
The Developer's Guide to the
Win32® API for Windows NTTM 3.5

and Windows 95

ADVANCED
WINDOWS~
The Developer's Guide to the

Win32® API/or Windows NTTM 3.5
and Windows 95

JEFFREY RICHTER

Microsoft Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Jeffrey Richter

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Richter, Jeffrey.

Advanced Windows: the developer's guide to the Win32
API for Windows NT and Windows 95 / by Jeffrey Richter.

p. cm.
Includes index.
ISBN 1-55615-677-4
1. Windows (Computer programs) 2. Microsoft Win32.

Windows NT. 4. Microsoft Windows 95. I. Title.
QA76.76.W56R52 1995
005.26--dc20

Printed and bound in the United States of America.

123456789 QBP 098765

3. Microsoft

94-47264
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office. Or contact Microsoft Press
International directly at fax (206) 936-7329.

Apple is a registered trademark of Apple Computer, Inc. Borland and dBASE are registered trademarks of
Borland International, Inc. Alpha AXP and DEC are trademarks of Digital Equipment Corporation. Intel is
a registered trademark and Pentium is a trademark of Intel Corporation. ffiM, OS/2, and Presentation Manager
are registered trademarks and PowerPC is a trademark ofInternational Business Machines Corporation. 1-2-3
and Lotus are registered trademarks of Lotus Development Corporation. Microsoft, MS-DOS, Win32, and
Win32s are registered trademarks and Visual C++, Windows, and Windows NT are trademarks of Microsoft
Corporation. MIPS is a registered trademark and R4000 is a trademark of MIPS Computer Systems, Inc.
Novell is a registered trademark of Novell, Inc. TRS-80 is a registered trademark of Radio Shack, a division
of Tandy Corporation. Sequent is a registered trademark of Sequent Computer Systems, Inc. Sun is a
registered trademark of Sun Microsystems, Inc. Tandy is a registered trademark of Tandy Corporation.
Unicode is a trademark of Unicode, Inc. Unisys is a registered trademark of Unisys Corporation. Smalltalk
and Xerox are registered trademarks of Xerox Corporation. Z80 is a registered trademark of Zilog, Inc.

Acquisitions Editor: Dean Holmes
Project Editor: Rebecca Gleason
Technical Editor: Jim Fuchs

To my mother, Arlene, for her bravery and courage

through the most difficult and trying of times. Your

love and support have shaped me into the person I

am. You're with me wherever I go.

-With all my love, Jeff

To Susan "Q-bert" Ramee, for showing me that

computers are not at the center of the Universe with

all of the planets circling around.

-J"BBB"R

CONTENTS SUMMARY

Acknowledgments .. xxi

Introduction ... xxv

CHAPTER ONE

THE WIN32 API AND
PLATFORMS THAT SUPPORT IT 1

• This chapter explains Microsoft's various APIs and operating system
platforms; clarifies the latest catchwords (Win32, Win32s, Windows 95, and
Windows NT); and discusses Microsoft's goals for each of them. By the
end of the chapter, you will understand why I believe this is a very exciting
time for software developers and why the Win32 API is the area in which
software engineers should be concentrating their development efforts.

CHAPTER TWO

PROCESSES. .. 9
• Under Windows 95 and Windows NT, an instance of an executing
application is a process. This chapter explains how a new process is
invoked, how it initializes, and how it is destroyed. Various attributes asso
ciated with a process are also explained. For example, in Win32 each pro
cess has its own address space, which means that one process cannot
adversely affect another process-this is not true in 16-bit Windows. This
chapter also introduces Win32 Kernel objects, which are the basis for all
kernel-related tasks in both Windows 95 and Windows NT. A solid under
standing of Kernel objects is required for any serious Win32 developer.

CHAPTER THREE

THREADS ... 51
• Threads are at the heart of Windows 95's and Windows NT's multi
tasking abilities. In order for a Win32 process to actually do anything, it
must have threads that execute the code and manipulate the data con
tained in the process. All Win32 processes contain at least one thread, but

ADVANCED WINDOWS

vi

both Windows 95 and Windows NT allow a process to contain several
threads that are scheduled and preemptively multi tasked by the operat
ing system. This chapter explains how threads are created, scheduled,
and destroyed.

CHAPTER FOUR

WIN32 MEMORY ARCHITECTURE 93
~ Advanced operating systems such as Windows 95 and Windows NT
require sophisticated memory architectures. This chapter explains how
the system manages the computer's RAM and paging files on the hard
disk in order to give each process a full 4 GB of virtual address space. The
chapter also covers how each process's address space is partitioned and
discusses the implementation differences between Windows 95 and Win
dows NT. One of the features that make the Win32 memory architecture
unique is that Win32 separates the task of reserving regions of address
space from the task of committing physical storage to these regions. This
chapter explains how these two tasks are accomplished as well as how pro
tection attributes can be assigned to pages of committed physical storage.

CHAPTER FIVE

EXPLORING VIRTUAL MEMORY 127
~ This chapter builds on the information presented in Chapter 4. The
chapter introduces various Win32 functions that allow you to explore the
system's memory configuration and the contents (code and data) of a
process's address space.

CHAPTER SIX

USING VIRTUAL MEMORY
IN YOUR OWN APPLICATIONS 169

~ This chapter shows how to use virtual memory management tech
niques in your own applications. Topics include how to reserve regions in
a process's address space and techniques for knowing when to commit
physical storage to these regions. These techniques allow an application
to use physical storage more efficiently than it could under most other
operating systems.

Contents Summary

CHAPTER SEVEN

MEMORY-MAPPED FILES 207

~ Windows 95 and Windows NT use memory-mapped files to implement
virtual memory management. All ofa process's code and data are backed
by a file on disk-a memory-mapped file. This chapter demonstrates how
memory-mapped files make manipulation of disk files almost trivially
simple. The chapter also shows how to use memory-mapped files to share
code and data among multiple processes.

CHAPTER EIGHT

HEAPS .. 261
~ Heaps are the third and last memory management technique offered
by the Win32 API. This chapter shows how to create multiple heaps
within a single process and explains why a developer might want to do
this. This chapter also discusses how the 16-bit Windows heap functions
are emulated by the Win32 API under Windows 95 and Windows NT in
order to make it easier for developers to port existing 16-bit Windows
source code.

CHAPTER NINE

THREAD SYNCHRONIZATION 283
~ Whenever multiple threads are executing simultaneously or are being
preemptively interrupted, an application will often need to suspend a
thread in order to prevent data corruption. Windows 95 and Windows NT
offer several objects for performing thread synchronization; this chapter
discusses these objects and describes techniques for using them.

CHAPTER TEN

WINDOW MESSAGES
AND ASYNCHRONOUS INPUT 417

~ One of the biggest problems with 16-bit Windows is that it is too easy
for a single application to hang all running applications. Robust operat
ing systems such as Windows 95 and Windows NT do not allow applica
tions to compromise the smooth execution of other processes in the
system. In order to create a robust environment, window messages and
hardware input are handled differently in Win32 than in 16-bit Windows.

vii

ADVANCED WINDOWS

viii

These changes may break some source code originally written for 16-bit
Windows. This chapter explains how window messages are processed in
both Windows 95 and Windows NT.

CHAPTER ELEVEN

DYNAMIC-LINK LIBRARIES 481
~ Dynamic-link libraries (DLLs) have always been the cornerstone of all
Windows applications-and they continue to be in Windows 95 and Win
dows NT. However, DLLs are managed quite differently under Win32
than under 16-bit Windows. This chapter explains how a DLL is mapped
into a process's address space and how to appropriately initialize a DLL.
In addition, this chapter demonstrates how a DLL can be used to export
both functions and data.

CHAPTER TWELVE

THREAD-LOCAL STORAGE 535
~ In an environment in which multiple threads are running concur
rently, it's important to associate data objects and variables with the indi
vidual threads of a process. This chapter describes how to use both
dynamic and static thread-local storage techniques in order to associate
data with specific threads.

CHAPTER THIRTEEN

FILE SYSTEMS AND FILE I/O 569
~ This chapter discusses how an application can manipulate the many
file systems offered by Windows 95 and Windows NT: FAT, CDFS, HPFS,
and NTFS. It also discusses how to manipulate directories, files, and the
data contained in the files. Also discussed are some additional techniques
for manipulating the file system, such as directory tree walking and file
system change notifications. Finally, this chapter presents methods for
using asynchronous file I/O, alertable file I/O, and file change notification.

CHAPTER FOURTEEN

STRUCTURED EXCEPTION HANDLING 683
~ Structured exception handling (SEH) is a new mechanism that allows
application developers to write more robust and reliable applications.

Contents Summary

SEH consists of two components that work together: exception handling
and termination handling. Exception handling is a mechanism that
allows an application to catch both hardware and software exceptions
(for example, invalid memory accesses). Termination handling guaran
tees that clean-up tasks are performed even if an exception occurs.

CHAPTER FIFTEEN

UNICODE .. 783
~ Software developers are finding a huge potential for software distribu
tion in international markets. To help developers, Microsoft built full
Unicode support into Windows NT and limited Unicode support into
Windows 95. Unicode is a 16-bit character set that lets developers easily
manipulate characters and strings for different languages and writing sys
tems. This chapter discusses how you can best take advantage of Win 32's
Unicode facilities to help localize your development projects.

CHAPTER SIXTEEN

BREAKING THROUGH
PROCESS BOUNDARY WALLS 809

~ The robust nature of the Windows 95 and Windows NT environments
makes it much more difficult to manipulate other processes in the sys
tem. While it is not normal for processes to alter one another, some pro
cesses, such as debuggers and other tools, require intimate knowledge of
other processes in order to be useful to the software developer. This chap
ter demonstrates three techniques that allow a process to inject a DLL
into another process's address space. These techniques require a knowl
edge of processes, threads, virtual memory, thread synchronization, win
dow messages, DLLs, structured exception handling, and Unicode.

APPENDIX A

MESSAGE CRACKERS 879
~ Most Windows programmers have never heard of message crackers,
even though these programming aids exist for both 16-bit Windows and
Win32. This appendix explains how to use message crackers to help you
write, read, and maintain your source code. In addition, message crackers
make it much easier to port 16-bit Windows source code to Win32 and
vice versa.

ix

ADVANCED WINDOWS

x

APPENDIX B

THE BUILD ENVIRONMENT 887
~ This appendix explains the ADVWIN32.H header file included in all
the sample applications presented in this book. This header file contains
a number of #defines, #prag;mas, and linker directives. The appendix also
discusses how various compiler and linker switches have been set in each
sample application's project make file.

Index .. 897

TABLE OF CONTENTS

Acknowledgments ., .. xxi

Introduction ... xxv

CHAPTER ONE

THE WIN32 API AND
PLATFORMS THAT SUPPORT IT 1
To Dream: The Win32 API 1

Win32s .. 2

Windows NT ... 3

Windows 95 .. 4

The Reality: The Win32 API 5

CHAPTER TWO

PROCESSES. .. 9
Kernel Objects .. 10

Writing Your First Win32 Application . 13

A Process's Instance Handle 15

A Process's Previous Instance Handle 18

A Process's Command Line 20

A Process's Environment Variables 21
A Process's Error Mode 25

A Process's Current Drive and Directory 26

A Process's Inherited Kernel Objects 27

The System Version 30
The CreateProcess Function 32

IpszlmageName and IpszCommandLine 33

IpsaProcess, Ipsa Thread, and flnheritHandles 34

fdwCreate . 37

IpvEnvironment . 39

IpszCurOir. 39

ADVANCED WINDOWS

xii

IpsiStartlnfo. 39
IppiProclnfo . .. 44

Terminating a Process 46
The ExitProcess Function . 46
The TerminateProcess Function . 46
What Happens When a Process Terminates 47

Child Processes ... 48
Running Detached Child Processes 50

CHAPTER THREE

THREADS ... 51
When to Create a Thread 51
When Not to Create a Thread 53
Writing Your First Thread Function 55

A Thread's Stack ' 57
A Thread's CONTEXT Structure 57
A Thread's Execution Times 57

The Create Thread Function 60
Ipsa . .. 61
cbStack 61
IpStartAddr and IpvThreadParm 62
fdwCreate . 62
IplDThread ... 64

Terminating a Thread .. 64
The ExitThread Function 65
The Terminate Thread Function . 65
What Happens When a Thread Terminates 66

Gaining a Sense of One's Own Identity 67
How the System Schedules Threads 71

How Priority Levels Are Assigned Using the Win32 API 72
Altering a Process's Priority Class 75
Setting a Thread's Relative Priority 76
Suspending and Resuming Threads 79

What's Going On in the System 80
Processes, Threads, and the C Run-Time Library 86

C Run-Time Functions to Avoid 91

Table of Contents

CHAPTER FOUR

WIN32 MEMORY ARCHITECTURE 93
CPUs I Have Known .. 93

A Virtual Address Space 96

Partitions in a Process's Address Space 97

How Windows NT Partitions a Process's Address Space 100

Regions in an Address Space 102

Committing Physical Storage Within a Region 103

Physical Storage .. 105

Physical Storage Not Maintained in the Paging File 107

Protection Attributes 108

Copy-On-Write Access. .. 110

Special Access Protection Attribute Flags. 111

Bringing It All Home 111

Inside the Regions 115

Address Space Differences for Windows 95 120

CHAPTER FIVE

EXPLORING VIRTUAL MEMORY 127
System Information .. 127

~ The System Information Sample Application 128
Virtual Memory Status 137

~ The Virtual Memory Status Sample Application 138

Determining the State of an Address Space 145

The VMQuery Function 146

~ The Virtual Memory Map Sample Application 158

CHAPTER SIX

USING VIRTUAL MEMORY
IN YOUR OWN APPLICATIONS 169
Reserving a Region in an Address Space 169

Committing Storage in a Reserved Region 172

Reserving a Region and Committing Storage Simultaneously 173
When to Commit Physical Storage . 174

xiii

ADVANCED WINDOWS

xiv

Decommitting Physical Storage and Releasing a Region 177
When to Decommit Physical Storage . 178
~ The Virtual Memory Allocation Sample Application 180

Changing Protection Attributes 194
Locking Physical Storage in RAM 195
A Thread's Stack .. 197

A Thread's Stack Under Windows 95 201
The C Run-Time's Stack Checking Function 204

CHAPTER SEVEN

MEMORY-MAPPED FILES 207
Memory-Mapped EXEs and DLLs. 208

Static Data Is Not Shared by
Multiple Instances of an EXE or a DLL 209

Memory-Mapped Data Files . 212
Method 1: One File, One Buffer 213
Method 2: Two Files, One Buffer 213
Method 3: One File, Two Buffers 214
Method 4: One File, Zero Buffers 214

Using Memory-Mapped Files 215
Step 1: Creating or Opening a File Kernel Object 215
Step 2: Creating a File-Mapping Kernel Object 217
Step 3: Mapping the File's Data

into the Process's Address Space 220
Step 4: Unmapping the File's Data

from the Process's Address Space 224
Steps 5 and 6: Closing the

File-Mapping Object and the File Object 225
Processing a Big File Using Memory-Mapped Files 227

Memory-Mapped Files and Coherence 229
~ The File Reverse Sample Application. 231
Specifying the Base Address of a Memory-Mapped File 240

Memory-Mapped Files and Win32 Implementations 241
Using Memory-Mapped Files to

Share Data Among Processes . 244
Memory-Mapped Files Backed by the Paging File 248
~ The Memory-Mapped File Sharing Sample Application 250

Sparsely Committed Memory-Mapped Files 257

Table of Contents

CHAPTER EIGHT

HEAPS .. 261
What Is a Win32 Heap? 262

.A Process's Default Heap 262

Creating Your Own Win32 Heaps 264

Creating Another Win32 Heap 267
Destroying a Win32 Heap. 272

Using Heaps with C++ 272

The 16-Bit Windows Heap Functions 277

CHAPTER NINE

THREAD SYNCHRONIZATION 283
Thread Synchronization in a Nutshell 283

The Worst Thing You Can Do 284

Critical Sections. 285

Creating a Critical Section 287

Using a Critical Section 288

~ The Critical Sections Sample Application 295

Synchronizing Threads with Kernel Objects. 311

Mutexes .. 316

~ The Mutexes Sample Application 322

Semaphores '.' 333

~ The Supermarket Sample Application 335

Events .. 364

~ The Bucket of Balls Sample Application 366

The SWMRG Compound Synchronization Object 369

The Bucket Sample Source Code 376

~ The Document Statistics Sample Application 400

Thread Suspension .. 411

Sleep . .. 411

Asynchronous File I/O. 411

WaitForlnputldle 412

MsgWaitForMultipleObjects 413

WaitForDebugEvent 414

The Interlocked Family of Functions 414

xv

ADVANCED WINDOWS

CHAPTER TEN

WINDOW MESSAGES
AND ASYNCHRONOUS INPUT 417
Multitasking ' 417

Preemptive Time Scheduling 420

Thread Queues and Message Processing 422

Win32 Message Queue Architecture 422

Posting Messages to a Thread's Message Queue 423

Sending Messages to a Window 425

Waking a Thread 430

Sending Data with Messages 436

~ The CopyData Sample Application 439

Deserialized Input ... 447

How Input Is Deserialized 448

Local Input State .. 452

Keyboard Input and Focus 453

Mouse Cursor Management 457

~ The Local Input State Laboratory Sample Application 460

CHAPTER ELEVEN

DYNAMIC-LINK LIBRARIES 481
Creating a Dynamic-Link Library 481

Mapping a DLL into a Process's Address Space 484

The DLL's Entry/Exit Function 490

DLL_PROCESS_ATIACH 492

DLL_PROCESS_DETACH 494

DLL_THREAD_ATTACH 498

DLL_THREAD_DETACH 498

How the System Serializes Calls to DIIMain 499

DIIMain and the C Run-Time Library 503

Exporting Functions and Variables from a DLL 504

Importing Functions and Variables from a DLL 507

A DLL's Header File 513

Sharing Data Across Mappings of an EXE or a DLL 514

The Sections of an EXE or a DLL 514

~ The ModUse Sample Application 518

~ The Multlnst Sample Application 530

xvi

Table of Contents

CHAPTER TWELVE

THREAD-LOCAL STORAGE 535
Dynamic Thread-Local Storage 536

Using Dynamic Thread-Local Storage 539
~ The Dynamic Thread-Local Storage Sample Application 541

Static Thread-Local Storage 555
~ The Static Thread-Local Storage Sample Application 556

CHAPTER THIRTEEN

FILE SYSTEMS AND FILE I/O 569
Win32's Filename Conventions 571

System and Volume Operations 573
Getting Volume-Specific Information 576
~ The Disk Information Viewer Sample Application 583

Directory Operations 594
Getting the Current Directory 594

Changing the Current Directory 595
Getting the System Directory 595
Getting the Windows Directory 596
Creating and Removing Directories 596

Copying, Deleting, Moving, and Renaming Files 597
Copying a File .. 597
Deleting a File .. 598
Moving a File ... 598
Renaming a File 601

Creating, Opening, and Closing Files 602
Reading and Writing Files Synchronously 608

Positioning a File Pointer 610

Setting the End of a File 611
Forcing Cached Data to Be Written to Disk 612
Locking and Unlocking Regions of a File 612

Reading and Writing Files Asynchronously 616

Performing Multiple Asynchronous
File I/O Operations Simultaneously 623

Alertable Asynchronous File I/O 624
~ The Alertable I/O Sample Application 627

xvii

ADVANCED WINDOWS

Manipulating File Attributes 642

File Flags .. 642

File Size ... 643

File Time Stamps 643

Searching for Files ... 647

~ The Directory Walker Sample Application 651

File System Change Notifications 663

~ The File Change Sample Application 666

CHAPTER FOURTEEN

STRUCTURED EXCEPTION HANDLING 683
Termination Handlers 684

Understanding Termination Handlers by Example 685

Notes About the finally Block 698

~ The SEH Termination Sample Application 700

Exception Filters and Exception Handlers 712

Understanding Exception Filters

and Exception Handlers by Example 713
EXCEPTION_EXECUTE_HANDLER 715

EXCEPTION_CONTINUE_EXECUTION 716

EXCEPTION_CONTiNUE_SEARCH 718

Global Unwinds 722

Halting Global Unwinds 724

More About Exception Filters 726

GetExceptionlnformation . 731

~ The SEH Exceptions Sample Application 737

~ The SEH Sum Sample Application 749

Software Exceptions 758

~ The SEH Software Exceptions Sample Application 761

Unhand led Exceptions 773

Unhandied Exceptions Without a Debugger Attached 774

Turning Off the Exception Message Box 777

Calling UnhandledExceptionFilter Yourself 780

Windows NT-Specific: Unhandled Kernel-Mode Exceptions ... 781

xviii

Table of Contents

CHAPTER FIFTEEN

UNICODE .. 783
Character Sets. 783

Single-Byte and Double-Byte Character Sets 784

Unicode: The Wide-Byte Character Set 785

Why You Should Use Unicode 786

How to Write Unicode Source Code 787

Windows NT and Unicode 787

Windows 95 and Unicode 787

Unicode Support in the C Run-Time Library 788

Unicode Data Types Defined by Win32 794

Unicode and ANSI Functions in Win32 794

Making Your Application ANSI- and Unicode-Aware 797

String Functions in Win32 798

Resources. 801

Text Files .. 801

Translating Strings Between Unicode and ANSI 802

Windows NT: Window Classes and Procedures 806

CHAPTER SIXTEEN

BREAKING THROUGH
PROCESS BOUNDARY WALLS 809
Why Process Boundary Walls Need to Be Broken: An Example 810

Injecting a DLL Using the Registry 813

Injecting a DLL Using Windows Hooks 815

~ The Program Manager Restore Sample Application 817

Injecting a DLL Using Remote Threads 834

How a DLL Is Loaded 835

Win32 Functions That Affect Other Processes 835

CreateRemote Thread 837

GetThreadContext and SetThreadContext 838

Virtua/QueryEx and Virtua/ProtectEx 842

ReadProcessMemory and WriteProcessMemory 843

xix

ADVANCED WINDOWS

Creating a Function to Inject a DLL

into Any Process's Address Space 843

Version 0: Why the Obvious Method Just Doesn't Work 844

Version 1: Hand-Coded Machine Language 845

Version 2: AllocProcessMemory and CreateRemoteThread 848

The ProcMem Utility Functions 853

The InjectLib Function 857

Testing the InjectLib Function 870

~ The Inject Library Test Sample Application 870

The Image Walk Dynamic-Link Library 873

A Summary .. 876

APPENDIX A

MESSAGE CRACKERS 879
Message Crackers . 881

Child Control Macros 884

API Macros .. 886

APPENDIX B

THE BUILD ENVIRONMENT 887
The ADVWIN32.H Header File 887

Warning Level 4 888
The STRICT Macro 888

Unicode .. 888

The ARRAY_SIZE Macro 889

The BEGINTHREADEX Macro 889
Linker Directives 890

Project Settings I Couldn't Set in the Source Files 895

Index .. 897

xx

ACKNOWLEDGMENTS

Although my name appears alone on the cover of this book, many
people have contributed in some form or another to the book's creation.
In many cases, these people are good friends of mine (that is, we occa
sionally go to movies or out to dinner together); and in other cases, I
have never met the individuals and have conversed with them only on the
phone or by electronic mail. I could not have completed this book with
out the assistance or support of each of the following-I thank you all.

Susan "Q" Ramee gave me her love and support throughout the
entire process. Sue also proofread chapters and helped me come up with
some ideas for the sample programs. And, of course, it would not be
right to thank Sue without also thanking her two cats, Natt and Cato.
Often, late at night, when I could not sleep and decided to write, Natt
and Cato would keep me company. They would frequently shed on my
notes and walk across the keyboard as I typed. Any typos you sea in thid
boot are duw too Natt amd Cato, knot me, I assure you.

Jim Harkins is one of my best friends. Whenever I think of Jim, I
can hear him saying, "When was the last time you put chlorine in the
Jacuzzi?" And, although it's not publicly known,Jim is the creator of the
very popular and hilariously outrageous game "Guess What The Plant
Said?" His direct contribution to this book can be found in the Directory
Walker, Alertable File I/O, and File Change sample programs. In addi
tion, Jim also helped me think through many of the thread synchroniza
tion issues in the book and the CPU-independent version of InjectLib.

Scott Ludwig and Valerie Horvath have become my closest friends.
Our favorite pastime is going to movies that have lots of explosions and
destruction in them. Scott and Valerie have also been initiating me into
the world of professional basketball. (You mean the Harlem Globe
trotters?) Scott was a lead developer at Microsoft for the first version of
Windows NT. When I was writing the first edition of this book, Scott was
extremely patient with me and answered all of my questions. Through
the discussions we have had, Scott has earned my utmost respect and
admiration.

xxi

ADVANCED WINDOWS

xxii

Lucy Gooding added spice and spices (mostly garlic) to my life. She
deserves a medal for putting up with my busy schedule. Now that the
book is done, we can spend more time with Me-yow-zer and Chirrp-per.

Jeff Cooperstein is a friend with a keen sense of how to muck with a
system and make it do things that it was specifically designed not to do.
Jeff devised several ways to circumvent Windows NT security (all of
which have been fixed in Windows NT 3.5) and was also about to start
work on his Virus Developer's Kit (VDK). He is also known for saying,
':Just disconnect the network cable, the machine won't receive the
broadcast packet, plug the cable back in and you're set!"

Jonathan Locke and I share a common interest in music, but for
some reason, he prefers 386/25MHz machines to MIPS machines.
Jonathan helped with proofing many of the chapters and made several
recommendations to mangle my text and alter its meaning. Many of his
suggestions opened up either a ball of worms or a can of wax. However,
we managed to incorporate them into the book before it went to press.

Lou Perazzo Ii, Steve Wood, and Marc Lucovsky of the Windows NT
development team reviewed a number of chapters and answered many
questions related to threads and memory management.

Brian Smith, Jon Thomason, and Michael Toutonghi of the Win
dows 95 development team answered several questions having to do with
Windows 95 memory and thread management.

Asmus Freytag (aka Dr. Unicode) reviewed the Unicode chapter
and gave me some last-minute suggestions over dinner at Red Robin one
very rainy Seattle evening.

Dave Hart of the Windows NT NTVDM development team spent a
lot of time with me in person and via e-mail while I asked numerous ques
tions about running 16-bit MS-DOS and Windows applications under
Windows NT's NTVDM layer. While very little of this information ap
pears in the book, Dave gave me a good deal more insight into the work
ings of Windows NT.

Chuck Mitchell, Steve Salisbury, and Jonathan Mark of the Win32
Visual C++ team answered my questions about structured exception
handling, thread-local storage, the C run-time library, and linking.

I would also like to thank/mention Mark Durley and Cezary Marcjan,
who found bugs in the first edition and provided me with numerous
ideas and stimulating conversations about Win32 programming.

Acknowledgments

I would also like to thank/mention several additional developers
on the Visual C++ team I had the opportunity to work with: Byron Dazey,
Eric Lang ("Do they sell milk at the Crest of London?"), Dan Spalding,
Matthew Tebbs ("Thanks for brunch!"), Bruce Johnson, Jon Jorstad
("How's this for a better thing to say?"), Dave Henderson, and T.K.
Brackman.

Bernie McIlroy helped me test the sample applications on a DEC
Alpha machine. Bernie thinks that all introductions should begin with
"In the beginning ... " and is also well known for his philosophy on life:
"Life is a heck of a thing."

Numerous developers at Microsoft helped fill in the gaps for me:
Mark Cliggett, Cameron Ferroni, Eric Fogelin, Randy Kath, and Steve
Sinofsky.

Rebecca Gleason was my editor at Microsoft Press for the second
edition of the book. I still owe her a big favor for putting all the RC files
back into the book at the last moment. Rebecca was on top of everything
and always had an answer to my questions-even though her answer was
frequently, "It's a style thing." I'm still trying to recover from the 10-
alarm barbecue lunch we had from Dixie's BBQ/Porter's Automotive
Service shop.

Jim Fuchs was my technical editor at Microsoft Press for the second
edition. Jim worked incredibly hard on proofing my source code and
resource files. He was absolutely indefatigable while dealing with code
changes as he and I worked on the source code at the same time.

Nancy Siadek, my editor for the first edition of this book, deserves an
award for the amount of effort and dedication she gave to me. I'm sure
she had no idea what she was getting into. Nancy taught me more about
writing in the short time I spent with her than I learned in all my years.

Jeff Carey, my technical editor for the first edition of this book, was
a big help in letting me off the hook by answering many of Nancy's ques
tions, which allowed me to rewrite some of the material.

I also want to thank the rest of the Microsoft Press team. Many of
them I have never met, but I do appreciate all their efforts. For the sec
ond edition: Shawn Peck, John Sugg, Jim Kramer, Michael Victor, Kim
Eggleston, David Holter, Penelope West, Richard Carter, Elisabeth
Thebaud, Peggy Herman, and Barbara Remmele. And those of the first
edition: Erin O'Connor, Laura Sackerman, Deborah Long, Peggy
Herman, Lisa Iversen, and Barb Runyan.

xxiii

ADVANCED WINDOWS

xxiv

Thanks also to:
Dan Horn at Borland International, for his suggestions and com

ments on several chapters and for giving an apple to the teacher.
Jim Lane, Tom Van Baak, Rich Peterson, and Bill Baxter, for their

assistance with the DEC Alpha compiler.
Dean Holmes, acquisitions director at Microsoft Press, for signing

me and for putting up with delays in the first edition while I purchased
my new house.

Gretchen Bilson and everyone at Microsoft Systems Journal, for
encouraging me to continue writing.

Charles Petzold, for introducing me to Microsoft Press and hot and
sour soup.

Carlos Richardson, for helping me get TJ-Net (my home network)
up and running in my new house.

Donna Murray, for her love, support, and friendship over the years.
I admire you for always pursuing your dreams.

My brother, Ron, for trying to find me a copy of Patrick Moraz's
"Salamander." Even though you never found it, I know you tried. I'll ask
Peter Gabriel to autograph your golf clubs the next time he's in town.
Here's hoping you win the contest and that we and Velveeta-Clear-Ioving
Maria take a trip to Bath, England.

My mom and dad, Arlene and Sylvan, for their love and support
over the years. Both of you are welcome to visit me anytime you want. I'll
keep the Jacuzzi hot and a bag of popcorn by the TV, and I'll order
another set of contour pillows.

INTRODUCTION

I have really enjoyed writing this book. There is nothing I like more
than being at the forefront of technology and learning new things. Win
dows 95 and Windows NT are definitely at the forefront of technology,
and boy, is there a lot of new stuff to learn. But don't let the amount of
new stuff scare you. If you are already a 16-bit Windows programmer, you
will find that you can start writing Win32 applications after learning
just a few simple techniques for porting your existing code. However,
these ported programs will not be taking advantage of the new, powerful,
and exciting features that the Win32 environments of Windows 95 and
Windows NT offer.

Mter you have started working with Win32, you can begin incorpo
rating more and more of these features into your applications. Many of
the Win32 features make it much easier to write programs. And, as I soon
discovered when porting some of my own code, I was able to delete large
sections of code from my existing programs and replace them with calls
to facilities offered by Win32.

The new features are such a pleasure to use and work with that I
now do Win32 programming exclusively and frequendy speak at compa
nies and conferences explaining how developers can effectively write
Win32 applications.

This book is the result of my experiences in working with Windows
95 and Windows NT. I have learned a lot since the first edition of this
book; for this edition, I have rewritten almost all of the chapters and
have gready expanded the depth to which I cover the more advanced
Win32 features. I have also reorganized the material and present it in
what I believe is a much clearer fashion.

There is no doubt in my mind that the Win32 API will become a
standard API for both minicomputers and mainframe computers (with
Windows NT) and for personal computer systems (with Windows 95 and
Windows NT). This book should help you get ready for developing appli
cations for an environment that is destined to be the industry standard.

xxv

ADVANCED WINDOWS

What I Expect from You
This book is for the Windows developer who already has some experi
ence writing programs for 16-bit Windows. However, an extensive knowl
edge of 16-bit Windows is not necessary-you need only know the basics
of Windows programming, including window procedures, window mes
sages, and dialog boxes. This book covers new features that have been
introduced in the Win32 API as it runs under the Windows 95 and Win
dows NT operating systems. No attempt will be made to teach introduc
tory Windows programming. This book also covers the types of issues
you should expect when porting 16-bit Windows applications to the
Win32API.

About the Sample Applications
The purpose of the sample applications is to demonstrate with real code
how to use the advanced features of Win32. You could never read
enough text to replace the knowledge and experience that you gain by
writing your own applications. I know that this has certainly been true of
my experience with Win32. Many of the sample applications presented
throughout this book are direct descendants of experimental programs
that I created myself in an effort to understand how the Win32 functions
behave.

Programs Written in C
When it came time to decide on a language for the sample applications,
I was torn between C and C++. For large projects, I always use C++-but
the fact of the matter is that most Windows programmers are not using
C++ yet, and I didn't want to alienate my largest potential audience.

Message Cracker Macros

xxvi

If you are not writing your Win32 application using C++ and a Windows
class library (such as Microsoft's Foundation Classes), I highly recom
mend that you use the message cracker macros defined in the
WINDOWSX.H header file. These macros make your programs easier to
write, read, and maintain. I feel so strongly about the message cracker
macros that I have included Appendix A in this book to explain why mes
sage crackers exist and how to use them effectively.

Introduction

Knowledge of 16-Bit Windows Programming
None of the programs presented rely on extensive knowledge of 16-bit
Windows programs, although experience with 16-bit Windows program
ming is definitely a plus. The sample programs do assume that you are
familiar with the creation and manipulation of dialog boxes and their
child controls. Very little knowledge of GDI and Kernel functions is
required.

When presenting various topics in this book, I do make behavior
comparisons between 16-bit Windows and Win32. If you already under
stand how 16-bit Windows behaves, you should have an easier time
understanding how behaviors have changed in Win32.

Running the Sample Applications Under Windows 95
Windows 95 is targeted to run on machines that have only 4 MB of RAM.
In order to accomplish this, Microsoft had to cut some corners when cre
ating Windows 95. For the software developer, this means that some
Win32 functions do not have full implementations on Windows 95. With
respect to my sample applications, this means that some of the applica
tions have additional functionality when run under Windows NT.

In addition, at the time I was working on this book Windows 95 was
still under development. All the sample programs were tested with Win
dows 95 build 275, but there was no way to check the sample programs
with the final release of Windows 95. At the time I finished the book,
the following programs did not run under Windows 95 build 275:
ALTERTIO.EXE (Chapter 13) and TINJLIB.EXE (Chapter 16)-for rea
sons that I explain when I introduce them in their respective chapters.

For up-to-the-minute changes in information about Windows 95, I
recommend that you periodically visit the WIN_NEWS forum, which
you can find at the following locations:

On CompuServe:

On the Internet:

On AOL:

On Prodigy:

On Genie:

GOWINNEWS

ftp://ftp·microsoft·com/peropsys/Win_News
http://www.microsoft·com
keyword WINNEWS

jumpword WINNEWS

WINNEWS file area on Windows RTC

xxvii

ADVANCED WINDOWS

You can also subscribe to Microsoft's electronic newsletter, WinNews.
To subscribe, send Internet e-mail to enews@microsoft.nwnet.com and put
the words SUBSCRIBE WINNEWS in the text of the e-mail.

Unrelated Code
I wanted to remove any code from the sample programs that was not
directly related to the techniques I wanted to demonstrate. Unfortu
nately, this is not possible when writing any Windows program. For
example, most Windows programming books repeat the code for regis
tering window classes in every application presented in the book. I have
done my best to reduce this type of nonrelevant code.

One way that I reduce nonrelevant code is by using techniques that
are not always obvious to Windows programmers. For example, the user
interface for most of the sample programs is a dialog box. In fact, most of
the sample programs have a single line of code in WinMain that simply
calls the DialogBox function. As a result, none of the sample programs
initialize a WNDCLASS structure or call the RegisterClass function. In ad
dition, only one sample application-FileChng in Chapter 13-has a
message loop in it.

Independent Sample Applications

xxviii

I have tried to keep the sample applications independent from one an
other. For example, the memory-mapped files chapter is the only chap
ter containing memory-mapped file sample programs. Because I have
structured the sample programs so that they are independent, feel free
to skip earlier chapters and proceed to later chapters.

Occasionally you'll find a sample program that uses techniques or
information presented in earlier chapters. For example, the SEHExcpt
sample application, presented in Chapter 14, "Structured Exception
Handling," demonstrates how to manipulate virtual memory. I decided
to mix these two topics in a single sample program because structured
exception handling (SEH) is a very useful mechanism for manipulating
virtual memory. In order to fully understand this sample application, you
should read Chapters 4, 5, and 6 prior to examining the SEHExcpt
sample application.

There is one sample application, however, that has a little bit of
everything: TInjLib, presented in Chapter 16. To fully understand this

Introduction

application, you must have a good understanding of kernel objects, vir
tual memory, processes, threads, thread synchronization, dynamic-link
libraries, structured exception handling, and Unicode. I would say that
understanding the TlnjLib application qualifies you to go on an inter
view and say that you really understand Win32 programming.

STRICT Compliance
All of the sample programs have been compiled with the STRICT identi
fier defined, which catches frequent coding errors. For example, with
the STRICT identifier defined, the passing of an incorrect handle type
to a function is caught during compilation instead of at run time. For
more information about using the STRICT identifier, refer to the Pro
gramming Techniques documentation included in the Win32 SDK.

Error Checking

Bug Free

Error checking should be a big part of any software project. U nfortu
nately, proper error checking can make the size and complexity of a
software project grow exponentially. In order to make the sample appli
cations more understandable and less cluttered, I have not put very
much error-checking code into them. If you use any of my code frag
ments and incorporate them into your own production code, I strongly
encourage you to examine my code closely and add any appropriate
error checking.

I would love to say that all of the sample programs are bug free. But, as
with all software, it's only bug free until someone finds a bug. Of course,
I have given my own code several walk-throughs in the hope of catching
everything. If you do find a bug, I would appreciate your reporting it to
me via my Internet address: v-jeJjrr@microsoft.com.

Tested Platforms and Environments
The bulk of my research and development for this book has been on a
machine with only one Intel 486 CPU. I have also recompiled and tested
all the sample programs on a MIPS machine and on a DEC Alpha ma
chine, using the compilers and linkers that come with Visual C++ 2.0 for
these platforms. All of the programs have been tested under both Win
dows 95 and Windows NT.

xxix

ADVANCED WINDOWS

1'1
IlIp.,1111

xxx

For most of the sample programs, I use no vendor-specific compiler
extensions. These programs should compile and link regardless of the
machine on which you are running and regardless of which tools you are
using to compile and link the sample programs.

However, several of the sample programs do take advantage of
compiler-specific features:

• Named data sections using the following syntax:

#pragma data_seg (...)

• Static thread-local storage using the following syntax:

_declspec(thread)

• Structured exception handling using the following keywords:

_try, _leave, _finally, and _except

Because most compiler vendors will be modifying their compil
ers to recognize these four new keywords, it is unlikely that you
will have to modify the structured exception handling sample
programs at all.

• Compiler-assisted function importing and exporting using the
following syntax:

_declspec(dllimport) and_declspec(dllexport)

If you are using tools other than those included in Visual C++ 2.0,
you will need to discover how your vendor exposes these features and
modify the sample programs accordingly.

There is a problem with the Microsoft Visual C++ 2.0 Setup program. If
you turn off MFC support when installing Visual C++, the Setup program
does not copy the WINRES.H file to the \MSVC20\MFC\INCLUDE di
rectory. If WINRES.H is missing from this directory, you will not be
able to compile the resource files that come with this book. There are
two ways to fix this problem. First, you can reinstall Visual C++ with the
MFC option turned on. Second, you can manually copy the WINRES.H
file from the Visual C++ CD-ROM to the \MSVC20\MFC\INCLUDE
directory on your hard disk.

Unicode

Introduction

Originally I wrote all the sample programs so that they could compile
natively using the ANSI character set only. Then, when I started writing
the Unicode chapter, I became a very strong believer in Unicode and
tried desperately to come up with a sample program for the Unicode
chapter. Then the answer came to me: convert all the sample applica
tions in the book so that they demonstrate Unicode. This conversion
effort took only four hours and allows you to compile all the sample ap
plications natively for both ANSI and Unicode.

The disadvantage in doing this is that you might see calls to unfa
miliar functions that manipulate characters and strings within the sample
applications. For the most part, you should be able to guess what that
function does if you are familiar with the standard C run-time library
functions for manipulating characters and strings. However, if you get
stuck, you should refer to Chapter 15. This chapter explains in much
greater detail what I have done in the sample programs. It is my hope
that you not be confused by the new character and string functions and
that you see how easy it is to write your application code using Unicode.

Installing the Sample Programs
The companion CD-ROM contains the source code for all the sample
applications presented throughout this book. In addition, the EXE and
DLL files for the x86, MIPS, and Alpha AXP versions of the sample pro
grams are included. Because none of the files on the CD-ROM are com
pressed, you can simply insert the CD-ROM and load the source code
files; you can also run the sample applications directly from the CD-ROM.

On the CD-ROM, the root directory contains the installation soft
ware and the ADVWIN32.H header file discussed in Appendix B. The
root directory also contains several subdirectories. Three of these sub
directories are called X86.BIN, MIPS. BIN, and ALPHA. BIN. These
subdirectories contain the EXE and the DLL files for their respective
CPU platforms. If you are running Windows NT on a platform other
than an x86, MIPS, or Alpha, you can still access the source code files but
you will not be able to execute any of the sample applications without
building them yourself. This means you will need to install the source
code files on your hard disk. The section "Windows NT" later in this
Introduction discusses how to perform this installation.

xxxi

ADVANCED WINDOWS

The remaining subdirectories contain the source code files for the
sample applications. Each sample application is in its very own sub
directory. The eight-letter name of each subdirectory contains the name
of the sample program, and the subdirectory's extension indicates the
chapter in the book where the program is presented. For example, the
subdirectory FILECHNG.09 identifies the File Change sample applica
tion presented in Chapter 9.

If you are interested only in examining the source code or running
the sample applications, you do not have to copy anything to your hard
disk. However, if you want to modify, compile, or debug the sample
applications, you will need to copy the files to your hard disk. The next
two sections explain how to access the sample application files depend
ing on whether you are running Windows 95 or Windows NT.

Windows 95

xxxii

When you insert a CD-ROM into your CD-ROM drive, Windows 95 de
tects the disc and can automatically execute a Setup program contained
on that CD-ROM. The CD-ROM supplied with this book has been pre
pared to take advantage of this feature. When you insert the CD-ROM,
the following dialog box appears:

If you click on the Copy Source Code, EXEs, And DLLs To The
Hard Disk button, the Setup program supplied on the CD-ROM exe
cutes and allows you to type in the directory path where you would like
the files copied. When the Setup program is complete, a new menu item
will be created for the Programs menu of the system's task bar. You can
execute any of the sample applications by selecting the desired applica
tion from the task bar's Programs menu.

