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Preface

David Thielen. ..

About a year ago, I was talking to J. D. Hidlebrand about a new magazine he was
starting, Windows Tech Journal. 1 told him that he should include a column on VxDs
(Virtual Device Drivers) in the magazine. His reply, typical of Windows developers at
the time, was "what's a VXD?" Since then, articles have run in Win Tech, and VxDs
have become an important part of Windows programming for a substantial number of
Windows developers.

Unfortunately, to date noone has published a book devoted to explaining VxDs. On
CompuServe I constantly found myself referring people to the articles I wrote in Win
Tech, requiring them to go order the back issues. Equally important, there have been a
lot of questions about subjects that my two articles did not cover. Most of these
questions are answered in a combination VxD and Windows program I wrote to
support InterProcess Communication between Windows and DOS applications.

This book does not attempt to answer every question you have about VxDs, but it
should give you a good grounding in how to write a VxD. It also provides complete
working source code to two very different VxDs. With this information, and with the
Windows DDK (Device Development Kit), you should be able to write a VxD.

My main hope is that this book will give enough help so that developers will no longer
be afraid to write VxDs. I have talked to too many developers who avoid VxDs
because of the perceived difficulty. VxDs are not that hard to write — they're just
something new.

More importantly, and this can't be stressed enough, all interaction with hardware
should be done with a VxD. Yes, a DLL or a Windows application can handle IRQs,
perform DMA, and talk to ports, but even if you handle everything perfectly, they will
still be slow. VxDs were designed to give you a fast and safe method to communicate
with your hardware. A system that uses VxDs exclusively to talk to hardware is not
only more solid but is more responsive to the user. And once you learn how to write a
VxD, you will find that using a VXD is a lot easier than the alternatives. VxDs are the
way Windows works best with hardware.

VxDs also let you do the things Windows itself won't let you do. While Windows has a
number of strict rules and enforces those rules pretty well, VxDs are not as rigid. With
a VxD you can see all the memory in the entire system, intercept or create any
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interrupts you wish, make hardware disappear, or have hardware that doesn't exist on
the system appear.

This book demonstrates how you can perform some of these tricks. It has a fully
commented VCD that should provide a good example of how to talk to virtually any
hardware device. It also has the source to Win-Link, which can show you a lot of
tricks you can perform with VxDs.

There is no way to document all the things you can do with VxDs. Many of the uses
VxDs will be put to next year probably haven't even been thought of yet. That's for
you to do. Have fun.
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Bryan Woodruff. . .

When Dave first approached me about completing this book, I thought about
developing a method to help other software developers understand the complexities of
the Microsoft Windows 386 Enhanced Mode operating system. I had also fielded
questions on CompuServe regarding the interactions of VxDs with the Windows 386
system and felt that we could provide some of the knowledge we gained while
working with VxDs.

There are so many areas of this complex system to cover that a single book cannot
handle every aspect. Just the basics can give the developer enough weapons to bring
the system down to its knees, intentionally or not. So the challenge was to provide the
developer with enough fire power to take on any Windows programming problem
while allowing them to operate this advanced weaponry without shooting off their own
foot. Of course, this book isn't 42 (the answer to life, the universe, and everything), but
I think it will help the novice as well as the advanced Windows 386 developer.

I hope that this book will assist you in your programming endeavors. Enjoy
programming in 32-bit flat model — once you have you many never want to go back.
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Chapter 1
The Anatomy of a VxD

Virtual device drivers (VxDs) are not just for people writing drivers for hardware devices
anymore than DOS device drivers are used for the same. A VxD is Windows' way of
letting you do almost anything you want. If you miss the DOS world — where you have
direct access to the hardware, can interface to vital CPU functions, or can take over parts
of the operating system — then welcome to VxDs, where you can do the a lot of same
under Windows.

A VxD is code and data that runs at ring 0 in 32-bit flat model as part of the Windows 386
virtual machine manager (VMM). In fact, the VMM (WIN386.EXE) is primarily a number
of standard VxDs compounded in a single file. VxDs only operate when Windows runs in
386 Enhanced mode.

- VMM is not really a part of Windows; instead, it is a preemptive, multitasking kernel that
controls multiple virtual machines. Once VMM has initialized, the Windows Graphical
User Interface composed of KRNL386.EXE, GDLEXE, USER.EXE, and all of the
supporting drivers are loaded into the System VM (the initial virtual machine created when
VMM is started). However, VMM could easily load COMMAND.COM into the System
VM and with the assistance of a VxD and some helper hot-keys, so that you have a
multitasking DOS instead of the fancy Windows GUL

Because VxDs operate at ring 0, the operating-system level of protection, the CPU allows
the code to execute any 386 instruction. At higher ring levels, access to memory addresses
or I/O ports can be restricted from the VM, allowing the VMM or a VxD to process the
exception as it wishes. Of course, certain instructions executed by the VM always cause
processor exceptions, but a VXD can simulate the functionality of that instruction for the
VM, allowing it to operate as if it has sufficient privilege.

With this power comes responsibility. Although a VxD can play with the Interrupt
Descriptor Table (IDT) entries directly, this is something that should probably be avoided.
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Besides, the VMM provides enough functionality to get as close the IDT as needed, so
why reinvent the wheel?

A VxD is always active, unlike any other part of Windows. When a DOS box is running
exclusive mode, the primary code executing apart from the DOS box itself includes any
VxDs responding to IRQs, code causing faulting instructions, and trapped 1/O or page
faults in the DOS box.

A VxD is the only program with unobstructed access to the hardware. If a VxD performs
I/O to a port, it communicates directly to the physical port, without restrictions. If a VxD
owns a hardware interrupt, the VxD receives the IRQ directly from the Virtual
Programmable Interrupt Controller Driver (VPICD), without ring transitions. For example,
an interrupt service routine for an non-owned interrupt in a VM sees a virtualized interrupt
through events scheduled by the VPICD, whereas a VxD has a more direct path for
interrupt servicing. Where code communicating to hardware in a VM may be restricted or
slowed by ring transitions and access permission lookups, a VxD is unrestricted and
extremely fast.

VxDs operate in 32-bit flat model, the 386 equivalent of small model. All of the segment
registers are fixed to the same base address. The CS and DS selector values differ, due to
access and execution restrictions (code versus data), but point to the same memory.
Because a VxD is in 32-bit flat model, all offsets to code and data are 32-bit; therefore,
you can access any part of the address space (4 gigabytes) with just an offset.

A VxD is also given priority on all actions in a VM. A VxD can intercept and/or generate
interrupts (hardware or software), trap port I/O, and even restrict access to specific regions
of memory. VxDs can determine whether to allow such access to occur, provide
simulation, terminate (or nuke) the VM, or simply ignore the request.

Because VxDs utilize the base components of the 80386 chipset, it is important that you
have a working knowledge of 386 architecture!.

A misbehaving MS-DOS application will usually crash the DOS virtual machine. A
misbehaving Windows application may affect the operation of other Windows
applications. However, a misbehaving VxD will crash the entire Windows operating
system. Because a VxD is part of the WIN386 kernel, the VXD is active during critical
processing of the Windows operating system. The smallest, most subtle bug can have
devastating effects on the operating system. Thorough testing of virtual device drivers is
absolutely necessary. Do not simply test how the VxD operates under stringent

I For a good description of 80386/80486 system architecture, see Hummel, Robert L.

(1992), PC Magazine Programmer's Technical Reference: The Processor and
Coprocessor, Emeryville, CA: Ziff-Davis Press.
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configurations; instead, expand your testing to include all possible permutations of end-
user system configurations you can design (limited only by a testing hardware budget of
course!).

VxDs were originally designed to handle hardware device contention between multiple
processes and to translate or buffer data transfers from a VM to hardware devices. When
two or more programs attempt to access the same device, some method of contention
management must be used. You can use a VxD to allow each process to act as though it
has exclusive access to the device. For example, a Virtual Printer Device (VPD) would
provide the process with a virtual printer port, and characters written to the port would be
written to a print spooler. The VxD would then send the job to the printer when it becomes
available. Windows 3.X does not operate in this fashion, but the Win-Link VxD provides
this functionality (see Chapter 14 for more information). Another method would be to
assign the physical device to only one process at a time, so that when a process attempts to
access the device while it is in use, the VXD does not pass the request to the actual
hardware, and the process operates as though the hardware did not exist. The Virtual
COMM Device (VCD) uses this method.

Recently, the use of VxDs has been expanded to include interprocess communication
(demonstrated in the Win-Link example). Some VxDs now also implement a truly virtual
device, providing the necessary mechanisms to allow a virtual machine to see a device that
may not actually exist in hardware. VxDs can also implement client-server hardware
management, providing an interface to a VM that virtualizes I/O to the device and
translates this information to commands to be sent across a network to a hardware server.

The VxD Structure

A VxD has a rather simple structure. It includes a 16-bit real-mode initialization code and
data segment, 32-bit initialization code and data segments, 32-bit locked or “non-locked”
code and data segments, and a virtual device driver declaration block (exported in the
linear executable file as the VxD's DDB). Similar to the “suicide” fence of a DOS
terminate-and-stay resident program, the initialization fragments of the VxD are discarded
after initialization has been completed. Under Windows 3.x, all 32-bit code and data
segments are locked, because the macros provided in the VMML.INC included with the
Windows 3.X Device Driver Kit resolve to the same segment definition. However, you
should not assume that non-locked segments are the same as locked segments, as these
definitions most likely will change in the future. Note the distinction between the two now
and save yourself the bug-tracking hassle later.
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Real-Mode Initialization Segment

The real-mode initialization segment is a 16-bit code and data segment of the VxD defined
by the VxD_REAL_MODE_INIT_SEG macro and is called during VMM's startup. This
allows a VxD to communicate with TSRs or other real-mode procedures to gather and then
pass vital information to the VxD's protected mode initialization routines or to fail the load
of the VxD or VMM prior to entering protected mode. The term “real-mode initialization”
is relative. If you have installed an EMM emulator (EMM386, 386Max, or QEMM), it is
likely that the real-mode initialization procedures are invoked in V86 mode and are subject
to trapped I/O or other virtualization occurring under these systems. In other words, during
real-mode initialization, VMM does not switch the processor to real mode and then call
these procedures. Instead, it executes the 16-bit code in the mode configured prior to the
startup of VMM (such as invoking WIN.COM).

Note: Due to problems in Windows 3.x, you will need to make sure that your real-mode
initialization segment is not exactly 4k, 8k, 12k, or 16k in size. Additionally, real-mode
initialization segments greater than 8k (or 12k in Windows 3.1) must be a multiple of 4.
Real-mode initialization segments cannot be greater than 12k under WIndows 3.0 or
greater than 16k under Windows 3.1. Using code segments greater than these restrictions
will cause problems and will eventually hang VMM. These problems were reported on the
CompuServe WinSDK forum and confirmed by Developer Support Engineers. Avoid
these problems with real-mode initialization by adding the necessary boundary checks in
your code. :

Protected-Mode Initialization Segment

The 32-bit initialization code and data segments defined by the VxD_ICODE_SEG and
VxD_IDATA_SEG macros are present until VMM has completed initialization, at which
time they are discarded, freeing the memory used by these sometimes cumbersome pieces
of code. These initialization procedures can determine whether it is safe to load the VxD or
to bail out prior to further initialization. Thus, the VxD load can fail, the user can be
notified, and there will be no memory wasted for the VxD when the VMM completes
initialization.

Pageable Data Segments

Because VxD segments are locked by default under Windows 3.x, using data segments to
store large amounts of constant data can be a waste of physical memory. One method to
resolve this issue is to store the data in the initialization data segment and allocate pageable
memory using _HeapAllocate during the Device_Init call. You can copy the data
from the initialization segment to this block, and when system initialization has completed,
the original data will be discarded.
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Device Declaration Block (DDB)

The device declaration block describes the virtual device to the VMM. It provides a VxD
mnemonic, usually a somewhat descriptive title using V as the prefix and D as the suffix,
such as VXFERD, suggesting a virtual transfer driver. It also provides a major and minor
version, the main control procedure, the device ID number, the initialization order, and
control procedures for the V86 or Protected-Mode (PM) API:

Declare_Virtual_Device VSIMPLED, VSIMPLED_ Major_Ver,\
VSIMPLED_ Minor_Ver,\
VSIMPLED_Control_Proc, \
VSIMPLED Device_1ID,\
Undefined_Init_Order, \
VSIMPLED_V86_API_Proc, \
VSIMPLED_PM_API_Proc

This declaration dispatches the system control events to the VSIMPLED_Control_Proc.
This procedure must be declared in a VxD_LOCKED_CODE segment, which handles system
event control such as the initialization dispatch, VM control events (creation or suspension
of VMs), device focus changes, and system shutdown notifications. Defining it in any
other segment will cause problems.

VxD Control Procedure

The control procedure is the main dispatch entry point for the VxD. The initialization
messages from VMM are sent to this procedure and then dispatched to the appropriate
handlers:

VXD_LOCKED_CODE_SEG

I’
;
; VSIMPLED_ Control_Proc
;

; Description:

This is the entry point for system control calls from VMM.
; Control for system messages are dispatched through the
; Control_Dispatch macro in VMM.INC.
I

BeginProc VSIMPLED_Control_Proc

Control_Dispatch Sys_Critical_Init, VSIMPLED_Sys_Critical_1Init
Control_Dispatch Device_Init, VSIMPLED Device_Init

EndProc VSIMPLED_Control_Proc
VXD_LOCKED_CODE_ENDS
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VXD_LOCKED_CODE_SEG and VXD_LOCKED_CODE_ENDS are macros that define a
segment of 32-bit code in a page-locked segment. Defining this segment as “page-locked”
is necessary because the calls are dispatched during critical processing of the VMM. This
procedure cannot be included in the initialization code segments, because it would be
discarded after VMM completed its startup procedures and system failure would occur
when the VMM attempted to dispatch a control message to the VxD during later
processing.

The BeginProc and EndProc macros define the beginning and end of a specific VxD
entry point. These macros define the procedure name of a VxD, declare it callable by other
VxD, align the procedure for “fast-calling”, declare the procedure as public for access
outside of this module, or additionally define the procedure as an asynchronous service
callable from another VxD at interrupt time. The valid parameters to BeginProc macro are
PUBLIC, HIGH_FREQ, SERVICE, and ASYNC_SERVICE, and their functionality
corresponds to the following table:

PUBLIC
Procedure is callable from an external module
HIGH_FREQ
Aligns this procedure on a DWORD boundary. Useful
for procedures called frequently such as hardware
interrupt procedures or I/0 trapping routines.
SERVICE

Procedure can be called from another VxD.
Requires an exported service table.

ASYNC_SERVICE
Same as SERVICE, but the VXD routine can be called
during interrupt procedures. VxD services that do
not specify this option and are called at
interrupt time will cause debug traces when using
the debug version of VMM (WIN386.EXE). If you
declare a service to be asychronous be sure that
it is atomic or can be interrupted while
processing the request.

Virtual Device ID

A specialized VxD ID may be required if your VXD provides an external V86 or PM API
or if your VxD exports services callable by other VxDs. In these cases, you need to request
a VxD ID from Microsoft (Internet address vxdid@microsoft.com; CompuServe email,
>INTERNET:vxdid @microsoft.com). Microsoft will send you a registration form, which
you will need to fill out and return for processing.

If you are replacing an existing VxD, such as the Virtual Comm Device (VCD), you
should use the value specified in VMM.INC. The replacement VCD would then have a
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device ID of VCD_Device_ID. Otherwise, assuming that your VxD does not provide an
external API or services, you can use the predefined value of Undefined_Device_ID.

Initialization Order

The initialization order of the DDB defines the load order of the virtual device drivers.
VMM will load and initialize the VxDs in the order specified by the load-order values. For
most secondary virtual device drivers, the Undefined_Init_Order equate is sufficient. If
your VxD requires other VxDs to be present and initialized prior to calling your
initialization procedures, you need to specify a load order constant here.

API Entry Procedures

API entry procedures are invoked when a VM running in either protected mode or V86
mode calls the VxD's entry point. A VxD entry point is available to VMs only when the
VxD defines the necessary entry procedures in the DDB. These procedures are discussed
in depth in Chapter 4.

Virtual Device Initialization
System Critical Initialization (Sys_Critical_Init)

VMM dispatches a Sys_Critical_Init message to all VxDs in the order defined by the
Initialization Order values of the VxDs. During Sys_Ceritical_Init, interrupts are disabled,
and VxDs perform system-critical initialization such as memory mapping and hooking
V86 interrupts or faults. Because interrupts are disabled, you should keep the initialization
during this message to a minimum.

Sys_Critical_Init may also be used to hook your VxD in front of certain handlers, such as
GP fault or NMI processing. Sys_Critical_Init is an optional procedure, and you should
only define this procedure if you have specific initialization to perform. Below is a sample
Sys_Critical_Init handler as used in the VSIMPLED Sample:

; VSIMPLED_Sys_Critical_Init

’
r
I’
r
; Description:

; On entry, interrupts are disabled. Critical initialization

; for this VxD should occur here. For example, we can read

; settings from VMM's cached copy of the SYSTEM.INI and set up
; our VxD as appropriate.

r

I’

r

’

This procedure is called when the VSIMPLED_Control_Proc
dispatches the Sys_Critical Init notification from VMM.
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; We can notify VMM of failure by returning with carry set
; or carry clear will suggest success.
;

BeginProc VSIMPLED_Sys_Critical_Init

clc
ret

EndProc VSIMPLED_Sys_Critical_Init

Device Initialization (Device_Init)

Device initialization is where non-system critical initialization of your VxD is performed.
For example, you may want to install I/O trap handlers, virtualize an interrupt using
VPICD services, or allocate a VM control block. Returning from this procedure with carry
set will fail the loading procedure of the VxD. If everything has passed initialzation, clear
the carry flag and return.

