

Writing Windows™
Virtual Device Drivers

David Thielen and Bryan Woodruff

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book and Addison­
Wesley was aware of a trademark claim, the designations have been printed in initial
capital letters.

The authors and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

ISBN 0-201-62706-X

Copyright © 1994 by David Thielen and Bryan Woodruff

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

Set in 10.5 point Times Roman by Benchmark Productions, Inc.

123456789-~A-9796959493

First Printing, December 1993

Addison-Wesley books are available for bulk purchases by corporations, institutions, and
other organizations. For more information please contact the Corporate, Government and
Special Sales Department at (617) 944-3700 x2915.

To my wife, Shirley Clawson Thielen

I never knew I could be so happy.

- Dave Thielen

For my wife, Lisa, who puts up with me through it all.

- Bryan A. Woodruff

__ 0-0""""""

Table of Contents

Acknowledgments xiii

Preface xv

SECTION I
An Introduction to Virtual Device Drivers

Chapter 1-The Anatomy of a VxD 1

The VxD Structure 5

Virtual Device Initialization 9

The VSIMPLED Sources 10

Debugging the VSIMPLED VxD 14

Chapter 2-The Virtual Machine Manager 17

Event Processing 17

Scheduling 19

Services and Dynalinking 21

Critical Sections 22

Suspending VMs, Resuming VMs, and Semaphores 23

Asynchronous Services 25

v

vi Table of Contents

Chapter 3-Memory Management 29

VMM Memory Management Services 29

Translation Services 31

Page Allocation 33

Hooked Pages and Page Faults 36

Examining Page Table Entries 38

Allocating Selectors 39

Instance Pages 40

Mapping Memory Into Multiple VMs 41

Page Protection 42

V86MMGR 44

Chapter 4-V86/PM VxD APi 47

The Faulting Mechanism and API Dispatch 48

The Client Register Structure 48

Examining and Modifying Information of the Active VM 50

Creating a Dual-Mode APi 51

Callbacks and Hooking Existing DOS Devices 52

Writing Windows Virtual Device Drivers vii

SECTION II
Advanced Topics

Chapter 5-Nested Execution 55

Simulating Software Interrupts 55

Calling Windows Functions from a VxD 56

Calling Code in a TSR at Ring 0 59

Chapter 6-1/0 Trapping 65

Trapping and Dispatching I/O 66

Device Contention Management 69

Simulating Hardware 71

Chapter 7-IRQ Virtualization 73

Default VPICD Handling 74

IRQ Virtualization and Sharing 75

Dispatching IRQs to a VM 79

Servicing Interrupts in a VxD 80

Bimodal Interrupt Handlers 81

Chapter 8-Virtualized DMA 87

Physical State vs. Virtual State 88

DMA Virtualization 88

viii Table of Contents

DMA Region Mapping 90

Avoiding VDMAD Interference 91

Chapter 9-VKD and Keyboard Processing 93

Hot Keys 93

Simulating Keystrokes to VMs 95

Chapter 10-Writing VxDs in C 97

Segment Attributes 98

A ICI-callable Wrapper for VMM 99

VSIMPLED Sources in ICI 108

Chapter 11-Using the Debugging Services 113

Debug Strings 113

Assertions 114

Extended Debug Commands of VMM 114

SECTION III
Putting it All Together

Chapter 12-VCOMMD Design Notes 121

Design 121

The Code 122

Writing Windows Virtual Device Drivers ix

ComSysCritlnit 123

Port Trapping ' 124

IRQ Trapping 127

Com_Api_Proc 128

VM Creation and Desctruction 128

The Total VxD 129

Chapter 13-Win-Link Design and
Implementation Notes 131

The System 132

The Approach 134

Implementation 140

Registering DOS Apps 144

Internal Message Passing 143

Message Passing Between VMs 153

SECTION IV
VMM and VxD Service Reference

Appendix A-API Reference 171

VMM Service Reference 171

VMM Structure Reference 407

VMM Message Reference 414

---...,

x Table of Contents

VMM Macro Reference 435

Block Device Reference 468

MS-DOS Manager Reference 479

MS-DOS Network Device API Reference 489

Extended BIOS Device Reference 491

Int 13h Device API Reference 493

SHELL Device API Reference 495

V86MMGR API Reference 501

VCD API Reference 518

VDD API Reference 523

VDMAD API Reference 540

VHD API Reference 559

VKD API Reference 562

VMCPD API Reference 575

Virtual Mouse Device API Reference 577

VMPoll API Reference 579

VPICD API Reference 581

VPICD Structure Reference · 603

VTD API Reference 607

Appendix B-Int 2Fh Reference 613

Service and Notification Function Reference 617

Writing Windows Virtual Device Drivers xi

V.irtual Display Device Function Reference 631

Structure Reference 638

·Index 641

._--~

Acknowledgments

Several key people were helpful in making this book become a reality and must be
acknowledged for their efforts - without them, this book would not exist. I would like
to thank the publisher, Addison-Wesley and David Thielen, my co-author. Also a
thank-you to Keith Jin, Brian Lieuellen, and Glen Slick at Microsoft Developer
Support for their informative answers and technical accuracy. A special thank you to
Neil Sandlin who provided assistance when I was first floundering around with VxDs.

Thank you to Thomas Pyzdek at Quality Publishing for encouraging me to put my
knowledge down in words. Thanks also to my friends Charles E. Kindel Jr., Curtis
Palmer, Kyle Sparks and Garrett McAuliffe for their suupport. I would like to thank
my parents for nurturing my aspiration to be become a software design engineer. And
to my wife, Lisa, who endured the late nights, clicking keyboard, and noisy printer, "1
Love You" and thank you for putting up with yet another project.

Bryan A. Woodruff

This book came in to being for one simple reason: Bryan Woodruff. He was the one
who pulled the pieces together. The parts he wrote are better than I could have done
myself. Major thanks are also due to the people at Addison-Wesley who were
farsighted enough to believe this was a subject worth writing about. Thanks to Amy
Pedersen and Chris Williams at Benchmark Productions for their assistance.

I first learned about VxDs from the three developers who wrote WIN386 for Windows
3.1; Aaron Reynolds, Ralph Lipe, and Rich Pletcher - brilliant programmers all. I
owe them all a debt of graditude for helping me as I first learned this challenging
subject.

I also owe a debt of thanks to my co-workers in the Chicago group, especially Mike
McLaughlin, as we all learned the ins and outs of VxD-land. It is a joy to work with
people who are as brilliant and nice as that group was - even if they didn't always
fully appreciate all of my humor.

In August of 92 I left Redmond to go work in the Far East for six months on Windows
3.1. I spent that time living in and working with the Microsoft developers in Tokyo,

xiii

-,

xiv Acknowledgments

Taipei, and Seoul. It was one of the most interesting and enjoyable periods of my life.
The developers and management in Taiwan and Korea and the developers in Japan are
as competent and talented as any I have seen anywhere in the world. And lowe a debt
I can never repay to them for making me feel a part of their group. While too
numerous to list here, I thank all of you who became good friends.

Finally, I would like to thank my daughters; Winter Maile, Tanya Nicole, and Brianna
Leilani, who sometimes wonder if the keyboard is surgically attached to my fingers. I
promise I'll come play with you as soon as I finish this one last compile...

David Thielen
Redmond, WA

Preface

David Thielen...

About a year ago, I was talking to J. D. Hidlebrand about a new magazine he was
starting, Windows Tech Journal. I told him that he should include a column on VxDs
(Virtual Device Drivers) in the magazine. His reply, typical of Windows developers at
the time, was "what's a VxD?" Since then, articles have run in Win Tech, and VxDs
have become an important part of Windows programming for a substantial number of
Windows developers.

Unfortunately, to date noone has published a book devoted to explaining VxDs. On
CompuServe I constantly found myself referring people to the articles I wrote in Win
Tech, requiring them to go order the back issues. Equally important, there have been a
lot of questions about subjects that my two articles did not cover. Most of these
questions are answered in a combination VxD and Windows program I wrote to
support InterProcess Communication between Windows and DOS applications.

This book does not attempt to answer every question you have about VxDs, but it
should give you a good grounding in how to write a VxD. It also provides complete
working source code to two very different VxDs. With this information, and with the
Windows DDK (Device Development Kit), you should be able to write a VxD.

My main hope is that this book will give enough help so that developers will no longer
be afraid to write VxDs. I have talked to too many developers who avoid VxDs
because of the perceived difficulty. VxDs are not that hard to write - they're just
something new.

More importantly, and this can't be stressed enough, all interaction with hardware
should be done with a VxD. Yes, a DLL or a Windows application can handle IRQs,
perform DMA, and talk to ports, but even if you handle everything perfectly, they will
still be slow. VxDs were designed to give you a fast and safe method to communicate
with your hardware. A system that uses VxDs exclusively to talk to hardware is not
only more solid but is more responsive to the user. And once you learn how to write a
VxD, you will find that using a VxD is a lot easier than the alternatives. VxDs are the
way Windows works best with hardware.

VxDs also let you do the things Windows itself won't let you do. While Windows has a
number of strict rules and enforces those rules pretty well, VxDs are not as rigid. With
a VxD you can see all the memory in the entire system, intercept or create any

xv

xvi Preface

interrupts you wish, make hardware disappear, or have hardware that doesn't exist on
the system appear.

This book demonstrates how you can perform some of these tricks. It has a fully
commented VeD that should provide a good example of how to talk to virtually any
hardware device. It also has the source to Win-Link, which can show you a lot of
tricks you can perform with VxDs.

There is no way to document all the things you can do with VxDs. Many of the uses
VxDs will be put to next year probably haven't even been thought of yet. That's for
you to do. Have fun.

Writing Windows Virtual Device Drivers xvii

Bryan Woodruff...

When Dave first approached me about completing this book, I thought about
developing a method to help other software developers understand the complexities of
the Microsoft Windows 386 Enhanced Mode operating system. I had also fielded
questions on CompuServe regarding the interactions of VxDs with the Windows 386
system and felt that we could provide some of the knowledge we gained while
working with VxDs.

There are so many areas of this complex system to cover that a single book cannot
handle every aspect. Just the basics can give the developer enough weapons to bring
the system down to its knees, intentionally or not. So the challenge was to provide the
developer with enough fire power to take on any Windows programming problem
while allowing them to operate this advanced weaponry without shooting off their own
foot. Of course, this book isn't 42 (the answer to life, the universe, and everything), but
I think it will help the novice as well as the advanced Windows 386 developer.

I hope that this book will assist you in your programming endeavors. Enjoy
programming in 32-bit flat model- once you have you many never want to go back.

SECTION I

An Introduction to Virtual
Device Drivers

Chapter 1

The Anatomy of a VxD

Virtual device drivers (VxDs) are not just for people writing drivers for hardware devices
anymore than DOS device drivers are used for the same. A VxD is Windows' way of
letting you do almost anything you want. If you miss the DOS world - where you have
direct access to the hardware, can interface to vital CPU functions, or can take over parts
of the operating system - then welcome to VxDs, where you can do the a lot of same
under Windows.

A VxD is code and data that runs at ring 0 in 32-bit flat model as part of the Windows 386
virtual machine manager (VMM). In fact, the VMM (WIN386.EXE) is primarily a number
of standard VxDs compounded in a single file. VxDs only operate when Windows runs in
386 Enhanced mode.

. VMM is not really a part of Windows; instead, it is a preemptive, multitasking kernel that
controls multiple virtual machines. Once VMM has initialized, the Windows Graphical
User Interface composed of KRNL386.EXE, GDI.EXE, USER.EXE, and all of the
supporting drivers are loaded into the System VM (the initial virtual machine created when
VMM is started). However, VMM could easily load COMMAND.COM into the System
VM and with the assistance of a VxD and some helper hot-keys, so that you have a
multitasking DOS instead of the fancy Windows GUI.

Because VxDs operate at ring 0, the operating-system level of protection, the CPU allows
the code to execute any 386 instruction. At higher ring levels, access to memory addresses
or I/O ports can be restricted from the VM, allowing the VMM or a VxD to process the
exception as it wishes. Of course, certain instructions executed by the VM always cause
processor exceptions, but a VxD can simulate the functionality of that instruction for the
VM, allowing it to operate as if it has sufficient privilege.

With this power comes responsibility. Although a VxD can play with the Interrupt
Descriptor Table (IDT) entries directly, this is something that should probably be avoided.

3

4 Chapter 1: The Anatomy of a VxD

Besides, the VMM provides enough functionality to get as close the IDT as needed, so
why reinvent the wheel?

A VxD is always active, unlike any other part of Windows. When a DOS box is running
exclusive mode, the primary code executing apart from the DOS box itself includes any
VxDs responding to IRQs, code causing faulting instructions, and trapped I/O or page
faults in the DOS box.

A VxD is the only program with unobstructed access to the hardware. If a VxD performs
I/O to a port, it communicates directly to the physical port, without restrictions. If a VxD
owns a hardware interrupt, the VxD receives the IRQ directly from the Virtual
Programmable Interrupt Controller Driver (VPICD), without ring transitions. For example,
an interrupt service routine for an non-owned interrupt in a VM sees a virtualized interrupt
through events scheduled by the VPICD, whereas a VxD has a more direct path for
interrupt servicing. Where code communicating to hardware in a VM may be restricted or
slowed by ring transitions and access permission lookups, a VxD is unrestricted and
extremely fast.

VxDs operate in 32-bit flat model, the 386 equivalent of small model. All of the segment
registers are fixed to the same base address. The CS and DS selector values differ, due to
access and execution restrictions (code versus data), but point to the same memory.
Because a VxD is in 32-bit flat model, all offsets to code and data are 32-bit; therefore,
you can access any part of the address space (4 gigabytes) with just an offset.

A VxD is also given priority on all actions in a VM. A VxD can intercept and/or generate
interrupts (hardware or software), trap port I/O, and even restrict access to specific regions
of memory. VxDs can determine whether to allow such access to occur, provide
simulation, terminate (or nuke) the VM, or simply ignore the request.

Because VxDs utilize the base components of the 80386 chipset, it is important that you
have a working knowledge of 386 architecture!.

A misbehaving MS-DOS application will usually crash the DOS virtual machine. A
misbehaving Windows application may affect the operation of other Windows
applications. However, a misbehaving VxD will crash the entire Windows operating
system. Because a VxD is part of the WIN386 kernel, the VxD is active during critical
processing of the Windows operating system. The smallest, most subtle bug can have
devastating effects on the operating system. Thorough testing of virtual device drivers is
absolutely necessary. Do not simply test how the VxD operates under stringent

For a good description of 80386/80486 system architecture, see Hummel, Robert L.
(1992), PC Magazine Programmer's Technical Reference: The Processor and
Coprocessor, Emeryville, CA: Ziff-Davis Press.

Writing Windows Virtual Device Drivers 5

configurations; instead, expand your testing to include all possible permutations of end­
user system configurations you can design (limited only by a testing hardware budget of
course!).

VxDs were originally designed to handle hardware device contention between multiple
processes and to translate or buffer data transfers from a VM to hardware devices. When
two or more programs attempt to access the same device, some method of contention
management must be used. You can use a VxD to allow each process to act as though it
has exclusive access to the device. For example, a Virtual Printer Device (VPD) would
provide the process with a virtual printer port, and characters written to the port would be
written to a print spooler. The VxD would then send the job to the printer when it becomes
available. Windows 3.X does not operate in this fashion, but the Win-Link VxD provides
this functionality (see Chapter 14 for more information). Another method would be to
assign the physical device to only one process at a time, so that when a process attempts to
access the device while it is in use, the VxD does not pass the request to the actual
hardware, and the process operates as though the hardware did not exist. The Virtual
COMM Device (VCD) uses this method.

Recently, the use of VxDs has been expanded to include interprocess communication
(demonstrated in the Win-Link example). Some VxDs now also implement a truly virtual
device, providing the necessary mechanisms to allow a virtual machine to see a device that
may not actually exist in hardware. VxDs can also implement client-server hardware
management, providing an interface to a VM that virtualizes I/O to the device and
translates this information to commands to be sent across a network to a hardware server.

The VxD Structure
A VxD has a rather simple structure. It includes a 16-bit real-mode initialization code and
data segment, 32-bit initialization code and data segments, 32-bit locked or "non-locked"
code and data segments, and a virtual device driver declaration block (exported in the
linear executable file as the VxD's DDB). Similar to the "suicide" fence of a DOS
terminate-and-stay resident program, the initialization fragments of the VxD are discarded
after initialization has been completed. Under Windows 3.x, all 32-bit code and data
segments are locked, because the macros provided in the VMM.INC included with the
Windows 3.X Device Driver Kit resolve to the same segment definition. However, you
should not assume that non-locked segments are the same as locked segments, as these
definitions most likely will change in the future. Note the distinction between the two now
and save yourself the bug-tracking hassle later.

6 Chapter 1: The Anatomy of a VxD

~eal-Mode Initialization Segment

The real-mode initialization segment is a 16-bit code and data segment of the VxD defined
by the VXD_REAL_MODE_INIT_SEG macro and is called during VMM's startup. This
allows a VxD to communicate with TSRs or other real-mode procedures to gather and then
pass vital information to the VxD's protected mode initialization routines or to fail the load
of the VxD or VMM prior to entering protected mode. The term "real-mode initialization"
is relative. If you have installed an EMM emulator (EMM386, 386Max, or QEMM), it is
likely that the real-mode initializ'.ltion procedures are invoked in V86 mode and are subject
to trapped I/O or other virtualization occurring under these systems. In other words, during
real-mode initialization, V~M dges not switch the processor to real mode and then call
these procedures. Instead, it ex~c'utes the 16-bit code in the mode configured prior to the
startup of VMM (such as invoki,ng WIN.COM).

Note: Due to problems in Windows 3.x, you will need to make sure that your real-mode
init~alization segment is not exactly 4k, 8k, 12k, or 16k in size. Additionally, real-mode
initialization segments greater than 8k (or 12k in Windows 3.1) must be a multiple of 4.
Real-mode initialization segments cannot be greater than 12k under WIndows 3.0 or
greater than 16k under Windows 3.1. Using code segments greater than these restrictions
will cause problems and will eventually hang VMM. These problems were reported on the
CompuServe WinSDK forum and confirmed by Developer Support Engineers. Avoid
these problems with real-mode initialization by adding the q~cessary boundary checks in
your code.

Protected-Mode Initialization Segment

The 32-bit initialization code and data segments defined by the VXD_ICODE_SEG and
VXD_IDATA_SEG macros are present until VMM has completed initialization, at which
time they are discarded, freeing the memory used by these sometimes cumbersome pieces
of code. These initialization procedures can determine whether it is safe to load the VxD or
to bail out prior to further initialization. Thus, the VxD load can fail, the user can be
notified, and there will be no memory wasted for the VxD when the VMM completes
initialization.

Pageable Data Segments

Because VxD segments are locked by default under Windows 3.x, using data segments to
store large amounts of constant data can be a waste of physical memory. One method to
resolve this issue is to store the data in the initialization data segment and allocate pageable
memory using _HeapAllocate during the Device_Init call. You can copy the data
from the initialization segment to this block, and when system initialization has completed,
the original data will be discarded.

Writing Windows Virtual Device Drivers 7

Device Declaration Block (DDB)

The device declaration block describes the virtual device to the VMM. It provides a VxD
mnemonic, usually a somewhat descriptive title using V as the prefix and D as the suffix,
such as VXFERD, suggesting a virtual transfer driver. It also provides a major and minor
version, the main control procedure, the device ID number, the initialization order, and
control procedures for the V86 or Protected-Mode (PM) API:

VSIMPLED, VSIMPLED_Major_Ver,\
VSIMPLED_Minor_Ver,\
VSIMPLED_Control_Proc,\
VSIMPLED_Device_ID,\
Undefined_Init_Order,\
VSIMPLED_V86_API_Proc,\
VSIMPLED_PM_API_Proc

This declaration dispatches the system control events to the VSIMPLED_Control_Proc.

This procedure must be declared in a VXD_LOCKED_CODE segment, which handles system
event control such as the initialization dispatch, VM control events (creation or suspension
of VMs), device focus changes, and system shutdown notifications. Defining it in any
other segment will cause problems.

VxD Control Procedure

The control procedure is the main dispatch entry point for the VxD. The initialization
messages from VMM are sent to this procedure and then dispatched to the appropriate
handlers:

;---

Description:
This is the entry point for system control calls from VMM.
Control for system messages are dispatched through the
Control_Dispatch macro in VMM.INC.

;--
BeginProc VSIMPLED_Control_Proc

Control_Dispatch Sys_Critical_Init, VSIMPLED_Sys_Critical_Init
Control_Dispatch Device_Init, VSIMPLED_Device_Init

EndProc VSIMPLED_Control_Proc

VXD LOCKED CODE ENDS

8 Chapter 1: The Anatomy of a VxD

VXD_LOCKED_CODE_SEG and VXD_LOCKED_CODE_ENDS are macros that define a
segment of 32-bit code in a page-locked segment. Defining this segment as "page-locked"
is necessary because the calls are dispatched during critical processing of the VMM. This
procedure cannot be included in the initialization code segments, because it would be
discarded after VMM completed its startup procedures and system failure would occur
when the VMM attempted to dispatch a control message to the VxD during later
processing.

The BeginProc and EndProc macros define the beginning and end of a specific VxD
entry point. These macros define the procedure name of a VxD, declare it callable by other
VxD, align the procedure for "fast-calling", declare the procedure as public for access
outside of this module, or additionally define the procedure as an asynchronous service
callable from another VxD at interrupt time. The valid parameters to BeginProc macro are
PUBLIC, HIGH_FREQ, SERVICE, and ASYNC_SERVICE, and their functionality
corresponds to the following table:

PUBLIC
Procedure is callable from an external module

Aligns this procedure on a DWORD boundary. Useful
for procedures called frequently such as hardware
interrupt procedures or I/O trapping routines.

SERVICE
Procedure can be called from another VxD.
Requires an exported service table.

ASYNC_SERVICE
Same as SERVICE, but the VxD routine can be called
during interrupt procedures. VxD services that do
not specify this option and are called at
interrupt time will cause debug traces when using
the debug version of VMM (WIN386.EXE). If you
declare a service to be asychronous be sure that
it is atomic or can be interrupted while
processing the request.

Virtual Device ID

A specialized VxD ID may be required if your VxD provides an external V86 or PM API
or if your VxD exports services callable by other VxDs. In these cases, you need to request
a VxD ID from Microsoft (Internet address vxdid@microsoft.com; CompuServe email,
>INTERNET:vxdid@microsoft.com). Microsoft will send you a registration form, which
you will need to fill out and return for processing.

If you ~re replacing an existing VxD, such as the Virtual Comrh Device (VCD), you
should use the value specified in VMM.INC. The replacement VCD would then have a

Writing Windows Virtual Device Drivers 9

device ID of VCD_Device_ID. Otherwise, assuming that your VxD does not provide an
external API or services, you can use the predefined value of Undefined_Device_ID.

Initialization Order

The initialization order of the DDB defines the load order of the virtual device drivers.
VMM will load and initialize the VxDs' in the order specified by the load-order values. For
most secondary virtual device drivers, the Undefined_Init_Order equate is sufficient. If
your VxD requires other VxDs to be present and initialized prior to calling your
initialization procedures, you need to specify a load order constant here.

API Entry Procedures

API entry procedures are invoked when a VM running in either protected mode or V86
mode calls the VxD's entry point. A VxD entry point is available to VMs only when the
VxD defines the necessary entry procedures in the DDB. These procedures are discussed
in depth in Chapter 4.

Virtual Device Initialization
System Critical Initialization (Sys_Critical_Init)

VMM dispatches a Sys_Critical_Init message to all VxDs in the order defined by the
Initialization Order values of the VxDs. During Sys_Critical_Init, interrupts are disabled,
and VxDs perform system-critical initialization such as memory mapping and hooking
V86 interrupts or faults. Because interrupts are disabled, you should keep the initialization
during this message to a minimum.

Sys_CriticaI_Init may also be used to hook your VxD in front of certain handlers, such as
GP fault or NMI processing. Sys_Critical_Init is an optional procedure, and you should
only define this procedure if you have specific initialization to perform. Below is a sample
Sys_Critical_Init handler as used in the VSIMPLED Sample:

;---

Description:
On entry, interrupts are disabled. Critical initialization
for this VxD should occur here. For example, we can read
settings from VMM's cached copy of the SYSTEM.INI and set up
our VxD as appropriate.

This procedure is called when the VSIMPLED_Control_Proc
dispatches the Sys_Critical_Init notification from VMM.

10 Chapter 1: The Anatomy of a VxD

We can notify VMM of failure by returning with carry set
or carry clear will suggest success.

;--

c1c
ret

Device Initialization (Device_Init)

Device initialization is where non-system critical initialization of your VxD is performed.
For example, you may want to install 110 trap handlers, virtualize an interrupt using
VPICD services, or allocate a VM control block. Returning from this procedure with carry
set will fail the loading procedure of the VxD. If everything has passed initialzation, clear
the carry flag and return.

The VSIMPLED Sources
Using the information provided in this chapter, we are ready to create our first VxD. This
skeleton VxD declares a DDB, and defines a control procedure supporting the two system
initialization messages (Sys_Critical_Init and Device_Init):

MAKEFILE
!IFDEF DEBUG
DEFS=-DDEBUG
!ENDIF

.asm.obj:
masmS -p -w2 -Mx $(DEFS) $*;

.asm.1st:
masmS -1 -p -w2 -Mx $(DEFS) $*;

OBJS vsimp1ed.obj

all: vsimp1ed.386

vsimp1ed.obj: vsimp1ed.asm

vsimp1ed.386: vsimp1ed.def $(OBJS)
1ink386 INOI INOD INOP lMAP @«

$ (OBJS)
vsimp1ed.386
vsimp1ed.map

vsimp1ed.def

Writing Windows Virtual Device Drivers 11

«
addhdr vsimpled.386
mapsym32 vsimpled

clean:
del *.386
del *.obj
del *.map
del *.sym

VSIMPLED.ASM
page 60, 132

.***,
title VSIMPLED - A simple virtual device driver example

.***,

(C) Copyright Woodruff Software Systems, 1993

Title: VSIMPLED.386 - Sample virtual device driver

Module: VSIMPLED.ASM - Core code

version: 1.00

Date: November 24, 1992

Author: Bryan A. Woodruff
;
.**,

Change log:

DATE REVISION DESCRIPTION AUTHOR

11/24/92 1.00 Wrote it. BryanW
;
.**,

Functional Description:

Provides a minimal virtual device driver interface.
;
.**,

.386p

i==
INC L U DES & EQUATES

;================================:===============================

.XLIST
INCLUDE VMM.lnc

12 Chapter 1: The Anatomy of a VxD

INCLUDE Debug.lnc
.LIST

VSIMPLED_Major_Ver
VSIMPLED_Minor_Ver
VSIMPLED_Device_ID

equ
equ
equ

Olh
OOh
Undefined_Device ID

i==
V I R T U A L D E V ICE DEC L A RAT ION

i==

Declare_Virtual_Device VSIMPLED, VSIMPLED_Major_Ver,\
VSIMPLED_Minor_Ver, VSIMPLED_Control_Proc,\
VSIMPLED_Device_ID, Undefined_Init_Order",

;==
I COD E

i==

---,

Description:
On entry, interrupts are disabled. Critical initialization
for this VxD should occur here. For example, we can read
settings from VMM's cached copy of the SYSTEM.INI and act
set up our VxD as appropriate.

This procedure is called when the VSIMPLED_Control_Proc
dispatches the Sys_Critical_Init notification from VMM.

We can notify VMM of failure by returning with carry set
or carry clear will suggest success.

j--- -----------

clc
ret

;--

Description:
This is a non-system critical initialization procedure.
IRQ virtualization, I/O port trapping and VM control
block allocation can occur here.

Writing Windows Virtuai Device Drivers 13

Again, the same return value applies •..
CLC for success, STC for error notification.

;-----------------------------------~----------------------------

BeginProc VSIMPLED_Device_Init

Trace_Out "VSIMPLED: Device_Init ll

clc
ret

EndProc VSIMPLED_Device_Init

;==
NONPAGEABLE COD E

i==

i--- -----------

DESCRIPTION:
Dispatches VMM control messages to the appropriate handlers.

ENTRY:
EAX
EBX

Message
VM associated with message

EXIT:
Carry clear if no error (or if not handled by the VxD)
or set to indicate failure if the message can be failed.

USES:
All registers.

;--

Control_Dispatch Sys_Critical_Init, VSIMPLED_Sys_Critical_Init
Control_Dispatch Device_Init, VSIMPLED_Device_Init

clc
ret

14 Chapter 1: The Anatomy of a VxD

END

i--- -----------
End of File: vsimpled.asm

i--- -----------

VSIMPLED.DEF

LIBRARY VSIMPLED

DESCRIPTION 'Win386 VSIMPLED Sample Device (Version 3.10)'

EXETYPE DEV386

SEGMENTS
_LTEXT PRELOAD NONDISCARDABLE
_LDATA PRELOAD NONDISCARDABLE
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_TEXT CLASS 'PCODE' NONDISCARDABLE
_DATA CLASS 'PCODE' NONDISCARDABLE

EXPORTS
VSIMPLED_DDB @1

Debugging the VSIMPLED VxD
Before entering the Windows environment, you need to copy the debug version of the
VMM into your system directory. The Windows 3.1 Device Development Kit contains this
special version. There are many reasons to use this version of the VMM when developing
yourVxDs:

• VMM displays debug traces when unexpected events occur. These messages help
you track down problems with your VxD. You will know that you have a "clean"
VxD, When the system does not display these messages while running with your
VxD installed.

• VMM includes a special debugging trace log that logs faults, device calls, and
interrupt counts. These logs help to pinpoint the exact cause of a failure in your
VxD.

• Special services are enabled for debuggers to display VMM's execution state, VM
information such as event lists, interrupt vector tables, the VM execution state,
and other critical information not available in the retail release of VMM.

Writing Windows Virtual Device Drivers 15

Using the debug version of WIN386.EXE requires either a serial terminal on COMI or
COM2 and WDEB386, the 386 debugger included with the Windows Software
Development Kit and Device Driver Development Kit, or a Windows Enhanced Mode
Debugger such as Soft-ICEIWTM available from NuMega.

Note: WDEB386 and the debug version of WIN386.EXE are provided with VxD-Lite
included on the accompanying disk.

The VSIMPLED device displays trace information at each initialization phase. Before the
aUI starts, break into the debugger by using the appropriate hot-key (Control-D for Soft~

ICEIW or a Control-C from the terminal keyboard for WDEB386) and unassemble the
VSIMPLED_Sys_Cri t ical_Ini t procedure:

Registration # SIW012345
:ALTSCR OFF
:LINES 50
:i1here on
:we
:X
VSIMPLED: Sys_Critieal_Init
Break Due to Hot Key
D800:00001A20 MOV CX,0040
:u VSIMPLED_Sys_Critieal_Init
VSIMPLED_Sys_Critieal_Init
0028:8029478C CALL [Log_Proe_Call]
0028:80294792 PUSHFD
0028:80294793 PUSHAD
0028:80294794 MOV ESI,VSIMPLED_DDB+38 (800FEA2C)
0028:80294799 CALL [Out_Debug_String]
0028:8029479F POPAD
0028:802947AO POPFD
:g
VSIMPLED: Deviee_Init
VMM Version 03.10 - Build Rev 00000103
Break Due. to Hot Key
0028:800110A6 CMP AX,0030
:u VSIMPLED_Sys_Critieal_Init
VSIMPLED_Sys_Critieal_Init
0028:8029478C INVALID
0028:8029478E ~NVALID

0028:80294790 INVALID
0028:80294796 INVALID
0028:80294798 INVALID
:g

Re-enter the debugger when the Windows GUI has completed initialization and
unassemble the same procedure. You will find that the address is invalid because the
initialization code and data segments were discarded after the device initialization was
completed.

For more information on VMM's debugging services and debugging techniques, see
Chapter 11, "Using the Debugging Services."

Chapter 2

The Virtual Machine
Manager

The Virtual Machine Manager is a single-threaded, non-reentrant, preemptive multi­
tasking, event-driven operating system. This operating system is often referred to as
"WIN386" or "VMM." VMM provides an interface layer to VxDs for event scheduling,
memory management, descriptor table management, and other vital system services.

The VMM creates, runs, and destroys virtual machines (VMs). On startup, the VMM
creates the System VM for the Windows GUI. The System VM interfaces to the SHELL
VxD in VMM to create new virtual machines or DOS boxes - each new VM starts
operation in Virtual 8086 (V86) mode. Because a VxD is a part of the VMM, it runs within
whatever VM is active when it is called. Consequently, when a DOS VM calls a VxD, the
VxD runs in protected mode in the context of the calling VM.

To write a VxD, you must have a clear understanding of how the VMM works.

Event Processing
The execution path of VMM is driven by event lists. Event lists are linked lists of
scheduled event procedure calls. These scheduled calls are created by the WIN386 system
as the result of faults, interrupts, or specific VxD requests.

There are two types of event lists: the global event list and VM-specific event lists. The
global event list is the event list for the VMM. As each VM is created, VMM creates an
event list for specific events of that VM. Prior to returning control to a VM, VMM
processes any events in the global event list, any pending NMI events (a special form of a
global event), and then the VM event list as shown in Figure 2.1. Note that VM-specific
events are only processed for the active VM.

17

18 Chapter 2: The Virtual Machine Manager

Global Events (VMM Events)

NMI Events

Current VM Events

Figure 2.1
VMM Event Processing Order

When a VxD processes an event, it has complete control of the system. Because extended
event processing reduces the system performance, the event procedure must be fast and
avoid lengthy processing. Returning from the event allows VMM to continue the
processing of the event list.

When VM events are created, the execution priority of the VM can be adjusted. This is
also known as a "boost." The boost can be temporary (automatically removed by VMM) or
can be specifically removed by the VxD when all of the necessary event processing for
that VM is completed. The execution priority of a VM is used by the primary scheduler
(execution priority scheduling) to determine the active VM. (See the section on Scheduling
for more detail.)

When all events from the global event list and active VM event list have been processed,
the primary scheduler walks the VM list searching for the VM with the highest execution
priority. The VM with the highest execution priority becomes the active VM. VMM
returns to the active VM until it is reactivated by interrupt or fault processing.

When a VxD is processing an event, asynchronous VMM services may be called and new
events generated as the result of IRQ handling. When an IRQ is generated by the PIC, the
handlers installed into the IDT by VPICD (Virtual PIC Device) call the Hw_Int_Proc for
the IRQ. During non-virtualized IRQ processing, the default VPICD handlers then
schedule VM events for interrupt simulation. VxDs must be aware that VPICD handles
interrupts while events are processed, and disabling interrupts during event processing may
be necessary for VxDs performing critical hardware processing. IRQ handling is detailed
in Chapter 7.

Because a VM does not continue executing until all events in the global event list and VM
event list have been dispatched, the results of event processing in a VxD can become

Writing Windows Virtual Device Drivers 19

stacked in the VM. For example, a VxD processing a global timeout event may schedule
an asynchronous call to a procedure in a VM. During this processing, the VxD may request
that the VM resume execution. Before resuming execution of the VM, VMM processes
any remaining events on the event list. If this includes an interrupt event scheduled by
VPICD, the VxD may request a simulated interrupt in the VM. Finally, when VMM
returns to the VM, the actual results of the event processing are executed in reverse order
as pushed onto the VM's stack: The interrupt service is be processed first, before the
callback scheduled by the timeout event.

Scheduling
There are two schedulers used in the WIN386 system: the primary scheduler and the
secondary, or time-slice scheduler. The primary scheduler (execution priority scheduler)
selects the active VM based on highest execution priority of the non-suspended VMs. A
VM will remain active until a higher priority VM is found in the queue.

When a VM is boosted, its order is changed in the queue. Normally, the active VM has a
boost of Cur_Run_VM_Boost in as its execution priority. Devices that require a VM to
become active as the result of I/O or interrupt processing may use a device boost of
High_Pri_Device_Boost to force the VM to become active. This is typically implemented
using the Call_Priority_VM_Event service. Using this service, VMM adjusts execution
priority of the specified VM, and a callback is notified when the VM has activated. The
VxD can then continue its processing for the VM. Figures 2.2 and 2.3 demonstrate the
effect in the scheduling queue of changing the execution priority. The following code
example demonstrates the technique of boosting a VM's execution priority:

II Example of calling priority VM event in ICI

DWORD dwEventHandle ;
static PEVENTPROC pEventProc = NULL ;

if (lpEventProc)
pEventProc =

vmmwrapThunkEventProc(BoostEventProc) ;
dwEventHandle =

vmmCallPriorityVMEvent(hVM, High_Pri_Device_Boost,
PEF_Wait_Not_Crit, dwRefData,
pEventProc, 0) ;

II BoostEventProc - handler for VM event callback

VOID BoostEventProc(DWORD hVM, DWORD dwRefData, PCRS_32 pCRS)
{

TRACEMSGPARAM("VM #EAX is now active\r\n", hVM) ;
} II end of BoostEventProc()

20 Chapter 2: The Virtual Machine Manager

Queue Pointer

VM 1

(Cur_Run_VM_Boost)

VM2

VM3

Figure 2.2
Scheduler queue prior to device boost

Queue Pointer

VM2

(High_Pri_Device_Boost)

VM 1

(Cur_Run_VM_Boost)

VM3

Figure 2.3
Scheduler queue after device boost.

The secondary scheduler (or time-slice scheduler) adjusts the execution priority for VMs
for a period of time based on the background and foreground priorities set for each VM.
The secondary scheduler determines which VM to boost based on the time-slice priorities
specified in the .PIF file of a DOS application.

Writing Windows Virtual Device Drivers 21

The time-slice priorities are also used to determine how long the execution priority of a
VM will be boosted. The boost value is constant - that is, changing the time-slice
priorities does not affect the amount of execution priority boost that a VM receives. When
the next time-slice occurs and the VM's time-slice period has been exhausted, the VM is
unboosted and the next VM in the time-slice scheduler's queue receives the execution
priority boost. .

The time-slice scheduler's execution priority boost for a VM is low compared to other
high-priority event processing. Thus, the high-priority VM remains active until it is
unboosted or until another VM of higher priority is found in the primary scheduler's queue.

Services and Dynalinking
VMM, its component VxDs, and third-party VxDs can provide services callable by other
VxDs. The calls to these services are resolved at runtime by the dynalink mechanism. The
vxDCall and VMMCal1 macros provided by VMM.INC are expanded in code as follows:

<Push any C parameters>

int Dyna_Link_Int
dd VXD_ID SHL 16 + VXD_Service

<Clean up C parameters>

When the IDT dispatch~s the software interrupt to VMM, the dynalink routine patches the
int 20h and the following dword with a direct call to the VxD service handler. Stack
parameters to the service are passed with the 'C' calling convention. VxDJmp is similar to
VXDCal1, with the exception that stack parameters cannot be used and the resulting code
jlimps to the VxO service handler, avoiding the extra cycles involved when the service call
is followed by a return instruction.

Under some 386 'C' compilers, you cannot generate the appropriate in-line assembly
instructions to duplicate this interface and/or load the registers required by the service.
Consequently, you need to use .ASM thunks to provide a 'C' callable interface. Similarly,
replacement VxDs (for example, a replacement VCO) may require register-parameter
passing, and an assembly language front-end is necessary. The VDDVGA sample was
written in 'C' and demonstrates the techniques required to interface to some of these
services.

Note: The complete VDOVGA sample sources written in 'e' can be found on the enclosed
diskette in the C\VDDVGA directory. The VMM "wrapper" for VxDs written in 'C' can be
found in the aVMMWRAP directory. For more information on writing VxDs in 'C' see
Chapter 10.

22 Chapter 2: The Virtual Machine Manager

Critical Sections
The primary scheduler implements a single critical section using the Begin_Critical_
Section and End_Critical_Sect;=.ion services in VMM. The critical section can be
claimed on behalf of a VM by a VxD. The critical section is inost commonly used when
calling MS-DOS or BIOS interrupt ~andlers because these real-mode code pieces are not
reentrant. However, the critical section can also be used for other drivers or TSRs loaded
prior to starting WIN386.

Note that the critical section does not halt scheduling of VMs; that is, other VMs may be
scheduled while the critical section is claimed. If a second VM attempts to claim the
critical section, the VM is suspended until the current critical section owner has released
the critical claim. When a VM claims a critical section, the execution priority of the VM is
adjusted by the predefined value of Critical_Section_Boost; the execution priority
is restored when the critical section is released.

The critical section allows a VxD to prevent multiple VMs from entering the same piece of
code. If two VMs are executing and interfacing to the same TSR and the TSR can not
handle multiple VMs calling simultaneously because it maintains global non-instanced
data for the specific procedure, a VxD may wrap the V86 interrupt chain and claim a
critical section prior to reflecting the interrupt to the VM. It releases the critical section
when the interrupt has returned. This prevents two VMs from simultaneously entering the
same interrupt routine in the TSR. The following example demonstrates hooking the V86
interrupt, watching for a specific signature, and claiming a critical section around the API
call:

Hook the V86 interrupt (Int 60h)

pushad
mov eax, 60h
mov esi, OFFSET32 VSIMPLED_Int60_Hook
VMMCall Hook_V86_Int_Chain
popad
clc

ret

Watches for the API signature. If found, claims
a critical section and hooks the "back-end".

Writing Windows Virtual Device Drivers 23

cmp [ebp.Client_AX], 4257h
jne SHORT VIH_Exit

pushad

Claim the critical section but allow interrupts
to be serviced if we block.

mov ecx, Block_Svc_Ints or Block_Enable_Ints
VMMCall Begin_Critical_Section

Hook the back end of the Int60 call.

xor eax, eax
xor edx, edx
mov esi, OFFSET32 VSIMPLED_Int60_Complete
VMMCall Call_When VM Returns

popad

VIH_Exit:
stc
ret

EndProc VSIMPLED_Int60_Hook

always chain

Completes the Int 60h handling by releasing the
critical section and returning.

BeginProc VSIMPLED_Int60_Complete, High_Freq

VMMCall End_Critical_Section
ret

EndProc VSIMPLED_Int60_Complete

Suspending VMs, Resuming VMs, and Semaphores
VMM provides services to suspend and resume the execution of a VMs (Suspend_VM

and Resume_VM). It is not possible for a VxD to suspend the execution of the System VM
because VMM prevents this, but all other VMs can be suspended. Also, if a VM is the
critical section owner, suspending the VM is not valid, and consequently the suspend call
will fail.

24 Chapter 2: The Virtual Machine Manager

When it suspends a VM, a VxD causes the VM to be removed from the active queue and
added to the inactive queue. The primary scheduler does not activate this VM until it is
resumed. If a VxD suspends a VM that is currently active, an immediate task switch occurs
and the execution path in the VxD halts at the Suspend_VM call. To see this, try using
debug traces to "wrap" the call to the Suspend_VM service. The debug trace in front of
this call displays and a task switch occurs as when the active VM is placed in the inactive
queue (the VM with the highest priority becomes the active VM), after which glo~al

events and VM events are processed. When the suspended VM has been resumed, the
debug trace after the Suspend_VM call in the VxD is displayed, as the execution path of
the VM continues.

VMM provides services (Wait_Semaphore and Signal_Semaphore) that allow VxDs
to block and unblock VMs, based on events occurring in the VxD that decrement a token
count by signaling the semaphore. A VM waiting on a semaphore resumes when the to~en

count is less than or equal to zero. Additionally, it is possible to specify that certain events
can be processed in a blocked VM. The following list describes the flags associated with
the wait_Semaphore service:

Block_Enable_Ints Forces interrupts to be enabled and
serviced even if interrupts are
disabled in the blocked VM.
(Only relevant if Block_Svc_Ints or
Block_Svc_If_Int_Locked specified.)

Block_Poll Causes the primary scheduler to not
switch away from the blocked VM
unless another VM has higher priority.

Block_Svc_Ints Service interrupts in the VM even if
the virtual machine is blocked.

Block_Svc_If_Ints_Locked Same as Block_Svc_Ints with the
additional requirement that the
VMStat_v86IntsLocked flag is set.

Figure 2.4 shows the flow control possible using the semaphore services. For example, a
VxD can signal or wait on semaphores in response to API calls from both the V86 VM
(DOS application) and from the PM VM (Windows Application), allowing the VxD to
control a data transfer channel through the VxD.

Note: A complete sample demonstrating semaphore usage and DOS to Windows
communication, can be found on the enclosed diskette in the ASM\SEMAPHOR directory.

Writing Windows Virtual Device Drivers 25

SignaLSemaphore

DOSXFER.386

Wait_Semaphore

PostMessageO

WindowsApp DOSApp

DOSXFER_PosCNotification

Figure 2.4
Possible design of semaphore implementation.

Asynchronous Services
Because VMM is non-reentrant, only a subset of VMM's API is available when a VxD is
entered through an asynchronous interrupt. Services in a VxD can be declared ASYNC and
are available at interrupt time. If your VxD declares such a service, it may call only
asynchronous services. The following tables list all the asynchronous services that may be
called in interrupt handlers:

Asynchronous VMM Services

Begin_Reentrant_Execution

Call_Global_Event

Call_Priority_VM_Event

Call_VM_Event

Cancel_Global_Event

Cancel_VM_Event

Close_VM

Get_Time_Sliee_lnfo

Get_VM_Exec_Time

Get_VMM_Reenter_Count

Get_VMM_Version

List_Allocate

List_Attach

List_Attach_Tail

26 Chapter 2: The Virtual Machine Manager

Crash_Cur_VM

End_Reentrant_Execution

Fatal_Error_Handler

Fatal_Memory_Error

Get_Crit_Section_Status

Get_Crit_Status_No_Block

Get_Cur_VM_Handle

Get_Execution_Focus

Get_Last_Updated_System_Time

Get_Last_Updated_VM_Exec_Time

Get_Next_VM_Handle

GetSetDetailedVMError

Get_System_Time

Get_Sys_VM_Handle

Asynchronous Debugging Services

Clear_Mono_Screen

Debug_Convert_Hex_Binary

Debug_Convert_Hex_Decimal

Debug_Test_Cur_VM

Debug_Test_Valid_Handle

Disable_Touch_1 st_Meg

Enable_Touch_1 st_Meg

iGet_Mono_Chr

Get_Mono_Cur_Pos

In_Debug_Chr

Asychronous VxD Services

BlockDev_Command_Complete

BlockDev_Send_Command

DOSMGR_Get_DOS_Crit_Status

PageFile_Read_Or_Write

VPICD_Call_When_Hw_lnt

List_Deallocate

List_Get_First

List_Get_Next

List_Insert

List_Remove

List_Remove_First

Schedule_Global_Event

Schedule_VM_Event

Signal_Semaphore

Test_Cur_VM_Handle

Test_Debug_lnstalied

Test_Sys_VM_Handle

Update_System_Clock

Validate_VM_Handle

Is_Debug_Chr

L09_Proc_Call

Out_Debug_Chr

Out_Debug_String

Out_Mono_Chr

Out_Mono_String

Queue_Debug_String

Set_Mono_Cur_Pos

Test_Reenter

Validate_Client_Ptr

VPICD_Get_Complete_Status

VPICD_Get_IRQ_Complete_Status

VPICD_Get_Status

VPICD_Phys_EOI

VPICD_Physically_Mask

VPICD_Clear_lnt_Request

VPICD_Convert_Handle_To_IRQ

VPICD_Convert_lnt_To_IRQ

VPICD_Convert_IRQ_To_lnt

VPICD_Force_Default_Behavior

VPICD_Force_Default_Owner

Writing Windows Virtual Device Drivers 27

VPICD_Physically_Unmask

VPICD_Set_Auto_Masking

VPICD_Set_lnt_Request

VPICD_Test_Phys_Request

VTD_Update_System_Clock

Chapter 3

Memory Management

The VMM implements two memory managers. The V86MMGR VxD manages memory
for V86-mode applications, including Expanded Memory Specification (EMS) and
Extended Memory Specification (XMS), and the Memory Manager (MMGR) provides
services such as GDT/LDT management, global heap management, physical memory
management, protected mode address translation, and V86 page management, including
V86 address mapping and allocation.

If you are writing a virtual display device or writing a VxD for a device requiring
contiguous physical memory (such as devices using DMA transfers), you need to
implement some form of memory management. Additionally, certain memory management
implementations in your VxD such as memory mapped devices may require knowledge of
the way the 80386 implements memory management using page tables.

VMM Memory Mangement Services
All memory in the system is allocated by the memory manager. This includes large
allocations for VMs as well as a small heap available to VxDs requiring dynamic memory
allocation.

While each VM has its own memory and linear address space, any VM that is presently
executing is also mapped into the first megabyte of the linear address space. The MMGR
performs this mapping on each task switch by updating the page tables to reflect the new
mapping of the lower linear address space. Figure 3.1 shows a possible memory
configuration with multiple VMs.

29

30 Chapter 3: Memory Management

OOOOOOOOh

VM 1

(Active VM)

80000000h

VMM + VxDs
VM 1 Control Block

VM 1

(Active VM)

VM2

Figure 3.1
VMM Memory Map

The MMGR can provide per-VM data to a VxD. When a VxD initializes, it can request a
number of bytes of control block data. The MMGR returns an offset from the VM handle,
which is reserved for your VxD's control block area at the same offset in each VM control
block. The following 'C' code sample shows how a VxD control block is allocated and
assigned a pointer.

II Allocate part of VM control block for VDD usage

if (NULL == (dwVidCBOff =
vmmAllocateDeviceCBArea(sizeof(VDDCB), 0 »)

{
vmmDebugOut("VDD ERROR: Could not allocate control\

block area!\r\n") ;

vddFataIMemoryError()
return (FALSE)

}

pSysVMCB (PVDDCB) (hVM + dwVidCBOff)

Writing Windows Virtual Device Drivers 31

VMM allocates a control block containing vital information for each VM and is located at
the zero offset from the VM handle. VMM's control block has the following structure:

11--
II VM control block structure (VMM)
11--
typedef struct tagVMMCB
{

DWORD CB_VM_Status;
DWORD CB_High_Linear;
DWORD CB_Client_Pointer
DWORD CB_VMID;

VMMCB, *PVMMCB ;

Thus, given a VM handle, a VxD can obtain the VM's ID using the following method:

DWORD dwVMID ;

dwVMID = «PVMMCB) hVM) -> CB_VMID ;

The low memory (interrupt vector table, BIOS & DOS data, and so forth) for each VM is
located in high linear address space along with the rest of the memory for that VM. It is
preferable to access VM memory using the high linear addresses, as these will not change.
If a task switch occurs during memory reads or writes to a low linear address, your VxD
may access an invalid address.

Translation Services
The MMGR provides an address translation API. While registers are preserved when
making a ring transition between V86 mode and flat 32-bit mode, a pointer using a real­
mode segment and offset is meaningless in protected mode. A number of macros in
VMM.INC use MMGR services to convert the parameters in the client VM's registers
automatically.

Client_Ptr_Flat is a macro that sets up a call to the Map_Flat service:

which expands to:

push eax
mov ax, Client_DS * lOOh + Client_DX
VMMCall Map_Flat
mov esi, eax
pop eax

The actual address mapping magic is performed in VMM's Map_Flat service. The
following algorithm is used by Map_Flat to map the pointer to a 32-bit flat offset:

32 Chapter 3: Memory Management

mov esi, [ebp.Client_EDX]
mov eax, [ebp.Client-DS]
if (VM is V86 mode)

shl eax, 4
movzx esi, si ; zero high order offset
add eax, esi
add eax, [ebx.CB_High_Linear]

else (VM is prot. mode)
if (!32-bit)

movzx esi, si
eax = _Selector_Map_Flat(hVM, [ebp.Client_DS], 0)
if (eax != -1)

add eax, esi
if (eax < 1 MB + 64KB)

add eax, [ebx.CB_High_Linear]
.endif

The translation APls are often used when accessing memory specified through V86 or PM
APls. Dual-mode (combination V86 and PM) APls accessing application-provided buffers
can be easily implemented using the Map_Flat service as demonstrated here:

;---
VSIMPLED_Get_Info, PMAPI, RMAPI

DESCRIPTION:
This function is used to get information about the
VSIMPLED configuration.

ENTRY:
Client_ES selector/segment of VSIMPLEDINFO structure
Client_BX offset of VSIMPLEDINFO structure

EXIT:
IF carry clear

success
Client_AX = non-zero
Client_ES:BX ->filled in VSIMPLEDINFO structure

ELSE carry set
Client_AX = 0

USES:
Flags, EAX, EBX, ECX, ESI, EDI

;---

Trace Out "VSIMPLED API_Get_Info: called"

Client_Ptr_Flat edi, ES, BX
cmp edi,-l
je SHORT GI_Fail

lea esi, [gVxDInfo]

Writing Windows Virtual Device Drivers 33

mov ecx, size VSIMPLEDINFO
cld
shr ecx, 1
rep movsw
adc cl, cl
rep movsb

mov
clc
ret

[ebp.Client_AX], 1 success

GI_Fail:
Debug_Out "VSIMPLED_API_Get_Info: FAILED!!"
mov [ebp.Client_AX], 0 ; failed
stc
ret

EndProc VSIMPLED_API Get Info

Page Allocation
Allocation of memory can be accomplished using either the _HeapAllocate or
_PageAllocate VMM services. In most cases, using the heap allocation services is
sufficient for your VxD and may make implementation easier than using the page
allocation services. To allocate memory using the heap services use the following code:

VMM:Call
or
jz
mov

_HeapAllocate, <cbSize, dwFlags>
eax, eax
SHORT Alloc_Failed
pDataBlock, eax

VMM allocates the memory on a doubleword boundary, but the cbSize parameter does not
have to be dword aligned. The VxD is responsible for making sure that it stays within the
bounds of the memory block, because VMM does not provide protection against accessing
memory beyond the allocated range. The memory allocated by this service is fixed, and
frequent allocating and freeing of memory may fragment the heap. Also, the memory
block is not page-locked and may not be present when accessed. PageSwap VxD resolves
the not-present fault so your VxD can continue with memory accesses.

If you require page-locked memory and are using the heap management services, the
service _LinPageLock can be implemented. This avoids the possibility of VMM
discarding the physical memory between accesses by a VxD. However, because physical
memory is a limited resource, you should only use this service in cases where page-locked
memory is vital to your implementation.

_HeapGetSize, _HeapReAllocate, and _HeapFree are used to determine the block
size and to, reallocate and free the memory block, respectively. Using
_HeapReAllocate may cause the address of the block to change, and VxDs must not

34 Chapter 3: Memory Management

rely on the possibility of the address remaining constant. _HeapReAllocate can
preserve the contents of the old block by copying the contents to the new block. The
following flags are defined for use with this service:

HeapNoCopy Do not copy the contents of the existing
block.

HeapZeroInit Initialize the new bytes in the heap
to zero.

HeapZeroReInit Fill all bytes in the block with zero.

MMGR also provides low-level memory management services, allowing a VxD to allocate
memory within a physical address range, to perform allocations within physical boundary
constraints (not crossing 64k or 128k boundaries), and to allocate memory visible to all
VMs or to only a single VM. Additionally, the page-fault handler for the allocated pages
can be redirected to a specific handler in your VxD. (See the next section for more
information on hooked pages.)

Allocation of pages with physical boundary restrictions and/or physical address limitations
can only be performed during initialization. The following example demonstrates
allocating a buffer for use with a DMA device:

;---

DESCRIPTION:

This function allocates 'a buffer suitable for DMA transfers.
It attempts to allocate enough contiguous pages to hold the
requested size. If the request fails, the size is halved
until all allocation attempts have failed.

ENTRY:

EAX = Desired size (in KB) of the DMA buffer to allocate.
This size cannot be exceed 64.

EXIT:

IF carry clear
EAX memory handle of the memory block allocated
EBX = -physical address_ of memory block
ECX = actual size in _bytes_ of memory block allocated
EDX = _ring 0 linear address_ of memory block

ELSE carry set
EAX = EBX = ECX = EDX = 0

USES:

Flags, EAX, EBX, ECX, EDX

;--;

Writing Windows Virtual Device Drivers 35

cmp eax, 64
jle SHORT ADB_Start

Debug_Out "Requested size #EAX too big!"
mov eax, 64

add
shr

eax, 3
eax, 2

round up to get
of pages

mov ebx, eax

dec eax
bsr cx, ax
inc cl
mov eax, 1
shl eax, cl
dec eax

mov ecx, ebx

EBX = # of pages to allocate
(examples: 3 7 11

12K 28K 44K
pages - 1 lOb lllb 1011b
max power of 2 1 2 3
shift cnt 2 3 4

mask + 1 lOOb 1000b 10000b
mask l1b l11b l111b
alignment 16K 32K 64K

Trace_Out "pages=#ECX alignment=#EAX"

EAX alignment mask for allocation
ECX number of pages to allocate

push ecx
VMMcall _PageAllocate <ecx, PG_SYS, 0, eax,\

0, OFFFh, ebx,\
<pageUseAlign + PageContig +\

PageFixed»
pop ecx
or eax, eax
jnz short ADB_Success

Trace_Out "Allocation failed! pages=#ECX"

mov eax, ecx
shr eax, 1
jnz short ADB_Loop

xor
xor
stc
ret

ebx, ebx
ecx, ecx

ADB~SUccess:

36 Chapter 3: Memory Management

shl ecx, 12 pages-->bytes

Returns:

EAX memory handle of the memory block allocated
EBX -physical address_ of memory block
ECX size in _bytes_ of memory block allocated
EDX _ring 0 linear address_ of memory block

clc success
ret

EndProc VSIMPLED Allocate DMA_Buffer

Hooked Pages and Page Faults
Hooked pages are allocated with _PageAllocate, using the PG_HOOKED attribute. This
form of memory management is most commonly used in virtual display drivers to manage
multiple VMs that access video display memory. A range of V86 pages is assigned to the
VxD and then hooked using the _Assign_Device_V86_Pages and Hook_V86_Page

services, respectively. V86 pages can be assigned globally (global to all VMs) to a device
at any time, provided that the page is not already assigned. V86 page assignment to a
specific VM can only be performed after device initialization, again with the restriction
that the page is not already assigned to a device.

To hook V86 pages, a range of pages is first assigned to the VxD:

II Buffer used for reserving pages
DWORD aVMPagesBuf[9] ;

vmmGetDeviceV86PagesArray(NULL, &aVMPagesBuf, NULL) ;
if (aVMPagesBuf[OxAO/32] & OxFFOOFFFF)
{

vmmDebugOut("VDD ERROR: Pages already allocated\r\n"
vmmFatalError(szVDD_Str_CheckVidPgs)
return (FALSE) ;

}
if (lvmmAssignDeviceV86Pages(OxAO, 16, NULL, NULL »
{

vmmDebugOut("VDD ERROR: Could not allocate pages\r\n"
vmmFatalError(szVDD_Str_CheckVidPgs) ;
return (FALSE) ;

}
if (lvmmAssignDeviceV86Pages(OxB8, 8, NULL, NULL »
{

vmmDebugOut("VDD ERROR: Could not allocate pages\r\n"
vmmFatalError(szVDD_Str_CheckVidPgs) ;

Writing Windows Virtual Device Drivers 37

return (FALSE) ;

The V86 pages are then directed to a page fault handler:

II Put an .ASK front end on the page-fault proc~dure~

if (NULL == (pVDD_PFault = VMMWRAP_ThunkV86PHProc(VDD_PFault »)
{

vmmDebugOut("VDD ERROR: Could not thunk VDD_PFault!\r\n") ;
vmmFatalError() ;
return (FALSE) ;

}

II Hook graphics pages

for (i = 0; i < 16; i++)
vmmHookV86Page(OxAO + i, pVDD_PFault)

II Hook tex~ pages

for (i = 0; i < 8; i++)
vmmHookV86Page(OxB8 + i, pVDD_PFault) ;

During the Create_VM message processing, the V86 pages are marked as not available
(not present and not writeable), using the _ModifyPageBits service:

vmmModifyPageBits(hVM, OxAO, 16, -P_AVAIL, NULL,
PG_HOOKED, NULL) ;

vmmModifyPageBits(hVM, OxB8, 8, -P_AVAIL, NULL,
PG HOOKED, NULL) ;

Note that it is necessary to specify the PG_HOOKED in the type parameter of the
_ModifyPageBits service when clearing any of the PG_PRES, PG_USER, or PG_WRITE

bits.

After the initialization is complete, any read or write access of the hooked pages causes a
page fault. The page fault handler is called with the faulting page number and the handle
of the VM, causing the fault. It is the responsibility of the page fault handler to map
memory into the page to resolve the fault or terminate the virtual machine. To map
physical memory into the faulting page, use the following code:

II dwPhysPage is the physical page allocated using
II _PageAllocate with PG_HOOKED

vmmPhyslntoV86(dwPhysPage, hVM, uFaultPage, nPages, 0) ;

Under some circumstances (such as low memory or other memory mapping error), it may
be more desirable to allow the VM to continue without crashing the VM. In these cases,
the system null page is assigned to this linear page:

vmmMaplntoV86(VMM_GetNuIPageHandle(),
hVM, uFaultPage, 1, 0, 0

38 Chapter 3: Memory Management

The system null page is guaranteed to contain invalid information for any given VM. Do
not rely on its contents for further processing in your VxD.

The VDD uses these techniques to allow multiple VMs to access the video display
hardware and maintain separate virtual displays for virtual machines. It is also possible to
simulate ROM in a virtual machine using hooked pages. When the page fault occurs, map
the pages using _PhyslntoV86 and clear the P_WRITE bit using _ModifyPageBits.

Note, however, that when the VM restarts, the instruction causing the fault also restarts. If
the VM was performing a write operation, a page fault would occur immediately. To
resolve this loop, you would need to modify the VM client registers to point the IP to the
instruction following the faulting. instruction.

Note: A sample VxD demonstrating these hooked memory techniques can be found in the
C/VMEMTRAP directory on the enclosed diskette. Also, C/VDDVGA is a good source of
memory management sample code.

Examining Page Table Entries
A VM can determine whether pages in the linear address space have been accessed and
whether data has been written on these pages by examining the page table entries (PTEs)
using VMM's _CopyPageTable service. The VDD uses this technique to determine
which pages have been accessed and need to be updated in the virtual display of a
windowed MS-DOS box.

A linear address in a paging operating system such as VMM is decoded shown in Figure
3.2. Each PTE is 4 bytes in length and contains the access bits and physical address of the
page. To examine the PTEs of the first megabyte of the active virtual machine, use page
numbers in the range 0 to 10Fh. Page numbers of other virtual machines are computed
using the CB_High_Linear field in the control block of the respective VM.

Given a pointer to a memory block in a VM, a VxD can use the Map_Flat service to
translate this address to a flat offset. Shifting this address right by 12 gives you the page
number. To determine if pages in a hooked V86 range have been accessed or if data has
been writ~en to these pages use the following code:

VMMCall

mov ecx,

_CopyPageTable, <guHookedPagesStart,\
guNumHookedPages,\
<OFFSET32 aPageBuf>, 0>

guNumHookedPages

Check_Accessed_Or_Dirty:
test dword ptr aPageBuf[ecx], P_ACC or P_DIRTY
jz SHORT Next_Page
Trace_Out "Page #ECX of hooked range is dirty or has been\

accessed"

Writing Windows Virtual Device Drivers 39

!
Next_page:

. loop Check_Accessed_Or_Dirty

31 12 o

CR3

Page Directory

Page Table

Table Offset

Page Offset

PTE

Page Frame

Figure 3.2
Decoding a linear address to a physical address

Allocating Selectors
A VxD can allocate selectors in the GDT or in a VM's LDT using the
_Allocate_GDT_Selector and _Allocate_LDT_Selector services. Two
descriptor double-words are required when allocating selectors. VMM provides the
_BuildDescriptorDWORDs service to generate these double-words:

VMMCall _BuildDescriptorDWORDs, < dwLinAddr, cbSize,\
RW_Data_Type, 0, 0>

VMMCall Allocate_GDT_Selector, <edx, eax, 0>

The following equates are useful when building descriptor double-words:

; Common definitions for segment and control descriptors

D_PRES

D_NOTPRES

D_DPLO
D_DPLl

segment is present in memory

segment not present

descriptor privilege level definitions

40 Chapter 3: Memory Management

D_DPL2
D_DPL3

D_SEG

D_CTRL

D_GRAN_BYTE

D_GRAN_PAGE

D_DEF16

D_DEF32

segment descriptor (application type)

control descriptor (system type)

limit in byte granularity

limit in page granularity

default operation size is 16 bits (code)

default operation size is 32 bits (code)

; Definitions specific to segment descriptors

D_CODE code segment

D_DATA data segment

D_RX if code, readable

D_X if code, executable only

D_W if data, writeable

D_R if data, read only

D_ACCESSED segment accessed bit

; Useful segment definitions

RW_Data_Type

R_Data_Type

Code_Type

present R/W data segment

read-only data segment

code segment

Instance Pages
the MMGR manages instance data for VMs. Instance data is a range in V86 address
space that VMM mairitains separately for each VM. It is used frequently for MS-DOS and
some TSRs.

For example, if an MS-DOS device driver maintains an input buffer, it may be useful to
have the buffered input directed to the VM that was active when the buffer was filled. In
this case, the VxD would query the device driver for the buffer address and maximum size
and add an instance data area as shown here:

II Define instance data for instance data manager

INSTDATASTRUC Instance_Area = { NULL, NULL,
NULL, NULL,
ALWAYS Field

Writing Windows Virtual Device Drivers 41

II Specify instanced area as provided by DOS driver.

Instance_Area.dwlnstLinAddr = pInputBuffer ;
Instance_Area.dwInstSize = dwBufferSize ;
if (!VMM_AddlnstanceItem(&Instance_Area, 0 »

goto DI_FatalError

Mapping Memory into Multiple VMs
When writing VxDs for use with "Windows-aware" TSRs, it may be necessary to allocate
a block of memory that is global to all VMs, that is, a memory block with a V86 address
mapped to the same physical memory in all VMs. The _Allocate_Global_
V86_Data_Area service performs this type of allocation as shown here:

II Allocate a global V86 data area of 512 bytes

if (NULL ==
(gdwGlobalArea

vmmAllocateGlobalV86DataArea(512,
GVDADWordAlign »)

vmmDebugOut("Failed to allocate global V86 data area!\r\n"
return (FALSE) ;

vmmTraceOutParam("Allocated global area at #EAX\r\n",
gdwGlobalArea) ;

The _Allocate_Global_V86_Data_Area service accepts the following flags:

GVDADWordAlign Aligns the block on a doubleword boundary.

GVDAHighSysCritOK Informs the services that the VxD can handle
a block that is allocated from high MS-DOS
memory, such as UMBs or XMS. (Win 3.1 only)

GVDAlnquire Returns the size in bytes of the largest
block that can be allocated, given the
requested alignment restrictions.
(Win 3.1 only)

GVDAlnstance Creates an instance data block, allowing
the VxD to maintain separate blocks for
each VM.

GVDAPageAlign Aligns the block on a page boundary.

GVDAParaAlign Aligns the block on a paragraph boundary.

GVDAReclaim Unmaps the physical pages in the block when
mapping the system null page into the block.
The physical pages are added to the free list
when this value is specified. Only applies
to blocks allocated on a page boundary.

42 Chapter 3: Memory Management

GVDAWordAlign

GVDAZeroInit

If this flag is not specified, it is up to the
virtual device to reclaim these pages.

Aligns the block on a word boundary.

Fills the allocated block with zeros.

In the VMEMTRAP sample, an unassigned V86 area is located and assigned to the virtual
device. Pages are allocated for each new VM and "instanced" pages are simulated, using
hooked V86 pages and a page-fault handler. Using the _AllocateGlobalV86­
DataArea service specifying the GDVAlnst accomplishes the same thing in a single
service call, with the exception that a specific V86 range cannot be specified. The
VMEMTRAP sample on the enclosed diskette is designed to demonstrate the techniques
necessary to manage contention of memory mapped devices.

_AllocateGlobalV86DataArea has limitations. For example, you cannot hook the
page fault handler or modify the page bits of the V86 linear range returned by this service.
Windows 3.x does not provide an interface to allow VxDs to monitor access of these pages
other than viewing the page table entry access bits. A virtual device must provide an
additional interface to manage VM contention of these pages using software interrupts or
the VxD's API.

Page Protection
As stated in the preceding section, VMM's support for monitoring access to a given V86
address space is limited. Page protection can be implemented with pages assigned to a
device using the _Assign_Device_V86_Pages service, but these pages are usually
only available when memory is not already mapped into the reserved ROM addresses.
Because of upper memory blocks (UMBs) implemented by most 386 memory managers,
this region is usually already claimed by VMM. Also, the normal accessible regions of
V86 memory (between _GetFirstV86Page and _GetLastV86Page) are off limits to a
VxD using the API provided by VMM.

An unsupported method of providing page protection is to modify the page table entries
(PTEs) directly and hook the Invalid_Page_Fault handler. The PTE contains the page
frame address in the upper 20 bits (4k page aligned), and the lower 12 bits provide access
restriction and accessed and/or dirty information.

Entry 0 in the page directory contains the physical address of the page table for the V86
address space of the active VM. By modifying these page table entries, you can modify the
access rights to a given page in V86 address space.

You must use caution when accessing the page tables directly. Modifying not-present page
tables or incorrectly modifying page access bits will cause the system to crash. In other
words, "Ok, here's your weapon, first point it at your foot before pulling the trigger!"

Writing Windows Virtual Device Drivers 43

Page protection is risky business when it is not directly supported by the host operating
system, but some implementations require such information about how a VM is behaving.
Take note!! You can guarantee that anything that you do now to provide this mechanism
may not be supported in future releases of Windows. Use this information at your own risk
and version bind your code to the Microsoft Windows 3.1 VMM.

VGLOBAL.386

Assign_Ownership

VM 1 VM2

Global V86 Area

Figure 3.3
Possible design of TSR to VxD communication

The VGLOBALD sample on the enclosed diskette demonstrates the allocation of a global
V86 data area that would be suitable for a TSR and VxD to use for communication in
multiple VMs. If you run this sample under the debugging version of WIN386.EXE you
should notice that, when new VMs are created and the System VM does not have access to
the pages that are hooked using this page protection scheme, VMM will "gripe" about the
not-present page within the V86 page range. You may decide to modify the page table
entries to match WIN386 expectations before creating a new VM.

44 Chapter 3: Memory Management

V86MMGR
V86MMGR provides an interface for VxDs to map protected-mode data buffers to V86­
interfaces. When a virtual device translates an API which transfers data using pointers to
data blocks from protected mode applications to DOS-mode device drivers, it needs to
implement services provided by V86MMGR to translate these buffers to a V86
addressable memory. Also, DOS device drivers that update buffers asynchronously require
memory to be mapped into global V86 address space.

For example, Int 21h commonly uses buffers referenced by DS:DX. The DOSMGR virtual
device provides automatic buffer translation for most of these APIs by hooking Int 21h and
translating the protected mode addresses so that DOS can understand the request without
additional work required by the protected-mode application. Additionally, VNETBIOS
provides buffer mapping for NetBIOS data packets using V86MMGR services. These
buffers are updated as the result of interrupt processing.

V86MMGR provides two types of services: buffer mapping and buffer translation. The
mapping services update the page tables in all VMs so that the buffer is in globai V86
space. The translation services copy a buffer to a V86 copy buffer and use the copy buffers
address to communicate with the DOS device driver code. The mapping services should be
used only when the buffers will be updated asynchronously. Do not use the mapping
services in place of the translation services to avoid copying the buffer's data - it is faster
to copy data to and from a translation buffer than to map a buffer into multiple virtual
machines.

V86MMGR does not directly support the mapping or translation of buffers referenced by
pointers within a structure. The VxD is responsible for translating or mapping the buffer
using V86MMGR services; it updates the structure to contain a valid V86 pointer and then
passes the call to the DOS device driver.

When a VxD requires V86MMGR services, it must inform V86MMGR how many pages
are required by using the V86MMGR_Set_Mapping_Info service. This service call must
be made during initialization, preferably during Sys_Critical_Init processing.
Alternatively, the VxD can call this service during Device_Init, if the VxD has an
Init_Order less than V86MMGR_Init_Order.

When a call to the DOS device has been intercepted by the VxD, the VxD should
determine whether the call is from V86 mode or protected mode. When a V86 call is
trapped, buffer translation is not necessary, but mapping for asynchronously updated
buffers may be necessary if the buffer is not located in global V86 address space
determined by using the _TestGlobalV86Mem service.

Writing Windows Virtual Device Drivers 45

To map pages to DOS addressable memory, a VxD calls VS6MMGR_Map_Pages with the
linear address and number of bytes to map. The returned linear address is guaranteed to be
in the flfSt megabyte and in global V86 address space. A map handle is also returned by
this service. When the mapping region is no longer required, it is freed using the
VS6MMGR_Free_Page_Map_Region service with the map handle that was returned by
VS 6MMGR_Map_Pages.

To translate a protected-mode buffer to V86 addressable memory, a VxD calls
V86MMGR_Allocate_Buffer with the linear address of the buffer to translate and the
number of bytes to allocate. If specified, this service copies data to the new buffer.
Translation buffers are allocated in a "stack" fashion. In other words, the last buffer
allocated must be the first buffer freed. When the translation buffer is no longer required,
the V86_Free_Buffer service is used.

The following code fragment demonstrates how a software interrupt buffer is translated
from a protected-mode to a real-mode driver:

On entry Client_DS:Client_DX points to a buffer that is
filled asynchronously and needs to be napped globally.
Eat the PM interrupt and reflect it to V86 mode.

When the DOS device driver has completed the data
transfer, the pages must be unmapped using the
V86MMGR_Free_Page_Map_Region service.

BeginProc PM_Translate

pushad
test [ebx.CB_VM_Status], VMStat_PM_Exec
jz SHORT PT_Bail
VMMCal1 Simulate_Iret
Map_Flat esi, DS, DX
movzx ecx, [ebp.Client-CX]
VxDCal1 V86MMGR_Map_Pages
mov hPageMap, esi
shl edi, 12
shr di, 12

Simulate the interrupt to V86

Push_Client_State
Begin_Nest_V86_Exec
mov [ebp.Client_DX], di
shr edi, 16
mov [ebp.Client_DS], di
mov eax, Trapped_INT
VMMCal1 Exec_Int
VNNCakk End_Neat_Exec

46 Chapter 3: Memory Management

Pop_Client_State
clc

PT_Bail:
Debug_Out "Failure: Call not from protected mode! II

stc

PT_Exit:
popad
ret

EndProc.PM_Translate

V86MMGR provides a number of macros to define a script for use with the
V86MMGR_Xlat_API service. A VxD defines a translation script in its data segment using
these translation macros and calls the V86MMGR service to execute the script. This
provides the VxD with a way to reduce the code size of V86 translation services and to use
the optimized routines in V86MMGR.

The translation scripts are terminated by Xlat_API_Exec_Int or Xlat_API_Jmp_To_

Proc. When the V86MMGR_Xlat_API service executes one of these commands, control
returns to the VxD after the command has been executed. The following sample code
demonstrates the use of these macros to translate a null-terminated string for a call to a
DOS device driver:

This code. demonstrates a simple translation of a NULL
terminated string in DS:SI to a local V86 buffer.

VXD_DATA_SEG
Xlat_ASCIIZ_Script:

Xlat_API_ASCIIZ
Xlat_API_Exec_Int

VXD_DATA_ENDS

ds, si
60h

VXD_CODE_SEG
BeginProc Translate_Int60h_Buffer

mov edx, OFFSET32 Xlat_ASCIIZ_Script
VxDJmp V86MMGR_Xlat_API

EndProc Translate_Int60h_Buffer
VXD_CODE_ENDS

Chapter 4

V86IPM VxD API
·f

A VxD can export an API to protected-mode and V86 mode applications, extending the
capabilities of a Windows or MS-DOS driver using supervisor code. For example, the
VCD provides an interface to the Windows communications driver (COMM.DRV) to
acquire a COM port. The COMM driver queries the VCD for the availability of a given
port. If the port is in use by an MS-DOS application, the VCD returns failure. This API
allows the COMM.DRV to provide intelligent information regarding the availability of
COM ports to the calling application and provides a mechanism to manage device
contention.

A VxD declares the API support by defining API procedure entry points in the DDB (see
Chapter 1). In the following example, VSIMPLED_V86_API_Proc and VSIMPLED_PM_

API_Proc procedures are the entry points for the API from V86 mode and protected
mode, respectively. Additionally, the VxD must declare the device ID, as supplied by
Microsoft.

VSIMPLED, VSIMPLED_MAJOR~VER,\

VSIMPLED,_MINOR_VER,\

VSIMPLED_Control_Proc,\

VSIMPLED_Device_ID,\

Undefined_Init_Order,\

VSIMPLED_V86_API_Proc,\

VSIMPLED PM API Proc

An application acquires the entry point of the VxD by using Int 2Fh with AX=1684h and
BX=VxD Device ID:

47

48 Chapter 4: V86/PM VxD API

Obtain the VxD entry point, if NULL, VxD is not present.

mov ax, 1684h ; get VxD API entry point
mov bx, VSIMPLED_Device_ID
int 2fh
mov word ptr dwVxDEntry, di
mov word ptr dwVxDEntry + 2, es

When this entry point is called by the application, the call is dispatched to the VxD, where
it processes the request and returns control to the calling application.

Prior to requesting the VxD entry point from VMM, the application should fIrst determine
whether Windows/386 (VMM) is present. A Windows application can use the
GetWinFlags() API. A DOS application needs to use Int 2Fh, AX=1600h interface to
determine whether VMM is present:

mov
int
test
jz

ax, 1600h
2fh
al, 7fh
Not Win386

Enhanced Windows Check

VMM (Win386) present?

The Faulting Mechanism and API Dispatch
If calling ring-O VxD code directly from ring 3 seems too good to be true, you should be
interested in how this call is dispatched to the VxD. When the Int 2Fh request is processed,
the VMM allocates a callback address in the VM's address space. When the VM calls this
address, the code generates a fault, a ring transition results, and the fault is dispatched to
VMM's fault handler.

VMM determines the operation mode of the VM by testing the status flags in the VM
control block. It deterIilines whether the call was made from V86 or protected mode and
then dispatches the call at ring 0 to the appropriate handler, as declared in the DDB.

The Client Register Structure
When the API entry points are called, the EBP register points to the Client_Register_
Structure (CRS):

typedef struct tagCRS_32
{

DWORD Client_EDI;
DWORD Client_ESI;
DWORD Client_EBP;
DWORD dwReserved_l
DWORD Client_EBX
DWORD Client_EDX

II ESP at pushall

Writing Windows Virtual Device Drivers 49

DWORD Client_ECX ;
DWORD Client_EAX ;
DWORD Client_Error II DWORD error code
DWORD Client_EIP ;
WORD Client_CS ;
WORD wReserved_2 ; II (padding)
DWORD Client_EFlags
DWORD Client_ESP i
WORD Client_SS ;
WORD wReserved_3 II (padding)
WORD Client_ES i
WORD WReserved_4 II (padding)
WORD Client_DS ;
WORD wReserved_S II (padding)
WORD Client_FS ;
WORD wReserved_6 II (padding)
WORD Client_GS ;
WORD wReserved_7 II (padding)

DWORD Client_Alt_EIP
WORD Client_Alt_CS ;
WORD wReserved_8 ; II (padding)
DWORD Client_Alt_EFlags
DWORD Client_Alt_ESP i
WORD Client_Alt- SS
WORD wReserved_9 ; II (padding)
WORD Client_Alt_ES i
WORD WReserved_1O ; II (padding)
WORD Client_Alt_DS ;
WORD wReserved_ll ; II (padding)
WORD Client_Alt_FS i
WORD wReserved_12 i II (padding)
WORD Client_Alt_GS ;
WORD wReserved_13 II (padding)

} CRS 32, *PCRS 32 ;

The parameters to the API call, as set by the calling application, are contained in the CRS,
and the current VM handle is in EBX.

A VxD usually defines a jump table to the specific API functions that perform the
requested action and return the results to the API handler that reflects the results in the
CRS. The following example code demonstrates how functions are dispatched from a VxD
API procedure entry point:

.***,
; D E V ICE D A T A
.***,

DOSXFER_PM_Call_Table LABEL DWORD
dd OFFSET32 DOSXFER_Get Version
dd OFFSET32 DOSXFER_PM_Enable_CallBacks
dd OFFSET32 DOSXFER_PM_Copy_Data

50 Chapter 4: V86/PM VxD API

equ

.***,
; E X P 0 R TED A P I
.***,

VMMCall Test_Sys_VM_Handle
IFDEF DEBUG

jz SHORT @f
Debug_Out "DOSXFER_PM_API_Proc not from SYS VM"

@@:
ENDIF

jnz
movzx
cmp
jae
and
call
jc
ret

SHORT DOSXFER_PM_Call_Bad
eax, [ebp.Client_DX]
eax, Max_DOSXFER_PM_Service
SHORT DOSXFER_PM_Call_Bad
[ebp.Client_EFLAGS], NOT CF_Mask
DOSXFER_PM_Call_Table[eax * 4]
SHORT DOSXFER_PM_API_Failed

function in DX

clear carry
call service

DOSXFER_PM_Call_Bad:
IFDEF DEBUG

Debug_Out "Invalid function #EAX on DOSXFER_PM_API_Proc"
ENDIF

DOSXFER_PM_API_Failed:
or [ebp.Client_EFLAGS], CF_Mask
ret

EndProc DOSXFER PM API Proc

set carry

Examining and Modifying Information of the Active VM
Changes made in the CRS by the API handler are reflected to the VM when VMM returns
control. This is the primary communication channel between code executing in the VM
and the API handlers. VMM defines three structures for the CRS: One references the
registers with 32-bit definitions (EAX), another for 16-bit registers (AX), and the last for
8-bit register access (AH and AL).

Modification of the client registers is made easy using these structure definitions:

Copy the data structure to the VM and return the results
of the function. .
EBX = VM handle, EBP = -> CRS

Writing Windows Virtual Device Drivers 51

Map_Flat edi, ES, DI
lea
mov
shr
rep
adc
rep
mov
mov
and

esi, gDataStruc
ecx, size DATASTRUCT
ecx, 1
movsw
cl, cl
movsb
[ebp.Client_CX], size DATASTRUCT
[ebp.Client_AX], 1
[ebp.Client_EFlags], NOT (CF_Mask

; SUCCESS!
; clc

A VxD may also update a buffer referenced in the CRS by obtaining a flat address using
the mapping services discussed in Chapter 3.

Creating a Dual-Mode API
By setting both the V86 and PM API entry points in the DDB to the same handler, a VxD
can provide the same services to all VMs and reduce the amount of code of duplicate
dispatch functions. To determine the operating mode of the calling VM, the VxD queries
the execution status of the VM using the status flags of the VM control block. By testing
CB_VM_Status for VMStat_PM_Exec, a VxD can determine whether a VM is calling
from V86 or protected mode:

Determine the execution mode of the VM.

test [ebx.CB_VM_Status], VMStat_PM_Exec
jz SHORT API_VM_In_V86
test [ebx.CB_VM_Status], VMStat_PM_Use32
jz SHORT API_VM_In_PM16

API_W_InPM32:
Debug_Out "w calling from 32-bit protect mode."
ret

API_VM_In_V86:
Debug_Out "w calling from V86 mode."
ret

API_W_In_PM16:
Debug_Out "VM calling frm 16-bit protected mode."
ret

Note: In Windows 3.x, calling VxD procedures through VxD API calls from 32-bit code
segments in the System VM can cause unexpected results when the offset of the return
address of the calling routine is greater than OxFFFF. This is a problem with the way that
VMM determines the "32-bitness" of the calling application. The System VM is flagged
for 16-bit protected mode operation, because KrnI386.EXE is responsible for the switch to

52 Chapter 4: V86/PM VxD API

protected mode when the Windows GUI is started. Whether 32-bit segments are allocated
within the System VM and code within these segments calls VxD APIs, VMM determines
that the calling application is 16-bit because of the VM flags. The return address is
assumed to be 16 bits and is truncated. This is also a problem for protected-mode software
interrupts hooked by a VxD. The only current work-around is to guarantee that the code
calling the VxD has a return address with an offset less than OxFFFF.

Callbacks and Hooking Existing DOS Devices
Callbacks are used indirectly when defining a VxD API. However, a VxD can also
allocate a callback entry point that, when called by a VM, switches control to the
associated callback procedure in the VxD.

Callbacks can be used to simulate DOS devices that return a pointer to a jump table by
allocating a global V86 table and stuffing the address of the callback allocated using
Allocate_V86_Call_Back service into this table. A segment and offset are returned
that directs any calls to this routine to the VxDs callback procedure. The CRS reflects the
current state of the VM when the callback entry point was called by the VM. A VxD can
also provide a "chaining" interface to hooked software interrupts by using these services.

A VxD with "carnal" knowledge of a DOS device driver can intercept calls to this device
by using the Install_V86_Break_Point service. This service patches the memory at
the requested address with a call to the break point. When the break point is executed, the
VxD can process the VM request as necessary and then return control by "bumping" the IP
to the next instruction or by using Simulate_Far_Jmp to move the Client_CS:
Client_IP to the correct address.

SECTION II

Advanced Topics

Chapter 5

Nested Execution

The nested execution services of VMM provide a controlled environment in which a VxD
can cause a redirection of the execution path in a VM. A VxD saves the client registers,
begins a nested execution block forcing a VM into V86 or protected mode, calls the
necessary services to set up stack frames, and then resumes the VM execution. When the
VM returns, the nested execution block is ended and the client registers are restored. Using
this technique, a VxD can force the execution of code in TSRs, DOS applications, and
even Windows procedures.

When calling routines in a VM other than the current VM, you may need to schedule a
VM event to force a specific VM to become active. You may also need to determine the
execution status of the VM and wait for critical sections to be completed, interrupts to be
enabled, and so on. In these cases, you can use the Call_PrioritY_VM_Event service
and begin the nested execution when the event is processed.

Simulating Software Interrupts
As demonstrated in Chapter 3, a VxD can simulate software interrupts to a VM using the
Simulate_Int or ExeC?_Int services. Simulated interrupts are subject to being trapped
by other VxDs and will respond exactly as if a VM executed the software interrupt in
application code. Additionally, a VxD that has hooked a protected-mode interrupt can
affect the caller's stack to "eat the interrupt" in protected mode by using a non-nested
Simulate_Far_Iret and then reflect it to V86 mode by using nested execution
services.

55

56 Chapter 5: Nested Execution

Note that when a VxD simulates calls to a VM and th~ execution has returned to the VxD,
the VxD must copy the results from the CRS before restoring the client's state:

;
; Simulate a software interrupt to the current VM

Push_Client_State
VMMCall Begin_Nest_V86_Exec
mov [ebp.Client_AX], 4257h
mov [ebp.Client_BX], 4C57h
mov eax, 60h
VMMCall Simulate_Int
VMMCall Resume_Exec
VMMCall End_Nest_Exec
movzx eax, [ebp.Client_AX]
Pop Client State

specific function
subfunction

; get return value

What magic occurs in this code that allows a VxD to simulate an interrupt call in a VM?
The Push_Client_State macro allocates space on the stack and copies the current
CRS to this block. Begin_Nest_V86_Exec modifies the VM state so that the execution
block occurs in V86 mode. Simulate_Int builds an lRET frame and modifies the
client's stack and CS:(E)IP to call the interrupt handler. Resume_Exec forces VMM t<?
complete event processing and then resumes the execution of the VM. When the VM
completes the execution block, control returns to the VxD and the End_Nest_Exec
restores the VM's execution state. The Pop_Client_State macro restores the client's
registers, as saved on the stack.

Calling Windows Functions from a VxD
The techniques used to simulate software interrupts to a VM can be extencled to call
functions in the System VM. There are a few restrictions when calling Windows functions
or functions provided by Windows DLLs:

• The function must be able to handle reentrancy. Many Windows functions are not
reentrant. PostMessage () and its derivatives are safe, as are a few other Windows
multimedia services.

• The code segment of the function must be present. The Windows Kernel does not
support not-present segment faults when reentered. Because a VxD can not determine
when the Windows Kernel is executing code, the segmen~ must always be present (or
non-discardable).

Writing Windows. Virtual Device Drivers 57

• If DOS or BIOS is used for paging, the function code must be page-locked in memory.
Because DOS and BIOS are not reentrant, a page-fault cannot be resolved if DOS or
BIOS code is currently executing in any VM.

• The safest segmentation for a function called by a VxD is in a FIXED code segment of
a DLL. Calling application code is dangerous and is not recommended.

To call Windows functions, you must use a helper application or DLL to provide the
procedure address to the VxD. The VxD can then use the nested execution services to
simulate a far call to the procedure in the System VM. If a VM context switch is required
(if the current VM is other than the System VM), the VxD must schedule a VM event to
call the procedure. The following code sample calls the Windows PostMessage() function
from a VxD assuming the PostMessage function pointer was obtained from the application
orDLL):

i===

VSIMPLED_NotifyApp

This routine notifies the Windows application through a
call to the PostMessage() API.

ENTRY:
EDX: contains the IParam of the message

USES:
FLAGS

i===

BeginProc VSIMPLED_NotifyApp, High_Freq

VMMCall Test_Sys_VM_Handle
je SHORT VSIMPLED_PostEvent

NA_Schedule:
push
mov
VMMCall
mov
mov
xor
VMMCall
pop
ret

ebx
eax, High_Pri_Device_Boost
Get_Sys_VM_Handle
ecx, PEF_Wait_For_STI OR PEF_Wait_Not_Crit
esi, OFFSET32 VSIMPLED_PostEvent
edi, edi
Cal1_Priority_VM_Event
ebx

EndProc VSIMPLED_NotifyApp

58 Chapter 5: Nested Execution

i===

VSIMPLED_PostEvent

Called by the priority VM event dispatch routine or
directly if System VM was already active.

ENTRY:
EBX: The system VM handle
EBP: Client register structure
EDX: Reference data

USES:
EAX, EDX, FLAGS

;===

BeginProc VSIMPLED_PostEvent

Trace_Out "In VSIMPLED_PostEvent"

cmp
je

IpPostMessage, 0
SHORT PE_Exit

Q: ptr == NULL?
Y: can't call

Push_Client_State
VMMCal1 Begin_Nest_Exec

mov
VMMCail
mov
VMMCall
xor
VMMCall
mov
shr
VMMCall
mov
VMMCall

ax, NotifyWnd
Simulate_Push
ax, NotifyMsg
Simulate_Push
ax, ax
Simulate_Push
eax, edx
eax, 16
Simulate_Push
eax, edx
Simulate_Push

handle to window

notification msg

wParam is NULL

lParam is ref data

movzx
mov

edx, WORD PTR [lpPostMessage]
cx, WORD PTR [lpPostMessage + 2]

VMMCall Simulate_Far_Call
VMMCall Resume_Exec
VMMCall End_Nest_Exec
Pop_Client_State

PE_Exit:
ret

EndProc VSIMPLED_PostEvent

call PostMessage()

Writing Windows Virtual Device Drivers 59

Calli'ng Code in a TSR at Ring 0
In Windows 3.1, the VPICO added services that allow a Windows driver to provide
interrupt service routines callable at ring O. This means a Windows device driver to
provide a common code base for hardware interrupt servicing. This technique can be
implemented by other VxOs to call routines in a VM directly from ring 0, as shown in
Figure 5.1.

VCALLTSR.386

CalLTSR

retf

Retum_From_16 .:..III
....

retf

Retum_To_Flat
..olllIIII.,

Stack

EIP_Jump_To_TSR

TSR.EXE CS_Jump_To_TSR ..
Retum_To_VxD

..olllIIII

.... EIP_Retum_From_16

retf --. CS_Retum_From_16 -
EIP_Retum_To_Flat

~ CS_Retum_To_Flat".

Figure 5.1
Possible design of calling a TSR directly (at ring 0) from a VxD

The technique to call TSR code from ring 0 is actually quite simple. A VxD provides an
API that allows a V86 or PM application to register a procedure as a "direct" callback
procedure. Ring 0 16-bit GOT selectors are built to access code and data of the callback
procedure. When the required event occurs, the VxD calls the callback procedure by
setting up a far return frame, including a 32-flat far return address to a return-to-flat
procedure and a 16:16 far return address to a retum-from-16 procedure in the VxD. The

60 Chapter 5: Nested Execution

VxD then performs a far return kicking out to the 16-bit code in the TSR. When the TSR
has completed processing, the far return kicks back to the return-from-16 procedure in the
VxD. The last remaining issue is to return to 32-flat model by using a final far return to the
return-to-flat procedure.

This method makes some assumptions of the way TSRs are loaded in the system:

• The TSR is loaded before Windows is started and is therefore global to all VMs.

• The GDT selectors are based on the low linear address of the TSR. Because the TSR is
global in all VMs, this mapping must remain constant in all page tables.

• If the code was specific to a VM, a priority VM event would be required to make the
VM active before calling the code directly at ring O.

• Using this scheme, the stack is provided by VMM and is a Use32 segment. Stack
parameter passing is not valid unless the TSR uses 32-bit references to the stack (ESP
and EBP). The TSR code should not attempt to change SSe

The following code fragments demonstrate the technique of calling TSR code (16-bit
code) at ring O. In Sys_Critical_Init, the GDT selectors used for the call to the TSR are
allocated. For this sample, a global timeout is used to initiate the calls to the TSR.

;---

DESCRIPTION:
Allocates necessary GDT selectors.

ENTRY:
EBX handle to Sys VM
EDX reference data from real-mode init

EXIT:
Carry clear if no error, otherwise set if failure.

USES:
Flags

i--- ----------

pushad

Note:

Writing Windows Virtual Device Drivers 61

An assumption is made that Cs:o is the base of the TSR.
Since we don't have a segment size, we'll assume 1 page,
but this could be handled by using a pointer to a structure
within the TSR obtained from Exec_Int instead of using
Real_Mode_Init to gather the information.

mov
movzx
mov
shr
shl

push

eax, edx
edx, ax
dwTSR_RingO_EIP, edx
eax, 16
eax, 4

eax ; save address

VMMCall
or
jnz
pop
jmp

VMMCal~ _BuildDescriptorDWORDS, < eax, <P_SIZE - 1>,\
Code_Type, \
<D_DEF16 + D_DPLO>,\
BDDExplicitDPL >

_Allocate_GDT_Selector, < edx, eax, 0 >
eax, eax
SHORT SCI_GotCSSel
eax
SHORT SCI_Failure

SCI_GotCSSel:
mov

pop eax ; restore address

VMMCall _BuildDescriptorDWORDS, < eax, <P_SIZE - 1>,\
RW_Data_Type,\
<D_DEF16 + D_DPLO>,\
BDDExplicitDPL >

VMMCall _Allocate_GDT_Selector, < edx, eax, 0 >
or eax, eax
jz SHORT SCI_Failure
mov dwTSR_RingO_DS, eax

VMMCall _BuildDescriptorDWORDS, < <OFFSET32 VCT_Switch>,\
VCT_Switch_Size,\
Code_Type, \
<D_DEF32 + D_DPLO>,\
BDDExplicitDPL >

VMMCall _Allocate_GDT_Selector, < edx, eax, 0 >
or eax, eax
jz SHORT SCI_Failure
mov wTSR_Switch_To_Flat_CS, ax

mov eax, 500
xor edx, edx
mov esi, OFFSET32 VCALLTSR TimeOut
VMMCall Set_Global_Time_Out
mov hTimeOut, esi

500 ms timeout
no data

62 Chapter 5: Nested Execution

popad
clc
ret

Free any allocated selectors and exit

mov eax, dwTSR_RingO_CS
or eax, eax
jz SHORT SCI_Failure_TryDS
VMMCal1 _Free_GDT_Selector, <eax, 0>

SCI_Fail~re_TryDS:

mov eax, dWTSR_RingO_DS
or eax, eax
jz SHORT SCI_Failure_TrYFlat
VMMCall _Free_GDT_Selector, <eax, 0>

SCI_Failure_TrYFlat:
movzx eax, wTSR_Switch_To_Flat_CS
or eax, eax
jz SHORT SCI_Failure_Exit
VMMCall ~Free_GDT_Selector, <eax, 0>

SCI_Failure_Exit:
popad
stc
ret

EndProc VCALLTSR_Sys_Critical Init

When the timeout procedure is called, the stack frames are created to call the TSR code
directly. When the TSR returns the VxD unwraps the stack to get back to 32-bit flat model:

;---
VCALLTSR_TimeOut

DESCRIPTION:
Event handler for global timeout. Calls TSR code directly
from ring o.