Introduction

If you select the Explore The Sample Applications On The CD
ROM button, the Windows 95 Explorer will display the icons for all the
sample applications, as shown below. Double-click on an icon to run the
associated application.

~~~ ~F~ 
~ "' 

&I "' PMR .. t Tlnj..ib 

, J: • • I SEHSoR SEHSum SEHE,cpt SEHT.rm I 

£ • .!t ,. [il' 
I 

Ii · h.-il 
TLSDyn FileChng Dirwaft< ModUs! !Aiii~[a! Disklnlo 

\sa , ~ ii ~ • TLSStat Mullnst LisLab CopyD.ta DocSt.t. Bucket 

!!f • • • III • SPlnYkt MuteKes Crbec. MMFShare F"rIeRev VMAlloc 

• I I 
VMMap Sydnfo VMStat 

Windows NT 
Under Windows NT, you must manually invoke the SETUP.BAT batch 
file located in the root directory of the CD-ROM. This batch file deter
mines which type of CPU platform you are running Windows NT on and 
invokes the correct Setup application for your platform (ISETUP.EXE 
for x86, MSETUP.EXE for MIPS, and ASETUP.EXE for Alpha). The 
Setup program then prompts you to type in a destination directory and, 
after you have done so, copies all the source code files and binary files to 
your hard drive. Mter all the files have been copied, a new Program Man
ager group is created and all the sample programs are added to this 
group, as shown on the next page. 

xxxiii 



ADVANCED WINDOWS 

xxxiv 

If you are running Windows NT on a platform other than x86, 
MIPS, or Alpha, you must invoke SETUP.BAT and specify a location at 
which the files should be installed. For example, the following line as
sumes that the CD-ROM is in drive H and that you want to install the 
source code files in the ADVWIN32 directory on drive C. (This directory 
will be created if it doesn't exist.) 

C:\>H:\SETUP C:\ADVWIN32 

Of course, the Setup batch file cannot create a Program Manager 
group because no EXE files are installed. You will have to create your 
own Program Manager group, compile each of the sample applications, 
and manually add each application to the newly created Program Man
agergroup. 



C HAP T E R ONE 

THE WIN32 API 
AND PLATFORMS 
THAT SUPPORT IT 

I am a frequent speaker at industry events, where I am often asked, 
"What is the difference between Win32 , Win32s, Windows NT, and 
Windows 95?" In this chapter, I will attempt to clarify these differences 
once and for all. I will also explain why I chose to focus exclusively on 
Windows 95 and Windows NT when writing this book. 

To Dream: The Win32API 
Win32 is the name of an application programming interface (API), that's 
all-no more, no less. So a set of functions that are available to call from 
your source code is contained in the Win32 API. When you write a Win32 
program, you are doing so because you are calling functions in the 
Win32 API. 

The Win32 API defines a set of functions that an application may 
call and also defines how these functions behave. Some of the areas cov
ered by the API's functions are listed in Figure I-Ion the next page. 

The Win32 API is implemented on three platforms:Win32s,1 
Windows NT, and Windows 95. Microsoft's plan is to have all the Win32 
functions implemented in every platform that supports the Win32 API. 
This is a major win for software developers like you and me, as well as for 
Microsoft. For us it means we can write the code for our applicationjust 
once and then package it for the different platforms and ship it off to 

1. It is unfortunate that the Win32s platform has Win32 in its name, because this only adds 
to the confusion. 

1 



ADVANCED WINDOWS 

Win32s 

2 

our customers. For Microsoft it means existing applications can run on 
all their operating system platforms. 

Atoms 

Child controls 

Clipboard manipulations 

Communications 

Consoles 

Debugging 

Dynamic-link libraries 

Event logging 

Files 

Graphics drawing primitives 

Keyboard and mouse input 

Memory management 

Multimedia services 

Figure 1-1. 

Networks 

Pipes and mailslots 

Printing 

Processes and threads 

Registry database manipulation 

Resources 

Security 

Services 

Structured exception handling 

System information 

Tape backup 

Time 

Window management 

Some areas covered by the Win32 API. 

Of course, you may be asking yourself, Why do we need to have dif
ferent Win32 platforms? Wouldn't itmake more sense to have a single 
Win32 platform and make this one platform pervasive? 

Well, if this were a perfect world, the answer to the second question 
would be "yes." However, this is the real world-and in the real world, 
one Win32 platform just doesn't cut it. I'll explain why in the next three 
sections, which introduce the three Win32 platforms and describe where 
each one fits into Microsoft's operating system strategy. 

The Win32s platform was the very first shipping platform capable of 
running Win32 applications. Win32s consists of a set of dynamic-link 
libraries (DLLs) and a virtual-device driver that add the Win32 API to 
the 16-bit Windows 3. x system. Win32s is not much more than a 32-bit to 
16-bit mapping layer sitting on top of16-bit Windows 3.x. This mapping 



ONE: The Win32 API and Platforms That Support It 

layer uses thunking to convert the 32-bit function parameters to 16-bit 
parameters and to call the corresponding 16-bit Windows function. 

Because Win32s does not extend the operating system's capabili
ties, most of the Win32 functions are implemented as small stub func
tions that simply return, indicating failure. For example, because 16-bit 
Windows does not support threads, the CreateThread function does noth
ing but return a NULL handle. All of the Win32 functions that create 
kernel objects such as mutexes and events return NULL handles. The 
Win32s platform does add a few new capabilities, however, such as struc
tured exception handling and limited implementations of memory
mapped files. 

Microsoft created Win32s to allow developers to begin writing 32-
bit code immediately. Microsoft hoped this would help spark interest in 
Win32 programming so that when Windows NT shipped, some 32-bit 
applications would already be available. Unfortunately, Win32s did not 
take off too well, and I personally know of no software development 
effort that }:las specifically targeted the Win32s platform. 

Windows NT 
Windows NT, Microsoft's high-end operating system, is the second Win32 
platform to ship from the company. Windows NT is a relatively new oper
ating system that has no MS-DOS heritage. Microsoft expects this new 
design and architecture to take the company's operating systems into 
the future. However, Windows NT requires substantial memory and hard 
disk space. This means the average end user probably needs to purchase 
additional memory and hard disk space in order to run the system. As 
many software companies have discovered over the years, getting users 
to buy hardware to run software is very difficult. 

And so, to date, Windows NT has had less than spectacular sales. 
But, in my opinion, we will all be running Windows NT someday-it just 
may take a few more years. Why is Windows NT the operating system of 
the future? I'm glad you asked. I explain in detail below. 

First, Windows NT native applications are Win32 applications, 
giving them the power, robustness, and speed provided by the API. In 
addition, Windows NT is capable of running several different types of 
applications simultaneously. For example, Windows NT can run OS/2 
l.x character applications, POSIX applications, Presentation Manager 
2.x applications, MS-DOS applications, and 16-bit Windows applications. 

3 



ADVANCED WINDOWS 

Second, Windows NT is a portable operating system. This means 
that Windows NT is capable of running on machines that have different 
CPUs. Most of Windows NT itselfis written in C or C++. So if Microsoft 
wants Windows NT to run on a MIPS R4000, a DEC Alpha, or Motorola's 
PowerPC, Microsoft needs only to recompile the operating system source 
code using the target CPU's native compiler and voila-a version of 
Windows NT for another platform. Of course, porting the operating sys
tem to another CPU architecture is not quite this easy. Two very low level 
components of the Windows NT Executive, called the Kernel and the 
Hardware Abstraction Layer (HAL), need to be written to support the 
target architecture. Much of the Kernel and the HAL is written in native 
assembly language and is quite specific to the target machine architecture. 

After Microsoft finishes porting Windows NT· to a new architec
ture, all you need to do is recompile your Win32 application and voila 
again-your application now runs on a new machine architecture. This 
actually is as simple as it sounds! I have compiled and tested all of the 
sample applications in this book for the following three Windows NT plat
forms: x86, MIPS, and Alpha. The first time I did this, I was amazed at 
how simple it was. Now I just take it for granted. 

You should note that Windows NT is the only Win32 platform for 
machine architectures based on CPU s other than the x86. In other words, 
if you want to run Win32 applications on a MIPS, Alpha, or PowerPC 
machine, you will have to use the Windows NT platform. If you have an 
x86 machine, you can choose from three platforms: Win32s, Windows 
NT, pr Windows 95. Windows NT is the most competent of these operat
ing systems but does require the additional hardware. 

The third big feature. of Windows NT is that it supports machines 
with multiple CPU s. So if you are running Windows NT on a machine that 
contains 30 CPUs, the operating system is capable of letting 30 threads 
run simultaneously. This means the machine can perform 30 tasks in the 
time that it takes to perform one task. This is an incredibly powerful 
.capability, but, as you might expect, a m~chine with several CPUs costs 
significantly more than a single-CPU machine. 

Windows 95 

4 

. Windows 95 is Microsoft's most recent Win32 platform, and the long
awaited successor to 16-bit Windows 3.x. Because Windows 95 replaces 
Windows 3.x, the Win32s platform is now considered obsolete. So this 



ONE: The Win32 API and Platforms That Support It 

leaves two Win32 platforms worthy of your consideration: Windows 95 
and Windows NT. 

Windows 95 is a much better implementation of the Win32 API than 
its predecessor, Win32s. However, Windows 95 does not contain the full 
implementation of the Win32 API as found in Windows NT. Windows 95 
fills a very large and strategic marketing gap: users with 386 (or better) 
machines with 4 MB (or more) of RAM. The number of machines that 
fall into this category is staggering-and it's expected to grow signifi
cantly over the next couple of years. Because the Windows NT hardware 
requirements are too demanding to address this market, Microsoft pro
duced the Windows 95 platform. 

In order for Windows 95 to fit in a 4-MB machine, Microsoft was 
forced to cut back on some of the Win32 API's functionality. As a result, 
Windows 95 does not fully support some of Win32's asynchronous file 
I/O functions, debugging functions, registry functions, security func
tions, and event logging functions (just to name a few)-the furictions 
exist, but they have restricted implementations. Surprisingly, however, 
Microsoft was able to shoehorn quite a bit of the Win32 API set into 
Windows 95, making it a very feasible and powerful operating system. 
So powerful, in fact, that it is expected to be the most purchased and 
used Win32 platform in the near future. 

The Reality: The Win32 API 
The Win32s, Windows NT, and Windows 95 platforms all contain imple
mentations of all the Win32 functions, which means you can call any of 
the functions in the Win32 API regardless of which platform you are run
ning on. However, there is implementation and there is implementation. 
When Microsoft says that every Win32 function will be implemented on 
every platform, what it really means is that every Win32 function will exist 
on every platform. For example, the CreateRemoteThread function exists 
on all three platforms: Win32s, Windows NT, and Windows 95. However, 
the function doesn't actually create a remote thread unless the applica
tion calling the function is running on the Windows NT platform. If a 
process running on Win32s or Windows 95 calls CreateRemoteThread, the 
function does nothing and simply returns NULL, indicating that a new 
thread of execution could not be created. 

The reason for this limitation on Win32s is that Win32s is really just 
an extension to 16-bit Windows 3.x that implements most of the Win32 

5 



ADVANCED WINDOWS 

6 

API by thunking calls to 16-bit Windows functions. Because 16-bit Win
dows does not support the creation of new threads of execution, Win32s 
does not support this feature. But remember, Win32s implements all of 
the Win32 functions, although some of the implementations are limited. 
On Windows 95, a new thread of execution cannot be created because 
Microsoft didn't feel that the function was useful enough to warrant the 
additional memory overhead required to make Windows 95 run in a 
4-MB machine. 

Because this is a Win32 programming book, you might think that 
you can compile all the sample programs you find here and run them on 
all three Win32 platforms. This is true; however, most of the features that 
I discuss in this book (for example, multithreaded programming, virtual 
memory, and memory-mapped files) have full implementations on the 
Windows 95 and Windows NT platforms but only limited implementa
tions on the Win32s platform. Because of this, you must run the sample 
programs under the Windows 95 or the Windows NT platform to see them 
in all their glory. 

In fact, because the Win32s platform is so limited in its capabilities, 
I have given no thought whatsoever to the Win32s platform in this book. 
Everything I have written applies to the Windows 95 and Windows NT 
platforms only-if something I say happens to be true for the Win32s 
platform, I assure you it is purely coincidental. 

I'd like to make one more point: With the introduction of the 
Windows 95 platform, Microsoft has added a new wrinkle to the Win32 
story. Windows 95 has added new functions to the Win32 API in order to 
support image color matching, modems, and other services. The func
tions that support these new services will not exist on the Windows NT 
implementation of the Win32 API until Microsoft ships a future, post-3.5 
version of Windows NT. This means that there are some Win32 functions 
that exist on one platform and not on another .. And I don't just mean 
that the Windows NT implementation of these functions is limited-I 
mean the Windows NT version of the Win32 API doesn't include these 
functions at all. This is terrible-Windows NT is always supposed to have 
the complete implementation of the Win32 API. 

Finally, while writing this book I have tried to pay particular atten
tion to differences between the Windows 95 and Windows NT imple
mentations of the Win32 API. Where appropriate, I have placed boxes 
with icons, as shown on the facing page, in the text to draw attention to 
implementation details specific to one platform or the other. 



ONE: The Win32 API and Platforms That Support It 

This is an implementation detail specific to the Windows 95 platform. 

This is an implementation detail specific to the Windows NT platform. 

I have also used boxes with icons to include information helpful to pro
grammers porting from 16-bit Windows to Win32, and for important 
notes-both shown below. 

This is important information to help programmers porting from 16-bit 
Windows to Win32. 

" [ This is an important note. 
Important 

7 





C HAP T E R TWO 

PROCESSES 

This chapter discusses how the system manages all of the running appli
cations. I'll begin by defining what a process is and how the system cre
ates a process kernel object to manage each process. Special attention 
will be paid to kernel objects because a solid understanding of kernel 
objects is critical to becoming a proficient Win32 software developer. 
Kernel objects are used by the system and the applications we write to 
manage numerous resources such as processes, threads, and files (to 
name just a few). 

Mter this short departure to discuss kernel objects, I'll return to 
processes and show how to manipulate a process using its associated 
kernel object. Then I'll discuss the various attributes or properties of a 
process as well as several functions that are available for querying and 
changing these properties. I'll also examine the functions that allow you 
to create or spawn additional processes in the system. And of course, no 
discussion of processes would be complete without an in-depth look at 
how they terminate. OK, let's begin. 

A process is usually defined as an instance of a running program. In 
Win32, a process owns a 4-GB address space. Unlike their counterparts 
in MS-DOS and 16-bit Windows operating systems, Win32 processes are 
inert. That is, a Win32 process executes nothing-it simply owns a 4-GB 
address space containing the code and data for an application's EXE file. 
Any DLLs required by the EXE also have their code and data loaded into 
the process's address space. In addition to an address space, a process 
owns certain resources such as files, dynamic memory allocations, and 
threads. The various resources created during a process's life are destroyed 
when the process is terminated-guaranteed. 

As I said, processes are inert. In order for a process to accomplish 
anything, the process must own a thread; it is this thread that is respon
sible for executing the code contained in the process's address space. In 

9 



ADVANCED WINDOWS 

fact, a single process might contain several threads, all of them executing 
code "simultaneously" in the process's address space. In order to do this, 
each thread has its very own set of CPU registers and its own stack. Every 
process has at least one thread executing code contained in the 
process's address space. If there were no threads executing code in 
the process's address space, there would be no reason for the process to 
continue to exist and the system would automatically destroy the process 
and its address space. 

In order for all of these threads to run, the operating system sched
ules some CPU time for each individual thread. The operating system 
gives the illusion that all the threads are running concurrently by offer
ing time slices (called quantums) to the threads in a round-robin fashion, 
as shown in Figure 2-1. 

When a Win32 process is created, its first thread, called the primary 
thread, is automatically created by the system. This pqmary thread can 
then create additional threads, and these additional threads can create 
even more threads. 

Windows NT is capable of utilizing machines that contain several CPUs. 
For example, Sequent sells a computer system that includes 30 Intel CPU s. 
Windows NT is able to assign a CPU to each thread so that 30 threads are 
actually running simultaneously. The Windows NT Kernel handles all 
the management and scheduling of threads on this type of system. You 
do not need to do anything special in your code in order to gain the advan
tages offered by a multiprocessor machine. 

Kernel Objects 

10 

Before getting knee-deep into processes and threads, it is extremely im
portant to understand kernel objects and how the system manages them. 
This information is not only important for manipulating processes and 
threads; it is also critical to understanding how much of the Win32 sys
tem operates. As a Win32 software developer, you will be creating, open
ing, and otherwise manipulating kernel objects on a regular basis. The 
system creates and manipulates several types of kernel objects, including: 

Event objects 
File-mapping objects 
File objects 

MailSlot objects 
Mutex objects 
Pipe objects 

Process objects 
Semaphore objects 
Thread objects 



TWO: Processes 

Figure 2-1. 
Individual threads are scheduled time quantums by the operating system 
in a round-robin fashion. 

These objects are created by calling various Win32 functions. For 
example, the CreateFileMapping function causes the system to create a 
file-mapping object. When an object is created, the system allocates a 
block of memory for the object, initializes the memory with some man
agement information, and returns a handle to your application identify
ing the object. Your application can then pass the handle to other Win32 
functions in order to manipulate the object. 

Your application might also use other types of objects, such as 
menus, windows, mouse cursors, brushes, and fonts. These objects are 
User or Graphics Device Interface (GDI) objects, not kernel objects. 

When you first start programming for Win32, you might be con
fused when trying to differentiate a User or GDI object from a kernel 
object. For example, is an icon a User object or a kernel object? The easi
est way to determine whether an object is a kernel object or not is by 
examining the Win32 function that creates the object. All functions that 
create kernel objects have a parameter that allows you to specify security 
attribute information. For example,the CreateMutex function: 

HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpsa, 
BOOl flnitialOwner, LPCTSTR lpszMutexName); 

has, as its first parameter, a pointer to a SECURITY_ATTRIBUTES struc
ture. The CreateIcon function, shown on the next page, does not have a 
parameter allowing you to specify security attributes. 

11 



ADVANCED WINDOWS 

12 

HICON CreateIcon(HINSTANCE hinst. intnWidth. int nHeight. 
BYTE cPlanes. BYTE cBitsPixel. 
CONST BYTE *lpbANDbits. CONST BYTE *lpbXORbits): 

Once a kernel object exists, any application can open the object 
(subject to security checks). For example, one application might create a 
mutex object, which is then available for another application to open. 
This capability allows the two applications to manipulate the same 
mutex object. When an application opens a kernel object, the system 
does not create another block of memory for the object. Instead, the sys
tem increments a usage count associated with the already existing object 
and returns a handle, identifying the existing object, to the thread open
ing the object. 

When a thread no longer needs to manipulate a kernel object, it 
should call the CloseHandle function: 

BOOl CloseHandle(HANDlE hObject): 

This function cal,lses the system to decrement the usage count for 
the object, and if the usage count reaches 0, the system frees the memory 
allocated to manage the object. 

To help make the system more robust and secure, a handle to a ker
nel object is process-relative-that is, it is meaningful only to the process 
that called the create or open function. If a thread calls CreateMutex, the 
system might return the haridle value Ox22222222. If a thread in another 
process opens the same mutex object, the system might return the han
dle value Ox12345678. Both handles identify the samemutex object even 
though the values are different. 

Because handles for kernel objects are process-relative, a thread 
cannot successfully get a handle to an object and give or pass that handle 
to a thread in another process through some form of interprocess com
munication (such as sending a window message). When the thread in 
the receiving process attempts to use the handle, one of two things hap
pens: the handle value does not identify an object accessible to the 
thread, or the handle identifies a different object created or opened by 
another thread in the process. In either case, an error will most likely 
result when the handle is used. 

Contrast this to the User or GDI objects, which use the same han
dle value across processes. For example, if a window is identified with a 
handle value of Ox34343434, all processes use this same value to refer to 
the window. 



TWO: Processes 

Writing Your First Win32 Application 
Win32 supports two types of applications: graphical user interface (GUI)
based and console-based. A GUI-based application has a graphical front 
end. GUI applications create windows, have menus, interact with the 
user via dialog boxes, and use all the standard "Windowsy" stuff. Almost 
all the accessory applications that ship with Windows (Notepad, Calcula
tor, and Clock, for instance) are typical examples of GUI-based applica
tions. Console-based applications more closely resemble MS-DOS text 
applications: their output is text-based, they don't create windows or 
process messages, and they don't require a graphical user interface. 
Although console-based applications are contained within a window on 
the screen, the window contains only text. The command shells, CMD 
.EXE (for Windows NT) and COMMAND.COM (for Windows 95), are 
typical examples of console-based applications. 

Although there are two types of applications, the line between 
them is very fuzzy. It is possible to create console-based applications that 
display dialog boxes. For example, the command shell could have a spe
cial command that causes it to display a graphical dialog box, allowing 
you to select the command you want to execute instead of having to 
remember the various commands supported by the shell. You could also 
create a GUI-based application that outputs text strings to a console win
dow. I have frequently created a GUI-based application that creates a 
console window where I can send de bugging information as the applica
tion executes. Of the two application types, you are certainly encouraged 
to use a graphical user interface in your applications instead of using 
the old-fashioned character interface. It has been proven time and time 
again that GUI-based applications are much more user friendly. 

The real difference between the two applications is how your code 
starts executing. If you are writing a GUI-based application, the process's 
primary thread will execute your code starting with its WinMain func
tion. (See Chapter 3 for more details.) However, a console-based appli
cation's primary thread begins execution with a main function. Because 
the system passes more information to a GUI application's WinMain 
function than to a console-based application's main function, I encour
age you to write GUI-based applications that begin with WinMain. 

In this chapter, my discussion of the mechanics of creating pro
cesses applies to both GUI-based and console-based applications, but I 
emphasize GUI-based applications and don't discuss some of the finer 

13 



ADVANCED WINDOWS 

14 

details of creating console-based applications. If you want more informa
tion on creating console-based applications, please refer to the Microsoft 
Win32 Programmer's Reference. 

All Win32 GUI-based applications must have a WinMain function 
that you implement in your source code. The function must have the fol
lowing prototype: 

int WINAPI WinMain(HINSTANCE hinstExe. HINSTANCE hinstPrev. 
LPSTR lpszCmdLine. int nCmdShow); 

This function is not actually called by the operating system. Instead, 
the operating system calls the C/C++ run-time's startup function. The 
Visual c++ linker knows that the name of this function is _WinMainCRT
Startup, but you can override this using the linker's /ENTRY switch. The 
_WinMainCRTStartup function is responsible for performing the follow
ing actions: 

1. Retrieves a pointer to the new process's full command line. 

2. Retrieves a pointer to the new process's environment variables. 

3. Initializes the C run-time's global variables accessible from your 
code by including STDLIB.H. Figure 2-2 shows the list ofvari
abIes available. 

4. Initializes the heap used by the C run-time memory allocation 
functions (that is, malloc and calloc) and other low-level input/ 
output routines. 

5. Calls your WinMain function as follows: 

GetStartuplnfoA(&Startuplnfo); 

int nMainRetVal = WinMain(GetModuleHandle(NULL). NULL. 
lpszCommandLine. 
(Startuplnfo.dwFlags & STARTF_USESHOWWINDOW) ? 

Startuplnfo.wShowWindow : SW_SHOWDEFAULT); 

6. When WinMain returns, the startup code calls the C run-time's 
exit function, passing it WinMain's return value (nMainRetVal). 
The exit function performs some cleanup and then calls the 
Win32 ExitProcess function, passing it WinMain's return value. 

The remainder of this section discusses the various attributes that 
are "bestowed" upon a new process. 



Variable 
Name 

_winmajor 

_winminor 

_winver 

_argc 

_argv 

_environ 

Figure 2-2. 

Type 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

unsigned int 

char ** 

char ** 

TWO: Processes 

Description 

Build version of the operating system. For 
example, Windows NT 3.5 was build 807. 
Thus _osver has a value of 807. As of this 
writing, the most recent build of Windows 
95 is 275. 

Major version of Windows in hexadecimal 
notation. For Windows NT 3.5, the value 
is Ox03. 

Minor version of Windows in hexadecimal 
notation. For Windows NT 3.5, the value 
is Ox32. 

(_winmajor« 8) + _winminor 

The number of arguments passed on the 
command line. 

An array of _argc pointers to ANSI strings. 
Each array entry points to a command-line 
argument. 

An array of pointers to ANSI strings. Each 
array entry points to an environment string. 

The C run-time global variables available to your programs. 

A Process's Instance Handle 
Every EXE or DLL loaded into a process's address space is assigned a 
unique instance handle. Your process is passed its instance value as Win
Main's first parameter, hinstExe. The handle's value is typically needed 
for calls that load resources. For example, to load an icon resource from 
the EXE file's image, you will need to call: 

HICON Loadlcon(HINSTANCE hinst. LPCTSTR lpszlcon); 

The first parameter to Loadlcon indicates which file (EXE or DLL) 
contains the resource that you want to load. Many applications save 
WinMain's hinstExe parameter in a global variable so that it is easily acces
sible to all of the EXE file's code. 

The Win32 documentation states that some Win32 functions require 
a parameter of the type HMODULE. An example is the GetModuleFile
Name function, shown on the next page. 

15 



ADVANCED WINDOWS 

16 

DWORD GetModuleFileName(HMODULE hinstModule. LPTSTR lpszPath. 
DWORD cchPath); 

However, the Win32 API makes no distinction between a process's 
HMODULE and HINSTANCE values-they are one and the same. 
Wherever the Win32 documentation for a function indicates that 
HMODULE is required, you can pass HINSTANCE. 

The actual value of WinMain's hinstExe parameter is the base memory 
address indicating where the system loaded the EXE file's image into the 
process's address space. For example, if the system opens the executable 
file and loads its contents at address Ox00400000, WinMain's hinstExe 
parameter will have a value of Ox00400000. This "definition" of the 
hinstExe parameter is documented and can be relied on for future ver
sions ofWin32 implementations. 

The base address where an application loads is determined by the 
linker. Different linkers can use different default base addresses. The 
Visual C++ linker uses a default base address of Ox00400000 because this 
is the lowest address an executable file image can load to when you are 
running Windows 95. Some older linkers use a default base address of 
OxOOOIOOOO because this is the lowest address an executable file image 
can load to when running under Windows NT. You can change the base 
address that your application loads to by using the /BASE: address linker 
switch for Microsoft's linker. 

If you attempt to load an executable that has a base address below 
Ox00400000 on Windows 95, the Windows 95 loader must relocate the 
executable to a different address. This increases the loading time of 
the application, but at least the application can run. If you are develop
ing an application intended to run on both Windows 95 and Windows 
NT, you should make sure that the application's base address is at 
Ox00400000 or above. 

The GetModuleHandle function: 

HMODULE GetModuleHandle(LPCTSTR lpszModule); 

returns the handle/base address indicating where an EXE or DLL file 
loaded in the process's address space. When calling this function, you 
pass a zero-terminated string that specifies the name of an EXE or DLL 
file loaded into the calling process's address space. If the system finds the 



18 .••• 

TWO: Processes 

specified EXE or DLL name, GetModuleHandle returns the base address 
at which that EXE or DLL's file image is loaded. The system returns 
NULL if it cannot find the specified file. You can also call GetModule
Handle, passing NULL for the IpszModule parameter. When you do this, 
GetModuleHandle returns the EXE file's base address. This is what the C 
run-time startup code does when it calls your WinMain function, as dis
cussed in step 5 on page 14. 

There are two important things to note about the GetModuleHandle 
function. First, GetModuleHandle examines only the calling process's 
address space. If the calling process does not use any GDI functions, 
calling GetModuleHandle and passing it "GDI32" will cause NULL to be 
returned even though GDI32.DLL is probably loaded into other pro
cesses' address spaces. Second, calling GetModuleHandle and passing a 
value of NULL returns the base address of the EXE file in the process's 
address space. So even if you call GetModuleHandle(NULL) from code 
that is contained inside a DLL, the value returned is the EXE file's base 
address-not the DLL file's base address. This is different from how the 
GetModuleHandle function works under 16-bit Windows. 

In 16-bit Windows, a task's hModule indicates the module database 
(a block of information used internally by the system to manage the 
module) for an EXE or aDLL. Even if200 instances of Notepad are run
ning, there is only one module database for Notepad and therefore only 
one hmodExe value shared by all the instances. There can be one and 
only one instance of a DLL loaded in 16-bit Windows, so only one 
hmodExe value exists for each loaded DLL. 

In 16-bit Windows, each running instance of a task receives its very 
own hinstExe value. This value identifies the task's default data segment. 
If 200 instances of Notepad are running, there are 200 hinstExe values
one for each running instance. Because DLLs also have a default data 
segment, each loaded DLL also receives its very own hinstExe value. You 
might think that because a DLL can be loaded only once, 16-bit Windows 
could use the same value for aDLL's hmodExe and hinstExe. This is not the 
case, however, because hmodExe identifies the DLL's module database, 
while hinstExe identifies the DLL's default data segment. 

(continued) 

17 



ADVANCED WINDOWS 

continued 

In Win32, each process gets its own address space, which means 
each process thinks it is the only process running in the system. One pro
cess cannot easily see another process. For this reason, no distinction is 
made between a process's hinstExe and its hmodExe-they are one and the 
same. For historical reasons, the two terms continue to exist throughout 
the Win32 documentation. 

As stated in the previous section, an application's hinstExe actually 
identifies the base memory address where the system loaded the EXE 
file's code into the process's address space. Because of this, it is extreme
ly likely that many processes will have the same hinstExe value. For exam
ple, invoking NOTEPAD.EXE causes the system to create a 4-GB process 
address space and load Notepad's code and data into this address space. 
The code and data might load at memory address Ox00400000. If we now 
invoke a second instance ofNOTEPAD.EXE, the system will create a new 
4-GB address space for this process and again load Notepad's code and 
data at memory address Ox00400000. Because an application's hinstExe 
value is the same as the base memory address where the system load
ed the EXE's code, the hinstExe value for both of these processes is 
Ox00400000. 

In 16-bit Windows, it is possible to call the DialogBox function and 
pass it an hinstExe value that belongs to a task other than your own: 

int DialogBox(HINSTANCE hlnstance. LPCTSTR lpszTemplate. 
HWND hwndOwner. DLGPROC dlgprc); 

This causes 16-bit Windows to load the dialog box template from 
the other application's resources. Of course, this is a questionable action 
to take anyway, but in Win32 it's no longer possible to do this. When you 
make a call to a function that expects an hinstExe value, Win32 interprets 
the call to mean that you are requesting information from the EXE or 
DLL loaded into your own process's address space at the address indi
cated by the hinstExe parameter. 

A Process's Previous Instance Handle 

18 

As noted earlier, the C run-time's startup code always passes NULL to 
WinMain's hinstPrev parameter. This parameter exists for backward com
patibility and has no meaning to Win32 applications. 



TWO: Processes 

In a 16-bit Windows application, the hinstPrev parameter specifies the 
handle of another instance of the same application. If no other instances 
of the application are running, hinstPrev is passed as NULL. A 16-bit 
Windows application frequently examines this value for two reasons: 

• To determine whether another instance of the same applica
tion is already running and, if so, to terminate the newly in
voked instance. This termination occurs if a program such as 
the Print Manager wants to allow only a single instance of itself 
to run at a time. 

• To determine whether window classes need to be registered. In 
16-bit Windows, window classes need to be registered only once 
per module. These classes are then shared among all instances 
of the same application. If a second instance attempts to regis
ter the same window classes a second time, the call to Register
Class fails. In Win32, each instance of an application must 
register its own window classes because window classes aren't 
shared among all instances of the same application. 

To ease the porting of a 16-bit Windows application to the Win32 
API, Microsoft decided to always pass NULL in the hinstPrev parameter 
of WinMain. Because many 16-bit Windows applications examine this 
parameter when registering window classes, all instances see that 
hinstPrev is NULL and automatically reregister their window classes. 

While this decision eases the job of porting your applications, it 
also means that applications cannot use the value of hinstPrev to prevent 
a second instance from running. An application must use alternative 
methods to determine whether other instances of itself are already run
ning. In one method, the application calls FindWindow and looks for a 
particular window class or caption that uniquely identifies that applica
tion. IfFindWindowreturns NULL, the application knows that it's the only 
instance of itself running. In Chapter 11, I present another method for 
determining whether multiple instances of an application are running. 

19 



ADVANCED WINDOWS 

A Process's Command Line 

20 

When a new process is created, it is passed a command line. The com
mand line is almost never blank; at the very least, the name of the execut
able file used to create the new process is the first token on the 
command line. However, as you'll see later when we discuss the Create
Process function, it is possible that a process can receive a command line 
that consists of a single character: the string-terminating zero. When the 
C run-time's startup code begins executing, it retrieves the process's 
command line, skips over the executable file's name, and passes a 
pointer to the remainder of the command line to WinMain's lpszCmdLine 
parameter. 

It's important to note that the lpszCmdLine parameter always points 
to an ANSI string. Because the system doesn't know whether you are 
interested in using ANSI or Unicode, Microsoft chose to always pass an 
ANSI string. Microsoft chose ANSI to help with porting 16-bit Windows 
code to Win32, because 16-bit Windows applications expect an ANSI 
string. I discuss Unicode in detail in Chapter 16. 

An application can parse and interpret the ANSI string any way it 
chooses. Because the lpszCmdLine is an LPSTR instead of an LPCSTR, 
feel free to write to the buffer that it points to-but you should not, 
under any circumstances, write beyond the end of the buffer. Personally, 
I always consider this a read-only buffer. IfI want to make changes to the 
command line, I first copy the command-line buffer to a local buffer in 
my application; then I modify my local buffer. 

You can also obtain a pointer to your process's complete command 
line by calling the GetCommandLine function: 

LPTSTR GetCommandLine(VOID): 

This function returns a pointer to a buffer containing the full command 
line, including the full pathname of the executed file. Probably the most 
compelling reason to use the GetCommandLine function instead of the 
lpszCmdLine parameter is that both Unicode and ANSI versions of Get
CommandLine exist in the Win32 API, whereas the lpszCmdLine param
eter always points to a buffer containing an ANSI character string. 

Many applications would prefer to have the command line parsed 
into its separate tokens. An application can gain access to the command 
line's individual components by using the global_argc and _argv vari
ables. But again, the _argv variable is an array of character pointers to 



TWO: Processes 

ANSI strings, not Unicode strings. Win32 offers a function that separates 
any string into its separate tokens, CommandLineToArgvW:! 

LPWSTR *CommandLineToArgvW(LPWSTR lpCmdLine. LPINT pArgc); 

As the W at the end of the function name implies, this function exists in 
a Unicode version only. (The W stands for wide.) The first parameter, 
IpCmdLine, points to a command-line string. This is usually the return 
value from an earlier call to GetCommandLine. The pArgc parameter is the 
address of an integer; the integer will be set to the number of arguments 
that are in the command line. CommandLineToArgvW returns the address 
to an array of Unicode string pointers. 

A Process's Environment Variables 
Every process has an environment block associated with it. An environ
ment block is a block of memory allocated within the process's address 
space. Each block contains a set of strings with the following appearance: 

VarNamel=VarValuel\0 
VarName2=VarValue2\0 
VarName3=VarValue3\0 

VarNameX=VarValueX\0 
\0 

The first part of each string is the name of an environment variable. 
This name is followed by an equal sign, which is followed by the value 
you want to assign to the variable. All strings in the environment block 
must be sorted alphabetically by environment variable name. 

Because the equal sign is used to separate the name from the value, 
an equal sign cannot be part of the name. Also, spaces are significant. 
For example, if you declare these two variables: 

XYZ= Win32 
ABC=Win32 

(Notice the spac~ after the equal sign.) 

and then compare the value of XYZ with the value of ABC, the system will 
report that the two variables are different. This is because any white 

1. This function was added in Windows NT 3.5; it does not exist in Windows NT 3.1. 

21 



ADVANCED WINDOWS 

22 

space that appears immediately before or after the equal sign is taken 
into account. For example, if you were to add these two strings to the 
environment block: 

XYZ =Home 
XYZ=Work 

(Notice the space before the equal sign.) 

the environment variable 'XYZ "would contain ''Home" and another en
vironment variable 'XYZ" would contain "Work." Finally, an additional 0 
byte must be placed at the end of all the environment variables to mark 
the end of the block. 

In order to create an initial set of environment variables for Windows 95, 
you must modify the system's AUTOEXEC.BAT file by placing a series of 
SET lines in the file. Each line must be of the following form: 

SET VarName=VarValue 

When you reboot your system, the contents of the AUTOEXEC 
.BAT file are parsed, and any environment variables you have set will be 
available to any processes you invoke during your Windows 95 session. 

When a user logs on to Windows NT, the system creates the shell process 
and associates a set of environment strings with it. The system obtains 
the initial set of environment strings by examining two keys in the Regis
try. The first key: 

HKEY_LOCAL-MACHINE\SYSTEM\CurrentControlSet\Control\ 
SessionManager\Environment 

contains the list of all environment variables that apply to the system, 
while the second key: 

HKEY_CURRENT_USER\Environment 

contains the list of all environment variables that apply to the user cur
rently logged on. 

A user may add, delete, or change any of these entries by double
clicking on the System option in the Control Panel. This presents the 
following dialog box: 

(continued) 



...., 
-- tJ ,VitO) 
continued 

C •• pul", Ha .... : RIHCEWIHD 

DpOialing 5'018111---------, 

ilarl..,: •••••••• 1 
Show lilt 10. ~ seconds 

Sgate. Environ.ant Variablea: 
comSpec·0:INT3S\sy.tem32lcmd. ... 
O.2UbPath.0:INT351.y.tem321os2Idl 
Poth. 0:INT3S\sy.tem32,i):INT35lwindowsl.y,tem;d:lbatch 
"neil·O:INT35 

Ya. Environment Variable. for ii .. f 
include. d\msvc20\indJde;d:\msvc2O\mfc\inclucle 
in.·0:IMSVC20 
fib = d:lmovc20\1b;d:lmsvc20Imfcllb 
poth.0:IMSVC20IBIN 
t_=O:lIomp 
t =0:110 

llariable:~1 ==========:::; 
V~: 

TWO: Processes 

Only a user who has administrator privileges can alter the variables 
contained in the System Environment Variables list. 

Your application can use the various Registry functions to modify 
these Registry entries as well. However, in order for the changes to take 
effect, the user must log off and then log back on. Some applications, 
such as Program Manager, Task Manager, and the Control Panel, can 
update their environment block with the new Registry entries when their 
main windows receive a WM_WININICHANGE message. For example, if 
you update the Registry entries and want to have the interested applica
tions update their environment blocks, you can make the following call: 

SendMessage(HWND_BROADCAST. WM_WININICHANGE. 
0L. (LPARAM) "Environment"); 

Normally, a child process inherits a set of environment variables 
that are exactly the same as its parent process's. However, the parent pro
cess can control what environment variables a child inherits, as I'll show 
later when we discuss the Create Process function. By inherit, I mean that 
the child process gets its own copy of the parent's environment block, 
not that the child and parent share the same block. This means that a 
child process can add, delete, or modify a variable in its block and the 
change will not be reflected in the parent's block. 

23 



ADVANCED WINDOWS 

24 

Environment variables are usually used by applications to allow the 
user to fine-tune the application's behavior. The user creates an environ
ment variable and initializes it. Then, when the user invokes the applica
tion, the application examines the environment block for the variable. If 
the application finds the variable, the application parses the value of the 
variable and adjusts its behavior. 

The problem with environment variables is that they are not easily 
set or understood by users. Users need to spell variable names correctly, 
and they must also know the exact syntax expected of the variable's value. 
Most (if not all) graphical applications, on the other hand, allow users to 
fine~tune an application's behavior using dialog boxes. This approach is 
far more user friendly and is very strongly encouraged. 

If you still wish to continue using environment variables, Win32 
offers a few functions that your applications can call. The GetEnviron
mentVariable function allows you to determine the existence and value of 
an environment variable: 

DWORD GetEnvironmentVariable(lPCTSTR lpszName. 
lPTSTR lpszValue. DWORD cchValue); 

When calling GetEnvironmentVariable, lpszName points to the desired 
variable name, lpszValue points to the buffer that will hold the variable's 
value, and cchValue indicates the size of this buffer in characters. The 
function returns either the number of characters copied into the buffer 
or 0 if the variable name cannot be found in the environment. 

The SetEnvironmentVariable function allows you to add a variable, 
delete a variable, or modify a variable's value: 

BOOl SetEnvironmentVariable(lPCTSTR lpstName. lPCTSTR lpszValue); 

This function sets the variable identified by the lpszName parameter to the 
value identified by the lpsz Value parameter. If a variable with the specified 
name already exists, SetEnvironmentVariable modifies the value. If the 
specified variable doesn't exist, the variable is added and, if lpsz Value is 
NULL, the variable is deleted from the environment block. 

You should always use these functions for manipulating your 
process's environment block. As I said at the beginning of this section, 
the strings in an environment block must be sorted alphabetically by 
variable name. This means that GetEnvironmentVariable can locate strings 
faster; it also means that the SetEnvironmentVariable function is smart 
enough to keep the environment variables in sorted order. 



TWO: Processes 

A Process's Error Mode 
Associated with each process is a set of flags that tells the system how the 
process should respond to serious errors. Serious errors include disk 
media failures, unhandled exceptions, file-find failures, and data mis
alignment. A process can tell the system how to handle each of these 
errors by calling the SetErrorMode function: 

UINT SetErrorMode(UINT fuErrorMode); 

The fuErrorMode parameter is a combination of any of the following 
flags bitwise ORed together: 

Note that a child process inherits the error mode flags of its parent. 
In other words, if a process currently has the SEM_NOGPFAULT
ERRORBOX flag turned on and then spawns a child process, the child 
process will also have this flag turned on. However, the child process is 
not notified of this and might not have been written to handle GP fault 
errors itself. If a GP fault does occur in one of the child's threads, the 
child application might terminate without notifying the user. 

Flag 

SEM_FAILCRITICALERRORS 

SEM_NOGPFAULTERRORBOX 

SEM_NOOPENFILEERRORBOX 

SEM_NOALIGNMENTFAULTEXCEPT 

Description 

The system does not display the 
critical-error-handler message 
box and returns the error to the 
calling process. 

The system does not display the 
general-protection-fault message 
box. This flag should be set only 
by debugging applications that 
handle general protection (GP) 
faults themselves with an excep
tion handler. 

The system does not display a 
message box when it fails to find 
a file. 

The system automatically fixes 
memory alignment faults and 
makes them invisible to the appli
cation. This flag has no effect on 
x86 or Alpha processors. 

25 



ADVANCED WINDOWS 

A Process's Current Drive and Directory 

26 

The current directory of the current drive is where the various Win32 
functions look for files and directories when full pathnames are not sup
plied. For example, if a thread in a process calls CreateFile to open a file 
(without specifying a full pathname), the system will look for the file in 
the current drive and directory. 

The system keeps track of a process's current drive and directory 
internally. Because this information is maintained on a per-process basis, 
a thread in the process that changes the current drive or directory 
changes this information for all the threads in the process. 

A thread can obtain and set its process's current drive and directory 
by calling the following two functions: 

DWORD GetCurrentDirectory(DWORD cchCurDir. lPTSTR lpszCurDir); 
BOOl SetCurrentDirectory(lPCTSTR lpszCurDir); 

I discuss these functions in more detail in Chapter 13. 

A Process's Current Directories 
Notice that the system keeps track of the process's current drive and 
directory but does not keep track of the current directory for each and 
every drive. However, there is some operating system support for han
dling current directories for multiple drives. This support is offered by 
using the process's environment strings. For example, a process can have 
two environment variables such as: 

=C:=C:\UTIlITY\BIN 
=D:=D:\PROJECTS\ADVWIN32\CODE 

These variables indicate that the process's current directory for drive C is 
\UTILITy\BIN and that its current directory for drive D is \PROJECTS\ 
ADVWIN32\CODE. 

If you call a Win32 function, passing a drive-qualified name indicat
ing a drive that is not the current drive, then the system looks in the 
process's environment block for the variable associated with the speci
fied drive letter. If the variable for the drive exists, the system uses the 
variable's value as the current directory. If the variable does not exist, the 
system assumes that the current directory for the specified drive is its 
root directory. 

For example, if your process's current directory is C:\UTILITY\ 
BIN, and you call CreateFile to open D:README.TXT, the system looks up 



" Important 

TWO: Processes 

the environment variable =D:. Because the =D: variable exists, the sys
tem attempts to open the README.TXT file from the D:\PRO]ECTS\ 
ADVWIN32\CODE directory. If the =D: variable did not exist, the system 
would attempt to open the README.TXT file from the root directory of 
drive D. The Win32 file functions never add or change a drive-letter envi
ronment variable-they only read the variables. 

You can use the C run-time function _chdir instead of the Win32 SetCur
rentDirectory function to change the current directory. The _chdir func
tion calls SetCurrentDirectory internally, but _chdir also adds or modifies 
the environment variables so that the current directory of different 
drives is preserved. 

If a parent process creates an environment block that it wants to 
pass to a child process, the child's environment block will not automati
cally inherit the parent process's current directories. Instead, the child 
process's current directories will default to the root directory of every 
drive. If you want the child process to inherit the parent's current direc
tories, the parent process must create these drive-letter environment 
variables and add them to the environment block before spawning the 
child process. The parent process can obtain its current directories by 
calling GetFullPathNarne: 

DwaRD GetFullPathName(LPCTSTR lpszFile. DwaRD cchPath. 
LPTSTR lpszPath. LPTSTR *ppszFilePart); 

For example, to get the current directory for drive C, you would call 
GetFullPathNarne as follows: 

TCHAR szCurDir[MAX_PATH]; 
DwaRD GetFull PathName(_TEXT( "C:"). MALPATH. szCurDi r. NULL); 

Note that a process's environment variables must always be kept in 
alphabetical order. Because of this, the drive letter environment variables 
will usually need to be placed at the beginning of the environment block. 

A Process's Inherited Kernel Objects 
When a parent process creates a child process, one of the parameters 
indicates whether the parent wants the child process to inherit the 
parent's inheritable kernel objects. If the child is to inherit the parent's 
kernel objects, the system cycles through all of the parent's inheritable 

27 



ADVANCED WINDOWS 

28 

objects and increments each object's usage count by 1. The system then 
assigns handles to these kernel objects relative to the newly created child 
process. This makes the kernel objects accessible to the child process. 

For example, let's say that a process creates an inheritable mutex 
object and the system returns a handle value of Ox44442222 that identi
fies the object. Then this same process creates a child process and tells 
the system that the child is to inherit all inheritable kernel objects. When 
the system creates the new child process, the system increments the usage 
count of the mutex from 1 to 2. The system also assigns a handle, relative 
to the child process, that identifies the same mutex object. In fact, the 
system will assign the same exact handle value for this object that the par
ent process has-Ox44442222. 

You can use this handle value to manipulate the mutex object as 
soon as the primary thread in the child process begins executing. Since 
the usage count of the mutex object is 2, both the parent and the child 
process will have to close their handles to the object before the usage 
countdecrements to 0 and the system can free the kernel object from its 
memory. 

How to Make a Kernel Object Inheritable 
Remember, I said earlier that the Win32 functions that create kernel 
objects all accept a pointer to a SECURITY_ATTRIBUTES structure as 
a parameter. When a kernel object is created, you have the option of cre
ating one of these structures, initializing its members, and passing the 
address of the structure to the function to create the appropriate secu
rity attributes-or you can simply pass NULL. 

If you pass NULL for this parameter, the created kernel object will 
not be inheritable by any child processes spawned by your process. How
ever, you can have the system create an inheritable kernel object by 
initializing the SECURITY_ATTRIBUTES structure and passing this 
structure to one of the create functions. The example below shows how 
to create an inheritable mutex object: 

HANDLE hMutex; 
SECURITY_ATTRIBUTES sa; 
sa.nLength = sizeof(sa); 
sa.lpSecurityDescriptor = NULL; 
sa.bInheritHandle = TRUE; II Makes object inheritable 

II Call CreateMutex passing the address of the sa variable. 
hMutex = CreateMutex(&sa, FALSE, NULL); 



TWO: Processes 

When the system creates the kernel object, the system will know 
that this object is inheritable. This does not automatically mean that any 
and all child processes spawned later by this process will automatically 
inherit the kernel object. When a process spawns a child process, the 
parent gets the opportunity to tell the system whether it wants the child 
to inherit all of the inheritable kernel objects. If the blnheritHandle 
member of the SECURITY_ATTRIBUTES structure is not set to TRUE 
when a kernel object is created, the system will not allow a child process to 
inherit the kernel object at all. 

In addition, a process can also open a handle to an existing kernel 
object. For example, the function to open a mutex object is OpenMutex: 

HANDLE OpenMutex(DWORD fdwAccess, BOOl fInherit. 
lPCTSTR lpszMutexName); 

This function does not accept a parameter that points to a SECURI
TY_ATTRIBUTES structure because the security attributes for a kernel 
object must be set when the object is created. However, this function's 
second parameter, JInherit, does allow a process to open a kernel object 
and tell the system that the opened object is inheritable by any child pro
cesses created in the future. 

The system performs the exact same actions when creating a child 
process regardless of whether the parent process created the kernel 
object or opened an existing kernel object-that is, the system incre
ments the object's usage count by 1 and assigns the exact same handle 
value to the object relative to the child process. 

I will discuss later in this chapter how a parent tells the system that a 
child process should inherit the parent's inheritable kernel objects. 

