: A pointer to the character buffer that will hold the menu item string.
nMaxCount int: The maximum number of characters to write to the buffer. Use this parameter to avoid
writing beyond the buffer’s end.
wklags WORD: Specifies how the wiDitem is to be interpreted, as shown in Table 4-10.
[Value - Meaning R ’ B &l

MF_BYCOMMAND
MF_BYPOSITION

The niDitem valug is the menu item ID value.

The niDitem value is interpreted relative to the sequential numbering of existing menu items: s the first
item, 1 the second, etc.

Table 4-10. GetMenuString() wFlags Settings.

Example

See the example under the GetMenultemCount() function description.

130

4. MENUS v

GETSUBMENU , , MWin20 MWin30 ®=Win3.l

Purpose Retrieves a handle to a popup menu.

Syntax HMENU GetSubMenu(HMENU AMenu, int nlPos); i

Description A handle to a popup menu can only be found after the handle to the main menu is located, usually
with GetMenu(). When the popup menu handle is obtained, all of the functions that allow read-
ing and changing menu items can be applied to the popup menu.

Uses In programs that change the elements of popup menus.

Returns HMENU, a handle to the popup menu. Returns NULL on error, such as nPos not referring to a
popup menu. ‘ :

See Also GetMenu(), GetMenultemCount(), GetMenultemID(), GetMenuitemState(), GetMenultem-
String(), AppendMenu(), ModifyMenu()

Parameters

hMenu HMENU: A handle to the parent menu of the popup menu.

nPos int: The position of the popup menu in the main menu: 0 for the first, 1 for the second, etc.
Because popup menus do not have ID values associated with them, it is not possible to retrieve
the menu handie based on an ID.

Example Here the program examines the first popup menu, and shows

each of the popup menu items on the screen. Note that the

third item in the popup menu is a separator bar. This has an ID [f "t:s:.:;:: s%:::;
of 0. The MF_SEPARATOR status for this item could have been | 3 Unchecked &reiopuon
detected using the GetMenuState() function. Figure 4-6 illus- | § Urheckes 204 option
trates the example. L y

~ The following code represents the resource .RC file that Figure 4-6. GetSubMenu()
defines the menu structure, including the popup menu. Example.

/* genmenu.rc */
#include <windouws.h>
#include "genmenu.h"”

ICON generic.ico

genmenu
genmenu MENU
BEGIN
POPUP "&First Menu"
BEGIN
MENUITEM “&Display Items"”, IDM_TOP1
MENUITEM “&1st Option", IDM_OPT1
MENUITEM. SEPARATOR
MENUITEM “&2nd Option", . IDM_OPT2
END .
MENUITEM "gQuit", IDM_QUIT
END

The following code represents the top of the WinMain() function. Note that the submenu is
retrieved after the main menu is found using GetMenu().

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam)
{)

HMENU hMenu, hSubMenu ;

HDC hodC ;

char cBuf C1281, cNumBuf £101 ;

int i, nltems, nValue, nChecked, nChars ; i

switch (iMessage) /* process windows messages */
R .

case WM_COMMAND: ’ /* process menu items */
switch (WParam) :

131

WINDOWS API BIBLE

_/Other program lines] -+

GETSYSTEMMENU

{ .
case IDM_TOP1: o /* Show menu item attributes */
hDC = GetDC (hWnd) ; ’
hMenu = GetMenu (hWnd) ;
hSubMenu = GetSubMenu (hMenu, 0) ;
nltems = GetMenultemCount (hSubMenu) ;
TextOut (h0C, 0, 0, "“ID Checked String”, 19) ;
for (i =0 ; i <nltems ; i++)
r .

nValue = GetMenultemID (hSubMenu, i) ;
nChecked = GetMenuState (hSubMenu, i,
MF_BYPOSITION | MF_CHECKED) ;
nChars = GetMenuString (hSubMenu, 1,
cBuf, 127, MF_BYPOSITION) ;
itoa (nvalue, cNumBuf, 10) ;
TextOout (hDC, 10, 15 + (i * 15), cNumBuf,
strlen (cNumBuf)) ;
if (nChecked == MF_CHECKED)
TextOut (hDPC, 30, 15 + (i * 15),
"Checked", 7) ;
else
fextout ChDC, 30, 15 + (i * 15),
. "Unchecked”, 9) ;
1ext0ut (th, 150, 15 + (3 * 15)
cBuf, nChars) ;
) . .
ReleaseDC (hWnd, hDC) ;
break. ;

"B Win20 Win3.0 . EWin3.1

Purpose ~ ° Retrieves a handle to the system menu.

Syntax HMENU GetSystemMenu(HWND hWnd, BOOL bRevert);

Description The system menu is the popup menu that is displayed when you chck the button at the top left
corner of the program’s main window. The system menu generates WM_SYSCOMMAND mes-
sages, not WM_COMMAND messages. When a menu item on the system menu is activated, the
WM_SYSCOMMAND messages have the wParam parameter set as shown in Table 4-11.

| System Menu item Sends WM_SYSCOMMAND with wParam Set To ~ X
Restore SC_RESTORE '
Move SC_MOVE
Size -~ SC_SIZE
Minimize SC_MINMUM
Maximize SC_MAXIMUM
Close . - SC_CLOSE
Switch To SC_TASKLIST

Tuble 41 1. WM_SYSCOMMAND Message wParam Values. -

You can also modify and add to the system menu using all of the menu modification com-
mands, such as AppendMenu() and InsertMenu(). If you add menu items, their ID values should
~_be below 0xF000 to avoid overlapping the definitions of the default ID values listed above.

Uses \Modnfymg the system menu is appropriate for small utility programs that may be able to avoid
haﬁng a menu bar if a few commands are added to the system menu.
Returns) HMENﬁ\&handle to the system menu.

132

4. MENUS v

See Also

Parameters
hWnd

bRevert

Related Messages
Comments

Example

AppendMenu(), InsertMenu(), ModifyMenu()

HWND: A handle to thé window which contains the system menu.

BOOL: If TRUE, the function destroys the current system menu and returns a handle to a new"
copy of the original system menu. If FALSE (zero), the function returns a handle to the current
system menu, retaining any changes.

WM_SYSCOMMAND, WM _INITMENU

In pr(;cessing the WM_SYSCOMMAND messages for the default system menu items, it is critical
to pass the WM_SYSCOMMAND message on to the default window's message processing function
DefWindowProc(). Otherwise the program will stop functioning. The example shows this mes-
sage pass-through,

Here a single menu item is added to the bottom of the system menu, called “Added Item.” When
this item is clicked, the WM_SYSCOMMAND message is caught and some text written to the
window’s client area. Note how the message logic passes any other WM_SYSCOMMAND message
straight through to DefWindowProc(}, to avoid-hanging the program,

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, UOﬁD\ wParam, LONG tParam)
-

HMENU hSysMenu ;
Hoc hdC ;
switch (iMessage) /* process uind\ous messages */
¢ .
case WM_CREATE:
hSysMenu = GetSystemMenu (hWnd, 0) ;
AppendMenu (hSysMenu, MF_STRING, IDM SYSTYPE, ‘Added Item") ;
break ;
case HM_COMHAND: /* process menu items */
switch (wParam)
{
case IDM_QUIT:
bestroyWindow (hwnd) ;
break.;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ; :
break ;
case WM_SYSCOMMAND:
if (wParam == IDM_SYSTYPE)/* added system menu item */
(.
hDC = GetDC (hWnd) ;
Textout (hdC, 10, 10,
“The new system menu item was hit.", 33 ;
ReleaseDC (hwnd, hDC)
‘return (0) ;
} A no break statement here */
default: : /* default windows message processing */
return DefWindowPrac (hWnd, iMessage, wParam, LParam) ;
3 - .
return (OL) ;
}
HiLitEMENUITEM ' EWin20 ®BWin30 m®MWin3.l
Purpose Highlights a top-level menu item. _ : .
Syntax BOOL HiliteMenultem(HWND hWnd, HMENU hMenu, WORD wIDHiliteltem, WORD wHilite);
Description Normally, the mouse and default keyboard accelerator key's automatic actions take care of high-

lighting top-level menu items. If you need to do this directly, you can use HiliteMenultem().

133

WINDOWS AP! BIBLE

Uses Seldom used. Can be used. to provide additional keyboard functionality for menu selections (see
, example). ‘]
Returns BOOL. TRUE if the item was highlighted, FALSE on error.
See Also CheckMenultem(), EnableMenultem()
Parameters : :
hWnd HWND: A handle to the program’s window.
hMenu HMENU: A handle to the program's menu. Use GetMenu() to retrieve this handle.
wIDHiliteltem WORD: The menu item number to change. Only top-level menu items may be changed.
wHilite WORD: Flags to set how the wIDHiliteItem parameter is interpreted and whether to highlight or -
' unhighlight the menu item. Combine two of the values in Table 4-12 with the C language OR
_ operator (1).
L'Value S U Meaning o R s 1
MF_BYCOMMAND The niDHilteltem value is the menu item ID value.
MF_BYPOSITION The n/DHi/itelterh value is interpreted relative to the sequential numbering of existing menu
\ items: Ois the first item, 1 the second, etc.
MF_HILITE Highlight the menu item.)
MF_UNHILITE Remove highlighting from the menu item.
Table 4-12. HiliteMenultem() Flags.
Example - This example implements a simple kéyboard interface for a two-item menu. If the user hits the

left or right arrow keys, one of the menu items is highlighted. Hitting the return key selects the
highlighted menu item. The only two actions in this case are to display a message box or to exit

the program.
&> The Resource .RC file
/* genmenu.rc jim conger 1991 */

#include <windows.h>
#include "genmenu.h"

genmenu. ICON generic.ico
genmenu MENU
BEGIN
MENUITEM "&1st Option", IDM_TOP1
MENUITEM "&Quit", IDM_QUIT
END

The following code represents the WndProc() function. Note that the return key action is
implemented by sending the same message that would have been received if a mouse click had
selected the item (WM_COMMAND). This allows the same logic to perform the functions, regard-
less if a mouse or keyboard is used.

lonngAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<. :

HMENU hMenu ;
static int nSide = 0 ;
switch (iMessage) /* process windows messages */
case WM_COMMAND: /* process menu items */
switch (wParam)’
{

case IDM_TOP1: . L
MessageBox (hWnd, "First menu item was hit",
“Message’, MB_OK) ; . .

134

4. MICNUO v

break ;

case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
case WM_KEYDOWN:
switch (wParam)

{
case VK_LEFT: /* Left arrow key, so hilite "top1" */
hMenu = GetMenu(hWnd) ;
HiliteMenultem (hWnd, hMenu, O,
MF_BYPOSITION | MF_HILITE) ;
HiliteMenultem (hWnd, hMenu, 1,
MF_BYPOSITION | MF_UNHILITE) ;
DrawMenuBar (hWnd) ;
nSide = 0 ;
break ;
case VK_RIGHT: /* r1ght arrow key, so hilite "Quit" */
hMenu = GetMenu(hund) ;
HiliteMenultem (hWnd, hMenu, 0,
MF_BYPOSITION | MF_UNHILITE) ;
HiliteMenultem (hWnd, hMenu, 1,
MF_BYPOSITION | MF_HILITE) ;
DrawMenuBar (h¥Wnd) ;
nSide =1 ;
break ;
case VK_RETURN: /* simulate mouse select of menu item */
it (nSide) :
SendMessage (hWnd, WM_COMMAND, IDM_QUIT, OL) ;
else
SsendMessage (hWnd, WM_COMMAND, IDM_TOP1, OL) ;
}
break ;
default: ’ /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
}
return (OL) ;
b4
INSERTMENU OWin20 @Win30 ®EWindl
Purpose Inserts a new menu item into an existing menu.
Syntax BOOL InsertMenu(HMENU AhMenu, WORD nPosition, WORD wFlags, WORD wIDNewltem,
LPSTR lpNewltem);
Description Adds a new item into any location within a menu. This is more useful than AppendMenu(), which
only adds items Jo the end of the menu.
Uses Ideal for adding bitmap menu items
Returns BOOL. TRUE if the item was successfully added, FALSE if not.
See Also AppendMenu(), ChangeMenu(), CreateMenu(), DrawMenuBar ()
Parameters
hMenu HMENU: A handle to the menu being changed. Use GetMenu() to retrieve a window’s menu
handle.
nPosition WORD: The menu item number in front of which the new 1tem will be inserted. The wFlags

paramef®r will either contain the MF_BYPOSITION or MF_BYCOMMAND flag, specifying how
the nPosttion value is to be interpreted.

135

cvavs v Ird AR DIBSLE

A

wFlags WORD: Specifies how the nPosition parameter is to be inferpreted in positio'nin(i' the new menu
~ item. Also sets the status of the new menu item. These values can be combined using the C
language binary OR operator (1) with any of the following menu itera control flags, as shown in
Table 4-13. '
Value Meaning ‘ J
MF_BITMAP The menu item will be a bitmap. The low-order word of the IoNewltem parameter should

MF_BYCOMMAND

MF_BYPOSITION

MF_CHECKED
MF_DISABLED
MF_ENABLED
MF_GRAYED

MF_MENUBARBREAK

- MF_MENUBREAK

MF_OWNERREDRAW

MF_POPUP
MF_SEPARATOR

MF_STRING
MF_UNCHECKED

contain a handle to the bitmap.

The nPosition value is interpreted as a menu item ID value. The new item is inserted before the
exiting one.

The nPosition value is interpreted refative to the sequential numbering of existing menu items: 0
is the first item, 1 the second, etc. The new item is inserted before the exiting one. Use an
nPosition value of -1 for the end of the menu.

Places a checkmark next to the menu item.

Makes it impossible to select the menu item. Does not gray the menu item. '

Makes it possible to select the menu item. This is the default.

Grays the menu item text and disables the menu item so that it cannot be selected.

In popup menus, it separates a new column of items and displays a separator bar between
them. In normal menus, it starts a new line of menu items. -

In popup menus, it separates a new column of items. No separator bar is displayed. In normal
menus, it breaks the menu into a new line of menu items (two rows of menu items at the
window's top).

Specifies that the parent window is to paint the menu item each time it is needed. This is not
possible for the top menu line, but can be done for drop-down and popup menu items. The
parent window will receive WM_MEASUREITEM and WM_DRAWITEM messages to update the
drawing area.

Specifies a popup menu. The wiDNewltem parameter will be a handle to the popup menu.

Draws a horizontal ling in the menu. This fine cannot be selected, checked, enabled, or grayed.
The lpNewitem and wiDNewitem parameters are ignored.

Specifies that the new item is a character string. jpNewltem points to the string.
Does not place a checkmark next to the menu item. This is the default.

Table 4-13. InsertMenu() wFlags Values.

WORD: Specifies the ID value for the menu item. If wFlags is set to MF_POPUP, wIDNewltem is

wIDNewltem
. ' the menu handle of the new popup menu.
{pNewltem LPSTR: Points to the contents of the new menu item. The type of data depends on the wFlags
setting, as shown in Table 4-14.
UFlags ipNewitem ‘ IZJ
MF_STRING Long pointer to a character string.
MF.BITMAP A bitmap handle. The bitmap handle is stored in the low-order word of pNewltem.

- MF_OWNERDRAW

You specify to what 32-bit value the joNewitem points. Windows will send WM_MEASUREITEM and
WM_DRAWITEM messages to the window's message processing function when the menu item needs to
be redrawn. See the example owner-drawn menu program in the introductiorto this chapter.

Table 4-14. InsertMenu() Data Types.

136

4. MENUS v

Related Messages WM_MEASUREITEM, WM_DRAWITEM

Example This example adds a bitmap to the window’s menu, right before the WM_TOP1 menu item. The
new menu item has the ID value of ID_PFN.

> Header File

/* genmenu.h */

/* menu item id values */

Hdefine 1DM_TOP1 1
f#define IDM_QUIT 2
#define IDM_PEN 3
" #define 1DM_HELP 8
/* global variables */
int ghInstance ;
char gszAppName [1 = "genmenu" ;

/* function prototypes */
Long FAR PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

> Resource File
/* genmenu.rc */
#include <windows.h:
#include "genmenu.h"

genmenu ICON generic.ico

menubitmap BITMAP pen.bmp

genmenu MENU

BEGIN
POPUP "&First Menu”
BEGIN
) MENUITEM "&Top Item", IDM_TOP1
END .
MENUITEM “&Quit", IDM_QUIT

MENUITEM "\a&Help", IDM_HELP, HELP
END :

< Part of the Program File
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

. HMENU hMenu ;
HBITMAP hBitmap ;
switch (iMessage) /* process windows messages */

case WM_CREATE:) R
hMenu = GetMenu (hwnd) ;
hBitmap = LoadBitmap (ghInstance, “menubitmap') ;
InsertMenu ChMenu, IDM_TOP1, MF_BITMAP | MF_BYCOMMAND,
IDM_PEN, (LPSTR) (LONG) hBitmap) ;

break ;
[Other program lines] -
LoAapMENU ‘ BWin20 ®MWin30 m®Win3.l
Purpose Retrieves a handle to a menu defined in the resource .RC file.
Syntax " -~ HMENU LoadMenu(HANDLE hInstance, LPSTR ipMenuNa:ne);
Uses Used in the WinMain() function to load the program’s main menu. Can be used in the body ofa
program to load new menus to change menus as the program operates
Returns - HMENLU, a handle to the menu. NULL if no menu was found.
See Also SetMenu(), DestroyMenu()

137

WINDOWS API BIBLE

Parameters . _

hInstance HANDLE: The handle of the program instance.

lpMenuName LPSTR: A pointer to a string containing the menu name. The menu name is defined in the re-
source .RC file as the first word in the MENU statement.

Example See the'example under the DestroyMenu() function description.

LoADMENUINDIRECT " OWin20 mWin30 ®Win3l

Purpose Loads a new menu, defined in a memory block. '

Syntax HMENU LoadMenulndirect (LPSTR lpMenuTemplate),

Description This function reads a menu definition in a memory block and returns a handle to the menu cre-
ated. The menu can then be attached to a window with SetMenu(). This function is used inter-
nally by Windows, but can be called directly if you take the trouble to create the menu definition
template.

. Uses » Provides an alternative to the normal menu creation and medification fuvu-ﬂons

Returns HMENU, a handle to the menu created. Returns NULL on error.

See Also LoadMenu(), ModifyMenu(), AppendMenu(), DrawMenuBar()

Parameters

IpMenuTemplate LPSTR: A pointer to a memory block containing the menu definition. The format of the memory
block must start with a MENUITEMTEMPLATEHEADER structure, followed by one or more
MENUITEMTEMPLATE structures defining each menu item,

The MENUITEMTEMPLATEHEADER structure is defined in WINDOWS.H as follows:

typedef struct
{

WORD versionNumber; /* set to 0 */
WORD offset; /* byte offset to first menuitem */
} MENUITEMTEMPLATEHEADER;

The versionNumber is a placeholder for future updates to Windows. For now, set this value
to zero. The gffset is the number of bytes from the end of the header to the first
MENUITEMTEMPLATE data. This is normally zero, assuming that the menu item data follows
immediately in memory. Each menu item is defined in a MENUITEMTEMPLATE data structure.
This is a bit difficult to work with for two reasons. One is that the mtID field is part of the struc-
ture for all template types except MF_POPUP. In that case it is omitted. The otner problem is

N - that the mtString is variable length. The end of the string is detected by the ending zero byte.

typedef struct : L
C

WORD mtOption; ‘ /* MF_CHECKED, MF_END, etc. */
WORL mtlID; /* item’ID - not for MF_POPUP */
" char mtStringC1]; /* start of menu item string */

} MENUITEMTEMPLATE;

The mtOption element can be a combination of the flags in Table 4-15, combmed witiithe C
language binary OR operator ().

Value - Meaning G

MF_CHECKED Places a checkmark next to the menu item.

MFEND R ' Specifies the end of a popup menu or static menu.

MF_GRAYED . " Grays the menu item text and disables the menu item so that it cannot be selected.
MF_HELP The menu item has a vertical bar to the left,

138

4. MENUS Vv

MF_MENUBARBREAK

MF_MENUBREAK

MF_OWNERREDRAW

MF_POPUP

them. In normal menus, it starts a new line of menu items.

. In popup menus, it separates a new column of items and displays a separator bar between

In popup menus, it separates a new column of items. No separator bar is disptayed. In normal

menus, it breaks the menu into a new line of menu items (two rows of menu items af the

window's top).

Specifies that the parent window is to paint the menu item each time it is needed. This is not

possible for the top menu line, but can be done for drop-down and popup menu items. The
parent window will receive WM_MEASUREITEM and WM _DRAWITEM messages to update the

drawing area.

exist for this type.

Specifies a popup menu. The mtiD element of the MENUITEMTEMPLATE structure does not

Table 4-15. MENUITEMTEMPLATE miOption Flags.

Example

This example creates a new menu, as shown in Figure 4-7,
when the WM_CREATE message is processed. The menu is
defined in a global memory block. The AppendMemory() func-
tion at the bottom of the listing is used to simplify dealing with
the variable-length fields used to define menus. It adds con-
secutive chunks of data to the end of a memory block.

& Header File

/* generic.h */

#define
fidefine
- Hdefine

fidefine

int
char

IDM_FIRST 1
IDM_SECOND 2
IDM_QUIT 3
MAXMENULONG 20

/* global variables */
ghlnstance ;

gszAppName [] = "generic” ;
/* functign prototypes */

Long FAR PASCAL WndProc (HWND, uns1gned, WORD, LONG) ;
void AppendMemory (LPSTR lpDest, LPSTR lpSource, int nBytes, BOOL bReset) ;

© WndProc() and AppendMemory() C Functions
"Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam,
{

— ',genénc r:T:i

Popup Quit

First
Second

Figure 4-7. LoadMenu-
Indirect() Example.

~LONG LParam)

HANDLE ' hMem ;

LPSTR LpMem ;

WORD wValue ;

HMENU : hMenu ;

switch (iMessage) . /* process windows messages */
{

.case WM_CREATE:

hMem = GlobalAlloc (GMEM_FIXED | GMEM ZEROINIT,

sizeof (MENUITEMTEMPLATEHEADER) +

6 * (sizeof (MENUITEMTEMPLATE) + MAXMENULONG)) ;

LpMem = Globatlock (hMem) ;

wValue = 0 ;

AppendMemory (LpMem, (LPSTR) &wValue, sizeof (WORD), TRUE) ;

wValue = 0 ;

AppendMemory (LpMem, (LPSTR) &uVaLue, sizeof (WORD), FALSE) ;

wValue = MF_POPUP ;
AppendHemory (LpMem, (LPSTR) &uwValue, 51zeof (HORD), FALSE)

139

WINDOWS API BIBLE

AppendMemory (lpMem, “&Popup", 7, FALSE) ;

wValue =0 ;

AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE) ;
wValue = IDM_FIRST ; '
AppendMemory (LpMem, (LPSTR) &wValue, sizeof (WORD), FALSE) ;
AppendMemory (LpMem, "&First"”, 7, FALSE) ;

wValue = MF_END ;

AppendMemory (LpMem, (LPSTR) &wValue, sizeof (WORD), FALSE) ;
wValue = IDM_SECOND ;

AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE) ;
AppengiMemory (LpMem, "“&Second", 8, FALSE) ;

wValue = MF_END ;

AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE) ;
wValue = IDM_QUIT ;

AppendMemory (lpMem, (LPSTR) &wValue, sizeof (WORD), FALSE) ;
AppendMemory (LpMem, "&Quit", 6, FALSE) ;

hMenu = LoadMenulndirect (LpMem) ;
SetMenu (hWnd, hMenu) ;
GlobalFree (hMem) ;

break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{ ' .
case IDM_FIRST: /* User hit the first menu item */

MessageBox (hWnd, "First Menu Item Works!",
“Message', MB_OK) ;
break ;
case IDM_SECOND:/* User hit the second menu item */
MessageBox (hWnd, "Second Menu Item Works!",
"Message', MB_OK) ;

break ;

case IDM_QUIT: /* User hit the Quit menu item */
DestroyWindow (hWnd) ;
break ;

}

break ;

case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;

break ;
default: : /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
3 :
return (OL) ; .