The VSIMPLED Sources

Using the information provided in this chapter, we are ready to create our first VxD. This
skeleton VxD declares a DDB, and defines a control procedure supporting the two system
initialization messages (Sys_Critical_Init and Device_Init):

MAKEFILE
| IFDEF DEBUG
DEFS=-DDEBUG
ENDIF

.asm.obj: :
masm5 -p -w2 -Mx $(DEFS) $*;

.asm.lst:
masm5 -1 -p -w2 -Mx $(DEFS) $*;

OBJS = vsimpled.obj
all: vsimpled.386
vsimpled.obj: vsimpled.asm
vsimpled.386: vsimpled.def $(OBJS)
1ink386 /NOI /NOD /NOP /MAP @<<
$(0OBJS)
vsimpled.386

vsimpled.map

vsimpled.def
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<<
addhdr vsimpled.386
mapsym32 vsimpled

clean:
del *.386
del *.obj
del *.map
del *.sym

VSIMPLED.ASM
page 60, 132
;***************************************************************

title VSIMPLED - A simple virtual device driver example
[E XX EXEE XL RS XA XS Z R R R X R AR R X Z 22X X X2 RS2 X2 X 2 R R R R 2 X R X 2 2 X 2 2 R X3

(C) Copyright Woodruff Software Systems, 1993
Title: VSIMPLED.386 - Sample virtual device driver
Module: VSIMPLED.ASM - Core code
Version: 1.00
Date: November 24, 1992
Author: Bryan A. Woodruff
XXX ZEXEI L L Z R XS X222 2R X222 22 2 2222222 2 2 2222 R X 2 2 2 2 2 2 2 2 2 2 2 2 X XX %]
Change log:
DATE REVISION DESCRIPTION AUTHOR

11/24/92 1.00 Wrote it. BryanwW

XXX EEE LS E S AR R X2 2R XX X 2R 2 2 X 2 2 2 2 X X 2 X X 2 X X 2 2 2 22 2 s R 2 X 2 X X7
Functional Description:

Provides a minimal virtual device driver interface.

Ne Ne Ne Ne Mo Ne Ne We e Ne e Ne e We Ve N No Ne No We No Wo We Ve We Ve Ne W No

hkkhhkhkhhhkhhkhhhhhhhkhhhhhhhhkhhkhkhhkhhkhhhhhhhhhhkhhkhhhkhhhhhkhhhkhhkhkhkkd

-XLIST
INCLUDE VMM.Inc
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INCLUDE Debug.Inc

<LIST
VSIMPLED Major_ Ver equ 01h
VSIMPLED_Minor_Ver equ 00h
VSIMPLED_Device_ID equ Undefined_Device_ID
; R R i it i it ittt i+ &+t &ttt &t &ttt tttttiiirtttriyei
; VIRTUAL DEVICE DECLARATION

Declare_Virtual_Device VSIMPLED, VSIMPLED Major_Ver, \
VSIMPLED_Minor_Ver, VSIMPLED Control_Proc,\
VSIMPLED_Device_ID, Undefined_Init_oOrder,,,

VxD_ICODE_SEG

VSIMPLED_Sys_Critical_ Init

Description:
On entry, interrupts are disabled. Critical initialization
for this VvxD should occur here. For example, we can read
settings from VMM's cached copy of the SYSTEM.INI and act
set up our VxD as appropriate.

This procedure is called when the VSIMPLED_Control_Proc
dispatches the Sys_Critical_Init notification from VMM.

We can notify VMM of failure by returning with carry set
or carry clear will suggest success.

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne No Ne e No N

~

BeginProc VSIMPLED_Sys_Critical_Init
Trace_Out "VSIMPLED: Sys_Critical_Init"

clc
ret

EndProc VSIMPLED_Sys_Critical_Init

VSIMPLED_Device_Init

Description:
This is a non-system critical initialization procedure.
IRQ virtualization, I/O port trapping and VM control
block allocation can occur here.

Ne Ne e N Ne Ne Ne N
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Ne Ne N N

~

Again, the same return value applies...
CLC for success, STC for error notification.

BeginProc VSIMPLED_Device_Init

Trace_Out "VSIMPLED: Device_Init"

clc
ret

EndProc VSIMPLED_Device_Init

VxD_ICODE_ENDS

VxD_LOCKED_CODE_SEG

Ne Ne Ne No Ne Ne Ve Ne Ne Ne Ve Ne Ne Ne Vo Ne No “o

~

VSIMPLED Control_Proc

DESCRIPTION:

Dispatches VMM control messages to the appropriate handlers.
ENTRY:

EAX = Message

EBX = VM associated with message
EXIT:

Carry clear if no error (or if not handled by the VxD)
or set to indicate failure if the message can be failed.

USES:
All registers.

BeginProc VSIMPLED_Control_Proc

Control_Dispatch Sys_Critical_Init, VSIMPLED_Sys_Critical_1Init

Control_Dispatch Device_Init, VSIMPLED_ Device_Init

clc
ret

EndProc VSIMPLED_Control_Proc

VxD_LOCKED_CODE_ENDS
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VSIMPLED.DEF

LIBRARY VSIMPLED
DESCRIPTION 'Win386 VSIMPLED Sample Device (Version 3.10)°
EXETYPE DEV386

SEGMENTS
_LTEXT PRELOAD NONDISCARDABLE
_LDATA PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_TEXT CLASS 'PCODE' NONDISCARDABLE
_DATA CLASS 'PCODE' NONDISCARDABLE

EXPORTS
VSIMPLED_DDB @1

Debugging the VSIMPLED VxD

Before entering the Windows environment, you need to copy the debug version of the
VMM into your system directory. The Windows 3.1 Device Development Kit contains this
special version. There are many reasons to use this version of the VMM when developing
your VxDs:

e VMM displays debug traces when unexpected events occur. These messages help
you track down problems with your VxD. You will know that you have a “clean”
VxD, When the system does not display these messages while running with your
VxD installed.

e VMM includes a special debugging trace log that logs faults, device calls, and
interrupt counts. These logs help to pinpoint the exact cause of a failure in your
VxD.

e Special services are enabled for debuggers to display VMM's execution state, VM
information such as event lists, interrupt vector tables, the VM execution state,
and other critical information not available in the retail release of VMM.
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Using the debug version of WIN386.EXE requires either a serial terminal on COM1 or
COM2 and WDEB386, the 386 debugger included with the Windows Software
Development Kit and Device Driver Development Kit, or a Windows Enhanced Mode
Debugger such as Soft-ICE/W™ available from NuMega.

Note: WDEB386 and the debug version of WIN386.EXE are provided with VxD-Lite
included on the accompanying disk.

The VSIMPLED device displays trace information at each initialization phase. Before the
GUI starts, break into the debugger by using the appropriate hot-key (Control-D for Soft-
ICE/W or a Control-C from the terminal keyboard for WDEB386) and unassemble the
VSIMPLED_Sys_Critical_Init procedure:

Registration # SIW012345
:ALTSCR OFF

:LINES 50

:ilhere on

1wWe

:X

VSIMPLED: Sys_Critical_Init
Break Due to Hot Key
D800:00001A20 MOV CX, 0040
:u VSIMPLED_Sys_Critical_Init
VSIMPLED_Sys_Critical_1Init

0028:8029478C CALL [Log_Proc_cCall]

0028:80294792 PUSHFD

0028:80294793 PUSHAD

0028:8029479%4 MoV ESI,VSIMPLED DDB+38 (800FEA2C)
0028:80294799 CALL [Out_Debug_ String]
0028:8029479F POPAD

0028:802947A0 POPFD

g

VSIMPLED: Device_Init

VMM Version 03.10 - Build Rev 00000103
Break Due to Hot Key

0028:800110A6 CMP AX, 0030

:u VSIMPLED_Sys_Critical_Init
VSIMPLED_Sys_Critical_Init

0028:8029478C INVALID
0028:8029478E INVALID
0028:80294790 INVALID
0028:80294796 INVALID
0028:80294798 INVALID

g

Re-enter the debugger when the Windows GUI has completed initialization and
unassemble the same procedure. You will find that the address is invalid because the
initialization code and data segments were discarded after the device initialization was
completed.

For more information on VMM's debugging services and debugging techniques, see
Chapter 11, “Using the Debugging Services.”







Chapter 2

The Virtual Machine
Manager

The Virtual Machine Manager is a single-threaded, non-reentrant, preemptive multi-
tasking, event-driven operating system. This operating system is often referred to as
“WIN386” or “VMM.” VMM provides an interface layer to VxDs for event scheduling,
memory management, descriptor table management, and other vital system services.

The VMM creates, runs, and destroys virtual machines (VMs). On startup, the VMM
creates the System VM for the Windows GUI. The System VM interfaces to the SHELL
VxD in VMM to create new virtual machines or DOS boxes — each new VM starts
operation in Virtual 8086 (V86) mode. Because a VxD is a part of the VMM, it runs within
whatever VM is active when it is called. Consequently, when a DOS VM calls a VxD, the
VxD runs in protected mode in the context of the calling VM.

To write a VxD, you must have a clear understanding of how the VMM works.

Event Processing

The execution path of VMM is driven by event lists. Event lists are linked lists of
scheduled event procedure calls. These scheduled calls are created by the WIN386 system
as the result of faults, interrupts, or specific VxD requests.

There are two types of event lists: the global event list and VM-specific event lists. The
global event list is the event list for the VMM. As each VM is created, VMM creates an
event list for specific events of that VM. Prior to returning control to a VM, VMM
processes any events in the global event list, any pending NMI events (a special form of a
global event), and then the VM event list as shown in Figure 2.1. Note that VM-specific
events are only processed for the active VM.

17
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Global Events (VMM Events)

v

NMI Events

v

Current VM Events

Figure 2.1
VMM Event Processing Order

When a VxD processes an event, it has complete control of the system. Because extended
event processing reduces the system performance, the event procedure must be fast and
avoid lengthy processing. Returning from the event allows VMM to continue the
processing of the event list.

When VM events are created, the execution priority of the VM can be adjusted. This is
also known as a “boost.” The boost can be temporary (automatically removed by VMM) or
can be specifically removed by the VxD when all of the necessary event processing for
that VM is completed. The execution priority of a VM is used by the primary scheduler
(execution priority scheduling) to determine the active VM. (See the section on Scheduling
for more detail.)

When all events from the global event list and active VM event list have been processed,
the primary scheduler walks the VM list searching for the VM with the highest execution
priority. The VM with the highest execution priority becomes the active VM. VMM
returns to the active VM until it is reactivated by interrupt or fault processing.

When a VxD is processing an event, asynchronous VMM services may be called and new
events generated as the result of IRQ handling. When an IRQ is generated by the PIC, the
handlers installed into the IDT by VPICD (Virtual PIC Device) call the Hw_Int_Proc for
the IRQ. During non-virtualized IRQ processing, the default VPICD handlers then
schedule VM events for interrupt simulation. VxDs must be aware that VPICD handles
interrupts while events are processed, and disabling interrupts during event processing may
be necessary for VxDs performing critical hardware processing. IRQ handling is detailed
in Chapter 7.

Because a VM does not continue executing until all events in the global event list and VM
event list have been dispatched, the results of event processing in a VXD can become
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stacked in the VM. For example, a VxD processing a global timeout event may schedule
an asynchronous call to a procedure in a VM. During this processing, the VxD may request
that the VM resume execution. Before resuming execution of the VM, VMM processes
any remaining events on the event list. If this includes an interrupt event scheduled by
VPICD, the VxD may request a simulated interrupt in the VM. Finally, when VMM
returns to the VM, the actual results of the event processing are executed in reverse order
as pushed onto the VM's stack: The interrupt service is be processed first, before the
callback scheduled by the timeout event.

Scheduling

There are two schedulers used in the WIN386 system: the primary scheduler and the
secondary, or time-slice scheduler. The primary scheduler (execution priority scheduler)
selects the active VM based on highest execution priority of the non-suspended VMs. A
VM will remain active until a higher priority VM is found in the queue.

When a VM is boosted, its order is changed in the queue. Normally, the active VM has a
boost of Cur_Run_VM_Boost in as its execution priority. Devices that require a VM to
become active as the result of I/O or interrupt processing may use a device boost of
High_Pri_Device_Boost to force the VM to become active. This is typically implemented
using the Call_Priority VM_Event service. Using this service, VMM adjusts execution
priority of the specified VM, and a callback is notified when the VM has activated. The
VxD can then continue its processing for the VM. Figures 2.2 and 2.3 demonstrate the
effect in the scheduling queue of changing the execution priority. The following code
example demonstrates the technique of boosting a VM's execution priority:

// Example of calling priority VM event in 'C’

DWORD dwEventHandle ;
static PEVENTPROC pEventProc = NULL ;

if (!pEventProc)
pEventProc =
vmmwrapThunkEventProc ( BoostEventProc ) ;
dwEventHandle =
vmnmCallPriorityVMEvent ( hvM, High Pri_Device_Boost,
PEF_Wait_Not_Crit, dwRefData,
pEventProc, 0 ) ;

// BoostEventProc - handler for VM event callback

VOID BoostEventProc( DWORD hVM, DWORD dwRefData, PCRS_32 pCRS )
{

TRACEMSGPARAM( "VM #EAX is now active\r\n", hvM ) ;
} // end of BoostEventProc()
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Queue Pointer

v

VM 1
(Cur_Run_VM_Boost)

VM 2

VM 3

Figure 2.2
Scheduler queue prior to device boost

Queue Pointer

v

VM 2
(High_Pri_Device_Boost)

VM 1
(Cur_Run_VM_Boost)

VM 3

Figure 2.3
Scheduler queue after device boost.

The secondary scheduler (or time-slice scheduler) adjusts the execution priority for VMs
for a period of time based on the background and foreground priorities set for each VM.
The secondary scheduler determines which VM to boost based on the time-slice priorities
specified in the .PIF file of a DOS application.
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The time-slice priorities are also used to determine how long the execution priority of a
VM will be boosted. The boost value is constant — that is, changing the time-slice
priorities does not affect the amount of execution priority boost that a VM receives. When
the next time-slice occurs and the VM's time-slice period has been exhausted, the VM is
unboosted and the next VM in the time-slice scheduler's queue receives the execution
priority boost. '

The time-slice scheduler's execution priority boost for a VM is low compared to other
high-priority event processing. Thus, the high-priority VM remains active until it is
unboosted or until another VM of higher priority is found in the primary scheduler's queue.

Services and Dynalinking

VMV, its component VxDs, and third-party VxDs can provide services callable by other
VxDs. The calls to these services are resolved at runtime by the dynalink mechanism. The
vxDCall and VMMCall macros provided by VMM.INC are expanded in code as follows:

<Push any C parameters>

int Dyna_Link_ Int
dd VxD_ID SHL 16 + VxD_Service

<Clean up C parameters>

When the IDT dispatches the software interrupt to VMM, the dynalink routine patches the
int 20h and the following dword with a direct call to the VxD service handler. Stack
parameters to the service are passed with the 'C' calling convention. VxDJmp is similar to
VxDCall, with the exception that stack parameters cannot be used and the resulting code
jumps to the VxD service handler, avoiding the extra cycles involved when the service call
is followed by a return instruction.

Under some 386 'C' compilers, you cannot generate the appropriate in-line assembly
instructions to duplicate this interface and/or load the registers required by the service.
Consequently, you need to use .ASM thunks to provide a 'C' callable interface. Similarly,
replacement VxDs (for example, a replacement VCD) may require register-parameter
passing, and an assembly language front-end is necessary. The VDDVGA sample was
written in 'C' and demonstrates the techniques required to interface to some of these
services.

Note: The complete VDDVGA sample sources written in 'C' can be found on the enclosed
diskette in the C\WVDDVGA directory. The VMM “wrapper” for VxDs written in 'C' can be
found in the C\WVMMWRAP directory. For more information on writing VxDs in 'C' see
Chapter 10.
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Critical Sections

The primary scheduler implements a single critical section using the Begin_Critical_
Section and End_Critical_Section services in VMM. The critical section can be
claimed on behalf of a VM by a VxD. The critical section is most commonly used when
calling MS-DOS or BIOS interrupt handlers because these real-mode code pieces are not
reentrant. However, the critical section can also be used for other drivers or TSRs loaded
prior to starting WIN386.

Note that the critical section does not halt scheduling of VMs; that is, other VMs may be
scheduled while the critical section is claimed. If a second VM attempts to claim the
critical section, the VM is suspended until the current critical section owner has released
the critical claim. When a VM claims a critical section, the execution priority of the VM is
adjusted by the predefined value of Critical_Section_Boost; the execution priority
is restored when the critical section is released.

The critical section allows a VxD to prevent multiple VMs from entering the same piece of
code. If two VMs are executing and interfacing to the same TSR and the TSR can not
handle multiple VMs calling simultaneously because it maintains global non-instanced
data for the specific procedure, a VXD may wrap the V86 interrupt chain and claim a
critical section prior to reflecting the interrupt to the VM. It releases the critical section
when the interrupt has returned. This prevents two VMs from simultaneously entering the
same interrupt routine in the TSR. The following example demonstrates hooking the V86
interrupt, watching for a specific signature, and claiming a critical section around the API
call:

Hook the V86 interrupt (Int 60h)

Ne we we

BeginProc VSIMPLED_Sys_Critical_Init

pushad

mov eax, 60h

mov esi, OFFSET32 VSIMPLED_Int60_Hook
VMMCall Hook_V86_Int_Chain

popad

clc

ret
EndProc VSIMPLED_Sys_Critical_Init

Watches for the API signature. If found, claims
a critical section and hooks the "back-end".