Telling a Child About Its Inherited Kernel Objects 
The problem with inheritance is that the child process is not made aware 
of the kernel objects it inherits. The objects are opened for the child and 
the handle values are set, but somehow the parent process must explic
itly tell the child the values of the inherited object handles. 

Several techniques can be employed here. The simplest is for the 
parent process to create the child process, convert the handle value to a 
string, and pass it as part of the child process's command line. The child 
process will then, as it initializes, parse the command line and retrieve 
the handle values of any objects it has inherited. 

Another technique is for the parent to wait for the child to complete 
initialization (using the WaitForlnputldlefunction dis~ussed in Chapter 9); 

29 



ADVANCED WINDOWS 

then the parent can send or post a message to a window created by a 
thread in the child process. 

A third technique is for the parent process to add an environment 
variable to its environment block. The variable name would be some
thing that the child process knows to look for and the variable's value 
would be the handle value of the kernel object to be inherited. Then, 
when the parent spawns the child process, the child process inherits the 
parent's environment variables and can easily call GetEnvironmentVariable 
to obtain the inherited object'S handle value. This is an excellent approach 
if the child process is going to spawn another child process because the 
environment variables can be inherited again. 

The System Version 

30 

Frequently an application needs to determine which version of Windows 
the user is running the application on. This might be required for sev
eral reasons. For example, an application might take advantage of secu
rity features by calling the Win32 security functions. However, these 
functions are fully implemented only on Windows NT. 

For as long as I can remember, the Windows API has had a Get
Version function: 

DWORD GetVersion(VOID); 

This simple function has quite a history behind it. It was first designed 
for 16-bit Windows. The idea was a simple one: return the MS-DOS ver
sion number in the high-word and return the Windows version number 
in the low-word. For each word, the high-byte would represent the major 
version number and the low-byte would represent the minor version 
number. 

Unfortunately, the programmer who wrote this code made a small 
mistake, coding the function so that the Windows version numbers were 
reversed-the major version number was in the low-byte and the minor 
number was in the high-byte. Since many programmers had already 
started using this function, Microsoft was forced to leave the function as 
is and change the documentation to reflect the mistake. 

This was not the end of the problem, however, because now many 
programmers misunderstood how to use and compare the version infor
mation returned from GetVersion, and they frequently wrote code that 
was incorrect as a result. Sure, their programs functioned correctly on 
Windows 3.1, but when Microsoft started working on Windows 95 and 



TWO: Processes 

tested many of the existing applications on that system, they soon discov
ered that the applications were failing simply because they incorrectly 
compared version numbers. For this reason, the GetVersion function is 
forever hard-coded to return version 3.95 in all future versions of Win
dows 95 and Windows NT. 

This, of course, is simply not a good enough solution. Programs 
require an effective and accurate method for determining the version 
number of the system they're running on. So Microsoft added a new 
function to the Win32 API, GetVersionEx: 

BOOl GetVersionEx(lPOSVERSIONINFO lpVersionlnformation): 

This function requires you to allocate an OSVERSIONINFO struc
ture in your application and pass the structure's address to GetVersionEx. 
The OSVERSIONINFO structure is shown below: 

typedef struct { 
DWORD dwOSVersionlnfoSize: 
DWORD dwMajorVersion: 
DWORD dwMinorVersion: 
DWORD dwBuildNumber: 
DWORD dwPlatformld: 
TCHAR szCSDVersion[128]: 

} OSVERSIONINFO, *lPOSVERSIONINFO: 

Notice that the structure has different members for each of the indi
vidual components of the system's version number. This was done pur
posely so that programmers would not have to bother with extracting 
low-words, high-words, low-bytes, and high-bytes; it should make things 
much easier for applications to compare their expected version number 
with the host system's version number. The table below describes the 
OSVERSIONINFO structure's members: 

Member 

dwOSVersionlnjoSize 

dwMajorVersion 

dwMinorVersion 

dwBuildNumber 

Description 

Must be set to sizeoj(OSVERSIQNINFO) prior to call
ing the GetVersionEx function. 

Major version number of the host system. 

Minor version number of the host system. 

Build number of the current system. 

(continued) 

31 



ADVANCED WINDOWS 

continued 

Member 

dwPlatformld 

szCSDVersion 

Description 

Identifies the platfonn supported by the current system. 
This can be VER_PLATFORM_WIN32s (Win32s on Win
dows 3.1), VER_PLATFORM_WIN32_WINDOWS (Win32 
on Windows 95), or VER_PLATFORM_WIN32_NT (Win
dowsNT). 
This field contains additional text that provides further 
information about the installed operating system. 

The CreateProcess Function 

32 

A process is created when yout application calls the CreateProcess function: 

BOOL CreateProcess( 
LPCTSTR lpszlmageName. 
LPCTSTR lpszCommandLine. 
LPSECURITY-ATTRIBUTES lpsaProcess. 
LPSECURITY-ATTRIBUTES lpsaThread. 
BOOL flnheritHandles. 
DWORD fdwCreate. 
LPVOID lpvEnvironment. 
LPTSTR lpszCurDir. 
LPSTARTUPINFO lpsiStartlnfo. 
LPPROCESS_INFORMATION lppiProclnfo): 

When a thread in your application calls Create Process, the system cre'; 
ates a process kernel object with an initial usage count of 1. This process 
kernel object is not the process itself but rather a small data structure 
that the operating system uses to manage the process-think of the pro
cess kernel object as a small data structure that consists of statistical 
information about the process. The system then creates a virtual 4-GB 
address space for the new process and loads the code and data for the 
executable file and any required dynamic-link libraries into the process's 
4-GB address space. 

The system then creates a thread kernel object (with a usage count 
of 1) for the new process's primary thread. Like the process kernel object, 
the thread kernel object is a sma11 data structure that the operating sys
tem uses to manage the thread. This primary thread will begin byexecut
ing the C run-time startup code, which will eventually call your WinMain 
function (or main function if your application is console-based). If the 



TWO: Processes 

system successfully creates the new process and primary thread, Create
Process returns TRUE. 

OK, that's the broad overview. The following sections dissect each 
of Create Process's parameters. 

If you are familiar with the two 16-bit Windows functions for creating a 
process, WinExec and LoadModule, you can see by comparing the number 
of parameters for these two functions with the new Create Process function 
that CreateProcess offers much more control over process creation. Both 
the WinExec and LoadModule functions are implemented internally as 
calls to the Create Process function. And because these functions are sup
plied onlyfor backward compatibility with 16-bit Windows, no Unicode 
versions of these functions exist-you can call these functions only by 
passing ANSI strings. 

IpszlmageName and IpszCommandLine 
The lpsumageName and lpszCommandLine parameters specify both the 
name of the executable file the new process will use and the command
line string that will be passed to the new process. Let's talk about the 
lpszCommandLine parameter first. 

The lpszCommandLine parameter allows you to specify a complete 
command line that CreateProcess uses to create the new process. When 
Create Process parses the lpszCommandLine string, it examines the first token 
in the string and assumes that this token is the name of the executable 
file you want to run. If the executable file's name does not have an exten
sion, an EXE extension is assumed. Create Process will also search for the 
executable in the following order: 

1. The directory containing the EXE file of the calling process 

2. The current directory of the calling process 

3. The Windows system directory 

4. The Windows directory 

5. The directories listed in the PATH environment variable 

Of course, if the filename includes a full path, the system looks for 
the. executable using the full path and does not search the directories. If 

33 



ADVANCED WINDOWS 

the system finds the executable file, it creates a new process and maps 
the executable's code and data into the new process's address space. The 
system then calls the C run-time startup routine. As noted earlier in this 
chapter, the C run-time startup routine examines the process's com
mand line and passes the address to the first argument after the execut
able file's name as WinMain's IpszCmdLine parameter. 

What I have just described is what happens as long as the IpszImage
Name parameter is NULL. Instead of passing NULL, you can pass the 
address to a string containing the name of the executable file you want 
to run in the IpszImageName parameter. Note that you must specify the 
file's extension; the system will not automatically assume that the file
name ends with an EXE extension. CreateProcess assumes the file is in the 
current directory unless a path is specified preceding the filename. If the 
file can't be found in the current directory, Create Process does not look 
for the file in any other directory-CreateProcess simply fails. 

However, even if you specify a filename in the IpszImageName param
eter, CreateProcess passes the contents of the IpszCommandLine parameter 
to the new process as its command line. For example, say that you call 
CreateProcess like this: 

CreateProcess("C:\\WINNT\\SYSTEM32\\NOTEPAD.EXE", 
"WRITE README.TXT", ... ); 

The system invokes the Notepad application, but Notepad's command 
line is "WRITE README.TXT': This is certainly a little strange, but 
that's how CreateProcess works. 

IpsaProcess, IpsaThread, and flnheritHandles 

34 

In order to create a new process, the system must create a process object 
and a thread object (for the process's primary thread). Because these are 
kernel objects, the parent process gets the opportunity to associate secu
rity attributes with these two objects. The IpsaProcess and Ipsa Thread param
eters allow you to specify the desired security for the process object and 
the thread object, respectively. You can pass NULL for these parameters, 
in which case the system gives these objects default security descriptors. 
Or you can allocate and initialize two SECURITY..,ATTRIBUTES struc
tures to create and assign your own security privileges to the process and 
thread objects. 

Another reason to use SECURITY..,ATTRIBUTES structures for the 
IpsaProcess and IpsaThread parameters is if you want either of these two 
objects to be inheritable by any child processes. 



TWO: Processes 

Figure 2-3 is a short program that demonstrates kernel inheritance. 
Let's say that Process A creates Process B by calling Create Process and pass
ing the address of a SECURITY..ATTRIBUTES structure for the lpsa
Process parameter in which the blnheritHandle member is set to TRUE. In 
this same call, the IpsaThread parameter points to another SECURITl'
_ATTRIBUTES structure in which its blnheritHandles member is set to 
FALSE. 

When the system creates Process B, it allocates both a process 
kernel object and a thread kernel object and returns handles back to 
Process A in the structure pointed to by the IppiProcInfo parameter (dis
cussed shortly). Process A can now manipulate the newly created process 
object and thread object by using these handles. 

Now let's say that Process A is going to call Create Process a second 
time to create Process C. Process A can decide whether to grant Process 
C inheritance privileges. The jInheritHandles parameter is used for this 
purpose. IfjInheritHandles is set to TRUE, the system causes Process C to 
inherit any inheritable handles. In this case, the handle to Process B's 
process object is inheritable. The handle to Process B's primary thread 
object is not inheritable no matter what the value of the jInheritHandles 
parameter to Create Process is. Also, if Process A calls Create Process, passing 
FALSE for the jInheritHandles parameter, Process C will not inherit any of 
the handles currently in use by ProcessA. 

Figure 2-3. (continued) 

An inheritance example. 

35 



ADVANCED WINDOWS 

Figure 2·3. continued 

36 



fdwCreate 

TWO: Processes 

The fdwCreate parameter identifies flags that affect how the new process 
is created. Multiple flags can be specified when combined with the Bool
ean OR operator. 

The DEBUG_PROCESS flag tells the system that the parent process 
wants to debug the child process and any processes created by the child 
process in the future. This flag instructs the system to notify the parent 
process (now the debugger) when certain events occur in any of the 
child processes (debuggees). 

The DEBUG_ONLY_THIS_PROCESS flag is similar to the DEBUG
_PROCESS flag except that the debugger is notified of special events 
occurring only in the immediate child process. If the child process cre
ates any additional processes, the debugger is not notified of events in 
these additional processes. 

The CREATE_SUSPENDED flag causes the new process to be cre
ated, but its primary thread is suspended. A debugger provides a good 
example for using this flag. When a debugger is told to load a debuggee, 
it must have the system initialize the process and primary thread, but the 
debugger does not want to allow the primary thread to begin execution 
yet. Using this flag, the user debugging the application can set various 
breakpoints throughout the program in case there are special events 
that need trapping. Once all the breakpoints have been set, the user can 
tell the debugger that the primary thread can begin execution. 

The DETACHED_PROCESS flag blocks a console-based process's 
access to its parent's console window and tells the system to send its out
put to a new console window. If a console-based process is created by 
another console-based process, the new process will, by default, use the 
parent's console window. (When you run the C compiler from the com
mand shell, a new console window isn't created; the output is simply 
appended to the bottom of the window.) By specifying this flag, the new 
process will send its output to a new console window. 

The CREATE_NEW_CONSOLE flag tells the system to create a new 
console window for the new process. It is an error to specify both the 
CREATE_NEW_CONSOLE and DETACHED_PROCESS flags. 

The CREATE_NEW_PROCESS_GROUP flag is used to modify the 
list of processes that get notified when the user presses the Ctrl+C or 
Ctrl+Break keys. If you have several console-based processes running 
when the user presses one of these key combinations, the system noti
fies all the processes in a process group that the user wants to break 
but of the current operation. By specifying this flag when creating a new 

37 



ADVANCED WINDOWS 

38 

console-based process, you are creating a new process group. If the user 
presses Ctrl+C or Ctrl+Break while a process in this new process group is 
active, the system notifies only processes in this group of the user's request. 

The CREATE_DEFAULT_ERROR_MODE flag tells the system that 
the new process is not to inherit the error mode used by the parent pro
cess. (See the SetErrorModefunction discussed earlier in this chapter.) 

The CREATE_SEPARATE_WOW_VDM flag is useful only when you 
are invoking a 16-bit Windows application. If the flag is specified, the sys
tem will create a separate Virtual DOS Machine (VDM) and run the 16-
bit Windows application in this VDM. By default, all 16-bit Windows 
applications execute in a single, sharedVDM. The advantage of running 
an application in a separate VDM is that if the application crashes it kills 
only the single VDM; any other programs running in distinct VDMs con
tinue to function normally. Also, 16-bit Windows applications that are 
run in separate VDMs have separate input queues. That means that if 
one application hangs momentarily, applications in separate VDMs con
tinue to receive input. The disadvantage of running multiple VDMs is 
that each VDM cOIlslJmes a significant amount of physical storage. 

The CREATE_UNICODE_ENVIRONMENT flag tells the system 
that the child process's environment block should contain Unicode 
characters. By default, a process's environment block contains ANSI 
strings. 

You can also speCify a priority class when you're creating a new pro
cess. However, you don't have to specify a priority class, and for most 
applications it is recommended that you don't; the system will assign a 
default priority class to the new process. The table below shows the pos
sible priority classes. 

Priority Class 

Idle 

Normal 

High 

Realtime 

Flag Identifier 

IDLE_PRIORITY-CLASS 

NORMAL_PRIORITY-CLASS 

HIGH_PRIORITY-CLASS 

REALTIME_PRIORITY-CLASS 

These priority classes affect how the threads contained within 
the process are scheduled with respect to other processes' threads. See 
the section "How the System Schedules Threads" in Chapter 3 for more 
information. 



TWO: Processes 

IpvEnvironment 
The lpvEnvironment parameter points to a block of memory containing 
environment strings that the new process will use. Most of the time 
NULL is passed for this parameter, causing the child process to inherit 
the set of environment strings that its parent is using. Or you can use the 
GetEnvironmentStrings function: 

LPVOID GetEnvironmentStrings(VOID); 

This function gets the address of the environmen t string data block that 
the calling process is using. You can use the address returned by this 
function as the lpvEnvironment parameter of Create Process. This is exactly 
what Create Process does if you pass NULL for the lpvEnvironment parameter. 

IpszCurDir 
The lpszCurDir parameter allows the parent process to set the child 
process's current drive and directory. If this parameter is NULL, the new 
process's working directory will be the same as that of the application 
spawning the new process. If this parameter is not NULL, lpszCurDir 
must point to a zero-terminated string containing the desired working 
drive and directory. Notice that you must specify a drive letter in the path. 

IpsiStarllnfo 
The lpsiStartlnfo parameter points to a STARTUPINFO structure: 

typedef struct _STARTUPINFO { 

DWORD cb; 
LPSTR lpReserved; 
LPSTR 1 pDesktop; 
LPSTR lpTitle; 
DWORD dwX; 
DWORD dwY; 
DWORD dwXSize; 
DWORD dwYSize; 
DWORD dwXCountChars; 
DWORD dwYCountChars; 
DWORD dwFillAttribute; 
DWORD dwFlags; 
WORD wShowWindow; 
WORD cbReserved2; 
LPBYTE 1 pReserved2; 
HANDLE hStdlnput; 
HANDLE hStdOutput; 
HANDLE hStdError; 

} STARTUPINFO. *LPSTARTUPINFO; 

39 



ADVANCED WINDOWS 

40 

Win32 uses the members of this structure when it creates the new 
process. We'll discuss each member in turn. Some members are mean
ingful only if the child application creates an overlapped window, while 
others are meaningful only if the child performs console-based input 
and output. Figure 2-4 indicates the usefulness of each member: 

Member 

cb 

lpReserved 

lpDesktop 

lpTitle 

dwX 
dwY 

Figure 2-4. 

Window, 
Console, 
or Both 

Both 

Both 

Both 

Console 

Both 

Purpose 

Contains the number of bytes in the 
STARTUPINFO structure. Acts as a version 
control in case Microsoft expands this struc
ture in a future version ofWin32. Your 
application must initialize cb to 
sizeoj(STARTUPINFO): 

Reserved. Must be initialized to NULL. 

Identifies the name of the desktop in which 
to start the application. If the desktop ex
ists, the new process is associated with the 
specified desktop. If the desktop does not 
exist, a desktop with default attributes will 
be created with the specified name for the 
new process. If lpDesktop is NULL (which is 
most common), the process is associated 
with the current desktop. Currently there 
are no implementations ofWin32 that allow 
you to create multiple desktops. Microsoft 
plans to add this feature in future versions. 

Specifies the window title for a console 
window. If lpTitle is NULL, the name of the 
executable file is used as the window title. 

Specify the x- and y-coordinates (in pixels) 
of the location where the application's win
dow should be placed on the screen. These 
coordinates are used only if the child pro
cess creates its first overlapped window 
with CW_USEDEFAULT as the x parameter 
of CreateWindow. For applications that cre
ate console windows, these members indi
cate the upper left corner of the console 
window. 

(continued) 

The members of the STARTUPINFO structure. 



Figure 2-4. continued 

Member 

dwXSize 
dwYSize 

dwXCountChars 
dwYCountChars 

dwFillAttribute 

dwFlags 

wShowWindow 

cbReserved2 

lpReserved2 

hStdlnput 
hStdOutput 
hStdError 

Window, 
Console, 
or Both 

Both 

Console 

Console 

Both 

Window 

Both 

Both 

Console 

TWO: Processes 

Purpose 

Specify the width and height (in pixels) of 
an application's window. These values are 
used only if the child process creates its first 
overlapped window with CW_USEDEFAULT 
as the n Width parameter of Create Window. 
For applications that create console win
dows, these members indicate the width 
and height of the console window. 

Specify the width and height (in charac
ters) ofa child's console windows. 

Specifies the text and background colors 
used by a child's console window. 

See below and the table on page 42. 

Specifies how the child's first overlapped 
window should appear if the application's 
first call to ShowWindow passes 
SW_SHOWDEFAULT as the nCmdShow 
parameter. This member can be any of the 
SW_ * identifiers normally used with the 
ShowWindow function. 

Reserved. Must be initialized to O. 

Reserved. Must be initialized to NULL. 

Specify handles to buffers for console input 
and output. By default, the hStdlnput identi
fies a keyboard buffer, whereas hStdOutput 
and hStdError identify a console window's 
buffer. 

Now, as promised, I'll discuss the dwFlags member. This member 
contains a set of flags that modify how the child process is to be created. 
Most of the flags simply tell CreateProcess whether other members of the 
STARTUPINFO structure contain useful information, or whether some 
of the members should be ignored. The table on page 42 shows the list of 
possible flags and their meanings. 

41 



ADVANCED WINDOWS 

42 

Flag 

STARTLUSESIZE 

STARTLUSESHOWWINDOW 

STARTLUSEPOSITION 

STARTLUSECOUNTCHARS 

STARTLUSEFILLATTRIBUTE 

STARTLUSESTDHANDLES 

Meaning 

Use the dwXSize and dwYSize members. 
Use the wShowWindow member. 
Use the dwX and dwY members. 
Use the dwXCountChars and 
dwYCountChars members. 
Use the dwFilLAttribute member. 
Use the hStdlnput, hStdOutput, and 
hStdError members. 

Two additional flags, STARTLFORCEONFEEDBACK and STARTF
_FORCEOFFFEEDBACK, give you control over the mouse cursor when 
invoking a new process. Because Windows 95 and Windows NT support 
true preemptive multitasking, it is possible to invoke an application and, 
while the process is initializing, use another program. To give visual feed
back to the user, CreateProcess temporarily changes the system's mouse 
cursor to a new cursor called a start glass: 

This cursor indicates that you can wait for something to happen or 
you can continue to use the system. In the very early beta releases of 
Windows NT this cursor didn't exist-CreateProcess did not change the 
appearance of the cursor at all. This was confusing; often, when I ran 
a program from the Program Manager, the program's windows would 
not appear immediately and the cursor would still appear as the normal 
arrow. So I would click on the program icon again in the Program Man
ager, which I thought wasn't acknowledging my request. Soon the pro
gram I wanted would pop up on the screen, followed by another, and 
another, and another. Now I had to close all the additional instances of 
the program. It is amazing how big a difference changing the cursor 
can make. The problem was compounded, of course, because 16-bit 
Windows does change the cursor to an hourglass when an application is 
being initialized. Because I was expecting this, I thought that Windows 
NT wasn't working properly. Old habits are hard to break. 



TWO: Processes 

The Create Process function gives you more control over the cursor 
when invoking another process. When you specify the STARTF_FORCE
OFFFEEDBACK flag, CreateProcess does not change the cursor into the 
start glass, leaving it as the normal arrow. 

Specifying STARTF_FORCEONFEEDBACK causes Create Process to 
monitor the new process's initialization and to alter the cursor based on 
the result. When CreateProcess is called with this flag, the cursor changes 
into the start glass. If, after 2 seconds, the new process does not make a 
GUI call, Create Process resets the cursor to an arrow. 

If the process does make a GUI call within 2 seconds, Create Process 
waits for the application to show a window. This must occur within 5 sec
onds after the process makes the GUI call. If a window is not displayed, 
CreateProcess resets the cursor. If a window is displayed, Create Process keeps 
the start glass cursor on for another 5 seconds. If at any time the applica
tion calls the GetMessage function, indicating that it is finished initializ
ing, Create Process immediately resets the cursor and stops monitoring the 
new process. 

The final flag to discuss is STARTF_SCREENSAVER. This flag tells 
the system that the application is a screen-saver application, which 
causes the system to initialize the application in a very special way. When 
the process begins executing, the system allows the process to initialize 
at the foreground priority of the class that was specified in the call to 
CreateProcess. As soon as the process makes a call to either GetMessage or 
PeekMessage, the system automatically changes the process's priority to 
the idle priority class. 

If the screen-saver application is active and the user presses a key or 
moves the mouse, the system automatically boosts the priority class of 
the screen-saver application back to the foreground priority of the class 
flag passed to Create Process. 

To start a screen-saver application, you should call CreateProcess 
using the NORMAL_PRIORITY...CLASS flag. Doing so has the following 
two effects: 

• The system allows the screen-saver application to initialize 
before making it run idle. If the screen-saver application ran 
100 percent of its time at idle priority, normal and realtime 
processes would preempt it, and the screen-saver application 
would never get a chance to initialize . 

• The system allows the screen-saver application to terminate. 
Usually a screen saver terminates because the user starts using 

43 



ADVANCED WINDOWS 

an application. This application is probably running at nor
mal priority, which would cause the threads in the screen-saver 
application to be preempted again, and the screen saver would 
never be able to terminate. 

Before leaving this section, I'd like to say a word about START
UPINFO's wShowWindow member. You initialize this member to the value 
that is passed to WinMain's last parameter, nCmdShow. This value indi
cates how you would like the ,main window of your application shown. 
The value is one of the identifiers that can be passed to the ShowWindow 
function. Usually nCmdShow's value is either SW_SHOWNORMAL or 
SW_SHOWMINNOACTIVE. However, the value can sometimes be 
SW_SHOWDEFAULT. 

When you invoke an application from the Program Manager by 
double-clicking, the application's WinMain function is called with SW
_SHOWNORMAL passed as the nCmdShow parameter. If you hold down 
the Shift key while double-clicking, your application is invoked passing 
SW_SHOWMINNOACTIVE as the nCmdShow parameter. In this way, 
the user can easily start an application with its main window showing in 
either the normal state or the minimized state. 

IppiProclnfo 

44 

The lppiProcInfo parameter points to a PROCESS_INFORMATION struc
ture that you must allocate; Create Process will initialize the members of 
this structure before it returns. The structure appears as follows: 

typedef struct _PROCESS_INFORMATION { 
HANDLE hProcess; 
HANDLE hThread; 
DWORD dwProcessId; 
DWORD dwThreadld; 

} PROCESS_INFORMATION; 

As already mentioned, creating a new process causes the system to 
create a process kernel object and a thread kernel object. At creation 
time, the system gives each object an initial usage count of 1. Then,just 
before CreateProcess returns, the function opens the process object and 
the threadobject and places the process-relative handles for each in the 
hProcess and hThread members of the PROCESS_INFORMATION struc
ture. When Create Process opens these objects, the usage count for each 
increments to 2. 

This means that before the system can free the process object, the 
process must terminate (decrementing the usage count to 1) and the 



11 
ImplPlanl 

TWO: Processes 

parent process must call CloseHandle (decrementing the usage count to 
0). Similarly, to free the thread object, the thread must terminate and 
the parent process must close the handle to the thread object. 

Don't forget to close these handles. Failure to close handles is one of the 
most common mistakes developers make and results in a system memory 
leak until the process that called CreateProcess terminates. 

When a process is created, the system assigns the process a unique 
identifier; no other process running in the system will have the same ID 
number. The same is true for threads. When a thread is created, the 
thread is also assigned a unique, systemwide ID number. Before Create
Process returns, it fills the dwProcessld and dwThreadld members of the 
PROCESS_INFORMATION structure with these IDs. The parent process 
can use these two IDs to communicate with the child process. 

It is extremely important to note that the system reuses process and 
thread IDs. For example, let's say that when a process is created, the sys
tem allocates a process object and assigns it the ID value Ox22222222. If 
a new process object is created, the system doesn't assign the same ID 
number. However, if the first process object is freed, the system might 
assign Ox22222222 to the next process object created. 

This is important to know so that you avoid writing code that refer
ences an incorrect process object (or thread). It's easy to acquire a pro
Cess In and save the ID, but the next thing you know, the process 
identified by the ID is freed and a new process is created and given the 
same ID. When you use the saved process ID, you end up manipulating 
the new process, not the process you originally acquired the handle to. 

You can easily guarantee this doesn't happen by making sure you 
have an outstanding lock on the process object. In other words, make 
sure that you have incremented the usage count for the process object. 
The system will never free the process object while it has a usage count 
greater than O. In most situations, you will already have incremented the 
usage count. For example, the call to CreateProcess returns after incre
menting the usage count for the process object. 

With the usage count incremented, you can feel free to use the pro
cess ID to your heart's content. When you no longer need the process ID, 
call CloseHandle to decrement the process object's usage count. Simply 
make sure that you don't use that process ID after you have called 
CloseHandle. 

45 



ADVANCED WINDOWS 

Terminating a Process 
A process can be terminated in two ways: by calling the ExitProcess func
tion, which is the most common method, or by calling the Terminate
Process function, which is a method that should be reserved as a last 
resort. This section discusses both methods for terminating a process 
and describes what actually happens when a process ends. 

The ExitProcess Function 
A process terminates when one of the threads in the process calls 
ExitProcess: 

VOID ExitProcess(UINT fuExitCode); 

This function terminates the process and sets the exit code of the pro
cess to fuExitCode. ExitProcess doesn't return a value be~ause the process 
has terminated. If you include any code following the call to theExitProcess 
function, that code will never execute. 

This is the most common method for terminating a process because 
ExitProcess is called when WinMain returns to the C run-time's startup 
code. The startup code calls ExitProcess, passing it the value returned 
from WinMain. Any other threads running in the process terminate 
along with the process. 

Note that the Win32 documentation states that a process does not 
terminate until all its threads terminate. The C run-time's startup code 
ensures that the process terminates by calling ExitProcess. However, if you 
call ExitThread in your WinMain function instead of calling ExitProcess or 
simply returning, the primary thread for your application will stop execut
ing, but the process will not terminate if at least one other thread in the 
process is still running. 

The TerminateProcess Function 

46 

A call to TerminateProcess also ends a process: 

BOOl TerminateProcess(HANDlE hProcess. UINT fuExitCode); 

This function is different from ExitProcess in one major way: any thread 
can call TerminateProcess to terminate another process or its own process. 
The hProcess parameter identifies the handle of the process to be termi
nated. When the process terminates, its exit code becomes the value you 
passed as the fuExitCode parameter. 



TWO: Processes 

Note that using TerminateProcess is discouraged; use it only if you 
can't force a process to exit by using another method. Normally, when a 
process ends the system notifies any DLLs attached to the process that 
the process is ending. If you call TerminateProcess, however, the system 
doesn't notify any DLLs attached to the process, which can mean that the 
process won't close down correctly. For example, a DLL might be written 
to flush data to a disk file when the process detaches from the DLL. De
tachment usually occurs when an application unloads the DLL by calling 
FreeLibrary. Because the DLL isn't notified about the detachment when 
you use TerminateProcess, the DLL can't perform its normal cleanup. The 
system does notify the DLL when a process ends normally or when 
ExitProcess is called. (See Chapter 11 for more information about DLLs.) 

Although it's possible that the DLL won't have a chance to clean up 
its data, the system guarantees that all allocated memory is freed, all 
opened files are closed, all kernel objects have their usage counts 
decremented, and all User or GDI objects are freed regardless of how 
the process terminates. 

What Happens When a Process Terminates 
When a process terminates, the following actions are set in motion: 

1. All the threads in the process are halted. 

2. All the User and GDI objects allocated by the process are freed, 
and all the kernel objects are closed. 

3. The process kernel object status becomes signaled. (See Chap
ter 9 for more information about signaling.) Other threads in 
the system can suspend themselves until the process is termi
nated. 

4. The process's exit code changes from STILL_ACTIVE to the 
code passed to ExitProcess or TerminateProcess. 

5. The process kernel object's usage count is decremented by 1. 

When a process terminates, its associated process kernel object 
isn't freed until all outstanding references to the object are closed. 
Also, terminating a process does not cause any of its child processes to 
terminate. 

47 



ADVANCED WINDOWS 

When a process terminates, the code for the process and any 
resources that the process allocated are removed from memory. How
ever, the private memory that the system allocated for the process kernel 
object is not freed until the process object's usage count reaches O. This 
can happen only if all other processes that have created or opened 
handles to the now-defunct process notify the system that they no longer 
need to reference the process. These processes notify the system by call
ing CloseHandle. 

Mter a process is no longer running, the parent process can't do 
much with the process handle. However, it can call GetExitCodeProcess to 
check whether the process identified by hProcess has terminated and, if 
so, determine its exit code. 

BOOl GetExitCodeProcess(HANDlE hProcess. lPDWORD lpdwExitCode): 

The exit code value is returned in the DWORD pointed to by IpdwExit
Code. If the process hasn't terminated when GetExitCodeProcess is called, 
the function fills the DWORD with the STILL_ACTIVE identifier (de
fined as OxI03). If the function is successful, TRUE is returned. Using 
the child process's handle to determine when the child process has ter
minated is discussed further in Chapter 9. 

Child Processes 

48 

When you design an application, situations might arise in which you 
want another block of code to perform work. You assign work like this all 
the time by calling functions or subroutines. When you call a function, 
your code cannot continue processing until the function has returned. 
And in many situations, this single-tasking synchronization is needed. 

An alternative way to have another block of code perform work is to 
create a new thread within your process and have it help with the pro
cessing. This allows your code to continue processing while the other 
thread performs the work you requested. This technique is useful, but it 
creates synchronization problems when your thread needs to see the 
results of the new thread. 

Another approach is to spawn off a new process-a child process
to help with the work. Let's say that the work you need to do is pretty 
complex. To process the work, you decide to simply'create a new thread 
within the same process. You write some code, test it, and get some incor
rect results. You might have an error in your algorithm, or maybe you 
dereferenced something incorrectly and accidentally overwrote some
thing important in your address space. One way to protect your address 



TWO: Processes 

space while having the work processed is to have a new process perform 
the work. You could then wait for the new process to terminate before 
continuing on with your own work, or you could continue working while 
the new process works. 

Unfortunately, the new process probably would need to perform 
operations on data contained in your address space. In this case, it might 
be a good idea to have the process run in its own address space and sim
ply give it access to the relevant data contained in the parent process's 
address space, thus protecting all the data not relevant to the job. Win32 
gives you several different methods for transferring data between differ
ent processes: Dynamic Data Exchange (DDE) , OLE, Pipes, MailSlots, 
and so on. One of the most convenient ways to share the data is to use 
memory-mapped files. (See Chapter 7 for a detailed discussion of memory
mapped files.) 

If you want to create a new process, have it do some work, and wait 
for the result, you can use code similar to the following: 

PROCESS_INFORMATION ProcessInformation; 
DWORD dwExitCode; 

BOOl fSuccess = CreateProcess( .... &ProcessInformation); 
if (fSuccess) { 

} 

HANDLE hProcess = ProcessInformation.hProcess; 

II Close the thread handle as soon as it is no longer needed! 
CloseHandle(ProcessInformation.hThread); 

if (WaitForSingleObject(hProcess. INFINITE) != WAIT_FAILED) { 
II The process terminated. 
GetExitCodeProcess(hProcess. &dwExitCode); 

} 

II Close the process handle as soon as it is no longer needed. 
CloseHandle(hProcess); 

In the code fragment above you create the new process and, if successful, 
call the WaitForSingleObject function: 

DWORD WaitForSingleObject(HANDlE hObject. DWORD dwTimeout); 

We'll discuss the WaitForSingleObject function exhaustively in Chap
ter 9. For now, all you need to know is that it waits until the object identi
fied by the hObject parameter becomes signaled. Process objects become 
signaled when they terminate. So the call to WaitForSingleObject suspends 

49 



ADVANCED WINDOWS 

the parent's thread until the child process terminates. Mter WaitFor
SingleObject returns, you can get the exit code of the child process by call
ing GetExitCodeProcess. 

The calls to CloseHandle in the code fragment above cause the sys
tem to decrement the usage count for the thread and process objects to 
0, allowing the objects' memory to be freed. 

You'll notice that in the code fragment I close the handle to the 
child process's primary thread kernel object immediately after Create
Process returns. This does not cause the child's primary thread to termi
nate-it simply decrements the usage count of the child's primary 
thread object. Here's why this is a good practice: Suppose the child pro
cess's primary thread spawns off another thread and then the primary 
thread terminates. At this point, the system can free the child's primary 
thread object from its memory if the parent process doesn't have an out
standing handle to this thread object. But if the parent process does have 
a handle to the child's thread object, the system can't free the object 
until the parent process closes the handle. 

Running Detached Child Processes 

50 

Most of the time, an application starts another process as a detached pro
cess. This means that after the process is created and executing, the par
ent process doesn't need to communicate with the new process or 
doesn't require that the child process complete its work before the par
ent process continues. This is how the Program Manager and Explorer 
work. Mter the Program Manager or Explorer creates a new process for 
the user, it doesn't care whether that process continues to live or whether 
the user terminates it. 

To give up all ties to the child process, the Program Manager or 
Explorer must close its handles to the new process and its primary thread 
by calling CloseHandle. The code sample below shows how to create a new 
process and how to let it run detached: 

PROCESS_INFORMATION ProcessInformation; 
BOOl fSuccess = CreateProcess( ...• &ProcessInformation); 
if (fSuccess) { 

} 

CloseHandle(ProcessInformation.hThread); 
CloseHandle(ProcessInformation.hProcess); 



C HAP T E R T H R E E 

THREADS 

In this chapter, I'll discuss the concept of a thread and describe how the 
system uses threads to execute your application's code. Like processes, 
threads have properties associated with them, and I'll discuss some of 
the functions available for querying and changing these properties. I'll 
also examine the functions that allow you to create or spawn additional 
threads in the system. And finally, I'll discuss how threads terminate. 

When to Create a Thread 
A thread describes a path of execution within a process. Every time a pro
cess is initialized, the system creates a primary thread. This thread starts 
at the C run-time's startup code, which in turn calls your WinMain func
tion and continues executing until the WinMain function returns and 
the C run-time's startup code calls ExitProcess. For many applications, this 
primary thread is the only thread that the application requires. However, 
processes can create additional threads to help them do their work. The 
whole idea behind creating additional threads is to utilize the CPU's 
time as much as possible. 

For example, a spreadsheet program needs to perform recalcula
tions as the data entries in the cells are changed by the user. Because 
recalculations of a complex spreadsheet might require several seconds 
to complete, a well-designed application should not recalculate the 
spreadsheet after each change made by the user. Instead, the spread
sheet's recalculation function should be executed as a separate thread 
with a lower priority than that of the primary thread. This way, if the user 
is typing the primary thread is running, which means that the system 
won't schedule any time to the recalculation thread. When the user stops 

51 



ADVANCED WINDOWS 

52 

typing, the primary thread is suspended, waiting for input, and the recal
culation thread is scheduled time. As soon as the user starts typing again, 
the primary thread, having a higher priority, preempts the recalculation 
thread. Creating an additional thread makes the program very respon
sive to the user. It is also rather easy to implement this type of design. 

In a similar example, you can create an additional thread for a 
repagination function in a word processor that needs to repaginate the 
document as the user enters text into the document. Microsoft Word for 
Windows, for example, must simulate multithreaded behavior in 16-bit 
Windows but could easily spawn a thread dedicated to repaginating the 
document for the Win32 version. The primary thread would be respon
sible for processing the user's input, and a background thread would be 
responsible for locating the page breaks. 

It's also useful to create a separate thread to handle any printing 
tasks in an application. In this way the user can continue to use the appli
cation while it's printing. In addition, when performing a long task many 
applications display a dialog box that allows the user to abort the task. 
For example, when the File Manager copies files, it displays a dialog box 
that, besides listing the names of the source file and the destination file, 
also contains a Cancel button. If you click on the Cancel button while the 
files are being copied, you abort the operation. 

In 16-bit Windows, implementing this type of functionality requires 
periodic calls to PeekMessage inside the File Copy loop. And calls to Peek
Message can be made only between file reading and writing. If a large 
data block is being read, the response to the button click doesn't occur 
until after the block has been read. If the file is being read from a floppy 
disk, this can take several seconds. Because the response is so sluggish, I 
have frequently clicked on the button several times, thinking that the sys
tem didn't know I'd canceled the operation. 

By putting the File Copy code in a different thread, you' don't need 
to sprinkle calls to the PeekMessage function throughout your code
your user interface thread operates independently. This means that a 
click on the Cancel button results in an immediate response. 

You can also use threads for creating applications that simulate 
real-world events. In Chapter 9 I show a simulation of a supermarket. 
Because each shopper is represented by his or her own thread, theoreti
cally each shopper is independent of any other shopper and can enter, 
shop, check out, and exit as he or she sees fit. The simulation can moni
tor these activities to determine how well the supermarket functions. 



T H R E E: Threads 

Although simulations can be performed, potential problems lurk. 
First, you would ideally want each shopper thread to be executed by its 
very own CPU. Because it is not practical to expect a CPU for every shop
per thread, the solution is to incur a time overhead when the operating 
system preempts 1 thread and schedules another. For example, if your 
simulation has 2 threads and your machine has eight CPUs, the system 
can assign 1 thread to each cpu. However, if your simulation has 1000 
threads, the system will have to assign and reassign the 1000 threads 
among the eight CPUs over and over again. And some overhead results 
when the operating system schedules a large number of threads among a 
few CPUs. If your simulation lasts a long time, this overhead has a rela
tively small impact on the simulation. However, if the simulation is short, 
the overhead of the operating system can take a larger percentage of the 
simulation's total execution time. 

Second, the system itself requires threads to run while other pro
cesses might be executing. All these processes' threads need to be sched
uled for CPU time as well, which almost certainly affects the outcome of 
the simulation. 

And third, the simulation is useful only if you keep track of its pro
gress. For example, the supermarket simulation in Chapter 9 adds entries 
to a list box as the shoppers progress through the store; adding entries to 
the list box takes time away from the simulation. The Heisenberg Uncer
tainty Principle states that a more accurate determination of one quan
tity results in a less precise measurement of the other.1 This is most 
definitely true here. 

When Not to Create a Thread 
The first time many progralllmers are given access to an environment 
that supports multiple threads, they're ecstatic. If only they had had 
threads sooner, their applications would have been so simple to write. 
And, for some unknown reason, these programmers start dividing an 
application into individual pieces, each of which can execute as its own 
thread. This is not the way to go about developing an application .. 

Threads are incredibly useful and have a place, but when you use 
threads you can potentially create new problems while trying to solve the 
old ones. For example, let's say you're developing a word processing 

1. 'Werner Heisenberg actually developed the theory with respect to quantum mechanics, 
not computer science. 

53 



ADVANCED WINDOWS 

54 

application and want to allow the printing function to run as its own 
thread. This sounds like a good idea because the user can immediately 
go back and start editing the document while it is printing. But wait
this means that the data in the document might be changed while the 
document is printing. This is a whole new type of problem you'll need to 
address. Maybe it would be best not to have the printing take place in its 
own thread, but this seems a bit drastic. How about if you let the user 
edit another document but lock the printing document so that it can't 
be modified until the printing has been completed? Or here's a third 
idea: Copy the document to a temporary file, print the contents of the 
temporary file, and let the user modify the original. When the temporary 
file containing the document has finished printing, delete the tempo
raryfile. 

As you can see, threads help solve some problems at the risk of cre
ating new ones. Another common misuse of threads can arise in the 
development of an application's user interface. In most applications, all 
the user interface components (windows) should be sharing the same 
thread. If you're producing a dialog box, for example, it wouldn't make 
much sense for a list box to be created by one thread and a button to be 
created by another. 

Let's take this a step further and say that you have your own list box 
control that sorts data every time an element is added or deleted. The 
sorting operation might take several seconds, so you decide to assign this 
control to its very own thread. In this way, the user can continue to work 
with other controls while the list box control's thread continues sorting. 

Doing this wouldn't be a very good idea. First, every thread that cre
ates a window must also contain a GetMessage loop. Second, because the 
list box thread contains its own GetMessage loop, you potentially open 
yourself up to some synchronization problems among the threads. You 
can solve these problems by assigning to the list box control a dedicated 
thread whose sole purpose is to sort elements in the background. 

For Windows NT, a third reason exists. The Windows NT Win32 sub
system is like a parallel universe in that, for every thread you create that 
creates a window, the subsystem creates a complementary thread for itself. 
This adds unnecessary overhead in your application. 

Now, having said all this, let me take some of it back. In rare situa
tions, assigning individual threads to user interface objects is useful. In 



T H R E E: Threads 

the system, each process has its own separate thread controlling its own 
user interface. For example, the Calculator application has one thread 
that creates and manipulates all the application's windows, and the 
Paintbrush application has its own thread that creates and manipulates 
Paintbrush's own windows. These separate threads were assigned for 
protection and robustness. If Calculator's thread enters an infinite loop, 
the resulting problem has no effect on Paintbrush's thread. This is quite 
different from the behavior we see in 16-bit Windows. In 16-bit Windows, 
if one application hangs, the entire system hangs. The Win32-based sys
tems allow you to switch away from Calculator (even though it is hung) 
and start using Paintbrush. See Chapter 10 for more details. 

Another use for multiple threads in GUI components is in multi
ple document interface (MDI) applications in which each MDI child 
window is running on its own thread. If one of the MDI child threads 
enters an infinite loop or starts a time-consuming procedure, the user 
can switch to another MDI child window and begin working with it while 
the other MDI child thread continues to chug along. This can be so use
ful, in fact, that Win32 offers a special function, shown below, whose 
result is similar to creating an MDI child window by sending the WM
_MDICREATE message to an MDIClient window. 

HWND CreateMDIWindow(LPTSTR lpszClassName. LPTSTR lpszWindowName. 
DWORD dwStyle. int x. int y. int nWidth. int nHeight. 
HWND hwndParent. HINSTANCE hinst. LONG lParam); 

The only difference is that the CreateMDIWindow function allows the MDI 
child to be created with its own thread. 

The moral of the story is that multiple threads should be used judi
ciously. Don't use them only because you can. You can still write many 
useful and powerful applications using nothing more than the primary 
thread assigned to the process. If after reading all this you're convinced 
you have a valid need for threads, read on. 

Writing Your First Thread Function 
All threads begin executing at a function that you must specify. The func
tion must have the following prototype: 

DWORD WINAPI YourThreadFunc(LPVOID lpvThreadParm); 

Like WinMain, this function is not actually called by the operating 
system. Instead, the operating system calls an internal function, not part 
of the C run-time, contained in KERNEL32.DLL. I call this function 

55 



ADVANCED WINDOWS 

56 

StartOfThread; the actual internal name is not important. Below is what 
StartOfThread looks like: 

void StartOfThread (LPTHREAD_START_ROUTINE lpStartAddr. 

} 

LPVOID lpvThreadParm) { 

_try { 

} 

DWORD dwThreadExitCode = lpStartAddr(lpvThreadParm); 
ExitThread(dwThreadExitCode); 

_except(UnhandledExceptionFilter(GetExceptionlnformatione»~) { 
EXitProcess(GetExceptionCode(»; 

} 

The StartOfThread function sets into motion the following actions: 

1. Sets up a structured exception handling (SEH) frame around 
your thread function so that any exceptions raised while your 
thread executes will get some default handling by the system. 
See Chapter 14 for more information about structured excep
tion handling. 

2. The system calls your thread function, passing it the 32-bit 
lpvThreadParm parameter that you passed to the Create Thread 
function (discussed shortly). 

3. When your thread function returns, the StartOfThread function 
calls ExitThread, passing it your thread function's return value. 
The thread kernel object'S usage count is decremented, and 
the thread stops executing. 

4. If your thread raises an exception that is not handled, the SEH 
frame set up by the StartOfThread function will handle the ex
ception. Usually, this means that a message box is presented to 
the user and that, when the user dismisses the message box, 
StartOfThread callsExitProcess to terminate the entire process, 
not just the offending thread. 

Although I left it out of the earlier discussion, a process's primary 
thread actually begins by executing the system's StartOfThread function. 
The StartOfThread function then calls the C run-time's startup code, which 
calls your WinMain function. The C run-time's startup code, however, 
does not ever return back to the StartOfThread function because the 
startup code explicitly calls ExitProcess. 



T H R E E: Threads 

The remainder of this section discusses the various attributes that 
are "bestowed" upon a new thread. 

A Thread's Stack 
Each thread is allocated its very own stack from the owning process's 4-GB 
address space. When you use static and global variables, multiple threads 
can access the variables at the same time, potentially corrupting the vari
ables' contents. However, local and automatic variables are created on 
the thread's stack and are therefore far less likely to be corrupted by 
another thread. For this reason, you should always try to use local or 
automatic variables when writing your functions and avoid the use of 
static and global variables. 

The actual size of a thread's stack, and how the operating system 
and compiler manage the stack, are very complex subjects-I postpone 
discussing these details until Chapter 6. 

A Thread's CONTEXT Structure 
Each thread has its own set of CPU registers, called the thread's context. 
This CONTEXT structure reflects the state of the thread's CPU registers 
when the thread was last executing. The CONTEXT structure is the only 
CPU-specific Win32 data structure. In fact, the Win32 help file doesn't 
show the contents of this structure at all. If you want to see the members 
of this structure, you must look in the WINNT.H file, where you will find 
this structure defined several times: once for x86, once for MIPS, and 
once for Alpha. The compiler selects the appropriate version of this 
structure depending on the target CPU type for your EXE or DLL. 

When a thread is scheduled CPU time, the system initializes the 
CPU's registers with the thread's context. Of course, one of the CPU reg
isters is an instruction pointer that identifies the address of the next CPU 
instruction for the thread to execute. The CPU registers also include a 
stack pointer that identifies the address of the thread's stack. 

A Thread's Execution Times 
In a multithreaded environment, it becomes much more difficult to time 
how long it takes your process to perform various tasks. This is because 
your process might have a thread that is busy recalculating some com
plex algorithm while threads in other processes are all competing for the 
same CPU. Since your recalc thread is constantly being preempted, you 
can't simply write code to time your algorithm as shown on the next page. 

57 



ADVANCED WINDOWS 

58 

DWORD dwStartTime = GetTickCount(): 
II Perform complex algorithm 
DWORD dwElapsedTime = GetTickCount() - dwStartTime: 

What is needed here is a function that returns the amount of time 