} . .
void AppendMemory (LPSTR ipDest, LPSTR LpSource, int nBytes, BOOL bReset)
{

int ' iy
LPSTR . Lps, tpd ;
static int nLastEnd ; -
lLps = tLpSource ;

lpd = LpDest ;
if (bReset)
nLasténd = 0 ;

else
. < :
for (i =0 ; i <nLastEnd ; i++)
Lpd++
}

for (i =0 ; i < nBytes ; i++)
{

" nLastEnd++ ;
* pd++ = *|ps++ ;

R 140

4. MENUS ¥

MF_BYCOMMAND
MF_BYPOSITION

MF_CHECKED
MF_DiSABLED
MF_ENABLED
MF_GRAYED
MF_MENUBARBREAK

MF_MENUBREAK

MF_OWNERREDRAW

"MF_POPUP
MF_SEPARATOR

MF_STRING
MF_UNCHECKED

MobirYMENU CWin20 ®mWin30 ®Win3l

Purpose Changes the properties of 2 menu item. ‘

Syntax . BOOL ModifyMenu(HMENU hMenu, WORD nPosition, WORD wFlags, WORD wIDNewltem,
LPSTR IpNewltem);

Description This is a powerful function for changing several attributes of a menu item at the same time. The
status (grayed, checked, etc.), the menu item’s string or bitmap, and its ID value can all be
changed in one function call.

Uses Modifying a menu while the program operates.

Returns BOOL. TRUE if the changes were made, FALSE on error.

See Also CheckMenultem(), GetMenu(), DrawMenuBar()

Parameters : B

hMenu HMENU: The handle to the menu. Use GetMenu() to retrieve a window’s menu handle.

nPosition WORD: The menu item to change. If the wFlags parameter contains MF_BYCOMMAND,
nPosition refers to the menu item ID number. If wFlags contains MF_BYPOSITION, nPosttion
refers to the absolute number of the menu item, 0 for the first, 1 for the second, ete.

wklags WORD: The attributes of the menu item after the changes. This parameter is made up from the
list, in Table 4-16, using the C language binary OR (1) operator to combine effects.

rVaIue Meaning e |

MF_BITMAP The menu item will be a bitmap. The low-order word of the joNewltem parameter should

contain a hand'e to the bitmap.
The nPosition value is interpreted as a menu item ID value. This is the default,

The nPosition value is interpreted relative to the sequential numbering of existing menu items: 0
is the first item, 1 the second, etc. The new item is inserted before the exiting one. Use an
riPosition value of 1 for the end of the menu.

Places a checkmark next to the menu item.

Makes it impossible to select the menu item. Does not gray the menu item.

Makes it possible to select the menu item. This is the default.

Grays the menu item text and disables the menu item so that it cannot be selected.

In popup menus, it separates a new column of items and displays a separator bar between
them. In normal menus, it starts a new line of menu items.

In popup menus, it separates a new column of items. No separator bar is diSplayed. In normal
menus, it breaks the menu into a new fine of menu items (two rows of menu items at the
window's top). S

Specifies that the parent window is to paint the menu item each time it is needed. This is not
possible for the top menu line, but can be done for drop-down and popup menu items. The
parent window will receive WM_MEASUREITEM and WM_DRAWITEM messages to update the

. drawing area.

Specifies a pcpup menu. The wiDNewltem parameter will be a handle to the popup menu.

Draws a horizontal line in the menu. This line cannot be selected, checked, enabled, or grayed.
The lpNewitem and wiDNewltem parameters are ignored.

Specifies that the new item is a character string. IpNewltem points to the string.
Does not place a checkmark next to the menu item. This is the default.

»

Table 4-16. ModifyMenu() Flags.

141

WINDOWS API BIBLE

WORD: Specifies the ID of the menu item. IfwFlags is set to MF_POPUP, wIDNewltem specifies

MF_OWNERDRAW

wIDNewltem
o the menu handle for the popup menu,
IpNewlItem LPSTR: Points to the contents of the changed menu item. The type of data depends on the wFlags
. setting. (See Table 4-17.)
[‘ wFlags - CpNewldtem 0T T T s R e gl
MF_STRING Long pointer to a character string. ‘
MF_BITMAP A bitmap handle. The bitmap handle is stored in the low- order word of [oNewitem.

You specify to which 32-bit value the joNewitem points. Windows will send WM_MEASURE-
ITEM and WM_DRAWITEM messages to the window’s message processing function when the
menu item needs to be redrawn. The value in the joNewitem parameter will end up passed to
the window’s function as an element of the structure pointed to by the /Param value. See the
example owner-drawn menu program in the introduction to this chapter.

Table 4-17. ModifyMenu() Data Types.

Related Messages
" Example

WM_MEASUREITEM, WM_DRAWITEM

Thls example uses ModifyMenu() to simultaneously change the IDM_ 0PT2 menu 1tem from
grayed to normal text and change it's character string to read “Now not Grayed.”

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

<
HMENU hMenu ;
switch (iMessage) /* process windows messages */
P
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_TOP1:
hMenu = GetMenu (hWnd) ;
ModifyMenu (hMenu, IDM_OPT2,
MF_BYCOMMAND | MF_ENABLED | MF_STRING,
IDM_OPT2, (LPSTR) "Now not Grayed") ;
break ;
[Other program lines
ReEmMovEMENU OWin20 m®mWin30 mWin3.
Purpose - Removes a menu item from a main menu. '
Syntax BOOL RemoveMenu(HMENU kMenu, WORD nPosition, WORD wFlags);

" Description The menu item is removed from the main menu. Any popup menus are removed, but are not
destroyed. Popups freed in this way can be reused. Be sure that all menus are either attached to
the application’s main menu, or erased with DestroyMenu() bofore the application terminates to
avoid leaving unattached menus in memory. .

Uses Using RemoveMenu() is considerably simpler in these situations than DeleteMenu(), as
RemoveMenu() allows the popup menu to be reattached, rather than rebuilt from seratch. Call
GetSubMenu() to obtain the popup menu handle before using RemoveMenu().

Returns BOOL. TRUE if the menu item was removed, FALSE on error. .

See Also GetSubMenii(), DeleteMenu(), AppendMenu(), InsertMenu()

Parameters ' :

hMenu | HMENU: A handle to the menu. Use GetMenu() to obtain a handle to a window’s menu.

142 A1

4. MENUS v

nPosition : WORD: The menu item to be removed.
- wFlags WORD: Sets how the nPostion value is interpreted (Refer to Table 4-18).
: y4

| value Meaning A X

MF_BYCOMMAND The nPosition value is the menu item ID valus, '

MF_BYPOSITION The nPosition value is interpreted relative to the sequential numbering of existing menu items: 0

is the first item, 1 the second, etc.

Table 4-18. RemoveMenu() Flags.
Comments Use DrawMenuBar() after changing the menu items to force Windows to redraw the menu line.
Example In this example, clicking the IDM_TOPI menu item causes the first popup menu to be moved

from the left of the menu bar to the far right. All of the popup menu items remain intact.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HMENU hMenu, hPopupMenu ;
static BOOL bMovedMenu = FALSE ;
switch (iMessage) /* process windows messages */
{
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_TOP1: /* move first popup meénu to menu end */
if (!bMovedMenu) :
{

hMenu = GetMenu (hWnd) ;

hPopupMenu = GetSubMenu (hMenu, 0) ;

RemoveMenu. (hMenu, 0, MF_BYPOSITION) ;

AppendMenu (hMenu, MF_POPUP, hPopupMenu,
(LPSTR) "New Position") ;

DrawMenuBar (hWnd) ; /* redraw menu bar */
bMovedMenu = TRUE ; /* don't try it twice */
} N A Y
break ;
[Other program lines])
SETMENU ’ MWin20 ®Win30 @Win3.l
Purpose " Attaches a menu to a window.
Syntax BOOL SetMenu(HWND kWnd, HMENU hMenu);
Description The menu attached can either be defined in a resource .RC file or created within the program
with the CreateMenu() function. Any existing menu is removed.
Uses Changing to a new menu, or removing a menu from the window.
Returns BOOL. TRUE if the menu has been changed, FALSE otherwise.
See Also CreateMenu(), DestroyMenu(), LoadMenu(), DrawMenuBar()
Parameters o
hWnd _HWND: A handle to the window which will change menus.

hMenu HMENU: A handle to the menu to add. Use LoadMenu() to retrieve the handle to a menu defined
o . in the resource .RC file. Set hMenu equal to NULL to remove the menu from a window without
. replacing it.

Example See the example under the DestroyMenu() function description.

143

WINDOWS AP| BIBLE

SETMEeNUITEMBITMAPS ' OWin20 ®Win30 ®&Win3l

Purpose Replaces the default menu checkmark hitmap with a custom bitmap.
Syntax . BOOL SetMenultemBitmaps(HMENU isMenu, WORD nPosition, WORD wFlags, HBITMAP
hBitmapUnchec{ced, HBITMAP hBitmapChecked);

Description Windows uses a default checkmark bitmap for checking menu items. This can be replaced with

: custom bitmaps using the SetMenultemBitmaps() function. The size of the checkmark bitmaps

is dependant on the video resolution of the system the program is running on. GetMenu-
CheckMarkDimensions() is used to find this size for scaling the bitmap to fit.

Uses Custom checkmarks can dress up an application progran{, with little penalty in memory con-
’ sumption. When the new bitmap is assigned to the menu item, the CheckMenultem() function
automatically will use this bitmap when checking or unchecking an item.

Returns " BOOL. TRUE if the bitmap was set properly, FALSE on error.

See Also SétMenuItemBitmaps(), CheckMenultem(), GetMenuCheckMarkDimensions()

Parameters

hMenu HMENU: A handle to a menu. Use GetMenu() to retrieve a window's menu.

nPosition WORD: The menu item number to change.

wFlags WORD: Specifies whether nPosition refers to the menu item ID number or the sequential num-

bering of menu items. This can be either of the values shown in Table 4-19.

Value' ... “: " " Meaning. S Ry ; lz]
MF_BYCOMMAND The nPosition value is the menu item 1D value. ‘
MF_BYPOSITION The nPosition value is interpreted relative sequential numbering of existing menu items: 0 is the

first item, 1 the second, etc.

Table 4-19. SetMenultemBitmaps() Flags.
hBitmapUnchecked HBITMAP: A handle to the bitmap to display when the menu item is not checked. This can be
NULL, leaving the side of the menu bar blank when unchecked (the normal case). -

hBitmapChecked HBITMAP: A handle to the bitmap to display when the menu item is checked. This can be NULL,
~ leaving the side of the menu bar blank when checked. A NULL value is not recommended.’

Example ~ See the example under the GetMenuCheckMarkDimensions() functlon descnptlon

TRACKPOPUPMENU 5 DWin20 BWin30) BWin3l

Purpose Displays a submenu anywhere on the screen. '

Syntax BOOL TrackPopupMenu(HMENU hMenu, WORD wFlags, int x, int ¥ int nReserved, HWND
hWnd, LPRECT IpReserved);

Description This is a new option, added with the 3.0 version of Windows. The popup menu is dlsplayed with its

upper left corner at 2,y on the screen. Screen coordinates are used, so the menu can Be out of
your program’s client area. Normal Windows menu item selection and WM_COMMAND messages--..
occur for the popup. The popup disappears after aselection is made, or after another screen area

is clicked.
Uses Convenient if the normal drop-down submenu options obscure an important part of the window's
. : client area. o
Returns BOOL. TRUE if the function displayed the submenu, FALSE on error.
See Also ' CreatePopupMenu(), AppendMenu(), GetSubMenu()

144

« 4. MENUS v

Parameters
hMenu

wFlags
x
Y

nReserved
hWnd

IpReserved

Related Messages
Example

/* genmenu.rc

HMENU: A handle to the popup menu to be displayed. Use CreatePopupMenu() to make a new
floating popup menu, and add the desired menu items with AppendMenu().

WORD: Not used. Always set to NULL.

int

int: The screen coordinates of the upper left corner. Use ClientToScreen() to convert from a
desired location on the window’s client area to screen coordinates.

int: Not used. Always set to NULL.

HWND: A handle to the window that owns the popup menu. This is the window that will receive
the WM_COMMAND messages from Windows as the submenu items are selected.

LPRECT: A pointer to a RECT data structure that contains the screen coordinates of a rectangle
within which the user can click the mouse button without dismissing the popup menu. If set to
NULL, the popup menu is dismissed if the mouse button is ps .

clicked anywhere outside of the popup menu boundary. Prior
to Windows 3.1, NULL was the only value permitted.

WM_COMMAND

This example produces a window as shown in Figure 4-8. If the
“Top Item” menu item is clicked, a floating popup appears at
the lower left. Clicking the “Item one” menu item in the float-

qcmnrnu :

Iop tem Quit Help

ing popup causes a simple message box to appear. L
The resource .RC file does not include the definition of -
the floating popup. Figure 48. Floating Popup
*/ Menu.

#include <windows.h>
#include “genmenu.h”

genmenu ICON generic.ico

genmenu MENU

BEGIN
MENUITEM “&Top Item", IDM_TOP1
‘MENUITEM "&Quit", IDM_QUIT
MENUITEM “\a&Help", IDM_HELP, HELP

END

The floating popup menu is created when the program starts (WM_CREATE message re-
ceived). It is displayed when the IDM_TOP1 menu item is clicked. Note that TrackPopupMenu()

uses screen units for the X and Y position. The ClientToScreen() function converts the desired
coordinates in the window’s client rectangle prior to calling TrackPopupMenu().

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

<
HMENU hMenu ;
static HMENU hPopupMenu ;
POINT pFloater ;
switch (iMessage) : /* process windows messages */

{

case WM_CREATE:
hPopupMenu = CreateFopupHenu O ;
AppendMenu (hPopupMenu, MF_STRING, IDM_POP1, “Item &one.") ;
AppendMenu (hPopupMenu, MF_STRING, IDM_POP2, “Item &two.'") ;
break ;

case WM_COMMAND: /* process menu items */
switch (wParam) -

145

WINDOWS AP BIBLE

[Other progrdm h‘nes]

case IDM_TOP1: /* Top menu item disp. the float. popup */ :
-pFloater.x =0 ; /* put floating popup on Left side */
pFloater.y = 100 ; /* down 100 units */
ClientToScreen (hWnd, &pFloater) ; /* pt to screen */
TrackPopupMenu (hPopupMenu, NULL, pFloater.x,

pFloater.y, NULL, hWnd, NULL) ; -

break ;

case IDM_POP1: /* The first item in floating popup hit */

MessageBox (hWnd, "This floating menu works!",
"Message', MB_O0K) ;
break ;

case IDM_QUIT:
DestroyWindow ChWnd) ; -
break ;

}

break ;

146

Mechanical equipment designed for people to manipulate settings (stereos, aircraft instruments, etc.) generally make
use of buttons, knobs, and slide bars for changing values. These devices are much faster and more intuitive to use than
typing at a keyboard. With aircraft instruments, keyboard entry is generally reserved for data that requires great
precision, such as navigational settings. Buttons and slide bars (called “scroll bars” in Windows) are excellent ways to
get user input. Rotating knobs do not have an exact match on the computer screen (rotating the mouse does not work
well), so scroll bars are generally used in places where a machine might use a knob. In general, if your program
requires the user to enter data on the keyboard, look for a way to provide a mouse alternative: Scroll bars for numeri-
cal values, buttons for choices, and list boxes for selections from a list. This does not mean that keyboard input should
be unsupported. Accelerator keys and other keyboard shortcuts find their way into most well-designed Windows pro-
grams, The ideal program provides both keyboard and mouse alternatives for every action.

Scroll Bar Concepts -

Scroll bar controls are child windows. They are initially created using the CreateWindow() function discussed in '
Chapter 2, Creating Windows. Once created, scroll bars can either be placed on the program’s client area, creating
windows, or added as part of the window’s border, for scrolling the client area. Figure 5-1 illustrates three different
scroll bars,

Do Iti

Quit

Figure 5-1A (left), B (middle), C (right). Three Examples of Scroll Bar Controls.

Figure 5-1A shows a horizontal scroll bar that is attached to the window’s client area. It uses the SBS_HORZ style
in CreateWindow(). Moving the scroll bar changes the numeric value in the edit control above it. The control could
have been made into a vertical scroll bar by using the SBS_VERT style in CreateWindow(). This would also require
changing the dimensions, to make the control thin in the X direction, and tall in the ¥ direction. Figures 5-1B and C
show scroll bars that are attached to the window’s border and are not part of the client area. They are generally used
as away of scrolling the client area (moving the contents of the client area horizontally or vertically). If the scroll bar
type shown in Figure 5-1A were used to scroll the client area, the scroll bar itself would be moved during scrolling!

147

WINDOWS AP! BIBLE

The attachment of scroll bars to the window'’s border is done when the scroll bar control is made visible.
ShowScrollBar() is used for scroll bars the same way that ShowWindow() was used for other types of child windows.
_ The difference is that ShowScrollBar() will attach scroll bars to the window’s border if the SB_HORZ or SB_VERT

styleis specxﬁed Windows automatically subtracts the width of the scroll bar from the client area, so that pairiting on
the client area does not run over the scroll bars. The other way to get a scroll bar attached to a window’s frame is to
create the window with one or two scroll bars specified when CreateWindow() is called. For example, to create a
window with a horizontal scroll bar at the bottom (Figure 5-1B), add the WS_HSCROLL window style, as shown in the
-following code.

hWnd = CreateWindow (/* create the program's window here */

gszAppName, /* class name */
gszAppName, /* window name */
WS_OVERLAPPEDWINDOW | WS_HSCROLL, © /* window style */
CW_USEDEFAULT, /* x position on screen */
CW_USEDEFAULT, /* y position on screen */

* CW_USEDEFAULT, /* width of window */
CW_USEDEFAULT, /* height of window */
NULL, /* parent window handle (null = none) */
NULL, /* menu handle (null = use class menu) */
hinstance, /* instance handle */
NULL) ; /* Lpstr (null = not used) */

ShowWindow (hWnd, nCmdShow) ;

The WS_VSCROLL adds a vertical scroll bar, which can be done with WS_HSCROLL or separately.

Defining the scroll bar as part of the parent window’s CreateWindow() call is a handy shortcut, as it saves you .
from having to create the window’s scroll bars as separate child windows. The WndProc() function for the parent
window will receive WM_HSCROLL and/or WM_VSCROLL messages if the scroll bar i is moved with the mouse. The
messages from the scroll bar will be sent using the parent window's handle.

Scroll bars are attached automatically to list boxes when the number of items exceeds the size of the list window.
List and combo boxes are discussed in Chapter 9, Windows Messages. Edit controls can also have scroll bars attached.
Single line edit controls can only take advantage of the horizontal scroll bar, but multilirie edit controls can use both
vertical and horizontal scroll bars. As edit controls are simply small windows, add the WS_HSCROLL and/or
WS_VSCROLL styles when creating the edit control. An example of a multiline edit control with a scroll bar is given
in Chapter 9 under £dit Control Messages.

Scroll Bar Position and Range

When a scroll bar is first created, the range of values reflected by the two ends of the control are 0 to 100. This is only
handy if you happen to be working with a parameter that varies over this range. In most cases, you will want to change
~ the scroll bar range to match the data you are changing. For scrolling text, the range is probably equal to the number
" of lines of text. The SetScrollRan()_ gefunction allows the scroll bar range to be reset at any time. The value refiected
by the scroll bar thumb (the rectangle in the center of the scroll bar that moves) depends on the scroll bar range. If
the range is from one to ten, a value of five will set the thumb in the center. If the range is changed from one to twenty,
a value of five will fall only one quarter of the way along the scroll bar. One thing you cannot do is reverse the top and
bottom of a scroll bar. This is unfortunate, as the vertical scroll bars are set up with low values at the top and high
values at the bottom. This is logical for scrolling text, but is reversed relative to what you would expect for entering a
number. You can get around this by subtracting the scroll bar position from the maximum position to get the value the
user meant when entering a number.

Scroll Bar Messages

When the user clicks part of a scroll bar, Windows sends either a WM_HSCROLL or WM_VSCROLL message, corre-
sponding to the action on a horizontal or vertical scroll bar, respectively. The wParam parameter that gets passed to
your WinProc() function with the message will tell where on the scroll bar the mouse was located when the user,
clicked the mouse button. These wParam values have names in WINDOWS.H (like SB_LINEUP for the top or left side

148

5. SCROLL BARS . ¥

arrow). Figure 5-2 shows the wParam values for each
part of the scroll bar. If you look in WINDOWS.H, you will
find two additional scroll bar messages, SB_TOP and
SB_BOTTOM. The author has been unable to get a scroll
bar to send one of these messages. When the mouse but-
ton isreleased after an action on the scroll bar, Windows
sends an SB_ENDSCROLL message. The exception to
this is if the user was moving the scroll bar thumb. In
this case, releasing the mouse generates the — ki BRELall
SB_THUMBPOSITION message. The complete descrip- Flgure 5- 2 Scroll BarMessage
tion of each of these messages is given in Chapter 9, Win-

dows Messages.

genetic

Dol Quit

SB_LINEUP

SB_PAGEUP

SB_THUMBTACK (Pressed)
$8_THUMBPOSITION (Released)

SB_PAGEDOWN

SB_LINEDOWN

Scroll Bar Function Summary

The functions relating directly to scroll bars are summarized in Table 5-1. Most of them deal with the simple tasks of
setting and retrieving the scroll bar range and thumb position.

| Function - Purpose ' X|
EnatleScrolBar Enable or disable a scroli bar control (Win 3.1).
GetScroliPos Retrieve the current position of the scrofl bar's thumb.
GetScroliRange Retrieve the minimum and maximum value range of a scroll bar. “
ScrollDC Scroll a region in a device context and compute the update areas.
ScroliWindow Scrolf a region in a window’s client area.
SetScroliPos Set the position of the scroll bar thumb.

SetScrollRange Set the minimum and maximum values of a scroll bar.
ShowScroliBar Display the scrgjl bar, optionally attaching it to the window’s border.

Table 5-1. Scroll Bar Function Summary.

The two functions that are more compiex are ScrollWindow() and ScrollDC(). They both scroll an area horizon-

'~ tally and/or vertically. ScrollDC() is more sophisticated, as it computes the areas on the screen that need to be

updated after scrolling. Scrolling always uncovers areas on the screen that need to be repainted. Your program logic
can determine what action to také depending on the size and location of the areas that need to be updated.