ENTRY:
EBX
ECX
EDX
EBP

Current VM handle
additional me since timeout
reference data
-> CRS

EXIT:
Reschedules time-out.

Writing Windows Virtual Device Drivers 63

USES:
All registers.

i-------------------~---

BeginProc VCALLTSR_TimeOut

pushad

mov hTimeOut, ° ; clear handle

Trace_Out "Setting up stack frames to call TSR.II

This stack frame is so we can get back to flat model.

push
mov
push

cs
eax,
eax

,
OFFSET32 VCALLTSR_Back_To_Flat

save CS

save EIP

This stack frame will get us back to 32-bit code in
the VxD and is addressable via 16:16 for the TSR.

push
push

ds
dwTSR_RETF From 16

save off DS

This is the stack frame used to get us to the TSR
code. Additionally, DS is setup with a R/W pointer
to the same base address.

mov
mov
push
push
retf

VCT_Switch:
pop
retf

eax, dWTSR_RingO_DS
ds, ax
cs:dwTSR_RingO_CS
cs:dwTSR_RingO_EIP

ds

go to the TSR

restore DS
return to flat

Trace_Out "Back in flat model. Return from TSR lAX"

64 Chapter 5: Nested Execution

Reschedule time out event

mov eax, 500
xor edx, edx
mov esi, OFFSET32 VCALLTSR TimeOut
VMMCall Set_Global_Time_Out
mov hTimeOut, esi

popad
ret

EndProc VCALLTSR_TimeOut

500 ms timeout
no data

Chapter 6

I/O Trapping

I/O protection is a powerful feature provided by the 80386/80486 chipset. When the
Current Privilege Level (CPL) is less than or equal to the I/O privilege level (IOPL), the
following instructions can be executed:

IN
INS
OUT
OUTS
eLI
STI

input
input string
output
output string
clear interrupt-enable flag
set interrupt-enable flag

If CPL is less than or equal to IOPL in protected mode, the processor allows the I/O
operation to proceed. If CPL is greater than IOPL or if the processor is operating in virtual
8086 mode, the I/O permissions bitmap (IOPM) is used to determine whether access to the
port is allowed. Because MS-DOS VMs run in virtual 8086 mode and a Windows
application has a CPL of 3 (for Windows 3.1) and IOPL is 0, the I/O permissions bitmap is
always used in these cases to determine whether access to the port is valid.

VMM keeps a copy of the IOPM for each VM (it is associated with the TSS and other task
information). VxDs can enable or disable access to ports by modifying the IOPM using
VMM services. Also, it is possible to trap ports in one VM and allow access to the
hardware directly in another VM.

The Install_IO_Handler and Install_Mult_IO_Handlers services install
handlers that are called when the OP fault handler has determined that I/O to the
associated port has caused the fault. VMM provides the Enable_Local_Trapping,
Enable_Global_Trapping, Disable_Local_Trapping, and Disable_Global_

65

66 Chapter 6: 1/0 Trapping

Trapping services to modify the IOPM of virtual machines to enable and disable access
to the I/O ports.

I/O trapping is the primary method used to manage device contention. By allowing only
one VM access to a hardware device address space, the VxD can manage accesses by
other VMs. For cases of contention, a VxD can simulate the device I/O and submit the
actual hardware request when the hardware is free, ignore the hardware access, and return
as though the hardware did not exist or crash the VM attempting to access the hardware.

A VxD can simulate hardware that does not exist by virtualizing the device using a finite
state machine (or other similar method) and returning the appropriate information to the
requesting application.

Trapping and Dispatching I/O
To trap I/O addresses, a VxD uses the Install_IO_Handler or Install_Mult_IO_
Handlers services of VMM. These services are only available during device
initialization.

These services associate a callback (or table of callbacks) with an I/O port (or table of 110
ports). By default, global trapping is enabled, any access to the trapped ports causes a fault,
and the associated callback procedure is called.

An 110 table has the following format:

VXD_IDATA_SEG

VXD_IO TRAPIO_IDX, VTRAPIOD_IO_Index_Reg
VXD_IO TRAPIO_DATA, VTRAPIOD_IO_Data_Reg

VTRAPIOD_Port_Table_Entries equ ({$-VTRAPIOD_Port_Table)-\
(SIZE VXD_IOT_Hdr» / (SIZE VXD_IO_Struc)

VxD IDATA ENDS

This table uses offsets from the base 110 address as the port address. When the base
address of the hardware has been determined, the VxD can update the I/O table and install
the handlers:

I;---------------~-----~--- I
; VTRAPIOD_DeV1ce_In1t
;

Writing Windows Virtual Device Drivers 67

DESCRIPTION:
Non critical system initialization procedure.

ENTRY:
EBX = Sys VM handle

EXIT:
CLC if everything's A-OK, otherwise STC

USES:
Flags.

;---

BeginProc VTRAPIOD_Device_Init

Trace_Out "VTRAPIOD: Device_Init"

pushad

Build an I/O port table for Install_Mult IO_Handlers
using the base address.

mov ecx, VTRAPIOD_Port_Table_Entries
mov esi, OFFSET32 VTRAPIOD_port_Table
mov edx, VTRAPIOD_Base_IO

DI_Install_IO_Handlers:
mov edi, esi save a copy in EDI
add esi, (size VXD_IOT_Hdr)

DI_Bump_IO_Loop:
add [esi.VxD_IO_Port], dx add port base to offset
add esi, (size VXD_IO_Struc)
loop DI_Bump_IO_Loop

Tell VMM to trap ports.

VMMcall Install_Mult_IO_Handlers
ifdef DEBUG

jnc SHORT DI_Exit
Debug_Out "VTRAPIOD: cannot trap ports!!"

endif

DI_Exit:
popad
ret

EndProc VTRAPIOD Device Init

68 Chapter 6: I/O Trapping

When an I/O port within the given range has been accessed, the fault handler dispatches to
the associated I/O handler. For this example, the index register simply stores the index if
valid (on write) or returns the current index (on read):

;---

DESCRIPTION:
Handles IO trapping.

This is a virtual R/W index register.

ENTRY:
EBX
ECX
EDX
EBP

EXIT:
EAX

USES:
FLAGS

VM Handle.
Type of I/O
Port number
Pointer to client register structure

data input or output depending on type of I/O

i--- ----------

mov
clc
ret

IIR_Out:
cmp
ja
mov

IIR_Exit:
clc
ret

aI, blndex

aI, VTRAPIOD_Max_Index
SHORT IIR_Exit
blndex, al

The one drawback with this simple 110 trapping interface is that there is a single global
virtual device. Multiple VMs can simultaneously (well, almost simultaneously) access this
device and may inadvertently affect the processing of another VM by switching the index
register while a different VM is updating an indexed data register. This is commonly

Writing Windows Virtual Device Drivers 69

referred to as device contention, and this VxD must be improved to properly handle
contention between VMs. The next be~ow discusses this topic in greater detail.

Note: The VTRAPIOD sample in the ASM\VTRAPIOD directory of the enclosed diskette
demonstrates I/O trapping and dispatching techniques.

Device Contention Management
When multiple virtual machines attempt to access the same hardware interface and device
contention is not handled by a VxD, the VMs probably interact with the hardware in such a
way that all the hardware sees is gibberish.

To avoid these problems, a VxD implements one of the following methods of device
contention:

• A VxD can completely virtualize the hardware interface, buffer the requests, and
submit them when the hardware is free.

• A VxD can allow only one VM to access the hardware at a time. The hardware will
not be visible to other VMs until the hardware is released by the owner.

• The VM can be terminated for attempting to access the hardware. (Not the most user-
friendly or recommended method.)

The most commonly used method is to allow only one VM to access the hardware at a
time. Other VMs cannot access the hardware until it has been released by the owner.

To implement this form of device contention, all I/O ports for the hardware device are
trapped. When a VM accesses a trapped port, the handler routine checks to see whether the
device has been assigned to a VM. If a contention is detected, the VxD may display a
warning message using the Shell VxD's API and then return with carry set for all reads and
writes to the hardware. If there is no current owner, the VxD assigns the device to the VM
and disables the I/O trapping for the VM using the Disable_Local_Trapping service.
When the VM terminates or when the hardware is explicitly released by the VM, the VxD
re-enables the trapping for the VM, using the Enable_Local_Trapping service, and
clears the owner status of the hardware.

The following sample code is contention management in its simplest form:

70 Chapter 6: 1/0 Trapping

DESCRIPTION:
Checks the current VM owner; if none, assigns
device to VM. If the VM is an owning VM, returns
carry clear, otherwise it returns carry set.

ENTRY:
EBX VM Handle.

EXIT:
CLC if owner OK, or STC if contention

USES:
FLAGS

j--- ----------

push
mov
or
jz
cmp
jne

eax
eax, hOwnerVM
eax, eax
SHORT CO_Assign_To_VM
eax, ebx
SHORT CO_Failure

CO_Success:
pop eax
clc
ret

CO_Assign_To_VM:
mov hOwnerVM, ebx
jmp SHORT CO_Success

CO_Failure:
pop eax
stc
ret

EndProc VCONTEND_Check_Owner

;---

DESCRIPTION:
Handles IO trapping.

This is a virtual R/W index register.

ENTRY:
EBX
ECX
EDX

VM Handle.
Type of I/O
Port number

EBP

EXIT:
EAX

USES:
FLAGS

Writing Windows Virtual Device Drivers 71

Pointer to client register structure

data input or output depending on type of I/O

i--- ----------

call VCONTEND_Check_Owner
jc SHORT IIR_Exit

mov
clc
ret

IIR_Out:
cmp
ja
mov
clc

aI, blndex

aI, VCONTEND_Max_Index
SHORT IIR_Exit
blndex, al

EndProc VCONTEND 10 Index Reg

Note that with this method of contention management, the hardware remains in the state
the last owning VM left it in. You may decide to define an initial state for a VM in the VM
control block and update the state when the VM releases the hardware. When a VM
acquires the hardware, the state would be copied from the VM's control block to the
hardware.

Simulating Hardware
As demonstrated in the preceding code fragments, it is possible to simulate (or virtualize)
hardware through the use of trapped I/O interfaces. The Windows 3.1 Device Driver Kit
contains sources to VxDs that simulate hardware such as the Virtual DMA Device and the
Virtual COMM Device. You should investigate these sources for examples of more
complex interfaces.

VxDs can use these techniques to translate common hardware interfaces to new or
improved hardware interfaces and maintain the backward compatibility of the older
platforms for MS-DOS applications.

72 Chapter 6: I/O Trapping

To fully virtualize a hardware interface, your VxD may need to incorporate IRQ
virtualization and/or DMA virtualization. These topics are covered in Chapters 7 and 8,
respectively.

Note: The VCONTEND sample in the ASM\VCONTEND directory on the enclosed
diskette demonstrates the. virtualization of a simple hardware interface and manages
contention between multiple virtual machines.

Chapter 7

IRQ Virtualization

The Virtual Programmable Interrupt Controller Device (VPICD) provides an interface to
hook (virtualize) IRQs, query information about the state of a hooked IRQ, simulate
hardware interrupts to VMs, share interrupts, and handle interrupts in the System VM with
a single ISR interface using the bimodal interrupt interface.

During initialization, the VPICD configures the PICs (slave and master), hooks the IDT
entries, and establishes default handling for non-virtualized IRQs. The PICs are virtualized
to all VMs. When a VM masks an interrupt, it is communicating with the VPICD and does
not perform I/O directly to the PIC. VPICD provides services to affect the physical state of
the PICs. It is strongly recommended that VxDs use this interface to change the physical
state of a virtualized IRQ.

IRQ virtualization is recommended for hardware devices that use hardware interrupts as a
form of communication with device drivers. There are several reasons for this
recommendation:

• IRQ virtualization is a requirement for proper device contention management.

• Some devices require immediate interrupt servicing. Interrupt latency caused by non­
virtualized interrupt handling in an ISR in either a TSR or Windows device driver do
not satisfy this requirement.

• VPICD's default IRQ handling is sometimes inappropriate for devices that intend to be
"Windows-GUI-only" oriented. IRQs that are unmasked prior to starting Windows are
designated as "global." Global interrupts are not appropriate for this implementation.

73

74 Chapter 7: IRQ Virtualization

The most common complaint of interrupt processing under Windows is the interrupt
latency issue introduced by simulating interrupts to VMs. Additionally, you may be
interested in monitoring interrupt response from a hardware device before simulating the
interrupt to a VM. In these cases, IRQ virtualization is required.

Default VPICD Handling
Before discussing IRQ virtualization in detail, we need to explain the default operation of
VPICD when an interrupt is not virtualized. By default, all IRQs are "virtualized" by
VPICD. If the interrupt was unmasked prior to starting Win386 (or the special case of IRQ
9), the default owner is global. Otherwise, no default owner exists.

The default hardware interrupt procedure (Hw_Int_Proc) simulates an interrupt to the
current VM if the IRQ is unowned. When the IRQ is global, VPICD simulates the interrupt
to the current critical section owner or the current VM, if there is no critical section owner.
Also, interrupts simulated for global IRQs are nested in the VM until the nesting has been
"unwound", but non-owned interrupts are always simulated to the current VM in all
circumstances.

When an interrupt is simulated to a VM (by a default IRQ handler or using the
VPICD_Set_Int_Request service), the VM priority is boosted and the IRET procedure
is hooked to notify the IRET procedure when the interrupt has been completed. These
events only occur when the IRQ is not nested.

End-of-Interrupt results when the VM issues an EOI to the virtual PIC. The default EOI
handler clears the virtual interrupt request and performs a physical EOI using the
VPICD_Clear_Int_Request and VPICD_Phys_EOI services respectively.

By default each unowned or global interrupt procedure has a timeout of 500ms. A VM
timeout is scheduled to watch the interrupt processing time in a VM. If the ISR in the VM
does not service the interrupt within the specified timeout period, VPICD continues
execution as though the ISR had issued an IRET. The timeout is canceled when the VM
issues an IRET (or the last IRET in a nested block).

VPICD simulates a level-triggered PIC. That is, when a virtual EOI occurs another
interrupt will be simulated immediately unless the virtual interrupt request has been
cleared by the VPICD_Clear_Int_Request service.

Writing Windows Virtual Device Drivers 75

IRQ Virtualization and Sharing
IRQ Virtualization

A VxD can change the default behavior of interrupt processing by virtualizing the IRQ
using the VPICD_Virtualize_IRQ service. The VxD fills the following structure and
calls this service to obtain an IRQ handle:

VPICD_IRQ_Descriptor
VID_IRQ_Number
VID_Options
VID_Hw_Int_Proc
VID_Virt_Int_Proc
VID_EOI_Proc
VID_Mask_Change_Proc
VID_IRET_Proc
VID_IRET_Time_Out
VPICD IRQ Descriptor

STRUC
dw
dw
dd
dd
dd
dd
dd
dd

ENDS

?
o
?
o
o
o
o
500

Some of the elements of this structure require further detail:

• VID_Hw_Int_Proc contains a pointer to the procedure called when hardware
interrupts occur for the specified IRQ. (Required)

• VID_Virt_Int_Proc contains a pointer to the procedure called when interrupts are
simulated to the VM for this IRQ. (Optional)

• VID_EOI_Proc contains a pointer to the procedure called when the hardware
interrupt service routine in the VM issues an EOI to the PIC. (Optional)

• VID_Mask_Change_Proc contains a pointer to the procedure called when the VM
changes the mask status of the IRQ on the PIC. (Optional)

• VID_IRET_Proc contains a pointer to the procedure called when the VM IRETs (or
the last IRET of a nested block) from the simulated interrupt. This procedure is also
called when a timeout occurs when a VM is servicing an interrupt. (Optional)

• VID_IRET_Time_Out is the timeout value for a VM to service an interrupt. When
the timeout occurs, VPICD reacts as though the VM issued an IRET with the
exception that the interrupt has not been physically serviced. (Optional, default is
500ms)

A VxD must virtualize an interrupt during device initialization. It is recommended that the
VxD virtualize the interrupt during Sys_Critical_Init if you are using IRQ 9 to avoid
problems introduced when interrupts occur between the Sys_Critical_Init and Device_Init
control messages.

The following sample code demonstrates the use of VPICD services to virtualize an IRQ:

76 Chapter 7: IRQ Virtualization

;===
I NIT D A T A

i===

VIRQD_IRQ_Descriptor VPICD_IRQ_Descriptor <,,\
OFFSET32 VIRQD_Hw_Int_Proc,,\
OFFSET32 VIRQD_EOI_Proc",>

i===
I NIT COD E

;===

;---

DESCRIPTION:
Non critical system initialization procedure.

ENTRY:
EBX Sys VM handle

EXIT:
CLC if everything's A-OK, otherwise STC

USES:
Flags.

i---
BeginProc VIRQD_Device_Init

Trace_Out "VIRQD: Device_Init"

push eax
push edi

mov edi, OFFSET32 VIRQD_IRQ_Descriptor
mov [edi.VID_IRQ_Number], VIRQD_Interrupt
VxDCall VPICD_Virtualize_IRQ

ifdef DEBUG
jnc SHORT @F
Debug_Out "VIRQD: Unable to virtualize IRQ"
jmp SHORT DI_Exit

@@:
else

jc SHORT DI_Exit
endif

mov hVirtIRQ, eax

Writing Windows Virtual Device Drivers 77

DI_Exit: .
pop edi
pop eax
ret

EndProc VIRQD~Device_Init

When the hardware interrupt occurs, the following procedures simulate the interrupt to the
current VM and clear the interrupt when the ISR issues an EOI to the virtual PIC:

i===
HARDWARE I N T ERR U P T PRO C E D U RES

i===

;---

DESCRIPTION:
Hardware interrupt handler. Called by VPICD.

ENTRY:
EAX
EBX

IRQ handle
current VM handle

EXIT:
CLC if processed, STC otherwise.

USES:
Flags.

;--~------------

Trace_Out "<i"

clc
ret

;---

DESCRIPTION:
Hardware interrupt handler. Called by VPICD.

78 Chapter 7: IRQ Virtualization

ENTRY:
EAX IRQ handle
EBX current VM handle

EXIT:
Nothing.

USES:
Nothing.

;---

Trace_Out "i>"

VxDCall VPICD_Clear_Int_Request
VxDCall VPICD_Phys_EOI

ret

Note that services called during the processing of the Hw_Int_Proc procedure must be
declared asynchronous (see Chapter 2 for a complete list of asynchronous services). If a
VxD requires the use of a non-asynchronous service to continue interrupt processing, the
VxD must schedule a global event to continue. The debug version of WIN386.EXE
notifies you when you attempt to call a non-asynchronous service during interrupt
processing. Heed the warnings of VMM, lest your ignorance cause the system to crash.

Shared IRQ Procedures

If the hardware platform supports shared interrupts (Micro Channel Architecture) or the
device is using an ISA shared interrupt strategy, the IRQ can be virtualized specifying the
VPICD_Opt_Can_Share flag in the VID_Options element of the
VPICD_IRQ_Descriptor structure. When the hardware interrupt is dispatched to the
Hw_Int_Proc, the VxD should determine whether the interrupt was generated by the
associated hardware device and, if so, process the interrupt and return with carry clear. If
the interrupt was not generated by the supported hardware, the VxD should return
immediately with carry clear. VPICD will continue to walk the shared interrupt list until a
VxD responds with carry set.

Note that the VxD cannot assume that subsequent calls to other callback procedures
specified in the IRQ descriptor structure are the result of an interrupt for the associated
hardware device. The VxD should set a flag when it has simulated an interrupt to a VM

Writing Windows Virtual Device Drivers 79

and test against this flag when notifications from VPICD are processed. When the VxD
processes the EOI_Proc it should clear the flag, perform the necessary EOI procedures,
and then return.

Dispatching IRQs to a VM
The example below demonstrates a very simple IRQ virtualization. The VIRQD_Hw_Int_

Proc simply sets the interrupt request for the current VM and returns. When the ISR
performs an EOI to the PIC, the VIRQD_EOI_Proc clears the interrupt request and
performs a physical EOI.

When a VxD requests an interrupt for a VM using the VPICD_Set_Int_Request

service, the interrupt simulation may not occur immediately. There are several conditions
that do not allow an interrupt to be simulated immediately:

• Interrupts are disabled in the VM.

• The virtual IRQ is masked in the VM.

• A higher priority virtual IRQ is already in service.

• The virtual machine is suspended.

In these cases, the interrupt is simulated as soon as the conditions are met.

Note that using VPICD_Set_Int_Request does not guarantee that an interrupt will be
simulated to a VM. For example, if a VM has masked and never unmasks the IRQ, the
interrupt will not be simulated. Additionally, a call to VPICD_Clear_Int_Request

before the interrupt has bee.n simulated prevents the VM from receiving the interrupt.

The example also does not demonstrate proper techniques when processing hardware
interrupts for device contention management. The VIRQD_Hw_Int_Proc should be
expanded to first determine whether an owner VM exists and then simulate the interrupt to
that VM, as follows:

;---

DESCRIPTION:
Hardware interrupt handler. Called by VPICD.
Simulates the interrupt to the hardware owner or
to the current VM if unowned.

ENTRY:
EAX
EBX

IRQ handle
current VM handle

80 Chapter 7: iRQ Virtualization

EXIT:
CLC if processed, STC otherwise.

USES:
EBX, Flags.

;---

Trace_Out 'i<i"
cmp hOwnerVM, 0
je SHORT HIP_Setlt
mov ebx, hOwnerVM

HIP_Setlt:
VxDCall VPICD_Set_Int_Request

clc
ret

Servicing Interrupts in a VxD
To reduce the interrupt latency of servicing a hardware device contained in ISR code of a
VM, a VxD can service interrupts directly during processing of the Hw_Int_Proc
procedure. In cases where a steady stream of data is processed, the VxD should buffer the
information from the hardware device and provide the information to the owning VM in
chunks.

A Hw_Int_Proc for servicing an interrupt directly might be similar to this:

;---

DESCRIPTION:
Hardware interrupt handler. First, EOI the PIC
so we avoid missing another IRQ generated by the
device. Call a procedure elsewhere in the VxD to
service the hardware device and then return.

ENTRY:
EAX = IRQ handle
EBX = current VM handle
Interrupts are disabled.

EXIT:
CLC if processed, STC otherwise.

Writing Windows Virtual Device Drivers 81

USES:
EBX, Flags.

;---

Trace_Out "<i>"
VxDCall VPICD_Phys_EOI
call VIRQD_Service_Hardware
clc
ret

In this example, VIRQD_Hw_Int_Proc does not set the interrupt request for the VM. The

VIRQ_Service_Hardware procedure may set an interrupt request to the owning VM
when a threshold has been reached. This is strictly determined by the requirements of your
hardware and the maximum amount of CPU load you wish to generate. The VxD could
also use some other form of communication to a driver in a VM, such as nested execution
or updating global memory buffers.

Additionally, the VIRQ_EOI_Proc would not perform a physical EOI of the PIC. Its only
requirement would be to clear the interrupt request status for the VM if simulated
interrupts are used to communicate with the VM's device driver.

Note that interrupt simulation is an expensive procedure. Ring transitions and VM context
switches are often a result of interrupt simulation, and reducing simulated interrupt
generation will help reduce the total burden of the CPU.

Bimodal Interrupt Handlers
Bimodal interrupt handlers are a new feature of the Windows 3.1 VPICD that allows a
Windows device driver (or DLL) to service interrupts without waiting for VPICD to
simulate an interrupt to the System VM and can avoid the associated delays of VM focus
changes and VM event processing. Interrupt latency can be reduced using these services
while maintaining a common code base for the ISR under Standard and Enhanced Mode
Windows. Note that servicing interrupts directly in a VxD (as discussed in the preceding
section) yields minimal interrupt latency.

The following services are available through the PM API of the VPICD to install and
remove bimodal interrupt handlers:

VPICD_API_Get_Ver
VPICD_Install_Handler
VPICD_Remove Handler

retrieve the VPICD version
install a bimodal IRQ handler
remove a bimodal IRQ handler

82 Chapter 7: IRQ Virtualization

The VPICD API can only be accessed via the protected mode API entry point. It is not
available to V86 VMs. To access the VPICD API, a VM obtains the API entry point:

VPICD_Device_ID
VPICD_API_Get_Ver
VPICD_Install_Handler
VPICD_Remove_Handler
VPICD_Call_At_RingO

EQU
EQU
EQU
EQU
EQU

0003h
OOOOh
000lh
0002h
0003h

xor di, di
moves, di
mov ax, 1684h get API entry point
mov bx, VPICD_Device_ID of the VPICD
int 2fh
mov word ptr IpVPICDEntry, di
mov word ptr IpVPICDEntry + 2, es
mov ax, es
or ax, di
jz SHORT No_VPICD API

Under Windows 3.0, the VPICD entry point will be NULL, because it does not support
any API functionality. If the entry point is not NULL, VPICD's version can be obtained:

Get_VPICD_Version:
mov ax, VPICD_API_Get_Ver
call dword ptr IpVPICDEntry
jc SHORT VPICD_Error
cmp ax, 30Ah
jbe SHORT VPICD Error

A DLL installs and removes a bimodal IRQ handler using the VPICD_API_Install and
VPICD_API_Remove functions respectively:

Install_Bimodal_Handler:
les di, IpBIS
mov ax, VPICD_Install_Handler
call dword ptr IpVPICDEntry
jc SHORT VPICD_Error

Remove_Bimodal_Handler:
les di, IpBIS
mov ax, VPICD_Remove_Handler
call dword ptr lpVPICDEntry
jc SHORT VPICD Error

pointer to BIS struct.

pointer to BIS struct.

Writing Windows Virtual Device Drivers 83

In these routines, the Bimodal_Int_Struc (BIS) is referenced. This structure has the
following format:

Bimodal_Int_Struc STRUC
BIS_IRQ_Number dw ?
BIS_VM_ID dw 0
BIS_Next dd ?
BIS_Reservedl dd ?
BIS_Reserved2 dd ?
BIS_Reserved3 dd ?
BIS_Reserved4 dd ?
BIS_Flags dd 0
BIS_Mode dw 0
BIS_Entry dw ?
BIS_Control_Proc dw ?

dw ?
BIS_User_Mode_API dd ?
BIS_Super_Mode_API dd ?
BIS_User_Mode_CS dw ?
BIS_User_Mode_DS dw ?
BIS_Super_Mode_CS dw ?
BIS_Super_Mode_DS dw ?
BIS_Descriptor_Count dw ?

Bimodal_Int_Struc ENDS

The field definitions of this structure are detailed as follows:

BIB_Next

BIB_Flags

BIB_Mode

VPICD installs a bimodal interrupt for the IRQ specified
by this field when the VPICD_Install_Handler API is
called.

Contains the current VM ID when the interrupt handler
specified by BIB_Entry is called.

Currently not used by the Windows 3.1 VPICD.

Must be set to zero.

Set to 0 to indicate user mode or 4 to indicate supervisor
mode. This value can be used as an offset to obtain the
appropriate user-mode or super-mode BIS API handler.
(Set by VPICD when calling the procedures defined by the
BIB_Entry and BIB_Control_Proc offsets.)

mov bx, es: [di .BIS_Mode]
call es: [bx] [di.BIS User_Mode API]

; mode O=user, 4=super

BIB_Entry Specifies the offset of the ISR from the CS specified in the
BIB_User_Mode_CB field. When VPICD calls the
interrupt handler for interrupt servicing, ES:DI points to

84 Chapter 7: IRQ Virtualization

this structure. (Filled by caller for the call to
VPICD_Install_Handler.)

BIS_Control_Proe Specifies the offset of the control procedure from the CS
specified in the BIS_User_Mode_CS field. The control
procedure is currently not used by the Windows 3.1
VPICD, but should point to a dummy control procedure
that performs a far return. (Filled by the caller for
VPICD_Install_Handler.)

BIS_User_Mode_API Specifies the far address of the user-mode API procedure
entry point. (Filled by VPICD after a call to
VPICD_Install_Handler API.)

BIS_Super_Mode_API Specifies the far address of the supervisor mode API
procedure entry point. (Filled by VPICD after a call to the
VPICD_Install_Handler API.)

BIS_User_Mode_CS Specifies the selector of the user-mode code segment of
the interrupt handler. The BIS_Entry and
BIS_Control_Proe offsets must be relative to the code
selector specified by this field. (Filled by caller for
VPICD_Install_Handler.)

BIS_User_Mode_DS Specifies the selector of the user-mode data segment of the
interrupt handler. The Bimodal_lnt_Struc structure should
be located in this segment. (Filled by caller for
VPICD_Install_Handler.)

BIS_Super_Mode_CS VPICD stores the GDT alias of the user-mode CS selector
in this field after a call to VPICD_Install_Handler.

BIS_Super_Mode_DS VPICD stores a GDT alias of the user mode CS selector in
this field after a call to VPICD_Install_Handler.

BIS_Deseriptor_Count Specifies the number of EBIS_Sel_Strue structures
immediately following the Bimodal_Int_Strue
structure. VPICD creates a GDT alias for each of the
selectors in the structures that follow.

EBIS_Sel_Struc STRUC
EBIS_User_Mode_Sel dw ?

dw ?
EBIS_Super_Mode_Sel dw ?

EBIS Sel Struc ENDS

Writing Windows Virtual Device Drivers 85

User mode selector

GDT alias of selector created by VPICD after a call to
VPICD_Install_Handler.

VPICD automatically creates GDT aliases for the ISR code and data segments as specified
in BIS_User_Mode_CS and BIS_User_Mode_DS, respectively. Additionally, the caller
can request that VPICD create GDT aliases for a number of selectors specified by
BIS_Descriptor_Count. The user-mode selectors are filled in an array of the
EBIS_Sel_Struc structures immediately following the Bmodal_Int_Structure. The
associated GDT aliases are returned in the EBI_Super_Mode_Sel element of each of the
EBIS_Sel_Struc structures. For example, the Windows 3.1 COMM driver uses this
functionality to create GDT aliases of the receive and transmit queues.

EBIS_User_Mode_Se1

EBIS_Super_Mode_Sel

ADLL creates a Bimodal_Int_Struc and fills the appropriate fields. When the IRQ occurs,
VPICD calls the ISR directly at ring 0, regardless of the current VM. On entry to the ISR,
the CS is set to the GDT alias of the ISR code segment and ES:DI is set to the GDT alias
of the Bimodal_Int_Struc. If this structure is located in the data segment, you can make the
data addressable by moving ES into DS.

The ISR executes at ring 0 (CPL=O) through a 16-bit GDT code segment alias. As with
calling TSR code directly from a VxD, the provided stack is a Use32 segment and
parameter passing must reference the stack using 32-bits (ESP and EBP). The ISR cannot
switch to a different stack unless a ring 0 stack selector is created. Note that a DLL cannot
legally create such a selector.

The ISR must return from the procedure with a far return and carry clear if the IRQ was
serviced or carry set if the IRQ was not serviced. When the ISR is called directly by
VPICD, it must not manipulate the PIC directly. Instead, VPICD provides services through
the BIS_Super_Mode_API procedure to perform these operations:

BIH_API_EOI EQU OOOOh
BIH_API_Mask EQU OOOlh
BIH_API_Unmask EQU 0OO2h
BIH_API_Get_Mask EQU 0OO3h
BIH_API_Get_IRR EQU 0OO4h
BIH_API_Get_ISR EQU OOOSh
BIH_API_Call_Back EQU 0OO6h

Equivalent to calling VPICD_Phys_EOI.

86 Chapter 7: IRQ Virtualization

Equivalent to calling the VPICD_Physically_Mask
service.

Equivalent to calling the VPICD_Test_Phys_Request

service. Returns carry set if the physical interrupt request is
set.

Retrieves the in-service state of the IRQ. Returns with
carry set if the IRQ is in service.

Uses the Call_Priority_VM_Event service to schedule an
event for the target VM specified BX. When the event
callback is processed, VPICD will use nested execution
services to simulate a far call to the address specified by
CX:DX.

The BIH_API_Call_Back procedure is useful for calling routines that do not have GDT
aliases or that must be executed in a specific VM. A common use of this service is to call a
routine in the driver that posts a message using the PostMessage() Windows API.

Note: VMM schedules event services to process the callback in the specified VM. The
callback is not executed synchronously. A driver should not post more than one event
without notification that the event has been processed. If multiple events are posted
without verifying that outstanding callbacks already exist, the VMM event services may
run out of resources and crash the system.

Chapter 8

Virtualized DMA

The Virtual DMA Device (VDMAD) provides services that allow a VxD to take control of
a DMA channel. A VxD using these services can intercept the DMA requests and modify
the VM state causing the VM to believe that the request completed. Also, it is possible to
translate or modify the VM's request before the physical state of the DMA controller is
updated. Additionally, by using these services, a VxD can add another level of hardware
contention management or indirectly replace portions of VDMAD's default handling.

All DMA channels are virtualized by VDMAD to map DMA requests by drivers to the
physical hardware. VDMAD validates the memory region supplied by the driver, and if
necessary, allocates the region from an internal DMA buffer.

Certain restrictions imposed by the DMA controller require the region management of
VDMADl:

• The DMA controller can only understand contiguous physical memory addresses.

• The DMA controller can not cross 64k boundaries, because the page register does not
auto increment.

• The DMA controller has an address limit of 16 MB.

VDMAD breaks up requests into partial DMA transfers to satisfy these requirements.
DMA buffers submitted using the auto-init mode of the DMA controller cannot be broken;
consequently, these requests must be submitted with regions adhering to the restrictions.

1 For simplicity, this discussion only reference the hardware with the lowest common
denominator, the 8253 DMA controller. Other controllers may support advanced features, but
for proper coverage by your VxD, this controller interface constrains the functionality of the
DMA interface.

87

88 Chapter 8: Virtualized DMA

For this reason, auto-init-mode DMA requires special memory management on behalf of
the device driver. .

Note that this discussion does not cover advanced DMA topics, such as bus-mastering
devices and DMA controllers supporting scatter-gather.

Physi~al State vs. Virtual State
As a VM programs the DMA controller, the controller's virtual state is updated, but state is
not submitted to the hardware until the VM unmasks the channel. This is important to
remember when you are debugging drivers using DMA. To display the channel status, use
the debug version of Win386 supplied with VxD-Lite and query VDMAD.

After the VM has unmasked the channel, VDMAD attempts to lock the memory region, as
programmed by the VM. If it is unsuccessful, VDMAD buffers the DMA transfer and
modifies the DMA controller's physical state.

VDMAD uses the VPICD_Hw_Int_Proc service to provide a watchdog event to poll for
the DMA controller's terminal count when non-auto-init-mode DMA transfers are
requested. When the DMA controller has completed the request, the necessary buffers ~e
updated (if a read operation was requested and buffers were allocated) and the VM's
virtual DMA state is updated to reflect the completed transfer.

A VxD can modify the DMA controller's virtual and physical states using the
VDMAD_Set_Virt_State and VDMAD_Set_Phys_State services, which are usually
incorporated with a handle of DMA channel that has been virtualized by a VxD.

DMA Virtualization
A VxD uses DMA virtualization to add functionality to the base support of VDMAD. A
VxD can use this virtualization to change the virtual state before the request is submitted to
the hardware. To virtualize a DMA channel, a VxD uses the VDMAD_Virtualize_
Channel service:

Tell VDMAD that we want to know about this
DMA controller.

xor eax, eax
mov [gdwDMAHandle], eax

movzx eax, gbDMAChannel
mov esi, OFFSET32 VSIMPLED_Virtual_DMA_Trap

Writing Windows Virtual Device Drivers 89

VxDCall VDMAD_Virtualize_Channel
mov [gdwDMAHandle], eax
jc SHORT VDC_Exit_Failure

When a VM has changed the virtualized DMA controller's mask state, it calls the supplied
procedure, in this case VSIMPLED_Virtual_DMA_Trap.

The VxD can modify the virtual state of the VM and then call the default handler,
VDMAD_Default_Handler, to allow VDMAD to continue the region management as
follows:

;---

DESCRIPTION:
Forces DMA_block_mode and then calls the default
DMA handler.

i--- ----------

VxDCall VDMAD_Get_Virt_State
test dl, DMA_requested
jz SHORT VDT_Exit
test dl, DNA_masked
jnz SHORT VDT_Exit

; Force block mode DMA, channel is requested and
; unmasked by the VM.

and dl, NOT (DMA_mode_mask)
or dl, DMA_block_mode

xor dh, dh
VxDCall VDMAD_Set_Virt_State

VDT_Exit:
VxDCall VDMAD_Default_Handler
ret

EndProc VSIMPLED Virtual DMA Trap

If necessary, a VxD can handle the actual DMA buffer translation and program the
physical state of the DMA controller. This type of virtualization requires the use of the
VDMAD buffer copy and region management services (listed in Appendix A).

Additionally, a VxD can translate the DMA request to a replacement interface, such as
those supplied by the PCMCIA hardware implementations. Again, the VxD must virtualize
the DMA channel and process the notifications from VDMAD.

90 Chapter 8: Virtualized DMA

Although some of the buffer management details are discussed in the next section, you
should investigate the VDMAD sources provided in the Microsoft Windows 3.1 Device
Driver Kit for code samples and to develop a better understanding of the operation of
VDMAD.

DMA Region Mapping
As already mentioned, the primary purpose of VDMAD is to buffer DMA requests and to
map the regions to memory accessable by the DMA controller. DMA region mapping is
automatically performed by VDMAD on a non-virtualized channel when the DMA
channel is unmasked. A VxD virtualizing a DMA channel can use these services without
additional code overhead simply by calling the VDMAD_Default_Handler. When a
non-standard interface is implemented, some or all of the region mapping services of
VDMAD will be needed.

To request a DMA buffer from VDMAD and copy information from a VM to this buffer,
the VxD uses the VDMAD_Request_Buffer and VDMAD_Copy_To_Buffer services:

Request a buffer from VDMAD and copy from VM
On entry, EAX is DMA handle, EBX is VM handle.

VxDCall VDMAD_Get_Virt_State
push edx
push ebx

ESI linear address
ECX count
DL/DH = mode/flags

test dl, DMA_requested
jnz SHORT Buffer_New

test dl, DMA_masked
jnz SHORT Buffer_CleanUp

VxDCall VDMAD_Request_Buffer
jc SHORT Error_No_Buffer

save mode for later
save VM for later

; EDX now contains the physical address of
; the DMA buffer ..

test dl, DMA_type_read
jz SHORT Dont_Copy

EBX buffer handle
ESI linear region
ECX size

Writing Windows Virtual Device Drivers 91

; EDI = offset

xor edi, edi
VxDCall VDMAD_CopY_To_Buffer
jc SHORT Error Copy

To prepare the hardware state, the VxD updates the region information and programs the
physical state to the DMA controller. The VxD starts DMA transfer by unmasking the
channel:

Dont_Copy:
pop ebx
VxDCall VDMAD_Set_Region_Info
pop edx
VxDCall VDMAD_Set_Phys_State

; Unmask the DMA channel to begin the transfer

Note that these code fragments are very simple and incomplete. For instance, the VxD
does not check to see whether the region can be locked by using the
VDMAD_Lock_DMA_Region service before requesting the buffer from VDMAD.

When a DMA channel is unmasked using the VDMAD_UnMask_Channel service, the
ownership of the DMA channel is assigned to the requesting VM. VDMAD sets up the
watchdog event to modify the virtual channel state when the terminal count is reached for
non-auto-init-mode transfers. When the watchdog event determines that the channel has
reached terminal count, VDMAD virtually masks it. If the operation was a DMA write
operation, the buffer is copied to the VM's linear address, as supplied with
VDMAD_Set_Region_Info. The virtual count register is updated, the channel is
physically masked, and the channel owner is set to NULL.

Avoiding VDMAD Interference

VDMAD always attempts to complete the DMA transfer when the channel has been
unmasked by using the VDMAD_UnMask_Channel service. To completely control the
DMA channel in your VxD, you can virtualize the DMA channel using a NULL handling
procedure and then program the DMA controller directly from your VxD. VDMAD will
continue to trap the 110 range for the controller but will not update the physical state.
Alternatively, you can provide a virtual DMA handling procedure and program the
controller directly by using the virtual controller state information as provided by
VDMAD. When using this implementation, you must avoid VDMAD services that affect

92 Chapter 8: Virtualized DMA

the physical state or make assumptions about the ownership of the channel. Also, you need
to resolve contention by other VMs in your procedure. Consult the VDMAD sources for
further details.

Chapter 9

VKD and Keyboard
Processing

The Virtual Keyboard Driver (VKD) provides an interface to the keyboard that allows a
VxD to trap for hot keys, simulate keystrokes into a VM, and simulate a paste operation
from a supplied buffer into a VM. This interface can be used to force certain actions in a
VxD or to serve as form of communication between a VxD and an active application in a
VM.

Hot Keys
Hot keys are registered with the VKD through the VKD_Define_Hot_Key service. Hot
keys are enabl~d and disabled on a per-VM basis using the VKD_Local_Enable_Hot_
Key and VKD_Local_Disable_Hot_Key services when the Local_Key flag is
specified, as follows:

Define hot keys for ctrl-pgup and ctrl-pgdn

mov aI, 49h ; page-up
mov ah, ExtendedKey_B
ShiftState <SS_Toggle_mask + SS_Either_Ctrl>, <SS_Ctrl>
mov cl, CallOnPress + CallOnRepeat + Local_Key
mov esi, OFFSET32 VSIMPLED_Hot_Key_Handler
xor edx, edx
xor edi, edi
VxDCall VKD_Define_Hot_Key
jc SHORT Exit_Failure
mov ghhkCtrlPgUp, eax

mov aI, 51h page-down

93

94 Chapter 9: VKD and Keyboard Processing

mov ah, ExtendedKey_B
ShiftState <SS_Toggle_mask + SS_Either_Ctrl>, <SS_Ctrl>
mov cl, CallOnPress + CallOnRepeat + Local_Key
mov esi, OFFSET32 VSIMPLED_Hot_Key_Handler
xor edx, edx
xor edi, edi
VxDCall VKD_Define_Hot_Key
jc SHORT Exit_Failure
mov ghhkCtrlPgDn, eax

To disable these keys by default, use the VKD_Local_Disable_Hot_Key service
during the Sys_VM_Init and VM_Critical_Init message processing:

VSIMPLED_Sys_VM_Init LABEL NEAR
BeginProc VSIMPLED_VM_Critical_Init

mov eax, ghhkCtrlPgUp
VxDCall VKD_Local_Disable_Hot_Key
mov eax, ghhkCtrlPgDn
VxDCal1 VKD_Local_Disable_Hot_Key
clc
ret

EndProc VSIMPLED_VM_Critical_Init

Once a hot key has been enabled in a VM the VxD receives a notification from VKD
whenever the hot key is pressed and processes it accordingly:

push eax

Turn off hot key mode in case we're going
to expand this to force keys. Don't want
to be in hot key mode when forcing keys
to a W.

cmp aI, 49h
jne SHORT HK_pgDn

;
; Ctrl-PgUp pressed ...

Trace_Out "Control-PgUp pressed in VM #EBX"
jmp SHORT HK_Exit

;
; Ctrl-PgDn pressed•..

Writing Windows Virtual Device Drivers 95

Trace_Out "Control-PgDn pressed in VM #EBX"

HK*H_Exit:
pop eax
ret

Simulating Keystrokes to VMs
VKD provides services to force keys to a VM's keyboard buffer, so that the VM reacts as
the key had been pressed on the physical keyboard. The buffer passed to the
VKD_Force_Keys service contains actual keyboard scan codes, such as the "key down,"
"key repeat," and "key up" codes.

This code snippet just forces PgDn and PgUp
to the VM in place of Ctrl-PgDn and Ctrl-PgUp.

ForceKey_Buffer_Down label byte
db Sih, Dih

ForceKey_Buffer_Down_Len equ $-ForceKey_Buffer_Down

ForceKey_Buffer_Up label byte
db 49h, C9h

ForceKey_Buffer_Up_Len equ $-ForceKey_Buffer_Up

push eax

; Don't want to be in hot key mode
; when forcing keys to a VM.

cmp aI, 49h
jne SHORT HK_pgDn

;
; Ctrl-PgUp pressed ...

Trace_Out "Control-PgUp pressed in VM #EBX"

mov ecx, ForceKey_Buffer_Up_Len
lea esi, ForceKey_Buffer_Up_Len
jmp SHORT HK_ForceEm

96 Chapter 9: VKD and Keyboard Processing

;
; Ctrl-PgDn pressed ...

Trace_Out "Control-PgDn pressed in VM #EBX"
mov ecx, ForceKey_Buffer_Down_Len
lea esi, ForceKey_Buffer_Down

HK_ForceEm:
VxDCall VKD_Force_Keys

IFDEF DEBUG
jnc SHORT @F
Debug_Out "VKD_Force_Keys failed!"

@@:
ENDIF

pop eax
ret

EndProc VSIMPLED Hot Key Handler

Using the force keys service is quite simple, but determining which scan codes to send is
probably th~ most time-consuming part of using this interface. To make determing the scan
codes simpler, I have created a simple utility that watches INT 9h and displays the
keystrokes to the screen until you press the <ESC> key. The code for the KEYDISP utility
can be fo~nd on the accompanying disk in the ASM\KEYDISP directory.

Chapter 10

Writing VxDs in C

The concept of writing VxDs in 'CIhas been widely misunderstood. Writing VxDs in 'C' is
not impossible -- on the contrary, you can do it without a great deal of grief. Forget
everything anyone has every told you about writing VxDs in 'C' and open your mind.
VxDs wrtten in 'C' are the wave of the future, not just a passing fad.

VMM does not look in the object code of VxDs for magical embedded notations to
determine whether the code was generated by a 'C' compiler or the magical MASM 5.10B
assembler. When a good 386 32-bit ICI compiler generates the necessary code, the
LINK386 linker will link the objects and generate a proper executable, which can be called
aVxD.

The main hurdle to overcome when writing VxDs in 'c' is that a great portion of VMM
services require either parameter passing using registers or that the mystical dynalinking
macro must be used to generate the code to call VxD or VMM services. Additionally,
services declared by VxDs are created with tables hidden by the VMM.INC macros and
the actual procedure entry points are renamed with a new prefix. But that doesn't mean that
it's time to give up and return to assembly, only that you may not be able to write all of
your VxD in 'C'. Some assembly may be required: I affectionately refer to this as MASM­
tape. I'll provide the MASM-tape on the accompanying disk and some instruction and you
can begin writing VxDs in 'c' almost immediately, assuming you have the rest of the
necessary tools. I have been successful using the WATCOM C/386 V9.5 compiler to
generate flat 32-bit code. The samples included on the diskette were created using this
compiler.

The limitations and restrictions of writing a VxD in Ie' include the following?

• because most VxDs have been written in assembly, interfacing to these VxDs requires
external procedures written in assembly.

97

98 Chapter 10: Writing VxDs in C

• Some of the debugging functionality (call logging, for example) is not available to
VxD procedures written in 'C'.

• Testing and debugging is more difficult, because you must rely on the compiler code
generation instead of an assembler.

Segment Attributes
VxD segments require the following specific attributes:

• All code and data segments are USE32 with the exception of the Real Mode
Initialization segment, which is the only USE16 segment in the VxD executeable
(excluding the stub executable).

• Initialization code and data are defined by the _ITEXT and _IDATA segments,
respectively. These code segments have the segment class definition of ICODE.

• Pageable code and data are defined by the _TEXT and _DATA segments and have a
segment class definition of PCODE.

• Locked code and data are defined by the _LTEXT and _LDATA segments and have a
segment class definition of LCODE.

• Because VxDs require flat model, the 'C' compiler in question must be able to generate
32-bit flat model code.

Most compilers support the #pragma code_seg and #pragma data_seg directives.
The following directives will define the necessary segments and classes:

II code and data segment directives for init code
#pragma code_sage II_ITEXT II , II lCODEIl)
#pragma data_seg(lI_lDATAII, II lCODEIl)

II code and data segment directives for pageable code
#pragma code_seg(II_TEXTII, II PCODE II)
#pragma data_seg(II_DATAl', II PCODE II)

II code and data segment directives for locked code
#pragma code_seg(II_LTEXT II , II LCODE II)
#pragma data seg(II LDATAII, II LCODEII)

When developing the samples in 'C' for this book, I experienced problems with the
WATCOM C/386 compiler using the #pragma code_seg directive and was forced to
use command line options to define the segment and class names (see the sample makefiles
for more information). Also, some 'C' compilers may not support multiple segment
declarations in a single module. You may be required to create one module for

Writing Windows Virtual Device Drivers 99

initialization code and data, another for locked code and data and another for pageable
code and data.

A 'C'-callable Wrapper for VMM
A VxD entry point is defined in the Device Declaration Block (DDB) as defined in
Chapter 1. The DDB is exported using a .DEF file. A typical export is as follows:

I
EXPORTS

~SIMPLED_DDB @1

In order to maintain compatibility with this naming convention, the compiler must not
generate the 'C'-style underscore prefix. The WATCOM C/386 compiler provides an
option for disabling this namiing convention.

The DDB structure, as defined using 'C', is as follows:

#define DDK_Version Ox30A

typedef struct tagVxD_Desc_Block
{

DWORD
WORD
WORD
BYTE
BYTE
WORD
BYTE
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DDB ;

DDB_Next ;
DDB_SDK_Version ;
DDB_Re~Device_Number

DDB_Dev_Major_Version
DDB_Dev_Minor_Version
DDB_Flags ;
DDB_Name[8] ;
DDB_Init_Order ;
DDB_Control_Proc
DDB_V86_API_Proc
DDB_PM_API_Proc ;
DDB_V86_API_CSIP ;
DDB_PM_API_CSIP ;
DDB_Reference_Data ;
DDB_Service_Table_Ptr ;
DDB_Service_Table_Size

II VMM reserved field
II VMM reserved field
II Required device number
II Major device number
II Minor device number
II Flags init calls complete
II Device name
II Initialization Order
II Offset of control procedure
II Offset of API procedure
II Offset of API procedure
II CS:IP of API entry point
II CS:IP of API entry point
II Ref. data from real mode
II Pointer to service table
II Number of services

The following example declares a DDB within a 'e' module:

#include <vnun.h>
#include "vsimpled.h"

#pragma data_seg("_LDATA", "CODE")

11==
II v I R T U A L D E V ICE DEC L A RAT ION
11==

100 Chapter 10: Writing VxDs in C

DDB VSIMPLED_DDB { NULL, I I must be NULL
DDK_Version, II DDK_Version
VSIMPLED_Device_ID, II Device ID
VSlMPLED_Major_Ver, II Major Version
VSIMPLED_Minor_Ver, II Minor Version
NULL,
"VSlMPLED" ,
Undefined_lnit_Order,
(DWORD) vmmwrapVxDControlProc,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL}

To provide an interface to the register parameters for VxD control procedures, an
assembly wrapper is necessary. This procedure creates a 'C' stack frame and calls the
associated procedure as defined in a dispatch table:

II
II This table is used by the vmmwrapVxDControlProc defined
II in VMMWRAP.ASM. It lists the messages and associated
II dispatch functions, it must be te~inated with -1 and NULL.
II

DISPATCHlNFO alpVxDDispatchProcs[] =
{ Create_VM, VSlMPLED_Create_VM,

Sys_Critical_lnit, VSlMPLED_Sys_Critical_lnit,
Device_Init, VSIMPLED_Device_Init,
-1, NULL } ;

When the VxD control procedure is called by VMM, the vrnmwrapVxDControlProc
(provided by VMMWRAP.ASM) walks this table and dispatches the system message to
the associated procedure. Note that vrnmwrapVxDControlProc uses a linear search
algorithm; consequently, the least-frequent system events should be located at end of the
table. Some of the dispatch functions have slightly different prototypes, not listed here
becausse the sample sources demonstrate their use and the VMMWRAP.ASM code is well
documented.

The following code excerpt demonstrates a VxD initialization procedure as written in 'C':

#pragma data_seg("_lDATA", "lCODE")

11==
II I COD E
11==

11--

Writing Windows Virtual Device Drivers 101

PSTR pCmdTail
pointer to WIN.COM's command tail

PCRS_32 pCRS
pointer to System VM client register structure

Again, the same return value applies •.. TRUE for success,
FALSE for error notification.

Comment
Wrote it.

Author
BryanW

Date
31 9/93

II BOOL VSIMPLED_Device_Init
II
II Description:
II This is a non-system critical initialization procedure.
II IRQ virtualization, I/O port trapping, and VM control
II block allocation can occur here.
II
II
II
II
II Parameters:
II DWORD hVM
II System VM handle
II
II
II
II
II
II
II
II
II History:
II
II
11--
BOOL CDECL V~IMPLED-Device-Init

(
DWORD hVM,
PSTR pCmdTail,
PCRS_32 pCRS

)
{

UNUSED_PARAM(hVM) ;
UNUSED_PARAM{ pCmdTail) ;
UNUSED_PARAM(pCRS) ;

vmmTraceOut{ "VSIMPLED_Device_Init\r\n"

return (TRUE) ;

II end of VSIMPLED_Device_Init{)

Wrapping VxD Services

As mentioned earlier, VxD service calls to other VxDs or VMMs use ~he Int 20h dynalink
interface. Embedding this code througho,:!t your VxD is inefficient, ~nd some form of 'C' to
assembly interface is necessary with some services because of register parameter passing.

VMMWRAP.ASM defines a large number of 'C' callable routines that convert stack
parameters into the correct register parameter interfaces used by the various services and

102 Chapter 10: Writing VxDs in C

return the results of the service call. For example, the VMM service List_Create uses
the ECX, EAX, and ESI registers to define a node size and flags and to return a handle to
the list. It then becomes necessary to provide an C-callable interface:

i--- ----------

DWORD PASCAL vmmListCreate< UINT uNodeSize, UINT uFlags

DESCRIPTION:
Creates a new list structure.

PARAMETERS:
UINT uNodeSize

UINT uFlags
Specifies the creation flags, it can be a
combination of the following values:

RETURN VALUE:
DWORD

handle to the list or NULL if failure

i--- ----------

BeginProc vmmListCreate, PUBLIC

uFlags
uNodeSize

equ
equ

[ebp + 8]
[ebp + 12]

push ebp
mov ebp, esp

push esi
push ecx
mov ecx, uNodeSize
mov eax, uFlags

VMMCall List_Create
pop ecx
mov eax, esi
pop esi
jnc SHORT VLC_Exit
xor eax, eax

VLC_Exit:
pop ebp
ret 8

EndProc vmmListCreate

Writing Windows Virtual Device Drivers 103

A VxD in 'C' can then call this service as follows:

II Create a list with elements of the type NODE

hList = vmmListCreate(sizeof(NODE), 0)

Thunking Callbacks

A thunk is a piece of assembly code that fronts your 'C' procedure to map registers as
passed by VMM to a 'C' stack frame and then calls your procedure. A thunk also converts
the 'C' return value to the expected return value for the callback. Callbacks are used by
VMM and other VxDs for notification and event processing. For example, when a V86
page is hooked, a page fault handler in the VxD is called to resolve the fault.

A thunk is created "on the fly" by a thunking procedure. Given a procedure address, a
thunking procedure copies the base code, patches the necessary offsets, and returns a
pointer to this piece of code. An advantage to using flat model code here is that a VxD can
reference code and data with the same offset. Creating executable code with a simple heap
allocation is easy, because selector restrictions are not an issue. For example, the following
will create a procedure thunk for a generic VMM event callback:

;---
~VENTPROC PASCAL vmmwrapThunkEventProc(EVENTPROC pProc)

DESCRIPTION:
Creates a procedure thunk for VxD generic event callbacks.

PARAMETERS:
DWORD pProc

pointer to callback procedure, must have the fo~:

VOID CDECL EventProc(DWORD hVM,
DWORD dwRefData,
PCRS_32 pCRS)

RETURN VALUE:
EVENTPROC

pointer to thunk or NULL if failure

i--- ----------
BeginProc vmmwrapThunkEventProc, PUBLIC

pCRS
pProc

equ
equ

[ebp]
[ebp + 8]

push ebp
mov ebp, esp

104 Chapter 10: Writing VxDs in C

call
jc
jmp

Allocate_Procedure_Thttnk
SHORT VEProc_Failure
SHORT VEProc_CreateThunk

i==================
i Begin thurik code

EventThunk label byte

push
push
push

pCRS
edx
ebx

uPage
hVM

call $
EventThunkCallAddr equ $-EventThunk

add esp, 12
ret

fixup for CDECL

EventThunkSize

iEnd thunk code

equ $-EventThunk

;==================

VEProc_CreateThunk:
push ecx
push edi
push esi

Copy the thunk ...

lea esi, EventThunk
mov edi, eax
mov ecxi EventThunkSize
cld
shr ecx, 1
rep movsw
a.dc cl, cl
rep movsb

Fix it up ...

push
add
mov
sub
sub
neg
mov
pop

eax
eax, EventThunkCallAddr
esi, eax
esi, 4
eax, pProc
eax
dword ptr [esi], eax
eax

Writing Windows Virtual Device Drivers 105

pop esi
pop edi
pop ecx
jmp SHORT VEProc_Exit

VEProc_Failure:
xor eax, eax

VEProc_Exit:
pop ebp
ret 4

EndProc vmmwrapThunkEventProc

To avoid page faults while executing thunk code, allocate a non-pageable memory block
for a thunk table on the first call to Allocate_Procedure_Thunk. To simplify thunk
allocation management, the allocation routine uses a fixed, maximum thunk size; this
routine could be improved to be more memory efficient. The actual thunk code is
embedded in the specific thunk allocation procedure. After the memory allocation for the
thunk has been performed, the thunk code is copied and patched with the correct offset to
the caller's provided procedure address. Thunks should be created only once per
procedure, as follows:

II NOTE!!l pVMEMTRAP_PFault is a global pointer to the
II Page_Fault procedure thunk.

if (lpVMEMTRAP_PFault)
{

if (pVMEMTRAP_PFault
vmmwrapThunkV86PHProc(VMEMTRAP_PFault »

else
{

vmmDebugOut(IICould not allocate Page_Fault thunk!\r\n ll

return (FALSE)
}

}
vmmHookV86Page(wPage, pVMEMTRAP_PFault
return (TRUE)

Service Tables

Service tables are best left to assembly. Although it is possible to create a service table
using 'C', there are many restrictions:

• Predefined services for replacement system drivers (such as VDD, VCD, etc.) almost
always use register parameter passing. An assembly front end must be used for these
procedures. There is no need to create a service table in C for these cases.

106 Chapter 10: Writing VxDs in C

• VMM.INC uses the '@' prefix for the actual procedure name. It also generates a
service number for each of the listed services. Your "public" header file must provide
these definitions and your service names must be distinct from the service number
defintions.

• VMM.INC creates debugging calls to watch for VMM reentrancy of non­
asynchronous services. These services will not be available to your VxD's service
procedures if they are written in 'C'.

A service table can be declared in 'C' as follows:

#define VSIMPLED_Get_Version (VSIMPLED_Device_ID) « 16 + OxOOOO
#define VSIMPLED_Get_Info (VSIMPLED_Device_ID)« 16 + Ox0001

DWORD CDECL I_VSIMPLED_Get_Version(VOID) ;
BOOL CDECL I_VSIMPLED_Get_Info(PINFOSTRUCT) ;

SERVICETABLE VSIMPLED_ServiceTable
{

I_VSIMPLED_Get_Version,
I_VSIMPLED_Get_Info

}

The service table must be located in the locked data segment. The DDB should be contain
a pointer to service table and number of services declared.

If your VxD is replacing a standard VxD, such as the Virtual Display Driver, a service
interface already exists. To support this interface and to allow the VxD service procedures
to be written in 'C', the service entry points are thunked using a macro, such as the
following to provide an interface to the register parameters:

Service_Thunk MACRO Service_Name, Type

IFNB <Type>
IFIDNI <Type>, <ASYNC_SERVICE>

BeginProc Service_Name, ASYNC_SERVICE
ELSE

%OUT ERROR: Service_Thunk <Type> parameter must be\
ASYNC_SERVICE or undefined

.err
ENDIF

ELSE
BeginProc Service_Name, SERVICE

ENDIF
EXTRN _&Service_Name:NEAR

IFDEF DEBUG
Debug_Out lIn &Service_Name l

ENDIF
pushad
pushfd

push
cCall
add
popfd
popad
ret

Writing Windows Virtual Device Drivers 107

esp
_&Service_Name
esp, 4

EndProc Service_Name

ENDM

The service thunks are defined as follows using the macro:

Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk
Service_Thunk

VDD_Get_Version
VDD_PIF_State
VDD_Get_GrabRtn
VDD_Hide_Cursor
VDD_Set_VMType
VDD_Get_ModTime
VDD_Set_HCurTrk
VDD_Ms9_ClrScrn
VDD_Ms9_ForColor
VDD_Ms9_BakColor
VDD_Ms9_TextOut
VDD_Ms9_SetCursPos
VDD_Query_Access

New services for 3.1

Service_Thunk

The service table is defined as usual:

.xlist
INCLUDE VMM.INC

PUBLIC VDD_Service_Table
Create_VDD_Service_Table EQU True

INCLUDE VDD.INC
.list

Finally, a service procedure written in 'e' uses a pointer reference to the registers, as
provided by the thunk, to access the parameters:

1

1/ --- -------------
II
II VOID VDD_PIF_State

108 Chapter 10: Writing VxDs in C

II
II Description:
II Informs VDD about PIF bits for newly created VM.
II
II Parameters:
II PREGS pRegs
II pRegs -> ebx = VM handle
II pRegs -> ax = PIF bits
II
II Return (VOID):
II Nothing.
II
11--
VOID CDECL VDD_PIF_State
(

PREGS

PVDDCB pVMCB;

pRegs

if (vmmTestSysVMHandle(pRegs -> ebx »
wPIFSave = (WORD) pRegs -> eax

else
{

pVMCB = (PVDDCB) (pRegs -> ebx + dwVidCBOff)
if (pVMCB -> VDD_PIF 1= (WORD) pRegs -> eax)
{

pVMCB -> VDD_PIF = (WORD) pRegs -> eax ;
VDD_TIO_SetTrap(pRegs -> ebx, pVMCB) ;

}

} II VDD PIF State()

VSIMPLED Sources in 'e'
The VSIMPLED VxD introduced in Chapter 1 has been rewritten in 'C' to demonstrate
some of the techniques discussed in this chapter:

VSDINIT.C

11--
II
II Module: vsdinit.c
II
II Purpose:
II Init code and data for VSIMPLED.
II
II Development Team:
II Bryan A. Woodruff
II

Writing Windows Virtual Device Drivers 109

Copyright (c) 1993 Woodruff Software Systems.
All Rights Reserved.

Comment
Wrote it.

Author
BryanW

Date
3/14/93

II History:
II
II
11--
II
II
II
II
11--
#include <vmm.h>
#include nvsimpled.hn

#pragma data_seg(n_IDATA", "ICODE II
)

11==
II I COD E
11==

PSTR pCmdTail
pointer to WIN.COMls command tail

DWORD dWRefData
reference data passed from real-mode init

PCRS_32 pCRS
pointer to System VM client register structure

We can notify VMM of success or failure by returning TRUE or
FALSE.

Comment
Wrote it.

Author
BryanW

Date
31 9/93

On entry, interrupts are disabled. Critical initialization
for. this VxD should occur here. For example, we can read
settings from VMMls cached copy of the SYSTEM.INI and act
set up our VxD as appropriate.

11--
II BOOL VSIMPLED_Sys_Critical_Init
II
II Description:
II
II
II
II
II
II
II This procedure is called when the VXD_Control_Proc
II dispatches the Sys_Critical_Init notification from VMM.
II
II
II
II
II Parameters:
II DWORD hVM
II System VM handle
II
II
II
II
II
II
II
II
II
II
II History:
II
II
11--

110 Chapter 10: Writing VxDs in C

DWORD hVM,
DWORD dwRefData,
PSTR pCmdTail,
PCRS_32 pCRS

)
{

UNPSED_PARAM(hVM) i
UNUSED_PARAM(dwRefData) i
UNUSED_PARAM(pCmdTail) ;
UNUSED_PARAM(pCRS) i

vmmDebugOut(IVSIMPLED_Sys_Critical_Init\r\n"
return (TRUE) ;

PSTR pCmdTail
pointer to WIN.COM's command tail

PCRS_32 pCRS
pointer to System VM client register structure

Again, the same return value applies: TRUE for success,
FALSE for error notification.

Comment
Wrote it.

Author
BryanW

Date
31 9/93

11--
II BOOL VSIMPLED_Device_Init
II
II Description:
II This is a non-system critical initialization procedure.
II IRQ virtualization, I/O port trapping, and VM control
II block allocation can occur here.
II
II
II
II
II Parameters:
II DWORD hVM
II System VM handle
II
II
II
II
II
II
II
II
II History:
II
II
11--
BOOL CDECL VSIMPLED_Device_Init
(

DWORD hVM,
PSTR pCmdTail,
PCRS_32 pCRS

)
{

UNUSED_PARAM (hVM) i
UNUSED_PARAM(pCmdTail

Writing Windows Virtual Device Drivers 111

vmmTraceOut("VSIMPLED_Device_Init\r\n"

return (TRUE) ;

II end of VSIMPLED_Device_Init()

11--
II End of File: vsdinit.c
11--

VSIMPLED.C

Copyright (c) 1993 Woodruff Software Systems.
All Rights Reserved.

Comment
Wrote it.

Author
BryanW

Date
31 9/93

11--
II
II Module: vsimpled.c
II
II Purpose:
II A simple VxD written in 'Ct.
II
II Development Team:
II Bryan A. Woodruff
II
II History:
II
II
11--
II
II
II
II
11--
#include <vmm.h>
#include "vsimpled.h"

#pragma data_seg("_LDATA", "CODE")

11==
II V I R T U A L D E V ICE DEC L A RAT ION
11==
DDB VSIMPLED_DDB = { NULL, II must be NULL

DDK_Version, II DDK_Version
VSIMPLED_Device_ID, II Device ID
VSIMPLED_Major_Ver, II Major Version
VSIMPLED_Minor_Ver, II Minor Version
NULL,
"VSIMPLED" ,
Undefined_Init_Order,
(DWORD) vmmwrapVxDControlProc,

112 Chapter 10: Writing VxDs in C

NOLL,
NULL,
NULL,
NOLL,
NULL,
NULL,
NULL}

II
II This table is used by the vmmwrapVxDControlProc.
II It lists the messages and associated dispatch functions. It
II must be terminated with -1 and NULL.
II

DISPATCHINFO alpVxDDispatchProcs[] =
{Sys_Critical_Init, VSIMPLED_Sys_Critical_Init,

Device_Init, VSIMPLED_Device_Init,
Create_VM, VSIMPLED_Create_VM,
-1, NULL } ;

pCRS
pointer to client register structure

Comment
Wrote it.

Author
BryanW

Date
31 9/93

11--
II BOOL CDECL VSIMPLED_Create_VM(DWORD hVM, PCRS_32 pCRS)
II
II Description:
II Notification when VMs (other than system VM) are created.
II
II Parameters:
II hVM
II VM handle
II
II
II
II
II History:
II
II
11--
BOOL CDECL VSIMPLED_Create_VM(DWORD hVM, PCRS_32 pCRS)
{

UNUSED_PARAM (hVM) ;
UNUSED_PARAM(pCRS) ;

vmmTraceOut("VSIMPLED_Create_VM\r\n"

return (TRUE) ;

} II end of VSIMPLED_Create_VM()

11--
II End of File: vsimpled.c
11---

Chapter 11

Using the Debugging Services

Debugging services are some of the most important, but least used, services of the VMM.
The debugging services provide important feedback during the operation of your VxD.
The debug version of WIN386, through the debugger interface, provides key information
that can help you track down even the most difficult bugs. A better understanding of the
debug services and VMM's debugging interface can save you time and frustration.

Debug Strings
The most commonly used macros are Debug_Out and Trace_Out which expand to calls to
the Out_Debug_String service. Debug_Out also embeds an INT 1 in the code to cause
a debugger break after displaying the string.

Debug trace strings are useful when you are tracking the last action before a crash or the
watching execution path of code. Trace_Out is particularly well-suited to this. Debug_Out
is most commonly used when an assertion fails or some other unexpected event occurs.

In Windows 3.1, the Mono_Out and Mono_aut_At macros call the Out_Mono_String
service to display a string on the monochrome display. The Out_Mono_String service
offers you a fast memory write so you don't have to wait for the serial port when using the
WDEB386 debugger. This is excellemt for high frequency debug strings in such places as
interrupt handlers.

The Queue_Out macro calls the Queue_Debug_String service, which queues a
message string until it is retrieved by the • lq command from the debugger interface. This
is useful when multiple debug traces are occuring and scrolling from view. The
Queue_Out macro lets you to record events and display them at your convenience.

113

114 Chapter 11: Using the Debugging Services

Assertions
The DEBUG.INC header file includes a few useful assertions that are only available in a
debug build of your VxD. Some of these services may not be available in the retail build of
WIN386. See Appendix A for details.

Assert_VM_Handle Verifies that the provided register or memory location
contains a valid VM handle.

Assert_Ints_Disabled

Assert_Ints_Enabled

Verifies that the provided register or memory location
contains the current VM handle.

Verifies that the provided register or memory location
points to the client register structure of the current VM.

Verifies that interrupts are disabled.

Verifies that interrupts are enabled.

Extended Debug Commands
Extended debug commands are available in the debug version of WIN386 through the
• VMM command from a debugger prompt. The following menu appears when you invoke
this command:

VMM DEBUG I N FOR MAT ION A L S E R V ICE S

[A] System time
[B] Time-slice information/profile
[C] Dyna-link service profile information
[D] Reset dyna-link profile counts
[E] I/O port trap information
[F] Reset I/O profile counts
[G] Turn procedure call trace logging on
[H] V86 interrupt hook information
[I] PM interrupt hook information
[J] Reset PM and V86 interrupt profile counts
[K] Display event lists
[L] Display device list
[M] Display V86 break points
[N] Display PM break points
[0] Display interrupt profile
[P] Reset interrupt profile counts
[Q] Display GP fault profile
[R] Reset GP fault profile counts
[S] Toggle Adjust_Exec_Priority Log AND DISPLAY
[T] Reset Adjust_Exec_Priority Log info
[U] Toggle verbose device call trace

Writing Windows Virtual Device Drivers 115

[V] Fault Hook info~ation

Enter selection or [ESC] to exit:

The information available through this interface is quite extensive and specific to VMM.
For example, the time slice command displays the following:

VMs scheduled = 02
idle VMs = 01
Time-Slice focus VM = 804A1000
Scheduled VM 804A1000

Time slice size
Timer period

00000014
14

804A1000 background
Fgd=0064, Bkgd=0032, %CPU=71(dec), Tick Weight=00000016,

Total=00004EB6
8071EOOO background high-pri-bkgd idle

Fgd=0064, Bkgd=0028, %CPU=28(dec), Tick Weight=00000038,
Total=00000DC8

Additionally, the following additional dot (.) commands are available in the debug version
ofVMM:

.VM [I] ------ Displays complete VM status

.VC [I] ------ Displays the current VMs control block

.VH ---------- Displays the current VM handle

.VR [I] ------ Displays the registers of the current VM

.VB [I] ------ Displays the current VM's virtual mode stack

.VL ---------- Displays a list of all valid VM handles

.T ---------- Toggles the trace switch

.S [I] ------ Displays short logged exceptions starting at #

.SL [I] ------ Displays long logged exceptions

.LQ ---------- Display queue outs from most recent

.DS ---------- Dumps the protected mode stack with labels

.MH [handle] - Displays Heap info~ation

.MM [handle] - Displays Memory information

.MV ---------- Displays VM Memory information

.MS PFTaddr -- Display PFT info

.MF ---------- Display Free List

.MI ---------- Display Instance data info

.ML LinAddr -- Display Page table info for given linear address

.MP PhysAddr - Display ALL Linear addrs that map the given addr

.MD ---------- Change debug MONO paging display

.MO ---------- Set a page out of all present pages

.VMM --------- Menu VMM state info~ation

.<dev_name> -- Display device specific info

One of the most useful commands is the exception tracing option. To tum tracing on, use
the •T command:

116 Chapter 11: Using the Debugging Services

##.t
start tracing

##.s
stop tracing
exceptions logged = 00000C9D
00000C9D: OUT 804A1000 02 EI VMM 800E097E
00000C9C: 0050 804A1000 02 EI VMM 800E097E
00000C9B: 0006 804A1000 02 EI V86 2586:2230
00000C9A: OUT 804Al000 02 DI V86 C803:0A05
00000C99: 0006 804Al000 03 EI V86 2586:2230
00000C98: OUT 804A1000 03 DI V86 FFFF:OBEB
00000C97: 0006 804A1000 04 DI V86 265F:14AO
00000C96: OUT 804Al000 04 EI V86 D800:04Al
00000C95: OOlA 804A1000 04 EI V86 D800:04Al INT lA 00000004
00000C94: OUT 804Al000 04 EI V86 D800:04Al
00000C93: OOlA 804Al000 04 EI V86 D800:04Al INT lA 0000008C
00000C92: OUT 804A1000 04 EI V86 0486:0EFO
00000C9l: 0050 804Al000 04 EI V86 0486:0EFO INT 50 00000308
00000C90: OUT 804A1000 04 DI V86 1024:0F3C
00000C8F: 0013 804Al000 03 EI V86 FFFF:OBEB INT 13 00000308
00000C8E: OUT 804Al000 02 DI V86 B1AD:003l
00000C8D: 002A 804Al000 02 DI V86 B1AD:003l INT 2A 00008200
00000C8C: OUT 804Al000 02 DI V86 C803:0A05
00000C8B: 0006 804Al000 02 EI V86 2586:2230
00000C8A: OUT 804A1000 02 DI V86 B1AD:003l
00000C89: 002A 804A1000 02 DI V86 B1AD:003l INT 2A 00008200

The exception log shows OxC9B exceptions during the short period that the system is
allowed to run. To display details about an exception, use the. 81 command:

##.sl c8b
stop tracing
Show exception 00000C8B
00000C8B: 0006 804Al000 02 EI V86 2586:2230

V86 Fault 0006 VM_Handle = 804A1000 00000C8B
AX=00007000 CS=2586 IP=00002230 FS=OOOO
BX=00000005 SS=OBCC SP=00000190 GS=OOOO TIME=00000096:1930
CX=OOOOOOlA DS=9E9B SI=0000003F BP=0000201A
DX=OOOOOOlA ES=OOOO DI=00004000 FL=00033202

This fault occured in V86 mode and was an invalid opeode (exception 6). To learn why an
invalid opcode occur, we need to look at the dissassembly:

##u &2586:2230
&2586:00002230 6380fc90 arpl word ptr [bx+si+90fc],ax

Obviously, an arpl is not a valid V86 instruction. This arpl instruction is really a V86 break
point. To demonstrate that this assumption is valid and to find the owner, we can use the M
command (Display V86 break points) in the VMM debugging interface:

CS:IP
2586:2230

Writing Windows Virtual Device Drivers 117

Hit Count Ref Data Procedure
00002D76 00000031 @Resume_Exec + 2a

The owner of this break point is the the Resume_Exec service, which probably means
that this fault was generated as the result of V86 nested execution in the VM.

As you can see, using of the debug version of WIN386 is essential to tracking down
problems with your VxD. Some additional helpful debugging tips:

• Always run the debug version of WIN386.EXE during your development and test
cycle, however painful it may be. Although this version may be slower, it is much
more informative than the retail version. The debug version of VMM will let you
know when you've done bad things to the system.

• Use the debug string services to output information during essential operations of your
VxD. Watch for return codes and use Debug_Out when something unexpected
occurs.

• If you suspect that code in a particular VM is causing problems with your VxD, use
the •VL and •VM commands to display the VM status and then set a break point at the
current CS:IP. Restart the system and trace through the VM's code.

• Become familar with the P (step into) and T (trace into) commands of the WDEB386
debugger or similar commands in your favorite debugger. Watching the code as it
executes (especially with nested execution) is essential to locating problems.

• Never treat a system hang as the end of the world. Restart the system, tum on
exception tracing, reproduce the problem, and break into the debugger. You should
find that the exception tracing will assist in pin-pointing the problem. Once you
become familiar with the fault sequences under normal operation of the system, you
should be able to look at an exception log and find the areas of interest.

• Load the symbols for the debugger, including WIN386.SYM and any core components
of the Windows aUI that may be of interest, such as KRNL386.SYM. Once you've
located an address that may be causing problems, you can locate the nearest symbol by
using the LN (list near symbols) debugger command.

SECTION III

Putting It All Together

Chapter 12

VCOMMD Design Notes

Unfortunately, some of the best example programs are not themselves terribly usable. That
holds for the example here: While it is useful as a teaching tool, I strongly recommend
against actually using it in your system.

The following program virtualizes the COMl port. One of the biggest problems with
WIN386 today is the multitude of hardware cards, mostly used for communication of one
type or another (modem, fax, network, tape,and so forth), that attempt to run without a
VxD. I chose this topic in the hope that, by focusing on this particular problem, more
hardware vendors will provide VxDs for their cards.

This driver does not fully replace the VCD. It virtualizes the COMM port and can be used
instead of the VCD by DOS apps. However, it does not include the calls required to
support Windows COMM drivers, so it cannot be used by Windows programs that talk to
the Windows COMM API.

Design
To determine the goals of our COMM device. We need to virtualize the COMM port. If at
all possible, we want to allow several applications to use the port simultaneously. Many
applications should be able to read the state of the port and even set the communication
parameters, even if they are not going to talk over the line.

We can fully virtualize all of the ports except for the actual data port. Because we cannot
virtualize the actual data port, we have to make sure that only one application can talk on
the line at any given time. If two try to talk at the same time, we have to let the user decide
which application can use the port.

121

122 Chapter 12: VCOMMD Design Notes

We also need to reflect interrupts into the proper VM, which is an expensive operation, so
we want to make sure that we only do it if absolutely necessary. We can establish this by
watching the value that the application writes to the Interrupt Enable Register and by
trapping when the application does an EOI. Also, since emulation has so much overhead,
we need to define a new interface that is directly callable from DOS, Windows, and other
VxDs, is designed to allow block I/O (which is much faster than handling things on a byte­
by-byte basis), and implements an open and close on the port so that we know when an app
is done with the port. This eliminates the need to handle contention problems.

So, while we emulate to support existing applications, we also create a new API that works
a lot more efficiently in a WIN386 world. If you write the only code that touches your
card, then you should consider creating just the new interface. In this case, you still want to
trap on your ports, so that other applications cannot write to them by mistake.

The Code
Declare_Virtual_Device sets up our VxD. RS232_DEVICE_ID is an identification number
Microsoft has assigned to me personally; do not use it in any of your own VxDs. I use this
same number for other VxDs I write about. The init order is set to VCD_Init_Order+l, so
that RS232 loads before VCD, allowing us to get the IRQ and ports instead of VCD.

VidComIrq

VidComIrq is the data structure required by VPICD_Virtualize_IRQ to grab the IRQ.
ComHwlnt is called on each IRQ that comes in. Because we reflect the IRQ into a VM, we
need CornEoi. CornEoi is called when the VM does an EOI. We then do a
VPICD_Phys_EOI.

Finally, when we are reflecting interrupts to a VM, we want to be careful to not use up all
of their stack. Therefore, rather than simulating another IRQ when the VM d~es an EOI,
we wait until their IRQ handler does an iret, completely unusing the stack, before we send
in another one. We use ComIret, which is called after the VM does an iret to emulate the
next pending IRQ.

When VPICD receives an interrupt, it masks the interrupt off and sends an EOI. It then
reflects the IRQ to our VxD. When we do a VPICD_Phy_EOI, the VPICD unmasks the
interrupt. This has two important ramifications. First, another interrupt can then occur
immediately, and we can see it as soon as we unmask it. Second, if we never EOI, the
interrupt is never unmasked, and we never see it again.

Writing Windows Virtual Device Drivers 123

The Buffers

When a byte comes in on the data port, we want to read it before the next data byte
overwrites it. A VM cannot always respond this quickly. While we usually must be able to
reflect data to the VM as fast as it comes in, we can't do this on every byte, something like
the argument on polling versus. using an interrupt to handle an asynchronous line.
Therefore, all reads and writes are done within the VxD using buffers. All port emulation
read and writes also go to the buffers. Both the read and write buffers are circular buffers.
If the read and write pointers point to the same location, the buffer is empty. There is no
buffer overrun check because a check would create the possibility of losing old or new
data: If we ignore the problem, we lose old data. The result is the same - the program
still runs but data is lost. (Granted, we lose more data this way, but if we lose any data, we
are generally in trouble.) This eliminates the performance hit of checking the buffer size
on each read and write.

The read buffer needs of three bytes for each data byte received. For each data byte, we
first read the two status registers and store them. We then read the data byte and store it.
We read the status bytes first so that the line status shows the data byte. By saving all three
bytes, the calling application can get the status for each data byte.

Other Data

Next comes a number of jmp tables. These are used at various places within the code to
quickly jmp to the proper function.

bInVrnIrq is a count of how many IRQs sent to the VM have not yet returned. Sending
several at once is not a problem, as long as we don't overflow the VM's stack. This count
should never go over 2.

bIntEnb holds the value of the Interrupt Enable Register as set by the VM that owns the
port. Regardless of the value set, the hardware always has bits 0011b set. If the app in the
VM has not set these bits, we do not want the performance hit of emulating an IRQ.
Therefore, we use the values in bIntEnb to see whether we need to reflect an IRQ.

ComSysCritlnit
We do all of our initialization during Sys_Critical_Init. This allows us to get on the IRQ
and ports while no interrupts are occurring. We first use Allocate_Device_CB_Area to get
some per VM data. We can then access this data by adding the returned value to the VM
handle.

124 Chapter 12: VCOMMD Design Notes

Next we take over the eight COM1 I/O ports. If we cannot take over all of them, we return
with carry set, which tells WIN386 not to load our VxD. If we don't own all of the ports,
we are in conflict with another VxD (this is why VCD will fail to load if you load this
VxD).

Following that, we take over IRQ4. In a commercial VxD, both the port numbers and the
IRQ should be able to be overridden by values in system.ini. You can read system.ini by
using Get_Profile_String. This allows you to change settings if the board is reconfigured.
Once we have both the ports and the IRQ, we know we can run.

Now, we hook interrupts 21h, 23h, and 24h, so that we can take ownership of the port
away from a VM if it terminates. While interrupts 23h and 24h do not guarantee that an
app has terminated, an app can terminate in this manner.

Finally, we initialize the COM hardware, turning the interrupts on and enabling the
transmit and receive interrupts.

Port Trapping
Trapping is where half the work of emulating the port occurs (the other half is the IRQ
emulation). ComIoPortTrap is the common entry point. If the call comes from the VM that
owns the port, the logic is quite simple.

First we call Ernulate_Non_Byte_IO. If we get a request for non-byte I/O (word, dword,
string), this macro breaks it into byte-sized calls. Since I don't foresee anyone actually
using these calls, I use the emulate macro. If an app is likely to do a string of 512 bytes,
you will want to handle it yourself. The overhead of Emulate_Non_Byte_IO is significant.

Next, we clear the direction flag. (If we don't we will get annoying, time-consuming
intermittent bug.)

Then, if we don't take the jmp, we build the jrnp vector offset. This takes into account the
sizes of the read and write tables, as well as the specific values of ECX for reads and
writes. We then jmp to the proper function, so that the ret from that function will take us
directly back to WIN386.

Any call, jmp, or ret flushes the on-board cache on the 386 & 486, so we want to minimize
these. Conditional jmps that are not taken do not flush the cache. That's why ComIoPortTrap has
a single jmp for the common code path throughout this code. Generally, emulation code is never
fast enough, so you do everything you can to speed it up.

If the calling VM doesn't own the port, we need to decide what to do. If no one owns the
port, we can assign it to the calling VM. It would probably be better to assign the port to

Writing Windows Virtual Device Drivers 125

the first VM that accessed the data port; instead it is assigned to the first app to hit the port
at all. We then initialize the port to the values we were holding in our instance data. If the
app has written those values (while another app owned the port), it expects the hardware to
be in a certain configuration. If someone else owns the port, we fake it, providing it is not a
data read/write, by reflecting it back to the port-specific function which handles this. The
one exception is 110 to 3F8h, when it is set to be the baud rate instead of the data port. That
is handled in-line.

If we have a data 110 and someone else owns the port, we have to decide who gets it. If the
owner app used the new API, they keep the port. This not only gives apps an incentive to
use the new API but leaves the API with the app that will free up its use as soon as it is
done. Use a contention prompt when you think the owner may be done but are not sure.

Otherwise, we put up a contention MessageBox using SHELL_Resolve_Contention. This
call puts up a box asking the user to pick between the two VMs by using their window
titles to ID them (which usually both read MS-DOS Prompt). If the user picks the new one,
the ownership is switched. The one that is not picked is marked as FAILED so we don't
keep prompting every time it tries to read/write a byte.

IoRead

In IoRead8 all input goes through the buffer. Therefore, the first thing we do is look for
bytes in the buffer. If the buffer is empty, we return a 0; otherwise, we get the data byte
from the buffer, inc the read pointer to the next set of data, and return the byte. Notice that
we only take a conditional jmp if the pointer wrapped. This eliminates jmps from the
common code path. We only get to IoRead8 if the DLAB bit is off (its the data byte).
ComIoPortTrap handles virtualizing the low byte baud rate in 3F8h.

IoRead9 is doubly tricky. If the DLAB bit is set in register 3FBh, then register 9 is the high
byte of the baud rate. If it is not set, it is the bitmap of the interrupts we have enabled. If it
js the interrupts, we have to return the values the app set, which may be different from the
actual values since we force the transmit and receive interrupts on.

First we test to see whether we own the port. If not, we jmp to the end of the function to
return the information from our instance data. On a write to 3F9h, we save these values so
we return what the app expects. If DLAB is set, we read the port and return the value. If
DLAB is not set, we return the value in bIntEnb so that the app receives the valueit
expects.

loReadA is completely faked. We know which IRQ we sent down to the app and return the
appropriate value. If we did not send an IRQ down, we either return OOlb (receive IRQ) if
we have data or return nothing if we do not. IoReadB and IoReadC, on the other hand, are

126 Chapter 12: VCOMMD Design Notes

both quite simple. If the app owns the port, we read from the hardware. If not, we read
from the instance data.

10ReadD returns the line status. It tells us whether we can read or write a byte and whether
there are any errors. If the calling app owns the port, we return data from the read buffer.
If the read buffer is empty, we read the actual port. But if the calling app does not own the
port, we return 00011110b which tells the app that the transmit buffer is full (the app
cannot write), the receive buffer is empty (the app cannot read), and all error bits are on.
This seems to be the best way to get the point across to the app that it is not going to have
any luck with this port.

10ReadE is straightforward. If the calling app does not own the port, we use our instance
data. If it does own the port, we get the data from the read buffer. If the read buffer is
empty, we read from the hardware.

10ReadPort (used only for port F) just reads from the hardware if the calling app owns the
port. If the caller does not own the port, it returns O. This port is undefined for the 8250, so
we can't virtualize it.

IoWrite

loWrit8 copies the data to the write buffer and increments its pointer. Again, it uses two
jmps if the pointer wrapped to avoid jmps when the pointer does not wrap. If the output
buffer was empty, we call IrqTransmit to send the byte to the hardware.

IoWrit9, like IoRead9, is tricky. If the write is from an app that does not own the port, we
copy the value to the instance data for that VM. We do this for both the interrupt enable
and the high-baud registers (both of which use this port). We use the instance data for the
line control register to determine whether DLAB is set. If the app owns the port, and it is
writing to the interrupt enable register, we save the value in bIntEnb and then 'or' it with
0011b. This forces an IRQ to receive empty and transmit full, which we need for our
buffering code. We then write the byte to the hardware.

IoWritB and IoWritC are both quite simple. If the calling app does not own the port, we
copy the value to the instance data for that VM. If the app does own the port, we write to
the hardware. IoWritPort (used for ports A, D, E, and F) goes directly to the port if the
calling app owns the port. Writing to these ports is undefined for the 8250, so we cannot
virtualize it.

Writing Windows Virtual Device Drivers 127

IRQ Trapping
We trap the IRQ for two reasons. First, we need to see the interrupts when the transmit
buffer is empty or the receive buffer is full for our buffering. Second, we need to reflect
the interrupts down to the app that owns the port if it has enabled the interrupts that come
in. When the interrupt handler is called, interrupts are off. We want to tum them on as
soon as possible, because there may be other IRQs. When we tum them on, our IRQ
remains masked until we call VPICD_Phys_EOI, so we do not need to worry about being
re-entered. Since we do not need interrupts off for any reason, the first instruction is an
STI.

On calls to us, the direction flag is in an unknown state. We clear it so that mov
instructions will increment the pointers.

In ComHwInt we determine the correct handler to call based on the value in port 3FAh.
We use this value to determine which offset in IrqTabl to jmp to. We jmp so that the ret in
the called function returns directly back to WIN386.

In IrqReceive we first go into a loop that reads the data port until it is empty. We loop
because the 16550 has a 16-byte FIFO and we could get multiple bytes. Doing this in this
loop is much faster than getting each IRQ invividually. We read the status ports first so
that the line status will show that we have a data byte. After reading in the data, we call
VPICD_Phys_EOI, which causes the IRQ to be unmasked (remember, it has already been
EOIed). Its critical to do this as soon as possible so that we can get to the next interrupt
quickly. This separates talking to the port from virtualizing it.

Now we need to virtualize the IRQ down to the VM. We only do this if we are not already
in the middle of reflecting an IRQ. We also make sure we have data in our buffer. Finally,
we don't reflect it if the app didn't tum on that interrupt. We then call
VPICD_Set_Int_Request, which attempts to reflect the IRQ immediately, otherwise it will
reflect it as soon as possible.

Finally, if we have set up a callback function, we set up an event to call the app back. We
need to set up an event because we received the IRQ as an asynchronous event, limiting
what we can do. We may not even be in the proper VM (remember, a VxD is always
running in a VM, but which particular VM it is running on can change). If a fast response
is critical, you may want to use Critical_Section_Boost instead of Cur_Run_VM_Boost.

IrqTransmit works basically the same way as IrqReceive. IrqModemStaus and
IrqLineStatus are used merely to reflect the interrupts down to the VM. Our driver itself
doesn't care about these.

128 Chapter 12: VCOMMD Design Notes

VmCallBack is very simple. We pass a parameter in EAX which is the appropriate value
in port 3FAh, letting the called app know whether the callback is due to a non-empty
receive buffer or an empty transmit buffer. We then put the callback address in CX:EDX
and use the Simulate_Far_Call to set up the stack and Resume_Exec to make the call.
Don't forget the Client_State and Nest_Exec calls - without them it will not work.

ComEoi is called when the app does an EOI sends an EOI to the PIC. We have to call
VPICD_Clear_lnt_Request to end the IRQ in that VM.

ComIret is called after the IRQ handler in a VM has completed the iret call in the interrupt
handler called when we called VPICD_Set_Int_Request. At this point we call
VPICD_Set_Int_Request if we have data in our buffers and the app wants the IRQs. We
do it here so that we do not eat up the app's stack by having IRQs come in on top of each
other.

Com_V86_API_Proc and Com_PM_API_Proc are the entry points when a real or
protected mode app calls us via the int 2F call. In the initial functions, we have to convert
any pointers to flat 32-bit pointers. We thenjmp to Com_API_Proc.

Com_API_Proc copies the values for ECX and EDX that the app passed us to ECX and
EDX and then calls the appropriate function. On return, it copies EAX, ECX, and EDX
back to the client area on the stack, so that, on return, the calling app gets these return
values. The actual calls here are simple. ComOpen and ComClose give apps a way to ask
for the port and relinquish it when they are done. This eliminates the need for a contention
MessageBox and for guessing when an app is done with the port.

ComRead and ComWrite essentially copy their data from and into the buffers and return.
Doing read/writes of blocks of data is faster than emulating on a byte-by-byte basis and
avoids buffer overruns.

VM Creation and Destruction
ComVmTerminate is called every time a VM is terminated. When a VM owns the port, it
obviously will not need it any more, so we clear the ownership and call-back address.

ComVmCreate is called every time a VM is created (except the system VM). On creation,
we set the instance data to 1200,n,8,1.

ComInt21 and ComInt23_24 are used to determine when to take away ownership of a port.
If a program exits, we want to take away its ownership. An app can end with to an int 23

Writing Windows Virtual Device Drivers 129

or int 24. It can also end with an int 21, function 4Ch, 31h, or OOh. We take away
ownership on an EXEC call.

The Total VxD
When you first look at the total VxD it may seem overwhelming. But if you break it into its
component pieces, it becomes easy. The trick is to build the pieces one at a time.

First, build the core code that will talk to the hardware. Once you get this to work, decide
which is more critical, the new API or the emulation, and build in that part. Then, build the
other. As you do this, you need to keep a couple of things in mind.

First, it is absolutely critical that your VxD performs all communication to the physical
hardware. Do not let even the smallest part of it be handled directly by an application. For
example, port 3FFh is undefined for the 8250. My VxD emulates it and only allows the app
that owns the port to access it, rather than assuming that no one will access it. By the same
token, port 3FBh is called very rarely, and I probably could have not trapped it. In that
case, another VM could have written to it, changing the behavior of the port, and I would
never know. Thus, you handle all of the hardware from your VxD for both speed and
security reasons.

Create a new API using the direct call in capability. It is much more efficient than trapping
ports, interrupts, an so on. While you will still emulate the old API, you will have a much
more efficient approach for new code. Also, try to minimize the number of times you have
to make calls. Don't make calls to write one byte at a time-have a call to write a block of
data. In most situations, you can write 1 to 4 K as quickly as one byte.

Your emulation must average a certain speed, depending on what you are doing. However,
if at 9600 baud the buffers in this VxD slowly fill up, its average speed is slower than 9600
baud. Your either have is to make your emulation faster or live with the limits. Generally
you should find that there is only so much you can do to speed up emulation. Emulating a
port is a big hit, and emulating an IRQ is a gigantic hit. Compared to real mode, emulation
speed versus actual hardware speed is a difference in orders of magnitude. However, in
this case, all is not lost. First, you can also trap software interrupts, which is faster than
trapping ports and generally eliminates the need for IRQ emulation. In the example of this
driver, we could trap int 14h. Unfortunately, most applications don't use iot 14h, but we
could be faster with those that do. Second, in the case of the this VxD, while we talk to a
8250, we could emulate a 16550 with a FIFO buffer. On an IRQ, an app can read multiple
bytes, eliminating the IRQs for all those bytes. By the same token, just because you are
written for a specific device does not mean you can't emulate another device more
efficiently.

Chapter 13

Win-Link Design and
Implementation Notes

Now it's time to look at how you can use VxDs to pull tricks in the real world. We'll use
Win-Link as an example. As with many real-world projects, I had several reasons for
writing this program.

The fust part arose when I was having lunch with a number of other authors shortly before
the launch of Windows 3.1. They complained that Windows was not 32-bit and was not
pre-emptively multi-tasked, while OS/2 was. I immediately set about to refute this.
Although little known at the time, Windows 3.1 did have support in it for 32-bit programs.
Granted it was minimal and required assembler at first but it did exist (and it is what
Win32 uses).

But that left OS/2 as the pre-emptively multi-tasked O/S. So I pointed out that the DOS
boxes were pre-emptively multi-tasked under Windows. If a Windows app could talk to a
DOS app in a DOS box and have the DOS app do the heavy work, then the Windows app
would essentially be multi-tasked.

It made an interesting argument. Almost everyone at lunch was willing to concede that a
Windows app could be multi-tasked. But it made me wonder how this could be
implemented.