that the CPU has been assigned to this thread. Fortunately, in Win32 
there is a function that returns this information: 

BOOL GetThreadTimes(HANDLE hThread. LPFILETIME lpCreationTime. 
LPFILETIME lpExitTime. LPFILETIME lpKernelTime. 
LPFILETIME lpUserTime): 

GetThreadTimes returns four different time values, as shown in the 
table below: 

Time Value 

Creation time 

Exit time 

Kernel time 

User time 

Meaning 

The time when the thread was created. 

The time when the thread exited. If the thread is still 
running, the exit time is undefined. 

The amount of time that the thread has spent executing 
operating system code. 

The amount of time that the thread has spent executing 
application code. 

Using this function, you can determine the amount of time neces
sary to execute a complex algorithm by using code such as this: 

__ int64 FileTimeToQuadWord (PFILETIME pFileTime) { 

} 

__ int64 qw: 
qw = pFileTime-)dwHighDateTime: 
qw «= 32: 
qw 1= pFileTime-)dwLowDateTime: 
return(qw) : 

PFILETIME QuadWordToFileTime ( __ int64 qw. PFILETIME pFileTime) { 
pFileTime-)dwHighDateTime (DWORD) (qw » 32): 
pFileTime-)dwLowDateTime = (DWORD) (qw & ~xFFFFFFFF): 
return(pFileTime): 

} 

void Recalc () { 
FILETIME ftKernelTimeStart. ftKernelTimeEnd: 



} 

FILETIME ftUserTimeStart. ftUserTimeEnd; 
FILETIME ftDummy. ftTotalTimeElapsed; 
__ int64 qwKernelTimeElapsed. qwUserTimeElapsed. 

qwTotalTimeElapsed; 

T H R E E: Threads 

II Get starting times. 
GetThreadTimes(GetCurrentThread(). &ftDummy. &ftDummy. 

&ftKernelTimeStart. &ftUserTimeStart); 

II Perform complex algorithm here. 

II Get ending times. 
GetThreadTimes(GetCurrentThread().&ftDummy. &ftDummy. 

&ftKernelTimeEnd. &ftUserTimeEnd); 

II Get the elapsed kernel and user times by converting the start 
II and end times from FILETIMEs to quad words. and then subtract 
II the start times from the end times. 
qwKernelTimeElapsed = FileTimeToQuadWord(&ftKernelTimeEnd) -

FileTimeToQuadWord(&ftKernelTimeStart); 
qwUserTimeElapsed = FileTimeToQuadWord(&ftUserTimeEnd) -

FileTimeToQuadWord(&ftUserTimeStart); 

II Get total time duration by adding the kernel and user times. 
qwTotalTimeElapsed = qwKernelTimeElapsed + qwUserTimeElapsed; 

II Convert resultant quad word to FILETIME. 
QuadWordToFileTime(qwTotalTimeElapsed. &ftTotalTimeElapsed); 

II The total elapsed time is in qwTotalElapsedTime and in 
II ftTotalTimeElapsed. You can use either form. 

Let me also point out here that there is a function similar to Get
ThreadTimes that applies to all of the threads in a process: 

BOOL GetProcessTimes (HANDLE hProcess. LPFILETIME lpCreationTime. 
LPFILETIME lpExitTime. LPFILETIME lpKernelTime. 
LPFILETIME lpUserTime); 

GetProcessTimes returns times that apply to all the threads in a speci
fied process. For example, the kernel time returned will be the sum of 
all the elapsed times that all of the process's threads have spent in 
kernel code. 

59 



ADVANCED WINDOWS 

Unfortunately, the GetThreadTimes and GetProcessTimes functions are not 
functional in Windows 95. If you call either of these functions in Win
dows 95, they return FALSE. A subsequent call to GetLastError returns a 
value of 120 (ERROR_CALL_NOT_IMPLEMENTED), which indicates 
that these functions are valid only in Windows NT. 

There is no reliable mechanism for an application to determine 
how much CPU time a thread or process has used under Windows 95. 

The CreateThread Function 

60 

We've already discussed how a process's primary thread comes into being 
when CreateProcess is called. However, if you want a primary thread to cre
ate additional threads, you can have it call CreateThread: 

HANDLE CreateThread( 
LPSECURITY-ATTRIBUTES lpsa, 
DWORD cbStack, 
LPTHREAD_START_ROUTINE lpStartAddr, 
LPVOID lpvThreadParm, 
DWORD fdwCreate, 
LPDWORD lpIDThread): 

For every call to CreateThread, the system must perform the follow
ing steps: 

1. Allocate a thread kernel object to identify and manage the 
newly created thread. This object holds much of the system 
information to manage the thread. A handle to this object is 
the value returned from the CreateThread function. 

2. Initialize the thread's exit code (maintained in the thread 
kernel object) to STILL_ACTIVE and set the thread's suspend 
count (also maintained in the thread kernel object) to 1. 

3. Allocate a CONTEXT structure for the new thread. 

4. Prepare the thread's stack by reserving a region of address space, 
committing 2 pages of physical storage to the region, setting the 
protection of the committed storage to PAGE_READWRITE, 
and setting the PAGE_GUARD attribute on the second-to-top 
page. See Chapter 6 for more information about a thread's stack. 



Ipsa 

cbStack 

T H R E E: Threads 

5. Initialize the stack pointer register in the thread's CONTEXT 
structure to point to the top of the stack; initialize the instruction 
pointer register to point to the internal StartOfThread function. 

OK, that's the broad overview. The following sections dissect each 
of CreateThread's parameters. 

The Ipsa parameter is a pointer to a SECURITY_ATTRIBUTES struc
ture. You can also pass NULL if you want the default security attributes 
for the object. If you want any child processes to be able to inherit a 
handle to this thread object, you must specify a SECURITY_ATTRI
BUTES structure whose blnheritHandle member is initialized to TRUE. 

The cbStack parameter specifies how much address space the thread is 
allowed to use for its own stack. Every thread owns its very own stack. 
When CreateProcess starts an application, it calls CreateThread to initialize 
the process's primary·thread. For the cbStack parameter, CreateProcess uses 
the value stored inside the executable file. You can control this value 
using the linker's /STACK switch: 

ISTACK:[reserve] [.commit] 

The reserve argument sets the amount of memory the system should 
reserve in the address space for the thread's stack. The default is 1 MB. 
The commit argument specifies the amount of reserved address space 
that should initially be committed to the stack. The default is 1 page. 
(See Chapter 6 for a discussion of reserving and committing memory.) 
As the code in your thread executes, it is quite possible that you'll require 
more than 1 page of memory. When your thread overflows its stack, an 
exception is generated. (See Chapter 14 for detailed information about 
handling exceptions.) The system catches the exception and commits 
another page (or whatever you specified for the commit argument) to the 
reserved space, which allows your thread's stacks to grow dynamically 
as needed. 

When calling CreateThread you can pass 0 to the cbStack parameter. 
In this case, CreateThread creates a stack for the new thread using the 
commit argument embedded in the EXE file by the linker. The amount 
of reserved space is always 1 MB. The system sets a limit of 1 MB to stop 
functions that recurse endlessly. 

61 



ADVANCED WINDOWS 

For example, let's say that you are writing a function that calls itself 
recursively. This function also has a bug that causes endless recursion. 
Every time the function calls itself, a new stack frame is created on 
the stack. If the system didn't set a maximum limit on the stack size, the 
recursive function would never stop calling itself. All of the process's 
address space would be allocated, and enormous amounts of physical 
storage would be committed to the stack. By setting a stack limit, you pre
vent your application from using up enormous amounts of physical stor
age, and you'll also know much sooner when a bug exists in your program. 
The SEHSum sample application in Chapter 14 shows how you can trap 
and handle stack overflows in your application. 

IpStartAddr and IpvThreadParm 

fdwCreate 

62 

The lpStartAddr parameter indicates the address of the thread function 
that you want the new thread to execute. It is perfectly legal and actually 
quite useful to create multiple threads that all have the same function 
address as their starting point. For example, you might create an MDI 
application in which all the child windows behave similarly but each oper
ates on its own thread. The thread function you write must have the same 
function prototype as this function: 

DWORD WINAPI ThreadFunc(LPVOID lpvThreadParm) { 
DWORD dwResult = 0; 

return(dwResult); 
} 

The thread function's lpvThreadParm parameter is the same as the 
lpvThreadParm parameter that you originally passed to CreateThread. 
CreateThread does nothing with this parameter except pass it on to the 
thread function when the thread starts executing. This parameter pro
vides a way to pass an initialization value to the thread function. This ini
tialization data can be either a 32-bit value or a 32-bit pointer to a data 
structure that contains additional information. 

The fdwCreate parameter specifies additional flags that control the cre
ation of the thread. It can be one of two values. If the value is 0, the thread 
starts executing immediately. If the value is CREATE_SUSPENDED, the 
system creates the thread, creates the thread's stack, initializes the CPU 



T H R E E: Threads 

register members in the thread's CONTEXT structure, and gets ready 
to execute the first instruction of the thread function but suspends the 
thread so that it doesn't start executing. 

Immediately before CreateThread returns, and while the thread that 
called it continues to execute, the new thread is also executing-that is, 
as long as the CREATE_SUSPENDED flag wasn't specified.2 Because the 
new thread is running simultaneously, the possibility of problems exists. 
Watch out for code like this: 

DWORD WINAPI FirstThread (LPVOID lpvThreadParm) { 
int x = 0; 

} 

DWORD dwResult = 0, dwThreadId; 
HANDLE hThread; 

hThread = CreateThread(NULL. 0, SecondThread, (LPVOID) &x. 
0, &dwThreadId); 

CloseHandle(hThread); 

return(dwResult); 

DWORD WINAPI SecondThread (LPVOID lpvThreadParm) { 
DWORD dwResult = 0; 

II Do some lengthy processing here. 

* «int *) lpvThreadParm) 5; 

return(dwResult); 
} 

In the code above, it is very likely that FirstThread will finish its work 
before Second Thread assigns 5 to FirstThread's x. If this happens, Second
Thread won't know thatFirstThread no longer exists and will attempt to 
change the contents of what is now an invalid address. This is certain to 
cause Second Thread to raise an access violation because FirstThread's stack 
is destroyed when FirstThread terminates. One way to solve the problem 
is to declare x as a static variable. In this way, the compiler will create a 
storage area for x in the application's data section rather than on the stack. 

2. Actually, on a single-CPU machine threads execute one at a time, but it's best to think 
of them as all executing simultaneously. Also, the new thread's execution is subject to the 
priority levels of all other threads. 

63 



ADVANCED WINDOWS 

However, this makes the function non-reentrant. In other words, you 
couldn't create two threads that execute the same function because the 
static variable would be shared between the two threads. 

Another way to solve this problem, as well as its more complex 
variations, is to use synchronization objects, which I discuss in Chapter 9. 

IplDThread 
The last parameter of CreateThread, lpIDThread, must be a valid address of 
a DWORD in which CreateThread will store the ID that the system assigns 
to the new thread. Under Windows NT, this parameter cannot be NULL 
even if you are not interested in the thread's ID; passing NULL causes an 
access violation. 

I personally believe that you should be able to pass NULL for the 
lpIDThread parameter because more often than not the thread's unique 
ID number is not that useful. Apparently, some of the developers on 
Microsoft's Windows 95 team felt as I did because Windows 95 does allow 
you to pass NULL for the lpIDThread parameter, in which case the func
tion does not raise an access violation and you don't get the thread's ID 
back. This is a small but nice feature of Windows 95. 

Of course, this inconsistency between Windows 95 and Windows 
NT can cause problems for software developers. For example, let's say 
you develop and test an application on Windows 95 that takes advantage 
of the fact that CreateThread will accept NULL for the lpIDThread param
eter. Now, when you later run your application on Windows NT, your 
program will fail. This means that you must thoroughly test your applica
tions on both Windows 95 and Windows NT. 

Terminating a Thread 

64 

Like a process, a thread can be terminated in two ways: by calling the 
ExitThread function, which is the most common method, or by calling 
the TerminateThread function, which you should reserve as a last resort. 
This section discusses both methods for terminating a thread and 
describes what actually happens when a thread ends. 



T H R E E: Threads 

The ExitThread Function 
A thread terminates when it calls ExitThread: 

VOID ExitThread(UINT fuExitCode); 

This function terminates the thread and sets the thread's exit code 
to fuExitCode. ExitThread doesn't return a value because the thread has 
terminated. 

This method is the most common becauseExitThread is called when 
the thread function returns to the system's internal StartOfThread func
tion. The StartOfThread function calls ExitThread, passing it the value 
returned from your thread function. 

The TerminateThread Function 
A call to TerminateThread also ends a thread: 

Baal TerminateThread(HANDlE hThread. DWORD dwExitCode); 

The function ends the thread identified by the hThread parameter 
and sets its exit code to dwExitCode. The TerminateThread function exists 
so you can terminate a thread when it no longer responds. You should 
use it only as a last resort. 

Under Windows NT, when a thread dies by calling ExitThread, the stack 
for the thread is destroyed. However, if the thread is terminated by 
TerminateThread, the system does not destroy the stack until the process 
that owns the thread terminates because other threads might still be 
using pointers that reference data contained on the terminated thread's 
stack. If these other threads attempted to access the stack, an access vio
lation would occur. 

Under Windows 95, the TerminateThread function does destroy the stack 
of the thread that's being terminated. 

When a thread ends, the system notifies any DLLs attached to the 
process owning the thread that the thread is ending. If you call 
TerminateThread, however, the system doesn't notify any DLLs attached to 
the process, which can mean that the process won't be closed down cor
rectly. For example, a DLL might be written to flush data to a disk file 

65 



ADVANCED WINDOWS 

when the thread detaches from the DLL. Because the DLL isn't notified 
about the detachment when you use TerminateThread, the DLL cannot 
perform its normal cleanup. 

The ExitProcess and TerminateProcess functions discussed in Chapter 
2 also terminate threads. The difference is that these functions termi
nate all the threads contained in the process being terminated. 

What Happens When a Thread Terminates 

66 

The following actions occur when a thread terminates: 

1. All User object handles owned by the thread are freed. In Win32, 
most objects are owned by the process containing the thread 
that creates the objects. However, there are a few objects (mostly 
User objects such as windows, accelerators, and hooks) that can 
be owned by a thread. When the threads that create these objects 
die, the system automatically destroys the objects. 

2. The state of the thread kernel object becomes signaled. 

3. The thread's exit code changes from STILL_ACTIVE to the 
code passed to ExitThread or TerminateThread. 

4. If the thread is the last active thread in the process, the pro
cess ends. 

5. The thread kernel object's usage count is decremented by 1. 

When a thread terminates, its associated thread kernel object 
doesn't automatically become freed until all the outstanding references 
to the object are closed. 

Once a thread is no longer running, there isn't much any other 
thread in the system can do with the thread's handle. However, these 
other threads can call GetExitCodeThread to check whether the thread 
iden tified by hThread has terminated and, if it has, determine its exit code. 

BOOl GetExitCodeThread(HANDlE hThread. lPDWORD lpdwExitCode); 

The exit code value is returned in the DWORD pointed to by 
lpdwExitCode. If the thread hasn't terminated when GetExitCodeThread is 
called, the function fills the DWORD with the STILL_ACTIVE identi
fier (defined as Ox1 03). If the function is successful, TRUE is returned. 
Using the thread's handle to determine when the thread has terminated 
is discussed further in Chapter 9. 



T H R E E: Threads 

Gaining a Sense of One's Own Identity 
Several Win32 functions require a process handle as a parameter. A 
thread can get the handle of the process it is running in by calling 
GetCurrentProcess: 

HANDLE GetCurrentProcess(VOID); 

This function returns a pseudo-handle to the process; it doesn't 
create a new handle, and it doesn't increment the process object's usage 
count. If you call CloseHandle and pass this pseudo-handle as the param
eter, CioseHandle simply ignores the call and does nothing but return. 

You can use pseudo-handles in calls to functions that require a pro
cess handle. For example, the line below changes the priority class of the 
calling process to HIGH_PRIORITY_CLASS: 

SetPriorityClass(GetCurrentProcess(). HIGH_PRIORITY_CLASS); 

The Win32 API also includes a few functions that require a process 
ID. A thread can acquire the ID of the process it is running in by calling 
GetCurrentProcessld: 

DWORD GetCurrentProcessId(VOID); 

This function returns the unique, systemwide ID that identifies the 
process. 

When you call CreateThread, the handle of the newly created thread 
is returned to the thread making the call, but the new thread does not 
know what its own handle is. For a thread to acquire a handle to itself, it 
must call: 

HANDLE GetCurrentThread(VOID); 

Like GetCurrentProcess, GetCurrentThread returns a pseudo-handle 
that is meaningful only when used in the context of the current thread. 
The thread object's usage count is not incremented, and calls to Close
Handle passing the pseudo-handle have no effect. 

A thread acquires its ID by calling: 

DWORD GetCurrentThreadId(VOID); 

Sometimes you might need to acquire a "real" handle to a thread 
instead of a pseudo-handle. By "real," I mean a handle that unambigu
ously identifies a unique thread. Examine the following code: 

DWORD WINAPI parentThread (LPVOID lpvThreadParm) { 
DWORD IDThread; 

(continued) 

67 



ADVANCED WINDOWS 

68 

} 

HANDLE hThread~arent = GetCurrentThTead(); 
CreateThread(NULL, 0, ChildThread, (LPVOID) hThreadParent, 0, 

&IDThread) ; 
II Function continues ... 

DWORD WINAPI ChildThread (LPVOID lpvThreadParm) { 

} 

HANDLE hThreadParent = (HANDLE) lpvThreadParm; 
SetThreadPriority(hThreadParent, THREAD_PRIORITY_NORMAL); 
II Function continues ... 

Can you see the problem with this code fragment? The idea is to 
have the parent thread pass to the child thread a thread handle that 
identifies the parent thread. However, the parent thread is passing a 
pseudo-handle, not a "real" handle. When the child thread begins 
execution, it passes the pseudo-handle to the SetThreadPriority function, 
which causes the child thread-not the parent thread-to change prior
ity. This happens because a thread pseudo-handle is a handle to the cur
rent thread-that is, a handle to whichever thread is making the 
function call. 

To fix this code, we must turn the pseudo-handle into a "real" 
handle. This can be done by using the DuplicateHandle function: 

BOOL DuplicateHandle( 
HANDLE hSourceProcess, 
HANDLE hSource, 
HANDLE hTargetProcess, 
LPHANDLE lphTarget, 
DWORD fdwAccess, 
BOOL fInherit, 
DWORD fdwOptions); 

Usually this function is used to create a new process-relative handle 
from a kernel object handle that is relative to another process. The first 
parameter, hSourceProcess, identifies the process that has access to the 
object to be duplicated. The handle value of hSourceProcess must be rela
tive to the process that is making the call to DuplicateHandle. The third 
parameter, hTargetProcess, identifies the process to be granted access to 
the same object. Again, this handle value must be relative to the process 
that is making t)le call to DuplicateHandle. 

The second parameter, hSource, identifies the existing object. This 
handle value must be relative to the process identified by the hSource
Process parameter. The fourth parameter, IphTarget, is the address to a 
HANDLE variable that DuplicateHandle will fill with the duplicated 



T H R E E: Threads 

handle's value. This new handle value identifies the same object that the 
hSource parameter identifies, but the new handle is relative to the process 
iden tified by the h TargetProcess parameter. In other words, only threads in 
the process identified by the hSourceProcess parameter can use the object 
identified by the hSource parameter, and only threads in the process iden
tified by the hTargetProcess parameter can use the object identified by the 
lphTarget parameter. The remaining three parameters allow you to 
specify how the new handle can be accessed, whether the new handle is 
inheritable by child processes spawned by the target process, and 
whether the original object should be closed automatically. (See the 
Microsoft Win32 Programmer's Reference for more information about the 
DuplicateHandle function.) 

We can use the DuplicateHandle function in an unusual way to cor
rect the code fragment discussed earlier. The corrected code fragment is 
as follows: 

DWORD WINAPI ParentThread (LPVOID lpvThreadParm) { 
DWORD IDThread: 

} 

HANDLE hThreadParent; 

DuplicateHandle( 
GetCurrentProcess(), 

GetCurrentThread(), 
GetCurrentProcess(), 

&hThreadParent 

0, 

FALSE, 

II Handle of process that thread 
II pseudo-handle is relative to 
II Parent thread's pseudo-handle 
II Handle of process that the new, 
II "real," ~hread handle is 
II relative to 
II Will receive the new, 
II "real," handle identifying 
II the parent thread 
II Ignored because of 
II DUPLICATE_SAME_ACCESS 
II New thread handle is not 
II inheritable 
II New thread handle has same 
II access as pseudo-handle 

CreateThread(NULL, 0, ChildThread, (LPVOID) hThreadParent, 0, 
&IDThread) ; 

II Function continues ... 

DWORD WINAPI ChildThread (LPVOID lpvThreadParm) { 
HANDLE hThreadParent = (HANDLE) lpvThreadParm; 

(continued) 

69 



ADVANCED WINDOWS 

70 

SetThreadPriority(hThreadParent, THREAD_PRIORITY_NORMAL); 
CloseHandle(hThreadParent); 
// Function continues ... 

} 

Now when the parent thread executes, it converts the ambiguous 
pseudo-handle identifying the parent thread to a new, "real," handle 
that unambiguously identifies the parent thread, and it passes this "real" 
handle to CreateThread. When the child thread starts executing, its lpv
ThreadParm parameter contains the "real" thread handle. Any calls to 
functions, passing this handle, will now affect the parent thread, not the 
child thread. 

Because DuplicateHandle does increment the usage count of the 
specified kernel object, it is very important to remember to decrement 
the object's usage count by passing the target handle to Close Handle 
when you are finished using the duplicated object handle. This is dem
onstrated in the code fragment on the previous page. Immediately after 
the call to SetThreadPriority, the child thread calls CloseHandle to decre
ment the parent thread object's usage count. In the previous code frag
ment, I assumed that the child thread would not call any other functions 
using this handle. If other functions are to be called passing the parent 
thread's handle, the call to CloseHandle should not be made until the 
handle is no longer required by the child thread. 

I should also point out that the DuplicateHandle function can be 
used to convert a pseudo-handle for a process to a "real" process handle 
as follows: 

HANDLE hProcess; 
DuplicateHandle( 

GetCurrentProcess(), 

GetCurrentProcess(), 
GetCurrentProcess(), 

&hProcess, 

0, 

FALSE, 

DUPLICATE_SAME-ACCESS); 

// Handle of process that the process 
// pseudo-handle is relative to 
// Process's pseudo-handle 
II Handle of process that the new, 
// "real," process handle is 
1/ relative to 
/1 Will receive the new, "real," 
II handle identifying the process 
/1 Ignored because of 
II DUPLICATE_SAME-ACCESS 
II New thread handle is not 
1/ i nheritabl e 
II New process handle has same 
II access as pseudo-handle 



T H R E E: Threads 

How the System Schedules Threads 
The system schedules all active threads based on their priority levels. 
Each thread in the system is assigned a priority level. Priority levels range 
from 0, the lowest, to 31, the highest. Priority level 0 is assigned to a spe
cial thread in the system called the zero page thread. The zero page thread 
is responsible for zeroing any free pages in the system when there are no 
other threads that need to perform work in the system. It is not possible 
for any other thread to have a priority level of O. 

When the system assigns a CPU to a thread, it treats all threads of 
the same priority as equal. That is, the system simply assigns the first 
thread of priority 31 to a CPU, and after that thread's time slice is fin
ished, the system assigns the next priority 31 thread to the CPU. When 
all the priority 31 threads have had a time slice, the system assigns the 
first priority 31 thread back to the CPU. Note that if you always have at 
least one priority 31 thread for each CPU, other threads having priorities 
less than 31 will never be assigned to a CPU and will therefore never exe
cute. This is called starvation. Starvation occurs when some threads use 
so much of the CPU's time that other threads are never able to execute. 

When no priority 31 threads need to run, the system will begin 
assigning the CPU to priority 30 threads. When no priority 31 and no 
priority 30 threads need to run, the system assigns the CPU to priority 29 
threads, and so on. 

At first, you might think that low priority threads (like the zero 
page thread) will never get a chance to run in a system designed like this. 
But as it turns out, threads frequently do not have a reason to run. For 
example, if your process's primary thread calls GetMessage and the system 
sees that there are no messages pending, the system suspends your 
process's thread, relinquishes the remainder of the thread's time slice, 
and immediately assigns the CPU to another, waiting, thread. 

If no messages show up for GetMessage to retrieve, the process's 
thread stays suspended, and the CPU is never assigned to it. However, 
when a message is placed in the thread's queue, the system knows that 
the thread should no longer be suspended and will assign the CPU to the 
thread as long as no higher-priority threads need to execute. 

Let me point out another issue here. If a priority 5 thread is run
ning, and the system determines that a higher-priority thread is ready 
to run, the system will immediately suspend the lower-priority thread 

71 



ADVANCED WINDOWS 

(even if it's in the middle of its time slice) and assign the CPU to the 
higher-priority thread, which gets a full time slice. Higher-priority 
threads always preempt lower-priority threads regardless of what the 
lower-priority threads are executing. 

How Priority Levels Are Assigned Using the Win32 API 

72 

When you create threads, you don't assign them priority levels using num
bers. Instead, the system determines the thread's priority level using a 
two-step process. The first step is to assign a priority class to a process. A 
process's priority class tells the system the priority required by the pro
cess compared to other running processes. The second step is to assign 
relative priority levels to threads owned by the process. The following 
sections discuss both steps. 

Process Priority Classes 
Win32 supports four different priority classes: idle, normal, high, and 
realtime. You assign a priority class to a process by ORing one of the 
CreateProcess flags listed in the table below with the other fdwCreate flags 
when calling Create Process. The table below shows the priority level associ
ated with each priority class: 

Class CreateProcess Flag Level 

Idle IDLE_PRIORITY_CLASS 4 
Normal NORMAL_PRIORITLCLASS 7-9 
High HIGH_PRIORITLCLASS 13 

Realtime REALTIME_PRIORITLCLASS 24 

This means that any thread created in a process whose priority class is 
idle has the priority level 4. 

I can't stress enough how important it is to select a priority class for 
your process carefully. When calling CreateProcess, most applications 
should either not specify a priority class or use the NORMAL_PRIOR
ITY_CLASS flag. When you don't specify a priority class, the system 
assumes normal priority class unless the parent process has an idle prior
ity class. In this case, the child process is also of the idle priority class. 

Processes of the normal priority class behave a little differently 
than processes using other priority classes. Most applications a user runs 



T H R E E: Threads 

are of the normal priority class. When the user is working with a process, 
that process is said to be the foreground process and all other processes 
are called background processes. When a normal process is brought to 
the foreground, Windows NT automatically boosts all of that process's 
threads by 2. Windows 95 boosts all that process's threads by l. 

The reason for this boosting is to make the foreground process react 
faster to the user's input. If the process's threads weren't boosted, a nor
mal process printing in the background and a normal process accepting 
user input in the foreground would be competing equally for the CPU's 
time. The user, of course, would see that text was not appearing smoothly 
in the foreground application. But because the system boosts the fore
ground process's threads, the foreground process's threads always pre
empt threads in background normal processes. 

When running Windows NT, the user can control the system's boosting 
of normal foreground processes by double-clicking on the System option 
in the Control Panel and then clicking on the Tasking button. This pre
sents the following dialog box: 

Foreground/Background Resl~onsliyen"ss----------,I 

@ i!~~(:f.9.~~ii~9.:~ri:~::Ap.p.!.~~~~':~~::fl!.~p.~~!~:I!~:~j 
o Eoreglound Application Nore Responsive than Background 
o Foreground and Background Applications Equally Responsive 

The Best Foreground Application Response Time option means 
that normal processes in the foreground have a priority level of 9, the 
Foreground Application More Responsive Than Background option 
means that normal processes in the foreground have a priority level of 8, 
and the Foreground And Background Applications Equally Responsive 
option means that normal processes in the foreground have a priority 
level of 7. 

This feature is not offered in Windows 95 because Windows 95 is 
not designed to be run on a dedicated server machine. Windows NT 
server machines are frequently installed in a room where no user will 
operate them directly. When Windows NT machines are set up as dedi
cated servers, the administrator should select the Foreground And Back
ground Applications Equally Responsive option so that all processes 
compete equally for the CPU. 

73 



ADVANCED WINDOWS 

74 

Idle priority is perfect for system-monitoring applications. For 
example, you might write an application that periodically displays the 
amount of free RAM in the system. Because you would not want this 
application to interfere with the performance of other applications, you 
would set this process's priority class to IDLE_PRIORITY_CLASS. 

Another good example of an application that can use idle priority 
is a screen saver. Most of the time a screen saver simply monitors actions 
from the user. When the user is idle for a specified period of time, the 
screen saver activates itself. There is no reason to have the screen saver 
monitoring the user's actions at a very high priority, so the perfect prior
ity for this process is idle priority. 

High priority class should be used only when absolutely necessary. 
You might not guess this, but the Windows NT Task Manager runs at 
high priority. Most of the time the Task Manager's thread is suspended, 
waiting to be awakened when the user presses Ctrl+Esc. While the Task 
Manager's thread is suspended, the system doesn't assign a CPU to the 
thread, which allows lower-priority threads to execute. However, once 
the user does press Ctrl+Esc, the system wakes up the Task Manager's 
thread. If any lower-priority threads are executing, the system preempts 
those threads immediately and allows the Task Manager to run. The Task 
Manager responds by displaying a dialog box that lists all the running 
applications. Microsoft designed the Task Manager this way because 
users expect the Task Manager to be extremely responsive, regardless of 
what else is going on in the system. In fact, the Task Manager's window 
can be displayed even when lower-priority threads are hung in infinite 
loops. Because the Task Manager's thread has a higher priority level, the 
thread executing the infinite loop is preempted, and the Task Manager 
allows the user to terminate the hung process. 

The Task Manager is very well behaved. Most of the time it simply 
sits idle, not requiring any CPU time at all. If this were not the case, the 
whole system would perform much more slowly, and many applications 
would not respond. 

The fourth priority flag, REALTIME_PRIORITY_CLASS, should 
almost never be used. In fact, earlier betas of the Win32 API did not 
expose this priority class to applications even though the operating sys
tem supported it. Realtime priority is extremely high, and because most 
threads in the system (including system management threads) execute 
at a lower priority, they will be affected by a process of this class. In fact, 



.., 
- N ~r°tVS, 

T H R E E: Threads 

the threads in the system that control the mouse and the keyboard, back
ground disk flushing, and Ctr1+Alt+Del trapping all operate at a lower 
priority class than realtime priority. If the user is moving the mouse, the 
thread responding to the mouse's movement will be preempted by a 
realtime thread. This affects the movement of the mouse, causing it to 
move jerkily rather than smoothly. Even more serious consequences can 
occur, such as loss of data. 

You might use the realtime priority class if you are writing an appli
cation that talks directly to hardware, or if you need to perform some 
short-lived task and want to be pretty sure it will not be interrupted . 

A process cannot run in the realtime priority class unless the user logged 
on to the system has Increase Scheduling Priority permission. Any user 
designated an administrator or a power user has this permission by 
default. You can give this permission to other users and groups by using 
the Windows NT User Manager application. 

Altering a Process's Priority Class 
It might seem odd to you that the process that creates a child process 
chooses the priority class at which the child process runs. Let's consider 
the Explorer or the Program Manager as an example. When you run an 
application from either of these applications, the new process runs at 
normal priority. The Explorer or the Program Manager has no idea what 
the process does or how quickly it needs to operate. However, once the 
child process is running, it can change its own priority class by calling 
SetPriorityClass: 

BOOl SetPriorityClass(HANDlE hProcess. DWORD fdwPriority); 

This function changes the priority class identified by hProcess to the 
value specified in the fdwPriority parameter. The fdwPriority parameter 
can be one of the following: IDLE_PRIORITY_CLASS, NORMAL
_PRIORITY-CLASS, HIGH_PRIORITY-CLASS, or REALTIME_PRI
ORITY_CLASS. If the function succeeds, the return value is TRUE; 
otherwise, it's FALSE. Because this function takes a process handle, you 
can alter the priority class of any process running in the system as long as 
you have a handle to it and ample access privileges. 

75 



ADVANCED WINDOWS 

The complementary function used to retrieve the priority class of a 
process is: 

DWORD GetPriorityClass(HANDlE hProcess); 

As you might expect, this function returns one of the Create Process flags 
listed previously. 

When you invoke a program using the command shell instead of 
the Explorer or the Program Manager, the program's starting priority is 
normal. However, if you invoke the program using the START com
mand, you can use a switch to specify the starting priority of the applica
tion. For example, the following command entered at the command 
shell causes the system to invoke the Calculator and initially run it at low 
priority: 

C:\>START flOW CAlC.EXE 

The START command also recognizes the /NORMAL, /HIGH, 
and /REALTIME switches to start executing an application at normal 
priority (also the default), high priority, and realtime priority, respec
tively. Of course, once an application starts executing, it can call SetPriori
tyClass to alter its own priority to whatever it chooses. 

The Windows 95 START command does not support the /LOW; /NOR
MAL, IHIGH, and /REALTIME switches. Processes started from the 
Windows 95 command shell always run using the normal priority class. 

Setting a Thread's Relative Priority 

76 

When a thread is first created, its priority level is that of the process's pri
ority class. For example, the primary thread of a HIGH_PRIORITy,: 
_CLASS process is assigned an initial priority level value of 13. However, 
it is possible to raise or lower the priority of an individual thread. 
A thread's priority is always relative to the priority class of the process 
that owns it. 

You can change a thread's relative priority within a single process 
by calling SetThreadPriority: 

BOOl SetThreadPriority(HANDlE hThread, int nPriority); 

The first parameter, hThread, is the handle to the thread whose priority 
class you're changing. The nPriority parameter can be one of the values 
shown in the following table. 



Identifier 

THREAD_PRIORITY-LOWEST 

THREAD_PRIORITY_BELOW_NORMAL 

THREAD_PRIORITY_NORMAL 

THREAD_PRIORITY_ABOVE_NORMAL 

THREAD_PRIORITY_HIGHEST 

T H R E E: Threads 

Meaning 

The thread's priority should 
be 2 less than the process's 
priority class. 

The thread's priority should 
be 1 less than the process's 
priority class. 

The thread's priority should 
be the same as the process's 
priority class. 

The thread's priority should 
be 1 more than the process's 
priority class. 

The thread's priority should 
be 2 more than the process's 
priority class. 

When a thread is first created, its initial relative priority value is 
THREAD_PRIORITY_NORMAL. The rules for threads within a pro
cess are similar to the rules for threads across processes. You should set 
a thread's priority to THREAD_PRIORITY...HIGHEST only when it is 
absolutely necessary in order for the thread to execute correctly. The 
scheduler will starve lower-priority threads if higher-priority threads 
require execution. 

In addition to the above flags, two special flags can be passed to 
SetThreadPriority: THREAD_PRIORITY...IDLE and THREAD_PRIORI
TY...TIME_CRITICAL. SpecifYing THREAD_PRIORITY...IDLE causes 
the thread's priority level to be set to 1 regardless of whether the priority 
class for the process is idle, normal, or high. However, if the priority class 
for the process is realtime, THREAD_PRIORITY...IDLE sets the thread's 
priority level to 16. Specifying THREAD_PRIORITY...TIME_CRITICAL 
causes the thread's priority level to be set to 15 regardless of whether the 
priority class for the process is idle, normal, or high. However, if the pri
ority class for the process is realtime, THREAD_PRIORITY...TIME
_CRITICAL sets the thread's priority level to 31. Figure 3-1 on the next 
page shows how the system combines a process's priority class with a 
thread's relative priority to determine a thread's base priority level. 

77 



ADVANCED WINDOWS 

78 

Process Priority Class 

Relative Normal, in Normal, in 
Thread Normal, in Foreground Foreground 
Priority Idle Background (Boost + 1) (Boost +2) High Realtime 

Time critical 15 15 15 15 15 31 
Highest 6 9 10 11 15 26 
Above normal 5 8 9 10 14 25 
Normal 4 7 8 9 13 24 
Below normal 3 6 7 8 12 23 
Lowest 2 5 6 7 11 22 
Idle 1 1 1 1 1 16 

Figure 3-1. 
How the system determines a thread's base priority level. 

The complementary function to SetThreadPriority, GetThreadPriority, 
can be used to query a thread's relative priority: 

int GetThreadPriority(HANDLE hThread); 

The return value is one of the identifiers listed above or THREAD
_PRIORITY_ERROR_RETURN if an error occurs. 

Changing a process's priority class has no effect on any of its 
threads' relative priorities. Also note that the effects of calling SetThread
Priority are not cumulative. For example, if a thread is created in a pro
cess of the high priority class and you execute the following two lines: 

SetThreadPriority(hThread. THREAD_PRIORITY_LOWEST); 
SetThreadPriority(hThread. THREAD_PRIORITY_LOWEST); 

the thread will have a priority level of 11, not a priority level of9. 

Dynamic Boosting of Thread Priority Levels 
The priority level determined by combining a thread's relative priority 
with the priority class of the process containing the thread is called a 
thread's base priority level. Occasionally, the system boosts the priority level 
of a thread. This usually happens in response to a window message. For 
example, a thread having a relative priority of normal and running in a 
normal priority class process has a base priority of9 (assuming that the 
process is in the foreground). 



T H R E E: Threads 

If the user presses a key, the system places a WM_KEYDOWN 
message in the thread's queue. Because a message has appeared in 
the thread's queue, the system assigns the CPU to the thread so that the 
thread can process the message. The system also temporarily boosts the 
priority level of the thread from 9 to 11. (The actual value may vary.) This 
new thread priority level is called a thread's dynamic priority. The CPU 
executes the thread for a complete time slice, and when the time slice is 
over, the system reduces the thread's priority by 1 so that it is now 10. The 
CPU is again assigned to the thread for another time slice, and at the end 
of this time slice, the system again reduces the thread's priority by 1. The 
thread's dynamic priority is now back to the thread's base priority level. 
The system never allows a thread's dynamic priority to drop below the 
thread's base priority level. 

Microsoft is always fine-tuning the dynamic boosts of the system in 
order to determine the best overall results. All of this is in an effort to 
keep the system behaving very responsively to the end user. By the way, 
threads that have a base priority level in the realtime range (between 16 
and 31) are never boosted by the system. The system boosts only threads 
that are in the dynamic range (between 0 and 15). In addition, the sys
tem will never boost a thread's priority into the realtime range (greater 
than 15). 

Suspending and Resuming Threads 
Earlier I mentioned that a thread can be created in a suspended state (by 
passing the CREATE_SUSPENDED flag to CreateProcess or CreateThread). 
When you do this, the system creates the kernel object identifying the 
thread, creates the thread's stack, and initializes the thread's CPU regis
ter members in the CONTEXT structure. However, the thread object is 
given an initial suspend count of 1, which means the system will never 
assign a CPU to execute the thread. To allow the thread to begin execu
tion, another thread must call ResumeThread and pass it the thread han
dle returned by the call to Create Thread (or the thread handle from the 
structure pointed to by the lppiProcInJoparameter passed to CreateProcess): 

DWORD ResumeThread(HANDLE hThread); 

If ResumeThread is successful, it returns the thread's previous sus
pend count; otherwise, it returns OxFFFFFFFF. 

A single thread can be suspended several times. If a thread is sus
pended three times, the thread must be resumed three times before it is 

79 



ADVANCED WINDOWS 

eligible for assignment to a CPU. Aside from using the CREATE_SUS
PENDED flag when creating a thread, you can suspend a thread by call
ing SuspendThread: 

DWORD SuspendThread(HANDLE hThread); 

Any thread can call this function to suspend another thread. It goes 
without saying (but I'll say it anyway) that a thread can suspend itself but 
it cannot resume itself. Like ResumeThread, SuspendThread returns the 
thread's previous suspend count. A thread can be suspended as many as 
MAXIMUM_SUSPEND_COUNT times (defined as 127 in WINNT.H). 

What's Going On in the System 

80 

You can use two utilities that ship with Visual C++ 2.0-PSTAT.EXE and 
PVIEW.EXE-to find out which processes are loaded in the system and 
which threads exist in each process. At the time of this writing, neither of 
these tools runs under Windows 95. Figure 3-2 shows a dump from the 
PSTAT.EXE application. It lists all the processes and threads currently 
running in the system. The pid field shows the process ID for each pro
cess. For example, the process ID for the Program Manager (PROG
MAN.EXE) is OxAO. The pri field to the right of the process ID shows the 
priority class value for the process. The Program Manager's priority 
value is 13, indicating that it has high priority. 

Under each process is a list of threads owned by that process. The 
Event Log (EVENTLOG.EXE) has four threads. For each thread, the tid 
field shows the ID of the thread. The pri field indicates the priority num
ber of the thread. The cs field shows the number of context switches for 
the thread. The status of the thread is shown at the end of the line. The 
word Wait indicates that the thread is suspended and is waiting for an 
event to occur before it can resume execution. The reason for the wait is 
also included. 

Figure 3·2. (continued) 

Output from the PSTAT.EXE application. 



Figure 3-2. continued 

. 7 pr1: S(n.ull) 
p.r1 :. ~cs: . 
pr1 :16C;S'; . 

T H R E E: Threads 

(continued) 

81 



ADVANCED WINDOWS 

Figure 3-2. continued 

(continued) 

82 



T H R E E: Threads 

Figure 3-2. continued 

(continued) 

83 



ADVANCED WINDOWS 

84 

Figure 3-2. continued 

Figure 3-3 shows how the PVIEW utility appears when you first 
execute it. The Process list box lists all the processes running in the sys
tem. Listed to the right of each process is the amount of CPU time the 
process has used since it was started and the percentage of that time 



11 
Important 

T H R E E: Threads 

spent in privileged mode (the Windows NT Executive's code) vs. user 
mode (the application's code). When you select a process, PVIEW updates 
the Priority group's radio buttons and fills the Thread(s) list box with a 
list of all the threads owned by the selected process, the amount of CPU 
time used by each thread, and the percentage of time each thread has 
spent in privileged mode vs. user mode. When you select a thread, 
PVIEW updates the Thread Priority group's radio buttons. 

= Process Viewer a n. Compyte,: L..1\\_'i_nc_ew_in_d ______ ....J1 _ 

IE 

I" 
Process Memory Used 

Working Set: 

o Hig/l •• t 
o Above Normal 
@N2,mal 
o J!elow Normal 

Heap Usage: 

ProcenDI Time Privileged User 
0:00:03.364 82% 18 % Thread Priority l~hread(S) 

01111. '--______________ --' 

Thread Information----------------, 

U •• , PC Value: 0.77171 c3b 
Sta,t Add, ... : 0.77104634 

Figure 3-3. 
The PVIEW utility. 

Context Switches: 904 
Dynamic Priority: 7 

You might notice that PVIEW's window has radio buttons to indicate 
whether a process priority class is very high, normal, or idle but that 
there is no radio button to indicate whether the process is running in 
the realtime priority class. PVIEW was written before the realtime prior
ity class was exposed to the Win32 API, and no one at Microsoft has seen 
fit to update this extremely useful utility. 

You might also notice that the Thread Priority radio buttons do 
not include radio buttons to indicate the time-critical priority and the 
lowest priority. 

Ideally, someday Microsoft will update PVIEW to add support for 
these flags and will also fix PVIEW so that it runs under Windows 95. 

85 



ADVANCED WINDOWS 

Processes, Threads, and the C Run-Time Library 

86 

Microsoft ships three C run-time libraries with Visual C++ 2.0. The table 
below lists the names of the libraries and their descriptions: 

Library Name Description 

LIBC.LIB 

LIBCMT.LIB 

MSVCRT.LIB 

Statically linked library for single-threaded applications. 

Statically linked library for multithreaded applications. 

Import library for dynamically linking the 
MSVCRT20.DLL library. This library supports both 
single-threaded and multithreaded applications. 

The first question you're probably asking yourself is, "Why do I 
need one library for single-threaded applications and an additional 
library for multithreaded applications?" The reason is that the standard 
C run-time library was invented around 1970, long before threads became 
available. The inventors of the library didn't consider the problems of 
using the C run-time library with multithreaded applications. 

Consider, for example, the standard C run-time global variable 
errna. Some functions set this variable when an error occurs. Let's say 
you have the following code fragment: 

BOOl fFailure (system("NOTEPAD.EXE README.TXT") == -1); 

if (fFailure) 
switch (errno) { 

} 

case E2BIG: II Argument list or environment too big 
break; 

case ENOENT: II Command interpreter cannot be found 
break; 

case ENOEXEC: II Command interpreter has bad format 
break; 

case ENOMEM: II Insufficient memory to run command 
break; 

} 

Now let's imagine that the thread executing the code above is inter
rupted after the call to the system function and before the if statement. 



T H R E E: Threads 

Let's further imagine that the thread is being interrupted to allow a sec
ond thread in the same process to execute and that this new thread will 
execute another C run-time function that sets the global variable errno. 
When the CPU is later assigned back to the first thread, the value of errno 
no longer reflects the proper error code for the call to system on the pre
vious page. To solve this problem, you need to assign each thread its very 
own errnovariable. 

This is only one example of how the standard C run-time library 
was not designed for multithreaded applications. Some of the C run
time variables and functions that have problems in multithreaded envi
ronments are errno, _doserrno, strtok, _wcstok, strerror, _strerror, tmpnam, 
tmpfile, asctime, _wasctime, gmtime, _ecvt, and _fcvt-just to name a few. 

In order for multithreaded C and C++ programs that use the C run
time library to work properly, a data structure must be created and asso
ciated with each thread that uses C run-time library functions. To do this, 
you create threads using the C run-time's _beginthreadex function instead 
of the Win32 CreateThread function: 

unsigned long _beginthreadex(void *security. unsigned stack_size. 
unsigned (*start_address)(void *). void *arglist. 
unsigned in1tflag. unsigned *thrdaddr); 

Parameter-wise, _beginthreadex has the same exact parameter list as 
the CreateThread function, although the parameter names and types are 
not exactly the same. The _beginthreadex function also returns the handle 
of the newly created thread just like CreateThread. However, if you define 
STRICT when you compile the Windows.H file, you will need to cast 
_beginthreadex's return value to a HANDLE. 

When you call_beginthreadex, it performs the following actions: 

1. Allocates an undocumented, internal data structure that con
tains the per-thread instance data. For example, the single 
thread's errno variable and a pointer to the thread's strtok buf
fer is maintained in this data structure. This data structure 
also contains two members that are initialized to contain the 
start_address and arglist parameters that you passed to _begin
threadex. 

2. Calls the Win32 CreateThread function to create the new thread. 
CreateThread is called as follows: 

hThread = CreateThread(security. stack_size. _threadstart. 
&PerThreadData. initflag. thrdaddr); 

87 



ADVANCED WINDOWS 

88 

3. Returns the handle of the newly created thread, or returns 0 if 
an error occurred. 

You'll notice that the new thread is instructed to start at a function 
called _threadstart instead of at the function that you passed to _begin
threadex. The _threadstart function is a function inside the C run-time 
library that performs the following tasks: 

1. Associates the memory address of the per-thread instance data 
block with the thread using dynamic thread-local storage. (For 
more information on thread-local storage, see Chapter 12.) 
The _threadstart function is passed this data block's address as 
its parameter. 

2. Initializes the C run-time's floating-point support for the new 
thread. 

3. Enters a structured exception handling frame in order to sup
port the C run-time's signal function. 

4. Retrieves the address of your thread function and the param
eter you want passed to it from the per-thread instance data 
block members. The _threadstart function then uses these val
ues to call your thread function, passing it the 32-bit value 
you want. 

5. Calls another C run-time function named _endthreadex when 
your thread function returns; passes _endthreadex the value 
that your thread function returns. 

The_endthreadex function then terminates a thread created by the 
_beginthreadex function; its prototype is as follows: 

void _endthreadex(unsigned retval); 

The retval parameter is the thread's exit code. The _endthreadex 
function performs the following actions: 

1. Terminates floating-point support for the thread 

2. Gets the address of the per-thread instance data block associ
ated with the thread 

3. Frees the per-thread instance data block 

4. Terminates the thread by calling the Win32 ExitThread func
tion, passing it the value that was passed as _endthreadex's retval 
parameter 



T H R E E: Threads 

Note that you can call the jndthreadex function explicitly if you 
want. Just be aware that if your thread function returns, the C run-time's 
_threadstart function calls _endthreadex on your behalf. 

By now you should understand why the C run-time library's func
tions need a separate data block for each thread created, and you should 
also see how calling _beg;inthreadex allocates, initializes, and associates 
this data block with the newly created thread. You should also be able to 
see how the _endthreadex function frees the data block when the thread 
terminates. 

Once this data block is initialized and associated with the thread, 
any C run-time library functions the thread calls that require per-thread 
instance data can easily retrieve the address to the calling thread's data 
block and manipulate the thread's data. This is fine for functions, but 
you might be wondering how this works for a global variable such as 
errno. Well, errno is defined in the standard C headers like this: 

Ifoif defined<-MT) II defined<-DLl) 
extern int * __ cdecl _errno(void): 
Udefine errno (*_errno(» 
Uelse 1* ndef _MT && ndef _DLL *1 
extern int errno: 
Uendif 1* _MT I I _DLL *1 

If you're creating a multithreaded application, you'll need to 
specify the /MT (multithreaded application) or /MD (multithreaded 
DLL) switch on the compiler's command line. This causes the compiler 
to define the _MT identifier. Then, whenever you reference errno, you 
are actually making a call to the internal C run-time library function 
_errno. This function returns the address to the errno data member in the 
calling thread's associated data block. You'll notice that the errno macro 
is defined as taking the contents of this address. This is necessary because 
it's possible to write code like this: 

int *p = &errno: 
if (*p == ENOMEM) { 

} 

If the internal _errno function simply returned the value of errno, 
the above code wouldn't compile. 

The multithreaded version of the C run-time library also places syn
chronization primitives around certain functions. For example, if two 

89 



ADVANCED WINDOWS 

90 

threads simultaneously call malloe, the heap could possibly become cor
rupted. The multithreaded version of the C run-time library prevents 
two threads from allocating memory from the heap at the same time. It 
does this by making the second thread wait until the first has returned 
from malloe. Then the second thread is allowed to enter. Thread synchro
nization is discussed in more detail in Chapter 9. 

Obviously, the performance of the multithreaded version of the C 
run-time library is impacted by all this additional work. This is why 
Microsoft supplies the single-threaded version of the statically linked C 
run-time library in addition to the multithreaded version. 

The dynamically linked version of the C run-time library was writ
ten to be generic so that it could be shared by any and all running appli
cations andDLLs using the C run-time library functions. For this reason, 
the library exists only in a multithreaded version. Because the C run
time library is supplied in a DLL, applications (EXE files) and DLLs 
don't need to include the code for the C run-time library function and 
are smaller as a result. Also, if Microsoft fixes a bug in the C run-time 
library DLL, applications will automatically gain the fix as well. 

You might be wondering what would happen if you created your 
new threads by calling the Win32 CreateThread function instead of the C 
run-time's _beginthreadexfunction. Well, here is what happens ifa thread 
created with CreateThread calls a C run-time library function that requires 
the per-thread instance data block: 

1. The C run-time function first attempts to get the address of the 
thread's data block. 

2. If the address is NULL, the C run-time library allocates a data 
block for the thread, initializes, and then associates the block's 
address with the thread using thread-local storage. (See Chap
ter 12 for more information on thread-local storage.) 

3. The function can now execute successfully because it has the 
address of the thread's data block. 

There are a couple of problems, however. First, if the thread uses 
the C run-time's signal function, the entire process will terminate because 
the structured exception handling frame has not been prepared. Sec
ond, if the thread terminates without calling _endthreadex, the data block 
cannot be destroyed and a memory leak occurs. There is a caveat to this 
second problem: if the application is using the dynamic-link library ver
sion of the C run-time library, the DLL is notified when the thread termi
nates and the DLL will destroy the thread's data block. Only if the 



T H R E E: Threads 