ENABLESCROLLBAR _ OWin20 OWin30 ®Win3.l
[~Purpose) Enables or disables a scroll bar control. 3
| Syntax BOOL EnableScrollBar (HWND hWnd, WORD wSBFlags, WORD wArrowFlags);

Description When a scroll bar is disabled, the thumb disappears and the center portion is not shaded. No

action or messages occur if the user attempts to use the scroll bar When activated, the thump
reappears, and the center portion is shaded.

Uses - The scroll bar can be disabled when the control it is attached to loses the input focus. See the
example below for an edit control.

Returns BOOL. TRUE if the function was successful, FALSE on error.

See Also SetFocus() '

149

WINDOWS API BIBLE

Parameters

hWnd HWND: The scroll bar window handle. This can be either a stand-alone scroll bar or a scroll bar
attached to another window, depending on the wiSBFlags value. If the scroll bar is created as part
of the window’s style (WS_VSCROLL or WS_HSCROLL), the created window’s handle is used for
hWnd.
wSBFlags WORD: The type of scroll bar. This can be any of the types described in Table 5-2.
| Value: " Meaning . , ;
SB_BOTH Both horizontal and vertical scroll bars attachedto a wxndow
SB_CTL A scroll bar control. In this case, set hWnd equal to the scroll bar handle.
SB_HORZ A horizontal scroll bar tied to the window. In this case, AWnd should be the window’s handle.
SB_VERT A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.

Table 5-2. Scroll Bar Types.

wArrowFlags WORD: Speclﬁes whether the scroll bar is enabled or disabled. It can be -any of the following
values described in Table 5-3.
“Valueg " . Meaning. &]
ESB_ENABLE_BOTH Enables both arrows of the scroll bar.
ESB_DISABLE_LTUP Disables the left arrow of a horizontal scroll bar, or the down arrow of a vertical scroll bar.
ESB_DISABLE_RTDN Disableé the right arrow of a horizontal scroll bar, or the up arrow of a vertical scroll bar.

ESB_DISABLE_BOTH Disables both arrows of a scroll bar.

Table 5-3. Scroll Bar Types.

Example

This example creates an edit control with an attached horizon-
tal scroll bar. The scroll bar is only activated when the edit
control has the input focus. If the focus shifts to another win-
dow, the scroll bar is deactivated. Windows sends a
WM_COMMAND message with the edit control’s ID value as
wParam when the scroll bar is activated. The scroll bar notifi-
cation code is decoded by examining the high-order word of
the lParam value passed with WM_COMMAND. EN_SETFOCUS Figure 5-3. EnableScroll-
is the notification code sent when an edit control gains the Bar() Example.

Do 1t} " Quit

input focus. EN_KILLFOCUS is the notification code when the Bl

edit control loses the input focus. Figure 5-3 illustrates the use of EnableScrollBar().

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

static HWND hEdit ;

HDC hdC ;

char cEditBuf [64], cBuf [128] ;

switch (iMessage) /* process windows messages */
{

case WM_CREATE:
hEdit = CreateWindow (“EDIT", “¥, :
- WS_CHILD | WS_BORDER | WS_HSCROLL l ES_AUTOHSCROLL |
ES_MULTILINE,

- 160

Contents = Text In Edit Control |

5. SCROLL BARS v

10, 10, 100, 50, hWnd, 101, ghlnstance, NULL) ;
SetWindowText (hEdit, "Text In Edit Control™) ;
ShowWindow (hEdit, SW_SHOW) ; .

break ;
case WM_COMMAND: /* process menu items */
sWwitch (wParam)
{
case 101: /* edit control notification */
switch (HIWORD (LParam))
{
case EN_SETFOCUS:
EnableScrollBar (hEdit, SB_HORZ,
ESB_ENABLE_BOTH) ;
break ;
case EN_KILLFOCUS:
EnableScrollBar (hEdit, SB_HORZ,
ESB_DISABLE_BOTH) ;
break ;
>
break ;
case IDM_DOIT: /* retrieve edit text and display */

GetWindowText (hEd'lt, cEditBuf, 63) ;
hDC = GetDC (hWnd) ;
TextOut (hdDC, 10, 70, cBuf, wsprintf (cBuf,
“Contents = %s", (LPSTR) cEditBuf)) ;
ReleaseDC (hWnd, hDC) ;
break ;
case IDM_QUIT:
PostQuitMessage (NULL) ;
‘break ;
}
break ;
case WM_DESTROY:
Post@QuitMessage (U)
break ;
default:
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

b
return (OL) ;

b
GETSCrOLLPOS Win20 ®mWin3.0 ®Win3l
Purpose _ Finds the location of the scroll bar thurb.
Syntax int GetScroliPos(HWND 2Wnd, int nBar);
Description Reads the position of the scroll bar thumb. The number retumed will depend on the scroll bar
range that was set with SetScroliRange().
Returns int, the scroll bar position. .
See Also SetScrollPos(), SetScrollRange, GetScrollRangeO)
Parameters ‘
hWnd HWND: The scroll bar control handle if nBar is SB_CTL, or the window handle 1f nBar is
: SB_HORZ or SB_VERT.
nBar ‘ int: The type of scroll bar. This can be any of the types listed in Table 5-4.
SB_CTL ~ Ascroll bar control. In this case, set hWnd equal to the scroll bar handle.
SB_HORZ ‘A horizontal scroll bar tied to the window. In this case, hWnd should be the window’s handle.

SB_VERT A vertical scroll bar tied to the window. In this case, hWnd should be the window's handle.
Table 5. Scroll Bar Types. '

- 151

v v YO Al BISLE

Related Messages WM_HSCROLL, WM_VSCROLL ~ — . Tgeneric . [< [+
A Dottt Quit

Scroll Position = 4

Example Here the program creates a scroll bar control that sets the nu-
meric value inside the edit control when the scroll bar is
moved. When the user clicks the “Do It!” menu item, the cur-
rent scroll bar position is retrieved by GetScrollPos() and dis-

~ played in the client area, as illustrated in Figure 5-4.

Figure 5-4. GetScrollPos()
Example.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
<

static HWND hEdit, hScroll ;
static int nScrotivalue ;
-char cBuf £128] ;
HDC ‘) hde ;
int n;
switch (iMessage)) /* process windows messages */
{
case WM_CREATE: /* create edit control */

_hEdit = CreateWindow ("EDIT", 0",

WS_CHILD | WS_VISIBLE | WS_BORDER,

20, 20, 40, 25, hWnd, NULL, ghInstance, NULL) ;
ShowWindow (hEdit, SW_SHOW) ;

/* create scroll bar control */
hScroll = CreateWindow ("SCROLLBAR", "",.

WS_CHILD | WS_VISIBLE | SBS_HORZ,

10, 100, 200, 20 hWwnd, NULL , ghInstance, NULL) ;
ShowScrollBar Chscroll, SB_CTL, SW_SHOW) ;
SetScrollRange (hScroll, SB_CTL, 0, 10, FALSE) ;
nScrollvalue =0 ;

SetScrollPos (hScroll, SB_CTL, nScrollValue, TRUE) ;
break ;

case WM_HSCROLL:
switch (wParam)

case SB_THUMBPOSITION: . /* user has moved scroll thumb */
nScroliVatue = LOWORD (LParam) ;
SetScrollPos (hScroll; SB_CTL, nScrollVaLue, TRUE) ;
wsprintf (cBuf, "“%d",. nScrollValue)
SetWindowText (hEdit, (LPSTR) cBuf) ;
break ; :

case SB_LINEDOWN: /* user clicked scroll rt arrow */
nScrollValue++ ; : :
nScrollValue = nScrollvalue > 10 210 : nScrollvalue ; |
SetScrollPos (hScroll, SB_CTL, nScrollvalue, TRUE) ;
wsprintf (cBuf, "%d", nScrollvalue) ;
SetWindowText (hEdit, (LPSTR) cBuf) ;

break ; ' .
case SB_LINEUP: - /* user clicked scroll Lf arrow */
nScrollvalue-- ; ‘

nScrottValue = nScrollvalue <0 2 0 : nScrollValue ;
SetScrollPos ¢(hScroll, SB_CTL, nScrollValue, TRUE) ;
wsprintf (cBuf, "%d'", nScrollvalue) ;
SetWindowText (hEdit, (LPSTR) cBuf) ;
break ;
} .
break ; .
case WM_COMMAND: . /* process menu items */
switch (wParam)
{ B

case IDM_DOIT: /* User hit the "“Do it" menu item */

152

5. SCROLL BARS ¥

n = GetScrollPos (hScroll, SB_CTL) ;
hDC = GetDC (hWnd) ;
TextOut (hdDC, 25, 0, cBuf, wsprintf (cBuf,
“Scroll Position = %d", n)) ;
ReleaseDC (hwnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;

break ;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
}
return (OL) ;
3}
GETSCROLLRANGE : BWin20 ®mWin30 mWin3.l
Purpose Retrieves the minimum and maximum range values for a scroll bar.
Syntax void GetScrollRange(HWND kWnd, int nBar, LPINT lpMinPos, LPINT IpMaxPos);
Description Sets the integer values pointed to by IpMinPos and lpMaxPos to the scroll bar limits.
Uses Avoids having to keep track of scroll bar limits in static variables. You can retrieve the scroll bar
limits when you use GetScrollPos() to retrieve the scroll bar position.
Returns No returned value (void).
See Also GetScrollPos(), SetScrollRange, SetScroliPos()
Parameters :
hWnd HWND: The scroll bar control handle if nBar is SB_CTL, or the window handle if nBar is
SB_HORZ or SB_VERT.
nBar - int: The type of scroll bar. This can be any of the types listed in Table 5-5.
~Value Meaning - , i i ; gl
SB_CTL A scroll bar control. In this case, set hiWnd equal to the scroll bar handle.
SB_HORZ A horizontal scroll bar tied to the window. In this case, 'Wnd should be the window's handle.
SB_VERT A vertical scroll bar tied to the window. In this case, hWnd should be the window’s handle.

Table 5-5. Scroll Bar Types.

ipMinPos
{pMaxPos
Related Messages
Example .

LPINT: A pointer to the integer variable that will receive the mia
* minimum scroll bar value range. Doltl Qut

LPINT: A pointer to the integer variable that will receive the
maximum scroll bar value range.

WM_HSCROLL, WM_VSCROLL

This example (illustrated in Figure 5-5) demonstrates'a win-
dow with an attached horizontal scroll bar, The scroll bar is
created with the window during the CreateWindow() call in
WinMain(). The scroll bar range and initial position are set when the WndProc() function pro-
cesses the WM_CREATE message. When the user cllcks the “Do It!” menu item, the scroll bar
ranges are displayed in the client area.

Figure 5-5. GezScrollRange()
Example.

153

WINDOWS API BIBLE

/* generic.c generic windows application */

#include <windows.h> /* window's header file - always included */
#include “generic.h"” /* the application's header file */

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance, LPSTR LpszCmdLine,
int nCmdShow)

{
HWND hWnd ;
MSG msg ;
WNDCLASS wndclass ;
ghlnstance = hlnstance ; /* store instance handle as gtobal var. */
if (!hPrevInstance) /* Load data into window class struct. */
{
wndclass.style = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra =0;
wndclass.cbWndExtra =0;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (hInstance, gszAppName) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = GetStockObject (WHITE_] BRUSH)
wndclass.lpszMenuName = gszAppName ;
wndclass.lpszClassName = gszAppName ;
/* register the window class */
if ('Reg1sterclass (&undclass))
return FALSE ;
>
hWnd = CreateWindow (. /* create the program's window here */
gszAppName, /* class name */
gszAppName, /* window name */
WS_OVERLAPPEDWINDOW | WS_HSCROLL, /* window style */
CW_USEDEFAULT, /* x position on screen */
CW_USEDEFAULT, ‘/* y position on screen */
CW_USEDEFAULT, /* width of window */
CW_USEDEFAULT, /* height of window */
NULL, . /* parent window handle (null = none) */
NULL, © /* menu handle (null = use class menu) */
hInstance, . /* instance handle */ '
NULL) ; . /* Lpstr (null = not used) */
ShowWindow (hWnd, nCmdShow) ; :
UpdateWindow (hWnd) ; /* send first WM_PAINT message */
while (GetMessage (&msg, NULL, 0, 0)) : ' /* the message Loop */
{ : .
: TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
)
return msg.wParam ;
) —-
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< .
char cBuf [128] ;
HDC hdC ;
int nMin, nMax ;
switch (iMessage) /* process windows messages */
{

case WM_CREATE:
SetScrollRange (hund, sB_HORZ, O, 10, FALSE) ;
SetScrollPos (hWnd, SB_| HORZ 5, TRUE)
break ;

154

5. SCROLL'BARS ¥

}

case WM_COMMAND : - /* process menu items */
switch (wParam)
{
case IDM_DOIT: /* User hit the “Do it" menu item */
GetScrollRange (thd SB_| HORZ &nMin, &nMax) ;
hDC = GetDC (hWnd) ;
Textout (hdC, O, 0, cBuf, wsprintf (cBuf,
"Scroll Min Range. = %Zd", nMin)) ;
TextOut (hdC, 0, 20, cBuf, wsprintf (cBuf,
“Scroll Max Range = %d", nMax)) ;
ReleaseDC (hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (OL) ;

ScrorLLDC

MWin2) ®mWin30 MEWin3l

Purpose
Syntax

Description

Uses
Returns
See Also
Parameters
hDC

dx

dy
IpreScroll

IprcClip

hrgnUpdate

Scrolls all or part of a device context vertically and/or horizontally.

BOOL SerollDC(HDC kDG, int dz, int dy, LPRECT IprcScroll, LPRECT lprcClip, HRGN
hrgnUpdate, LPRECT lprcUpdate);

This function is the most powerful method of moving a rectangular region of bits. The movement
can be both horizontal and vertical in one function call. A subregion within the scrolling rect-
angle can be picked out, limiting the area scrolled. The function also computes the size of either
an update region or update rectangle, capturing the area that needs to be repamted after scroll-
ing to keep the image intact.

Scrolling a window’s client area, or scrolling all or part of a bitmap in 2 memory device context.
BOOL. TRUE if the function executed correctly, FALSE on error. :
ScrollWindow()

HDC: The device context that contains the image to be scrolled. Use GetDC() to obtain a
window's device context.

int: The number of units to scroli horizontally. Positive numbers scroll right, negatxve numbers
scroll left.

int: The number of units to scroll vertically. Positive numbers scroll down, negative numbers
scroll up.

LPRECT: Pointer to the rectangle structure that contains the coordinates of the scroiling rect-
angle. Use GetClientRect() to obtain 2 window's client area rectangle.

LPRECT: Pointer to the rectangle structure that contains the coordinates of the clipping rect-
angle. If the IpreClip rectangle is smaller than lpreScroll, only the area inside the lprcClip rect-
angle is scrolled.

HRGN: A handle to the update region uncovered by the scrolling process. If scrolling is in both
the X and Y directions simultaneously, the region will not be rectangular. If hrgnUpdate and
IprcUpdate are both NULL, Windows does not compute the update region.

155

WINDOWS API BIBLE

iprcUpdate LPRECT: A pointer to a rectangle structure that is filled with ——

generic

the dimensions of the smallest rectangle that bounds the up- ’ Do it
date region uncovered by the scrolling process. Set to NULL if T
you do not want Windows to compute the update rectangle.

Related Messages WM_HSCROLL, WM_VSCROLL

Example - This example uses ScrolIDC to scroll the center part of the l | l I
window's client region, based on the window's horizontal scroll
bar position. The clipping region is set smaller than the client
area by 20 units, so that the outermost 20 units are not scrolled. ~ Figure 5-6. ScrollDC()
After the user clicks the “Do It!” menu item (drawing the lines) Example.
and gives one mouse click of the right scroll bar arrow, the
window looks like Figure 5-6.

Long FAR PASCAL WndProc C(HWND.hWnd, unsigned iMessage, WORD wParam, LONG LParam)
C o

static HWND hscroll ; .

static int nScrollvalue, notdvalue ;

HDC . hoe ; :

int : i

RECT rWind, rClip, rUpdate ;

HRGN hrgnUpdate ;

HANDLE hPen ;

switch (iMessage) /* process windows messages */

case WM_CREATE:
GetClientRect (hWnd, &rWind) ;
hScroll = CreateWindow ("SCROLLBAR", "", ’
WS_CHILD | WS_VISIBLE | SBS_HORZ | SBS_BOTTOMALIGN,
rWind.left, rWind.top, rWind.right, rWind.bottom,
hWnd, NULL , ghInstance, NULL) ;
ShowScrollBar (hWnd, SB_HORZ, TRUE) ;
SetScrollRange (hWnd, SB_HORZ, O, 10, FALSE) ;
.nScrollvalue = nOldvalue =0 ; -)
SetScrollPos (hWwnd, SB_HORZ, nScrollvalue, TRUE) ;
break ;
case WM_HSCROLL: : :
hrgnUpdate = CreateRectRgn (0, 1, 2, 3) ;
hDC = GetDC (hWnd) ; .
GetClientRect (hWnd, &rWind) ; /* get client rectangle */
rClip.left = rWind.left + 20 ; /* set clipping region */
rClip.right = rWind.right - 20 ; /* inside of client rect */
rClip.top = rWind.top + 20 ; !
rClip.bottom = rWind.bottom - 20 ;
switch (wParam)
case SB_THUMBPOSITION: /* user has moved scroll thumb */
nScrollvalue = LOWORD (LParam) ;
if (nScrollValue != noldValue)
{ .
SetScrollPos (hWnd, SB_HORZ, nScrollvalue, TRUE) ;
ScrollDC ChDC, ' ‘)
20 * (nScrotlvalue -~ n0Oldvalue), O,
(LPRECT) &rWind, (LPRECT) &rcClip,
hrgnUpdate, C(LPRECT) &rUpdate) ;
nOldvalue = nScrollvalue ;
}
break ; . .
case SB_LINEDOWN: /* user clicked scroll rt arrow *
nScrollvValue++ ; ’
.nScrollvalue = nScrollvalue > 10 ?2 10 : nScrollvalue ;
if (nScroliValue != noldValue)
{

156

5, SCROLL BARS Vv

SetScrollPos (hWnd, SB_HORZ, nScroLlVaLue', TRUE) ;
ScrotllbC (hdDC,
20 * (nScroltvValue - nOLdVaLue) 0,
C(LPRECT) &rWind, (LPRECT) &rCl‘lp,
hrgnuUpdate, (LPRECT) &ruUpdate) ;
nOldvalue = nScrolltvalue ;
b
break ;
case SB_LINEUP: /* user clicked scroll Lf arrow */ -
nScrollValued ; :
nScroltValue = nScrollvValue <0 ?2 0 : nScrollvatue ;
if (nScrollValue != nOoldvalue)

(.
SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE) ;
ScrollDC C(hdDC,

20 * (nScrollValue - nOtdvalue), O,

(LPRECT) &rWind, (LPRECT) &rClip,

hrgntpdate, (LPRECT) &rUpdate) ;
n0ldValue = nScrollvValue ;

X

break ;

b
ReleasedDC (hWnd, hdC) ;
DeleteObject (hrgnuUpdate) ;
break ;
case WM_COMMAND: /* process menu items */
switch (wParam)
{ 0 .
case IDM_DOIT: /* User hit the “Do it” menu item */
hDC = GetDC ChWnd) ;
hPen = GetStockObject (BLACK_PEN) ;
for (i =0 ; i <20 ; i++) /* paint 20 Llines */
{
MoveTo (hDC, i * 8, 0) ;
LineTo (hDC, i * 8, 400) ;
}
DeleteObject (hPen) ;
ReleaseDC (hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;

break ;
b
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
}
return (OL) ;
)
ScrOLLWINDOW . MWin20 ®WWin30 ®mWin3.l
Purpose Scrolls a window's client area in the X and ¥ directions.
Syntax void Scrolledow(HWND RWnd, int XAmount, int YAmount 'LPRECT IpRect, LPRECT
IpClipRect);
Description -~ This is a simpler scrolling function than ScrollDC(), but it lacks the ability to compute regions or
- rectangles uncovered by the scrolling process. Instead the uncovered areas are automatically
placed into the window's update region for painting on the next WM_PAINT cycle.
Uses * Scrolling small windows where separate logic is applled to compute the uncovered regions.
Returns No returned value (void).

157

WINDOWS API BIBLE

See Also SerollDC() - ‘ ’ : ‘
Parameters IQo W Quit |

hWnd HWND: The hauale of the wmdow that has the chent area that / 0 numberlinc is here.
. 1 number line is here.
will be scrolled 2 numbir tine i$ here.
XAmount int: The amount to scroll the window in the X direction. Device 3 number line Is here.
. e . . 4 number line is here.
units are used. Positive values scroll right, negative values | 5 oumber lne Is here.
scroll left. ' i : y
YAmount int: The amount to scroll the window in the ¥ direction. Device Figure 5-7. Scrolledow(),
units are used. Positive values scroll down, negative values Example. ’
scroll up.
IpRect * LPRECT: "A pointer to a rectangle structure containing the portion of the client area to be

scrolled. NULL if'the entire client areais to be scrolled. Use GetClientRect() to determine the
bounding rectangle of the client area if you will be scrolling a portion of it.

IpClipRect LPRECT: A pointer to a rectangle structure that contains the clipping rectangle to be scrolled. If
the clipping rectangle is within tne (pRect area, only points within lpChpRect will be scrolled Set
equal to NULL if the entire window i is to be scrolled.

Related Messages WM_HSCROLL, WM VSCROLL

Example This example, illustrated in Figure 5-7, scrolls some text i in the client area, based on the position
of the horizontat scroll bar at the window’s bottom. The text is initially painted when the user
clicks the “Do It!” menu item. Because there is no automatic repainting of clipped text on the

right side, scrolling the text into the window's side causes the end of the text to be lost.
‘ :

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ ’ .

static HWND "hScroll ;

static int nScroltValue, nOtdValue ;

char cBuf C101 ;

HDC hbC

int iy

RECT rWind ;

switch (iMessage) /* process windows messages */
< . :

case WM_CREATE:
GetClientRect (hwnd &rWind) ; :
hScroll = Createw'nndou ("SCROLLBAR", "",
- WS_CHILD | WS_VISIBLE | SBS_HORZ | SBS_BOTTOMALIGN,
rWind.left, rWind.top, rWind.right, rWind.bottom,
hWnd, NULL , ghInstance, NULL) ;
ShowScrollBar (hWwnd, SB_HORZ, TRUE) ;
SetScrollRange (hWnd, SB_HORZ, 0, 10, FALSE) ;
nScrollValue = noldvalue = 0 ;
SetScrollPos (hWnd, SB_HORZ, nScrollvalue, TRUE) ;
break ;
case WM_HSCROLL:
switch (wParam)
{ : .
case SB_THUMBPOSITION: /* user has moved scroll thumb */
nScrollValue = LOWORD (lParam) ;
if (nScrollvalue !'= nOldVaI.ue)
{

N

SetScrollPos (hWnd, SB_HORZ, nScrollVaLue, TRUE)
ScrollWindow (hWnd,
20 * (nScrollvalue - nOldValue),
. NULL, NULL) ;
nOldvalue = nScrottValue ;

o 158 -

5. SCROLL BARS v

>
break ;

case SB_LINEDOWN: /* user clicked scroll rt arrow */ \
nScrollValue++ ; - . {
nScrollValue = nScrollVatue > 10 ? 10 : nScroll.Va/lue ;
if (nScrollValue != notdvalue) : 4

{
SetScrollPos (hWwnd, SB_HORZ, nScrollValue, TRUE) ;
Scrollwindow (hWnd,
20 * (nScroltlvalue - notdvalue), 0,
NULL, NULL) ; :
n0ldvValue = nScrolivalue ;
}
break ; . .
case SB_LINEUP: /* user clicked scroll Lf arrow */

nScrollValuen ;
nScrol(lValue = nScrollValue <0 2 0 : nScrollValue ;
if (nScrollValue != noldvatue)

{
. SetScrollPos (hWnd, SB_HORZ, nScrollValue, TRUE) ;
ScrollWindow (hwWwnd,
20 * (nScrollValue — nOldValue), O,
NULL, NULL) ; .
nOldvalue = nScrollvalue ;
}
break ;
}
break ; .
— case WM_COMMAND: /* process menu items */
switch (wParam) '
case IDM_DOIT: /* User hit the “Do it” menu item */
hDC = GetDC (huWnd) ;
for (i =0 ; i <20 ; i++) /* draw some text */
{ : .

itoa (i, cBuf, 10) ;
TextOut ChDC, O, i * 20, cBuf, strlen (cBuf)) ;
. TextOut (hDC, 20, i * 20,)
: “number lLine is here.", 20) ;
} ! .
ReleaseDC (hWnd, hDC) ;
: break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;

break ;
X
break ;)
case WM _DESTROY:’ /* stop application */
PostQuitMessage (0) ; :
break ;
default:) /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3 .
return (OL) ;
} N
SETSCrROLLPOS EBWin20 ®Win30 mMWin3l
Purpose Sets the position of the scroll bar thumb.
Syntax int SetScrollPos(HWND 2Wnd, int nBar, int nPos, BOOL bRedraw);
Description The physical location after the thumb depends on the ranges set for the scroll bar’s minimum and’

maximum values. The thumb's position will be ratioed between these two extremes. Values be-
yond the limits of the scroll bar range result in the thumb at an end of the scroll bar (no danger of
going past limits).