Ne Ne Ne Ne

BeginProc VSIMPLED_Int60_Hook, High Freq
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cmp [ebp.Client_AX], 4257h
jne SHORT VIH_Exit
pushad

~e we

Claim the critical section but allow interrupts
to be serviced if we block.

~. ~e

mov ecx, Block_Svc_Ints or Block_ Enable_Ints
VMMCall Begin_Critical_Section

; Hook the back end of the Inté60 call.

~

xor eax, eax
xor edx, edx
mov esi, OFFSET32 VSIMPLED_Int60_Complete
VMMCall Call When_VM_ Returns
popad
VIH_Exit:
stc ; always chain
ret

EndProc VSIMPLED_Int60_Hook

Completes the Int 60h handling by releasing the
critical section and returning.

Ne Ne e we

BeginProc VSIMPLED_Int60_Complete, High_ Freq

VMMCall End_Critical_Section
ret

EndProc VSIMPLED_Int60_Complete

Suspending VMs, Resuming VMs, and Semaphores

VMM provides services to suspend and resume the execution of a VMs (Suspend_VM
and Resume_VM). It is not possible for a VxD to suspend the execution of the System VM
because VMM prevents this, but all other VMs can be suspended. Also, if a VM is the
critical section owner, suspending the VM is not valid, and consequently the suspend call
will fail.
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When it suspends a VM, a VxD causes the VM to be removed from the active queue and
added to the inactive queue. The primary scheduler does not activate this VM until it is
resumed. If a VXD suspends a VM that is currently active, an immediate task switch occurs
and the execution path in the VxD halts at the Suspend_VM call. To see this, try using
debug traces to “wrap” the call to the Suspend_VM service. The debug trace in front of
this call displays and a task switch occurs as when the active VM is placed in the inactive
queue (the VM with the highest priority becomes the active VM), after which global
events and VM events are processed. When the suspended VM has been resumed, the
debug trace after the Suspend_VM call in the VxD is displayed, as the execution path of
the VM continues.

VMM provides services (Wait_Semaphore and Signal_Semaphore) that allow VxDs
to block and unblock VMs, based on events occurring in the VxD that decrement a token
count by signaling the semaphore. A VM waiting on a semaphore resumes when the token
count is less than or equal to zero. Additionally, it is possible to specify that certain events
can be processed in a blocked VM. The following list describes the flags associated with
the Wait_Semaphore service:

Block_Enable_Ints Forces interrupts to be enabled and
serviced even if interrupts are
disabled in the blocked VM.
(Only relevant if Block_Svc_Ints or
Block_Svc_If_Int_Locked specified.)

Block_Poll Causes the primary scheduler to not
switch away from the blocked VM
unless another VM has higher priority.

Block_Svc_Ints Service interrupts in the VM even if
the virtual machine is blocked.

Block _Svc_If_Ints_Locked Same as Block_Svc_Ints with the
additional requirement that the
VMStat_v86IntsLocked flag is set.

Figure 2.4 shows the flow control possible using the semaphore services. For example, a
VxD can signal or wait on semaphores in response to API calls from both the V86 VM
(DOS application) and from the PM VM (Windows Application), allowing the VxD to
control a data transfer channel through the VxD.

Note: A complete sample demonstrating semaphore usage and DOS to Windows
communication, can be found on the enclosed diskette in the ASM\SEMAPHOR directory.
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’ Signal_Semaphore

DOSXFER.386

f = Wait_Semaphore ‘

PostMessage()

Windows App DOS App

v v

DOSXFER_Copy_Data DOSXFER_Post_Notification

Figure 2.4
Possible design of semaphore implementation.

Asynchronous Services

Because VMM is non-reentrant, only a subset of VMM's API is available when a VxD is
entered through an asynchronous interrupt. Services in a VXD can be declared ASYNC and
are available at interrupt time. If your VxD declares such a service, it may call only
asynchronous services. The following tables list all the asynchronous services that may be
called in interrupt handlers:

Asynchronous VMM Services

Begin_Reentrant_Execution Get_Time_Slice_Info
Call_Global_Event Get_VM_Exec_Time
Call_Priority_VM_Event Get_VMM_Reenter_Count
Call_VM_Event Get_VMM_Version
Cancel_Global_Event List_Allocate
Cancel_VM_Event List_Attach

» Close_VM List_Attach_Tail
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Crash_Cur_VM
End_Reentrant_Execution
Fatal_Error_Handler
Fatal_Memory_Error
Get_Crit_Section_Status
Get_Crit_Status_No_Block
Get_Cur_VM_Handle
Get_Execution_Focus
Get_Last_Updated_System_Time
Get_Last_Updated_VM_Exec_Time
Get_Next_VM_Handle
GetSetDetailedVMError
Get_System_Time
Get_Sys_VM_Handle

Asynchronous Debugging Services

Clear_Mono_Screen
Debug_Convert_Hex_Binary
Debug_Convert_Hex_Decimal
Debug_Test_Cur_VM
Debug_Test_Valid_Handle
Disable_Touch_1st_Meg
Enable_Touch_1st_Meg
Get_Mono_Chr
Get_Mono_Cur_Pos
In_Debug_Chr

Asychronous VxD Services

BlockDev_Command_Complete
BlockDev_Send_Command
DOSMGR_Get_DOS_Crit_Status
PageFile_Read_Or_Write
VPICD_Call_When_Hw_lInt

List_Deallocate
List_Get_First
List_Get_Next
List_Insert
List_Remove
List_Remove_First
Schedule_Global_Event
Schedule_VM_Event
Signal_Semaphore
Test_Cur_VM_Handle
Test_Debug_Installed
Test_Sys_VM_Handle
Update_System_Clock
Validate_VM_Handle

Is_Debug_Chr
Log_Proc_Call
Out_Debug_Chr
Out_Debug_String
Out_Mono_Chr
Out_Mono_String
Queue_Debug_String
Set_Mono_Cur_Pos
Test_Reenter
Validate_Client_Ptr

VPICD_Get_Complete_Status
VPICD_Get_IRQ_Complete_Status
VPICD_Get_Status
VPICD_Phys_EOI
VPICD_Physically_Mask
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VPICD_Clear_Int_Request VPICD_Physically_Unmask
VPICD_Convert_Handle_To_IRQ VPICD_Set_Auto_Masking
VPICD_Convert_Int_To_IRQ VPICD_Set_Int_Request
VPICD_Convert_IRQ_To_lInt VPICD_Test_Phys_Request
VPICD_Force_Default_Behavior VTD_Update_System_Clock

VPICD_Force_Default_Owner






Chapter 3

Memory Management

The VMM implements two memory managers. The VS6MMGR VxD manages memory
for V86-mode applications, including Expanded Memory Specification (EMS) and
Extended Memory Specification (XMS), and the Memory Manager (MMGR) provides
services such as GDT/LDT management, global heap management, physical memory
management, protected mode address translation, and V86 page management, including
V86 address mapping and allocation.

If you are writing a virtual display device or writing a VxD for a device requiring
contiguous physical memory (such as devices using DMA transfers), you need to
implement some form of memory management. Additionally, certain memory management
implementations in your VxD such as memory mapped devices may require knowledge of
the way the 80386 implements memory management using page tables.

VMM Memory Mangement Services

All memory in the system is allocated by the memory manager. This includes large
allocations for VMs as well as a small heap available to VxDs requiring dynamic memory
allocation.

While each VM has its own memory and linear address space, any VM that is presently
executing is also mapped into the first megabyte of the linear address space. The MMGR
performs this mapping on each task switch by updating the page tables to reflect the new
mapping of the lower linear address space. Figure 3.1 shows a possible memory
configuration with multiple VMs.

29
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00000000h

VM1
(Active VM)

80000000h

VMM + VxDs
VM 1 Control Block

CB_High_Linear

<

VM 1
(Active VM)

VM 2

Figure 3.1
VMM Memory Map

The MMGR can provide per-VM data to a VxD. When a VxD initializes, it can request a
number of bytes of control block data. The MMGR returns an offset from the VM handle,
which is reserved for your VxD's control block area at the same offset in each VM control
block. The following 'C' code sample shows how a VxD control block is allocated and
assigned a pointer.

// Allocate part of VM control block for VDD usage

if (NULL == (dwVidCBOff =
vmmAllocateDeviceCBArea( sizeof( VDDCB ), 0 )))
{

vmmDebugOut ( "VDD ERROR: Could not allocate control\
block area!\r\n" ) ;

vddFatalMemoryError() ;
return ( FALSE ) ;
}

pPSysVMCB = (PVDDCB) (hvM + dwVidCBOff) ;
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VMM allocates a control block containing vital information for each VM and is located at
the zero offset from the VM handle. VMM 's control block has the following structure:

typedef struct tagVMMCB

{
DWORD CB_VM_Status ;
DWORD CB_High_Linear ;
DWORD CB_Client_Pointer ;
DWORD CB_VMID ;

} VMMCB, *PVMMCB ;

Thus, given a VM handle, a VxD can obtain the VM's ID using the following method:

DWORD dwVMID ;

dwvMID = ((PVMMCB) hVvM) -> CB_VMID ;

The low memory (interrupt vector table, BIOS & DOS data, and so forth) for each VM is
located in high linear address space along with the rest of the memory for that VM. It is
preferable to access VM memory using the high linear addresses, as these will not change.
If a task switch occurs during memory reads or writes to a low linear address, your VXD
may access an invalid address.

Translation Services

The MMGR provides an address translation API. While registers are preserved when
making a ring transition between V86 mode and flat 32-bit mode, a pointer using a real-
mode segment and offset is meaningless in protected mode. A number of macros in
VMML.INC use MMGR services to convert the parameters in the client VM's registers
automatically.

Client_Ptr_Flat is a macro that sets up a call to the Map_F1lat service:

[ client_ptr_ Flat esi, DS, DX

which expands to:

push eax

mov ax, Client_DS * 100h + Client_DX
VMMCall Map_Flat

mov esi, eax

pop eax

The actual address mapping magic is performed in VMM's Map_Flat service. The
following algorithm is used by Map_Flat to map the pointer to a 32-bit flat offset:
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mov esi, [ebp.Client_EDX]
mov eax, [ebp.Client-DS]
if (VM is V86 mode)
shl eax, 4
movzx esi, si ; zero high order offset
add eax, esi
add eax, [ebx.CB_High_Linear]
else (VM is prot. mode)
if (132-bit)
movzx esi, si
eax = _Selector_Map_Flat( hvM, [ebp.Client_DS], 0 )
if (eax != -1)
add eax, esi
if (eax < 1 MB + 64KB)
add eax, [ebx.CB_High_Linear]
endif

The translation APIs are often used when accessing memory specified through V86 or PM
APIs. Dual-mode (combination V86 and PM) APIs accessing application-provided buffers
can be easily implemented using the Map_F1lat service as demonstrated here:

VSIMPLED_Get_Info, PMAPI, RMAPI

DESCRIPTION:
This function is used to get information about the
VSIMPLED configuration.

ENTRY:
Client_ES = selector/segment of VSIMPLEDINFO structure
Client_BX = offset of VSIMPLEDINFO structure

EXIT:
IF carry clear

success
Client_AX = non-zero
Client_ES:BX ->filled in VSIMPLEDINFO structure
ELSE carry set
Client_AX = 0

USES:
Flags, EAX, EBX, ECX, ESI, EDI

Ne Ne Ne Ne N Ne Ne Ne Ve Ve e Ne e Ne o Ne Ne Ne Ne No wo

f T e e e e e e e e e - = = = = = = - - - = — — —

BeginProc VSIMPLED_API_Get_Info
Assert_Client_Ptr ebp
Trace_Out "VSIMPLED_API_Get_Info: called"
Client_Ptr_Flat edi, ES, BX
cmp edi, -1

je SHORT GI_Fail

lea esi, [gVxDInfo]
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mov ecx, size VSIMPLEDINFO
cld
shr ecx, 1
rep movsw
adc cl, cl
rep movsb
mov [ebp.Client_AX], 1 ; success
clc
ret
GI_Fail:
Debug_Out "VSIMPLED_API_Get_Info: FAILED!!"
mov [ebp.Client_AX], O ; failed
stc
ret

EndProc VSIMPLED_API_Get_Info

Page Allocation

Allocation of memory can be accomplished using either the _HeapAllocate or
_PageAllocate VMM services. In most cases, using the heap allocation services is
sufficient for your VxD and may make implementation easier than using the page
allocation services. To allocate memory using the heap services use the following code:

VMMCall _HeapAllocate, <cbSize, dwFlags>
or eax, eax

jz SHORT Alloc_Failed

mov pDataBlock, eax

VMM allocates the memory on a doubleword boundary, but the cbSize parameter does not
have to be dword aligned. The VxD is responsible for making sure that it stays within the
bounds of the memory block, because VMM does not provide protection against accessing
memory beyond the allocated range. The memory allocated by this service is fixed, and
frequent allocating and freeing of memory may fragment the heap. Also, the memory
block is not page-locked and may not be present when accessed. PageSwap VxD resolves
the not-present fault so your VxD can continue with memory accesses.

If you require page-locked memory and are using the heap management services, the
service _LinPageLock can be implemented. This avoids the possibility of VMM
discarding the physical memory between accesses by a VxD. However, because physical
memory is a limited resource, you should only use this service in cases where page-locked
memory is vital to your implementation.

_HeapGetSize, HeapReAllocate, and _HeapFree are used to determine the block
size and to, reallocate and free the memory block, respectively. Using
_HeapReAllocate may cause the address of the block to change, and VxDs must not
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rely on the possibility of the address remaining constant. _HeapReAllocate can
preserve the contents of the old block by copying the contents to the new block. The
following flags are defined for use with this service:

HeapNoCopy Do not copy the contents of the existing
block.

HeapZeroInit Initialize the new bytes in the heap
to zero.

HeapZeroReInit Fill all bytes in the block with zero.

MMGR also provides low-level memory management services, allowing a VxD to allocate
memory within a physical address range, to perform allocations within physical boundary
constraints (not crossing 64k or 128k boundaries), and to allocate memory visible to all
VMs or to only a single VM. Additionally, the page-fault handler for the allocated pages
can be redirected to a specific handler in your VxD. (See the next section for more
information on hooked pages.)

Allocation of pages with physical boundary restrictions and/or physical address limitations
can only be performed during initialization. The following example demonstrates
allocating a buffer for use with a DMA device:

VSIMPLED_Allocate_DMA_Buffer

DESCRIPTION:

This function allocates a buffer suitable for DMA transfers.
It attempts to allocate enough contiguous pages to hold the
requested size. If the request fails, the size is halved
until all allocation attempts have failed.

ENTRY:

EAX = Desired size (in KB) of the DMA buffer to allocate.
This size cannot be exceed 64.

EXIT:

IF carry clear

EAX = memory handle of the memory block allocated

EBX = _physical address_ of memory block

ECX = actual size in _bytes_ of memory block allocated
EDX = _ring 0 linear address_ of memory block

ELSE carry set

EAX = EBX = ECX = EDX 0

USES:

Flags, EAX, EBX, ECX, EDX

N Ne Ne Ne Ne Ne Ve Ne Ve Ve Ne Ne Ne Ne Ne Ne We Ne Ne N We N Ne Ve No Ne Ne No We e No
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BeginProc VSIMPLED_Allocate_DMA_ Buffer

cmp eax, 64
jle SHORT ADB_Start
Debug_Out "Requested size #EAX too big!"
mov eax, 64

ADB_Start:
add eax, 3 ; round up to get
shr eax, 2 ; # of pages

ADB_Allocate_DMA_ Buffer_ Loop:

Trace_Out "pages=#ECX alignment=#EAX"

;

; EAX = alignment mask for allocation
; ECX = number of pages to allocate

H

push ecx

VMMcall _PageAllocate <ecx, PG_SYS, 0, eax,\
0, OFFFh, ebx,\

PageFixed>>
pop ecx
or eax, eax
jnz short ADB_Success

Trace_Out "Allocation failed! pages=#ECX"

mov eax, ecx

shr eax, 1

jnz short ADB_Loop
xor ebx, ebx

xor ecx, ecx

stc

ret

ADB_Success:

<PageUseAlign + PageContig +\

mov ebx, eax ; EBX = # of pages to allocate
; (examples: 3 7 11
; 12K 28K 44K
dec eax ; # pages - 1 10b 111b 1011b
bsr cx, ax ; max power of 2 1 2 3
inc cl ; shift cnt 2 3 4
mov eax, 1
shl eax, cl ; mask + 1 100b 1000b 10000b
dec eax ; mask 11b 111b 1111b
; alignment 16K 32K 64K
mov ecx, ebx
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shl ecx, 12 ; pages-->bytes

; Returns:

;7 EAX = memory handle of the memory block allocated
; EBX = _physical address_ of memory block

; ECX = size in _bytes_ of memory block allocated

; EDX = _ring 0 linear address_ of memory block

clc ; success

ret

EndProc VSIMPLED_Allocate_DMA_Buffer

Hooked Pages and Page Faults

Hooked pages are allocated with _PageAllocate, using the PG_HOOKED attribute. This
form of memory management is most commonly used in virtual display drivers to manage
multiple VMs that access video display memory. A range of V86 pages is assigned to the
VxD and then hooked using the _Assign_Device_V86_Pages and Hook_V86_Page
services, respectively. V86 pages can be assigned globally (global to all VMs) to a device
at any time, provided that the page is not already assigned. V86 page assignment to a
specific VM can only be performed after device initialization, again with the restriction
that the page is not already assigned to a device.