application uses the static-link versions of the C run-time does this 
memory leak occur. As a rule, you should always use the C run-time's 
_beginthreadex/_endthreadex functions instead of the Win32 CreateThread/ 
ExitThread functions. 

As you might expect, the C run-time's startup code allocates and 
initializes a data block for your application's primary thread. This allows 
the primary thread to safely call any of the C run-time functions. When 
your primary thread returns from WinMain, the C run-time frees the 
associated data block. In addition, the startup code sets up the proper 
structured exception handling code so that the primary thread can suc
cessfully call the C run-time's signal function. 

c Run-Time Functions to Avoid 
The C run-time library also contains two other functions: 

unsigned long _beginthread(void ( __ cdecl *start_address)(void *). 
unsigned stack_size. void *arglist); 

and 

void _endthread(void); 

These two functions were originally created to do the work of the 
new _beginthreadex and jndthreadex functions, respectively. However, as 
you can see, the _beginthread function has fewer parameters and is there
fore more limited than the full-featured _beginthreadex function. For 
example, if you use _beginthread, you cannot create the new thread with 
security attributes, you cannot create the thread suspended, and you 
cannot obtain the thread's ID value. The _endthread function has a simi
lar story: it takes no parameters, which means you can't give your thread 
an exit value when it terminates. 

There is a major problem with the _endthread function that you 
can't see, however. Just before _endthread calls ExitThread, it calls Close
Handle, passing the handle of the new thread. To see why this is a prob
lem, examine the following code: 

DWORD dwExitCode; 
HANDLE hThread = _beginthread( ... ); 
GetExitCodeThread(hThread. &dwExitCode); 
CloseHandle(hThread); 

It is quite possible that the newly created thread will execute, return, 
and terminate before the first thread can call GetExitCodeThread. If this 
happens, the value in hThread is invalid because _endthread has closed the 

91 



ADVANCED WINDOWS 

92 

new thread's handle. Needless to say, the call to Close Handle will also fail 
for the same reason. 

The new _endthreadex function does not close the thread's handle, 
and therefore the code fragment on the previous page will work cor
rectly if we replace the call to _begjnthread with a call to _begjnthreadex. 
Remember that _begjnthreadex calls _endthreadex when your thread func
tion returns, whereas _begjnthread calls _endthread when your thread 
function returns. 



C HAP T E R F 0 U R 

WIN32 MEMORY 
ARCHITECTURE 

The memory architecture used by an operating system is the most impor
tant key to understanding how the operating system does what it does. 
When you start working with a new operating system, many questions 
come to mind, such as "How do I share data between two applications?" 
"Where does the system store the information I'm looking for?" and 
"How can I make my program run more efficiently?" just to name a few. 

I have found that, more often than not, a good understanding of 
how the system manages memory can help determine the answers to 
these questions quickly and accurately. So this chapter explores the 
memory architecture used by the various implementations ofWin32. 

CPUs I Have Known 
It's both interesting and exciting to watch advances in microcomputer 
architecture. The first microcomputer I ever owned was Tandy/Radio 
Shack's TRS-80 Model I. This computer was designed around the Z80 
microprocessor and came standard with 4 KB of RAM, although the 
machine could actually address up to 64 KB of memory. I can still remem
ber how happy I was when I had earned enough money duplicating disks 
so that I could upgrade my machine to 16 KB of RAM. 

When IBM introduced the IBM PC, it had no idea of the impact the 
machine would have on the microcomputer industry. In fact, IBM was so 
skeptical of how well its PC would be received that the company decided 
to minimize its risk by utilizing hardware that was readily available 
instead of designing and manufacturing custom hardware. Because of 
this decision, IBM has been plagued almost from the beginning by many 

93 



ADVANCED WINDOWS 

94 

competitors making PC clones. If IBM could easily get the parts for the 
machines, anyone could. 

The PC was a big step forward because it used Intel's 8088 CPU. 
This 16-bit CPU allowed the processor to access as much as 1 MB of mem
ory. But soon applications required even more than 1 MB of memory. 
This need to access more memory became so great a problem that sev
eral companies responded by offering various solutions. 

Most of these solutions shared a common theme: to make different 
memory objects available in the same memory location at different 
times. The first of these solutions, which became known as the Expanded 
Memory Specification (EMS), was developed by a Lotus, Intel, and 
Microsoft collaboration. EMS allowed you to place a hardware card with, 
say, 2 MB of memory on it in your computer. The card would then be 
given instructions to swap various sections of the EMS memory into and 
out of a fixed 64-KB section of the CPU's addressable address space. 

Another solution added overlay technology to applications' code 
segments. If segments of code had not been executed in a while, an over
lay manager could overlay the code segment with another code segment 
from the same application. Both Borland and Microsoft offer this sup
port today in their respective CjC++ compilers. Borland calls it VROOMM 
(Virtual Runtime Object-Oriented Memory Manager), and Microsoft 
calls it MOVE (Microsoft Overlay Virtual Environment). 

In 1982 Intel introduced a new microprocessor, the 80286, which 
was capable of addressing up to 16 MB of memory. Unfortunately, the 
upper 15 MB of memory could be accessed only when the processor was 
set to a special mode called protected mode (used by Windows 3.x). Pro
tected mode also enabled additional features, such as virtual memory 
and support for the separation of tasks in a multitasking environment. 
For backward compatibility, the 80286 also contained real mode, the default 
mode of the processor, which allowed applications written for the 8086 
to run. For years following, the 80286 was considered to be not much 
more than a fast 8086 because no software was developed to take advan
tage of its advanced features. 

But the need to access more memory continued, and Microsoft 
soon introduced a technology that allowed applications running in real 
mode to access the additional memory that could be installed on 80286 
machines. This technology was called the Extended Memory Specifica
tion (XMS). Applications running in real mode on an 80286 could 
access up to 15 MB of extended memory by making calls to functions 



F 0 U R: Win32 Memory Architecture 

contained in a device driver. Microsoft's implementation of this device 
driver is called HIMEM.SYS and is still used by 16-bit Windows today. 

Once we had reached the point where the hardware and software 
could gain access to 16 MB of memory, it became practical to run several 
applications at once. This, in turn, further drove up the demand for 
memory-16 MB may have been plenty for one application but not for 
six or seven applications running simultaneously. For this we needed a 
more powerful CPU with a more sophisticated memory architecture 
than the 80286's. 

Enter the 32-bit 80386. The 80386 offered several advantages over 
the 80286. In addition to supporting the 8086 real mode and the 16-bit 
protected mode of the 80286, the 80386 also offered a 32-bit protected 
mode and a virtual 8086 mode. The virtual 8086 mode enabled the oper
ating system to create the illusion that several 8086 CPUs were available 
on the system. When in 32-bit protected mode, the operating system 
could instruct the 80386 to create virtual 8086 machines. Each of these 
virtual machines could support MS-DOS running an MS-DOS applica
tion. In fact, these applications could be preemptively multitasked by the 
80386. The virtual 8086 mode was extremely important because it allowed 
a migration path for users. They could use the added benefits of 32-bit 
protected mode without having to give up all their current MS-DOS appli
cations. Plus, they had the advantage of being able to run multiple MS
DOS applications concurrently. 

I have neglected to say how much memory can be addressed by the 
80386 in 32-bit protected mode (the mode used by Win32 applications). 
The answer is a whopping 4 GB. Not only is it 4 GB, but each application 
running in this mode has its own 4-GB address space, which should be 
more than enough memory for even the most demanding of applica
tions. The only problem is that memory isn't free. To purchase 4 GB of 
memory would cost approximately $140,800 at the time I'm writing this. 

Most of you probably can't afford to walk up to your nearest com
puter store, lay this kind of money down on the counter, and push a 
wheelbarrow full of RAM back to your house. Besides, even if you could 
buy all this RAM, where would you put it? It certainly wouldn't fit in any 
80386-based computer I've ever seen! 

Instead, the 80386 was designed to support a technique called page 
swapping, which Microsoft has implemented in 16-bit Windows, Win
dows NT, and Windows 95. Page swapping allows portions of the hard 
disk to simulate RAM. Of course, the CPU needs to work on data that is 

95 



ADVANCED WINDOWS 

actually in memory. But if some of the data hasn't been accessed in a 
while, the operating system can step in and copy some of that data to a 
location on the hard disk. Mter the information has been copied, the 
RAM that was occupied by that data can be reallocated to data required 
for another application. When the CPU needs to access the old data, the 
operating system again steps in, copies another application's data to the 
hard disk, and pulls the earlier data back into memory. The CPU can 
then do its stuff. 

In 1989 Intel introduced the 80486. Having satisfied the demand 
for addressable memory with the 80386, Intel made no major improve
ments to the 80486's memory architecture. Instead, the most notable 
feature of the 80486 was improved execution speed. When I was writing 
the first edition of this book, Intel released Pentium, its next-generation 
CPU. Again, there are no major changes to the memory management 
capabilities of the chip, but execution speed is improved. 

A Virtual Address Space 

11 
Important 

96 

In Win32, every process's virtual address space is 4 GB. A 32-bit pointer 
can have any value from OxOOOOOOOO through OxFFFFFFFF. This allows 
a pointer to have one of 4,294,967,296 values, which covers a process's 
4-GBrange. 

In MS-DOS and 16-bit Windows, all processes share a single address 
space. This means that any process can read from and write to memory 
belonging to any other process, including the operating system itself. Of 
course, this leaves every process at the mercy of every other running pro
cess. If Process A accidentally overwrites data belonging to Process B, 
Process B may become very unstable and will probably crash. A robust 
operating system and environment should not allow this to occur. 

In the Win32 environment, this problem is solved because each 
Win32 process is given its very own private address space. When a thread 
in a process is running, that thread can access only memory that belongs 
to its process. The memory that belongs to all other processes is hidden 
and inaccessible to the running thread. 

In Windows NT, the memory belonging to the operating system itself is 
also hidden from the running thread. This means that the operating 
system's data cannot be accidentally accessed by the thread. 

(continued) 



11 
Important 

continued 

F 0 U R: Win32 Memory Architecture 

In Windows 95, the memory belonging to the operating system is not 
hidden from the running thread. It is therefore possible that the run
ning thread could accidentally access the operating system's data and 
corrupt the operating system. It is not possible in Windows 95 for one 
process's thread to access memory belonging to another process. This 
makes the system much more robust than 16-bit versions of Windows but 
still leaves the operating system open to potential crashes. 

As I said, every process has its own private address space. This 
means that Process A can have a data structure stored in its address space 
at address Ox12345678 while Process B has a totally different data struc
ture stored in its address space at address Ox12345678. When threads 
running in Process A access memory at address Ox12345678, these 
threads are accessing Process A's data structure. When threads running 
in Process B access memory at address Ox12345678, these threads are 
accessing Process B's data structure. Threads running in Process A can
not access the data structure in Process B's address space, and vice versa. 

Now, before you get all excited about having so much address space 
for your application, keep in mind that this is virtual address space-not 
physical storage. This address space is simply a range of memory ad
dresses. Physical storage needs to be assigned or mapped to portions of 
the address space before you can successfully access data without raising 
access violations. We will discuss how this is done later in this chapter. 

Different implementations ofWin32 partition a process's 4-GB vir
tual address space in slightly different ways. The next two sections describe 
how Windows 95 and Windows NT partition a process's address space. 

Partitions in a Process's Address Space 
Figure 4-1 on the following page shows how the Windows 95 implemen
tation ofWin32 partitions a process's address space. 

The Partition from OxOOOOOOOO through Ox003FFFFF 
This4-MB region at the bottom of the process's address space is required 
by Windows 95 in order to maintain compatibility with MS-DOS and 16-
bit Windows. From our Win32 applications, we should not attempt to 
read from or write to this region. Ideally, the CPU should raise an access 
violation if a thread in our process touches this memory, but, for techni
cal reasons, Microsoft was unable to guard this 4 MB of address space. 
However, Microsoft was able to guard the bottom 4 KB. If a thread in 
your process attempts to read or write to a memory address between 

97 



A D V A NeE D W IN DOW S 

98 

Figure 4-1. 

T 
1-G8 region for VxDs, memory manager, and 
file system code; shared by all Win32 processes 
(read/writable - but don't touch) 

i 
T 
1-G8 region for memory-mapped files, shared 
Win32 DLLs, 16-bit apps, and memory 
allocations; shared by all Win32 processes 
(usable, read/writable) 

i 

T 
2,143,289,344 bytes, 
private to Win32 processes 
(unreserved, usable) 

i 

T 
4,190,208 bytes, 
MS-DOS and 16-bit Windows 
(read/writable - but don't touch) 

i 

T 
4096 bytes, 
MS-DOS and 16-bit Windows 
(inaccessible - NULL pointer 
assignments) 

i 

Win32 partitions in Windows 95. 

OxOOOOOOOO and OxOOOOOFFF, the CPU will catch this and raise an access 
violation. Protecting this 4-KB region is incredibly useful in helping to 
detect NULL-pointer assignments. 

It is quite common that error checking is not religiously performed 
in C programs. For example, the following code performs no error 
checking: 

int *pnSomelnteger; 
pnSomelnteger = malloc(sizeof(int»; 
*pnSomelnteger = 5; 



F 0 U R: Win32 Memory Architecture 

If malloccannot find enough memory to satisfy the request, it returns 
NULL. However, the foregoing code doesn't check for this possibility-it 
assumes that the allocation was successful and proceeds to access mem
ory at address OxOOOOOOOO. Because the bottom 4 KB of the address 
space is off-limits, a memory access violation occurs and the process is 
terminated. This feature helps developers find bugs in their applications. 

The Partition from Ox00400000 through Ox7FFFFFFF 
This 2,143,289,344-byte (2 GB minus 4 MB) partition is where the pro
cess's private (unshared) address space resides. One Win32 process can
not read from, write to, or in any way access another process's data 
residing in this partition.1 For all Win32 applications, this partition is 
where the bulk of the process's data is maintained. Because each process 
gets its own private, unshared partition for data, Win32 applications are 
far less likely to be corrupted by other applications, making the whole 
system more robust. 

The Partition from Ox80000000 through OxBFFFFFFF 
This I-GB partition is where the system stores data that is shared among 
all Win32 processes. For example, the system dynamic-link libraries, 
KERNEL32.DLL, USER32.DLL, GDI32.DLL, and ADVAPI32.DLL, are 
all loaded in this address space partition. This makes these four DLLs 
easily available to all Win32 processes simultaneously. It also means that 
these DLLs are loaded at the same memory address for every Win32 pro
cess. The system also maps all memory-mapped files in this partition. I 
will discuss memory-mapped files in more detail in Chapter 7. 

The Partition from OxCOOOOOOO through OxFFFFFFFF 
This I-GB partition is where the operating system's code is located, includ
ing the system's virtual device drivers (VxDs), low-level memory manage
ment code, and file system code. As with the preceding partition, all the 
code in this partition is shared among all Win32 processes. Unfortu
nately, the data in this partition is not protected-any Win32 application 
may read from or write to this section, potentially corrupting the operat
ing system. 

1. Win32 does offer special functions (ReadProcessMemory and WriteProcessMemory) that do 
allow one process to read from or write to data in another process's address space, but these 
functions are usually called by debuggers. 

99 



ADVANCED WINDOWS 

How Windows NT Partitions a Process's Address Space 

100 

Figure 4-2 shows how the Windows NT implementation of Win32 parti
tions a process's address space: 

Figure 4-2. 

2-GB region for the 
operating system 
(inaccessible) 

1 
T 

• 64-KB region for bad
pOinter assignments 
(inaccessible) 

...l 

2,147,352,576 bytes, 
private to Win32 processes 
(unreserved, usable) 

1 
T 
64-KB region for NULL
pointer assignments 
(always free) 

~ 

Win32 partitions in Windows NT. 



F 0 U R: Win32 Memory Architecture 

The Partition from OxOOOOOOOO through OxOOOOFFFF 
This 64-KB range at the bottom of the process's address space is set aside 
by Windows NT to help programmers catch NULL-pointer assignments
just like the bottommost 4 KB under Windows 95. Any attempts to read 
from or write to memory addresses in this partition cause an access 
violation. 

The Partition from Ox00010000 through Ox7FFEFFFF 
This 2,147,352,576-byte (2 GB minus 64 KB minus 64 KB) partition is 
where the process's private (unshared) address space resides. This parti
tion is like the Ox00400000 through Ox7FFFFFFF partition under Win
dows95. 

When a Win32 process loads, it will require access to the system 
dynamic-link libraries, KERNEL32.DLL, USER32.DLL, GDI32.DLL, and 
ADVAPI32.DLL. The code for these DLLs as well as for any other DLLs is 
loaded into this partition. Each process may load these DLLs at a differ
ent address within this partition (although this is very unlikely). The sys
tem also maps all memory-mapped files accessible to this process within 
this partition. 

The Partition from Ox7FFFOOOO through Ox7FFFFFFF 
This 64-KB partition just below the 2-GB line is similar to the OxOOOOOOOO 
through OxOOOOFFFF partition. That is, the operating system sets this 
partition aside to catch invalid-pointer assignments in this range. Any 
attempts to read from or write to addresses in this range always result in 
an access violation. 

The Partition from Ox80000000 through OxFFFFFFFF 
This 2-GB partition is where the Windows NT Executive, Kernel, and 
device drivers are loaded. Unlike with Windows 95, the Windows NT 
operating system components are completely protected. If you attempt 
to access memory addresses in this partition, your thread will raise an 
access violation, causing the system to display a message box to the user 
and causing Windows NT to terminate your application. See Chapter 14 
for more information about access violations and how to handle them. 

You're probably thinking that it seems a little unreasonable that 
Windows NT should steal 2 GB of your address space, and I'd have to 
agree. However, the MIPS R4000 CPUs require that this range be reserved. 
Microsoft could have implemented the Windows NT version of Win32 

101 



ADVANCED WINDOWS 

differently on different CPU platforms but decided that developers 
could port their applications more easily if the top 2 GB were reserved 
on every Windows NT implementation ofWin32. 

Regions in an Address Space 

102" 

When a process is created and given its address space, the bulk of this 
usable address space is free, or unallocated. In order to use portions of 
this address space, you must allocate regions within it by calling the 
Win32 VirtualAlloc function (discussed in Chapter 6). The act of allocat
ing a region is called reserving. 

Whenever you reserve a region of address space, the system ensures 
that the region begins on an even allocation granularity boundary. The 
allocation granularity may vary from one CPU platform to another. How
ever, as of this writing, all the CPU platforms (x86, MIPS, Alpha, and 
PowerPC) use the same allocation granularity of 64 KB. The system uses 
the allocation granularity to more easily manage its internal record 
keeping of the reserved regions in your address space, and to reduce the 
amount of address space region fragmentation that can occur in your 
address space. 

When you reserve a region of address space, the system ensures 
that the size of the region is an even multiple of the system's page size. 
A page is a unit of memory that the system uses in managing memory. 
Like the allocation granularity, the page size can vary from one CPU to 
another. The x86, MIPS, and PowerPC implementations ofWin32 use a 
4-KB page size, whereas the DEC Alpha implementation uses an 8-KB 
page size. 

If you attempt to reserve a 10-KB region of address space, the sys
tem will automatically round up your request and reserve a region whose 
size is an even multiple of the page size. This means that on an x86, a 
MIPS, or a PowerPC, the system will actually reserve a region that is 12 
KB, and on an Alpha, the system will reserve a 16-KB region. 

When your program's algorithms no longer need to access a reserved 
region of address space, the region should be freed. This is called releas
ing the region of address space and is accomplished by calling the 
VirtualFree function. 



1J 
Important 

F 0 U R: Win32 Memory Architecture 

Sometimes the system reserves regions of address space on behalf of 
your process. For example, the system allocates a region of address space 
in order to store a process environment block (PEB). A PEB is a small data 
structure created, manipulated, and destroyed entirely by the system. 
When a process is created, the system allocates a region of address space 
for the PEB. 

The system also needs to create thread environment blocks (TEBs) to 
help manage all the threads that currently exist in the process. The 
regions for these TEBs will be reserved and released as threads in the 
process are created and destroyed. 

Although the system demands that any of your requests to reserve 
address space regions begin on an even allocation granularity boundary 
(64 KB), the system itself is not subjected to the same limitation. It is 
extremely likely that the region reserved for your process's PEB and 
TEBs will not start on an even 64-KB boundary. However, these reserved 
regions will still have to be an even multiple of the CPU's page size. 

Committing PhYSical Storage Within a Region 
To actually use a reserved region of address space, you must allocate 
physical storage and then map this storage to the reserved region. This 
process is called committing physical storage. Physical storage is always 
committed in pages. To commit physical storage to a reserved region, 
you again call the VirtualAlloc function. 

When you commit physical storage to regions, you do not have to 
commit physical storage to the entire region. For example, you can 
reserve a region that is 64 KB and then commit physical storage to the 
second and fourth pages within the region. Figure 4-3 on the following 
page shows what a process's address space might look like. Note that the 
address space is different depending on which CPU platform you're run
ning on. The address space on the left shows what happens on an x86, a 
MIPS, or a PowerPC machine (all of which have 4-KB pages), and the 
address space on the right shows what happens on an Alpha machine 
(which has 8-KB pages). 

103 



ADVANCED WINDOWS 

104 

x8S, MIPS, and 
PowerPC 

Page 11 
through 
page 16 

24,576 bytes 

Page 10 
4096 bytes 

Figure 4-3. 

OeCAlpha 

Page 6 
through 
page 8 

24,576 bytes 

PageS 
8192 bytes 

Page 1 
8192 bytes 

64-KB region in 
address space 

Example process address spaces for different CPUs. 

When your program's algorithms no longer need to access commit
ted physical storage in the reserved region, the physical storage should 
be freed. This is called decommitting the physical storage and is accom
plished by calling the VirtualFree function. 



F 0 U R: Win32 Memory Architecture 

Physical Storage 
In 16-bit Windows 3.1, physical storage was considered to be the amount 
of RAM that you had in your machine. In other words, if you had 16 MB 
of RAM in your machine you could load and run applications that used 
up to 16 MB of RAM. To help conserve memory, 16-bit Windows had lots 
of memory optimizations. For example, if you wanted to run two or more 
instances of an application, 16-bit Windows created a new data segment 
for each instance but all instances shared the program's code. This sig
nificantly reduced the amount of RAM needed to run multiple instances 
of an application. 

Also, in 16-bit Windows 3.1 Microsoft added support for virtual 
memory in the form of hard disk swap files. But an operating system can 
use swap files only if the CPU directly supports them. For this reason, 16-
bit Windows was able to use swap files only when running on a computer 
driven by a 386 or later CPU. From an application's perspective, a swap 
file transparently increases the amount of RAM (or storage) that the 
application can use. If you have 16 MB of RAM in your machine and also 
have a 20-MB swap file on your hard disk, the applications you're run
ning believe that your machine has a grand total of 36 MB of RAM. 

Of course, you don't actually have 36 MB of RAM. Instead, the oper
ating system, in coordination with the CPU, saves portions of RAM to the 
swap file and loads portions of the swap file back into RAM as the run
ning applications need them. Because a swap file increases the apparent 
amount of RAM available for applications, the use ofa swap file in 16-bit 
Windows is optional. If you don't have a swap file, the system just thinks 
that there is less RAM available for applications to use. 

The Windows 95 and Windows NT implementations of memory 
management are drastically different from the Windows 3.1 implemen
tation. In these Win32 systems, the amount of RAM in the computer is 
completely managed by the operating system, and no application has 
any direct control over this memory. 

With Win32 systems, it is best to think of physical storage as data 
stored in a paging file on a disk drive (usually a hard disk drive). So when 
an application commits physical storage to a region of address space by 
calling the VirtualAlloc function, space is actually allocated from a file on 
the hard disk. The size of the system's paging file is the most important 
factor in determining how much physical storage is available to applica
tions; the amount of RAM you have has very little effect. 

105 



ADVANCED WINDOWS 

106 

Now, when a thread in your process attempts to access a block of 
data in the process's address space, one of two things can happen, as 
shown in the flowchart in Figure 4-4. 

NO ... 

Figure 4-4. 
How data is accessed. 

In the first possibility, the data that the thread is attempting to access 
is in RAM. In this case, the CPU maps the data's virtual memory address 
to the physical address in RAM, and the desired access is performed. 

In the second possibility, the data that the thread is attempting to 
access is not in RAM but is contained somewhere in the paging file. In 
this case, the attempted access is called a page fault and the CPU notifies 



F 0 U R: Win32 Memory Architecture 

the operating system of the attempted access. The operating system then 
locates a free page of memory in RAM; if a free page cannot be found, 
the system must free one. If a page has not been modified, the system can 
simply free the page. But if the system needs to free a page that was modi
fied, it must first copy the page from RAM to the paging file. Next the 
system goes to the paging file, locates the block of data that needs to be 
accessed, and loads the data into the free page of memory. The operat
ing system then maps the data's virtual memory address to the appropri
ate physical memory address in RAM. 

The more often the system needs to copy pages of memory to the 
paging file and vice versa, the more your hard disk thrashes and the 
slower the system runs. (Thrashing means that the operating system 
spends all its time swapping pages in and out of memory instead of run
ning programs.) So by adding more RAM to your computer, you reduce 
the amount of thrashing necessary to run your applications; this will, of 
course, greatly improve the performance of the system. 

Windows NT requires a paging file. The system will automatically create 
one at boot time if one doesn't exist. In addition, Windows NT is capable 
of using multiple paging files. If multiple paging files exist on different 
physical hard drives, the system can perform much faster because it can 
write to the multiple drives simultaneously. You can add and remove pag
ing files by opening the Control Panel, double-clicking on the System 
icon, and then choosing the Virtual Memory button. 

Physical Storage Not Maintained in the Paging File 
Mter reading the previous section, you must be thinking the paging file 
can get pretty large if many programs are all running at once-especially 
if you're thinking that every time you run a program the system must 
reserve regions of address space for the process's code and data, commit 
physical storage to these regions, and then copy the code and data from 
the program's file on the hard disk to the committed physical storage in 
the paging file. 

The system does not do what I describe above; if it did, it would take 
a very long time to load a program and start it running. Instead, when 
you invoke an application the system opens the application's EXE file 

107 



ADVANCED WINDOWS 

tJ 
Important 

and determines the size of the application's code and data. Then the sys
tem reserves a region of address space and notes that the physical stor
age associated with this region is the EXE file itself. That's right-instead 
of allocating space from the paging file, the system uses the actual con
tents or image of the EXE file as the program's reserved region of address 
space. This, of course, makes loading an application very fast and reduces 
the size of the paging file. 

When a program's file image (that is, an EXE or a DLL file) on the 
hard disk is used as the physical storage for a region of address space, it is 
called a memory-mapped file. When an EXE or a DLL is loaded, the system 
automatically reserves a region of address space and maps the file's image 
to this region. However, the system also offers a set of Win32 functions 
that allow you to map data files to a region of address space. We will talk 
about memory-mapped files much more in Chapter 7. 

When an EXE or a DLL file is loaded from a floppy disk, both Windows 
95 and Windows NT allocate storage for the entire file from the system's 
paging file. The system then copies the file from the floppy into the 
system's RAM and the system's paging file; the paging file is said to back 
the RAM. This is how setup programs operate. 

Often a setup program begins with one floppy, which the user 
removes from the drive in order to insert another floppy. If the system 
needs to go back to the first floppy to load some of the EXE's or the 
DLL's code, it is of course no longer in the floppy drive. However, 
because the system copied the file to RAM and the paging file, it will 
have no trouble accessing the setup program. When the setup program 
terminates, the system frees the RAM and the storage in the paging file. 

Protection Attributes 

108 

Individual pages of physical storage allocated by the VirtuaLAlloc function 
can be assigned different protection attributes. The Win32 protection 
attributes are shown in the following table: 



Protection Attribute 

PAGE_NOACCESS 

PAGE_READONLY 

PAGE_READWRITE 

PAGE_EXECUTE_READWRITE 

PAGE_EXECUTE_WRITECOPY 

F 0 U R: Win32 Memory Architecture 

Description 

Attempts to read, write, or execute 
memory in this region cause an access 
violation. 

Attempts to write or execute mem
ory in this region cause an access 
violation. 

Attempts to execute memory in this 
region cause an access violation. 

Attempts to read or write memory in 
this region cause an access violation. 

Attempts to write to memory in this 
region cause an access violation. 

There is nothing you can do to this 
region to cause an access violation. 

Attempts to execute memory in this 
region cause an access violation. 
Attempts to write to memory in this 
region cause the system to give the 
process its own private copy of the 
page of physical storage. 

There is nothing you can do to this 
region to cause an access violation. 
Attempts to write to memory in this 
region cause the system to give the 
process its own private copy of the 
page of physical storage. 

The x86, MIPS, PowerPC, and Alpha platforms do not support the 
execute protection attribute, although this attribute is supported in the 
Win32 operating system software. These hardware platforms treat read 
access as execute access. This means that if you assign PAGE_EXECUTE 
protection to memory, that memory will also have read privileges. Of 
course, you should not rely on this behavior because Windows NT imple
mentations on other CPUs may very well treat execute protection as 
execute-only protection. 

Windows 95 assigns only the PAGE_NOACCESS, PAGE_READONLY, and 
PAGE_READWRITE protection attributes to pages of physical storage. 

109 



ADVANCED WINDOWS 

Copy-On-Write Access 

110 

The protection attributes listed in the table on the previous page should 
all be pretty self-explanatory except the last two: PAGE_WRITECOPY 
and PAGE_EXECUTE_WRITECOPY These attributes exist in order to 
conserve RAM usage and space in the paging file. Win32 supports a 
mechanism that allows two or more processes to share a single block of 
data. There is usually no problem doing this as long as the processes all 
consider the block of data to be read-only or execute-only and do not 
attempt to write to it. If threads in different processes all wrote to the 
same block of data, there would be total chaos. 

In order to prevent this chaos, copy-on-write protection is assigned 
to shared data by the operating system. When a thread in one process 
attempts to write to a shared block of data, the system intervenes and per
forms the following actions: 

1. The system allocates a page of physical storage from the pag
ing file. 

2. The system finds a free page of memory in RAM. 

3. The system copies the page containing the data that the thread 
attempted to write to a shared block of data to the free page of 
RAM obtained in step 2. 

4. The system then maps the process's virtual memory address for 
this page to the new page of RAM. 

Mter the system has performed these steps, the process is able to 
access its very own private instance of this page of data. I will talk about 
sharing memory and copy-on-write protection in much more detail in 
Chapter 7. 

In addition, you should not pass either PAGE_WRITECOPY or 
PAGE_EXECUTE_WRITECOPY when you are reserving address space 
or committing physical storage using the VirtualAlloc function. Doing 
so will cause the call to VirtualAlloc to fail; calling GetLastError returns 
ERROR_INVALID_PARAMETER. These two attributes are used by the 
operating system when it maps EXE and DLL file images. 



F 0 U R: Win32 Memory Architecture 

Windows 95 does not support copy-on-write protection. When Windows 
95 sees that copy-on-write protection has been requested, it immedi
ately makes copies of the data instead of waiting for the attempted 
memory write. 

Special Access Protection Attribute Flags 
In addition to the protection attributes already discussed, there are also 
two protection attribute flags: PAGE_NOCACHE and PAGE_GUARD. 
You use these two flags by bitwise ORing them with any of the protection 
attributes except PAGE_NOACCESS. 

The first of these protection attribute flags, PAGE_NOCACHE, dis
ables caching of the committed pages. This flag is not recommended for 
general use; it exists mostly for hardware device driver developers who 
need to manipulate memory buffers. 

The second of these protection attribute flags, PAGE_GUARD, is 
also not recommended for general use. Windows NT uses this flag when 
it creates a thread's stack. See the section ''A Thread's Stack" in Chapter 6 
for more information about this flag. 

Windows 95 ignores the PAGE_NOCACHE and PAGE_GUARD protec
tion attribute flags. 

Bringing ItAIl Home 
In this section we'll bring address spaces, partitions, regions, blocks, and 
pages all together. The best way to start is by examining a virtual memory 
map that shows all the regions of address space within a single process. 
The process happens to be the VMMAP.EXE sample application, pre
sented in Chapter 5. To fully understand the process's address space, 
we'll begin by discussing the address space as it appears when VMMap is 
running under Windows NT. A sample address space map is shown in 
Figure 4-5 on the following page. Later I'll discuss the differences be
tween the Windows NT and Windows 95 address spaces. 

111 



ADVANCED WINDOWS 

Base Protection 
Address Type Size Blocks Attribute( s) Description 

1313131313131313 Free 65536 
131313113131313 Private 41396 1 - RW-
13131311131313 Free 614413 
13131320131313 Private 41396 1 - RW-
130132101313 Free 614413 
131313313131313 Private 11348576 3 -RW- Thread Stack 
131313130013 Private 4096 1 -RW-
131313101313 Free 614413 
13131413131313 Private 11348576 2 - RW- Default Process Heap 
002400013 Mapped 65536 2 -RW-
1313251313130 Mapped 36864 1 - R - -
131325913013 Free 28672 
1313260131313 Mapped 57344 1 - R--
ee26Eee0 Free 8192 
01327001313 Mapped 2662413 1 - R--
0e2Bleee Free 61440 
002C0eee Mapped 41396 - R--
ee2Cle0e Free 614413 
0e2D0eee Private 41396 - RW-
0e2Dleee Free 614413 
002E00ee Private 11348576 2 - RW-
0e3Eeeee Private 41396 1 - RW-
003E1000 Free 126976 
0040001313 Image 36864 6 ERWC C:\AdvWin32\VMMap.05\Dbg_x86\VMMap.EXE 
1313409000 Free 28672 
00410000 Mapped 65536 - RW-
00420000 Free 265158656 
11310131300 Image 270336 8 ERWC F:\WINNT35\System32\MSVCRT20.dll 
10142000 Free 17413562432 
77D30000 Image 126976 7 ERWC F:\WINNT35\System32\WINSPOOL.DRV 
77D4F000 Free 659456 
77DF00ee Image 208896 6 ERWC F:\WINNT35\system32\ADVAPI32.dll 
77E23000 Free 118784 
77E4ee00 Image 225280 6 ERWC F:\WINNT35\system32\RPCRT4.dll 
77E77000 Free 36864 
77E80000 Image 229376 7 ERWC F:\WINNT35\system32\USER32.dll 
77EB8000 Free 32768 
77ECe000 Image 208896 6 ERWC F:\WINNT35\system32\GDI32.dll 
77 EF30e0 Free 53248 
77F0e000 Image 405504 7 ERWC F:\WINNT35\system32\KERNEL32.dll 
77F63000 Free 53248 
77 F70000 Image 286720 Ie ERWC F:\WINNT35\System32\ntdll.dll 

Figure 4-5. (continued) 

A sample address space map showing regions under Windows NT. 

112 



F 0 U R: Win32 Memory Architecture 

Figure 4-5. continued 

Base 
Address 

77FB6000 
7F4F0000 
7 F570000 
7F5F0000 
7F7F0000 
7 FF70000 
7 FFB0000 
7FFD4000 
7FFDE000 
7FFDF000 
7FFE0000 

Protection 
Type Size Blocks Attribute( s) Description 

Free 122920960 
Mapped 524288 2 ER--
Free 524288 
Mapped 2097152 4 ER--
Free 7864320 
Private 262144 2 -RW-
Mapped 147456 1 -R --
Free 40960 
Private 4096 1 - RW-
Private 4096 1 - RW-
Private 65536 2 - R--

The address space map in Figure 4-5 shows the various regions in 
the process's address space. There is one region shown per line, and 
each line contains six fields. 

The first, or leftmost, field shows the region's base address. You'll 
notice that we start walking the process's address space starting with the 
region at address OxOOOOOOOO and ending with the last region of usable 
address space, which begins at address Ox7FFEOOOO. All regions are con
tiguous. You'll also notice that almost all of the base addresses for 
nonfree regions start on an even multiple of 64 KB. This is because of 
the allocation granularity of address space reservation imposed by the 
system. A region that does not start on an even allocation granularity 
boundary represents a region that was allocated by operating system 
code on your process's behalf. 

The second field shows the region's type, which is one of the 
four values-free, private, image, or mapped-described in the follow
ing table. 

Type 

Free 

Private 

Description 

The region of address space is not reserved, and the application 
may reserve a region either at the shown base address or any
where within the free region. 

The region contains physical storage residing in the system's 
paging file. 

(continued) 

113 



ADVANCED WINDOWS 

114 

continued 

Type 

Image 

Mapped 

Description 

The region contains physical storage residing in a memory
mapped EXE or DLL file. 

The region contains physical storage residing in a memory
mapped data file. 

The way that my VMMap application calculates this field may lead 
to misleading results. When the region is not free, the VMMAP.EXE 
sample application guesses at which of the three remaining values ap
plies-there is no Win32 function we can call to request this region's 
exact usage. The way that I calculate this field's value is by scanning all of 
the blocks within the region and taking an educated guess. You should 
examine my code in Chapter 5 to understand this better. 

The third field shows the number of bytes that were reserved for 
the region. For example, the system mapped the image ofUSER32.DLL 
at memory address Ox77E80000. When the system reserved address 
space for this image, it needed to reserve 229,376 bytes. The number in 
the third field will always be an even multiple of the CPU's page size 
(4096 bytes for an x86). 

The fourth field shows the number of blocks within the reserved 
region. A block is a set of contiguous pages that all have the same protec
tion attributes and that are all backed by the same type of physical stor
age-I'll talk more about this in the next section of this chapter. For free 
regions, this value will always be 0 because there can be no physical stor
age committed within a free region. (Nothing is displayed in the third 
column for a free region.) For the nonfree regions, this value can be any
where from 1 to a maximum number of (region size / page size). For 
example, the region that begins at memory address Ox77E80000 has a 
region size of 229,376 bytes. Because this process is running on an x86, 
for which the page size is 4096 bytes, the maximum number of different 
committed blocks is 56 (229,376/4096); the map shows that there are 7 
blocks in the region. 

The fifth field on the line shows the region's protection attributes. 
The individual letters represent the following: E = execute, R = read, W = 

write, C = copy-on-write. If the region does not show any of these protec
tion attributes, the region has no access protection. The free regions 
show no protection attributes since unreserved regions do not have pro
tection attributes associated with them. Neither the guard protection 



F 0 U R: Win32 Memory Architecture 

attribute flag nor the no cache protection attribute flag will ever appear 
here; these flags have meaning only when associated with physical stor
age, not reserved address space. Protection attributes are given to a 
region for the sake of efficiency only and are always overridden by pro
tection attributes assigned to physical storage. 

The sixth and last field shows a text description of what's in the 
region. For free regions, this field will always be blank; for private regions, 
it will usually be blank because VMMAP.EXE has no way of knowing why 
the application reserved this private region of address space. However, 
VMMAP.EXE can identify two types of private regions: thread stacks and 
the process's default heap. VMMAP.EXE can usually detect thread stacks 
because they will commonly have a block of physical storage within them 
with the guard protection attribute. However, when a thread's stack is 
full it will not have a block with the guard protection attribute, and 
VMMAP.EXE will be unable to detect it. VMMAP.EXE can detect the 
process's default heap (discussed in Chapter 8) by obtaining the region's 
base address and comparing it with the value returned by the 
GetProcessHeap function. 

For image regions, I can display the full pathname, of the file that 
is mapped into the region. VMMAP.EXE obtains this information by 
calling GetModuleFileName. For mapped regions, nothing is displayed 
because VMMAP.EXE has no way of determining what data file the pro
cess has mapped to the region. 

Inside the Regions 

Base 
Address 

00000000 
00010000 

00010000 
00011000 
00020000 

00020000 

Figure 4-6. 

It's possible to break down the regions even further than shown in Fig
ure 4-5. Figure 4-6 shows the same address space map as Figure 4-5, but 
the blocks contained inside each region are also displayed. 

Protection 
Type Size Blocks Attribute( s) Description 

Free 65536 
Private 4096 1 -RW-
Private 4096 -RW-
Free 61440 
Private 4096 1 - RW-
Private 4096 - RW-

(continued) 

A sample address space map showing blocks within regions under Windows NT. 

115 



ADVANCED WINDOWS 

Figure 4-6. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

00021000 Free 61440 
00030000 Private 1048576 3 - RW- Thread Stack 

00030000 Reserve 1036288 -RW-
00120000 Private 4096 -RW- G-
0012E000 Private 8192 -RW-

00130000 Private 4096 1 -RW-
00130000 Private 4096 -RW-

00131000 Free 61440 
00140000 Private 1048576 2 -RW- Oefault Process Heap 

00140000 Private 8192 -RW-
00142000 Reserve 1040384 -RW-

00240000 Mapped 65536 2 -RW-
00240000 Mapped 4096 -RW-
00241000 Reserve 61440 - RW-

00250000 Mapped 36864 1 - R --
00250000 Mapped 36864 -R--

00259000 Free 28672 
00260000 Mapped 57344 1 - R--

00260000 Mapped 57344 - R--
0026E000 Free 8192 
00270000 Mapped 266240 1 - R--

00270000 Mapped 266240 - R--
00281000 Free 61440 
002C0000 Mapped 4096 1 - R--

002C0000 Mapped 4096 - R--
002C1000 Free 61440 
00200000 Private 4096 1 - RW-

00200000 Private 4096 - RW-
00201000 Free 61440 
002E0000 Private 1048576 2 -RW-

002E0000 Private 65536 -RW-
002F0000 Reserve 983040 -RW-

003E0000 Private 4096 1 -RW-
003E0000 Private 4096 -RW-

003E1000 Free 126976 
00400000 Image 36864 6 ERWC C:\AdvWin32\VMMap.05\Obg_x86\VMMap.EXE 

00400000 Image 4096 -R--
00401000 Image 8192 ER--
00403000 Image 4096 -RW-
00404000 Image 4096 -R--
00405000 Image 8192 -RW-
00407000 Image 8192 -R--

00409000 Free 28672 

(continued) 

116 



F 0 U R: Win32 Memory Architecture 

Figure 4-6. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

00410000 Mapped 65536 1 -RW-
00410000 Mapped 65536 - RW-

00420000 Free 265158656 
10100000 Image 270336 8 ERWC F:\WINNT35\System32\MSVCRT20.dll 

10100000 Image 4096 -R--
10101000 Image 172032 ER--
1012B000 Image 8192 - RW-
10120000 Image 4096 - R--
1012E000 Image 12288 - RW-
10131000 Image 20480 -RWC 
10136000 Image 4096 - RW-
10137000 Image 45056 - R--

10142000 Free 1740562432 
77030000 Image 126976 7 ERWC F:\WINNT35\System32\WINSPOOL.DRV 

77030000 Image 4096 - R--
77D31000 Image 73728 ER--
77D43000 Image 4096 - RW-
77D44000 Image 8192 - R--
77046000 Image 8192 - RW-
77D48000 Image 4096 -RWC 
77049000 Image 24576 - R--

77D4F000 Free 659456 
77DF0000 Image 208896 6 ERWC F:\WINNT35\system32\ADVAPI32.dll 

770F0000 Image 4096 -R--
77DF1000 Image 131072 ER--
77E11000 Image 4096 -RW-
77E12000 Image 12288 -R --
77E15000 Image 20480 -RWC 
77E1A000 Image 36864 -R--

77E23000 Free 118784 
77E40000 Image 225280 6 ERWC F:\WINNT35\system32\RPCRT4.dll 

77E40000 Image 4096 -R--
77E41000 Image 180224 ER--
77E6D000 Image 4096 -RW-
77E6E000 Image 4096 -R --
77E6F000 Image 4096 -RWC 
77E70000 Image 28672 -R--

77E77000 Free 36864 
77E80000 Image 229376 7 ERWC F:\WINNT35\system32\USER32.dll 

77E80000 Image 4096 -R --
77E81000 Image 172032 ER--
77EAB000 Image 4096 - RW-
77EAC000 Image 4096 -R--

(continued) 

117 



ADVANCED WINDOWS 

Figure 4-6. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

77EA0000 Image 4096 -RW-
77EAE000 Image 4096 -RWC 
77EAF000 Image 36864 - R--

77EB8000 Free 32768 
77EC0000 Image 208896 6 ERWC F:\WINNT35\system32\GOI32.dll 

77EC0000 Image 4096 - R--
77EC1000 Image 167936 ER--
77EEA000 Image 4096 - RW-
77EEB000 Image 4096 - R--
77EEC000 Image 4096 - RW-
77EE0000 Image 24576 - R--

77EF3000 Free 53248 
77F00000 Image 405504 7 ERWC F:\WINNT35\system32\KERNEL32.dll 

77F00000 Image 4096 - R--
77F01000 Image 229376 ER--
77F39000 Image 8192 - RW-
77F3B000 Image 4096 - R--
77F3C000 Image 8192 - RW-
77F3E000 Image 4096 -RWC 
77F3F000 Image 147456 - R--

77F63000 Free 53248 
77F70000 Image 286720 10 ERWC F:\WINNT35\System32\ntdll.dll 

77F70000 Image 4096 - R--
77F71000 Image 155648 ER--
77F97000 Image 4096 - RW-
77F98000 Image 4096 -R--
77F99000 Image 4096 -RWC 
77F9A000 Image 4096 - RW-
77F9B000 Image 4096 -RWC 
77F9C000 Image 28672 - R--
77FA3000 Image 4096 -RWC 
77FA4000 Image 73728 - R--

77FB6000 Free 122920960 
7F4F0000 Mapped 524288 2 ER--

7F4F0000 Mapped 126976 ER--
7F50F000 Reserve 397312 ER--

7F570000 Free 524288 
7F5F0000 Mapped 2097152 4 ER--

7F5F0000 Mapped 8192 ER--
7F5F2000 Reserve 1040384 ER--
7 F6F0000 Mapped 20480 ER--
7 F6F5000 Reserve 1028096 ER--

(continued) 

118 



F 0 U R: Win32 Memory Architecture 

Figure 4-6. continued 

Base 
Address 

7F7F0000 
7FF70000 

7FF70000 
7FF71000 

7FFB0000 
7FFB0000 

7FFD4000 
7 FFDE000 

7FFDE000 
7FFDF000 

7 FFDF000 
7FFE0000 

7FFE0000 
7FFE1000 

Protection 
Type Size Blocks Attribute(s) Description 

Free 7864320 
Private 262144 2 - RW-
Private 4096 - RW-
Reserve 258048 - RW-
Mapped 147456 1 -R--
Mapped 147456 - R--
Free 40960 
Private 4096 1 -RW-
Private 4096 -RW-
Private 4096 1 - RW-
Private 4096 -RW-
Private 65536 2 -R --
Private 4096 -R --
Reserve 61440 -R--

Of course, free regions do not expand at all because they have no 
committed pages of storage within them. Each block line shows four 
fields as explained below. 

The first field shows the address of a set of pages all having the same 
state and protection attributes. For example, there is a single page (4096 
bytes) of memory with read protection committed at address Ox10100000. 
At address Ox10101000, there is a block of 42 pages (172,032 bytes) of 
committed storage that has execute and read protection. If both of 
these blocks had the same protection attributes, the two would be com
bined and would appear as a single 43-page (l76,128-byte) entry in the 
memory map. 

The second field shows what type of physical storage is backing the 
block within the reserved region. One of four possible values can appear 
in this field: private, mapped, image, or reserve. A value of private, 
mapped, or image indicates that the block is backed by physical storage 
in the paging file, a data file, or a loaded EXE or DLL file, respectively. If 
the value is reserve, the block is not backed by any physical storage at all, 
but the system may commit physical storage to it later. 

For the most part, all the committed blocks within a single region 
are backed by the same type of physical storage. However, it is possible 
for different committed blocks within a single region to be backed by dif
ferent types of physical storage. For example, a memory-mapped file 
image will be backed by an EXE or a DLL file. If you were to write to a 

119 



ADVANCED WINDOWS 

single page in this region that had PAGE_WRITECOPYor PAGE_EXE
CUTE_WRITECOPY, the system would make your process a private copy 
of the page backed by the paging file instead of the file image. This new 
page would have the same attributes as the original page without the 
copy-on-write protection attribute. 

The third field shows the size of the block. All blocks are contigu
ous within a region-there will not be any gaps. 

The fourth field shows the protection attributes and protection 
attribute flags of the block. A block's protection attributes override 
the protection attributes of the region that contains the block. The pos
sible protection attributes are identical to those that can be specified for 
a region; however, the two protection attribute flags, PAGE_GUARD and 
PAGE_NOCACHE, which are never associated with a region, may be 
associated with a block. 

Address Space Differences for Windows 95 

Base 
Address 

00000000 
00400000 

00400000 
00402000 
00403000 
00404000 
00406000 
00408000 

00410000 
00410000 
00411000 
00510000 
00511000 

00520000 
00520000 
00521000 

Figure 4-7. 

Figure 4-7 shows the address space map when the same VMMAP.EXE 
program is executed under Windows 95. 

Protection 
Type Size Blocks Attribute( s) Description 

Free 4194304 
Private 65536 6 C:\ADVWIN32\VMMAP.05\REL_X86\VMMAP.EXE 
Private 8192 -R--
Private 4096 -RW-
Private 4096 -R--
Private 8192 -RW-
Private 8192 - R--
Reserve 32768 
Private 1114112 4 Default Process Heap 
Private 4096 -RW-
Reserve 1044480 
Private 4096 -RW-
Reserve 61440 
Private 65536 2 -RW-
Private 4096 -RW-
Reserve 61440 -RW-

(continued) 

A sample address space map showing blocks within regions under Windows 95. 

120 



F 0 U R: Win32 Memory Architecture 

Figure 4-7. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

00530000 Private 1179648 6 Thread Stack 
00530000 Reserve 1077248 
00637000 Private 4096 - RW-
00638000 Reserve 24576 
0063E000 Private 4096 
0063F000 Private 4096 -RW-
00640000 Reserve 65536 

00650000 Private 1048576 2 -RW-
00650000 Private 65536 -RW-
00660000 Reserve 983040 - RW-

00750000 Private 65536 2 -RW-
00750000 Private 4096 -RW-
00751000 Reserve 61440 -RW-

00760000 Free 261750784 
10100000 Private 327680 6 C:\WINDOWS\SYSTEM\MSVCRT20.DLL 

10100000 Private 176128 -R--
10128000 Private 8192 - RW-
1012D000 Private 4096 -R--
1012E000 Private 36864 -RW-
10137000 Private 45056 -R--
10142000 Reserve 57344 

10150000 Free 1877671936 
80000000 Private 4096 1 

80000000 Reserve 4096 
80001000 Private 4096 1 

80001000 Private 4096 -RW-
80002000 Private 4096 1 

80002000 Private 4096 -RW-
80003000 Private 4096 1 

80003000 Private 4096 -RW-
80004000 Private 622592 1 

80004000 Private 622592 - RW-
8009C000 Private 65536 2 

8009C000 Private 16384 - RW-
800A0000 Reserve 49152 

800AC000 Private 4096 1 
800AC000 Private 4096 -RW-

800AD000 Private 516096 1 
800AD000 Private 516096 -RW-

(continued) 

121 



ADVANCED WINDOWS 

Figure 4-7. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

8012B000 Private 196608 1 
8012B000 Private 196608 -RW-

81A81000 Private 16384 3 
81A81000 Private 4096 -RW-
81A82000 Reserve 8192 
81A84000 Private 4096 -RW-

81A85000 Private 12288 1 
81A85000 Private 12288 -R--

81A88000 Private 1228B 1 
81A88000 Private 12288 -R --

81A8B000 Private 94208 1 
81ABB000 Private 94208 -R--

81AA2000 Private 24576 1 
81AA2000 Private 24576 -R--

81AA8000 Private 4096 1 
81AA8000 Private 4096 -RW-

81AA9000 Private 2228224 7 -RW-
81AA9000 Private 69632 -RW-
81ABA000 Reserve 61440 - RW-
81AC9000 Private 24576 -RW-
81ACF000 Reserve 8192 -RW-
81AD1000 Private 8192 -RW-
81AD3000 Reserve 2052096 -RW-
81CC8000 Private 4096 -RW-

81CC9000 Private 4096 1 
81CC9000 Private 4096 -RW-

81CCA000 Private 524288 3 
81CCA000 Private 12288 -RW-
81CCD000 Reserve 507904 
81D49000 Private 4096 -RW-

81D4A000 Private 4096 1 
81D4A000 Private 4096 -RW-

81D4B000 Private 4096 1 
81D4B000 Private 4096 -RW-

81D4C000 Private 4096 1 
81D4C000 Private 4096 -RW-

81D4D000 Private 4096 1 
81D4D000 Private 4096 -RW-

(continued) 

122 



F 0 U R: Win32 Memory Architecture 

Figure 4·7. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

8104E000 Private 2228224 5 -RW-
8104E000 Private 69632 - RW-
8105F000 Reserve 61440 -RW-
8106E000 Private 8192 -RW-
81070000 Reserve 2084864 - RW-
81F60000 Private 4096 - RW-

81F6E000 Private 2162688 11 -RW-
81F6E000 Private 4096 -RW-
81F6F000 Reserve 61440 - RW-
81F7E000 Private 8192 - RW-
81F80000 Reserve 4096 - RW-
81F81000 Private 24576 - RW-
81F87000 Reserve 4096 - RW-
81F88000 Private 4096 -RW-
81F89000 Reserve 24576 -RW-
81F8F000 Private 4096 - RW-
81F90000 Reserve 2019328 - RW-
82170000 Private 4096 -RW-

8217E000 Private 4096 1 
8217E000 Private 4096 -RW-

8217F000 Private 12288 1 
8217F000 Private 12288 -R--

82182000 Private 4096 1 
82182000 Private 4096 - RW-

82183000 Private 4096 1 
82183000 Private 4096 - RW-

82184000 Private 2097152 3 
82184000 Private 4096 - RW-
82185000 Reserve 2088960 
82383000 Private 4096 -RW-

82384000 Private 4096 1 
82384000 Private 4096 -RW-

82385000 Free 16384 
82389000 Private 4096 1 

82389000 Private 4096 -RW-
8238A000 Free 12288 
82380000 Private 4096 1 

82380000 Private 4096 - RW-
8238E000 Free 24576 

(continued) 

123 



ADVANCED WINDOWS 

Figure 4-7. continued 

Base Protection 
Address Type Size Blocks Attri bute( s) Description 

82394000 Private 4096 1 
82394000 Private 4096 -RW-

82395000 Free 4096 
82396000 Private 4096 1 

82396000 Private 4096 - RW-
82397000 Private 16384 2 -RW-

82397000 Private 4096 - RW-
82398000 Reserve 12288 - RW-

8239B000 Free 4096 
8239C000 Private 4096 1 

8239C000 Private 4096 - RW-
82390000 Free 16384 
823A1000 Private 73728 1 

823A1000 Private 73728 - R--
823B3000 Free 20480 
823B8000 Private 4096 1 

823B8000 Private 4096 -RW-
823B9000 Private 2097152 5 

823B9000 Private 49152 - RW-
823C5000 Reserve 4096 
823C6000 Private 8192 -RW-
823C8000 Reserve 2031616 
825B8000 Private 4096 -RW-

825B9000 Private 1056768 3 
825B9000 Private 4096 -RW-
825BA000 Reserve 1048576 
826BA000 Private 4096 -RW-

826BB000 Private 1052672 3 
826BB000 Private 4096 -RW-
826BC000 Reserve 1044480 
827BB000 Private 4096 -RW-

827BC000 Private 94208 1 -RW-
827BC000 Private 94208 - RW-

82703000 Private 24576 1 -RW-
82703000 Private 24576 -RW-

82709000 Free 2039808 
829CB000 Private 163840 1 

829CB000 Private 163840 -R--
829F3000 Private 73728 1 