At the same time, there were a couple of features of Windows 3.1 that I found frustrating.
When I am in a DOS box and type the name of a Windows program, it tells me that I need
Windows to run it. Well, what does it think is running? When typing in the name of a
Windows EXE from a DOS box, I want it to run that EXE. I also found the title of DOS
boxes a little less than desirable. ALT-TABing through five windows, all called MS-DOS
Prompt, usually did not tell me which DOS box was running Brief. I wanted the name of

131

132 Chapter 13: Win-Link Design and Implementation Notes

the program. And while I was at it, I had one more pet peeve: You can only print from one
DOS box or Windows at a time. The DOS boxes don't spool their printing - they are
dedicated to it until the printing completes. Yet Windows has a nice spooler. Everything
was there - I just wanted the DOS boxes to print to the Windows spooler. Then all the
DOS boxes could print simultaneously - and do it quickly to the spooler.

Out if this came Win-Link, so named because it linked Windows and DOS applications.
Win-Link is essentially two programs in one. First, it provides Interprocess
Communication between Windows and DOS boxes as well as shared memory. Second, it
extends the User Interface of Windows by (1) launching Windows applications (and
additional DOS boxes) from a DOS box, (2) listing the running program as the title of a
Windows DOS box, and (3) sending all printer output from DOS boxes to the WIndows
spooler.

Implementing this was a killer. First of all, a number of the major concepts had not been
tried before. While everything should have worked, only one implementation that actually
did. In addition, there were a myriad of little details necessary to getting it right. Because
the code intercepted calls in every DOS box and made asynchronous calls to Windows,
every detail had to be right or the entire system would hang. or worse.

This chapter laysout the basic capabilities of the program to give you a clear picture of
what the code is trying to accomplish. Then it details the specific logic used to implement
each of these pieces, building on the previous pieces where appropiate. Finally, it walks
through and explains the actual code. This chapter does not try to teach you anything
general about writing VxDs. Instead, by concentrating on the specifics of a piece of real­
world code that pulls a number of interesting hacks, you can learn from it by example.

The System
How does a Windows or DOS app know which DOS box it wants to send a message to?
When a DOS box is launched, there is no way to identify it, so each DOS app must register
itself with Win-Link when it starts up and unregister itself when it is exiting. An
application can also make a call to get the VM handle for an application based on its ID.
Therefore, a Windows or DOS application can launch a DOS application and keep polling
until it finds the registered application (it needs to keep polling because the new DOS box
needs enough time slices to start up and execute the app to the point it registers itself).

We know how a Windows app can launch a DOS box. However, how does a DOS app
launch another DOS box (as opposed to spawning a process)? We add a call allowing a
DOS app to launch another DOS app. The parameters are similiar to spawning, but instead
of spawning in the same VM, Win-Link starts a new VM and runs the app.

Writing Windows Virtual Device Drivers 133

Next we need a way to pass messages back and forth. On the Windows side we already
have a system, so we merely give DOS boxes a way to call PostMessage. In the other
direction, and for between DOS boxes, we have our own message queue. It has three calls,
MsgPost to post a message to a VM, MsgPeek to look at a message sent to a VM, and
MsgRead to read a message posted to a VM. Unlike Windows messages, these messages
can't send pointers, because they are in different address spaces. So we provide two ways
to pass blocks of data between VMs. MsgMemCopy copies data from memory in one VM
to memory in another VM. MsgMemCopy automatically knows whether the each of the
VMs is in V86 or protected mode and interprets the segment/selector appropriately. There
are calls to allocate and free LDTs/GDTs for memory in a VM. While real-mode DOS
applications cannot access these selectors, Windows apps as well as protected-mode DOS
apps can. So a DOS app can pass a LDT to the Windows app to some of its memory. Then
both applications can access the memory. These calls give applications a way to
communicate with each other between VMs.

Two other sets of calls are provided to DOS applications. Win-Link provides a call to let a
DOS application set its Window title. For example, when Brief running, having B is
preferrable to MS-DOS Prompt. Brief - [filename.c] is even nicer. Win-Link
also provides a set of calls for printing. While DOS printer output is captured fairly
efficiently, again all Win-Link can show for a print job is the name of the application
printing the job. By adding a call to open the job, the application can display the name of
the document being printed in the Windows spooler. Also, Win-Link generally has to
guess when a print job has ended. This can be fixed by adding a call at the end of a job.

Finally, there are the DOS calls Win-Link intercepts. Win-Link intercepts all EXEC calls.
On these calls Win-Link determines whether the program being executed is a Windows
application. If so, Win-Link checks it against a list of files to execute as DOS apps. If the
application is not on that list, Win-Link executes the program from Windows instead of
from DOS.

The exception list is there for two reasons. There is no way to differentiate between bound
OS/2 applications and Windows applications, so any bound OS/2 app must be on the
exception list. Also, some applications have a complete DOS app as their Windows dos­
stub program, and you may wish to run the DOS stub.

Win-Link intercepts all output sent to LPT 1 via int 17h. We do not intercept print I/O
directly to the port, nor do we intercept printers on other ports. But all output written to
LPT 1 at the DOS level eventually gets to int 17h so that output is intercepted.

Printing a file performed via the PRINT command or programatically using PRINT's int
2Fh cCllls is also intercepted. But printing a file is intercepted at the command level, so that
just the file name is passed to Win-Link, which is much more efficient than intercepting

134 Chapter 13: Win-Link Design and Implementation Notes

the calls to int 17h. When a file prints, the file name is the job name in the Windows print
spooler. When a file prints to int 17h, the name of the program is the name of the job.
When a program uses the Win-Link call to name a print job, it will be the name the
program gave it.

EXEC, TERMINATE, and some other calls are tracked to determine the name of the
program running in the DOS box. This name is then matched against a list, which expands
predefined names to different names. For example, B changes to Brief. This name is then
set as the title of the Window for the DOS box.

The Approach
Win-Link is composed of three parts: (I) Win-Link, a Windows application, (2) Win-IPC,
a VxD, and (3) raw.drv, a printer driver. Win-Link and Win-IPC provide the functionality
we need. A VxD cannot make Windows calls and a Windows app cannot make VxD calls,
so the two programs work together. Raw.drv is needed for printing because many printer
drivers in Windows do not implement the PASSTHROUGH escape call.

The primary data structure is called VMDATA and is in both win_link.h and win_ipc.inc.
One of these structures exists for each VM, including the system VM. These are set up in a
linked-list so that Win-Link or Win-IPC can walk through all the VM's instances of the
structure. This gives the VxD full access, with little effort, to any VM data. In addition, the
first element is a LDT selector:offset that points to the structure, valid in the system VM.
This provides an easy way for Win-IPC to give Win-Link a pointer to the structure for any
VM.

In general, Win-IPC or Win-Link changes values in this structure and then sends a
message to the other telling it what to look at in the structure. Following is a brief
description of each element of the structure.

VmData struc
VmLdt dd 0
VmHandle dd 0
PrnSem dd 0
MsgSem dd 0
TimeHdl dd 0
LinkNext dd 0
LdtNext dd 0
pPsp dd 0
MsgGet dd 0 Next Message to read
MsgPut dd 0 Next free spot
MsgLast dd 0 Next == Free -> empty
PrntNwn dw 0
hDc dw 0
iPrnErr dw 0
iStr dw 0

hWnd
wFlags
BufCnt
PrntBuf
sXtra
MsgArr
sPsp
sProgName
sTitle
sExec
sCmdLine
sPrntStr

VmData ends

dw
dw
dw
db
db
db
db
db
db
db
db
db

Writing Windows Virtual Device Drivers 135

o
o
o
SIZE_PRNT_BUF dup (0)
0, 0
«size DosMsg) * MAX_DOS_MSG) dup (?)
9 dup (0), 0
31 dup (I I), 0
80 dup (0)
129 dup (0), 0
129 dup (0), 0
129 dup (0), 0

• VmLdt, a pointer to the structure in this VM. The LDT pointer is only valid in the
context of the system VM (not the VM this structure is for).

• VmHandle is the hVM, as defined by WIN386 for this VM. This value is needed by a
number of the VxD functions.

• PrnSem and MsgSem are semaphores created for the life of the VM. PmSem is used
for handling int 17h printing, and MsgSem is used to implement an internal
SendMessage mechanism (the public interface only supports PostMessage). These
semaphores exist for the life of the VM because they are frequently used.

• TimeHdl is used when a time-out intercepting int 17h printing is set. This value is
non-zero only when a timer event has been set.

• LinkNext is a flat 32-bit offset to the next VM's VMDATA structure. This value can
be used in Win-IPC in any VM to walk to the next VM's structure.

• LdtNext is a selector:offset LDT pointer valid in the system VM only. This value can
be used in Win-Link to walk to the next VM's structure.

• pPsp is a flat 32-bit offset to the PSP of the application presently running in that VM.
As a flat 32-bit pointer it is only accessed by Win-IPC.

• MsgNext, MsgFree, and MsgEnd are flat 32-bit offsets into MsgArr. They are used
to track the queue of messages posted to DOS VMs. MsgNext is the location of the
next message to read. MsgFree is the location where the next message will be written
(that is, an available location). MsgEnd points to the byte after the end of MsgArr.

• PrntNum is the number of bytes presently in PmtBuf. When this value exceeds
SIZE_PRINT_BLOCK, the data in PmtBuf is written to the spooler.

136 Chapter 13: Win-Link Design and Implementation Notes

• hDc is the printer DC for the data presently being redirected from int 17h to the
Windows print spooler. This value is 0 if there is presently nothing to print (and
therefore no DC open).

• iPrnErr is the value returned when an app in a VM calls int 17h to get the LPT status.

• iStr is the listbox index of this VM's print job. Each print job is listed in the Win-Link
dialog box, and this value is used to delete the job when it has completed printing.

• hWnd is the handle to the Window for this DOS box. Determining this is not an exact
science, and the handle may be wrong. It is also initially 0 until a guess can be made as
to its value.

• wFlags is a bitmap of a number of flags. These flags set which of the interception
capabilities (such as, exec Windows apps from DOS or print redirection to the spooler)
are on.

• BufCnt is used when data is sent to the print spooler. The first 2 bytes of the buffer are
the· length of the data in the rest of the buffer. Therefore, we don't pass the address of
PmtBuf. Instead, we set BufCnt to the value of PrntNum and pass the address of
BufCnt.

• PrntBuf holds that data intercepted from int 17h. If every byte intercepted by Win­
IPC were posted to Win-Link, the overhead of the message posting would bring the
system to its knees. Therefore, once lK of data has been intercepted, Win-Link is
notified to write the data to the spooler.

• MsgArr holds the messages posted to DOS VMs. These messages are held until read
by the app in a DOS VM. This is a static array - once it is out of space no more
messages may be posted until some are read.

The following elements are used to pass data for certain messages. This data is only
considered valid between the time when the message is sent to when it is processed. The
data is placed here instead of in the message because pointers cannot be passed in a
message.

• sPsp is a zero-terminated string of the program name in the selected PSP in this VM.
This string is pulled from the MCB of the PSP and is here because Win-Link cannot
access pPsp.

• sProgName is the name of the VM set by the Register call. A DOS app Registers
itself to name a VM and another DOS or Windows app, then finds the hVM of the
registered DOS app by searching for the named VM.

Writing Windows Virtual Device Drivers 137

• sTitle is the title to set for this VM's window. This is the value pulled from sPsp or
passed when a DOS app sets its title. Translations made by Win-Link (such as B to
Brief) are handled by Win-Link when it receives the message telling it to use this
value.

• sExec is the file presently being exec'ed. This is used if a program is a Windows
executable and a message is then passed to Win-Link to exec the program. Win-Link
determines whether the program is on the list of programs not to exec from Windows.
This is also used when DOS apps are launched by creating a new DOS box.

• sCmdLine is the command line for sExec. The command lines are kept separate
because at times Win-IPC and Win-Link need to know only the file name.

• sPrntStr is the name of a file sent to PRINT to be printed.

Handling VM Creation

Before getting into how we implement any specific piece of Win-IPClWin-Link, we need
to discuss what we do on VM creation. Creation is the platform on which we can provide
all our capabilities.

When creating the system VM, we _Allocate_Device_CB_Area for the VMDATA
structure for each VM and interrupt we need to intercept (I7h, 2Ih, 23h, 24h, & 2Fh).

; Allocate per/VM instance data
VMMCall _Allocate_Device_CB_Area, «size VmData>, 0>
cmp eax, 0
je short scilO No memory - do nothing
mov [CbVmData], eax
and [SysFlags], not MEM_OFF

; Set up the System VM data
mov eax, ebx
call GetVmData
mov [esi.VmHandle], ebx
VMMcall Get_Sys_VM_Handle
mov [SysVm], ebx

scilO: clc
ret

EndProc Winlpc_Sys_Critical_Init

Save System VM

; Hook interrupts
mov eax, 17h ; Sit on int 17
mov esi, OFFSET32 Wirtlpc_Int_17

138 Chapter 13: Win-Link Design and Implementation Notes

VMMcall Hook_V86_Int_Chain
mov eax, 21h ; Sit on int 21
mov esi, OFFSET32 Winlpc_Int_21
VMMcall Hook_V86_Int_Chain
mov eax, 23h ; Sit on int 23
mov esi, OFFSET32 Winlpc_Int_23
VMMcall Hook_V86_Int_Chain
mov eax, 24h ; Sit on int 24
mov esi, OFFSET32 Winlpc_Int_24
VMMcall Hook_V86_Int_Chain
mov eax, 2Fh ; Sit on int 2F
mov esi, OFFSET32 Winlpc_Int_2F
VMMcall Hook_V86_Int_Chain

clc
ret

EndProc Winlpc_Dev_Init

For each additional VM created we do a little more. First, we need to initialize VMDATA
by performing the following steps:

1. We zero out all the data (thereby handling all elements that need to be set to 0).

2. We set the VmHandle (it is EBX on entry) and MsgNext, MsgFree, and MsgEnd.
We can now accept messages posted to this VM.

3. We set pPsp to the PSP for the VM. This way we know that pPsp is valid in the rest
of our code.

4. We create the MsgSem and PmSem semaphores. This allows us to assume these
exist in the rest of our code as well as avoid the processor overhead of constantly
creating and freeing them.

5. We create a LDT selector:offset to point to the VMDAT structure that is good in the
system VM.

6. We insert this VMs VMDATA structure into the linked list of all the VM's
VMDATA structures. We do this for both LinkNext and LdtNext.

BeginProc Winlpc_VM_Create

test
jnz
; Get
mov
call
mov
xor
mov
rep

[SysFlags], MEM_OFF
vmc10 Turned off - do nothing

& zero-fill VmData
eax, ebx
GetVmData
edi, esi
eax, eax
ecx, (size VmData) / 4
stoed

; Init VmData

Writing Windows Virtual Device Drivers 139

mov [esi.VmHandle], ebx
lea ecx, [esi] .MsgArr
mov [esi].MsgGet, ecx
mov [esi].MsgPut, ecx
mov eax, MAX_DOS_MSG - 1
mov edx, size DosMsg
mul edx
add eax, ecx
mov [esi].MsgLast, eax

; Get the PSP (via SDA) location
Push_Client_State
VMMcall Begin_Nest_Exec
mov [ebp.Client_AX], SD06h
mov eax, 21h
VMMcall Exec_lnt
movzx edx, [ebp.Client_DS]
shl edx, 4
movzx eax, [ebp.Client_Sl]
add edx, eax
add edx, [ebx.CB_High_Linear]
add edx, 10h
mov [esi].pPsp, edx

VMMcall End_Nest_Exec
Pop_Client_State

xor ecx, ecx
VMMcall Create_Semaphore
jc vmcl0
mov [esi].MsgSem, eax
xor ecx, ecx
VMMcall Create_Semaphore
jc vmcl0
mov [esi] .PrnSem, eax

Set up Msg semaphore

Set up Prn semaphore

; Create LDT so Win-Link can access structure
SizeVmData EQU (size VmData)
VMMcall _BuildDescriptorDWORDs <esi, SizeVmData, RW_Data_Type,

D_GRAN_BYTE, 0>
VMMcall _Allocate_LDT_Selector <[Sysvm], edx, eax, 1, 0>
rol eax, 16
mov [esi.VmLdt], eax

Build linked-list
Do this last so we are only in the list if 1) We are all
filled in & 2) We were able to set up semaphores, etc.

mov edi, esi
mov eax, [SysVm]
call GetVmData
mov eax, [esi.LinkNext]
mov [edi.LinkNext], eax
mov [esi.LinkNext], edi

140 Chapter 13: Win-Link Design and Implementation Notes

mov eax, [esi . LdtNext]
mov [edi •LdtNext], eax
mov eax, [edi. VmLdt]
mov [esi.LdtNext], eax

, ••. see next listing
; We now send a msg to set the title. We do this here
; so we get the message before another VM is created; we
; just grab the first free VM in Windows.
PostPm [SysVm], [SysWnd], MSG_DOS_TITLE, 0, [edi.VmLdt]

vmclO: clc
ret

EndProc WinIpc_VM_Create

At this point we still have two remaining tasks before we are fully ready for the new VM.
The easy one is setting the title of the DOS box. The difficult one is, determining the
handle of the Window for this VM and we can't set the title until we know the hWnd.

Be warned that the method covered here is not completely foolproof. It seems to work
about 98 percent of the time. It runs into trouble largely when a bunch of DOS boxes are
launched in a row, so that we have several hVM <-> hWnd resolutions pending.

Implementation
We start implementation by posting a message to Win-Link telling it to set the title for this
VM. It does this by posting MSG_DOS_TITLE to Win-Link. However, if hWnd is NULL,
Win-Link (in the function DosTitle) performs some special processing. This processing
exists only for this frrst call to DosTitle:

; We now send a msg to set the title.
PostPm [SysVm], [SysWnd], MSG_DOS_TITLE, 0, [edi.VmLdt]

vmclO: clc
ret

EndProc Winlpc VM Create

If we are running under Windows 3.1, we set a hook and post a message back to Win-IPC.
We cover what this does in a moment because it has no effect until we complete the rest of
the processing in DosTitle.

We next walk through all Windows whose class is tty (the class of all DOS box windows).
We also check that this window is a DOS box, although this may be merely paranoia on
my part. Once we find a tty window, we check whether it is already registered to another
of our VMs. If so, we keep looking. If not, we assume that it belongs to this VM.

Writing Windows Virtual Device Drivers 141

If you are following along in the code you'll notice we also passed in a NULL text string
and you will set a potentially wrong hWnd to the title. However, because the string is
NULL, the text will not be set - DosTitle actually is two separate functions wrapped in
one for historical reasons - I originally attempted to get the hWnd by other means.

II We walk the list of top windows looking for one of class tty
hWnd = FindWindow ("tty", NULL);

while (hWnd)
{
II See if its a DOS box
GetClassName (hWnd, sBuf, 5);
if (StrCmp (sBuf, "tty"»

goto NextWin;
if (! IsWinOldApTask (GetWindowTask (hWnd»)

goto NextWin;

II See if we already have this one
fpVmOn = fpVmData;
do

{
if (fpVmOn->hWnd == hWnd)

goto NextWin;
if (! (fpVmOn = fpVmOn->LdtNext»

break;
}

while (fpVmOn != fpVmData);

II We have it!
fpVmData->hWnd = hWnd;

II Get the next window
NextWin:

hWnd = GetWindow (hWnd, GW_HWNDNEXT);
}

II We failed
fpVmData->hWnd = (HWND) -1;

Now we have a hVM == hWnd pairing. But this was merely a guess. This is where the
hook comes in. We have hooked all messages being sent to any window - a very
expensive hook but quite necessary. We then posted a message to Win-IPC. The message
causes _MsgShellEvent in Win-IPC to be called. In _MsgShellEvent we make a VxD call
to SHELL_Event. SHELL_Event allows us to send a Windows message to a DOS box
window by specifying its hVM, which we do know. So we post a message with a constant
in uMsg to ID the message and the selector to VrnData (we make use of the fact that all
our LDT pointers have an offset of 0) in wParam. In our hook filter proc we look for any
message with this message number. When we see it, we set that hWnd as the hWnd for our
VM. Finally, we post a message to ourselves. When we receive this message we remove

142 Chapter 13: Win-Link Design and Implementation Notes

the hook. Once the hook is removed, we no longer impose any overhead on the system.
We have the correct hWnd unless someone else sent the same message number between
the time we installed the hook and the time SHELL_Event got the message back to us. We
now have our hWnd and are initialized for the VM just created.

II ... in DosTitle
if (uVer >= Ox030A)

if (iHookCnt++ == 0)
hhookMsgFilterHook = SetWindowsHook (WH_GETMESSAGE,

(HOOKPROC)lpfnMsgFilterProc);
PostMessage (hDlg, MSG_EVENT_ON, 0, fpVmData->VmHandle);

II ... In main DlgProc
case MSG_EVENT_ON :

dShellEvent (lParam);
break;

case MSG_EVENT_OFF :
if (--iHookCnt == 0)

UnhookWindowsHook (WH_GETMESSAGE,
(HOOKPROC)lpfnMsgFilterProc);

break;

II HOOK Call-backs
LRESULT CALLBACK _export __loadds MsgFilterFunc (int nCode, WORD
wParam, DWORD IParam)
{

if «(MSG __far *) IParam)->message == Ox6969)
HandleEvent (lParam);

return (0);
}

void __loadds HandleEvent (long IParam)
{

VMDATA _far *pVmData;
pVmData = PTR «(MSG __far *) IParam)->wParam, O};
if (1 SelOk «void _far *) pVmData, sizeof (VMDATA)})

return;
pVmData->hWnd = «MSG __far *) IParam)->hwnd;
PostMessage (hMainDlg, MSG_EVENT_OFF, 0, 0);

; WIN_IPC.386 dShellEvent
_MsgShellEvent proc

push ebx
mov eax, [ebp.Client_ECX]
mov ebx, eax
call GetVmData
mov ecx, 6969h
movzx eax, word ptr [esi.VmLdt + 2]
xor esi, esi
xor edx, edx
VxDcall SHELL_Event

CallVxd MACRO
mov
mov
mov

Writing Windows Virtual Device Drivers 143

I

pop ebx

ret
_MsgShellEvent endp

Registering DOS Apps
We now need to determine which VM is running our DOS app. To do this Win-IPC
provides a call in which a DOS app passes a name to our VmData structure. Another app
can Query and Win-IPC will walk the VrnData structs to find the one with the matching
name.

The implementation of this is simple enough that no code is shown, but can be found in the
source code on the book's disk. However, it is a critical piece - you can't talk to a DOS
app until you know its hVM, and the Register/Query calls provide a means to determine
thehVM.

Internal Message Passing
Message posting is the most difficult part of the system. This section discusses how Win­
Link and Win-IPC post and send messages to each other. The next section will discuss
how applications can post messages, and that functionality makes use of the basic message
passing. However, this section only discusses the internal messaging used by Win-Link
and Win-IPC.

Win-Link to Win-IPe

When messages pass from Win-Link to Win-IPC a Windows application is calling a VxD.
This is always safe - if it wasn't Windows would not be receiving any time slices. All
messages from Win-Link to Win-IPC are sent as opposed to posted. This is because it is
much easier to send than to post and there is no need for posted messages. All parameters
are passed in registers. Win-Link then calls the far-call address it received when it initially
called int 2Fh with AX=1684h. This calls the entry point in Win-IPC with these registers
set.

; EAX: uMsg = Message to post to Win-IPC
; ECX: lParaml first long param
; EDX: lParam2 = second long param

uMsg, lParaml, lParam2
ecx, lParaml
edx, lParam2
eax, uMsg

144 Chapter 13: Win-Link Design and Implementation Notes

xor ebx, ebx
call dword ptr [WinlpcAddr]
ENDM

This gets a message to WinIpc_PMJpi_Proc in Win-IPC. A jump table is used to go
to the. handler for the specific message passed in. Because this is also the entry point other
Windows applications use to call Win-IPC, the procedure frrst checks to make sure the
passed-in message is a legit number for a Windows application. It does this by using the
message number as an offset into the table PmOkTable, which is a table of bytes. If a
byte is 0, then the message is not legal; if it is -1, it is legitimate. At the same time the
procedure also makes sure that the message number is within the range of handled
messages.

movzx
cmp
ja
and
mov
cmp
je

pap10: call
ret

pap20: mov
ret

eax, [ebp.Client_AX]
eax, (NumPmOk - 1)
short pap10
eax, OFFh
al, [PmOkTable + eax]
al, 0
short pap20

DefMsgProc

[ebp.Client_AX], ERR_UNKNOWN_MSG
; exit error

DefMsgProc is even simpler. It frrst looks to see if Win-IPC is on. If the flag ME)LOFF
~n.sysFlags is set, the Win-IPC is turned off. In this case, DetMsgProc does nothing and
refuses to handle any messages. DetMsgProc then jmps to the appropiate handler from
MsgDispTable. This is a quick way to get to the correct message. We jump instead of call
because that saves us a ret when we are done.

DefMsgProc proc

test [SysFlags], MEM_OFF Are we running?
j z short dmp20
mov [ebp.Client_AX], ERR_NO_VM_MEMORY
ret

dmp20: movzx eax, [ebp.Client_AX]
jmp [MsgDispTable + 4 * eax]

DefMsgProc endp

Get the message

Writing Windows Virtual Device Drivers 145

Whichever function is called then executes and returns. When it returns, the return goes
back to Win-Link, with the return value passed in AX.

Win-IPe to Win-Link

We want to post messages to Win-Link whenever possible so that we can be in Win-IPC
when Windows is in a non-reentrant state. As a matter of fact, almost any time we are in
Win-IPC, Windows, and therefore Win-Link, is in a non-reentrant state. This means we
cannot make a call to Win-Link from Win-IPC. There is one exception to this rule.
PostMessage in Windows was specifically designed to be fully re-entrant. So the one
connection we have from Win-IPC to Win-Link is the ability to call PostMessage.

There is still one minor concern. We do not want to call PostMessage if the Windows VM
is in the critical section or has interrupts off. This is not an absolute requirement, but it is
part of being a good neighbor. Taking the time to post a message while a Windows app (or
DLL, more likely) is in a critical section can delay that application enough to cause it
major harm - and bring the system down. We also have to wait until the Windows VM
can be scheduled. An immediate call would go into the current VM, which quite possibly
is not the Windows VM. Therefore, when LinkMsgProc returns, the message may not
yet have been posted. So we have to get a temporary structure to hold our message until
we can post it to Windows. Otherwise, the message could be overwritten as soon as
LinkMsgProc returned.

SendMessage

The function LinkMsgProc is used for both posting and sending messages. The following
code is an abbreviated version showing just those parts relevant to PostMessage. The
parameter checking is not displayed here, either. For a full discussion of the code, see the
discussion of SendMessage that follows.

LinkMsgProe

; Get
dmp70: mov

mov
mov

dmp80: xehg
emp
je
xehg
add
loop
mov
ret

proe

a VmMsg struet
ex, [VmMsgAlloe]
edi, [VmMsgOff]
eax, [ebp.Client_EBX]
[edi.Handle], eax
eax, 0
short dmp90
[edi.Handle], eax
edi, size VmMsg
dmp80
[ebp.Client_AX], ERR_MSG_FULL

146 Chapter 13: Win-Link Design and Implementation Notes

; edi
dmp90: mov

mov
mov
mov
mov
mov
mov

points to a VMMSG struct
eax, [ebp.Client_EAX]
[edi.lParaml], eax
eax, [ebp.Client_EDX]
[edi.1Param2], eax
eax, [ebp.Client_ECX]
[edi.lWndMsg], eax
[edi.vxnOff], esi

save message

[esi.VmHandle]
PEF_Wait_For_STI or PEF_Wait Not Crit
edi
OFFSET32 HandleCallBack

Call_PrioritY_VM_Event

; lets generate the call-back
mov eax, Low_Pri_Device_Boost
push ebx
mov ebx,
mov ecx,
mov edx,
mov esi,
VMMcall
pop ebx

mov
mov
mov
mov

ret

edx, [edi.Rtn]
[ebp.Client_EDX], edx
eax, ERR_NONE
[ebp.Client_EAX], eax

rtn regs & Client_regs

LinkMsgProc endp

This code has not necessarily posted a message. It has merely saved it in the structure and
set up a call to HandleCallBack. If the Windows VM had interrupts on and was not in
a critical section, HandleCallBack was called before Call_Priority_VM_Event returned.
Either way, HandleCallBack has been, or shortly will be, executed.

HandleCallBack first pushes the client state so it can modify the VM's registers. It then
moves the message values to the client registers on the stack. These are the values the
registers will have when Resume_Exec is called. HandleCallBack then sets up a nested
execution call to _dMsgProc in Win-Link. This code makes a call to PostMessage to get
the message posted. On return from Resume_Exec, the message is posted, assuming that
there was room in the queue for it. Finally, the VMMSG struct is marked as free and the
client registers are taken off the stack. When HandleCallBack returns, it has returned the
VM to its original state.

HandleCallBack proc
Push_Client_State

mov
mov
mov
mov
mov
mov

edi, edx
eax, [edi.1Paraml]
[ebp.Client_EAX], eax
eax, [edi.1Param2]
[ebp.Client_EDX], eax
eax, [edi.1WndMsg]

Get pointer
Set up registers

Writing Windows Virtual Device Drivers 147

mov [ebp.Client_ECX], eax
mov [ebp.Client_EBX], edi

mov edx, [SysCallBack]
mov cx, dx
shr edx, 16
VMMcall Begin_Nest_Exec
VMMcall Simulate_Far_Call
VMMcall Resume_Exec
VMMcall End_Nest_exec

Call the sucker

mov
mov
mov

eax, [ebp.Client_EAX]
[edi.Rtn], eax
[edi.Handle], 0

; save rtn value

Mark VmMsg avail

Pop_Client_State
ret

HandleCallBack endp

Win-Link

On the Win-Link side, the message has to be posted via the Windows PostMessage
API. This is not as trivial as merely passing our parameters to PostMessage. Unfortunately,
in a number of send messages we need to pass two DWORDs as well as a WORD. Since
the standard Windows message does not have this capacity, we have to build it in. Because
we use the same code to post and send, we must build into post also. Also, Win-Link
maintains another array of message strucs that hold the incoming message. The actual
message posted to Win-Link is a pointer to this structure.

_dMsgProc proc far

push si
push ds
push bp
push 0
mov bp, sp

push ax
push cx
mov ax, - DATA
mov ds, ax
mov cx, NOM_MSG
mov si, offset _DATA: MsgData

mp10: mov ax, OFFFFh
xchg ds: [si. InUse] , ax
cmp ax, 0
je mp20
add si, size VXDMSG
loop mp10
IntTest

148 Chapter 13: Win-Link Design and Implementation Notes

pop cx
pop ax
jmp mp30

mp20: pop cx
pop ax
mov dword ptr ds:[si.mWndl, ecx
mov dword ptr ds:[si.mwParam], eax
mov ds: [si .mIParam] , edx
mov ds: [si .mEDI] , ebx

push ds: [MainWnd]
push MSG_WIN_IPC
push 0
push ds
push si

call PostMessage

mp30: add sp, 2
pop bp
pop ds
pop si
ret

dMsgProc endp

This pushes the message into the Windows message queue. We have to look at what
happens when it pops out the other end.

For this we look at the function MainDlgProc in win_link.c. Again, we abbreviate it to
show just the PostMessage code. We find that we post a plain old Windows message, so
we go back into the message queue.

case MSG_WIN_IPC :
pVxdMsg = (VXDMSG _far *) IParam;

II Lots of SendMessage code ...

PostMessage (pVxdMsg->hWnd, pVxdMsg->uMsg, pVxdMsg->wParam,
pVxdMsg->IParam);

pVxdMsg->InUse = 0;
break;

This is not necessarily the best way to handle a post; but it works.

SendMessage to Win-Link

To get from SendMessage to Win-Link, we merely add two additional pieces to the puzzle.
First, in LinkMsgProc we block on a semaphore after posting the message. This semaphore
is then unblocked by a call Win-Link makes after the message has been processed.

Writing Windows Virtual Device Drivers 149

Because of this semaphQre, it is critical that we do not send a message from the Windows
VM. If we do we will block the Windows VM, and if the Windows VM is blocked it will
never execute the code to unblock the semaphore.

The second addition to the code involves returning a value. The main reason to call
SenrlMessage instead of PostMessage is that you need to know the return value from
SendMessage. So we start with LinkMsgProc again. We add a semaphore, block on after
setting an event to HandleCallBack, and destroy the semaphore when we have unblocked.
We create and destroy the semaphore on a per-message basis for two reasons. First, there
can be multiple SendMessages, so we can't use a single semaphore. Second, a
SendMessage is a pretty rare event, so the overhead is not a killer.

The handle to the semaphore is included in the message structure. The handle is needed by
Win-Link to make a call back to Win-IPC, telling it to unblock that semaphore. We first
check to see whether IPC is turned on or off. If it is turned off we do not accept any
messages. Then we check ~o see whether we are sending a message from a Windows app
to a Windows app. There is no reason for that to go through us, so we don't allow it. Next
we get the VrnData struct for the receiving VM. GetVrnData returns a pointer to VrnData
in ESI. This also assures us that we are sending a message to a VM that exists.

We now check to make sure we have an address to call in the Windows VM to get to
Po~tMessage. The flag IPC_OFF should be set if this is NULL, but I like to be paranoid in
cases like this. We then go into the code we saw before to get a VMMSG struct. This struct
holds our passed-in message parameters, the semaphore we use to block, and the return
value from the SendMessage call. This data is allocated to this message until the
semaphore is unblocked at the end of ListMsgProc.

LinkMsgProc proc

; We have a message to post/send.
; We can't send a msg from Windows to Windows!!

dmp40: test
jz
mov
ret

dmpSO: cmp
jne
cmp
jne
mov
ret

[SysFlags], IPC_OFF ; Are we running?
short dmpSO
[ebp.Client_AX], ERR_NO_WIN_APP

ebx, [SysVm] ; Win Msg to WinMsg?
short dmp60
ebx, [ebp.Client_EBX]
short dmp60
[ebp.Client_AX], ERR_WIN_TO_WIN

dmp60: mov
call
jc

eax, [ebp.Client_EBX]
GetVm
short dmp6S

Get destination VM

150 Chapter 13: Win-Link Design and Implementation Notes

call

cmp
jne

dmp65: mov
ret

; Get
dmp70: mov

mov
mov

dmp80: xchg
cmp
je
xchg
add
loop
mov
ret

GetVmData

[SysCallBack], 0
short dmp70
[ebp.Client_AX], ERR_UNKNOWN_VM

a VmMsg struct
cx, [vmMsgAlloc]
edi, [VmMsgOff]
eax, [ebp.Client_EBX]
[edi.Handle], eax
eax, 0
short dmp90
[edi.Handle], eax
edi, size VmMsg
dmp80
[ebp.Client_AX], ERR_MSG_FULL

Here is where we start to differentiate because we are sending a message. First we create a
semaphore, and this value is stored in our VMMSG structure. Following that, we set up the
rest of the structure and then set up an event to call HandleCallBack, just as we did in
PostMessage.

dmp90: test [ebp.Client_EAX], FLAG_SEND_MSG ; send?
j z short dmpll0
xor ecx, ecx ; Set up a semaphore
VMMcall Create_Semaphore
jnc short dmplOO
mov [ebp.Client_AX], ERR_NO_SEMAPHORE
ret

dmplOO: mov [edi.SendSem], eax

dmpll0: mov
mov
mov
mov
mov
mov
mov

eax, [ebp.Client_EAX]
[edi.lParaml], ea~

eax, [ebp.Client_EDX]
[edi.lParam2], eax
eax, [ebp.Client_ECX]
[edi.lWndMsg], eax
[edi.VmOff], esi

save message

[esi.VmHandle]
PEF_Wait_For_STI or PEF_Wait_Not_Crit
edi
OFFSET32 HandleCallBack

Call_PrioritY_VM_Event

; lets generate the call-back
mov eax, Low_Pri_Device_Boost
push ebx
mov ebx,
mov ecx,
mov edx,
mov esi,
VMMcall
pop ebx

Writing Windows Virtual Device Drivers 151

mov edx, [edi.Rtn] ; rtn regs & Client regs

The rest of the function is send-specific. The semaphore is blocked to stop LinkMsgProc
from returning until after the semaphore is unblocked. In the meantime, before or after the
semaphore is blocked, HandleCallBack calls Win-Link, which processes the message.
When the message has been processed, Win-Link makes a call to Win-IPC, passing the
semaphore and return value. This call in Win-IPC sets the return value in the VMMSG
struct and clears the semaphore.

The end result of this is that when Wait_Semaphore returns, the return value of the
SendMessage is in EDI.Rtn. All that is left to do is to destroy the semaphore, free up the
VMMSG struct, and return the result from SendMessage.

Note that the value is returned in DX. AX is always the status returned from the call so that
you can differentiate between a 1 returned from SendMessage and an error code of 1.

test [ebp.Client_EAX], FLAG_SEND_MSG ; send?
jz short dmp130

dmp12 0 : mov
mov ecx,
VMMcall

eax, [edi.SendSem]
Block_Svc_Ints or Block_Enable Ints

Wait_Semaphore block until sent

mov eax, [edi. SendSem]
VMMcall Destroy_Semaphore
mov edx, [edi.Rtn]
mov [edi . Handle] , 0

destroy it
rtn regs & Client_regs
Mark VmMsg avail

dmp130:
mov
mov

ret

mov [ebp.Client_EDX], edx
eax, ERR_NONE
[ebp.Client_EAX], eax

LinkMsgProc endp

So what happens differently in HandleCallBack? Nothing! There is a different code path
for a SendMessage to a VM other than the system VM, but a SendMessage to the system
VM is identical to a PostMessage. The same goes for _dMsgProc in Win-Link.

Which brings us to MainDlgProc. I have shown the full code for handling a message from
Win-IPC, but the part executed when we send a message from Win-IPC to Win-Link is the
part that creates the SendDlg struct and passes that. So all the messages we send to Win­
Link are sent from the MSG_WIN_IPC case back to MainDIgProc, with all the variables
passed in a struct that IParam points to. The return value to be passed back is set in that
struct. When the internal SendMessage call returns, we call dPostMsg, passing the return
value and a pointer to the VMMSG struct that is holding the sent message on the Win-IPC

152 Chapter 13: Win-Link Design and Implementation Notes

side. This call sets the return value in VMMSG and clears the semaphore. Finally, the
VXDMSG struct is freed. At this point the mess~ge has been processed, but we still need
to go back to Win-IPC, pass the return value, and clear the semaphore.

case MSG_WIN_IPC :
pVxdMsg = (VXDMSG _far *) lParam;

if (pVxdMsg->wFlags & Ox0001)
{
if (pVxdMsg->hWnd 1= hDlg)

lRtn = SendMessage (pVxdMsg->hWnd, pVxdMsg->uMsg, pVxdMsg­
>wParam, pVxdMsg->lParam);

else
{
SendDlg.1Param = pVxdMsg->lParam;
SendDlg.wParam = pVxdMsg->wParam;
SendDlg.1Rtn = 0;
SendMessage (pVxdMsg->hWnd, pVxdMsg->uMsg, 0, (long) (LPVOID)

&SendDlg);
lRtn = SendDlg.1Rtn;
}

dPostMsg <_MSG_SEND_RTN, lRtn, pVxdMsg->lEDI);
}

else
PostMessage (pVxdMsg->hWnd, pVxdMsg->uMsg, pVxdMsg->wParam,

pVxdMsg->lParam);

pVxdMsg->InUse = 0;
break;

The message _MSG_SEND_RTN works its way through the dispatching code and ends up
at _MsgSendRtn. _MsgSendRtn checks to make sure the passed-in pointer is good, then
places the return value in VMMSG and clears (signals) the semaphore. This causes the
Block_Semaphore in LinkMsgProc to return with the original SendMessage call.

_MsgSendRtn proc

; Check edi (points to VmMsg, good handle)
mov edi, [ebp.Client_EDX]
mov ecx, [VmMsgOffl
cmp edi, ecx'
jb . short msrlO

mov eax, size VmMsg
mul [VmMsgAlloc]
add eax, ecx
cmp edi, eax
jae short msrlO
cmp ebx, [edi.Handlel
~ne short msrlO

Writing Windows Virtual Device Drivers 153

; Its ok - save the rtn value & turn semaphore off
mov eax, [ebp.Client_ECXl
mov [edi.Rtnl, eax
mov eax, [edi. SendSem]
VMMcall Signal_Semaphore

msrlO: ret
MsgSendRtn endp

We have thus sent a message from Win-IPC to Win-Link. Definitely not a trivial
undertaking, but not terribly complicated or convoluted.

Other Design Considerations

PostMessage is coded to be totally re-entrant, but it does have one blind spot: PostMessage
itself is not re-entrant. In other words, you can call PostMessage when any other code in
Windows is being executed, but you cannot call PostMessage when PostMessage is
executing.

The only time this comes up is when you post a message in an interrupt handler in your
VxD and while the message is being posted, another interrupt comes in so that you post
again. Using PostMessage under these conditions causes the first message to disappear.
This is not a good idea anyway - you would probably max out the message queue under
such a design.

You need to make sure that any memory touched by Win-Link while in _dMsgProc is
locked down in physical memory. Again, because we can call this at any time, the code
and data used cannot be swapped out to disk. If it were, you would use whatever happened
to be there instead or fault, depending on the state of the system at the time. That is why
Win-Link locks down its code and data when it starts. It is not necessary to lock the entire
program down (I did it because Win-Link is small model), but it is critical that every byte
of code and data that you touch at this time is locked down.

Message Passing Between VMs
Message passing between applications takes three forms: (1) DOS app to Windows app,
(2) Windows App to DOS app, and (3) DOS app to DOS app (between different VMs).
And after trying several approaches to this kind of message passing, I settled on allowing
only posting, not sending. This eliminates all the re-entrancy problems that send messages
cause. In addition, Win-IPC does not call a DOS box with a message. A DOS box has to
poll. This is less efficient but is a lot safer. And with shared memory you can add code to
set a flag before posting a message.

154 Chapter 13: Win-Link Design and Implementation Notes

DOS to DOS, Windows to DOS

Posting to a DOS app involves three functions, MsgPost, MsgPeek, and MsgRead in
win_ipe.asm. To post a message to a DOS app the calling app will call MsgPost. MsgPost
will then place the passed parameters in a DOSMSG struct that is held in an array in the
VmData for the receiving VM. This is an array of a set size Gust like a Windows app), so
the first test is to make sure that space exists in the array. If it does not, the post will fail. If
there is room, the message is stored in the structure and the structure pointer MsgLast is
incremented to the next slot. We have now posted the message to the queue.

If the DOS app receiving the message calls MsgRead, it is blocked on a semaphore. We
signal the semaphore to free it up. If MsgRead has not been called yet, it is called to read
the message. Because we already signaled the semaphore, when MsgRead calls
Block_Semaphore it returns instantly.

Finally, we boost the execution priority of the receiving VM. The theory behind this is that
this VM has been waiting for the message. We now want to give it a boost so it can get
started processing the message. Depending on your application, you may prefer not to
include this step. It gives you a faster response but makes Windows freeze for a moment.

In the following eode fragment I have removed the part that handles messages posted to a
Windows app. This is the code that handles posting to a DOS app.

MsgPost proc

mplO: call GetVmData ; ESI = VmData of dest VM

; Do we have room in the message array???
; NO if Write == Read-lOR (Read == MsgArr
; AND Write == last element)
mov eax, size DosMsg
mov edi, [esi] .MsgGet
sub edi, eax
cmp edi, [esi] .MsgPut Write Read-l?
je short mp90 YES

lea
cmp
jne
mov
cmp
je

edx, [esi].MsgArr
[esi].MsgGet, edx
short mp20
eax, [esi].MsgLast
eax, [esi].MsgPut
short mp90

Read == MsgArr?
NO

AND Write last

; OK we can store it
mp20: mov edi, [esi] .MsgPut

mov ax, [ebp.Client_CX]
mov [edi] .dWnd, ax
mov ax, [ebp.Client_CXh]
mov [edi].dMsg, ax

Writing Windows Virtual Device Drivers 155

mov ax, [ebp.Client_DI]
mov [edi].dwParam, ax
mov eax, [ebp.Client_EDX]
mov [edi] .dlParam, eax

; inc free, roll it if past end
add [esi].MsgPut, size DosMsg
mov eax, [esi].MsgLast
cmp [esi] .MsgPut, eax
jbe short mp30
lea eax, [esi] .MsgArr
mov [esi] .MsgPut, eax

; Signal read we have a message
mp30: mov eax, [esi .MsgSem]

VMMcall Signal_Semaphore

; Boost the execution priority of the guy we call
; so it gets the message ASAP.
mov eax, Low_Pri_Device_Boost
VMMcall Adjust_Exec_Priority

mp40: mov
ret

mp90: mov
ret

MsgPost endp

We now have a message in the queue for a DOS VM. There are two calls to handle getting
the message to the DOS app. The first call is MsgPeek. When a DOS app calls MsgPeek, it
gets a copy of the next message in the queue. If there is no message, Release_Time_Slice
is called and a no-message error is returned. This call assumes MsgPeek is only called in
an idle loop. If you make this call to check for an abort message, you might want to
remove the Release_Time_Slice.

MsgPeek proc

mov eax, ebx
call GetVmData

; do we have one?
mov edi, [esi] .MsgGet
cmp edi, [esil .MsgPut
j e short mpk90

; Lets fill it in
mov eax, [ebp] .Client_EDX
call V86ToPmPtr
mov esi, edi
mov edi, eax

ESI VmData of VM

156 Chapter 13: Win-Link Design and Implementation Notes

mov ecx, (size DosMsg) / 2
rep movsw

mov [ebp.Client_EAX], ERR_NONE
ret

mpk90: VMMca11 Re1ease_Time_S1ice
mov [ebp.Client_EAX], ERR_NO_MSG
ret

MsgPeek endp

The second call is MsgRead. Although MsgPeek will return the contents of the next
message, MsgRad actually removes a message from the queue. The first step is to call
Wait_Semaphore. If there are no messages in the queue, this call blocks until MsgPost is
called, putting a message in the queue and signaling the semaphore. Next, the message is
filled in and the pointer MsgGet is incremented to the next location in the queue. The
message is then returned.

MsgRead proc

mov eax, ebx
call GetVmData i ESI VmData of VM

i Lets block if there are no messages
mov eax, [esi .MsgSem]
mov ecx, B1ock_Svc_Ints or B1ock_Enab1e_Ints
VMMca11 Wait_Semaphore

i Lets fill it in
mrlO: Save <esi>

mov eax, [ebp] .C1ient_EDX
call V86ToPmPtr
mov esi, [esi] .MsgGet
mov edi, eax
mov ecx, (size DosMsg) / 2
rep movsw
Restore <esi>

i inc next, roll it if past end
add [esi].MsgGet, size DosMsg
mov eax, [esi] .MsgLast
cmp [esil.MsgGet, eax
jbe short mr20
lea eax, [esi] .MsgArr
mov [esi].MsgGet, eax

mr20: mov
ret

MsgRead endp

Writing Windows Virtual Device Drivers 157

DOS to Windows

Posting a message from a DOS app to a Windows app piggybacks on the internal message
passing system. The DOS app needs to know the handle of the Windows app it is posting
to. Then it just calls our internal PostMessage routine, passing it the message parameters.
The message is then passed to Win-Link, which posts the message. The following code
shows just the to Windows part of MsgPost.

MsgPost proc

mov eax, [ebp.Client_EBX]
call GetVm
jc short mpOS
cmp eax, [SysVm]
jne short mplO

PostPm [SysVm], [$bp.Client_CX], [ebp.Client_CXh],
[ebp.Client_DI], [ebp.Client_EDX]

mov [ebp.Client_EAX], ERR_NONE
ret

mpOS: mov
ret

mplO: post to DOS app code ...

MsgPost endp

Shared Memory and Copying Data Between VMs
Posting messages has a couple of disadvantages: It has a high overhead, it has a high
latency (slow response time), and it has a queue limit. Most of all, you cannot pass
pointers, just data in the registers themselves. Therefore we need calls to let us share
memory. This capability comes to us in three calls, which let us copy data from one VM to
another and give us pointers in one VM to data in another VM. Unfortunately, the pointer
trick only works in protected-mode apps. A protected-mode app can get a pointer to data in
a real mode app, but, because a real-mode app uses segments instead of selectors, this is a
one-way street. The real-mode DOS app cannot get a pointer to memory in a Windows
application.

Copying Memory

The MsgMemCopy function copies data from any VM to any other VM. It assumes that
any VM other than the system VM is a real-mode address. The code for this is very simple:

158 Chapter 13: Win-Link Design and Implementation Notes

the pointers are converted to flat 32-bit pointers and the data is then copied. The function
V86ToPmPtr converts the pointerNM pairs to the flat 32-bit offsets.

V86ToPmPtr

Save
cmp
jne

proc

<edx>
ebx, [SysVm]
short vtp20

Save <ecx>
push eax
shr eax, 16
VMMcall _SelectorMapFlat <[SysVm], EAX, 0>
pop edx

cmp eax,-l
je short vtp10

and edx, OFFFFh
add eax, edx
Restore <ecx,edx>
clc
ret

vtp10: Restore <ecx,edx>
stc
ret

vtp20: movzx
shr
and
add
add

edx, ax
eax, 12
eax, OFFFFOh
eax, edx
eax, [ebx.CB_High_Linear]

Restore <edx>
clc
ret

V86ToPmPtr endp

GetVm performs a very simple function. If the passed-in value in EAX is 0, GetVm
returns the system VM in EAX. Otherwise, it leaves EAX alone, assuming it is the handle
to a VM. In debug mode GetVm validates the VM handle. Thus, it is a way to convert any
passed-in VM handle from our system that maps a handle of 0 to the system VM, and in
debug mode validates the handle.

GetVm proc

or eax, eax
j nz short gvlO
mov eax, [SysVm]

Writing Windows Virtual Device Drivers 159

gvlO: Save <ebx>
mov ebx, eax
VMMcall Validate_VM_Handle
Restore <ebx>

ret
GetVm endp

This function is not affected by what VM is currently running. However, the memory at
both ends of this copy had better be locked down. The error-checking code has been
removed from the following to make the sample clearer.

MsgMemCopy proc

Save <ebx>

; Get the params
mov eax, [ebp.Client_EBX]
call GetVm
mov ebx, eax

mov
call
mov

mov
call
mov

mov
call
mov

eax, [ebp.Client_ESI]
V86ToPmPtr
esi, eax

eax, [ebp.Client_EDX]
GetVm
ebx, eax

eax, [ebp.Client_EDI]
V86ToPmPtr
edi, eax

mov ecx, [ebp.Client_ECX]
Restore <ebx>

; Copy the dwords
Save <ecx>
shr ecx, 2
rep movsd
Restore <ecx>
and ecx, 03h
j z short mmc30
rep movsb

mmc30: mov [ebp.Client_EAX], ERR_NONE
ret

MsgMemCopy endp

160 Chapter 13: Wil~-Link Design and Implementation Notes

Ldt and Gdt Pointers

The pairs of calls to create and free LDT and GDT pointers are: MsgMemLdt,
MsgMemFreeLdt, MsgMemGdt, and MsgMemFreeGdt. We discuss only the LDT calls
here. The GDT calls are similiar except that you do not need to specify in which sector
VM will be used.

MsgMemLdt frrst verifies that the VM where the memory is located is good. It then calls
V86ToPmPtr to get the flat offset of the memory location. It next tests the limit. Because
we are returning a 16: 16 pointer, we have to ensure that the limit does not exceed 64K.
Finally, we verify that the VM that will use the returned LDT pointer is legit.

We use the pair of calls _BuildDescriptorDWORDs and _Allocate_LDT_Selector to create
a LDT pointer from the passed-in parameters.

MsgMemLdt

Save

mov
call
jc
mov

proc

<ebx>

eax, [ebp.Client_EDX]
GetVm
short mml30
ebx, eax

; Get flat address
mov eax, [ebp.Client_EDI]
call V86ToPmPtr
jc short mml30
mov esi, eax

; Get the limit
mov edi, [ebp.Client_ECX]
test edi, OFFFOOOOOh
jnz short mml30'

mov eax, [ebp.Client_EBX]
call GetVm
jc ~hort mm130
mov ebx, eax

; Create it
VMMcall _BuildDescriptorDWORDs <esi, edi, RW_Data_Type,

D_GRAN_BYTE, 0>
. ~call _Allocate_LDT_Selector <ebx, edx, eax, 1, 0>

Restore <ebx>
mov [ebp.Client_AX], ax
ret

mm130: Restore <ebx>
mov [ebp.Client_EAX], 0

Writing Windows Virtual Device Drivers 161

I

ret

MsgMemLdt endp

Freeing an LDT is even easier. Again, because a VM handle of 0 needs to be converted we
call GetVm. Then we call_Free_LDT_Selector to free the LDT.

Whether you use LDTs or GDTs, the free call is critical. There are only 8K of GDTs in the
entire system and only 8K of LDTs in each VM. If you have a leak where you allocate and
don't free pointers, you will bring the system to its knees sooner or later.

MsgMemFreeLdt

Save

mov
call
jc
mov

proc

<ebx>

eax, [ebp.Client_EBX]
GetVm
short mf120
ebx, eax

movzx edx, word ptr [ebp.Client_EDX]
VMMcall _Free_LDT_Selector <ebx, edx, 0>

Restore <ebx>
mov [ebp.Client_EAX], 0
ret

mf120: Restore <ebx>
mov [ebp.Client_EAX], ERR_UNKNOWN_VM
ret

MsgMemFreeLdt endp

Launching a DOS box
A Windows app can launch a DOS or Windows app with no help from us. The trick is for
a DOS app to launch a Windows app or another DOS box.

This is painfully easy. The DOS app sends a message to Win-Link, which calls DosExec in
Win-Link. This call passes a file to exec and a run parameter. This file can be a DOS or
Windows app.

Win-Link will then call WinExec to launch the app. The app is launched in the mode
specified. If the mode is SW_HIDE, the app is launched but you will not even see an icon
for it.

void DosExec (HWND hDlg,LONG lParam)
{
BYTE _far *fpsFilei

162 Chapter 13: Win-Link Design and Implementation Notes

SENDDLG _far *fpSendDlg;
VMDATA _far *fpVmData;

fpSendDlg = (SENDDLG _far *) IParam;
fpVmData = (VMDATA _far *) fpSendDlg->lParam;
fpsFile = fpVmData->sExec;

if (WinExec (fpsFile, fpSendDlg->wParam) <= 32)
fpSendDlg->lRtn = OL;

else
fpSendDlg->lRtn = -lL;

* (fpVmData->sExec) = 0;
}

Launching Windows Applications from DOS
We now come to the initial instigation for the Win-Link program. In a window at the DOS
prompt you type the name of a Windows app and it returns saying, "This program
requires Microsoft Windows."

And the initial thought I always had was: What do you think is running? Granted this was
partially a problem with wording - I have seen some applications that will sense if
Windows is running and, if it is, gives you a better message. But still, Windows is running
and I want it to start up my Windows app, even if I type the command from the DOS
command line. So we will now go through this process.

The first step is to intercept the int 21h call to exec a DOS program. (Note: all the
following code fragments show just the necessary parts to catch the DOS exec. I have also
removed the special case code for win.com.) If you type win at the ODS command prompt,
Win-Link had some special handling. This is remnant from Windows 3.0 days when
Windows would let you start Windows in a DOS box.

The first thing we do is open the .EXE file. We have to be careful here because if share is
loaded and this is a Windows EXE that is already running, we will get a sharing violation.
So we also have an int 24h hooker to catch the violation. This stops it from appearing in
the DOS box.

mov eax, ebx
call GetVmData

test [esi.wFlagsl, 124_0N
j z short i24_10

mov [ebp.Client_AL1, 3

Writing Windows Virtual Device Drivers 163

clc
ret

i24_10: stc
ret

If the open fails, we check the return code. If it is a sharing violation, we pass it on to Win­
Link to try and exec because the odds are pretty good that its a Windows app. If it is a
different error we pass it on to DOS for a try.

If the open succeeded, we next read to see if it is a New Executable format file.
Unfortunately all this means is it is not real mode. However, there is no way to tell if it's a
Windows or OS/2 application.

If the file does not have the NE signature, we pass it on to DOS. Up to this point our hit
has been minimal. Yes we did an open, but DOS will open the same file again so all we did
is get it in the cache sooner.

i21_70: cmp [ebp.Client_AX], 4BOOh
jne i21_160

test [SysFlags], EXEC_OFF
jnz i21_160

Push_Client_State
VMMcall Begin_Nest_Exec

EXEC, func O?

EXEC off?

push edi local vars
push esi local vars
sub esp, size DiStk
mov edi, esp
mov [edi .hVm] , ebx

movzx
shl
movzx
add
add

movzx
shl
movzx
add
add
mov

edx, [ebp.Client_ES]
edx, 4
eax, [ebp.Client_BX]
edx, eax
edx, [ebx.CB_High_Linear]

eax, word ptr [edx+4]
eax, 4
edx, word ptr [edx+2]
edx, eax
edx, [ebx.CB_High_Linear]
[edi.pCmd], edx

get offset to cmd line

movzx edx, [ebp.Client_DS]
name

get offset to file

164 Chapter 13: Win-Link Design and Implementation Notes

shl
movzx
add
add
mov

edx, 4
eax, [ebp.Client_DX]
edx, eax
edx, [ebx.CB_High_Linear]
[edi.pFn], edx

or [esi.wFlags], 124_0N
mov eax, 3D20h
VxDint 21h
jnc short i21_110
and [esi.wFlags], not 124_0N
cmp aI, 5
jne i21_150
jmp i21_120

open file

NO error on open

file locked?
NO - leave it to DOS

i21_110:
mov
mov

and [esi.wFlags], not 124_0N
[edi.hFile], ax
ebx, eax

mov eax, 3FOOh
mov ecx, 2
lea edx, [edi] +RwBuf
VxDint 21h
jc i21_140
cmp word ptr [edi.RwBuf], 5A4Dh
jne i21_140

mov eax, 4200h
xor ecx, ecx
mov edx, 3Ch
vxDint 21h
jc i21_140

mov eax, 3FOOh
mov ecx, 4
lea edx, [edi] +RwBuf
VxDint 21h
jc i21_140

movzx edx, word ptr [edi.RwBuf]
movzx ecx, word ptr [edi.RwBuf+2]
mov eax, 4200h
VxDint 21h
jc i21_140

mov eax, 3FOOh
mov ecx, 2
lea edx, [edi] +RwBuf
VxDint 21h
jc i21_140
cmp word ptr [edi.RwBuf], 454Eh
jne i21_140

read MZ

seek to offset

read offset

Seek to new EXE

read NE

mov bx, [edi.hFilel close file

Writing Windows Virtual Device Drivers 165

mov eax, 3EOOh
VxDint 21h

Ok, we may have a Windows app, so we copy the file name and command line into our
structure and send a message to Win-Link. Win-Link will return a 0 if it launched the
program successfully. In that case we return, eating the interrupt call. This will return the
POS box back to the DOS prompt.

If Win-Link retu~s non zero, then it could not launch the app. In that case we return with
carry set and the interrupt is passed on to DOS. DOS then attempts to launch the
application.

i21_120: mov ebx, [edi .hVm]
mov eax, ebx
call GetVmbata

push edi
J;?ush esi

mov
lea
xchg
mov
rep

edi, [edi] .pFn
esi, [esi].sExec·
fasi, edi
ecx, 128 / 4
movsd

copy fn

pop esi
pop edi
push ed!
push esi

mov
lea
xchg
mov
rep

edi, [edi].pCmd
esi, [esi].sCmdLine
esi, edi
ecx, 128 / 4
movsd

copy command line

pop esi
pop edi

mov edx, [esi.VmLdt]
Save <edi,esi>
SendPm [SysVm], [SysWnd], MSG_WIN_EXEC, 0, edx

Restore <esi,edi>
mov ebx, [edi .hVm]

cmp
jne

edx, 0
short i21_150

WinExec OK?

add esp, size DiStk
pop esi
pop edi

166 Chapter 13: Win-Link Design and Implementation Notes

VMMcall End Nest Exec
Pop_Client_State

clc
ret

i21_140: mov bx, [edi.hFile]
mov eax, 3EOOh
VxDint 21h

i21_150: mov ebx, [edi.hVm]

add esp, size DiStk
pop esi
pop edi
VMMcall End_Nest_Exec
Pop_Client_State

i21_160: stc
ret

return done

close file

return continue chain

When the message is sent to Win-Link, it processes it in ExecFile. We first look to see if
this file is in a list of files that are to not be launched. This list includes bound OS/2 apps,
apps that have both a real DOS program as their stub, and any other EXEs that have a NE
header that you do not wish to launch. These files are tracked by file name only, not the
full path. So we compare just the file name.

We then find the drive and directory of the file being executed. This is the directory it is in
because command.com walks the path, but for each attempt it passes EXEC the fully
qualified file name to run. We set that drive and directory as the default drive and
directory. This wayan application is run from its own directory. Experience has shown me
that this is the best drive to use.

Now we're ready to try it. We call LoadModule because we only want to launch Windows
apps and not DOS apps. A DOS app should stay in its own VM. LoadModule can only
exec a Windows app. LoadModule gives us a return value which we then pass back as our
return value. Obtaining this return value is the reason we ~eeded a SendMessage instead of
a PostMessage.

Finally, we restore the default drive and directory.

void ExecFile (HWND hDlg,WORD wParam,DWORD IParam)
{
BYTE _far *fpsBase, _far *fpsFilej
SENDDLG _far *fpSendDlgj
VMDATA _far *fpVmDataj
FARPROC lpProcAboutj
int iNurnj

Writing Windows Virtual Device Drivers 167

LOADMOD LoadMod;
WORD wCmdShow[2];
BYTE sBuf[FILE_MAX+2], sCwd[FILE_MAX+2];

fpSendDlg = (SENDDLG _far *) lParam;
fpVmData = (VMDATA _far *) fpSendDlg->lParam;
fpsBase = fpVmData->sExec;
fpsFile = fStrEnd (fpsBase);
while «fpsFile >= fpsBase) && (*fpsFile 1= 1\\1) &&

(*fpsFile 1= III) && (*fpsFile 1= 1:1»
fpsFile--;

fpsFile++;

II see if in our no-no list
fpSendDlg->lRtn = OL;
if «iNum = (int) SendDlgItemMessage (hDlg, DLG_NO_EXEC,

LB_FINDSTRING, 0, (LONG) fpsFile» >= 0)
{
SendDlgItemMessage (hDlg, DLG_NO_EXEC, LB_GETTEXT,

iNum, (LONG) (LPSTR) sBuf);
if (1 fStriCmp (sBuf, fpsFile»

fpSendDlg->lRtn OXFFFFFFFFL;
}

if (fpSendDlg->lRtn 1= 0)
{
* (fpVmData->sExec) 0;
return;
}

II Save the current dir & set the current dir to the dir
II the program is in. After the exec - we restore the cur dir
_getdcwd (toupper (*fpsBase) - IA I + 1, sCwd, FILE_MAX);
fStrnCpy (sBuf, fpsBase, FILE_MAX);
iNum = Min (fpsFile - fpsBase, FILE_MAX);
if «iNum > 3) && (sBuf[iNum-1] == 1\\1»

iNum--;
sBuf [iNum] = 0;

II Set default drive & dir
_dos_setdrive (toupper (sBuf[O]) - IA I + 1, (unsigned *) &iNum);
_chdir (sBuf);

fpsFile = fpVmData->sCmdLine;
*(fpsFile + (*fpsFile) + 1) = 0;

LoadMod.wEnvSeg = 0;
LoadMod.dwRes = 0;
LoadMod.lpCmdLine fpsFile + 1;
LoadMod.lpCmdShow = wCmdShow;
wCmdShow[O] = 2;
wCmdShow[l] = SW_SHOWNORMAL;

if (LoadModule (fpsBase, &LoadMod) <= (HINSTANCE) 32)

168 Chapter 13: Win-Link Design and Implementation Notes

fpSendDlg->lRtn = -lL;
* (fpVmData->sExec) = 0;

II Back to the old drive & dir
_dos_setdrive (toupper (sCwd[O]) - IAI + 1, (unsigned *) &iNum);
_chdir (sCwd);

}..

The DOS Box Title, Print Intercepting, and Everything
We have covered a significant part of Win-Link. Unfortunately (or fortunately depending
on your point of view), this book is not tittled The Complete Guide to the Win-Link
Sources.

The DOS box title tracking is fairly straightforward. Whenever Win-IPC believes that the
running application has changed, it sets the title to the string found in the memory arena for
the currently selected PSP~

The one weird thing here is you can't track the set PSP call because there are usually TSRs
or device drivers that temporarily change it. You will find that the title constantly changes
as you sit at the DOS prompt.

The. print intercepting is probably the most complicated part of the entire program. It
involves intercepting various interrupts, time-outs, and its own printer driver. A thorough
discussion of it could b~ a book by itself. And, unfortunately, I do not have permission to
include the sources to the raw printer driver. However, all RAW.DRV does is properly
implement the PASSTHROUGH escape command; most 3.1 printer drivers also do that.

The rest of Win-Link is pretty dull. There is the code to handle the dialog box and the
other details of a standard Windows program. I hope by explaining how a commercial
program works, I have provided a different viewpoint into VxDs than you get from sample
programs. I also hope that if you ever have to write a program like this that the code
presented here will give you a head start. I can tell you from experience that attacking this
for the first time is not the best way to learn about VxDs.

SECTION 4

VMM and VxD Service
Reference

Appendix A

Service Interface Reference

This appendix contains an alphabetic listing of the VMM and system VxDs services and
macros.1

VMM Service Reference

_AddFreePhysPage
include vmm.inc

VMMcall _AddFreePhysPage, <PhysPgNum, nPages, flags>

mov [PagesAdded], eax ; 0 = none, 1 = some, 2 = all

The _AddFreePhysPage service adds one or more physical pages to the free memory
pool. Virtual devices use this service to add pages that the Windows loader could not find,
but that the virtual device did find. For example, the V86MMGR device adds any unused
physical pages it finds when using the Global EMM Import function of a 386 LIMulator.

This service is only available during initialization and only in Windows version 3.1 and
later.

Parameters

PhysPgNum

Specifies the physical page number of the first page to add. The page number must be
greater than or equal to 110h; only extended memory pages may be added to the pool.

1Reprinted with permission of Microsoft Corporation.

171

The specified pages must be read/write physical memory pages, and must be
available for use at any time.

nPages

Specifies the number of physical pages to add.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains one of the following values:

Value Meaning

o

2

None of the specified physical pages were added to the free pool.

Some, but not all, of the specified physical pages were added.

All of the specified physical pages were added.

Comments

A virtual device must not attempt to use pages once it has added them to the free pool, or
attempt to add pages that are already available to the system.

This service returns an error if the number of pages to add exceeds the limit of the internal
data structure the system uses the manage the free pool. The internal data structure is
allocated during initialization and cannot be modified.

Uses

EAX

See Also

_GetFreePageCount

include vmm.inc

or
jz

eax, eax
not_added

; nonzero if added, zero if error

The _Add_Global_V86_Data_Area service adds a region to the list of regions available
for allocation as global V86 data areas.

This service is only available during initialization, and only for Windows version 3.1 or
later.

Parameters

LinAddr

Specifies the linear address of the first byte of the region. This address must be less
than 100000h, and must not lie between the first and last V86 page for the specified
virtual machine.

nBytes

Specifies the size in bytes of the region.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid region specification.

Comments

This service supports virtual devices, such as the virtual MS-DOS manager and the
V86MMGR device, which can manage high memory above the last V86 page. The
service lets these devices add available regions which would otherwise go unused.
Typically, such regions are nonpage-aligned fragments which cannot be used for normal
operations requiring page-aligned memory.

Calls to this service should be made during processing of the Sys_Critical_Init message.
Virtual devices should not wait for the Device_Init or Init_Complete messages since
most of the allocation of global V86 data areas is done while processing the Device_Init
message.

If this service adds a region that is above the last V86 page, virtual devices should not
attempt to allocate the region until the Sys_Critical_Init message has been processed.

Uses

EAX

See Also

_Allocate_Global_V86_Data_Area

174 _Addlnstanceltem

_Addlilstanceltem

include vmm.inc

VMMcall _Addlnstanceltem, «OFFSET32 InstStruc>, flags>

or
jz

eax, eax
not added

nonzero if added, zero if error

The _Addlnstanceltem service identifies a region of instance data in the V86 address
space.

Parameters

InstStruc

Points to an InstDataStruc structure containing information about the block of
memory to instance.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise EAX
contains zero to indicate an error.

Comments

To prevent errors, a virtual device must not change the location and content of any
InstDataStruc structures until after the system has completed its initialization. to
achieve this, a virtual can either staticly allocate the structures in its INIT data segment or
dynamically allocate the structures on the system heap using the _HeapAllocate service.
If the structures are in the INIT data segment, the system automatically frees the structure
when it reclaims the INIT segment space. If the structures are in the system heap, the
virtual device must free the structures using the _HeapFree service while processing the
Sys_VM_Init message.

If a virtual device the structures on the system heap, it must not attempt to reallocate the
structure before system initialization has completed since this invalidates the structure
address.

Only one, contiguous region of instance data can be identified with each structure. The
virtual device can cut down the call overhead and data space requirements by coalescing
adjacent blocks of instance data and identifying the coalesced blocks as a single instance
item.

Uses

EAX

include vmm.inc

mov eax, PriorityBoost
mov ebx, VM
VMMcall Adjust Exec Priority

signed integer
VM handle

The Adjust_Exec_Priority service raises or lowers the execution priority of the specified
virtual machine. The service adds the specified boost to the virtual machine's current
execution priority.

Parameters

PriorityBoost

Specifies a positive or negative priority boost for the virtual machine. This parameter
must be a value such that when added to the current execution priority, the result is
within the range Reserved_Low_Boost to Reserved_High_Boost.

The following lists some common priority boost values:

Value

Reserved_Low_Boost

Cur_Run_VM_Boost

Meaning

Reserved for use by system.

The time-slice scheduler uses this value to force a
virtual machine to run for its allotted time-slice.

Virtual devices use this value for events that need
timely processing but are not time critical.

Virtual devices use this value for events that need
timely processing but should not circumvent
operations that have a critical section boost.

The system uses this value for virtual machines
specified in a call to the Begin_Critical_Section
service.

Virtual devices use this value for events that must be
processed even when another virtual machine is in a
critical section. For example, VPICD uses this when
simulating hardware interrupts.

Reserved for use by system.

2.

1.

VM

Specifies the handle identifying the virtual machine.

Return Value

This service has no return value.

Comments

Since the nonsuspended virtual machine with the highest execution priority is always the
current virtual machine, this service causes a task switch under two circumstances:

The execution priority of the current virtual machine is lowered (EAX is
negative), and there is another virtual machine with a higher priority that is
not suspended.

The execution of a nonsuspended virtual machine which is not the current
virtual machine is raised (EAX is positive) higher than the current virtual
machine's execution priority.

Even if the current virtual machine is in a critical section, a task switch will still occur if
the priority of another nonsuspended virtual machine is raised higher than the current
virtual machine's priority. However, this will only occur when a virtual machine is given a
time-critical boost, for example, to simulate a hardware interrupt.

It is often more convenient to call the Call_Priority_VM_Event service than to call this
service directly.

Uses

Flags

See Also

Begin_Critical_Section, Call_Priority_VM_Event

include vmm.inc

mov eax, Time ; number of milliseconds
mov ebx, VM ; VM handle
VMMcall Adjust Execution Time

The Adjust_Execution_Time service adjusts the amount of execution time a virtual
machine is granted with each time slice. Virtual devices, such as the virtual COM device,
use this service to temporarily boost the priority of a virtual machine, such as when the
virtual machine is receiving an unusually high number of interrupts.

Parameters

Time

Specifies a signed integer value representing the number of milliseconds to add or
subtract from the current time-slice granularity value.

VM

Specifies a handle identifying the virtual machine to adjust.

Return Value

This service has no return value.

Comments

This service has the same effect on all virtual machines regardless of their time-slice
priority. If the specified virtual machine is not on the time-slice list, this service returns
immediately (does nothing). This service never forces a nonrunnable virtual machine to
execute. A virtual machine not already in the background cannot be forced to run in the
background by boosting its execution time.

This service can increase or decrease the execution time for a virtual machine. However,
decreasing execution time is not recommended because it defeats the purpose of
multitasking. Virtual devices should avoid using this service.

Uses

Flags

See Also

Get_Time_Slice_Granularity, Set_Time_Slice_Granularity

_Allocate_Device_CB_Area

include vmm.inc

or
jz

mov

eax, eax
not_allocated

[Offset], eax

zero if error

offset from start of control block

The _Allocate_Device_CB_Area service allocates an area in the control block of the
current virtual machine for exclusive use by the virtual device. Virtual devices typically
uses this service to allocate space to store data that is specific to a given virtual machine.

This service is only available during initialization.

Parameters

nBytes

Specifies the number of bytes to allocate.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the offset from the start of the control block to the new area if
the service is successful. Otherwise, EAX contains zero to indicate an error such as
insufficient memory to satisfy the request.

Comments

If this service returns an error, the virtual device should consider this a fatal error and
respond accordingly.

Although this service aligns the new area on a doubleword boundary and rounds the
nBytes parameter up to the next multiple of 4, the virtual device must not rely on this
behavior.

The service fills the newly allocated area with zeros. When the system creates a new
virtual machine, it fills all bytes of the control block with zeros.

Uses

EAX

include vmm.inc

VMMcall _Allocate_GDT_Selector, <DescDWORD1, DescDWORD2, flags>

mov ecx, eax ; zero in eax and edx if error
or ecx, edx
jz error

mov [Selector], eax new selector
mov word ptr [GDTSel], dx selector for the GDT
ror edx, lOb
mov word ptr [SelCount], dx number of selectors in GDT

The _Allocate_GDT_Selector service creates a new selector and adds it to the Global
Descriptor Table (GDT).

Parameters

DescDWORDl

Specifies the high doubleword of the descriptor for the selector. This parameter
contains the high 16 bits of the base address, the high 4 bits of the limit, and the
status and type bits.

DescDWORD2

Specifies the low doubleword of the descriptor for the selector. This parameter
contains the low 16 bits of the base address and limit.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

If the service is successful, the EAX and EDX registers contain the following values:

Register Description

Contains the new selector.

Contains the selector for and the size of the global descriptor table (GDT).
The low 16 bits contains the selector for the GDT, and the high 16 bits
contains the size of the GDT expressed as the number of selectors in the
table.

If an error occurs, such as an invalid descriptor value or the GDT is full, the EAX and
EDX registers contain zero to indicate an error.

EAX

EDX

Comments

Although this service returns the selector for the GDT, virtual devices should not attempt
to edit the GDT directly. Virtual devices can instead use the _SetDescriptor service to
change selectors in the GDT.

Virtual devices should use the _BuildDescriptorDWORDs service to set the
DescDWORDl and DescDWORD2 parameters to the appropriate values.

This service sets the RPL of the selector to the DPL of the selector set in the
DescDWORDl parameter.

Uses

EAX,EDX

See Also

_Allocate_LDT_Selector, _Free_GDT_Selector

include vmm.inc

or
jz
mov

eax, eax
error
[Address], eax

zero if error

ring-O linear address of block

The _Allocate_Global_V86_Data_Area service allocates a block of memory from the
global V86 data area. The block is for exclusive use by the virtual device. Virtual devices
use this service to allocate memory for device-specific objects which must be accessible
to both the virtual device and software running in the virtual machine.

This service is only available during initialization.

Parameters

nBytes

Specifies the number of bytes to allocate. This parameter should be a multiple of
4096.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

Value

GVDAWordAlign

GVDADWordAlign

GVDAParaAlign

Meaning

Aligns block on a word boundary. If no alignment
value is given, the service aligns the block on a byte
boundary.

Aligns block on a doubleword boundary. If no
alignment value is given, the service aligns the block
on a byte boundary.

Aligns block on a paragraph (16-byte) boundary. If no
alignment value is given, the service aligns the block
on a byte boundary.

GVDAPageAlign

GVDAInstance

GVDAZerolnit

GVDAReclaim

GVDAlnquire

GVDAHighSysCritOK

Aligns block on a page (4 kilobyte) boundary. If no
alignment value is given, the service aligns the block
on a byte boundary.

the ·GVDAWordAlign, GVDADWordAlign, GVDA­
ParaAlign, and GVDAPageAlign values are mutually
exclusive.

Creates an instance data block allowing the virtual
device to maintain different values in the block for
each virtual machine. If this value is not given, the
service creates a global block in which the same data
is available to all virtual machines.

Fills the block with zeros. If this value is not given, the
initial content of the block is undefined.

Unmaps any physical pages in the block while
mapping the system nul page into the block. The
service places unmapped physical pages in the free
list. This value only applies if the GVDAPageAlign
value is also given. If this value is not given, the
service ignores any physical pages it unmaps. It is up
to the virtual device to reclaim these pages.

The GVDAReclaim and GVDAlnstance values are
mutually exclusive.

Returns the size in bytes of the largest block that
satisfies the requested alignment but does not require
the first V86 page to be moved. The nBytes parameter
is not used if this value is specified

A virtual device typically uses this value, while
processing the Init_Complete message, to allocate
portions of the global V86 data area that might
otherwise go unused. The GVDAlnquire value is only
available for Windows version 3.1 or later.

Informs the service that the virtual device can manage
a block that resides in high MS-DOS memory. The
service allocates from high MS-DOS memory only if
such memory is available (for example, implemented

as XMS UMBs) and the virtual device specifies this
value. A virtual device can use this value only while
processing the Sys_Critical_Init message.

When first allocated, a block in high MS-DOS
memory may not be immediately usable since memory
supporting the area may not yet have been mapped.
The system maps the memory for the area sometime
during the Sys_Critical_Init message, but there is no
guarantee as to when.

The GVDAHighSysCritOK value is only available for
Windows version 3.1 or later.

All other values are reserved.

Return Value

The EAX register contains the ring-O linear address of the block if the service is
successful. Otherwise, EAX contains zero to indicate an error such as insufficient memory
to satisfy the request.

If GVDAInquire is given, EAX contains the size in bytes of the largest block that satisfies
the request, but that does not move the first V86 page. EAX contains zero if all such
requests move the first V86 page.

Comments

If this service returns an error, the virtual device should consider this a fatal error and
respond accordingly.

The size returned when the GVDAInquire value is given may be less than a reasonable
minimum. For instance, if GVDAPageAlign is specified, the return size may be less than
4096. It is up to the virtual device to check for this.

For blocks allocated with GVDAInstance, this service calls automatically calls the
_Addlnstanceltem service.

The _Allocate_Global_V86_Data_Area service is not available and must not be called if
the virtual device has allocated a temporary block using the
_Allocate_Temp_V86_Data_Area service. The virtual device must free the block before
it can call the _Allocate_Global_V86_Data_Area service.

If GVDAReclaim is not given, the virtual device should reclaim the physical addresses of
any unmapped physical pages and map the pages to other addresses. A virtual device
reclaims the physical addresses by using the _CopyPageTable service to retrieve the page

table entries for the system virtual machine. The virtual device can then use the
_PhyslntoV86 service to map the physical pages into the V86 address space.

Uses

EAX

See Also

_CopyPageTable, _PhyslntoV86

include vmm.inc

VMMcall _Allocate_LDT_Selector, <VM, DescDWORD1, DescDWORD2,\
Count, flags>

The service creates a new selector or selectors and adds them to the Local Descriptor
Table (LDT) for the specified virtual machine.

Parameters

VM

Specifies a handle identifying the virtual machine to receive the selectors.

DescDWORDl

Specifies the high four bytes of the descriptor for the selector. This parameter
contains the high 16 bits of the base address, the high 4 bits of the limit, and the
status and type bits.

DescDWORD2

Specifies the low four bytes of the descriptor for the selector. This parameter contains
the low 16 bits of the base address and limit.

Count

Specifies the number of contiguous LDT selectors to allocate if the flags parameter
does not specify the ALDTSpecSel value. Otherwise, this parameter specifies the
LDT selector to allocate.

flags

Specifies the operation flags. This parameter can be the following value:

184 _Allocate_lOT_Selector

Value

ALOTSpecSel

All other values are reserved.

Return Value

Meaning

Allocates the LDT selector specified by the Count
parameter. The service copies the descriptor data to
the specified LOT entry and returns the selector. If the
LOT selector is already allocated, the service returns
an error value instead.

If this value is not given, the service allocates the
number of selectors specified by Count.

If the service is successful, the EAX and EOX registers contain the following values:

Register Description

EAX Contains the new selector. If Count is greater than 1, EAX contains only the
first selector. The second selector is EAX+8, the third EAX+16, and so on.
The high 16 bits of the selector is always zero.

EOX Contains the selector for and the size of the local 4escriptor table (LDT). The
low 16 bits contains the selector for the LDT, and the high 16 bits contains
the size of the LDT expressed as the number of selectors in the table.

The EAX and EDX registers contain zero to indicate an error such as an invalid descriptor
value, the LOT is full, an invalid virtual machine handle, or selector already a~located.

Comments

A virtual device can use the selector of the LOT to directly edit the s~lectors in the LDT.
However, a virtual device should use t~e _SetDescriptor service to change an LDT
selector rather than edit the LOT.

This service sets the RPL of the selector to the OPL of the selector set in the
DescDWORDl parameter.

LDT selectors ~e only valid when the virtual machine for which they are created is the
current virtual machine. However, a virtual device can use the _SelectorMapFlat service
to examine the region described by a LOT selector in virtual machines which are not the
current virtual machine.

Although this service can create multiple selectors, the _Free_LDT_Selector service
cannot free multiple selectors. Multiple selectors must be freed individually.

When this service creates multiple selectors, it gives each selector the same descriptor
values. It does not change the base address for each selector. It is up to the virtual device
to edit the selectors, and assign appropriate base addresses.

Virtual devices should not rely on specific hard-coded LDT selectors, and therefore, they
should avoid using the ALDTSpecSel value.

Uses

EAX,EDX

See Also

_Allocate_GDT_Selector, _Free_LDT_Selector

include vmm.inc

mov edx, OFFSET32 RefData
mov esi, OFFSET32 Callback
VMMcall Allocate_PM_Call_Back

reference data
callback procedure to call

jc
mov

error
[CallbackAddr], eax ; offset for callback

The Allocate_PM_Call_Back service installs a callback procedure that protected-mode
applications can call to execute code in a virtual device. The service returns a callback
address, specified as selector:offset pair. When protected-mode applications call this
address, the system passes control to the callback procedure specified by the Callback
parameter.

Virtual devices typically use this service to allow software running in a virtual machine to
call APls provided by the virtual device.

Parameters

RefData

Points to reference data to be passed to the callback procedure.

Callback

Points to the callback procedure to install. See the Comments section for more
information about the procedure.

Return Value

If the carry flag is clear, the EAX register contains the address of the callback procedure.
Otherwise, the carry flag is set to indicate that the callback procedure could not be
installed.

Comments

The system calls the callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[Callback]

current VM handle
points to reference data
points to Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine. The RefData
parameter points to the reference data supplied when the callback procedure was installed,
and crs points to a Clieot_RelLStruc structure containing the register values for the
virtual machine.

Uses

EAX, Flags

See Also

Allocate_V86_Call_Back

include vmm.inc

VMMcall _Allocate_Temp_V86_Data_Area, <nBytes, flags>
or eax, eax zero if error
jz error
mov [Address], eax ; address of temporary block

The _AUocate_Temp_V86_Data_Area service allocates a block of memory from the
global V86 data area. The block is for exclusive use by the virtual device during system
initialization only. A virtual device typically allocates a temporary block to serve as a
buffer for calls to MS-DOS or BIOS functions. A virtual device makes such calls using
the Simulate_lot service.

This service is only available during initialization.

Parameters

nBytes

Specifies the number of bytes to allocate.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the ring-O linear address of the block if the service is
successful. Otherwise, EAX contains zero to indicate an error such as insufficient memory
to satisfy the request or temporary area already allocated.

Comments

This service always aligns the temporary block on a paragraph boundary and fills the
block with zeros.

Virtual devices must free the temporary block as soon as possible. The system provides
only one temporary data area, therefore only one temporary block can be allocated at a
time. Attempts to allocate a temporary block when it is already allocated will result in an
error.

Uses

EAX

See Also

_Free_Temp_V86_Data_Area

include vmm.inc

mov edx, OFFSET32 RefData
mov esi, OFFSET32 Callback
VMMcall Allocate_V86_Call_Back

reference data
callback procedure to call

jc
mov

error
[CallbackAddr], eax ; segment:offset for callback

The Allocate_V86_Call_Back service installs a callback procedure that V86 mode
applications can call.to execute code in a virtual device. The service returns a callback
address, specified as segment:offset pair. When V86 mode applications call this address,
the system passes control to the callback procedure specified by the Callback parameter.

Virtual devices typically use this service to allow software running in a virtual machine to
call APls provided by the virtual device.

Parameters

RefData

Points to reference data to be passed to the callback procedure.

Callback

Points to the callback procedure to install. See the "Comments" section for more
information about the procedure.

Return Value

If the carry flag is clear, the EAX register contains the address of the callback procedure.
Otherwise, the carry flag is set to indicate that the callback procedure could not be
installed.

Comments

The system calls the callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[Callback]

current VM handle
points to reference data
points to Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine. The RefData
parameter points to the reference data supplied when the callback procedure was installed,
and crs points to a Client_Re~Struc structure containing the register values for the
virtual machine.

Uses

EAX, Flags

See Also

Allocate_PM_Call_Back

include vmm.inc

VMMcall _Assign_Device_V86_Pages, <VMLinrPage, nPages,\
VM, flags>

or
jz

eax, eax
not assigned

; nonzero if assigned

The _Assign_Device_V86_Pages service assigns to a virtual device one or more pages of
the V86 address space.

Parameters

VMLinrPage

Specifies the linear page number of the first page of V86 address space to assign. The
page number must be in the range 0 through 10Fh.

nPages

Specifies the number of pages to assign. All pages to assign must be within the V86
address space. If any a page is already assigned, this service returns an error value.

VM

Specifies a handle identifying a virtual machine. If this parameter is a valid handle,
the assignments apply only to the specified virtual machine. If this parameter is zero,
the assignments apply to all virtual machines.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise,
EAX contains zero to indicate an error such as a specified page already assigned or an
invalid page range.

Comments

A virtual device can make global assignments at any time, including during device
initialization. For global assignments, the VM parameter must be zero. The virtual device
must not attempt to assign a page that is already assigned. A virtual device can make local
assignments only after device initialization is complete.

Uses

EAX

See Also

_DeAssign_Device_V86_Pages

190 Begin_Critical_Section

Begin_Critical_Section

include vmm.inc

mov ecx, Flags ; flags for servicing interrupts
VMMcall Begin Critical Section

The Begin_Critical_Section service causes the current virtual machine to enter a critical
section. Only one virtual machine can own the critical section at a time. If a virtual
machine calls this service while another virtual machine owns the critical section, the
calling virtual machine will block until the critical section is released.

Parameters

Flags

Specifies actions to take when interrupts occur while the virtual machine is blocked
waiting for the critical section. This parameter can be a combination of the following
values:

Value Meaning

Block_Svc_lnts Service interrupts in the virtual machine even if the
virtual machine is blocked.

Block_Svc_If_Ints_Locked Service interrupts in the virtual machine even if the
virtual machine is blocked and the
VMStat_V86IntsLocked flag is set.

Block_Enable_lnts Service interrupts in the virtual machine even if the
virtual machine does not currently have interrupts
enabled. This forces interrupts to be enabled. This
value is only relevant if either Block_Svc_lnts or
Block_Svc_If_Ints_Locked is set.

The Block_Poll value is reserved and must not be used with this service.

Return Value

This service has no return value.

Comments

The system maintains a count of claims for critical sections and releases the critical
section only when an equal number of Begin_Critical_Section End_Critical_Section
services have been called.

When the critical section is first claimed, the system boosts the execution priority of the
current virtual machine by the Critical_Section_Boost value (as described for the
Adjust_Exec_Priority service). While a virtual machine is in a critical section, the

system will switch to another task only if the virtual machine blocks on a semaphore or
the other task has a time-critical operation, such as simulating hardware interrupts.

Uses

Flags

See Also

Adjust_Exec_Priority, End_Critical_Section

include vmm.inc

The Begin_Nest_Exec service starts a nested execution block. This service is used in
conjunction with the End_Nest_Exec service to create a nested execution block in which
a virtual device may call the Exec_Int and Resume_Exec services. Virtual devices use
these services to call software in the virtual machine.

Parameters

This service has no parameters.

Return Value

The Client_CS and Client_IP registers contain a break point used by nested execution
services.

Comments

While in a nested execution block, a virtual device may call the Exec_Int and
Resume_Exec services any number of times.

If one of these calls changes the virtual machine registers, these changes are also made to
the client state. Before cr~ating the nested execution block, a virtual device should save
the client state by using the Save_Client_State service. After ending the nested execution
block, a virtual device should restore the client state by using the Restore_Client_State
service.

This service forces the virtual machine into protected-mode execution if there is a
protected-mode application running in the current virtual machine. Otherwise, the virtual
machine remains in V86 mode. The End_Nest_Exec service restores the virtual machine
to its mode prior to the call to Begin_Nest_Exec.

If the execution mode changes to protected mode, this service automatically switches the
virtu~l machine to the locked protected-mode stack and End_Nest_Exec switches it back.
This allows most devices to change execution modes without worrying about demand
paging issues.

Example

The following example shows a nested call to the MS-DOS function Get Version
(Interrupt 2Ih, Function 30h):

VMMcall Begin_Nest_Exec
mov [ebp.Client_AH], 30h
mov eax, 21h
VMMcall Exec_Int
VMMcall End Nest Exec

Start nested execution
30h = Get MS-DOS Version #
Execute an Int 21h in the
current VM to call DOS
End of nested exec calls

This example copies the MS-DOS version to the Client_AU and Client_AL registers.

Uses

Client_CS, Client_IP, Flags

See Also

Begin_Nest_V86_Exec, End_Nest_Exec, Exec_Int, Restore_Client_State,
Resume_Exe~,Save_Client_State, Set_PM_Exec_Mode, Set_V86_Exec_Mode

include vmm.inc

The Begin_Nest_V86_Exec service sets the current virtual machine to V86 mode and
prepares the virtual machine for nested execution. This service is used in conjunction with
the End_Nest_Exec service to create a nested execution block in which a virtual device
may call the Exec_Int and Resume_Exec services. Virtual devices use these services to
call software in the virtual machine.

Parameters

This service has no parameters.

Return Value

The Client_CS and Client_IP registers contain a break point used by nested execution
services.

Begin_Reentrant_Execution 193

Comments

When in a nested execution block, a virtual device may call the Exec_Int and
Resume_Exec services any number of times.

This service should only be used by virtual devices that convert protected-mode calls into
V86 calls. For example, the virtual MS-DOS manager uses this service to map calls to
MS-DOS functions (Interrupt 21h) issued by protected-mode programs into calls to MS­
DOS functions in V86 mode.

This service saves the current execution mode of the virtual machine and End_Nest_Exec
restores the mode.

Uses

Client_CS, Client_IP, Flags

See Also

Begin_Nest_Exec, End_Nest_Exec

Begin_Reentrant_Execution

include vmm.inc

VMMcall Begin_Reentrant_Execution

mov [Count], ecx ; reentrancy count

The Begin_Reentrant_Execution service starts reentrant execution. Virtual devices use
this service when hooking VMM faults (reentrant processor exceptions) so that they may
call nonasynchronous VMM or virtual device services or execute a virtual machine.

Most virtual devices have no reason to use this service. Do not use this service to avoid
scheduling events on hardware interrupts.

Parameters

This service has no parameters.

Return Value

The ECX register contains the old reentrancy count. This count must be passed to the
End_Reentrant_Execution service.

Uses

ECX, Flags

See Also

End_Reentrant_Execution

include vmm.inc

VMMcall Begin_Use_Locked PM Stack

The Begin_Use_Locked_PM_Stack service locks the protected-mode stack, preventing
demand paging of the stack. Virtual devices use this service to ensure that a protected­
mode application runs on a stack that will not be demand paged.

Parameters

This service has no parameters.

Return Value

The Client_55 and Client_SP registers contain the address of the locked stack if the stack
was not already locked. Otherwise, these registers remain unchanged.

Comments

Before calling this service, the virtual device must ensure that the current virtual machine
is running in protected mode. This means the VMStat_PM_Exec value must be specified
in the CB_VM_Status field of the control block for the virtual machine.

Since most virtual devices rely on the Begin_Nest_Exec service to switch stacks, this
service is only useful for virtual devices, such as the virtual PIC device, which explicitly
change the execution mode of a virtual machine.

A virtual device can call this service any numbr of times. Only the fIrst call switches
stacks; all subsequent calls increment a counter. If a virtual device locks the stack, it must
eventually unlock it using the End_Use_Locked_PM_Stack service.

Uses

Flags

See Also

Begin_Nest_Exec, End_Use_Locked_PM_Stack

_BuildDescriptorDWORDs 195

_BuildDescriptorDWORDs

include vmm.inc

VMMcall _BuildDescriptorDWORDs, <DESCBase, DESCLimit, DESCType,
DESCSize, flags>

mov
mov

[DescDWORD1], edx
[DescDWORD2], eax

; high doubleword of descriptor
; low doubleword of descriptor

The _BllIildDescriptorDWORDs service builds the descriptor parameter used in calls to
the _Allocate_GDT_Selector and Allocate_LDT_Selector services.

Parameters

DESCBase

Specifies the 32-bit base address for the descriptor.

DESCLimit

Specifies the 20-bit limit for the descriptor.

DESCType

Specifies the present bit, DPL, and type fields for the descriptor (bits 8-15 of the high
doubleword). Only the low 8 bits of the parameter are valid; all other bits must be
zero.

DESCSize

Specifies the granularity and big/default fields for the descriptor (bits 20-23 of the
high doubleword). Only bits the high four bits (4-7) of the DESCSize parameter are
valid; all other bits must be zero.

flags

Specifies the operation flags. This parameter can be the following value:

VaRue

BDDExplicitDPL

All other values are reserved.

Meaning

Uses the DPL bits in the DESCType parameter. If this
value is not given, the service sets the DPL bits to be
equal to the RPL bits for protected-mode applications.

Return Value

The EAX register contains the low doubleword of the descriptor and the EDX register
contains the high doubleword of the descriptor.

Comments

Virtual devices must not rely on the privilege level at which protected-mode applications
run. When creating selectors for protected-mode applications, a virtual device should
specify the BDDExplicitDPL value. This provides a convenient way to build descriptors
without knowing the protection level for protected-mode applications.

Uses

EAX,EDX

See Also

_Allocate_GDT_Selector, _Allocate_LDT_Selector

include vmm.inc

mov cx, Segment ; code segment of routine to call
mov edx, Offset ; offset of routine to call
VMMcall Build_Int_Stack_Frame

The Build_Int_Stack_Frame service prepares the current virtual machine to execute an
interrupt routine. This service saves the current Client_CS, Client_IP, and Client_Flags
registers on the virtual machine's stack and sets the Client_CS and Client_IP registers to
the address of the interrupt routine specified by the Segment and Offset parameters. When
execution resumes in the virtual machine (such as when the Resume_Exec service is
called), the virtual machine executes the interrupt routine. The interrupt routine continues
to run until it executes an iret instruction.

Parameters

Segment

Specifies the segment address or segment selector for the code segment containing
the interrupt routine.

Offset

Specifies the offset of interrupt routine. If the specified code segment is a 16-bit
segment, the high word of this parameter must be O.

Return Value

This service has no return value.

Call_Global_Event 197

Example

The following example executes the interrupt routine in the code segment specified by
My_Segment at the offset My_Offset:

VMMcall Begin_Neat_Exec
mov cx, [My_Segment]
mov edx, [My_Offset]
VMMcall Build_Int_Stack_Frame
VMMcall Resume_Exec
VMMcall End_Nest_Exec

Uses

Client_CS, Client_EIP, Client_ESP, Client_Flags, Flags

See Also

Simulate_Far_Call

include vmm.inc

mov esi, OFFSET32 EventCallback callback procedure
mov edx, OFFSET32 RefData reference data
VMMcall Call_Global_Event

mov [Event], esi event handle

The Call_Global_Event service either calls the event callback procedure immediately, or
schedules a global event. This service schedules the event if the virtual device is
processing a hardware interrupt that interrupted the VMM. In all other cases, the service
calls the callback procedure without scheduling an event.