159

WINDOWS AP BIBLE

Uses Generally used when the scroll bar ié first created or shown, to make the thumb position match

v the value represented. It can also be used for building keyboard interface functionality.
Returns int, the previous position of the scroll bar thumb.
See Also SetScrollRange(), GetScroliPos(), GetScrollRange()
Parameters ‘ '
hWnd HWND: The scroll bar control handle if nBar is SB_CTL, or the wmdow handle if nBar is
SB_HORZ or SB_VERT.
nBar int: The type of scroll bar. This can be any of the types listed in Table 6-6.

SB_CTL A scroll bar contrdl. In this case, set hWnd edual to the scroll bar handle.

SB_HORZ A horizontal scrolt bar tied to the window. In this case, hWnd should be the window's handle.
SB_VERT A vertical scroll bar tied to the window. In this case, AWnd should be the window's handle

Table 5-6. Scroll Bar Types.

nPos int: The new scroll bar thumb position.

bRedraw BOOL: TRUE if the scroll bar should be redrawn to show the new thumb position, FALSE if not.
Use it if you are going to call another scroll bar function, which will then redraw.

Related Messages WM_HSCROLL, WM_VSCROLL

Example See the following example under the SetScrollRange() function description.

SETSCROLLRANGE . mWin20 ®mWin30 ®Win3.l

Purpose Establishes the upper and lower ranges of a scroll bar.

Syntax , void SetScrollRange(HWND hWnd, int nBar, int nMinPos, int nMazPos, BOOL bRedraw);

Uses Used when the scroll bar is created to establish the upper and lower limits of the scroll bar range.

Returns No returned value (void).

See Also SetScrollPos(), GetScrollRange(), GetScrollPos()

Parameters

hWnd HWND: The scroll bar control handle if nBar is SB_CTL, or the window handle if nBar is
: SB_HORZ or SB_VERT.

nBar int: The type of scroll bar. This can be any of the types lxsbed in Table 5~7

SB_CTL A scroll bar control. In this case, set hWnd equal to the scroll bar handle. -
SB_HORZ A horizontal scroll bar tied to the window. In this case, hWnd should be the window's handle.
SB_VERT. . A vertical scroll bar tied to the window. In this case, hWnd should be the window’s handle.

Table 5-7. Scroll Bar Types.

160

5. SCROLL BARS v

nMinPos
nMaxPos
bRedraw

Related Messages
Example

int: The scroll bar lower limit.

int: The scroll bar upper limit. -)

BOOL: TRUE if the scroll bar should be redrawn to show the new thumb position, FALSE if not.
Use it if you are going to call another scroll bar function, which w1ll then redraw.
WM_HSCROLL, WM _VSCROLL

This example creates a scroll bar control and attaches it to the main window. The scroll bar range
is set from 0 to 10, and the thumb moved to a value of zero. Note how ShowScrollBar() is used to
attach the scroll bar (a child window) to the application’s main window.

-

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< .

21

static HWND hScrollt ;
RECT rWind ;
‘suitch (iMessage) /* process windows messages */

case WM_CREATE:

GetClientRect (hWnd, &rWind) ;

hScrotl = Createhhndou ("SCROLLBAR" e,
WS_CHILD | WS_VISIBLE | SBS HORI | SBS_BOTTOMALIGN,
rWind.left, rWind.top, ruind.right, rWind.bottom,
hwnd, NULL , ghInstance, NULL) ;

ShouwScrollBar (hWnd, SB_HORZ, TRUE) ;

SetScrollRange (hWnd, SB_HORZ, 0O, 10, FALSE) ;

nScrollvalue = nOldvalue =0 ;

SetScrollPos (hWnd, SB_HORZ, nScrollvalue, TRUE) ;

break ;

[Other program lines]

SHOWSCROLLBAR @Win20 ®Win30 mWin3l

Purpose Makes a scroll bar visible and establishes its links to the parent window (if any).

Syntax void ShowScroliBar(HWND hWnd, WORD wBar, BOOL bShow);

Description Shows or hides a scroll bar. This function should be used rather than ShowWindow() to make
seroll bars visible. ShowScrollBar() allows a horizontal or vertical scroll bar to be linked to a
window's frame. . ! »

Uses Used during the initial creation of a scroll bar, or later to hide or redisplay the scroll bar. Do not
call this function while processing a scroll bar message.

Returns No returned value (void). '

See Also ShowWindow()

Parameters

hWnd HWND: The scroli bar control handle if nBar is SB_CTL, or the window handle if nBar is
SB_HORZ or SB_VERT.

nBar int: The type of scroll bar. This can be any of the types listed in Table 5-8.

161

WINDOWS API BIBLE

R [Value' '

~ Meaning .
SB_BOTH Both horizontal and vertical scroll bars attached to a window)
SB_CTL " Ascroll bar control In this case, set hWnd equal to the scroll bar handle
SB_HORZ A honzontal scroll bar tied to the window. In this case, hWnd should be the wmdow s handie.
‘SB_VERT A vertical scroll bar tied to the window. In this case, hWnd should be the window’s handle.
Table 5-8. Scroll Bar Types. ! ’ 7
bSIww ‘BOOL: TRUE 1f the scroll bar is to be visible, FALSE if it is to be hidden.
.Example

See the previous example under the SetScrollRange() function description.

162

The mouse is used extensively in Windows programs for many purposes. Windows provides excellent built-in support
for controlling the mouse. Windows also supports a related concept, the “caret.” This is a blinking line (or shape) that
can be positioned in the client area to highlight a position. Typically, it is used in word processing applications to show
where the next keyboard input will be as text is entered on the screen. Using the caret to fix locations on the screen
allows the mouse cursor to be free for menu selections and other uses that take it off the window's client area.
Physically, the mouse cursor is a small bitmap that is displayed and erased at different locations on the screen to
produce the illusion of movement. This bitmap shape can be changed as the program runs. Many applications can be
improved by having the mouse cursor shape change from the usual arrow shape to soniething more appropriate for the
activity. “Pen” shapes for drawing, “hands” for pushing buttons, and even “little men” for playing games are possible.
The Windows versions 3.0 and higher support dynamicaliy changing the shape of the cursor as the program runs and
basing the cursor shape on bitmap images.

Mouse Message Overview
From the programmer s point of view, the mouse interacts with a program by sending a series of messages. A good way
~ to get a feel-for this message flow is to turn on the Windows Spy program that comes with the Software Development
Kit (SDK). Set Spy to receive messages from all windows, A typical Spy screen is shown in Figure 6-1. :
In this example, Spy is tracking messages sent to a
program called SNAP3. Here are the first three messages’

= Spy = SNAR3!Snap3™

and how to interpret them. » Spy Wmdow Options!
WM_SETCURSO 200C WM_SETCURSOR 200C 02000005 ﬁ_
R 200C WM_NCMOUSEMOVE 0005 01700137 ks
Windows uses this message if it needs to change the 200C WM_NCHITTEST 0000 01700137}
cursor shape. 200C WM_MOUSEACTIVATE 200C 02010005}
200C WM_NCPAINT 0C42 00000000}
WM_NCMOUSEMOVE 200C WM_NCACTIVATE 0001 00002094}
The mouse cursor has moved within a nonclient area 200C WM_SETCURSOR 200C 02010005}
of the window. 200C WM_NCLBUTTONDOWN 0005 01700137}
] 200C WM_SETCURSOR 200C 00000002 f
WM_NCHITTEST 200C WM_NCCALCSIZE 0000 OSEDO71
This message tests what type of object the cursor is 200C WM_NCPAINT 0C42 00000000 K3
over (for example, border, caption, client area, etc.). 200C WM_NCACTIVATE - 0000 002020343

The values shown in hexadecimal on the right side Figure 6-1. Windows Spy Program Viewing Mouse
of the Spy window are the wParam and l[Param data Messages.
that is sent with the message. wParam is a WORD, so it
_only has 16 bits of information, but Param contains 32 bits. These parameters are used to encode the mouse position
on the screen, and encode the data about what type of object the mouse cursor is above. We w111 examine these fields
in a moment.

After a little fooling around with Spy, you will realize that Windows sends a lot of messages to your program as you
move the mouse or use its buttons. Fortunately, most programs can ignore the majority of these messages and just
pass them to the default window's procedure. The messages that you are most likely to use are WM_MOUSEMOVE,
WM_LBUTTONDOWN, and its cousins (WM_RBUTTONDOWN, etc.) for detecting the left, nght or center mouse but-
ton being pressed or released.

163

WINDOWS API| BIBLE

Common Mouse Messages

When you move the mouse, Windows sends a WM_MOUSEMOVE message. The message is not sent every time the
motuse cursor moves from one screen pixel to the next. How often the message is sent depends on how fast a computer
is running Windows. In general terms, you can expect to get this message about every tenth pixel as the user sweeps
the mouse cursor across the screen, more often if the cursor is moved slowly.

- When your program receives a WM_MOUSEMOVE message, the {Param value contains the cursor’s XY position
on the screen. The ¥ position is the high-order 16 bits, while the X position is in the low-order 16. Extracting the two
WORD-sized values from a LONG parameter is such a common task that the WINDOWS.H file provides the LOWORD
and HIWORD macros to automate the task. A typical program fragment for dealing with WM_MOUSEMOVE messages
in the WinProc() function is i

’ long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
¢ .

int nXpos, nYpos ;
switch (iMessage) v /* process windows messages */
1 .

" case WM_MOUSEMOVE:
nXpos = LOWORD (lParam) ;
nYpos = HIWORD (lParam) ;

;\ " Note that the mouse cursor position is given relative to the upper left corner of the window’s client area, Windows
provides two functions for converting back and forth between screen and client coordinates: ScreenToClient() and
ClientToScreen(). These functions are often used ac part of the mouse message processing logic. The other basic set
of messages have to do with pressing and releasing the mouse button(s). Windows supports one, two, and three button
mice, but provides no method to determine which type is in use. In practice, most programmers assume the conserva-
tive case and only use the left mouse button. The messages passed to your program from the mouse button-active
inside the program’s client area are summarized in Table 6-1. ‘

[Button =~ Pressed . Released . .
:@t WM_LBUTTONDOWN ‘ WM_LBUTTONUP W_LBUTTONDBLCLK
Middle WM_MBUTTONDOWN WM_MBUTTONUP WM_MBUTTONDBLCLK
Bottom ‘ WM_RBUTTONDOWN WM_RBUTTONUP : WM_RBUTTONDBLCLK

Table 6-1. Client Area Mouse Button Mes&ages. ‘ : S

You will not normally use them, but there is a parallel set of messages that are sent for mouse button activity
outside of the program’s client area. These messages have the homolog names such as WM_NCLBUTTONDOWN, etc.,
where “NC” stands for “Nonclient.” Double-clicking the mouse will not automatically generate a double-click mes-
sage. You must specify that you want these messages in the window's class definition. This involves adding the
CS_DBLCLKS value to the class style as shown here.

wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS ;

This would be a typical setting prior to calling RegisterClass(). All of the mouse button messages return the X and
Y coordinates of the cursor in the [Param parameter, just like WM_MOUSEMOVE. They also use wParam encodes if
one of the other mouse buttons, or the shift or control keys, are down when the specified mouse button is pressed. The
full descriptions of the messages are given in Chapter 9, Windows Messages.

You can find out if the system has a mouse by calling

bMouse = GetSystemMetrics (SM_MOUSEPRESENT) ;

The function will return TRUE if there is a mouse, FALSE if not. You can provide an imitation of mouse control by

converting from keyboard cursor keypresses to mouse movements. The SetCursorPos() function allows direct control

of the cursor location without reference to a mouse. There is no direct way to find out out how many buttons the
system mouse has. ' ‘ o ‘

164

6. MOUSE AND CURSOR FUNCTIONS ¥

Caution: The mouse is a shared resource between all running programs under Windows. Some of the mouse
control functions, such as GetCapture() and SetDoubleClickTime(), will affect all of the programs running. Care must
be taken to free the mouse, and return the system parameters to their original state, as quickly as possible.

Mouse Functions

The most frequently used mouse function is LoadCursor. It either loads one of the predefined cursor shapes or allows
you to load a custom cursor created with the SDKPaint program. Custom cursors have to be referenced in the
program’s resource .RC file and given a name. For example, to load the cursor file HAND.CUR created with SDKPaint
and give the resulting cursor shape the name “hand,” add the following line to the resource file

hand CURSOR hand.cur

The cursor shape can be attached to a window's class definition. Windows then switches to that cursor shape any
time the mouse cursor is within the window’s client area. The function LoadCursor() does the work of pulling the
cursor out of the resource data so that it can be attached to the class definition. Use a statement like

wndclass.hCursor = LoadCursor (ghInstance, "hand") ;

prior to using RegisterClass() to create the class definition. If you plan to switch between cursor shapes within the
bounds of one window, you are better off not assigning a cursor to the window’s class. In this case, set the class cursor
to NULL, as shown here.

wndclass.hCursor = NULL:
Then you can turn on the right cursor shape as the program receives WM_SETCURSOR . A typical code fragment
for a program that uses two cursors would be

tong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG tLParam)
(.

static HCURSOR hHandCursor, hArrowCursor ;
static BOOL bUseHand = FALSE ;
switch (iMessage) /* process windows messages */

case WM_CREATE:
hArrowCursor = LoadCursor (NULL, IDPC_ARROW) ;
hHandCursor = LoadCursor (ghInstance, (LPSTR) *“hand") ;
break ;
case WM_SETCURSOR:
if (bUseHand)
SetCursor (hHandCursor) ;
else
SetCursor (hArrowCursor) ;
break ;

[Other program lines]

The ultimate cursor shape control is the CreateCursor() function, added with the 3.0 version of Windows. This
function allows you to change the shape of the cursor as the program runs, or as the mouse moves. It can be used to
create a cursor that shows the numeric values of the cursor position as the mouse moves. Other creative uses are
possible. CreateCursor() defines a cursor with two memory areas that contain bitmaps of the cursor shape. The

. bitmaps are combined using logical AND and XOR operations to provide black, white, transparent, and inverse screen
coloring on every pixel of the cursor.

Caret Functions : ;

The caret is a blinking line or object that marks a temporary location on the screen. It is used in word processing
applications to mark where the next typed letter will be displayed. Similar uses appear in music score programs. The
caret automatically appears in edit controls (created with CreateWindow()). Carets inside edit controls do not have
to be controlled by your program, as the edit control has all of the built-in logic for moving the caret. The caret is a
system global resource. 'This means that there can only be one caret visible on the screen, no matter how many
windows or edit controls are visible. If you open a new window and it displays a caret, any other caret on the screen

165

WINDQWS API BIBLE

will vanish. This is logical, as otherwise the user would not be able to tell where the next keyboard input would end up.
Carets are manipulated as static objects. They do not send messages back to windows. Generally, carets are defined
(using CreateCaret()) as vertical lines, although they can be bitmap images. Windows provides support for moving the
caret, changing its blinking speed, and hiding it when not needed. If you use a caret in an application, you will need to
process the WM_SETFOCUS and WM_KILLFOCUS messages. When the application gains the input focus, create and
show the caret using CreateCaret() and ShowCaret(). When it loses the input focus, call DestroyCaret() to eliminate

it. There is an example of this logic under the CreateCaret() function description.

Mouse and Cursor Function Summaries
Table 6-2 summarizes the mouse and cursor functions, The complete function descriptions are after the table.

[Fanction

ClientToScreen

Converts a point from client coordinates to screen coordinates.

ClipCursor Confines the mouse cursor to an area on the screen.
CreateCaret Creates a caret shape. '
CreateCursor Builds a cursor shape.

DestroyCaret Removes a caret from a window.

DestroyCursor Deletes a cursor created with CreateCursor().

GetCapture Retrieves a handle to the window that has captured the mouse.

GetCarelBinkTime

Finds the current rate at which the caret is flashing.

GetCaretPos Determines the location of the caret in a window's client area.

GetClipCursor Determines the rectangle that the mouse was last confined to by ClipBursor(). (Win 3.1)
GetCursorPos Retrieves the X,Y position of the mouse cursor.

GetDoubleClickTime Retrieves the double-click time value for the mouse.

HideCaret Makes a caret invisible.

LoadCursor Loads a new cursor shape.

ReleaseCapture Releases capture of the mouse.

ScreenToClient

Converts from screen coordinates to client window coordinates.

SetCapture Captures the mouse so that only the program with the mouse captured receives mouse messages.
SetCaretBlinkTime Sets the rate at which-the caret shape flashes on the screen.

SetCaretPos Sets the position of the caret. '

SetCursor Establishes which cursor shape to display.

SetCursorPos Moves the mouse cursor to a new location.

SetDoubleClickTime Changes the mouse button double-click time.

ShowCéret Makes the caret visible at its current location.

ShowCursor Shows or hides the cursor shape.

SwapMouseButton Reverses the right and left mouse buttons.

Table 6-2. Mouse and Cursor Function Summaries.

CLIENTTOSCREEN

BWin20 ®Win30 ®@Win3.l

Purpose
Syntax

- Converts a point from client coordinates to screen coordinates.
void ClientToScreen(HWND hWnd, LPPOINT IpPoint);

166

6. MOUSE AND CURSOR FUNCTIONS ¥

Deseription

Uses
Returns
See Also

Parameters
hWnd

IpPoint

Related Messages
Example

/* QutlineBlock
/* points. The

The point structure pointed to by lpPoint is updated using screen coordinates. Screen coordi-
nates are pixels measured from the upper left corner of the screen. Client coordinates are pixels
measured from the upper left corner of the window’s client area.

Use in programs that use the mouse to capture images off of the screen.
No returned value (void).
SetCapture(), ScreenToClient()

HWND: The parent window's handle.

LPPOINT: A long pointer to a point structure. Imtlally, this point contams the client point coor-
dinates.

WM_LBUTTONDOWN, WM_MOUSEMOVE
Here is a useful function which you can use in screen capture programs. The function takes two
points in client coordinates (as might be retrieved from the IParam data from a WM_LBUTTON-

DOWN message) and converts them to window coordinates. The function then draws a rectangle
onto the screen, outlining an area between the two points.

() writes a rectangle on the screen given the two corner */
R2_NOT style is used, so drawing tuice on the same lLocation */

/* erases the outline. */

void OutlineBlo
{

ck (HWND hWnd, POINT beg; POINT end)

HDC hDC ;
hDC = CreateDC l("DISPLAY", NULL, NULL, NULL) ;
ClientToScreen (hWnd, &beg) ; /* convert to screen units */
ClientToScreen (hWnd, &end) ;
SetROP2 (hDC, R2_NOT) ; /* use Logical NOT brush */
MoveTo (hDC, beg.x, beg.y) ; /* draw rectangle */
LineTo (hDC, end.x, beg.y) ;
LineTo (hDC, end.x, end.y) ;
LineTo (hDC, beg.x, end.y) ;
LineTo (hDC, beg.x, beg.y) ;
DeleteDC (hDC) ; :

3

CrLipCursor EWin20 BWin30 ®Win3.l

Purpose Confines the mouse cursor to an area on the screen.

Syntax void ClipCursor(LPRECT IpRect);

Description After calling this function, the mouse pointer can only be moved within the bounds set by the
IpRect rectangle.

Uses Use sparingly, if at all. If the mouse bounds are set in a program, they will continue to be in effect
after the program terminates. This basically makes the mouse useless, forcing the user to reboot
the computer. A better way for a program to limit mouse’s activities is with GetCapture().

Returns No returned value (void).

See Also GetCapture(), SetCursor(), GetClipCursor()

Parameters

IpRect LPRECT: A long pointer to a rectangle structure. Use SetRect() to quicklyfill in the rectangle’s
dimensions. Set [pRect equal to NULL to free the mouse to move anywhere on the screen.’

Related Messages WM_MOUSEMOVE

Example When the user clicks the “Do It!” menu item,.the mouse is confined to a region bounded by a

167 -

WINDOWS API BIBLE

rectangle with screen coordinates 10,10 and 200,200. The program frees the rﬁouse when the user
clicks the “Quit” menu item.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

<
-RECT rMouséCage ;
switch (iMessage) /* process windows messages */
<
case WM_COMMAND: /* process menu items */
switch (wParam)
<
case IDM_DOIT: /* User hit the "Do it" menu item */
SetRect ((LPRECT) &rMouseCage, 10, 10, 200, 200) ;
ClipCursor ((LPRECT) &rMouseCage) ; /* trap mouse */
break ;
case IDM_QUIT: : :
ClipCursor (NULL) ; /* Let the mouse loose again */
DestroyWindow (hWnd) ; .
break ;
}
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, (Param) ;
)} .
return (OL) ;
}
CREATECARET ' WWin20 mMWin30 ®Win3.l
Purpose Creates a caret shape.)
Syntax void CreateCaret(HWND % Wnd, HBITMAP ABitmap, int nWidth, int nHeight);
Description Only one caret can exist for any window at a given time. This function creates a caret, removing
any existing caret. The caret can either be a bitmap or a vertical line of set size.
Uses The first step in displaying a caret. This function is followed by SetCaretPos() and ShowCaret().
Returns No returned value (void).
See Also DestroyCaret(), SetCaretPos(), ShowCaret(), LoadBitmap()
Parameters
hWnd HWND: A handle to the window that owns the caret.
hBitmqp HBITMAP: A handle to the bitmap to use as the caret The handle is obtained using the
LoadBitmap() function. kBitmap can be NULL. In this case, a black caret nWidth wide by
_ nHeight tall is constructed. If ABitmap is 1, a gray caret is created.
nWidih - int: The width of the caret in logical units. The size will depend on the mapping mode in effect.
Ignored if ABitmap is not NULL. Set to NULL to use the default width, equal to the window
border width. :
nHeight int: The height of the caret in logical units. The size will depend on the mapping mode in effect.
: Ignored if Bitmap is not NULL. Set to NULL to use the default height, a multiple of the window
border width.
Related Message WM_SETFOCUS, WM_KILLFOCUS)
Example This example shows the creation of two carets. The first is created when the program starts. ThlS

is a black cursor, 3 pixels wide by 20 high. When the user clicks the “Do It!” menu item, a bitmap :
caret i is loaded and displayed. .