829F3000 Private 73728 -R--

(continued) 

124 



F 0 U R: Win32 Memory Architecture 

Figure 4-7. continued 

Base Protection 
Address Type Size Blocks Attribute(s) Description 

82A05000 Free 1027649536 
BFEl0000 Private 73728 5 

BFEl0000 Private 40960 -R--
BFEIA000 Private 4096 -RW-
BFElB000 Private 4096 -R--
BFElC000 Private 4096 - RW-
BFElD000 Private 20480 -R--

BFE22000 Free 712704 
BFED0000 Private 32768 3 C:\WINDOWS\SYSTEM\ADVAPI32.DLL 

BFED0000 Private 8192 -R--
BFED2000 Private 4096 -RW-
BFED3000 Private 20480 -R--

BFED8000 Free 98304 
BFEF0000 Private 200704 3 

BFEF0000 Private 143360 -R--
BFF13000 Private 4096 - RW-
BFF14000 Private 53248 -R--

BFF21000 Free 61440 
BFF30000 Private 147456 5 C:\WINDOWS\SYSTEM\GDI32.DLL 

BFF30000 Private 106496 -R--
BFF4A000 Private 8192 -RW-
BFF4C000 Private 16384 -R--
BFF50000 Private 4096 -RW-
BFF51000 Private 12288 -R--

BFF54000 Free 49152 
BFF60000 Private 57344 3 C:\WINDOWS\SYSTEM\USER32.DLL 

BFF60000 Private 24576 - R--
BFF66000 Private 4096 -RW-
BFF67000 Private 28672 -R --

BFF6E000 Free 8192 
BFF70000 Private 524288 8 C:\WINDOWS\SYSTEM\KERNEL32.DLL 

BFF70000 Private 278528 -R--
BFFB4000 Reserve 8192 
BFFB6000 Private 12288 -R--
BFFB9000 Private 16384 -RW-
BFFBD000 Private 24576 - R--
BFFC3000 Private 12288 - RW-
BFFC6000 Private 73728 - R--
BFFD8000 Reserve 98304 

BFFF0000 Free 65536 

125 



ADVANCED WINDOWS 

126 

The biggest difference between the two address space maps is the 
lack of information offered under Windows 95. For example, each region 
and block will reflect whether the area of address space is free, reserve, 
or private. You will never see mapped or image because Windows 95 does 
not offer the additional information indicating whether the physical 
storage backing the region is a.memory-mapped file or is contained in 
an EXE or a DLL's file image. 

You'll notice that most of the region sizes are exact multiples of the 
allocation granularity (64 KB). If the sizes of the blocks contained within 
a region do not add up to a multiple of the allocation granularity, there 
is frequently a block of reserved address space at the end of the region. 
This block is whatever size is necessary to bring the region to an even 
64 KB. For example, the region starting at address Ox00520000 consists 
of 2 blocks: a 4-KB committed block of storage and a reserved block that 
occupies a 60-KB range of memory addresses. 

Finally, the protection flags never reflect execute or copy-on-write 
access because Windows 95 does not support these flags. The two protec
tion attribute flags, no cache and guard, are also not supported. Because 
the guard flag is not supported, VMMAP.EXE uses a more complicated 
technique to determine whether a region of address space is reserved for 
a thread's stack. 

You will notice that, unlike under Windows NT, under Windows 95 
the region of address space between Ox80000000 and OxBFFFFFFF can 
be examined. This is the partition that contains the address space shared 
by all Win32 applications. As you can see, the four systemDLLs are loaded 
into this region of address space and are therefore available to all Win32 
processes. 



C HAP T E R F I V E 

EXPLORING VIRTUAL 
MEMORY 

In the last chapter, we discussed how the system manages virtual mem
ory, how each process receives its very own private address space, and 
what a process's address space looks like. In this chapter, we move away 
from the abstract and examine some of the Win32 functions that give us 
information about the system's memory management and about the vir
tual address space in a process. 

System Information 
To understand how Win32 uses virtual memory, you need to know how 
the current Win32 implementation works. The GetSystemlnfo function 
retrieves information (including virtual memory information) about the 
current Win32 implementation: 

VOID GetSystemlnfo (LPSYSTEM_INFO lpSystemlnfo); 

You must pass the address of a SYSTEM_INFO structure to this 
function. The function will initialize the structure's members and return. 
Here is what the SYSTEM_INFO data structure looks like: 

typedef struct _SYSTEM_INFO { 
DWORD dwOemld; 
DWORD dwPageSize; 
LPVOID lpMinimumApplicationAddress; 
LPVOID lpMaximumApplicationAddress; 
DWORD dwActiveProcessorMask; 
DWORD dwNumberOfProcessors; 
DWORD dwProcessorType; 
DWORD dwAllocationGranularity; 
DWORD dwReserved; 

} SYSTEM_INFO; 

127 



ADVANCED WINDOWS 

When the system boots, it determines what the values of these mem
bers should be; for a given system the values will always be the same. 
GetSystemlnfo exists so that an application can query these values at run 
time. Of all the members in the structure, only four of them have anything 
to do with memory. These four members are explained in the table below: 

Member Name 

dwPageSize 

lpMinimurnApplicationAddress 

lpMaximurnApplicationAddress 

dwAllocationGranularity 

Description 

Shows the size of a memory page. On x86, 
MIPS, and PowerPC CPUs, this value is 4 
KB. On Alpha CPUs, this value is 8 KB. 

Gives the minimum memory address of 
every process's usable address space. On 
Windows 95, this value is 4,194,304, or 
Ox00400000, because the bottom 4 MB of 
every process's address space is inaccessible. 
On Windows NT, this value is 65,536, or 
Ox00010000, because the first 64 KB of 
every process's address space is reserved. 

Gives the maximum memory address of 
every process's usable private address 
space. On Windows 95, this address is 
2,147,483,647, or Ox7FFFFFFF, because 
the shared memory-mapped file region 
and the shared operating system code are 
contained in the top 2-GB partition. On 
Windows NT, this address is 2,147,418,111, 
or Ox7FFEFFFF, because unusable address 
space begins just 64 KB below the 2-GB line 
and extends to the end of the process's 
address space. 

Shows the granularity of a reserved region 
of address space. As of this writing, this 
value is 65,536 because all implementations 
ofWin32 reserve address space on even 
64-KB boundaries. 

The System Information Sample Application 

128 

The SysInfo application (SYSINFO.EXE), listed in Figure 5-1 beginning 
on page 130, is a very simple program that calls GetSystemlnfo and displays 
the information returned in the SYSTEM_INFO structure. The source 
code files, resource files, and make file for the application are in the 



F I V E: Exploring Virtual Memory 

SYSINFO.05 directory on the companion disc. The dialog boxes below 
show the results of running the Syslnfo application on several different 
platforms. 

Windows 95 on Intel x86. 

Windows NT on Intel x86. 

Windows NT on MIPS R4000. 

Windows NT on DEC Alpha. 

129 



ADVANCED WINDOWS 

Syslnfo.ico 

Figure 5-1. (continued) 

The Syslnfo application. 

130 



F I V E: Exploring Virtual Memory 

Figure 5·1. continued 

1/111// /1/11111/ lUlIIIllIlIlIIIlIII/lIllllllllI/J 1111111/1 

(continued) 

131 



ADVANCED WINDOWS 

Figure 5-1. continued 

(continued) 

132 



F I V E: Exploring Virtual Memory 

Figure 5-1. continued 

SetOlgltemText(hwnd. IOC..,.DEMID. 
BigNomT6String(~\.dwOe~Idl szBuf»: 

(continued) 

133 



ADVANCED WINDOWS 

Figure 5-1. continued 

(continued) 

134 



F I V E: Exploring Virtual Memory 

Figure 5-1. continued 

111111111111/11111111111111/ II / ( II III /II / I III lIll III I / 1/1 /lill 
II 

.. / I GeneratedfrQrn .the. TEXTl.NCLlioE 2·re.sQL1r~e~ 

(continued) 

135 



ADVANCED WINDOWS 

Figure 5-1. continued 

(continued) 

136 



F I V E: Exploring Virtual Memory 

Figure 5-1. continued 

SYSINFO ICON OISCAROABLE "Syslnfo.lco" 

{;1fndef .APSTUOIO_INVOKED 
11/111111111/1111 Il / Illllllll/lIll( 111111111 / 1/ / III / / ill III II I 
1/ 
II 
.II 

Virtual Memory Status 
There is a Win32 function called GlobalMemoryStatus that retrieves dynamic 
information about the current state of memory: 

VOID GlobalMemoryStatus (LPMEMORYSTATUS lpmstMemStat); 

I think that this function is very poorly named-GlobalMemoryStatus 
implies that the function is somehow related to the global heaps in 16-
bit Windows. Win32 does not have a global heap but does offer the old 
global heap functions such as GlobalAlloc purely to ease the burden of 
porting a 16-bit Windows application to Win32. I think that Global
MemoryStatus should have been called something like VirtualMemory
Status instead. 

When you call GlobalMemoryStatus, you must pass the address of a 
MEMORYSTATUS structure. Here is what the MEMORYSTATUS data 
structure looks like: 

typedef struct _MEMORYSTATUS { 
DWORD dwLength; 
DWORD dwMemoryLoad; 
DWORD dwTotalPhys; 
DWORD dwAvailPhys; 
DWORD dwTotalPageFile; 
DWDRD dwAvailPageFile; 
DWORD dwTotalVirtual; 
DWORD dwAvailVirtual; 

} MEMORYSTATUS. *LPMEMORYSTATUS; 

Before calling GlobalMemoryStatus, you must initialize the dwLength 
member to the size of the structure in bytes-that is, sizeof(MEMO
RYSTATUS). This allows Microsoft to add members to this structure in 

137 



ADVANCED WINDOWS 

future versions of the Win32 API without breaking existing applications. 
When you call GlobalMemoryStatus, it will initialize the remainder of the 
structure's members and return. The VMStat sample application in the 
next section describes the various members and their meanings. 

The Virtual Memory Status Sample Application 

138 

The VMStat application (VMSTAT.EXE), listed in Figure 5-2, displays a 
simple dialog box that lists the results of a call to GlobalMemoryStatus. The 
source code files, resource files, and make file for the application are in 
the VMSTAT.05 directory on the companion disc. Below is the result of 
running this program on Windows 95 using an 8-MB Intel 486 machine: 

The dwMemoryLoad member (shown as Memory Load) gives a rough 
estimate of how busy the memory management system is. This number 
can be anywhere from 0 to 100. The exact algorithm used to calculate 
this value varies between Windows 95 and Windows NT. In addition, the 
algorithm is subject to change in future versions of the operating system. 
In practice, the value reported by this member variable is all but useless. 

The dwTotalPhys member (shown as TotalPhys) indicates the total 
number of bytes of physical memory (RAM) that exist. On this8-MB 486 
machine, this value is 6,983,680, which is just over 6.6 MB. This value is 
the exact amount of memory, including any holes in the address space 
between the low 640 KB and 1 MB of physical memory. The dwAvailPhys 
member (shown as AvailPhys) indicates the total number of bytes of 
physical memory available for allocation. 

The dwTotalPageFile member (shown as TotalPageFile) indicates the 
maximum number of bytes that can be contained in the paging file(s) on 
your hard disk(s). Although VMStat reported that the paging file is cur
rently 58,777,600 bytes, the system can expand and shrink the paging file 
as it sees fit. The dwAvailPageFile member (shown as AvailPageFile) indi
cates that 57,204,736 bytes in the paging file(s) are not committed to any 



I 
VMStat.ico 

F I V E: Exploring Virtual Memory 

process and are currently available should a process decide to commit 
any private storage. 

The dwTotaLVirtual member (shown as TotalVirtual) indicates the 
total number of bytes that are private in each process's address space. 
The value 2,143,289,344 is 4 MB short of being exactly 2 GB. The bottom 
4 MB of inaccessible address space accounts for the 4-MB difference. If 
you run VMStat under Windows NT, you'll see that dwTotalVirtual comes 
back with a value of 2,147,352,576, which is just 128 KB short of being 
exactly 2 GB. The 128-KB difference exists because the system never lets 
an application gain access to the 64 KB at the beginning or the 64 KB at 
the end of a 2-GB mark of address space. 

The last member, dwAvaiLVirtual (shown as AvailVirtual), is the only 
member of the structure specific to the process calling GlobalMemory
Status-all the other members apply to the system and would be the 
same regardless of which process was calling GlobaLMemoryStatus. To cal
culate this value, GlobaLMemoryStatus adds up all of the free regions in the 
calling process's address space. The dwAvaiLVirtual value 2,139,422,720 
indicates the amount of free address space that is available for VMS tat to 
do with what it wants. If you subtract the dwAvaiLVirtual member from 
the dwTotaLVirtual member, you'll see that VMStat has 3,866,624 bytes re
served in its virtual address space. 

There is no member that indicates the amount of physical storage 
currently in use by the process. 

Figure 5-2. (continued) 

The VMStat application. 

139 



ADVANCED WINDOWS 

Figure 5-2. continued 

(continued) 

140 



F I V E: Exploring Virtual Memory 

Figure 5-2. continued 

1///1/111111///1111111111111111111111111111//11111111//11111/ 

(continued) 

141 



ADVANCED WINDOWS 

Figure 5-2. continued 

(continued) 

142 



F I V E: Exploring Virtual Memory 

Figure 5-2. continued 

VMSTAT.RC 
f/Microsoft Visual C++ generated resource script. 
II 

(continued) 

143 



ADVANCED WINDOWS 

Figure 5-2. continued 

144 



F I V E: Exploring Virtual Memory 

Determining the State of an Address Space 
Win32 offers a function that lets you query certain information (for ex
ample, size, storage type, and protection attributes) about a memory 
address in your address space. In fact, the VMMap sample application 
shown later in this chapter uses this function to produce the virtual 
memory map dumps that appeared in Chapter 4. This Win32 function is 
called VirtualQuery: 

DWORD VirtualQuery(LPVOID lpAddress. 
PMEMORY_BASIC_INFORMATION lpBuffer. 
DWORD dwLength); 

When you call VirtualQuery, the first parameter, lpAddress, must con
tain the virtual memory address that you want information about. The 
IpBuffer parameter is the address to a MEMORY_BASIC_INFORMATION 
structure that you must allocate. This structure is defined in WINNT.H 
as follows: 

typedef struct _MEMORY_BASIC_INFORMATION { 
PVOID BaseAddress; 
PVOID AllocationBase; 
DWORD AllocationProtect; 
DWORD RegionSize; 
DWORD State; 
DWORD Protect; 
DWORD Type; 

} MEMORY_BASIC_INFORMATION. *PMEMORY_BASIC_INFORMATION; 

The last parameter, dwLength, specifies the size of a MEMORY
_BASIC_INFORMATION structure. VirtualQuery returns the number of 
bytes copied into the buffer. 

Based on the address that you pass in the lpAddress parameter, 
VirtualQuery fills the MEMORY_BASIC_INFORMATION structure with 
information about the range of adjoining pages that share the same 
state, protection attributes, and type. See the table on the following page 
for a description of the structure's members. 

145 



ADVANCED WINDOWS 

Member Name 

BaseAddress 

AllocationBase 

AllocationProtect 

RegionSize 

State 

Protect 

Type 

Description 

This is the same value as the lpAddress parameter 
rounded down to an even page boundary. 

Identifies the base address of the region containing the 
address specified in the lpAddress parameter. 

Identifies the protection attribute assigned to the region 
when it was initially reserved. 

Identifies the size, in bytes, for all pages starting at 
BaseAddress that have the same protection attributes, 
state, and type as the page containing the address 
specified in the lpAddress parameter. 

Identifies the state (MEM_FREE, MEM_RESERVE, 
or MEM_COMMIT) for all adjoining pages that have 
the same protection attributes, state, and type as the 
page containing the address specified in the lpAddress 
parameter. 

If the state is free, the AllocationBase, AllocationProtect, 
Protect, and Type members are undefined. 

If the state is reserve, the Protect member is undefined. 

Identifies the protection attribute (PAGE_ *) for all ad
joining pages that have the same protection attributes, 
state, and type as the page containing the address 
specified in the lpAddress parameter. 

Identifies the type of physical storage (MEM_IMAGE, 
MEM_MAPPED, or MEM_PRIVATE) that is backing 
all adjoining pages that have the same protection attri
butes, state, and type as the page containing the address 
specified in the lpAddress parameter. For Windows 95, 
this member will always indicate MEM_PRIVATE. 

The VMQuery Function 

146 

When I was first learning how the Win32 memory architecture is designed, 
I used VirtualQuery as my guide. In fact, if you examine the first edition of 
this book, you'll see that the VMMAP.EXE program was much simpler 
than the new version I present in the next section. In the old version, I 
had a very simple loop that called VirtualQuery repeatedly, and for each 
call, I simply constructed a single line containing the members of the 
MEMORY...BASIC_INFORMATION structure. I studied this dump and 
tried to piece the Win32 memory management architecture together 
while referring to the Windows NT 3.1 SDK documentation (which was 



F I V E: Exploring Virtual Memory 

rather poor at the time}. Well, I've come a long way, baby-I now know 
that the VirtualQuery function and the MEMORY...BASIC_INFORMA
TION structure are not good for creating a process's virtual address 
space memory map. 

The problem is that the MEMORY...BASIC_INFORMATION struc
ture does not return all of the information that the system has stored 
internally. If you have a memory address and want to obtain some sim
ple information about it, VirtualQuery is great. If you just want to know 
whether there is committed physical storage to an address or whether a 
memory address can be read from or written to, VirtualQuery works fine. 
But if you want to know the total size of a reserved region or the number 
of blocks in a region, or whether a region contains a thread's stack, a 
single call to VirtualQuery is just not going to give you the information 
you're looking for. 

In order to obtain much more complete memory information, I 
have created my own function, named VMQuery: 

BOOl VMQuery (PVOID pvAddress. PVMQUERY pVMQ); 

This function is similar to VirtualQuery in that it takes a memory ad
dress specified by the pvAddress parameter and a pointer to a structure 
that is to be filled, specified by the PVMQ parameter. This structure is a 
VMQUERY structure that I have also defined: 

typedef struct { 
II Region information 
PVOID pvRgnBaseAddress; 
DWORD dwRgnProtection; 
DWORD dwRgnSize; 
DWORD dwRgnStorage; 

DWORD dwRgnBlocks; 
DWORD dwRgnGuardBlks; 
BOOl fRgnIsAStack; 

II Block information 
PVOID pvBlkBaseAddress: 
DWORD dwBlkProtection; 
DWORD dwBlkSize: 
DWORD dwBlkStorage; 

} VMQUERY. *PVMQUERY; 

II PAGE_* 

II MEM_*: Free. Image. 
II Mapped. Private 

II If > 0. region contains thread stack 
II TRUE if region contains thread stack 

II PAGE_* 

II MEM_*: Free. Reserve. Image. 
II Mapped. Private 

As you can see from just a quick glance, my VMQUERY structure 
contains much more information than VirtualQuery's MEMORY...BASIC
_INFORMATION structure. My structure is divided into two distinct 

147 



ADVANCED WINDOWS 

148 

parts: region information and block information. The region portion 
describes information about the region, and the block portion contains 
information about the block containing the address specified by the 
pvAddress parameter. The table below describes all the members: 

Member Name 

pvRgnBaseAddress 

dwRgnProtection 

dwRgnSize 

dwRgnStorage 

dwRgnBlocks 

dwRgnGuardBlks 

JRgnIsAStack 

pvBlkBaseAddress 

dwBlkProteaion 

dwBlkSize 

Description 

Identifies the base address of the virtual address space 
region containing the address specified in the pvAddress 
parameter. 

Identifies the protection attribute that was assigned 
to the region of address space when it was initially 
reserved. 

Identifies the size, in bytes, of the region that was 
reserved. 

Identifies the type of physical storage that is used for 
the bulk of the blocks in the region. The value is one 
of the following: MEM_FREE, MEM_IMAGE, MEM
_MAPPED, or MEM_PRIVATE. Windows 95 doesn't 
distinguish between different storage types, so this 
member will always be MEM_FREE or MEM_PRIVATE 
under Windows 95. 

Identifies the number of blocks contained within 
the region. 

Identifies the number of blocks that have the PAGE
_GUARD protection attribute flag turned on. This 
value will usually be either 0 or 1. If it's 1, that's a good 
indicator that the region was reserved to contain a 
thread's stack. Under Windows 95, this member will 
always be O. 

Identifies whether the region contains a thread's stack. 
This value is determined by taking a "best guess" be
cause it is impossible to be 100 percent sure whether a 
region contains a stack. 

Identifies the base address of the block that contains 
the address specified in the pvAddress parameter. 

Identifies the protection attribute for the block that con
tains the address specified in the pvAddress parameter. 

Identifies the size, in bytes, of the block that contains 
the address specified in the pvAddress parameter. 

(continued) 



continued 

Member Name 

dwBlkStorage 

F I V E: Exploring Virtual Memory 

Description 

Identifies the content of the block that contains the 
address specified in the pvAddress parameter. The value 
is one of the following: MEM_FREE, MEM_RESERVE, 
MEM_IMAGE, MEM_MAPPED, or MEM_PRIVATE. 
Under Windows 95, this member will never be 
MEM_IMAGE or MEM_MAPPED. 

There is no doubt that VMQuery must do a significant amount of 
processing, including many calls to VirtualQuery, in order to obtain all 
this information-which means it executes much more slowly than 
VirtualQuery. For this reason, you should think carefully when deciding 
which of these two functions to call. If you do not need the extra infor
mation obtained by VMQuery, call VirtualQuery. 

The VMQUERYC file, listed in Figure 5-3, shows how I obtain and 
massage all the information needed to set the members of the VMQUERY 
structure. The VMQUERYC and VMQUERYH files are in the VMMAP.05 
directory on the companion disc. Rather than go into detail in the text 
about how I process this data, I'll let my comments (sprinkled liberally 
throughout the code) speak for themselves. 

Figure 5-3. (continued) 

The VMQuery listings. 

149 



ADVANCED WINDOWS 

Figure 5-3. continued 

(continued) 

150 



F I V E: Exploring Virtual Memory 

Figure 5·3. continued 

if «pmbiBuffer->RegionS1ze% 0x1000) == 0xFFF) { 
II If the RegionSize membElr,ends with 0xFFF. 
II the size is 1 byte off. 
pmb1 Buffer->Reg1 onSizet+; 

J 

.. ..' ~: . 

. ,~ .. ",,' 

. " "' ..... ' .. ::: " "'" ";;:' ," . . ... ":',',,',:,',,";,;,:,::.. ':""'.' .. ':" ",," .' .,< .... " ',.: .. :' .. , : ; . 
• '.' :::.":. "~', .;"'.'",: 'i' ':'" ' <, ., j. " ....• ",;. . .' ',,' ."". 

:",~~~ti:e:!rxrt~lilOu~d ~i~~L~1'~f'u,~'ib~~'~;", ';;,:;'i"~, ."",' -'"'>: ,',' ",', "/"r: 
. , . ," . ' . ~.:;; ,:".~" -.' ':::, ":":':::.':.':.; . ".' ''':~'>:'':' :.; ''': "'~:.'.:':.:::' "/' ':~).' ~',::,:,.:,: . ." .... ,. .... ::.::'.?;.'., 'r~·~·::·:·,:: ", .'« .. ':';." 
.... i .. :.: ... ,;.:.~ ,.:";:" ... :.: ... : .. ,::".' .... <~::(,; ."i,,: .';:;"~. ",,;. "~: .. : .. :,.\;;c',:: ..... :; ........ :.' ... ;, .,.: ... ; ........ , ..... ·:···::.f·: ... , .. \ ... :: .. ,.i.;,:i;: .. . 

•.• ,,~)ii,11,{i~N(jJ'I!{i{;~i;P&!;;,I;i~'i;i;I~I~')5i~~!(fi¥iliJf~?tj if ~ 
':·· .•• ·.·"l;·.~t'hi.!>· :f.~~·~t ~.()~, •. ;}t~r~i~:;':t~t~~q~.··,al·'~·:;i~~···.~~'Stks,'~.J:'.'~: .·;,:.;'··.'i:.':,',:" .. :,·:;""" 
" liregf on, and 1nith 1 fzes ~'s'tr~ctuT'e ~(tn its: ii!Jd'In.Qs;; 

,stat1c SOOl VMUlIeryHel jl (PvOID' pvAddr.ess;, .': 
.,.: 

(continued) 

151 



ADVANCED WINDOWS 

Figure 5-3. continued 

(continued) 

152 



F I V E: Exploring Virtual Memory 

Figure 5-3. continued 

(continued) 

153 



ADVANCED WINDOWS 

Figure 5-3. continued 

(continued) 

154 



F I V E: Exploring Virtual Memory 

Figure 5-3. continued 

(continued) 

155 



ADVANCED WINDOWS 

Figure 5-3. continued 

(continued) 

156 



F I V E: Exploring Virtual Memory 

Figure 5-3. continued 

pVMQ.>dwRgnSiZe = VMQHelp.dw~gnSiZe;. 

(continued) 

157 



ADVANCED WINDOWS 

Figure 5·3. continued 

The Virtual Memory Map Sample Application 

158 

The VMMap application (VMMAP.EXE), listed in Figure 5-4 beginning 
on page 160, walks its own address space and shows the regions and the 
blocks within regions. The source code files, resource files, and make 
file for the application are in the VMMAP.05 directory on the compan
ion disc. When you start the program, the following window appears: 

00400000 Private 12288 
00403000 Private 4096 
00404000 Private 4096 
00405000 Private 8192 
00407000 Private 8192 
00409000 Reserve 28672 

00410000 Private 1114112 4 ---
00410000 Private 4096 -R\1- --
00411000 Reserve 1044480 
00510000 Private 4096 -R\1- --
00511000 Reserve 61440 

00520000 Private 65536 2 -RI1-
00520000 Private 4096 -R\1- -
00521000 Reserve 61440 -RI1- --

00530000 Private 1179648 Thread Stack 
00530000 Reserve 1077248 
00637000 Private 4096 -RlI- -
00638000 Reserve 24576 
0063EOOO Private 4096 
0063FOOO Private 4096 -RlI- --
00640000 Reserve 65536 

00650000 Private 1048576 2 -RlI-
00650000 Private 65536 -RlJ- --
00660000 Reserve 983040 -RlJ- -

00750000 Private 65536 2 -RlI-

The contents of this application's list box were used to produce the 
virtual memory map dumps presented in Figure 4-5 on page 112, Figure 
4-6 on page 115, and Figure 4-7 on page 120 in Chapter 4. 

Each entry in the list box shows the result of information obtained 
by calling my VMQuery function. The main loop looks like this: 

PVOID pvAddress = 0x00000000: 
BOOl fOk = TRUE: 
VMQUERY VMQ: 



F I V E: Exploring Virtual Memory 

while (fOk) { 
fOk = VMQuery(pvAddress, &VMQ): 

if (fO k) { 

Ifi f 1 

Ilendif 

} 

} 

II Construct the line to be displayed, and 
II add it to the list box. 
ConstructRgnlnfoLine(&VMQ, szLine, sizeof(szLine»: 
ListBox-AddString(hWndLB, szLine): 

II Change the 1 above to a 0 if you do not want 
II to see the blocks contained within the region. 

for (dwBlock = 0: fOk && (dwBlock < VMQ.dwRgnBlocks): 
dwBlock++) { 

} 

ConstructBlklnfoLine(&VMQ, szLine, sizeof(szLine»: 
ListBox-AddString(hWndLB, szLine): 

II Get the address of the next region to test. 
pvAddress = «BYTE *) pvAddress + VMQ.dwBlkSize): 
if (dwBlock < VMQ.dwRgnBlocks - 1) { 

} 

II Don't query the memory info after 
II the last block. 
fOk = VMQuery(pvAddress, &VMQ): 

II Get the address of the next region to test. 
pvAddress = «BYTE *) VMQ.pvRgnBaseAddress + 

VMQ.dwRgnSize): 

This loop starts walking from virtual address OxOOOOOOOO and ends 
when VMQuery returns FALSE, indicating that it can no longer walk the 
process's address space. With each iteration of the loop, there is a call to 
ConstructRgnlnfoLine; this function fills a character buffer with informa
tion about the region. Then this information is appended to the list. 

Within this main loop, there is a nested loop that iterates through 
each of the blocks in the region. Each iteration of this loop calls 
ConstructBlldnfoLine to fill a character buffer with information about the 
region's blocks. Then the information is appended to the list box. It's 
very easy to walk the process's address space using the VMQuery function. 

159 



ADVANCED WINDOWS 

VMMap.ico 

Figure 5-4. (continued) 

The VMMap application. 

160 



F I V E: Exploring Virtual Memory 

Figure 5-4. continued 

} 

~tcscat(szCl1pOata. szLine): 
_tcscat( szCl i pOata. _TEXT< "\r\h~'.» : 

(continued) 

161 



ADVANCED WINDOWS 

Figure 5-4. continued 

(continued) 

162 



F I V E: Exploring Virtual Memory 

Figure 5-4. continued 

if (pVMQ- >dwRgnStorage 
_stpri 

(continued) 

163 



ADVANCED WINDOWS 

Figure 5·4. continued 

(continued) 

164 



F I V E: Exploring Virtual Memory 

Figure 5-4. continued 

if (fOk) { 
II Construct the line to be displayed, and 
/1 add it to the list box. 
ConstructRgnlnfoL ine( &VMQ •. szL i ne.. sizeof( szLi ne» : 
ListBoX;...AddStr}ng{hWndLB,szLi ne}; 

i·,t1·. ' ............ ". . .. ,. .. . 
. ·.·/jClra#ge:the.;t'~bo¥e·to::a:';:0.tfyoud(),notwant .. 

4tto·see·the>I:11(icKs "Con.tlJ'i'rledw1th1 rithe .. ,regi on.···· 
,: .. ," , ,':" .. ' ": "" ".'. '. '. ,", ". """ ... :' ."~',: '" ;"" ,,,,,"'-:,. ,."', '''', ,. .'",',' ,.,' '" .. , , . ,.. "' 

.; ,. ~. , .. " . . .. , .... 

. . ". .... .' .. ;,~brdl~t~~.~~)~;~::,~~k.'i&(~~~ititk.< .. ' VMQ.dw·R9·~B tci~k~')!" .' .. 

.. . ··'i;'f~~;:!e~;i;~I~~~t~:.;~6i; ,,~Z~i"!~i1' 

.. .. . ·J~~mi!ilill~1~lI1~:::::t:~~~:";: ........ . 
... ••.•. :' ..••. "" .. 1 ... :' .... : .... '.} ...••.. :. :+. "'>. .i:\.' •• ' •.•.• : .•• : ..•... :.' .. ':.',.: .... : ..•... ! ..•.•. ::.' ..... <:,. 
':#e:n:d~f ... ;. ":::'.:;';.,' 

; "it Gei:·t·~~'adar~~ ~~/t~~ri~x£;r~g~ohtd:'t~;~,> 
.pv~~:~~~~Rih~~~rH::*tVMlhPVR9nB!lS~Addr~SS f .. ' 

: .'"'" ; 

..... ·vot~i:·~~~~~~:~~~:;{1~N~~~~d;··i~r J~'2H~NP· •• ·nwnd~t1.· .... ' .... 
. . .... ,,<, : ." 

(continued) 

165 



ADVANCED WINDOWS 

Figure 5-4. continued 

(continued) 

166 



F I V E: Exploring Virtual Memory 

Figure 5-4. continued 

VMMAP.RC 
I/MicrosoftVisua 1 C++ generated re.spurce $cri pt. 

·n 

(continued) 

167 



ADVANCED WINDOWS 

Figure 5-4. continued 

168 



C HAP T E R 5 I X 

USING VIRTUAL MEMORY IN 
YOUR OWN APPLICATIONS 

Wn32 offers the following three mechanisms for manipulating memory: 

• Virtual memory, which is best for managing large arrays of 
objects or structures 

• Memory-mapped files, which are best for managing large 
streams of data (usually from files) and for sharing data 
between multiple processes 

• Heaps, which are best for managing large numbers of small 
objects 

In this chapter, we discuss the first method, virtual memory. The 
other two methods, memory-mapped files and heaps, are discussed in 
Chapter 7 and Chapter 8, respectively. 

The Win32 functions for manipulating virtual memory allow you to 
directly reserve a region of address space, commit physical storage (from 
the paging file) to the region, and set your own protection attributes. 

Reserving a Region in an Address Space 
You reserve a region in your process's address space by calling VirtualAlloc: 

LPVOID VirtualAlloc(LPVOID lpAddress. DWORD cbSize. 
DWORD fdwAllocationType. DWORD fdwProtect); 

The first parameter, lpAddress, contains a memory address specifying 
where you would like the system to reserve the address space. Most of the 
time, you'll pass NULL as the lpAddress parameter. This tells VirtualAlloc 

169 



ADVANCED WINDOWS 

170 

that the system, which keeps a record of free address ranges, should 
reserve the region wherever it sees fit. The system can reserve a region 
from anywhere in your process's address space-there are no guaran
tees that the system will allocate regions from the bottom of your address 
space up or vice versa. However, you can have some say over this by using 
the MEM_TOP_DOWN flag, discussed later. 

For most programmers, the ability to choose a specific memory 
address where a region will be reserved is a new concept. When you allo
cated memory in the past, the operating system simply found a block of 
memory large enough to satisfy the request, allocated the block, and 
returned its address. But because each Win32 process has its own address 
space, you can actually specify the base memory address where you 
would like the operating system to reserve the region. 

For example, say that you want to allocate a region starting 50 MB 
into your process's address space. In this case, you will pass 52,428,800 
(50 x 1024 x 1024) as the lpAddress parameter. If there is a free region 
large enough to satisfy your request at this memory address, the system 
will reserve the desired region and return. If a free region does not exist 
at the specified address, or if the free region is not large enough, the sys
tem cannot satisfy your request and VirtualAlloc returns NULL. 

Under Windows 95, you can attempt to reserve a region only in the 
Ox00400000 through Ox7FFFFFFF partition of a process's address space. 
An attempt to reserve a region in any other partition will fail, causing 
VirtualAlloc to return NULL. 

Under Windows NT, you can attempt to reserve a region only in the 
Ox00010000 through Ox7FFEFFFF partition of a process's address space. 
An attempt to reserve a region in any other partition will fail, causing 
VirtualAlloc to return NULL. 

As mentioned in Chapter 4, regions are always reserved on an allo
cation granularity boundary (64 KB for all implementations of Win32 to 
date). So if you attempt to reserve a region starting at address 19,668,992 
(300 x 65,536 + 8192) in your process's address space, the system rounds 
that address down to an even multiple of 64 KB and will actually reserve 
the region starting at address 19,660,800 (300 x 65,536). 



S I X: Using Virtual Memory in Your Own Applications 

If VirtualAlloc can satisfY your request, it returns a value indicating 
the base address of the reserved region. If you passed a specific address 
as VirtuaLAlloc's lpAddress parameter, this return value is the same value 
that you passed to VirtuaLAlloc rounded down (if necessary) to an even 
64-KB boundary. 

VirtuaLAlloc's second parameter, cbSize, specifies the size of the re
gion you want to reserve in bytes. Because the system must always reserve 
regions in multiples of the CPU's page size, an attempt to reserve a re
gion that spans 79 KB will actually result in reserving a region that spans 
80 KB on machines that use either 4-KB or 8-KB pages. 

VirtualAlloc's third parameter, fdwAllocationType, tells the system 
whether you want to reserve a region or commit physical storage. (This 
distinction is necessary because VirtuaLAlloc is also used to commit 
physical storage.) To reserve a region of address space, you must pass 
the MEM_RESERVE identifier as the value for the fdwAllocationType 
parameter. 

If you're going to reserve a region that you don't expect to release 
for a long time, you might want to reserve the region at the highest 
memory address possible. That way, the region does not get reserved 
from the middle of your process's address space, where it can potentially 
cause fragmentation. If you want the system to reserve a region at the 
highest possible memory address, you must pass NULL for the lpAddress 
parameter and you must also bitwise OR the MEM_TOP_DOWN flag 
with the MEM_RESERVE flag when calling VirtuaLAlloc. 

Under Windows 95, the MEM_TOP_DOWN flag is ignored. 

The last parameter, fdwProtect, indicates the protection attribute 
that should be assigned to the region. The protection attribute associ
ated with the region has no effect on the committed storage mapped to 
the region. Regardless of the protection attribute assigned to a region, if 
no physical storage is committed, any attempt to access a memory 
address in the range will cause the thread to raise an access violation. 
This is identical to what happens if you reserve and commit storage to a 
region using the PAGE_NOACCESS flag. 

171 



ADVANCED WINDOWS 

When reserving a region, assign the protection attribute that will 
be used most often with the storage committed to the region. For 
example, if you intend to commit physical storage with a protection 
attribute of PAGE_READWRITE, you should reserve the region with 
PAGE_READWRITE. The internal record keeping of the system behaves 
more efficiently when the region's protection attribute matches the 
committed storage's protection attribute. 

You can use any of the following protection attributes: PAGE
_NOACCESS, PAGE_READWRITE, PAGE_READONLY, PAGE_EXE
CUTE, PAGE_EXECUTE_READ, or PAGE_EXECUTE_READWRITE. 
However, you cannot specify either the PAGE_WRITECOPYor the 
PAGE_EXECUTE_WRITECOPYattribute. If you do so, VirtuaLAlloc will 
not reserve the region and will return NULL. Also, you cannot use either 
of the protection attribute flags PAGE_GUARD or PAGE_NOCACHE 
when reserving regions-they can be used only with committed storage. 

Windows 95 supports only the PAGE_NOACCESS, PAGE_READONLY, 
and PAGE_READWRITE protection attributes. Attempting to reserve 
a region using PAGE_EXECUTE or PAGE_EXECUTE_READ results 
in a region with PAGE_READONLY protection. Likewise, reserving a 
region using PAGE_EXECUTE_READWRITE results in a region with 
PAGE_READWRITE protection. 

Committing Storage in a Reserved Region 

172 

Mter you have reserved a region, you will need to commit physical stor
age to the region before you can access the memory addresses contained 
within it. The system allocates physical storage committed to a region 
from the system's paging file on your hard disk. Physical storage is com
mitted on page boundaries and in page-size chunks. 

To commit physical storage, you must call VirtuaLAlloc again. This 
time, however, you'll pass the MEM_COMMIT identifier instead of the 
MEM_RESERVE identifier for the fdwAllocationType parameter. You 
usually pass the same page protection attribute that was used when 
VirtuaLAlloc was called to reserve the region, although you can specifY 
a different protection attribute. 

From within the reserved region, you must tell VirtualAlloc where 
you want to commit physical storage and how much physical storage to 



S I X: Using Virtual Memory in Your Own Applications 

commit. You do this by specifying the desired memory address in the 
lpAddress parameter and the amount of physical storage, in bytes, in 
the cbSize parameter. Note that you don't have to commit physical stor
age to the entire region at one time. 

Let's look at an example of how to commit memory. Say your appli
cation is running on an Intel x86 CPU and the application reserves a 
512-KB region starting at address 5,242,880. Now you would like your 
application to commit storage to the 6-KB portion of the reserved 
region starting 2 KB into the reserved region's address space. To do this, 
call VirtualAlloc using the MEM_COMMIT flag as follows: 

VirtualAlloc(5242880 + (2 * 1024). 6 * 1024. 
MEM_COMMIT. PAGE_READWRITE); 

In this case, the system must commit 8 KB of physical storage, span
ning the address range 5,242,880 through 5,251,072 (5,242,880 + 8 KB). 
Both of these committed pages have a protection attribute of PAGE
_READWRITE. Protection attributes are assigned on a whole-page basis 
only. It is not possible to use different protection attributes for portions 
of the same page of storage. However, it is possible for one page in a 
region to have one protection attribute (such as PAGE_READWRITE) 
and for another page in the same region to have a different protection 
attribute (such as PAGE_READONLY). 

Reserving a Region and 
Committing Storage Simultaneously 

There will be times when you'll want to reserve a region and commit stor
age to it simultaneously. You can do this by placing a single call to 
VirtualAlloc as follows: 

PVOID pvMem = VirtualAlloc(NULL. 99 * 1024. 
MEM_RESERVE I MEM_COMMIT. PAGE_READWRITE); 

This call is a request to reserve a 99-KB region and commit 99 KB 
of physical storage to the region. When the system processes this call, it 
first searches your process's address space to find a contiguous area of 
unreserved address space large enough to hold 100 KB (on a 4-KB page 
machine) or 104 KB (on an 8-KB page machine). 

The system searches the address space because you specified NULL 
as the lpAddress parameter. If you had specified a memory address for 
lpAddress, the system would see whether there was enough unreserved 

173 



ADVANCED WINDOWS 

address space at that memory address. If the system could not find 
enough unreserved address space, VirtualAlloc would return NULL. 

If a suitable region can be reserved, the system then commits 100 
KB (on a 4-KB page machine) or 104 KB (on an 8-KB page machine) of 
physical storage to the region. Both the region and the committed stor
age will be assigned PAGE_READWRITE protection. 

Finally, VirtualAlloc returns the virtual address of the reserved and 
committed region, which is then saved in the pvMem variable. If the sys
tem couldn't find a large enough address space or commit the physical 
storage, VirtualAlloc returns NULL. 

It is certainly possible when reserving a region and committing 
physical storage this way to pass a specific address as the lpvAddress 
parameter to VirtualAlloc. Or you might need to have the system select a 
suitable region toward the top of your process's address space by ~Ring 
the MEM_TOP_DOWN flag to the JdwAllocationType parameter and pass
ing NULL for the lpAddress parameter. 

When to Commit Physical Storage 

174 

Let's pretend you're implementing a spreadsheet application that sup
ports 200 rows by 256 columns. For each cell, you need a CELLDATA 
structure that describes the contents of the cell. The easiest way for you 
to manipulate the two-dimensional matrix of cells would be to declare 
the following variable in your application: 

CELLDATA CellData[200][256]; 

If the size of a CELLDATA structure were 128 bytes, it would require 
6,553,600 (200 x 256 x 128) bytes of physical storage. That's a lot ofphysi
cal storage to allocate from the paging file right up front for a spread
sheet, especially when you consider that most users put information into 
only a few spreadsheet cells, leaving the majority unused. The matrix 
would be very inefficient. 

So, historically, spreadsheets have been implemented using other 
data structure techniques, such as linked lists. With the linked-list ap
proach, CELLDATA structures have to be created only for the cells in the 
spreadsheet that actually contain data. Since most cells in a spreadsheet 
go unused, this method saves a tremendous amount of storage. However, 
this technique makes it much more difficult to obtain the contents of a 
cell. If you want to know the contents of the cell in row 5, column 10, you 



S I X: Using Virtual Memory in Your Own Applications 

must walk through linked lists in order to find the desired cell, which 
makes the linked-list method slower than the declared-matrix method. 

Virtual memory offers a compromise between declaring the two
dimensional matrix up front and implementing linked lists. With virtual 
memory, you get the fast, easy access offered by the declared-matrix tech
nique combined with the superior storage savings offered by the linked
list technique. 

For you to obtain the advantages of the virtual memory technique, 
your program needs to do the following: 

1. Reserve a region large enough to contain the entire matrix of 
CELLDATA structures. Reserving a region requires no physical 
storage at all. 

2. When the user enters data into a cell, locate the memory 
address in the reserved region where the CELLDATA structure 
should go. There is, of course, no physical storage mapped to 
this address yet, so any attempts to access memory at this address 
will raise an access violation. 

3. Commit just enough physical storage to the memory address 
located in step 2 for a CELLDATA structure. (You can tell 
the system to commit physical storage to specific parts of the 
reserved region-a region can contain both parts that are 
mapped to physical storage and parts that are not.) 

4. Set the members of the new CELLDATA structure. 

Now that physical storage is mapped to the proper location, your 
program can access the storage without raising an access violation. This 
virtual memory technique is excellent because physical storage is com
mitted only as the user enters data into the spreadsheet's cells. Because 
most of the cells in a spreadsheet are empty, most of the reserved region 
will not have physical storage committed to it. 

The one problem with the virtual memory technique is that you 
must determine when physical storage needs to be committed. If the 
user enters data into a cell and then simply edits or changes that data, 
there is no need to commit physical storage-the storage for the cell's 
CELLDATA structure was committed the first time data was entered. 

Also, the system always commits physical storage with page granu
larity (4 KB on x86, MIPS, and PowerPC; 8 KB on Alpha). So when you 

175 



ADVANCED WINDOWS 

176 

attempt to commit physical storage for a single CELLDATA structure (as 
in step 2 on the previous page), the system is actually committing a full 
page of storage. This is not as wasteful as it sounds: committing storage 
for a single CELLDATA structure has the effect of committing storage for 
other nearby CELLDATA structures. If the user then enters data into a 
neighboring cell, which is frequently the case, you might not need to 
commit additional physical storage. 

There are four methods for determining whether to commit physi
cal storage to a portion of a region: 

• Always attempt to commit physical storage. Instead of checking 
to see whether physical storage is mapped to a portion of the 
region, have your program try to commit storage every time it 
calls VirtualAlloc. The system first checks to see whether storage 
has already been committed and, if so, does not commit addi
tional physical storage. This is the easiest approach but has the 
disadvantage of making an additional function call every time a 
CELLDATA structure is altered, which makes your program 
perform more slowly. 

• Determine (using the VirtualQuery function) whether physical 
storage has already been committed to the address space con
taining the CELLDATA structure. If it has, do nothing else; if it 
hasn't, call VirtualAlloc to commit the memory. This is actually 
worse than the first method; it both increases the size of your 
code and slows down your program because of the additional 
call to VirtualQuery. 

• Keep a record of which pages have been committed and which 
haven't. Doing so makes your application run faster: you avoid 
the call to VirtualAlloc, and your code can determine more 
quickly than the system whether storage has already been com
mitted. The disadvantage is that you must keep track of the 
page commit information somehow, which could be either very 
simple or very difficult depending on your specific situation. 

• The best method takes advantage of structured exception han
dling (SEH). SEH is a Win32 feature that causes the system to 
notifY your application when certain situations occur. Essen
tially, you set up your application with an exception handler, 
and then, whenever an attempt is made to access uncommitted 



S I X: Using Virtual Memory in Your Own Applications 

memory, the system notifies your application of the problem. 
Your application then commits the memory and tells the system 
to retry the instruction that caused the exception. This time, 
the memory access succeeds, and the program continues run
ning as though there had never been a problem. This is the 
best method because it requires the least amount of work from 
you (meaning less code) and because your program will run at 
full speed. A complete discussion of the SEH mechanism is 
saved for Chapter 14 in this book. 

Decommitting Physical 
Storage and Releasing a Region 

To decommit physical storage mapped to a region or release an entire 
region of address space, call the VirtuaTFree function: 

BOOl VirtualFree(lPVOID lpAddress, DWORD cbSize, 
DWORD fdwFreeType); 

Let's examine the simple case of calling VirtuaTFree first to release a 
reserved region. When your process will no longer be accessing the 
physical storage within a region, you can release the reserved region, 
and all the physical storage committed to the region, by making a single 
call to VirtuaTFree. 

For this call, the lpAddress parameter must be the base address of 
the region. This would be the same address that VirtuaLAlloc returned 
when the region was reserved. The system knows the size of the region at 
the specified memory address, so you can pass 0 for the cbSize parameter. 
In fact, you must pass 0 for the cbSize parameter, or the call to VirtuaTFree 
will fail. For the third parameter, JdwFreeType, you must pass MEM_RE
LEASE to tell the system to decommit all physical storage mapped to 
the region and to release the region. When releasing a region, you must 
release all the address space that was reserved by the region. For example, 
you cannot reserve a 500-MB region and then decide to release only 200 
MB of it. All 500 MB must be released. 

When you want to decommit some physical storage from the region 
without releasing the region, you also call VirtuaTFree. To decommit some 
physical storage, you must pass the memory address that identifies the 
first page to be decommitted in VirtuaTFree's lpAddress parameter. You 

177 



ADVANCED WINDOWS 

must also specify the number of bytes to free in the cbSize parameter and 
the MEM_DECOMMIT identifier in the fdwFreeType parameter. 

Like committing, decommitting is done with page granularity. That 
is, specifying a memory address in the middle of a page de commits the 
entire page. And, of course, if lpAddress + cbSize falls in the middle of a 
page, the whole page that contains this address is de committed as well. 
So all pages that fall within the range of lpAddress to lpAddress + cbSize are 
decommitted. 

If cbSize is 0 and lpAddress is the base address for the allocated region, 
VirtualFree will decommit the complete range of allocated pages. Mter 
the pages of physical storage have been decommitted, the freed physical 
storage is available to any other process in the system; any attempt to 
access the decommitted memory results in an access violation. 

When to Decommit Physical Storage 

178 

In practice, knowing when it's OK to decommit memory is a very tricky 
thing. Consider the spreadsheet example again. If your application is 
running on an Intel x86 machine, each page of storage is 4 KB and can 
hold 32 (4096 / 128) CELLDATA structures. If the user deletes the con
tents of CellData[O}[l], you might be able to decommit the page of stor
age as long as cells CellData[O}[O] through CellData[O][31] are also not 
in use. But how do you know? There are many different ways to tackle 
this problem. 

• Without a doubt, the easiest solution is to design a CELLDATA 
structure that is exactly 1 page in size. Then, because there is 
always one structure per page, you can simply decommit the 
page of physical storage when you don't need the data in the 
structure any longer. Even if your data structures were multiples 
ofa page, say, 8 KB or 12 KB for Intel CPUs (these would be 
unusually large structures), de committing memory would still 
be pretty easy. Of course, to use this method you must define 
your data structures to meet the page size of the CPU you're 
targeting-not how we usually write our programs . 

• A more practical solution is to keep a record of which struc
tures are in use. To save memory, you might use a bitmap. So if 
you have an array of 100 structures, you also maintain an array 



S I X: Using Virtual Memory in Your Own Applications 

of 100 bits. Initially, all the bits are set to 0, indicating that no 
structures are in use. As you use the structures, you set the cor
responding bits to 1. Then, whenever you don't need a structure 
and change its bit back to 0, you check the bits of the adjacent 
structures that fall into the same page of memory. If none of the 
adjacent structures is in use, you can decommit the page . 

• The last solution implements a garbage collection function. 
This scheme relies on the fact that the system sets all the bytes 
in a page to ° when physical storage is first committed. To use 
this scheme, you must first set aside a BaaL (perhaps called 
jInUse) in your structure. Then, every time you put a structure 
in committed memory, you need to ensure thatjInUse is set 
to TRUE. 

As your application runs, you'll want to call the garbage col
lection function periodically. This function should traverse all 
the potential data structures. For each structure, the function 
first determines whether storage is committed for the structure; 
if so, the function checks the jInUse member to see whether it is 
0. A value of ° means that the structure is not in use, while a 
value of TRUE means that it is in use. After the garbage collec
tion function has checked all the structures that fall within a 
given page, it calls VirtuaTFree to decommit the storage if all the 
structures are not in use. 

You can call the garbage collection function immediately 
after a structure is no longer considered in use, but doing so 
might take more time than you want to spend because the func
tion cycles through all the possible structures. An excellent way 
to implement this function is to have it run as part of a lower
priority thread. In this way, you don't take time away from the 
thread executing the main application. Whenever the main 
application is idle or the main application's thread is perform
ing file I/O, the system can schedule time to the garbage collec
tion function. 

Of all the methods listed above, the first two are my personal favor
ites. However, if your structures are not big (less than a page), I recom
mend using the last method. 

179 



ADVANCED WINDOWS 

The Virtual Memory Allocation Sample Application 

180 

The VMAlloc application (VMALLOC.EXE), listed in Figure 6-1 begin
ning on page 182, demonstrates how to use virtual memory techniques 
for manipulating an array of structures. The source code files, resource 
files, and make file for the application are in the VMALLOC.06 direc
tory on the companion disc. When you start the program, the following 
window appears: 

Initially, no region of address space has been reserved for the array, 
and all the address space that would be reserved for it is free, as shown by 
the memory map. When you click the Reserve A Region For 50 Struc
tures, 2 KB Each button, VMAlloc calls VirtualAlloc to reserve the region, 
and the memory map is updated to reflect this. Mter VirtualAlloc reserves 
the region, the remaining buttons become active. 

You can now type an index into the edit control or use the scroll bar 
to select an index, and then click on the Use button. This has the effect 
of committing physical storage to the memory address where the array 
element is to be placed. When a page of storage is committed, the 
memory map is redrawn to reflect the state of the reserved region for 
the entire array. So if, after reserving the region, you use the Use button 
to mark array elements 7 and 46 as in use, the window will look like the 
window on the facing page (when you are running the program on a4-KB 
page machine). 



S I X: Using Virtual Memory in Your Own Applications 

Any element that is marked as in use can be cleared by clicking 
on the Clear button. But doing so does not de commit the physical stor
age mapped to the array element. This is because each page contains 
room for multiple structures-just because one is clear doesn't mean the 
others are too. If the memory was decommitted, the data in the other 
structures would be lost. Because selecting Clear doesn't affect the 
region's physical storage, the memory map is not updated when an array 
element is cleared. 

However, when a structure is cleared, its JInUse member is set to 
FALSE. This is necessary so that the garbage collection routine can make 
its pass over all the structures and decommit storage that's no longer in 
use. If you haven't guessed it by now, the Garbage Collect button tells 
VMAlloc to execute its garbage collection routine. To keep things 
simple, I have not implemented the garbage collection function as its 
own thread. 

To demonstrate the garbage collection function, clear the array 
element at index 46. Notice that the memory map does not change. 
Now click on the Garbage Collect button. The program decommits the 
page of storage containing element 46, and the memory map is updated 
to reflect this: 

181 



ADVANCED WINDOWS 

VMAlloc.ico 

182 

Finally, even though there is no visual display to inform you, all the 
committed memory is decommitted and the reserved region is freed 
when the window is destroyed. 

There is another element to this program that I haven't described 
yet. The program needs to determine the state of memory in the region's 
address space in three places: 

• Mter changing the index, the program needs to enable the Use 
button and disable the Clear button or vice versa. 

• In the garbage collection function, the program needs to see 
whether storage is committed before actually testing to see 
whether the jlnUse flag is set. 

• When updating the memory map, the program needs to know 
which pages are free, reserved, and committed. 

VMAlloc performs all these tests by calling the VirtualQy,ery func
tion, discussed in the previous chapter. 

Figure 6-1. (continued) 

The VMAlloc sample application. 



Figure 6-1. continued 

tYpedefstruct { 
8(){)~ 
BYTE 

S I X: Using Virtual Memory in Your Own Applications 

(continued) 

183 



ADVANCED WINDOWS 

Figure 6-1. continued 

(continued) 

184 



S I X: Using Virtual Memory in Your Own Applications 

Figure 6·1. continued 

(continued) 

185 



ADVANCED WINDOWS 

Figure 6-1. continued 

(continued) 

186 



S I X: Using Virtual Memory in Your Own Applications 

Figure 6-1. continued 

} 

1/ Force the Use button control to have the focus. 
Set Focus (GetDl gItelll( hwnd •• IDC....,USE J): 

(continued) 

187 



ADVANCED WINDOWS 

(continued) 

188 



S I X: Using Virtual Memory in Your Own Applications 

Figure 6-1. continued 

if (nScrlPos )= MAX_SOMEDATA) 
. nScrlPos = MAX_SOME DATA . 1; 

Scron~lILSetPos(hwndCtl ,05<;,., Pos .• TRUE): 
$etDlgltf!.mI ht< hWn!:l •. .lOC..;,INDE.X ';nScrlP:os •.... TRUE): 

(continued) 

189 



ADVANCED WINDOWS 

Figure 6-1. continued 

(continued) 

190 



S I X: Using Virtual Memory in Your Own Applications 

Figure 6-1. continued 

(continued) 

191 



ADVANCED WINDOWS 

Figure 6-1. continued 

(continued) 

192 



S I X: Using Virtual Memory in Your Own Applications 

Figure 6-1. continued 

CAPTION "Virtual Memory Allocator" 
FONT B. "System" 
BEGIN 

. L TEXT 
CQ:NTROL 

"CPU page si ze:"~ I DC..,.STATIC, 4 ,4 • 51,B' 
n16KB" .IJ)C ... PAGES.IZE .... Stat1c",·· 

•. SS_LEFTNOWOROWRAPI .' SS':'N(i~REttl( J 
.' .... ,', .WS:;.GROUP;60,;4.3~.a . . ..... , . 
'DEFffUSH'BUTTON .. ' #&'Reservea 'reg1o'l1for'S9 structures. 

~a¢hi~;":.;>·"" .... . ,," '.' 
2 .KB\ 

[OC~Rt!SERV'E'.S'2.];6·;lBe·.14, • .wS.iGROUP···' ' . 
. .... &lnd'ai; hi',' ~". '49y~j;.lDe~lttDEXJEXT .. 4..3B ,.'" 

·,<:.~6i;;~~f.,; '.' . ·.;;'i~!t~~~i.5~ .~6 ,16~i2::,;,i' "'~' ...... ' ....: . 
;" ........ '!~~~~~~~~:,.. ...:':!::~;~:~~~~~5~~i~:::::!::~,i!' WSc-TABST9,P' . 

PUSHButTON,' '·.!'&Clear'!. IOC~CLEAR.'4e.~2; 40 .• 14 .•... , , ...... . 
. pi.l$ftaul'T6tt···<',;~&GaH;ag~, col 1 ett'<.'IPC:";GARBAGtGO~~Etr.·,·. ,., 

"·~;~~ti;;i; 

'. , •. :. ,;'?i'~'(I:/.v111 hii,i// Ifill/flUtllltll! jll/llt! //}q I (till U/II .•.. 
1/" 

";': :" . '::. :": .~. ". " ' 

'>#lfnd~f:ApST'uli'ID~I~¥OkEri" . , .•. '.' .... ...•. .., .'. ' ....... '. ... . .' 
·IIlI)! IlilIlFf/llti/'/li/llllil/I-I/I/111l111! dar Ii 11111/1 jill .. 
,'1/ · .. · .. ,y.,·";.L~;·:,'::>.,:.,',' .. ::""'"',, .';, ..... '.' ............. , ........•......... ' . '. 

·'l1:'GenElt"Ued'fromthe TEl<TlWCLU[)£:rt'e.sQur.ce.'· .. 
tl' , ... ' ' ••.. ':.",:,.:.' •. '; .,' •. , .; .. 

. . #:~~'~~/!:'rOf6~~I'~;~f~~i&l~:~~b~:~~1 /.J.I·lf1~'1 (:1/'/I/:t,1 j 'III I til ill·/,,·. J .. 

. .: .:. :.:~.~., ·:t ... : ., ... 