This is an asynch!onous service.

Parameters

EventCallback

Points to the callback procedure. See the "Comments" section for more information
about the procedure.

RefData

Points to reference data to be passed to the event callback procedure.

Return Value

The ESI register is zero if the service calls the callback procedure. Otherwise, the ESI
register contains the event handle. The event handle can be used in subsequent calls to the
Cancel_Global_Event service to cancel the event.

Comments

If the service schedules a global event, the system calls the event callback procedure
immediately before the returning from the current interrupt. Any virtual machine can
process the event, so the system does not switch tasks before calling the procedure.

The callback procedure can carry out any actions, and use any VMM services. The
system calls the event callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[EventCallback]

current VM handle
points to reference data
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, RefData points to
reference data supplied by the virtual machine that scheduled the event, and crs points to
a Client_Re~Struc structure containing the contents of the virtual machine's registers.

The callback procedure can modify EAX, EBX, ECX, EDX, ESI, and ED!.

Uses

Flags

See Also

Cancel_Global_Event, Schedule_Global_Event

include vmm.inc

mov eax, PriorityBoost
mov ebx, VM
mov ecx, Flags
mov edx, OFFSET32 RefData
mov esi, OFFSET32 EventCallback
mov edi, TimeOut
VMMcal1 Call_PrioritY_VM_Event

priority boost (can be 0)
VM handle
option flags
points to reference data
points to event callback procedure
number of ms for time-out

mov [Event], esi handle or zero if called

The Call_Priority_VM_Event service either calls the callback procedure immediately or
schedules a priority event for the specified virtual machine. This service schedules the
event if the virtual device is processing a hardware interrupt that interrupted the VMM, or
the current virtual machine is not the specified virtual machine, or the Flags parameter

specifies the PEF_Always_Sched value. In all other cases, the service calls the callback
procedure and returns without scheduling an event.

This is an asynchronous service.

Parameters

PriorityBoost

Specifies a pOSIt!ve or negative prIorIty boost for the virtual machine.
This parameter must be a value such that when added to the current execution priority
the result is within the range Reserved_Low_Boost to Reserved_High_Boost. This
parameter can be 0 if no boost is necessary.

The following lists some common priority boost values:

VM

Value

Reserved_Low_Boost

Cur_Run_VM_Boost

Critical_Section_Boost

Time_Critical_Boost

Reserved_High_Boost

Meaning

Reserved for use by system.

The time-slice scheduler uses this value to force a
virtual machine to run for its allotted time-slice.

Virtual devices use this value for events that need
timely processing, but are not time critical.

Virtual devices use this value for events that need
timely processing, but should not circumvent
operations that have a critical section boost.

The system uses this value for virtual machines
specified in a call to the Begin_Critical_Section
service.

Virtual devices use this value for events that must be
processed even when another virtual machine is in a
critical section. For example, VPICD uses this when
simulating hardware interrupts.

Reserved for use by system.

Specifies a handle identifying the virtual machine to process the event.

Flags

Specifies how to carry out the event. This parameter can be a combination of the
following values:

Value

All other values are reserved.

Meaning

Callback procedure is not called until the virtual
machine enables interrupts.

Callback procedure is not called until the virtual
machine is not in a critical section or time-critical
operation.

Priority of the virtual machine is not reduced after
return from callback procedure.

Event is always scheduled, meaning the callback
procedure is never called immediately.

Specifies that time-out value in the EDI register should
be used. Available in Windows version 3.1 or later.

RefData

Points to reference data to be passed to the callback procedure.

EventCallback

Points to the callback procedure. See the "Comments" section for more information
about the procedure.

TimeOut

Specifies the number of milliseconds until the event times out. The service uses this
parameter only if the PEF_Time_Out value is specified by the Flags parameter.

Return Value

The ESI register is zero if the callback procedure was called immediately. Otherwise, the
ESI register contains the event handle. The handle can be used in a subsequent call to the
Cancel_Priority_VM_Event service to cancel the event.

Comments

The system ~arries out a task switch to the specified virtual machine if it is not the current
virtual machine. If the PriorityBoost parameter is not zero, the service boosts the priority
of the virtual machine before calling the callback procedure.

If the amount of time specified by the TimeOut parameter elapses before the system can
switch to the virtual machine, the system sets the carry flag and calls the callback
procedure immediately regardless of which virtual machine is currently running. In this
case, any requested priority boost is canceled even if the Flags parameter specified the
PEF_Dont_Unboost value.

The callback procedure should always check the carry flag to determine whether a time
out occurred.

The callback procedure can carry out any actions and use any VMM services.

The system calls the event callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[EventCallback]

current VM handle
points to reference data
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine. If a time-out
occurred, this handle may not be valid. In such cases, the callback procedure should use
the Get_Cur_VM_Handle service to get the handle of the current virtual machine.

The RefData parameter points to reference data supplied by the virtual machine that
scheduled the event and crs points to a Client_RelLStruc structure containing the
contents of the current virtual machine's registers.

The callback procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags.

Uses

Flags

See Also

Adjust_Exec_Priority, CaIl_VM_Event, CaIl_When_Not_Critical, CaIl_When_VM_
Ints_Enabled, Cancel_Priority_VM_Event

include vnun.inc

mov ebx, VM
mov esi, OFFSET32 EventCallback
mov edx, OFFSET32 RefData
VMMcall Call_VM_Event

VM handle
points to callback
points to reference data

mov [Event], esi zero if not scheduled

The CaU_VM_Event service either calls the event callback procedure immediately, or
schedules an event for the specified virtual machine. This service schedules the event if
the virtual device is processing a hardware interrupt that interrupted the VMM, or the
current virtual machine is not the specified virtual machine. In all other cases, the service
calls the callback procedure and returns without scheduling an event.

Parameters

VM

Specifies a handle identifying the virtual machine to process the event.

EventCallback

Points to the callback procedure. See the "Comments" section for more information
about the procedure.

RefData

Points to reference data to be passed to the event callback procedure.

Return Value

The ESI register is zero if the service calls the callback procedure. Otherwise, the ESI
register contains the event handle. The event handle can be used in subsequent calls to the
Cancel_VM_Event service to cancel the event.

This is an asynchronous service.

Comments

Since the specified virtual machine must process the event, the system carries out a task
switch if necessary before calling the procedure. The callback procedure can carry out any
actions and use any VMM services. The system calls the event callback procedure as
follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[EventCallback]

current VM handle
points to reference data
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, RefData points to
reference data supplied by the virtual machine that scheduled the event, and crs points to
a Client_Re~Struc structure containing the contents of the virtual machine's registers.

The callback procedure can modify EAX, EBX, ECX, EDX, ESI, and EDI.

Uses

Flags

See Also

Cancel_VM_Event, Schedule_VM_Event

include vmm.inc

mov esi, OFFSET32 IdleCallback
VMMcall Call_When_Idle

callback procedure

jc error carry set if error

The Call_When_Idle service installs a system-idle callback procedure. The system calls
this procedure whenever the Windows kernel signals that Windows is idle and all other
virtual machines are also idle. Virtual devices typically use this service to perform
background operations. For example, the pageswap device uses this service to
asynchronously write dirty pages to the backing store.

Parameters

IdleCallback

Points to the callback procedure to install. See the "Comments" section for more
information about the procedure.

Return Value

The carry flag is clear if the callback procedure is installed. Otherwise, the carry flag is
set.

Comments

Virtual devices can install any number of idle callback procedures. The system calls each
one, in the order installed, until one of the procedures clears the carry flag.

The system calls each callback procedure as follows:

mov ebx, SysVM system VM handle
mov ebp, OFFSET32 crs points to Client_Reg_Struc
call [IdleCallbackl

jc pass_to_next call the next idle callback if CY

The SysVM parameter specifies a handle identifying the system virtual machine and the
crs parameters points to a Client_RelL-Struc structure containing the registers of the
system virtual machine.

The callback procedure can carry out any operation and can modify EAX, EBX, ECX,
EDX, ESI, EDI, and Flags. If the operation takes a significant amount of time, the
procedure should clear the carry flag before returning to prevent other callbacks from
being called. Otherwise, the procedure should set the carry flag and return.

Uses

Flags

See Also

Call_When_Not_Critical, Call_When_Task_Switched

include vmm.inc

mov esi, CritSecCallback
mov edx, RefData
VMMcall Call When Not Critical

callback procedure
reference data

The Call_When_Not_Critical service installs a critical-section callback procedure. The
system calls this procedure whenever a virtual device releases the critical section.

Parameters

CritSecCallback

Points to the callback procedure to install. See the "Comments" section for more
information about the procedure.

RefData

Points to reference data to pass to the callback procedure.

Return Value

This service has no return value.

Comments

The system does not execute the callback until the current virtual machine's execution
priority is less than the Critical_Section_Boost value even if the current virtual machine is
not in a critical section. This allows a virtual device to release the critical section and
process any simulated interrupts before the system calls the callback procedure.

Virtual devices can install any number of callback procedures, but the system calls only
the most recent procedure on the list when the critical section is released. The system
removes the callback procedure from the list as it calls the procedure.

The system calls the callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[CritSecCallback]

current VM handle
reference data
Client_Reg_Struc structure

The VM parameter specifies a handle identifying the current virtual machine, RefData
points to reference data from the virtual device that installed the callback, and the crs
parameter points to a Client_Re~Struc structure containing the registers of the current
virtual machine.

The callback procedure can carry out any operation and can modify EAX, EBX, ECX,
EDX, ESI, EDI, and Flags.

It is more convenient to use the Call_Priority_VM_Event service than to call this service
directly.

Uses

Flags

See Also

Call_When_Idle, Call_When_Task_Switched

include vmm.inc

mov esi, TaskSwitchCallback
VMMcall Call_When_Task_Switched

; callback procedure

The Call_When_Task_Switched service installs a task-switched callback procedure. The
system calls this procedure whenever it carries out a task switch. This service should be
used sparingly and the callback procedure should be optimized for speed.

Parameters

TaskSwitchCaliback

Points to the callback procedure to install. See the "Comments" section for more
information about the procedure.

Return Value

This service has no return value.

Comments

Some virtual devices must save the state of a hardware device every time a task switch
occurs and restore the hardware state for the virtual machine that is about to be run.
However, virtual machine events can often be used in place of using this service.

Virtual devices can install any number of callback procedures. The system calls each one
in the order installed, until all procedures have been called.

The system calls the callback procedure as follows:

mov
mov
call

eax, OldVM
ebx, VM
[CritSecCallback]

; previous VM handle
; current VM handle

The OldVM parameter specifies a handle identifying the previous virtual machine Gust
prior to the task switch), and VM specifies a handle identifying the current virtual
machine.

The callback procedure can carry out any operation and can modify EAX, EBX, ECX, I

EDX, ESI, EDI, and Flags.

Uses

Flags

See Also

Call_When_Idle, Call_When_Not_Critical

include vmm.inc

mov edx, OFFSET32 RefData ; points to reference data
mov esi, OFFSET32 Callback ; points to callback procedure
VMMcall Call_When_VM_Ints_Enabled

The Call_When_VM_Ints_Enabled service installs a callback procedure that the system
calls whenever the virtual machine enables interrupts. This service calls the callback
procedure immediately if interrupts are already enabled. Virtual devices use this service to
receive notification when the virtual machines enables interrupts.

Parameters

RefData

Points to reference data to be passed to the callback procedure.

Callback

Points to the callback procedure. See the "Comments" section for more information
about the procedure.

Return Value

This service has no return value.

Comments

It is usually more convenient to use the Call_Priority_VM_Event service instead of
calling this service directly. However, this service is faster.

The system calls the callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[Callback]

current VM handle
points to reference data
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, RefData points to
the reference data specified when the callback procedure was installed, and crs points to a
Client_Relt-Struc structure containing the register values for the virtual machine.

The callback procedure may use EAX, EBX, ECX, EDX, ESI, EDI, and Flags.

Uses

Client_Flags, Flags

See Also

CaU_When_Idle, CaU_When_Not_Critical, CaU_When_Task_Switched

include vmm.inc

mov eax, TimeOut
mov edx, OFFSET32 RefData
mov esi, OFFSET32 Callback
VMMcall Call_When_VM_Returns

ms until time out
points to reference data
callback procedure to install

The CaU_When_VM_Returns service installs a callback procedure that receives control
when a virtual machine executes the iret instruction for the current interrupt.

Parameters

TimeOut

Specifies the number of milliseconds to wait before calling the callback procedure.
The time-out occurs only if the iret instruction is not executed before the specified
time elapses. If this parameter is positive, the system calls the callback when time
elapses. If this parameter is negative, the system calls the callback when time elapses
and calls it again when the iret instruction is executed. If this parameter is zero, the
system ignores the time-out.

RefData

Points to reference data to be passed to the callback procedure.

Callback

Points to the callback procedure to install. See the "Comments" sectionfor more
information about this procedure.

Return Value

This service has no return value.

Comments

A virtual device typically uses this service in a callback procedure that it installed using
the Hook_V86_Int_Chain service. This service directs the system to replace the return
address for the interrupt with the address of the callback procedure. That is, the system
pushes the callback procedure address on the stack when it creates the stack frame for the
interrupt. The system then passes the interrupt to the virtual machine.

When the virtual machine executes the iret instruction, the callback procedure receives
control and can carry out tasks. After the callback procedure returns, the system restores
the original interrupt return address and execution continues as if returning from the
interrupt.

The system calls this callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[Callback]

current VM handle
points to reference data
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine. The RefData
parameter points to the reference data supplied when the callback procedure was installed,
and crs points to a Client_Re~Struc structure containing the register values for the
virtual machine.

If the system calls the callback procedure as a result of a time-out, it sets the carry flag
before calling the procedure. If the system calls the callback a second time (once for a
time-out and once for the iret instruction), the system sets the zero flag before calling the
procedure.

Uses

Client_CS, Client_EIP, Flags

See Also

Hook_V86_Int_Chain

Cancel_Global_Event 209

Cancel_Global_Event

include vmm.inc

mov esi, Event ; event handle
VMMcall Cancel_Global_Event

The Cancel_Global_Event service cancels an event that was previously scheduled using
the Schedule_Global_Event or Call_Global_Event service. A virtual device must not
attempt to cancel an event if the callback procedure for the event has already been called.

Parameters

Event

Specifies a handle identifying the event to cancel. This parameter can be zero to
indicate that no event should be canceled.

Return Value

This service has no return value.

Comments

The event callback procedure typically sets the event handle to zero so that subsequent
calls by the virtual machine to this service do not cause errors.

See Also

Call_Global_Event, Schedule_Global_Event

include vmm.inc

mov esi, Event priority event handle

VMMcall Cancel Priority VM Event

The Cancel_Priority_VM_Event service cancels an event that was previously
scheduled using the Call_Priority_VM_Event service. A virtual device must not
attempt to cancel an event if the callback procedure for the event has already been
called.

Parameters

Event

Specifies a handle identifying the event to cancel. This parameter can be zero to
indicate that no event should be canceled.

Return Value

This service has no return value.

Comments

The event callback procedure typically sets the event handle to zero so that subsequent
calls by the virtual machine to this service do not cause errors.

This service cancels any priority boost associated with the event even if the
PEF_Dont_Unboost value was specified when the event was scheduled.

Do not use this service to cancel events scheduled using the Call_VM_Event or
Schedule_VM_Event services. You must cancel virtual machine events using the
Cancel_VM_Event service.

Uses

Flags, ESI

See Also

Call_Priority_VM_Event

include vmm.inc

mov esi, TimeOut ; time-out handle
VMMcall Cancel Time Out

The Cancel_Time_Out service cancels a time-out that was scheduled using the
Set_VM_Time_Out or Set_Global_Time_Out service.

Parameters

TimeOut

Specifies a handle identifying the time-out to cancel. If this parameter is zero, the
service returns immediately (does nothing).

Return Value

This service has no return value.

Comments

This service makes the time-out handle invalid; the virtual device must not attempt to use
the handle in subsequent calls to services.

Uses

Flags

See Also

Set_Global_Time_Out, Set_VM_Time_Out

include vmm.inc

mov ebx, VM VM handle
mov esi, Event ; event handle
VMMcall Cancel_VM_Event

The Cancel_VM_Event service cancels an event that was previously scheduled using the
Schedule_VM_Event or Call_VM_Event service. A virtual device must not attempt to
cancel an event if the callback procedure for the event has already been called.

Parameters

VM

Specifies a handle identifying the virtual machine for which the event is to be
canceled.

Event

Specifies a handle identifying the event to cancel. This parameter can be zero to
indicate that no event should be canceled.

Return Value

This service has no return value.

Comments

The event callback procedure typically sets the event handle to zero so that subsequent
calls by the virtual machine to this service do not cause errors.

Do not use this service to cancel events scheduled using the Call_Priority_VM_Event
service. You must cancel priority events using the Cancel_Priority_VM_Event service.

Uses

Flags

See Also

Call_VM_Event, Schedule_VM_Event

Claim_Critical_Section

include vmm.inc

mov eax, Claims ; times to claim critical section
mov ecx, Flags ; flags for servicing interrupts
VMMcall Claim_Critical_Section

The Claim_Critical_Section service increments the claim count by the specified value. It
has the same effect as calling the Begin_Critical_Section service repeatedly.

Parameters

Claims

Specifies the number of times to claim the critical section. Zero is a valid number, but
is ignored.

Flags

Specifies actions to take when interrupts occur while the virtual machine is blocked
waiting for the critical section. This parameter can be a combination of the following
values:

Value Meaning

Block_Svc_lnts Service interrupts in the virtual machine even if the
virtual machine is blocked.

Block_Svc_lf_Ints_Locked Service interrupts in the virtual machine even if the
virtual machine is blocked and the
VMStat_V861ntsLocked flag is set.

Block_Enable_lnts Service interrupts in the virtual machine even if the
virtual machine does not currently have interrupts
enabled. This forces interrupts to be enabled. This
value is only relevant if either Block_Svc_Ints or
Block_Svc_If_Ints_Locked is set.

The Block_Poll value is reserved and must not be used with this service.

Clear_Mona_Screen 213

Return Value

This service has no return value.

Uses

Flags

See Also

Adjust_Exec_Priority, Begio_Critical_Section, End_Critical_Section

Clear_Mono_Screen

include vmm.inc

The Clear_Mono_Screen service clears the secondary display screen by filling it with
spaces, and setting character attributes to nOrinal.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

Flags

See Also

Out_Mono_Chr

include vmm.inc

mov
mov

eax, TimeOut
ebx, VM

ms to wait before failing close
handle of VM to close

mov ecx, Flags
VMMcall Close VM

; action to take

The Close_VM service attempts to close the virtual machine, allowing all virtual devices
an opportunity to clean up before the virtual machine terminates.

This service is only available in Windows version 3.1 and later.

Parameters

TimeOut

Specifies the number of milliseconds the service must wait before calling the
NukeVM service to force the virtual machine to close.

VM

Specifies a handle identifying the virtual machine to close.

Flags

Specifies whether to return to the caller while closing the virtual machine. This
parameter can be a combination of the following values:

Value

All other values are reserved.

Return Value

This service has no return value.

Comments

Meaning

Return to the virtual machine after scheduling the
closing event even if the virtual machine is being
closed.

Whenever possible, a virtual device should use this service instead of the the
Nuke_VM or Crash_Cur_VM service.

Uses

Flags

Convert_Boolean_String

include vmm.inc

mov edx, OFFSET32 String
VMMcall Convert_Boolean_String

points to Boolean string

jc
mov

not_valid
[Result], eax

Convert_Boolean_String 215

; carry set if not valid
; 0 if false, -1 if true

The Convert_Boolean_String service converts a string representing a Boolean value and
returns either -lor 0 to indicate that the string is true or false.

This service is available during initialization only.

Parameters

String

Points to the null-terminated string representing a Boolean value. The service
recognizes at least the following Boolean string values:

String Meaning

0 False

True

False False

No False

Off False

On True

True True

Yes True

Return Value

The carry flag is clear if the string represents a valid Boolean value. In this case, the EAX
register contains either 0 if the string evaluates to false, or -1 if the string evaluates to
true. The carry flag is set if the specified string is not valid.

Uses

Flags, EAX

See Also

Convert_pecimal_String

include vmm.inc

mov edx, OFFSET32 String
VMMcall co~vert_Decimal_String

points to decimal string

mov
mov

[Value], eax
[TermChar], edx

decimal value
-> terminating character

The Convert_Decimal_String service converts a string representing a decimal number
into a value. The service also returns a pointer to the character in the string that marked
the end of the decimal number.

This service is only valid during initialization.

Parameters

String

Points to the nup-terminated string to convert. The string can be any combination of
decimal digits and may preceded by a plus sign (+) or minus sign (-) to indicate a
positive or negative value.

Return Va~ue

The EAX register contains the value of decimal string, and the EDX register contains the
address of the character in the string that terminated the decimal value.

Comments

If the string is empty or does not contain a valid decimal integer,
Convert_Decimal_String returns zero, and the EDX register continues to point to the
first character in the string.

Uses

EAX, EDX, Flags

See Also

Convert_fixed_Point_String

. include vmm.inc

mov ecx, Places ; number of decimal places
mov edx, String ; points to string to convert
VMMcall Convert_Fixed_Point_String

mov [Value], eax ; fixed-point value
mov [TermChar], edx ; pointer to terminating character

The Convert_Fixed_Point_String service converts a string representing a fixed-point
number into a fixed-point value. This service also returns a pointer to the character in the
string that marked the end of the number.

This service is only valid during initialization.

Parameters

Places

Specifies the number of digits after the decimal point to convert. If a fixed-point
number has extra digits, the service skips over the digits without calculating them into
the fixed-point value.

String

Points to the null-terminated string to convert. The "Comments" section describes the
format of the string.

Return Value

The EAX register contains the normalized value of fixed-point number; the actual value is
computed as EAX * 10 ** (-Places). The EDX register contains the address of the
character in the string marking the end of the fixed-point number.

Comments

A fixed-point number is a decimal number that consists of an integer, a fraction, or a
combination of integer and fraction. The integer can be any combination of decimal digits
and may be preceded by a plus sign (+) or a minus sign (-) to indicate a positive or
negative fixed-point value. The fraction can be any combination of decimal digits but
must be preceded with a decimal point (.).

Uses

EAX, EDX, Flags

See Also

include vmm.inc

mov edx, OFFSET32 String
VMMcall Convert_Hex_String

-> hexadecimal string

mov
mov

[Value], eax
[TermChar], edx

value of string
-> terminating character

The Convert_Hex_String service converts a string representing a hexadecimal number
into a value. The service also returns a pointer to the character in the string that marked
the end of the hexadecimal number. .

This service is only valid during initialization.

Parameters

String

Points to the null-terminated string to convert. The string can be any combination of
hexadecimal digits (0-9, A-F), and may terminated with an uppercase or lowercase
letter H.

Return Value

The EAX register contains the value of the hexadecimal string and the EDX register
contains the address of the character in the string that terminated the hexadecimal value.
If a letter H terminates the number, EDX contains the address the character immediately
following the H.

Uses

Flags

See Also

Convert_Boolean_String, Convert_Decimal_String, Convert_Fixed_Point_String

_CopyPageTable

include vmm.inc

VMMcall _CopyPageTable, <LinPgNum, nPages,\
<OFFSET32 PageBuf>, flags>

mov [Copied], eax ; nonzero if copied, zero otherwise

The _CopyPageTable service copies one or more page-table entries to the specified
buffer. Virtual devices, such as the virtual DMA device, use this service to analyze the
mapping of linear to physical addresses.

Parameters

LinPgNum

Specifies the number of the first page table entry to copy. This parameter must be in
the range 0 through OFFFFFh. Numbers in the range 0 through 10Fh specify pages in
the 1 megabyte V86 address space of the current virtual machine. Page numbers for
other virtual machines can be computed using the CB_High_Linear field in the
control block of each virtual machine.

nPages

Specifies the number of page table entries to copy.

PageBuj

Points to buffer to receive the page table entries. This buffer must be large enough to
receive the specified number of entries. Each entry is 4 bytes.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the copy is successful. Otherwise, it
contains zero indicating that at least one of the specified page table entries was in a region
where the corresponding page directory entry is not present.

Comments

This service copies the page table, so writing to the buffer does not affect the content of
the actual page table. The system does not update the buffer when changes to the actual
page table are made, so no guarantees are made about the length of time the information
in the buffer remains accurate.

Uses

EAX

include vmm.inc

220 Create_Semaphore

The Crash_Cur_VM service abruptly terminates the current VM. A virtual device should
call this service when a catastrophic error has occured in the VM, such as executing an
illegal instruction or attempting to program a piece of hardware in a way incompatible
with the device virtualization.

If the system VM is the current VM, Windows exits with a fatal error without explicitly
crashing the other VMs.

Parameters

This service has no parameters.

Return Value

This service does not return.

Create_Semaphore

include vmm.inc

mov ecx, TokenCount
VMMcall Create_Semaphore

initial token count

jc
mov

error
[Semaphore], eax

carry set if semaphore not created
semaphore handle

The Create_Semaphore service allocates memory for and initializes a new semaphore.

Parameters

TokenCount

Specifies the initial count of tokens.

Return Value

The carry flag is clear and the EAX register contains the semaphore handle if the function
is successful. Otherwise, the carry flag is set to indicate an error.

Uses

EAX, Flags

See Also

Destroy_Semaphore, Signal_Semaphore, Wait_Semaphore

include vmm.inc

VMMcall _DeAssign_Device_V86_Pages, <VMLinrPage, nPages,\
W, flags>

or eax, eax ; nonzero if unassigned, zero if error
jz not_unassigned

The _DeAssigo_Device_V86_Pages service unassigns a region in the V86 address space
which was previously assigned using the _Assigo_Device_V86_Pages service.

Parameters

VMLinrPage

Specifies the linear page number of the first page to unassign. The page number must
be in the range 0 through 10Fh.

nPages

Specifies the number of pages to unassign. All pages to unassign must be within the
V86 address space. If any a page is not assigned, this service returns an error value.

VM

Specifies a handle identifying a virtual machine. If this parameter is a valid handle,
the service unassigns pages previously assigned to the virtual machine. If this
parameter is zero, the service unassigns pages that were previously assigned to all
virtual machines.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service was successful. Otherwise, EAX
contains zero to indicate an error such as a page in the range already unassigned or an
invalid page range.

Comments

This service only works after device initialization is complete.

A virtual device must not attempt to unassign pages that have not yet been assigned, or
attempt to globally unassign pages that were only locally assigned.

222 Destroy_Semaphore

Uses

EAX

See Also

_Assign_Device_V86_Pages

Destroy_Semaphore

include vmm.inc

mov eax, Semaphore ; semaphore handle
VMMcall Destroy_Semaphore

The Destroy_Semaphore service destroys the specified semaphore.

Parameters

Semaphore

Specifies the handle of the semaphore to delete.

Return Value

This service has no return value.

Uses

Flags

See Also

Create_Semaphore

Disable_Global_Trapping

include vmm.inc

mov edx, Port ; I/O port number
VMMcall Disable_Global_Trapping

The Disable_Global_Trapping service disables I/O port trapping for the specified I/O
port. This applies to every virtual machine.

This service must not be used unless an I/O callback procedure has been installed for the
given port using the Install_10_Handler or Install_Mult_IO_Handlers service during
initialization.

Disable_Local_Trapping 223

Parameters

Port

Specifies the number of the va port for which global trapping is to be disabled.

Return Value

This service has no return value.

Comments

The system applies to current global trapping state to each new virtual machine as it is
created. When the system first starts, global trapping is enabled by default.

Uses

Flags

See Also

Enable_Global_Trapping, Install_la_Handler, Install_Mult_IO_Handlers

include vmm.inc

mov ebx, VM ; VM handle
mov edx, Port ; I/O port number
VMMcall Disable_Local_Trapping

The Disable_Local_Trapping service disables I/O port trapping for the specified I/O
port. This applies only to the specified virtual machine.

This service must not be used unless an I/O callback procedure has been installed for the
given port using the Install_10_Handler or Install_Mult_IO_Handlers service during
initialization.

Parameters

VM

Specifies a handle identifying the virtual machine for which to disable I/O trapping.

Port

Specifies the number of the I/O port for which trapping is disabled.

Return Value

This service has no return value.

Uses

Flags

See Also

Enable_Local_Trapping, Install_IO_Handler, Install_Mult_IO_Handlers

include vmm.inc

VMMcall Disable_VM_Ints

The Disable_VM_Ints service disables interrupts during virtual machine execution for the
current virtual machine. This has the same effect as the virtual machine executing a cli
instruction.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Uses

Flags

See Also

Enable_VM_Ints

include vmm.inc

mov edx, Port ; I/O port number
VMMcall Enable_Global_Trapping

The Enable_Global_Tr~pping service enables I/O port trapping for the specified port.
This applies to every virtual machine.

This service must not be used unless an I/O callback procedure has been installed for the
given port using the Install_10_Handler or Install_Mult_IO_Handlers service during
initialization.

Parameters

Port

Specifies the number of the I/O port for which global trapping is to be enabled.

Return Value

This service has no return value.

Comments

The system applies to current global trapping state to each new virtual machine as it is
created. When the system first starts, global trapping is enabled by default.

Uses

Flags

See Also

Disable_Global_Trapping, Install_10_Handler, Install_Mult_IO_Handlers

include vmm.inc

mov ebx, VM ; VM handle
mov edx, Port ; I/O port number
VMMcall Enable_Local_Trapping

The Enable_Local_Trapping service enables I/O port trapping for the specified port.
This applies to the specified virtual machine only.

This service must not be used unless an I/O callback procedure has been installed for the
given port using the Install_10_Handler or Install_Mult_IO_Handlers service during
initialization.

Parameters

VM

Specifies a handle identifying the virtual machine for which to enable I/O trapping.

Port

Specifies the number of the 110 port for which trapping is enabled.

Return Value

This service has no return value.

Uses

Flags

See Also

Disable_Local_Trapping, Install_IO_Handler, Install_Mult_IO_Handlers

include vmm.inc

VMMcall Enable VM Ints

The Enable_VM_Ints service enables interrupts during virtual machine execution for the
current virtual machine. This has the same effect as the virtual machine executing an sti
instruction.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

Virtual devices use this service to permit callback procedures installed by the
Call_When_Ints_Enabled or Call_Priority_VM_Event service to be called. The system
does not call these callback procedures immediately. Instead it waits until the next event
occurs. This means the virtual machine's state does not change while this service executes.

Uses

Flags

See Also

Call_Priority_VM_Event, Call_When_VM_Ints_Enabled, Disable_VM_Ints

include vmm.inc

VMMcall End_Crit_And_Suspend
jc not released ; carry set if not released

The End_Crit_And_Suspend service releases the critical section and immediately
suspends the current virtual machine. Virtual devices use this service to block a virtual
machine until another virtual machine can process an event.

Parameters

This service has no parameters.

Return Value

The carry flag is clear if this service is successful. Otherwise, the carry flag is set to
indicate an error.

Comments

This service releases the critical section only if the virtual machine has claimed the
section once. This service returns an error if the system could not suspend the virtual
machine, or could not release the critical section because the claim count was not 1. In
such cases, the service does not decrement the claim count and the critical section is not
released.

Example

The following example uses this service to display a dialog box in the system virtual
machine. The Show_Dialog_Box procedure enters a critical section to prevent the
Call_Priority_VM_Event service from switching to the system virtual machine
immediately. It then calls End_Crit_And_Suspend which blocks the current virtual
machine. The Show_Dialog_Event procedure runs in the system virtual machine and
actually displays the dialog box.

When it is finished it resumes the virtual machine that called Show_Dialog_Box by
calling the Resume_VM service.

Show_Dialog_Box:
VMMcall Get_Crit_Section_Status
jc Cant_Do_It ; critical section already claimed

VMMcall Begin_Critical_Section
mov eax, Low_Pri_Device_Boost
VMMcall Get_System_VM_Handle
mov ecx, llb
mov edx, OFFSET32 Dialog_Box_Data_Strucure

228 End_Critical_Section

mov esi, OFFSET32 Show_Dialog_Event
VMMcall Call_PrioritY_VM_Event
VMMcall End_Crit_And_Suspend
jc Did_Not_Work
; When End_Crit_And_Suspend returns the dialog box
; will have been displayed

Show_Dialog_Event:
; Call Windows to display the dialog box

mov ebx, [Suspended_VM_Idl
VMMcall Resume_VM
jc Error
ret

Uses

Flags

See Also

End_Critical_Section, Resume_VM, Suspend_VM

End_Critical_Section

include vmm.inc

VMMcall End Critical Section

The End_Critical_Section service releases the critical section if the current virtual
machine owns the section and the claim count is zero.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

This service decrements the claim count and releases the critical section if the new count
is zero. Since releasing the critical section lowers the execution priority of the current
virtual machine, this service causes a task switch if a nonsuspended virtual machine has
higher priority.

Uses

Flags

See Also

Begin_Critical_Section, End_Crit_And_Suspend

include ~.inc

The End_Nest_Exec service ends a nested execution block. This service is used in
conjunction with th~ Begin_Nest_Exec or Begin_Nest_V86_Exec service to create a
nested execution block in which virtual devices may call the Exec_lot and Res~me_Exec

services.

Parameters

This service has no parameters.

Return Value

The Client_CS and Client_IP registers contain the original values saved by when the
nested execution block was created.

Comments

A virtual device must end all nested execution blocks before returning to the virtual
machine manager.

This service restores the execution mode to the mode prior to the start of the nested
execution block. It also restores the Client_CS and Client_IP registers, but does not
restore any other client registers. A virtual device should save and restore these registers
using the Save_Client_State and Restore_Client_State macros.

Uses

Client_CS, Client_IP, Flags

See Also

Begin_Nest_Exec, Begin_Nest_V86_Exec, Restore_Client_State, Save_Client_State

End_Reentrant_Execution

include vmm.inc

mov ecx, Count ; re~ntrancy count
VMMcall End Reentrant Execution

The End_Reentrant_Execution service ends reentrant execution. Virtual devices use this
service in conjunction with the Begin_Reentrant_Execution service. A virtual device
that calls Begin_Reentrant_Execution must call this service before returning.

Parameters

Count

Specifies the reentrancy count
Begin_Reentrant_Execution service.

Return Value

This service has no return value.

Uses

Flags

See Also

Begin_Reentrant_Execution

include vmm.inc

previously returned by the

T~e End_Use_Locked_PM_Stack service unlocks the protected-mode stack. This service
decrements the locked-stack counter and restores the previous stack of the virtual machine
if the counter is zero. To unlock the stack, a virtual device must call this service once for
each call made to the Begin_Use_Locked_PM_Stack service.

Parameters

This service has no parameters.

Return Value

If locked-stack counter is zero, the Client_SS, Client_SP, and Client_EIP registers
contain the original values before the Begin_Use_Locked_PM_Stack service was called.
Otherwise, these registers remain unchanged.

Uses

Flags

See Also

Begin_Use_Locked_PM_Stack

include vmm.inc

mov eax, Interrupt
VMMcall Exec_Int

; number of interrupt to execute

The Exec_Int service simulates the specified interrupt and resumes execution of the
virtual machine. This service may only be called in a nested execution block created using
the Begin_Nest_Exec or Begin_Nest_V86_Exec service.

Parameters

Interrupt

Specifies the number of the interrupt to simulate.

Return Value

This service has no return value.

Comments

When in a nested execution block, this service can be called any number of times.

This service is comparable to combining the Simulate_lnt and Resume_Exec services.

Uses

Flags

See Also

Begin_Nest_Exec, Begin_Nest_V86_Exec, Resume_Exec, Simulate_lot

include vmm.inc

push dword ptr Interrupt
VMMcall Exec VxD Int

; interrupt to execute

The Exec_VxD_Int service executes the specified software interrupt. Virtual devices uses
this service to call MS-DOS or BIOS functions outside the context of a nested execution
block.

Parameters

Interrupt

Specifies the number of the interrupt to execute.

Return Vallie

9ne or more registers may contain return values depending the function of the specified
interrupt.

Comments

Before calling this service, a virtual device must set registers to values that are
appropriate for the specified software interrupt. This service supports all MS-DOS and
BIOS functions that are supported in protected mode programs.

This service does not change the client registers and flags, so there is no need for the
virtual device to save and restore the client register structure. This service also pops the
interrupt number from the stack.

Examples

The following examples calls the MS-DOS function Get Version (Interrupt 2Ih, Function
30h):

mov ax, 3000h
push dword ptr 21h
VMMcall Exec_VxD_Int
mov [Major], al
mov [Minor], al

See Also

VxDlnt

include vmm.inc

major MS-DOS version
minor MS-DOS version

mov esi, <MsgPtr> points to message to display
mov eax, <ErrFlags> exit flags
VMMcall Fatal Error Handler

The Fatal_Error_Handler service terminates Windows by informing all initialized
virtual devices that is an unrecoverable error has occurred and returning to real mode
(optionally printing an error message). A virtual device should call or jump to this service
when it detects a fatal error.

Parameters

MsgPtr

Points to a zero-terminated string specifying the message to display. If this parameter
is 0, no message is displayed.

ErrFlags

Specifies the exit flags. It can be a combination of the following values:

Value

EF_Hang_On_Exit

All other values are reserved.

Return Value

This service does not return.

Uses

All registers

See Also

Meaning

Hangs the system on a fatal exit.

Fatal_Error, Fatal_Memory_Error

include vmm.inc

VMMcall Fatal Memory Error

The Fatal_Memory_Error service terminates Windows and displays an error message
indicating that there was not enough memory to initialize one or more virtual devices. A
virtual device should call this service during intialization if there is not enough memory to
initialize.

Parameters

This service has no parameters.

Return Value

This service does not return.

Comments

This service uses the Fatal_Error_Handler service to terminate Windows.
Fatal_Memory_Error sets the exit flags to zero before calling the Fatal_Error_
Handler.

Uses

All registers

See Also

Fatal_Error_Handler

include vmm.inc

VMMcall _Free_GDT_Selector, <Selector, flags>

or
jz

eax, eax
not_freed

; nonzero if freed, zero if error

The _Free_GDT_Selector service frees a GDT selector previously allocated using the
_Allocate_GDT_Selector service.

Parameters

Selector

Specifies the selector to free. This parameter must have been previously created using
the _Allocate_GDT_Selector service.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid selector.

Comments

Certain system selectors cannot be freed since they are required for Windows operation.
This service ignores the RPL bits of the selector.

Uses

EAX

See Also

_Allocate_GOT_Selector, _Free_LOT_Selector

include vmm.inc

VMMcall _Free_LDT_Selector, <VM, Selector, flags>

The _Free_LOT_Selector service frees a LDT selector previously allocated using the
_Allocate_LOT_Selector service.

Parameters

VM

Specifies a handle identifying the virtual machine to which the selector belongs.

Selector

Specifies the selector to free. This parameter must have been previously created using
the _Allocate_LOT_Selector service.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid selector or an invalid virtual machine
handle.

Comments

This service ignores the RPL bits of the selector.

Uses

EAX

See Also

_Allocate_LOT_Selector, _Free_GOT_Selector

include vmm.inc

or
jz

eax, eax
not_freed

; nonzero if freed, zero if error

The _Free_Temp_V86_Data_Area service frees the temporary block previously
allocated using the _Allocate_Temp_V86_Data_Area service.

This service is only available during initialization.

Parameters

This service has no parameters.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as the temporary area not allocated.

Comments

The _Allocate_Global_V86_Data_Area service is not available while a temporary block
is allocated. The virtual device must free the block before the
_Allocate_Global_V86_Data_Area service can be called.

This service invalidates the address of the temporary block. Attempting to use the address
can cause a system crash.

Uses

EAX

See Also

_Allocate_Temp_V86_Data_Area

_GetAppFlatDSAlias

include vmm.inc

VMMcall _GetAppFlatDSAlias

mov [FlatData], eax ; read-only GDT selector

The _GetAppFlatDSAlias service returns a ring-3, read-only, GDT selector that provides
access to the same memory as the system's ring-O data segment selector. Virtual devices

_GetFirstV86Page 237

use this service to support protected-mode APIs that let protected-mode applications read
from the same memory as the virtual device.

Parameters

This service has no parameters.

Return Value

The EAX register contains the selector.

Comments

Since more than one virtual device may use this selector, a virtual device, must never
attempt to free the selector using the _Free_GDT_Selector service. Also, a virtual device
should not attempt to create a read/write selector using this selector. If a virtual device
requires an application to write to any portion of system memory, the virtual device
should build its own selector with a base and limit that specifies just the memory the
application must modify.

Uses

EAX

See Also

_Free_GDT_Selector

_GetFirstV86Page

include vmm.inc

VMMcall _GetFirstV86Page

mov [FirstPage], eax ; first page of V86 memory

The _GetFirstV86Page service returns the page number of the first page in the current
virtual machine.

Parameters

This service has no parameters.

Return Value

The EAX register contains the page number of the first page.

238 Get_Config_Directory

Comments

The first page in a virtual machine moves during virtual device initialization, so the page
number returned by this service during initialization will not be valid at any later time.

Uses

EAX

See Also

_GetLastV86Page

Get_Confi9_Directory

include vmm.inc

mov. [WinDir], edx points to the Windows directory

The Get_ConfiLDirectory service returns a pointer to a null-terminated string that
specifies the fully qualified path of the directory containing the Windows configuration
files. Virtual devices use this service to locate files such as SYSTEM.INI.

This service is available during initialization only.

Parameters

This service has no parameters.

Return Value

The EDX register points to the null-terminated string specifying the configuration
directory. If the WINDIR environment variable is defined when Windows starts, EDX
points to the value associated with WINDIR regardless of whether it specifies the actual
directory where SYSTEM.INI is found.

Comments

The string returned by this service always ends with a backslash (\).

Uses

EDX, Flags

include vmm.inc

mov ebx, VM handle of VM

Get_Crit_Section_Status 239

mov [ControlBlock], edi ; address of app control block

The Get_Cur_PM_App_CB services returns a pointer to the application control block for
a protected-mode application.

Parameters

VM

Specifies a handle identifying the virtual machine in which the protected-mode
application is running.

Return Value

The EDI register contains the address of the application control block.

Uses

EDI

Get_Crit_Section_Status

include vmm.inc

mov
mov
jc

[VM], ebx
[Claims], ecx
high-priority

; VM handle of owner
; # of times critical section claimed
; pri is Critical Section Boost or >

The Get_Crit_SectioD_Status service returns the claim count and owner of the critical
section.

Parameters

This service has no parameters.

Return Value

The ECX register contains the critical section claim count, and the EBX register contains
the handle identifying the virtual machine owning the critical section. If the ECX register
is 0, the EBX register contains the handle of the current virtual machine.

The carry flag is set if the current virtual machine has an execution priority greater than or
equal to Critical_SectioD_Boost, such as during a hardware interrupt simulation.

Comments

Windows 3.1 sometimes delays releasing the critical section until events are processed.
This service causes the system to complete any delayed releases before the service returns
the status. This may cause a task switch if another virtual machine has a delayed release.

If a virtual device must ensure that it owns the critical section to auccessfully complete an
operation, it should call this service to make sure that the critical section status is up to
date.

This is not an asynchronous service; it must not be called at interrupt time.

Uses

Flags

See Also

Get_Crit_Status_No_Block

include vmm.inc

mov
mov
jc

[VM], ebx
[Claims], ecx
high-priority

VM handle of owner
of times critical section claimed
pri is Critical_Section_Boost or >

(Version 3.1 only)

The Get_Crit_Status_No_Block service returns the claim count and handle of the owner
of the critical section. Unlike the Get_Crit_SectioD_Status service, this service returns
immediately (without blocking) even if a delayed request to release the critical section is
pending.

Parameters

This service has no parameters.

Return Value

The ECX register contains the critical section claim count, and the EBX register contains
the handle identifying the virtual machine owning the critical section. If the ECX register
is 0, the EBX register contains the handle of the current virtual machine.

The carry flag is set if the current virtual machine has an execution priority greater than or
equal to Critical_SectioD_Boost, such as during a hardware interrupt simulation.

Comments

In some cases, this service may indicate that the critical section is currently owned even
when it will be released before returning to the virtual machine.

This is an asynchronous service; it may be called at interrupt time.

Uses

Flags

See Also

End_Critical_Section, Get_Crit_Section_Status

include vmm.inc

mov [VM], ebx ; current VM handle

The Get_Cur_VM_Handle service returns the handle to the currently running virtual
machine.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EBX register contains the handle of the current virtual machine.

Uses

EBX, Flags

See Also

Get_Sys_VM_Handle, Test_Cur_VM_Handle

include vmm.inc

mov al, Char ; debugging option
VMMcall Get_Debug_Options

The Get_DebuLOptions service sets the zero flag if the given character was specified as
a command-line debugging option when Windows was started.

This service is available during initialization only.

Parameters

Char

Specifies the debugging option to check for.

Return Value

If the zero flag is set, the character was specified on the command line.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

Flags

See Also

Test_DebuLlnstalled

_GetDemandPagelnfo
include vmm.inc

VMMcall GetDemandPagelnfo, «OFFSET32 Demandlnfo>, flags>

The _GetDemandPagelnfo service retrieves information used for demand paging,
copying the information to the specified structure. This service is for exclusive use by the
virtual paging device.

Parameters

Demandlnfo

Points to a DemandlnfoStruc structure containing information for demand paging.

_GetDescriptor 243

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

This service has no return value.

Uses

Flags

_GetDescriptor

include vmm.inc

VMMcall _GetDescriptor, <Selector, VM, flags>

mov ecx, eax
or ecx, edx
jz error

mov [DescDWORD1] , edx
mov [DescDWORD2], eax

; zero in eax and edx if error

; high doubleword of descriptor
; low doubleword of descriptor

The _GetDescriptor service retrieves a copy of the descriptor associated with the given
LDT or GDT selector.

Parameters

Selector

Specifies a GDT or LDT selector.

VM

Specifies a handle identifying the virtual machine to which the specified LDT
selector belongs. The service ignores this parameter if Selector is a GDT selector.
Otherwise, the handle must be valid for LDT selectors.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the low doubleword of the descriptor and the EDX register
contain the high doubleword of the descriptor. Both EAX and EDX contain zero to
indicate an error, such as an invalid selector or an invalid virtual machine handle.

Comments

This service ignores the high 16-bits of the Selector parameter; the 80386 CPU often sets
these bits to random values when doubleword operations are performed on segment
registers.

This service ignores the RPL bits of the selector.

Uses

EAX,EDX

See Also

_BuildDescriptorDWORDs, _SetDescriptor

include vmm.inc

VMMcall _Get_Device_v86_pages_Array, <VM, <OFFSET32 ArrayBuf>,\
flags>

or eax, eax ; nonzero if retrieved, zero if error
jz not_retrieved

The _Get_Device_V86_Pages_Array service retrieves a copy of the assignment array
used by the _Assign_Device_V86_Pages and _DeAssign_Device_V86_Pages services.
Virtual devices use the assignment array to determine which regions of the V86 address
space are currently assigned, and which are available.

Parameters

VM

Specifies a handle identifying the virtual machine to retrieve the assignment array for.
If this parameter is zero, the service retrieves the global assignment array.

ArrayBuf

Points to the 36-byte buffer that receives the assignment array.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, it
contains zero to indicate an error such as an invalid virtual machine handle.

GetDOSVectors 245

Comments

The assignment array consists of 11Oh bits with each bit representing a single page in the
V86 address space. If a bit is 1, the corresponding page is assigned. If a bit is 0, the
corresponding page is not assigned.

The global assignment array does not indicate which pages are available. A page is
available for global assignment only if it is neither globally nor locally assigned. To
determine whether a page is available for global assignment, a virtual device must check
the global assignment array, and then check the assignment arrays for each virtual
machine.

Uses

EAX

See Also

_Assign_Device_V86_Pages, _DeAssign_Device_V86_Pages

GetDOSVectors

include vmm.inc

VMMcall GetDOSVectors

mov [Int23], eax ; Va6 address of original Int23 handler
mov [Int24], edx ; Va6 address.of original Int24 handler

The GetDOSVectors service returns the Interrupt 23h and Interrupt 24h vectors as
originally set by MS-DOS for the Windows virtual machine manager. When Windows
starts, the VMM changes the original Interrupt 23h and 24h vectors to the addresses of its
own handlers. When a virtual machine starts, the virtual MS-DOS manager resets these
vectors to the original handlers using this service to retrieve the original addresses.

Virtual devices must not use this service; this service is reserved for exclusive use by the
virtual MS-DOS manager.

Parameters

This service has no parameters.

Return Value

The EAX register contains the V86-mode address (segment:offset) for the MS-DOS
Interrupt 23h handler, and the EDX register contains the V86-mode address
(segment:offset) for the MS-DOS Interrupt 24h handler.

246 Get_Environment_String

Uses

EAX,EDX

See Also

Get_PSP_Segment

Get_Environment_String
include vmm.inc

mov esi, OFFSET32 Variable
VMMcall Get_Environment_String

environment variable

jc
mov

not_found
[Value], edx

carry set if not found
-> value of env. variable

The Get_Environment_String service returns the value of the specified environment
variable.

This service is only available during initialization.

Parameters

Variable

Points to a null-terminated string specifying the name of an MS-DOS environment
variable. This service is not sensitive to case, so the name may be given in any
combination of uppercase and lowercase letters.

Return Value

The carry flag is clear and the EDX register points to a null-terminated string specifying
the value of the environment variable if the service is successful. Otherwise, the carry flag
is set to indicate that the environment variable could not be found.

Comments

Environment variables, set using the MS-DOS set command, are a limited resource.
Although some virtual devices use environment variables as a way to set operating
parameters, this is not recommended unless the variable is used by a set of programs, MS­
DOS device drivers, and virtual devices.

Uses

EDX, Flags

Get_Execution_Focus

include vmm.inc

VMMcall Get_Execution_Focus
mov [Focus], ebx ; handle of VM with focus

The Get_ExecutioD_Focus service returns the handle of the virtual machine currently
having the execution focus. This virtual machine is called the foreground virtual machine.

Parameters

This service has no parameters.

Return Value

The EBX register contains the handle of virtual machine that currently has the execution
focus.

Uses

EBX, Flags

See Also

include vmm.inc

mov [Path], edx ; points to full path of WIN386.EXE
mov [Length], ecx ; number of chars including last \

The Get_Exec_Path service returns a null-terminated string that specifies the full path of
the Windows virtual machine manager (WIN386.EXE). Virtual devices often use this
service to locate executable files that are not in directories specified by the PATH
environment variable.

This service is only available during initialization.

Parameters

This service has no parameters.

Return Value

The EDX register points to a null-terminated string specifying the full path of the VMM.
The ECX register contains a count of characters up to and including the last backslash (\).

Uses

ECX,EDX

include vmm.inc

mov eax, Interrupt ; interrupt number
VMMcall Get_Fault_Hook_Addrs

The Get_Fault_Hook_Addrs service returns addresses of the V86 mode, protected-mode,
and VMM fault handlers for a specified fault.

Parameters

Interrupt

Specifies the interrupt number of the fault to check.

Return Value

If the carry flag is clear, the EDX, ESI, and EDI registers contain the addresses described
in the following list. Otherwise, the carry flag is set to indicate an error such as an invalid
interrupt number.

Register

EDX

ESI

EDI

Description

Contains the address of the fault handler installed by a V86 mode
application. This register con'tains zero if no handler has been installed.

Contains the address of the fault handler installed by a protected-mode
application. This register contains zero if no handler has been installed.

Contains the address of a fault handle installed by the VMM. This register
contains zero if no handler has been installed.

Comments

A virtual device cannot get the hook address for the Non-Maskable Interrupt (Interrupt 2).
It must use the Get_NMI_Handler_Addr and Set_NMI_Handler_Addr services to hook
Interrupt 2.

Uses

Flags

_GetFreePageCount 249

See Also

Get_NMI_Handler_Addr, Set_NMI_Handler_Addr

_GetFreePageCount

include vmm.inc

VMMcall _GetFreePageCount, <flags>

mov dword ptr [FreePages], eax ; free pages
mov dword ptr [LockablePages], edx ; lockable pages

The _GetFreePageCount service returns the number of pages in the free list. This service
also returns the number of free pages that can be allocated as locked pages. Virtual
devices can allocate free pages using the _PageAllocate service.

Parameters

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains the count of free pages, and the EDX register contains the
count of pages available for allocation as locked pages.

Comments

In a demand-paged virtual memory system such as Windows, the number of free pages is
usually very close to 0, so the count of pages available for locking is usually a better
indicator of available memory. However, virtual devices must not rely on the count of
free pages being less than or equal to the count of pages to lock. No guarantees can be
made about the length of time the information returned by this service remains accurate.

Uses

EAX,EDX

See Also

_PageAllocate

250 _GetGlblRngOV86lntBase

_GetGlblRngOV861ntBase

include vmm.inc

VMMcall _GetGlblRngOV86IntBase

mov [Address], eax ; address for ring-a V86
; interrupt handlers

The _GetGlblRngOV86lntBase service returns the linear address used to manage ring-O
global V86 interrupt handlers.

This service is only available during initialization, and only available for Windows
version 3.1 or later.

Parameters

This service has no parameters.

Return Value

The EAX register contains the linear address of the ring-O handler.

Comments

Ring-O global V86 interrupt handlers require segment selectors that permit execution in
protected mode at ring O. Furthermore, the selectors must represent memory that is not
subject to page faults. Page faults are a potential problem because part of the global code
or data for a ring-O V86 interrupt handler may overlap with the noninstanced part of an
instance data page.

This service returns the linear address of the start of a V86 address space in which
instance data pages are always present. The linear address is a duplicate of the V86
address 0:0 in the system virtual machine. The size of this duplicate mapping is 1
megabyte plus 64 kilobytes. This address space includes the xMS HMA (pages 100h­
10Fh). The system sets up the duplicate mapping after all virtual devices have processed
the Sys_Critical_lnit message. The A20 state of the system virtual machine, or any other
virtual machine, has no effect on the mapping used for this address space. The physical
(global) HMA is always mapped in this address space. Thus, A20 is effectively always on
(HMA always enabled).

Virtual devices that use this address space must wait until the Device_Init or
lnit_Complete message to request the address. This service returns zero if a virtual
device attempts to retrieve the address while processing the Sys_Critical_Init message. If
a virtual device needs the address sooner than receipt of the Device_Init message, the
virtual device can use a base address of 0 to build the selectors. It can then edit the
selectors when it processes the Device_Iuit message, changing the base address to the
correct location by adding in the return value fro~ this service.

Ring-O global V86 interrupt handlers may only access global memory.

Instance data does not work properly in this address space. The local part of this address
space is mapped with the system nul page.

Uses

EAX

include vmm.inc

mov [SysTime], eax ; system time in milliseconds

The Get_Last_Updated_System_Time service returns the time in milliseconds since
Windows was started. This service is accurate to approximately 50 milliseconds.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EAX register contains the elapsed time in milliseconds since Windows started.

Comments

This service does not detect rollover of the clock which occurs every 49 1/2 days. If a
virtual device is sensitive to rollover, it should schedule a time-out every 30 days

Although the Get_System_Time service is more accurate than this service,
Get_System_Time must call the timer device to update the clock so it is slower than
Get_Last_Updated_System_Time.

Uses

EAX, Flags

See Also

Get_System_Time

include vmm.inc

mov [ExecTime], eax ; time in milliseconds that
; VM has run

The Get_Last_Updated_VM_Exec_Time service returns the amount of time that the
current virtual machine has run. This service is accurate to approximately 50
milliseconds.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EAX register contains the execution time for the current virtual machine.

Comments

When the system creates a virtual machine, it sets the execution time for the virtual
machine to zero. The system increases the execution time only when the virtual machine
actually runs. Therefore the execution does not reflect the length of time the virtual
machine has existed, but indicates the amount of time the current virtual machine has run.

Uses

EAX, Flags

See Also

Get_VM_Exec_Time

_GetLastV86Page

include vmm.inc

VMMcall _GetLastV86Page

mov [LastPage], eax ; last page in V86 memory

The _GetLastV86Page service returns the page number of the last page of V86 memory
for the specified virtual machine.

This service is only available for Windows version 3.1 or later.

Parameters

This service has no parameters.

Return Value

The EAX register contains the page number of the last page in V86 memory.

Comments

The last page in V86 memory moves during initialization. Virtual devices that retrieve the
last page when processing initialization messages must retrieve the page number again to
use it later.

Uses

EAX

See Also

_GetFirstV86Page

include vmm.inc

mov
mov
mav
mav
mov

mov

mov

[Major], AH
[Minor], AL
[OEM], BH
[Model], BL
[Type], EBX

[SysConf], ECX

[Equip], EDX

MS-DOS major version number
MS-DOS minor version number
MS-DOS OEM serial number
machine model byte
machine type flags

(high-order 16-bits)
points to System

Configuration Parameters
equipment flags

The Get_Machine_Info service returns information about the computer system that
Windows is running on.

Parameters

This service has no parameters.

Return Value

The AX, EBX, ECX, and EDX registers contain the following information:

Register Description

AH MS-DOS major version number

AL MS-DOS minor version number

BH MS-DOS OEM serial number

BL Machine model byte (from address FOOO:FFFE in system ROM)

EBX Machine type flags (in the high-order 16-bits) as follows:

Value Meaning

GMIF_80486

GMIF_PCXT

GMIF_MCA

GMIF_EISA

80486 processor

PCXT accelerator

Micro Channel

EISA

ECX Ring 0 linear address to System Configuration Parameters (as returned from
BIOS service Interrupt I5h, AH=COh) Applies only to PS/2 or computers
with extended BIOS. See the PS/2 BIOS documentation for details.

EDX Equipment flags (as returned from Interrupt IIh)

Comments

The address returned in the ECX register points to a copy of the system configuration
parameters because the actual parameters may have been moved into a buffer which is
subject to page remapping.

Uses

EAX, EBX, ECX, EDX, Flags

include vmm.inc

VMMcall Get_Mono_Chr
mov byte ptr [Char], al
mov byte ptr [Attr], ah

; character value
; character attribute

The Get_Mono_Chr service retrieves the character and attribute value at the current
cursor position.

Parameters

This service has no parameters.

Return Value

The AL register contains the character value, and the AH register contains the character
attribute.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

EAX, Flags

See Also

Out_Mono_Chr, Set_Mono_Cur_Pos

include vmm.inc

VMMcall Get_Mono_Cur_Pos
mov byte ptr [Column], dl
mov byte ptr [Row], dh

; current column position
; current row position

The Get_Mono_Cur_Pos service retrieves the current cursor position for the secondary
display.

Parameters

This service has no parameters.

Return Value

The DL register contains the column position value, and the AH register contains the row
position.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

Flags

See Also

Set_Mono_Cur_Pos

include vmm.inc

jz
mov
mov

no_ugly_TSR
[Name], eax
[Name+4], ebx

zero set if no ugly TSRs present
first 4 characters of TSR name
last 4 characters of TSR name

The Get_Name_Of_Ugly_TSR service returns the name of an uncooperative TSR.
During its real-mode initialization, the virtual MS-DOS manager checks for and records
the names of any TSRs that may prevent other MS-DOS programs from running.
Get_Name_Of_Ugly_TSR checks the list and returns one of the TSR names (if any) so
that virtual devices can determine whether they can successfully operate. Although more
than one ugly TSR may be present in the list, the service chooses only one name to return.

This service is only available during initialization and only available for Windows 3.1 and
later.

Parameters

This service has no parameters.

Return Value

The zero flag is set and the EAX and EBX registers are set to zero if no ugly TSRs are
present. Otherwise, the zero flag is clear and the EAX register contains the first fOUf

characters of the TSR name, and the EBX register contains the last four characters.

Uses

EAX, EBX, Flags

include vmm.inc

mov ecx, 0
VMMcall Get_Next_Arena

must be zero

mov
mov
mov

[Data], eax
[Flags], ecx
[Memory], edx

data value
high MS-DOS memory flags
points to array of

Common_Memory_struc

The Get_Next_Arena service returns a pointer to an MS-DOS data structure.

Virtual devices must not use this service; it is intended for exclusive use by the virtual
MS-DOS manager.

Parameters

This service has no parameters.

Return Value

The EAX, ECX, and EDX registers contain the following information:

Register Description

EAX Specifies a data value.

ECX Specifies the high MS-DOS flags. It can be a combination of the following
values:

Value Meaning

GNA_HiDOSLinked Set if high MS-DOS arenas were linked in when
Windows was started.

GNA_IsHighDOS Set if high MS-DOS arenas exist.

EDX Points to an array of Common_Memory_struc structures specifying the
addresses and sizes of high MS-DOS memory segments. Each element of the
list has the following form:

Common_Memory_struc struc
CM_seg dw? ; segment address of start
CM_size dw? ; size in paragraphs

Common Memory struc ends

The last element of array contains zero.

Uses

EAX, ECX, EDX, and Flags

include vmm.inc

mov edx, Profile ; points to the previous entry value
mov edi, Keyname ; points to the entry name
VMMcall Get_Next_Profile_String

jc
mov

no_next
[Next], edx

carry set if there is no next value
points to entry value of next
profile string

The Get_Next_Protile_String service searches the SYSTEM.INI file for the first entry
that follows the entry specified by the Profile parameter, and that has the given Keyname.
This service returns a pointer to this next entry if it is found.

Virtual devices typically use this service if they have more than one entry having the same
keyname. A virtual device retrieves the first string using the Get_Profile_String service,
then uses Get_Next_Protile_String to retrieve all subsequent entries. In all cases, the
virtual device must not modify the returned string.

Parameters

Profile

Points to a null-terminated string specifying the value of the previous entry. The
string must have been previously returned using the Get_Profile_String or
Get_Next_Profile_String service.

Keyname

Points to a null-terminated string identifying the keyname for the entry.

Return Value

If the carry flag is clear, the EDX register contains the address of the next string having
the specified keyname. The carry flag is set if there are no more matching entries.

Uses

EDX, Flags

See Also

Get_Profile_String

include vmm.inc

mov ebx, VM ; VM handle
VMMcall Get_Next_VM_Handle

mov [NextVM], ebx next VM handle

The Get_Next_VM_Handle service returns the handle of the next virtual machine in the
virtual machine list maintained by the system. Although each virtual machine appears
only once in the list, the order of the handles is not guaranteed. The list is circular, so a
virtual device scanning the list should stop scanning when the latest handle returned is
equal to the first handle returned.

Parameters

VM

Specifies a handle identifying a virtual machine.

Return Value

The EBX register contains the handle of the next virtual machine in the list.

Example

The following example modifies the state of every virtual machine by using the
Get_Next_VM_Handle service to retrieve handles of all valid virtual machines:

; modify the VM state

VMMcall Get_Next_VM_Handle
VMMcall Test_Cur_VM_Handle
jne Scan_Loop

Uses

EBX, Flags

See Also

Get_Cur_VM_Handle, Test_Cur_VM_Handle

include vmm.inc

mov [NMI], esi offset to current NMI handler

The Get_NMI_Handler_Addr service returns the address of the current Non-Maskable
Interrupt (NMI) handler.

Parameters

This service has no parameters.

Return Value

The ESI register contains the offset of current NMI handler.

260 _GetNulPageHandle

Comments

If a virtual device needs to hook the Non-Maskable Interrupt it must first call this service
to get and save the original NMI handler address. The virtual can then install the new
NMI handler my using the Set_NMI_Handler_Addr service. The new handler should
create an NMI handler chain by passing execution to the original NMI handler whenever
it does not process the NMI.

Uses

ESI, Flags

See Also

Set_NMI_Handler_Addr

_GetNulPageHandle

include vmm.inc

VMMcall _GetNulPageHandle

mov [NulPage], eax ; handle of system nul page

The _GetNulPageHandle service returns the memory handle of the system nul page. This
page is used to occupy regions of the address space which are unused but for which it is
not desirable to cause a page fault when accessed. The system nul page can be mapped to
multiple locations in the system, so its contents are always random.

Parameters

This service has no parameters.

Return Value

The EAX register contains the memory handle of the system nul page.

Uses

EAX

See Also

_MaplntoV86

include vmm.inc

mov eax, Interrupt
VMMcall Get_PM_Int_Type

number of interrupt to check

mov [Type], edx o if trap gate, otherwise
interrupt gate

The Get_PM_Int_Type service determines whether a protected-mode interrupt vector is
an interrupt gate or trap gate type interrupt.

Parameters

Interrupt

Specifies the number of the interrupt to check.

Return Value

The EDX register contains zero if the specified interrupt corresponds to a trap gate. The
EDX register contains a nonzero value if the interrupt corresponds to an interrupt gate.

Comments

An interrupt through an interrupt gate automatically clears the interrupt flag bit to disable
interrupts. Interruprs through a trap gate do not modify the interrupt bit. All protected­
mode interrupts default to the trap gate type, but virtual devices such as the virtual PIC
device, may change some trap gates to interrupt gates so that hardware interrupts disable
interrupts. The virtual PIC device leaves software interrupts, such as Interrupt 21h,
unchanged. This avoids an unnecessary ring transition by eliminating the need for the
software interrupt handlers to execute an sti instruction.

Uses

EDX, Flags

See Also

(;et_P~_Int_Vector,Set_P~_Int_Type

include vmm.inc

mov eax, Interrupt
VMMcall Get_PM_Int_Vector

number of interrupt to check

mov

mov

[Segment], cx

[Offset], edx

segment selector for
interrupt routine

offset to interrupt routine

The Get_PM_Int_Vector service returns the address of the interrupt routine for the
specified protected-mode interrupt in the current virtual machine.

Parameters

Interrupt

Specifies the number of the interrupt to check.

Return Value

The CX register contains the segment selector of the interrupt routine, and the EDX
register contains the offset of the interrupt routine. If the code segment is a 16-bit
segment, the high word of the EDX register is zero.

The zero flag is set if the interrupt address points to the default interrupt handler; the flag
is clear if a virtual device has hooked the interrupt.

Comments

The system maintains a protected-mode interrupt vector table for each virtual machine.
By default, each table entry points to a protected-mode breakpoint procedure that reflects
the interrupt to V86 mode.

Uses

ECX, EDX, Flags

See Also

Get_PM_Int_Type, Set_PM_Int_Vector

include vmm.inc

mov eax, Default
mov esi, OFFSET32 Profile
mov edi, OFFSET32 Keyname
VMMcall Get_Profile_Boolean

default value
points to section name
points to entry name

jc carry set if entry not found

jz

mov [Value], eax

zero set if entry has no value

entry value is either 0 (false)
or -1 (true)

The Get_Profile_Boolean service returns the value of a boolean-type entry in the
SYSTEM.INI file. The Profile and Keyname parameters specify the section and entry to
search.

This service is only available during initialization.

Parameters

Default

Specifies the default value to return if the entry is not found, or has no current value.

Profile

Specifies a null-terminated string identifying the section in the SYSTEM.INI file to
search. If Profile is zero, the service searches the [386Enh] section.

Keyname

Points to a null-terminated string identifying the name of the entry to locate.

Return Value

If the carry and zero flags are clear, the specified entry is found and is a valid boolean­
type string. In this case, the EAX register is set to -lor 0 indicating that the entry value
evaluates to true or false, respectively.

If the carry flag is clear and the zero flag is set, the specified entry exists but has no
corresponding value. If the carry flag is set, the entry cannot be found or the entry does
not represent a boolean-type value. In these cases, the EAX register is set to the Default
value.

Comments

This service returns the Default value unless the value corresponding to the specified
entry is a valid boolean-type string. A boolean-type string can be one of the following:

String Meaning

o False

True

False False

N False

No False

Off False

On True

True True

Y Trlie

Yes True

Non-English versions of Windows may have language-specific additions to this list.

Uses

Flags

See Also

Get_Profile_Decimal_Int, Get_Profile_Fixed_Point, Get_Profile_Hex_Int

Get_ProfiIe_Deciinal_1nt
include vmm.inc

mov eax, Def~ult

mov esi, OFFSET32 Profile
mov edi, OFFSET32 Keyname
VMMcall Get_Profile_Decimal_Int

default value
points to section name
points to entry name

jc
jz

mov

not_found
no_value

[Value], eax

carry set if entry not found
zero set if entry has no value

entry value

The Get_ProfiIe_Decimal_Int service returns the value of a decimal-number entry in the
SYSTEM.INI file. The Profile and Keyname parameters specify the section and entry to
search.

This service is only available during initialization.

Parameters

Default

Specifies the default value to return if the entry is not found or has no current value.

Profile

Specifies a null-terminated string identifying the section in the SYSTEM.INI file to
search. If Profile is zero, the service searches the [386Enh] section.

Keyname

Points to a null-terminated string identifying the name of the entry to locate.

Return Value

If the carry and zero flags are clear, the specified entry is found and is a valid decimal
number. In this case, the EAX register is set to the value of the number.

If the carry flag is clear and the zero flag is set, the specified entry exists but has no
corresponding value. If the carry flag is set, the entry cannot be found or the entry does
not represent a valid decimal number. In these cases, the EAX register is set to the Default
value.

Comments

A valid decimal number consists of one or more decimal digits and contains no embedded
spaces or decimal points. The decimal number can be preceded with a plus sign (+) or
minus sign (-) to indicate a positive or negative number, respectively.

Uses

Flags

See Also

Get_Profile_Boolean, Get_Profile_Fixed_Point, Get_Profile_Hex_Int

include vmm.inc

mov eax, Default
mov ecx, Places

mov esi, OFFSET32 Profile
mov edi, OFFSET32 Keyname
VMMcall Get_Profile_Fixed_Point

default value
number of digits after

decimal point
points to section name
points to entry name

jc
jz

mov

not_found
no_value

[Value], eax

carry set if entry not found
zero set if entry has no value

entry value

The Get_Profile_Fixed_Point service returns the value of a fixed-point-number entry in
the SYSTEM.INI file. The Profile and Keyname parameters specify the section and entry
to search for.

This service is only available during initialization.

Parameters

Default

Specifies the default value to return if the entry is not found or has no current value.

Places

Specifies the number of digits after the decimal point to convert. If fixed-point
number has extra digits, the service ignores them.

Profile

Specifies a null-terminated string identifying the section in the SYSTEM.INI file to
search. If Profile is zero, the service searches the [386Enh] section.

Keyname

Points to a null-terminated string identifying the name of the entry to locate.

Return Value

If the carry and zero flags are clear, the specified entry is found and is a valid fixed-point
number. In this case, the EAX register is set to the normalized value of the number; the
actual value is computed as EAX * 10 ** (-Places).

If the carry flag is clear and the zero flag is set, the specified entry exists but has no
corresponding value. If the carry flag is set, the entry cannot be found or the entry does
not represent a valid fixed-point number. In these cases, the EAX register is set to the
Default value.

Comments

A valid fixed-point number is a decimal number that consists of an integer, a fraction, or a
combination of integer and fraction. The integer can be any combination of decimal
digits, and may be preceded by a plus sign (+) or a minus sign (-) to indicate a positive or
negative fixed-point value.

The fraction can be any combination of decimal digits but must be preceded with a
decimal point (.).

Uses

Flags

See Also

Get_Profile_Boolean, Get_Profile_Decimal_Int, Get_Profile_Hex_Int

include vmm.inc

mov eax, Default
mov esi, OFFSET32 Profile
mov edi, OFFSET32 Keyname
VMMcall Get_Profile_Hex_Int

default value
points to section name
points to entry name

jc
jz

mov

not_found
no_value

[Value], eax

carry set if entry not found
zero set if entry has no value

entry value

The Get_Proflle_Hex_Int service returns the value of a hexadecimal-number entry in the
SYSTEM.INI file. The Profile and Keyname parameters specify the section and entry to
search.

This service is only available during initialization.

Parameters

Default

Specifies the default value to return if the entry is not found or has no current value.

Profile

Specifies a null-terminated string identifying the section in the SYSTEM.INI file to
search. If Profile is zero, the service searches the [386Enh] section.

Keyname

Points to a null-terminated string identifying the name of the entry to locate.

Return Value

If the carry and zero flags are clear, the specified entry is found and is a valid
hexadecimal number. In this case, the EAX register is set to the value of the number.

If the carry flag is clear and the zero flag is set, the specified entry exists but has no
corresponding value. If the carry flag is set, the entry cannot be found or the entry does
not represent a valid hexadecimal number. In these cases, the EAX register is set to the
Default value.

Comments

A valid hexadecimal number consist of any combination of hexadecimal digits (0-9, A-F),
and can be terminated with the uppercase or lowercase letter H.

Uses

Flags

See Also

Get_Profile_Decimal_Int, Get_Profile_Fixed_Point, Get_Profile_Hex_Int

include vmm.inc

mov edx, OFFSET32 Default

mov esi, OFFSET32 Profile
mov edi, OFFSET32 Keyname
VMMcall Get_Profile_String

points to default string
(optional)

points to section name
points to entry name

jc
mov

not_found
[Value], edx

carry set if entry not found
points to entry value string

The Get_Profile_String service searches the SYSTEM.INI file for a specified entry and
returns a pointer to a null-terminated string representing the entry value.

This service is only available during initialization.

Parameters

Default

Points to a null-terminated string to be returned if the entry is not found or has no
current value.

Profile

Specifies a null-terminated string identifying the section in the SYSTEM.INI file to
search. If Profile is zero, the service searches the [386Enh] section.

Keyname

Points to a null-terminated string identifying the name of the entry to locate.

Return Value

If the carry flag is clear, the EOX register contains the address of the null-terminated
string representing the entry value. If the carry flag is set, the string cannot be found.

Comments

A virtual device must not modify the string pointed to by the EOX register. If
modification is required, the virtual device must copy the string and modify the copy.

Get_PSP_Segment 269

Uses

EDX, Flags

See Also

Get_Next_Profile_String

include vmm.inc

mov [PSP], eax ; segment address of pSP

The Get_PSP_Segment service returns the segment address of program segment prefix
(PSP) for the Windows virtual machine manager (WIN386.EXE). Virtual devices
typically use this service to retrieve values from the PSP that can not be retrieve using the
Get_Exec_Path and Get_Environment_String services.

This service is only available during initialization.

Parameters

This service has no parameters.

Return Value

The EAX register contains the segment address for the program segment prefix. The high
word is always zero.

Comments

This service returns a segment address. To convert the segment address to an physical
address, shift it left by 4 bits.

Uses

EAX, Flags

See Also

Get_Environment_String, Get_Exec_Path

270 GetSetDetailedVMError

GetSetDetai ledVMError

include vmm.inc

ebx, VM
ecx, GetSet
eax, Error
edx, RefData

VM Handle or 0 if Create_VM error
zero if get, nonzero zero if set
error code if ecx nonzero
points to reference data

; if ecx nonzero
VMMcall GetSetDetailedVMError

mov
mov
mov
mov

jz no_error_info zero set if no error info~ation

mov
mov

[Error], eax
[RefData], edx

error code
reference data for the error code

The GetSetDetailedVMError service sets detailed error code for a virtual machine crash
or start-up error.

This service is only available for Windows 3.1 or later.

Parameters

VM

Specifies a handle identifying the virtual machine. If this parameter is zero, the
service gets or sets error information for the Create_VM message.

GetSet

Specifies which action tot take. If zero, the service retrieves error information. If
nonzero, the service sets error information.

Error

Specifies the error code to set. This parameter is used only if GetSet is nonzero.
There are the following error code values:

Value Meaning

GSDVME_CrtNoMsg

GSDVME_DevNuke

GSDVME_DevNukeHdwr

Supress standard messages; the SHELL_Message
service is used for custom messages.

Device-specific problem.

Device-specific problem caused by software running in
the virtual machine.

GSDVME_InsMemEMS

GSDVME_InsMemV86

Available EMS memory is less than requested; set by
the virtual V86 mode memory manager.

Insufficient V86 memory; set by the virtual V86 mode
memory manager.

GetSetDetailedVMError 271

GSDVME_InsMemV86Hi Insufficient high MS-DOS memory; set by the virtual
MS-DOS manager.

GSDVME_InsMemVid Insufficient base video memory; set by the virtual
display device.

GSDVME_InsMemVM Insufficient base virtual machine memory for control
block or instance buffer.

(]SDVME_InsMernXMS Available XMS memory is less than requested; set by
the virtual V86 mode memory manager.

GSDVME_InsV86Space Available V86 address space is less than requested; set
by the virtual V86 mode memory manager.

GSDVME_InvaIFlt Invalid fault.

CiSDVME_InvaIGpFlt Invalid GP fault.

GSDVME_InvaIInst Attempt to execute an invalid instruction.

GSDVME_InvaIPgFlt Invalid page fault.

GSDVME_InsMemDev Could not allocate base virtual machine memory for
device.

GSDVME_NukeNoMsg Suppress standard messages; the SHELL_Message
service is used for custom messages.

GSDVME_OkNukeMask Reserved for the exclusive use of the virtual MS-DOS
manager.

GSDVME_PrivInst Attempt to execute a privledged instruction.

GSDVME_UserNuke User requested running virtual machine be terminated.

Error values that have the high word set to 2 are intended to be used when a virtual
machine fails on start up.

RefData

Points to reference data to set. The reference data is an additional doubleword of data
associated with an error. This parameter is used only if GetSet is nonzero. This
parameter is zero if there is no associated reference data.

Return Value

If the zero flag is clear, the"EAX register contains the error code and the EDX register
contains the address of the reference data associated with the error code. The zero flag is
set if the service found no detailed error information.

Uses

EAX, EDX, Flags

include vmm.inc

VMMcall GetSet_HMA_Info

mov
mov

mov
mov
mov

ecx, Action
dx, A20Enable

[NoGlobalHMA], eax
[XMSCallAddr], ecx
[A20Enable], edx

zero to get, nonzero to set
A20 enable count (if ecx

is nonzero)

nonzero if no global HMA user
loader XMS call address
A20 enable count before

Windows started

The GetSet_HMA_Info service returns and sets information related to the high-memory
area (HMA) region.

This service lets the XMS driver (in the V86MMGR device) determine whether a global
HMA user existed before Windows started and gives the driver access to the HMA enable
count.

This service is always valid (not restricted to initialization).

Parameters

Action

Specifies whether to get or set information. If this parameter is zero, the service
returns HMA information. Otherwise, it sets the information.

A20Enable

Specifies the A20 enable count to set for the Windows VMM loader. The service uses
this parameter only if the Action parameter is nonzero.

Return Value

The EAX, ECX, and EX register contain the following HMA information:

Register Description

EAX Specifies whether a global HMA user is present. If this register is 0,
Windows did not allocate the HMA meaning either there is a global HMA

_GetSysPageCount 273

user or there is no HMA. If this register is nonzero, Windows has allocated
the HMA, meaning there is no global HMA user.

ECX Specifies the V86-mode address (segment:offset) that Windows used to call
the XMS driver when loading. The segment address is in the high 16 bits of
the register.

EDX Specifies the A20 enable count before Windows started.

Comments

The global HMA flag and loader XMS call address cannot be set.

Uses

EAX, ECX, EDX, Flags

_GetSysPageCount

include vmm.inc

VMMcall _GetSysPageCount, <flags>

mov [SysPages], eax count of system pages

The _GetSysPageCount service returns the current count of system pages. System pages
are pages that have been allocated using the PG_SYS value.

Parameters

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the number of pages allocated as PG_SYS pages.

Comments

Although the return value often is equal to the size of the Windows virtual machine
manager, virtual devices must not rely on this fact.

Uses

EAX

See Also

_GetFreePageCount, _GetVMPgCount

274 _GetSetPageOutCount

_GetSetPageOutCount

include vmm.inc

VMMcall _GetSetPageOutCount, <NewCount, flags>

The _GetSetPageOutCount service either sets or returns the page out count.

This service is for exclusive use by the virtual pageswap device.

Parameters

NewCount

Specifies the new page out count. This parameter is used only if the flag parameter is
not set to the GSPOC_F_Get value.

flags

Specifies the operation flags. This parameter can be the following value:

Value Meaning

Returns the current value of the page out count; the
NewCount parameter is ignored. If this value is not
given, the service sets the value of the page out count
to NewCount.

All other values are reserved.

Return Value

The EAX register contains the page out count if the GSPOC_F_Get value is given.
Otherwise, this service has no return value.

Comments

This service allows the virtual pageswap device to manipulate a memory manager
parameter associated with demand paging. This parameter is the page out ahead count.
Whenever a page is paged out to satisfy a page in, the system pages out an additional
PageOutCount-1 pages and puts the pages on the free list (if possible).

Uses

EAX

See Also

_PageOutDirtyPages

include vmm.inc

mov [SysTime], eax ; system time in milliseconds

The Get_System_Time service returns the time in milliseconds since Windows started.
This service is accurate to 1 millisecond.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EAX register contains the elapsed time in milliseconds since Windows started.

Comments

This service does not detect rollover of the clock which occurs every 49 1/2 days. If a
virtual device is sensitive to rollover, it should schedule a time-out every 30 days

Although the Get_System_Time service is more accurate than the
Get_Last_Updated_System_ Time service, Get_System_Time must call the timer
device to update the clock so it is slower than Get_Last_Updated_System_Time.

Uses

EAX, Flags

See Also

Get_Last_Updated_System_Time

include vmm.inc

mov [SysVM], ebx ; system VM handle

The Get_Sys_VM_Handle service returns the handle for the system virtual machine.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EBX register contains the system virtual machine handle.

Uses

EBX, Flags

See Also

Get_Cur_VM_Handle, Test_Sys_VM_Handle

include vmm.inc

mov [Granularity], eax ; minimum time-slice in ms

The Get_Time_Slice_Granularity service returns the current time-slice granularity. This
value specifies the minimum number of milliseconds a virtual machine runs before being
rescheduled.

Parameters

This service has no parameters.

Return Value

The EAX register contains the time-slice granularity in milliseconds.

Uses

EAX, Flags

See Also

Get_Time_Slice_Info, Get_Time_Slice_Priority, Set_Time_Slice_Granularity

include vmm.inc

mov [Scheduled], eax number of virtual machines
scheduled

mov

mov

[Current], ebx

[Idle], ecx

handle of currently scheduled
virtual machine

number of idle virtual machines

The Get_Time_Slice_Info service returns information about the number of virtual
machines currently scheduled by the time-slicer, and the number of virtual machines that
are idle.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EAX, EBX and ECX registers contain the following information:

Register Description

Contains the number of virtual machines scheduled.

Contains the handle of the currently scheduled virtual machine.

Contains the number of scheduled virtual machines that are currently idle.

EAX

EBX

ECX

Uses

EAX, EBX, ECX, Flags

See Also

include vmm.inc

mov ebx, VM ; VM handle
VMMcall Get_Time_Slice_Priority

mov
mov
mov
mov

[Flags], eax
[Foreground], ecx
[Background], edx
[CPUTime], esi

flags from CB_VM_Status
foreground time-slice priority
background time-slice priority
percentage of total CPU time used

The Get_Time_Slice_Priority service returns the time-slice execution flags, the
foreground and background priorities, and the percent of CPU usage for a specified virtual
machine.

Parameters

VM

Specifies a handle identifying the virtual machine for which to retrieve information.

Return Value

The EAX, ECX, EDX, and ESI registers contain the following information:

Register Description

EAX Specifies status flags from the CB_VM_Status field in the virtual machine's
control block. It can be one of the following values:

Value Meaning

VMStat_Exclusive

VMStat_Background

VMStat_High_Pri_Back

Exclusive execution.

Background execution.

High-priority background execution.

ECX Specifies the foreground time-slice priority. The high word is always O.

EDX Specifies the background time-slice priority. The high word is always O.

ESI Specifies the percentage of total CPU time used by the virtual machine.

Comments

The percentage of CPU time indicates the maximum amount of time the virtual machine
can run. If the virtual machine releases its time slice, this actual amount of CPU time will
be lower because the system grants the released time to other virtual machines.

Uses

EAX, ECX, EDX, ESI, Flags

See Also

Get_Time_Slice_Granularity, Get_Time_Slice_Info

include vmm.inc

mov eax, Interrupt
VMMcall Get_V86_Int_Vector

number of interrupt to check

mov

mov

[Segment], ex

[Offset], edx

segment address for
interrupt routine

offset to interrupt routine

_GetV86PageabieArray 279

The Get_V86_Int_Vector service returns the address of the interrupt routine for the
specified real-mode interrupt in the current virtual machine.

Parameters

Interrupt

Specifies the number of the interrupt to check.

Return Value

The CX register contains the segment address of the interrupt routine and the EDX
register contains the offset of the interrupt routine (the high word is always zero).

Uses

ECX, EDX, Flags

See Also

Get_PM_Int_Vector, Set_V86_Int_Vector

_GetV86PageabieArray

include vmm.inc

VMMcall _GetV86PageableArray, <VM, <OFFSET32 ArrayBuf>, flags>

jz error

or eax, eax nonzero if array retrieved,
zero if error

The _GetV86PageableArray service returns a copy of the bit array of pages whose
behavior has been modified using the _SetResetV86Pageable service.

Virtual devices use this service to determine whether regions in the V86 address space in
a virtual machine have had the normal lock and unlock behavior modified.

Parameters

VM

Specifies the virtual machine to examine.

ArrayBuj

Points to the buffer to receive the array. The array contains 100h bits (32 bytes), one
bit for each page in the range 0 through 100h. If a bit is set, the lock and unlock
behavior for the corresponding page is disabled. Otherwise, the behavior is enabled.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid virtual machine handle.

Comments

This service returns a bit array whose bits are all zero if the VMStat_PageableV86 value
is not given in the CB_VM_Status field of the control block for the virtual machine.

Uses

EAX

See Also

_SetResetV86Pageable

include vmm.inc

mov [ExecTime], eax ; time in ms that VM has run

The Get_VM_Exec_Time service returns the amount of time that the current virtual
machine has run. This service is accurate to 1 millisecond.

This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The EAX register contains the execution time for the current virtual machine.

Comments

When the system creates a virtual machine, it sets the execution time for the virtual
machine to zero. The system increases the execution time only when the virtual machine
actually runs. This means the execution time indicates the amount of time the current
virtual machine has run, not the length of time since it was created.

Although the Get_VM_Exec_Time service is more accurate than the
Get_Last_Updated_VM_Exec_Time service, Get_VM_Exec_Time must call the timer
device to update the clock so it is slower than Get_Last_Updated_VM_Exec_Time.

Uses

EAX, Flags

See Also

Get_Last_Updated_VM_Exec_Time

include vmm.inc

jecxz not_reentered

mov [Count], ecx

ecx is zero if VMM not
re-entered

otherwise, number of times
re-entered

The Get_VMM_Reenter_Count service returns the number of times the VMM has been
re-entered as a result of a hardware interrupt, page fault, or other processor exception.
Virtual devices typically use this service to determine whether they can call nonre-entrant
VMM services.

Parameters

This service has no parameters.

Return Value

The ECX register is zero if the VMM has not been re-entered. Otherwise, the ECX
register specifies the number of times the VMM has been re-entered.

Comments

If this service returns a nonzero value, a virtual device may call only VMM services that
are asynchronous. If a virtual must call other VMM services, the virtual device can
schedule an event using a service such as Schedule_Global_Event. The system calls the
event's callback procedure when all VMM services are available.

The Call_Global_Event and Call_VM_Event services call this service to determine
whether the event callback procedure should be called immediately.

282 Get VMM_Version

Uses

Flags

See Also

Call_Global_Event, Call_VM_Event, Schedule_Global_Event, Schedule_VM_Event

Get_VMM_Version

include vmm.inc

VMMcall Get_VMM_Version

mov
mov
mov

[Major], ah
[Minor], al
[Debug], ecx

major version number
minor version number
debug development

revision number

The Get_VMM_Version service returns the version number for the Windows virtual
machine manager (VMM).

Parameters

This service has no parameters.

Return Value

The carry flag is clear and the AX and ECX registers contain the following version
number information:

Register

AH

AL

ECX

Uses

EAX, Flags

Description

Specifies the major version number. For Windows 3.1, this number is 3.

Specifies the minor version number. For Windows 3.1, this number is 10.

Specifies the debug development revision number.

_GetVMPgCount

include vmm.inc

VMMcall _GetVMPgCount, <VM, flags>

The _GetVMPgCount service returns the current count of pages allocated to a particular
virtual machine.

_HeapAllocate 283

Parameters

VM

Specifies a handle identifying the virtual machine to examine.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the total number of pages allocated for the specified virtual
machine, and the EDX register contains the count of pages which are allocated to this
virtual machine but which are not mapped into the virtual machine's 1 megabyte address
space.

Both EAX and EDX contain zero to indicate an error, such as an invalid virtual machine
handle.

Comments

Virtual devices must not rely on the sum of the return values being the size (in pages) of
the virtual machine.

Uses

EAX,EDX

See Also

_GetFreePageCount, _GetSysPageCount

_HeapAllocate

include vmm.inc

VMMcall _HeapAllocate, <nbytes, flags>

or
jz
mov

eax, eax
not_allocated
[Address], eax

zero if error

address of memory block

The _HeapAllocate service allocates a block of memory from the heap.

Parameters

nbytes

Specifies the size in bytes of the block to allocate. This parameter must not be zero.

284 _HeapFree

flags

Specifies the allocation flags. It can be the following value:

Value Meaning

HeapZerolnit

All other values are reserved.

Return Value

Fills the memory block with zeros. If this value is not
given, the initial content of the memory block is
undefined.

The EAX register contains the ring-O address of the block if the service is successful.
Otherwise, EAX contains zero to indicate an error such as insufficient memory to satisfy
the request.

Comments

This service aligns allocated block on doubleword boundaries, however, the block size
does not have to be a multiple of 4.

Since the system offers no protection on the heap, virtual devices must provide their own
protection to prevent overrunning allocated blocks.

The system offers no compaction on the heap; all memory blocks on the heap are fixed.
Virtual devices must not to use the heap in such a way as to severely fragment it.

Uses

EAX

See Also

_HeapFree, _HeapReAllocate

_HeapFree

include vmm.inc

VMMcall _HeapFree, <hAddress, flags>

or
jz

eax, eax
not freed

nonzero if freed, zero if error

The _HeapFree service frees an existing memory block of heap.

_HeapGetSize 285

Parameters

hAddress

Specifies the address of the memory block to free. This address must have been
previously returned from the _HeapAllocate or _HeapReAllocate service.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid address.

Uses

EAX

See Also

_HeapAllocate, _HeapReAllocate

_HeapGetSize

include vmm.inc

VMMcall _HeapGetSize, <hAddress, flags>

or
jz
mov

eax, eax
error
[Size], eax

zero if error

size in byte of memory block

The _HeapGetSize service returns the size in bytes of an existing block of heap.

Parameters

hAddress

Specifies the address of the memory block. This address must have been previously
returned from the _HeapAllocate or _HeapReAllocate service.

flags

Specifies the operation flags. This parameter must be set to o.

286 _HeapReAllocate

Return Value

The EAX register contains the size in bytes of the block if the. service is successful.
Otherwise, EAX contains zero to indicate an error such as an invalid address.

Uses

EAX

See Also

_HeapAllocate

_HeapReAllocate

include vmm.inc

VMMcall _HeapReAllocate, <hAddress, nbytes, flags>

or
jz
mov

eax, eax
error
[Address], eax

zero if error

address of reallocated block

The _HeapReAIIocate service reallocates or reinitializes an existing memory block.

Parameters

hAddress

Specifies the address of the memory block. This address must have been previously
returned from the _HeapAIIocate or _HeapReAllocate service.

nbytes

Specifies the new size in bytes of the reallocated block. This parameter must not be
zero.

flags

Specifies the allocation flags. This parameter can be a combination of the following
values:

Value

HeapZeroInit

HeapZeroReInit

HeapNoCopy

Meaning

Fills any new bytes in the memory block with zeros.
All existing bytes remain unchanged.

Fills all bytes, new and existing, with zeros.

Does not preserve contents of existing bytes. If this
value is not given, the service preserves the contents of

Hook_Device_Service 287

eXIsting bytes by copying the contents of the old
memory block into the new block.

All other values are reserved.

Return Value

The EAX register contains the ring-O address of the new block if the service is successful.
Otherwise, EAX contains zero to indicate an error such as insufficient memory to satisfy
the request or an invalid address.

Comments

If this service is successful, it frees the old memory block, making the old address invalid.
Virtual devices must never rely on the old and new addresses being the same. If this
service returns an error, the old memory block is not freed and the old address remains
valid.

Since the system offers no protection on the heap, virtual devices must provide their own
protection to prevent overrunning allocated blocks.

The system offers no compaction on the heap; all memory blocks on the heap are fixed.
Virtual devices must not not to use the heap in such a way as to severely fragment it.

Uses

EAX

See Also

_HeapAllocate, _HeapFree

Hook_Device_Service

include vmm.inc

mov
mov

eax, Service
esi, OFFSET32 HookProc

specifies the service
points to the hook

procedure to install

jc
mov

not installed
[Real Procl, esi

carry set if error

The Hook_Device_Service service allows one virtual device to monitor or replace the
services of another virtual device or of the VMM itself.

Parameters

Service

Specifies the virtual device or VMM service to hook.

HookProc

Points to the hook procedure to install. The hook procedure is called with the same
parameters as the service specified by the Service parameter.

Return Value

The carry flag is clear and the ESI register contains the address of the service specifed by
the Service parameter if this service is successful. Otherwise, the carry flag is set to
indicate an error.

Comments

Virtual devices that use this service must use extreme care to preserve the full
functionality of the virtual device whose services are monitored or replaced.

More than one virtual device can hook a device service. The last hook installed is the first
one called.

The hook procedure must save and restore registers that are not modified by the hooked
service. Also, if flags are a passed as an entry or exit parameter, the hook procedure must
also preserve the flags.

If the hooked service uses the C calling convention, the hook procedure must copy the
entire parameter stack frame before attempting to call the hooked service.

Uses

ESI, Flags

include vmm.inc

mov eax, ID
mov esi, OFFSET32 Callback
VMMcall Hook_Device_VB6_API

device ID
points to new API callback

The Hook_Device_V86_API service installs an API callback procedure allowing a virtual
device to intercept calls to the V86 mode API of another virtual device. This service is
intended to support virtual devices that need to monitor calls to the APls of other virtual
devices. Most virtual devices will never need this service.

Parameters

ID

Specifies the identifier for the virtual device to monitor.

Handler

Points to the callback proecdure to install. See the "Comments" section for more
information about the procedure.

Return Value

The carry flag is clear and the ESI register contains the address of the previous callback
procedure if the service is successful. Otherwise, the carry flag is set to indicate the
specified virtual device does not support an API.

Comments

The system calls the callback procedure whenever an application in a virtual machine
calls the API for the specified virtual machine. The system calls the callback as follows:

mov
mov
call

ebx, VM
ebp, OFFSET32 crs
[Callback]

; current VM handle
; points to Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine and crs points to a
Client_Re~Struc structure containing the register values of the current virtual machine.
Other registers contain the parameter values intended for the API.

The callback procedure can carry out tasks but eventually must pass execution to the
previous API callback procedure, preserving the EBX and EBP registers when it calls.

Uses

ESI, Flags

See Also

Hook_Device_PM_API

include vmm.inc

mov esi, OFFSET32 HookProc points to hook procedure
to install

jc not_installed ; carry set if procedure
not installed

The Hook_Invalid_Page_Fault service installs a hook procedure to handle any invalid­
page faults not handled by the system invalid-page-fault handler.

Parameters

HookProc

Points to the hook procedure to install. See the "Comments" section for more
information about this procedure.

Return Value

The carry flag is clear if the hook procedure is installed. The carry flag is set if the
procedure could not be installed.

Comments

The system enables interrupts and calls the hook procedure as follows:

mov
mov
call

jc

ebx, VM
edi, OFFSET32 ipf
[HookProc]

not_corrected

current VM handle
points to an IPF_Data

carry set if procedure did
not correct fault

The VM parameter is a handle identifying the current virtual machine, and the ipf
parameter points to an IPF_Data structure containing information about the page fault.