168

6. MOUSE AND CURSOR FUNCTIONS v

© The Resource .RC File

/* generic.rc */
#include <windows.h>
#include ."generic.h"
generic ICON
ibeam BITMAP

generic MENU
BEGIN
MENUITEM “8bo It!"
MENUITEM “gQuit",
END

The program’s WndProc()

generic.ico
ibeam.@mp

IDM_DOIT
1DM_QUIT

function uses a static variable bNewCaret to keep track of which caret to display. The

carrt shape is created when the application gains the input focus and is destroyed when the focus is lost. Note how the
caret is hidden before painting (WM_PAINT message) and then displayed again. This avoids having the caret bitmap
interfere with the painting of the client area.

Long FAR PASCAL WndProc (
< d
static
PAINTSTRUCT
static

switch (iMessage
{

HWND hWnd, unsigned iMessage, WORD wParam, LONG tParam)

.HBITHAP hbmCursor ;
ps ;
BOOL bNewCaret = FALSE ;

) /* process windows messages */

case WM_SETFOCUS:

if (bNewCaret)

{
hbmCursor = LoadBitmap (ghInstance, (LPSTR)"ibeam") ;
CreateCaret (hWnd, hbmCursor, NULL, NULL) ;

}

else

CreateCaret (hWnd, NULL, 3, 20) ;
SetCaretPos (10, 10) ;
ShowCaret (hWnd) ;
break ;

case WM_KILLFOCUS:

DestroyCaret () ;
break ;

case WM_PAINT:

HideCaret C(hWnd) ;

BeginPaint (hWnd, &ps) ;

TextOout (ps.hdc, 10, 10, “Text output.“, 12) ;
EndPaint (hWnd, &ps)

ShouCaret (hWnd) ;

break ;
case WM_ COHHAND' /* process menu items */
switch (wParam)
<
case IDM_DOIT: /* Change caret shapes */
bNewCaret = TRUE ;
PostMessage (hwnd, WM_SETFoOCUS, O, UL)
break ;
case IDM_QUIT: /* send end of application message */
pestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
DeleteObject (hbmCursor) ;
PostQuitMessage (0) ;
break ;
default: " /* default windows message processing */

.return DeinndpuProc (hWnd, iMessage, wParam, LParam) ;

169 -

WINDOWS API BIBLE

}
return (OL) ;

3

CREATECURSOR OWin20 ®BWin30 mWin3l

Purpose Builds a cursor shape.

Syntax HCURSOR CreateCursor(HANDLE hlnstance, int nXhotspot, int nYhOtSpOt int nWidth, int
nHeight, LPSTR IpANDbitPlane, LPSTR [pXORbitPlane);

Description This function allows you to create a mouse cursor shape while the program is running. The cursor

shape is controlled by two memory areas that contain masks for the cursor. The bits in these

" memory blocks are compared to the screen pixels using a logical AND and Ioglcal exclusrve OR

operations. The results are shown in Table 6-3.

0
0
1
1

0 Black

1 White

0 Transparent
1 Inverted color

Table 6-3. Cursor Boolean Masks.

-Uses

Reﬁums
See Also

Parameters
hinstance

nXhotspot
nYhotspot

nWidth
nHeight
IpANDbitPlane

IpXORbitPlane

Related Messages

Example

Modifying a cursor shape as the program runs. The cursor can be made to change depending on
where it is on the screen, or what action is occurring.

A handle to the cursor created, NULL on error.
LoadCursor(), DestroyCursor(), SetCursor()

HANDLE: The instance handlé for the running pregram.

int: The horizontal position on the cursor’s rectangle that i lS logically the point with which the -
cursor points.

int: The vertical position on the cursor’s rectangle that is logically the point with which the
cursor points. : .

int: The width of the cursor bitmap in pixels.
int; The height of the cursor bitmap in pixels.

LPSTR: A pointer to the memory area containing the AND mask for the cursor. The Microsoft
mouse documentation calls this the “screen mask.” See Table 6-3 for the meaning of the AND
mask bits.. . ‘

LPSTR: A pointer to the memory area containing the XOR mask for the cursor. The Microsoft
mouse documentation calls this the “cursor mask.” See Table 6-3 for the meaning of the AND
mask bits. :

WM_MOUSEMOVE, WM_SETCURSOR

This example uses CreateCursor() to build a rectangular cursor shape filled with a gray pattern.
When the user clicks the “Do It!” menu item, the cursor shape is modified by drawing anX on the
gray background. The cursor shape is only active in the window’s client area. The normal arrow

* cursor is displayed in the menu, title, and borders of the window, as well as outside of the

application’s window area. The example takes a shortcut to fill in the background. The cursor
data is actually loaded from a bitmap. The bitmap is painted with the stock object
“LTGRAY_BRUSH" to come up with the gray pattern. This saves having to figure out how to set

\

170

6. MOUSE AND CURSOR FUNCTIONS v

each of the memory bits in the areas that CreateCursor() looks to find the cursor shape data.
Similarly, the X is drawn on the bitmap image and then loaded into the cursor memory area.

Long FAR PASCAL WndProc (HWND hWnd, unsiéned iMessage, WORD wParam, LONG LParam)
<

static HCURSOR hCursor ;

static int nCursX, nCursY, nByteArea ;

static HBITMAP hBM ;

HDC hdC ;

static HDC hdCBitmap ;

static HANDLE hmemAND, hmemXOR ;

LPSTR LpAND, LpXOR ;

sWwitch (iMessage) /* process windows messages */
{

case WM_CREATE:

nCursX = GetSystemMetrics (SM_CXCURSOR) ; /* get curs size */
nCursY = GetSystemMetrics (SM_CYCURSOR) ;
hBM = CreateBitmap (nCursX, nCursY, 1, 1, NULL) ;

hDC = GetDC C(hWnd) ;

hDCBitmap = CreateCompatibleDC (hDC) ; /* get bitmap DC */
ReleaseDC (hWnd, hDC) ;

nByteArea = (nCursX/8) * nCursY ;

SelectObject (hDCBitmap, hBM) ;

/* reserve memory for cursor shape data */
hmemAND = GlobalAlloc (GMEM_MOVEABLE, (DWORD) nByteArea) ;
hmemXOR = GLobalAlloc (GMEM_MOVEABLE, (DWORD) nByteArea) ;

/* Lock the memory areas to work with them */
LpAND = GlobalLock (hmemAND) ; \ .
LpXOR = GlobalLock (hmemXOR) ;

/* create a gray rectangle cursor */
SelectObject (hDCBitmap, GetStockObject (LTGRAY_BRUSH)) ;
PatBlt (hDCBitmap, 0, 0, nCursX, nCursY, PATCOPY) ;
GetBitmapBits (hBM, (DWORD) nByteArea, LpAND) ; /* in mem */
_fmemset (LpXOR, O, nByteArea) ; /* XOR mem to all O's */

GlobalUnlock (hmemAND) ;)
GlobalUnLock (hmemXOR) ; N
break ; -
case wM_HOUSEMOVE: /* draw the custom cursor */) -
SetCursor (NULL) ; :
' if (hCursor)
DestroyCursor (hCursor) ;/* kill old cursor, if any */
LpAND = Globaltock (hmemAND) ;
LpXOR = GlobalLock (hmemXOR) ;
hCursor = CreateCursor {ghInstance, 0, 0, nCursX, ~
nCursY, LpAND, LpXOR) ;
GlobalUnlock (hmemAND) ;
GlobalUnlock (hmemXOR) ;
SetCursor (hCursor) ;
break ; '
case WM_COMMAND: /* process menu items */
switch (wParam))

case IDM_DOIT: /* add an X to the cursor bitmap */
LpAND = GlobalLock (hmemAND) ;
SelectObject (hDCBitmap, GetStockOb]ect (BLACK_| PEN))
MoveTo (hDCBitmap, 0, 0) ;
LineTo (hDCBitmap, nCursX, nCursY) ;
MoveTo (hDCBitmap, 0, nCursY) ;
LineTo (hDCBitmap, nCursX, 0) ;
GetBitmapBits (hBM, (DHORD) nByteArea, LpAND) ;
GlobatUnlock (hmemAND) ; .
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;

171

WINDOWS API BIBLE

. break ';

case WM_DESTROY: /* stop application */
DestroyCursor (hCursor) ;
DeleteObject C(hBM) ;
DeleteDC (hDCBitmap) ;
GlobalFree ChmemAND) ;
GlobalFree (hmemXOR) ;
PostQuitMessage (0) ;

break ; .
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, (Param) ;
3 R ;
return (OL) ;
b
DESTROYCARET ’ | BWin20 EWin30 ®Win3.l
Purpose Removes a caret from a window. '
Syntax void DestroyCaret(void);
Description Used to destroy cursors created with the CreateCaret() function. Frees any memory associated
with the caret, but does not eliminate a bitmap if it was used to create the caret.
Uses Permanent removal of a caret. Use HideCaret() and ShowCaret() for temporary hiding and dis-
_playing of the caret. This function will only work if the current task (running application) owns
the caret. » . ‘
Returns - No returned value (void).
See Also ShowCaret(), HideCaret(), CreateCaret(), DeleteObject()
Parameters None (void). ‘

Related Messages WM_SETFOCUS, WM_KILLFOCUS

Example See the example under the CreateCaret() function description.

DESTROYCURSOR OWin20 BWin30 ®Win3l

Purpose Deletes a cursor created with CreateCursor(). :

Syntax BOOL DestroyCursor(HCURSOR hCursor); '

Description Frees the memory associated with a cursor created with CreateCursor(). Do not use this with
’ cursors loaded from the program’s resource .RC file. Also, do not forget to delete the :+*-:» objects

used to create the cursor (see the example under CreateCursor()).

Returns BOOL. TRUE if the cursor was destroyed, FALSE on error.

See Also CreateCursor(), DeleteObject()

Parameters ‘

hCurser HCURSOR: A handle the cursor created with CreateCursor().

Example See the example under the CreateCursor() function description.

GETCAPTURE . BWin20 EWin30 ®Win3l

Purpose Retrieves a handle to the window that has captured the mouse.

Syntax HWND GetCapture(void);

Description Once a window captlires the mouse, no other application will receive messages from the mouse.

, GetCapture() allows you to find out which window has captured the mouse.
Uses Capturing the mouse is normally used in applications that use the mouse to outline or store

images off of the screen. GetCapture() can be used to locate the window that has the mouse
captive, so that you can send that window a message to release the mouse.

172

6. MOUSE AND CURSOR FUNCTIONS ¥

Returns HWND, the handle of the window that has captured the mouse. NULL if no wmdow has captured
the mouse.

See Also _ SetCapture(), ReleaseCapture()

Parameters None (void).

Related Messages WM_MOUSEMOVE _

Example This example prints the name of the window with the mouse captured on the window's client area

every time the window receives a WM_MOUSEMOVE message. When the user clicks the “Do It!"
menu item, the program captures the mouse ltself Clicking the left mouse button releases the
mouse.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hbC ;

HWND hwndCapture ;

char) cBuf L[25] ;

sWwitch (iMessage) /* process windows messages */
case WM_COMMAND: /* process menu items */

switch (wParam)

case IDM_DOIT: /* User hit the "Do it" menu item */
SetCapture (hWwnd) ;
break ;
case IDM_QUIT: /* send end of application message */
Destroywindow (hWnd) ;
. break ;
}
break ;
case WM_MOUSEMOVE:
hwndCapture = GetCapture () ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10,
“The window with the mouse captured is:", 38) ;
if (lhwndCapture)
TextOut (hDC,-10, 40, '"<None>", 6) ;
else
< o '
GetWindowText (hwndCapture, cBuf, 24) ;
TextOut (hdC, 10, 40, cBuf, strlen (cBuf)) ;
3 .
ReleaseDC (hWnd, hDC) ;
break ;
case WM_LBUTTONDOWN:
ReleaseCapture () ;

break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
}
return (OL) ;
3 .
GETCARETBLINKTIME EWin20 ®EWin30 EWin3l
Purpose Finds the current rate at which the caret is ﬂashmg
Syntax WORD GetCaretBlinkTime(void);
Description Returns the time, in milliseconds, between flashes of the caret. The tlme is returned even if the
caret is not visible.
Returns WORD, the time in milliseconds between flashes.

173

" WINDOWS API BIBLE ' ‘ .

See Also
Parameters
Example

SetCaretBlinkTime(), CreateCaret()

None (void). ‘

[n this example, the blink rate of the caret is slowed down by 0.1 sec every time the user clicks the
“Do It!" menu item. The blink rate is restored to 0.5 sec (500 milliseconds) when the user clicks
the “Quit” menu item and exits the program. This example is interesting if two instances of the
program are run at the same time, Starting a second copy steals the caret from the first program’s
client area. Clicking the “Do It!” menu item in either instance of the program slows the blink rate

. inthe window that displays it. The changed blinking rate remains in effect in any application that

gains the caret. This visually demonstrates that the caret is a shared resource between applica-
tions and instances.

Leng FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

{
: PAINTSTRUCT ps ;
static BOOL bNewCaret = FALSE ;
int nTime ;
switch (iMessage) /* process windows messages */
p !
case WM_SETFOCUS:
CreateCaret (hWnd, NULL, 3, 20) ;
SetCaretPos (10, 10) ;
ShowCaret (hwnd) ;
break ;
case WM_KILLFOCUS:
DestroyCaret () ;
- break ;
case WM_COMMAND: /* process menu items */
switch (wParam))
{
case IDM_DOIT: /* Change caret blink time */
; nTime = GetCaretBlinkTime () ;
nTime += 50 ;
SetCaretBlinkTime (nTime) ;
break ; N
case IDM_QUIT: /* send end of application message */
DestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */
SetCaretBLlinkTime (500) ; /* normal blink time*/
PostQuitMessage (0) ;
. break ; .
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3 :
return (0L) ;

}

GETCARETPOS EWin20 HEWin30 ®BWin3l

Purpose Determines the location of the caret in a window’s client area.

Syntax void GetCaretPos(LPPOINT IpPoint);

Description The current X and ¥ posmons are loaded into the POINT structure pomted to by ipPoint. The
program should be sure to use ShowCaret() before using this function. Otherwise, the location
returned will be in whatever window currently displays the caret.

Returns No returned value (void).

See Also SetCaretPos(), CreateCaret()

174

. 6. MOUSE AND CURSOR FUNCTIONS ¥

Parameters

IpPoint LPPOINT: A pointer to a point structure that will hold the caret's X and Y client coordinates. The,
values are given in logical units.

Example In this example, the caret is moved 10 units to the right every time the user clicks the “Do It!"

menu item. The current caret position is also displayed on the client area.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
c s :

POINT - ptCaretPos ;

char cBuf £10] ;

HDC hbC ;

switch (iMessage) /* process windows messages */
{

case WM_CREATE:
. CreateCaret (hWnd, NULL, 3, 20) ;
SetCaretPos (10, 10) ;
ShowCaret (hWnd) ;
break ;
case WM_COMMAND: /* process menu jtems */
switch (wParam)

case IDM_DOIT: /* User hit the “Do it" menu item */
GetCaretPos ((LPPOINT) &ptCaretPos) ;—
SetCaratPos (ptCaretPos.x + 10, ptCaretPos y)
itoa (ptCaretPos.x + 10, cBuf, 10) ;
hDC = GetDC (hWnd) ; .
Textout ChpnC, 10, 50, cBuf, strlen (cBuf))
Textout C(hDC, 10, 80,
"= current caret X position.”, 27) ;
ReleasedC (hWnd, hDC) ;
break ;
case IDM_QUIT:
DestroyWindow (hWnd) ;
. break ;
X
break.;
case WM_DESTROY:/* stop application */
PostQuitMessage (0) ;

b k ;
default: rea /* default windows message processing */
. return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3
return (OL) ;
)
GETCLIPCURSOR OWin20 OWin30 ®mWin3l
Purpose Determines the rectangle that the mouse was last confined to by ClipCursor(). .
Syntax void GetClipCursor (LPRECT lpRect); »
Description ‘ClipCursor() is used to limit the mouse cursor to a rectangular area on the screen.
GetClipCursor() can be used to determine the current clipping rectangle.
" Uses Seldom used. The cursor is a shared resource between all applications running on the system.
‘ Limiting the cursor to an area on the screen violates the Windows design principle of allowing
programs to behave independently. '
Returns ~ Noreturned value (void).
See Also ClipCursor(), GetWindowRect()
Parameters
IpRect " LPRECT: A pointer to a RECT data structure. GetClipCursor() will ﬁll in the four rectangle

coordinate values for the current mouse clipping rectangle. If the mouse is not confined, the
screen dirnensions are retrieved.

175

WINDOWS API BIBLE

Example This example, illustrated in Figure

6-2, confines the mouse cursor t0 yaum
the limits of the application’s win- e

dow. The

when either a WM_MOVE or

-'geherif:_ e F—I—:

rectangle is recalculated uit

Do It!

WM_SIZE message is received. The ~ jMOUSE cage = [22, 22, 262, 120]
coordinates of the clipping rect-
angle are displayed in the client

area. Clicking the “Do It!” menu

item temporarily removes the Figure 6-2. GelClipCursor() Example.

mouse limits,
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{
RECT rCage ;
PAINTSTRUCT ps ;
char cBuf [£1283 ;
switch (iMessage) /* process windows messages */
{
case WM_MOVE:
case WM_SIZE:
GetWindowRect (hWnd, &rCage) ; -
ClipCursor ((LPRECT) &rCage) ; /* trap mouse in window */
InvalidateRect (hWnd, NULL, TRUE) ; /* force paint */
break ;
case WM_PAINT:
BeginPaint (hWnd, &ps) ;
GetClipCursor (&rCage) ;
TextOut (ps.hdc, 0, 0, cBuf, wsprintf (cBuf,
"“Mouse cage = [%d, %d, %d, %Zd1",
rCage.left, rCage.top, rCage.right, rCage.bottom)) ;
EndPaint (hWnd, &ps) ;
break ; .
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_DOIT:
ClipCursor (NULL) ; /* free mouse */
break ; .
case IDM_QUIT:
DestroyWindow (hWnd) ;
break ;
break ;
case WM_DESTROY:
ClipCursor (NULL) ; /* free mouse */
PostQuitMessage (0) ;
break ;
default: .
return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
} : .
return (OL) ;
3} .
GETCuUrsorPoOs EWin20 NWin30 ®Wins.l
Purpose - Retrieves the X, ¥ position of the mouse cursor.
Syntax void GetCursorPos(LPPOINT ipPoint);
Description The X, Y position of the mouse cursor isloaded into the IpPoint structure. Screen coordinates are

used. To convert to c‘]ie‘nt coordinates use, ScreenToClient().

176

6. MOUSE AND CURSOR FUNCTIONS v

Uses i Any time you need to locate the
mouse cursor. This is seldom neces-
sary, as moving the mouse generates
WM_MOUSEMOVE messages, and
clicking the mouse buttons gener-
ates WM_LBUTTONDOWN, etc.
messages. These messages encode
the cursor position in the [Param
value (Chapter 9, Windows Mes- Figure 6-3. GetCursorPos() Example.
sages, includes all of the message

Do lt! Quit
Cursor X=482, Y = 406

descriptions).
Returns No returned value (void).
See Also SetCursorPos(), ScreenToClient(), SetCapture(), ReleaseCapture()
Parameters
IpPoint LPPOINT: A pointer to a POINT structure.
Related Messages WM_MOUSEMOVE '
Example When the user clicks the “Do It!” menu item, a timer is set. WM_TIMER messages are sent every

second, causing the cursor position to be displayed on the screen at these time intervals. (See
Figure 6-3.) This updating continues even if the window loses the input focus to another applica-
tion.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hoC ;
POINT pCursor ;-
char cBuf £128] ;

switch (iMessage) /* process windows messages */
{
' case WM_TIMER:
GetCursorPos (&pCursor) ;
hDC = GetbC ChWnd) ;
SetBkMode (hDC, OPAQUE) ;
TextOut (hDC, 0, O, cBuf, wsprintf (cBuf,
“Cursor X.= Zd Y = %d ", pCursor.x, pCursor.y)) ;

ReleaseDC (hWnd, hDC) ; ’

break ;) B
case WM_COMMAND: /* process menu items */

switch (wParam)

<

case IDM_DOIT: /* set 1 sec timer */

if (!'SetTimer ChWnd, 1,:1000, KULL))
. MessageBox (hWnd, "Too many clocks or timers!”,
“Warning", MB_ICONEXCLAMATION | MB_ OK) ;

break ;
case IDM_QUIT: ’ /* send end of application message */
DestroyWindow (hWnd) ;
break ;
}
break ;
case WM_DESTROY: /* stop application */

KillTimer ChWnd, 1) ;

PostQuitMessage (0) ;

break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, (Param) ;

}
return (OL) ;

77

WINDOWS API BIBLE _

wndclass.style =

GETDOUBLECLICKTIME . L Win20 BWin30 EWin3l
Purpose . Retrieves the double-click time value for the mouse. ' :
" Syntax - WORD GetDoubleChcl(I‘lme(vmd),
Description The double-click time is the number of milliseconds between two mouse clicks. Clicking faster than
) this value generates a. WM_LBUTTONDBLCLK, WM_MBUTTONDBLCLK, or WM_RBUT-
TONDBLCLK message for the left, middle, or right mouse buttons, respectively. Note that the
WM_LBUTTONDOWN, etc. messages will always be recelved prior to gettmg the double-click
‘message. .
Uses Used in advance of SetDoubleClickTime() to find the current double-click time value, prior to
changing it.
Returns WORD, the double-click time in mllhseconds
See Also SetDoubleClickTime().
Parameters None (void).
Related Messages WM_LBUTTONDBLCLK, WM_MBUTTONDBLCLK, WM_RBUTTONDBLCLK
Note The double-click messages will only be generated if the CS DBLCLKS style is added to the
i window’s class definition (see the example).
Example This program detects right button single- and double clicks and prmts messages in the client

area for each. The messages are erased by overwriting them with blanks when WM_MOUSEMOVE
messages are received. Clicking the “Do It!” menu item increases the double-click time by 100

‘milliseconds, after displaying the current double-click time. Receiving double-clicks requires that

the CS_DBLCLKS style be added to the window’s class definition in the WmMam() function
CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS ;
- Note that the doube-click time is reset to the original timing when the program exits. Other-

wise the slower double‘chck time would continue to affect all of the other programs on the
system.