To hook V86 pages, a range of pages is first assigned to the VxD:

// Buffer used for reserving pages
DWORD aVMPagesBuf[ 9 ] ;

vmmGetDeviceV86PagesArray( NULL, &aVMPagesBuf, NULL ) ;

if (avMPagesBuf[ 0xA0/32 ] & OxFFOOFFFF)

{
vmmDebugOut ( "VDD ERROR: Pages already allocated\r\n" ) ;
vmmFatalError( szVDD_Str_CheckvVidPgs ) ;
return ( FALSE ) ;

if (!vmmAssignDeviceV86Pages( 0xA0, 16, NULL, NULL ))
vmmDebugOut ( "VDD ERROR: Could not allocate pages\r\n" )

vmmFatalError( szVDD_Str_CheckvidPgs ) ;
return ( FALSE ) ;

~

if (!vmmAssignDeviceV86Pages( 0xB8, 8, NULL, NULL ))

vmmDebugOut ( "VDD ERROR: Could not allocate pages\r\n" )
vmmFatalError( szVDD_Str_CheckvidPgs ) ;

~
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return ( FALSE ) ;
}

The V86 pages are then directed to a page fault handler:

// Put an .ASM front end on the page-fault procedure.

if (NULL == (pVDD_PFault = VMMWRAP_ThunkV86PHProc( VDD_PFault )))
{
vmmDebugOut ( "VDD ERROR: Could not thunk VDD_PFault!\r\n" ) ;
vmmFatalError( ) ;
return ( FALSE ) ;
}

// Hook graphics pages

for (i = 0; i < 16; i++)
vmmHookV86Page( 0xA0 + i, pVDD_PFault )

~e

// Hook text pages

for (i = 0; i < 8; i++)
vmmHookV86Page( 0xB8 + i, pVDD_PFault )

~

During the Create_VM message processing, the V86 pages are marked as not available
(not present and not writeable), using the _ModifyPageBits service:

vmmModifyPageBits( hvM, 0xA0, 16, ~P_AVAIL, NULL,
PG_HOOKED, NULL ) ;

vmmModifyPageBits( hvM, 0xB8, 8, ~P_AVAIL, NULL,
PG_HOOKED, NULL ) ;

Note that it is necessary to specify the PG_HOOKED in the type parameter of the
_ModifyPageBits service when clearing any of the PG_PRES, PG_USER, or PG_WRITE
bits.

After the initialization is complete, any read or write access of the hooked pages causes a
page fault. The page fault handler is called with the faulting page number and the handle
of the VM, causing the fault. It is the responsibility of the page fault handler to map
memory into the page to resolve the fault or terminate the virtual machine. To map
physical memory into the faulting page, use the following code:

// dwPhysPage is the physical page allocated using
// _PageAllocate with PG_HOOKED

vinmPhysIntov86 ( dwPhysPage, hVM, uFaultPage, nPages, 0 ) ;

Under some circumstances (such as low memory or other memory mapping error), it may
be more desirable to allow the VM to continue without crashing the VM. In these cases,
the system null page is assigned to this linear page:

vmmMapIntoV86 ( VMM_GetNulPageHandle(),
hvM, uFaultPage, 1, 0, 0 ) ;
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The system null page is guaranteed to contain invalid information for any given VM. Do
not rely on its contents for further processing in your VxD.

The VDD uses these techniques to allow multiple VMs to access the video display
hardware and maintain separate virtual displays for virtual machines. It is also possible to
simulate ROM in a virtual machine using hooked pages. When the page fault occurs, map
the pages using _PhysIntov86 and clear the P_ WRITE bit using _ModifyPageBits.
Note, however, that when the VM restarts, the instruction causing the fault also restarts. If
the VM was performing a write operation, a page fault would occur immediately. To
resolve this loop, you would need to modify the VM client registers to point the IP to the
instruction following the faulting instruction.

Note: A sample VxD demonstrating these hooked memory techniques can be found in the
C/VMEMTRAP directory on the enclosed diskette. Also, C/VDDVGA is a good source of
memory management sample code.

Examining Page Table Entries

A VM can determine whether pages in the linear address space have been accessed and
whether data has been written on these pages by examining the page table entries (PTEs)
using VMM's _CopyPageTable service. The VDD uses this technique to determine
which pages have been accessed and need to be updated in the virtual display of a
windowed MS-DOS box.

A linear address in a paging operating system such as VMM is decoded shown in Figure
3.2. Each PTE is 4 bytes in length and contains the access bits and physical address of the
page. To examine the PTEs of the first megabyte of the active virtual machine, use page
numbers in the range O to 10Fh. Page numbers of other virtual machines are computed
using the CB_High_Linear field in the control block of the respective VM.

Given a pointer to a memory block in a VM, a VxD can use the Map_Flat service to
translate this address to a flat offset. Shifting this address right by 12 gives you the page
number. To determine if pages in a hooked V86 range have been accessed or if data has
been written to these pages use the following code:

VMMCall _CopyPageTable, <guHookedPagesStart, \
guNumHookedPages, \
<OFFSET32 aPageBuf>, 0>

mov ecx, guNumHookedPages

Check_Accessed_Or_Dirty:

test dword ptr aPageBuf[ ecx ], P_ACC or P_DIRTY

jz SHORT Next_Page

Trace_Out "Page #ECX of hooked range is dirty or has been\
accessed"
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Next_Page:
loop Check_Accessed_Or_Dirty

31 12 0
CR3 I Directory Index Table Index Offset
! |
Page Directory
Page Table
Table Offset Page Frame
-—’ Page Offset ‘

PTE

Figure 3.2
Decoding a linear address to a physical address

Allocating Selectors

A VxD can allocate selectors in the GDT or in a VM's LDT using the
_Allocate_GDT_Selector and _Allocate LDT Selector services. Two
descriptor double-words are required when allocating selectors. VMM provides the
_BuildDescriptorDWORDSs service to generate these double-words:

VMMCall _BuildDescriptorDWORDs, < dwLinAddr, cbSize,\

RW_Data_Type, 0, 0>
VMMCall Allocate_GDT_Selector, <edx, eax, 0>

The following equates are useful when building descriptor double-words:

; Common definitions for segment and control descriptors

D_PRES segment is present in memory
D_NOTPRES segment not present
D_DPLO descriptor privilege level definitions

D_DPL1
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D_DPL2

D_DPL3

D_SEG segment descriptor (application type)

D_CTRL control descriptor (system type)

D_GRAN_BYTE limit in byte granularity

D_GRAN_PAGE limit in page granularity

D_DEF16 default operation size is 16 bits (code)
D_DEF32 default operation size is 32 bits (code)

; Definitions specific to segment descriptors

D_CODE code segment

D_DATA data segment

D_RX if code, readable

D_X if code, executable only
D W if data, writeable

D_R if data, read only
D_ACCESSED segment accessed bit

; Useful segment definitions

RW_Data_Type present R/W data segment
R_Data_Type read-only data segment
Code_Type code segment

Instance Pages

The MMGR manages instance data for VMs. Instance data is a range in V86 address
space that VMM maintains separately for each VM. It is used frequently for MS-DOS and
some TSRs.

For example, if an MS-DOS device driver maintains an input buffer, it may be useful to
have the buffered input directed to the VM that was active when the buffer was filled. In
this case, the VXD would query the device driver for the buffer address and maximum size
and add an instance data area as shown here:

// Define instance data for instance data manager

INSTDATASTRUC Instance_Area = { NULL, NULL,
NULL, NULL,
ALWAYS_Field } ;
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// Specify instanced area as provided by DOS driver.

Instance_Area.dwInstLinAddr = pInputBuffer ;

Instance_Area.dwInstSize = dwBufferSize ;

if (!VMM_AddInstancelItem( &Instance_Area, 0 ))
goto DI_FatalError ;

Mapping Memory into Multiple VMs

When writing VxDs for use with “Windows-aware” TSRs, it may be necessary to allocate
a block of memory that is global to all VMs, that is, a memory block with a V86 address
mapped to the same physical memory in all VMs. The _Allocate_Global_
V86_Data_Area service performs this type of allocation as shown here:

// Allocate a global V86 data area of 512 bytes

if (NULL ==
(gdwGlobalArea =
vimmAllocateGlobalv86DataArea( 512,
GVDADWordAlign )))

vmmmDebugOut ( "Failed to allocate global V86 data area!\r\n" ) ;
return ( FALSE ) ;
}

vmmTraceOutParam( "Allocated global area at #EAX\r\n",
gdwGlobalArea ) ;

The _Allocate_Global_V86_Data_Area service accepts the following flags:

GVDADWordAlign Aligns the block on a doubleword boundary.

GVDAHighSysCritOK Informs the services that the VxD can handle
a block that is allocated from high MS-DOS
memory, such as UMBs or XMS. (Win 3.1 only)

GVDAInquire Returns the size in bytes of the largest
block that can be allocated, given the
requested alignment restrictions.

(Win 3.1 only)

GVDAInstance Creates an instance data block, allowing

the VxD to maintain separate blocks for

each VM.
GVDAPageAlign Aligns the block on a page boundary.
GVDAParaAlign Aligns the block on a paragraph boundary.
GVDAReclaim Unmaps the physical pages in the block when

mapping the system null page into the block.
The physical pages are added to the free list
when this value is specified. Only applies

to blocks allocated on a page boundary.
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If this flag is not specified, it is up to the
virtual device to reclaim these pages.

GVDAWordAlign Aligns the block on a word boundary.
GVDAZeroInit Fills the allocated block with zeros.

In the VMEMTRAP sample, an unassigned V86 area is located and assigned to the virtual
device. Pages are allocated for each new VM and “instanced" pages are simulated, using
hooked V86 pages and a page-fault handler. Using the _AllocateGlobalVv86-
DataArea service specifying the GDVAInst accomplishes the same thing in a single
service call, with the exception that a specific V86 range cannot be specified. The
VMEMTRAP sample on the enclosed diskette is designed to demonstrate the techniques
necessary to manage contention of memory mapped devices.

_AllocateGlobalv86DataArea has limitations. For example, you cannot hook the
page fault handler or modify the page bits of the V86 linear range returned by this service.
Windows 3.x does not provide an interface to allow VxDs to monitor access of these pages
other than viewing the page table entry access bits. A virtual device must provide an
additional interface to manage VM contention of these pages using software interrupts or
the VxD's APL

Page Protection

As stated in the preceding section, VMM's support for monitoring access to a given V86
address space is limited. Page protection can be implemented with pages assigned to a
device using the _Assign Device_V86_Pages service, but these pages are usually
only available when memory is not already mapped into the reserved ROM addresses.
Because of upper memory blocks (UMBs) implemented by most 386 memory managers,
this region is usually already claimed by VMM. Also, the normal accessible regions of
V86 memory (between _GetFirstV86Page and _GetLastV86Page) are off limits to a
VxD using the API provided by VMM.

An unsupported method of providing page protection is to modify the page table entries
(PTEs) directly and hook the Invalid_Page_Fault handler. The PTE contains the page
frame address in the upper 20 bits (4k page aligned), and the lower 12 bits provide access
restriction and accessed and/or dirty information.

Entry 0 in the page directory contains the physical address of the page table for the V86
address space of the active VM. By modifying these page table entries, you can modify the
access rights to a given page in V86 address space.

You must use caution when accessing the page tables directly. Modifying not-present page
tables or incorrectly modifying page access bits will cause the system to crash. In other
words, “Ok, here's your weapon, first point it at your foot before pulling the trigger!”
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Page protection is risky business when it is not directly supported by the host operating
system, but some implementations require such information about how a VM is behaving.
Take note!! You can guarantee that anything that you do now to provide this mechanism
may not be supported in future releases of Windows. Use this information at your own risk
and version bind your code to the Microsoft Windows 3.1 VMM.

VGLOBAL.386

’ Assign_Ownership ‘

v R4

VM 1 VM 2

Mem_Copy Mem_Copy

v v

Page_Fault Page_Fault

Global V86 Area

Figure 3.3
Possible design of TSR to VxD communication

The VGLOBALD sample on the enclosed diskette demonstrates the allocation of a global
V86 data area that would be suitable for a TSR and VxD to use for communication in
multiple VMs. If you run this sample under the debugging version of WIN386.EXE you
should notice that, when new VMs are created and the System VM does not have access to
the pages that are hooked using this page protection scheme, VMM will “gripe” about the
not-present page within the V86 page range. You may decide to modify the page table
entries to match WIN386 expectations before creating a new VM.
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V86MMGR

V86MMGR provides an interface for VxDs to map protected-mode data buffers to V86-
interfaces. When a virtual device translates an API which transfers data using pointers to
data blocks from protected mode applications to DOS-mode device drivers, it needs to
implement services provided by V86MMGR to translate these buffers to a V86
addressable memory. Also, DOS device drivers that update buffers asynchronously require
memory to be mapped into global V86 address space.

For example, Int 21h commonly uses buffers referenced by DS:DX. The DOSMGR virtual
device provides automatic buffer translation for most of these APIs by hooking Int 21h and
translating the protected mode addresses so that DOS can understand the request without
additional work required by the protected-mode application. Additionally, VNETBIOS
provides buffer mapping for NetBIOS data packets using V86MMGR services. These
buffers are updated as the result of interrupt processing.

V86MMGR provides two types of services: buffer mapping and buffer translation. The
mapping services update the page tables in all VMs so that the buffer is in global V86
space. The translation services copy a buffer to a V86 copy buffer and use the copy buffers
address to communicate with the DOS device driver code. The mapping services should be
used only when the buffers will be updated asynchronously. Do not use the mapping
services in place of the translation services to avoid copying the buffer's data— it is faster
to copy data to and from a translation buffer than to map a buffer into multiple virtual
machines.

V86MMGR does not directly support the mapping or translation of buffers referenced by
pointers within a structure. The VxD is responsible for translating or mapping the buffer
using VB6MMGR services; it updates the structure to contain a valid V86 pointer and then
passes the call to the DOS device driver.

When a VxD requires V86MMGR services, it must inform V86MMGR how many pages
are required by using the V86MMGR_Set_Mapping_Info service. This service call must
be made during initialization, preferably during Sys_Critical_Init processing.
Alternatively, the VxD can call this service during Device_1Init, if the VXD has an
Init_Order less than V86MMGR_Init_Order.

When a call to the DOS device has been intercepted by the VxD, the VxD should
determine whether the call is from V86 mode or protected mode. When a V86 call is
trapped, buffer translation is not necessary, but mapping for asynchronously updated
buffers may be necessary if the buffer is not located in global V86 address space
determined by using the _TestGlobalV86Mem service.
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To map pages to DOS addressable memory, a VxD calls V86MMGR_Map_Pages with the
linear address and number of bytes to map. The returned linear address is guaranteed to be
in the first megabyte and in global V86 address space. A map handle is also returned by
this service. When the mapping region is no longer required, it is freed using the
V86MMGR_Free_Page_Map_Region service with the map handle that was returned by
V86MMGR_Map_Pages.

To translate a protected-mode buffer to V86 addressable memory, a VxD calls
V86MMGR_Allocate_Buffer with the linear address of the buffer to translate and the
number of bytes to allocate. If specified, this service copies data to the new buffer.
Translation buffers are allocated in a “stack” fashion. In other words, the last buffer
allocated must be the first buffer freed. When the translation buffer is no longer required,
the v86_Free_Buffer service is used.

The following code fragment demonstrates how a software interrupt buffer is translated
from a protected-mode to a real-mode driver:

On entry Client_DS:Client_DX points to a buffer that is
filled asynchronously and needs to be napped globally.
Eat the PM interrupt and reflect it to V86 mode.

When the DOS device driver has completed the data
transfer, the pages must be unmapped using the
V86MMGR_Free_Page_Map_ Region service.

Ne Ne Ne No Ne Ne Ne No N

BeginProc PM_Translate

pushad
test [ebx.CB_VM_Status], VMStat_PM_Exec
jz SHORT PT_Bail

VMMCall Simulate_Iret
Map_Flat esi, DS, DX
movzx ecx, [ebp.Client-CX]
VxDCall V86MMGR_Map_Pages
mov hPageMap, esi

shl edi, 12

shr di, 12

Simulate the interrupt to V86

~e we wo

Push_Client_sState

Begin_ Nest_V86_Exec

mov [ebp.Client_DX], di
shr edi, 16

mov [ebp.Client_DS], di
mov eax, Trapped_INT
VMMCall Exec_Int

VNNCakk End_Nest_Exec
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Pop_Client_sState
clc

PT_Bail:
Debug_Out "Failure: Call not from protected mode!"
stc

PT Exit:
popad
ret

EndProc . PM_Translate

V86MMGR provides a number of macros to define a script for use with the
V86MMGR_Xlat_API service. A VxD defines a translation script in its data segment using
these translation macros and calls the V86MMGR service to execute the script. This
provides the VxD with a way to reduce the code size of V86 translation services and to use
the optimized routines in V86MMGR.

The translation scripts are terminated by X1at_API_Exec_Int or Xlat_API_Jmp_To_
Proc. When the V86MMGR_X1lat_API service executes one of these commands, control
returns to the VxD after the command has been executed. The following sample code
demonstrates the use of these macros to translate a null-terminated string for a call to a
DOS device driver:

This code demonstrates a simple translation of a NULL
terminated string in DS:SI to a local V86 buffer.

Ne Ne e we

VxD_DATA_SEG
Xlat_ASCIIZ_Script:
Xlat_API_ASCIIZ ds, si
Xlat_API_Exec_Int 60h
VxD_DATA_ENDS

VxD_CODE_SEG
BeginProc Translate_Int60h_Buffer

mov edx, OFFSET32 Xlat_ASCIIZ_Script
VxDJmp V86MMGR_Xlat_API

EndProc Translate_Int60h_Buffer
VxD_CODE_ENDS
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V86/PM VxD API

£

A VxD can export an API to protected-mode and V86 mode applications, extending the
capabilities of a Windows or MS-DOS driver using supervisor code. For example, the
VCD provides an interface to the Windows communications driver (COMM.DRYV) to
acquire a COM port. The COMM driver queries the VCD for the availability of a given
port. If the port is in use by an MS-DOS application, the VCD returns failure. This API
allows the COMM.DRYV to provide intelligent information regarding the availability of
COM ports to the calling application and provides a mechanism to manage device
contention.