The procedure clears the carry flag if it handles the page fault. Otherwise, it must set the
carry flag to indicate that the page fault has not been corrected. The system passes the
fault to the next procedure in the chain.

The hook procedure may use all registers except the segment registers.

Uses

Flags

See Also

Unhook_Invalid_Page_Fault

include vmm.inc

mov esi, OFFSET32 NmiProc
VMMcall Hook NMI Event

points to NMI event procedure

The Hook_NMI_Event service installs a Non-Maskable Interrupt (NMI) event procedure.
Virtual devices use this service to install event procedures to carry out tasks that are not
permitted in NMI handlers.

This service is only available during initialization.

Parameters

NmiProc

Points to an NMI event procedure. See the "Comments" section for more information
about this procedure.

Return Value

This service has no return value.

Comments

The system calls each installed NMI event procedure after the last handler in the NMI
handler chain has executed. If more than one NMI event procedure is installed, the system
calls the procedures in the order in which they where installed. The system calls the event
procedure as follows:

mov
mov
call

ebx, VM
ebp, OFFSET32 crs
[NmiProc]

current VM handle
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, and the crs
parameter points to a Client_Re~Struc structure containing the register values for the
current virtual machine.

NMI event procedures can be re-entered. This means an event procedure can be
interrupted by another NMI.

Uses

Flags

See Also

Set_NMI_Handler_Addr

include vmm.inc

mov eax, ID
mov esi, OFFSET32 Callback
VMMcall Hook Device PM API

device ID
points to new API callback

The Hook_Device_PM_API service installs an API callback procedure allowing a virtual
device to intercept calls to the protected-mode API of another virtual device. This service
is intended to support virtual devices that need to monitor calls to the APIs of other virtual
devices. Most virtual devices will never need this service.

Parameters

ID

Specifies the identifier for the virtual device to monitor.

Handler

Points to the callback proecdure to install. See the "Comments" section for more
information about the procedure.

Return Value

The carry flag is clear and the ESI register contains the address of the previous callback
procedure if the service is successful. Otherwise, the carry flag is set to indicate the
specified virtual device does not support an API.

Comments

The system calls the callback procedure whenever an application in a virtual machine
calls the API for the specified virtual machine. The system calls the callback as follows:

mov ebx, VM ; current VM handle
mov ebp, OFFSET32 cra ; points to Client_Reg_Struc
call [Callback]

The VM parameter is a handle identifying the current virtual machine and crs points to a
Client_Re~Struc structure containing the regsiter values of the current virtual machine.
Other registers contain the parameter values intended for the API.

The callback procedure can carry out tasks but eventually must pass execution to the
previous API callback procedure, preserving the EBX and EBP registers when it calls.

Uses

ESI, Flags

See Also

Hook_Device_V86_API

include vmm.inc

mov eax, Interrupt interrupt number for fault
mov esi, OFFSET32 FaultProc points to a fault handler
VMMcall Hook_PM_Fault

jc
mov

not_installed
[Previous], esi

carry set if not installed
points to previous fault

handler (if any)

The Hook_PM_Fault service installs a fault handler procedure for protected mode.
Virtual devices typically install fault handlers while processing the Sys_Critical_Init
control message to handle faults, such as general protection faults, that the VMM's own
fault handlers cannot handle. The VMM installs its fault handlers only after the
Sys_Critical_Init control message. Virtual devices install fault handlers after
Sys_Critical_Init to handle faults before the fault is passed to the VMM's fault handlers.

Parameters

Interrupt

Specifies the number of the interrupt for which to install the fault handler. The
interrupt number cannot be 02h and must not be greater than 4Fh.

FaultProc

Points to the fault handler to install. See the "Comments" section for more
information about this procedure.

Return Value

If the carry flag is clear, the ESI register contains the address of the previous fault
handler. The register contains zero if there was no previous handler.

If the carry flag is set, the specified fault number is not valid and the handler is not
installed.

Comments

A virtual device can install a fault handler while processing the Sys_Critical_Init control
message or at a later time. Any fault handler a virtual device may install while processing
the message receives a fault only after the VMM's own fault handlers have had a chance
to process the fault.

The system disables interrupts and calls the fault handler as follows:

mov
mov
call

ebx, VM
ebp, OFFSET32 crs
[FaultProc]

current VM handle
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, and the crs
parameter points to a Client_Re~Struc structure containing the register values for the
current virtual machine.

If the fault does not process the fault, it should pass the fault to the previous fault handler
(if any), making sure that all registers are preserved (not just the registers containing input
parameters).

If the fault handler processes the fault or if there is no previous fault handler, the handler
should return without chaining by executing a near ret instruction (not an iret instruction).

The fault handler can modify EAX, EBX, ECX, EDX, ESI, and ED!.

Do not use this service to install a fault handler for the Non-Maskable Interrupt (NMI).
Instead, a virtual device must use the Get_NMI_Handler_Addr and
Set_NMI_Handler_Addr services.

Do not use this service to install handlers for hardware interrupts. Instead, a virtual device
must use virtual PIC device services.

Uses

ESI, Flags

See Also

Hook_V86_Fault, Hook_VMM_Fault

include vmm.inc

mov eax, Interrupt interrupt number for fault
mov esi, OFFSET32 FaultProc points to a fault handler
VMMcall Hook_V86_Fault

jc
mov

not_installed
[Previous], esi

carry set if not installed
points to previous fault

handler (if any)

The Hook_V86_Fault service installs a fault handler procedure for V86 mode. Virtual
devices typically install fault handlers while processing the Sys_Critical_Init control
message to handle faults, such as general protection faults, that the VMM's own fault
handlers cannot handle. The VMM installs its fault handlers after the Sys_Critical_Init
control message. Virtual devices install fault handlers after Sys_Critical_Init to handle
faults before the fault is passed to the VMM's fault handlers.

Parameters

Interrupt

Specifies the number of the interrupt for which to install the fault handler. The
interrupt number cannot be 02h and must not be greater than 4Fh.

FaultProc

Points to the fault handler to install. See the Comments section for more information
about this procedure.

Return Value

If the carry flag is clear, the ESI register contains the address of the previous fault
handler. The register contains zero if there was no previous handler.

If the carry flag is set, the specified fault number is not valid and the handler is not
installed.

Comments

A virtual device can install a fault handler while processing the Sys_Critical_Init message
or at a later time. Any fault handler a virtual device may install while processing the
message receives a fault only after the VMM's own fault handlers have had a chance to
process the fault.

The system disables interrupts and calls the fault handler as follows:

mov
mov
call

ebx, VM
ebp, OFFSET32 crs
[FaultProc]

; current VM handle
; points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, and the crs
parameter points to a Client_Re~Struc structure containing the register values for the
current virtual machine.

If the fault does not process the fault, it should pass the fault to the previous fault handler
(if any), making sure that all registers are preserved (not just the registers containing input
parameters).

If the fault handler processes the fault or if there is no previous fault handler, the handler
should return without chaining by executing a near ret instruction (not an iret instruction).

The fault handler can modify EAX, EBX, ECX, EDX, ESI, and ED!.

Do not use this service to install a fault handler for the Non-Maskable Interrupt (NMI).
Instead, a virtual device must use the Get_NMI_Handler_Addr and
Set_NMI_Handler_Addr services.

Do not use this service to install handlers for hardware interrupts. Instead, a virtual device
must use virtual PIC device services.

Uses

ESI, Flags

See Also

Hook_PM_Fault, Hook_VMM_Fault

include vmm.inc

mov eax, Interrupt
mov esi, OFFSET32 HookProc
VMMcall Hook_V86_Int_Chain

number of interrupt to hook
points to hook procedure

jc not installed ; carry set if procedure not installed

The Hook_V86_Int_Chain service installs a hook procedure that the system calls
whenever the specified interrupt occurs. Virtual devices use this service to monitor
software interrupts and simulated hardware interrupts in V86 mode.

This service is only available during initialization.

Parameters

Interrupt

Specifies the number of the interrupt for which to install the hook procedure.

HookProc

Points to the hook procedure. See the Comments section for more information about
this procedure.

Return Value

The carry flag is clear if the hook procedure is installed. The carry flag is set to indicate
an error such as an invalid interrupt number.

Comments

The system calls the hook procedure whenever the corresponding interrupt occurs, a
virtual device calls the Simulate_Int service, or the system simulates a hardware

interrupt. This means a hook procedure must make no assumptions about the origin of the
interrupt.

The system calls the procedure as follows:

mov
mov
mov
call

jc

eax, Interrupt
ebx, VM
ebp, OFFSET32 crs
[HookProc]

pass_to_next

number of interrupt hooked
current VM handle
points to a Client_Reg_Struc

carry set if interrupt
not serviced

The Interrupt parameter is the number of the current interrupt, VM is a handle identifying
the current virtual machine, and crs points to a Client_Reg_Struc structure containing the
register values of the current virtual machine. If the hook procedure services the interrupt,
it must clear the carry flag to prevent the system from passing the interrupt to the next
hook procedure.

Any number of virtual devices can install a hook procedure for a given interrupt. The
system always calls the last hook procedure first. A hook procedure either services the
interrupt or directs the system to pass the interrupt to the next hook procedure. If no hook
procedure services the interrupt, the system reflects the interrupt to the virtual machine.

This service is recommended instead of hooking the V86 interrupt vector directly.

Uses

Flags

See Also

Set_V86_Int_Vector, Simulate_Int

include vmm.inc

VMMcall Hook V86 Page

mov
mov

eax, PageNum
esi, OFFSET32 Callback

page number
points to Address of

trap routine

The Hook_V86_Page service install a callback procedure to handle faults for the
specified page. Virtual devices, such as the virtual display device, use this service to
detect when particular address ranges are accessed.

Parameters

Page

Specifies the number of the V86 page to install the callback procedure. This number
must be within the range specified by the number of the last V86 page and OFFh.

Callback

Points to the callback procedure to install. See the "Comments" section for more
information about this procedure.

Return Value

The carry flag is clear if the service installs the callback procedure. Otherwise, the carry
flag is set to indicate an error such as an invalid page number or the page is already
hooked.

Comments

The system calls the callback procedure whenever a page fault occurs for the specified
page regardless of the current virtual machine.

The system calls the callback as follows:

mov
mov
call

eax, Page
ebx, VM
[Callback]

; faulting page number
; current VM handle

The Page parameter specifies the number of the page that caused the page fault and VM is
the handle of the current virtual machine. The EBP register does not point to a client
register structure.

The callback procedure must either map physical memory into page causing the page fault
or terminate the virtual machine. In unusual circumstances, the virtual device may need to
map the system nul page into the faulting page.

Virtual devices must not rely on the contents of the CR2 (page fault) register. Instead, the
callback procedure must use the Page parameter to determine which page caused the
fault.

Uses

Flags

include vmm.inc

mov eax, Interrupt interrupt number for fault
mov esi, OFFSET32 FaultProc points to a fault handler
VMMcall Hook_VMM_Fault

jc
mov

not_installed
[Previous], esi

carry set if not installed
points to previous fault

handler (if any)

The Hook_VMM_Fault service installs a fault handler procedure for the VMM. Virtual
devices typically install fault handlers while processing the Sys_Critical_Init control
message to handle faults, such as general protection faults, that the VMM's own fault
handlers cannot handle. The VMM installs its fault handlers after the Sys_Critical_Init
control message. Virtual devices install fault handlers after Sys_Critical_Init to handle
faults before the fault is passed to the VMM's fault handlers.

Parameters

Interrupt

Specifies the number of the interrupt for which install the fault handler. The interrupt
number cannot be 02h and must not be greater than 4Fh.

FaultProc

Points to the fault handler to install. See the Comments section for more information
about this procedure.

Return Value

If the carry flag is clear, the ESI register contains the address of the previous fault
handler. The register contains zero if there was no previous handler.

If the carry flag is set, the specified fault number is not valid and the handler is not
installed.

Comments

A virtual device can install a fault handler while processing the Sys_Critical_Init message
or at a later time. Any fault handler a virtual device may install while processing the
message receives a fault only after the VMM's own fault handlers have had a chance to
process the fault.

The system disables interrupts and calls the fault handler as follows:

call [FaultProc]

mov
mov

ebx, VM
ebp, OFFSET32 stkfrm

current VM handle
points to VMM re-entrant

stack frame

The VM parameter is a handle identifying the current virtual machine, and the stkfrm
parameter points to the VMM re-entrant fault stack frame.

The fault handler may call asynchronous services only.

If the fault handler does not process the fault, it should pass the fault to the previous fault
handler (if any), making sure that all registers are preserved (not just the registers
containing input parameters).

If the fault handler processes the fault or if there is no previous fault handler, the handler
should return without chaining by executing a near ret instruction (not an iret instruction).

The fault handler can modify EAX, EBX, ECX, EDX, ESI, and ED!.

Do not use this service to install a fault handler for the Non-Maskable Interrupt (NMI).
Instead, a virtual device must use the Get_NMI_Handler_Addr and
Set_NMI_Handler_Addr services.

Do not use this service to install handlers for hardware interrupts. Instead, a virtual device
must use virtual PIC device services.

Uses

ESI, Flags

See Also

Hook_PM_Fault, Hook_V86_Fault

include vmm.inc

VMMcall In_Debug_Chr
mov byte ptr [Char], al ; character from debug device

The In_Debu~Chr service reads a character from the debugging device.

Parameters

This service has no parameters.

Return Value

The AL register contains the character read. If the ESCAPE key or CTRL+C key
combination was pressed, the service sets the zero flag.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

EAX

See Also

Is_Debu~Chr

include vmm.inc

mov esi, IOCallback
mov edx, Port
VMMcall Install_IO_Handler

points to callback procedure
I/O port number

jc not_installed carry set if procedure
not installed

The Install_10_Handler service installs a callback procedure for I/O port trapping and
enables trapping for the specified port. Only one procedure may be installed for a given
port.

This service is only available during initialization.

Parameters

10Callback

Points to the callback procedure. See the "Comments" for more information about the
callback procedure.

Port

Specifies the I/O port to be trapped.

Return Value

The carry flag is clear if the service successfully installs the callback procedure. If the
carry flag is set, a callback procedure is already installed for the specified port or the
system limit for I/O callback procedures has been reached.

Comments

The system calls the callback procedure whenever a program in a virtual machine
attempts to access the specified I/O port, and I/O trapping is enabled. The system calls the
procedure as follows:

mov
mov
mov
mov
mov

ebx, VM
ecx, IOType
edx, Port
ebp, OFFSET32 crs
eax, Data

current VM handle
type of I/O
port number
points to a Client_Reg_Struc
output data

(if I/O type is output)

302 Install_10_Handler

call [IOCallback]

mov [Data], eax ; input data (if I/O type is input)

The VM parameter specifies the current virtual machine, Port specifies the I/O port, and
crs points to a Client_Re~Struc structure containing the register contents for the current
virtual machine.

The IOType parameter specifies the type of input or output operation requested and
determines whether the callback procedure receives data in the EAX register or must
return data in the EAX register. The IOType parameter can be a combination of the
following values:

Value Meaning

Input a single byte; place in AL if String_10 not given.

Output a single byte from AL if String_10 not given.

Input a word; place in AX if String_10 not given.

Output a word from AX if String_IO not given.

Input a double word; place in EAX if String_10 not given.

Output a double word from EAX if String_IO not given.

Input or output a string. The high 16-bits specifies segment address
of buffer containing the string to output or to receive the string
input.

Repeat the input or output string operation the number of times
specified by the Client_CX field in the Client_Reg_Struc structure.

Use 32-bit address offsets for input or output string operations. If
this value is not given, the 16-bit offsets are used.

Decrement string address on each input or output operation. If this
value is not given, the string address is incremented on each
operation.

A virtual machine can disable trapping of a port for every or for specific virtual machines
by using the Disable_Global_Trapping and Disable_Local_Trapping services.

Reverse_10

Word_Output

Uses

Flags

See Also

Disable_Global_Trapping, Disable_Local_Trapping, Install_Mult_IO_Handlers

include vmm.inc

mov edi, OFFSET32 IOTable points to an I/O table
VMMcall Install_Mult_IO_Handlers

jnc

mov

installed

[BadPort], edx

carry clear if all
procedures installed

I/O port number that failed

The Install_Mult_IO_Handlers service installs 110 callback procedures for one or more
I/O ports.

This service is only available during initialization.

Parameters

IOTabie

Points to an 110 table created using the Begin_VXd_IO_Table, End_Vxd_IO_Table,
and Vxd_IO macros. See the "Comments" section for more information about the
table.

Return Value

The carry flag is clear if all callback procedures are installed for the specified ports. If the
carry flag is set, the EDX register contains the number of the 110 port for which the
procedure could not be installed.

Comments

This service repeatedly calls the Install 10 Handler service until all entries in the
specified I/O table have been installed.

A virtual device can create an 110 table using the Begin_Vxd_IO_Table,
End_Vxd_IO_Table, and Vxd_IO macros. The following example shows a table
containing three entries for ports 30, 31, and 32:

Begin_Vxd_IO_Table
VXd_IO
VXd_IO
VXd_IO

End Vxd IO Table

Uses

Flags

My_IO_Table
30, IO_Handler_1
31, IO_Handler_2
32, IO_Handler_1

My IO Table

See Also

Begio_Vxd_IO_Table, End_Vxd_IO_Table, Install_10_Handler, Vxd_IO

include vmm.inc

mov
mov
mov

eax, BreakAddr
edx, OFFSET32 RefData
eei, OFFSET32 Callback

break point address
points to reference data
points to callback

procedure to install

jc not installed

The Install_V86_Break_Point service inserts a break point in V86 memory of the current
virtual machine and installs a break-point callback procedure to receive control when the
break point occurs. A virtual device, such as the virtual MS-DOS manager, can use this
service to place patches in the BIOS.

Parameters

BreakAddr

Specifies the V86 address to place the break point. The address must be specified as a
segment:offset pair and must specify RAM. Once installed, the break point must not
be moved.

Refl)ata

Points to reference data to be passed to the callback procedure.

Callback

Points to the callback procedure to install. See the "Comments" section for more
information about this procedure.

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set to
indicate an error.

Comments

Virtual devices typically place V86 break points in global virtual device memory during
device initialization. For example, the XMS driver in the virtual V86MMGR device
inserts a breakpoint in the real-mode XMS driver during device initialization. Thereafter,
all calls to the real-mode XMS driver are intercepted by the virtual XMS driver.

The segment address specified when installing a V86 break point must be the segment
address in the CS register when the virtual machine executes the break point. For
example, if the break point is placed at 0100:0000 but the virtual machine executes the
break point at the address 00FF:00I0h, an error occurs even though the virtual machine
executed a valid break point.

When the virtual machine executes the break point, the system calls the callback
procedure as follows:

mov
mov
mov
mov
mov

eax, BreakAddr
ebx, VM
edx, OFFSET32 RefData
esi, BreakLinAddr
ebp, OFFSET32 crs

address of breakpoint
current VM handle
points to reference data
linear address of break point
points to a Client_Reg_Struc

The BreakAddr parameter is the V86 address of the break point. VM is a handle
identifying the current virtual machine and RefData points to the reference data specified
when the callback procedure was installed. The BreakLinAddr parameter specified the
linear address of the break point and crs points to a Client_Re~Struc structure
containing the register values for the specified virtual machine.

The Client_CS and Client_IP registers contain the address of the break point. The virtual
device must change these registers to prevent the break point from being executed again
when the virtual machine resumes. A virtual device can change the register by simulating
the instruction that was patched, incrementing the Client_IP register past the patch,
jumping to another address using the Simulate_Far_Jmp service, or returning from an
interrupt handler using the Simulate_Iret service.

When the virtual device receives the System_Exit message, it must remove any break
point that it placed in global V86 code, that is, code loaded before Windows was loaded.
The virtual device can remove a V86 break point using the Remove_V86_Break_Point
service.

Uses

Flags

See Also

Remove_V86_Break_Point

include vmm.inc

VMMcall Is_Debug_Chr
jz no_character ; Z set if no character available

mov byte ptr [Char], al ; character from debugging device

The Is_Debu~Chr service checks for a character from the debugging device.

Parameters

This service has no parameters.

Return Value

If the zero flag is clear, the AL register contains the character from the debugging device.
The zero flag is set if no character is available.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

EAX, Flags

See Also

In_Debu~Chr

_LinMaplntoV86

include vmm.inc

VMMcall _LinMapIntoV86, <HLinPgNum, VM, VMLinPgNum,\
nPages, flags>

or
jz
mov

eax, eax
not_mapped
[V86Address], eax

zero if error

V86 address for mapped pages

The _LinMaplntoV86 service maps one or more pages into the V86 address space of the
specified virtual machine. This service is similar to the _MaplntoV86 service but uses
linear page numbers instead of memory handles. Virtual devices that have access to
memory handles should use the MaplntoV86 instead of this service.

_LinMaplntoV86 307

Parameters

HLinPgNum

Specifies the linear page number of the first page to map. A linear page number is a
ring-O linear address shifted right by 12 bits.

VM

Specifies a handle identifying the virtual machine for which memory is mapped.

VMLinPgNum

Specifies the linear page number of an address in the V86 address space. The service
maps the specified pages to this address if the HLinPgNum parameter does not
already specify a valid V86 address. This parameter must be a page number in the
range 10h through 10Fh.

nPages

Specifies the number of pages to map.

flags

Specifies the operation flags. This parameter must be set to zero.

Return Value

If the EAX register contains a nonzero value, the EDX register contains the V86 address
to which the specified pages are mapped. Otherwise, EAX contains zero to indicate an
error such as an invalid address range, an invalid virtual machine handle, an illegal map
range, a size discrepancy, or insufficient memory locking. The EDX register contents are
valid only if the EAX register contains a nonzero value.

Comments

A virtual device typically uses this service to map buffers having protected-mode
addresses into the V86 address space. This gives software running in the virtual machine a
means of passing data to and receiving data from the virtual device.

If HLinPgNum is a V86 page number (that is less than or equal to 100h), this service
returns HLinPgNum immediately and does nothing else. Otherwise, the service returns
VMLinPgNum.

If the specified linear pages belong to a free physical region, this service calls the
_PhyslntoV86 service to carry out the request.

If the specified linear pages belong to the high addressing region for a virtual machine,
this service maps the memory from that virtual machine into the virtual machine specified

308 _LinPageLock

by the VM parameter. The V86MMGR device uses this capability to map a region of V86
address space which is currently local to one VM into a global region that is addressable
by all virtual machines. Virtual devices must not use this capability directly; they should
always use the V86MMGR services to map local memory into global memory.

Although a virtual device can map the same page into multiple addresses in the V86
address space, this is not recommended.

For each mapped page, this service sets the P_USER, P_PRES, and P_WRITE bits, but
clears the P_DIRTY and P_ACC bits. The service sets the page type to be identical to the
page type for the pages at the specified protected-mode linear address.

If the virtual pageswap device uses MS-DOS or BIOS functions to write to the device, this
service automatically locks all mapped pages and unlocks any previously mapped pages.

If a virtual device no longer needs the mapped region, it should map the system nul page
into the V86 address space using the _MapIntoV86 service. A virtual device can retrieve
the handle for the system nul page using the _GetNulPageHandle service.

This service accepts V86 page numbers between 1Dh and the page number returned by the
_GetFirstV86Page service. This supports virtual devices that use the
_Allocate_Global_V86_Data_Area service. Mapping a region which spans across the
fIrst V86 page is not allowed. Mapping pages in this region to other addresses can easily
crash the system, and should be avoided.

Uses

EAX,EDX

See Also

_Allocate_Global_V86_Data_Area, _GetFirstV86Page, _GetNulPageHandle,
_MapIntoV86, _PageLock, _PhysIntoV86

_LinPageLock

include vmm.inc

VMMcall _LinPageLock, <HLinPgNum, nPages, flags>

or
jz

eax, eax
not_locked

; nonzero if locked, zero if error

The _LinPageLock service unlocks one or more pages starting at the specified linear
page number. This service is similar to the _PageLock service, but uses linear page
numbers instead of memory handles.

_LinPageUnLock 309

Parameters

HLinPgNum

Specifies the linear page number of the first page to lock. A linear page number is a
ring-O linear address shifted right by 12 bits.

nPages

Specifies the number of pages to lock.

flags

Specifies the operation flags. This parameter can be the following value:

Value Meaning

PageLockedIfDP

All other values are reserved.

Return Value

Locks pages only if the virtual pageswap device use
MS-DOS or BIOS functions to write pages to the
hardware. If the virtual pageswap device writes
directly to hardware, this service returns immediately
without locking the pages.

The EAX register contains a nonzero value if the lock is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid address range or insufficient memory
for locking.

See Also

_LinMaplntoV86, _LinPageUnLock, _PageLock

_LinPageUnLock

include vmm.inc

VMMcall _LinPageUnLock, <HLinPgNum, nPages, flags>

or
jz

eax, eax
not unlocked

; nonzero if unlocked, zero if error

The _LinPageUnLock service unlocks one or more pages starting at the specified linear
page number. This service is similar to the _PageUnLock service, but uses linear page
numbers instead of memory handles.

310 _LinPageUnLock

Parameters

HLinPgNum

Specifies the linear page number of the first page to unlock. A linear page number is
a ring-O linear address shifted right by 12 bits.

nPages

Specifies the number of pages to unlock.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

Value

PageLockedItDP

PageMarkPageOut

All other values are reserved.

Return Value

Meaning

Unlocks pages only if the virtual pageswap device use
MS-DOS or BIOS functions to write to the hardware.
If the virtual pageswap device writes directly to the
hardware, this service returns immediately without
unlocking the pages.

Marks pages for immediate swapping. if this service
sets the lock count for the pages to zero. This service
marks the pages by clearing the P_ACC bit for each
page. The PageMarkPageOut value should only be
used if the pages are unlikely to be accessed for some
time.

The EAX register contains a nonzero value if the unlock is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid address range.

Uses

EAX

See Also

_LinMaplntoV86, _LinPageLock, _PageUnLock

List_Allocate 311

include vmm.inc

mov esi, List
VMMcall List_Allocate

list handle

jc
mov

not_allocated
[Node], eax

carry set if error
address of new node

The List_Allocate service allocates a new node for the specified list. A virtual device can
attach the new node to the list using the List_Attach or List_Insert service. The contents
of the new node are undefined.

Parameters

List

Specifies the handle for the list.

Return Value

The EAX register contains the address of the new node if this service is successful. For
lists created using the LF_Alloc_Error value, the carry flag is clear if the service is
successful. For other lists, this service never returns if the new node cannot be allocated.

Comments

This service normally allocates nodes from a pool of free nodes. This prevents the
overhead of calling the _HeapAlloc service for every node allocation. If the list is created
using the LF_Use_Heap value, this service calls the _HeapAlloc service for each node.

Uses

EAX, Flags

See Also

List_Attach, List_Create, List_Deallocate, List_Insert

include vmm.inc

mov esi, List
mov eax, Node
VMMcall List Attach

list handle
address of node to attach

The List_Attach service attaches a li&t node to the head (front) of a list. A virtual device
can attach a node to any list that has a matching node size. This service cart lJe used, for
example, to move a node from one list to another.

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Node

Specifies the address of the node to attach. The node must have been previously
created using the List_Allocate service.

Return Value

This service has no return value.

Comments

The service attaches the node to the head of the list. Subsequent calls to the
List_Get_First service return the address of this node. The address of the previous head
of the list can be retrieved using the List_Get_Next service.

Uses

Flags

See Also

List_Allocate, List_Create,
List_Remove_First

include vmm.inc

moves!, List list handle
mov eax, Node ; address of node to attach
VMMcall List_Attach_Tail

The List_Attach_Tail service attaches a list node to the tail (end) of a list. A virtual
device can attach a node to any list that has a matching node size. This service can be
used, for example, to move a node from one list to another.

List_Create 313

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Node

Specifies the address of the node to attach. The node must have been previously
created using the List_Allocate service.

Return Value

This service has no return value.

Comments

The service attaches the node to the end of the list. A virtual device can retrieve the
address of the node by calling the List_Get_Next service and specifying the address of
the previous end of the list.

Uses

Flags

See Also

List_Allocate, List_Create, List_Get_Next, List_Remove

List_Create

include vmm.inc

mov eax, Flags
mov ecx, NodeSize
VMMcall List_Create
jc error
mov [List], esi

creation flags
size in bytes of each node in list

carry set if error
list handle

The List_Create service creates a new list structure and returns a list handle that virtual
devices use in subsequent calls to other list services.

Parameters

Flags

Specifies the creation flags. This parameter can be a combination of the following
values:

314 List_Create

Value Meaning

Allocates nodes on the system heap. This value must
not be used in combination with the LF_Async value.

Creates an asynchronous list that can be used while
processing interrupts.

Directs the List_Allocate service to returns with carry
flag set if new node could not be allocated.

NodeSize

Specifies the size in bytes of each node in the list.

Return Value

If carry flag is clear, the ESI register contains the list handle. The carry flag is set to
indicate an error.

Comments

If a virtual device requires large nodes, it should specify the LF_Use_Heap value to force
the nodes to be allocated from the system heap. All allocate and deallocate calls for lists
created in this way use the _HeapAlloc and _HeapFree services to create and destroy
nodes.

To access a list during hardware interrupts, a virtual device must set the LF_Async value
when creating the list. This forces list operations to be atomic operations which cannot be
re-entered. When using an asynchronous list, the virtual device must disable interrupts
before calling the list services. The virtual device must disable interrupts even if when not
calling during an interrupt. The virtual device must use the pushf, cli, and popf
instructions to disable and re-enable interrupts. It must not use the sti instruction to enable
interrupts unless other documentation states that this is permitted.

If the LF_Alloc_Error value is not specified, the system crashes the current virtual
machine if the List_Allocate service fails. If this value is specified, List_Allocate returns
with the carry flag set when an allocation fails.

Uses

ESI, Flags

See Also

List_Allocate, List_Deallocate, List_Destroy

List_Deallocate 315

List_Deallocate

include vmm.inc

mov esi, List list handle
mov eax, Node address of node to deallocate
VMMcall List_Deallocate

The List_Deallocate service deallocates the specified node. Once a virtual device
deallocates a node, it must not attempt to use the node.

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Node

Specifies the address of the node to attach. The node must have been previously
created using the List_Allocate service.

Return Value

This service has no return value.

Comments

This service normally never destroys a node. Instead, the service places the node back in
the free pool. The node can then quickly be reclaimed when the List_Allocate service is
called. If the list is created using the LF_Use_Heap value, this service calls the
_HeapFree service for each node.

Uses

EAX, Flags

See Also

_HeapFree, List_Allocate, List_Create

include vmm.inc

mov esi, List
VMMcall List Destroy

list handle

The List_Destroy service deallocates all nodes in a list and destroys the list handle. Once
a virtual device destroys a list, it must not attempt to use the list handle.

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Return Value

This service has no return value.

Uses

ESI, Flags

See Also

List_Create

include vnun.inc

mov esi, List list handle
mov eax, Node ; address of node
VMMcall List_Get_Next

jz empty_list; zero flag set if not other nodes in list
mov [Node], eax; address of next node

The List_Get_Next service return the next node in a list. It is used to search a list for a
specific element. When the service reaches the end of the list, it returns zero and sets the
zero flag.

This service is typically used in conjunction with the List_Get_First service to scan an
entire list.

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Node

Specifies the address of a node in the list. The address must have been previously
retrieved using the List_Get_First or List_Get_Next service.

List_Remove 317

Return Value

If the zero flag is clear, the EAX register contains the address of the next node in the list.
If there are no other nodes in the list, the zero flag is set and EAX is zero.

Uses

EAX, Flags

See Also

List_Create, List_Get_First

include vmm.inc

mov esi, List list handle
mov eax, Node ; address of node to remove
VMMcall List_Remove_First

jc not removed carry flag set if error

The List_Remove service removes the specified node from the list.

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Node

Specifies the address of the node to remove. The node must have been previously
retrieved using the List_Get_First or List_Get_Next service.

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set to
indicate an error.

Comments

This service does not deallocate the node. It is up to the virtual device to deallocate the
node or attach it to another list.

Uses

EAX, Flags

See Also

include vmm.inc

mov esi, List ; list handle
VMMcall List_Remove_First

jz
mov

list_empty
[Node], eax

zero flag set if list is empty
address of node removed

The List_Remove_First service removes the first node from a list.

Parameters

List

Specifies the handle identifying a list. The handle must have been previously created
using the List_Create service.

Return Value

If the zero flag is clear, the EAX register contains the address of the node that was
removed. If the list is empty, the zero flag is set and EAX contains zero.

Comments

This service does not deallocate the node. It is up to the virtual device to deallocate the
node or attach it to another list.

Uses

EAX, Flags

See Also

List_Create, List_Remove

include vmm.inc

mov aI, Byte
VMMcall Locate_Byte_In_ROM

byte to locate

jc
mov

not_found
[Location], eax

carry set if byte not found
linear address of byte

The Locate_Byte_ID_ROM service scans the system ROM for a specified byte. Virtual
devices use this service to locate single byte instructions, such as the iret instruction, that
must be protected from modification by programs running in a virtual machine.

Parameters

Byte

Specifies the value of the byte to search for.

Return Value

If the carry flag is clear, the EAX register contains the linear address of the byte. This
address will be less than 1 megabyte. If the carry flag is set, the byte was not found or the
user has disabled the service.

Comments

Users can disable this service by setting to false the SystemROMBreakpoint setting in the
[386Enh] section of the SYSTEM.INI file.

Uses

EAX, Flags

include vmm.inc

mov

mov

ah, SegOffset

aI, OffOffset

offset in Client_Reg_Struc
to segment reg

offset in Client_Reg_Struc
to offset reg

cmp

je
mov

eax, -1

error
[LinAddr], eax

-1 if error

ring-O linear address

The Map_Flat service converts a segmentoffset or selector:offset pair into a linear
address. This service works only for the current virtual machine. It determines whether the
value passed to it is a V86 segment or a protected-mode selector by the execution mode of
the current virtual machine.

320 _MapFreePhysReg

Parameters

SegOffset

Specifies the offset in bytes from the start of the CIient_Re~Struc structure to the
segment register that contains the segment address or selector to convert.

OffOffset

Specifies the offset in bytes from the start of the CIient_Re~Struc structure to the
register that contains the address offset to convert. If this parameter is -1, this service
uses 0 as the address offset to convert.

Return Value

The EAX register contains the ring-O linear address that corresponds to the specified V86
or protected-mode address. The EAX register contains -1 if if the specified selector is
invalid.

Comments

Before converting an address, Map_Flat checks the current execution mode and, for
protected-mode appli~ations, the segment granularity (16- or 32-bit offsets). If the virtual
machine is running a 32-bit protected mode application, it uses 32-bit address offsets. For
V86 and 16-bit protected-mode applications, it uses 16-bit address offsets and ignores the
high word if the OffOffset parameter specifies a 32-bit register.

Example

The following example converts the address Client_DS:Client_DX and returns the linear
address in EAX:

mov ax, (Client_DS SHL 8) + Client_DX
VMMcall Map_Flat

Uses

EAX, Flags

See Also

Client_Ptr_Flat

_MapFreePhysReg

include vmm.inc

VMMcall _MapFreePhysReg, <LinPgNum, nPages, flags>

or
je

eax,eax
not mapped

; nonzero if mapped, zero if error

_MapFreePhysReg 321

The _MapFreePhysReg service maps one or more physical pages into a free physical
region. The service maps physical pages currently in the free list to the specified pages in
the region.

Parameters

LinPgNum

Specifies the linear page number of the first page to map. The page must be in a free
physical region previously created using the _PageAllocate service. A linear page
number is a linear address shifted right by 12 bits right.

nPages

Specifies number of pages to map. All pages must be within the free physical region.

flags

Specifies the operation flags. This parameter can be the following value:

Value Meaning

PageFixed Maps the specified pages as fixed pages, permanently locking the
pages at the specified address. If this value· is not given, the pages are not fixed.
Virtual devices never return fixed pages to the system.

All other values are reserved.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains returns zero specifying an invalid linear page number, an invalid range of pages,
part of the page range already present, insufficient number of pages on free list, or an
invalid use of the PageFixed value.

Comments

This service is intended to be used in a free-physical-region callback procedure installed
using the _SetFreePhysRegCalBk service. Virtual devices should not call this service
until after the Sys_VM_Init message or the Init_Complete message has been received.

The PageFixed value allows a virtual device to maintain a cache of memory which has a
minimum size. The virtual device maps a predetermined number of pages using the
PageFixed value to ensure that this cache has its minimum size. The virtual device never
unmaps these pages. The virtual device maps any additional pages without using the
PageFixed value. This allows these pages to be unmapped later. Occasionally, there may

322 _MaplntoV86

be too few physical pages to attain the minimum cache size. The virtual device must be
prepared to handle this condition.

Uses

EAX

See Also

_SetFreePhysRegCaIBk, _UnmapFreePhysReg

_MaplntoV86

include vmm.inc

VMMcall _MaplntoV86, <hMem, VM, VMLinPgNum,\
nPages, PageOff, flags>

or eax, eax ; nonzero if pages mapped, zero if error
jz not mapped

The _MaplntoV86 service maps one or more pages of a memory block into the V86
address space of the specified virtual machine.

Parameters

hMem

Specifies the handle identifying the memory block to map. This handle must have
been previously created using the PageAllocate or PageReAllocate service.

VM

Specifies a handle identifying the virtual machine for which to map the memory.

VMLinPgNum

Specifies the linear page number of a V86 address. The service maps the specified
pages to this address. This parameter must be a page number in the range lOh through
lOFh.

nPages

Specifies the number of pages to map.

PageO!!

Specifies the offset in pages from the beginning of the memory block to the first page
to map.

flags

Specifies the operation flags. This parameter can be the following value:

Value

PageDEBUGNulFault

All other values are reserved.

Return Value

_MaplntoV86 323

Meaning

Enables page faults for system nul pages. If the
memory block contains system nul pages, a page fault
occurs whenever a nul page is accessed. This value
only applies when running the debugging version of
the Windows virtual machine manager. If this value is
not given or the debugging version is not running, no
page faults occur.

The EAX register contains a nonzero value if the map is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid memory handle, an invalid virtual
machine handle, an illegal map range, a size discrepancy, or insufficient memory for
locking.

Comments

A virtual device typically uses this service to map buffers having protected-mode
addresses into the V86 address space. This gives software running in the virtual machine a
means of passing data to and receiving data from the virtual device.

The service returns an error if the sum of the PageO!! and nPages parameters is greater
than the size of the memory block.

Although a virtual device can map the same page into multiple addresses in the V86
address space, this is not recommended.

For each mapped page, this service sets the P_USER, P_PRES, and P_WRITE bits but
clears the P_DIRTY and P_ACC bits. The service sets the page type to be identical to the
page type for the pages at the specified protected-mode linear address. Although the
memory block to be mapped can have PG_SYS page type, it is not recommended.

If the virtual pageswap device uses MS-DOS or BIOS functions to write to the hardware,
_MaplntoV86 automatically locks the mapped pages and unlocks any previously mapped
pages. If the virtual pageswap device writes directly to the hardware, this service neither
lock nor unlocks the pages.

If a virtual device no longer needs the mapped region, it should map the system nul page
into the V86 address space using the _MaplntoV86 service. A virtual device can retrieve
the handle for the system nul page using the _GetNulPageHandle service.

This service accepts V86 page numbers between 10h and the page number returned by the
_GetFirstV86Page service. This supports virtual devices that use the
_Allocate_Global_V86_Data_Area service. Mapping a region which spans across the
first V86 page is not allowed. Mapping pages in this region to other addresses can easily
crash the system and should be avoided.

Uses

EAX

See Also

_Allocate_Global_V86_Data_Area, _GetFirstV86Page, _GetNuIPageHandle,
_LinMaplntoV86

include vmm.inc

mov eax, LineAddr ; Linear address to convert
mov ecx, Limit ; segment limit in bytes
VMMcall Map_Lin_To_VM_Addr

jc
mov
mov

error
[SegSel], cx
[Offset], edx

; carry set if error
; segment or selector
; address offset

The Map_Lin_To_VM_Addr service converts a 32-bit ring-O linear address into an V86
or protected-mode address. This service converts the address for use with the current
execution mode of the current virtual machine.

Parameters

LinAddr

Specifies the linear address to convert.

Limit

Specifies the zero-based segment limit (0 specifies a one-byte segment, 1 is a two­
byte segment, and so on). This parameter is used only if the service creates an LDT
selector.

Return Value

If the carry flag is clear, the ex register contains the segment address or selector, and
EDX regsiter contains the address offset. This offset is always zero if the virtual machine
is running a protected mode application.

The carry flag is set to indicate an error such as no LDT selectors available.

_MapPhysToLinear 325

Comments

If the virtual machine is running in V86 mode, the LinAddr parameter must specify a
linear address that is within the 1 megabyte V86 aqdress space of the current virtual
machine. The service returns a segmentoffset pair.

If the virtual machine is running a protected-mode application, the service returns a
selector:offset pair. This service creates a new selector in the current virtual machine's
LDT if the specified base and limit values do not match a selector the service previously
allocated.

A virtual device must never free a selector that is returned by this service. For thjs reason,
this service should be used sparingly.

Uses

ECX, EDX, Flags

See Also

Map_Flat

_MapPhysToLinear

include vmm.inc

VMMcall _MapPhysToLinear, <PhysAddr, nBytes, flags>

cmp
je
mov

ea~, OFFFFFFFFh
not_addressable
[Address], eax

OFFFFFFFFh if not addressable

address of first byte

The _MapPhysToLinear service returns the linear address of the first byte in the
specified range of physical addresses.

Parameters

PhysAddr

Specifies the 32-bit physical address of the start of the region to examine. Physical
addresses start at 0, thus the address of physical page OAOh is OAOOOOh.

n~ytes

Specifies the length in bytes of the physical region. The service uses this parameter to
verify that the entire range is addressable.

326 MMGR_SetNULPageAddr

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the ring-O linear address of the first byte of the physical region
if this service is successful. Otherwise, EAX contains OFFFFFFFFh if the specified range
is not addressable.

Comments

This service is intended to be used to examine device-specific physical memory. Virtual
devices must not use this service for any other purpose.

Since physical addresses do not move, the linear address returned by this service remains
valid even after the virtual device returns from the Device_Init message.

Example

The following example returns a linear address for the physical page AOh:

VMMcall MapPhysToLinear,<OAOOOOh,lOOOOh,O>

Since physical memory is mapped contiguously, the linear address for page OA1h is 4096
bytes beyond the return linear address.

Uses

EAX

MMGR_SetNULPageAddr

include vmm.inc

VMMcall MMGR SetNULPageAddr

mov eax, PhysAddr physical address for
system nul page

The MMGR_SetNULPageAddr service sets the physical address of the system nul page.

This service is for the exclusive use of the virtual V86MMGR device. The virtual device
calls this service, while processing the Init_Complete message, to set the address of a
known nonexistent page in the system.

Parameters

PhysAddr

Specifies the physical address of the system nul page. This parameter is the page
number for the nul page shifted left by 12 bits.

Return Value

This service has no return value.

Uses

Flags

See Also

_GetNULPageHandle

include vmm.inc

cmp flags, MMGRHMAQuerry
jne did_toggle
mov [HMAState], eax 0 if disabled, 1 if enabled

did_toggle:
or eax, eax

jz error

nonzero if enabled/disabled,
zero if error

The _MMGR_Toggle_HMA service enables or disables the high memory area (HMA).
The V86MMGR XMS device uses this service to control the state of the HMA for a
specified virtual machine and to notify the instance data mariager that the state is
changing.

This service is for exclusive use by the V86MMGR XMS device.

Parameters

VM

Specifies a handle identifying the virtual machine.

flags

Specifies the operation flags. It can be one of the following values:

Value

MMGRHMAPhysical

Meaning

Specifies whether the service maps physical pages
lOOh through lOFh into the HMA or expects the
virtual device to map some other physical pages into

MMGRHMAEnable

MMGRHMADisabie

MMGRHMAQuery

the area. The value is used only if the
MMGRHMAEnable value is also given.

Enables the HMA, allowing addresses greater than 1
megabyte to access pages 100h through 10Fh. If the
MMGR!lMAPhysical value is given, the service maps
physical pages 100h through lOFh into the linear pages
100h through 10Fh for the virtual machine, enabling
the global HMA for this virtual machine and which all
virtual machines share.

If the MMGRHMAPhysical value is not given, the
service marks the linear pages lOOh through lOFh as
not present system pages. To prevent a system crash
when these pages are accessed, the virtual device must
provide its own physical pages to map into these linear
pages. This effectively creates a local HMA that is
specific to the given virtual machine.

Disables the HMA, causing addresses greater than 1
megabyte to be wrapped back to addresses in pages 0
through OFh.

Returns the current state of the HMA for the virtual
machine.

The MMGRHMAEnable, MMGRHMADisable, MMGRHMAQuerry values are
mutually exclusive.

All other values are reserved.

Return Value

If MMGRHMAEnable or MMGRHMADisable are given, the EAX register contains a
nonzero if the service is successful. Otherwise, EAX contains zero to indicate an error.

If the MMGRHMAQuerry value is given, the EAX register contains a nonzero value if the
HMA is enabled and zero if the HMA is disabled.

Comments

This service can fail if the MMGRHMAEnable and MMGRHMAPhysical values are
given but the system is already using the physical pages 100h through 10Fh for some
other purpose.

A virtual device must not call this service unless it has already used the
_Assigo_Device_V86_Pages service to assign the pages 100h through 10Fh to itself. For
this reason, this service is intended to be used by one and only one virtual device.

_ModifyPageBits 329

When the system creates a virtual machine, it disables the HMA and causes the virtual
machine to operate like an 8086 processor. To override this default, the virtual device
responsible for the HMA must enable the HMA while processing the VM_Critical_Init
message.

Virtual devices must not identify instance data in the HMA.

Uses

EAX

See Also

_Assign_Device_V86_Pages, VM_Critical_Init

_ModifyPageBits

include vmm.inc

VMMcall _ModifyPageBits, <VM, VMLinPgNum, nPages, bitAND,\
bitOR, pType, flags>

jz not_modified

or eax, eax nonzero if modified,
zero if error

The _ModifyPageBits service modifies the page attribute bits associated with
PG_HOOKED pages in the V86 address space of a virtual machine. Virtual devices use
this service to modify the P_PRES, P_WRITE, and P_USER bits and the PG_TYPE, if
appropriate.

Parameters

VM

Specifies a handle identifying the virtual machine owning the pages to modify.

VMLinPgNum

Specifies the linear page number of the first page to modify. All pages must be in the
1 megabyte V86 address space. Page numbers below the first page of the specified
virtual machine or above lOFh cause an error.

nPages

Specifies the number of pages to modify.

330 _ModifyPageBits

bitAND

Specifies the AND mask for the page attribute bits. All AND mask bits, except the
P_PRES, P_WRITE, and P_USER bits, must be set to 1. The P_PRES, P_WRITE,
and P_USER bits can be 0 or 1 to clear or preserve the corresponding page attributes.

bitOR

Specifies the OR mask for the page attribute bits. All bits, except the P_PRES,
P_WRITE, and P_USER bits, must be set to O. The P_PRES, P_WRITE, and
P_USER bits can be 0 or 1 to preserve or set the corresponding page attributes.

pType

Specifies the page type. It can be one of the following values:

Value

All other values are reserved.

Meaning

Changes the page type to hooked. This value must be
specified if the service clears anyone of the P_PRES,
P_WRITE and P_USER bits.

Leaves the current page type unchanged.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as an invalid virtual machine handle, invalid bits in
AND and OR masks, an invalid type, or a bad page range.

Comments

This service always clears the P_DIRTY and P_ACC bits regardless of the AND and OR
mask values.

If a virtual device clears the P_PRES, P_WRITE, or P_USER bits, the virtual device must
set the page type for all such pages to PG_HOOKED. Also the virtual device must have
previously installed a hook page fault handler for these pages.

This service cannot be used to set the P_PRES bit. Virtual devices can use the
_MaplntoV86 or _PhyslntoV86 service to make pages present. Since the _MaplntoV86
service resets the page type to the same page type as the memory specified by the memory
handle, the virtual devices should set the page type to PG_HOOKED when it creates the
memory handle using the _PageAllocate service. Since the _PhyslntoV86 service sets the
page type to PG_SYS, the virtual devices must use the _ModifyPageBits service to

change the page type to PG_HOOKED if it uses _PhyslntoV86 to map physical pages
into a hooked page region.

If using the P_WRITE bit to simulate ROM in a virtual machine, a virtual device should
map the pages using the _PhyslntoV86 service and immediately call the
_ModifyPageBits service to clear the P_WRITE bit and change the page type to
PG_HOOKED.

Uses

EAX

See Also

_MaplntoV86, _PhyslntoV86

include vmm.inc

mov ebx, VM ; VM handle
VMMcall No_Fail_Resume_VM

The No_Fail_Resume_VM service resumes the execution of a virtual machine previously
suspended by the Suspend_VM service. Unlike the Resume_VM service, this service
never returns an error.

Parameters

VM

Specifies a handle identifying the virtual machine to resume.

Return Value

This service has no return value.

Comments

This service decrements the suspend count, and places the virtual machine in the ready­
processes queue if the new count is zero. The system carries out a task switch to the
resumed virtual machine if the virtual machine has a higher priority than the current
virtual machine.

If the virtual machine cannot be resumed for some reason, the system notifies the user of
the problem and handles the error automatically, resuming the virtual machine when there
is sufficient memory available.

Uses

Flags

See Also

Resume_VM, Suspend_VM

Nuke_VM

include vmm.inc

mov ebx, VM
VMMcall Nuke VM

; VM handle

The Nuke_VM service closes a virtual machine that has not yet terminated.

Parameters

VM

Specifies the handle identifying the virtual machine to destroy. If this parameter
specifies the system virtual machine, the service closes Windows and returns to MS­
DOS.

Return Value

The service has no return value. If the VM parameter specifies the current or system
virtual machine, this service never returns.

Comments

The virtual shell device typically calls this service to close a virtual machine whenever
the user chooses the Terminate button from the virtual machine's Settings dialog box.

This service should be used with caution.

Uses

ECX, EDX, Flags

See Also

Close_VM, Crash_Cur_VM

OpenFile 333

OpenFile

include vmm.inc

VMMcall OpenFile

mov

mov

jc

mov

edx, OFFSET32 Filename

edi, OFFSET32 Buffer

[Handle], eax

points to name of
file to open

points to buffer
to receive full path

carry flag is set
if file not found

MS-DOS file handle

The OpenFile service opens the file having the specified name. If the Filename parameter
specifies only a filename (no drive letter or path separators included), this service searches
for the file in the directories specified by the following:

• WINDIR environment variable

• First command-line argument (argv[O]) of Windows

• Current working directory

• PATH environment variable

Otherwise, the service does not search for the file. In either case, the service attempts to
opens the file for reading (in compatibility mode), and returns the MS-DOS file handle if
it is successful.

This service is only available during initialization.

Parameters

Filename

Points to a null-terminated string specifying the name of the file to open.

Buffer

Points to a buffer that receives the full path of the file (if found). The buffer must be
at least 128 bytes.

Return Value

If the carry flag is clear, the EAX register contains a valid MS-DOS file handle (in the
low word). The handle can be used in subsequent MS-DOS functions to read from or close
the file. If the carry flag is set, the file cannot be found.

Comments

If WINDIR and PATH environment variables are not well formed, this service cannot
guarantee that the full path copied to the Buffer parameter will be well formed.

This service fails if the current virtual machine cannot support a call to the Exec_Int
service, or if the virtual machine has already used the _AUocate_Temp_V86_Data_Area
service to allocate the temporary buffer.

Uses

EAX, Flags

See Also

_Allocate_Temp_V86_Data_Area, Exec_Int

include vmm.inc

mov aI, Char ; character to write
VMMcall out Debug Chr

The Out_Debu~Chr service writes a character to the debugging device.

Parameters

Char

Specifies the character to write to the debugging device.

Return Value

This service has no return value.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

EAX

See Also

Out_Debu~String

Out_Debug_String 335

include vmm.inc

pushfd
pushad
mov esi, OFFSET32 String
VMMcall Out_Debug_String
popad
popfd

save flags on stack
save registers on stack
points to string to write

The Out_Debu~String service writes the specified null-terminated string to the
debugging device (the COMl serial port). If the string contains register placeholders,
Out_Debu~String replaces these with the actual register values (in hexadecimal), or the
symbolic label nearest to the specified addresses.

Parameters

String

Points to a null-terminated string specifying the message to write to the debugging
device. Out_Debu~String uses the lods instruction to process characters in the
string, so the DS register must specify the correct segment selector for the string.

The string can contain one or more placeholders having the following forms:

Placeholder

#register

?register

?register:register

Description

Displays the current value of the specified register. For
example, the service replaces #AX with the value of
the AX register. The register must not be the name of a
segment register.

Displays the label nearest the address specified by the
registers. For example, the service replaces ?EAX with
the VMM code segment label nearest the address in
the EAX register. The register must not be the name of
a segment register.

Displays the label nearest the address specified by the
registers. For example, the service replaces ?AX:EBX
with the label in the segment specified by the AX
register that is nearest to the address in the EBX
register. The register must not be the name of a
segment register.

Return Value

This service has no return value.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version. If the string contains placeholders, Out_Debu~String requires
the caller to use the pushfd and pushad instructions before carrying out a near call to this
service.

Uses

All registers and flags

See Also

Trace_Out

include vmm.inc

mov aI, Char
VMMcall Out_Mono_Chr

mov eax, 0
mov bl, Char
mov bh, Attr
VMMcall Out Mono Chr

character to write

write character and attribute
character to write
attribute to write

The Out_Mono_Chr service writes a character to the current position on the secondary
display.

If the EAX register is not zero, the service writes the character in the AL register and
applies the normal attribute. Otherwise, it writes the character and attribute pair in the BX
register.

Parameters

Char

Specifies the character to write to the secondary display.

Attr

Specifies the attribute to apply to the character when written.

Return Value

This service has no return value.

Comments

If the linefeed or carriage return character is written, the service automatically adjusts the
cursor position, scrolling the screen if necessary.

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

Flags

See Also

Out_Mono_String

include vmm.inc

mov esi, OFFSET32 String
VMMcall Out_Mono String

; points to string to write

The Out_Mono_String service writes the specified null-terminated string to the
secondary display. If the string contains register placeholders, Out_Mono_String
replaces these with the actual register values (in hexadecimal), or the symbolic label
nearest to the specified addresses.

Parameters

String

Points to a null-terminated string specifying the message to write to the debugging
device. Out_Mono_String uses the lods instruction to process characters in the
string, so the DS register must specify the correct segment selector for the string.

The string can contain one or more placeholders having the following forms:

Placeholder

#register

?register

Description

Displays the current value of the specified register. For
example, the service replaces #AX with the value of
the AX register. The register must not be the name of a
segment register.

Displays the label nearest the address specified by the
registers. For example, the service replaces ?EAX with

338 _PageAliocate

?register:register

Return Value

This service has no return value.

Comments

the VMM code segment label nearest the address in
the EAX register. The register must not be the name of
a segment register.

Displays the label nearest the address specified by the
registers. For example, the service replaces ?AX:EBX
with the label in the segment specified by the AX
register that is nearest to the address in the EBX
register. The register must not be the name of a
segment register.

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

All registers and flags

See Also

Mono_Out, Out_Debu~String

_PageAllocate

include vmm.inc

VMMcall _PageAllocate, <nPages, pType, VM, AlignMask,\
minPhys, maxPhys,\
<OFFSET32 PhysAddr>, flags>

mov
or
jz

mov
mov

ecx, eax
ecx, edx
error

[Handle], eax
[Address], edx

; zero in eax and edx if error

; memory handle
; ring-O address of memory block

The _PageAllocate service allocates a block of memory consisting of the specified
number of pages. This service reserves linear address space for the memory block, and
depending on the value of the flags parameter, may also map the linear addresses to
physical memory, locking the pages in memory. The service returns a memory handle that
can be used in subsequent memory management functions to lock, unlock, reallocate, and
free the memory block.

_PageAliocate 339

Parameters

nPages

Specifies the number of pages to allocate for the memory block. This parameter must
not be zero.

pType

Specifies the type of pages to allocate. It can be one of the following values:

Value Meaning

Allocates pages that are specific to a particular virtual
machine. The handle of PG_VM memory blocks will
typically be placed in the virtual machine's control
block.

Allocates global system pages that are valid in all
virtual machines.

Allocates pages that are mapped into the virtual
machine at locations for which a page-fault handler
has been installed. These pages are specific to a
particular virtual machine.

VM

Specifies a handle identifying the virtual machine for which to allocate the pages.
This parameter applies to pages allocated using the PG_VM and PG_HOOKED
values only. This parameter must be set to zero when using the PG_SYS value.

AlignMask

Specifies an alignment mask that defines acceptable starting page numbers for the
memory block. This parameter can be one of the following values:

Value

OOOOOOOOh

00000001h

00000003h

00000007h

OOOOOOOFh

Meaning

Physical address is a multiple of 4K.

Physical address is a multiple of 8K.

Physical address is a multiple of 16K.

Physical address is a multiple of 32K.

Physical address is a multiple of 64K.

340 _PageAliocate

OOOOOOlFh Physical address is a multiple of 128K.

This parameter is used only if the flags parameter specifies the PageUseAlign value.

minPhys

Specifies the minimum acceptable physical page number in the memory block. All
page numbers must be greater than or equal to this value.

This parameter is used only if the flags parameter specifies the PageUseAlign value.

maxPhys

Specifies the maximum acceptable physical page number in the memory block. All
page numbers must be less than this value. This parameter is used only if the flags
parameter specifies the PageUseAlign value.

PhysAddr

Points to the four-byte buffer to receive the physical address of the start of the
memory block. The service uses this parameter only if the flags parameter specifies
the PageUseAlign value.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

Value

PageZeroInit

PageUseAlign

PageContig

PageFixed

Meaning

Fills the memory block with zeros. If this value is not
given, the contents of the memory block are
undefined.

Allocates pages using the alignment and physical
addresses specified by the AlignMask, minPhys, and
maxPhys parameters. The PageUseAlign value is only
available during initialization and can only be used in
combination with the PageFixed value.

Allocates contiguous physical pages to create the
memory block. This value is ignored if the
PageUseAlign value is not also specified.

Locks the allocated pages in memory at a fixed linear
address and prevents the pages from subsequently
being unlocked or moved. The service locks the
memory block regardless of the type of virtual
pageswap device present.

PageLocked

PageLockedIfDP

Page~apFreePhysReg

All other vaiues are reserved.

_PageAliocate 341

Locks the allocated pages in the memory. The pages
can be subse9uently unlocked using the _PageUnLock
service. The service locks the memory block
regardless of the type of virtual pageswap device
present.

Locks the allocated pages in the memory only if the
virtual pageswap device uses ~S-DOS or BIOS
functions to write to the hardware. If the pages are
locked, they can be subsequently unlocked using the
_PageUnLock service.

A virtual device must not specify the PageLockedIfDP
value until after it has received the Init_Complete
message.

The PageLocked and PageLockedIfDP values are
mutually exclusive.

Allocates a free physical region which a virtual device
may use to map physical pages that otherwise are
placed in the system's free memory pool. The nPages
parameter specifies the number of pages in the region.
The pType parameter must be set to PG_SYS and the
VM, AlignMask, minPhys, maxPhys, and
PhysAddrPTR parameters must be set to zero. A free
physical region cannot be reallocated or freed; these
regions exist for the duration of the Windows session.

This value is only available during initialization, and
only in Windows version 3.1 or later.

Return Value

The EAX register contains the memory handle of the block, and the EDX register contains
the ring-O linear address of the memory block. Otherwise, the EAX and EDX registers
both contain zero to indicate an error such insufficient memory to satisfy the request.

Comments

Unless PageLocked, PageLockedIfDP, or PageFixed is specified, this service allocates
linear address space without mapping the addresses to physical memory. In this case, the
system maps the physical page when the virtual device attempts to access an address in

342 _PageFree

the address space. A virtual device can also use the _PageLock service to force this
mapping.

Virtual devices use the PageUseAlign value to allocate buffers for use by the device
which have additional alignment restrictions enforced by the hardware. For example, a
DMA may require buffers to start at addresses that are a multiple of 64K or 128K. When
allocating such buffers, the PageContig value is often used in combination with
PageUseAlign.

The action specified by the PageLockedIfDP value is available only after the virtual
pageswap device has been initialized.

Virtual devices must never rely on apparent relationships between the memory handle and
the ring-O, or physical address of a memory block.

All pages in the free physical region are initially not present. Virtual devices use the
MapFreePhysReg service to map physical pages into the region and use the
UnmapFreePhysReg service to remove pages from the region. Since the system does not
provide a backing store for a free physical region, unmapping a page makes the previous
contents unrecoverable. The MapFreePhysReg and UnmapFreePhysReg services can
only be be used within a free-physical-region callback procedure installed using the
_SetFreePhysRegCalBk service.

Uses

EAX,EDX

See Also

_PageFree, _PageLock, _PageReAllocate, _PageUnLock

include vmm.inc

VMMcall _PageFree, <hMem, flags>

or
jz

eax, eax
not_freed

nonzero if freed, zero if error

The _PageFree service frees the specified memory block.

Parameters

hMem

Specifies a handle identifying the memory block to free. This handle must have been
previously created using the _PageAllocate or _PageReAllocate service.

_PageGetAlloclnfo 343

flags

Specifies the operation flags. This parameter must be set to zero.

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid memory handle.

Comments

Virtual devices that allocate PG_VM or PG_HOOKED pages must free these pages when
the associated virtual machine is destroyed. PG_SYS pages do not need to be freed when
Windows exits.

If a virtual device maps a memory block into the V86 address space (using the
_MaplntoV86 service), it should unmap the memory block before attempting to free it.

It is not an error to free memory which is all or partially locked.

Uses

EAX

See Also

_PageAllocate, _PageReAllocate

_PageGetAlloclnfo

include vmm.inc

VMMcall _PageGetAlloclnfo, <flags>

mov
mov

[Free], eax
[Lockable], edx

; count of free pages
; count of lockable pages

The _PageGetAlloclnfo service returns the size in pages of the largest block of linear
address space that can be allocated. It also returns the number of pages that can be
allocated as locked or fixed memory.

Parameters

flags

Specifies the operation flags. This parameter must be set to O.

344 _PageCheckLinRange

Return Value

The EAX register contains a count of free pages available, and the EDX register contains
a count of pages available for allocating as locked pages.

Comments

Virtual devices must not rely on being able to allocate all pages specified by this service.
In general, virtual devices should allocate memory as needed, and not attempt to allocate
all available memory.

Virtual devices must not rely on the cQunt of free pages being greater than or equal to the
count of pages available for locking.

Uses

EAX,EDX

See Also

_PageAlIocate

_PageCheckLinRange

include vmm.inc

VMMcall _PageCheckLinRange, <HLinPgNum, nPages, flags>

cmp
je
mov

eax, 0
not_valid
[Pages], eax

zero if not valid

actual number of pages in valid range

The _PageCheckLinRange service determines whether all bytes in the specified range of
linear addresses are valid. Virtual devices typically use this service to validate an address
range before specifying the range in a call to the _LinPage~ock or _LinMapIntoV86
service.

Parameters

HLinPgNum

Specifies the linear page number of the first page to check. A linear page number is a
ring-O linear address shifted right by 12 bits.

nPages

Specifies the number of pages to check.

flags

Specifies the operation flags. This parameter must be zero.

_PageDiscardPages 345

Return Value

The EAX register contains the actual number of pages which contain valid addresses. This
value is zero if the entire range is invalid.

Uses

EAX

See Also

_LinMaplntoV86, _LinPageLock

_PageDiscardPages

include vmm.inc

VMMcall _PageDiscardPages, <LinPgNum, VM, nPages, flags>

or eax, eax ; nonzero if discarded, zero if error
jz not_discarded

The _PageDiscardPages service marks pages as no longer in use, allowing the system to
discard the pages. Subsequent attempts to access the page do not cause the system to read
the previous contents of the page from disk.

Parameters

LinPgNum

Specifies linear page number of the first page to discard. If this parameter is less than
11 Dh or corresponds to a virtual machine high linear address, the VM parameter must
specify a valid virtual machine handle. All pages of the specified range must be
marked V86Pageable.

VM

Specifies a handle identifying the virtual machine containing the pages to discard.

nPages

Specifies the number of pages to discard.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

346 _PageGetSizeAddr

Value

PageZeroInit

PageDiscard

All other values are reserved.

Return Value

Meaning

Fills the specified pages with zeros when a subsequent
attempt to page in the pages is made. This value only
applies when the PageDiscard value is also given. If
this value is not given, the content of the pages is
undefined.

Marks pages for a full discard by clearing both the
P_ACC and P_DIRTY bits in the page table entries. If
this value is not given, this service only clears the
P_ACC bit in the page table entries.

The EAX register contains a nonzero value if the service is successful. Otherwise EAX
contains zero indicating an error, such as an invalid range or an invalid virtual machine
handle.

Comments

This service ignores pages in the range which are not present or are locked. This service
affects only pages that are subject to demand paging.

Uses

EAX

_PageGetSizeAddr

include vmm.inc

VMMcall _PageGetSizeAddr, <hMem, flags>

mov
or
jz

ecx, eax
ecx, edx
error

; zero in eax and edx if error

mov [Pages], eax ; number of pages in memory block
mov [Address], edx ; ring-O linear address of memory block

The _PageGetSizeAddr service returns the size and linear address of an existing block of
memory.

_PageLock 347

Parameters

hMem

Specifies a handle identifying the memory block for which to return information. This
handle must have been previously created using the _PageAllocate or
_PageReAllocate service.

flags

Specifies the operation flags. This parameter must be set to zero.

Return Value

The EAX register contains the number of pages in the memory block, and EDX register
contains the ring-O linear address of the memory block. The EAX and EDX registers both
contain zero to indicate an error, such as an invalid memory handle.

Comments

The returned number of pages specifies the total size of the block, not just the number of
pages currently present.

Uses

EAX,EDX

See Also

_PageAlIocate, _PageReAllocate

include vmm.inc

VMMcall _PageLock, <hMem, nPages, PageOff, flags>

or
jz

eax, eax
not_locked

nonzero if locked, zero if error

The _PageLock service locks one or more pages in the specified memory block.

Parameters

hMem

Specifies a handle identifying the memory block to lock. This handle must have been
previously created using the _PageAllocate or _PageReAllocate service.

348 _PageLock

nPages

Specifies the number of pages to lock.

PageOff

Specifies the offset in pages from the start of the memory block to the first page to
lock.

flags

Specifies the operation flags. This parameter can be the following value:

Value

PageLockedIfDP

All other values are reserved.

Return Value

Meaning

Lock pages only if the virtual pageswap device uses
MS-DOS or BIOS function to write pages to the
hardware. If the virtual pageswap device writes
directly to the hardware, this service returns
immediately without locking the pages.

The PageLockedIfDP value cannot be used until after
the Init_Complete message has been processed.

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as invalid memory handle or insufficient memory.

Comments

This service returns an error if the sum of the PageOff and nPages parameters is greater
than the number of pages in the memory block.

This service has no affect on memory blocks allocated using the PageFixed value; such
memory is always locked.

Virtual devices must not assume that the requested number of pages can always be locked.

Each page in a memory block has an individual lock count. This service increments the
lock count each time the page is locked, and decrements the count each time the page is
unlocked. The lock count must be zero for the page to be unlocked. This means that if the
handle is locked 5 times, it has to be unlocked 5 times. Virtual devices must not leave
handles locked when not needed.

Uses

EAX

_PageOutDirtyPages 349

See Also

_PageAllocate, _PageUnlock

_PageOutDirtyPages

include vmm.inc

VMMcall _PageOutDirtyPages, <nPages, flags>

mov [Dirtypages], eax ; count of dirty pages flushed

The _PageOutDirtyPages service flushes dirty pages. The virtual pageswap device uses
this service to prevent a large number of dirty pages from accumulating in the system.

This service is intended for exclusive use by the virtual pageswap device.

Parameters

nPages

Specifies the maximum number of dirty pages to flush.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

Value

PagePDPSetBase

PagePDPClearBase

PagePDPQueryDirty

All other values are reserved.

Meaning

Sets the base page number to the current starting point
of the dirty-page scan.

Clears the base page number.

Returns a count of dirty pages without flushing the
pages. The service ignores the nPages parameter and
all other flags if this value is given.

Return Value

The EAX register contains the actual count of dirty pages flushed by the service.

Comments

The virtual pageswap device typically flushes dirty pages in the system as part of a
background activity. It uses this service to scan for and flush current page-out candidates.

350 _PageReAliocate

The virtual pageswap device can flush all the dirty pages by specifying a large value for
the nPages parameter. The PagePDPSetBase and PagePDPClearBase values let the virtual
pageswap device set and clear a variable that causes the scan for page-out candidates
tostop at the given point, and return zero to indicate that the entire address space has been
scanned.

Uses

EAX

See Also

_PageDiscardPages

_PageReAllocate

include vmm.inc

VMMcall _PageReAllocate, <hMem, nPages, flags>

mov
or
jz

mov
mov

ecx, eax
ecx, edx
error

[Handle], eax
[Address], edx

; zero in eax and edx if error

memory handle
physical address of start

of memory block

The _PageReAIIocate service reallocates and optionally reinitializes an existing memory
block. The service can increase or decrease the number of pages in the memory block.

Parameters

hMem

Specifies a handle identifying the memory block to reallocate. This handle must have
been previously created using the _PageAIIocate or _PageReAIIocate service.

nPages

Specifies the number of pages in the reallocated memory block. This parameter must
not be set to zero. To free a memory block, use the _PageFree service.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

Value

PageZerolnit

Meaning

Fills any new pages with zeros. All existing pages
remain unchanged.

PageZeroReInit

PageNoCopy

PageLocked

PageLockedItDP

All other values are reserved.

_PageReAliocate 351

Fills all pages, new and existing, with zeros.

Does not preserve contents of existing pages. If this
value is not given, the service preserves the contents of
each existing page by copying the contents of the old
memory block into the corresponding pages of the new
block.

Locks the allocated pages in the memory. The pages
can be subsequently unlocked using the _PageUnLock
service. The service locks the memory block
regardless of the type of virtual pageswap device
present.

Locks the allocated pages in the memory only if the
virtual pageswap device uses MS-DOS or BIOS
functions to write to the hardware. If the pages are
locked, they can be subsequently unlocked using the
_PageUnLock service.

A virtual device must not specify the PageLockedItDP
value until after the Init_Complete message has been
processed by all virtual devices.

Return Value

The EAX register contains the memory handle of the new memory block, and the EDX
register contains the ring-O linear address of the block. Otherwise, the EAX and EDX
registers both contain zero to indicate an error such as insufficient memory, an invalid
memory handle, or wrong memory type.

Comments

If successful, this service frees the old memory block, making the old memory handle and
starting address invalid. If this service returns an error, the old memory handle and
starting address remain valid.

If the specified memory handle identifies a fixed memory block (allocated using the
PageFixed value), this service implicitly allocates fixed pages for the new memory block.

If the specified handle identifies an aligned memory block (allocated using the
PageUseAlign value), this service returns an error.

352 _PageResetHandlePAddr

Virtual devices must never rely on the new and old memory handles being the same, or
the new and old starting addresses being equal.

The action specified by the PageLockedIfDP value is available only after the virtual
pageswap device has been initialized.

Uses

EAX,EDX

See Also

_PageAllocate, _PageFree, _PageLock, _PageUnLock

_PageResetHandlePAddr

include vmm.inc

VMMcal~ _PageResetHandlePAddr, <hMem, PgOff, nPages,\
PhysPgNum, flags>

or eax, eax ; nonzero if substituted, zero if error
jz not_substituted

The _PageResetHandlePAddr service substitutes one or more pages in a memory block
with physical pages not previously available to the system. This service is similar to the
_AddFreePhysPage service, but allows memory to be used in a slightly different way.

This service is only available for Windows version 3.1 and later.

Parameters

hMem

Specifies a handle identifying a memory block. This handle must have been
previously created using the _PageAllocate or _PageReAllocate service.

PgOff

Specifies the offset in pages from the start of the memory block to the first page to be
substituted.

nPages

Specifies the number of pages to substitute.

PhysPgNum

Specifies the number of the first physical page to substitute into the memory block.
The page number must be greater than or equal to 110h; only extended memory pages
may be added to the block. The specified pages must be read/write physical memory
pages, and must be available for use at any time.

_PageUnLock 353

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero if the service is successful. Otherwise, EAX contains
zero to indicate an error, such as an invalid memory handle, an invalid range of pages, or
an invalid physical page number.

Comments

This service returns an error if the sum of the PgOff and nPages is greater than the size of
the memory block. A virtual device must not attempt to use pages once it has added them
to the free pool, or attempt to add pages that are already available to the system.

This service returns an error if the number of pages to add exceeds the limit of the internal
data structure the system uses the manage the free pool. The internal data structure is
allocated during initialization and cannot be modified.

This service converts pages that are substituted into the block to fixed pages. These pages
are always locked, and cannot be unlocked.

This service maps a new physical page in at the specified locations andputs the existing
physical memory in the free list. The contents of the freed pages are not preserved.

Uses

EAX

See Also

_AddFreePhysPage

include vmm.inc

VMMcall _PageUnLock, <hMem, nPages, PageOff, flags>

or
jz

eax, eax
not_unlocked

; nonzero if unlocked, zero if error

The _PageUnLock service unlocks one or more pages in the specified memory block.

354· _PageUnLock

Parameters

hMem

Specifies a handle identifying the memory block to unlock. This handle must have
been previously created using the PageAllocate or PageReAllocate service.

nPages

Specifies the number of pages to unlock.

PageD!!

Specifies the offset in pages from the start of the block to the first page to unlock.

flags

Specifies the operation flags. This parameter can be a combination of the following
values:

Value

PageLockedItDP

PageMarkPageOut

All other values are reserved.

Return Value

Meaning

Unlock pages only if the virtual pageswap device use
MS-DOS or BIOS functions to write to the hardware.
If the virtual pageswap device writes directly to the
hardware, this service returns immediately without
unlocking the pages.

The PageLockedltDP value cannot be used until after
the Init_Complete message has been processed.

Marks pages for immediate swapping if this service
sets the lock count for the pages to zero. This service
marks the pages by clearing the P_ACC bit for each
page. The PageMarkPageOut value should only be
used if the pages are unlikely to be accessed for some
time.

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid memory handle.

Comments

This service returns an error if the sum of the PageD!! and nPages parameters is greater
than the number of pages in the memory block. It also returns an error if the specified
pages are not already locked.

_PhyslntoV86 355

Each page in a memory block has an individual lock count. This service increments the
lock count each time the page is locked, and decrements the count each time the page is
unlocked. The lock count must be zero for the page to be unlocked. This means that if the
handle is locked 5 times, it has to be unlocked 5 times. Virtual devices must not leave
handles locked when not needed.

Uses

EAX

See Also

_PageLock

include vmm.inc

VMMcall _PhysIntoV86, <PhysPage, VM, VMLinPgNum,\
nPages, flags>

or
jz

eax, eax
not_mapped

; nonzero if mapped, zero if an error

The _PhyslntoV86 service maps the specified physical pages in the V86 address space.
This service is similar to the _MaplntoV86 service, but takes physical page numbers
instead of memory handles. Virtual devices use this service to associate physical device
memory (such as the video memory) with a particular virtual machine.

Parameters

PhysPage

Specifies the physical page number of the start of the region to map. A physical page
number is a physical address shifted right by 12 bits.

VM

Specifies a handle identifying the virtual machine for which the memory is mapped.

VMLinPgNum

Specifies the linear page number of a page in the 1 megabyte V86 address space. This
service maps the physical pages starting at the associated given V86 address. This
parameter must not specify page number below 10h or above 10Fh.

nPages

Specifies the number of pages to map.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid virtual machine handle or an illegal
map range.

Comments

If more than one physical page is specified, this service maps the pages contiguously. If
the physical memory is not contiguous, the virtual device must make individual calls for
each page.

Virtual devices must not map physical pages that do not contain actual memory, or that
belong to some other device.

For each mapped page, this service sets the P_USER, P_PRES, and P_WRITE bits, but
clears the P_DIRTY and P_ACe bits. The service sets the page type to be identical to the
type for the specified protected-mode linear address. This service sets the page type to
PG_SYS.

Uses

EAX

See Also

_MapIntoV86

include vmm.inc

mov eax, Valuel
push eax
mov eax, Value2
push eax
mov esi, OFFSET32 String
VMMcall Queue Debug String

value for string

value for string

points to string to queue

The Queue_Debu~String service queues a string and corresponding values for display at
a later time. The message remains queued until the user enters the .LQ command using
the debugger.

Release_Critical_Section 357

Parameters

Value}

Specifies a value to queue with the string. If the string contains the #EAX or ?EAX
placeholder, this value is used when the string is displayed.

Value2

Specifies a value to queue with the string. If the string contains the #EBX or ?EBX
placeholder, this value is used when the string is displayed.

String

Points to a null-terminated string to queue. It can contain one or more of the
following register placeholders: #AX, #EAX, ?EAX, #BX, #EBX, ?EBX, ?AX:El3X,
?BX:EAX.

Return Value

This service has no return value.

Comments

This service has no effect in the retail version of Windows. It is intende~ to be used with
the debugging version.

Uses

Flags

See Also

Out_Debu~String

Release_Critical_Section

include vmm.inc

ecx, Claims number of times to
, release critical section

VMMcall Release_Critical_Section

mov

The Release_Critical_Section service decrements the claim count by the specified value.
It has the same effect as calling the End_Critical_Section sectio;n repeatedly.

358 Release_Time~Slice

Parameters

Claims

Specifies the number of times to release ownership of critical section. Zero is a valid
number, but is ignored.

Return Value

This service has no return value.

Uses

Flags

See Also

Claim_Critical_Section, End_Cri~ical_Section

include vmm.inc

VMMcall Release_Time Slice

The Release_Time_Slice service discards any remaining time in the current time slice
and immediately starts a new time slice for the next virtual machine in the time-slice
queue.

This service effectively suspends the current virtual machine. The virtual machine
remains suspended until another virtual machine or a hardware interrupt calls the
Wake_Up_VM service for this virtual machine.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

This service returns immediately (does nothing) if the current virtual machine is the only
one in the time-slice queue.

Virtual devices should use this service whenever the virtual machine is idle. If the current
virtual machine is a background virtual machine, this service releases the time slice and
decreases the execution time by -500 milliseconds. If the current virtual machine has the
execution focus or is a high-priority background virtual machine, this service releases the
time slice but does not adjust the execution time.

Uses

Flags

See Also

Adjust_Execution_Time, Get_Execution_Focus, Wake_Up_VM

include vmm.inc

mov eax, BreakAddr ; V86 address of break point
VMMcall Remove V86 Break Point

The Remove_V86_Break_Point service removes a V86 break point that was installed
using the Install_V86_Break_Point service. It restores the original contents of the
memory automatically.

Parameters

BreakAddr

Specifies the address of the break point to remove. The address must be a
segmentoffset pair.

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set to
indicate an error such as an invalid break point address.

Uses

Flags

See Also

Install_V86_Break_Point

Restore_CIient_State
include vmm.inc

mov esi, Buffer
VMMcall Restore Client State

points saved state

360 Resume_Exec

The Restore_Client_State service restores a virtual machine execution state that was
saved using the Save_Client_State service.

Parameters

Buffer

Points to the buffer containing the client state previously saved using the
Save_Client_State service.

RetiJrn Value

This service has no return value.

Comments

This service can have the following side effects:

• Changes the execution mode if the state being restored is in a different execution
mode from the current one.

• May change the state of the current virtual machine's interrupt flag and cause the
system to call event callback procedures that were previously scheduled using the
CalI_When_VM_Ints_Enabled and Call_Priority_VM_Event services.

Uses

Flags

See Also

CalI_When_VM_Ints_Enabled, Call_Priority_VM_Event, Save_Client_State

include vmm.inc

VMMcall Resume~Exec

The Resume_Exec service immediately executes the current virtual machine. This service
may only be called in a nested execution block created using the Begin_Nest_Exec or
Begin_Nest_V86~Exec service.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

This service can be use any number of times in a nested execution block. This service
returns when the virtual machine returns to the same point it was at when
Begio_Nest_Exec was called.

Uses

Flags

See Also

Begio~Nest_Exec, Begio_Nest_V86_Exec

include vmm.inc

mov ebx, VM ; VM handle
VMMcall No Fail_Resume_VM

The No_Fail_Resume_VM service resumes the execution of a virtual machine previously
suspended by the Suspend_VM service. Unlike the Resume_VM service, this service
never returns an error.

Parameters

VM

Specifies a handle identifying the virtual machine to resume.

Return Value

This service has no return value.

Comments

This service decrements the suspend count, and places the virtual machine in the ready­
processes queue if the new count is zero. The system carries out a task switch to the
resumed virtual machine if the virtual machine has a higher priority than the current
virtual machine.

If the virtual machine cannot be resumed for some reason, the system notifies the user of
the problem and handles the error automatically, resuming the virtual machine when there
is sufficient memory available.

362 Save_Client_State

Uses

Flags

See Also

Resume_VM, Suspend_VM

include vmm.inc

VMMcall Save Client State

mov edi, Buffer points to the buffer
to receive client state

The Save_Client_State service copies the contents of the current virtual machine's
Client_Re~Struc structure to the specified buffer. The saved state can later be restored
by calling the Restore_Client_State service.

Parameters

Buffer

Points to the buffer to receive the client state. The buffer must have the same size as a
Client_Reg_Struc structure.

Return Value

This service has no return value.

Comments

Virtual devices typically use this service to save client registers prior to creating a nested
execution block with the Begin_Nest_Exec or Begin_Nest_V86_Exec service.

Never attempt to restore the client state by directly copying sav~d register values back to
the Client_Re~Struc structure; this will almost certainly cause the virtual machine
manager to crash.

Uses

Flags

See Also

Restore_Client_State

Schedule_Global_Event

include vmm.inc

mov esi, OFFSET32 EventCallback points to
callback procedure

mov edx, OFFSET32 RefData points to
reference data

VMMcall Schedule_Global_Event

mov [Event], esi event handle

The Schedule_Global_Event service schedules a global event, which is an event that
does not require a specific virtual machine to process it. The system calls the event
callback procedure immediately before the returning from the current interrupt. Since any
virtual machine can process the event, the system does not switch tasks before calling the
procedure.

This is an asynchronous service.

Parameters

EventCallback

Points to the callback procedure. See the Comments section for more information
about the procedure.

RefData

Points to reference data to be passed to the event callback procedure.

Return Value

The ESI register contains the event handle. The handle can be used in a subsequent call to
the Cancel_Global_Event service to cancel the event.

Comments

The callback procedure can carry out any actions and use any VMM services. The system
calls the event callback procedure as follows:

mov
mov
mov
call

ebx, VM
edx, OFFSET32 RefData
ebp, OFFSET32 crs
[EventCallback]

current VM handle
points to reference data
points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, RefData points to
reference data supplied by the virtual machine that scheduled the event, and crs points to
a Client_Re~Struc structure containing the contents of the virtual machine's registers.

The callback procedure can modify EAX, EBX, ECX, EDX, ESI, and ED!.

See Also

Call_Global_Event, Cancel_Global_Event

include vmm.inc

mov ebx, VM
mov esi, OFFSET32 EventCallback
mov edx, OFFSET32 RefData
VMMcall Schedule_VM_Event

VM handle
callback procedure
reference data

mov [Event], esi event handle

The Schedule_VM_Event service schedules an event for the specified virtual machine.
Since the event must be processed by the specified virtual machine, the system carries out
a task switch to the virtual machine (if necessary) before calling the event callback
procedure. The system completes the event processing before the VMM returns from the
current interrupt.

This is an asynchronous service.

Parameters

VM

Specifies a handle identifying the virtual machine to process the event.

EventCallback

Points to the callback procedure. See the Comments section for more information
about the procedure.

RefData

Points to reference data to be passed to the event callback procedure.

Return Value

The ESI register contains the event handle. The event handle can be used in subsequent
calls to the Cancel_VM_Event service to cancel the event.

Comments

Since the specified virtual machine must process the event, the system carries out a task
switch if necessary before calling the procedure. The callback procedure can carry out any
actions and use any VMM services. The system calls the event callback procedure as
follows:

mov
mov

ebx, VM
edx, OFFSET32 RefData

current VM handle
points to reference data

mov
call

ebp, OFFSET32 crs
[EventCallback]

_SetDescriptor 365

; points to a Client_Reg_Struc

The VM parameter is a handle identifying the current virtual machine, RefData points to
reference data supplied by the virtual machine that scheduled the event, and crs points to
a Client_Re~Struc structure containing the contents of the virtual machine's registers.

The callback procedure can modify EAX, EBX, ECX, EDX, ESI, and ED!.

See Also

Call_VM_Event, Cancel_VM_Event

_SetDescriptor

include vmm.inc

VMMcall _SetDescriptor, <Selector, VM, DescDWORD1,
DescDWORD2, flags>

or eax, eax ; nonzero if set, zero if error
jz not_set

The _SetDescriptor service sets (changes) the descriptor of the given selector.

Parameters

Selector

Specifies the GDT or LDT selector to set.

VM

Specifies a handle identifying the virtual machine to which the specified LDT selector
belongs. The service ignores this parameter if Selector is a GDT selector. Otherwise, the
handle must be valid for LDT selectors.

DescDWORDl

Specifies the high doubleword of the descriptor for the selector. This parameter
contains the high 16 bits of the base address, the high 4 bits of the limit, and the
status and type bits.

DescDWORD2

Specifies the low doubleword of the descriptor for the selector. This parameter
contains the low 16 bits of the base address and limit.

366 _SelectorMapFlat

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid selector or an invalid virtual machine
handle.

Comments

This service ignores the high 16-bits of the Selector parameter; the 80386 CPU often sets
these bits to random values when doubleword operations are performed on segment
registers.

The service ignores the RPL bits of the selector.

Uses

EAX

See Also

_GetDescriptor

_SelectorMapFlat

include vmm.inc

VMMcall _SelectorMapFlat, <VM, Selector, flags>

cmp
je
mov

eax, OFFFFFFFFh
error
[Address], eax

OFFFFFFFFh if error

base address of selector

The _SelectorMapFlat service returns the base address of the specified GOT or LOT
selector. The address mapper uses this service to convert pointers, consisting of selector
and offset pairs, to flat-model linear addresses suitable for use as parameters for the
_Linl\1apIntoV86 service.

Parameters

VM

Specifies a handle identifying the virtual machine to which the specified selector
belongs. This parameter is not used if Selector is a GOT selector. This parameter
must be valid for LOT selectors.

Selector

Specifies a GOT or LOT selector.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains the linear address of the base of the selector if the service is
successful. Otherwise, EAX contains OFFFFFFFFh to indicate an error, such as an invalid
selector.

Comments

This service ignores the high 16 bits of the Selector parameter; the 80386 CPU often sets
these bits to somewhat random values when doubleword operations are performed on
segment registers.

Uses

EAX

See Also

_LinMaplntoV86

include vmm.inc

mov ebx, VM ; VM handle
VMMcall Set_Execution_Focus

jc focus_not set ; carry set if the focus cannot be set

The Set_Execution_Focus service assigns the execution focus to the specified virtual
machine.

Parameters

VM

Specifies a handle identifying the virtual machine to receive the execution focus.

Return Value

The carry flag is clear if the execution focus was set to the specified virtual machine.
Otherwise, the carry flag is set.

368 _SetFreePhysRegCalBk

Comments

When a virtual machine has the execution focus, it executes using its foreground priority.
If the specified virtual machine has exclusive execution priority, it is the only virtual
machine to receive time slices. If the specified virtual machine does not have exclusive
execution priority, the system schedules background virtual machines as well.

When a virtual machine receives the execution focus, the system suspends all other virtual
machines except the system virtual machine and background virtual machines.

Only the system virtual machine can assign the execution focus to other virtual machines;
a nonsystem virtual machine can only assign the execution focus to itself.

Uses

Flags

See Also

Get_Execution_Focus, Set_Time_Slice_Granularity, Set_Time_Slice_Priority

_SetFreePhysRegCalBk

include vmm.inc

VMMcall _SetFreephysRegCalBk, <Callback, flags>

or eax, eax ; nonzero if installed, zero if error
jz not installed

The _SetFreePhysRegCalBk service installs a callback procedure for managing the free
list for a free physical region. The system calls the callback procedure whenever the
memory manager puts a page on the free list or wants to obtain a physical page.

Any number of callback procedures can be installed.

.This service is only available during initialization.

Parameters

Callback

Points to the callback procedure to install. See the Comments section for more
information about this procedure.

flags

Specifies the operation flags. This parameter must be set to o.

_SetFreePhysRegCalBk 369

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error such as insufficient memory to define the callback
procedure.

Comments

When the system places a page on the free list, the system gives a callback procedure the
option to take the page and map it in a free physical region using the _MapFreePhysReg
service. When the system needs a page, the system requests pages from the callback
procedures. They provide pages by using the _UnmapFreePhysReg service to unmap the
pages from the free physical region and put it back on the free list.

The system calls the callback procedure as follows:

mov

mov
call

jc

eax, Request

ecx, Pages
[Callback]

dont chain

o for pages available,
1 for pages needed

count of pages available or needed

carry set if request satisfied

The Request parameter specifies whether the call is a notification of free pages or a
request for free pages. This parameter is 0 if the pages are available and 1 if the pages are
needed. All other values are reserved.

The Pages parameter specifies the count of page either currently available in the free list,
or requested by the memory manager to be placed on the free list.

The callback procedure sets the carry flag to indicate that it carried out the request, and to
prevent the system from calling the next callback procedure in the chain. If the callback
procedure cannot complete the entire request, it must clear the carry flag.

The callback procedure can modify all registers except the segment registers and EBP.

If more than one callback procedure is installed, the system calls each procedure in the
chain unless a procedure returns with the carry flag set. The system varies the order in
which it calls the procedures, ensuring that every procedure is periodically the first to be
called.

When Request is 1, the callback procedure must release pages for regions which were
mapped without the PageFixed value.

The callback procedure must release all free physical region pages which were mapped
without the PageFixed value.

The callback procedure can release more pages than requested. The extra pages remain on
the free list until the next operation places pages on the free list. At this point, the system
sends a notification (Request is 0) to the callback procedure for all of the pages currently
on the free list.

In general, a callback procedure should not call any services other than the
_MapFreePhysReg and _UnmapFreePhysReg services. Calling other services,
particularly nonasynchronous services, may cause the system to be re-entered.

The system does not begin calling the free-physical-region callback procedures until after
the Init_Complete message has been processed by all virtual devices.

Uses

EAX

See Also

_MapFreePhysReg, _PageAllocate

include vmm.inc

mov

mov

mov

eax, Time

edx, OFFSET32 RefData

esi, OFFSET32 TimeOutCallback

milliseconds
to time-out

points to
reference data

points to
callback procedure

mov [TimeOut], esi time-out handle

The Set_Global_Time_Out service schedules a time-out to occur after the specified
number of milliseconds have elapsed.

Parameters

Time

Specifies the number of milliseconds to wait until calling the time-out callback
procedure.

RefData

Points to reference data to be passed to the callback procedure.

TimeOutCallback

Points to the callback procedure. See the Comments section for more information
about the procedure.

_SetLastV86Page 371

Return Value

The ESI register contains the handle of the time-out if the service is successful.
Otherwise, the ESI is zero indicating that the time-out is not scheduled.

Comments

The system calls the time-out callback procedure when the specified number of
milliseconds elapse. The system calls the procedure as follows:

mov
mov

mov
mov
call

ebx, VM
ecx, Extra

edx, OFFSET32 RefData
ebp, OFFSET32 crs
[TimeOutCallback]

current VM handle
number of milliseconds

since time-out
points to reference data
points to Client_Reg_Struc

The VM parameter is a handle specifying the current virtual machine. The RefData
parameter points to the reference data for the callback procedure, and the crs parameter
points to a Client_Re~Struc structure that contains the register values for the current
virtual machine.

The Extra parameter specifies the number of milliseconds that have elapsed since the
actual time-out occurred. Time-outs are often delayed by 10 milliseconds or more because
the normal system timer runs at 20 milliseconds or slower.

If a virtual device needs more accurate time-outs, it must increase the timer interrupt
frequency using virtual timer device (VTD) services.

Uses

ESI, Flags

See Also

Set_VM_Time_Out

_SetLastV86Page

include vmm.inc

VMMcall _SetLastV86Page, <PgNum, flags>

or
jz

eax, eax
not set

; nonzero if set, zero if error

The _SetLastV86Page service sets the page number of the last page in V86 memory for
the current virtual machine.

This service is intended for exclusive use by the virtual V86 memory manager device, and
is only available for Windows version 3.1 or later.

Parameters

PgNum

Specifies the linear page number to set the last V86 page.

flags

Specifies the operation flags. This parameter must be set to o.
Return Value

The EAX register contains a nonzero value if the new last page is set. Otherwise, EAX
contains zero to indicate an error, such as an invalid page number.

Comments

This service is intended to help the V86MMGR support backfill machines. These
machines have unused, unoccupied memory from the end of MS-DOS memory (typically
at 512k) up to 640k (page OAOh). On such machines, it is desirable to fill out (backfill)
this unoccupied space so that virtual machines provide memory up to 640k.

Uses

EAX

See Also

_GetLastV86Page

include vmm.inc

mov dl, Column current column position
mov dh, Row current row position
VMMcall Set Mono Cur POS

The Set_Mono_Cur_Pos service sets the current cursor position for the secondary display.

Parameters

Column

Specifies the column position.

Row

Specifies the row position.

Return Value

This service has no return value.

Comments

This service has no effect in the retail version of Windows. It is intended to be used with
the debugging version.

Uses

Flags

See Also

Get_Mono_Cur_Pos

include vmm.inc

mov esi, OFFSET32 nmi
VMMcall Set NMI Handler_Addr

; points to new NMI handler

The Set_NMI_Handler_Addr service sets the Non-Maskable Interrupt (NMI) vector to
the address of the specified NMI handler.

Parameters

nmi

Points to the new NMI handler.

Return Value

This service has no return value.

Comments

To install an NMI handler, a virtual device must retrieve and save the current NMI
handler address using the Get_NMI_Handler_Addr service, and set the new address
using Set_NMI_Handler_Addr.

The NMI handler must not call VMM or virtual device services. This restriction includes
calls to asynchronous VMM services. The NMI handler can examine and modify local
data in the VxD_LOCKED_DATA_SEG segment, but it must not attempt to access any
other memory, including virtual machine and V86 memory. If a virtual device needs to

use VMM services in response to an NMI, it should install an NMI event handler using
the Hook_NMI_Event service.

The NMI handler must not execute the iret instruction. Instead, it must jump to the
address of the previous NMI handler (retrieved using the Get_NMI_Handler_Addr
service). The CPU ignores additional NMIs until it executes the iret instruction. Because
no NMI handlers in the chain execute this instruction, the handlers are guaranteed not to
be re-entered.

Some computers require the latch at port 70h be reset to enable further NMls. To simplify
NMI processing for other NMI handlers, the virtual parity device (PARITY) automatically
resets this latch.

Uses

Flags

See Also

Get_NMI_Handler_Addr, Hook_NMI_Event

include vmm.inc

mov esi, Entries ; points to PTEs for
; physical HMA alias

VMMcall Set_Physical_HMA_Alias

The Set_Physical_HMA_Alias service defines an HMA alias for pages 100h through
10Fh. This service is for the exclusive use of the XMS driver, a part of the virtual
V86MMGR device, and is only available during initialization.

Parameters

Entries

Points to an array of 16 page table entries which define the physical HMA alias.

Return Value

This service has no return value.

Comments

This service does not map new pages into the HMA. Instead, the virtual device must call
the _MMGR_Toggle_HMA service with the MMGRHMAPhysical value after the calling
this service. This service specifies which pages are mapped when the
MMGRHMAPhysical value is specified in a call to the _MMGR_Toggle_HMA service.