193 



ADVANCED WINDOWS 

Changing Protection Attributes 

194 

Although it is a very uncommon practice, it is possible to change the pro
tection attributes associated with a page or pages of committed physical 
storage. For example, say you've developed code to manage a linked list, 
the nodes of which you are keeping in a reserved region. You could 
design the functions that process the linked list so that they change the 
protection attributes of the committed storage to PAGE_READWRITE 
at the start of each function and then back to PAGE_NOACCESS just 
before each function terminates. 

By doing this, you protect your linked-list data from other bugs hid
ing in your program. If any other code in your process has a stray poin ter 
that attempts to access your linked-list data, an access violation is raised. 
This can be incredibly useful when you're trying to locate hard-to-find 
bugs in your application. 

You can alter the protection rights of a page of memory by calling 
VirtualProtect: 

BOOl V;rtualProtect(lPVOID lpAddress. DWORD dwS;ze. 
DWORD flNewProtect. PDWORD lpflOldProtect); 

Here IpAddress points to the base address of the memory, dwSize 
indicates the number of bytes for which you want to change the protec
tion attribute, and flNewProtect can represent anyone of the PAGE_ * 
protection attribute identifiers except PAGE_WRITECOPYand PAGE
_EXECUTE_WRITECOPY 

The last parameter, IPflOldProtect, is the address of a DWORD that 
VirtualProtect will fill in with the old protection attributes for the storage. 
You must pass a valid address for this parameter, or the function will raise 
an access violation. If you are changing the protection attribute of more 
than one page, the DWORD pointed to by IPflOldProtect will receive the 
old protection attribute for the first page only. VirtualProtect returns 
TRUE if it's successful. 

Of course, protection attributes are associated with entire pages of 
storage and cannot be assigned to individual bytes. So if you were to call 
VirtualProtect on a 4-KB page machine as follows: 

VirtualProtect(lpRgnBase + (3 * 1024). 2 * 1024. 
PAGE_NOACCESS. &flOldProtect); 

You would end up assigning the PAGE_NOACCESS protection 
attribute to 2 pages of storage. 



5 I X: Using Virtual Memory in Your Own Applications 

The TInjLib sample application, shown in Chapter 16, demon
strates how to use VirtualProtect to alter protection attributes on com
mitted storage. 

Windows 95 supports only the PAGE_NOACCESS, PAGE_READONLY, 
and PAGE_READWRITE protection attributes. If you attempt to change 
a page's protection to PAGE_EXECUTE or PAGE_EXECUTE_READ, 
the page receivesPAGE_READONLYprotection. Likewise, if you change 
a page's protection to PAGE_EXECUTE_READWRITE, the page re
ceives PAGE_READWRITE protection. 

Locking Physical Storage in RAM 
Remember that committing physical storage is really a matter of allocat
ing space from the system's paging file. However, for your program to 
actually access its data, the system must locate your program's physical 
storage in the paging file and load it into RAM. The system has been 
finely tuned and optimized to perform this page swapping so that appli
cations run very efficiently. However, there are two Win32 functions that 
allow you to override this process: VirtualLock and VirtualUnlock. 

The VirtualLock function tells the system that you want to lock a set 
of pages in RAM. However, the system guarantees that the pages are 
locked in RAM only while a thread in your process is running. When the 
system preempts all the threads in your process, the system is free to 
unlock the pages and swap them to the physical storage in the paging 
file. When the system is ready to reschedule a thread in your process, it 
loads all of the pages that you wanted locked back into RAM. When the 
locked pages are back in RAM, the system allows the rescheduled thread 
to continue executing. In this situation, your process takes an immediate 
performance hit whenever a thread is being rescheduled. 

When the system is not running any threads in your process, it does 
not immediately swap the locked pages to the paging file. Instead, the 
system tries to keep locked pages in RAM as long as possible. If threads 
in another process do not make heavy use of the RAM, the system will 
not need to swap your process's locked pages. In this case, when the sys
tem reschedules threads in your process, the locked pages will already be 
loaded in RAM and the system will not have to access the paging file. 

195 



ADVANCED WINDOWS 

11 
Important 

196 

The locking of physical storage into RAM is a feature that Win32 offers 
for special purposes. For example, many device drivers must respond to 
events very quickly and cannot afford to wait for the system's paging 

. mechanism to load the physical storage on demand. You are much better 
off allowing the system to perform the page swapping rather than get
ting involved with it yourself. Mter all, only the operating system knows 
how other applications are behaving and what toll they are taking on the 
system's memory. The operating system's memory management routines 
have been fine-tuned for this-let them do their job. 

In addition, the locking of physical storage into RAM cannot be 
used to make your application in any way "realtime" because you cannot 
lock down all the pages-for system DLLs, device drivers, stack pages, 
heaps, and so forth-that the system might access while your thread is 
running. If the system is doing any paging at all, having your application 
process lock down some of the pages that it knows about will probably 
make your application less realtime by forcing pages of storage that might 
be accessed even more often out of RAM. 

If you still want to lock physical storage in RAM, you need to 
call VirtualLock: 

BOOl Virtuallock(lPVOID lpvMem. DWORD cbMem); 

This function locks the cbMem bytes starting at address lpvMem in 
RAM. If it is successful, TRUE is returned. It is important to note that all 
the pages you attempt to lock must be committed physical storage. In 
addition, VirtualLock cannot be used to lock memory allocated with a 
PAGE_NOACCESS protection attribute. Also, the system will not allow a 
single process to lock more than approximately 30 pages of storage. This 
number may seem rather small to you-on an x86, this comes to only 
122,880 bytes. The reason for this small number is to prevent a single 
process from greatly affecting the overall performance of the system. 

When it is no longer necessary for your application to keep the 
memory locked, you can unlock it with VirtualUnlock: 

BOOl VirtualUnlock(lPVOID lpvMem. DWORD cbMem); 

This function unlocks the cbMem bytes of memory starting at address 
lpvMem. When you're unlocking memory, it is not necessary to unlock 
the exact amount that was locked with VirtualLock. If the range of memory 
is unlocked successfully, VirtualUnlock returns TRUE. 



S I X: Using Virtual Memory in Your Own Applications 

As with all of the virtual functions, operations are performed on a 
page basis. So if you lock a range of bytes that straddles a series of pages, 
all pages affected by the range are locked or unlocked. 

Under Windows 95, the VirtualLock and VirtualUnlock functions have no 
useful implementation and simply return FALSE; calling GetLastError 
returns ERROR_CALL_NOT_IMPLEMENTED. 

A Thread's Stack 
Sometimes the system reserves regions in your own process's address 
space. I mentioned that this happened for process and thread environ
ment blocks in Chapter 4. Another time that the system does this is for 
a thread's stack. 

Whenever a thread is created in your process, the system reserves a 
region of address space for the thread's stack (each thread gets its very 
own stack) and also commits some physical storage to this reserved 
region. By default, the system reserves 1 MB of address space and com
mits 2 pages of storage. However, these defaults can be changed by speci
fying the /STACK option to the linker when you link your application: 

ISTACK:reserve[.commit] 

When a thread's stack is created, the system reserves a region of 
address space indicated by the linker's /STACK switch. However, you 
can override the amount of storage that is initially committed when you 
call the CreateThread or the_beginthreadex function. Both functions have a 
parameter that allows you to override the storage that is initially commit
ted to the stack's address space region. If you specify 0 for this parameter, 
the system uses the commit size indicated by the /STACK switch. For the 
remainder of this discussion, I will assume we're using the default stack 
sizes: 1 MB of reserved region with storage committed in single pages. 

Figure 6-2 on the following page shows what a stack region (reserved 
starting at address Ox08000000) might look like on a machine whose 
page size is 4 KB. The stack's region and all of the physical storage com
mitted to it have a page protection of PAGE_READWRITE. 

197 



ADVANCED WINDOWS 

198 

Figure 6-2. 
What a thread:S stack region looks like when it is first created. 

Mter reserving this region, the system commits physical storage to 
the top 2 pages of the region. Just before allowing the thread to begin 
execution, the system sets the thread's stack pointer .register to point to 
the end of the top page of the stack region (an address very close to 
Ox08100000). This page is where the thread will begin using its stack. 
The second page from the top is called the guard page. As the thread 
increases its call tree by calling more functions, the thread needs more 
stack space. 

Whenever the thread attempts to access storage in the guard page, 
the system is notified. In response, the system commits another page of 
storage just below the guard page. Then the system removes the guard 
page protection flag from the current guard page and assigns the 
guard page protection flag to the newly committed page of storage. This 



S I X: Using Virtual Memory in Your Own Applications 

technique allows the stack storage to increase only as the thread requires 
it. Eventually, if the thread's call tree continues to expand, the stack 
region will look like Figure 6-3. 

Figure 6-3. 
A nearly full thread's stack region. 

Referring to Figure 6-3, assume that the thread's call tree is very 
deep and that the stack pointer CPU register points to the stack memory 
address Ox08003004. Now, when the thread calls another function, the 
system has to commit more physical storage. However, when the system 
commits physical storage to the page at address Ox08001000, it does not 
do exactly what it did when committing physical storage to the rest of the 
stack's memory region. Figure 6-4 on the following page shows what the 
stack's reserved memory region looks like. 

199 



ADVANCED WINDOWS 

200 

Figure 6-4. 
A full thread stack region. 

As you'd expect, the page starting at address Ox08002000 has the 
guard attribute removed, and physical storage is committed to the page 
starting at Ox08001000. The difference is that the system does not apply 
the guard attribute to the new page of physical storage (Ox08001000). 
This means that the stack's reserved address space region contains all 
the physical storage that it can ever contain. The bottommost page is 
always reserved and never gets committed. I will explain the reason for 
this shordy. 



5 I X: Using Virtual Memory in Your Own Applications 

The system performs one more action when it commits physical 
storage to the page at address Ox08001000-it raises an EXCEPTION
_STACK_OVERFLOW exception (defined as OxCOOOOOFD in WINNT.H). 
By using Win32 structured exception handling (SEH), your program will 
be notified of this condition and can recover gracefully. For more infor
mation on SEH, see Chapter 14, including the SEHSum application. 

If the thread continues to use the stack after the stack overflow 
exception is raised, all the memory in the page at Ox0800l000 will be 
used and the thread will attempt to access memory in the page starting at 
Ox08000000. When the thread attempts to access this reserved (uncom
mitted) memory, the system raises an access violation exception. If this 
access violation exception is raised while the thread is attempting to 
access the stack, the thread is in very deep trouble. The system takes con
trol at this point and terminates the process-not just the thread, but the 
whole process. The system doesn't even show a message box to the user; 
the whole process just disappears! 

Now I will explain why the bottommost page of a stack's region is 
always reserved. Doing so protects against accidental overwriting of 
other data being used by the process. You see, it's possible that at address 
Ox07FFFOOO (1 page below Ox08000000), another region of address 
space has committed physical storage. If the page at Ox08000000 con
tained physical storage, the system would not catch attempts by the 
thread to access the reserved stack region. If the stack were to dip below 
the reserved stack region, the code in your thread would overwrite other 
data in your process's address space-a very, very difficult bug to catch. 

A Thread's Stack Under Windows 95 
Under Windows 95, stacks behave similarly to their Windows NT coun
terparts. However, there are some significant differences. 

Figure 6-5 on the following page shows what a stack region (re
served starting at address Ox00530000) might look like for a I-MB stack 
when running under Windows 95. 

201 



ADVANCED WINDOWS 

202 

Figure 6-5. 
VVhat a thread's stack region looks like when it is first created under 
Windows 95. 

First, note that the region is actually 1 MB plus 128 KB in size, even 
though we wanted only to create a stack that was up to 1 MB in size. In 
Windows 95, whenever a region is reserved for a stack, the system actu
ally reserves a region that is 128 KB larger than the requested size. The 
stack is in the middle of this region, with a 64-KB block before the stack 
and another 64-KB block after the stack. 

The 64 KB at the beginning of the stack are there to catch stack 
overflow conditions, while the 64 KB at the end of the stack are there to 
catch stack underflow conditions. To see why stack underflow detection 
is useful, examine the following code fragment: 

int WINAPI WinMain (HINSTANCE hinstExe. HINSTANCE hinstPrev. 

} 

LPSTR lpszCmdLine. int nCmdShow) { 

char szBuf[100]; 
szBuf[10000] = 0; 

return(0); 

II Stack underflow 



S I X: Using Virtual Memory in Your Own Applications 

When this function's assignment statement is executed, an attempt is 
made to access beyond the end of the thread's stack. Of course, the com
piler and the linker will not catch the bug in the code on the previous 
page, but if your application is running under Windows 95, an access vio
lation will be raised when the statement executes. This is a nice feature 
of Windows 95 that is not offered by Windows NT. On Windows NT, it is 
possible to have another region immediately after your thread's stack. If 
this happens and you attempt to access memory beyond your stack, you 
might corrupt memory related to another part of your process-and the 
system will not detect this corruption. 

Second, note that there are no pages with the PAGE_GUARD pro
tection attribute flag. Since Windows 95 does not support this flag, it 
uses a slightly different technique in order to expand a thread's stack. 
Windows 95 marks the committed page immediately below the stack with 
the PAGE_NOACCESS protection attribute (address Ox0063EOOO in Fig
ure 6-5). Then, when the thread touches the page below the read/write 
pages, an access violation occurs. The system catches this, changes the 
no access page to a read/write page, and commits a new "guard" page 
just below the previous guard page. 

Third, note the single page of PAGE_READWRITE storage at 
address Ox00637000 in Figure 6-5. This page exists for 16-bit Windows 
compatibility. Although Microsoft never documented it, developers found 
out that the 16 bytes at the beginning of a 16-bit application's stack seg
ment contains information about the 16-bit application's stack, local 
heap, and local atom table. Because Win32 applications running on 
Windows 95 frequently call 16-bit DLL components, and some of these 
16-bit components assume that this information is available at the begin
ning of the stack segment, Microsoft was forced to simulate these bytes in 
Windows 95. When 32-bit code thunks to 16-bit code, Windows 95 maps 
a 16-bit CPU selector to the 32-bit stack and sets the stack segment (SS) 
register to point to the page at address Ox00637000. The 16-bit code can 
now access the 16 bytes at the beginning of the stack segment and con
tinue executing without any problems. 

Now, as Windows 95 grows the thread's stack, it continues to grow 
the block at address Ox0063FOOO; it also keeps moving the guard page 
down until 1 MB of stack storage is committed, and then the guard 
page disappears just as it does under Windows NT. The system also con
tinues to move the page for 16-bit Windows component compatibility 

203 



ADVANCED WINDOWS 

down, and eventually this page goes into the 64-KB block at the begin
ning of the stack region. So a fully committed stack on Windows 95 
looks like Figure 6-6: 

Figure 6-6. 
A full thread stack region under Windows 95. 

The C Run-Time's Stack Checking Function 

204 

MS-DOS and 16-bit Windows applications run in a system that doesn't 
take advantage of the CPU's ability to assign memory protections to 
regions of memory. So when your application uses its stack, the CPU 
can't detect when a stack overflow occurs. Because this can be a very dif
ficult bug to detect in these 16-bit environments, many CjC++ compiler 
vendors offer a compiler switch that causes the compiler to add a call to 
an internal function (provided in the C run-time library) that verifies the 
stack hasn't overflowed. This compiler switch is optional because adding 
the call to the stack checking function both increases the size of your 
EXE file and makes your application run more slowly. 

In the Win32 environment, the CPU can automatically detect when 
a thread overflows its stack, so there's no need for additional function 
calls that would make your code bigger and slower. 



S I X: Using Virtual Memory in Your Own Applications 

The 32-bit C/C++ compilers still offer a stack checking function, 
but the purpose of the function has changed totally. Now the 32-bit stack 
checking function makes sure that pages are committed to your thread's 
stack appropriately. Let's look at an example; here's a small function that 
requires a lot of memory for its local variables: 

void SomeFunction () { 
int nValues[4000]; 

II Do some processing with the array. 
nValues[0] = 0; II Some assignment 

This function will require at least 16,000 bytes (4000 x sizeof(int); 
each integer is 4 bytes) of stack space to accommodate the array ofinte
gers. Usually, the code generated by a compiler to allocate this stack 
space simply decrements the CPU's stack pointer by 16,000 bytes. How
ever, the system does not commit physical storage to this lower area of 
the stack's region until an attempt is made to access the memory address. 

On a system with a 4-KB or 8-KB page size, this could cause a prob
lem. If the first access to the stack is at an address that is below the guard 
page (as shown on the assignment line in the code above), the thread 
will be accessing reserved memory and the system will raise an access 
violation. To ensure that you can successfully write functions like the 
one shown above, the compiler inserts calls to the C run-time's stack 
checking function. 

When compiling your program, the compiler knows the page size 
for the CPU system you are targeting. If you are compiling your applica
tion for the x86, MIPS, or PowerPC, the x86, MIPS, andPowerPC compil
ers all know that the page size for these platforms is 4 KB. If you are 
compiling for the Alpha, the Alpha compiler knows that the page size 
is 8 KB. As the compiler encounters each function in your program, it 
determines the amount of stack space required for the function; if 
the function requires more stack space than the target system's page size, 
the compiler inserts a call to the C run-time's stack checking function. 
You do not need to specify any compiler switches-the compiler inserts 
this function automatically as needed. 

The pseudo-code on the next page shows what the stack checking 
function does. I say pseudo-code because this function is usually imple
mented in assembly language by the compiler vendors. 

205 



ADVANCED WINDOWS 

206 

II The C run-time knows the page size for the target system. 
Ifi fdef _M_ALPHA 
Ifdefi ne PAGESIZE (8 * 1024) II 8-KB page 
Ife 1 se 
Ifdefi ne PAGESIZE (4 * 1024) II 4-KB page 
Ifendif 

void StackCheck (int nBytesNeededFromStack) { 
II Get the stack pointer position. 

} 

II At this point. the stack pointer has NOT been decremented 
II to account for the function's local variables. 
PBYTE pbStackPtr = (CPU's stack painter); 

while (nBytesNeededFromStack >= PAGESIZE) { 

} 

II Move down a page on the stack--should be a guard page. 
pbStackPtr -= PAGESIZE; 

II Access a byte on the guard page--forces new page to be 
II committed and guard page to move down a page. 
pbStackPtr[0] = 0; 

II Reduce the number of bytes needed from the stack. 
nBytesNeededFromStack -= PAGESIZE; 

II Before returning. the StackCheck function sets the CPU's 
II stack pointer to the address below the function's 
II local variables. 

Visual C++ does offer a compiler switch that allows you to control 
the page-size threshold that the compiler uses to determine when to 
add the automatic call to Stack Check. This compiler switch should be 
used only if you know exactly what you are doing and have a special need 
for it. For 99.99999 percent of all applications and DLLs written, this 
switch should not be used. 



C HAP T E R 5 EVE N 

MEMORY-MAPPED FILES 

Working with files is something almost every application must do, and 
it's always a hassle. Should your application open the file, read it, and 
close the file, or should it open the file and use a buffering algorithm to 
read from and write to different portions of the file? Win32 offers the 
best of both worlds: memory-mapped files. 

Like virtual memory, memory-mapped files allow you to reserve a 
region of address space and commit physical storage to the region. The 
difference is that the physical storage comes from a file that is already on 
the disk instead of the system's paging file. Once the file has been 
mapped, you can access it as if the whole file were loaded in memory. 

Memory-mapped files are used for three different purposes: 

• The system uses memory-mapped files to load and execute EXE 
and DLL files. This greatly conserves both paging file space and 
the time required for an application to begin executing. 

• You can use memory-mapped files to access a data file on disk. 
This shelters you from performing file I/O operations on the 
file and from buffering the file's contents. 

• You can use memory-mapped files to allow multiple processes 
running on the same machine to share data with each other. 
(Win32 does offer other methods for communicating data 
among processes-but these other methods are implemented 
using memory-mapped files.) 

In this chapter, we will examine each of these uses for memory
mapped files. 

207 



ADVANCED WINDOWS 

Memory-Mapped EXEs and DLLs 

208 

When a thread calls CreateProcess, the system performs the following steps: 

1. The system locates the EXE file specified in the call to 
CreateProcess. If the EXE file cannot be found, the process is not 
created and CreateProcess returns NULL. 

2. The system creates a new process kernel object with a usage 
count ofl. 

3. The system creates a 4-GB address space for this new process. 

4. The system reserves a region of address space large enough 
to contain the EXE file. The desired location of this region is 
specified inside the EXE file itself. By default, an EXE file's 
base address is Ox00400000. However, you can override this 
when you create your application's EXE file by using the link
er's /BASE option when you link your application. 

5. The system notes that the physical storage backing the reserved 
region is in the EXE file on disk instead of the system's paging file. 

After the EXE file has been mapped into the process's address 
space, the system accesses a section of the EXE file that lists the DLLs 
containing functions that the code in the EXE calls. The system then calls 
LoadLibrary for each of these DLLs and, if any of the DLLs require addi
tional DLLs, the system calls LoadLibrary to load those DLLs as well. 
Every time LoadLibrary is called to load a DLL, the system performs steps 
similar to steps 4 and 5 above: 

1. The system reserves a region of address space large enough 
to contain the DLL file. The desired location of this region is 
specified inside the DLL file itself. By default, Visual C++ 2.0 
makes the DLL's base address OxlOOOOOOO. However, you can 
override this when you build your DLL by using the linker's 
/BASE option. All the standard system DLLs that ship with 
Windows NT and Windows 95 have different base addresses. 

2. If the system is unable to reserve a region at the DLL's pre
ferred base address, either because the region is occupied by 
another DLL or EXE or because the region just isn't big enough, 
the system will then try to find another region of address space 
to reserve for the DLL. It is unfortunate when a DLL cannot 
load at its preferred base address, for two reasons. First, the 



S EVE N: Memory-Mapped Files 

system might not be able to load the DLL at all if it does not 
have fixup information. (You can remove fixup information 
from a DLL when it is created by using the linker's /FIXED 
switch. This makes the DLL file smaller, but it also means that 
the DLL must load at its preferred address.) Second, the system 
must perform some relocations within the DLL. On Windows 95, 
the system can fix the relocations as pages are swapped into 
RAM. On Windows NT, these relocations require additional 
storage from the system's paging file; they also increase the 
amount of time needed to load the DLL. 

3. The system notes that the physical storage backing the reserved 
region is in the DLL file on disk instead of in the system's pag
ing file. If Windows NT has to perform relocations because the 
DLL could not load at its preferred base address, the system 
also notes that some of the physical storage for the DLL is 
mapped to the paging file. 

If for some reason the system is unable to map the EXE and all the 
required DLLs, the system displays a message box to the user and frees 
the process's address space and the process object. CreateProcess will return 
NULL to its caller; the caller can call GetLastError to get a better idea of 
why the process could not be created. 

Mter all the EXE and DLL files have been mapped into the pro
cess's address space, the system can begin executing the EXE file's 
startup code. Mter the EXE file has been mapped, the system takes care 
of all the paging, buffering, and caching. For example, if there is code in 
the EXE that causes it to jump to the address of an instruction that isn't 
loaded into memory, a fault will occur. The system detects the fault and 
automatically loads the page of code from the file's image into a page of 
RAM. Then the system maps the page of RAM to the proper location in 
the process's address space and allows the thread to continue executing 
as though the page of code were loaded all along. Of course, all this is 
invisible to the application. This process is repeated each time any 
thread in the process attempts to access code or data that is not loaded 
into RAM. 

Static Data Is Not Shared by Multiple Instances of an EXE or a Dll 
When you create a new process for an application that is already run
ning, the system simply opens another memory-mapped view of the file
mapping object that identifies the executable file's image and creates a 

209 



ADVANCED WINDOWS 

210 

new process object and a new thread object (for the primary thread). 
The system also assigns new process and thread IDs to these objects. By 
using memory-mapped files, multiple running instances of the same appli
cation can share the same code and data in RAM. 

Note one small problem here. Win32 processes use a flat, 4-GB 
address space. When you compile and link your program, all the code 
and data are thrown together as one large entity. The data is separated 
from the code but only to the extent that it follows the code in the EXE 
file.! The illustration below shows a simplified view of how the code and 
data for an application are loaded into virtual memory and then mapped 
into an application's address space. 

EXE File 
on Disk Virtual Memory 

C(j~pa9~2 

······Codep~ge1 

[)~tapage2 

Coq~page3. 

Data page 1 

Application's 
Address Space 

As an example, let's say that a second instance of an application is run. 
The system simply maps the pages of virtual memory containing the file's 
code and data into the second application's address space, as shown here: 

Second Instance's 
Address Space Virtual Memory 

" ':, 

C.0ge pagEt2 

First Instance's 
Address Space 

1. Actually, the contents of a file are broken down into sections. The code is in one section, 
and the global variables are in another section. Sections are aligned on page boundaries. 
Pages are 4 KB on x86, MIPS, and PowerPC CPUs, and 8 KB on the DEC Alpha CPU. An 
application can determine the page size being used by calling GetSystemlnfo. In the EXE or 
DLL file, the code section usually precedes the data section. 



5 EVE N: Memory-Mapped Files 

If one instance of the application alters some global variables resid
ing in a data page, the memory contents for all instances of the applica
tion change. This type of change could cause disastrous effects and must 
not be allowed. 

The system prohibits this by using the copy-on-write feature of the 
memory management system. Any time an application attempts to write 
to its memory-mapped file, the system catches the attempt, allocates a new 
block of memory for the page containing the memory the application is 
trying to be write to, copies the contents of the page, and allows the appli
cation to write to this newly allocated memory block. As a result, no other 
instances of the same application are affected. The illustration below 
shows what happens when the first instance of an application attempts to 
change a global variable in data page 2. 

Second Instance's 
Address Space 

Codepage 1 

Codepage 2 

Code page 3 

Virtual Memory 

Code page 2. 

Codepage t 

Code page 3 

Oatapagel 

Newpage 

First Instance's 
Address Space 

Codepage 1 

Code page 2 

The system allocated a new page of virtual memory and copied the 
contents of data page 2 into it. The first instance's address space is 
changed so that the new data page is mapped into the address space at 
the same location as the original address page. Now the system can let 
the process alter the global variable without fear of altering the data for 
another instance of the same application. 

A similar sequence of events occurs when an application is being 
debugged. Let's say that you're running multiple instances of an applica
tion and want to debug only one instance. 'You access your debugger and 
set a breakpoint in a line of source code. The debugger actually modifies 
your code by changing one of your assembly language instructions to an 
instruction that causes the debugger to activate itself. So we have the 
same problem again. When the debugger modifies the code, it causes all 
instances of the application to activate the debugger when the changed 

211 



ADVANCED WINDOWS 

assembly instruction is executed. To fix this situation, the system again 
uses copy-on-write memory. When the system senses that the debugger 
is attempting to change the code, it allocates a new block of memory, 
copies the page containing the instruction into the new page, and allows 
the debugger to modify the code in the page copy.2 

When a process is loaded, the system examines all the file image's pages. 
The system commits storage in the page file immediately for those pages 
that would normally be protected with the copy-on-write attribute. These 
pages are simply committed; they are not touched in any way. When a 
page in the file image is accessed, the system loads the appropriate page. 
If that page is never modified, it can be discarded from memory and 
reloaded when necessary. However, if the file's page is modified, the sys
tem swaps the modified page to one of the previously committed pages 
in the paging file. 

The only difference in behavior between Windows NT and Win
dows 95 occurs when you have two copies of a module loaded and the 
writable data hasn't been modified. In this case, processes running 
under Windows NT share the data, while under Windows 95 each pro
cess receives its own copy of the data. Windows NT and Windows 95 
behave exactly the same if there is only one copy of the module loaded 
or ifthe writable data has been modified (which is normally the case). 

Memory-Mapped Data Files 

212 

The operating system automatically uses the technique described in the 
previous section whenever an EXE or a DLL file is loaded. However, it is 
also possible to memory map a data file into your process's address 
space. This makes it very convenient to manipulate large streams of data. 

2. Note that you can create global variables in an EXE or a DLL file and share them among 
all instances of the file. Briefly, this method requires placing the variables you want to share 
in their own section by using the #pragma data_seg() compiler directive. Then you must use 
the /SECTION:name, attributes switch to tell the linker that you want the data in the section 
to be shared for all instances or mappings of the file. The name argument identifies the 
name of the section containing the data variables you want to share, and the attributes argu
ment specifies the attributes of data in this section. To share variables, you'll need to use 
RSW for read, shared, and write. See Chapter 11 for more information about sharing global 
variables among multiple instances of a DLL. 



S EVE N: Memory-Mapped Files 

To understand the power of using memory-mapped files this way, 
let's look at four possible methods of implementing a program to reverse 
the order of all the bytes in a file. 

Method 1: One File, One Buffer 
The first and theoretically simplest method involves allocating a block of 
memory large enough to hold the entire file. The file is opened, its con
tents are read into the memory block, and the file is closed. With the 
contents in memory, we can now reverse all the bytes by swapping the 
first byte with the last, the second byte with the second-to-Iast, and so on. 
This swapping continues until you swap the two middle bytes in the file. 
After all the bytes have been swapped, you reopen the file and overwrite 
its contents with the contents of the memory block. 

This method is pretty easy to implement but has two major draw
backs. First, a memory block the size of the file must be allocated. This 
might not be too bad if the file is small, but if the file is huge-say, 
2 GB-the system will not allow the application to commit a block of 
physical storage that large. Large files require a different method. 

Second, if the process is interrupted in the middle, while the 
reversed bytes are being written back out to the file, the contents of the 
file will be corrupted. The simplest way to guard against this is to make a 
copy of the original file before reversing its contents. If the whole pro
cess succeeds, you can delete the copy ofthe file. Unfortunately, this safe
guard requires additional disk space. 

Method 2: Two Files, One Buffer 
In the second method, you open the existing file and create a new file 
of 0 length on the disk. Then you allocate a small internal buffer-say, 
8 KB. You seek to the end of the original file minus 8 KB, read the last 
8 KB into the buffer, reverse the bytes, and write the buffer's contents to 
the newly created file. The process of seeking, reading, reversing, and 
writing repeats until you reach the beginning of the original file. Some 
special handling is required if the file's length is not an exact multiple of 
8 KB, but it's not extensive. After the original file is fully processed, both 
files are closed and the original file is deleted. 

This method is a bit more complicated to implement than the first 
one. It uses memory much more efficiently because only an 8-KB chunk 
is ever allocated, but there are two big problems. First, the processing is 
slower than in the first method because on each iteration you must per
form a seek on the original file before performing a read. Second, this 

213 



ADVANCED WINDOWS 

method can potentially use an enormous amount of hard disk space. If 
the original file is 400 MB, the new file will grow to be 400 MB as the pro
cess continues. Just before the original file is deleted, the two files will 
occupy 800 MB of disk space. This is 400 MB more than should be 
required-which leads us to the next method. 

Method 3: One File, Two Buffers 
For this method, let's say the program initializes by allocating two sepa
rate 8-KB buffers. The program reads the first 8 KB of the file into one 
buffer and the last 8 KB of the file into the other buffer. The process 
then reverses the contents of both buffers and writes the contents ofthe 
first buffer back to the end of the file, and the contents of the second 
buffer back to the beginning of the same file. Each iteration continues 
by moving blocks from the front and back of the file in 8-KB chunks. 
Some special handling is required if the file's length is not an exact mul
tiple of16 KB and the two 8-KB chunks overlap. This special handling is 
more complex than the special handling in the previous method, but it's 
nothing that should scare off a seasoned programmer. 

Compared with the previous two methods, this method is better at 
conserving hard disk space. Because everything is read from and written 
to the same file, no additional disk space is required. As for memory use, 
this method is also not too bad, using only 16 KB. Of course, this is prob
ably the most difficult method to implement. Like the first method, this 
method can result in corruption of the data file if the process is some
how interrupted. 

Now let's take a look at how this process might be accomplished 
using memory-mapped files. 

Method 4: One File, Zero Buffers 

214 

When using memory-mapped files to reverse the contents of a file, you 
open the file and then tell the system to reserve a region of virtual 
address space. You tell the system to map the first byte of the file to the 
first byte of this reserved region. You can then access the region of virtual 
memory as though it actually contained the file. In fact, if there were a 
single 0 byte at the end of the file, you could simply call the C run-time 
function _strrev to reverse the data in the file. 

This method's great advantage is that the system manages all the 
file caching for you. You don't have to allocate any memory, load file data 
into memory, write data back to the file, or free any memory blocks at all. 
Unfortunately, the possibility that an interruption such as a power fail
ure could corrupt data still exists with memory-mapped files. 



5 EVE N: Memory-Mapped Files 

Using Memory-Mapped Files 
There are three steps that you must perform in order to use a memory
mapped file: 

1. Create or open a file kernel object that identifies the file on 
disk that you want to use as a memory-mapped file. 

2. Create a file-mapping kernel object that tells the system the size 
of the file and how you intend to access the file. 

3. Tell the system to map all or part of the file-mapping object into 
your process's address space. 

When you are finished using the memory-mapped file, there are 
three steps you must perform in order to clean up: 

1. Tell the system to unmap the file-mapping kernel object from 
your process's address space. 

2. Close the file-mapping kernel object. 

3. Close the file kernel object. 

The next five sections discuss all these steps in more detail. 

Step 1: Creating or Opening a File Kernel Object 
To create or open a file kernel object, you always call the CreateFile 
function: 

HANDLE CreateFile(LPCSTR lpFileName. DWORD dwDesiredAccess. 
DWORD dwShareMode. LPSECURITY_ATTRIBUTES lpSecurityAttributes. 
DWORD dwCreationDisposition. DWORD dwFlagsAndAttributes. 
HANDLE hTemplateFile); 

Although its name does not suggest it, CreateFile is also the function you 
should use to open an existing file. The 16-bit Windows OpenFile func
tion still exists in the Win32 API, but it is supplied for backward com
patibilityonly. New applications should avoid the OpenFile function and 
always use the new CreateFile function. 

The CreateFile function takes quite a few parameters. For this discus
sion, I'll concentrate only on the first three: lpFileName, dwDesiredAccess, 

215 



ADVANCED WINDOWS 

216 

and dwShareMode. CreateFile is discussed in more detail in Chapter 13 of 
this book. 

As you might guess, the first parameter, lpFileName, identifies the 
name (including an optional path) of the file that you want to create or 
open. The second parameter, dwDesiredAccess, specifies how you intend 
to access the contents of the file. Vou can specify one of the four follow
ing values here: 

Value 

o 

GENERIC_READ 

GENERIC_WRITE 

GENERIC_READ : GENERIC_WRITE 

Meaning 

You cannot read from or write 
to the file's contents. Specify 0 
when you just want to get a file's 
attributes. 

You can read from the file. 

You can write to the file. 

You can read from the file and 
write to the file. 

When creating or opening a file for use as a memory-mapped file, 
select the access flag or flags that make the most sense for how you 
intend to access the file's data. For memory-mapped files, you must open 
the file for read-only access or read-write access, so you'll want to speci
fy either GENERIC_READ or GENERIC_READ : GENERIC_WRITE 
respectively. 

The third parameter, dwShareMode, tells the system how you want to 
share this file. Vou can specify one of the four following values for 
dwShareMode: 

Value 

o 
Meaning 

Any other attempts to 
open the file fail. 

Other attempts to 
open the file using 
GENERIC_WRITE fail. 

Other attempts to 
open the file using 
GENERIC_READ fail. 

Other attempts to open 
the file succeed. 



11 
Important 

S EVE N: Memory-Mapped Files 

If CreateFile successfully creates or opens the specified file, a file 
handle is returned; otherwise, INVALID_HANDLE_VALUE is returned. 

Most Win32 functions that return a handle return NULL when they are 
unsuccessful. CreateFile, however, returns INVALID_HANDLE_VALUE, 
which is defined as OxFFFFFFFF. 

Step 2: Creating a File-Mapping Kernel Object 
In order to map a file's data, you must create a file-mapping kernel object 
by calling CreateFileMapping: 

HANDLE CreateFileMapping(HANDLE hFile. LPSECURITY_ATTRIBUTES lpsa. 
DWORD fdwProtect. DWORD dwMaximumSizeHigh. 
DWORD dwMaximumSizeLow. LPSTR lpszMapName); 

A file-mapping object describes several important pieces of infor
mation that the operating system requires while managing a memory
mapped file. 

The first parameter, hFile, identifies the handle ofthe file you want 
mapped into the process's address space. This handle is returned by 
the previous call to CreateFile. The ipsa parameter is a pointer to a 
SECURITY_ATTRIBUTES structure, usually NULL. 

As I pointed out at the beginning of this chapter, creating a 
memory-mapped file is just like reserving a region of address space and 
then committing physical storage to the region. It's just that the physical 
storage for a memory-mapped file comes from a file on a disk rather 
than from space allocated from the system's paging file. When you cre
ate a file-mapping object, the system does not reserve a region of address 
space and map the file's storage to the region. (I'll describe how to do 
this in the next section.) However, when the system does map the storage 
to the process's address space, the system must know what protection 
attribute to assign to the pages of physical storage. CreateFileMapping's 
fdwProtect parameter allows you to specifY the desired protection attri
butes. For the most part, you will specifY one of the protection attributes 
shown on the following page. 

217 



ADVANCED WINDOWS 

218 

Protection Attribute 

PAGE_READ ONLY 

PAGE_READWRITE 

Meaning 

When the file-mapping object is mapped, you can 
read the file's data. You must have passed 
GENERIC_READ to CreateFile. 

When the file-mapping object is mapped, you can 
read and write the file's data. You must have passed 
GENERIC_READ : GENERIC_WRITE to CreateFile. 

When the file-mapping object is mapped, you can 
read and write the file's data. Writing causes a pri
vate copy of the page to be created. You must have 
passed either GENERIC_READ or GENERIC_READ 
: GENERIC_WRITE to CreatiFile. 

Under Windows 95, you can pass the PAGE_WRITECOPY flag to Create
FileMapping; this tells the system to commit storage from the paging file. 
This paging file storage is reserved for a copy of the data file's data; only 
modified pages are actually written to the paging file. Any changes you 
make to the file's data are not propagated back to the original data file. 
The end result is that the PAGE_WRITECOPY flag has the same effect 
on both Windows NT and Windows 95. 

In addition to the above page protections, there are four section 
attributes that you may bitwise OR in the CreateFileMapping function's 
fdwProtect parameter. A section is just another word for a memory 
mapping. 

The first of these attributes, SEC_NOCACHE, tells the system that 
none of the file's memory-mapped pages are to be cached. So as you 
write data to the file, the system will update the file's data on the disk 
more often than it normally would. This flag, like the PAGE_NOCACHE 
protection attribute, exists for the device driver developer and is not usu
ally used by applications. 

Windows 95 ignores the SEC_NOCACHE flag. 

The second section attribute, SEC_IMAGE, tells the system that the 
file you are mapping is a Win32 portable executable (PE) file. When the 



S EVE N: Memory-Mapped Files 

system maps this file into your process's address space, the system exam
ines the file's contents to determine which protection attributes to assign 
to the various pages of the mapped image. For example, a PE file's code 
section is usually mapped with PAGE_EXECUTE_READ attributes, 
whereas the PE file's data is usually mapped with PAGE_READWRITE 
attributes. Specifying the SEC_IMAGE attribute tells the system to map 
the file's image and automatically set the appropriate page protections. 

Windows 95 ignores the SEC_IMAGE flag. 

The last two attributes, SEC_RESERVE and SEC_COMMIT, are 
mutually exclusive and do not apply when you are using a memory
mapped data file. These two flags will be discussed in the section "Using 
Memory-Mapped Files to Share Data Among Processes" later in this 
chapter. When creating a memory-mapped data file, you should not 
specify either of these flags. CreateFileMapping will ignore them. 

CreateFileMapping's next two parameters, dwMaximumSizeHigh and 
dwMaximumSizeLow, tell the system the maximum size of the file in bytes. 
Two 32-bit values are required because Win32 supports file sizes that can 
be expressed using a 64-bit value; the dwMaximumSizeHigh parameter 
specifies the high 32 bits, and the dwMaximumSizeLow parameter speci
fies the low 32 bits. For files that are 4 GB or less, dwMaximumSizeHigh 
will always be o. 

Using a 64-bit value means that Win32 can process files as large as 
18 exabytes. (An exabyte, which is abbreviated EB, is 1 quintillion, or 
1,152,921,504,606,846,976, bytes.) If you want to create the file-mapping 
object so that it reflects the current size of the file, you can pass 0 for both 
parameters. If you intend only to read from the file or to access the file 
without changing its size, this is what you should do. If you intend to 
append data to the file, you will want to choose a maximum file size that 
leaves you some breathing room. 

If you have been paying attention so far, you must be thinking that 
there is something terribly wrong here. It's nice that Win32 supports files 
and file-mapping objects that can be anywhere up to 18 EB, but how are 
you ever going to map a file that big into your process's address space, 
which has a maximum limit of 4 GB? I'll explain how this is accom
plished in the next section. 

219 



ADVANCED WINDOWS 

If you call CreateFileMapping, passing the PAGE_READWRITE flag, 
the system will check to make sure that the associated data file on the 
disk is at least the same size as the size specified in the dwMaximum
SizeHigh and dwMaximumSizeLow parameters. If the file is smaller than 
the specified size, CreateFileMapping will make the file on the disk larger 
by extending its size. This is required so that the physical storage will al
ready exist when the file is used as a memory-mapped file later. If the 
file-mapping object is being created with the PAGE_READONLYor the 
PAGE_WRITECOPY flag, the size specified to CreateFileMapping must be 
no larger than the physical size of the disk file. This is because you will 
not be able to append any data to the file. 

CreateFileMapping's last parameter, lpszMapName, is a zero-terminated 
string that assigns a name to this file-mapping object. The name is used 
to share the object with another process and is discussed later in this 
chapter. A memory-mapped data file usually doesn't need to be shared; 
therefore, this parameter is usually NULL. 

The system creates the file-mapping object and returns a handle 
identifying the object back to the calling thread. If the system cannot cre
ate the file-mapping object, a NULL handle value is returned. Again, 
please note that this is different from CreateFile's invalid handle value of 
INVALID_HANDLE_VALUE (defined as OxFFFFFFFF). 

Step 3: Mapping the File's Data into the Process's Address Space 
Mter you have created a file-mapping object, you still need to have the 
system reserve a region of address space for the file's data and commit 
the file's data as the physical storage that is mapped to the region. This is 
done by calling MapViewOjFile: 

220 

LPVOID MapViewOfFile(HANDLE hFileMappingObject. 
DWORD dwDesiredAccess. DWORD dwFileOffsetHigh. 
DWORD dwFileOffsetLow. DWORD dwNumberOfBytesToMap); 

The hFileMappingObject parameter identifies the handle of the file
mapping object, which was returned by the previous call to either 
CreateFileMapping or openFileMapping (discussed later in this chapter). 
The dwDesiredAccess parameter identifies how the data can be accessed. 
That's right, we must again specify how we intend to access the file's data. 
You can specify one of four possible values: 



5 EVE N: Memory-Mapped Files 

Value Meaning 

FILE_MAP_WRITE You can read and write file data. Create
FileMapping had to be called by passing 
PAGE_READWRITE. 

FILE_MAP_READ You can read file data. CreateFileMapping could 
be called with any of the protection attributes: 
PAGE_READONL Y, PAGE_READWRITE, or 
PAGE_WRITECOPY 

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE. 

FILE_MAP_COPY You can read and write file data. Writing 
causes a private copy of the page to be created. 
CreateFileMapping could be called with any of 
the protection attributes: PAGE_READONLY, 
PAGE_READWRITE, or PAGE_WRITECOPY. 

I t certainly seems strange and annoying that Win32 requires all these 
protection attributes to be set over and over again. I assume this was done 
to give an application as much control over data protection as possible. 

The remaining three parameters have to do with reserving the 
region of address space and mapping the physical storage to the region. 
When you map a file into your process's address space, you do not have 
to map the entire file at once. Instead, you can map only a small portion 
of the file into the address space. A portion of a file that is mapped to your 
process's address space is called a view, which explains how MapViewOfFile 
got its name. 

When you map a view of a file into your process's address space, you 
must specify two things. First, you must tell the system which byte in the 
data file should be mapped as the first byte in the view. This is done using 
the dwFileOffsetHigh and dwFileOffsetLow parameters. Because Win32 sup
ports files that can be up to 18 EB, you must specify this byte-offset using 
a 64-bit value of which the high 32 bits are passed in the dwFileOffsetHigh 
parameter and the low 32 bits are passed in the dwFileOffsetLow parame
ter. Note that the offset in the file must be an even multiple of the 
system's allocation granularity. (To date, all implementations ofWin32 
have an allocation granularity of 64 KB.) The section "System Informa
tion" in Chapter 5 shows how to obtain the allocation granularity value 
for a given system. 

221 



ADVANCED WINDOWS 

222 

Second, you must tell the system how much of the data file to map 
into the address space. This is the same thing as specifying how large a 
region of address space to reserve. You specify this size using the 
dwNumberOfBytesToMap parameter. You'll notice that this parameter is a 
single 32-bit value because it could never be larger than 4 GB. If you 
specify a size of 0, the system will attempt to map a view consisting of the 
entire file. 

Under Windows 95, if MapViewOfFile cannot find a region large enough 
to contain the entire file-mapping object, MapViewOfFile returns NULL 
regardless of the size of the view requested. 

Under Windows NT, MapViewOfFile needs only to find a region large 
enough for the view requested, regardless of the size of the entire file
mapping object. 

If you specify the FILE_MAP_COPY flag when calling MapView
Of File, the system commits physical storage from the system's paging file. 
The amount of space committed is determined by the dwNumberOfBytes
ToMap parameter. As long as you do nothing more than read from the 
file's mapped view, the system will never use these committed pages in 
the paging file. However, the first time any thread in your process writes 
to any memory address within the file's mapped view, the system will grab 
one of the committed pages from the paging file, copy the page of origi
nal data to this paging-file page, and then map this copied page into your 
process's address space. From this point on, the threads in your process 
are accessing a local copy of the data and cannot read or modify the 
original data. 

When the system makes the copy of the original page, the system 
changes the protection of the page from PAGE_WRITECOPY to 
PAGE_READWRITE. The following code fragment explains it all: 

HANDLE hFile. hFileMapping: 
BYTE bSomeByte. *pbFile: 

II Open the file that we want to map. 
hFile = CreateFile(lpszName. GENERIC_READ I GENERIC_WRITE. 0. NULL. 

OPEN_ALWAYS. FILE_ATTRIBUTE_NORMAL. NULL): 



S EVE N: Memory-Mapped Files 

II Create a file-mapping object for the file. 
hFileMapping = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0, 

NULl) ; 

II Map a copy-on-write view of the file; the system will commit 
II enough physical storage from the paging file to accommodate 
II the entire file. All pages in the view will initially have 
II PAGE_WRITECOPY access. 
pbFile = (PBYTE) MapViewOfFile(hFileMapping, FILE_MAP_COPY, 0, 0, 

0) ; 

II Read a byte from the mapped view. 
bSomeByte = pbFile[0]; 
II When reading, the system does not touch the committed pages in 
II the paging file. The page keeps its PAGE_WRITECOPY attribute. 

II Write a byte to the mapped view. 
pbFile[0] = 0; 
II When writing for the first time, the system grabs a committed 
II page from the paging file, copies the original contents of the 
II page at the accessed memory address, and maps the new page 
II (the copy) into the process's address space. The new page has 
II a PAGE_READWRITE attribute. 

II Write another byte to the mapped view. 
pbFile[l] = 0; 
II Because this byte is now in a PAGE_READWRITE page, the system 
II simply writes the byte to the page (backed by the paging file). 

II When finished using the file's mapped view, unmap it. 
II UnmapViewOfFile is discussed in the next section. 
UnmapViewOfFile(pbFile); 
II The system decommits the physical storage from the paging file. 
II Any writes to the pages are lost. 

II Clean up after ourselves. 
CloseHandle(hFileMapping); 
CloseHandle(hFile); 

As mentioned earlier, Windows 95 must commit storage in the paging 
file for the memory-mapped file up front. However, it will write modified 
pages to the paging file only as necessary. 

223 



ADVANCED WINDOWS 

Step 4: Un mapping the File's Data 
from the Process's Address Space 

224 

When you no longer need to keep a file's data mapped to a region of 
your process's address space, you can release the region by calling: 

BOOl UnmapViewOfFile(lPVOID lpBaseAddress); 

The only parameter, lpBaseAddress, specifies the base address of the 
returned region. This value must be the same value returned from a call 
to Map ViewOfFile. It is important to remember to call Unmap ViewOfFile. If 
you do not call this function, the reserved region won't be released until 
your process terminates. Whenever you call Map ViewOfFile, the system 
always reserves a new region within your process's address space-any 
previously reserved regions are not released. 

In the interest of speed, the system buffers the pages of the file's 
data and doesn't update the disk image of the file immediately while 
working with the file's mapped view. However, when you are finished 
with the view and call Unmap ViewOfFile, the system forces all the modi
fied data in memory to be written back to the disk image. If you need to 
ensure that your updates have been written to disk, you can force the sys
tem to write all the modified data back to the disk image by calling 
Flush ViewOfFile: 

BOOl FlushViewOfFile(lPVOID lpBaseAddress. 
DWORD dwNumberOfBytesToFlush); 

This function requires the address of the mapped view as returned 
by the previous call to MapViewOfFile and also requires the number of 
bytes you want to write to disk. If you call Flush ViewOfFile and none of the 
data has been changed, the function simply returns without writing any
thing to the disk. 

For a memory-mapped file whose storage is over a network, Flush
ViewOfFile guarantees that the file's data has been written from the 
workstation. However, Flush ViewOfFile cannot guarantee that the server 
machine that is sharing the file has written the data to the remote disk 
drive because the server might be caching the file's data. To ensure that 