A VxD declares the API support by defining API procedure entry points in the DDB (see
Chapter 1). In the following example, VSIMPLED_V86_API_Proc and VSIMPLED_PM
API_Proc procedures are the entry points for the API from V86 mode and protected
mode, respectively. Additionally, the VxD must declare the device ID, as supplied by
Microsoft.

Declare_Virtual_Device VSIMPLED, VSIMPLED MAJOR_VER, \
VSIMPLED, MINOR_VER, \
VSIMPLED_ Control_Proc, \
VSIMPLED_ Device_ID,\
Undefined_Init_oOrder, \
VSIMPLED_V86_API_Proc, \
VSIMPLED_PM_API_Proc

An application acquires the entry point of the VxD by using Int 2Fh with AX=1684h and
BX=VxD Device ID:

47
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;
; Obtain the VxD entry point, if NULL, VxD is not present.

r

mov ax, 1684h ; get VXD API entry point
mov bx, VSIMPLED_Device_ID
int 2fh

mov word ptr dwVxDEntry, di
mov word ptr AwVxDEntry + 2, es

When this entry point is called by the application, the call is dispatched to the VxD, where
it processes the request and returns control to the calling application.

Prior to requesting the VxD entry point from VMM, the application should first determine
whether Windows/386 (VMM) is present. A Windows application can use the
GetWinFlags() API. A DOS application needs to use Int 2Fh, AX=1600h interface to
determine whether VMM is present:

mov ax, 1600h ; Enhanced Windows Check
int 2fh

test al, 7fh ; VMM (Win386) present?
jz Not_Win386

The Faulting Mechanism and API Dispatch

If calling ring-0 VxD code directly from ring 3 seems too good to be true, you should be
interested in how this call is dispatched to the VxD. When the Int 2Fh request is processed,
the VMM allocates a callback address in the VM's address space. When the VM calls this
address, the code generates a fault, a ring transition results, and the fault is dispatched to
VMM's fault handler.

VMM determines the operation mode of the VM by testing the status flags in the VM
control block. It determines whether the call was made from V86 or protected mode and
then dispatches the call at ring O to the appropriate handler, as declared in the DDB.

The Client Register Structure

When the API entry points are called, the EBP register points to the Client_Register_
Structure (CRS):

typedef struct tagCRS_32
{
DWORD Client_EDI ;
DWORD Client_ESI ;
DWORD Client_EBP ;
DWORD dwReserved_1 ; // ESP at pushall
DWORD Client_EBX ;
DWORD Client_EDX ;
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DWORD Client_ECX ;

DWORD Client_EAX ;

DWORD Client_Error ; // DWORD error code
DWORD Client_EIP ;

WORD Client_CS ;

WORD wReserved_2 ; // (padding)

DWORD Client_EFlags
DWORD Client_ESP ;
WORD Client_SS ;

~

WORD wReserved_3 ; // (padding)
WORD Client_ES ;
WORD WReserved_4 ; // (padding)
WORD Client_DS ;
WORD wReserved_5 ; // (padding)
WORD Client_FsS ;
WORD wReserved_6 ; // (padding)
WORD Client_GS ;
WORD wReserved_7 ; // (padding)

DWORD Client_Alt_EIP ;

WORD Client_Alt_cCsS ;

WORD wReserved_8 ; // (padding)
DWORD Client_Alt_EFlags ;

DWORD Client_Alt_ ESP ;

WORD Client_Alt_sSS ;

WORD wReserved_9 ; // (padding)
WORD Client_Alt_ES ;
WORD WReserved_10 ; // (padding)
WORD Client_Alt_DS ;
WORD wReserved_11 ; // (padding)
WORD Client_Alt_FS ;
WORD wReserved_12 ; // (padding)
WORD Client_Alt_GS ;
WORD wReserved_13 ; // (padding)

} CRS_32, *PCRS_32 ;

The parameters to the API call, as set by the calling application, are contained in the CRS,
and the current VM handle is in EBX.

A VXD usually defines a jump table to the specific API functions that perform the
requested action and return the results to the API handler that reflects the results in the
CRS. The following example code demonstrates how functions are dispatched from a VxD
API procedure entry point:

khkhhhhkhhhhkhhhhkhhhhhhkhhhhkhhhkhkhkhhhkhkhkhhhkhkhkhkhhhhkhhhkhkhhhkhhhkhhhkhkhkkkd

DEVICE DATA
LR T T T T

N we we

VXD_DATA_SEG

DOSXFER_PM_Call_Table LABEL DWORD
dd OFFSET32 DOSXFER_Get_Version
dd OFFSET32 DOSXFER_PM_Enable_CallBacks
dd OFFSET32 DOSXFER_PM_Copy_Data
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Max_DOSXFER_PM_Service equ ($ - DOSXFER_PM_Call_Table) / 4

VxD_DATA_ENDS

;***************************************************************

EXPORTED APTI

;***************************************************************

~

BeginProc DOSXFER_PM API_Proc, PUBLIC
Trace_Out "In DOSXFER_PM API_Proc"

VMMCall Test_Sys_VM_ Handle
IFDEF DEBUG
jz SHORT @f
Debug_Out "DOSXFER_PM_API_Proc not from SYS VM"

clcH

ENDIF
jnz SHORT DOSXFER_PM_Call_Bad
movzx eax, [ebp.Client_DX] ; function in DX
cmp eax, Max_DOSXFER_PM_ Service
jae SHORT DOSXFER_PM Call_Bad
and [ebp.Client_EFLAGS], NOT CF_Mask ; clear carry
call DOSXFER_PM_Call_Table[ eax * 4 ] ; call service
jc SHORT DOSXFER_PM_API_ Failed
ret

DOSXFER_PM Call_Bad:
IFDEF DEBUG
Debug_Out "Invalid function #EAX on DOSXFER_PM_API_Proc"

ENDIF

DOSXFER_PM_API_Failed:
or [ebp.Client_EFLAGS], CF_Mask ; set carry
ret

EndProc DOSXFER_PM API_Proc

Examining and Modifying Information of the Active VM

Changes made in the CRS by the API handler are reflected to the VM when VMM returns
control. This is the primary communication channel between code executing in the VM
and the API handlers. VMM defines three structures for the CRS: One references the
registers with 32-bit definitions (EAX), another for 16-bit registers (AX), and the last for
8-bit register access (AH and AL).

Modification of the client registers is made easy using these structure definitions:

Copy the data structure to the VM and return the results
of the function.
EBX = VM handle, EBP = -> CRS

we we Ne wo
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~

Map_Flat edi, ES, DI

lea esi, gDataStruc

mov ecx, size DATASTRUCT
shr ecx, 1

rep movsw
adc cl, cl
rep movsb

mov [ebp.Client_CX], size DATASTRUCT
mov [ebp.Client_AX], 1 SUCCESS!
and [ebp.Client_EFlags], NOT( CF_Mask ) ; clc

~

A VxD may also update a buffer referenced in the CRS by obtaining a flat address using
the mapping services discussed in Chapter 3.

Creating a Dual-Mode API

By setting both the V86 and PM API entry points in the DDB to the same handler, a VxD
can provide the same services to all VMs and reduce the amount of code of duplicate
dispatch functions. To determine the operating mode of the calling VM, the VxD queries
the execution status of the VM using the status flags of the VM control block. By testing
CB_VM_sStatus for VMStat_PM_Exec, a VXD can determine whether a VM is calling
from V86 or protected mode:

Determine the execution mode of the VM.

~e we wo

test [ebx.CB_VM_Status], VMStat_PM_Exec

jz SHORT API_VM_In_V86
test [ebx.CB_VM_sStatus], VMStat_PM Use32
jz SHORT API_VM_In_ PM16

API_VM _InPM32:
Debug_Out "VM calling from 32-bit protect mode."
ret

API_VM_In_V86:
Debug_Out "VM calling from V86 mode."
ret

API_VM_ In_PMl6:
Debug Out "VM calling frm 16-bit protected mode."
ret

Note: In Windows 3.x, calling VxD procedures through VxD API calls from 32-bit code
segments in the System VM can cause unexpected results when the offset of the return
address of the calling routine is greater than OxFFFF. This is a problem with the way that
VMM determines the “32-bitness” of the calling application. The System VM is flagged
for 16-bit protected mode operation, because Krnl386.EXE is responsible for the switch to
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protected mode when the Windows GUI is started. Whether 32-bit segments are allocated
within the System VM and code within these segments calls VXD APIs, VMM determines
that the calling application is 16-bit because of the VM flags. The return address is
assumed to be 16 bits and is truncated. This is also a problem for protected-mode software
interrupts hooked by a VxD. The only current work-around is to guarantee that the code
calling the VxD has a return address with an offset less than OxFFFF.

Callbacks and Hooking Existing DOS Devices

Callbacks are used indirectly when defining a VXD API. However, a VxD can also
allocate a callback entry point that, when called by a VM, switches control to the
associated callback procedure in the VxD.

Callbacks can be used to simulate DOS devices that return a pointer to a jump table by
allocating a global V86 table and stuffing the address of the callback allocated using
Allocate_Vv86_Call_Back service into this table. A segment and offset are returned
that directs any calls to this routine to the VxDs callback procedure. The CRS reflects the
current state of the VM when the callback entry point was called by the VM. A VxD can
also provide a “chaining” interface to hooked software interrupts by using these services.

A VxD with “carnal” knowledge of a DOS device driver can intercept calls to this device
by using the Install_V86_Break Point service. This service patches the memory at
the requested address with a call to the break point. When the break point is executed, the
VxD can process the VM request as necessary and then return control by “bumping” the IP
to the next instruction or by using Simulate_Far_Jmp to move the Client_cCS:
Client_1IP to the correct address.
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Nested Execution

The nested execution services of VMM provide a controlled environment in which a VxD
can cause a redirection of the execution path in a VM. A VxD saves the client registers,
begins a nested execution block forcing a VM into V86 or protected mode, calls the
necessary services to set up stack frames, and then resumes the VM execution. When the
VM returns, the nested execution block is ended and the client registers are restored. Using
this technique, a VxD can force the execution of code in TSRs, DOS applications, and
even Windows procedures.

When calling routines in a VM other than the current VM, you may need to schedule a
VM event to force a specific VM to become active. You may also need to determine the
execution status of the VM and wait for critical sections to be completed, interrupts to be
enabled, and so on. In these cases, you can use the Call_Priority_ VM_Event service
and begin the nested execution when the event is processed.

Simulating Software Interrupts

As demonstrated in Chapter 3, a VxD can simulate software interrupts to a VM using the
Simulate_Int or Exec_Int services. Simulated interrupts are subject to being trapped
by other VxDs and will respond exactly as if a VM executed the software interrupt in
application code. Additionally, a VxD that has hooked a protected-mode interrupt can
affect the caller's stack to “eat the interrupt” in protected mode by using a non-nested
Simulate_Far_Iret and then reflect it to V86 mode by using nested execution
services.

55
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Note that when a VxD simulates calls to a VM and the execution has returned to the VxD,
the VxD must copy the results from the CRS before restoring the client's state:

Simulate a software interrupt to the current VM

Ne wo we

Push_Client_sState
VMMCall Begin_Nest_V86_Exec

mov [ebp.Client_AX], 4257h ; specific function
mov [ebp.Client_BX], 4C57h ; subfunction
mov eax, 60h

VMMCall Simulate_Int

VMMCall Resume_Exec

VMMCall End_Nest_Exec

movzx eax, [ebp.Client_AX] ; get return value
Pop_Client_State

What magic occurs in this code that allows a VxD to simulate an interrupt call in a VM?
The Push_Client_State macro allocates space on the stack and copies the current
CRS to this block. Begin_Nest_v86_Exec modifies the VM state so that the execution
block occurs in V86 mode. Simulate_Int builds an IRET frame and modifies the
client's stack and CS:(E)IP to call the interrupt handler. Resume_Exec forces VMM to
complete event processing and then resumes the execution of the VM. When the VM
completes the execution block, control returns to the VxD and the End_Nest_Exec
restores the VM's execution state. The Pop_Client_State macro restores the client's
registers, as saved on the stack.

Calling Windows Functions from a VxD

The techniques used to simulate software interrupts to a VM can be extended to call
functions in the System VM. There are a few restrictions when calling Windows functions
or functions provided by Windows DLLs:

e The function must be able to handle reentrancy. Many Windows functions are not
reentrant. PostMessage () and its derivatives are safe, as are a few other Windows
multimedia services.

e The code segment of the function must be present. The Windows Kernel does not
support not-present segment faults when reentered. Because a VxD can not determine
when the Windows Kernel is executing code, the segment must always be present (or
non-discardable).
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e If DOS or BIOS is used for paging, the function code must be page-locked in memory.
Because DOS and BIOS are not reentrant, a page-fault cannot be resolved if DOS or
BIOS code is currently executing in any VM.

e The safest segmentation for a function called by a VxD is in a FIXED code segment of
a DLL. Calling application code is dangerous and is not recommended.

To call Windows functions, you must use a helper application or DLL to provide the
procedure address to the VxD. The VxD can then use the nested execution services to
simulate a far call to the procedure in the System VM. If a VM context switch is required
(if the current VM is other than the System VM), the VxD must schedule a VM event to
call the procedure. The following code sample calls the Windows PostMessage() function
from a VXD assuming the PostMessage function pointer was obtained from the application
or DLL):

VSIMPLED_NotifyApp

This routine notifies the Windows application through a
call to the PostMessage() API.

ENTRY:
EDX: contains the lParam of the message

Ne No Ne No Ne Ne Ne Wo e “wo

~. w.

BeginProc VSIMPLED_NotifyApp, High_Freq

VMMCall Test_Sys_VM_Handle
je SHORT VSIMPLED_PostEvent

NA_Schedule:
push ebx

mov eax, High Pri_Device_Boost

VMMCall Get_Sys_VM_Handle

mov ecx, PEF_Wait_For_STI OR PEF_Wait_Not_Crit
mov esi, OFFSET32 VSIMPLED_PostEvent

xor edi, edi

VMMCall Call_Priority_ VM_Event

pop ebx

ret

EndProc VSIMPLED_NotifyApp
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VSIMPLED_PostEvent

Called by the priority VM event dispatch routine or
directly if System VM was already active.

;
H
;
;
;
;
H ENTRY:

; EBX: The system VM handle

; EBP: Client register structure
; EDX: Reference data

;

;

;

;

EAX, EDX, FLAGS
BeginProc VSIMPLED_PostEvent
Trace_Out "In VSIMPLED_PostEvent"

cmp lpPostMessage, 0
je SHORT PE_Exit

Q: ptr == NULL?
Y: can't call

~e we

Push_Client_sState
VMMCall Begin_Nest_Exec

mov ax, Notifywnd ; handle to window
VMMCall Simulate_Push

mov ax, NotifyMsg ; notification msg
VMMCall Simulate_Push

xor ax, ax

VMMCall Simulate_Push ; wParam is NULL
mov eax, edx

shr eax, 16

VMMCall Simulate_Push ; lParam is ref data
mov eax, edx

VMMCall Simulate_Push

movzx edx, WORD PTR [lpPostMessage]
mov cx, WORD PTR [lpPostMessage + 2]

VMMCall Simulate_Far_Call ; call PostMessage()
VMMCall Resume_Exec
VMMCall End_Nest_Exec
Pop_Client_sState
PE_Exit:
ret

EndProc VSIMPLED_PostEvent
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Calling Code in a TSR at Ring 0

In Windows 3.1, the VPICD added services that allow a Windows driver to provide
interrupt service routines callable at ring 0. This means a Windows device driver to
provide a common code base for hardware interrupt servicing. This technique can be
implemented by other VxDs to call routines in a VM directly from ring 0, as shown in
Figure 5.1.

VCALLTSR.386

Call_TSR

retf

Retum_From_16 ‘

retf

Retum_To_Flat ‘

Stack

EIP_Jump_To_TSR

TSR.EXE — CS_Jump_To_TSR ¢

Return_To_VxD ‘

EIP_Retum_From_16

retf
—’ CS_Return_From_16 —

EIP_Retumn_To_Flat

—) CS_Retum_To_Flat  —

Figure 5.1
Possible design of calling a TSR directly (at ring 0) from a VxD

The technique to call TSR code from ring 0 is actually quite simple. A VxD provides an
API that allows a V86 or PM application to register a procedure as a “direct” callback
procedure. Ring 0 16-bit GDT selectors are built to access code and data of the callback
procedure. When the required event occurs, the VxD calls the callback procedure by
setting up a far return frame, including a 32-flat far return address to a return-to-flat
procedure and a 16:16 far return address to a return-from-16 procedure in the VxD. The



60 Chapter 5: Nested Execution

VxD then performs a far return kicking out to the 16-bit code in the TSR. When the TSR
has completed processing, the far return kicks back to the return-from-16 procedure in the
VxD. The last remaining issue is to return to 32-flat model by using a final far return to the
return-to-flat procedure.

This method makes some assumptions of the way TSRs are loaded in the system:
¢ The TSR is loaded before Windows is started and is therefore global to all VMs.

e The GDT selectors are based on the low linear address of the TSR. Because the TSR is
global in all VMs, this mapping must remain constant in all page tables.

¢ If the code was specific to a VM, a priority VM event would be required to make the
VM active before calling the code directly at ring 0.