Uses

EDI, ESI, EAX, ECX, Flags

See Also

_MMGR_Toggle_HMA

include vmm.inc

The Set_PM_Exec_Mode service forces the current virtual machine into protected mode.
If the current virtual machine is already in protected mode, this service has no effect.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

Whenever possible, a virtual device should use the Begin_Nest_Exec service instead of
this service.

Changing the execution mode of a virtual machine does not change the virtual machine's
EAX, EBX, ECX, EDX, ESI, EDI, and EBP registers or most flags. The VM flag and
IOPL flags change. The DS, ES, FS, GS, SS, ESP, CS, and EIP register are restored to the
previous values for V86 mode.

Uses

Flags

See Also

include vmm.inc

VMMcall Set PM Int Type

mov
mov

eax, Interrupt
edx, Type

interrupt number
zero for trap gate,

nonzero for interrupt gate

The Set_PM_Int_Type service sets the gate type for a protected-mode interrupt vector.

Parameters

Interrupt

Specifies the number of the interrupt to set.

Type

Specifies the type of gate to set. If this parameter is zero, the service sets a trap gate;
if nonzero, it sets an interrupt gate.

Return Value

This service has no return value.

Comments

An interrupt through an interrupt gate automatically clears the interrupt flag bit to disable
interrupts. Interrupts through trap gate do not modify the interrupt bit. All protected-mode
interrupts default to the trap gate type, but virtual devices such as the virtual PIC device,
may change some trap gates to interrupt gates so that hardware interrupts disable
interrupts. The virtual PIC device leaves software interrupts, such as Interrupt 21h,
unchanged. This avoids an unnecessary ring transition by eliminating the need for the
software interrupt handlers to execute an sti instruction.

Uses

Flags

See Also

Get_PM_Int_Type, Set_PM_Int_Vector

include vmm.inc

mov
mov

eax, Interrupt
ex, Segment

interrupt number
segment selector for

interruptlroutine

mov edx, Offset
VMMcall Set PM Int Vector

_SetResetV86Pageable 377

; offset to interrupt routine

The Set_PM_Int_Vector service sets the specified protected-mode interrupt vector to the
address of the given interrupt routine.

Parameters

Interrupt

Specifies the number of the interrupt to set.

Segment

Specifies the selector of the code segment containing the interrupt routine.

Offset

Specifies the offset to the interrupt routine. If the code segment containing the routine
is a 16-bit segment, the high word of this parameter must be zero.

Return Value

This service has no return value.

Comments

If the Set_PM_Int_Vector service is called before the Sys_VM_Init control call, the
installed interrupt routine becomes part of the default interrupt vector table for every
virtual machine. Otherwise, this service affects the interrupt vector table for the current
virtual machine only. By default, each table entry points to a protected-mode breakpoint
procedure that reflects the interrupt to V86 mode.

Uses

Flags

See Also

Get_PM_Int_Vector, Set_PM_Int_Type, Set_V86_Int_Vector

_SetResetV86Pageable

include vmm.inc

VMMcall _SetResetV86Pageable, <VM, VMLinPgNum, nPages, flags>

or
jz

eax, eax
error

; nonzero if set or reset, zero if error

378 _SetResetV86Pageable

The _SetResetV86Pageable service modifies the locking and unlocking behavior
associated with a specific range of V86 memory.

Parameters

VM

Specifies a handle identifying the virtual machine for which the behavior is modified.

VMLinPgNum

Specifies the linear page number of the first page in 1 megabyte V86 address space to
modify. This parameter must not be below the page number for the first V86 page or
above 100h.

nPages

Specifies the number of pages to modify.

flags

Specifies the operation flags. This parameter can be one of the following values:

Value Meaning

PageSetV86Pageabie

PageCIearV86Pageabie

PageSetV86IntsLocked

PageCIearV86IntsLocked

All other values are reserved.

Return Value

Disable normal locking behavior of _MapIntoV86 and
let V86 memory be paged.

Enable normal locking behavior.

Enable locking of all V86 memory that is not pageable
regardless of whether the virtual pageswap device uses
MS-DOS or BIOS functions.

Disable locking of all V86 memory that is not
pageable regardless of whether the virtual pageswap
device uses MS-DOS or BIOS functions.

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid virtual machine handle or an invalid
address range.

Comments

This service is intended to be used to support protected-mode applications running in a
virtual machine. Virtual devices must not use this service for any other purpose.

This service returns an error if the VMStat_PageableV86 or VMStat_V86~IntsLockedstate
is inconsistent with the specified PageSetV86Pageable, PageClearV86Pageable,
PageSetV86IntsLocked, or PageCIearV86IntsLocked values.

This service returns an error if the PageCIearV86Pageabie or PageSetV86IntsLocked
values are given, but the service cannot lock the specified memory.

The V86MMGR device uses the PageSetV86IntsLocked value for virtual machines which
are created with their base memory specified as locked.

Virtual devices should avoid manipulating the locking and unlocking behavior of regions
above page OAOh. A virtual device should not modify these pages unless it owns a global
or local region set by the _Assign_Device_V86_Pages service.

If the PageSetV86IntsLocked or PageClearV86IntsLocked value is given, the service
applies the modification to every page that that is not pageable. For this reason the
HLinPgNum and nPages parameters should be set to zero.

By default, the _MapIntoV86 service locks the memory it maps. For a virtual machine
running a protected-mode application, it is desirable change this default behavior.

Uses

EAX

See Also

_Assigo_Device_V86_Pages

include vmm.inc

mov aI, ExitCode ; exit code to set
VMMcall Set System Exit Code

The Set_System_Exit_Code service sets the exit code value that Windows returns to MS­
DOS when Windows terminates. The system copies this value to the AL register when it
executes the MS-DOS End Program function (Interrupt 21h Function 4Ch).

This service is intended for the exclusive use of the virtual shell device.

Parameters

ExitCode

Specifies the exit code value.

Return Value

This service has no return value.

Comments

This exit code is associated only with the exit of the system not the system virtual
machine.

In the case of an abnormal termination the system may set its own exit code value and
ignore the value set by this service.

Uses

EDX, Flags

include vmm.inc

mov eax, Time ; minimum time-slice in milliseconds
VMMcall Set_Time_Slice_Granularity

The Set_Time_SIice_Granularity service sets the minimum time-slice granularity. This
value specifies the minimum number of milliseconds a virtual machine runs before being
rescheduled.

Parameters

Time

Specifies the minimum time-slice granularity in milliseconds.

Return Value

This service has no return value.

Comments

Small time-slice granularity values make multitasking appear smoother, but require high
numbers of task switches and increase execution overhead. Large values allow more time
for the virtual machines to execute but may make execution look intermittent to the user.

Uses

Flags

See Also

include vmm.inc

mov eax, Flags status flags
mov ebx, VM VM handle
mov ecx, Foreground foreground priority
mov edx, Background ; background priority
VMMcall Set_Time_Slice_Priority

The Set_Time_Slice_Priority service sets the time-slice execution flags and the
foreground and background priorities for a specified virtual machine.

Parameters

Flags

Specifies status flags for the CB_VM_Status field in the virtual machine's control
block. It can be one of the following values:

Value Meaning

VM

VMStat_Exclusive

VMStat_Background

VMStat_High_Pri_Back

Exclusive execution.

Background execution.

High-priority background execution.

Specifies a handle identifying the virtual machine to change.

Foreground

Specifies the foreground time-slice priority. The high word must be O.

Background

Specifies the background time-slice priority. The high word must be o.
Return Value

The carry flag is clear if the service successfully sets the time-slice priority. Otherwise,
the carry flag is set.

Comments

To change the time-slice priority, a virtual should retrieve the current time-slice priority
using the Get_Time_Slice_Priority service, modify the returned values, and use the
modified values as input parameters to this service.

Example

The following example assigns a virtual machine to the background:

mov ebx, [VM]
VMMcall Get_Time_Slice_Priority
or eax, VMStat_Background
vMMcall Set_Time Slice Priority

Uses

Flags

See Also

Get_Time_Slice_Priority, Set_Time_Slice_Granularity

include vmm.inc

VMMcall Set V86 Exec Mode

The Set_V86_Exec_Mode service forces the current virtual machine into V86 mode. If
the current virtual machine is already in V86 mode, this service has no effect.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

Changing the execution mode of a virtual machine does not change the virtual machine's
EAX, EBX, ECX, EDX, ESI, EDI, and EBP registers or most flags. The VM flag and
IOPL flags change. The DS, ES, FS, as, SS, ESP, CS, and EIP registers are restored to
the previous values for V86 mode.

Uses

Flags

See Also

Set_P~_Exec_~ode

include vmm.inc

mov eax, Interrupt
mov ex, Segment

mov edx, Offset
VMMcall Set V86_Int Vector

interrupt number
segment address for

interrupt routine
offset to interrupt routine

The Set_V86_Int_Vector service sets the specified real-mode interrupt vector to the
address of the given interrupt routine.

Parameters

Interrupt

Specifies the number of the interrupt to set.

Segment

Specifies the address of the code segment containing the interrupt routine.

Offset

Specifies the offset to the interrupt routine. The high word must be zero.

Return Value

This service has no return value.

Comments

If the Set_V86_Int_Vector service is called before the Sys_VM_lnit message, the
installed interrupt routine becomes part of the default interrupt vector table for every
virtual machine. Otherwise, this service affects the interrupt vector table for the current
virtual machine only.

Uses

Flags

See Also

Get_V86_Int_Vector, Set_PM_Int_Vector

include vmm.inc

mov eax, Time number of milliseconds
to time-out

mov ebx, VM VM handle
mov edx, OFFSET32 RefData points to reference

data
mov esi, OFFSET32 TimeOutCallback points to callback

procedure
VMMcall Set_VM_Time_Out

mov [TimeOut], esi time-out handle

The Set_VM_Time_Out service schedules a time-out that occurs after the specified
virtual machine has run for the specified length of time. The system calls the time-out
callback procedure only after the virtual machine has run for Time milliseconds. Time that
elapses while other virtual machines run is not counted.

Parameters

Time

Specifies the number of milliseconds to wait until calling the time-out callback
procedure.

VM

Specifies a handle identifying the virtual machine.

RefData

Points to reference data to be passed to the callback procedure.

TimeOutCallback

Points to the callback procedure. See the Comments section for more information
about the procedure.

Return Value

The ESI register contains the handle of the time-out if the service is successful.
Otherwise, the ESI is zero indicating that the time-out is not scheduled.

Comments

The system calls the time-out callback procedure when the virtual machine runs for the
specified number of milliseconds. The system calls the procedure as follows:

mov
mov

mov

ebx, VM
ecx, Extra

edx, OFFSET32 RefData

current VM handle
number of milliseconds

since time-out
points to reference data

mov
call

ebp, OFFSET32 crs
[TimeOutCallback]

Signal_Semaphore 385

The VM parameter is a handle specifying the virtual machine for which the time-out was
scheduled. The RefData parameter points to the reference data for the callback procedure,
and the crs parameter points to a Client_Re~Struc structure that contains the register
values for the virtual machine.

The Extra parameter specifies the number of milliseconds that have elapsed since the
actual time-out occurred. Time-outs are often delayed by 10 milliseconds or more because
the normal system timer runs at 20 milliseconds or slower.

If a virtual device needs more accurate time-outs, it must increase the timer interrupt
frequency using virtual timer device (VTD) services.

Uses

ESI, Flags

See Also

Set_Global_Time_Out

Signal_Semaphore
include vmm.inc

mov eax, Semaphore
VMMcall Signal_Semaphore

; semaphore handle

The Signal_Semaphore service unblocks the virtual machine (if any) waItIng on the
specified semaphore. The unblocked virtual machine checks the state of the semaphore's
unblock count and resumes execution if the count is zero or greater.

Parameters

Semaphore

Specifies a handle identifying the semaphore to signal.

Return Value

This service has no return value.

Comments

This service increments the semaphore's token count. If the incremented token count is
less than or equal to zero, the service increments the semaphore's unblo~!(~ count and

schedules a wake up event for the virtual machine blocked on the semaphore. Otherwise,
this service returns immediately.

Uses

Flags

See Also

Create_Semaphore, Wait_Semaphore

include vmm.inc

mov CX, Segment

mov edx, Offset
VMMcall Simulate Far Call

segment containing
procedure to call

offset of procedure to call

The Simulate_Far_Call service simulates a far call to a procedure in the the current
virtual machine. This service sets the Client_CS and Client_IP registers to the specified
procedure address after saving the original Client_CS and Client_IP registers on the stack
of the current virtual machine. When the virtual machine resumes execution (such as
when the Resume_Exec service is called), the system executes the specified procedure
and returns only when the procedure executes a far ret instruction.

Parameters

Segment

Specifies the segment selector or address of the code segment containing the
procedure to call.

Offset

Specifies the offset, relative to the beginning of the given segment, to the procedure
to call. If the code segment is a 16-bit segment, the high word must be zero.

Return Value

This service has no return value.

Uses

Client_CS, Client_EIP, Client_SP, Flags

See Also

Build_Int_Stack_Frame, Simulate_Far_Jrnp

include vmm.inc

mov ex, Segment

mov edx, Offset
VMMcall Simulate_Far_Jmp

segment containing procedure
to jump to

offset to procedure to jump to

The Simulate_Far_Jrnp service simulates a far jump to a procedure in the current virtual
machine. This service sets the Client_CS and Client_IP registers to the specified address.
When the virtual machine resumes execution (such as when the Resume_Exec service is
called), the system executes the specified procedure.

Parameters

Segment

Specifies the segment selector or address of the code segment containing the
procedure to jump to.

Offset

Specifies the offset, relative to the beginning of the given segment, to the procedure
to jump to. If the code segment is a 16-bit segment, the high word must be zero.

Return Value

This service has no return value.

Uses

Client_CS, Client_EIP, Flags

See Also

Simulate_Far_Call

include vmm.inc

The Simulate_Far_Ret service simulates a far return in the current virtual machine. This
service pops the top two words (or double-words) from the stack of the current virtual
machine and copies these values to the Client_CS and Client_EIP or Client_IP registers.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

This services pops two word values from the stack if the segment containing the address is
a 16-bit segment. Otherwise, this service pops two double-word values.

Uses

Flags

See Also

Simulate_Far_Call, Simulate_Far_Ret_N

include vmm.inc

mov eax, Bytes ; number of bytes to pop from stack
VMMcall Simulate Far_Ret_N

The Simulate_Far_Ret_N service simulates a far return in the current virtual machine.
This service pops the top two words (or double words) from the stack of the current
virtual machine, and places the values in the Client_CS and Client_EIP or Client_IP
registers. It then subtracts the Bytes parameter from the Client_ESP or Client_ESP
register, effectively popping any pushed parameters from the stack.

Parameters

Bytes

Specifies the number of bytes to pop from the stack.

Return Value

This service has no return value.

Uses

Client_CS, Client_EIP, Client_ESP, Flags

See Also

Simulate_Far_Call, Simulate_Far_Ret

Simulate_lnt 389

Simulate_lnt

include vmm.inc

mov eax, Interrupt
VMMcall simulate Int

; interrupt number

The Simulate_Int service simulates an interrupt in the current virtual machine. The
service first calls any hook procedures set by the Hook_V86_Int_Chain service. If no
hook procedure services the interrupt, this service pushes the Client_Flags, Client_CS,
and Client_IP registers on the stack of the current virtual machine. When the virtual
machine resumes execution (such as when an Resume_Exec service is called), the system
carries out the simulated interrupt and executes the corresponding V86 mode interrupt
routine.

The virtual PIC device uses this service to simulate hardware interrupts.

Other virtual devices use the Exec_Int service to simulate interrupts.

Parameters

Interrupt

Specifies the number of the interrupt to simulate.

Return Value

This service has no return value.

Comments

If the virtual machine is currently in V86 mode, this service simulates a V86 interrupt.
Otherwise, the service simulates a protected-mode interrupt.

Simulating an interrupt in a virtual machine running a protected-mode application can
have undesirable effects if the corresponding interrupt attempts to reflect the interrupt to
V86 mode.

Virtual devices that need immediate execution of an interrupt should use the Exec_Int
service in a nested execution block.

Uses

Client_CS, Client_EIP, Client_Flags, Flags

See Also

Exec_Int

390 Simulate_IO

include vmm.inc

mov
mov
mov

mov
mov
VMMjmp

mov

eax, Data
ebx, VM
ecx, IOType

edx, Port
ebp, OFFSET32 crs
Simulate_IO

[Data], eax

data for output operations
current VM handle
type of I/O (as passed

to I/O trap routine)
I/O port number
points to a Client_Reg_Struc

data for input operation

The Simulate_IO service reduces complex 110 instructions to simpler 110 operations. An
I/O callback procedure typically jumps to this service whenever the procedure receives a
type of I/O that it does not directly support.

Parameters

Data

Specifies the data for an output operation. This parameter is used only if the IOType
parameter specifies an output operation.

VM

Specifies a handle identifying the current virtual machine.

10Type

Specifies the type of I/O operation. This parameter can be a combination of the
following values:

Value

Byte_Input

Byte_Output

Word_Input

Word_Output

Dword_Input

Meaning

Input a single byte; place in AL if String_10 not given.

Output a single byte from AL if String_10 not given.

Input a word; place in AX if String_10 not given.

Output a word from AX if String_IO not given.

Input a double word; place in EAX if String_10 not
given.

Output a double word from EAX if String_10 not
given.

Input or output a string. The high 16-bits specifies
segment address of buffer containing the string to
output or to receive the string input.

Simulate_lret 391

Repeat the input or output string operation the number
of times specified by the Client_CX field in the
ClieDt_Re~Strucstructure.

Use 32-bit address offsets for input or output string
operations. If this value is not given, the 16-bit offsets
are used.

Decrement string address on each input or output
operation. If this value is not given, the string address
is incremented on each operation.

Port

Specifies the number of the VO port through which to carry out the operation.

crs

Points to a ClieDt_Re~Struc structure containing the register contents for the
current virtual machine.

Return Value

The EAX register contains input data if the IOType parameter specifies an input
operation. IOType also specifies the size of the data in EAX.

Comments

The parameters to this service are identical to the parameters passed to an VO callback
procedure. A callback procedure should jump to this service using the VMMjmp macro
with all of the registers in the same state as when the procedure was called. The procedure
may modify the ESI and EDI register before jumping, if necessary.

Uses

EAX, EBX, ECX, EDX, ESI, EDI, Flags

See Also

Dispatch_Byte_IO, Emulate_NoD_Byte_IO

Simulate_lret

include vmm.inc

VMMcall Simulate_Iret

The Simulate_Iret service simulates a return from an interrupt. This service pops the top
three word or double-word values from the stack of the current virtual machine, and
places the values in the Client_Flags, Client_CS, and Client_EIP or Client_IP registers.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

This service pops three word values from the stack if the segment corresponding to the
return address is a 16-bit segment. Otherwise, the service pops three double-word values.

Uses

Client_CS, Client_EIP, Client_ESP, Client_Flags, Flags

See Also

Simulate_Int

include vmm.inc

mov [Value], eax ; value popped from stack

The Simulate_Pop service returns the word or double-word value at the top of the stack
of the current virtual machine, and adds two or four to the Client_ESP register.

Parameters

This service has no parameters.

Return Value

The EAX register contains the value popped from virtual machine stack. The high word is
zero if in V86 mode or the virtual machine is running a 16-bit program.

Uses

EAX, Client_ESP, Flags

See Also

Simulate_Push

include vmm.inc

mov eax, Value
VMMcall Simulate Push

; value to push

The. Simulate_Push service pushes a word or double-word value on the stack of the
current virtual machine and subtracts two or four from the Client_ESP register.

Parameters

Value

Specifies the value to push on the stack. In V86 mode or when the virtual machine is
running a 16-bit program, only the low word is pushed.

Return Value

This service has no return value.

Uses

Client_ESP, Flags

See Also

Simulate_Pop

Suspend_VM

include vmm.inc

mov ebx, VM
VMMcall Suspend_VM

VM handle

jc not_suspended carry set if virtual machine
not suspended

The Suspend_VM service suspends the execution of a specified virtual machine. This
service fails if the specified virtual machine either owns the critical section, or is the
system virtual machine.

Parameters

VM

Specifies a handle identifying the virtual machine to suspend.

394 System_Control

Return Value

The carry flag is clear if the virtual machine is suspended. The carry flag is set to indicate
an error.

Comments

An error occurs if the virtual machine is in a critical section or is the VM parameter
specifies the system virtual machine.

This service increments the suspend count for the virtual machine. If the virtual machine
was not already suspended, the system notifies virtual devices of the suspension by
sending a VM_Suspend command to the control procedure for each virtual device. A
virtual device must not refuse to suspend a virtual machine. If a virtual machine remains
suspended, subsequent calls to Suspend_VM do not cause the VM_Suspend notification.

When a virtual machine is suspended, the system sets the VMStat_Suspended bit in the
CB_VM_Status field of the virtual machine's control block. Although virtual devices may
examine and modify the contents of the control block of a virtual machine, the virtual
devices must not examine or modify any memory owned by a suspended virtual machine
unless the virtual device previously locked that memory.

Uses

Flags

See Also

No_Fail_Resume_VM, Resume_VM

System_Control

include vmm.inc

mov eax, Message
mov ebx, VM
mov esi, Paraml
mov edi, Param2
mov edx, Param3
VMMcall System_Control
jc error

system control message
VM handle (if needed by message)
message-specific parameter
message-specific parameter
message-specific parameter

carry set if error

The System_Control service sends system control messages to all the virtual devices and,
depending on the message, to the VMM.

Parameters

Message

Specifies the system control message. This parameter can be one of the following
values:

System_Control 395

Value Meaning

Begin_PM_App A protected-mode application is starting

Close_VM_Notify A virtual machine is closing

Create_VM A virtual machine is being created

Critical_Reboot_Notify System is rebooting (interrupt disabled)

Debug_Query Requests for virtual device's debugging interface

Destroy_VM A virtual machine is being destroyed

Device_Init Virtual devices initializing (interrupts enabled)

Device_Reboot_Notify System is rebooting (interrupts enabled)

End_PM_App A protected-mode application is ending

Init_Complete All virtual devices have initialized

Power_Event Power is being suspended or resumed

Reboot_Processor Virtual device must reboot system if it can

Set_Device_Focus A virtual device is taking the focus

Sys_Critical_Exit System is terminating (interrupt disabled)

Sys_Critical_Init Virtual devices initializing (interrupts disabled)

Sys_VM_Init System VM is being created

Sys_VM_Terminate System VM is being destroyed

System_Exit System is terminating (interrupts enabled)

VM_Critical_Init Virtual machine being created (interrupts disabled)

VM_Init Virtual machine being created (interrupts enabled)

VM_Not_Executeable Virtual machine being destroyed

VM_Resume Virtual machine execution resumed

VM_Suspend Virtual machine execution suspended

VM_Terminate Virtual machine begin destroyed

For more information about these messages, see the individual message descriptions.

396 System_Control

VM

Specifies a handle identifying a virtual machine. This parameter is not required by
every system control message.

Paraml

Specifies a message-specific parameter.

Param2

Specifies a message-specific parameter.

Param3

Specifies a message-specific parameter.

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set to
indicate an error.

If the Create_VM message is successful, the EBX register contains the new virtual
machine handle.

Comments

Although virtual devices may receive many of the system control messages, they may
send only the following messages:

Message Restrictions

Create_VM May only be sent by the virtual shell device.

Destroy_VM May only be sent by the virtual shell device.

Set_Device_Focus May be sent by any virtual device. If the device ID is zero, all
devices with settable focus must set their focus to the specified
virtual machine.

End_PM_App May only be sent by the virtual MS-DOS manager.

Virtual devices must send and reply to messages correctly to prevent erratic system
behavior.

This service uses the ECX register, therefore the register cannot be used to pass data
through to the virtual device receiving the control message.

Uses

Flags, EBX if Create_VM

include vmm.inc

mov ebx, VM ; VM handle to test
VMMcall Test_Cur_VM_Handle

je is current ; zero flag set if current VM handle

The Test_Cur_VM_Handle service tests whether the given virtual machine handle is the
handle of the currently running virtual machine.

This is an asynchronous service.

Parameters

VM

Specifies a handle identifying the virtual machine to test.

Return Value

The zero flag is set if the handle is for the currently running virtual machine.

Uses

Flags

See Also

Get_Cur_VM_Handle, Test_Sys_VM_Handle

include vmm.inc

mov eax, Value ; value to test
VMMcall Test_DBCS_Lead_Byte

jc ; carry set if value not
legal DBCS lead byte

The Test_DBCS_Lead_Byte tests whether the given value is in the legal range for a
DBCS lead byte.

Parameters

Value

Specifies the value to test.

Return Value

The carry flag is clear if the specified value is in the legal range for DBCS lead bytes.
Otherwise, the carry flag is set.

Comments

For non-DBCS versions of Windows, this service always sets the carry flag.

Uses

Flags

include vnun.inc

je not_installed zero flag set if not installed

The Test_Debult-Installed service tests whether whether the debugging version of the
Windows VMM is running.

Parameters

This service has no parameters.

Return Value

The zero flag is set if the debugging version is not installed.

Uses

Flags

_TestGIobalV86Mem

include vmm.inc

VMMcall _TestGlobalV86Mem, <VMLinAddr, nBytes, flags>

mov [Result], eax o if local, 1 if global, 2 if mixed,
3 if includes instance data region

The _TestGlobalV86Mem service tests whether a V86 address range is global, local, or
instanced.

_TestGIobalV86Mem 399

Parameters

VMLinAddr

Specifies the ring-O linear address of the first byte of the V86 address range. For
example, the linear address of the V86 address 02Clh:OFC5h is 3BD5h (02CIOh +
OFC5h).

nBytes

Specifies the size in bytes of the V86 address range.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains one of the following values:

Value Meaning

o

2

3

Address range either contains local memory, or is not a valid V86 address
range.

Address range contains global memory.

Address range contains both local and global memory.

Address range contains global memory, but also includes an instance data
region.

Comments

Global V86 memory has addresses that are valid and identical in all virtual machines.
Local memory has addresses that are only valid in one virtual machine. Instanced memory
has addresses that are valid in all virtual machines, but the content of the memory varies
with each virtual machine.

This service may incorrectly report the type of memory in addresses above page OAOh (in
the device adapter area). If this service returns global for memory in this area, it is global.
If the service returns local, however, the memory may actually be global. Generally, this
region is local.

Operations involving global address ranges typically do not need to be virtualized since
the range is valid and addressable in all virtual machines. Operations involving local
address ranges may have to be virtualized since it is possible for software, such as an
interrupt handler, to use a local address in the wrong virtual machine.

Uses

EAX

include vmm.inc

mov ebx, VM VM handle to test
VMMcall Test_Sys_VM_Handle

je zero flag set if system VM handle

The Test_Sys_VM_Handle service tests whether the given virtual machine handle is the
handle of the system virtual machine.

This is an asynchronous service.

Parameters

VM

Specifies the virtual machine handle to test.

Return Value

The zero flag is set if the handle identifies the system virtual machine.

Uses

Flags

See Also

Get_Sys_VM_Handle, Test_Cur_VM_Handle

include vmm.inc

VMMcall Unhook Invalid Page Fault

mov esi, OFFSET32 HookProc points to hook procedure
to remove

The Unhook_Invalid_Page_Fault service removes the specified hook procedure from the
invalid-page-fault chain.

_UnmapFreePhysReg 401

Parameters

HookProc

Points to the hook procedure to remove. This procedure must have been previously
installed using the Hook_Invalid_Page_Fault service.

Return Value

If the carry flag is clear, the hook procedure was removed. Otherwise, the carry flag is set
to indicate an error such as the specified procedure was not in the chain.

Uses

Flags

See Also

Hook_Invalid_Page_Fault

_UnmapFreePhysReg

include vmm.inc

VMMcall _UnmapFreePhysReg, <LinPgNum, nPages, flags>

or
jz

eax, eax
not_unmapped

; nonzero if unmapped, zero if error

The _UnmapFreePhysReg service unmaps a page in a free physical region and places the
physical memory back on the free list.

Parameters

LinPgNum

Specifies the linear page number of the first page to unmap. A linear page number is
a linear address shifted right by 12 bits.

nPages

Specifies the number of pages in the region to unmap. This region must lie within the
boundaries of a free physical region previously allocated using the _PageAllocate
service.

flags

Specifies the operation flags. This parameter must be set to o.

402 Update_System_Clock

Return Value

The EAX register contains a nonzero value if the service is successful. Otherwise, EAX
contains zero to indicate an error, such as an invalid linear page number, an invalid range
of pages, or part of the range already not present.

Comments

This service is intended to be used in a free-physical-region callback procedure installed
using the _SetFreePhysRegCalBk service. Virtual devices should not call this service
until after the Sys_VM_Init message or the Init_Complete message has been received.

If a virtual device maps pages using the PageFixed value with the _MapFreePhysReg
service, it must not attempt to unmap the pages using the _UnmapFreePhysReg service.

Uses

EAX

See Also

_MapFreePhysReg, _PageAllocate

include vmm.inc

mov ecx, Time ; elapsed time in milliseconds
VMMcall Update System Clock

The Update_SysteM_Clock service updates the current system time and the current
virtual machine's execution time.

This service is reserved for exclusive use by the virtual timer device. If other virtual
devices call this service, the VMM timing services will behave incorrectly.

Parameters

Time

Specifies the number of milliseconds that have elapsed since the last call to this
service. The service adds this amount to the system time maintained by the VMM.

Return Value

This service has no return value.

Comments

The virtual timer device must disabled interrupts before calling this service.

Uses

Flags

include vmm.inc

mov ebx, VM
VMMcall Validate_VM_Handle
jc not_valid

VM handle to test

carry flag set if
VM handle not valid

The Validate_VM_Handle service tests whether the specified virtual machine handle is
valid.

This is an asynchronous service.

Parameters

VM

Specifies the virtual machine handle to test.

Return Value

The carry flag is set if the handle is not valid.

Uses

Flags

See Also

Test_Cur_VM_Handle, Test_Sys_VM_Handle

include vmm.inc

mov ebx, VM
VMMcall Wake Up VM

; VM handle

The Wake_Up_VM service restores an idle virtual machine, allowing the system to
schedule the virtual machine for subsequent time slices. A virtual machine is idle if it has
called the Release_Time_Slice service or has set the VMStat_Idle flag in the
CB_VM_Status field of its control block.

404 Wait_Semaphore

Parameters

VM

Specifies a handle identifying the virtual machine to restore.

Return Value

This service has no return value.

Comments

If the specified virtual machine is not idle, this service returns immediately (does
nothing).

Uses

Flags

See Also

Release_Time_Slice

Wait_Semaphore

include vmm.inc

mov eax, Semaphore
mov ecx, Flags
VMMcall Wait_Semaphore

semaphore handle
flags for servicing interrupts

The Wait_Semaphore service blocks the current virtual machine until the semaphore is
signaled using the Signal_Semaphore service.

Parameters

Semaphore

Specifies a handle identifying the semaphore on which to wait.

Flags

Specifies actions to take when interrupts occur while the virtual machine is blocked
waiting for the semaphore. This parameter can be a combination of the following
values:

Value Meaning

Service interrupts in the virtual machine even if the
virtual machine is blocked.

_XchgFreePhysReg 405

Block_Svc_If_Ints_Locked Service interrupts in the virtual machine even if the
virtual machine is blocked and the
VMStat_V86IntsLocked flag is set.

Block_Enable_Ints Service interrupts in the virtual machine even if the
virtual machine does not currently have interrupts
enabled. This forces interrupts to be enabled. This
value is only relevant if either Block_Svc_Ints or
Block_Svc_If_Ints_Locked is set.

Block_Poll Do not switch away from the blocked virtual machine
unless another virtual machine has higher priority.

Return Value

This service has no return value.

Comments

This service blocks if the semaphore's unblock count is zero and the token count is zero or
less. Otherwise, it decrements the token count and returns immediately. If the unblock
count is not zero (meaning the Signal_Semaphore service has been called),
Wait_Semaphore decrements the unblock count and returns immediately.

Uses

Flags

See Also

Create_Semaphore, Signal_Semaphore

_XchgFreePhysReg

include vmm.inc

VMMcall _XchgFreePhysReg, <LinPgNum, PhysAddr, flags>

cmp
je
mov

eax, OFFFFFFFFh
not_exchanged
[PageTable], eax

OFFFFFFFFh if error

previous page table entry

The _XchgFreePhysReg service replaces the current physical address in a page table
entry with a new physical address. A virtual device typically uses this service to compact
a free physical region by assigning pages that are present to adjacent linear addresses (that
is, by removing not-present pages from between present pages).

406 _XchgFreePhysReg

This is an asynchronous service.

Parameters

LinPgNum

Specifies the linear page number of the first page in the region to exchange. A linear
page number is a linear address shifted right by 12 bits. The specified page must be
within a free physical region previously allocated using the _PageAllocate service.

PhysAddr

Specifies the physical address to insert into the page table entry specified by
LinPgNum. This parameter must be a 32-bit physical address.

If this parameter is zero, the service makes the page not present.

flags

Specifies the operation flags. This parameter must be set to O.

Return Value

The EAX register contains the previous physical address for the specified page if the
service is successful. If the specified page is not present, EAX contains zero. Otherwise,
EAX contains OFFFFFFFFh to indicate an error, such as an invalid linear page number.

Comments

A virtual device typically makes a series of calls to _XchgFreePhysReg, using the
physical address return by one call as the parameter in the next call. To start the series, the
virtual device sets the PhysAddr parameter to zero, and specifies a page known to be
present. This forces the present page to be not present. The virtual device continues
calling the service, specifying different page numbers, until the service returns O.

This service cannot be used to change the number of pages which were mapped using the
PageFixed value with the _MapFreePhysReg service.

The virtual pageswap device uses this service to read ahead and write behind without
having to copy data. Using the _XchgFreePhysReg service in this way is restricted to the
virtual pageswap device.

Failure to use this service properly can result in invalid page faults and loss of pages.

Uses

EAX

See Also

_MapFreePhysReg, _PageAllocate

Application_Control_Block 407

VMM Structure Reference

Application_Control_Block

include vmm.inc

mov
mov
mov

esi, OFFSET32 acb
eax, [esi+PMCB_Flags]
eax, [esi+PMCB_Parent]

; application flags
; application parent

The application control block contains information about a protected-mode application.
Virtual devices can use the following offsets to access information in the control block:

Offset Description

PMCB_Flags Specifies the control block flags.

PMCB_Parent Specifies the parent of the protected-mode application.

See Also

Get_Cur_PM_App_CB

Client_Reg_Struc

include vmm.inc

Client_Reg_Struc struc
Client_EDI dd ? Client's EDI
Client_ESI dd ? Client's ESI
Client_EBP dd ? Client's EBP

dd ? ESP at pushall
Client_EBX dd ? Client's EBX
Client_EDX dd ? Client's EDX
Client_ECX dd ? Client's ECX
Client_EAX dd ? Client's EAX
Client_Error dd ? Doubleword error code
Client_EIP dd ? EIP
Client_CS dw ? CS

dw ? (padding)
Client_EFlags dd ? EFLAGS
Client_ESP dd ? ESP
Client_SS dw ? SS

dw ? (padding)
Client_ES dw ? ES

dw ? (padding)
Client_DS dw ? DS

dw ? (padding)
Client_FS dw ? FS

408 Control_Block

dw ? (padding)
Client_GS dw ? GS

dw ? (padding)
Client_Alt_EIP dd ?
Client_Alt_CS dw ?

dw ?
Client_Alt_EFlags dd ?
Client_Alt_ESP dd ?
Client_Alt_SS dw ?

dw ?
Client_Alt_ES dw ?

dw ?
Client_Alt_DS dw ?

dw ?
Client_Alt_FS dw ?

dw ?
Client_Alt_GS dw ?

dw ?
Client_Reg_Struc ends

The Client_RelLStruc structure contains the CPU register values of the virtual device or
other program calling a service.

Control_Block
include vmm.inc

mov esi, VM VM handle
mov eax, [esi + CB_W_Status] virtual machine status
mov eax, [esi + CB_High_Linear] , high linear address
m0Y' eax, [esi + CB_Client_Pointer]; -> Client_Reg_Struc
mov eax, [esi + CB_VMID] virtual machine ID

The control block for a virtual machine contains information and status for the virtual
machine. Virtual devices can use the following symbols to access useful fields in the
control block:

Offset

Value

Description

Specifies the status for the virtual machine. It can be a combination
of the following values:

Meaning

VMStat_Exclusive

VMStat_Background

VMStat_Creating

VMStat_Suspended

VMStat_Not_Executeable

Virtual machine is in exclusive mode.

Virtual machine runs in the background.

Virtual machine is being created.

Virtual machine is not scheduled.

Virtual machine is partially destroyed.

Control_Block 409

Specifies the liner address in the VMM linear address space of the
virtual machine memory. Virtual devices can add a V86 linear
address to this value calculate the location of a virtual machine
memory in the VMM address space.

VMStat_Blocked

VMStat_Awakening

VMStat_PageableV86

VMStat_V86IntsLocked

VMStat_TS_Sched

VMStat_Idle

VMStat_Closing

CB_High_Linear

Virtual machine execution currently in a protected­
mode application.

Virtual machine contains a protected-mode
application.

Virtual machine contains a 32-bit protected-mode
application.

Virtual machine has received a call from a virtual
device.

Virtual machine has high priority background
execution.

Virtual machine is blocked on a semaphore.

Virtual machine is waking up after being blocked on a
semaphore.

Virtual machine has pageable V86 memory (protected­
mode application). The default behavior for one or
more pages in V86 memory has been modified and the
_GetV86PageableArray service returns at least one
nonzero bit in the array.

Virtual machine locks any V86 memory that is not
pageable. Locking regardless of the pager type has
been enabled for the virtual machine.

Virtual machine is scheduled by the time slicer.

Virtual machine has released its time slice.

Virtual machine has received a Close_VM message.

CB_Client_Pointer

CB_VMID

Specifies the address of a Client_Reg_Struc structure containing the
register values for the virtual machine.

Specifies the virtual machine identifier.

410 DemandlnfoStruc

See Also

Close_VM

DemandlnfoStruc

include vmm.inc

DemandlnfoStruc struc
DILin_Total_Count dd? size of linear address space

in pages
DIPhys_Count dd? count of phys pages
DIFree_Count dd? count of free phys pages
DIUnlock_Count dd? count of unlocked Phys Pages
DILinear_Base_Addr dd? case of pageable address space
DILin_Total_Free dd ? ; total free linear pages
DIReserved dd 10 DUP(?) ; reserved

DemandlnfoStruc ends

The DemandInfoStruc structure contains information about pages that are subject to
demand paging.

Members

DILin_Total_Count

Specifies the total number of pages subject to demand paging.

DIPhys_Count

Specifies the total number of physical pages managed by the memory manager.

DIFree_Count

Specifies the number of pages currently in the free pool.

DIUnlock_Count

Specifies the number of pages that are currently unlocked. Free pages are always
unlocked.

DILinear_Base_Addr

Specifies the linear address of the first page subject to demand paging. If
DILinear_Base_Addr is zero, the pages subject to demand paging are not contiguous.

DILin_Total_Free

Specifies the number of the pages that are currently free as well as subject to demand
paging. There is no guarantee that these free pages are contiguous.

InstDataStruc 411

DIReserved

Specifies a reserved field. Virtual devices must make no assumptions about the
content or purpose of this field.

See Also

_GetDemandPagelnfo

InstDataStruc

include vmm.inc

InstDataStruc struc
InstLinkF dd
InstLinkB dd
InstLinAddr dd
InstSize dd
InstType dd

InstDataStruc ends

?
?
?
?
?

RESERVED SET TO 0
RESERVED SET TO 0
Linear address of start of block
Size of block in bytes
Type of the block

The InstDataStruc structure contain information about an instance data block.

Members

InstLinkF

Reserved. This field is filled in by the instance data manager and must not be used.

InstLinkB

Reserved. This field is filled in by the instance data manager and must not be used.

InstLinAddr

Specifies the linear address of the start of the block of instance data. Thus the correct
value for 40:2F would be 42F.

InstSize

Specifies the size in bytes of the instance data block.

InstType

Specifies the instance data type. It can be one of the following values:

Value

INDOS_Field

See Also

_Addlnstanceltem

IPF_Data

include vmm.inc

IPF_Data struc
IPF_LinAddr dd?
IPF_MapPageNum dd ?

IPF_PTEEntry dd?
IPF_FaultingVM dd ?

IPF_Flags dd?
IPF Data ends

Meaning

Reserved for special types of MS-DOS internal data
which only need to be switched with the virtual
machine if the virtual machine is currently INDOS.

Indicates that the field must always be switched when
a virtual machine is switched. All instance data
specified by devices should be of this type.

CR2 address of fault
possible converted page

number of fault
Contents of PTE that faulted
May not = current VM

(IPF_V86PgH set)
Flags

The IPF_Data structure contains information about the current invalid page fault.

Members

IPF_LinAddr

Specifies the CR2 address of the page fault.

IPF_MapPageNum

Specifies the possible converted page number of the fault.

IPF_PTEEntry

Specifies the contents of the page-table entry that caused the fault.

IPF_FaultingVM

Specifies the handle identifying the virtual machine that caused the fault. This is not
necessarily the current virtual machine.

IPF_Flags

Specifies the invalid-page-fault flags. It can be a combination of the following values:

Value

IPF_V86Pg

IPF_V86PgH

IPF_InvTyp

IPF_PgErr

IPF_ReFIt

IPF_VMM

IPF_PM

Comments

IPF_Data 413

Meaning

Page directory entry not present (not-present page
table).

Unexpected not-present page in V86.

Unexpected not-present page in V86 at high linear
address.

Page has invalid not-present type.

Pageswap device could not page for some reason.

Re-entrant page fault.

Page fault caused by a virtual device.

Page fault caused by virtual machine running in
protected mode.

Page fault caused by virtual machine running in V86
mode.

Invalid page faults occur in a virtual machine other than the current virtual machine if the
high linear address of the virtual machine is accessed. In this case, the IPF_FaultingVM
field is set to the handle of the virtual machine that owns the high linear address.

See Also

Hook_Invalid_Page_Fault

VMM Message Reference

Begin_Message_Mode

include vmm.inc

mov ebx, VM VM handle
mov eax, Begin_Message_Mode
VMMcall System_Control

The Begin_Message_Mode message notifies the virtual display, keyboard, and mouse
devices to prepare to display messages and read input from the keyboard. The system
sends this message if Windows cannot display the requested warning or error message.

Parameters

VM

Specifies a handle identifying the virtual machine entering message mode.

Return Value

The carry flag must be clear.

Comments

This message is usually processed only by the virtual keyboard, mouse, and display
devices.

Uses

Flags

See Also

End_Message_Mode

include vmm.inc

mov ebx, VM
mov edx, Flags
mov edi, OFFSET32 acb
mov eax, Begin_PM_App
VMMcall System Control

current VM handle
flags
-> Application Control Block

The Begin_PM_App message notifies the virtual device that the system is starting a
protected-mode application.

Parameters

VM

Specifies a handle identifying the current virtual machine.

Flags

Specifies the operation flags. It can be the following value:

Value Meaning

Application has 32-bit segments. If this value is not
given, the application has 16-bit segments.

All other values are reserved.

acb

Points to an application control block.

Return Value

The carry flag is clear if the virtual device can support the protected-mode application.
Otherwise, the carry flag is set to indicate an error.

Uses

Flags

See Also

End_PM_App

include vmm.inc

mov ebx, VM current VM handle
mov edx, Flags ; flags
mov eax, Close_VM_NotifY
VMMcall System_Control

The Close_VM_Notify message notifies a virtual device that the Close_VM service has
been called and the specified virtual machine is terminating.

Parameters

VM

Specifies a handle identifying the virtual machine to close.

Flags

Specifies the operation flags. This parameter can be the following value:

Value Meaning

The virtual machine has not released the critical
section.

All other values are reserved.

Return Value

The carry flag is set if the virtual device supports termination of the virtual machine.
Otherwise, the carry flag is set to indicate an error.

Uses

Flags

See Also

Close_VM

include vmm.inc
mov ebx, VM new VM handle
mov eax, Create_VM
VMMcall System Control

The Create_VM message notifies a virtual machine that the system is creating a new
virtual machine. Virtual devices typically initialize data associated with the virtual
machine, such as data in the control block for the virtual machine.

Parameters

VM

Specifies a handle identifying the new virtual machine.

Return Value

The carry flag is clear if the virtual device can support the new virtual machine.
Otherwise, the carry flag is set to indicate an error and prevent the system from creating
the virtual machine.

Uses

Flags

See Also

Destroy_VM

include vmm.inc

mov eax, Crit_Reboot_Notify
VMMcall System_Control

The Crit_Reboot_Notify message notifies a virtual device that the system is about to
restart. Virtual devices typically prepare for restarting by cleaning up data or resetting
devices. The system disables interrupts before it sends this message.

Parameters

This message has no parameters.

Return Value

The carry flag must be clear.

Uses

Flags

See Also

Device_Reboot_Notify

include vmm.inc

mov eax, Debug_Query
VMMcall System_Control

The DebulLQuery message directs the virtual device to enable its debugging commands
(if any). The virtual device should display a list of debugging commands, then read the
debugging device for command input from the user.

418 Destroy_VM

The system sends this message when the user enters a virtual-device command (a period
followed by the name of the virtual device) at the WDEB386 prompt.

Parameters

This message has no parameters.

Return Value

The carry flag must be clear.

Comments

This message is intended to be used only in debugging .versions of the virtual device.
Support for this message should be removed from the final virtual device.

Uses

Flags

Destroy_VM

include vmm.inc

mov ebx, VM VM handle
mov eax, Destroy_VM
VMMcall System_Control

The Destroy_VM message notifies the virtual device that the system has destroyed the
virtual machine. Virtual devices typically remove any data associated with the specified
virtual machine.

Parameters

VM

Specifies a handle identifying the virtual machine to destroy.

Return Value

The carry flag must be clear.

Comments

The virtual device must not call the Simulate_Int or Exec_Int service in the specified
virtual machine.

Considerable time can elapse between receipt of the VM_Not_Executeable message and
this message.

Uses

Flags

Device_lnit 419

See Also

Create_VM, VM_Not_Executeable

include vmm.inc

mov eax, Device_Init
VMMcall System Control

mov
mov

ebx, SysVM
esi, OFFSET32 CommandTail

system VM handle
points to WIN386

command tail

The Device_Init message directs the virtual device to initialize itself. The virtual device
typically allocates memory for a device-specific section in the control block, allocates
other memory areas, hooks interrupts and I/O ports, and specifies instance data.

Parameters

SysVM

Specifies a handle identifying the system virtual machine.

CommandTail

Points to the command tail retrieved from the program segment prefix (PSP) of
WIN386.EXE. The first byte in the command tail specifies the length in bytes of the
tail.

Return Value

The carry flag is clear if the virtual device is initialized successfully. Otherwise, the carry
flag is set to indicate an error and prevent the system from loading the virtual device.

Comments

The virtual device should allocate a device-specific section in the control block of the
system virtual machine and initialize the section.

The virtual device can call the Simulate_Int and Exec_Int services in the system virtual
machine.

Uses

Flags

See Also

Init_Complete, Sys_Critical_Init

include vmm.inc

mov eax, Device_Reboot_Notify
VMMcall System_Control

The Device_Reboot_Notify message notifies the virtual device that the system is about to
restart. Interrupts remain enabled while virtual devices process this message.

Parameters

This message has no parameters.

Return Value

The carry flag must be clear.

Uses

Flags

See Also

Crit_Reboot_Notify

include vmm.inc

mov ebx, VM ; VM handle
mov eax, End_Message_Mode
VMMcall System Control

The End_Message_Mode message directs the virtual device to end message mode
processing.

Parameters

VM

Specifies a handle identifying the virtual machine leaving message mode.

Return Value

The carry flag must be clear.

Uses

Flags

See Also

Begio_Message_Mode

include vmm.inc

mov ebx, VM
mov edi, OFFSET32 acb
mov eax, End_PM_App
VMMcall System_Control

current VM handle
-> Application Control Block

The Eod_PM_App message notifies the virtual device that the system is terminating a
protected-mode application.

Parameters

VM

Specifies a handle identifying the current virtual machine.

acb

Points to an application control block.

Return Value

The carry flag must be clear.

Uses

Flags

See Also

Begio_PM_App

Init_Complete

include vmm.inc

mov
mov

ebx, SysVM
esi, OFFSET32 CommandTail

system VM handle
points to WIN386

command tail

422 Power~Event

mov eax, Init_Complete
VMMcall System_Control

The Init_Complete message notifies the virtual device that the system and virtual devices
have initialized successfully. Virtual devices that use V86 memory typically search for
available pages, in the range OAOh through 100h, when processing this message.

Parameters

SysVM

Specifies a handle identifying the system virtual machine.

CommandTail

Points to the command tail retrieved from the program segment prefix (PSP) of
WIN386.EXE. The first byte in the command tail specifies the length in bytes of the
tail.

Return Value

The carry flag is clear if the virtual device successfully completes its initialization.
Otherwise, the carry flag is set to prevent the system from loading the virtual device.

Comments

The system sends this message just before it releases its INIT pages and takes the instance
snapshot.

Virtual devices can use the Simulate_Int and Exec_Int services to execute code in the
system virtual machine.

Uses

Flags

See Also

include vmm.inc
include power. inc

mov ebx, 0
mov esi, Event
mov edi, OFFSET32 Return
mov eax, Power_Event
VMMcall System Control

event notification message
points 4-byte return value

Query_Destroy 423

The Power_Event message notifies the virtual device that a power event has just
occurred.

Parameters

Event

Specifies the type of power event. This parameter can be one of the following values:

Value Meaning

PWR_SUSPENDREQUEST Suspend operation.

PWR_SUSPENDRESUME Resume operation after suspension.

PWR_CRITICALRESUME Resume critical operations after suspension.

Return

Points to the doubleword to receive the return value. The return value can be one of
the following values:

Value Meaning

Virtual device processed the event successfully.

Virtual device failed to process the event.

All other values are reserved.

Return Value

The carry flag is clear and the doubleword pointed to by Return contains the return value.

Comments

The EBX register must be zero on entry. The EDX register is reserved; its value must be
preserved.

Uses

Flags

Query_Destroy

include vmm.inc

mav ebx, VM VM handle

424 Reboot_Processor

mov· eax, Query_Destroy
VMMcall System~Control

The Query_Destroy message directs the virtual device to display a warning message if
the destruction of the specified virtual machine will disrupt the operation of the virtual
device. The virtual shell device sends this message before attempting to destroy a virtual
machine that has not terminated normally.

Parameters

VM

Specifies a handle identifying the virtual machine to destroy.

Return Value

The carry flag is set if the destruction of the virtual machine will disrupt the virtual
device. Otherwise, the carry flag is clear.

Comments

Virtual devices that set the carry flag must also display a message box, using the
SHELL_Message service to inform the user of the potential problem. The user can then
decide whether to continue destroying the virtual machine.

Uses

Flags

See Also

Destroy_VM, SHELL_Message

include vmm.inc

mov eax, Reboot_Processor
VMMcall System Control

The Reboot_Processor message directs the virtual device to restart the computer. The
system continues to call the virtual devices until one that can restart the computer (usually
the virtual keyboard device) does so.

Parameters

This message has no parameters.

Return Value

The carry flag is clear.

Uses

Flags

See Also

Crit_Reboot_Notify

include vmm.inc

mov ebx, VM VM handle
mov edx, VID ID of virtual device to receive focus
mov esi, Flags flags for device-critical focus
mov edi, AssocVM handle of associated VM
mov eax, Set_Device_Focus
VMMcall System_Control

The Set_Device_Focus message sets the focus of the specified virtual device to the
specified virtual machine.

Parameters

VM

Specifies a handle identifying the virtual machine.

VID

Specifies the identifier for the virtual device to receive the focus. If this parameter is
zero, all virtual devices receive the focus.

Flags

Specifies how to set the focus if the VID parameter is zero. This parameter can have
the following value:

Value

1

All other values are reserved.

Meaning

Used by the virtual shell device to determine which
virtual machine to set focus for. If this value is given,
the AssocVM parameter may specify a virtual
machine.

426 Sys_Critical_Exit

AssocVM

Specifies a handle identifying a virtual machine associated with a problem. This
parameter is zero if there is no such virtual machine. This parameter is used only if
the Flags parameter is set to 1.

Return Value

The carry flag must be clear.

Comments

A virtual device that receives the focus should take steps, such as disabling I/O trapping,
to allow the virtual machine to run as fast as possible.

Uses

Flags

include vmm.inc

mov eax, Sys_Critical_Exit
VMMcall System Control

The Sys_Critical_Exit message notifies the virtual device that the system is exiting either
normally or as a result of a crash. Virtual devices should reset their associated hardware to
allow for a return to the state before Windows was started.

The system disables interrupts before sending this message.

Parameters

This message has no parameters.

Return Value

The carry flag must be clear.

Comments

The virtual device must not call the Simulate_Int or Exec_Int service.

Uses

Flags

See Also

Sys_Critical_Init, Sys_VM_Terminate

include vmm.inc

mov eax, Sys_Critical_Init
VMMcall System_Control

mov
mov

ebx, SysVM
esi, OFFSET32 CommandTail

system VM handle
points to WIN386

command tail

The Sys_Critical_Init message notifies the virtual device that Windows is starting. The
system sends this message to direct virtual devices to carry out, as quickly as possible, the
minimum number of tasks needed to prepare the device for enabled interrupts. While
virtual devices process this message, interrupts are disabled.

Parameters

SysVM

Specifies a handle identifying the system virtual machine.

CommandTail

Points to the command tail retrieved from the program segment prefix (PSP) of
WIN386.EXE. The first byte in the command tail specifies the length in bytes of the
tail.

Return Value

The carry flag is clear if the virtual device initialized successfully. Otherwise, the carry
flag is set to prevent the system from loading the virtual device.

Comments

While processing this message, virtual devices typically initialize any critical functions
needed to support interrupts and claim any V86 pages required to support the device. For
example, the virtual display device claims the video memory. If a virtual device provides
services, it should initialize any data associated with those services.

The virtual device must not use the Simulate_Int or Exec_Int services.

Uses

Flags

See Also

include vmm.inc

mov ebx, SysVM ; system VM handle
mov eax, Sys_VM_Init
VMMcall System_Control

The Sys_VM_Init message directs the virtual device to initialize the state of the software
in the system virtual machine. For example, the virtual display device issues an Interrupt
10h function to set the initial display mode.

Parameters

SysVM

Specifies a handle identifying the system virtual machine.

Return Value

The carry flag is clear if the virtual device initializes the system virtual machine
successfully. Otherwise, the carry flag is set to direct Windows to exit immediately.

Uses

Flags

See Also

VM_Init

include vmm.inc

mov ebx, SysVM
mov eax, Sys_VM_Terminate
VMMcall System Control

system VM handle

The Sys_VM_Terminate message notifies the virtual device that the system virtual
machine is terminating. The system sends this message only after all other virtual
machines have terminated, and only when the system is terminating normally.

Parameters

SysVM

Specifies a handle identifying the system virtual machine.

Return Value

The carry flag must be clear.

System_Exit 429

Comments

The virtual device can use the Simulate_lot and Exec_lot services in the system virtual
machine.

Uses

Flags

See Also

VM_Termioate

include vmm.inc

mov ebx, SysVM ; system VM handle
mov eax, System_Exit
VMMcall System_Control

The System_Exit message notifies the virtual device that the system is terminating either
normally or as a result of a crash. Interrupts remain enabled while virtual devices process
this message.

Parameters

SysVM

Specifies a handle identifying the system virtual machine.

Return Value

The carry flag must be clear.

Comments

The virtual device must not call the Simulate_lot or Exec_lot service, but the virtual
device may modify the system virtual machine memory to restore the system state to
allow Windows to exit without complication.

The system restores the instance snapshot before sending this message.

Uses

Flags

See Also

Sys_Cri~ical_Exit

430 VM_Critical_lnit

include vmm.inc

mov ebx, VM
mov eax, VM_Critical_Init
VMMcall System Control

new VM handle

The VM_Critical_Ioit message directs the virtual device to initialize itself for the new
virtual machine. The system disables interrupts before sending this message.

Parameters

VM

Specifies a handle identifying the virtual machine to create.

Return Value

The carry flag is clear if the virtual device initialized successfully. Otherwise, the carry
flag is set to prevent the virtual machine from being created.

Comments

The virtual device must not use the Simulate_lot or Exec_lot services in the specified
virtual machine.

Uses

Flags

See Also

Create_VM, VM_lnit

include vmm.inc

mov ebx, VM new VM handle
mov eax, VM_Init
VMMcall System Control

The VM_Ioit message directs the virtual device to initialize the state of the software in
the new virtual machine. For example, the virtual display device issues Interrupt 10h to
set the initial display mode. The system enables interrupts before sending this message.

Parameters

VM

Specifies a handle identifying the virtual machine to create.

Return Value

The carry flag is clear if the virtual device initialized the virtual machine successfully.
Otherwise, the carry flag is set to prevent the system from creating the virtual machine.

Comments

The virtual device can use the Simulate_lnt and Exec_Int services in the specified virtual
machine.

Uses

Flags

See Also

Create_VM, VM_Critical_Init

include vmm.inc

mov ebx, VM ; VM handle
mov edx, Flags ; flags
mov eax, VM_Not_Executeable
VMMcall System Control

The VM_Not_Executeable message notifies the virtual device that the virtual machine is
no longer capable of executing. The system sends this message as the first phase of
terminating the virtual machine.

Parameters

VM

Specifies a handle identifying the virtual machine.

Flags

Specifies the reason the virtual machine is no longer executable. This parameter can
be one of the following values:

Value

VNE_Crashed

VNE_Nuked

VNE_CreateFail

Meaning

Virtual machine has crashed.

Virtual machine was destroyed while active.

Some device failed Create_VM.

VNE_CrlnitFail

VNE_InitFail

Return Value

The carry flag must be clear.

Comments

Some device failed VM_Critical_Init.

Some device failed VM_Init.

When destroying a running virtual machine, the system sends this message first and never
sends the VM_Terminate message.

The virtual device must not call the Simulate_lnt or Exec_lot service in the specified
virtual machine.

Uses

Flags

See Also

VM_Terminate

include vmm.inc

mov ebx, VM
mov eax, VM_Resume
VMMcall System Control

VM handle

The VM_Resume message notifies the virtual device that the virtual machine is resuming
after having been suspended. The virtual device should lock any resources, and prepare
internal data structures for the virtual machine to start running again.

Parameters

VM

Specifies a handle identifying the virtual machine to resume.

Return Value

The carry flag is clear if the virtual device can support resumption of the virtual machine.
Otherwise, the carry flag is set to prevent the system from resuming the virtual machine.

Comments

The system never sends the VM_Resume message without having first sent a
VM_Suspend message.

VM_Suspend 433

Uses

Flags

See Also

VM_Suspend

include vmm.inc

mov ebx, VM VM handle
mov eax, VM_Suspend
VMMcall System_Control

The VM_Suspend message notifies the virtual device that the system is suspending
execution of the virtual machine. The virtual device should unlock any resources
associated with the virtual machine.

Parameters

VM

Specifies a handle identifying the virtual machine to suspend.

Return Value

The carry flag must be clear.

Comments

The virtual machine remains suspended until explicitly resumed. The system sends the
VM_Suspend message each time the virtual machine is suspended. It sends a
VM_Resume message when the virtual machine is resumed.

The CB_VM_Status field in the control block for the virtual machine specifies whether
the virtual machine is suspended.

Uses

Flags

See Also

VM_Resume

434 VM_Terminate

include vmm.inc

mov ebx, VM
mov eax, VM_Te~inate

VMMcall System_Control

VM handle

The VM_Termioate message notifies the virtual device that system is terminating the
specified virtual machine. The system sends this message when a virtual machine
terminates normally.

Parameters

VM

Specifies a handle identifying the virtual machine to terminate.

Return Value

The carry flag must be clear.

Comments

The virtual machine can call the Simulate_lot and Exec_lot services in the specified
virtual machine.

Uses

Flags

See Also

System_Exit, VM_Not_Executeable

Begin_Control_Dispatch 435

VMM Macro Reference

Begin_Control_Dispatch
include vmm.inc

Begin_Control_Dispatch DeviceName

The Begin_Control_Dispatch macro builds a table for dispatching messages passed to
the control procedure for the specified virtual device. This macro is used in conjunction
with the Control_Dispatch and End_Control_Dispatch macros.

Parameters

DeviceName

Specifies the name of the virtual device. The macro uses this parameter to construct
the label for the control procedure (appends _Control to the end of this name). This
control procedure label must also be specified in the Declare_Virtual_Device macro

Return Value

This macro has no return value.

Comments

The Control_Dispatch macro can be used without Begin_Control_Dispatch, but then it
the programmer's responsibility to declare a procedure in locked code
(VxD_LOCKED_CODE_SEG) and clear the carry flag for any messages not processed.
The advantage in using Begin_Control_Dispatch macro is when a large number of
messages are processed by a device. The macro builds a jump table which usually requires
less code then the sequence of compare and jump instructions that are generated when
Control_Dispatch is used alone.

Example

The following example builds a complete dispatch table for the virtual device named
MyDevice:

Begin_Control_Dispatch MyDevice
Control_Dispatch Device_Init, MyDevicelnitProcedure
Control_Dispatch Sys_VM_Init, MyDeviceSyslnitProcedure
Control_Dispatch Create_VM, MyDeviceCreateVMProcedure

End_Control_Dispatch MyDevice

436 BeginProc

See Also

Control_Dispatch, Declare_Virtual_Device, End_Control_Dispatch

BeginProc

include vmm.inc

BeginProc ProcName, Attributes

The BeginProc macros marks the start of a procedure having the specified attributes.

Parameters

ProcName

Specifies the name of the procedure to create.

Attributes

Specifies one or more procedure attributes. This parameter can be a combination of
the following attributes:

Attribute Description

PUBLIC

SERVICE

Creates an asynchronous service that can be called by
other virtual devices. The procedure must be reentrant,
must not call synchronous services, and must be
defined in a locked segment. Asynchronous services
are intended to be called by interrupt handling routines
when processing interrupts.

Specifies a frequently called procedure. The macro
aligns the start of the procedure on a doubleword
boundary to optimize calls to the procedure.

Prevents a call to the Log_CalI_Proe service from
being inserted at the beginning of the procedure. The
macro inserts the Log_Call_Proc service only if the
DEBUG symbol is defined.

Creates a global procedure that other procedures in the
virtual device can call.

Creates a service that other virtual devices can call. If
the DEBUG symbol is defined, the macro inserts a call
to the Test_Reenter service at the beginning of the
procedure.

If more than one attribute is given, they must be separated by commas.

Return Value

This macro has no return value.

See Also

EndProc

include vmm.inc

Begin Service Table DeviceName, DefSegment

The Begin_Service_Table macro marks the start of the service table for a virtual device.
A virtual device uses the service table to export the names and addresses of its services.
Other virtual devices can use the VxDcall macro to call these services.

Parameters

DeviceName

Specifies the ,name of the virtual device. This name is used to create a macro, named
DeviceName_Service, that is used in the table to define each exported service. See
the "Comments" section for a description of the macro.

DefSegment

Specifies the name of the data segment to place the table. This parameter is optional.
If given, the macro uses the DefSegment_LOCKED_DATA_SEG macro to define
the segment. Otherwise, it uses the VxD_LOCKED_DATA_SEG macro.

Return Value

This macro has no return value.

Comments

A virtual device exports its services by defining the symbol
Create_DeviceName_Service_Table before using the Begin_Service_Table macro.
Virtual devices that call these service also use the Begin_Service_Table macro but must
not define the Create_DeviceName_Service_Table symbol.

The complete service table has the following form:

Begin_Service_Table DeviceName, DefSegment
DeviceName_Service Procedure, LocalSeg

End_Service_Table DeviceName, DefSegment

The DeviceName_Service macro, created by Begin_Service_Table, adds the specified
service to the table. A table may have any number of these macros.

The Procedure parameter specifies the name of the service to add to the table. If
RESERVED is given, the macro reserves an entry in the table instead adding a procedure.

The LocalSeg parameter specifies which segment contains the procedure. This parameter
is optional.

See Also

End_Service_Table, VxD_LOCKED_DATA_SEG

include vmm.inc

The Begin_VxD_IO_Table macro marks the beginning of an I/O table. Virtual devices
use the macro in conjunction with the End_VxD_IO_Table and VxD_IO macros to
create a table of I/O callback procedures for the Install_Mult_IO_Handlers service.

Parameters

TableName

Specifies the name of the table. This parameter can be used in subsequent calls to the
Install_Mult_IO_Handlers to specify the address of the table.

See Also

Install_Mult_IO_Handlers, End_VxD_IO_Table, VxD_IO

cCall

include vmm.inc

cCall Procedure, Parameters

The cCall macro pushes the specified parameters on the stack and calls the specified
procedure. When the procedure returns, the macro pops the parameters from the stack.

Parameters

Procedure

Specifies the name of the procedure to call. This parameter can be either a local or
public procedure, but must be defined within the virtual device making the call.

Parameters

Specifies the parameters to pass to the specified procedure. If more than one
parameter is given, they must be separated with commas and enclosed in angle
brackets «». This parameter is optional.

Return Value

The return value is as specified for the given service.

Comments

This macro pushes the parameters using the C-Ianguage calling convention, in order from
right to left.

See Also

VMMcall, VxDcall

include vmm.inc

Client Ptr_Flat LinAddr, Segment, Offset

The Client_Ptr_Flat macro converts the specified segmentoffset or selector:offset pair
into a linear address.

Parameters

LinAddr

Specifies the 32-bit register to receive the linear address.

Segment

Specifies the client segment register containing the segment address or selector to
convert.

Offset

Specifies the register contaInIng the address offset to convert. If this optional
parameter is not given, the macro converts the address using address offset O.

Return Value

The register specified by LinAddr contains the linear address. The register contains -1 if
the specified selector is invalid.

Example

This example converts the address Client_DS:Client_DX and places the corresponding
linear address in the EAX register.

Client ptr Flat eax, DS, DX

See Also

Map_Flat

include debug. inc

Debug Out String

The Debu~Out macro writes the specified string to the debugging device and breaks
execution by executing an int 1 instruction if the debugging version of Windows is
installed.

Parameters

String

Specifies the string to display. The string must be enclosed in double quotatio~

marks. The string can contain register placeholders in the same forms as described for
the Ou~~Debu~String service. '

Return Value

This service has no return value.

Comments

The macro calls the Test_Debu~Installed service to determine whether to execute the
int 1 instruction. If the debugging version is not installed, the instruction is skipped.

The assembler generates code for the macro only if the constant DEBUG is defined before
including the DEBUG.INC file.

See Also

Out_Debug_String, Test_Debug_Installed

Declare_Virtual_Device

include vmm.inc

Declare_Virtual_Device Name, MajorVer, MinorVer, CtrlProc,\
DeviceNum, InitOrder, V86Proc, PMProc

The Declare_Virtual_Device macro defines the name, device number, control procedure,
and other attributes of a virtual device. Every virtual device must use the
Declare_Virtual_Device macro.

Parameters

Name

Specifies the name of the virtual device.

MajorVer

Specifies the major version number for the virtual device.

MinorVer

Specifies the minor version number for the virtual device.

CtrlProc

Specifies the control procedure for the virtual device. The control procedure handles
all system control messages sent to the virtual device. For most virtual devices, this
parameter is the name of the procedure created by the Begin_Control_Dispatch
macro.

DeviceNum

Specifies the device identifier for the virtual device. If the virtual device replaces an
existing virtual device, the device identifier must be one of the following:

Value

APM_Device_ID

BiosHook_Device_ID

BIOSXlat_Device_ID

Meaning

Power management

BIOS interrupt hook

BIOS translation

BlockDev_Device_ID

Debug_Device_ID

DOSMGR_Device_ID

DOSNET_Device_ID

EBIOS_Device_ID

Int13_Device_ID

MCA_POS_Device_ID

PageFile_Device_ID

PageSwap_Device_ID

Parity_Device_ID

Reboot_Device_ID

SCSI_Device_ID

SCSIFD_Device_ID

SHELL_Device_ID

TSRLoad_Device_ID

Undefined_Device_ID

V86MMGR_Device_ID

VCD_Device_ID

VDD2_Device_ID

VDD_Device_ID

VDMAD_Device_ID

VFD_Device_ID

VKD_Device_ID

VMCPD_Device_ID

VMD_Device_ID

VMM_Device_ID

VMPoll_Device_ID

VNETBIOS_Device_ID

VPD_Device_ID

Block devices

Debug device

MS-DOS manager

MS-DOS networks

EBIOS

Interrupt 13h hook

MCA_POS device

Paging file

Page swap

Parity

Reboot

SCSI device

SCSI FastDisk device

386-enhanced mode Windows shell

TSR instance utility

Reserved

V86 mode memory manager

Communications ports

Secondary display adapter

Display adapter

DMA

Floppy disk

Keyboard

Math coprocessor

Mouse or pointing device

Reserved; do not use

Virtual machine polling

Network BIOS

Printer ports

VPEND_Device_ID

VPICD_Device_ID

VPROD_Device_ID

VSD_Device_ID

VTD_Device_ID

WINDEBUG_Device_ID

WINLOAD_Device_ID

Pen device

Programmable interrupt controller

Profiling

Sound adapter

Timer

Windows debugging

Windows loader

If the type of virtual device is new, a new OEM virtual deviceidentifier must be
explictly requested from Microsoft.

InitOrder

Specifies when the virtual device should be initialized relative to other virtual
devices. For an existing device type, this parameter can be one of the following
values:

APM_Init_Order

BiosHook_Init_Order

BIOSXlat_Init_Order

BlockDev_Init_Order

Debug_Init_Order

DOSMGR_Init_Order

DOSNET_Init_Order

EBIOS_Init_Order

Int13_Init_Order

MCA_POS_Init_Order

PageFile_Init_Order

PageSwap_Init_Order

Parity_Init_Order

Reb0 ot_Init_Order

SCSIFD_Init_Order

SCSIMaster_Init_Order

SHELL_Init_Order

Undefined_Init_Order

V86MMGR_Init_Order

VCD_Init_Order

VDD_Init_Order

VDMAD_Init_Order

VPD_Init_Order

VKD_Init_Order

VMCPD_Init_Order

VMD_Init_Order

VMM_Init_Order

VMPoll_Init_Order

VNETBIOS_Init_Order

VPD_Init_Order

VPICD_Init_Order

VPROD_Init_Order

VSD_Init_Order

VTD_Init_Order

WINDEBUG_Init_Order

WINLOAD_Init_Order

V86Proc

Specifies the V86-mode API procedure. This procedure processes any calls to the
virtual device made by V86-mode applications running in a virtual machine. This
parameter is optional.

PMProc

Specifies the protected-mode API procedure. This procedure processes any calls to
the virtual device made by protected-mode applications running in a virtual machine.
This parameter is optional.

Return Value

This macro has no return value.

See Also

Begin_Control_Dispatch

include vmm.inc

The Dispatch_Byte_IO macro checks the size of the I/O request and dispatches the
request to either the Simulate_IO service or to the specified single-byte input or output
procedure. I/O callback procedures use this macro to simplify processing of I/O requests.

Parameters

In_Proc

Specifies the name of the procedure to carry out a single-byte input operation. If this
parameter is the Fall_Through keyword, the macro ignores input operations.

OutYroc

Specifies the name of the procedure to carry out a single-byte output operation. If this
parameter is the Fall_Through keyword, the macro ignores output operations.

Return Value

This macro has no return value.

Comments

The EAX, EBX, ECX, EDX, and EBP registers must contain values specified as valid
input parameters for the Simulate_IO service. Dispatch_Byte_IO checks the ECX
register for the I/O type. If this type specifies an I/O request that is larger than a byte, the
macro jumps to the Simulate_IO service.

See Also

Emulate_Non_Byte_IO, Simulate_IO

446 Oword_Align

include vmm.inc

Dword_Align SegName

The Dword_AligD macro aligns the specified segment on a doubleword boundary by
inserting nop instructions.

Parameters

SegName

Specifies the name of the segment to align. This parameter can be _TEXT, _ITEXT,
or _LTEXT.

Return Value

This macro has no return value.

include vmm.inc

Emulate Non Byte IO

The Emulate_NoD_Byte_IO macro checks the size of the 110 request and jumps to the
Simulate_IO service if the request is larger than a byte. 110 callback procedures use this
macro to simplify processing of I/O requests.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

The EAX, EBX, ECX, EDX, and EBP registers must contain values specified as valid
input parameters for the Simulate_IO service. Emulate_NoD_Byte_IO checks the ECX
register for the I/O type. If this type specifies an 110 request that is larger than a byte, the
macro jumps to the Simulate_IO service.

See Also

Dispatch_Byte_IO, Simulate_IO

End_Control_Dispatch 447

End_Control_Dispatch

include vmm.inc

End Control_Dispatch DeviceName

The End_Control_Dispatch macro marks the end of a dispatch table for a virtual device.
This macro is used in conjunction with the Control_Dispatch and
Begin_Control_Dispatch macros to build the table.

Parameters

DeviceName

Specifies the name of the virtual device. This name must have been used with the
Begin_Control_Dispatch macro that started the table.

Return Value

This macro has no return value.

See Also

Begin_Control_Dispatch, Control_Dispatch

EndProc

include vmm.inc

EndProc ProcName

The EndProc macro marks the end of a procedure definition. This macro is used in
conjunction with the BeginProc macro to define a procedure in a virtual device.

Parameters

ProcName

Specifies the name of the procedure. This name must have been used in the
BeginProc macro that started the procedure definition.

Return Value

This macro has no return value.

See Also

BeginProc

448 End_Service_Table

include vmm.inc

End_Service_Table DeviceName, DefSegment

The End_Service_Table macro marks the end of the service table for a virtual machine.
This macro is used in conjunction with the Begin_Service_Table macro to create a
service table.

Parameters

DeviceName

Specifies the name of the virtual device. This name must be the same as specified by
the corresponding Begin_Service_Table macro.

DefSegment

Specifies the name of the data segment to place the table. This parameter is optional.
If given, it must be the same as specified by the corresponding Begin_Service_Table
macro.

Return Value

This macro has no return value.

See Also

Begin_Service_Table

include vmm.inc

End VxD 10 Table TableName

The End_VxD_IO_Table macro marks the end of an I/O table. Virtual devices use the
macro in conjunction with the Begin_VxD_IO_Table and VxD_IO macros to create a
table of I/O callback procedures for the Install_Mult_IO_Handlers service.

Parameters

TableName

Specifies the name of the I/O table. This parameter must have been previously
defined in a matching Begin_VxD_IO_Table macro.

See Also

Begin_VxD_IO_Table

Fatal_Error 449

include vmm.inc

The Fatal_Error macro calls the Fatal_Error_Handler service which terminates
Windows. A virtual device typically calls this macro in response to an unrecoverable
error. The macro passes the Msg_Ptr and Exit_Flags parameters (if given) to
Fatal_Error_Handler.

Parameters

Msg_Ptr

Points to a zero-terminated string. This parameter is optional.

Exit_Flags

Specifies the exit flags. This optional parameter can be a combination of the
following values:

Value

EF_Hang_On_Exit

Return Value

This macro never returns.

Meaning

Hangs the system on a fatal exit.

Examples

The following example exits Windows without displaying an error message:

The following example exits Windows and prints the error message pointed to by
My_Err_Msg:

See Also

Fatal_Error_Handler

IO_Delay

include vmm.inc

IO_Delay

The 10_Delay macro delays the execution of the next instruction so that an I/O device
has time to carry out an I/O operation.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro generates a jmp instruction to the next instruction.

Mono_Out

include debug. inc

Mono_Out String, nocrlf

The Mono_Out macro calls the Out_Mono_String service to display the given string.

Parameters

String

Specifies the string to display. The string must be enclosed in double quotation
marks. The string can contain register placeholders in the same forms as described for
the Out_Mono_String service.

nocrlf

Specifies whether the macro should not append a newline and carriage return
character combination to the end of the string. If the parameter is not given, the
macro appends the character combination by default.

Return Value

This macro has no return value.

Comments

The assembler generates code for the macro only if the constant DEBUG is defined before
including the DEBUG.INC file.

Examples

The following example writes a string to the secondary display device:

Mono_Out "Element not found"

The following example writes a string containing the value of the AX register to the
debugging device:

Mono_Out IIAX value is #AX"

See Also

Out_MoDo_String

include debug. inc

Mono_aut_At Row, Column, String, nocrlf

The MODo_Out_At macro calls the Set_MoDo_Cur_Pos service to position the cursor,
then calls the Out_MoDo_String service to display the given string.

Parameters

Row

Specifies the row to place the first character of the string.

Column

Specifies the column in which to place the first character of the string.

String

Specifies the string to display. The string must be enclosed in double quotation
marks. The string can contain register placeholders in the same forms as described for
the Out_Mono_String service.

nocrlf

Specifies whether the macro should not append a newline and carriage return
character combination to the end of the string. If the parameter is not given, the
macro appends the character combination by default.

.Return Value

This macro has no return value.

Comments

The assembler generates code for the macro only if the constant DEBUG is defined before
including the DEBUG.INC file.

Examples

The following example writes a string starting at the position (10,10) on the secondary
display device:

Mono Out At 10,10, II Element not found"

See Also

Out_Mono_String, Set_Mono_Cur_Pos

Pop_Client_State
include vmm.inc

The Pop_Client_State macro restores the client registers for the virtual machine.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro must not be used unless the Push_Client_State macro was previously used to
save the client registers.

See Also

Push_Client_State

include vmm.inc

Push Client State

The Push_Client_State macro copies the client state to the protected-mode stack.

Queue_Out 453

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro reserves space on the stack for the client registers.

A virtual device must use the Pop_Client_State macro to restore the client registers, and
free the reserve stack space.

See Also

Pop_Client_State

Queue_Out

include debug. inc

Queue Out String, Valuel, Value2

The Queue_Out macro calls the Queue_Debu~String service to queue the given string
for display at a later time.

Parameters

String

Specifies the string to display. The string must be enclosed in double quotation
marks. The string can contain register placeholders in the same forms as described for
the Queue_Debu~Stringservice.

Value}

Specifies a value to queue with the string. If the string contains the #EAX or ?EAX
placeholder, this value is used when the string is displayed.

Value2

Specifies a value to queue with the string. If the string contains the #EBX or ?EBX
placeholder, this value is used when the string is displayed.

Return Value

This macro has no return value.

454 ShiftState

Comments

The assembler generates code for the macro only if the constant DEBUG is defined before
including the DEBUG.INC file.

Examples

The fo~lowingexample queues a string:

Queue Out "Element not found"

The following example queues a string containing the value of the AX register to the
debugging device:

Queue_Out IIAX value is #AX", AX

See Also

Queue_DebulLString

ShiftState

include vmm.inc

ShiftState Mask, Compare

The ShiftState macro sets the EBX register with the shift state mask and shift state
compare value required for a call to the VKD_Define_Hot_Key service.

Parameters

Mask

Specifies the shift state bits that should be excluded before the compare is done.

Compare

Specifies the value to compare

Return Value

EBX is loaded with the shift state mask and shift state compare values.

See Also

VKD_Define_Bot_Key

Trace_Out

include debug. inc

Trace Out String, nocrlf

The Trace_Out macro calls the Out_Debu~String service to display the given string.

Parameters

String

Specifies the string to display. The string must be encl:>sed in double quotation
marks. The string can contain register placeholders in the same forms as described for
the Out_Debu~String service.

nocrlf

Specifies whether the macro should not append a newline and carriage return
character combination to the end of the string. If the parameter is not given, the
macro appends the character combination by default.

Return Value

This macro has no return value.

Comments

The assembler generates code for the macro only if the constant DEBUG is defined before
including the DEBUG.INC file.

Examples

The following example writes a string to the debugging device:

Trace_Out IIElement not found"

The following example writes a string containing the value of the AX register to the
debugging device:

Trace Out "AX value is #AXn

See Also

Out_Debu~String

456 VMMcall

VMMcal1

include VIDIil.inc

VMMcall Service, Parameters

The VMMcall macro pushes the specified parameters on the stack, creates a dynamic link
to the specified VMM service, and calls the service. When the service returns, the macro
pops the parameters from the stack.

Parameters

Service

Specifies the name of the service to link to and call. This parameter can be any
service that is explicitly defined in the service table for the VMM.

Parameters

Specifies the parameters to pass to the specified service. If more than one parameter
is given, they must be separated with commas and enclosed in angle brackets «».
This parameter is optional.

Return Value

The return value is as specified for the given service.

Comments

This macro pushes the parameters using the C-Ianguage calling convention, in order from
right to left.

See Also

VxDcalI, VMMjmp

VMMjmp

include vmm.inc

VMMjmp Service

The VMMjmp macro creates a dynamic link to the specified VMM service then jumps to
the service.

Parameters

Service

Specifies the name of the service to link and jump to. This parameter can be any
service that is explicitly defined in the service table for the VMM.

VxDcall 457

Return Value

This macro has no return value.

Comments

If the DEBUG symbol is defined, the macro calls the specified service then immediately
returns when the service returns. This form of the macro is typically used in conjunction
with the Lo~Proc_Call service to record the path of execution through a virtual device
while debugging.

See Also

VMMcall, VxDjmp

VxDcall

include vmm.inc

VxDcall Service

The VxDcall macro pushes the specified parameters on the stack, creates a dynamic link
to the specified virtual device service, and calls the service. When the service returns, the
macro pops the parameters from the stack.

Parameters

Service

Specifies the name of the service to link to and call. This parameter can be any
service that is explicitly defined in the service table for a given virtual device.

Parameters

Specifies the parameters to pass to the specified service. If more than one parameter
is given, they must be separated with commas and enclosed in angle brackets «».
This parameter is optional.

Return Value

The return value is as specified for the given service.

Comments

This macro pushes the parameters using the C-Ianguage calling convention, in order from
right to left.

See Also

VMMcall, VxDjmp

include vmm.inc

VxD CODE ENDS

The VxD_CODE_ENDS macro defines the end of a code segment. Virtual devices use
this macro with in conjunction with the VxD_CODE_SEG macro to create segments for
noninitialization code.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro is equal to the VxD_LOCKED_CODE_ENDS macro.

See Also

VxD_CODE_SEG, VxD_LOCKED_CODE_ENDS

include vmm.inc

VxD CODE SEG

The VxD_CODE_SEG macro defines the start of a code segment. Virtual devices use
this segment for all code that is not explicitly for initialization of the device.

Comments

This macro creates a 32-bit segment named _LTEXT. The segment is assembled for flat
model memory so segment registers CS, DS, ES, and S5 are assumed to be equal.

This macro is equal to the VxD_LOCKED_CODE_SEG macro.

See Also

VxD_CODE_ENDS, VxD_ICODE_SEG, VxD_DATA_SEG,
VxD_LOCKED_CODE_SEG

include vmm.inc

VxD DATA ENDS

The VxD_DATA_ENDS macro defines the end of a data segment. Virtual devices use
this macro with in conjunction with the VxD_DATA_SEG macro to create segments for
noninitialization data.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro is equal to the VxD_LOCKED_DATA_ENDS macro.

See Also

VXD_DATA_SEG,VXD_LOCKED_DATA_ENDS

include vmm.inc

VxD DATA_SEG NoAlign

The VxD_DATA_SEG macro defines the start of a data segment. Virtual devices use this
segment for all data that is not explicitly for initialization of the device.

Parameters

NoAlign

Specifies that data be aligned at the next byte. If this optional parameter is not given,
the macro aligns data at the next available doubleword.

Comments

This macro creates a 32-bit segment named _LDATA.

This macro is equal to the VxD_LOCKED_DATA_SEG macro.

See Also

VxD_CODE_SEG, VxD_DATA_ENDS, VxD_IDATA_SEG,
VxD_L0CKED_DATA_SEG

include vmm.inc

The VxD_ICODE_ENDS macro defines the end of an initialization code segment.
Virtual devices use this macro with in conjunction with the VxD_ICODE_SEG macro to
create initialization code.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

See Also

VxD_ICODE_SEG

include vmm.inc

The VxD_ICODE_SEG macro defines the start of an initialization code segment. Virtual
devices typically use this segment for code that initializes the corresponding device. The
system discards the segment after the initialization is complete (after the Init_Complete
message has been processed by all virtual devices).

Comments

This macro creates a 32-bit segment named _ITEXT. The segment is assembled for flat
model memory so segment registers CS, DS, ES, and SS are assumed to be equal.

See Also

VxD_CODE_SEG, VxD_ICODE_ENDS, VxD_IDATA_SEG

include vmm.inc

VxD IDATA ENDS

The VxD_IDATA_ENDS macro defines the end of an initialization data segment. Virtual
devices use this macro with in conjunction with the VxD_IDATA_SEG macro to create
initialization data.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

See Also

VxD_IDATA_SEG

include vmm.inc

VxD IDATA SEG

The VxD_IDATA_SEG macro defines the start of an initialization data segment. Virtual
devices typically use this segment for data used to initialize the corresponding device. The
system discards the segment after the initialization is complete (after the Init_Complete
message has been processed by all virtual devices).

Comments

This macro creates a 32-bit segment named _IDATA.

See Also

VxD_DATA_SEG, VxD_IDATA_ENDS, VxD_ICODE_SEG

/

462 VxDint

VxDint

include vmm.inc

VxDint Int_Number

The VxDint macro executes the specified software interrupt. This macro pushes the
interrupt number on the stack and calls the Exec_VxD_Int service.

Parameters

Int_Number

Specifies the number of the software interrupt to execute.

Return Value

One or more registers may contain return values depending the function of the specified
interrupt.

See Also

Exec_VxD_Int

include vmm.inc

VXD_IO Port, IOCallback

The VxD_IO macro adds an VO callback procedure and VO port number to an VO table.
Virtual devices use the macro in conjunction with the Begin_VxD_IO_Table and
End_VxD_IO_Table macros to create a table of va callback procedures for the
Install_Mult_IO_Handlers service.

Parameters

Port

Specifies the number of the va port to be trapped.

IOCallback

Specifies the name of the va callback procedure. See the "Comments" section for
information about this procedure.

Return Value

This service has no return value.

VxD_IO 463

Comments

The I/O table can contain any number of VxD_IO macros. Each macro must specify an
unique I/O port number, but the same I/O callback procedure can be assigned to more
than one port.

After a virtual device installs the callback procedures, the system calls a procedure
whenever a program in the virtual machine attempts to access the corresponding port. The
system calls the procedure as follows:

mov ebx, VM
mov ecx, IOType
mov edx, Port
mov ebp, OFFSET32 crs
mov eax, Data

call [IOCallback]

mov [Data], eax

current VM handle
type of I/O
port number
points to a Client_Reg_Struc
output data

(if I/O type is output)

input data
(if I/O type is input)

The VM parameter specifies the current virtual machine, Port specifies the I/O port, and
crs points to a Client_Re~Struc structure containing the register contents for the current
virtual machine.

The IOType parameter specifies the type of input or output operation requested and
determines whether the callback procedure receives data in the EAX register or must
return data in the EAX register. The IOType parameter can be a combination of the
following values:

Value

Byte_Input

Byte_Output

Word_Input

Word_Output

Dword_Input

Dword_Output

String_IO

Meaning

Input a single byte; place in AL if String_10 not given.

Output a single byte from AL if String_10 not given.

Input a word; place in AX if String_10 not given.

Output a word from AX if String_10 not given.

Input a double word; place in EAX if String_10 not given.

Output a double word from EAX if String_10 not given.

Input or output a string. The high 16-bits specifies segment address
of buffer containing the string to output or to receive the string
input.

Repeat the input or output string operation the number of times
specified by the Client_CX field in the Client_Reg_Struc structure.

464 VxDjmp

Use 32-bit address offsets for input or output string operations. If
this value is not given, the 16-bit offsets are used.

Decrement string address on each input or output operation. If this
value is not given, the string address is incremented on each
operation.

In memory, an 110 table consists of a VxD_IOT_Hdr structure followed by one or more
VxD_IO_Struc structures. The first word in the table specified the number of entries.
Each entry consists of a word specifying the port number and a double word specifying
the 32-bit offset of the callback procedure.

See Also

Begin_VxD_IO_Table, End_VxD_JO_Table, Install_Mult_IO_Handlers

VxDjmp

include vmm.inc

VxDjmp Service

The VMMjrnp macro creates a dynamic link to the specified virtual device service then
jumps to the service.

Parameters

Service

Specifies the name of the service to link and jump to. This parameter can be any
service that is explicitly defined in the service table for a virtual device.

Return Value

This macro has no return value.

Comments

If the DEBUG symbol is defined, the macro calls the specified service then immediately
returns when the service returns. This form of the macro is typically used in conjunction
with the LOLProc_Call service to record the path of execution through a virtual device
while debugging.

See Also

VMMjrnp, VxDcall

include vmm.inc

The VxD_LOCKED_CODE_ENDS macro defines the end of a code segment. Virtual
devices use this macro with in conjunction with the VxD_LOCKED_CODE_SEG macro
to create segments for noninitialization code.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro is equal to the VxD_CODE_ENDS macro.

See Also

VxD_LOCKED_CODE_SEG, VxD_CODE_ENDS

include vmm.inc

VxD LOCKED CODE SEG

The VxD_LOCKED_CODE_SEG macro defines the start of a code segment. Virtual
devices use this segment for all code that is not explicitly for initialization of the device.

Comments

This macro creates a 32-bit segment named _LTEXT. The segment is assembled for flat
model memory so segment registers CS, DS, ES, and SS are assumed to be equal.

This macro is equal to the VxD_CODE_SEG macro.

See Also

VxD_CODE_SEG, VxD_LOCKED_CODE_ENDS

include vmm.inc

VxD LOCKED DATA ENDS

The VxD_LOCKED_DATA_ENDS macro defines the end of a data segment. Virtual
devices use this macro with in conjunction with the VxD_LOCKED_DATA_SEG macro
to create segments for noninitialization data.

Parameters

This macro has no parameters.

Return Value

This macro has no return value.

Comments

This macro is equal to the VxD_DATA_ENDS macro.

See Also

VxD_DATA_ENDS,VxD_LOCKED_DATA_SEG

include vmm.inc

VxD LOCKED_DATA SEG NoAlign

The VxD_LOCKED_DATA_SEG macro defines the start of a data segment. Virtual
devices use this segment for all data that is not explicitly for initialization of the device.

Parameters

NoAlign

Specifies that data be aligned at the next byte. If this optional parameter is not given,
the macro aligns data at the next available doubleword.

Comments

This macro creates a 32-bit segment named _LDATA.

This macro is equal to the VxD_DATA_SEG macro.

See Also

VxD_DATA_SEG,VxD_LOCKED_DATA_ENDS

include vmm.inc

VxD REAL INIT ENDS

The VxD_REAL_INIT_ENDS macro defines the end of a real-mode initialization
segment. Virtual devices use this macro with in conjunction with the
VxD_REAL_INIT_SEG macro to create initialization code for real-mode execution.

Parameters

This macro has no parameters.

Return Value

This macro has no parameters.

See Also

VxD_REAL_INIT_SEG

include vmm.inc

VxD REAL INIT SEG

The VxD_REAL_INIT_SEG macro defines the start of a real-mode initialization
segment. Virtual devices typically use this segment for code that initializes the
corresponding device before Windows changes to protected-mode execution. The system
discards the segment after the initialization is complete.

Comments

This macro creates a 16-bit segment named _RCODE. The segment is assembled for the
real-mode tiny model memory so segment registers CS, DS, ES, and SS are assumed to be
equal.

See Also

VxD_ICODE_SEG, VxD_REAL_INIT_ENDS

Block Device Reference

include vmm.inc
include blockdev.inc

mov ax, 1607h ; Device callout
mov bx, BlockDev_Device_ID ; Block device ID
mov cx, BlockDev_API_Hw_Detect_End
int 2Fh

The BlockDev_API_Hw_Detect_End function notifies TSRs and MS-DOS device
drivers that a virtual block device has completed hardware detection.

See Also

BlockDev_API_Hw_Detect_Start

include vmm.inc
include blockdev.inc

mov ax, 1607h ; Device callout
mov bx, BlockDev_Device_ID ; Block device ID
mov cx, BlockDev_API_Hw_Detect_Start
int 2Fh

The BlockDev_API_Hw_Detect_Start function notifies TSRs and MS-DOS device
drivers that a virtual block device is performing hardware detection. This may, for
example, disable a write-behind cache.

See Also

BlockDev_API_Hw_Detect_End

include vmm.inc
include blockdev.inc

mov ax, 1607h ; Device callout
mov bx, BlockDev_Device_ID ; Block device ID
mov cx, BlockDev_API_Int13_Chain_Check
int 2Fh

jcxz okay

BlockDev_Command_Block 469

; zero if okay to
load block device

The BlockDev_API_Int13_Chain_Check function notifies TSRs and MS-DOS device
drivers that have hooked the ROM BIOS Interrupt 13h address that a block device is about
to load. This notification gives the TSR or device driver a chance to cancel the loading.

Return Value

The TSR or device driver sets the CX register to zero if it is permissible for block devices,
such as WDCTRL, to load even though the MS-DOS Interrupt 13h chain has been
modified.

BlockDev_Command_Block

include blockdev.inc

BlockDev_Command_Block STRUC
BD_CB_Next dd?
BD_CB_Command dw?
BD_CB_cmd_Status dw ?
BD_CB_Flags dd?
BD_CB_cmd_Cplt_Proc dd ?
BD_CB_Sector dq?
BD_CB_Count dd?
BD CB Buffer ptr dd ?
BD=CB=Reserved_Client dd ?
BD CB Reserved BlockDev dd ?
BD=CB=Reserved=FastDisk dd ?

BlockDev Command Block ENDS

The BlockDev_Command_Block structure contains information about a block device
command.

Members

BD_CB_Next

Points to the next command in the command list.

BD_CB_Command

Specifies the command to carry out. It can be one of the following values:

Value Meaning

BDC_Read

BDC_Write

BDC_Verify

Read from device

Write to device

Verify read or write

470 BlockDev_Command_Block

BDC_Cancel Cancel command

Command values in the range 8000h through OFFFFh are reserved for device-specific
commands.

BD_CB_Cmd_Status

Specifies the status of the command. It can be one of the following values:

Value Meaning

Command completed successfully

BDS_Success_With_Retries Command completed successfully after repetition

Command completed successfully after error
correction

BDS_Invalid_Sector_Number Invalid sector number

BDS_Canceled

BDS_Cmd_In_Progress

BDS_Invalid_Cmd_Ptr

BDS_Media_Error

BDS_Device_Error

BDS_Invalid_Command

Command was canceled

Can't cancel command in progress

Cancel of invalid command pointer

Read or write failed

Device or adapter failed

Invalid command

All values below BDS_First_Error_Code (10h) imply successful completion; error
values are greater than or equal to BDS_First_Error_Code.

BD_CB_Flags

Specifies additional actions to take when carrying out the command. This field can be
a combination of the following values:

Value Meaning

High priority

Scatter or gather

Noneached command

BDCF_High_Priority

BDCF_Scatter_Gather

BnCF_Dont_Cache

BD_CB_Cmd_Cplt_Proc

Points to the command-completion callback procedure.

BD_CB_Sector

Specifies the count of sectors for the block device.

BlockDev_Command_Complete 471

BD_CB_Count

Specifies the count.

BD_CB_Buffer_Ptr

Points to the buffer.

BD_CB_Reserved_Client

Reserved.

BD_CB_Reserved_BlockDev

Reserved.

BD_CB_Reserved_FastDisk

Reserved.

BlockDev_Command_Complete

include blockdev.inc

mov edi, OFFSET32 bdd ; points to a
; BlockDev_Device_Descriptor

mov esi, OFFSET32 bcb ; points to BlockDev_Command_Block
VXDcall BlockDev Command Complete

The BlockDev_Command_Complete service calls the callback procedure specified in
the BlockDev_Device_Descriptor structure. After the callback procedure returns,
BlockDev_Command_Complete sends the pending command (if any) to the block
device's command procedure. The service sends pending commands only if the
BDF_Serial_Cmd flag is set in the BDD_Flags field in the device's
BlockDev_Device_Descriptor structure.