Long FAR PASCAL WndProc (HWND hWnd, unsigaed iMessage; WORD wParam, LONG LParam)

{
HDC hpc ;. .
char cBuf [25] ;
int nDoubleTime ;
static int notdbcClick ;
:uitch (iMessage) /* process windows messages */

‘case WM_CREATE:

noldDdClick = GetDoubleclxckT1me O ;
break ;

case WM COHMAND - /* process menu items */

switch (uParam)
o

case IDM DOIT" '
nDoubleTime = GetDoubleCl1ckT1me (@]
hDC = GetDC ChWnd) ;
Textout (hDC, 10, 10, “The Double Click Time =", 23) ;
itoa (nboubleTime, cBuf, 10) ;
TextOut ChdC, 200, 10, cBuf, strlen C(cBuf)) i
ReleaseDC (hund hDC)
SetDoubleCl1ckT1me (nDoubleT1me + 1000 ;

. break ;.

case IDM _QUIT: - /* send end of application message */
Destroyw1ndou Chwnd) ;
break ;

break ;

178

6. MOUSE AND CURSOR FUNCTIONS ¥

}

case WM_MOUSEMOVE: . /* writes over old messages as mouse moves */ -
hDC = GetDC (hWnd) ;
SetBkMode (hDC, OPAQUE) ; :
Textout (hDC, 10, 30, " S ", 30) ;

TextOut (hDC, 10, 50, " v, 300 ;
ReleaseDC (hWnd, hDC) ; .
break ; i

case WM_LBUTTONDOWN: /* detected the Left mouse button down */

hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 30, “Got a Left button!”, 17) ;
ReleasedC (hWnd, hDC) ;)
break ; i

case WM_LBUTTONDBLCLK: /* detected a double click of Left button */
hDC = GetdC (hWnd) ;)
TextOut (hDC, 10, 50, "Got a double cl1ck"', 18) ;
ReleaseDC (hWnd, hDC) ;
break ;

case HH_DESTROY:I* stop application */
SetDoubleClickTime (nOldDClick) ;
PostQuitMessage (0) ;
break ;

default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (OL) ;

HmECARET

EWin20 ®™MWin30 mWin3.l

Purpose
Syntax
Description

Uses

Returns
See Also

Parameters
hWnd

Exa.mple :

LoApCURSOR

Makes a caret invisible.

void HideCaret(HWND 2 Wnd);

The caret must be created with CreateCaret() before it can be visible. As soon as ShowCaret() is
called, the caret starts blinking. The caret remains visible until HideCaret() or DestroyCaret() is
called. If HideCaret() has been called more than once, an equal number of ShowCaret() calls will
be needed before the caret becomes visible.

It is frequently desirable to hide the caret while the user is doing operatlons that take the focus
of activities away from the client area (menu selections, etc.), or during WM_PAINT processing.
As soon as the activity is done, the caret can be made visible again with ShowCaret(). The caret
is shared by all applications. If a caret is displayed on onie program s wmdow, a caret in another
running program’s window will disappear automatically.

No veturned value (void). -

ShowCaret(), DestroyCaret(), SetCaretBlinkTime() o :

HWND: A handle for the window that owns the caret. A window can only own one caret at one
time. Use CreateCaret() to add a caret shape to a window. Setting hWnd to NULL will hide the
caret if any window in the current task owns the caret.

See the example under the CreateCaret() function desdribtion. ‘

‘mWin20 m®mWin30 ®mWin3d.l

Purpose
Syntax
Description

Loads a new cursor shape. o
HCURSOR LoadCursor(HANDLE hinstance, LPSTR ipCursorName);

This function allows you to load predefined cursors that Window’s supplies, or a custom cursor
designed with the SDKPaint program. For the latter, the cursor name is included in the resource
.RC file. Cursors must be loaded prior to calling SetCursor() to make them visible.

179 .

WINDOWS API BIBLE

Uses

If the cursor is loaded as part of the window’s class definition, the mouse cursor will change to the
loaded cursor shape any time the mouse is within the windows client area. If the goal is to have
different cursor shapes within the same window’s client area at different times, then the window
class cursor shape should be set to NULL, and the cursor specified by calling SetCursor() every
time a WM_SETCURSOR message is received. See the SetCursor() example code to see this in
practice.
Returns A handle to the new cursor, NULL if new cursor was found
See Also SetCursor(), CreateCursor()
Parameters
hInstance INSTANCE: The mstance handle for the executable file that contains the cursor. kinstance
should be NULL if you are loading one of the predefined cursor shapes listed below.
IpCursorName LPSTR: A pointer to a string containing the cursor name. For custom cursors, this should be the
name used to reference the cursor in the resource .RC file. For predefined cursors, where
hinstance has been set to NULL, ipCursorName should be one of the values described in Table 6-4.
Value ‘M i 3
IDC_ ARROW The standard arrow shape.
IDC_CROSS A thin crosshair cursor.
IDC_IBEAM An |-beam cursor. Used for positioning text.
IDC_ICON An empty icon.)
IDC_SIZE A square with a smaller square in the lower right corner. Looks like a window being reduced in size.
IDC_SIZENESW . 'The double-headed arrow Windows uses when ad)ustlng the upper left and lower right sizing borders.
- Points "NEby SW." .
IDC_SIZENS “The double- headed arrow Windows uses when adjusting the top and bottom sizing borders. Points
:) “North/South.”
, IDC_SIZENWSE The double-headed arrow Wlndows uses when adjusting the upper right.and Iower left sizing borders.
- Points “NW by SE.”
' IDC_SIZEWE . The double-headed arrow Windows uses wt «en adjusting the right or left sizing borders. Points “West/East.”
IDC_UPARROW An arrow pointing up. '
IDC_WAIT The hourglass cursor shape.

Table 6-4. Predefined Cursor Names.

Related Messages WM _MOUSEMOVE, WM_SETCURSOR :

, Example

In thls example, a cursor was created using the SDKPaint program. The cursor is named in the
resource .RC file as “hand.” The program creates a popup window when processing a

. WM_CREATE message. The popup window has its own window class, which specifies the “hand”

icon. When the popup window is visible, the mouse shape will change to the “hand” icon anytime
the mouse position is within the popup window's client area.

> Resource File .

/* generic.rc

#include <windows.h>
#include "generic.h"

popup
hand

ICON generic.ico
CURSOR hand.cur

180

6. MOUSE AND CURSOR FUNCTIONS ¥

popup MENU
BEGIN
MENUITEM "&Do It!" IDM_DOILT
MENUITEM “&Quit", IDM_QUIT
END

> WndProc() Function

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hdC ; /* device context handle */

static WNDCLASS wndeclass ; /* the window class */

static HWND hPopup, hParent ;

switch (iMessage) /* process windows messages */
{

case WM_CREATE: /* build the child window when program starts */
wndclass.style .

~ = CS_HREDRAW | CS_VREDRAW | CS_PARENTDC ;

t

wndclass.lpfnWndProc wndProc ;
wndclass.cbClsExtra 0,
wndclass.cbWndExtra 0;
wndclass.hInstance ghlnstance ;
wndclass.hIcon NULL ;

wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

LoadCursor (ghInstance, 'hand") ;
GetStockObject (LTGRAY_BRUSH) ;
NULL ;

“SecondClass"

LI I [T I T (A R VI 1)

if(RegisterClass (&wndclass)) /* register the window class */
{

hPopup = CreateWindow ("SecondClass'", "Popup Window",
WS_POPUP | WS_VISIBLE | WS_BORDER | WS_CAPTION,
10, 50, 200, 150, hWnd, NULL, ghlnstance, NULL) ;
ShowWindow (hPopup, SW_SHOW) ;

:; reak ;
[Other program lines]
RELEASECAPTURE EWin20 ®WWin30 mWin3.l
Purpose Releases capture of the mouse. ‘
Syntax void ReleaseCapture(void);
Description The mouse is captured with the SetCapture() function. When a window captures the mouse, no

other window receives mouse messages. ReleaseCapture() returns the mouse to the:system, S0
that all windows can receive messages from the mouse.

Uses SetCapture() is usually used with
programs that outline or copy areas
off the screen.

Returns No returned value (void). Dolt! Quit

See Also SetCapture(), GetCapture() Window under cursor’= Program Manager .
Parameters None (void). '

Related Messagés WM_MOUSEMOVE Figure 6-4. ReleaseCapture() Example.

Example This example, as illustrated in Fig-

ure 6-4, displays the name of the window under the mouse cursor when the left mouse button is
clicked. The mouse is captured when the user clicks the “Do It!” menu item. The mouse must be
captured for this type of activity to avoid having control pass to the other window. The mouse
remains captured until the right mouse button is clicked.

Ltong FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
c ' t
HDC hdC ;

181

WINDOWS API BIBLE

HWND hWndUnder ;

POINT pMouse ;

char cBuf [128], cWinName [64] ;

switch (iMessage) /* process windows messages */
case WM_COMMAND: /* process menu items */

sWwitch (wParam)

case IDM_DOIT: /* User hit the "Do it" menu item */
SetCapture (hWnd) ;) /* capture mouse */
break ; i

case IDM_QUIT:
DestroyWindow (hWnd) ;

break ;
}
break ; :
case WM_LBUTTONDOWN: /* show window under cursor */
pMouse = MAKEPOINT (lParam) ; -

ClientToScreen (hWnd, &pMouse) ;
hWndUnder = WindowFromPoint (pMouse) ;
GetWindowText (hWndUnder, cWinName, 63) ;
hDC = GetDC (hWnd) ;
SetBkMode (hDC, OPAQUE) ;
TextOut (hDC, 0, 0, cBuf, wsprintf (cBuf,
“Window under cursor = %s ", (LPSTR) cWinName)) ;
ReleaseDC ChwWwnd, hDC) ;
break ;
case WHM_| RBUTTONDOHN' /* right mouse button reteases */
ReleaseCapture () ; /* mouse */
break ;
case WM_DESTROY: /* stop application */
ReleaseCapture () ;
PostQuitMessage (0) ;

break ; -
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ; ,
3 , ' .
return OL ;
ScREENTOCLIENT e : WWin20 ®mWin30 mEWin3l
 Purpose o Converts from screen coordinates to client window coordinates.
Syntax -~ void ScreenToClient(HWND hWnd, LPPOINT IpPoint);
Description ' The X and ¥ values in the IpPoint point structure are changed from screen coordmates (used by
the mouse cursor) to client coordinates (used by painting functions).
Uses . Frequently used in conjunction with GetCursorPos() to convert the mouse cursor’s location to an

X.Y location in the window’s client area. This is typically done when processing WM_MOUSE-
MOVE messages while drawing lines or positioning text in the

e

&

-~ clientarea. Jenerlc
Retarns - No returned value (void). Do It! Quit
See Also GetCursorPos(), ClientToScreen() ‘ : S:reen X.; =435, 401
Parameters ' ‘ . [clientXY=195,58
hWnd . HWND: A handle to the window which specifies the client area
‘ ~touse in converting to client coordinates. " Figure 6-5. ScreenToClient()
IpPoint LPPOINT: A pointer to a POINT data structure. Initially holds Ezample:

the screen coordinates. After ScreenToClient() is called, the
'POINT data contains the equivalent client coordinates.

Related Messages WM_MOUSEMOVE, WM LBUTTONDOWN, WM_NCMOUSEMOVE

. o - 182

6. MOUSE AND CURSOR FUNCTIONS . v

Example

Long FAR PASCAL
{

This example, as illustrated in Figure 6-5, shows the cursor’s location in both screen and client
coordinates when the cursor passes over the nonclient area of the window. This includes the
borders, caption, and menu bars. The WM_NCMOUSEMOVE message passes the screen coordi-
nates of the cursor location as the [Param value. This is converted to a POINT with the
MAKEPOINT macro. ScreenToClient() converts the screen coordinates to client coordinates.

WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

HDC hDC ;
POINT pMouse ;
char cBuf £1281] ;
switch (iMessage) /* process windows messages */
{
case WM_COMMAND: /* process menu items */
switch (wParam)
{
case IDM_QUIT: /* send end of application message */
DestroyWindow (hWnd) ;
break ;
}
break ;)
case WM_NCMOUSEMOVE: /* nonclient mouse movement */
pMouse = MAKEPOINT (lParam) ; .
hDC = GetbPC (hWnd) ;
SetBkMode (hDC, OPAQUE) ;
TextOut (hDC, 0, 0, cBuf, wsprintf (cBuf, .
"Screen X,Y = %d, %d ", pMouse.x, pMouse.y)) ;
ScreenToClient (hWnd, &pMouse) ; .
TextOout (hdC, 0, 20, cBuf, wsprintf (cBuf,
“Client X,Y = %d, %d ‘', pMouse.x, pMouse.y)) ;
ReleaseDC (hWnd, hDC) ;
break ; :
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ; .
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
} . :
return (OL) ;

3

SETCAPTURE BWin20 @Wn30 ®=Win3l

Purpose Captures the mouse so that only the pregram with the mouse captured receives mouse messages.

Syntax HWND SetCapture(HWND 2#¥nd);

Description Normally, any active program running on the system can receive mouse messages. If a program
calls SetCapture(), mouse messages are sent only to it. This makes it impossible to switch focus
to another windqw until ReleaseCapture() is called.

Uses Programs that grab screen images off of the screen. During the process of outlining an area to be
copied, the mouse must be captured to avoid activating a window that the program is trying to
copy.

Returns A handle to the window that previously had the mouse captured. NULL if no window had captured
the mouse. ‘

"See Also ReleaseCapture(), GetCapture()

Parameters :

-hWnd HWND: A handle to the window that will capture the mouse.’

Related Messages WM_MOUSEMOVE, WM_SETFOCUS

Example See the example under the ReleaseCapture() function description.

183

WINDOWS API BIBLE

SETCARETBLINKTIME - ' mWin20 EWin30 mWin3l

Purpose Sets the rate at which the caret shape flashes on the screen. '

Syntax 4 void SetCaretBlinkTime (WORD wMSeconds);

Description Sets the time, in milliseconds, between caret flashes, v

Uses As the caret is a shared resource between all applications, changing the blink time in one appli-
cation affects the blink time in all other programs running at that time.

Returns No returned value (void). -

See Also GetCaretBlinkTime()

Parameters

wMSeconds WORD: The time in milliseconds between caret flashes. The default value is 500 This value can
be changed from the Control Panel application.

Example See the example under the GetCaretBlinkTime() function description.

SETCARETPOS EWin20 MWin30 @Win3l

Purpose Sets the position of the caret.)

Syntax void SetCaretPos(int X, int ¥);

Description The position is relative to the client region. The position of the cursor is changed even if the caret
is hidden.

Uses This is the basic function for moving a caret shape on the window’s client area. A window can own
a maximum of one caret at any one time. Use CreateCaret() to load or build a caret.

Returns No returned value (void).

See Also CreateCaret(), HideCaret(), ShowCaret(), DPtoLP()

Parameters , e

X int: The horizontal position in logical units in the window's client area.

Y int: The vertical position in logical units in the window's client area.

In the default mapping mode, the origin is the upper left corner and the X, locations are

measured in pixels. Use SetMapMode() to change the coordinate system of the client area (see
Chapter 10, Device Contexts). A

Example When the user clicks the left mouse button, the caret is relocated to that position in the client

area of the window. The mouse location has to be converted from screen coordinates to the client
location used by SetCaretPos() using the ScreenToClient() function. This example is simplified
by using the MM_TEXT mapping mode. In this mode, the logical units equal the client area pix-
els, measured from the upper left corner of the client area. See Chapter 10, Device Contexts, for
a discussion of mapping modes and logical coordinates.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ N .

" POINT pCursPoint ;
‘switch (iMessage) /* process windows messages */
<

case WM_CREATE:
CreateCaret (hWnd, NULL, 3, 20) ;
SetCaretPos (10, 10) ;
. ShowCaret (hWnd) ;
break ; .
case WM_COMMAND: /* process menu itens */
switch (wParam) .

‘case IDM_QUIT: /* send end of application message */

184

}

6. MOUSE AND CURSOR FUNCTIONS v

DestroyWindow (hWnd) ;.
break ;
}
break ;
case WM_LBUTTONDOWN:
GetCursorPos (&pCursPoint) ; /* get cursor x,y */
ScreenToClient (hWnd, &pCursPoint) ; /* to client coord */
SetCaretPos (pCursPoint.x, pCursPoint.y) ;
break ;
case WM_DESTROY: /* stop application */
PostQuitMessage (0) ;
break ;

default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (OL) ;

}

- SETCURSOR

®Win20 ®WWin30 ®Windl

Purpose
Syntax
Description

See Also

Parameters
hCursor

Establishes which cursor shape to display.
HCURSOR SetCursor(HCURSOR ACursor);

Cursor shapes must first be loaded with LoadCursor(). SetCursor() is normally used to change
the shape of the cursor when processing WM_SETCURSOR or WM_MOUSEMOVE messages. This
function is fast if the cursor has already been used once, so it can be called repeatedly to change
a cursor shape without noticeably slowing the program.

Used to change the cursor shape in windows that do not have a cursor loaded as part of the
window class definition. If you attempt to use this function within the bounds of a' window that
has a cursor defined in its class definition, the cursor shape will flicker. This is because Windows
is switching back and forth between the class cursor and the cursor loaded with SetCursor()
every time a WM_MOUSEMOVE message is sent. Set the class cursor to NULL to avoid this prob-
lem.) ’ ,

A handle to the previous cursor shape.

" LoadCursor()

HCURSOR: A handle to the cursor to show. Use LoadCursor() to obtain this handle. You can
combine these functions into a single line:

SetCursor (LoadCursor (NULL, IDC_WALIT)) ;
Related Messages WM_SETCURSOR, WM_MOUSEMOVE

Example

This example shows a program that switches between two different cursor shapes. The window’s
class definition in WinMain() does not load a cursor shape (NULL value). Two different cursors
are loaded when the program processes a WM_CREATE message. One is the predefined Windows
arrow, and the second is a custom cursor called “hand,” which is referenced in the resource .RC
file. When the user clicks the “Do It!” menu item, the program switches to showing the hand
cursor shape. _ ’ o

<> The Resource File

/* generic.rc

*/

#include <windows.h>
#include "generic.h"

generic ICON:
hand

generic MENU
BEGIN

generic.ico
CURSOR hand.cur

185

WINDOWS API BIBLE

MENUITEM "&Do It!" IDM_DOIT
MENUITEM “&Quit"”, IDM_QUIT
END
One line of the WinMain() function is shown here because it is a little unusual. It has no
defined-cursor shape in the class deﬁmtxon.

o WmMam() Functlon Excerpt

wndclass.hCursor) . NULL

" WINCREATE message triggers loading of the cursor shapes The “word ” cursor is loaded
from the resource data.

> The WndPrbc() Function

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
P

static HCURSOR hHandCursor, hArrowCursor ;

static BOOL bUseHand = FALSE ;

switch (iMessage). .- /* process windows messages */
{ ' '] R

case WM_CREATE:) -,)
hArrowCursor = LoadCursor (NULL, IDC_ARROW) ;
hHardCursor = LoadCursor (ghInstance, (LPSTR) "hand") ;
break ; ' .) :
case WM_ SETCURSOR
if (bUseHand)
SetCursor (hHandCursor)

else
. SetCursor (hArrowCursor) ;
break ; : n

‘case WM_COMMAND: ! /* process menu items */
switch (wParam)) K .
{

‘case IDM_DOIT:' /* User hit the "Do it'" menu item */

: bUseHand = TRUE ;/* switch to’a hand shaped cursor */
break ;
case IDM_QUIT: /* send end of appl1cat1on message */
PostthMessage (NULL) ;.
break ;
3
break ;)
case WM_DESTROY: /* stop application */
: -PostQuitMessage (0).; : . '
break ; . . L
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ; :
3 -
return (OL) ; T ‘ - v
3
SETCURSorPoOS ‘ ‘ BWin20 BEWin30 @Win3l
Purpose . Moves the mouse cursor to a new location. ’
Syntax . void SetCursorPos(int X, int 1); . .
Description The location is given in screen coordinates. Use ClientToScreen() to convert from client window
coordinates to screen coordinates.
Uses Not often used. SetCursorPos() could be used to provide keyboard support for mouse movements
For example, the arrow keys might move the mouse cursor. ‘

Returns No returned value (void). :
See Also GetCursorPos(), ClientToScreen() '

186

6. MOUSE AND CURSOR FUNCTIONS v

Parameters
X

Y

Related Messages

Example

int: The horizontal location for the mouse cursor, in screen coordinates. Zero is the left side of
the screen. o .
int: The vertical location for.the mouse cursor, in screen coordinates. Zero is the top of the
screen.

WM_MOUSEMOVE

When the user clicks the “Do It!” menu item, the mouse cursor is moved to the upper left corner
of the window’s client area. This location is computed by loading 0,0 into a point structure, and
then using ClientToScreen() to convert to screen coordinates. SetCursorPos() uses the screen
coordinates to relocate the mouse cursor.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

{
POINT

{

}
}

pCursPoint ;.

switch (iMessage) ' " /* process windows messages */

case WM_COMMAND: /* process menu items */
switch (wParam) '
{
case IDM_DOIT: /* User hit the "Do it" menu item */
pCursPoint.x = 0 '/* specify 0,0 - top left corner */
pCursPoint.y =0 ;
ClientToScreen (hwnd, &pCursPoint) ; /* screen coord. */
SetCursorPos (pCursPoint.x, pCursPomt.y) ;
break ;
case IDM_QUIT: /* send end of application message */
DestroyWindow (hWnd) ;
break ;
3
break ;
case WM_DESTROY: /* stop application */
PostQu1tMessage W ;
break ; . .
default: /* default windows message processing */
return PefWindowProc (hWnd, iMessage, wParam, LParam) ;

return (0OL) ;

SETDOUBLECLICKTIME : BWin20 BWin3.0 Win 3.1

Purpose
Syntax
Description

Uses

Returns
See Also

Changes the mouse button double-click time. -
void SetDoubleClickTime(WORD wCount);

The double-click time is the number of milliseconds between two mouse clicks. Clicking faster
than this value generates a WM_LBUTTONDBLCLK, WM_MBUTTONDBLCLK, or WM_RBUT-
TONDBLCLK message for the left, middle, or right mouse buttons, respectively. Note that the
WM_LBUTTONDOWN, etc. messages will always be received prior to getting the double-click
message.

Used to change the current double-click time value. The double-click time is only changed for the
duration of the Windows session. To permanently change the double-click time setting in
WIN.INI, use the Control Pannel application or WriteProfileString(} (see Chapter 20, MS-DOS
and Disk Fill Access). 5

No returned value (void). . e
SetDoubleCligkI‘ime().

187

WINDOWS API BIBLE _

Parameters :

wlount WORD: “The new-double click time in milliseconds.

Related Messages WM_LBUTTONDBLCLK, WM_MBUTTONDBLCLK, WM_RBUTTONDBLCLK

Example See the example under the GetDoubleClickTime() function description.

SHOWCARET EMWin20 MWin30 ®Win3.l

Purpose Makes the caret visible at its current location.

Syntax void ShowCaret(HWND hWnd);

Description The caret must be created with CreateCaret() before it can be visible. As soon as ShowCaret() is

' called, the caret immediately starts blinking. The caret remains visible until HideCaret() or
DestroyCaret() is called. If HideCaret() has been called more than once, an equal number of
ShowCaret() calls will be needed before the caret becomes visible.

Uses Itis frequeritly desirable to hide the caret while processing WM_PAINT messages, or while the
: user is doing operations that take the focus of activities away from the client area (menu selec-
tions, etc.). When the user returns to the work area, the caret can be made visible again with
ShowCaret(). The caret is shared by all applications. If a caret is displayed on one program'’s

window, a caret in another running program’s window will disappear.

Returns No returned value (void).