* Using this scheme, the stack is provided by VMM and is a Use32 segment. Stack
parameter passing is not valid unless the TSR uses 32-bit references to the stack (ESP
and EBP). The TSR code should not attempt to change SS.

The following code fragments demonstrate the technique of calling TSR code (16-bit
code) at ring 0. In Sys_Critical_Init, the GDT selectors used for the call to the TSR are
allocated. For this sample, a global timeout is used to initiate the calls to the TSR.

I

F VCALLTSR_Sys_Critical_Init

I’

F; DESCRIPTION:

: Allocates necessary GDT selectors.

7

; ENTRY:

: EBX = handle to Sys VM

; EDX = reference data from real-mode init
;

2 EXIT:

; Carry clear if no error, otherwise set if failure.
;

: USES:

H Flags

;

BeginProc VCALLTSR_Sys_Critical_Init
Trace_Out "VCALLTSR: Sys_Critical_Init"

pushad save <xt cegs

; Note:
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Ne Ne Ne we o Ne

mov
movzx
mov
shr
shl

push

VMMCall

VMMCall

or

jnz

pop

jmp
SCI_GotCSSel:

mov

pop

VMMCall

VMMCall
or

jz

mov

VMMCall

VMMCall
or
jz

mov

mov
xor
mov
VMMCall
mov

eax, edx

edx, ax
dwTSR_Ring0_EIP,
eax, 16

eax, 4

edx

eax

_BuildDescriptorDWORDS,

_Allocate_GDT_Selector,
eax, eax

SHORT SCI_GotCssel

eax

SHORT SCI_Failure

dwTSR_Ring0_CS, eax
eax

_BuildDescriptorDWORDS,

_Allocate_GDT_Selector,
eax, eax

SHORT SCI_Failure
dwTSR_Ring0_DS, eax

_BuildDescriptorDWORDS,

< eax,

An assumption is made that CS:0 is the base of the TSR.
Since we don't have a segment size, we'll assume 1 page,
but this could be handled by using a pointer to a structure
within the TSR obtained from Exec_Int instead of using
Real_Mode_Init to gather the information.

; save address

<P_SIZE - 1>,\
Code_Type, \

<D_DEF16 + D_DPLO>,\
BDDExplicitDPL >

edx, eax, 0 >
; restore address
eax, <P_SIZE - 1>,\

RW_Data_Type, \
<D_DEF16 + D_DPLO>,\
BDDExplicitDPL >
edx, eax, 0 >

<OFFSET32 VCT_Switch>, \
VCT_Switch_Size, \
Code_Type, \

<D_DEF32 + D_DPLO>,\
BDDExplicitDPL >

_Allocate_GDT_Selector, edx, eax, 0 >

eax, eax

SHORT SCI_Failure

wTSR_Switch_To_Flat_CS, ax

eax, 500 ; 500 ms timeout
edx, edx ; no data

esi, OFFSET32 VCALLTSR_TimeOut

Set_Global_Time_Out
hTimeOut, esi
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popad
clc
ret

SCI_Failure:

Free any allocated selectors and exit

~e we W

mov eax, AwTSR_Ring0_CS
or eax, eax
jz SHORT SCI_Failure_ TryDS

VMMCall _Free_GDT_Selector, <eax, 0>

SCI_Failure_TryDS:

mov eax, AwTSR_Ring0_DS
or eax, eax
jz SHORT SCI_Failure_TryFlat

VMMCall _Free_GDT_Selector, <eax, 0>

SCI_Failure_TryFlat:
movzx eax, WTSR_Switch_To_Flat_CS
or eax, eax
jz SHORT SCI_Failure_Exit
VMMCall _Free_GDT Selector, <eax, 0>

SCI_Failure_Exit:
popad
stc
ret

EndProc VCALLTSR_Sys_Critical_Init

When the timeout procedure is called, the stack frames are created to call the TSR code
directly. When the TSR returns the VXD unwraps the stack to get back to 32-bit flat model:

VCALLTSR_TimeOut

DESCRIPTION:
Event handler for global timeout. Calls TSR code directly
from ring 0.

ENTRY:
EBX = Current VM handle
ECX = additional ms since timeout
EDX = reference data
EBP = -> CRS
EXIT:

Ne Ne Ne Ne Ne Ve Ve e Ne Vo Ne We o wo wo

Reschedules time-out.
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USES:
All registers.

Ne Ne Ne N

~

BeginProc VCALLTSR_TimeOut
pushad
mov hTimeOut, 0 ; clear handle

Trace_Out "Setting up stack frames to call TSR."

This stack frame is so we can get back to flat model.

N wo Se

push cs ; save CS
mov eax, OFFSET32 VCALLTSR_Back_To_Flat
push eax ; save EIP

~. we

This stack frame will get us back to 32-bit code in
the VvxD and is addressable via 16:16 for the TSR.

~. “e

push ds ; save off DS
push dwTSR_RETF_From_16

This is the stack frame used to get us to the TSR
code. Additionally, DS is setup with a R/W pointer
to the same base address.

Ne Ne N Ne

~

mov eax, dAwTSR_Ring0_DS

mov ds, ax

push cs:dwTSR_Ring0_CS

push cs:dwTSR_Ring0_EIP

retf ; go to the TSR

VCT_Switch:
pop ds
retf

restore DS
return to flat

~e e

1

VCT_Switch_Size equ ($ - VCALLTSR_Switch_To_Flat)
VCALLTSR_Back_To_Flat:

Trace_Out "Back in flat model. Return from TSR = #AX"

.
1
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; Reschedule time out event
;

mov eax, 500 ; 500 ms timeout
xor edx, edx ; no data

mov esi, OFFSET32 VCALLTSR_TimeOut

VMMCall Set_Global_Time_Out

mov hTimeOut, esi

popad

ret

EndProc VCALLTSR_TimeOut
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I/0 Trapping

/O protection is a powerful feature provided by the 80386/80486 chipset. When the
Current Privilege Level (CPL) is less than or equal to the I/O privilege level (IOPL), the
following instructions can be executed:

IN input

INS input string

ouT output

ouUTS output string

CLI clear interrupt-enable flag
STI set interrupt-enable flag

If CPL is less than or equal to IOPL in protected mode, the processor allows the I/O
operation to proceed. If CPL is greater than IOPL or if the processor is operating in virtual
8086 mode, the I/O permissions bitmap (IOPM) is used to determine whether access to the
port is allowed. Because MS-DOS VMs run in virtual 8086 mode and a Windows
application has a CPL of 3 (for Windows 3.1) and IOPL is 0, the I/O permissions bitmap is
always used in these cases to determine whether access to the port is valid.

VMM keeps a copy of the IOPM for each VM (it is associated with the TSS and other task
information). VxDs can enable or disable access to ports by modifying the IOPM using
VMM services. Also, it is possible to trap ports in one VM and allow access to the
hardware directly in another VM.

The Install IO Handler and Install Mult_IO_Handlers services install
handlers that are called when the GP fault handler has determined that I/O to the
associated port has caused the fault. VMM provides the Enable_Local_Trapping,
Enable_Global_ Trapping, Disable_Local_Trapping, and Disable_Global_

65
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Trapping services to modify the IOPM of virtual machines to enable and disable access
to the I/O ports.

/O trapping is the primary method used to manage device contention. By allowing only
one VM access to a hardware device address space, the VxD can manage accesses by
other VMs. For cases of contention, a VxD can simulate the device I/O and submit the
actual hardware request when the hardware is free, ignore the hardware access, and return
as though the hardware did not exist or crash the VM attempting to access the hardware.

A VxD can simulate hardware that does not exist by virtualizing the device using a finite
state machine (or other similar method) and returning the appropriate information to the
requesting application.

Trapping and Dispatching I/0

To trap I/O addresses, a VXD uses the Install_IO_Handler or Install Mult_ IO_
Handlers services of VMM. These services are only available during device
initialization.

These services associate a callback (or table of callbacks) with an /O port (or table of I/0

ports). By default, global trapping is enabled, any access to the trapped ports causes a fault,
and the associated callback procedure is called.

An I/O table has the following format:

VxD_IDATA_SEG
Begin_VxD_IO_Table VTRAPIOD_Port_Table

VxD_IO TRAPIO_IDX, VTRAPIOD_IO_Index_Reg
VxD_IO TRAPIO_DATA, VTRAPIOD_IO_Data_Reg

End_VxD_IO_Table VTRAPIOD_Port_Table

VTRAPIOD_Port_Table_Entries equ (($-VTRAPIOD_Port_Table) -\
(SIZE VxD_IOT_HdAdr)) / (SIZE VxD_TIO_Struc)

VxD_IDATA_ENDS

This table uses offsets from the base /O address as the port address. When the base
address of the hardware has been determined, the VXD can update the I/O table and install
the handlers:

________________________________________________________________
’

;
VTRAPIOD_Device_Init

.
12
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DESCRIPTION:
Non critical system initialization procedure.

ENTRY:
EBX = Sys VM handle

EXIT:
CLC if everything's A-OK, otherwise STC

USES:
Flags.

Ne Ne Ne Ne Ne Wo We Ne No Ne Ne No

~

BeginProc VTRAPIOD_Device_Init
Trace_Out "VTRAPIOD: Device_Init"
pushad

Build an I/O port table for Imnstall_Mult_IO_Handlers
using the base address.

Ne No Ne we

mov ecx, VTRAPIOD_Port_Table_Entries
mov esi, OFFSET32 VTRAPIOD_Port_Table
mov edx, VTRAPIOD_Base_IO
DI_Install_IO_Handlers:
mov edi, esi ; save a copy in EDI
add esi, (size VxD_IOT_Hdr)
DI_Bump_IO_Loop:
add [esi.VxD_IO_Port], dx ; add port base to offset
add esi, (size VXD_IO_Struc)
loop DI_Bump_IO_Loop

Tell VMM to trap ports.

N we W

VMMcall Install_Mult_IO_Handlers
ifdef DEBUG

jnc SHORT DI_Exit

Debug_Out "VTRAPIOD: cannot trap ports!!"
endif

DI_Exit:
popad
ret

EndProc VTRAPIOD_Device_Init
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When an I/O port within the given range has been accessed, the fault handler dispatches to
the associated I/O handler. For this example, the index register simply stores the index if
valid (on write) or returns the current index (on read):

VTRAPIOD_IO_Index_Reg

DESCRIPTION:
Handles IO trapping.

This is a virtual R/W index register.

ENTRY:

EBX = VM Handle.

ECX = Type of I/O

EDX = Port number

EBP = Pointer to client register structure
EXIT:

EAX = data input or output depending on type of I/O
USES:

FLAGS

WO Ne Ne Ne Ne Ne N Ne Ne Ne We Ne Ne Ve Ne Ne Ne Ne Se No N

BeginProc VTRAPIOD_IO_Index_Reg, High_Fregq

Dispatch Byte_IO Fall_Through, <SHORT IIR Out>

mov al, bIndex
clc
ret
IIR_Out:
cmp al, VTRAPIOD_Max_Index
ja SHORT IIR_Exit
mov bIndex, al
IIR Exit:
clc
ret

EndProc VTRAPIOD_IO_Index_Reg

The one drawback with this simple I/O trapping interface is that there is a single global
virtual device. Multiple VMs can simultaneously (well, almost simultaneously) access this
device and may inadvertently affect the processing of another VM by switching the index
register while a different VM is updating an indexed data register. This is commonly
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referred to as device contention, and this VXD must be improved to properly handle
contention between VMs. The next below discusses this topic in greater detail.

Note: The VTRAPIOD sample in the ASM\VTRAPIOD directory of the enclosed diskette
demonstrates I/O trapping and dispatching techniques.

Device Contention Management

When multiple virtual machines attempt to access the same hardware interface and device
contention is not handled by a VxD, the VMs probably interact with the hardware in such a
way that all the hardware sees is gibberish.

To avoid these problems, a VxD implements one of the following methods of device
contention:

e A VxD can completely virtualize the hardware interface, buffer the requests, and
submit them when the hardware is free.

e A VxD can allow only one VM to access the hardware at a time. The hardware will
not be visible to other VMs until the hardware is released by the owner.

e The VM can be terminated for attempting to access the hardware. (Not the most user-
friendly or recommended method.)

The most commonly used method is to allow only one VM to access the hardware at a
time. Other VMs cannot access the hardware until it has been released by the owner.

To implement this form of device contention, all I/O ports for the hardware device are
trapped. When a VM accesses a trapped port, the handler routine checks to see whether the
device has been assigned to a VM. If a contention is detected, the VXD may display a
warning message using the Shell VxD's API and then return with carry set for all reads and
writes to the hardware. If there is no current owner, the VxD assigns the device to the VM
and disables the I/O trapping for the VM using the Disable_Local_Trapping service.
When the VM terminates or when the hardware is explicitly released by the VM, the VxD
re-enables the trapping for the VM, using the Enable_Local_Trapping service, and
clears the owner status of the hardware.

The following sample code is contention management in its simplest form:

; VCONTEND_Check_Owner
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DESCRIPTION:
Checks the current VM owner; if none, assigns
device to VM. If the VM is an owning VM, returns
carry clear, otherwise it returns carry set.

ENTRY:
EBX = VM Handle.

EXIT:
CLC if owner OK, or STC if contention

USES:
FLAGS

Ne Ne Ne Ne Ne Ne Ne Ne No N Ne e Ne No

~

BeginProc VCONTEND_Check_Owner, High_Freq

push eax

mov eax, hOwnervM

or eax, eax

jz SHORT CO_Assign_ To_VM

cmp eax, ebx

jne SHORT CO_Failure
CO_Success:

pop eax

clc

ret

CO_Assign_To_VM:

mov hOwnervM, ebx

jmp SHORT CO_Success
CO_Failure:

pop eax

stc

ret

EndProc VCONTEND_Check_Owner
VCONTEND_IO_Index_Reg

DESCRIPTION:
Handles IO trapping.

Ne Ne Ne Ne No Ne e No

This is a virtual R/W index register.

’

; ENTRY:

: EBX = VM Handle.
: ECX = Type of I/O
H EDX = Port number
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EBP = Pointer to client register structure

EXIT:
EAX

data input or output depending on type of I/O

USES:
FLAGS

Ne Ne Ne o Ne Ne No N

~

BeginProc VCONTEND_IO_Index_Reg, High Freq

call VCONTEND_Check_Owner
jc SHORT IIR_Exit

Dispatch_Byte_IO Fall_Through, <SHORT IIR_Out>

mov al, bIndex
clc
ret
IIR Out:
cmp al, VCONTEND_Max_Index
ja SHORT IIR_Exit
mov bIndex, al
clc
IIR_Exit:
ret

EndProc VCONTEND_IO_Index_Reg

Note that with this method of contention management, the hardware remains in the state
the last owning VM left it in. You may decide to define an initial state for a VM in the VM
control block and update the state when the VM releases the hardware. When a VM
acquires the hardware, the state would be copied from the VM's control block to the
hardware.

Simulating Hardware

As demonstrated in the preceding code fragments, it is possible to simulate (or virtualize)
hardware through the use of trapped I/O interfaces. The Windows 3.1 Device Driver Kit
contains sources to VxDs that simulate hardware such as the Virtual DMA Device and the
Virtual COMM Device. You should investigate these sources for examples of more
complex interfaces.

VxDs can use these techniques to translate common hardware interfaces to new or
improved hardware interfaces and maintain the backward compatibility of the older
platforms for MS-DOS applications.
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To fully virtualize a hardware interface, your VxD may need to incorporate IRQ
virtualization and/or DMA virtualization. These topics are covered in Chapters 7 and 8,
respectively.

Note: The VCONTEND sample in the ASM\VCONTEND directory on the enclosed
diskette demonstrates the virtualization of a simple hardware interface and manages
contention between multiple virtual machines.



Chapter 7
IRQ Virtualization

The Virtual Programmable Interrupt Controller Device (VPICD) provides an interface to
hook (virtualize) IRQs, query information about the state of a hooked IRQ, simulate
hardware interrupts to VMs, share interrupts, and handle interrupts in the System VM with
a single ISR interface using the bimodal interrupt interface.

During initialization, the VPICD configures the PICs (slave and master), hooks the IDT
entries, and establishes default handling for non-virtualized IRQs. The PICs are virtualized
to all VMs. When a VM masks an interrupt, it is communicating with the VPICD and does
not perform /O directly to the PIC. VPICD provides services to affect the physical state of
the PICs. It is strongly recommended that VxDs use this interface to change the physical
state of a virtualized IRQ.

IRQ virtualization is recommended for hardware devices that use hardware interrupts as a
form of communication with device drivers. There are several reasons for this
recommendation:

e IRQ virtualization is a requirement for proper device contention management.

e Some devices require immediate interrupt servicing. Interrupt latency caused by non-
virtualized interrupt handling in an ISR in either a TSR or Windows device driver do
not satisfy this requirement.

e VPICD's default IRQ handling is sometimes inappropriate for devices that intend to be
“Windows-GUI-only” oriented. IRQs that are unmasked prior to starting Windows are
designated as “global.” Global interrupts are not appropriate for this implementation.

73
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The most common complaint of interrupt processing under Windows is the interrupt
latency issue introduced by simulating interrupts to VMs. Additionally, you may be
interested in monitoring interrupt response from a hardware device before simulating the
interrupt to a VM. In these cases, IRQ virtualization is required.

Default VPICD Handling

Before discussing IRQ virtualization in detail, we need to explain the default operation of
VPICD when an interrupt is not virtualized. By default, all IRQs are “virtualized” by
VPICD. If the interrupt was unmasked prior to starting Win386 (or the special case of IRQ
9), the default owner is global. Otherwise, no default owner exists.