A block device driver should call this service whenever it completes a command.

Parameters

bdd

Points to BlockDev_Device_Descriptor structure containing information about the
block device.

472 BlockDev_Device_Descriptor

bcb

Points to a BlockDev_Command_Block structure containing information about the
command just completed.

Return Value

This service has no return value.

Comments

The callback procedure preserves all registers and BlockDev_Command_Complete
preserves the ESI and EDI registers.

This service enables interrupts.

Uses

EAX, EBX, EDX returned from client, Flags

include blockdev.inc

?

?

?

?
?

?
?
?
?

?
o
BD_Priv_Data_Size dup (?)

BlockDev_Device_Descriptor STRUC
BDD_Next dd?
BDD_BD_Major_Ver db BD_Major_Version
BDD_BD_Minor_Ver db BD_Minor_Version
BDD_Device_Type db ?
BDD_Int_13h_Number db
BDD_Flags dd
BDD_Name_ptr dd
BDD_Max_Sector dq
BDD_Sector_Size dd
BDD_Num_Heads dd
BDD_Num_Cylinders dd
BDD_Num_Sec_Per_Track dd
BDD_Sync_cm4_Proc dd
BDD_Command_Proc dd
BDD Hw Int Proc dd
BDD=Reserved_BlockDev db
BlockDev_Device_Descriptor ENDS

The BlockDev_Device_Descriptor structure contains information about the block device.

Members

BDD_Next

Points to the next BlockDev_Device_Descriptor structure in tl1e list.

BDD_BD_Major_Ver

Specifies the major version number. It is 03h for version 3.1.

BlockDev_Device_Descriptor 473

BDD_BD_Minor_Ver

Specifies the minor version number. It is OAh for version 3.1.

BDD_Device_Type

Specifies the type of hardware device. It can be one of the following values:

Value Meaning

BDT_360K_5_lnch_Floppy 5.25 inch, 360 kilobyte floppy drive

BDT_1200K_5_lnch_Floppy 5.25 inch, 1.2 megabyte floppy drive

BDT_720K_3_lnch_Floppy 3.5 inch, 720 kilobyte floppy drive

BDT_Single_Dens_8_lnch 8 inch, single density floppy drive

BDT_Double_Dens_8_Inch 8 inch, double density floppy drive

BDT_Fixed_Disk Hard disk drive

BDT_Tape_Drive Tape drive

BDT_Other Other storage media

BDD_Int_13h_Number

Specifies the Interrupt 13h number.

BDD_Flags

Specifies the device flags. It can be one or more of the following values:

Value Meaning

BDF_lnt13_Drive Interrupt 13h drive

BDF_Writeable Writable media

BDF_Removable Removable media

BDF_Remote Remote device

BDF_Serial_Cmd Serial commands

BDF_Cache Cached device

BDD_Name_Ptr

Points to a null-terminated string specifying the name of the block device.

BDD_Max_Sector

Specifies the maximum number of sectors for the block device.

BDD_Sector_Size

Specifies the size (in bytes) of each sector.

BDD_Num_Heads

Specifies the number of head for the block device.

BDD_Num_Cylinders

Specifies the number of cylinders for the block device.

BDD_Num_Sec_Per_Track

Specifies the number of sectors in each track of the block device.

BDD_Sync_Cmd_Proc

Points to the synchronous command procedure for the block device.

BDD_Command_Proc

Points to the command procedure for the block device.

BDD_Hw_Int_Proc

Points to the hardware interrupt handler for the block device.

BDD_Reserved_BlockDev

Reserved.

See Also

BlockDev_Command_Complete

include blockdev.inc

mov aI, DriveNum ; Interrupt 13h drive number
VXDcall BlockDev_Find_Int13_Drive

jc Error ; error if carry set
mov dword ptr [bdd], edi ; points to

BlockDev Device_Descriptor

The BlockDev_Find_Int13_Drive service returns a pointer
BlockDev_Device_Descriptor structure for a specified Interrupt 13h drive.

This service is available during initialization only.

to the

Parameters

DriveNum

Specifies an Interrupt 13h drive number.

Return Value

If the carry flag is clear, the EDI register contains the address of the
BlockDev_Device_Descriptor structure for the specified drive. Otherwise, the carry flag
is set to indicate an error.

Comments

The service sets the carry flag if the specified Interrupt 13h block device driver is not
installed.

Uses

EDI, Flags

include blockdev.inc

mov dword ptr [bdd], edi points to first
BlockDev Device_Descriptor

The BlockDev_Get_Device_List service returns a pointer to the first
BlockDev_Device_Descriptor structure in the list of such structures maintained by the
virtual device.

Parameters

This service has no entry parameters.

Return Value

The EDI register points to the first BlockDev_Device_Descriptor structure in the block
device list. The register is 0 if no list exists.

Comments

Other virtual devices typically call this service to retrieve the information they need to
send commands to the block device. The other virtual devices send commands to the
block device using the BlockDev_Send_Command service.

476 BlockDev_Get_Version

Uses

ECX

See Also

BlockDev_Send_Command

BlockDev_Get_Version

include blockdev.inc

VXDcall BlockDev_Get_Version

mov
mov

dword ptr [version], eax
dword ptr [flags], ecx

; block device version
; block device flags

The BlockDev_Get_Version service returns the version number and flags for the virtual
block device.

Parameters

This service has no entry parameters.

Return Value

The service returns values in the following registers:

Register

EAX

ECX

Uses

EAX,ECX

Value

Specifies the version number for the virtual block device.

Specifies the flags for the virtual block device. Bit 0 must be set to 0 for
compatibility with Windows 3.0. All other bits currently reserved and must
be O.

BlockDev_Register_Device

include blockdev.inc

mov edi, OFFSET32 bdd ; points to a
, BlockDev_Device_Descriptor

VXDcall BlockDev_Register_Device

jc error error if carry set

The BlockDev_Register_Device service registers the specified Interrupt 13h device.

This service is available during initialization only.

Parameters

bdd

Points to a BlockDev_Device_Descriptor structure containing information about the
block device to be registered.

Exit

If the carry flag is clear, the block device is registered. Otherwise, the carry flag is set to
indicate an error.

Comments

Virtual devices supporting block devices usually call this service to register their devices
during the Sys_Critical_Init phase of device initialization.

This service returns an error if the Interrupt 13h device has already been registered by a
virtual device or the Interrupt 13h drive has not been installed.

BlockDev_Send_Command

include blockdev.inc

VXDcall BlockDev_Send_Command

mov

mov

edi, OFFSET32 bdd

esi, OFFSET32 bcb

points to a
BlockDev_Device_Descriptor

points to first
BlockDev_Command_Block

The BlockDev_Send_Command service sends one or more commands to the specified
block device driver.

This service may be called at interrupt time.

Parameters

bdd

Points to a BlockDev_Device_Descriptor structure containing information about the
block device to receive the commands.

bcb

Points to the first BlockDev_Command_Block structure in a null-terminated list of
commands to send to the block device.

478 BlockDev_Synchronous_Command

Return Value

This service has no return value.

Comments

The command status is returned to the callback procedure specified by the
BD_CB_Cmd_Cplt_Proc field in the BlockDev_Command_Block structure.

This service enables interrupts.

Uses

Flags

BlockDev_Synchronous_Command

include blockdev.inc

mov ax, CmdNum ; command number
mov edi, OFFSET32 bdd ; points to a

; BlockDev_Device_Descriptor
VXDcall BlockDev_Synchronous_Command

The BlockDev_Synchronous_Command service sends a synchronous command to a
specified block device.

Parameters

CmdNum

Specifies a command number. It can be one of the following:

bdd

Value Meaning

Retrieves the version number for the block device.

Points to a BlockDev_Device_Descriptor structure.

Return Value

If the carry flag is clear, the EAX, EBX, ECX, EDX, ESI, EDI, and flags are modified as
defined by the command. Otherwise, the carry flag is set and the AX register contains the
following error value:

Value Meaning

Invalid synchronous command

Comments

Registers in addition to AX and EDI may be used as parameters for specific commands.

Uses

Registers defined by command and flags

MS-DOS Manager Reference

include dosmgr.inc

VxDcall DOSMGR Add Device

The DOSMGR_Add_Device service adds a device to the device list.

Parameters

EBX

Specifies the handle of the virtual machine to add device to. If this parameter is zero,
the device is added to all virtual machines.

EAX

Specifies the address of device header. This address must be in low memory (less
than lOOOOOh).

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set if the
device could not be added to device list.

Comments

The address of this device for the chain is computed as: (eax » 4) & OFFFFh : (eax &
OOOFh)

This service links the device into the list but does not call it. If the device needs to be
initialized, the caller must do it. This service adds the device to the end of the device
chain. Therefore, this service cannot be used to replace an existing device. This service
applies to character devices only. Block devices cannot be added with this service.

480 DOSMGR_BackFill_Allowed

All devices put on the list this way are removed when Windows exits, including any
devices added by virtual mode code.

The only supported method to add a device globally is to use the
_Allocate_Global_V86_Data_Area service to allocate memory to contain the device
header, initialize it, then call this routine to add it to the list.

Global devices must be added during the Device_Init message. They cannot be added
later. Local devices must be added at the VM_lnit, VM_Critical_Init or Sys_VM_lnit
message or they will be global because they will be part of the initial VM state.

If this device hooks an interrupt and it is a local device, the vector must be set in the
appropriate virtual machine during the VM_Init, VM_Critical_Init or Sys_VM_lnit
message.

A global device can also work this way, hooking the vector in every virtual machine. This
allows the global device to be removed before Windows exits. The other method for a
global device is to hook the vector during the Device_Init message which makes the hook
part of the initial virtual machine state. Such a hook must be removed during the
Sys_Critical_Exit message or the vector will point to a nonexistent device after Windows
exits.

Uses

Flags

DOSMGR_BackFill_Allowed

include dosmgr.inc

VxDcall DOSMGR BackFill Allowed

The DOSMGR_BackFill_Allowed service specifies whether the MS-DOS configuration
allows for low-memory backfills.

The V86MMGR device calls this service.

Parameters

This service has no parameters.

Return Value

The carry flag is clear if backfilling is allowed. Otherwise, the carry flag is set.

Comments

This service depends on the high MS-DOS state. Certain high MS-DOS configurations
prevent low memory 640k backfill from being possible.

Uses

Flags

include dosmgr.inc

The DOSMGR_Copy_VM_Drive_State service copies the drive and current directory
state of all drives from one virtual machine into another virtual machine.

This service can be called during a Create_VM message since it does not simulate calls
or interrupts in either virtual machine; it just copies instance data from one to the other.

Parameters

EBX

Specifies the handle of the virtual machine to receive a copy of thedrive state.

ESI

Specifies handle of the virtual machine from which to copy the drive state.

Return Value

This service has no return value.

Comments

This service does not change the current drive of the destination virtual machine.

This service does not disturb the InitDrvDir value set using the
_DOSMGR_Set_Exec_VM_Data service if it is called before the
_DOSMGR_Exec_VM service. The processing of InitDrvDir occurs during calls to the
_DOSMGR_Exec_VM service.

Uses

Flags

DOSMGR_Enable_lndos_Polling

include dosmgr.inc

VxDcal1 DOSMGR Enable_Indos Polling

The DOSMGR_Enable_lndos_Polling service enables the INDOS polling for the the
Windows session. This allows TSR drivers that hook Interrupt 2Ih and claim the critical
section by setting the internal MS-DOS INDOS flag to continue to operate normally.

This service is intended for use by the virtual DOSNET device so that it can enable
polling if the installed network requires it. The virtual device must not call this service
during a Sys_Critical_Init message.

Parameters

This service has no parameters.

Return Value

The carry flag is clear if INDOS polling is enabled. Otherwise, the carry flag is set to
indicate polling was already enabled.

Comments

Enabling INDOS polling has a severe impact on overall system performance.

This service overrides the INDOSPOLLING value specified in the SYSTEM.INI file.
Since the virtual MS-DOS manager evaluates the SYSTEM.INI file during the
Init_Complete message, a virtual device must call this service during the Device_Init
message.

Uses

Flags

include dosmgr.inc

VxDcall _DOSMGR_Exec_VM <VM, V86Size, CallBack, RefData>

The _DOSMGR_Exec_VM service schedules the execution specified by previous call to
the _DOSMGR_Set_Exec_VM_Data service and sets other parameters of the execution.

Parameters

VM

Specifies the handle of the current virtual machine.

DOSMGR_Get_DOS_Crit_Status 483

V86Size

Specifies the size in pages of the virtual machine. This is equal to the number of
pages mapped using the MaplntoVM service starting at the first page in the virtual
machine. This service does not map these pages; the value is simply used to set the
MS-DOS size of the virtual machine.

CallBk

Specifies the callback procedure to call when the virtual machine terminates. If this
parameter is zero, no callback is called.

RefData

Specifies reference data to pass to the callback procedure.

Return Value

This service has no return value.

Comments

The system calls the callback when the virtual machine terminates. The callback receives
the following input parameters:

EBP points to a Client_Reg_Struc

EBX virtual machine handle

EDX oints to reference data

The callback must preserve the EBX, EBP and segment registers. After the callback
returns, the system carries out the normal virtual machine termination sequence. At this
time the virtual machine is still in a running state. The callback can delay termination by
delaying its return. However, the callback must simulate interrupts into the virtual
machine to keep the scheduler moving if it is holding termination.

DOSMGR_Get_DOS_Crit_Status

include dosmgr.inc
VxDcall DOSMGR_Get_DOS_Crit_Status

The DOSMGR_Get_DOS_Crit_Status service specifies whether it is possible to call
MS-DOS at the current time (that is, whether MS-DOS is in a critical section).

This service is intended for use by the virtual pageswap device to determine whether MS­
DOS is currently available to page. This is an asynchronous service.

Parameters

This service has no parameters.

Return Value

The zero flag is set if MS-DOS can be called. Otherwise, the zero flag is clear if MS-DOS
is in a critical section and must not be called.

Uses

Flags

Comments

This service does not specify whether Windows is in a critical section nor does it specify
which virtual machine has ownership of MS-DOS.

DOSMGR_Get_lndosPtr
include dosmgr.inc
VxDcall DOSMGR_Get_IndosPtr

The DOSMGR_Get_IndosPtr service returns the linear address of the MS-DOS Indos
and Errormode variables.

Parameters

This service has no parameters.

Return Value

The EAX register contains the linear address (V86 mode address) of Indos and Errormode
word. The low byte is the Errormode variable, the high byte is Indos.

Comments

This is a low linear address. To examine the value in a virtual machine which is not the
current virtual machine, the virtual device must add the virtual-machine high-linear
address to this value.

Uses

EAX, Flags

DOSMGR_Get_Version
include dosmgr.inc
VxDcall DOSMGR Get Version

DOSMGR_lnstance_Device 485

The DOSMGR_Get_Version service returns the virtual MS-DOS manager version
number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

Uses

EAX, Flags

DOSMGR_lnstance_Device

include dosmgr.inc
VxDcall DOSMGR Instance_Device

The DOSMGR_Instance_Device service instances the indicated installed MS-DOS
character device driver.

This service is only valid during the In~t_Complete message.

Parameters

ESI

Points to the 8-character device name. This name must exactly match the name as it
found in the device header in low memory. Characters must be in uppercase; case
conversion is not performed. Names shorter than 8 characters must be padded with
spaces. The colon (:) must not be used.

Return Value

The carry flag is clear if the device is instanced. Otherwise, the carry flag is set to indicate
one of the following errors:

• No device with this name in device list

• Device is in MS-DOS RAM BIOS (Segment of device == 70h)

• User overides with the GLOBAL setting in SYSTEM.INI

486 DOSMGR_LocaIGlobaIReg

Comments

This service applies only to installed character devices (device segment not equal to 70h).
It cannot instance devices that are in the MS-DOS RAM BIOS because there is no way to
determine their start and end addresses. It is the job of the MS-DOS instancing to
correctly instance things related to character devices in the MS-DOS RAM BIOS.

This service instances the entire device. It cannot differentiate code and data.

This service is available during the Init_Complete message only and cannot work until
the DOSMGR_Device_Init service is complete. The service is in the ICODE segment so
it becomes invalid after the Init_Complete message.

Calls to the _Addlnstanceltem service are also invalid after Init_Complete.

-Do not use this service to instance devices added with the DOSMGR_Add_Device
service. To instance an added device, a virtual device must call the _Addlnstanceltem
service or use the GVDAlnstance flag in the _Allocate_Global_V86_Data_Area service.

Uses

Flags

DOSMGR_LocaIGlobaIReg

include dosmgr.inc
VxDcall DOSMGR_LocalGlobalReg

The DOSMGR_LocaIGlobaIReg service specifies whether the indicated V86 memory
region is local or global memory The VMM memory manager calls this service whenever
the TestGIobalV86Mem service is called.

This service is only available for Windows 3.1 and later.

Parameters

EDX

Specifies the page number of the start of the region.

EDl

Specifies the page number of the end of the region.

Return Value

EAX

Value

o

Meaning

Page range is local

2

3

Comments

Page range is global

Page range is partially global and partially local

Page range is unknown

This service returns 3 unless the region is in a local high MS-DOS region.

This service supports high MS-DOS configurations for MS-DOS version 5.00 or later.
Other load high configurations are supported only if the corresponding software hooks this
service or the TestGIobalV86Mem service.

This service is page (4k) granular and not byte granular.

Uses

EAX, Flags

DOSMGR_Remove_Device

include dosmgr.inc
VxDcall DOSMGR_Remove Device

The DOSMGR_Remove_Device service removes a device from the device list. The
device must have been previously added using the DOSMGR_Add_Device service

Parameters

EBX

Specifies the handle of the virtual machine from which to remove the device. If this
parameter is zero, the device is removed from all virtual machines.

EAX

Specifies the address of device header. This parameter must be a low memory linear
address (less than lOOOOOh).

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set if the
device could not be removed from device list.

Comments

Global calls to DOSMGR_Add_Device should not be mixed with local calls to
DOSMGR_Remove_Device for the same device. All DOSMGR_Add_Device devices
are automatically removed when Windows terminates.

This service removes the link to the device from the device list. It does not free any
memory or resources that the device may have created or allocated.

Uses

Flags

include dosmgr.inc
VxDcall _DOSMGR_Set_Exec_VM_Data, <VM, CommTail, PRGName,\

InitDrvDir>

The _DOSMGR_Set_Exec_VM_Data service sets the data for the initial execution into a
virtual machine. It is reserved for exclusive use by the virtual shell device.

This service can be called during the Create_VM message since it does not simulate calls
or interrupts into the virtual machine; it just sets instance data.

Parameters

VM

Specifies the handle of the virtual machine_Handle to set execution data for.

CommTail

Points to the command tail for the execution. The taii can be up to 128 byte. The first
byte must specify the number of bytes in the tail; the last byte must be ODh.

PRGName

Points to null-terminated string specifying the name of the program to execute.

InitDrvDir

Points to a null-terminated string specifying the initial directory and drive for the
virtual machine. The drive letter must be a capital letter. The string must be less than
or equal to 64 chars including null terminator.

If this parameter is zero, the service does not set the default directory. This form of
the service is made by the DOSMGR_Exec_VM service. Other virtual devices should
not use this form.

Return Value

This service has no return value.

Comments

This service must be called before calling the _DOSMGR_Exec_VM service.

See Also

_DOSMGR_Exec_VM

MS-DOS Network Device API Reference

include dosnet.inc
VxDcall DOSNET_Do_PSP_Adjust

The DOSNET_Do_PSP_Adjust service specifies whether the virtual device requires
unique PSP addresses for each virtual machine. The virtual MS-DOS manager calls this
service to determine whether it should adjust PSP addresses for the virtual machines.

Parameters

This service has no parameters.

Return Value

The carry flag is clear if the virtual MS-DOS manager should adjust the PSP. Otherwise,
the carry flag is set to prevent the virtual MS-DOS manager from adjusting the PSP.

The EAX register contains zero if the virtual MS-DOS manager should check the
SYSTEM.INI file to determine whether to override the action specified by the carry flag.
Otherwise, the EAX register contains nonzero to prevent the virtual device from checking
the file.

Comments

A network that uses the MS-DOS PSP addresses as part of an ID should clear the carry
flag and return to direct the virtual MS-DOS manager to adjust PSP addresses. The
manager adjusts PSP addresses by starting each virtual machine at a different paragraph
address (using the virtual machine identifier as the basis of the adjustment). Even so this

technique does not guaranteed unique PSP addresses. To ensure uniqueness, network
software should always use Get Current Virtual Machine ID (Interrupt 2Fh, Function
1683h) to retrieve the virtual machine identifier and use this identifier to create an unique
network ID.

Uses

EAX,Flags

include dosnet.inc
VxDcall DOSNET Get Version

The DOSNET_Get_Version service returns the virtual DOSNET device version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The carry flag is clear.

Uses

EAX, Flags

DOSNET_Send_FILESVSCHANGE

include dosnet.inc
VxDcall DOSNET_Send_FILESYSCHANGE

The DOSNET_Send_FILESYSCHANGE service specifies whether the given drive is
local to the virtual machine. If the drive is local, the WM_FILESYSCHANGE message
can be broadcast to Windows applications when changes to the drive are made by MS­
DOS applications.

Parameters

AL

Specifies the drive number (0 =A, 1 =B, etc.)

EBX

Specifies the handle of the virtual machine to check.

Return Value

The carry flag is clear if the WM_FILESYSCHANGE message will be sent for the
specified drive. Otherwise, the carry flag is set to prevent messages for the drive.

Comments

This service is designed exclusively for the virtual DOSNET device. Other virtual devices
should not provide their own implementations, however, they can hook this service. Since
the virtual DOSNET device does not install if there is no redirector, a virtual device
which hooks this service must ship with a modified DOSNET device which always loads.

A virtual device must not send a WM_FILESYSCHANGE message for a drive that this
service has not acknowledged. Sending a message incorrectly can result in unexpected
errors in Windows applications.

Uses

Flags

Extended BIOS Device Reference

EBIOS_Get_Unused_Mem

include ebios.inc
VxDcall EBIOS_Get_Unused_Mem

The EBIOS_Get_Unused_Mem service returns information about any unused portion of
the EBIOS region.

This service is intended for the use of the virtual MS-DOS manager.

Parameters

This service has no parameters.

Return Value

The carry flag is clear if the service is successful. The EAX register contains the segment
address of start of unused EBIOS region, and the ECX register contains the size of the

region in paragraphs. This size is zero if there is no unused EBIOS region. If the zero flag
is set, the unused EBIOS region is global, that is, the region is in the same physical page
in all virtual machines. Otherwise, the unused EBIOS region is local and is in different
physical pages in each virtual machine.

The carry flag is set if the EBIOS device is not installed or all EBIOS memory is used by
EBIOS.

Comments

On some machines, the size of the EBIOS region is not an even multiple of pages. Since
the system requires that the EBIOS region be rounded to page boundaries, part of the
EBIOS region may be unused.

If the EBIOS region is below the first V86 page, this service must set the carry flag and
return.

Uses

EAX, ECX, Flags

include ebios.inc
VxDcall EBIOS Get Version

The EBIOS_Get_Version service returns the virtual EBIOS device version number and
the location and size of the EBIOS pages.

Parameters

This service has no parameters.

Return Value

The carry flag is clear if the service is successful. The EAX register contains the version
number, the EDX register contains number of the first page, and the ECX register
contains the number of pages.

The carry flag is set if the virtual EBIOS device is not installed and EBIOS pages are not
allocated.

Uses

EAX, ECX, EDX, Flags

Int13_Device_Registered 493

Int 13h Device API Reference

include int13.inc
VxDcall Int13_Device_Registered

The Int13_Device_Registered service is called by the virtual block device whenever a
block device driver identifies itself as an Interrupt 13h drive.

Parameters

ED]

Points to a Block Device Descriptor.

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set to
indicate an error such as unable to allocate a handle or specified Interrupt 13h drive is
already registered.

Uses

Flags

include int13.inc
VxDcall Int13_Hooking_BIOS_Int

The Int13_Hookin~BIOS_Int service notifies the virtual device that the BIOS Interrupt
13h interrupt has been hooked. The virtual block device calls this service.

Parameters

EAX

Specifies the address (CS:IP) of the original Interrupt 13h BIOS handler.

ECX

Specifies the address (CS:IP) of the original ROM BIOS Interrupt 13h hook.

494 Int13_Translate_VM_lnt

Return Value

This service has no return value.

Comments

This service is always called at least once during initialization, but it must remain resident
since it can also be called at system exit time.

The virtual block device calls this service after the interrupt has been hooked. If the
service needs to call the BIOS, it should use the Build_lnt_Stack_Frame and
Resume_Exec services instead of the Exec_Int service.

This service should save the value in the ECX register to let the
Int13_Translate_VM_Int service chain to the original ROM BIOS at any point in time.
Since this virtual device always replaces the ROM BIOS, the EAX value can be ignored.

Uses

EAX, EBX, ECX, EDX, ESI, EDI, and Flags

include int13.inc
VxDcall Int13 Translate VM Int

The Int13_Translate_VM_Int service notifies the virtual device that an Int 13h has been
intercepted. The virtual block device calls this service.

Parameters

EBX

Specifies the handle of the current virtual machine.

EBP

Points to a Client_Re~Struc structure containing the register values for the
specified virtual machine.

Return Value

This service has no return value.

include int13.inc
VxDcall Int13 Unhooking BIOS Int

SHELL_Event 495

The Int13_Unhookin~BIOS_Intservice notifies the virtual device that the Int 13h BIOS
is being unhooked. The virtual block device calls this service before the Interrupt 13h
chain is actually unhooked.

Parameters

EAX

Specifies the address (CS:IP) of the original MS-DOS BIOS Interrupt 13h hook.

ECX

Specifies the address (CS:IP) of the original ROM BIOS Interrupt 13h hook.

Return Value

This service has no return value.

Uses

EAX, EBX, ECX, EDX, ESI, EDI, and Flags

SHELL Device API Reference

include shell.inc
VxDcall SHELL_Event

The SHELL_Event service posts an event in the Windows shell to VMDOSAPP.

Parameters

EBX

Specifies the virtual machine Handle for the event.

ECX

Specifies the event number.

AX

Specifies the wParam parameter for the event. The high 16 bits specify the special
boost flags.

496 SHELL_Get_Version

ESI

Points to the callback procedure for the event. If this parameter is zero, no callback
procedure is called. See the Comments section for more information about this
procedure.

EDX

Points to reference data for the event callback procedure.

Return Value

The carry flag is clear if the event is placed in the queue. The EAX register contains the
handle of the event but only if the ESI parameter is nonzero.

The carry flag is set to indicate an error such as the VMDOSAPP is not present or
insufficient memory for placement.

Comments

The system calls the callback procedure with the following input parameters:

EDX points to reference data

EBP points to a VMDOSAPP 'Client_Reg_Struc frame

If the carry flag is clear on entry, the event was processed and the EBP register points to a
Client_ReLStruc structure containing the register values after the event returned. If the
carry flag is set, the event could not be placed in the queue and only the EDX register
contains valid data.

In both case, the EBX register does not contain a virtual machine handle.

Uses

EAX, Flags

include shell. inc

VxDcall SHELL Get Version

The SHELL_Get_Version service returns the version number for the virtual shell device.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

SHELL_GetVMlnfo 497

The AL register contains the minor version number.

The carry flag is clear.

Uses

EAX, Flags

SHELL_GetVMlnfo

include shell. inc

VxDcal1 SHELL GetVMlnfo

The SHELL_GetVMlnfo service allows a virtual device to retrieve PIF information
settings for a virtual machine.

This service is only available for Windows 3.1 and later.

Parameters

EBX

Specifies the handle of the virtual machine to examine.

Return Value

The EAX register contains one or more of the following flag values for the specified
virtual machine:

Value

SGVMI_Windowed

SGVMI_ALTTABdis

SGVMI_ALTESCdis

Meaning

Is Windowed

Alt+Tab is reserved

Alt+Esc is reserved

SGVMI_ALTSPACEdis Alt+Space is reserved

SGVMI_ALTENTERdis Alt+Enter is reserved

SGVMI_ALTPRTSCdis Alt+PrtSc is reserved

SGVMI_PRTSCdis PrtSc is reserved

SGVMI_CTRLESCdis Ctrl+Esc is reserved

SGVMI_HasHotKey Has a shortcut key

498 SHELL_Message

SGVMI_Polling

SGVMI_FastPaste

SGVMI_NoHMA

SGVMI_XMS_Lock

SGVMI_EMS_Lock

SGVMI_V86_Lock

SGVMI_ClsExit

Polling detection Enabled

Allow Fast paste Enabled

NoHMA

XMS Hands Locked

EMS Hands Locked

V86 Memory Locked

Close on Exit Enabled

The ECX, EDX, ESI, and EDI register contents are reserved.

Comments

The undefined bits in the EAX register are reserved. Do not depend on them being zero.

This service is not valid until after all virtual devices have processed the Create_VM
message. This service if called during a Create_VM message will not return proper PIF
information.

Uses

EAX, ECX, EDX, ESI, EDI, Flags

SHELL_Message

include shell.inc

VxDcall SHELL Message

The SHELL_Message service displays a message box using the Windows shell.

Parameters

EBX

Specifies the handle of the virtual machine responsible for the message.

EAX

Specifies the message box flags. See the MB_ symbols in the SHELL.INC file.

ECX

Points to null-terminated string containing the message text.

SHELL_Message 499

EDI

Points to null-terminated string containing the caption text. If this parameter is zero,
the service uses the standard caption. If this parameter points to an empty string, the
message box has no caption.

ESI

Points to the callback procedure to call with response when the message box returns.
If this parameter is zero, no callback procedure is called.

EDX

Specifies reference data to pass to the callback procedure.

Return Value

The carry flag is clear and the EAX register contains the handle for the event if the
service is successful.

Otherwise, the carry flag is set to indicate an error such as insufficient memory to display
the message.

Comments

The system calls the callback procedure after the message box is complete. The callback
receives the following input parameters:

EAX ; response code from the message box
EDX ; points to reference data

The response code in the EAX register is one of the ID symbols defined in the
SHELL.INC file.

The EBX register mayor may not contain the current virtual machine handle when the
callback is called. The callback must not rely on its value.

If this service returns an error, a virtual device can use the SHELL_Sysmodal_Message
service to force the system to display a message.

Uses

EAX, Flags

500 SHELL_Resolve_Contention

SHELL_Resolve_Contention

include shell.inc

VxDcal1 SHELL_Resolve_Contention

The SHELL_Resolve_Contention service resolves contention for the MS-DOS shell.

Parameters

EAX

Specifies the virtual machine handle of the current device owner.

EBX

Specifies the handle of the contending virtual machine. This parameter must identify
the current virtual machine.

ESI

Points to an 8-byte string identifying the name of the device in contention. The name
must be in uppercase letters and be padded with spaces if necessary.

Return Value

The EBX register contains the virtual machine handle of contention winner. If the carry
flag is set, contention could not be resolved.

Uses

EBX, Flags

SHELL_SYSMODAL_Message

include shell.inc

VxDcal1 SHELL SYSMODAL Message

The SHELL_SYSMODAL_Message service displays system model message box in the
Windows shell.

Parameters

EBX

Specifies the handle of the virtual machine responsible for the message.

EAX

Specifies the message box flags. See the MB_ symbols in the SHELL.INC file. The
MB_SYSTEMMODAL value must be given.

ECX

Points to null-terminated string containing the message text.

ED]

Points to null-terminated string containing the caption text. If this parameter is zero,
the service uses the standard caption. If this parameter points to an empty string, the
message box has no caption.

Return Value

The EAX registe~ contains the response code from the message box. It is one of the ID
symbols defined in the SHELL.INC file.

Uses

EAX, Flags

V86MMGR API Reference

include v86mmgr.inc

VxDcall V86MMGR_Allocate_Buffer

The V86MMGR_Allocate_Buffer service allocates a portion of the current virtual
machine's translation buffer and optionally copies data from the protected-mode pointer in
FS:ESI registers into the allocated buffer.

Parameters

EBX

Specifies the current virtual machine handle. The current virtual machine must be in
protected mode.

EBP

Points to a Client_Re~Struc structure containing the register values of the current
virtual machine.

ECX

Specifies the number of bytes to allocate.

FS:ESI

Specifies a pointer to the extended memory to copy. If the carry flag is set, the
service copies the source buffer into a V86 buffer; otherwise, it copies the source
buffer into V86 memory.

Return Value

The carry flag is clear if the service is successful. The ECX register contains the actual
number of bytes allocated (less than or equal to the original ECX parameter). The high
word of the EDI register contains the V86 segment for the translation buffer and the low
word of the EDI register contains the offset of the allocated buffer.

If the carry flag is set, the service could not allocate buffer.

Comments

This service maps fewer bytes than the value specified in the ECX parameter if the length
of the buffer would extend past the FS segment limit. Therefore, a virtual device needs to
preserve the value returned in ECX from this service to use when deallocating the buffer
using the V86MMGR_Free_Buffer service.

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first
buffer freed.

Uses

ECX, EDI, Flags

include v86mmgr.inc

VxDcall V86MMGR Allocate V86 Pages

The V86MMGR_Allocate_V86_Pages service allocates and maps the base V86 memory
for a virtual machine.

Parameters

EBX

Specifies the virtual machine handle.

ESI

Specifies the desired size of virtual machine address space in kilobytes.

ED!

Specifies the minimum size of virtual machine address space in kilobytes.

ECX

Specifies the flags. See the V86MMGR.INC file for bit definitions.

Return Value

The carry flag is clear if the service allocates memory and maps it into the virtual
machine. The EAX register contains the actual number of pages allocated and mapped
(that is, the size of the virtual machine). This size does not include the space from 0 to the
first virtual machine page.

If the carry flag is set, the service could not allocate memory.

Comments

On an error, this service calls the GetSetDetailedVMError service to set an error value.

The sizes specified by the ESI and EDI parameters include the region of V86 address
space from 0 through the first virtual machine page.

Uses

EAX, Flags

V86MMGR_Free_Buffer

include v86mmgr.inc

VxDcall V86MMGR Free Buffer

The V86MMGR_Free_Buffer service deallocates a buffer that was allocated by the
V86MMGR_Allocate_Buffer service. It will optionally copy data from the translation
buffer to the buffer pointed to by FS:ESI.

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first
buffer freed.

Parameters

EBX

Specifies the current virtual machine handle. The current virtual machine must be in
protected mode.

EBP

Points to a Client_Reg...Struc structure containing the register values of the current
virtual machine.

ECX

Specifies the number of bytes to free (returned from the
V86MMGR_Allocate_Buffer service).

FS:ESI

Specifies a pointer to an extended memory buffer. If the carry flag is set, the service
copies the buffer from V86 memory; otherwise, it does not copy the buffer.

Return Value

This service has no return value.

Uses

Flags

V86IY1MGR_Free_Page_Map_Region
include v86mmgr.inc

The V86MMGR_Free_rage_Map_Region service unmap pages that were mapped by
the V86MMGR_Map_Pages service.

Parameters

ESI

Specifies the map hanq,le to free.

Return Value

This service has no return value.

Comments

After a call to this service, the old map buffer address contains null memory is invalid and
the ESI register is undefined.

Uses

ESI, Flags

include v86mmgr.inc

The V86MMGR_Get_EMS_XMS_Limits service returns the current EMS and XMS
limits.

Parameters

EBX

Specifies the virtual machine handle to get limits of.

Return Value

The following registers contain values:

Register Description

EAX Minimum EMS kilobytes (multiple of 4)

EDX Maximum EMS kilobytes (multiple of 4)

ESI Minimum XMS kilobytes (multiple of 4)

EDI Maximum XMS kilobytes (multiple of 4)

ECX Access to HMA is disabled (if zero) or enabled (if 1).

Uses

All registers except EBX, EBP, and segment registers

include v86mmgr.inc

VxDcall V86MMGR Get Mapping Info

The V86MMGR_Get_Mappin~Infoservice returns information about the current page
mapping areas.

Parameters

This service has no parameters.

Return Value

The CH register contains the total number of pages reserved for global mapping and the
CL register contains the number of pages available (not in use) for global mapping.

Uses

ECX, Flags

V86MMGR_Get_Version
include v86mmgr.inc

VxDcall V86MMGR_Get version

The V86MMGR_Get_Version service returns the V86MMGR version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The carry flag is clear.

Uses

EAX, Flags

include v86mmgr.inc

The V86MMGR_Get_VM_Flat_Sel service returns a selector that points to the base of
the specified virtual machine's V86 address space. This is useful for 32-bit applications
since this selector can be used to point to any address in the virtual machine's V86 address
space. The selector is writable and has a limit of 11000h bytes so that the high memory
area is also addressable.

The selector returned is in the specified virtual machine's LDT. Therefore, the selector is
only valid to use when the virtual machine is running (is the current virtual machine).

Parameters

EBX

Specifies a virtual machine handle (any virtual machine handle is valid).

Return Value

The EAX register contains a selector with the base at the high linear address of V86
memory (the high word is zero).

Uses

EAX, Flags

include v86mmgr.inc

The V86MMGR_Get_Xlat_Buff_State service returns information about the current
mapping buffer status.

Always call this service to find the segment of the translation buffer. Since the buffer can
move at any time a virtual device should never make any assumptions about the size or
location of the buffer.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

The EAX register contains the V86 segment of the translation buffer; the high word is
zero.

The ECX register contains the number of bytes of the buffer not in use.

The EDX register contains the total size of the buffer in bytes; the maximum size is
lOOOOh.

Uses

EAX, ECX, EDX, Flags

508 V86MMGR_GetpgStatus

V86MMGR_GetPgStatus

include v86mmgr.inc

VxDcall V86MMGR_GetpgStatus

The V86MMGR_GetPgStatus service returns the status of a page. This service allows
the caller to discover various aspects of what a specific page is being used for. This
service can be called with any page number in the 0 through 110h range, but it is intended
to return useful information only for pages above the last V86 page.

This service is only available for Windows 3.1 and later.

Parameters

EBX

Specifies the virtual machine handle to get information for. If this parameter is zero,
the service retrieves global information.

ECX

Specifies the V86 page number. It must be in the rage 0 through 110h.

Return Value

The EAX register contains one or more of the following information values for the page:

Value Meaning

V86PS_MAP

V86PS_XMS

V86PS_EMM

V86PS_UMB

Page belongs to mapper

Page belongs to XMS driver

Page belongs to EMM driver

Page is part of a UMB

The V86PS_XMS value is not necessarily set.

Comments

One particular use of this service is to determine if a page is part of an imported high
memoryUMB.

This service will not work if called during the Sys_Critical_Init message. The service is
not valid until the Device_Init message. Calls during Device_Init only return useful
information if paging import from a LIMulatorlUMBulator is performed. In cases where
no paging import exists, the information will not be correct until after the Init_Complete
message.

Uses

EAX,Flags

include v86mmgr.inc
VxDcall V86MMGR_Load Client ptr

The V86MMGR_Load_Client_Ptr service loads the FS:ESI register with the specified
client segment and offset values. If the virtual machine is running a 16-bit protected mode
application, the high word of the offset in ESI is set to zero. Otherwise, if the virtual
machine is running a 32-bit program or is in VxD_Exec_Mode, the high word of ESI is
not set to zeroed.

This allows most ~anslation procedures to operate correctly without the need to test the
execution mode of the current virtual machine.

Parameters

AH

Specifies a client segment register.

AL

Specifies a client offset register.

EBX

Specifies the current virtual machine handle. The virtual machine must be in
protected mode.

EBP

Points to a Client_ReLStruc structure containing the register values for the virtual
machine.

Return Value

The FS:ESI register pair points to the client's buffer.

Example

The value passed in AX should be formed from the Client_ReLStruc structure fields.
For example, to load the virtual machine's DS:(E)DX, use the following code:

510 V86MMGR_Loca1GlobalReg

mov ax, (Client_DS * lOOh) + Client_DX
VxDcall V86MMGR Load Client ptr

Uses

FS, ESI, Flags

V86MMGR_Loca1GlobalReg

include v86mmgr.inc

VxDcall V86MMGR_LocalGlobalReg

The V86MMGR_Loca1GlobalReg service specifies whether the indicated V86 memory
region is local or global memory. This VMM memory manager calls this service
whenever the TestGIobalV86Mem service is called.

This service is only available for Windows 3.1 and later.

Parameters

EDX

Specifies the page number of the start of the region.

ED]

Specifies the page number of the end of the region.

Return Value

The EAX register contains one of the following values:

Value

o

2

3

Meaning

Page range is local

Page range is global

Page range is part~ally global and partially local

Page range is unknown

Comments

This service is intended to support UMBs. UMB regions are local or global depending on
the free per virtual machine UMB list.

Uses

EAX, Flags

include v86mmgr.inc

The V86MMGR_Map_Pages service maps the specified buffer into every virtual
machine at the same address using page mapping. If the contents of memory are changed
in one virtual machine the change will be reflected in the original buffer as well in all
other virtual machines.

If the address specified in ESI is zero, no memory is mapped, but a global linear address
range is allocated. It is then up to the caller to map appropriate pages into virtual
machines. Use the linear address returned in EDI for the base page to map memory into.

Parameters

ESI

Points to the linear address to map. If this parameter is zero, the service reserves the
map region without mapping memory.

ECX

Specifies the number of bytes to map.

Return Value

If the carry flag is clear, the memory is mapped. The ESI register contains the map handle
(used to free the map region), and the EDI register contains the linear address of map
buffer. It is less than 1 megabyte.

If the carry flag is set, the service could not map the memory.

Uses

ESI, EDI, Flags

V86MMGR_NoUMBlnitCalls

include v86mmgr.inc

VxDcall V86MMGR_NoUMBlnitCalls

512 V86MMGR_ResetBasePages

The V86MMGR_NoUMBlnitCalls service supports QEMM version 5.x. This service is
called by the VMM before the SyS_Critical_Init message is done, and allows the
XMSUMBINITCALLS=FALSE setting in the SYSTEM.INI file.

This service is only available for Windows 3.1 and later.

Parameters

This service has no parameters.

Return Value

This service has no return value.

V86MMGR_ResetBasePages

include v86mmgr.inc

VxDcall V86MMGR_ResetBasePages

The V86MMGR_ResetBasePages service is used by the virtual MS-DOS manager to
manipulate MS-DOS related memory associated with the base memory handle of a virtual
machine.

Parameters

EBX

Specifies the virtual machine handle.

ECX

Specifies the count of pages to manipulate.

EAX

Specifies the Linear or physical page number of first page to manipulate.

Return Value

If carry flag is set if the service could not manipulate the base handle.

Uses

Flags

include v86mmgr.inc

VxDcall V86MMGR Set EMS XMS Limits

The V86MMGR_Set_EMS_XMS_Limits service sets the EMS and XMS memory limits
for a virtual machine. This service must be made during the Create_VM message for it to
work properly. This service should not be called on the system virtual machine.

Parameters

EBX

Specifies the handle of the virtual machine to set limits for.

EAX

Specifies minimum EMS kilobytes.

EDX

Specifies the maximum EMS kilobytes.

ESI

Specifies the minimum XMS kilobytes.

EDI

Specifies the maximum XMS kilobytes.

ECX

Specifies the flag. See the V86MMGR.INC file for flag definitions.

Return Value

If carry flag is set, the service could not set limits or there was insufficient memory for the
minimum allocation request. In this case, some of the limits may have been set. Use the
V86MMGR_Get_EMS_XMS_Limits service to determine the new settings.

Comments

This service calls the GetSetDetailedVMError service to set error values.

To disable access to XMS or EMS memory, set maximum and minimum values to zero.

To set only one of the two limits, set the other maximum and minimum to -1.

The XMS limit does not include the HMA.

Uses

Flags

include v86mmgr.inc

The V86MMGR_Set_Mappin~Infoservice notifies the V86MMGR mapper services of
the amount of space a virtual device requires for calls to the mapper service calls. This
service must be made during the Sys_Critical_Init or Device_Init message for devices
with an init order less than V86MMGR_Init_Order. These settings are used by during the
V86MMGR Device_Init message.

Parameters

AL

Specifies the minimum number of pages (4K) required for copy buffer.

AH

Specifies the maximum number of pages (4K) desired for copy buffer.

BL

Specifies the minimum number of pages required for private global mapping region.

BH

Specifies the minimum number of pages required for shared global mapping region.

CL

Specifies the maximum number of pages desired for global page mapping region.

Return Value

This service has no return value.

Uses

Flags

include v86mmgr.inc

The V86MMGR_Set_Xlat_Buff_State service switches to an alternate mapping buffer.
This feature is provided for protected-mode TSR programs which may need to switch to a
private translation buffer before executing protected mode MS-DOS calls since the default
buffer may be full.

A virtual device should get the current translation buffer state, set the new state, perform
any MS-DOS call, and then set the state back to the original values.

Parameters

EBX

Specifies a virtual machine handle (any virtual machine handle valid).

EAX

Specifies the V86 segment of the translation buffer; high word is zero.

ECX

Specifies the number of bytes of the buffer not in use.

EDX

Specifies the total size of the buffer in bytes; maximum size is 10000h.

Return Value

This service has no return value.

Uses

Flags

V86MMGR_SetAvailMapPgs

include v86mmgr.inc

VxDcall V86MMGR_SetAvailMapPgs

The V86MMGR_SetAvailMapPgs service relinquishes regions above the last V86 page
to the V86MMGR's mapper services for use as a mapper region.

516 V86MMGR_SetLocaIA20

This service is only available for Windows 3.1 and later.

Parameters

EAX

Specifies the starting page number of the region.

ECX

Specifies the size of the region in pages.

Return Value

The carry flag is clear if the service adds the region. Otherwise, the carry flag is set to
indicate an error such as an invalid region.

Comments

Virtuals devices other than the V86MMGR (DOSMGR) can relinquish regions above the
last V86 page to the V86MMGR's mapper services for use as a mapper region. These
regions usually overlap with V86MMGR XMS UMB import pages, but this is not
required. A virtual device can hand over a page that it has already marked as owned by
the device in the Device_V86_Pages array. The V86MMGR marks the page as one it
owns (even though it did not actually do the _Assign_Device_V86_Pages for it).

Once a region is relinquished, the virtual device must not attempt to access it. it. These
regions may only be marked as in-use by the V86MMGR XMS driver. This happens when
the region overlaps XMS UMB import pages.

This routine has a global effect, it does not take a virtual machine handle argument.

Uses

Flags

V86MMGR_SetLocaIA20

include v86mmgr.inc

VxDcall V86MMGR_SetLocalA20

The V86MMGR_SetLocaIA20 service changes the default global behavior of A20 to
local if the HMA is global. This service has no effect if the HMA is not global.

This service is only available for Windows 3.1 and later.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Comments

When there is a global HMA user, the A20 state associated with the HMA is also global.
C~anging A20 in a virtual machin~ changes it in all virtual ~achines simultaneously.
Some global A20 users (such as MS-DOS 5.0) desire that the A20 state be local even
though the HMA is global.

The V86MMGR device does a V86 Interrupt 2Fh device broadcast which also can set this
state. This servic~ is effectively a duplicate of the broadcast service which can ~e called
by a virtual device. It is not an error if the state is set using both methods.

Uses

Flags

include v86mmg~.inc

VxDcall V86MMGR_Xlat_API

The V86MMGR_Xlat_API service is a simple interpreter that executes scripts that are
created using macros defined in the V86MMGR.INC file.

Parameters

EBX

Specifies the current virtual machine handle.

EBP

Points to a Client_Re~Struc structure containing the register values for the virtual
machine.

EDX

Points to the script to translate.

Return Value

The carry flag is clear if the script has executed successfully; the EDX register is
destroyed.

518 VeO_Get_Focus

If the carry flag is set, the service encountered an error while executing a script.

Uses

EDX, Flags

ven API Reference

include vcd.inc
VxDcall VCD_Get_Focus

The VeD_Get_Focus service returns the virtual machine handle of the current owner of a
COM port. Focus can be set with a Set_Device_Focus control message sent using the
System_Control service and specifying the VCD device.

Parameters

EAX

Specifies the hardware COM port number. It must be in the range 1 to 4.

Return Value

If the carry flag is clear, the EBX register contains virtual machine handle or zero if there
is no owner.

The carry flag is set if the port is not available.

Uses

EBX, Flags

VeO_Get_Version

include vcd.inc
VxDcall VCD Get Version

The VCD_Get_Version service returns the VCD version number.

Parameters

This service has no parameters.

Return Value

If the carry flag is clear, the EAX register contains the version number. Otherwise, the
VCD is not installed and VCD pages are not allocated.

Uses

EAX, Flags

include vcd.inc
VxDcall VCD Set Port Global

The VCD_Set_Port_Global service enables or disables the global handling of a COM
port between multiple virtual machines. When a port is declared to be a global port, then
no contention detection is performed, and no I/O ports are trapped.

This service is provided mainly for a COM port mouse, or other serial device, where a
separate virtual device handles the arbitration of the port and its interrupts. A
Set_Device_Focus control message sent using the System_Control service can specify
which virtual machine should receive interrupt requests and VCD_Get_Focus returns the
current owner of a port.

Parameters

EAX

Specifies the hardware COM port number. It must be in the range from 1 to 4.

EDX

Specifies whether the port is global (zero) or local (nonzero).

Return Value

The carry flag is clear if the service is successful. Otherwise, the carry flag is set if the
port is not available.

Uses

Flags

include vcd.inc
VxDcall VCD Virtualize_Port

The VCD_Virtualize_Port service virtualizes a COM port. This service allows additional
virtual devices to provide enhanced capabilities to COM port virtualization. An example
virtual device is one.which buffers high speed input data, and then simulates interrupts
into the owner virtual machine, at a slower rate, so that the virtual machine can keep up
with the data without losing input.

This service can only be called during processing of the Sys_Critical_Init message.

Parameters

EAX

Specifies the port number (1, 2, 3, or 4).

EBX

Specifies the operation flags. It is 00000001h if the IRQ is sharable. All other values
are reserved.

ECX

Specifies the number of extra bytes needed in the VCD_COM_Struc structure.

EDX

Specifies the number of extra bytes needed in the VCD_CB_Struc structure.

ESI

Points to the VCD_ProcList_Struc a structure which contains a list of callback
procedures. The VCD saves the pointer to this structure, so it must be placed in the
VxD_DATA_SEG segment.

Return Value

If the carry is clear, the port can be virtuaiized and the EAX register contains the COM
handle which points to the COM structure having the extra data allocated at its end.

Otherwise, the carry flag is set if the port is not available and the EAX register contains
one of the following values:

Value

o
1

Meaning

Port does not exist

Port already virtualized

Comments

Callback procedures are provided in the list pointed to by ESI.

The VPS_Control_Proc callback is called when the virtualization state changes for a
COM port. Currently the only call is for ownership changes.

EAX VCD_Control_Set_Owner

EBX virtual machine handle of new owner or O,if virtualization handled by a
different device

EDX virtual machine handle of previous owner or 0

ESI points to a VCD_COM_Struc

On entry, when the EBX register specifies a new owner, port trapping will be enabled for
all VO ports of the COM adapter. The control procedure can disable any VO trapping that
it desires.

The IRQ virtualization procedures are the same as if the virtual device virtualized the IRQ
directly using the VPICD, except that ESI points to the VCD_COM_Struc structure on
entry. See the VPICD documentation for actual entry parameters and return values.

EAX IRQ handle

EBX virtual machine handle

ESI points to a VCD_COM_Struc

The following callbacks have default actions, if the callback offset is set to 0:

Callback

VPS_Virt_Int_Proc

VPS_EOI_Proc

VPS_Mask_Change_Proc

Default Action

Assign an owner to the current virtual machine if not
owned, and request an interrupt in the owner's virtual
machine.

Not virtualized.

Physically EOI and clear interrupt request.

Assign the owner to the current virtual machine if not
owned.

Not virtualized.

The following callbacks deal with VO for ports that have trapping enabled while the
virtualizing virtual device owns a COM port.

• VPS_In_RxTxB

• VPS_Out_RxTxB

• VPS_In_IER

• VPS_Out_IER

• VPS_In_IIR

• VPS_Out_IIR

• VPS_In_LCR

• VPS_Out_LCR

• VPS_In_MCR

• VPS_Out_MCR

• VPS_In_LSR

• VPS_Out_LSR

• VPS_In_MSR

• VPS_Out_MSR

These callbacks have the following parameters:

EBX virtual machine handle

ESI points to a VCD_COM_Struc

EDX port number

ECX Byte_Input or Byte_Output value

AL output data if ECX is Byte_Output

These procedures should return the AL register set to the input data if the ECX register is
equal to the Byte_Input value.

Uses

EAX, Flags

VDD API Reference

VDD_Clear_Mod

include vdd.inc
VxDcall VDD Clear Mod

The VDD_Clear_Mod service clears the change state of a virtual machine.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to clear the change state for.

ED!

Specifies the VDD control block pointer.

EBP

Points to the Client_Re~Struc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Return Value

The carry flag is set if an invalid virtual machine handle is specified. Otherwise, this
service has no return value.

Comments

This service allows proper text scrolling if an application runs between calls to the
VDD_Get_Mod and VDD_Clear_Mod services.

This service assumes that VDD_Clear_Mod is called twice when the VDD sends a scroll
event to 386 enhanced mode grabber; once in the TextScroll function and again in the
UpdateScreen function.

If an application has accessed pages since the last call to the VDD_Get_Mod service and
there is a scroll event generated in the previous VDD_Get_Mod, the service sets the

524 VDD_Free_Grab

jVDD_UpdAlllBit value in VDD_Flags and transfers main memory to copy memory. The
VDD_Clear_Mod service clears thejVDD_UpdAlllBit value and setsjVDD_UpdAll2Bit.
The VDD_State_Query service returns changes if jVDD_UpdAll2Bit is set. Since
jVDD_UpdAll2Bit is set, the VDD_Mod_Text service returns the entire screen changed
(no scrolls) and the VDD_Clear_Mod service clears the jVDD_UpdAll2Bit value and
updates the copy memory.

If application accessed pages since the last VDD_Get_Mod and there was no scroll event
in the previous VDD_Get_Mod, the copy memory is not updated.

Uses

Flags

include vdd.inc
VxDcall VDD_Free_Grab

The VDD_Free_Grab service releases the copy of the video memory that was allocated
when a screen grab was done.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to release the memory for.

ED!

Specifies the VDD control block pointer.

EBP

Points to the Client_RelLStruc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

include vdd.inc
VxDcall VDD Free Mem

The VDD_Free_Mem service releases the scheduling freeze caused by a previous call to
the VDD_Get_Mem service.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to release the freeze for.

ED]

Specifies the VDD control block pointer.

EBP

Points to the Client_Re~Struc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Return Value

The carry flag is set if an invalid virtual machine handle is specified. Otherwise, this
service has no return value.

Uses

Flags

See Also

VDD_Get_Mem

VOO_Get_GrabRtn

include vdd.inc
VxDcal1 VDD_Get_GrabRtn

The VDD_Get_GrabRtn service returns address of video grab routine. The grab routine
is called by the virtual shell device when the appropriate hot key is pressed by the user. It
makes a copy of the visible screen and controller state of the current virtual machine. The
copy is accessible using the VDD_Get_GrbState and VDD_Get_GrbMem services.

Parameters

This service has no parameters.

Return Value

The ESI register contains the address of the grab routine.

Uses

Flags, ESI

See Also

VDD_Get_GrbMem, VDD_Get_GrbState

VDD_Get_GrbMem

include vdd.inc
VxDcall VDD_Get GrbMem

The VDD_Get_GrbMem service return the flat address and allocation bitmap for virtual
machine's video memory. This service returns the address of the copy of the memory that
was made by the grab routine.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to retrieve the memory for.

ED!

Specifies the VOO control block pointer.

EBP

Points to the Client_ReLStruc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Client_ES

Specifies the selector identifying the segment containing the buffer to receive the
VDA_Mem_State.

Client_ED!

Specifies the address of the buffer to receive the VDA_Mem_State.

Client_CX

Specifies the size of the buffer to hold the VDA_Mem_State. This is for debugging
only.

Return Value

The Client_CX register contains the number of bytes copied to the buffer. Otherwise, it
is zero to indicate an error such as the buffer is too small, an invalid selector, or a call to
VDD_Get_GrbMem when no grab is active.

Comments

The allocation of memory to the bitmap is dynamic. The grabber must call this service
each time it accesses the memory.

Uses

Flags

VDD_Get_GrbState

include vdd.inc
VxDcall VDD_Get_GrbState

The VDD_Get_GrbState service returns the state of the video adapter for the specified
virtual machine at the point when the VDD_GrabRtn was called.

This service is called by the 386 enhanced mode grabber.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to retrieve the state for.

ED!

Specifies the VDD control block pointer.

EBP

Points to the Client_ReLStruc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Client_ES

Specifies the selector identifying the segment containing the buffer to receive the
state.

Client_ED!

Specifies the address of the buffer to receive the state.

Client_CX

Specifies the size of the buffer to hold the state. This is for debugging only.

Return Value

The Client_eX register contains the size of the structure returned by the service (for
debugging only). The service returns zero to indicate an error.

Comments

This service returns a video state structure. See the VDD.INC file for the structure
definition.

Uses

Flags, Client_eX

include vdd.inc
VxDcall VDD Get Mem

The VDD_Get_Mem service returns the flat address and allocation bitmap for the
specified virtual machine's video memory. This service returns the main video-save
memory and boosts the scheduling priority of the system virtual machine.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to retrieve the memory for.

ED]

Specifies the VDD control block pointer.

EBP

Points to the Client_Re~Struc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Client_ES

Specifies the selector identifying the segment containing the buffer to receive the
VDA_Mem_State.

Client_ED]

Specifies the address of the buffer to receive the VDA_Mem_State.

Client_eX

Specifies the size of the buffer to hold the VDA_Mem_State. This is for debugging
only.

Return Value

The Client_CX register contains the number of bytes copied to the buffer. Otherwise, it is
zero to indicate an error such as the buffer is too small or an invalid selector.

Comments

To prevent memory from changing between calls to the VDD_Get_Mem and
VDD_Free_Mem services, this service boosts the system virtual machine's priority using
the Low_Priority_Device_Boost value. This inhibits normal scheduling but does not
hamper scheduling of virtual machine's to handle events such as interrupts.

The allocation of memory to the bitmap is dynamic. The grabber must call this service
each time it accesses the memory.

A call to the VDD_Get_Mem service must be followed by a call to the VDD_Free_Mem
service as soon as possible. No other virtual machine will be scheduled until the call to
VDD_Free_Mem is made.

530 VDD_Get_Mod

Uses

Flags

include vdd.inc
VxDcall VDD Get Mod

The VDD_Get_Mod service returns changes in a virtual machine's video state. The
changes are passed to the grabber in a buffer that includes a flag indicating what kind of
changes occurred and what type of a memory change list follows. The flag is followed by
a count of memory-change-list entries and the change list itself.

This service returns cumulative changes until the VDD_Clear_Mod service is called.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to retrieve the change list for.

ED!

Specifies the VDD control block pointer.

EBP

Points to the Client_Re~Struc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Client_ES

Specifies the selector identifying the segment containing the buffer to receive the
change list.

Client_ED!

Specifies the address of the buffer to receive the change list.

Client_CX

Specifies the size of the buffer to receive the change list. This is for debugging only.

VDD_Get_ModTime 531

Return Value

The Client_CX register contains the size of structure returned by the service (for
debugging only). The service returns zero to indicate an error.

Uses

Flags, Client_CX

VDD_Get_ModTime

include vdd.inc
VxDcall VDD_Get_ModTime

The VDD_Get_ModTime service specifies whether any video activity has occurred. The
virtual poll device uses it to determine if the virtual machine is idle.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

The EAX register contains the system time at last video modification.

Uses

Flags, EAX

include vdd.inc
VxDcall VDD_Get_State

The VDD_Get_State service returns the current state of the virtual machine. This service
should be called after a call to the VDD_Get_Mem service buts before calling the
VDD_Free_Mem service.

This service is called by the grabber.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine to retrieve the change list for.

ED]

Specifies the VDD control block pointer.

EBP

Points to the Client_Reg_Struc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Client_ES

Specifies the selector identifying the segment containing the buffer to receive the
state.

Client_ED]

Specifies the address of the buffer to receive the state.

Client_CX

Specifies the size of the buffer to receive the state. This is for debugging only.

Return Value

The Client_CX register contains the size of structure returned by the service (for
debugging only). The service returns zero to indicate an error.

Comments

This service returns a video state structure. See the VDD.INC file for the structure
definition.

Uses

Flags, Client_CX

include vdd.inc
VxDcall VDD Get Version

The VDD_Get_Version service returns the VDD version number and device identifier.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The ESI register contains the address of the 8-byte identifier string for the VDD.

Uses

Flags, AX, ESI

include vdd.inc
VxDcall VDD_Hide_Cursor

The VDD_Hide_Cursor service sets or clears the hide-cursor flag. The virtual mouse
device uses this service to tum on and off the hardware cursor such as when the virtual
machine is windowed.

Parameters

EAX

Specifies whether the cursor should be hidden (nonzero) or displayed (zero).

EBX

Specifies a pointer to the control block.

Return Value

This service has no return value.

Uses

Flags

include vdd.inc
VxDcall VDD Msg BakColor

The VDD_MsLBakColor service sets up the background attribute for messages
displayed when in message mode.

Parameters

EAX

Specifies the color. For EGAlVGA driver, this parameter is a text mode attribute.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Comments

A virtual device that uses this service must issue a Begin_Message_Mode control
message before calling this service.

Uses

Flags

VDD_Msg_ClrScrn

include vdd.inc
VxDcall VDD Meg ClrScrn

The VDD_Ms~ClrScrn service initializes the screen for messages displayed when in
message mode. If the focus virtual machine is the current virtual machine, this service
clears the screen immediately. Otherwise, it initializes the screen when the focus changes.

The virtual shell device uses this service.

Parameters

EBX

Specifies the virtual machine handle.

EAX

Specifies the background attribute.

Return Value

The EAX register contains the width in columns.

The EDX register contains the height in rows.

VDD_Msg_ForColor 535

Comments

A virtual device that uses this service must issue a Begin_Message_Mode control
message before calling this service.

Uses

Flags, EAX, EDX

include vdd.inc
VxDcall VDD_Msg_ForColor

The VDD_Ms~ForColor service sets the foreground attribute for messages displayed
when in message mode.

Parameters

EAX

Specifies the color. For EGANGA drivers, this parameter is a text mode attribute.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Comments

A virtual device that uses this service must issue a Begin_Message_Mode control
message before calling this service.

Uses

Flags

VDD_Msg_SetCursPos

include vdd.inc
VxDcall VDD_Msg_SetCursPos

The VDD_MsLSetCursPos service sets the cursor position for messages displayed when
in message mode.

Parameters

EAX

Specifies the row position.

EDX

Specifies the column position.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Comments

A virtual device that uses this service must issue a Begio_Message_Mode control
message before calling this service.

Uses

Flags

include vdd.inc
VxDcall VDD Mag TextOUt

The VDD_MsLTextOut service writes the specified text to the screen using the
foreground" and background colors specified by the VDD_MsLBakColor and
VDD_MsLForColor services.

Parameters

ESI

Specifies the address of the string t~ display.

ECX

Specifies the length in bytes of the string.

EAX

Specifies the row position for the start of the displayed string.

EDX

Specifies the column position for the start of the displayed string.

EBX

Specifies the virtual machine handle

Return Value

This service has no return value.

Comments

A virtual device that uses this service must issue a Begin_Message_Mode control
message before calling this service.

Uses

Flags

See Also

VDD_Ms~BakColor,VDD_Ms~ForColor

include vdd.inc
VxDcall VDD PIF State

The VDD_PIF_State service informs the VDD about PIF bits for virtual machine just
created.

Parameters

EBX

Specifies the virtual machine handle.

AX

Specifies the PIF bits.

Return Value

This service has no return value.

Uses

Flags

538 VDD_Query_Access

VOO_Query_Access

include vdd.inc
VxDcall VDD Query Access

The VDD_Query_Access service specifies whether video memory can be accessed.
Virtual devices that call software in the virtual machine use this service to determine
whether a video display error will occur if the software attempts to access video memory.

Parameters

EBX

Specifies the address of the control block.

Return Value

The carry flag is clear if a virtual device can access video memory.

Comments

The virtual device should call this service just before returning to the virtual machine such
as while processing a virtual machine event. If the video memory cannot be accessed, the
virtual device should avoid calling software that may attempt access even if not calling
the software causes another error, such as leaving the mouse cursor on when the virtual
machine runs in a window.

Uses

Flags

include vdd.inc
VxDcall VDD Set HCurTrk

The VDD_Set_HCurTrk service sets the flag passed to VMDOSAPP indicating that
VMDOSAPP should maintain cursor position within display window for this application.
The keyboard driver calls this service when a keyboard interrupt is simulated into a virtual
machine.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

VDD_Set_VMType 539

Uses

Flags

include vdd.inc
VxDcall VDD Set VMType

The VDD_Set_VMType service informs the VDD of a virtual machine's type. The
system calls this service prior to running the virtual machine and each time any of the
virtual machine parameters are modified.

Parameters

EAX

Specifies the state flag. This parameter is nonzero if the virtual machine is running in
a window.

EBX

Specifies the virtual machine handle. This handle can be used to examine the virtual
machine status flags such as the exclusive and background flags.

Return Value

This service has no return value.

Comments

For a system critical Set_Focus this service may not be called before the Set_Focus. In
that case, the VDD is responsible for doing an implied call to the VDD_Set_VMType
service.

Uses

Flags

include vdd.inc

VxDcall VDD Unlock APP

The VDD_Unlock_APP service unlocks the Windowed OLDAPP from the grabber.

540 VDMAD_Copy_From_Buffer

This service is also called from the VDD_Free_Mem service.

Parameters

EDX

Specifies the system virtual machine handle.

EBX

Specifies the handle of the virtual machine running the application to unlock.

ED!

Specifies the VDD control block pointer.

EBP

Points to the Client_Reg_Struc structure for the virtual machine.

Client_EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

EAX, Flags

VDMAD API Reference

include vdmad.inc

The VDMAD_Copy_From_Buffer service allows another device to copy data from the
VDMAD buffer to the actual DMA region associated with the buffer. This service is
called after the VDMAD_Request_Buffer service, after a memory write transfer and
before the VDMAD_Release_Buffer service.

VDMAD_Copy_To_Buffer 541

Parameters

EBX

Specifies the buffer identifier.

ESI

Specifies the region linear.

ED!

Specifies the offset within the buffer to the start of copying.

ECX

Specifies the size of the buffer.

Return Value

The carry flag is clear if the data is copied from buffer into DMA region. Otherwise, the
carry flag is set and the AL register contains one of the following error values:

Value

OAb

OBh

Uses

EAX, Flags

Meaning

DMA_Invalid_Buffer: invalid buffer id supplied

DMA_Copy_Out_Range: (ESI + ECX) is greater than buffer size

VDMAD_Copy_To_Buffer

include vdmad.inc

The VDMAD_Copy_To_Buffer service allows another device to copy data into the
VDMAD buffer from the actual DMA region associated with the buffer. This service is
called after the VDMAD_Request_Buffer service and before starting a memory read
transfer.

Parameters

EBX

Specifies the buffer identifier.

542 VDMAD_Default_Handler

ESI

Specifies the region linear.

ED!

Specifies the offset within the buffer to the start of copying.

ECX

Specifies the size of the buffer.

Return Value

The carry flag is clear if the data is copied from the DMA region into the buffer.
Otherwise, the carry flag is set and the AL register contains one of the following error
values:

Value

DAb

DBh

Uses

EAX, Flags

Meaning

DMA_Invalid_Buffer: invalid buffer id supplied

DMA_Copy_Out_Range: (ESI + ECX) is greater than buffer size

VDMAD_Default_Handler

include vdmad.inc

VxDcall VDMAD Default Handler

The VDMAD_Default_Handler service specifies the default DMA channel 110 callback
procedure. This procedure receives notifications of virtual state changes and handles
setting up the physical state to start DMA transfers.

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

VDMAD_Disable_Translation 543

Uses

All

VDMAD_Disable_Translation

include vdmad.inc

VxDcall VDMAD_Disable_Translation

The VDMAD_Disable_Translation service disables the automatic translation done for
the standard DMA channels. It is necessary if a V86 application or driver or a PM
application uses the DMA services through Interrupt 4Bh to determine actual physical
addresses for DMA transfers. A disable count is maintained, so a matching call to
VDMAD_Enable_Translation is required for each call to this service to re-enable
translation.

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle.

Return Value

The carry flag is clear is automatic translation is disabled for the channel. Otherwise, the
carry flag is set if the disable count overflowed.

Uses

Flags

VDMAD_Enable_Translation

include vdmad.inc

VxDcall VDMAD Enable Translation

The VDMAD_Enable_Translation service decrements the disable count associated with
a standard DMA channel. If the disable count goes to 0, the automatic translation is re­
enabled.

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle.

Return Value

The carry flag is clear if the service is successful. The zero flag is clear if automatic
translation is re-enabled. Otherwise, the carry flag is set if the irtual device attempted to
enable when translation was already enabled.

Uses

Flags

SeeAI$o

VDMAD_Disable_Translation

include vdmad.inc

VxDcall VDMAD Get EISA Adr Mode

The VDMAp_Get_EISA_Adr_Mode service returns the EISA extended mode.

Parameters

EAX

Specifies the channel number. It must be in the range 0 to 7.

EBX

Specifies the DMA handle.

Return Value

The CL register contains one of the following values:

Value Meaning

o
1
2
3

8-bit I/O, with count in bytes
16-bit I/O, with count in words and adr shifted
32-bit I/O, with count in bytes
16-bit I/O, with count in bytes

Comments

The hardware does not allow for reading the extended mode for a channel, so VDMAD
defaults to the ISA defaults (channels 0-3 are byte channels and 5-7 are word channels
with word addresses and counts). A SYSTEM.INI setting can specify an alternate setting.

Uses

ECX, Flags

include vdmad.inc

VxDcall VDMAD Get Region Info

The VDMAD_Get_Region_Info service returns information about the current region
assigned to a DMA handle. This information can be used by a handler to call following
services:

• VDMAD_Unlock_DMA_Region

• VDMAD_Release_Buffer

• VDMAD_Copy_To_Buffer

• VDMAD_Copy_From_Buffer

Parameters

EAX

Specifies the DMA handle.

Return Value

The BX, ESI, and ECX registers contain the following information:

Register

BL

BH

ESI

ECX

Description

Specifies the buffer identifier.

Specifies whether pages are locked (zero is not locked, nonzero is locked).

Specifies the region linear.

Specifies the size in bytes.

546 VDMAD_Get_Version

Uses

EBX, ECX, ESI

include vdmad.inc

The VDMAD_Get_Version service returns the version number of the virtual DMA
device.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The ECX register contains the buffer size in bytes. It is zero if the buffer is not allocated.
A buffer is not available until the Init_Complete message.

The carry flag is clear.

Uses

EAX, ECX, Flags

include vdmad.inc

The VDMAD_Get_Virt_State service allows a channel owner to determine the current
virtual state of the channel. The virtual state consists of all the information necessary to
physically program the DMA channel for a DMA transfer (linear address of target region,
byte length of region, mode of transfer, and state of mask bit and software request bit)

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle.

Return Value

If translation is enabled, the ESI register contains the high linear address of the user's
DMA region. The high linear address is used so that the DMA can proceed even if a
different virtual machine is actually running at the time of the transfer.

If translation is not enabled, the ESI register contains the physical byte address
programmed (shifted left 1, for word ports).

The ECX register contains count in bytes.

The DL register contains the mode. This is the same as the 8237 mode byte with channel
number removed and the following DMA_masked and DMA_requested values set as
appropriate:

Value Meaning

DMA_masked

DMA_requested

Channel masked and not ready for a transfer

Software request flag set

The DH register contains the extended mode (ignored on non-PS2 machines that do not
have extended DMA capabilities).

Uses

ESI, ECX, EDX, Flags

include vdmad.inc

The VDMAD_Lock_DMA_Region service attempts to lock a region of memory for a
DMA transfer. It is called before a DMA transfer is started, that is, before the physical
state is set for a channel and before it is unmasked.

Parameters

ESI

Specifies the linear address of the actual DMA region.

region must be aligned on 128K page boundary

ECX

Specifies the numbers of bytes in the DMA region.

DL

Specifies the alignment. This parameter can be one of the following values:

Value Meaning

region must be aligned on 64K page boundary

2

Return Value

The carry flag is set if the lock failed. The ECX register contains the number of bytes that
are lockable in the region (starting from ESI), and the AL registers contains one of the
following error values:

Value

2

3

Meaning

DMA_Not_Contiguous: region not contiguous

DMA_Not_Aligned: region crossed physical alignment boundary

DMA_Lock_Failed: unable to lock pages

The carry flag is clear if the lock is successful. The EDX register contains the physical
address of the DMA region the region has been locked.

Comments

The service first verifies that the region is mapped to contiguous pages of physical
memory, then it determines whether the region results in a DMA bank (page) wrap.

On AT class machines each channel has a base address register and a page address
register. The base address register is incremented after each byte or word transferred. If
the increment of this 16-bit register results in the roll over from FFFFh to 0, then the
transfer wraps to the start of the DMA bank because the page register is not updated.
Normally MS-DOS watches for this condition and adjusts Interrupt 13h parameters to split
transfers to avoid this wrap, but MS-DOS does not account for the difference between
linear and physical addresses under Windows, so VDMAD checks again to prevent wrap
from occurring.

If these checks pass, the service calls the memory manager to lock the physical pages.

This service does not check to see if the region is within some physical maximum
constraint. If the region is lockable, then it locks the memory, and it is up to the caller to
check to see if the physical region is acceptable. If the region is not acceptable, then the
caller should unlock the region and perform a buffered DMA transfer.

VDMAD_Mask_Channel 549

Uses

EAX, ECX, EDX, Flags

VDMAD_Mask_Channel

include vdmad.inc

VxDcall VDMAD Mask_Channel

The VDMAD_Mask_Channel service physically masks a channel so that it will not
attempt any further DMA transfers.

Parameters

EAX

Specifies the DMA handle.

Return Value

This service has no return value.

Uses

Flags

VDMAO_Release_Buffer

include vdmad.inc

VxDcall VDMAD Release Buffer

The VDMAD_Release_Butrer service releases the VDMAD buffer assigned to a DMA
channel from a previous call to the VDMAD_Request_Buffer service. This service exits
from a critical section and the DMA buffer becomes available for other users. Any data in
the buffer is not automatically copied, so the VDMAD_Copy_From_Buffer service must
be called if the data is important.

Parameters

EBX

Specifies the buffer identifier.

550 VDMAD_Request_Buffer

Return Value

The carry flag is clear if the buffer is released. Otherwise, the carry flag is set to indicate
an invalid buffer identifier.

Uses

Flags

VDMAD_Request_Buffer
include vdmad.inc

The VDMAD_Request_Buffer service reserves the DMA buffer for a DMA transfer.

Parameters

ESI

Specifies the linear address of the actual DMA region.

ECX

Specifies the number of bytes in the DMA region.

Return Value

The carry flag is clear if the service is successful. The EBX register contains the buffer
identifier and the EDX register contains the physical address of the buffer.

Otherwise, the carry flag is set and the AL register contains one of the following error
values:

Value

5

6

Meaning

DMA_Buffer_Too_Small: region request is too large for buffer

DMA_Buffer_In_Use: buffer already in use

Uses

EAX, EBX, ESI, Flags

include vdmad.inc

VxDcall VDMAD Reserve Buffer Space

VDMAD_Scatter_Lock 551

The VDMAD_Reserve_Buffer_Space service allows other devices that are going to
handle DMA to make sure that VDMAD allocates a buffer large enough for any transfers
that they might require. It also allows a device to specify a maximum physical address
that would be valid for the device's DMA requests (such as 1Mb for an XT.) During the
Init_Complete phase of initialization, VDMAD allocates the DMA buffer using all of the
constraints specified by other devices. For example, the buffer is at least as big as the
largest size specified by the calls to this service, and it allocates below the lowest
maximum physical addresses specified.

This service is only available before the Init_Complete message.

Parameters

EAX

Specifies the number of pages requested.

ECX

Specifies the maximum physical address that can be included in a DMA transfer. If
this parameter is zero, there is no limit.

Return Value

This service has no return value.

Uses

Flags

VDMAD_Scatter_Lock

include vdmad.inc

VxDcall VDMAD Scatter Lock

The VDMAD_Scatter_Lock service attempts to lock all pages mapped to a DMA region
and return the actual physical addresses of the pages.

Parameters

EBX

Specifies the virtual machine handle.

AL

Specifies the operation flags. The parameter can be one of the following values:

Value

o

1

2

ED!

Meaning

Fills the DDS table with physical addresses and sizes
of the physical regions that make up the DMA region.

Fills the DDS table with the actual page table entries.

Prevents not-present pages from being locked. This
value is ignored if bit 0 is not set.

Points to the extended DDS (DMA Descriptor Structure) to receive the information.

Return Value

The carry flag is clear and the zero flag is set if the entire region is locked. The zero flag
is clear if only a portIon of the region is locked. If the carry flag is set, nothing is locked.

The EDX register contains the number of table entries needed to describe whole region,
and the DDS_size field specifies the number of bytes locked.

If the request was for page table copy (AL set to 1 or 3), then The ESI register contains an
offset into first page for start of the region.

Uses

EDX, ESi, Flags

include vdmad.inc

VxDcall VDMAD Scatter Unlock

The VDMAD_Scatter_Unlock service attempts to unlock all pages locked by a previous
call to the VDMAD_Scatter_Lock service.

Parameters

EBX

Specifies the virtual machine handle.

AL

Specifies the operation flags. The parameter can be one of the following values:

Value

o

MeaIiing

Fills the DDS table with physical addresses and sizes
of the physical regions that make up the DMA region.

ED!

2

4

Fills the DDS table with the actual page table entries.

Prevents not-present pages from being locked. This
value is ignored if bit 0 is not set.

Prevents pages from being marked as dirty. If bits 0
and 1 are set but 2 is clear, then not-present pages are
not marked.

Points to the extended DDS (DMA Descriptor Structure) to receive the information.

Return Value

The carry flag is clear if the lock counts have been decremented. If no other virtual
devices had pages locked, the pages have been unlocked. The carry flag is set if the
memory was not locked.

Comments

If Bits 0 and 1 in the AL register are set, the table at the end of the DDS is not required to
unlock the previously locked pages; otherwise the table is not used and caller need not
maintain the table after the lock call.

Uses

Flags

include vdmad.inc

The VDMAD_Set_EISA_Adr_Mode service sets the EISA extended mode.

Parameters

EAX

Specifies the channel number. It must be in the range 0 to 7.

EBX

Specifies the DMA handle.

CL

Specifies one of the following mode values:

Value

o
1

2

3

Return Value

This service has no return value.

Uses

Flags

VDMAD_Set_Phys_State

include vdmad.inc

VxDcall VDMAD Set Phys State

Meaning

8-bit I/O, with count in bytes

16-bit I/O, with count in words and adr shifted

32-bit I/O, with count in bytes

16-bit I/O, with count in bytes

The VDMAD_Set_Phys_State service programs the DMA controller state for a channel.
The service takes the location and size of the buffer from the information passed in a
previous call to the VDMAD_Set_Region_Info service.

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle.

DL

Specifies the mode.

DB

Specifies the extended mode.

Return Value

This service has no return value.

Uses

Flags

See Also

VDMAD_Set_RegioD_Info

include vdmad.inc

The VDMAD_Set_Region_Info service sets information about the current region
assigned to a DMA handle. This service must be called before calling the
VDMAD_Set_Phys_State service.

Parameters

EAX

Specifies the DMA handle.

BL

Specifies the buffer identifier.

BH

Specifies whether pages are locked (zero if not locked, nonzero if locked).

ESI

Specifies the region linear.

ECX

Specifies the size in bytes.

EDX

Specifies the physical address for the transfer.

Return Value

This service has no return value.

Uses

Flags

include vdmad.inc

VxDcall VDMAD Set Virt State

The VDMAD_Set_Virt_State service modifies the virtual state of a DMA channel. This
service is used when a channel owner wants to change the virtual state of a channel from
how the virtual machine programmed it. This might be used to split a DMA request into
smaller pieces.

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle

ESI

Specifies either a high linear address or a physical byte address. If translation is
enabled, this parameter is the high linear address of the user's DMA region. A high
linear address is used so that the DMA can proceed even if a different virtual machine
is actually running at the time of the transfer. If translation is not enabled, this
parameter specifies a physical byte address programmed (shifted left 1, for word
ports).

ECX

Specifies the count in bytes.

DL

Specifies the mode. This is the same as the 8237 mode byte with channel number
removed and the following DMA_masked and DMA_requested values set as
appropriate:

Value

DMA_masked

DMA_requested

Meaning

Channel masked and not ready for a transfer

Software request flag set

VDMAD_Unlock_DMA_Region 557

DB

Specifies the extended mode (ignored on non-PS2 machines that do not have
extended DMA capabilities).

Return Value

This service has no return value.

Uses

Flags

include vdmad.inc

VxDcall VDMAD_Unlock DMA Region

The VDMAD_Unlock_DMA_Region service unlocks the DMA region previously locked
to a channel. It is called after a DMA transfer is complete and the channel has been
masked,preventing the controller from attempting any further transfers to the programmed
address.

Parameters

ESI

Specifies the linear address of the actual DMA region.

ECX

Specifies the number of bytes in the DMA region.

Return Value

The carry flag is clear if the memory is unlocked. Otherwise, the carry flag is set to
indicate an error.

Uses

Flags

VDMAD_UnMask_Channel

include vdmad.inc

VxDcall VDMAD UnMask Channel

The VDMAD_UnMask_Channel service physically unmasks a channel so that DMA
transfers can proceed.

Parameters

EAX

Specifies the DMA handle.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

VDMAD_Virtualize_Channel

include vdmad.inc

VxDcall VDMAD Virtualize Channel

The VDMAD_Virtualize_Channel service allows another virtual device to claim
ownership of a standard DMA channel. The new owner registers a callback procedure that
is called whenever the virtual state of the channel is changed as a result of I/O done in a
virtual machine.

Parameters

EAX

Specifies the channel number.

ESI

Specifies the callback procedure. If this parameter is zero, no callback procedure is
called. See the "Comments" section for more information about the procedure.

Return Value

The carry flag is clear and the EAX register contains the DMA handle if the service is
successful. Otherwise, the carry flag is set if channel is already owned.

Uses

EAX, EDX, Flags

Comments

The system calls the callback procedure by passing it the foilowing input parameters:

EAX ; DMA handle
EBX ; virtual machine handle

The procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags.

In some cases a virtual device does not allow a virtual machine to perform DMA to a
channel. Instead, the virtual device handles programming based on a private API and not
on virtualized hardware YO. This means it is possible to pass a zero to specify no callback
procedure. VDMAD continues to trap the VO for the channel, but never changes the
physical state of the channel as a result of any virtual machine YO.

VHD API Reference

VHD_Allocate_Handle

include vhd.inc

VxDcall VHD_Allocate_Handle

The VHD_Allocate_Handle service allocates a handle for an operation.

Parameters

ESI

Specifies the address to call when the operation completes. If this parameter is zero,
the address is not called.

Return Value

If the carry flag is clear, the EAX register contains the disk handle. Otherwise, the carry
flag is set if the service could not allocate the handle.

Uses

EAX, Flags

include vhd.inc

VxDcall VHD Get Version

The VHD_Get_Version service returns the VHD version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The CL register contains the number of drives supported (O-based).

The EDX register can contain the following flag value:

Value Meaning

Supports direct to hardware read and write operations.

The carry flag is clear.

Uses

EAX, Flags

include vhd.inc

VxDcall VHD Read

The VHD_Read service reads from the device.

Parameters

EAX

Specifies a disk handle previously created using the VHD_Allocate_Handle service.

EBX

Specifies the starting sector.

CL

Specifies the sector count. If this parameter is zero, 256 sectors are read.

CH

Specifies the drive number.

ESI

Points to the buffer to receive the sector data. This buffer must be locked.

Return Value

This service has no return value.

include vhd.inc

VxDcall VHD_Write

The VHD_Write service writes to the device.

Parameters

EAX

Specifies a disk handle previously created using the VHD_Allocate_Handle service.

EBX

Specifies the starting sector.

CL

Specifies the sector count. If this parameter is zero, 256 sectors are written.

CH

Specifies the drive number.

ESI

Points to the buffer containing the sector data. This buffer must be locked.

Return Value

This service has no return value.

VKD API Reference

include vkd.inc

VxDcall VKD API Force Key

The VKD_API_Foree_Key service forces a key into a virtual machine as if it was typed
on the keyboard. VKD will scan these forced keys for hot keys, so forcing VKD hot keys
is allowed.

Parameters

EBX

Specifies the virtual machine handle or 0 for current focus.

CH

Specifies the scan code.

CL

Specifies the repeat count (lor more).

EDX

Specifies the shift state (-1 means no change).

Return Value

The carry flag is set if an error occurs.

Comments

This service is currently limited to the focus virtual machine, so the service fails if the
EBX register is not zero or not the focus virtual machine handle.

Uses

Flags

include vkd.inc

VxDcall VKD_API_Get_Version

The VKD_API_Get_Version service returns the version number of the VKD.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The carry flag is clear.

Uses

EAX, Flags

include vkd.inc

VxDcall VKD Cancel Hot Key State

The VKD_Cancel_Hot_Key_State service cancels the hot key state.

Parameters

This service has no parameters.

Return Value

This service has no return value.

include vkd.inc

VxDcall VKD_Cancel_Paste

The VKD_Cancel_Paste service cancels the paste that was started in the virtual machine
by the VKD_Start_Paste service.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

include vkd.inc

The VKD_Detine_Hot_Key service defines a hot-key-notification callback procedure.
Hot keys are detected by ANDing the shift state mask with the global shift state, then
comparing the resulting state with the shift state compare value. If this matches and the
key code matches, the callback procedure is called with the specified reference data in
EDX.

Parameters

AL

Specifies scan code of the main key.

AH

Specifies the type of scan code. This parameter can be one of the following values:

Value

o

OFFh

EBX

Meaning

Normal code

Extended code (ExtendedKey_B)

Either normal or extended (AllowExtended_B)

Specifies shift state. The high word is a mask that is ANDed with the global shift
state when checking for this hot key. The low word is the masked-shift-state-compare
value.

CL

Specifies the operation flags. This parameter can be one of the following values:

ESI

Value

CallOnPress

CallOnRelease

CallOnRepeat

CallOnComplete

CallOnUpDwn

CallOnAll

PriorityNotify

Meaning

Calls callback when key press is detected.

Calls callback when key release is detected. Keyboard
may still be in hot-key hold state.

Calls callback when repeated press is detected.

Calls callback when the hot key state is ended (all shift
modifier keys are released) or when a different hot key
is entered. For example, assume that both ALT+1 and
ALT+2 are hot keys. If the user holds the ALT key
down, then presses and releases the 1 key and presses
the 2 key, the callback for ALT+1 is called even
though the ALT key has not been released.

Calls on both press and release.

Calls on press, release and repeats.

Specifies that the callback can only be called when
interrupts are enabled and the critical section is not
owned. This value can be combined with any other
value in this list.

Specifies that the key can be locally enabled or
disabled.

Points to the callback procedure.

EDX

Points to the reference data to pass to the callback procedure.

EDI

Specifies maximum notification delay in milliseconds if the CL register specifies the
PriorityNotify value. If this parameter is zero, the callback is always notified.

Return Value

If the carry flag is clear, the EAX register contains the definition handle. Otherwise, the
carry flag is set to indicate an error.

Comments

The callback procedure is called when a hot key is detected, and detection meets mask
requirements. The callback receives the following input parameters:

AL scan code of key
AH a if key just pressed (Hot_Key_Pressed)

1 if key just released (Hot_Key_Released)
2 if key is an auto-repeat press (Hot_Key_Repeated)
3 hot key state ended (Hot_Key_Completed)

EBX hot key handle
ECX global shift state
EDX points to the reference data
EDI elapsed time for delayed notification in milliseconds

The EDI register normally contains zero, but if the PriorityNotify value is specified this
value could be larger.

The high bit of the AH register is set if the hot key is a priority hot key and the virtual
machine which had the keyboard focus at the time the hot key was recognized was
suspended or not executable. In this case, the priority event was scheduled for the system
virtual machine rather than the keyboard owner. The Hot_Key_SysVM_Notify value can
be used to check this bit.

The callback procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags

Uses

Flags

include vkd.inc

VxDcall VKD Define Paste Mode

The VKD_Define_Paste_Mode service selects the virtual-machine paste mode and
specifies whether Interrupt 16h pasting can be attempted or not. Some applications hook
Interrupt 09h which often disallows pasting using Interrupt 16h. The VKD can detect this
by setting a time-out to see if any Interrupt 16h handling is being done by the application.
If not, the VKD switches to Interrupt 09h paste.

If an application does some Interrupt 16h handling, but cannot support the Interrupt 16h
paste operation, a PIP bit can be set to indicate that only Interrupt 09h pasting should be
used.

Parameters

AL

Specifies whether to use Interrupt 16h or Interrupt 09h paste. It can be one of the
following values:

Value

o

1

EBX

Meaning

Allows Interrupt 16h paste attempts

Forces Interrupt 09h pasting

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

include vkd.inc

VxDcall VKD Flush Msg Key Queue

The VKD_Flush_Ms~Key_Queue service flushes any available keys from the special
message mode input buffer.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

include vkd.inc

The VKD_Force_Keys service forces scan codes into the keyboard buffer just as if they
had been typed on the physical keyboard. These keys are processed in the context of the
focus virtual machine.

Parameters

ESI

Points to a buffer of scan codes.

ECX

Specifies the number of scan codes in the buffer.

Return Value

The carry flag is set if the keyboard buffer overflows. In this case, The ECX register
contains the number of remaining scan codes that did not fit.

Uses

Flags

include vkd.inc

The VKD_Get_Kbd_Owner service returns the virtual machine handle of the keyboard
focus virtual machine.

Parameters

This service has no parameters.

Return Value

The EBX register contains the virtual machine handle of the keyboard owner.

Uses

Flags, EBX

include vkd.inc

The VKD_Get_Ms~Key service returns the next available key from the special message
mode input buffer and removes it from the buffer. If no key is available, then the zero flag
is set.

This service does not block.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

The zero flag is clear if a key is read. The AL register contains the scan code and the AH
register contains a combination of the following modifier flag values:

Value Meaning

MK_Shift A shift key is down

MK_Ctrl A control key is down

MK_Alt An ALT key is down

MK_Extended The key is an extended key

The zero flag is set if no key is available.

Uses

EAX, Flags

include vkd.inc

VxDcall VKD Get Version

The VKD_Get_Version service returns the VKD version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

Uses

EAX, Flags

include vkd.inc

The VKD_LocaI_Disable_Hot_Key service disables a hot key in the specified virtual
machine.

Parameters

EAX

Specifies the hot key handle.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

include vkd.inc

VxDcall VKD Local Enable Hot Key

The VKD_Local_Enable_Hot_Key service enables a hot key in the specified virtual
machine.

Parameters

EAX

Specifies the hot key handle.

EBX

Specifies the virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

include vkd.inc

VxDcall VKD Peek Mag Key

The VKD_Peek_MsLKey service returns the next available key from the special
message mode input buffer without removing it from the buffer. If no key is available, the
zero flag is set.

Parameters

EBX

Specifies virtual machine handle

Return Value

The zero flag is clear if a key is read. The AL register contains the scan code and the AH
register contains a combination of the following modifier flag values:

Value Meaning

MK_Shift A shift key is down

MK_Ctrl A control key is down

MK_Alt An ALT key is down

MK_Extended The key is an extended key

The zero flag is set if no key is available.

Uses

EAX, Flags

include vkd.inc

The VKD_Reflect_Hot_Key service reflects a hot key into a specified virtual machine
and cancels the hot key state. This service is normally called by a hot-key-notification
callback procedure. It allows the callback to send the hot key into a virtual machine and
without processing it as a hot key. VKD simulates the required key strokes to get the
virtual machine into the specified shift state, then it simulates the key strokes for the hot
key itself, and finally simulates key strokes to get the virtual machine to match the current
global shift state.

Parameters

EAX

Specifies the hot key handle.

EBX

Specifies the virtual machine handle.

ex
Specifies the required shift state.

Return Value

This service has no return value.

Uses

Flags

include vkd.inc

VxDcall VKD Remove Hot Key

The VKD_Remove_Hot_Key service removes a defined hot key.

Parameters

EAX

Specifies the definition handle of the hot key to remove. This handle must have been
previously created using the VKD_Define_Hot_Key service.

Return Value

This service has no return value.

Uses

Flags

include vkd.inc

The VKD_Start_Paste service puts a virtual machine into paste mode by simulating
keyboard activity with keystrokes taken from the specified paste buffer. Depending on the
mode set with the VKD_Define_Paste_Mode service (default is to try Interrupt 16h
pasting), VKD waits for the virtual machine to poll the keyboard BIOS through its
Interrupt 16h interface. If the virtual machine does keyboard input through the BIOS, then
VKD simulates the keyboard input at this high level (plugging in ASCII codes.) If the
virtual machine fails to perform any Interrupt 16h within in a time-out period, or the mode
has been set to avoid Interrupt 16h pasting, the VKD simulates the necessary hardware
interrupts to perform the pasting. Hot keys are still processed while pasting is in progress.

Parameters

EAX

Points to the paste buffer containing an array of key structures having the following
form:

OEM_ASell_value
scan_code
shift state

db ?
db ?
dw ?

The shift_state field is 02h if a shift key is down and 04h is a ctrl key is down.

The scan_code is OFFh and the shift_state OFFFFh, if the VKD should convert the key
to a ALT+numpad sequence. This information is identical to what is given by the
Window's keyboard routine OEMKeyScan.

EBX

Specifies the virtual machine handle.

ECX

Specifies the number of paste entries in the paste buffer.

ESI

Points to callback procedure. This parameter can be O. See the "Comments" section
for more information about the procedure.

EDX

Points to reference data to pass to the callback procedure.

Return Value

The carry flag is clear if the paste is started. Otherwise, the carry flag is set to indicate an
error such as insufficient memory to copy the buffer.

Comments

The callback procedure is called when the paste is complete or canceled. The callback
receives the following input parameters:

EAX Completion flags
Paste_Complete - paste completed successfully
Paste_Aborted - paste canceled by user
Paste_VM_Term - paste aborted because virtual

machine terminated
EBX handle of virtual machine receiving the paste
EDX reference data

The procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags.

Uses

Flags

VMCPD API Reference

include vmcpd.inc

The VMCPD_Get_Version service returns the VMCPD version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The ECX register contains one of the following flag values:

Value

o
2

3

Meaning

No coprocessor

80287

80387

Uses

EAX, ECX, Flags

include vmcpd.inc

The VMCPD_Get_Virt_State service returns the virtual state of EM and MP bits for the
given virtual machine.

Parameters

EBX

Specifies the virtual machine handle.

Return Value

The AL register contains the virtual state of EM and MP bits. Bit 0 specifies the MPv bit;
bit 1 the EMv bit.

Uses

EAX, Flags

inclu~e vmcpd.inc

VxDcall VMCPD Set Virt State

The VMCPD_Set_Virt_State service sets the virtual state of EM and MP bits for the
given virtual machine.

Parameters

EBX

Specifies the virtual machine handle.

AL

Specifies the new virtual state of the EM and MP bits. Bit 0 sets the MPv bit; bit 1 the
EMv bit.

Return Value

This service has no return value.

Uses

Flags

Virtual Mouse Device API Reference

include vmd.inc
VxDcall Int33 API

The Int33_API service is called by VMDOSAPP to inform the special mouse driver the
new state of mouse buttons and position for the application being shown in a window. If
the special mouse driver is not installed, then this call returns with carry flag set. If the
API is not provided, then also it returns with carry flag set.

Parameters

EAX

Specifies the Client_AX register. The high word is always zero.