See Also HideCaret(), DestroyCaret(), SetCaretBlinkTime()

Parameters .

hWnd HWND: A handle for the window that owns the caret. A window can only own one caret at one
time. Use CreateCaret() to add a caret shape to a window. .

Example See the example under the CreateCaret() function description. -

SHowCURSOR EWin20 ®™MWin30 MWin3.l

Purpose Shows or hides the cursor. : '

Syntax int ShowCursor(BOOL bShow); ,

Description If bShow is FALSE (zero), ShowCursor() hides the cursor. If b6Show is TRUE, the cursor is dis-
played. Multiple calls to ShowCursor() to hide the cursor require an equal number of calls with
bShow TRUE to restore it. :

Uses Used to show the cursor on systems that do not have a mouse.

Returns int, the new display count. Each call with bShow TRUE increases the count. Each call with 6Show

: FALSE decreases it. The cursor is shown as long as the display count is zero or greater. On sys-
tems without a mouse, the display count is initially set to —1.
Parameters
bShow BOOL: TRUE to show the cursor, FALSE to hide it. .
~Example This example shows a crude emulation of the mouse for a program running on a machine that

does not have a mouse. The cursor shape is displayed in the upper left corner of the client area
when the program begins, Pressing the arrow keys moves the cursor. Actlvatmg the “Do It!” menu
item (w1th @mM-D) hides the cursor.

long FAR PASCAL WndProc (HWND hWnd, uns1gned 1Message, WORD wParam, LONG tParam)

{

static

POINT pCursor ;

switch (iMessage) /* process windows messages */
1 ©

188

6. MOUSE AND CURSOR FUNCTIONS v

case WM_

case WM

CREATE: .
pCursor.x = 10 ; /* start with cursor in client area */
pCursor.y = 10 ;

‘ClientToScreen (hWnd, &pCursor) ;

ShowCursor (TRUE) ;
SetCursorPos (pCursor.x, pCursor.y) ;
break ;

_COMMAND: /* process menu items */

switch (wParam)

case IDM_DOIT: /* erase the cursor shape */
ShowCursor (FALSE) ; .
break ;

case IDM_QUIT:
DestroyWindow (hWnd) ;

break ;
b
break ;
case WM_KEYDOWN:
switch (wParam) i /* simple mouse emulation */
<
" case VK_LEFT: /* Left cursor key */
pCursor.x == 10 ;
break ;)
case VK_RIGHT: /* right cursor key */-
pCursor.x += 10 ;
break ;
\ case VK_UP: /* up cursor key */
pCursor.y == 10 ;
break ;
case VK_DOWN: /* down cursor key */
pCursor.y += 10 ;
break
}
SetCursorPos (pCursor.x, pCursor.y) ;
break ;
case WM_DESTROY: "/* stop application */

}
return (OL) ;

Post@uitMessage (0) ;

. break
default:

/* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

SwarMouseBurToN BWin20 ®Win30 m®mWin3.l
Purpose Reverses the right and left mouse buttons.
Syntax BOOL SwapMouseButton(BOOL bSwap);
Description IfbSwap is TRUE, the right mouse button generates left mouse button messages (WM_LBUTTONDOWN),

and the left button generates right mouse button messages (WM_| RBU’I‘DONDOWN) IfbSwap isFALSE, the

normal mouse messages are sent.

Uses Handy for adapting the mouse to left-handed users. Calling this function only changes the mouse
button orientation for the duration of the Windows session. Use the Control Pannel application to
make a permanent change in the WIN.INI file, or call WriteProfileString() (see Chapter 20, MS-

DOS and File Access).
" Returns BOOL. TRUE if the mouse buttons are reversed, FALSE if they are normal
Parameters
bSwap BOOL: TRUE if the mouse buttons are to be reversed, FALSE if they are to be normal.

Related Messages WM_LBUTTONDOWN, WM_RBUTTONDOWN

189

WINDOWS API BIBLE i

Example A message is printed on the client area when a WM_LBUTTONDOWN message is received. The
message is erased when a WM_MOUSEMOVE message appears. Clicking the “Do It!" menu item
_swaps the two mouse buttons, so the right button ends up generating the WM_LBUTTONDOWN
messages. Clicking the “Do It!” menu 1tem a second time (using the rlght mouse button) restores
the mouse to normal operation.

Long FAR PASCAL WndProc (HWND hWnd, unsigned-iMessage, WORD wParam, LONG LParam)
PR

HDC hbC ;
static BOOL bMouseSwap = FALSE ;
switch (iMessage) ‘ /* process windows messages */
- {
case WM_COMMAND: /* process menu items */

switch (wParam)

case IDM_DOIT:
if (bMouseSwap)

{
bMouseSwap = FALSE ;.
SwapMouseButton (FALSE) ;
}
else
{
bMouseSwap = TRUE ;
SwapMouseButton (TRUE) ; ,
3} . '
break ;
, case IDM_QUIT: /* send end of apphcahon message */
Destroywmdou Chwnd) ;
break ;
}
break ; . .
case WM_MOUSEMOVE: /* writes over old messages as mouse moves */

hDC = GetDC (hWnd) ;
SetBkMode (hDC, OPAQUE) ;

TextOut C(hdC, 10, 30,." Y, 30} ;
ReleaseDC C(hWnd, hDC) ; ' :
break ; , ’

case WM_LBUTTONDOWN: - /* Left mouse button down */

hDC = GetDC (hWnd) ;
TextOut (hpC, 10, 30, "“Got a Left button!", 17) ;
ReleaseDC (hwnd, hDC) ;
break ;
case WM_DESTROY: /* stop application */
SwapMouseButton (TRUE) ;
PostQuitMessage (0) ;
break ; .
default: i /* default windows message processing */
’ return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
)}
return-(0OL) ;

190

All Windows programs use the keyboard to some extent. In general you will find that much of the support for keyboard
input is built into predefined tools such as edit controls and menu accelerators. These tools free the programmer from
having to deal directly with the keyboard in many cases. Some programs, such as word processors, make heavy use of
the keyboard for input. Windows provides extensive support for the keyboard to satisfy these demands.

Virtual Keys

PC keyboards have evolved to include more keys and several “standard” layouts. Realizing that no end to keyboard
changes was in sight, the designers of Windows came up with the concept of a “virtual key.” The idea is that no matter
what make or model of keyboard the user has, the virtual key code for the first function key would always be the same.
This frees the programmer from having to consider what type of keyboard is installed.

The definitions of all the virtual key codes are given in the WINDOWS.H header file. Table 7-1 gives all of the codes
and their meanings. The vitural code for the character and number keys is the same as their ASCII equivalents (in
uppercase) and are not included in the table. Chapter 19, Character Sets and Strings, includes a table of the ASCII
and ANSI character sets, which both have the same codes for unaccented letters and numbers. Note that the numeric
keypad numbers are given different codes from the numbers on the top row of the conventional keyboard. Also note
that there is only one virtual key code for the shift keys. Both shift keys generate the same VK_SHIFT.

Be cautious in assuming that a given virtual key will be available on any keyboard. For example, many keyboards
only have ten function keys, even though Windows makes provision for 16. Also note that the ASCII value for the “*”,
“, % and “+" keys generally are sent from the numeric keypad, not VK_MULTIPLY, etc. which are specific to certain
OEM keyboards. .

l Virtual Key Code Value (hex) Meaning - X l
VK_ACCEPT Ox1E Kanii only (Japanese characters)
VK_ADD 0v6B Plus key
VK_BACK 0x08 Backspace
VK_CANCEL 0x03 ‘ Control-break
VK_CAPITAL Ox14 " Shift lock
VK_CLEAR 0x0C Clear key (Numeric keypad 5)) N
VK_CONTROL Ox11 * " Control G&D key '
VK_CONVERT ox1C Kanji only (Japanese characters)
VK_DECIMAL Ox6E Decimal point
VK_DELETE Ox2E . Delete
VK_DIVIDE Ox6F Divide (/) key
VK_DOWN 0x28 Down arrow
VK_END 0x23 End

191

WINDOWS API BIBLE

Table 71 continued

| Virtual Key Code - . Meaning
VK_ESCAPE Escape (Esc)
VK_EXECUTE Execute key (if any)
VK_F1 Function keys
VKF2
VK_F3
VK_F4
VK_F5
VK_F6
VK_F7
VK_F8
VK_F9
VK_F10 _
VK_F11 Enhanced keyboard only
VK_F12 Enhanced keyboard only -
VK_F13 0x7C Specialized keyboards only
VK_F14 0x7D Specialized keyboards only
- VK_F15 Ox7E Specialized keyboards only
VK_F16 Ox7F Specialized keyboards only
VK_HIRAGANA 0x18 Kanji only (Japanese characters)
VK_HOME 0x24 Home
VIQ\INSERT 0x2D Insert
VK_KANA 0x15 Kanji only (Japanese characters)
VK_KANUI 0x19 Kanjl only (Japanese characters)
VK_LBUTTON 0x01 Left mouse button
VK_LEFT 0x25 Left arrow
VK_MBUTTON 0x04 Middle mouse button
VK_MENU 0x12 Menu key (if any)
VK_MODECHANGE Ox1F Kanji only (Japanese characters)
VK_MULTIPLY Ox6A Multiply key
VK NEXT 0x22 Next
VK_NONCONVERT 0x1D Kanji only (Japanese characters)
VK_NUMLOCK 0x90 Num Lock
VK_NUMPADO 0x60 Numeric keypad keys
 VK_NUMPAD1 0x61
VK_NUMPAD2 0x62
VK_NUMPAD3 0x63
VK_NUMPAD4 0x64

192

o : . 7. KEYBOARD SUPPORT Vv

VK_NUMPADS 0x65

VK_NUMPAD6 0x66

VK_NUMPAD7 : 0x67 -

VK_NUMPADS ' 0x68

VK_NUMPAD9 0x69

VK_PAUSE 0x13 Pause

VK_PRINT ' 0x2A A Print Screen (Windows versions below 3.0)
VK_PRIOR 0x21 ' Pageup

VK_RBUTTON 0x02 Right mouse button

VK_RETURN 0x0D ~ Retum

VK_RIGHT) 0x27 Rightamow

VK_ROMAUI 0x16 ~ Kanji only (Japanese characters)

VK_SELECT 0x29 Select key (if any)

VK_SEPARATOR 0x6C Separator key (if any)

VK_SHIFT 0x10 Shift .

VK_SNAPSHOT 0x2C Print Screen (Windows 3.0 and later) '
VK_SPACE 0x20 . Spacebar -
VK_SUBTRACT 0x6D -Subtraction key

VK_TAB 0x09 Tab key

VK_UP 0x26 Up amow

VK_ZENKAKU ox17 Kanii only (Japanese characters) -

*(The vitural key codes for the letters A to Z and the digits 0 to 9 are their ASCII values)

Table 7-1. Virtual Key Codes.* \ o —

Keyboard Messages :
Windows lets your program know about keypresses by sending messages. The most common series of messages is the
following:

WM_KEYDOWN Notification that a key has been depressed
WM_CHAR The ASCII code for the letter—if a character (not a function key, cursor arrow, ete.) was pressed
WM_KEYUP Notification that'a key has been released.

The WM_CHAR message is generated by the TranslateMessage() function in the message loop of the applieation’s .

WinMain() function. This function is discussed in Chapter 9, Windows Messages.Generally you will use the
WM_KEYDOWN message to look for function keys, cursor keys, the numeric keypad, and the edit keys such as’ @®),
(#6om), ete. These are the keys which make the best use of Windows’ virtual key code system. WM_CHAR is used to
retrieve ASCII keyboard inputs such as letters, numbers, and printable symbols. Using the WM_CHAR message is
simpler for letters, as the upper and lowercase letters have different ASCII values. With WM_KEYDOWN, you have to
check whether the key is depressed and check the virtual key code for the letter, which is always the capital
letter’s ASCII value. If the user depresses the &) key while pressing another key, Windows sends sy.étem key mes-
sages. The sequence is WM_SYSKEYDOWN, WM_SYSCHAR, and WM_SYSKEYUP. It is unusual to process these mes-
sages directly, as they are normally used for keyboard accelerators. Accelerators are explained in the Keyboard
Accelerators section. Like all Windows messages, the keyboard messages pass information to your program’s
WinProc() function(s) in the wParam and [Param parameters The information you will use most often is mearam
(See Table 7-2.)

193 . s i N

WINDOWS API BIBLE

WM_SYSKEYUP

| Windows Message - Meaning of the wParam 'Par‘ameter N
WM_KEYDOWN : The virtual key code for the key pressed. -
WM_CHAR | The ASCI code for the character represented by the key
WM_KEYUP _The virtual key code for the key pressed.
WM-_éYSKEYDOWN The virtual key code for the key pressed (@LT) key depressed at the- same time).
WM_SYSCHAR The ASCII code for the character represented by the key (@& key depréssed at the same
v time). .

The virtual key code for the ‘key pressed (@&t key depressed at the same time).

Table 7-2. wParam Meaning in Keyboard Messages.

-There is a lot of other information encoded in the [Param parameter, such as the hardware (OEM) code for the
key pressed, how many times the key was pressed, etc. This information is fully explained in Chapter 9, Windows
Messages. For the most part, you will not need this information, and can use the wParam data directly in your pro-

. gram. Listing 7-1 shows an example of how these messages are processed. In this case, a single line of text is created
on the program’s client area. Typing adds to this line, hitting the backspace key removes text from the end. This is an

extremely simplified example, but it does provide an outline for how text messages are processed.
o Listing 7-1. Keyboard Input Message Processing* .

#define BUFSIZE -

<
HDC

static char

static int

256

Long FAR PASCAL WndProc (HWND -hWnd, unsigned inessége, WORD wParam, LONG LParam) ' i

hoc ;
cCharBuf CBUFSIZE] ;) L .
nCharFos = 0 ; -

switch (iMessage) /* process windows messages */
<
case WM_CREATE: : }
cCharBuf [01=0; /* start with null string */
break ;
case WM_CHAR: /* add and display char input from keyboard */
if (wParam>= " ' & nCharPos < BUFSIZE)
<
cCharBuf CnCharPos-H-J = wParam ; /* add new lattar */
cCharBuf [nCharPosl =0; /* new terminal aull */
3 : :

InvaslidateRect (hWnd, NULL, TRUE) ;/* show updated Line */

" UpdateWindow (hWnd) ;

hDC = GetDC (hWnd) ;
Textout (hDC, 0, 0, ccharBuf, strlen (cCharBuf)) ;
ReleasedC (thd, hde) ; .

) break ;
case WM_| KEYDOWN: ‘
suitch (uParam) /* rudimentary editing commands */
< .)
case VK_BACK: /* backspace */
if (nCharPos > 0) ’ .
{
nCharPos --;
cCharBuf I:ncharPosJ =0;
} .
, / . break ;
‘ ' case VK_RIGHT: YA right arrow. key */
/* other edit procedures */
break ;)
Y ' .-)
'Invalidatekect (h\ind, NULL, TRUE) ' I* shou updated Line */

UpdateWindow Chwnd) ;
hDC = GetDC Chund) ;) PR

194

.-

> o 7. KEYBOARD SUPPORT Vv

TextOut (hDC, 0, 0, cCharBuf, strlen (cCharBuf)) ;
ReleaseDC (thd, hoeC) ;
break ;

case WM_ COHMAND ’ /* process menu items */

\ :uitch (wParam)

case IDM_DOIT: :
MessageBox (hWnd, "Type something!", "Message", MB_0K) ;
break ;
case IDM_QUIT: /* send end of application message */
DestroyWindow (hWnd) ;
break ;
b
break ;
case WM_| DESTROY‘ a /* stop appl\catlon */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;
3
return (OL) ;
}

*QOnly the WndProc() function is shown, The remamder of the program is identical to the GENERIC application in
Chapter L

: Messages with Non-Enghsh Keyboards

English uses a simple alphabet of 26 characters in two cases (upper- and lowercase). Many other languages also have
accent characters and other symbols. When you install Windows, you select the assumed language. This loads a file
which ends up named OEMANSLBIN in the Windows directory. You can find out which language file is loaded by
calling the GetKBCodePage() function. The OEMANSLBIN file contains all of the data Windows needs to adjust the
keyboard map for the different language’s symbols and key layout.

To generate accented characters, users of non-English keyboards use key combinations that tell Windows that the
next key combination is to be accented. For example, a French accent circumflex (*) over a character is set by €RD-[-
and then the letter key. This only works if you have the French OEMANSLBIN file loaded as part of Windows’ install.
You can track these extra keystrokes through the WM_DEADCHAR message. For the creation of an accented letter,
your WinProc() function would see the following sequence of messages:

WM_KEYDOWN - Pressing the accent key. _
- WM_DEADCHAR The character message for the accent.

WM_KEYUP - Releasing the accent key.

WM_KEYDOWN Pressing the letter key (that will end up accented).
WM_CHAR The character code for the accented letter.
WM_KEYUP Releasing the letter key.

Normally you will not need to track all of this, as the accented character has a different character code than the
unaccented version. Tables of the character values are given in Chapter 19, Character Sets and Strings.

Keyboard Accelerators

Another built- m convenience provided by Windows is adirect way to provide keyboard shortcuts for menu commands
and other commands. These are called “accelerators.” You do not have to use accelerators in your program. The same
effect can be achieved by interpreting keyboard input messages. The main reason to use accelerators is that they are
so simple. A few minutes of work will provide a complete set of keyboard alternatives to your mouse driven menu .
commands. This is in addition to the normal key alternatwes for menu items with names that are proceeded by “&"
characters, See Chapter 4 on menus if this is not familiar. -

An important difference when using keyboard accelerators is that Windows will translate the keystroke message
into the equivalent menu command. In other words, pressing an &)-key combination will generate a WM_COMMAND

195

WINDOWS API| BIBLE . .

‘message, not the WM_KEYDOWN sequence that follows a normal keypress. Your application can process the menu
item WM_COMMAND message as if the menu item were selected with a mouse click. The user will even see the menu
item flash for selection as the accelerator keypress is acted on. The keyboard accelerators are defined in your
program’s resource .RC file. Listing 7 2 is an example of a complete .RC file, with both a menu and keyboard accelera-
tors defined.

© Listing 7-2. A Resource File w1th Keyboard Accelerators

/* generic.rc */

. #include <windows.h>
#include "generic.h"

generic ICON generic.ico |
generic . MENU
BEGIN : — . . /
POPUP “&First Menu" :
BEGIN
MENUITEM "&Display Items (Ctrl-D)", IDM_TOP1
MENUITEM "&1st Option (F1)", IDM_OPT1
MENUITEM SEPARATOR : ' o
MENUITEM “&2nd Option (F2)", IDM_OPT2.
END ' .
MENUITEM “&Quit (End key)", . IDM_QUIT
END
generic ACCELERATORS
BEGIN
“p", . IDM_TOP1, VIRTKEY, CONTROL
VK_F1, IDM_OPT1, VIRTKEY
VK_F2, IDM_OPTZ2, VIRTKEY, NOINVERT B
VK_END, IDM_QUIT, ' VIRTKEY ’ ;
VK_F1, ’ NOTMENU, VIRTKEY, ALT
" END

The accelerator table is structured like a menu definition, although there is no equivalent to a popup menu. The
table is given a name, in this case “generic.” This is the name which your program will use to get the accelerator table
ready for use with LoadAccelerators(). You can have more than one table of accelerators in the .RC file, each with a
different name. The lines for each keyboard accelerator are between the BEGIN and END lines of the ACCELERATOR
definition. The format is

tablename ACCELERATORS
252\2, idvalue, ‘ LASCII or VIRTKEY], [ALTI, LCONTROLI, CNOINVERTI, [SHIFT]
END '
- ASCII and VIRTKEY are “event types.” The events can be any of the ones listed in Table 7-3. -
LEent Type -~ = Meaning - S B |Z] .
“char” No Event Type) .~ - A single ASCI! character enclosed in double quotes The character can also be preceded bya
’ . ““A” tosignify a control character.
. ASCII ; . Aninteger value for an ASCII character. In this case, specify ASCIl after the tdvalye

Virtual key : ' The uppercase letter or single digit enclosed in double quotes (eg., “A” or “17). For non-ASCII
' : use the VK_ code for the key. Specify VIRTKEY after the idvalue.

- Table 7-3. Keyboard Accelerator Event Types.

. The idvalue bcan be any integer. The z’dvaldes are normally defined in the program’s header'ﬁle and, in most
«cases, will-be the same as the corresponding menu item ID value. This integer idvalue will be the wParam parameter
when the program receives a WM_COMMAND message from Windows after the user presses the accelerator. The ID

) . 196

7. KEYBOARD SUPPORT ¥

values do not have to correspond to menu items. For example, you might have an accelerator key for scrolling the
window's client area. The scroll bar control is not part of the menu, so no equivalent menu ID value will exist. Create
separate ID values in the header file for these items, and then put the corresponding logic in your WM_COMMAND
message processing code to handle the scrolling. The last parameters in the definition of accelerator keys are the
options. They can be any of the values shown in Table 7-4. The ALT, CONTROL, and SHIFT options apply cnly to virtual

key (VIRTKEY) accelerators.

{ Accelerator Option ~~ Meaning -~ . o o 0 s
ALT The keyboard accelerator is activated only if the B key is depres%d “
CONTROL The keyboard accelerator is activated only if the (€TRD key is depressed. This has the same

: - effect as putting a “A” in front of the accelerator character, but is more readable.
NOINVERT) The comresponding menu item is not flashed when the accelerator is activated. Normally, the top
men line flashes. .
SHIFT The keyboard accelerator is activated only if either of the SRIFT) keys is depressed.

Table 7-4. Accelerator Options.

The only other changes necessary to include accelerators are two added lines in the WmMam() function. Without
accelerators, the window's message loop looks like: .

while (GetMessage (&msg, NULL, 0, 0)) /* the message loop */
< .

TranslateMessage (&ﬁsg) ;
DispatchMessage (&msg) ;
>
. This functions simply to pull messages in from the message,queue and send them on to the program’s message
processing function (like WinProc()) to be handled. To have keygoard accelerators interpreted, change the message
loop to look like

hAccel = LoadAccelerators (hInstance, gszAppName)} ;

while (GetMessage (&msg, NULL, 0, 0)) /% the message Loop */
{ .

if (!TranslateAccelerator (hWnd, hAccel, &msg))
{

TranslateMessage (&msg) ;
R DispatchMessage (&msg) ;
3 :
LoadAccelerators() reads the accelerator table in from the resource data and provides a handle to the table. The
TranslateAccelerator() function checks incoming keystrokes for a match in the accelerator table. If a match is found,
a WM_COMMAND message is sent directly to the program’s message function. The wParam parameter passed with
WM_COMMAND is set equal to the accelerator ID value. If no match is found, the character messages for the keypress
are sent. Notice that the modified message loop with TranslateAccelerator() is set up so that messages that do not
match an entry in the accelerator table still get passed to the regular TranslateMessage() and DispatchMessage()
functions. If a match is found, TranslateAccelerator() returns a nonzero value, so the normal message functions are
- bypassed. This stops your program from getting both the accelerator message and the untranslated keyboard mes-
sages. '

. Note: You can create accelerators for the system menu commands (the commands that show up when you click
the button in the upper right corner of the program’s main window). In this case, the SC_RESTORE, SC_MOVE,
SC_SIZE, SC_MINIMUM, SC_MAXIMUM, or SC_CLOSE values will be used for the ID values, and the message pro-
cessing function will receive a WM_SYSKEYDOWN message instead of WM_KEYDOWN.