The default hardware interrupt procedure (Hw_Int_Proc) simulates an interrupt to the
current VM if the IRQ is unowned. When the IRQ is global, VPICD simulates the interrupt
to the current critical section owner or the current VM, if there is no critical section owner.
Also, interrupts simulated for global IRQs are nested in the VM until the nesting has been
“unwound”, but non-owned interrupts are always simulated to the current VM in all
circumstances.

When an interrupt is simulated to a VM (by a default IRQ handler or using the
VPICD_Set_Int_Request service), the VM priority is boosted and the IRET procedure
is hooked to notify the IRET procedure when the interrupt has been completed. These
events only occur when the IRQ is not nested.

End-of-Interrupt results when the VM issues an EOI to the virtual PIC. The default EOI
handler clears the virtual interrupt request and performs a physical EOI using the
VPICD_Clear_Int_Request and VPICD_Phys_EOI services respectively.

By default each unowned or global interrupt procedure has a timeout of 500ms. A VM
timeout is scheduled to watch the interrupt processing time in a VM. If the ISR in the VM
does not service the interrupt within the specified timeout period, VPICD continues
execution as though the ISR had issued an IRET. The timeout is canceled when the VM
issues an IRET (or the last IRET in a nested block).

VPICD simulates a level-triggered PIC. That is, when a virtual EOI occurs another
interrupt will be simulated immediately unless the virtual interrupt request has been
cleared by the VPICD_Clear_Int_Request service.
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IRQ Virtualization and Sharing
IRQ Virtualization

A VxD can change the default behavior of interrupt processing by virtualizing the IRQ
using the VPICD_virtualize_IRQ service. The VxD fills the following structure and
calls this service to obtain an IRQ handle:

VPICD_IRQ Descriptor STRUC

VID_IRQ_ Number dw ?
VID_Options dw 0
VID_Hw_Int_Proc dd ?
VID_Virt_Int_Proc dd 0
VID_EOI_Proc dd 0
VID_Mask_Change_Proc dd 0
VID_IRET_Proc dd 0
VID_IRET Time_Out dd 500

VPICD_IRQ_ Descriptor ENDS

Some of the elements of this structure require further detail:

VID_Hw_Int_Proc contains a pointer to the procedure called when hardware
interrupts occur for the specified IRQ. (Required)

VID_Virt_Int_Proc contains a pointer to the procedure called when interrupts are
simulated to the VM for this IRQ. (Optional)

VID_EOI_Proc contains a pointer to the procedure called when the hardware
interrupt service routine in the VM issues an EOI to the PIC. (Optional)

VID_Mask_Change_Proc contains a pointer to the procedure called when the VM
changes the mask status of the IRQ on the PIC. (Optional)

VID_IRET_ Proc contains a pointer to the procedure called when the VM IRETSs (or
the last IRET of a nested block) from the simulated interrupt. This procedure is also
called when a timeout occurs when a VM is servicing an interrupt. (Optional)

VID_IRET Time_Out is the timeout value for a VM to service an interrupt. When
the timeout occurs, VPICD reacts as though the VM issued an IRET with the
exception that the interrupt has not been physically serviced. (Optional, default is
500ms)

A VxD must virtualize an interrupt during device initialization. It is recommended that the
VxD virtualize the interrupt during Sys_Critical_Init if you are using IRQ 9 to avoid
problems introduced when interrupts occur between the Sys_Critical_Init and Device_Init
control messages.

The following sample code demonstrates the use of VPICD services to virtualize an IRQ:
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VxD_IDATA_SEG

VIRQD_IRQ Descriptor VPICD_IRQ_Descriptor <,,\
OFFSET32 VIRQD Hw_Int_Proc,,\
OFFSET32 VIRQD_EOI_Proc,,,>
VxD_IDATA_ENDS

VxD_ICODE_SEG
VIRQD_Device_Init

DESCRIPTION:
Non critical system initialization procedure.

ENTRY:
EBX = Sys VM handle

EXIT:
CLC if everything's A-OK, otherwise STC

USES:
Flags.

Ne Ne Ne No N Ne Ne Ne Ne Ne e N e We No wo

BeginProc VIRQD Device_Init
Trace_Out "VIRQD: Device_Init"

push eax
push edi

mov edi, OFFSET32 VIRQD_IRQ Descriptor
mov [edi.VID_IRQ_Number], VIRQD_Interrupt
VxDCall VPICD_Virtualize_IRQ

ifdef DEBUG

jnc SHORT @F
Debug_Out "VIRQD: Unable to virtualize IRQ"
jmp SHORT DI_Exit
e@:
else
jec SHORT DI_Exit
endif

mov hvirtIRQ, eax




Writing Windows Virtual Device Drivers 77

DI_Exit:
pop edi
pop eax
ret

EndProc VIRQD_ Device_Init

VxD_ICODE_ENDS

When the hardware interrupt occurs, the following procedures simulate the interrupt to the
current VM and clear the interrupt when the ISR issues an EOI to the virtual PIC:

VIRQD_Hw_Int_Proc

;

; DESCRIPTION:

: Hardware interrupt handler. Called by VPICD.
; ENTRY:

; EAX = IRQ handle

; EBX = current VM handle

;

H EXIT:

: CLC if processed, STC otherwise.
; USES:

; Flags.

;

~

BeginProc VIRQD_Hw_Int_Proc, High_Freq
Trace_Out "<i"
VxDCall VPICD_Set_Int_Request

clc
ret

EndProc VIRQD_Hw_Int_Proc
VIRQD_EOI_Proc

DESCRIPTION:
Hardware interrupt handler. Called by VPICD.

Ne Ne No Ne Ne “we
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; ENTRY:

; EAX = IRQ handle

; EBX = current VM handle
;

H EXIT:

; Nothing.

;

H USES:

; Nothing.

;

~

BeginProc VIRQD_EOI_Proc, High Freq
Trace_Out "i>"

VxDCall VPICD_Clear_Int_Request
VxDCall VPICD_Phys_EOI

ret

EndProc VIRQD EOI_Proc

VxD_LOCKED_CODE_ENDS

Note that services called during the processing of the Hw_Int_Proc procedure must be
declared asynchronous (see Chapter 2 for a complete list of asynchronous services). If a
VxD requires the use of a non-asynchronous service to continue interrupt processing, the
VxD must schedule a global event to continue. The debug version of WIN386.EXE
notifies you when you attempt to call a non-asynchronous service during interrupt
processing. Heed the warnings of VMM, lest your ignorance cause the system to crash.

Shared IRQ Procedures

If the hardware platform supports shared interrupts (Micro Channel Architecture) or the
device is using an ISA shared interrupt strategy, the IRQ can be virtualized specifying the
VPICD_Opt_Can_Share flag in the VID_Options element of the
VPICD_IRQ_ Descriptor structure. When the hardware interrupt is dispatched to the
Hw_Int_Proc, the VxD should determine whether the interrupt was generated by the
associated hardware device and, if so, process the interrupt and return with carry clear. If
the interrupt was not generated by the supported hardware, the VxD should return
immediately with carry clear. VPICD will continue to walk the shared interrupt list until a
VxD responds with carry set.

Note that the VXD cannot assume that subsequent calls to other callback procedures
specified in the IRQ descriptor structure are the result of an interrupt for the associated
hardware device. The VxD should set a flag when it has simulated an interrupt to a VM
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and test against this flag when notifications from VPICD are processed. When the VxD
processes the EOI_Proc it should clear the flag, perform the necessary EOI procedures,
and then return.

Dispatching IRQs to a VM

The example below demonstrates a very simple IRQ virtualization. The VIRQD_Hw_Int__
Proc simply sets the interrupt request for the current VM and returns. When the ISR
performs an EOI to the PIC, the VIRQD_EOI_Proc clears the interrupt request and
performs a physical EOI.

When a VxD requests an interrupt for a VM using the VPICD_Set_Int_Request
service, the interrupt simulation may not occur immediately. There are several conditions
that do not allow an interrupt to be simulated immediately:

e Interrupts are disabled in the VM.

e The virtual IRQ is masked in the VM.

e A higher priority virtual IRQ is already in service.

e The virtual machine is suspended.

In these cases, the interrupt is simulated as soon as the conditions are met.

Note that using VPICD_Set_Int_Request does not guarantee that an interrupt will be
simulated to a VM. For example, if a VM has masked and never unmasks the IRQ, the
interrupt will not be simulated. Additionally, a call to VPICD_Clear_ Int_Request
before the interrupt has been simulated prevents the VM from receiving the interrupt.

The example also does not demonstrate proper techniques when processing hardware
interrupts for device contention management. The VIRQD_Hw_Int_Proc should be
expanded to first determine whether an owner VM exists and then simulate the interrupt to
that VM, as follows:

I

H VIRQD_Hw_Int_Proc

r

; DESCRIPTION:

: Hardware interrupt handler. Called by VPICD.
; Simulates the interrupt to the hardware owner or
; to the current VM if unowned.

r

H ENTRY:

F EAX = IRQ handle

; EBX = current VM handle
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EXIT:
CLC if processed, STC otherwise.

USES: )
EBX, Flags.

Ne Ne Ne Ne Ne No we

BeginProc VIRQD_Hw_Int_Proc, High_Freq

Trace_Out "<i"

cmp hOwnervM, 0
je SHORT HIP_SetIt
mov ebx, hOwnervM

HIP_SetIt:
VxDCall VPICD_Set_Int_Request

clc
ret

EndProc VIRQD Hw_Int_Proc

Servicing Interrupts in a VxD

To reduce the interrupt latency of servicing a hardware device contained in ISR code of a
VM, a VxD can service interrupts directly during processing of the Hw_Int_Proc
procedure. In cases where a steady stream of data is processed, the VxD should buffer the
information from the hardware device and provide the information to the owning VM in
chunks.

A Hw_Int_Proc for servicing an interrupt directly might be similar to this:

VIRQD_Hw_Int_Proc

DESCRIPTION:
Hardware interrupt handler. First, EOI the PIC
so we avoid missing another IRQ generated by the
device. Call a procedure elsewhere in the VxD to
service the hardware device and then return.

ENTRY:
EAX = IRQ handle
EBX = current VM handle

Interrupts are disabled.

EXIT:
CLC if processed, STC otherwise.

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne We We Wo No %o
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; USES:
; EBX, Flags.

BeginProc VIRQD_Hw_Int_Proc, High_ Freq

Trace_Out "<i>"

VxDCall VPICD_Phys_EOI

call VIRQD_Service_Hardware
clc

ret

EndProc VIRQD_Hw_Int_Proc

In this example, VIRQD_Hw_Int_Proc does not set the interrupt request for the VM. The
VIRQ_ Service_ Hardware procedure may set an interrupt request to the owning VM
when a threshold has been reached. This is strictly determined by the requirements of your
hardware and the maximum amount of CPU load you wish to generate. The VXD could
also use some other form of communication to a driver in a VM, such as nested execution
or updating global memory buffers.

Additionally, the VIRQ_EOI_Proc would not perform a physical EOI of the PIC. Its only
requirement would be to clear the interrupt request status for the VM if simulated
interrupts are used to communicate with the VM's device driver.

Note that interrupt simulation is an expensive procedure. Ring transitions and VM context
switches are often a result of interrupt simulation, and reducing simulated interrupt
generation will help reduce the total burden of the CPU.

Bimodal Interrupt Handlers

Bimodal interrupt handlers are a new feature of the Windows 3.1 VPICD that allows a
Windows device driver (or DLL) to service interrupts without waiting for VPICD to
simulate an interrupt to the System VM and can avoid the associated delays of VM focus
changes and VM event processing. Interrupt latency can be reduced using these services
while maintaining a common code base for the ISR under Standard and Enhanced Mode
Windows. Note that servicing interrupts directly in a VxD (as discussed in the preceding
section ) yields minimal interrupt latency.

The following services are available through the PM API of the VPICD to install and
remove bimodal interrupt handlers:

VPICD_API_Get_Ver retrieve the VPICD version
VPICD_Install_Handler install a bimodal IRQ handler
VPICD_Remove_Handler remove a bimodal IRQ handler
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The VPICD API can only be accessed via the protected mode API entry point. It is not
available to V86 VMs. To access the VPICD API, a VM obtains the API entry point:

VPICD_Device_ID EQU 0003h
VPICD_API_Get_Ver EQU 0000h
VPICD_Install_Handler EQU 0001h
VPICD_Remove_Handler EQU 0002h
VPICD_Call_At_Ring0 EQU 0003h
xor di, di
mov es, di
mov ax, 1684h ; get API entry point
mov bx, VPICD_Device_ID ; of the VPICD
int 2fh

mov word ptr 1lpVPICDEntry, di
mov word ptr lpVPICDEntry + 2, es

mov ax, es
or ax, di
jz SHORT No_VPICD_API

Under Windows 3.0, the VPICD entry point will be NULL, because it does not support
any API functionality. If the entry point is not NULL, VPICD's version can be obtained:

Get_VPICD Version:
mov ax, VPICD_API_Get_Ver
call dword ptr 1pVPICDEntry
jc SHORT VPICD_Error
cmp ax, 30Ah
jbe SHORT VPICD_Error

A DLL installs and removes a bimodal IRQ handler using the VPICD_API_Install and
VPICD_API_Remove functions respectively:

Install_Bimodal_Handler:
les di, 1pBIS ; pointer to BIS struct.
mov ax, VPICD_Install_Handler
call dword ptr 1lpVPICDEntry

je SHORT VPICD_Error

Remove_Bimodal_Handler:
les di, 1lpBIS ; pointer to BIS struct.
mov ax, VPICD_Remove_Handler

call dword ptr 1pVPICDEntry
jc SHORT VPICD_Error
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In these routines, the Bimodal_Int_Struc (BIS) is referenced. This structure has the

following format:

Bimodal_Int_Struc STRUC

BIS_IRQ_Number
BIS_VM_ID
BIS_Next
BIS_Reservedl
BIS_Reserved2
BIS_Reserved3
BIS_Reserved4
BIS_Flags
BIS_Mode
BIS_Entry
BIS_Control_Proc

BIS_User_Mode_API

dw

dd

BIS_Super_Mode_ API dd

BIS_User_Mode_CS
BIS_User_Mode_DS
BIS_Super_Mode_CS
BIS_Super_Mode_DS

BIS_Descriptor_ Count
Bimodal_Int_Struc ENDS

dw
dw
dw
dw

o))
5
o0 W W W)W W WO O W W WO

5
-~

The field definitions of this structure are detailed as follows:

BIS_IRQ_ Number

VPICD installs a bimodal interrupt for the IRQ specified
by this field when the VPICD_Install_Handler APl is
called.

BIS_VM_ID Contains the current VM ID when the interrupt handler
specified by BIS_Entry is called.

BIS_Next Currently not used by the Windows 3.1 VPICD.

BIS_Flags Must be set to zero.

BIS_Mode Set to O to indicate user mode or 4 to indicate supervisor
mode. This value can be used as an offset to obtain the
appropriate user-mode or super-mode BIS API handler.
(Set by VPICD when calling the procedures defined by the
BIS_Entry and BIS_Control_Proc offsets.)

mov bx, es:[di.BIS_Mode] ; mode O=user, 4=super

call es: [bx] [di.

BIS_User_Mode_API]

BIS_Entry

Specifies the offset of the ISR from the CS specified in the
BIS_User_Mode_CS field. When VPICD calls the
interrupt handler for interrupt servicing, ES:DI points to
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BIS_Control_Proc

BIS_User_Mode_API

BIS_Super Mode_API

BIS_User_Mode_CS

BIS_User_ Mode_DS

BIS_Super_ Mode_CS

BIS_Super_Mode_DS

BIS_Descriptor_Count

this structure. (Filled by caller for the call to
VPICD_Install_Handler.)

Specifies the offset of the control procedure from the CS
specified in the BIS_User_Mode_cs field. The control
procedure is currently not used by the Windows 3.1
VPICD, but should point to a dummy control procedure
that performs a far return. (Filled by the caller for
VPICD_Install_Handler.)

Specifies the far address of the user-mode API procedure
entry point. (Filled by VPICD after a call to
VPICD_Install_Handler APIL)

Specifies the far address of the supervisor mode API
procedure entry point. (Filled by VPICD after a call to the
VPICD_Install_Handler API)

Specifies the selector of the user-mode code segment of
the interrupt handler. The BIS_Entry and
BIS_Control_Proc offsets must be relative to the code
selector specified by this field. (Filled by caller for
VPICD_Install_Handler.)

Specifies the selector of the user-mode data segment of the
interrupt handler. The Bimodal_Int_Struc structure should
be located in this segment. (Filled by caller for
VPICD_Install_Handler.)

VPICD stores the GDT alias of the user-mode CS selector
in this field after a call to VPICD_Install Handler.

VPICD stores a GDT alias of the user mode CS selector in
this field after a call to VPICD_Install Handler.

Specifies the number of EBIS_Sel_Struc structures
immediately following the Bimodal_Int_Struc
structure. VPICD creates a GDT alias for each of the
selectors in the structures that follow.

EBIS_Sel_sStruc STRUC

EBIS_User_Mode_Sel dw ?
dw ?
EBIS_Super_Mode_Sel dw ?

EBIS_Sel_Struc ENDS




Writing Windows Virtual Device Drivers 85

EBIS_User Mode_Sel User mode selector

EBIS_Super_Mode_Sel GDT alias of selector created by VPICD after a call to
VPICD_Install_Handler.

VPICD automatically creates GDT aliases for the ISR code and data segments as specified
in BIS_User_Mode_CS and BIS_User_Mode_DS, respectively. Additionally, the caller
can request that VPICD create GDT aliases for a number of selectors specified by
BIS_Descriptor_Count. The user-mode selectors are filled in an array of the
EBIS_Sel_Struc structures immediately following the Bmodal_ Int_Structure. The
associated GDT aliases are returned in the EBI_Super_Mode_Sel element of each of the
EBIS_Sel_struc structures. For example, the Windows 3.1 COMM driver uses this
functionality to create GDT aliases of the receive and transmit queues.