Mouse API

Register

Client_EBX

Value

2

EBX

Meaning

Description

Specifies Handle of virtual machine on whose
behalf the call is made

Specifies (X,Y) position of mouse in pixels

Specifies (event flags,state) where state is the
button state of the mouse and event flags convey
the change in button state from previous call.

Special mouse API presence test.

Specifies the handle of virtual machine making call

Return Value

The carry flag is clear if the API is supported. Otherwise, carry flag is set to indicate the
mouse driver is not special.

Uses

Flags

578 VMD_Get_Mouse_Owner

VMD_Get_Mouse_Owner

include vmd.inc

VxDcall VMD Get Mouse Owner

The VMD_Get_Mouse_Owner service returns the handle of the virtual machine with the
mouse focus.

Parameters

This service has no parameters.

Return Value

The EBX register contains the handle of virtual machine with mouse focus.

Uses

EBX, Flags

VMD_Get_Version

include vmd.inc

The VMD_Get_Version service returns the version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The carry flag is clear.

Uses

EAX, Flags

include vmd.inc

VxDcall VMD Set Mouse Type

The VMD_Set_Mouse_Type service sets the mouse type.

Parameters

EAX

Specifies an IRQ number (if positive or zero) or an interrupt number (if negative). If
this parameter is negative, the absolute value is the interrupt vector.

ECX

Specifies the mouse type. See VMD.INC for mouse definitions. If high bit of CL is
set, then DL is equal to the COM port number (I-based).

Return Value

The carry flag is clear if the mouse is virtualized. Otherwise, The EAX register contains
one of the following error values:

Value

00

01

Uses

EAX, Flags

Meaning

Mouse already virtualized

Could not virtualize interrupt

VMPoll API Reference

VMPoll_Enable_Disable

include vmpoll.inc

VxDcall VMPoll_Enable_Disable

The VMPoU_Enable_Disable service enables or disables polling of the specified virtual
machine.

Parameters

AL

Specifies whether to disable (zero) or enable (nonzero) polling.

EBX

Specifies the handle of the virtual machine to enable or disable polling for. If this
parameter is zero, polling is globally enabled or disabled.

Return Value

This service has no return value.

VMPolI_Get_Version

include vmpoll.inc

The VMPolI_Get_Version service returns the VMPOLL version number.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

Uses

EAX, Flags

include vmpoll.inc

VxDcall VMPoll Reset Detection

The VMPolI_Reset_Detection service disables the virtual device's idle detection for the
specified virtual machine.

Other virtual devices call this service to temporarily disable polling. For example, the
virtual COM device uses the service to prevent terminal programs from being detected as
idle while they transfer files.

Parameters

EBX

Specifies the handle of the virtual machine to disable idle detection for.

Return Value

This service has no return value.

Uses

Flags

VPICD API Reference

include bimodint.inc

mov
call

jc
mov
mov

ax, VPICD_API_Get_Ver
[lpfnVPICD]

error
[Major], ah
[Minor], al

VPICD entry point address

carry set on error
major version number
minor version number

The VPICD_API_Get_Ver function returns the major and minor version numbers for the
virtual PIC device.

Parameters

lpjnVPICD

Specifies the entry point address of the API handler for the virtual PIC device.

Return Value

The carry flag is clear and the AX register contains the major and m~nor version numbers,
if the function is successful.

include vpicd.inc

pushfd
cli
mov esi, OFFSET32 Callback
VxDcall VPICD_Call_When_Hw_Int
popfd
mov [Next Callback], esi

disable interrupts
points to callback

address of next callback

The VPICD_Call_When_Hw_Int service installs a callback procedure for hardware
interrupts. The system calls the callback procedure whenever a hardware interrupt occurs.

The caller must disable interrupts before calling this service.

Parameters

Callback

Points to the callback procedure. When the system calls the procedure, the EBX
register contains the handle of the current virtual machine.

Return Value

The ESI register contains the address of the next procedure in the callback chain.

Comments

Although any virtual device can use this service, the service is intended for use by the
virtual DMA device to detect completion of DMA transfers. On systems with hardware
devices that interrupt frequently, use of this service should be avoided. Installing a
callback procedure to process every hardware interrupt can have a major impact on
performance.

The callback procedure is responsible for chaining to the next handler in the interrupt
chain. It also must preserve the EBX register for the next handler.

Uses

ESI, Flags

include vpicd.inc

mov eax, IRQHand ; IRQ handle
mov ebx, VM ; current VM handle
VxDcall VPICD Clear lnt Request

The VPICD_Clear_Int_Request service resets an IRQ request that was previously set by
a call to the VPICD_Set_Int_Request service.

Parameters

IRQHand

Specifies the handle of the IRQ to clear.

VM

Specifies the handle of the VM.

Return Value

This service has no return value.

Comments

If the IRQ is being. shared and another device has also set the virtual IRQ, this service
does not reset the virtual request immediately. Instead, the request is reset only after the
other device calls VPICD_Clear_lnt_Request.

Uses

Flags

See Also

VPICD_Set_Int_Request

VPICD_Convert_Handle_To_IRQ

include vpicd.inc

mov eax, IRQHand ; IRQ handle
VxDcall VPICD_Convert_Handle_To_IRQ

mov [IRQNum], esi ; IRQ number

The VPICD_Convert_Handle_To_IRQ service returns the number of the IRQ
corresponding to the specified IRQ handle.

Parameters

IRQHand

Specifies the handle of a virtualized IRQ.

Return Value

The ESI register contains the IRQ number.

Uses

ESI, Flags

See Also

VPICD_Convert_Int_To_IRQ, VPICD_Convert_IRQ_To_Int

include vpicd.inc

mov eax, VecNum
VxDcall VPICD_Convert_Int_To_IRQ

interrupt vector number

jc

mov

not_mapped

[IRQNum], eax

carry set if error

IRQ number

The VPICD_Convert_Int_To_IRQ service returns the iRQ number (if any)
corresponding to the specified interrupt vector number.

Parameters

VecNum

Specifies an interrupt vector riumber.

Return Value

The carry flag is clear and the EAX register contains the IRQ number if the interrupt
vector number is mapped to an IRQ. Otherwise, the carry flag is set.

Comments

Since virtual machines can map IRQ numbers of the virtual PIC to any interrupt vector
numbers, virtual devices should always explicitly check which interrupt vector is mapped
to a particular IRQ.

Uses

EAX, Flags

See Also

VPICD_Convert_Handle_To_IRQ, VPICD_Convert_IRQ_To_Int

include vpicd.inc

mov eax, IRQNum ; IRQ number (not an IRQ handle!)
mov . ebx, VM ; VM handle
VxDcall VPICD_Convert_IRQ_To_Int

jc not_valid ; carry set if IRQ number is not valid
mov [VecNum], eax ; interrupt vector number

The VPICD_Convert_IRQ_To_Int service returns the interrupt Vector number that
corresponds to the specified IRQ number for the specified virtual machine.

VPICD_Force_Default_Behavior 585

Parameters

IRQNum

Specifies an IRQ number.

VM

Specifies the handle identifying the virtual machine.

Return Value

The carry flag is clear and the EAX register contains an interrupt vector number if the
IRQ number is valid. Otherwise, the carry flag is set.

Comments

Since virtual machines can map IRQ numbers of the virtual PIC to any interrupt vector
numbers, virtual devices should always explicitly check which interrupt vector is mapped
to a particular IRQ.

Uses

EAX, Flags

See Also

VPICD_Convert_Handle_To_IRQ, VPICD_Convert_Int_To_IRQ

VPICD_Force_Default_Behavior

include vpicd.inc

mov eax, IRQHand ; IRQ handle
VxDcall VPICD Force Default Behavior

The VPICD_Force_Default_Behavior service unvirtualizes an IRQ. This allows a virtual
device to remove virtualization of an IRQ when it processes a System_Exit message.

Parameters

IRQHand

Specifies the handle of the IRQ to unvirtualize.

Return Value

This service has no return value.

Comments

This service invalidates the IRQ handle. After calling this service, a virtual device must
not attempt to use the IRQ handle.

Uses

Flags

See Also

VPICD_Force_Default_Owner

VPICD_Force_Default_Owner

include vpicd.inc

mov eax, IRQNum ; IRQ number
mov ebx, VM ; owner VM handle or 0 for global
VxDcall VPICD_Force_Default_Owner

jc error ; carry set if can't set owner

The VPICD_Force_Defanlt_Owner service forces VPICD's default interrupt handler to
direct a specified IRQ to a particular virtual machine, or to make the IRQ global so that
any virtual machine can receive the interrupt.

Parameters

IRQNum

Specifies the number of the IRQ for which ownership is set.

VM

Specifies the handle identifying the virtual machine to receive ownership. If this
parameter is 0, the IRQ is given global ownership and any virtual machine can
receive the interrupt.

Return Value

The carry flag is clear if the service set the owner to the specified virtual machine. If the
service could not set the owner, such as if the IRQ has been virtualized or the IRQ number
is not valid, the carry flag is set.

Uses

Flags

See Also

VPICD_Force_Default_Behavior

VPICD_Get_Complete_Status

include vpicd.inc

mov eax, IRQHand ; IRQ handle
mov ebx, VM ; VM handle
VxDcall VPICD_Get_Complete_Status

mov [Status], ecx ; IRQ status

The VPICD_Get_Complete_Status service returns the complete status for a virtual IRQ
in a specified virtual machine.

Parameters

IRQHand

Specifies the handle identifying the IRQ for which to receive status.

VM

Specifies the handle identifying the virtual machine.

Return Value

The ECX register contains a combination of the following status flag values:

Value Meaning

VPICD_Stat_IRET_Pending A virtual iret is pending.

VPICD_Stat_In_Service The IRQ is virtually in service.

VPICD_Stat_Phys_Mask The IRQ is physically masked.

VPICD_Stat_Phys_In_Serv The IRQ is physically in service.

VPICD_Stat_Virt_Mask The virtual machine has masked the IRQ.

VPICD_Stat_Virt_Req The virtual interrupt request for the virtual machine has
been set (by a virtual device, not necessarily the caller).

VPICD_Stat_Phys_Req The physical interrupt request has been set.

VPICD_Stat_Virt_Dev_Req The virtual interrupt request has been set by the calling
virtual device.

Uses

ECX, Flags

See Also

VPICD_Get_Status

VPICD_Get_IRQ_Complete_Status

include vpicd.inc

mov eax, IRQNum ; IRQ number
VxDcall VPICD_Get_IRQ_Complete_Status

jc

mov

already_virtualized

[Status], ecx

carry set if error

status

The VPICD_Get_IRQ_Complete_Status service returns the complete status for the
specified IRQ. This service is similar to VPICD_Get_Complete_Status except that it
takes an IRQ number as a parameter instead of an IRQ handle.

Parameters

IRQNum

Specifies the number of the IRQ for which to retrieve status.

Return Value

The carry flag is set if the IRQ has been virtualized. Otherwise, the carry flag is clear.

The ECX register contains a combination of the following status flag values:

Value Meaning

VPICD_Stat_IRET_Pending A virtual iret is pending.

VPICD_Stat_In_Service The IRQ is virtually in service.

VPICD_Stat_Phys_Mask The IRQ is physically masked.

VPICD_Stat_Phys_In_Serv The IRQ is physically in service.

VPICD_Stat_Virt_Mask The virtual machine has masked the IRQ.

VPICD_Stat_Virt_Req The virtual interrupt request for the virtual machine has
been set (by a virtual device, not necessarily the caller).

VPICD_Stat_Phys_Req The physical interrupt request has been set.

VPICD_Stat_Virt_Dev_Req The virtual interrupt request has been set by the calling
virtual device.

Comments

Virtual devices typically use this service to inspect an IRQ before attempting to virtualize
it, or to inspect the state of another virtual device's interrupt. Since the service indicates
whether an IRQ has been virtualized, virtual devices use this service to avoid conflicts
when more than one device may want to use an IRQ.

Uses

ECX, Flags

See Also

VPICD_Get_Complete_Status

VPICD_Get_Status

include vp1cd.inc

mov eax, IRQHand
mov ebx, VM
VxDcall VPICD_Get_Status

IRQ handle
VM handle

mov [Status], ecx IRQ status

The VPICD_Get_Status service returns the status for a virtual IRQ in a specified virtuai
machine. Although this service does not return the complete status, it returns the most
commonly used information and is much faster than the VPICD_Get_Complete_Statns
service.

Parameters

IRQHand

Specifies the handle identifying the IRQ for which to receive status.

VM

Specifies the handle identifying the virtual machine.

Return Value

The ECX register contains a combination of the following status flag values:

The IRQ is virtually in service.

590 VPICD_Get_Version

Value Meaning

VPICD_Stat_IRET_Pending A virtual iret is pending.

VPICD_Stat_In_Service

Uses

ECX, Flags

See Also

VPICD_Get_Complete_Status

include vpicd.inc

mov
mov
mov
mov

byte ptr [Major], ah
byte ptr [Minor], al
[Flags], ebx
[MaxIRQ], ecx

major version number
minor version number
configuration flags
maximum IRQ supported

The VPICD_Get_Version service returns the VPICD major and minor version numbers.

Parameters

This service has no parameters.

Return Value

The carry flag is always clear, and the following registers contain the specified values:

Register Value

AH Specifies the major version number for the virtual PIC device.

AL Specifies the minor version number for the virtual PIC device.

EBX Specifies the configuration flag for the PIC. The flag can be the following
value:

Value Meaning

System has a master/slave (PC/AT-type) configuration.
If this value is not given, the system has a single PIC
(PC/XT-type) configuration.

All other values are reserved.

ECX Specifies the maximum IRQ supported. It is either 07h or OFh.

VPICD_lnstall_Handler 591

Uses

EAX, EBX, ECX, Flags

VPICD_Install_Handler

include bimodint.inc

les di, bis ; points to Bimodal_Int_Struc
mov ax, VPICD_Install_Handler
call [lpfnVPICD]

jc error ; carry set on error

The VPICD_Install_Handler function installs a bimodal interrupt handler for the IRQ
specified by the BIS_IRQ_Number field in the Bimodal_Int_Struc structure.

Parameters

bis

Points to a Bimodal_Int_Struc structure containing information about the interrupt
handler to install.

IpjnVPICD

Specifies the entry point address of the API handler for the virtual PIC device.

Return Value

If the carry flag is clear, the function is successful. Otherwise, the carry flag is set to
indicate an error such as the IRQ has already been virtualized or the IRQ number is not
valid.

Comments

This function virtualizes the specified IRQ and creates supervisor-mode selectors for the
interrupt handler's code, data, and additional segments (if any). The function also sets the
supervisor-mode API handler.

See Also

VPICD_Remove_Handler

include vpicd.inc

mov eax, IRQHand
VxDcall VPlCD Phys EOl

; IRQ handle

The VPICD_Phys_EOI service ends a physical interrupt, and allows further hardware
interrupts from the specified IRQ.

Parameters

IRQHand

Specifies the handle identifying the IRQ.

Return Value

This service has no return value.

Comments

An interrupt that is physically in service will not suppress interrupts to lower priority
IRQs since VPICD does not prioritize hardware interrupts. Therefore, it is acceptable for
an interrupt to be physically in service for any arbitrary length of time.

Uses

Flags

VPICD_Physically_Mask
include vpicd.inc

mov eax, lRQHand ; IRQ handle
VxDcall VPlCD Physically Mask

The VPICD_Physically_Mask service masks the specified IRQ on the hardware PIC.
This suppresses all hardware interrupts on the IRQ until the VPICD_Physically_Unmask
or VPICD_Set_Auto_Masking service is called.

Parameters

IRQHand

Specifies the handle identifying the IRQ.

Return Value

This service has no return value.

VPICD_Physically_Unmask 593

Uses

Flags

See Also

VPICD_Physically_Unmask, VPICD_Set_Auto_Masking

include vpicd.inc

mov eax, IRQHand ; IRQ handle
VXDcal.l VPICD Physically Unmask

The VPICD_Physically_Unmask service unmasks the specified IRQ on the hardware
PIC.

Parameters

IRQHand

Specifies the handle identifying the IRQ.

Return Value

This service has no return value.

Comments

This service unmasks the physical IRQ without regard to mask state of the virtual
machines. Even if every VM has masked the. virtual IRQ, this service unmasks the
physical IRQ.

Uses

Flags

See Also

VPICD_Physically_Mask, VPICD_Set_Auto_Masking

VPICD_Remove_Handler

include bimodint.inc

les di, bis ; points to Bimodal_Int_Struc
mov ax, VPICD_Remove_Handler

594 VPICD_Set_Auto_Masking

call [lpfnVPICD]

jc error ; carry set on error

The VPICD_Remove_Handler function removes a bimodal interrupt handler for the IRQ
specified by the BIS_IRQ_Number field in the Bimodal_Int_Struc structure.

Parameters

bis

Points to a Bimodal_Int_Struc structure containing information about the interrupt
handler to remove.

lpfnVPICD

Specifies the entry point address of the API handler for the virtual PIC device.

Return Value

The carry flag is clear if the function is successful and set if an error occurs. The function
returns an error if the IRQ has not been virtualized or the IRQ number is not valid.

Comments

This function unvirtualizes the specified IRQ and frees the supervisor-mode selectors for
the interrupt handler's code, data, and additional segments (if any).

See Also

VPICD_Install_Handler

VPICD_Set_Auto_Masking

include vpicd.inc

mov eax, IRQHand ; IRQ handle
VxDcall VPICD_Set_Auto_Masking

The VPICD_Set_Auto_Masking enables automatic masking for the specified IRQ. When
automatic masking is enabled, the system automatically masks the physical IRQ if all
virtual machines have masked the corresponding virtual IRQs. However, if at least one
virtual machine has the IRQ unmasked, the physical IRQ remains unmasked.

Parameters

IRQHand

Specifies the handle identifying the IRQ.

Return Value

This service has no return value.

Comments

Automatic masking is the default for every IRQ. It can be overridden by the
VPICD_Physically_Mask and VPICD_Physically_Unmask services.

. I

Uses

Flags

See Also

VPICD_Physically_Mask, VPICD_Physically_Unmask

include vpicd.inc

mov eax, IRQHand ; IRQ handle
mov ebx, VM ; current VM handle
VxDcall VPICD_Set_Int_Request

The VPICD_Set_Int_Request service sets a virtual interrupt request for the specified
IRQ and virtual machine. Setting the request causes the system to simulate an interrupt.
Although the simulation may occur immediately, in many cases it may not until a later
point in time.

Parameters

IRQHand

Specifies the handle identifying the IRQ to set.

VM

Specifies the handle identifying the virtual machine.

Return Value

This service has no return value.

Comments

The interrupt is not simulated immediately if any of the following conditions are present:

• The virtual machine has interrupts disabled

• The virtual machine has masked the IRQ

• A higher priority virtual IRQ is in service

• The virtual machine is suspended, or not able to run

However, since the interrupt may be simulated immediately, a virtual device that has a
virtual interrupt handler must be able to handle a call to the handler before this service
returns.

Setting an interrupt request does not guarantee that the interrupt will be simulated. For
example, if the VM has masked the interrupt and never unmasks it, the interrupt is never
simulated. Also, a call to the VPICD_Clear_Iot_Request service made before the virtual
interrupt is simulated prevents the interrupt simulation.

The virtual VPIC device simulates a level-triggered PIC. This means that once a virtual
EOI occurs, another interrupt will be simulated immediately unless the virtual interrupt
request is cleared.

Uses

Flags

See Also

VPICD_Clear_lot_Request

include vpicd.inc

mov eax, IRQHand ,; IRQ handle
VxDcall VPICD_Test_Phys_Request

jc irCLset ; carry set if physical IRQ is set

The VPICD_Test_Phys_Request service returns with the carry flag set if the physical
(hardware PIC) interrupt request is set for the specified IRQ.

Parameters

IRQHand

Specifies the handle identifying the IRQ.

Return Value

The carry flag is set if the physical interrupt request is set.

Uses

Flags

See Also

VPICD_Get_Complete_Status

include vpicd.inc

mov edi, OFFSET32 vid
VxDcall VPICD_Virtualize_IRQ

jc
mov

error
[IRQHand], eax

carry set if error
IRQ handle

The VPICD_Virtualize_IRQ service assigns a virtual interrupt request to th~ calling
virtual device.

This is not an asynchronous service.

Parameters

vid

Points to a VPICD_IRQ_Descriptor structure contaInIng information about the
virtllal IRQ. The VID_IRQ_Number and VID_Hw_Int_Proc fields in the
VPICD_IRQ_Descriptor structure must be set before calling this service.

Return Value

If the carry flag is clear, the EAX register contains the handle for the virtual IRQ. This
handle is used for all subsequent communication with the virtual PIC device.

The carry flag is set to indicate an error such as the IRQ has already been virtualized or
the IRQ number is not valid.

Comments

The IRQ can be shared by up to 32 virtual devices if every virtual device specifies the
VPICD_Opt_Can_Share value in the VID_Options field of the VPICD_IRQ_Descriptor
structure.

Uses

EAX, Flags

See Also

VPICD_Force_Default_Behavior

include vpicd.inc

mov
mov
call

eax, IRQHand
ebx, VM
VID_EOI Proc

IRQ handle
current VM handle

The VID_EOI_Proc procedure handles the end of an interrupt. The system calls this
procedure whenever a hardware interrupt handler in the virtual machine issues an EOI.
The procedure typically calls the VPICD_Clear_lot_Request and VPICD_Phys_EOI
services to clear the virtual interrupt and end the physical interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable
interrupts if necessary.

Parameters

IRQHand

Specifies the handle for the interrupt request.

VM

Specifies the handle of the current virtual machine.

Return Value

This procedure has no return value.

Comments

This procedure is typically used by a virtual device, such as the virtual mouse device, that
lets a corresponding MS-DOS driver process hardware interrupts. The virtual device
reflects the interrupt to the virtual machine that owns the mouse. The MS-DOS driver
services the interrupt and issues issues an EOI. At this point, the system calls the
VID_EOI_Proc procedure.

This procedure may modify EAX, EBX, ECX, EDX, ESI, and Flags.

See Also

VPICD_Clear_lot_Request, VPICD_Phys_EOI

include vpicd.inc

mov eax, IRQHand IRQ handle
mov ebx, VMId current VM handle
call VID_Hw_Int_Proc

jc not_handled carry set if interrupt not handled

The VID_Hw_Int_Proc procedure handles hardware interrupts for a virtual device. The
system calls the procedure whenever a hardware interrupt occurs. Typically,
VID_Hw_Int_Proc services the physical device, calls the VPICD_Phys_EOI service to
end the physical interrupt, and sets the virtual IRQ request for a specific virtual machine.

The system disables interrupts before calling this procedure. The procedure can re-enable
interrupts if necessary.

Parameters

IRQHand

Specifies the handle identifying the interrupt request.

VMld

Specifies the handle identifying the current virtual machine.

Return Value

The procedure clears the carry flag if it processed the interrupt. If the IRQ is sharable, the
procedure can direct the system to pass the interrupt to the next handler by setting the
carry flag. In this case, it must not process the interrupt.

Comments

The VMM services the procedure is allowed to call is limited. If processing the interrupt
requires use of restricted services, this procedure should use the
Schedule_Call_Global_Event service to schedule an event that performs the additional
processing.

This procedure may modify EAX, EBX, ECX, EDX, ESI, and Flags.

This procedure must return using the ret instruction, not an iret instruction.

include vpicd.inc

clc
cmp
jz
stc

[TimeOut],O
no_timeout

carry set if interrupt timed-out

no_timeout:
mov eax, IRQHand
mov ebx, VM
call VID IRET Proc

IRQ handle
current VM handle

The VID_lRET_Proc procedure handles attempts by a virtual machine to return from an
interrupt. The system c~lls this procedure whenever a virtual machine execut~s an iret
instruction or whenever a time-out occurs for a simulated interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable
interrupts if necessary.

Parameters

IRQHand

Specifies the handle identifying the interrupt request.

VM

Specifies the handle identifying the current virtual machine.

Return V~lue

This procedure has no return value.

Comments

This procedure is useful for devices that must simulate large numbers of interrupts in a
short period of time. For example, the virtual COM device simulates an interrupt, allows
one charact~r to be read from the COM port, and waits for the virtual machine to execute
an iret instruction before putting more data into the virtual COM receive buffer.

This procedure may modify EAX, EBX, ECX, EDX, ESI, and Flags.

include vpicd.inc

eax, IRGHand
ebx, WId
ecx, Mask

mov
mov
mov

call

IRQ handle
current VM handle
zero if unmasking IRQ,

, nonzero if masking
VID_Mask_Change_Proc

The VID_Mask_Change_Proc procedure processes attempts to mask or unmask the
specified IRQ. The system calls this procedure whenever a virtual machine attempts to
mask or unmask an interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable
interrupts if necessary.

Parameters

IRQHand

Specifies the handle for the interrupt request.

VMld

Specifies the handle of the current virtual machine.

Mask

Specifies whether the IRQ is being masked or unmasked. This parameter is nonzero if
the IRQ is being masked, and is zero if it is being masked.

Return Value

This procedure has no return value.

Comments

A virtual device typically uses this procedure to detect contention for a device. The
default interrupt routines use this callback to detect conflicts with nonglobal interrupts.

This procedure may modify EAX, EBX, ECX, EDX, ESI, and Flags.

include vpicd.inc

mov eax, IRQHand IRQ handle

mov ebx, VM ; current VM handle
call VID_Virt_Int_Proc

The VID_Virt_Int_Proc procedure handles virtual interrupts for a virtual device. The
system calls the procedure whenever a simulated interrupt occurs. The procedure is useful
for implementing critical sections around a simulated hardware interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable
interrupts if necessary.

Parameters

IRQHand

Specifies the handle identifying the interrupt request.

VM

Specifies the handle identifying the current virtual machine.

Return Value

This procedure has no return value.

Comments

A virtual device requests a virtual interrupt by using the VPICD_Set_Int_Request
service. Once set, the system simulates the interrupt at a convenient point in time. The
call to this procedure signals that the simulated interrupt is underway and can no longer be
canceled using the VPICD_Clear_Int_Request service.

A virtual device that uses this procedure usually also uses the VID_Virt_IRET_Proc
procedure to detect the end of the simulated interrupt.

This procedure may modify EAX, EBX, ECX, EDX, ESI, and Flags.

See Also

VID_IRET_Proc

VPICD Structure Reference

include bimodint.inc

Bimodal_Int_Struc
BIS_IRQ_Number
BIS_VM_ID
BIS_Next
BIS_Reservedl
BIS_Reserved2
BIS_Reserved3
BIS_Reserved4
BIS_Flags
BIS_Mode
BIS_Entry
BIS_Control_Proc

BIS_User_Mode_API
BIS_Super_Mode_API
BIS_User_Mode_CS
BIS_User_Mode_DS
BIS_Super_Mode_CS
BIS_Super_Mode_DS
BIS_Descriptor_Count

Bimodal_Int_Struc

STRUC
dw
dw
dd
dd
dd
dd
dd
dd
dw
dw
dw
dw
dd
dd
dw
dw
dw
dw
dw

ENDS

?
o
?
?
?
?
?
o
o
?
?
?
?
?
?
?
?
?
?

The Bimodal_Int_Struc structure contains information for a bimodal interrupt.

Members

BIS_IRQ_Number

Specifies the IRQ number.

BIS_VM_ID

Specifies the handle identifying the virtual machine; this field is used by the virtual
PIC device.

BIS_Next

Points to the next Bimodal_Int_Struc structure in this chain.

HIS_Reserved]

Reserved for IRQ handle; this field is used by the virtual PIC device.

BIS_Reserved2

Reserved for BIS address; this field is used by the virtual PIC device.

BIS_Reserved3

Reserved.

BIS_Reserved4

Reserved.

BIS_Flags

Specifies the bimodal interrupt flags. It must be O.

BIS_Mode

Specifies user or supervisor mode. It is 0 for user mode; 4 for supervisor mode.

BIS_Entry

Specifies the offset to the interrupt service routine for this interrupt.

BIS_Control_Proc

Specifies the offset to the control procedure for this interrupt.

BIS_User_Mode_API

Points to the user-mode API procedure for this interrupt. The procedure must check
for and carry out the following functions:

Function Description

BIH_API_EOI

BIH_API_Mask

BIH_API_Unmask

BIH_API_Get_Mask

BIH_API_Get_IRR

BIH_API_Get_ISR

BIH_API_Call_Back

End interrupt.

Mask the physical IRQ.

Unmask the physical IRQ.

Retrieve the mask state of the physical IRQ.

Retrieve the set state of the physical IRQ.

Retrieve service state of the physical IRQ.

Calls specified callback procedure when given virtual
machine runs.

BIS_Super_Mode_API

Points to the supervisor-mode API procedure for this interrupt; this field is set by the
virtual PIC device.

BIS_User_Mode_CS

Specifies the selector for the user-mode code segment for the interrupt handler.

BIS_User_Mode_DS

Specifies the selector for the user-mode data segment for the interrupt handler.

BIS_Super_Mode_CS

Specifies the selector for the supervisor-mode code segment for the interrupt handler;
this field is set by the virtual PIC device.

BIS_Super_Mode_DS

Specifies the selector for the supervisor-mode data segment for the interrupt handler;
this field is set by the virtual PIC device.

BIS_Descriptor_Count

Specifies the number of additional EBIS_Sel_Struc structures immediately following
this structure.

See Also

VPICD_Install_Handler, VPICD_Remove_Handler

include bimodint.inc

EBIS_Sel_Struc STRUC
EBIS_User_Mode_Se1 dw ?

dw ?
EBIS_Super_Mode_Sel dw ?

EBIS Sel Struc ENDS

The EBIS_Sel_Struc structure contains user- and supervisor-mode selectors for extra
segments used by a bimodal interrupt handler.

Members

EBIS_User_Mode_Sel

Specifies an user-mode selector for an extra segment.

EBIS_Super_Mode_Sel

Specifies a supervisor-mode selector for an extra segment; this field is used by the
virtual PIC device.

606 VPICD_IRQ_Descriptor

VPICD_IRQ_Descriptor

VPICD_IRQ_Descriptor STRUC
VID_IRQ_Number dw?
VID_Options dw 0
VID_Hw_Int_Proc dd?
VID_Virt_Int_Proc dd 0
VID_EOI_Proc dd 0
VID_Mask_Change_Proc dd 0
VID_IRET_Proc dd 0
VID IRET Time Out dd 500

VPICD_IRQ_Descriptor ENDS

The VPICD_IRQ_Descriptor structure contains information about a virtualized IRQ.

Members

VID_IRQ_Number

Specifies the number of the IRQ to virtualize.

VID_Options

Specifies the options for virtualizing the IRQ. It can be a combination of the
following values:

Value Meaning

VPICD_Opt_Read_Hw_IRR Reads the hardware interrupt register.

VPICD_Opt_Can_Share Virtual IRQ can be shared.

VID_Hw_Int_Proc

Points to the callback procedure that handles hardware interrupts for this IRQ.

VID_Virt_Int_Proc

Points to the callback procedure that handles virtual interrupts for this IRQ.

VID_EOI_Proc

Points to the callback procedure that handles end-of-interrupt commands for this IRQ.

VID_Mask_Change_Proc

Points to the callback procedure that handles changes to the IRQ mask for this IRQ.

VID_IRET_Proc

Points to the callback procedure that handles iret instructions for this IRQ.

VID_IRET_Time_Out

Specifies the maximum amount of time in milliseconds that the virtual PIC device
allows before the time-out occurs.

Comments

Time-outs are very important to prevent 386 enhanced mode Windows from hanging
while simulating a hardware interrupt.

VTD API Reference

include vtd.inc

The VTD_Begin_Min_Int_Period service is used by virtual devices to ensure a
minimum accuracy for system timing. When this service is called, if the interrupt period
specified is lower than the current timer interrupt frequency, the interrupt period will be
set to the new frequency.

Parameters

EAX

Specifies the desired interrupt period.

Return Value

If carry clear, the interrupt period is set. Otherwise, the specified interrupt period is not
valid

Comments

Until a matching call to the VTD_End_Min_Int_Period service is made, the timer
interrupt frequency is guaranteed to never be slower than the value specified.

A virtual device should call this service only once before calling
VTD_End_Min_Int_Period.

Typically the Begin_Min_Int_Period and End_Min_Int_Period services are used by
devices such as execution profilers that need extremely accurate timing. VMM system
time out services rely on the VTD to keep time. Therefore, more frequent the timer
interrupts, will allow the time-out services to be more accurate.

Fast timer interrupt periods can be very, very expensive in terms of total system
performance. For example, on some machines a timer interrupt of 1 millisecond will
degrade total machine throughput by 10% and disk I/O by up to 50%.

Uses

Flags

include vtd.inc

VxDcall VTD_Disable_Trapping

The VTD_Disable_Trapping service forces the VTD to stop I/O trapping on the timer
ports for a specified virtual macpine. The VTD_Enable_Trapping service must be called
once for every call made to this service.

Parameters

EBX

Specifies a virtual machine handle.

Return Value

This service has no return value.

Comments

It is sometimes necessary to temporarily disable I/O trapping for virtual machine code that
reads the timer in extremely tight timing loops. A good example is the hard disk BIOS
code that reads the ports hundreds of times per disk transfer. The overhead of servicing
the I/O traps would cause disk performance to slow to a crawl.

If this service is called N times, then VTD_Enable_Trapping must also be called N times
before trapping is re-enabled. This allows nested calls to this service by more than one
virtual device.

Uses

Flags

include vtd.inc

VxDcall VTD Enable Trapping

The VTD_Enable_Trapping service must be called to re-enable timer I/O port trapping
after calling the VTD_Disable_Trapping service. This service must be made once for
every call to VTD_Disable_Trapping. Only when every disable call has been matched by
a call to this service will port trapping be re-enabled.

Parameters

EBX

Specifies a virtual machine handle.

Return Value

This service has no return value.

Uses

Flags

include vtd.inc

The VTD_End_Min_Int_Period service allows a device to remove a timer interrupt
period that it set earlier through the VTD_Begin_Mio_Iot_Period service.

Parameters

EAX

Specifies a value passed earlier to VTD_Begio_Mio_Iot_Period.

Return Value

If carry flag is clear, the interrupt period request was removed successfully. Otherwise,
the specified interrupt period is not valid.

Uses

Flags

See Also

VTD_Begio_Mio_Iot_Period

include vtd.inc

The VTD_Get_Interrupt_Period service returns the current timer interrupt frequency.

Parameters

This service has no parameters.

Return Value

The EAX register specifies the length of time between ticks in milliseconds.

Uses

Flags

include vtd.inc

The VTD_Get_Real_Time service returns the number of real time clock ticks that have
elapsed since the current Windows session was started.

Parameters

This service has no parameters.

Return Value

The EDX:EAX register pair contains the current system time based on an unit of 0.8
microseconds.

The EDX register contains the high doubleword of the time and EAX the low doubleword.

Uses

EAX, EDX, Flags

include vtd.inc

VxDcall VTD Get version

The VTD_Get_Version service returns the version number and the range of interrupt
periods allowed by this virtual device.

Parameters

This service has no parameters.

Return Value

The AH register contains the major version number.

The AL register contains the minor version number.

The EBX register contains the fastest possible interrupt period in milliseconds.

The ECX register contains the slowest possible interrupt period in milliseconds.

The carry is flag clear.

Uses

EAX, EBX, ECX, Flags

VTD_Update_System_Clock

include vtd.inc

VxDcall VTD Update System Clock

The VTD_Update_System_Clock service should only be called by the VMM. Virtual
devices should call the Get_System_Time service. The VMM calls this service to update
the system clock.

Parameters

This service has no parameters.

Return Value

This service has no return value.

Uses

Flags

Appendix B

Int 2Fh Reference

This appendix contains a listing of the Microsoft Windows Interrupt 2Fh services and
notifications.1

Windows Interrupt 2Fh Services and Notifications

The Microsoft Windows Interrupt 2Fh services and notifications help Windows device
drivers and related MS-DOS device drivers and terminate-and-stay-resident (TSR)
programs manage their operations in the multitasking environment of Windows. The
services let drivers carry out actions such as relinquishing the CPU time slice. The
notifications let drivers respond to events, such as starting up Windows, that Windows
broadcasts using Interrupt 2Fh.

Although the Interrupt 2Fh services and notifications are primarily available under 386
enhanced-mode Windows version 3.x, some services are also available in standard-mode
Windows.

About the Services and Notifications

The Interrupt02Fh services are a set of functions that MS-DOS drivers and TSRs call to
direct Windows to carry out specific actions. The notifications are a set of functions that
Windows calls to notify drivers nd programs of Windows-related events. Although these
functions were initially designed for use by MS-DOS drivers and TSRs, some Windows
device drivers, such as display drivers and grabbers, also use them to manage the
multitasking features of Windows.

1Reprinted with permission of Microsoft Corporation.

613

614 Interrupt 2Fh Function 1600h

A driver can call the service functions using the MS-DOS multiplex interrupt, Interrupt
2Fh. The driver sets one or more registers to specified values, sets the AX register to the
desired function number, and issues the interrupt using the int instruction.

A driver can receive notifications by installing its own interrupt-handling routine in the
Interrupt 2Fh interrupt chain. Once the interrupt handler is installed, the driver checks the
AX register on each interrupt for function numbers that match the notifications. When the
driver matches a notification, it can carry out any related actions.

Service Functions

The service functions let drivers and TSRs obtain the Windows version number, obtain the
current virtual-machine (VM) identifier, set critical sections, and retrieve the addresses of
the entry points for virtual-device service functions. There are the following service
functions:

• Get Enhanced-Mode Windows Installed State (Interrupt 2Fh Function 1600h)

• Get Enhanced-Mode Windows Entry-Point Address (Interrupt 2Fh Function 1602h)

• Release Current VM Time-Slice (Interrupt 2Fh Function 1680h)

• Begin Critical Section (Interrupt 2Fh Function 1681h)

• End Critical Section (Interrupt 2Fh Function 1682h)

• Get Current Virtual Machine ID (Interrupt 2Fh Function 1683h)

• Get Device Entry Point Address (Interrupt 2Fh Function 1684h)

• Switch VMs and CallBack (Interrupt 2Fh Function 1685h)

• Detect Interrupt 31h Services (Interrupt 2Fh Function 1686h)

The 386 enhanced-mode Windows display grabber uses the Get Device Entry Point
Address (Interrupt 2Fh Function 1684h) to retrieve the entry point address for the virtual­
display device (VDD). The grabber uses this address to call VDD service functions to
carry out capturing display contexts and updating tasks.

Both standard- and 386 enhanced-mode Windows issues Windows Initialization
Notification (Interrupt 2Fh Function 1605h) and Windows Termination Notification
(Interrupt 2Fh Function 1606h). These notifications gives MS-DOS drivers and TSR
programs in either Windows environment the opportunity to free extended memory before
Windows starts, and reallocate the memory when Windows stops.

Standard- and 386 enhanced-mode Windows also support Detect Interrupt 31h Services.
Supporting these services lets MS-DOS drivers and TSR programs check for and use these
service functions.

Interrupt 2Fh Function 1600h 615

If the user starts a TSR program after Windows starts, the TSR program can always use
Get Enhanced-Mode Windows Installed State (Interrupt 2Fh Function 1600h) to determine
whether Windows is running.

Notification Functions

Windows broadcasts the notification functions by setting registers and issuing Interrupt
2Fh. Drivers and TSRs use the notifications to load 386 enhanced-mode Windows
installable devices, free extended memory, and enable or disable various device services or
features. There are the following notification functions:

• Windows Initialization Notification (Interrupt 2Fh Function 1605)

• Windows Termination Notification (Interrupt 2Fh Function 1606h)

• Device CallOut (Interrupt 2Fh Function 1607h)

• Windows Initialization Complete Notification (Interrupt 2Fh Function 1608h)

• Windows Begin Exit (Interrupt 2Fh Function 1609h)

MS-DOS device drivers, such as network drivers, use Windows Initialization Notification
to direct 386 enhanced-mode Windows to load a protected-mode installable device that
provides 32-bit support for the real-mode driver while 386 enhanced-mode Windows runs.
Other MS-DOS drivers (for example, disk-cache drivers) use the same notification to free
any extended memory before Windows starts. The TSRs also use Windows Termination
Notification to reclaim the extended memory when Windows stops.

If an MS-DOS driver or TSR programs installs a corresponding virtual device, that device
can send notifications of its own to the driver or TSR using Device Call Out.

Critical Section Handling

Occasionally, an MS-DOS driver or TSR program may need to run for a period of time
that may exceed its regular time slice. In such cases, the driver can create a critical section
that prevents Windows from switching the CPU away from the driver or program.

A driver starts a critical section by using Begin Critical Section (Interrupt 2Fh Function
1681h). While the critical section is in effect, only device interrupts can divert execution
from the driver. A driver ends the critical section by using End Critical Section (Interrupt
2Fh Function 1682h). In general, a driver should end the critical section as soon as possible
to ensure that all drivers and programs in the system receive CPU time. If a driver starts a
critical section n times, it must end the critical section n times before the critical section is
actually released.

616 Interrupt 2Fh Function 1600h

Ordinarily, Windows prevents rescheduling of the current virtual machine if the one-byte,
MS-DOS InDOS flag is nonzero. One exception is when a driver or program issues the
MS-DOS Idle interrupt (Interrupt 28h). In such cases, Windows may reschedule regardless
of the value of the InDOS flag. The only way to prevent this rescheduling is to start a
critical section using Begin Critical Section. While in a critical section, Windows
disregards Interrupt 28h.

In previous versions of Windows (for example, Windows/386(TM) version 2.x), service
functions to support critical sections were not supplied. Drivers and programs achieved a
similar effect by incrementing and decrementing the MS-DOS InDOS flag. Although this
method was acceptable for previous versions of Windows, drivers should not use this
method in versions of Windows that supply Begin Critical Section and End Critical Section
(Interrupt 2Fh Function 1682h).

Drivers and programs that use the InDOS flag method retrieve the address of the InDOS
flag using Get InDOS Flag Address (Interrupt 21h Function 34h). The function returns the
address in the ES:BX register pair. When using this method, drivers and programs check
the flag value before decrementing because some error conditions (such as when the user
types cTRt+C) set the InDOS flag to zero regardless of its current value. Decrementing
the InDOS flag to a number less than zero is a serious error.

Releasing the Time Slice

MS-DOS applications can also use the Interrupt 2Fh service functions. In particular,
applications can use Release Cuttent VM Time Slice (Interrupt 2FJ:1 Function 1680h) to
release the current virtual machine's time slice. An MS-DOS application typically uses this
function when waiting for user input. This function helps 386 enhanced-mode Windows
multitask more efficiently by letting it reschedule the CPU for other work immediately,
rather than waiting for the idle application to spend its entire time slice.

Virtual.Display Device Services and Notifications

The virtual display device for 386 enhanced-mode Windows also provides Interrupt 2Fh
service and notification functions. Windows display drivers use these functions to check
for and manage screen switching. There are the following functions:

• Enable VM-Assisted Save/Restore (Interrupt 2Fh Function 4000h)

• Notify Background Switch (Interrupt 2Fh Function 4001h)

• Notify Foreground Switch (Interrupt 2Fh Function 4002h)

• Enter Critical Section (Interrupt 2Fh Function 4003h)

• Exit Critical Section (Interrupt 2Fh Function 4004h)

Interrupt 2Fh Function 1600h 617

• Save Video Register State (Interrupt 2Fh Function 4005h)

• Restore Video Register State (Interrupt 2Fh Function 4006h)

• Disable VM-Assisted SavelRestore (Interrupt 2Fh Function 4007h)

For more information about using these functions, see the Microsoft Windows Device
Driver Development Kit, Display Drivers.

Service and Notification Function Reference
The following is an alphabetical listing of the Interrupt 2Fh service and notification
functions.

Interrupt 2Fh Function 1600h
mov
int

test
jz

ax, 1600h
2Fh

aI, 7Fh
No_EM_Win

Get Enhanced-Mode Windows Installed State
multiplex interrupt

386 enhanced-mode Windows not running

Get Enhanced-Mode Windows Installed State (Interrupt 2Fh Function 1600h) etermines
whether 386 enhanced-mode Windows is running. If a program intends to use a 386
enhanced-mode Windows function, it must first use this function to make sure that 386
enhanced-mode Windows is running.

This function is valid under all versions of 386 enhanced-mode Windows.

Parameters

This function has no parameters.

Return Value

The return value is OOh or 80h in the AL register if 386 enhanced-mode Windows is not
running. If 386 enhanced-mode Windows is running, the return value depends on the
version of Windows. Windows/386 version 2.x returns Olh or OFFh. Windows version 3.x
returns the major version number in the AL register, and the minor version number in the
AH register.

Example

The following example determines whether 386 enhanced-mode Windows is running,
then determines which version is running.

mov ax, 1600h
int 2Fh
test aI, 7Fh

618 Interrupt 2Fh Function 1602h

jz

cmp
je
cmp
je

al, 1
Ver_2x
al, -1
Ver_2x

386 enhanced-mode Windows not running

Windows/386 version 2.x running

Windows/386 version 2.x running

mov byte ptr [MajorVer], al
mov byte ptr [MinorVer], ah

Interrupt 2Fh Function 1602h
mov ax, 1602h ; Get Enhanced-Mode Windows Entry Point
int 2Fh i multiplex interrupt
mov word ptr [WinAddr], di
mov word ptr [WinAddr+2], es ; es:di contains entry-point

Get Enhanced-Mode Windows Entry Point (Interrupt 2Fh Function 1602h) returns the
address of the 386 enhanced-mode Windows entry-point procedure. Applications can call
this procedure to direct Windows/386 version 2.x to carry out specific actions.

This function applies to Windows/386 version 2.x only. It is provided under Windows
version 3.x for compatibility reasons.

Parameters

This function has no parameters.

Return Value

The return value contains the Windows entry-point address in the ES:DI registers.

Comments

Although the Windows entry-point address is the same for every virtual machine, an
application can call this function any number of times.

To direct Windows to carry out a specific action, the application sets the AX register to
OOOOh. This function retrieves the current VM identifier and copies the identifier to the
BX register.

Additionally, the application must place a return address in the ES:DI register pair and use
the jmp instruction to transfer control to the Windows entry point.

Example

The following example shows how to obtain the current VM identifier:

mov di, cs
moves, di
mov di, OFFSET Win_Return
xor ax, ax i Get Current VM Identifier
jmp [WinAddr]

Interrupt 2Fh Function 1605h 619

Win_Return:
mov [VM Id], bx bx contains the current VM identifier

See Also

Interrupt 2Fh Function 1683h Get Current Virtual Machine ID

Interrupt 2Fh Function 1605h
xor bx, bx
mov es, bx es:bx contains OOOOh:OOOOh
mov cx, OOOOh
mov dx, [Flags] bit 0 clear if 386 enhanced mode,

set if standard mode

mov di, [Ver_Num] major/minor version numbers
(in high/low bytes)

xor si, si
mov ds, si ds:si contains OOOOh:OOOOh

mov ax, 160Sh Windows Initialization Notification
int 2fh multiplex interrupt

cmp cx, 0
jne no initialize if nonzero, don't continue init

Windows Initialization Notification (Interrupt 2Fh Function 1605h) notifies MS-DOS
device drivers and TSRs that standard- or 386 enhanced-mode Windows is starting.
Windows calls· this function as it starts allowing MS-DOS device drivers and TSRs that
monitor Interrupt 2Fh the opportunity to prepare for running in the Windows environment.

Parameters

Flags

Specifies whether standard- or 386 enhanced-mode Windows is initializing. 386
enhanced-mode Windows sets bit 0 to 0; standard-mode Windows sets bit 0 to 1.
Only bit 0 is used; all other bits reserved and undefined.

Ver_Num

Specifies the version number of Windows. The major version number is in the high­
order byte, the minor version number in low-order byte.

Return Value

The return value is 0 in the CX register if all MS-DOS device drivers and TSRs
monitoring Interrupt 2Fh can run in the Windows environment, and Windows can proceed
with initialization. Otherwise, the CX register is nonzero and Windows must terminate.

620 Interrupt 2Fh Function 1605h

Comments

Any MS-DOS device driver or TSR that either cannot run in the Windows environment,
or must adapt its operation when in the Windows environment should add itself to the
Interrupt 2Fh chain and watch for this function.

If the device driver or TSR cannot run in the Windows environment, it should set the CX
register to a nonzero value, display a message informing the user of its incompatibility
with Windows, and return. Windows does not print a message of its own. Instead, it calls
Windows Termination Notification (Interrupt 2Fh Function 1606h) and returns to MS­
DOS.

If the device driver or TSR can run in the Windows environment, it should do the
following:

1. Call the next device driver or TSR in the Interrupt 2Fh chain to allow all device
drivers and TSRs in the chain an opportunity to respond to this function.

2. Upon return from the interrupt chain, carry out the following actions:

• Free any extended memory. The device driver or TSR takes this action only if it
has previously allocated extended memory using the Extended Memory
Specification (XMS) interface.

• Switch the processor to real mode, or set the DS:SI register pair to the address of
an EnablelDisable Virtual 8086 Mode callback function. The device driver or
TSR takes this action only if it has previously switched the processor to virtual
8086 mode. If standard-mode Windows is starting, the device driver or TSR must
switch the processor to real mode--the callback function is permitted for 386
enhanced-mode Windows only.

• Initialize a Win386_Startup_Info_Struc structure, and copy the address of the
structure to the ES:BX register pair. The device driver or TSR carries out this
action only if 386 enhanced-mode Windows is starting.

3. Return (using the iret instruction) but without changing the CX register.

For more information about these procedures, see the following Comments section.

The device driver or TSR must preserve all registers and restore the original values before
returning. The only exceptions to this rule are changes made to the BX, CX, DS, ES, and
SI registers as a result of following the previous procedure.

EnablelDisable Virtual 8086 Mode CallBack Function

Some device drivers and TSRs, such as expanded memory emulators, switch the processor
to virtual 8086 mode. Because 386 enhanced-mode Windows cannot start successfully
while the processor is in this mode, any device driver or TSR that switches to virtual 8086

Interrupt 2Fh Function 1605h 621

mode must either switch back to real mode or supply the address of a callback function
that can switch between real and virtual 8086 modes.

Windows uses the callback function to disable virtual 8086 mode before Windows itself
enters protected mode. Windows calls the callback function again to enable virtual 8086
mode after Windows exits protected mode.

Windows calls the callback function using a far call instruction, and it specifies which
action to take by setting the AX register to 0 or 1.

To disable virtual 8086 mode, Windows sets the AX register to 0, disables interrupts, and
calls the callback function. The function should switch the processor to real mode, clear
the carry flag to indicate success, and return. If an error occurs, the function sets the carry
flag and returns. Windows checks the carry flag and terminates if it is set.

To enable virtual 8086 mode, Windows set the AX register to 1, disables interrupts, and
calls the callback function. The function should switch the processor to virtual 8086
mode, clear the carry flag, and return. If an error occurs, the function sets the carry flag
and returns. However, Windows ignores the carry flag, so if an error occurs no action is
taken and the processor is left in real mode.

Whether an error occurs when enabling or disabling virtual 8086 mode, it is up to the
callback function to display any error message to the user. Also, the callback function
must not enable interrupts unless an error occurs, and the function sets the carry flag.

A device driver or TSR supplies a callback function by copying the address of the
function to the DS:SI register pair when it processes the Windows Initialization
Notification (Interrupt 2Fh Function 1605h). Windows permits only one callback
function, so the device driver or TSR should first check to make sure that the DS and SI
registers are both zero. If they are nonzero, the device driver or TSR should set the ex
register to a nonzero value and return, directing Windows to terminate without starting.

Initializing a Win386_Startup_Info_Struc Structure

An MS-DOS device driver or TSR initializes a Win386_Startup_Info_Struc structure to
direct 386 enhanced-mode Windows to load the virtual device and to reserve the instance
data the device driver or TSR needs to operate in the Windows environment. The device
driver or TSR is also responsible for establishing a chain of startup structures by copying
the contents of the ES:BX register pair to the Next_Dev_Ptr member. It is assumed that
any other device driver or TSR in the Interrupt 2Fh chain will have set the ES:BX register
pair to the address of its own startup structure prior to returning.

Any device driver or TSR can use a Windows virtual device to help support its operation
in the 386 enhanced-mode Windows environinent. To specify a virtual device, the device
driver or TSR sets the SIS_Virt_Dev_File_Ptr member to the address of the virtual
device's filename. The device file is assumed to be in the Windows SYSTEM directory.

622 Interrupt 2Fh Function 1606h

The device driver or TSR can also set the SIS_Reference_Data member to specify
additional data to be passed to the virtual device when loaded.

Any device driver or TSR can reserve instance data for itself. Instance data is one or more
blocks of memory used by the device or TSR, and managed by Windows. For device
drivers or TSRs loaded before 386 enhanced-mode Windows starts, reserving instance
data allows the device driver or TSR to keep separate data for each virtual machine.
Whenever Windows switches virtual machines, it saves the previous VMs instance data
and loads the current VMs instance data. If a device driver or TSR does not specify
instance data, the same data is used for all virtual machines.

A device driver or TSR reserves instance data by appending an array of
Instance_Item_Struc structures to the Win386_Startup_Info_Struc structure. The last
structure in the array must be set to zero. Each Instance_Item_Struc structure specifies
the starting address and size (in bytes) of an instance data block.

The device driver or TSR must copy the address of its startup structure to the ES:BX
register pair before returning.

See Also

Interrupt 2Fh Function 1606h Windows Termination Notification

Interrupt 2Fh Function 1606h
mov

mov
int

dx, [Flags]

ax, 1606h
2fh

bit 0 clear if 386 enhanced-mode,
set if standard-mode

Windows Termination Notification
multiplex interrupt

Windows Termination Notification (Interrupt 2Fh Function 1606h) notifies MS-DOS
device drivers and TSRs that standard- or 386 enhanced-mode Windows is terminating.
Windows calls this function as it terminates allowing MS-DOS device drivers and TSRs
that· monitor Interrupt 2Fh the opportunity to ,prepare for leaving the Windows
environment.

Parameters

Flags

Specifies whether standard- or 386 enhanced-mode Windows is terminating. 386
enhanced-mode Windows sets bit 0 to 0; standard-mode Windows sets bit 0 to 1.
Only bit 0 is used; all other bits reserved and undefined.

Return Value

This function has no return value.

Interrupt 2Fh Function 1607h 623

Comments

Windows calls this function when the processor is in real mode.

See Also

Interrupt 2Fh Function 1605h Windows Initialization Notification

Interrupt 2Fh Function 1607h
mov

mov
int

bx, [DeviceID]

ax, 1607h
2fh

device identifier

Device CallOut
Multiplex Interrupt

Device Call Out (Interrupt 2Fh Function 1607h) directs an MS-DOS device driver or TSR
to provide information to the calling virtual device. Although the BX register specifies a
device identifier, other registers may be used to specify the action to take.

Parameters

DeviceID

Specifies the device identifier for a virtual device.

Return Value

The return value depends on the specific action requested.

Comments

This function typically is used by a virtual device to communicate with the driver or TSR
that explicitly loaded the virtual device. It is up to the virtual device to supply a correct
device identifier and any other parameters that specify what action to take. It is up to the
driver or TSR to monitor Interrupt 2Fh, and respond to the function appropriately.

A virtual device can call this function at any time, either in real mode or after 386
enhanced-mode Windows has started.

See Also

Interrupt 2Fh Function 1684h Get Device Entry Point Address

Interrupt 2Fh Function 1608h
mov ax, 1608h ; Windows Init Complete Notification
int 2Fh ; multiplex interrupt

624 Interrupt 2Fh Function 1609h

Windows Initialization Complete Notification (Interrupt 2Fh Function 1608h) notifies
MS-DOS device drivers and TSRs that 386 enhanced-mode Windows has completed its
initialization. Windows calls this function after it has installed and initialized all virtual
devices allowing MS-DOS device drivers and TSRs that monitor Interrupt 2Fh the
opportunity to identify instance data and perform other functions that are restricted to 386
enhanced-mode Windows initialization.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

When Windows calls this function, all virtual-device initialization is complete, so a
device driver or TSR can call virtual-device entry points.

Windows does not necessarily call this function immediately after calling Windows
Initialization Notification (Interrupt 2Fh Function 1605h). In particular, virtual devices
may call Device Call Out (Interrupt 2Fh Function 1607h) or other functions prior to
Windows calling this function. In such cases, any MS-DOS device driver or TSR
responding to these calls is responsible for detecting and properly handling these calls.

See Also

Interrupt 2Fh Function 1605h Windows Initialization Notification

Interrupt 2Fh Function 1609h
mov ax, 1609h ; Windows Begin Exit
int 2fh ; multiplex interrupt

Windows Begin Exit (Interrupt 2Fh Function 1609h) notifies MS-DOS device drivers and
TSRs that Windows is about to terminate. Windows calls this function when it first begins
termination to allow a device driver or TSR to prepare for a return to a non-Windows
environment.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Interrupt 2Fh Function 1680h 625

Comments

Windows calls this function at the start of the Sys_VM_Terminate device control call. All
virtual devices still exist, so a device driver or TSR can call a virtual device's entry point
if necessary.

Windows does not call this function in the event of a fatal system crash.

Windows may execute real-mode code after this function has been called and before 386
enhanced-mode Windows returns to real mode. It is the responsibility of the device driver
or TSR to detect and properly handle these situations.

Interrupt 2Fh Function 1680h
mav ax, 1680h ; Release Current VM Time-Slice
int 2Fh ; multiplex interrupt

Release Current VM Time-Slice (Interrupt 2Fh Function 1680h) directs Windows to
suspend the time slice of the current VM and start a new time slice for another VM. MS­
DOS programs use this function when they are idle, such as when waiting for user input,
to allow 386 enhanced-mode Windows to run other programs that are not idle.

Parameters

This function has no parameters.

Return Value

The return value is OOh in the AL register if the function is supported. Otherwise, AL is
unchanged (contains 80h).

Comments

Only non-Windows programs should use Release Current VM Time-Slice; Windows
applications should yield by calling the WaitMessage function. A program can call this
function at any time, even when running in environments other than 386 enhanced-mode
Windows environment. If the current environment does not support the function, the
function returns and the program continues execution.

Windows suspends the current VM only if there is another VM scheduled to run. If no
other VM is ready, the function returns to the program and execution continues. A
program should call the function frequently (for example, once during each pass of the
program's idle loop) to give Windows ample opportunity to check for other VMs that are
ready for execution.

Before calling this function, a program should check that the Interrupt 2Fh address is not
zero.

626 Interrupt 2Fh Function 1681 h

Example

The following example checks for for a valid Interrupt 2Fh address, then releases the
current VM time slice:

mov
int

mov
or
jz

ax, 352Fh
21h

ax, es
ax, bx
Skip_Idle_Call

Get Interrupt Vector

es:bx is equal to 0:0

mov ax, 1680h
int 2Fh

Skip Idle Call:

Release Current VM Time-Slice

Interrupt 2Fh Function 1681 h
mov ax, 1681h ; Begin Critical Section
int 2Fh ; multiplex interrupt

Begin Critical Section (Interrupt 2Fh Function 1681h) prevents Windows from switching
execution from the current VM to some other. MS-DOS device drivers and TSRs use this
function to prevent a task-switch from occurring.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

When a virtual machine is in a critical section, no other task will be allowed to run except
to service hardware interrupts. For this reason, the critical section should be released using
End Critical Section (Interrupt 2Fh Function 1682h) as soon as possible.

See Also

Interrupt 2Fh Function 1682h End Critical Section

Interrupt 2Fh Function 1682h
mov ax, 1682h ; End Critical Section
int 2Fh ; multiplex interrupt

Interrupt 2Fh Function 1683h 627

End Critical Section (Interrupt 2Fh Function 1682h) releases the critical section
previously started using Begin Critical Section (Interrupt 2Fh Function 1681h). Every call
to Begin Critical Section must be followed by a matching call to End Critical Section.

Parameters

This function has no parameters.

Return Value

This function has no return value.

See Also

Interrupt 2Fh Function 1681h Begin Critical Section

Interrupt 2Fh Function 1683h
mov ax, 1683h ; Get Current Virtual Machine ID
int 2Fh ; multiplex interrupt

Get Current Virtual Machine ID (Interrupt 2Fh Function 1683h) returns the identifier for
the current virtual machine. MS-DOS device drivers, TSRs, and other programs use this
function to determine which virtual machine is running. This is especially important for
programs that independently manage separate data or execution contexts for separate
virtual machines.

Parameters

This function has no parameters.

Return Value

The return value is the current virtual-machine identifier in the BX register.

Comments

Each virtual machine has a unique, nonzero identifier. Although Windows currently runs
in virtual machine 1, programs should not rely on this. Windows assigns the identifier
when it creates the virtual machine, and releases the identifier when it destroys the virtual
machine. Since Windows may reuse identifiers from previous destroyed virtual machines,
programs should monitor changes to virtual machines to ensure no mismatches.

Interrupt 2Fh Function 1684h
mov

mov

bx, [DeviceID]

ax, 1684h

Device identifier

Get Device Entry Point Address

628 Interrupt 2Fh Function 1684h

int 2Fh ; multiplex interrupt

; es:di contains entry point address

mov word ptr [DevAddr], di
mov word ptr [DevAddr+2], es

Get Device Entry Point Address (Interrupt 2Fh Function 1684h) retrieves the entry point
address for a virtual device's service functions. MS-DOS device drivers or TSRs typically
use this function to communicate with virtual devices they have explicitly loaded.

Parameters

DeviceID

Identifies a virtual device.

Return Value

The return value is the entry-point address contained in the ES:DI register pair if the
function is supported. Otherwise, ES:DI contain zero.

Comments

Any virtual device can provide service functions to be used by MS-DOS programs. For
example, the virtual-display device provides services that the Windows old application
program uses to display MS-DOS programs in a window. It is the responsibility of the
MS-DOS program to provide the appropriate virtual-device identifier. The function
returns a valid address if the virtual device supports the entry point.

MS-DOS programs call the entry point using a far call instruction. The services provided
by the virtual device depend on the device. It is the responsibility of the MS-DOS
program to set registers to values that are appropriate to the specific virtual device.

For versions of Windows prior to version 3.0, the program must set the ES:DI register pair
to zero before calling this function.

Example

The following retrieves the entry point address for the virtual device identified by
My_Device_ID:

xor
mov
mov

di, di
es, di
bx, My_Device_ID

set es:di to zero for version 2.x

mov ax, 1684h
int 2Fh

mov ax, es
or ax, di
jz API Is Not Supported

Interrupt 2Fh Function 1685h 629

Interrupt 2Fh Function 1685h
mov
mov

bx, [VM_Id]
cx, [Flags]

; virtual-machine identifier
; switch conditions

; dx:si contains 32-bit priority boost

mov dx, word ptr [Priority+2]
mov si, word ptr [Priority]

; es:di contains callback function address

moves, seg [CallBack]
mov di, offset [CallBack]

mov ax, 16SSh ; Switch VMs and CallBack
int 2Fh ; multiplex interrupt

Switch VMs and CallBack (Interrupt 2Fh Function 1685h) directs Windows to switch to a
specific virtual machine and begin execution. After Windows switches, it calls the
specified callback function allowing a device driver or TSR to access the data associated
with the specified virtual machine. This function is typically used by MS-DOS device
drivers and TSRs that support networks, and that need to perform functions in a specific
virtual machine.

Parameters

VM_Id

Identifies the virtual machine to switch to.

Flags

Specifies when to switch. This parameter is a combination of the following bit values.

Bit

o
1

Meaning

Set to 1 to wait until interrupts are enabled.

Set to 1 to wait until critical section is released.

All other bits are reserved and must be o.
Priority

Specifies the priority boost for the virtual machine. It can be one of the following
values.

Value

Critical_Section Boost

Meaning

VM priority is boosted by this value when
Begin_Critical_Section is called.

630 Interrupt 2Fh Function 1685h

Time-slice scheduler boosts each VM in turn by this
value to force them to run for their allotted time slice.

Time_Critical_Boost

Reserved_Low_Boost

Time critical operations that should not circumvent the
critical section boost should use this boost.

Used by virtual devices that need an event to be
processed in a timely fashion but that are not
extremely time critical.

Reserved; do not use.

Reserved; do not use.

Events that must be processed even when another VM
is in a critical section should use this boost. For
example, VPICD uses this when simulating hardware
interrupts.

The DX register contains the high-order word, the SI register the low-order word.

CallBack

Points to the callback function.

Return Value

The return value is a cleared carry flag if successful. Otherwise, the function sets the carry
flag and sets the AX register to one of the following error values.

Value Meaning

000lh

0002h

0003h

Comments

Invalid VM ID

Invalid priority boost

Invalid flags

Windows calls the callback function as soon as the conditions specified by the Flags
parameter are met. This may be before or after Switch VMs and CallBack returns.

The callback function can carry out any action, but must save and restore all registers it
modifies. The function must execute an iret instruction to return to Windows. The priority
for the virtual machine remains at the level specified by Priority until the callback
function executes the iret instruction.

See Also

Interrupt 2Fh Function 1605h Windows Initialization Notification

Interrupt 2Fh Function 1686h 631

Interrupt 2Fh Function 1686h
mov ax, 1686h ; Detect Interrupt 31h Services
int 2Fh ; multiplex interrupt

; ax is zero if interrupt 31h services available

or ax,O
jz int31 avail

Detect Interrupt 31h Services (Interrupt 2Fh Function 1686h) determines whether a set of
protected-mode functions are available for use by protected-mode applications.
Applications use the Interrupt 31h services to allocate and manage protected-mode
memory.

Parameters

This function has no parameters.

Return Value

The return value is zero in the AX register if the Interrupt 31h services are available.
Otherwise, the AX register contains a nonzero value.

Comments

Both standard- and 386 enhanced-mode Windows support the Interrupt' 31h services.
Interrupt 31h services are only supported for protected-mode programs.

Virtual-Display Device Function Reference
The following is an alphabetical listing of the Virtual-Display Device (VDD) service
functions.

Interrupt 2Fh Function 4000h
mov ax, 4000h
int 2fh

; Enable VM-Assisted Save/Restore

; al contains the video modes supported while in background

mov [ModesSupported], al

Enable VM-Assisted Save/Restore directs the virtual-display device (VDD) to notify the
virtual machine (VM) application whenever the VDD needs to access the video hardware
registers. The VDD returns a value specifying the number and type of video modes the
VDD supports when the VM application is in the background.

632 Interrupt 2Fh Function 4000h

A VM app~ication calls this function during its initialization.

Parameters

This function has no parameters.

Return Value

Tbe return value is one of the following values, if successful.

Value

OIh

02h

03h

04h

OFFh

Meaning

No modes virtualized in background.

Only text modes virtualized in background.

Only text and single-plane graphics modes virtualized.

Only text, single-plane, and VGA multiplane graphics modes virtualized.

All supported video modes virtualized.

Otherwise, the function returns zero in the AL register if virtualization is not supported.

Comments

When a VM application calls this function, the VDD disables I/O trapping of unreadable
registers. Thereafter, the VDD calls Save Video Register State and Restore Video Register
State (Interrupt 2Fh Functions 4005h and 4006h) if it needs to access the video registers.
The VM application must provide an appropriate interrupt handler to process these
functions.

When an VM application calls this function, the VnD saves the current state of the video
registers. The vnn uses this saved state later to restore video registers before it calls
Notify Foreground Switch and Restore Video Register State (Interrupt 2Fh Functions
4002h and 4006h).

After a VM application calls Enable VM-Assisted SavelRestore, the VDD no longer saves
video memory across screen switches; it becomes the application's responsibility to
completely reinitialize video memory after a Notify Foreground Switch request.

See Also

Interrupt 2Fh Functions 4002h Notify Foreground Switch

Interrupt 2Fh Functions 4005h Save Video Register State

Interrupt 2Fh Functions 4006h Restore Video Register State

Interrupt 2Fh Function 4001 h 633

Interrupt 2Fh Function 4001 h
mov ax, 4001h ; Notify Background Switch
int 2fh

Notify Background Switch notifies a VM application that it is being switched to the
background. The VM application can carry out any actions, but should do so within
lOOOms. This is the amount of time the system waits before switching the application.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

After switching to the background, the application continues to run unless it attempts to
access video memory. If the video adapter is in a video mode that the virtual display
device (VDD) does not support in the background, the VDD freezes the application until
the application can be switched back to the foreground.

VM applications that have called Enable VM-Assisted Save/Restore (Interrupt 2Fh
Function 4000h) should avoid accessing video memory and registers to avoid being
frozen. Applications that have not called Enable VM-Assisted Save/Restore, call access
video memory and registers since the VDD saves theses after this function returns.

See Also

Interrupt 2Fh Function 4000h Enable VM-Assisted SavelRestore

Interrupt 2Fh Function 4002h Notify Foreground Switch

Interrupt 2Fh Function 4002h
mov ax, 4002h
int 2fh

; Notify Foreground Switch

Notify Foreground Switch notifies a VM application that it has been switched to the
foreground and can now access the video memory and registers without being frozen.

The virtual-display device (VDD) calls this function.

Parameters

This function has no parameters.

634 Interrupt 2Fh Function 4003h

Return Value

This function has no return value.

Comments

If the VM application has called Enable VM-Assisted SaveIRestore (Interrupt 2Fh
Function 4000h), VDD restores the video registers to their state prior to the call to Enable
VM-Assisted SaveIRestore; the application is responsible for restoring video memory. If
the VM application has not called Enable VM-Assisted SaveIRestore (Interrupt 2Fh
Function 4000h), the VDD automatically restores both video memory and registers.

Under certain error conditions, the VDD may call this function without calling a
corresponding Notify Background Switch (Interrupt 2Fh Function 4001h).

See Also

Interrupt 2Fh Function 4000h Enable VM-Assisted SaveIRestore

Interrupt 2Fh Function 4001h Notify Background Switch

Interrupt 2Fh Function 4003h
mov ax, 4003h
int 2fh

; Enter critical Section

Enter Critical Section notifies the virtual-display device that the VM application has
entered a critical section and cannot respond to Save Video Register State (Interrupt 2Fh
Function 4005h).

A VM application calls this function when it has started critical section processing.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

After the VM application enters the critical section, the virtual-display device postpones
calling Save Video Register State for up to lOOOms or until the VM application calls Exit
Critical Section (Interrupt 2Fh Function 4004h), whichever comes first.

If time elapses without the VM application calling Exit Critical Section, the virtual­
display device reprograms the video hardware anyway and, when its operation is
complete, calls Notify Foreground Switch (Interrupt 2Fh Function 4002h) in an attempt to
reinitialize the application properly.

Interrupt 2Fh Function 4004h 635

See Also

Interrupt 2Fh Function 4002h Notify Foreground Switch

Interrupt 2Fh Function 4004h Exit Critical Section

Interrupt 2Fh Function 4005h Save Video Register State

Interrupt 2Fh Function 4004h
mov ax, 4004h
int 2fh

; Exit Critical Section

Exit Critical Section notifies the virtual-display device that a VM application has
completed a critical section and can now respond to Save Video Register State (Interrupt
2Fh Function 4005h).

A VM application calls this function when it has completed critical section processing.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

Calls to Exit Critical Section not preceded by a corresponding call to Enter Critical
Section (Interrupt 2Fh Function 4003h) are ignored.

See Also

Interrupt 2Fh Function 4003h Enter Critical Section

Interrupt 2Fh Function 4005h Save Video Register State

Interrupt 2Fh Function 4005h
mov ax, 400Sh
int 2fh

; Save Video Register State

The Save Video Register State function notifies VM applications that the virtual-display
device (VnD) requires access to the video hardware registers. The VDn calls this
function, for example, when preparing to copy the entire screen to the clipboard.

636 Interrupt 2Fh Function 4006h

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

The VDD calls this function only if the VM application has called Enable VM-Assisted
Save/Restore (Interrupt 2Fh Function 4000h). VM applications that receive Save Video
Register State must save any data necessary to restore the current video state and must
return within lOOOms. If the application fails to return in time, the virtual-display device
accesses the video hardware anyway. After accessing the video hardware registers, the
VDD calls Restore Video Register State (Interrupt 2Fh Function 4006h) to notify the
application that it can restore its video state.

The VDD calls Save Video Register State only at times when the hardware must be
reprogrammed for what are essentially brief and nonvisible operations. For example, the
VDD does not call this function prior to calling Notify Background Switch (Interrupt 2Fh
Function 4001h).

See Also

Interrupt 2Fh Function 4000h Enable VM-Assisted Save/Restore

Interrupt 2Fh Function 4001h Notify Background Switch

Interrupt 2Fh Function 4006h Restore Video Register State

Interrupt 2Fh Function 4006h
mov ax, 4006h ; Restore Video Register State
int 2fh

Restore Video Register State notifies a VM application that the virtual-display device
(VDD) has relinquished its access to the video registers. The VM application should
restore the video registers to any state necessary to continue uninterrupted foreground
operation.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Interrupt 2Fh Function 4007h 637

Comments

The VDD calls this function only if the VM application has called Enable VM-Assisted
SavelRestore (Interrupt 2Fh Function 4000h). Before calling this function, the VDD
restores any registers it modified to the values they had when the VM application
originally called Enable VM-Assisted SavelRestore. In other words, every register is
guaranteed to be either unchanged or reset to a previous state; precisely which registers
may be reset is undefined, but the set is restricted to those Sequencer and Graphics
Controller registers that do not affect the display.

See Also

Interrupt 2Fh Function 4000h Enable VM-Assisted SavelRestore

Interrupt 2Fh Function 4007h
mov ax, 4007h
int 2fh

Disable VM-Assisted Save/Restore

Disable VM-Assisted SavelRestore directs the virtual-display device (VDD) to
discontinue notifying the VM application when it needs access to video registers. VM
applications call this function when they terminate.

Parameters

This function has no parameters.

Return Value

This function has no return value.

Comments

This function directs the VDD to restore I/O trapping of unreadable registers and to
discontinue calling Save Video Register State and Restore Video Register State (Interrupt
2Fh Functions 4005h and 4006h) when it needs access to the registers. Furthermore, the
VDD ignores any subsequent calls to Enter Critical Section and Exit Critical Section
(Interrupt 2Fh Functions 4003h and 4004h).

This function does not disable Notify Background Switch and Notify Foreground Switch
(Interrupt 2Fh Functions 4001h and 4002h).

See Also

Interrupt 2Fh Function 4001h Notify Background Switch

Interrupt 2Fh Function 4002h Notify Foreground Switch

Interrupt 2Fh Function 4003h Enter Critical Section

Interrupt 2Fh Function 4004h Exit Critical Section

Interrupt 2Fh Function 4005h Save Video Register State

Interrupt 2Fh Function 4006h Restore Video Register State

Structure Reference
The following is an alphabetical listing of the structures used with the Interrupt 2Fh service
and notification functions.

Win386_Startup_lnfo_Struc
Win386_Startup_Info_Struc STRUC
SIS_Version db 3, 0
SIS Next Dev ptr dd?
SIS=Virt=Dev=File_ptr dd 0
SIS_Reference_Data dd?
SIS Instance Data ptr dd 0
Win386_Startup Info_Struc ENDS

The Win386_Startup_Info_Struc structure contains information that Windows uses to
prepare an MS-DOS device driver or TSR program for operation with Windows.

Members

SIS_Version

Specifies the version number of the structure. 386 enhanced-mode Windows uses this
member to determine the size of the structure. This member should contain 3 in the
low-order byte and 10 in the high-order byte to indicate that it is version 3.1.

SIS_Next_Dev_Ptr

Points to the next structure in the list. The address of the next structure must be
supplied by the next handler in the Interrupt 2Fh chain. A driver or TSR calls the next
handler, then sets this member to the address returned by the handler in the ES:BX
register pair.

S18_Virt_Dev_File_Ptr

Points to a null-terminated string that contains the name of a 386 enhanced-mode
Windows virtual device file. MS-DOS devices such as networks use this to force a
special 386 enhanced-mode Windows virtual device to be loaded. If this member is
zero, no device is loaded.

SIS_Reference_Data

Specifies reference data for the virtual device. This member, used only when
SIS_Virt_Dev_File_Ptr is nonzero, is passed to the virtual device when it is
initialized. The member can contain any value and often contains a pointer to some
device-specific structure.

SIS_Instance_Data_Ptr

Points to a list of data to be instanced, that is, allocated uniquely for each new virtual
machine. If the member is zero, then no data is instanced. Each entry in the list is an
Instance_Item_Struc structure. The list is terminated with a 32-bit zero.

See Also

Interrupt 2Fh Function 1605h Windows Initialization Notification

Instance_ltem_Struc
Instance_Item_Struc STRUC

IIS_ptr dd?
lIS_Size dw?

Instance_Item_Struc ENDS

The Instance_Item_Struc structure specifies the starting address and size of a block of
instance data.

Members

IIS_Ptr

Points to the starting address of a block of instance data.

lIS_Size

Specifies the size (in bytes) of the block of instance data pointed to by the IIS_Ptr
member.

Index

32-bit flat model, 4

A

Allocate_Device_CB_Area service, 123­
124, 137

_Allocate_GDT_Selector service, 39

Allocate Global_V86_Data_Area service,
41-42

flags, 41-42

_Allocate_LDT_Selector service, 39, 160

Allocate_Procedure_Thunk function, 105

Allocate_V86_Call_Back service, 52

API

dispatch, 48

entry procedures, 9

Assert_Client_Ptr service, 114

Assert Cur_VM_Handle service, 114

Assert_Ints_Disabled service, 114

Assert_Ints_Enabled service, 114

Assert_VM_Handle service, 114

_Assign_Device_V86_Pages service, 36, 42

Asynchronous services, 25-27

B

BEBUG.INC header file, 114

BeginProc macro, 8

Begin_Critical_Section service, 22

Bimodal interrupt handlers, 81-82

Boost, 18-19

BufCnt, 136

Buffers

mapping, 44-45

translation, 44-46

VCOMMD program, 123

_BuildDescriptorDWORD function, 39, 160

c
C programming language

declaring DDB, 99-100

defining DDB structure, 99

limitations/restrictions, 97-98

service tables, 105-108

thunking callbacks, 103-105

VMM callable wrapper, 99-108

VSIMPLED code, 108-112

VxD initialization, 100-101

VxD segment attributes, 98

wrapping VxD services, 101-102

writing virtual device drivers
(VxDs),97-98

Callbacks

DOS devices, 52

tables, 66

641

642 Index

Call_Priority_VM_Event service, 19, 55-56,
146

Client register modification, 50

Client_Ptr_Flat macro, 31

Client_Register_Structure (CRS), 48-49, 52

Client_State function, 128

ComEoi structure, 122

ComHwlnt structure, 122, 127

COMM driver, 47

Commands, extended debug, 114-117

Com_API_Proc procedure, 128

Com_PM_API_Proc procedure, 128

Com_V86_API_Proc procedure, 128

Control procedure, 7-8

_CopyPageTable service, 38

Create_VM message, 37

Critical sections, 22-23

Critical_Section_Boost, 127

Current Privilege Level (CPL), 65

Cur_Run_VM_Boost, 127

D

Data segments, pageable, 6

dDc, 136

Debug trace strings, 113

Debugging services, 113-117

assertions, 114

Debug_Out macro, 113, 117

Declare_Virtual_Device, 122

DetMsgProc procedure, 144

Descriptor double-words, 39-40

Device contention management, 69-71, 73

Device declaration block (DDB), 7

exporting, 99

Device_Init service, 6, 10, 44, 75

Disable_Global_Trapping service, 65

Disable_Local_Trapping service, 65, 69

DMAchannel

controlling, 87-88

physical vs. virtual state, 88

region mapping, 90-91

virtualization, 88-90

DOS

box titles, 168

callbacks and hooking existing
devices, 52

launching boxes, 161

launching Windows applications,
162-167

linking with Windows applications,
131-168

passing messages to DOS, 154-156

passing messages to Windows, 157

registering applications, 143

DOSMSG structure, 154

Dual-mode API, 51

Dynalinking and services, 21

E

Emulate_Non_Byte_IO macro, 124

Enable_Global_Trapping service, 65

Enable_Local_Trapping service, 65, 69

EndProc macro, 8

End_Critical_Section service, 22

Writing Windows Virtual Device Drivers 643

Event lists, 17-18

global, 17-18

VM-specific, 17-18

Event processing, 17-19

Execution priority scheduler. See primary
scheduler

Exec_Int service, 55

Extended debug commands, 114-117

F

Faulting mechanism, 48

_Free_LDT_Selector function, 161

G

GDI.EXE file, 3

Gdt pointers, 160-161

GetVm function, 158

GetWinFlags() API, 48

Global event lists, 17-18

Global interrupts, 73-74

Graphical User Interface (GUI), 3

H

HandleCallBack function, 146, 149-151

Hardware

device contention, 5

simulating, 71

unobstructed access, 4

_HeapAllocate service, 6, 33

_HeapFree service, 33

_HeapGetSize service, 33

_HeapReAllocate service, 33

flags, 34

Hooked pages, 36-38

Hooking

DOS devices, 52

V86 interrupt, 22-23

Hook_V86_Page service, 36

Hot keys, 93-94

hWnd, 136

Hw_Int_Proc procedure, 74, 78, 80-81

I

I/O
dispatching, 66-69

protection, 65

tables, 66

I/O permissions bitmap (IOPM), 65

I/O privilege level (IOPL), 65

I/O trapping, 65-72

device contention management, 69­
71

simulating hardware, 71-72

_IDATA segment, 98

Initialization order, 9

Install_IO_Handler service, 66

Install_Mult_IO_Handlers service, 65-66

Install_To_Handler service, 65

Install_V86_Break_Point service, 52

Instance data, 40

Int 17h, 133-134, 137

Int 20h, 101

Int 21h, 44, 124, 137, 162

Int 23h, 124, 137

Int24h, 124, 137, 162

644 Index

Int2Fh, 47-48, 133, 137, 143

Int 60h, 22-23

Interrupt Descriptor Table (IDT), 3-4

Interrupt handlers, asynchronous services,
25-27

Interrupts

bimodal handlers, 81-82

global, 73-74

non-owned, 74

simulating, 55-56

trapping, 127-128

_ITEXT segment, 98

Invalid_Page_Fault handler, 42

IoRead, 125-126

IoWrite, 126

iPmErr, 136

IRQ

dispatching to VM, 79

servicing in VxD, 80-81

virtualization, 73-82

IrqLineStatus structure, 127

IrqModemStatus structure, 127

IrqReceive structure, 127

IrqTransmit structure, 127

iStr, 136

J

Jump table, 49

K

Keyboard

hot keys, 93-94

processing, 93-96

KEYDISP program, 96

Keystrokes, simulating, 95-96

KrnI386.EXE, 3, 51-52

KRNL386.SYM, 117

K

_LDATA segment, 98

_LinPageLock service, 33

_LTEXT segment, 98

Ldt pointers, 160-161

LdtNext pointer, 135

LinkMsgProc procedure, 145, 148-149, 151

LinkNext, 135

Listings. See program listings

List_Create service, 102

LN debugger command, 117

M

M command, 116

MainDlgProc function, 148, 151

MAKEFILE (VSIMPLED) listing, 10-11

Map_Flat service, 31-32, 38

Memory

allocating sectors, 39-40

hooked pages, 36-38

instance data, 40

management, 29-46

mapping into multiple VMs, 41-42

page allocation, 33-34

page faults, 36-38

page protection, 42-44

Writing Windows Virtual Device Drivers 645

page table entries (PTEs), 38

shared, 157-161

Virtual Machine Manager (VMM)
services, 29-31

Memory Manager (MMGR), 29-34

instance data, 40

low-level services, 34

translation services, 31-33

_ModifyPageBits service, 37-38

Mono_Out macro, 113

Mono_aut_At macro, 113

MsgArr, 136

MsgEnd function, 135

MsgFree function, 135

MsgMemCopy function, 133, 157

MsgMemFreeGdt function, 160

MsgMemFreeLdt function, 160

MsgMemGdt function, 160

MsgMemLdt function, 160

MsgNext function, 135

MsgPeek function, 133, 154-155

MsgPost function, 133, 154, 157

MsgRead function, 133, 154, 156

MsgSem semaphore, 135, 138

_MsgSendRtn, 152

_MSG_SEND_RTN message, 152

_MsgShellEvent, 141

N

Nested execution, 55-64

calling TSR code at ring 0, 59-64

simulating software interrupts, 55­
56

Nest_Exec function, 128

Non-owned interrupts, 74

o
Out_Debug_String service, 113

Out_Mono_String service, 113

p

P command, 117

_PageAllocate service, 33

Page allocation memory, 33-34

Page faults, 36-38

handler, 37

Page protection, 42-44

Page table entries (PTEs), 38

modifying, 42-44

Page-locked segment, 8

Pageable data segments, 6

_PhysIntroV86 service, 38

PmOkTable table, 144

Pop_Client_State macro, 56

Port trapping, 124-125

PostMessage API, 147-148, 153

PostMessage() function, 56-57

pPsp pointer, 135

#pragma code_seg directive, 98

#pragma data_seg directive, 98

Primary scheduler, 19, 22

PrnSem semaphore, 135, 138

PmtBuf, 136

646 Index

PmtNum, 135

Procedure name, 8

Program listings

MAKEFILE (VSIMPLED), 10-11

VSDINIT.C, 108-111

VSIMPLED.ASM, 11-14

VSIMPLED.C, 111-112

VSIMPLED.DEF,14

SIMPLED_Allocate_DMA_Buffer
function, 34-36

Programs

KEYDISP,96

raw.drv, 134

Soft-ICE/W, 15

VCONTEND, 72

VGLOBALD, 43

VMEMTRAP, 42

VMM.INC,106

VMMWRAP.ASM, 101

VTRAPIOD, 69

WDEB386,15

. Win-IPC, 134

WIN386.EXE, 15

Protected-mode initialization segment, 6

Push_Client_State macro, 56

Q
Queue_Debug_String service, 113

Queue_Out macro, 113

R

raw.drv program, 134

Real Mode Initialization segment, 6, 98

Release_Time_Slice, 155

Resume_Exec function, 117, 128, 146

Resume_VM service, 23-24

RS232_DEVICE_ID, 122

S

Schedulers

primary, 19, 22

secondary, 20-21

sCmdLine, 137

Secondary scheduler, 20-21

Semaphores, 23-24

SendMessage API, 145-146, 148-152

Service tables, 105-106

Services

asynchronous, 25-27

debugging, 113-117

dynalinking and, 21

sExec, 137

SHELL_Event, 141-142

SHELL_Resolve_Contention, 125

Signal_Semaphore service, 24

Simulate_Far_Call function, 128

Simulate_Far_Iret service, 55

Simulate_lnt service, 55

sl command, 116

Soft-ICEIW, 15

sPmtStr, 137

sProgName, 136

sPsp, 136

sTitle, 137

Writing Windows Virtual Device Drivers 647

Suspend_VM service, 23-24

Sys_Crit_Init service, 9, 44, 60-62, 75, 123­
124

Sys_VM_Init service, 94

T

T co~mand, 115, 117

Terminate and stay resident (TSR)
programs, 6

calling code at ring 0, 59-64

loaded into system, 60

Windows-aware, 41-42

_TestGlobalV86Mem service, 45

Thunking callbacks, 103-105

Time-slice priorities, 20

Time-slice scheduler. See secondary
scheduler

TimeHdl, 135

Trace_Out macro, 113

U

USER.EXE file, 3

V

V86/PM VxD API, 47-52

active VM information, 50-51

API dispatch, 48

Client_Register_Structure (CRS),
48-49

faulting mechanism, 48

V86MMGR, 29, 44-46

buffer mapping, 44-45

buffer translation, 44-46

V86MMGR_Allocate_Buffer service, 45

V86MMGR_Free_Buffer service, 45

V86MMGR_Free_Page_Map, service, 45

V86MMGR_Map_Pages function, 45

V86MMGR_Set_Mapping_Info service, 44

V86MMGR_xlat_API service, 46

VCOMMD program

buffers, 123

coding information, 122-126

data, 123

design notes, 121-129

IoRead, 125-126

IoWrite, 126

IRQ trapping, 127-129

port trapping, 124-125

VM creation and destruction, 128-
129

VCONTEND program, 72

VDMAD_Copy_To_Buffer service, 90

VDMAD_Default_Handler, 89-90

VDMAD_Lock_DMA_Region service, 91

VDMAD_Request_Buffer service, 90

VDMAD_Set_Phys_State service, 88

VDMAD_Set_Region_Info service, 91

VDMAD_Set_Virt_State service, 88

VDMAD_UnMask_Channel service, 91

VDMAD_Virtualize_Channel service, 88

VGLOBALD program, 43

VidHwInt data structure, 122

VID_EOI_Proc procedure, 75

VID_Hw_Int_Proc procedure, 75

VID_IRET_Proc procedure, 75

648 Index.

VID_IRET_Time_Out procedure, 75

VID_Mask_Change_Proc procedure, 75

VID_Virt_Int_Proc procedure, 75

VIRQD_EOI_Proc procedure, 79

VIRQD_Hw_Int_Proc procedure, 79

VIRQ_EOI_Proc procedure, 81

VIRQ_Service_Hardware procedure, 81

Virtual COMM Device (VCD), 5

Virtual device

ID,8-9

initialization, 9-10

Virtual device drivers (VxDs)

32-bit flat model, 4

API entry procedures, 9

C code, 97-108

calling Windows functions, 56-58

control procedure, 7-8

device declaration block (DDB), 7

hardware device contention, 5

initialization order, 9

jump table, 49

misbehaving, 4-5

mnemonic, 7

page-locked segment, 8

pageable data segments, 6

priorities, 4

procedure name, 8

protected-mode initialization
segment, 6

real-mode initialization segment, 6

replacements, 8-9

segment attributes, 98

servicing IRQs, 80-81

structure, 5-9

virtual device ID, 8-9

Win-Link, 5

wrapping services, 101-102

Virtual DMA Device (VDMAD), 87-92

avoiding interference, 91-92

Virtual Keyboard Driver (VDK), 93-96

hot keys, 93-94

simulating keystrokes, 95-96

Virtual machine (VM)

copying data between, 157-161

creation and destruction, 128-129

dispatching IRQ to, 79

ID,31

mapping memory into multiple, 41­
42

modifying and examining active
information, 50-51

passing messages between, 153­
156

preventing multiple entering code,
22-23

suspending and resuming, 23-24

Win-Link creation, 137-140

Virtual machine manager (VMM), 3, 17-27

asynchronous services, 25-27

boost, 18-19

C-callable wrapper, 99-108

critical sections, 22-23

debug version, 14-15

event processing, 17-19

Writing Windows Virtual Device Drivers 649

memory management services, 29­
31

nested execution, 55-64

scheduling, 19:.21

semaphores, 23-24

services and dynalinking, 21

suspending and resuming VMs, 23-24

Virtual Printer Device (VPD), 5

Virtual Programmable Interrupt Controller
Device (VPICD), 4,18,73-74

bimodal interrupt handlers, 81-82

default handling, 74

VKD_Define_Hot_Key service, 93

VKD_Force_Keys service, 95-96

VKD_Local_Disable_Hot_Key service, 93-
94

VKD_Local_Enable_Hot_Key service, 93

VL command, 117

VM command, 117

VM-specific event lists, 17-18

VMDAT structure, 138

VMDATA data structure, 134

VMEMTRAP program, 42

VrnHandle, 135

VmLdt pointer, 135

VMM command, 114

VMM.INC program, 106

VMMCall macro, 21

VMMSG structure, 146, 150-152

VMMWRAP.ASM program, 101

VM_Critical_Init service, 94

VPICD_API_Install function, 82

VPICD_API_Remove function, 82

VPICp_Clear_Int_Request service, 74, 79,
128

VPICD_Hw_Int_Proc service, 88

VPICD_IRQ_Descriptor structure, 78

VPICD_Phys_EOI service, 74, 127

VPICD_Phys_EOL service, 122

VPICD_Set_Int_Request service, 74, 79,
127-128

VPICD_Virtualize_IRQ service, 75, 122

VSDINIT.C listing, 108-111

VSIMPLED program

C code, 108-112

debugging, 14-15

MAKEFILE listing, 10-11

source code, 10-14

VSIMPLED.ASM listing, 11-14

VSIMPLED.DEF listing, 14

VSIMPLED.ASM listing, 11-14

VSIMPLED.C listing, 111-112

VSIMPLED.DEF listing, 14

VSIMPLED_Allocate_DMA_Buffer
function listing, 34-36

VSIMPLED_Control_Proc procedure, 7

VSIMPLED_PM_API_Proc procedure, 47

VSIMPLED_Sys_Critical_Init procedure,
unassembling, 15

VSIMPLED_V86_API_Proc procedure, 47

VSIMPLED_Virtual_DMA_Trap procedure,
89

VTRAPIOD program, 69

VxDCall macro, 21

VxDJump macro, 21

VXDMSG structure, 152

650 Index

VxDs. See virtual device driver

VxD_ICODE_SEG macro, 6

VxD_IDATA_SEG macro, 6

VXD_LOCKED_CODE_ENDS macro, 8

VXD_LOCKED_CODE_SEG macro, 8

VxD_REAL_MODE_INIT_SEG macro, 6

w
Wait_Semaphore service, 24

flags, 24

WATCOM C/386 V9.5 compiler, 97-98

WDEB386, 15, 117

wFlags, 136

Win-IPC program, 134

passing messages to Win-Link, 145

Win-Link program, 5, 131-168

approach, 134-140

copying data between VMs, 157-
161

DOS box titles, 168

implementation, 140-143

internal message passing, 143-153

launching DOS box, 161

launching Windows applications
from DOS, 162-167

passing data for messages, 136-137

passing messages between VMs,
153-157

passing messages to Win-IPC, 143-
145

print intercepting, 168

registering DOS applications, 143

shared memory, 157-161

VM creation, 137-140

WIN386.EXE, 3

debug version, 15, 43, 88, 114, 117

WIN386.SYM, 117

Windows

calling functions from VxD, 56-58

launching applications from DOS,
162-167

linking with DOS applications,
131-168

passing messages to DOS, 154-156

real-mode initialization segment, 6

Winlpc_PM_Api_Proc procedure, 144

X

Xlat_API_Exec_Int,46

Xlat_API_Jmp_To_Proc, 46

· ---"-:j--- - _..

Addison-Wesley warrants the enclosed disk(s)to be free of defects in materials
and faulty workmanship under normal use for a period of ninety days after
purchase. If a defect is disco'veted in. the disk during this warranty period, a
replacement disk can be obtained at no.charge by sending the defective disk,
postage prepaid, with proof of purchase to:

Addison-Wesley Publishing Company
Editorial Department

Trade Computer Books Division
One Jacob Way

Reading, MA 01867

After the 90-day period, a replacement will be sent upon receipt of the
defective disk and a check or money order for $10.00, payable to'Addison-Wesley
Publishing Company.

Addison.-Wesley makes no warranty or representation, either express or
implied, with respect to thi's software, its quality, performance, merchantabil­
ity, or fitness for a particular purpose. In no event will Addison-Wesley, its
distributors, or dealers be liable for direct, indirect, special, incidental, or
consequential damages arising out of the use or inability to use the software.
The exclusion of implied warranties is not permitted in some states. Therefore,
the above exclusion may not apply to you. This warranty provides you with
specific legal rights. There may be other rights that you may have that vary
from state to state.

	Table of Contents
	Acknowledgments
	Preface
	Section I—An Introduction to Virtual Device Drivers
	Chapter 1—The Anatomy of a VxD
	Chapter 2—The Virtual Machine Manager
	Chapter 3—Memory Management
	Chapter 4—V86/PM VxD API

	Section II—Advanced Topics
	Chapter 5—Nested Execution
	Chapter 6—I/O Trapping
	Chapter 7—IRQ Virtualization
	Chapter 8—Virtualized DMA
	Chapter 9—VKD and Keyboard Processing
	Chapter 10—Writing VxDs in C
	Chapter 11—Using the Debugging Services

	Section III—Putting It All Together
	Chapter 12—VCOMMD Design Notes
	Chapter 13—Win-Link Design and Implementation Notes

	Section IV—VMM and VxD Service Reference
	Appendix A—API Reference
	Appendix B—Int 2Fh Reference

	Index