~ Caution: Accelerator keys are easy to program, but not necessarily easy for the user to remember A good prac-
tice is to include the accelerator equivalent to each menu item to the right of the menu name for each menu item that

B

1977 . e

WINDOWS AP! BIBLE

has an acceIerzifor Iﬁcluding the description in the pi-ograrﬁ s help fileis a gobd idea too! There are a few “standard”
keyboard accelerators, deﬁned in the CUA Advanced Interface Design Guide. Use the assignments in Table 7-5 if at all
possible. .

| Keys . . Meani A
T@me Undo previous action.

= R Clear selection (not saving the selectnon tothe cﬁpboard)
"(CTRD)-(INS) ~ Copy (put selection into clipboard).
(SFD)-(NS) Paste (insert clipboard contents at the current active location).
(SFT)-(DED) Cut {put selection into clipboard, and clear it from the screen).
(GO ’ yglp. See Chapter 27 for how to construct context-sensitive help files.
® . File. Activates a file dialog box is most cases.

. " Nextwindow. .
GHrD)-Fe) . , Previous window.

‘Table 7-5. Recommended Keyboard Accelerators.

Keyboard Function Summary

Table 7-6 summarizes the keyboard functions. The detailed function descriptions follow the table.

:Function.~ Purpose . Uil
EnableHardwarelnput Enable or disable the mouse and keyboard
GetAsyncKeyState Find out if a key has beén pressed.
GetlnputState Determine if there are mouse button, keyboard, or timer events in the message queue.
GetKBCodePage Find out which OEM/ANSI keyboard driver table is loaded. '
GetKeyboardState Find out the status of all of the keys in one function call.
GetKeyboardType Retrieve the type of keyboard orthe number of function keys.
_ GetKeyNameText Retrieve the name of a key.
_ GetKeyState Determine if a key is currently down, or if a toggle key is active.
LoadAccelerators Load the accelerator key combinations from the resource file.
MapVitualKey . Convert between virtual key codes, ASCI, and scan codes.
OemKeyScan) Convert from ASCII, to the keyboard's OEM scan code.
SetKeyboardState ' Set the keyboard status for all 256 virtual keys in one function call.
‘ TranslateAccelerator Translate keystrokes into commands using the accelerator table.
-VkKeyScan . Translate an ANSI character to the comesponding virtual key code.

Table 7-6. Keyboard Function Summary.

Keyboard Function Descriptions , ,
ENaBLEHARDWAREINPUT = = - : EWin20 ®Win30 mWin3l

Purpose _ Enables or disables the mouse and keyboard.

Syntax BOOL EnableHardwareInput(BOOL bE'nableInput),

198

7. KEYBOARD SUPPORT Vv

Description This function allows you to completely disable all inp\it from the mouse and keyboard. The mouse
cursor is frozen on the screen, and the only key combination that has any effect i3 the G --
(©ED) combination for a warm boot of the computer.

Uses Use with great care. EnableHardwareInput() may be useful in time-critical applications such as
real-time data acquisition. Be sure to set a system timer (see the example) so that the system will
restore itself at intervals, Otherwise, the only way to revive the computer is with a warm or cold

boot. - - 4
Returns - BOOL. TRUE ff the system is enabled, FALSE if dlsabl;é
See Also EnableWindow()
Parameters /

A bEnableInput BOOL: Set te TRUE to enable the system, FALSE to disable it.
Related Messages WM_TIMER /

Example " When the user hits the “Do It!" menu item, the mouse and keyboard are disabled for 10 seconds.
. A timer revives the system when a WM_TIMER message is received.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ .

HDC hdC ;
switch (iMessage) ' /* process windows messages */
¢ .

case WM_TIMER: /* Restore mouse and keyboard operation %/
EnableHardwarelnput (TRUE) H
KillTimer (hWnd, 1) ;
hDC = GetDC (hWnd) ;
TextOut (hbC, 10, 10, “Should be enabled now.", 22) ;
ReleaseDC (hwnd, th)
break ;

case HH_COHHAND: /* process menu items */
switch (wParam) :

case IDM_DOIT:)
if (!SetTimer (hWnd, 1, 10000, NULL))

{
MessageBox (hWnd, .
“Too many clocks or timers!”, “Warning”,
MB_ICONEXCLAMATION | MB_OK) ; '
} : .
else /* Disable mouse and keyboard for 10 sec */
{
EnableHardwarelnput (FALSE) ;
hDC = GetdC Ch¥nd) ;
Textout C(hDC, 10, 10,
y “Dlsabled for 10 sec.", 21)
-ReleaseDC ChWnd, hDC) ;
3}
break ;]
case IDM_QUIT: /* send end of application message */
DestroyWindow (hWnd) ; .
: break ;)
. . }
break ;
case WM_DESTROY: I* stop application */
PostQuitMessage (0) ;
break ;
default: /* default windows message processing */

return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

)
return (OL) ;

WINDOWS AP! BIBLE

- 1

GETASYNCKEYSTATE | ' ©© mWin20 ®mWin30 mWin3l

Purposé Finds out if a key is depressed, o

Syntax . int GetAsyncKeyState(int vKey); .

Description This function will determine if a key is currently pressed, or if it has been pressed after the last

: - call to GetAsyncKeyState(). _

Uses Particularly useful for applications that use shifted keys or function keys to change an operation.
For example, GetAsyncKeyState() can determine if the user hit a function key prior to selecting
an item with the mouse. .

- Returns int. The high-order byte is 1 if the key is currently down, 0 if not. The low-order byte is 1 if the key
was pressed since the last call to GetAsyncKeyState(), 0 if not. Use the LOBYTE and HIBYTE _
macros to retrieve these values (see the example).

See Also GetKeyboardState(), GetKeyState()

Parameters

vKey int: The virtual key code for the key. See Table 7-1, Virtual Key Codes, for a complete hst

Related Messages WM_KEYDOWN, WM_KEYUP

Example This example displays the current status of the shift keys when the “Do It!” menu item is clicked
Long FAR PASCAL ¥ndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{ : -
HDC _hbC ;
int nKeyState ;
switch (iMessage) B /* process windcws messages */
<
case WM_COMMAND: /* process menu items */
switch (wParam)
{

case IDM_DOIT:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (thd) H /* clear client area */
hDC = GetDC (hWnd) ;
nKeyState = GetAsyncKeyState (VK_! SHIFT) ;
if (HIBYTE (nKeyState))
TextOut C(hDC, 10, 10,
. “shift is pressed.”, 17) ;
else '
* TextOut (hDC, 10, 10,
“Shift is not now pressed.”, 24) ;
if (LOBYTE (nKeyState))
Textout (hDC, 10, 30,
- : "Shift was pressed.", 18) ;
else
N TextOut (hDC, 10, 30,
"Sh1ft was not pressed before.”, 28) ;
ReleaseDC (thd hdC) ;
break ;
case IDM QUIT-~ /* send end of application message */
DestroyWindow (hWnd) ;
break ;
} .
break ;
case WM_DESTROY: /* stop appl1cat1on * /
PostQuitMessage (0) ;
" break ;
default: /* default windows message processing */
return DefWindowProc (hWnd, iMessage, wParam, LParam) ;

} .
return (OL) ;

__7. KEYBOARD SUPPORT V¥

GETINPUTSTATE EWin20 ®BWn30 &Wind.l

Purpose Determines if there are mouse button, keyboard, or timer events in the message queue.
Syntax BOGL GetlInputState(void);
Description Windows sends messages to the system message queue when the mouse buttons are clicked or

released, when keys are pressed or released, and when a timer is activated. This function checks
if there are any pending messages from these events at the time the function is called.

Uses Handy in lengthy calculations to check whether or not the user has pressed a key or the mouse
button. This may indicate that the user wants to abort the procedure. As GetInputState() does
not pull the messages off of the input queue, they are still there to be processed by the program’s

WindProc() function.
Returns BOOL. TRUE if there are mouse button keyboard,or timer events on the system message queue,
’ FALSE if not. '
See Also EnableHardwareInput()
Parameters None (void).
Related Messages WM_KEYDOWN, WM_KEYUP, WM_TIMER, WM_LBUTTONDOWN
Example This example sets a one second timer when the user clicks the “Do It!” menu item. Every time

WM_TIMER message is sent, the GetInputState() function checks for mouse button or keyboar
input pending in the system message queue. The WM_TIMER events are not detected, 3
GetInputState() is called after the WM_TIMER event is pulled off of the queue and processed.

Long FAR PASCAL WndProc (HWND h¥nd, unsigned iMessage, WORD wParam, LONG LParam)
HDC hdC ;
switch (iMessage) /* process windows messages */

case WH_TIMER: . /* Restore mouse and keyboard operation */
InvalidateRect C(hWnd, NULL, TRUE) ;
UpdateWindow (h¥nd) ;
hDC = GetDC (hWnd) ;
if (GetInputState())
TextOut (hDC, 10, 10, .
"Keyboard or mouse messages ARE in the queue.", 44) ;
else
TextOut (hDC, 10, 10, .
“NO Keyboard or mouse messages in the queue.", 43) ;
ReleaseDC (hWnd, hDC) ;
break ;

case WM_COMMAND: /* process menu items */
switch (wParam)
< .

case IDM_DOIT: /* set timer 1 to every sec. */
if (!SetTimer (hWnd, 1, 1000, NULL))
{

MessageBox (hWnd, "Too many ctocks or timers!"”,
“Warning", MB_ICONEXCLAMATION | MB_0K) ;

3
break ; .
case IDM_QUIT: /* send end of application message */
DestroyWindow (hWnd) ;
break ;
}
break ;

case WM_DESTROY: /* stop application */
KitlTimer ChWnd, 1) ;
PostQuitMessage (0) ;
break ;

“201

WINDOWS API BIBLE

default: /* défault winaods messaée processing */
return DefWindowProc (hWnd, iHessage, wParam, LParam) ;

} .

return (OL) ;
}
GETKBCODEPAGE _ Win20 EBWin30 ®@&Win3l
Purpose Finds out which OEM/ANSI keyboard driver table is loaded.
Syntax mt GetKBCodePage(void); ~ ' '
Description Returns a code for the fype of keyboard driver table in use. These drivers are for the characters

used in different languages. If the file OEMANSLBIN is in the windows directory when Windows
is started, the translation table is read and used to create the correct set of characters.

Uses - Forinternational programs. Use this function to determine which language is in use. Then switch
to the correct resource data to retrieve the correct text for menus, etc.

int, the code page currently in use by Windows. This can be any of the codes in Table 7-7.

437 It. USA settings. Implies that the OEMANSI.BIN file is not in the windows directory.
850 Interational (OEMANSI.BIN was copied from XLAT850.BIN when Windows was installed).
860 Portugal (OEMANSI.BIN was copied from XLAT860.BIN when Windows was installed).
861 Iceland (OEMANSI.BIN was copied from XLAT861.BIN when Windows was installed).
863 French Canadian (OEMANSI.BIN was copied from XLAT863.BIN when Windows was installed).
865 Norway/Denmark (OEMANSI.BIN was copied from XLAT865.BIN when Windows was installed).

Table 7-7. Keyboard Code Page Values.

. Parameters None (void).

Example This simple example just displays the code page value when the “Do It!” menu item is clicked.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)

<

HDC hpe ;
int KBCode ;
char cBuf [25] ;

switch (iMessage) ’ /* process windows messages */
{

case WM_COMMAND: ' /* process menu items */
switch (wParam)

case IDM_DOIT:
KBCode = GetKBCodePage () ;
itoa (KBCode, cBuf, 10) ;
hDC = GetDC ChWnd) ;
TextOut (hDC, 10, 10, cBuf, strlen (cBuf)) ;
TextOut (hDC, 10, 40, "= Oem Code Table.", 17) ;
ReleaseDC (hWnd, hDC) ;
break ;

* [Other program lines] 4

GETKEYBOARDSTATE v :
Purpose Finds out the status of all of the keys in one function call,
Syntax " void GetKeyboardState(BYTE FAR *pKeyState);

EWin20 EWin30. EWndl

—

202

7. KEYBOARD SUPPORT Vv

Description
Uses
Returns
See Also

Parameters
IpKeyState

Related Messages
Example

Copies the status of all 266 virtual keyboard keys to an array of bytes.

Reading more than one key's status. For example, key combinations:.
No returned value (void). ' '
GetInputState(), SetKeyboardState()

- BYTE FAR *: An array of 266 bytes. Use the virtual key codes listed at the beginning of the

chapter as indices into the array of key states, After the function is called, a given key’s byte will
have the high bit set to 1 if the key is down, or 0 if the key is up. The low bit is set to 1 if the key
has been pressed an odd number of times, otherwise 0. This is only useful for the keys that toggle
on and off, such as the (c&psTock) and (scrRorL oeK) keys.

WM_KEYDOWN

This example checks whether or not the shift key is depressed when any keydown message is
received.

Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hoC ;

static char cKeyduf [256] ;

switch (iMessage) ' /* process windows messages */‘
< .

_—~Case WM_KEYDOWN:

-

InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
hDC = GetDC C(hWnd) ;
GetKeyboardState (cKeyBuf) ;
if (cKeyBuf CVK_SHIFT] & 0Ox80)
TextOut (hDC, 10, 40, "Shift key pressed.”, 18) ;
else
TextOut ChDC, 10, 10, “Shift key NOT pressed.", 22) ;
ReleaseDC (hWnd, hDC) ;
break ;

[Other program lines/

GETKEYBOARDTYPE OWin20 ®@Win30 ®BWin3l’

Purpose
Syntax
Description

Uses

Returns

Retrieves the type of keyboard or the number of function keys.
int GetKeyboardType(int nTypeFlag);

Depending on the value of the nTypeFlag, this function will retrieve either a code to the type of
keyboard in use, or the number of function keys on the keyboard. The older PC type keyboards
had only ten function keys, and they were on the left side of the keyboard. These keyboards also
had the arrow and numeric keypads superimposed. This forces a few limits when designing a
keyboard interface, which are not a problem with the newer keyboards, Most programmers avoid
the issue by not using function keys 11 and 12, and by not creating situations that require simul-
taneous use of the cursor keys and numeric keypad.

Determining how many function keys are on the keyboard, and if the direction keys are combined
on the numenc keypad.

‘ mt the keyboard type or. number of function keys.

If nTypeFlag == 0, the returned value is as listed in Table 7-8.

203

WINDOWS API BIBLE

Value Meaning L ‘ P X
IBM PC/XT, or compatible 83 key keyboard.) ‘

Qlivetti M24 “ICO" 102 key keyboard.

IBM AT 84 key keyboard (early ATs). -

1BM Enhanced 101 or 102 key keyboards.

Nokia 1050 and compatible keyboards.

Nokia 9140 and compatible keyboards. : e

Table 7 8. Keyboard Type Values.

If nTypeFlag = 1, the keyboard subtype is returned. Thls is not normally used.
IfnTypeFlag = 2, the number of function keys is returned.

[< T < T U A U

Parameters :

nTypeFlag - int: Set to 0, 1, or 2. Controls if the returned value is the keyboard type, subtype, or number of
function keys. Normally set to zero to determine if an enhanced keyboard is in use. -

Example This example displays the fype of keyboard and the number of function keys when the user chcks

the “Do It!” menu item.
Long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< .
HDC hdC ;

int nKeyboard, nFuncKeys ;
char cBuf C51.; .

switch (iMessage) /* process windows messages:*/
<. . . .
case WM_COMMAND: /* process menu items */
switch (wParam) .)
{ ey
case IDM_DOIT: C

hDC = GetDC ChWnd) ;

nKeyboard = GetKeyboardTyp= (0) ;
nFuncKeys = GetKeyboardType (2) ;
switch (nKeyboard)

{

case 1:
Textout (hDC, 10, 10,
. "“pC keyboard.", 12) ;
break ; ’ .
- case 3:
: Textout ChdC, 10, 10,
"“old AT keyboard.", 16) ;
break ;
case 4: .
Textout ¢(hbdC, 10, 10,
"“Enhanced keyboard.", 18) ;
break ; e
default:

Textout C(hDC, 10, 10,
“Unusual keyboard.", 17) ;
' break ; .
}
itoa (nFuncKeys, cBuf, 10) ;
TextOut (hDC, 10, 30, cBuf, strien (cBuf)) ;
Textout (hDC, 30, 30, "Function keys.", 14) ;

break ;
case IDM_QUIT: /* send end of application message *\I
DestroyWindow (hWnd) ;)
break ;
B
© break ;

204 /]

7. KEYBOARD SUPPORT Vv

case WM_DESTROY: /* stop application */
PostQuitMessage (0)
break ; . .
default: /* default windows message processing */
return DefWwindowProc (hWnd, iMessage, wParam, LParam) ;
} ‘
return (OL) ;

}

GETKEYNAMETEXT Win20 BWin30 ®Win3.l

Purpose Retrieves the name of a key.

Syntax int GetKeyNameText(LONG [Param, LPSTR IpByffer, int nSize);

Description Used in processing of WM_KEYDOWN and WM_KEYUP messages. The I[Param parameter is
passed to GetKeyNameText(). The function then puts the key description into a character buffer
pointed to by IpBuffer. -

Uses Handy for making error messages. The IpBuffer character string is a readable description of the

. key that was pressed. .

Returns The length of the character string returned.

See Also GetlnputState() g

Parameters , o

lParam DWORD: This is the 32-bit parameter passed when a WM_KEYDOWN or WM_KEYUP message is
received. See these message descriptions in Chapter 8, Windows Messages, for a description of
the meaning of each bit. .

lpBuffer LPSTR: Pointer to the buffer to receive the string name.

nSize WORD: Specifies the maximum length in bytes for the key name, 2
not including the terminating NULL character. Q“ it 0“"

Related Messages WM_KEYDOWN, WM_KEYUP) - Num Enter

Example This program excerpt shows the key name any time a key is -

- pressed. In most cases (the-letter and number keys), this is just

the letter itself. The function keys are returned as “F1.” The nu- Figure 7-1. GetKey-
meric keypad keys are preceded by “Num,” as shown in Figure 7-1. NameText() Example.

long FAR PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
{

HDC hoe ;
char cBuf [15] ;
switch (iMessage) /* process windows messages */
{
case WM_KEYDOWN:
InvalidateRect (hWnd, NULL, TRUE) ;
UpdateWindow (hWnd) ;
GetKeyNameText (lParam, cBuf, 14) ;
hDC = GetDC (hWnd) ;
TextOut (hDC, 10, 10, cBuf, strlen (cBuf)) ;
ReleaseDC (hWnd, hDC) ;
break ;
[Other program lines]
- GETKEYSTATE BWin20 @Win30 @Windl
_ Purpose - Determines if a key was down when the current message was generated, or if a toggle key was
) active,
Syntax int GetKeyState(int nVertKey);
Description GetKeyState() allows a key's status to be determmed

205

WINDOWS API BIBLE

Uses Normally used to check the status of the toggled keys: (CAPSLOK), (SEROLLLOCK), and (NGMLOCK).
Returns = int. The status of the key is encoded in two bits. The high-order bit is set to 1 if the key was

depressed when the current message was sent, otherwise 0. The low-order bit is set to 1 if the key
was pressed an odd number of times. This signifies a toggle key being active.

Se2 Also GetInputState(), GetAsyncKeyState()

Parameters

nVertKey int: The virtual key code. See Table 7-1 for the complete list.

Related Messages WM_KEYDOWN, WM_KEYUP

Example . " This example program fragment shows the name of the key pressed (retrieved by GetKey-

NameText()). If the (€apsiocx) key is toggled on, the text is printed in capital letters. Otherwise,
it is printed in lowercase letters. The C runtime library functions strupr() and striwr() convert
the characters to upper- and lowercase respectively. AnsiLower() and AnsiUpper() could have
been used (see Chapter 19, Character Sets and Strings). .

Long FAR 'PASCAL WndProc (HWND hWnd, unsigned iMessage, WORD wParam, LONG LParam)
< .

HDC hoe ;
char cBuf [15] ;
switch (iMessage) /* process windows messages */
{
case WM_KEYDOWN: ~
InvalidateRect (hwnd, NULL, TRUE) ; /* clear client area */
UpdateWindow (hWnd) ; .
GetKeyNameText (lParam, cBuf, 14) ; /* get key name */
if (0x0001 & GetKeyState (VK_CAPITAL)) /* caps lock on?*/
strupr (cBuf) ; /* all caps */
else .)
striwr (cBuf) ; /* atl lower case */

hdC = GetDC ChwWnd) ; .
TextOut (hDC, 10, 10, cBuf, strlen (cBuf)) ;
ReleaseDC (hWnd, hDC) ;

break ;
[Other program lines]
LOADACCELEBATORS BWin20 ®Win30 ®Wind.l
Purpose Loads the accelerator key combinations from the resource file. :
Syntax HANDLE LoadAccelerators(HANDLE hInstance, LPSTR lpTableNamé); .)
Description The accelerator key combinations are defined in the resource .RC file. Before they can be used,

you must use LoadAccelerators() to retrieve a handle to the accelerator table. This handle is
used in the TranslateAccelerator() function to decode incoming keystrokes that may be in the
accelerator table. Like menu items, accelerators generate WM_COMMAND messages where the .
wParam value is set to the accelerator ID value. In most cases, this will be the same ID value as
a menu item, allowing the accelerator to duplicate exactly a menu command.

Uses Accelerators are used for keystroke shortcuts to common functions that mi } t otherwise require
several mouse actions. Accelerators can be used to generate command messages that do not have
menu equivalents. The example program gives one case of this action.

Returns - -~ - HANDLE. Returns a handle to the accelerator table if the function was successful, NULL on error.
Multiple calls to LoadAccelerators() continue to return the handle to the accelerator table with-
out reloading the data.

See Also TranslateAccelerator()

206

7. KEYBOARD SUPPORT ¥

Parameters
hinstance HANDLE: The instance handle for the program containing the accelerator definitions in its re-
source data. :

IpTableName LPSTR: A pointer to a character string containing the name of the accelerator table. This is the
same name given in the ACCELERATORS line of the .RC resource file.

Related Messages WM_COMMAND

Example This example defines a window with a small menu. The menu items are given keystroke equiva-
' lents in the accelerator table. In addition, a command with the ID value code of NOTMENU is -
defined that can only be driven by the keyboard accelerator _here is no menu equivalent. In all
cases, the commands just generate message boxes. As shown in this example the header file .
contains the define statements for all of the menu and accelerator ID values.

/* generic.h */

#define IDM_DOIT
#define IDM_TOP1
#define IDM_OPT1
#define IDM_OPT2
#define IDM_QUIT
#define NOTHENU
/* global variables */
int ghlnstance ;
char gszAppName L[] = “generic" ;
/* function prototypes */
Long FAR . PASCAL WndProc (HWND, unsigned, WORD, LONG) ;

/* menu item id values */

OWVISH NN =

/* a non-menu id value */

The resource .RC file defines both the menu and the accelerator table. The first accelerator
assigns €7R0)-D to the ID value IDM_TOP1. The second and third definitions define the function
keys F1 and F2 to IDM_OPT! and IDM_OPT2, respectively. IDM_OPT2 is set to not flash the
menu item when it is activated (NOINVERT). The END key is equated to the “Quit” menu item ID
of IDM_QUIT. Finally, a non-menu command ID of NOTMENU is assigned to the @)-F1 key
com