A DLL creates a Bimodal_Int_Struc and fills the appropriate fields. When the IRQ occurs,
VPICD calls the ISR directly at ring 0, regardless of the current VM. On entry to the ISR,
the CS is set to the GDT alias of the ISR code segment and ES:DI is set to the GDT alias
of the Bimodal_Int_Struc. If this structure is located in the data segment, you can make the
data addressable by moving ES into DS.

The ISR executes at ring 0 (CPL=0) through a 16-bit GDT code segment alias. As with
calling TSR code directly from a VxD, the provided stack is a Use32 segment and
parameter passing must reference the stack using 32-bits (ESP and EBP). The ISR cannot
switch to a different stack unless a ring O stack selector is created. Note that a DLL cannot
legally create such a selector.

The ISR must return from the procedure with a far return and carry clear if the IRQ was
serviced or carry set if the IRQ was not serviced. When the ISR is called directly by
VPICD, it must not manipulate the PIC directly. Instead, VPICD provides services through
the BIS_Super_ Mode_API procedure to perform these operations:

BIH_API_EOI EQU 0000h
BIH_API_Mask EQU 0001h
BIH_API_Unmask EQU 0002h
BIH_API_Get_Mask EQU 0003h
BIH_API_Get_IRR EQU 0004h
BIH_API_Get_ISR EQU 0005h

BIH_API_Call_Back EQU 0006h

BIH_API_EOI Equivalent to calling VPICD_Phys_EOTI.
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BIH_API_ Mask

BIH _API_Get_IRR

BIH_API_Get_ISR

BIH_API_Call_Back

Equivalent to calling the VPICD_Physically Mask
service.

Equivalent to calling the VPICD_Test_Phys_Request
service. Returns carry set if the physical interrupt request is
set.

Retrieves the in-service state of the IRQ. Returns with
carry set if the IRQ is in service.

Uses the Call_Priority_VM_Event service to schedule an
event for the target VM specified BX. When the event
callback is processed, VPICD will use nested execution
services to simulate a far call to the address specified by
CX:DX.

The BIH_API_Call_Back procedure is useful for calling routines that do not have GDT
aliases or that must be executed in a specific VM. A common use of this service is to call a
routine in the driver that posts a message using the PostMessage() Windows APIL.

Note: VMM schedules event services to process the callback in the specified VM. The
callback is not executed synchronously. A driver should not post more than one event
without notification that the event has been processed. If multiple events are posted
without verifying that outstanding callbacks already exist, the VMM event services may
run out of resources and crash the system.



Chapter 8
Virtualized DMA

The Virtual DMA Device (VDMAD) provides services that allow a VxD to take control of
a DMA channel. A VxD using these services can intercept the DMA requests and modify
the VM state causing the VM to believe that the request completed. Also, it is possible to
translate or modify the VM's request before the physical state of the DMA controller is
updated. Additionally, by using these services, a VXD can add another level of hardware
contention management or indirectly replace portions of VDMAD's default handling.

All DMA channels are virtualized by VDMAD to map DMA requests by drivers to the
physical hardware. VDMAD validates the memory region supplied by the driver, and if
necessary, allocates the region from an internal DMA buffer.

Certain restrictions imposed by the DMA controller require the region management of
VDMAD! :

e The DMA controller can only understand contiguous physical memory addresses.

e The DMA controller can not cross 64k boundaries, because the page register does not
auto increment.

e The DMA controller has an address limit of 16 MB.

VDMAD breaks up requests into partial DMA transfers to satisfy these requirements.
DMA buffers submitted using the auto-init mode of the DMA controller cannot be broken;
consequently, these requests must be submitted with regions adhering to the restrictions.

1 For simplicity, this discussion only reference the hardware with the lowest common
denominator, the 8253 DMA controller. Other controllers may support advanced features, but
for proper coverage by your VxD, this controller interface constrains the functionality of the
DMA interface.
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For this reason, auto-init-mode DMA requires special memory management on behalf of
the device driver. '

Note that this discussion does not cover advanced DMA topics, such as bus-mastering
devices and DMA controllers supporting scatter-gather.

Physical State vs. Virtual State

As a VM programs the DMA controller, the controller's virtual state is updated, but state is
not submitted to the hardware until the VM unmasks the channel. This is important to
remember when you are debugging drivers using DMA. To display the channel status, use
the debug version of Win386 supplied with VxD-Lite and query VDMAD.

After the VM has unmasked the channel, VDMAD attempts to lock the memory region, as
programmed by the VM. If it is unsuccessful, VDMAD buffers the DMA transfer and
modifies the DMA controller's physical state.

VDMAD uses the VPICD_Hw_Int_Proc service to provide a watchdog event to poll for
the DMA controller's terminal count when non-auto-init-mode DMA transfers are
requested. When the DMA controller has completed the request, the necessary buffers are
updated (if a read operation was requested and buffers were allocated) and the VM's
virtual DMA state is updated to reflect the completed transfer.

A VxD can modify the DMA controller's virtual and physical states using the
VDMAD_Set_Virt_State and VDMAD_Set_Phys_State services, which are usually
incorporated with a handle of DMA channel that has been virtualized by a VxD.

DMA Virtualization

A VxD uses DMA virtualization to add functionality to the base support of VDMAD. A
VxD can use this virtualization to change the virtual state before the request is submitted to
the hardware. To virtualize a DMA channel, a VxD uses the VDMAD_Virtualize
Channel service:

; Tell VDMAD that we want to know about this
; DMA controller.

'

xor eax, eax
mov [gdwDMAHandle], eax

movzx eax, gbDMAChannel
mov esi, OFFSET32 VSIMPLED_Virtual_ DMA_Trap
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VxDCall VDMAD Virtualize_Channel
mov [gdwDMAHandle], eax
jc SHORT VDC_Exit_Failure

When a VM has changed the virtualized DMA controller's mask state, it calls the supplied
procedure, in this case VSIMPLED_Virtual DMA _Trap.

The VxD can modify the virtual state of the VM and then call the default handler,
VDMAD_Default_Handler, to allow VDMAD to continue the region management as
follows:

Forces DMA_block_mode and then calls the default

;
H
H DESCRIPTION:
H
; DMA handler.
;

~

BeginProc VSIMPLED Virtual_ DMA_Trap, High_Freq

VxDCall VDMAD_Get_Virt_State

test dl, DMA_requested
jz SHORT VDT _Exit
test dl, DMA_masked
jnz SHORT VDT_Exit

; Force block mode DMA, channel is requested and
; unmasked by the VM.

and dl, NOT (DMA_mode_mask)

or dl, DMA_block_mode

Xxor dh, dh

VxDCall VDMAD_ Set_Virt_State
VDT_Exit:

VxDCall VDMAD Default_Handler

ret

EndProc VSIMPLED_Virtual_ DMA_ Trap

If necessary, a VxD can handle the actual DMA buffer translation and program the
physical state of the DMA controller. This type of virtualization requires the use of the
VDMAD buffer copy and region management services (listed in Appendix A).

Additionally, a VxD can translate the DMA request to a replacement interface, such as
those supplied by the PCMCIA hardware implementations. Again, the VXD must virtualize
the DMA channel and process the notifications from VDMAD.
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Although some of the buffer management details are discussed in the next section, you
should investigate the VDMAD sources provided in the Microsoft Windows 3.1 Device
Driver Kit for code samples and to develop a better understanding of the operation of
VDMAD.

DMA Region Mapping

As already mentioned, the primary purpose of VDMAD is to buffer DMA requests and to
map the regions to memory accessable by the DMA controller. DMA region mapping is
automatically performed by VDMAD on a non-virtualized channel when the DMA
channel is unmasked. A VxD virtualizing a DMA channel can use these services without
additional code overhead simply by calling the VDMAD_Default_Handler. When a
non-standard interface is implemented, some or all of the region mapping services of
VDMAD will be needed.

To request a DMA buffer from VDMAD and copy information from a VM to this buffer,
the VxD uses the VDMAD_Request_Buffer and VDMAD_Copy_To_Buffer services:

Request a buffer from VDMAD and copy from VM
On entry, EAX is DMA handle, EBX is VM handle.

Ne Ne wo No

VxDCall VDMAD_Get_Virt_State
push edx ; save mode for later
push ebx ; save VM for later

ESI = linear address
ECX = count
DL/DH = mode/flags

~e we weo

test dl, DMA_requested
jnz SHORT Buffer New

test dl, DMA_masked
jnz SHORT Buffer_ CleanUp

VxDCall VDMAD_Request_Buffer
je SHORT Error_ No_Buffer

; EDX now contains the physical address of
; the DMA buffer..

test dl, DMA_type_read
jz SHORT Dont_Copy
EBX buffer handle

ESI
ECX

linear region
size

Ne we wo
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; EDI = offset

xor edi, edi
VxDCall VDMAD_Copy_To_Buffer
jc SHORT Error_Copy

To prepare the hardware state, the VxD updates the region information and programs the
physical state to the DMA controller. The VxD starts DMA transfer by unmasking the
channel:

Dont_Copy:
pop ebx
VxDCall VDMAD_Set_Region_Info
pop edx

VxDCall VDMAD_Set_Phys_State
; Unmask the DMA channel to begin the transfer

VxDCall VDMAD_UnMask_Channel

Note that these code fragments are very simple and incomplete. For instance, the VXD
does not check to see whether the region can be locked by using the
VDMAD_Lock_DMA_Region service before requesting the buffer from VDMAD.

When a DMA channel is unmasked using the VDMAD_UnMask_Channel service, the
ownership of the DMA channel is assigned to the requesting VM. VDMAD sets up the
watchdog event to modify the virtual channel state when the terminal count is reached for
non-auto-init-mode transfers. When the watchdog event determines that the channel has
reached terminal count, VDMAD virtually masks it. If the operation was a DMA write
operation, the buffer is copied to the VM's linear address, as supplied with
VDMAD_Set_Region_Info. The virtual count register is updated, the channel is
physically masked, and the channel owner is set to NULL.

Avoiding VDMAD Interference

VDMAD always attempts to complete the DMA transfer when the channel has been
unmasked by using the VDMAD_UnMask_Channel service. To completely control the
DMA channel in your VxD, you can virtualize the DMA channel using a NULL handling
procedure and then program the DMA controller directly from your VxD. VDMAD will
continue to trap the I/O range for the controller but will not update the physical state.
Alternatively, you can provide a virtual DMA handling procedure and program the
controller directly by using the virtual controller state information as provided by
VDMAD. When using this implementation, you must avoid VDMAD services that affect
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the physical state or make assumptions about the ownership of the channel. Also, you need
to resolve contention by other VMs in your procedure. Consult the VDMAD sources for
further details.



Chapter 9

VKD and Keyboard
Processing

The Virtual Keyboard Driver (VKD) provides an interface to the keyboard that allows a
VxD to trap for hot keys, simulate keystrokes into a VM, and simulate a paste operation
from a supplied buffer into a VM. This interface can be used to force certain actions in a

VxD or to serve as form of communication between a VxD and an active application in a
VM.

Hot Keys

Hot keys are registered with the VKD through the VKD_Define_Hot_Key service. Hot
keys are enabled and disabled on a per-VM basis using the VKD_Local_Enable_Hot__
Key and VKD_Local_Disable_Hot_Key services when the Local Key flag is
specified, as follows:

Define hot keys for ctrl-pgup and ctrl-pgdn

. we we

mov al, 49h ; page-up

mov ah, ExtendedKey_B

shiftState <SS_Toggle_mask + SS_Either Ctrl>, <SS_Ctrl>
mov cl, CallOnPress + CallOnRepeat + Local_Key
mov esi, OFFSET32 VSIMPLED_Hot_Key_ Handler

xor edx, edx

xor edi, edi

VxDCall VKD_Define_Hot_Key

je SHORT Exit_Failure

mov ghhkCtrlPgUp, eax

mov al, 51ih ; page-down
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mov ah, ExtendedKey B

shiftState <SS_Toggle_mask + SS_Either_Ctrl>, <SS_Ctrl>
mov cl, CallOnPress + CallOnRepeat + Local_Key

mov esi, OFFSET32 VSIMPLED_Hot_Key Handler

xor edx, edx

xor edi, edi

VxDCall VKD_Define_Hot_Key

je SHORT Exit_Failure

mov ghhkCtrlPgDn, eax

To disable these keys by default, use the VKD_Local_Disable_Hot_Key service
during the Sys_VM_Init and VM_Critical_ Init message processing:

VSIMPLED_Sys_VM Init LABEIL NEAR
BeginProc VSIMPLED_VM Critical_Init

mov eax, ghhkCtrlPgUp
VxDCall VKD_Local_Disable_Hot_Key
mov eax, ghhkCtrlPgDn

VxDCall VKD_Local_Disable_Hot_Key
clc

ret

EndProc VSIMPLED_VM Critical_Init

Once a hot key has been enabled in a VM the VxD receives a notification from VKD
whenever the hot key is pressed and processes it accordingly:

BeginProc VSIMPLED_Hot_Key Handler
push eax

Turn off hot key mode in case we're going
to expand this to force keys. Don't want
to be in hot key mode when forcing keys
to a VM.

Ne we Ne wo

VxDCall VKD_Cancel_Hot_Key_ State

cmp al, 49h
jne SHORT HK_PgDn

H
; Ctrl-PgUp pressed...

7

Trace_Out "Control-PgUp pressed in VM #EBX"
jmp SHORT HK_Exit

HK_PgDn:

.
’

; Ctrl-PgDhn pressed...
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;

Trace_Out "Control-PgDn pressed in VM #EBX"
HKKH Exit:

pop eax

ret

EndProc VSIMPLED_ Hot_Key_ Handler

Simulating Keystrokes to VMs

VKD provides services to force keys to a VM's keyboard buffer, so that the VM reacts as
the key had been pressed on the physical keyboard. The buffer passed to the
VKD_Force_Keys service contains actual keyboard scan codes, such as the “key down,”
“key repeat,” and “key up” codes.

This code snippet just forces PgDhn and PgUp
to the VM in place of Ctrl-PgDhn and Ctrl-PgUp.

Ne Ne N Ne

ForceKey Buffer_Down label byte

db 51h, Dlh
ForceKey_ Buffer Down_Len equ $-ForceKey_ Buffer Down
ForceKey Buffer_Up label byte

db 49h, CSh
ForceKey_Buffer_ Up_Len equ $-ForceKey_ Buffer Up
BeginProc VSIMPLED_Hot_Key_ Handler

push eax

; Don't want to be in hot key mode
; when forcing keys to a VM.

VxDCall VKD_Cancel_Hot_Key_ State
cmp al, 49h
jne SHORT HK_PgDn

Ctrl-PgUp pressed...

Ne we we

Trace_Out "Control-PgUp pressed in VM #EBX"

mov ecx, ForceKey_ Buffer_ Up_Len
lea esi, ForceKey_ Buffer Up_Len
jmp SHORT HK_ForceEm
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HK_PgDn:

Ctrl-PgDhn pressed...

N we we

Trace_Out "Control-PgDn pressed in VM #EBX"

mov ecx, ForceKey_ Buffer Down_Len
lea esi, ForceKey Buffer_Down
HK_ForceEm:

VxDCall VKD_Force_Keys
IFDEF DEBUG
jnec SHORT @F
Debug Out "VKD_Force_Keys failed!"

[clcH

ENDIF
pop eax
ret

EndProc VSIMPLED_ Hot_Key_ Handler

Using the force keys service is quite simple, but determining which scan codes to send is
probably the most time-consuming part of using this interface. To make determing the scan
codes simpler, I have created a simple utility that watches INT 9h and displays the
keystrokes to the screen until you press the <ESC> key. The code for the KEYDISP utility
can be found on the accompanying disk in the ASM\KEYDISP directory.




Chapter 10
Writing VxDs in C

The concept of writing VxDs in 'C' has been widely misunderstood. Writing VxDs in 'C' is
not impossible -- on the contrary, you can do it without a great deal of grief. Forget
everything anyone has every told you about writing VxDs in 'C' and open your mind.
VxDs wrtten in 'C' are the wave of the future, not just a passing fad.

VMM does not look in the object code of VxDs for magical embedded notations to
determine whether the code was generated by a 'C' compiler or the magical MASM 5.10B
assembler. When a good 386 32-bit 'C' compiler generates the necessary code, the
LINK?386 linker will link the objects and generate a proper executable, which can be called
a VxD.

The main hurdle to overcome when writing VxDs in 'C' is that a great portion of VMM
services require either parameter passing using registers or that the mystical dynalinking
macro must be used to generate the code to call VxD or VMM services. Additionally,
services declared by VxDs are created with tables hidden by the VMM.INC macros and
the actual procedure entry points are renamed with a new prefix. But that doesn't mean that
it's time to give up and return to assembly, only that you may not be able to write all of
your VxD in 'C'. Some assembly may be required: I affectionately refer to this as MASM-
tape. I'll provide the MASM-tape on the accompanying disk and some instruction and you
can begin writing VxDs in 'C' almost immediately, assuming you have the rest of the
necessary tools. I have been successful using the WATCOM C/386 V9.5 compiler to
generate flat 32-bit code. The samples included on the diskette were created using this
compiler.

The limitations and restrictions of writing a VXD in 'C' include the following?

e because most VxDs have been written in assembly, interfacing to these VxDs requires
external procedures written in assembly.
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Some of the debugging functionality (call logging, for example) is not available to
VxD procedures written in 'C'.

Testing and debugging is more difficult, because you must rely on the compiler code
generation instead of an assembler.

Segment Attributes

VxD segments require the following specific attributes:

All code and data segments are USE32 with the e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>