the server writes the file's data, you should pass the FILE_FLAG_WRITE
_THROUGH flag to the CreateFile function whenever you create a file
mapping object for the file and then map the view of the file-mapping 
object. If the file is opened using this flag, Flush ViewOfFile will return 
when all of the file's data has been stored on the server's disk drive. 



S EVE N: Memory-Mapped Files 

There is one special note about the UnmapViewOfFile function. If the 
view was originally mapped using the FILE_MAP _COPY flag, any changes 
that you made to the file's data were actually made to a copy of the file's 
data stored in the system's paging file. In this case, if you call Unmap
ViewOfFile the function has nothing to update on the disk file and simply 
causes the pages in the paging file to be decommitted. The data con
tained in the pages is lost. 

If you want to preserve the changed data, you must take additional 
measures yourself. For example, you might want to create another file
mapping object (using PAGE_READWRITE) from the same file and 
map this new file-mapping object into your process's address space using 
the FILE_MAP _WRITE flag. Then you could scan the first view looking 
for pages with the PAGE_READWRITE protection attribute. Whenever 
you found a page with this attribute, you could examine its contents and 
decide whether to write the changed data to the file. If you do not want 
to update the file with the new data, keep scanning the remaining pages 
in the view until you reach the end. However, if you do want to save the 
changed page of data, just call MoveMemory to copy the page of data from 
the first view to the second view. Because the second view is mapped with 
PAGE_READWRITE protection, the MoveMemory function will be updat
ing the actual contents of the file on the disk. You can use this method to 
determine changes and preserve your file's data. 

Windows 95 does not support the copy-on-write protection attribute, 
so you cannot test for pages marked with the PAGE_READWRITE flag 
when scanning the first view of the memory-mapped file. You will have 
to devise a method of your own for determining which pages in the first 
view you have actually modified. 

Steps 5 and 6: Closing the File-Mapping Object and the File Object 
It goes without saying that you should always close any kernel objects you 
open. Forgetting to do so will cause a resource leak in your process. Of 
course, when your process terminates, the system automatically closes 
any objects your process opened but forgot to close. But if your process 
does not terminate for a while, you will accumulate resource handles. 
You should always write clean, ''proper'' code that closes any objects you 
have opened. In order to close the file-mapping object and the file 
object, you simply need to call the CloseHandle function twice-once for 
each handle. 

225 



ADVANCED WINDOWS 

226 

Let's look at this a little closer. The pseudo-code below shows an 
example of memory-mapping a file: 

HANDLE hFile. hFileMapping: 
PYOID pFile: 

hFile = CreateFile( ... ): 
hFileMapping = CreateFileMapping(hFile •... ): 
pFile = MapViewOfFile(hFileMapping •... ): 

II Use the memory-mapped file. 

UnmapViewOfFile(pFile): 
CloseHandle(hFileMapping): 
CloseHandle(hFile): 

The code above shows the "expected" method for manipulating 
memory-mapped files. However, what it does not show is that the system 
increments the usage counts of the file object and the file-mapping object 
when you call MapViewOJFile. This side effect is significant because it 
means that we could rewrite the code fragment above as follows: 

HANDLE hFile. hFileMapping: 
PYOID pFile: 

hFile = CreateFile( ... ): 
hFileMapping = CreateFileMapping(hFile •... ): 
CloseHandle(hFile): 
pFile = MapViewOfFile(hFileMapping •..• ): 
CloseHandle(hFileMapping): 

II Use the memory-mapped file. 

UnmapViewOfFile(pFile): 

In working with memory-mapped files, it is quite common to open 
the file, create the file-mapping object, and then use the file-mapping 
object to map a view of the file's data into the process's address space. 
Because the system increments the internal usage counts of the file ob
ject and the file-mapping object, you can close these objects at the begin
ning of your code and eliminate potential resource leaks. 

If you will be creating additional file-mapping objects from the 
same file or mapping multiple views of the same file-mapping object, you 
cannot call CloseHandle early-you'll need the handles later to make the 
additional calls to CreateFileMapping and MapViewOJFile, respectively. 



5 EVE N: Memory-Mapped Files 

Processing a Big File Using Memory-Mapped Files 
In an earlier section, I said I would tell you how to map an 18-EB file into 
a 4-GB address space. Well, you can't. Instead, you must map a view of 
the file that contains only a small portion of the file's data. You should 
start by mapping a view of the very beginning of the file. When you've 
finished accessing the first view of the file, you can unmap it and then 
map a new view starting at an offset deeper within the file. You'll need to 
repeat this process until you access the complete file. This certainly 
makes dealing with large memory-mapped files less convenient, but the 
good news is that most files are well under 4 GB in size. 

Let's look at an example using an 8-GB file. Here is a routine that 
counts all the] characters (one of my favorites) in this ASCII file in sev
eral steps: 

__ int64 WINAPI CountJs (void) { 

HANDLE hFile, hFileMapping; 
PBYTE pbFile; 
SYSTEM_INFO si; 
__ int64 qwFileSize, qwFileOffset = 0, qwNumOfJs = 0; 
DWORD dwFileSizeHigh; 
DWORD dwByte, dwBytesInBlock; 
DWORD dwErr; 

II We need the allocation granularity value for this system 
II because views must always begin with an offset in the data 
II file that is a multiple of the allocation granularity value. 
GetSystemInfo(&si); 

II Open the data file. 
hFile = CreateFile("c:\\HugeFile.Big", GENERIC_READ, 

FILE_SHARE_READ, NULL, OPEN_EXISTING, 
FILE_FLAG_SEQUENTIAL_SCAN, NULL); 

if (hFile == INVALID_HANDLE_VALUE) 
return(0) ; 

II Create the file-mapping object. 
hFileMapping = CreateFileMapping(hFile, NULL, PAGE_READONLY, 

0, 0, NULL); 

if (hFileMapping == NULL) { 
CloseHandle(hFile); 
return(0) ; 

} 

(continued) 

227 



ADVANCED WINDOWS 

228 

} 

qwFileSize = GetFileSize(hFile, &dwFileSizeHigh): 
qwFileSize += «( __ int64) dwFileSizeHigh) « 32): 

II We no longer need access to the file object's handle. 
CloseHandle(hFile): 

while (qwFileSize > 0) { 

} 

II Determine the number of bytes to be mapped. 
if (qwFileSize < si.dwAllocationGranularity) 

dwBytesInBlock = (DWORD) qwFileSize: 
else 

dwBytesInBlock = si.dwAllocationGranularity: 

pbFile = MapViewOfFile(hFileMapping, 
FILE_MAP_READ, II Desired access 
(DWORD) (qwFileOffset 
(DWORD) (qwFileOffset 
dwBytesInBlock): 

» 32), II Starting byte 
& 0xFFFFFFFF),11 in file 

II # of bytes to map 

II Count the number of Js in this block. 
for (dwByte = 0: dwByte < dwBytesInBlock: dwByte++) { 

if (pbFile[dwByte] == 'J') 
qwNumOfJs++: 

} 

II Unmap the view so that we don't get multiple 
II views in our address space. 
UnmapViewOfFile(pbFile): 

II Skip to the next set of bytes in the file. 
qwFileOffset += dwBytesInBlock: 
qwFileSize -= dwBytesInBlock: 

CloseHandle(hFileMapping): 
return(qwNumOfJs): 

This algorithm maps views of 64 KB (the allocation granularity size) 
or less. Also, remember that MapViewOjFile requires that the file offset 
parameters be an even multiple of the allocation granularity size. As 
each view is mapped into the address space, the scanning for Is contin
ues. Mter each 64-KB chunk of the file has been mapped and scanned, 
it's time to tidy up by closing the file-mapping object. 



5 EVE N: Memory-Mapped Files 

Memory-Mapped Files and Coherence 

tJ 
Important 

The system allows you to map multiple views of the same data of a file. 
For example, you can map the first 10 KB of a file into a view and then 
map the first 4KB of that same file into a separate view. As long as you are 
mapping the same file-mapping object, the system ensures that the 
viewed data is coherent. For example, if your application alters the con
tents of the file in one view, the data in the other view is updated to reflect 
the changes. This is because, although the page is mapped into the 
process's virtual address space more than once, the system really has the 
data in only a single page of RAM. If multiple processes are mapping 
views of a single data file, the data is still coherent because there is still 
only one instance of each page of RAM within the data file-it's just that 
the pages of RAM are mapped into multiple process address spaces. 

Win32 allows you to create several file-mapping objects that are backed 
by a single data file. Win32 does not guarantee that views of these differ
ent file-mapping objects will be coherent. It guarantees only that mul
tiple views of a single file-mapping object will be coherent. 

When we're working with files, however, there is no reason why an
other application can't call CreateFile to open the same file that another 
process has mapped. This new process can then read from and write to 
the file using the ReadFile and WriteFile functions. Of course, whenever a 
process makes these calls, it must be either reading file data from or writ
ing file data to a memory buffer. This memory buffer must be one the 
process itself created, not the memory that is being used by the mapped 
files. There can be problems when two applications have opened the 
same file: one process can call ReadFile to read a portion of a file, modify 
the data, and write it back out using WriteFile without the file-mapping 
object of the second process being aware of the first process's actions. 
For this reason, it is recommended that when you call CreateFile for files 
that will be memory mapped, you specify 0 as the value of the fdwShare
Mode parameter. Doing so tells the system that you want exclusive access 
to the file and that no other process can open it. 

229 



ADVANCED WINDOWS 

230 

Windows 95 is not able to maintain file coherence as well as Windows NT. 
For example, examine the following code fragment: 

BYTE bBuf[l]; 
DWORD dwNumBytesRead; 
HANDLE hFile = CreateFile( ... ); 
HANDLE hFileMap = CreateFileMapping(hFile •... ); 
PBYTE pbData = MapViewOfFile(hFileMap •... ); 

II Change first byte of file to a capital "X." 
pbData[0] = 'X'; 

II Read the first byte of the file into a buffer. 
ReadFile(hFile. bBuf. 1. &dwNumBytesRead. NULL); 

II Test to see whether the first byte of the file 
II matches the byte read into the buffer. 
if (pbData[0] == bBuf[0]) { 

II OS mayor may not be Windows 95. 
} else { 

II OS is Windows 95. 
} 

This code fragment modifies the first byte of the memory
mapped file and then reads the supposedly modified byte back into a 
buffer. Windows NT guarantees that the file is coherent, while Windows 
95 does not. For this reason, you should not write to a file using both 
memory-mapped file techniques and buffer write techniques. Of course, 
ifthe file is opened in read-only mode, you'll have no problem accessing 
it using either technique. The problem occurs only if you attempt to 
write to the file. 

By the way, when the file above is closed, Windows NT guaran
tees that the X will be the first byte of the file, while Windows 95 does not. 

Read-only files do not have coherence problems, which makes 
them good candidates for memory-mapped files. Memory-mapped files 
should never be used to share writable files over a network because the 
system cannot guarantee coherent views of the data. If someone's com
puterupdates the contents of the file, someone else's computer with the 
original data in memory will not know that the information has changed. 



S EVE N: Memory-Mapped Files 

The File Reverse Sample Application 
The FileRev application (FILEREV.EXE), listed in Figure 7-1 beginning on 
page 233, demonstrates how to use memory-mapped files to reverse the 
contents of an ANSI or a Unicode text file. The source code files, resource 
files, and make file for the application are in the FILEREV.07 directory on 
the companion disc. FileRev doesn't create any windows or do anything 
visual, and it won't work correctly for binary files. FileRev determines 
whether the text file is ANSI or Unicode by calling the IsTextUnicode func
tion (discussed in Chapter 15). This function is new with Windows NT 3.5, 
and you will have to edit the source code and recompile if you want the 
program to run correctly on Windows NT 3.1. 

Under Windows 95, the IsTextUnicode function has no useful implemen
tation and simply returns FALSE; calling GetLastError returns ERROR
_CALL_NaT_IMPLEMENTED. This means that the FileRev sample 
application always thinks that it is manipulating an ANSI text file when it 
is run under Windows 95. 

When WinMain begins executing, it takes whatever filename was 
specified on FileRev's command line and makes a copy of that file called 
FILEREV.DAT. It does this so that the original file won't become unus
able because its contents have been reversed. Next File Rev calls the 
CreateFile function, opening FILEREV.DAT for reading and writing. 

As I said earlier, the easiest way to reverse the contents of the file is 
to call the C run-time function _strrev. As with all C strings, the last char
acter of the string must be a zero terminator. Because text files do not 
end with a zero character, File Rev must append one to the file. It does so 
by first calling GetFileSize: 

dwFileSize = GetFileSize(hFile, NULL); 

Now that you're armed with the length of the file, you can create 
the file-mapping object by calling CreateFileMapping. The file-mapping 
object is created with a length of dwFileSize plus the size of a wide charac
ter (for the zero character). If there is a bug in FileRev that overwrites 
the address space occupied by the file-mapping object, an access viola
tion will occur. Mter the file-mapping object is created, a view of the 
object is mapped into FileRev's address space. The lpvFile variable con
tains the return value from MapViewOfFile and points to the first byte of 
the text file. 

231 



ADVANCED WINDOWS 

232 

The next step is to write a zero character at the end of the file and 
to reverse the string: 

«LPSTR) lpvFile)[dwFileSize] = 0; 
_strrev(lpvFile); 

In a text file, every line is terminated by a return character ('\r') fol
lowed by a newline character ('\n'). Unfortunately, when we call_strrev 
to reverse the file, these characters also get reversed. So that the reversed 
text file can be loaded into a text editor, every occurrence of the "\n\r" 
pair needs to be converted back to its original "\r\n" order. This is the 
job of the following loop: 

II Find first occurrence of '\n'. 
lpch = strchr(lpvFile. '\n'); 

while (lpch 1= NULL) { 

} 

*lpch++ = '\r'; II Change the '\n' to '\r'. 
*lpch++ = '\n'; II Change the '\r' to '\n'. 

II Find the next occurrence. 
lpch = strchr(lpch, '\n'); 

When you examine simple code like this, it is easy to forget that you 
are actually manipulating the contents of a file on the hard disk, which 
shows you how powerful memory-mapped files are. 

Mter the file has been adjusted, FileRev must clean up by unmap
ping the view of the file-mapping object and closing all the kernel object 
handles. In addition, File Rev must also remove the zero character added 
to the end of the file (remember that _strrev doesn't reverse the position 
of the terminating zero character). If you don't remove the zero charac
ter, the reversed file would be 1 character larger, and calling FileRev 
again would not reverse the file back to its original form. To remove the 
trailing zero character, you need to drop back a level and use the file
management functions instead of manipulating the file through mem
ory mapping. 

Forcing the reversed file to end at a specific location requires posi-. 
tioning the file pointer at the desired location (the end of the original 
file) and calling the SetEndOjFile function: 

SetFilePointer(hFile. dwFileSize. NULL. FILE_BEGIN); 
SetEndOfFile(hFile); 



" Important 

FileRev.ico 

S EVE N: Memory-Mapped Files 

Note that SetEndOfFile must be called after the view is unmapped and the 
file-mapping object is closed; otherwise, an ERROR_USER_MAPPED
_FILE will occur. This error indicates that the end-of-file operation can
not be performed on a file that is associated with a file-mapping object. 

The last thing FileRev does is spawn an instance of Notepad so that 
you can look at the reversed file. Below is the result of running FileRev 
on its own FILEREV.C file: 

'", Notepad Ell FREY DAT WET;: E' 
;/:M:~~ 'f~;;: ;, /~+~ ~ "t;;C~x ;~,."~ :q' ~x:~\f~' 

/1/1/11/1/1/11/111/1/11 diF fO dnE 1/1/11111111/1111 

} 
;lU(nrutor 

} 
; 1 ssocorPh. ip( oldnaHosolC 
; ldaorhTh .ip(ddnaHosoIC 

{ llip& ,is& ,LLUN ,LLUN ,U ,ESLAF ,LLUN ,LLUN 
,EMANELIF 1" EXE.DAPETON"(TXET_ ,LLUN(ssocorPetaorC( 
;WODNIWIIOHSESUJTRATS = sgalFud .is 
;WOHS WS - lfodniWwohS ... is 
;)is(fOezis .. be.is 
.srobal ruo fo stiurf eht eos ot dapotoN n .. apS II 

; leliFh(eldnaHesolC 
; leliFh(eliFfOdnEteS 
.desolc si tcejbo lenrek gnippalll-olif /I 

-- --- -~ ..... ~~ ••. ---.~ , -- -_ .•. - .ifi~:";";:;:.j0(f 

Figure 7-1, 
The FileRev Application. 

(continued) 

233 



ADVANCED WINDOWS 

Figure 7-1. continued 

(continued) 

234 



Figure 7-1. continued 

S EVE N: Memory-Mapped Files 

II (*lpszCmdL.1neT.=;= en ( 
~rg·l,ljnen~s 
a'¥.·~n( 

(continued) 

235 



ADVANCED WINDOWS 

Figure 7-1. continued 

(continued) 

236 



S EVE N: Memory-Mapped Files 

Figure 7-1. continued 

II Reverse the contents of the file. 
_strrev( 1 pchANSI): 

(continued) 

237 



ADVANCED WINDOWS 

Figure 7-1. continued 

(continued) 

238 



S EVE N: Memory-Mapped Files 

Figure 7-1. continued 

/////////////////////////////////1//////////////////// //////// 
#undef APSTUDIO_READONLY_SYMBOLS 

11//1////1//1/////1/1111111/11/////1/11/11/111/11///1111111//1 
// 
/1 Icon 
/1 

.Fi 1 eRev ICON DIsCARU;i\BLE: "Fil eRev. I co" 

Itifdef APSTU D I.O_INVO KE D 
1111111111//11/11/1111/11111/1111111/1/11/11111/11111/1/lllfl/ 
II 
II TEXTI MeLUDE 
II 

lTEXTIMCLUDE DISC;i\RD;i\BLE 
BEGIN 

"Resource.h\0" 
EMD 

. . 

2 TEXTII«:LUDEDISC;i\RDABLE 
BEGIN· '. .' ... ' ' . ". 
. . "4hncl ude''';;afxr.es .h""\r\n~ 

"\0" 
END 

'. 3 TEXTIN.CLUOE OlSCAiWABLE . 
BEGIN 

"\r\n" 
'''\0.'; 

III1IUII III II IUIIIIIIU III /11}llllllllfIlllli/~IIIIIIIIIIIIJ 
. #endif . II APSTUOIO_JNVOKgD . . '. 

#HndefAfiSTUDIO_INVOKt]} '" .... . . ...... .... ..' .. ' 
III III f II fIllllI //1 /ll f 111111 / I III III 1111 I III I /I III II/II III 111 
II 
II Generat.ed fromth.e TEXT INC LUDE 3 resourCe . II .. .... . .. 

II ~ /II 1/ 1111l! flit III II 1 IIIIl I IUIIl1l11l1 1111 {jllljlllIlfllll ..... 
ffendif /lnotAPSTUDIO ... INVOKtD'·····,·· 

239 



ADVANCED WINDOWS 

Specifying the Base Address of a Memory-Mapped File 

240 

Just as you can use the VirtualAlloc function to suggest an initial address 
to reserve address space, you can also use the MapViewOfFileEx function 
instead of the MapViewOfFile function to suggest that a file be mapped 
into a particular address. 

LPVOID MapViewOfFileEx(HANDLE hFileMappingObject, 
DWORD dwDesiredAccess, DWORD dwFileOffsetHigh, 
DWORD dwFileOffsetLow, DWORD dwNumberOfBytesToMap, 
LPVOID lpBaseAddress); 

All the parameters and the return value for this function are identi
cal to those of the MapViewOjFile function with the single exception of 
the last parameter, IpBaseAddress. In this parameter, you specifY a target 
address for the file you're mapping. As with VirtualAlloc, the target address 
you specifY must be on an even allocation granularity boundary (usually 
64 KB); otherwise, MapViewOfFileEx returns NULL, indicating an error. 

If the system can't map the file at this location (usually because the 
file is too large and would overlap another reserved address space), the 
function fails and returns NULL. MapViewOfFileEx does not attempt to 
locate another address space that can accommodate the file. Of course, 
you can specify NULL as the IpBaseAddress parameter, in which case Map
ViewOfFileEx behaves exactly the same as MapViewOfFile. 

MapViewOfFileEx is useful when you're using memory-mapped files 
to share data with other processes. As an example, you might need a 
memory-mapped file at a particular address when two or more applica
tions are sharing a group of data structures containing pointers to other 
data structures. A linked list is a perfect example. In a linked list, each 
node, or element, of the list contains the memory address of another 
element in the list. To walk the list, you must know the address of the first 
element and then reference the member of the element that contains 
the address of the next element. This can be a problem when you're 
using memory-mapped files. 

If one process prepares the linked list in a memory-mapped file and 
then shares this file with another process, it is possible that the other 
process will map the file into a completely different location in its ad
dress space. When the second process attempts to walk the linked list, it 
looks at the first element of the list, retrieves the memory address of the 
next element, and then tries to reference this next element. However, 
the address of the next element in the first node will be incorrect for this 
second process. 



S EVE N: Memory-Mapped Files 

There are two ways to solve this problem. First, the second process 
can simply call MapViewOjFileEx instead of MapViewOfFile when it maps 
the memory-mapped file containing the linked list into its own address 
space. Of course, this requires that the second process know where the 
first process originally mapped the file when constructing the linked list. 
When the two applications have been designed to interact with each 
other-which is most likely the case-this isn't a problem: the address 
can be hard-coded into both, or one process can notify the other process 
using another form of interprocess communication, such as sending a 
message to a window. 

The second method for solving the problem is for the process that 
creates the linked list to store in each node the offset from within the 
address space where the next node is located. This requires that the 
application add the offset to the base address of the memory-mapped 
file in order to access each node. This method is not great: it can be slow, 
it makes the program bigger (because of the additional code the com
piler generates to perform all the calculations), and it can be quite error 
prone. However, this is certainly a viable method and the Microsoft com
piler offers assistance for based-pointers using the _based keyword. 

When calling MapViewOfFileEx, you must specify an address that is between 
Ox80000000 and OxBFFFFFFF, or MapViewOfFileEx will return NULL. 

When calling MapViewOfFileEx, you must specify an address that is between 
OxOOOlOOOO and Ox7FFEFFFF, or MapViewOfFileEx will return NULL. 

Memory-Mapped Files and Win32 Implementations 
Windows 95 and Windows NT implement memory-mapped files differ
ently. You need to be aware of these differences because they can affect 
the way that you write your code and the robustness of your data. 

Under Windows 95, a view is always mapped in the address space 
partition that ranges from Ox80000000 to OxBFFFFFFF. This means that 
all successful calls to MapViewOfFile will return an address within this 
range. You might recall that the data in this partition is shared by 
all Win32 processes. This means that if a process maps a view of a 

241 



ADVANCED WINDOWS 

242 

file-mapping object, the data of the file-mapping object is physically 
accessible to all Win32 processes whether they have mapped a view of the 
file-mapping object or not. If another process calls MapViewOJFile using 
the same file-mapping object, Windows 95 will return the same memory 
address to the second process that it did to the first process. The two pro
cesses are accessing the same data and the views are coherent. 

In Windows 95, it is possible for one process to call MapViewOJFile 
and pass the returned memory address to another process's thread using 
some form of interprocess communication. Once this thread has received 
the memory address, there is nothing to stop the thread from success
fully accessing the same view of the file-mapping object. However, you 
should not do this for two reasons: 

• Your application will not run under Windows NT, for reasons 
that I'll describe shortly. 

• If the first process calls UnmapViewOfFile, the address space 
region will revert to the free state; this means the second 
process's thread will raise an access violation when it attempts 
to access the memory where the view once was. 

In order for the second process to access the view of the memory
mapped file, a thread in the second process should call MapViewOfFile on 
its own behalf. When the second process does this, the system incre
ments a usage count for the memory-mapped view. So if the first process 
calls UnmapViewOJFile, the system will not release the region of address 
space occupied by the view until the second process also calls Unmap
ViewOJFile. 

When the second process calls MapViewOfFile, the address returned 
will be the same address that was returned to the first process. This averts 
the need for the first process to send the memory address to the second 
process using interprocess communication. 

The Windows NT implementation of memory-mapped files is bet
ter than the Windows 95 implementation because Windows NT requires 
a process to call MapViewOfFile before the file's data is accessible in the 
process's address space. If one process calls MapViewOfFile, the system 
reserves a region of address space for the view in the calling process's 
address space-no other process can see the view at all. If another pro
cess wants to access the data in the same file-mapping object, a thread in 
the second process must call MapViewOJFile, and the system will reserve a 
region for the view in the second process's address space. 



S EVE N: Memory-Mapped Files 

It is very important to note that the memory address returned by 
the first process's call to MapViewOfJi'ile will most likely not be the same 
memory address returned by the second process's call to MapViewOfFile. 

This is true even though both processes are mapping a view of the same 
file-mapping object. In Windows 95, the memory addresses returned 
from MapViewOfFile are the same-but you should absolutely not count 
on them being the same if you want your application to run under 
Windows NT! 

Let's look at another implementation difference. Here is a small 
program that maps two views of a single file-mapping object: 

#define STRICT 
#include <Windows.h> 

int WINAPI WinMain (HINSTANCE hinstExe, HINSTANCE hinstPrev, 
LPSTR lpCmdLine, int nCmdShow) { 

HANDLE hFile, hFileMapping; 
BYTE *pbFile, *pbFile2; 

II Open an existing file--it must be bigger than 64 KB. 
hFile = CreateFile(lpCmdLine, GENERIC_READ: GENERIC_WRITE, 0, 

NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 

II Create a file-mapping object backed by the data file. 
hFileMapping = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 

0, 0, NULL); 

II Starting at offset 0, map a view of the file 
II into the process's address space. 
pbFile = (PBYTE) MapViewOfFile(hFileMapping, FILE_MAP_WRITE, 

0, 0, 0); 

II Starting at offset 65536, map another view of the file 
II into the process's address space. 
pbFile2 = (PBYTE) MapViewOfFile(hFileMapping, FILE_MAP_WRITE, 

0,65536,0); 

if (pbFile + 65536 == pbFile2) { 
II If the addresses overlap, there is one address 
II space region for both views: this must be Windows 95. 
MessageBox(NULL, "We are running under Windows 95", 

NULL, MB_OK); 
else { 

(continued) 

243 



ADVANCED WINDOWS 

} 

} 

II If the addresses do not overlap, each view has its own 
II address space region: this must be Windows NT. 
MessageBox(NULL, "We are running under Windows NT", 

NULL, MB_OK): 

UnmapViewOfFile(pbFile2): 
UnmapViewOfFile(pbFile): 
CloseHandle(hFileMapping): 
CloseHandle(hFile): 

return(0): 

Under Windows 95, when a view of a file-mapping object is mapped, 
the system reserves enough address space for the entire file-mapping 
object. This happens even if MapViewOfFile is called with parameters 
that indicate that you want the system to map only a small portion of the 
file-mapping object. This means that you can't map a I-GB file-mapping 
object to a view even if you specify that only a 64-KB portion of the object 
be mapped. 

Whenever any process calls MapViewOfFile, the function returns an 
address within the address space region that was reserved for the entire 
file-mapping object. So in the code above, the first call to MapViewOfFile 
returns the base address of the region that contains the entire mapped 
file. The second call to MapViewOfFile returns an address that is 64 KB 
into the same address space region. 

The Windows NT implementation is again quite different. The two 
calls to MapViewOfFile in the code above cause Windows NT to reserve 
two different address space regions. The size of the first region is the size 
of the file-mapping object, and the size of the second region is the size of 
the file-mapping object minus 64 KB. Even though there are two differ
ent regions, the data is guaranteed to be coherent because both views 
are made from the same file-mapping object. Under Windows 95, the 
views are coherent because it is the same memory. 

Using Memory-Mapped Files to Share Data Among Processes 

244 

The ability to share data and information quickly and easily among pro
cesses is one of the most compelling reasons to use a Microsoft Windows 
environment over more restrictive environments such as MS-DOS. 
Win32 and 16-bit Windows both handle these sharing tasks in a number 



S EVE N: Memory-Mapped Files 

of ways. In 16-bit Windows, for example, there are several methods for 
sharing data. Probably the most common method is to call either Send
Message or PostMessage using a window belonging to another process. 
Unfortunately, in 16-bit Windows SendMessage and PostMessage allow only 
one 16-bit value and one 32-bit value to be passed to another process. 
You can also allocate a block of global memory (using the GMEM
_SHARE flag) and then pass the handle (as the wParam or lParam 
parameter) in a call to SendMessage or PostMessage. The receiver of this 
message then calls GlobalLock to get an address to the memory block and 
reads or writes the data. 

This method doesn't work in Win32, however, because each pro
cess has its own address space and one process cannot easily probe the 
data in another process's address space. 16-bit Windows makes it almost 
too easy to share data-applications frequently manipulate data that 
doesn't belong to them, causing other applications to crash. 

The Win32 system, on the other hand, allows multiple applications 
(running on the same machine) to share data using memory-mapped 
files. Memory-mapped files are, in fact, the only mechanism that offers 
this capability in the Win32 environment. Other techniques for sharing 
and transferring data, such as using PostMessage or SendMessage (includ
ing using SendMessage passing the new Win32 WM_COPYDATA window 
message), all use memory-mapped files internally. 

This data sharing is accomplished by having two or more processes 
map views of the same file-mapping object, which means they are sharing 
the same pages of physical storage. As a result, when one process writes to 
data in a view of a shared file-mapping object, the other processes see the 
change instantly in their views. Note that for multiple processes to share a 
single file-mapping object, all processes must use exactly the same name 
for the file-mapping object. 

Let's look at an example: starting an application. When an applica
tion starts, the system calls CreateFile to open the EXE file on the disk. 
Then the system calls CreateFileMapping to create a file-mapping object. 
Finally the system calls MapViewOfFileEx on behalf of the newly created 
process so that the EXE file is mapped into the process's address space. 
MapViewOfFileEx is called instead of MapViewOfFile so that the file's image 
is mapped to the base address stored in the EXE file's image. The system 
creates the process's initial thread, puts the address of the first byte of 
executable code of this mapped view in the thread's instruction pointer, 
and then lets the CPU start executing the code. 

245 



ADVANCED WINDOWS 

246 

If the user runs a second instance of the same application, the sys
tem sees that a file-mapping object already exists for the desired EXE file 
and doesn't create a new file object or file-mapping object. Instead, the 
system maps a view of the file a second time, this time in the context of 
the newly created process's address space. What the system has done is 
map the identical file into two address spaces simultaneously. Obviously, 
this is a more efficient use of memory because both processes are shar
ing the same pages of physical storage containing portions of the code 
that are executing. 

The next two sections discuss various techniques for sharing a file
mapping object among multiple processes. 

CreateFileMapping and OpenFileMapping 
Let's begin by again looking at the CreateFileMapping function: 

HANDLE CreateFileMapping(HANDLE hFile. LPSECURITY_ATTRIBUTES lpsa. 
DWORD fdwProtect. DWORD dwMaximumSizeHigh. 
DWORD dwMaximumSizeLow. LPSTR lpName); 

When you call this function to create a file-mapping object, you can 
give the object a name by passing a zero-terminated string as the lpName 
parameter. For example, one process might create a file-mapping object 
and assign it the name MyFileMapObj: 

HANDLE hFileMap = CreateFileMapping( ...• "MyFileMapObj"); 

When the code above executes, CreateFileMapping creates the file-mapping 
object and, if another file-mapping object with the specified name doesn't 
exist, stores the name with the new file-mapping object. 

If a file-mapping object does exist with the specified name, however, 
CreateFileMapping does not create a new object. Instead, it increments 
the usage count for the object and returns a process-relative handle 
identifYing the existing file-mapping object. Note that the system does 
not change the size of the existing file-mapping object. 

You can determine whether a new file-mapping object was created 
by calling GetLastError. Usually, you would call GetLastError to determine 
why a function failed. However, in the case of CreateFileMapping you 
can call GetLasfError if the function is successful. If GetLastError returns 
ERROR_ALREADY_EXISTS, CreateFileMapping has returned a handle 
to a previously existing object. If you don't want to use this existing object, 
you need to close the handle. The following code fragment guarantees 
that CreateFileMapping will create a new object or none at all: 



S EVE N: Memory-Mapped Files 

HANDLE hFileMap = CreateFileMapping( ... ); 
if ((hFileMap != NULL) && 

(GetLastError() == ERROR-ALREADY_EXISTS» 
CloseHandle(hFileMap); 
hFileMap = NULL; 

return(hFileMap); 

Another way that multiple processes can share a file-mapping object 
is by calling openFileMapping: 

HANDLE OpenFileMapping(DWORD dwDesiredAccess. 
BOOL bInheritHandle. LPSTR lpName); 

This function is similar to CreateFileMapping except that it assumes 
that a file-mapping object already exists-and if the object does not 
exist, openFileMapping will not create a new one. So in order to share a 
file-mapping object using openFileMapping, one process must first create 
the object using CreateFileMapping; then the other processes can open 
the file-mapping object using openFileMapping. In keeping with my ex
ample, all processes but the first open the file-mapping object by calling 
openFileMapping and passing a zero-terminated string as the lpName 
parameter: 

HANDLE hFileMap = OpenFileMapping( ...• "MyFileMapObj"); 

openFileMapping's first parameter, dwDesiredAccess, specifies access 
rights, such as FILE_MAP_READ, FILE_MAP _WRITE, FILE_MAP
_ALL_ACCESS, or FILE_MAP_COP~ and the second parameter, blnherit

Handle, indicates whether child processes should automatically inherit 
the handle to this file-mapping object. The handle that openFileMapping 
returns identifies the process-relative handle to the file-mapping object 
created by the first process. 

If openFileMapping cannot find a file-mapping object that has the 
passed name, NULL is returned. If a valid handle is returned, mapping 
the data into a process's own address space is simply a matter of calling 
MapViewOfFile or MapViewOfFileEx. Don't forget to call CloseHandle when 
you have finished using the opened file-mapping object. 

Inheritance 
A great way for two processes to share a file-mapping object is for one pro
cess to create an inheritable file-mapping object; a new child process then 
inherits the parent's file-mapping object. The child process's handle to 
the file-mapping object will be exactly the same as the parent's handle. 

247 



ADVANCED WINDOWS 

In order to create an inheritable file-mapping object, you must call 
CreateFileMapping and pass it the address of a SECURITY_ATTRIBUTES 
structure that is initialized as follows: 

SECURITY_ATTRIBUTES sa: 
sa.nLength = sizeof(sa): 
sa.lpSecurityDescriptor = NULL: 
sa.bInheritHandle = TRUE: 
hFileMap = CreateFileMapping(hFile, &sa, ... ): 

(Alternatively, if the parent process is sharing a file-mapping object cre
ated by another process, the parent process can call openFileMapping 
and simply pass TRUE for the blnheritHandle parameter.) 

Then, when the parent process is ready to create the child process, 
the parent must call the Create Process function and pass TRUE for the 
fInheritHandle parameter: 

BOOL CreateProcess(LPCTSTR lpszImageName, LPCTSTR lpszCommandLine, 
LPSECURITY_ATTRIBUTES lpsaProcess, 
LPSECURITY_ATTRIBUTES lpsaThread, 
BOOL fInheritHandles, DWORD fdwCreate, LPVOID lpvEnvironment, 
LPCTSTR lpszCurDir, LPSTARTUPINFO lpsiStartInfo, 
LPPROCESS_INFORMATION lppiProcInfo): 

This causes the usage count of the file-mapping object to incre
ment; the new child process will be able to use the handle to the file
mapping object, but it will not know what the value of the handle is. You 
must have some other technique for passing the value of the handle to 
the child. You can do this by passing a command-line parameter to the 
child or by sending or posting a message to a window created by the child 
process. 

Whatever method you use (and others exist), the child is respon
sible for closing its handle to the file-mapping object. Only after all the 
processes have closed their handles to the file-mapping object does the 
system delete the object and all of the physical storage that was commit
ted from the paging file for the object. 

Memory-Mapped Files Backed by the Paging File 

248 

So far I've been discussing techniques that allow you to map a view of a 
file that resides on a disk drive. Many applications create some data while 
they run and need to transfer the data or share it with another process. It 
would be terribly inconvenient if the applications had to create a data 
file on a disk drive and store the data there in order to share it. 



" Impoptant 

S EVE N: Memory-Mapped Files 

Microsoft realized this and added the ability to create memory
mapped files that are backed by the system's paging file rather than a 
dedicated hard disk file. This method is almost identical to the method 
for creating a memory-mapped disk file except that it's even easier. First, 
there is no need to call CreateFile since you will not be creating or opening 
a dedicated file. Instead, you simply call CreateFileMapping as you would 
normally and pass (HANDLE) OxFFFFFFFF as the hFile parameter. This 
tells the system that you are not creating a file-mapping object whose 
physical storage resides in a file on the disk; instead, you want the system 
to commit physical storage from the system's paging file. The amount of 
storage allocated is determined by CreateFileMapping's dwMaximumSize
High and dwMaximumSizeLow parameters. 

Mter you have created this file-mapping object and mapped a view 
of it into your process's address space, you can use it as you would any 
region of memory. If you want to share this data with other processes, 
call CreateFileMapping and pass a zero-terminated string as the lpName pa
rameter. Then other processes that want to access the storage can call 
CreateFileMapping or openFileMapping and pass the same name. 

When a process no longer needs access to the file-mapping object, 
that process should call CloseHandle. When all the handles are closed, the 
system will reclaim the committed storage from the system's paging file. 

Here is an interesting problem that has caught unsuspecting program
mers by surprise. Can you guess what is wrong with the following code 
fragment: 

HANDLE hFile = CreateFile( ... ); 
HANDLE hMap = CreateFileMapping(hFile, ... ); 
if (hMap == NULL) 

return(GetLastError(»; 

If the call to CreateFile above fails, it returns OxFFFFFFFF (INVALID
_HANDLE_VALUE). However, the unsuspecting programmer who 
wrote the code above didn't test to check whether the file was created 
successfully. When CreateFileMapping is called, OxFFFFFFFF is passed in 
the hFile parameter, which causes the system to create a file mapping 
using pages from the paging file instead of the intended disk file. 

249 



ADVANCED WINDOWS 

The Memory-Mapped File Sharing Sample Application 

250 

The MMFShare application (MMFSHARE.EXE), listed in Figure 7-2, 
demonstrates how to use memory-mapped files to transfer data among 
two or more separate processes. The source code files, resource files, 
and make file for the application are in the MMFSHARE.07 directory on 
the companion disc. 

You're going to need to execute at least two instances of the 
MMFSHARE.EXE program. Each instance creates its own dialog box, 
shown below. 

To transfer data from one instance of MMFShare to another, type 
the data to be transferred into the Data edit field. Then click on the Cre
ate Mapping Of Data button. When you do, MMFShare calls CreateFile
Mapping to create a 4-KB memory-mapped file object backed by the 
system's paging file and names the object MMFSharedData. IfMMFShare 
sees that a file-mapping object with this name already exists, it displays a 
message box notifying you that it could not create the object. If, on the 
other hand, MMFShare succeeds in creating the object, it proceeds to 
map a view of the file into the process's address space and copies the data 
from the edit control into the memory-mapped file. 

Mter the data has been copied, MMFShare unmaps the view of the 
file, disables the Create Mapping Of Data button, and enables the Close 
Mapping Of Data button. At this point, there is a memory-mapped file 
named MMFSharedData just sitting somewhere in the system. No pro
cesses have mapped a view to the data contained in the file. 

If you now go to another instance of MMFShare and click on this 
instance's Open Mapping And Get Data button, MMFShare attempts to 
locate a file-mapping object called MMFSharedData by calling OpenFile
Mapping. If an object of this name cannot be found, MMFShare displays 
another message box notifying you. IfMMFShare finds the object, it maps 
a view of the object into its process's address space and copies the data 
from the memory-mapped file into the edit control of the dialog box. 
Voilel! You have transferred data from one process to another. 



MMFShare.ico 

S EVE N: Memory-Mapped Files 

The Close Mapping Of Data button in the dialog box is used to 
close the file-mapping object, which frees up the storage in the paging 
file. If no file-mapping object exists, no other instance of MMFShare 
will be able to open one and get data from it. Also, if one instance has 
created a memory-mapped file, no other instance is allowed to create 
one and overwrite the data contained within the file. 

,MMFsH~RE~C··'.· 
".I~~, ... ~",,:~'l<'''''''''''''''~;'''''''''''~''''''*ii!','''''''''*'''*'''''''''''.''''11'··'1<''''~"'*"'***"'**""~*"*"'**i1i*"'*"'**~*" ..... 

~:;~~f~~l~l!~;!~;~~f~~!~~~r~:}!:t;~;:bi;t;tJ;"1 
} ',:::::,,;,';',:'. ",'.",}., ........•. • 'i"':',:,,'·,,,:. "'~",:,:):,, ' ... ".-".' ...... ". \ ,:::"'j;''"i:,,;,': "';" 

'.':,'4ii :~i~J~~i''.i':' i.\~~·i~'i:~~i.'~·.' ';"" "'I~Se~,<~p~~rjd f~"';a"f()~,d~~a,h~', '.' 'D:' '.,., '.;~.~~.~.'~::' .•. ~~;.~::~'~~,~>.:":""" . .' .... ' .•.. ' ..•.... :'., .. , .. 
.. ···:(fP:F~:i,~,,(~~·r~',~~~ .• ~. j .. ~~~fe·: '·· .. ·.~:0~i,.:.:.}, ... ;",:. i'" ;.j:+:~j,hJ1i.Et~. J.·.i ... ·.~ ...•. "~ ..•. ).,.o.: .•. ~,~n~:~,?.',;:: 

i." ,,. ,. ::,": .... , .. '",.. ": ,:".) . :':.'.":' . > '. ';' ,.:: ,.i:" '" '.',: : y • ~ " ••• ' •• ' ,:, :,"' ," 

;).,;,'::~Jc~i!:#,d ..• ·,~,';,:~j~~;~,~'4,.~,~.:,,~,~.¥~~,,,':;i,./' .:'" ';, ..... ,.;: .. , ... ,. "~i);'> ,'.. ',,:'" :. :::' .... :~:./.':j;.:.'.; 
• ~ c,"', "," " .. ,::". "'~'" ; ..• ..; ,.::.: ... ::! '::'.":;:"':~~" :-::\ ::.: •.....••. : .. ::.:: .. :,:. ~:>' " ~. ·:.i"":'. ,', '.'.:",' 

~ :,,-"":; .. ';) ·"'~· . .'r:'.~ "::::';""":~~':" ',,'., ".'" .;;::::'. ,', ,:" :::.,~.'::':" 
,":,;:.:. -;":.(\::i:V.~;)::,: ,'! ·i:' ',:", :·,.~i",~ ;' .. ::/ .. ',:? '.,:> ': ',-:'1,), 'r ,: " ,.\.;:, ,: . . ':';, .. :'~'.: ':;' <' "': ':' i".',~.;:;,.:,',·.;~'i."":':;·' ~,',,, >: 

:ryj!!~tK~\~t~i~~y;'I;~~J~1,;gl!'1 itlK{f,:rl:IYt!li/~1~(!/(W{lf1Ji t: " 
/",':~~1:~~~:~~i~i:':~·~~.~f'· ·l,HWkP".'~~~~'··':~.~~D,.· .. ·.hwn~,Ft>C~S;, • 
. ,. ", '.' .. .~::."'::'.> .'.? ... :.:.::.:~ .;;',;:.:.' :" ,/. ':. ': . :.,':.' :.:.: '. ; .. ; .:. '"; ;i .. ".',: ~'.~ , ,p. " .;:. . , , 

:",',i,;"~·,~.t\~~~~tj,~t,~.·.·lril::Jg9n:,Wi'~h.~~~,,.d lal'9~t'~PJh' ...... ".' 
".:'." ,S~tmasslong(fumd., '&CL.:.JHCON; {LONG), .. 
"" LoadI cio~ ({HI'N.sTANCE) GetWfnrl~LOng{'h~nd.; GW:(J1tNstANCa};~ 

'J,:; :'·;.T~16iIjMMfsfi~hi;if}';J:'",·· ... ····;,,:,,:/,······ .•.. ,. .· .. ,\1:,::.';::5; ....• ,. 

i~!~~~~~ti~~~~~~~~;E~~fil~~~k~~t.i~~}:":~ '(';;8 

i.i;iric\i .. f~tli~~~~~f;~~~~~~~{~~l;i~*r~~~S!j}:;Vfi.;, •. t 
'..' <:) .. ;,~:.,,:. ., .. ,.. ,', ~''''', >\:·,:::·::h·:: " .~ ,...... ' . .' ""',"; ";"~ 

Figure 7-2. (continued) 

The MMFShare application. 

251 



ADVANCED WINDOWS 

(continued) 

252 



S EVE N: Memory-Mapped Files 

Figure 7-2. continued 

Ed1t_GetText(GetPlgItem(hwnd,IDLDATA) • 
( LPTStR')] 4 * 10~4); . 

(continued) 

253 



ADVANCED WINDOWS 

Figure 7-2. continued 

(continued) 

254 



S EVE N: Memory-Mapped Files 

Figure 7-2. continued 

BOOl fProcessed = TRUE: 

(continued) 

255 



ADVANCED WINDOWS 

Figure 7-2. continued 

(continued) 

256 



S EVE N: Memory-Mapped Files 

Figure 7-2. continued 

Sparsely Committed Memory-Mapped Files 
In all the discussion of memory-mapped files so far, we see that the sys
tem requires that all storage for the memory-mapped file be committed 
either in the data file on disk or in the paging file. This means that we 
can't use storage as efficiently as we might like. Let's return to the discus
sion of the spreadsheet from the section "When to Commit Physical Stor
age" in Chapter 6. Let's say that you want to share the entire spreadsheet 
with another process. Ifwe were to use memory-mapped files, we would 
need to commit the physical storage for the entire spreadsheet: 

CELLDATA CellData[200][256]; 

If a CELLDATA structure is 128 bytes, this array requires 6,553,600 
(200 x 256 x 128) bytes of physical storage. As I said in Chapter 6, "That's 
a lot of physical storage to allocate from the paging file right up front for 
a spreadsheet, especially when you consider that most users put informa
tion into only a few spreadsheet cells, leaving the majority unused." 

It should be obvious that we would prefer to share the spreadsheet as 
a file-mapping object without having to commit all of the physical storage 

257 



ADVANCED WINDOWS 

258 

up front. CreateFileMapping offers a way to do this by specifying either the 
SEC_RESERVE or the SEC_COMMIT flag in the fdwProtect parameter. 

These flags are meaningful only if you're creating a file-mapping 
object that is backed by the system's paging file. The SEC_COMMIT flag 
causes CreateFileMapping to commit storage from the system's paging file. 
This is also the result if you specify neither flag. 

When you call CreateFileMapping and pass the SEC_RESERVE flag, 
the system does not commit physical storage from the system's paging 
file; it just returns a handle to the file-mapping object. You can now call 
MapViewOfFile or MapViewOfFileEx to create a view of this file-mapping 
object. MapViewOfFile and MapViewOfFileEx will reserve a region of address 
space and will not commit any physical storage to back the region. Any 
attempts to access a memory address in the reserved region will cause the 
thread to raise an access violation. 

What we have here is a region of reserved address space and a han
dle to a file-mapping object that identifies the region. Other processes can 
use the same file-mapping object in order to map a view of the same re
gion of address space. Physical storage is still not committed to the region, 
and if threads in other processes attempt to access a memory address of 
the view in their regions, these threads will raise access violations. 

Now, here is where things get exciting. In order to commit physical 
storage to the shared region, all a thread has to do is call VirtuaLAlloc: 

LPVOID VirtualAlloc(LPVOID lpvAddress. DWORD cbSize. 
DWORD fdwAllocationType. DWORD fdwProtect): 

We already discussed this function in great detail in Chapter 6. Calling 
VirtualAlloc to commit physical storage to the memory-mapped view 
region is just like calling VirtualAlloc to commit storage to a region ini
tially reserved by a simple call to VirtuaLAlloc using the MEM_RESERVE 
flag. And just as you can commit storage sparsely in a region reserved 
with VirtuaLAlloc, you can also commit storage sparsely within a region 
reserved by MapViewOfFile or MapViewOfFileEx. However, when you com
mit storage to a region reserved by MapViewOfFile or MapViewOfFileEx, all 
the processes that have mapped a view of the same file-mapping object 
can now successfully access the committed pages. 

Using the SEC_RESERVE flag and VirtuaLAlloc, we can successfully 
share the spreadsheet application's Cell Data matrix with other pro
cesses-and use physical storage very efficiently. 



1J 
ImpOPiant 

S EVE N: Memory-Mapped Files 

Normally, VirtualAlloc will fail when you pass it a memory address outside 
Ox00400000 through Ox7FFFFFFF. However, when committing physical 
storage to a memory-mapped file created using the SEC_RESERVE flag, 
you have to call VirtualAlloc, passing a memory address that is between 
Ox80000000 and OxBFFFFFFF. Windows 95 knows that you are committing 
storage to a reserved memory-mapped file and allows the call to succeed. 

Under Windows NT, you cannot use the VirtuafFree function to decom
mit storage from a memory-mapped file that was reserved with the SEC
_RESERVE flag. 

However, Windows 95 does allow you to call VirtuafFree to decommit 
storage in this case. 

259 





C HAP T E R E I G H T 

HEAPS 

The third and last mechanism for manipulating memory in Win32 is 
the use of heaps. Heaps are great for allocating lots of small blocks of 
data. For example, linked lists and trees are best managed using heaps 
rather than the virtual memory techniques discussed in Chapter 6 or the 
memory-mapped file techniques discussed in Chapter 7. 

If you are coming from a 16-bit Windows programming background, 
you are familiar with the two different types of heaps: the local heap and 
the global heap. Each process and DLL in 16-bit Windows receives its 
very own local heap, and all processes share a single global heap. 

In Win32, heap management is vastly different. Here is a list of 
some of the differences: 

• There is just one type of heap. (It has no special name like 
"local" or "global" because there is only one type.) 

• Heaps are always local to a process; the contents of a process's 
heap cannot be accessed by a thread in another process. Be
cause many 16-bit Windows applications use the global heap 
as a method for sharing data between processes, this change 
to heaps is frequently the source of problems encountered in 
porting from 16-bit Windows to Win32. 

• A single process can create several heaps within its address 
space and manipulate all of them. 

• A DLL does not get its own heap; it uses heaps that are part of 
the process's address space. However, a DLL can create a heap 
in the process's address space for the DLL's own purposes. Be
cause many 16-bit DLLs share data between processes using the 
DLLs' local heap, this change is also a frequent source of port
ing problems. 

261 



ADVANCED WINDOWS 

This chapter discusses Win32 heaps and the functions that are 
available to create them, manipulate them, and destroy them. For all 
new Win32 applications, these are the functions that you should be using. 
At the end of this chapter, I present a section that describes how Win32 
implements the 16-bit Windows heap functions. Take note that the 16-
bit Windows heap functions exist in the Win32 API for backward com
patibility only. The functions are implemented on top of the new heap 
functions; they perform slowly and require additional memory. Use the 
16-bit Windows global and local heap functions only if you must. 

What Is a Win32 Heap? 
A Win32 heap is a region of reserved address space. Initially, most of the 
pages within the reserved region are not committed with physical stor
age. As you make more allocations from the heap, the heap manager 
commits more physical storage to the heap. As allocations in the heap are 
freed, the heap manager de commits physical storage from the heap. 
Physical storage is committed to the heap in pages. 

Every now and then someone asks me for the exact rules that the 
heap manager uses to decide when to commit or decommit physical stor
age. To be honest, I knew what the rules were once but I've forgotten 
them now. Also, different implementations and different versions of the 
Win32 API might use slightly different rules. Microsoft is constantly per
forming stress tests and running different scenarios to determine the 
rules that work best most of the time. As applications and the hardware 
that runs them change, these rules will change. If this knowledge is criti
cal to your application, don't use heaps. Instead, use the virtual memory 
functions (that is, VirtuaLAlloc and VirtualFree) so that you can control 
these rules yourself. 

A Process's Default Heap 

262 

When a Win32 process is initialized, the system creates a heap in the 
process's address space. This heap is called the process's default heap. 
By default, this heap's region of address space is 1 MB in size. However, 
the system can grow a process's default heap so that it becomes larger 
than 1 MB in size. The default region size of 1 MB can be changed using 
the /HEAP linker switch when you create an application. A DLL does 
not have a heap associated with it, and therefore you should not use the 



E I G H T: Heaps 

/HEAP switch when you are linking a DLL. The heap switch has the fol
lowing syntax: 

IHEAP:reserve[.commit] 

The process's default heap is required by many of the Win32 func
tions. For example, the core functions in Windows NT perform all of 
their operations using Unicode characters and strings. If you call an 
ANSI version of a Win32 function, this ANSI version must convert the 
ANSI strings to Unicode strings and then call the Unicode version of the 
same function. In order to convert the strings, the ANSI function needs 
to allocate a block of memory to hold the Unicode version of the string. 
This block of memory is allocated from your process's default heap. 
There are many other Win32 functions that require the use of temporary 
memory blocks; these blocks are allocated from the process's default 
heap. Also, the 16-bit Windows global and local heap functions make 
their memory allocations from the process's default heap. 

Because the process's default heap is used by many of the Win32 
functions and because your application has many threads calling the 
various Win32 functions simultaneously, access to the default heap is 
serialized. In other words, the system guarantees that only one thread at 
a time may allocate or free blocks of memory in the default heap at any 
given time. If two threads attempt to allocate a block of memory in the 
default heap simultaneously, only one thread will be able to allocate a 
block and the other thread will be forced to wait until the first thread's 
block is allocated. Once the first thread's block is allocated, the heap 
functions will allow the second thread to allocate a block. This serialized 
access causes a small performance hit. If your application has only one 
thread and you want to have the fastest possible access to a heap, you 
should create your own separate heap and not use the process's default 
heap. Unfortunately, you cannot tell the Win32 functions not to use the 
default heap, so their accesses to the heap are always serialized. 

As I mentioned at the beginning of this chapter, a single process 
can have several heaps at once. These heaps can be created and destroyed 
during the lifetime of the process. The default heap, however, is created 
before the process begins execution and is destroyed automatically 
when the process terminates. You cannot destroy the process's default 
heap. Each heap is identified by its own heap handle, and all of the 
Win32 heap functions that allocate and free blocks within a heap require 
this heap handle as a parameter. 

263 



ADVANCED WINDOWS 

You can obtain the handle to your process's default heap by calling 
GetProcessHeap: 

HANDLE GetProcessHeap(VOID); 

Creating Your Own Win32 Heaps 

264 

In addition to the process's default heap, you can create additional heaps 
in your process's address space. Basically, there are three main reasons 
why you would want to create additional heaps in your own applications: 

• Component protection 

• More efficient memory management 

• Local access 

Let's look at each of these in detail. 

Component Protection 
For this discussion, imagine that your application needs to process two 
components: a linked list of NODE structures and a binary tree of 
BRANCH structures. You have two C files: LNKLST.C, which contains 
the functions that process the linked list of NODEs; and BINTREE.C, 
which contains the functions that process the binary tree of BRANCHes. 

If the NODEs and the BRANCHes are stored together in a single 
heap, the combined heap might look like Figure 8-1. Now let's say that 
there's a bug in the linked-list code that causes the 8 bytes after NODE 1 
to be accidentally overwritten. This causes the data in BRANCH 3 to be 
corrupted. When the code in BINTREE.C later attempts to traverse the 
binary tree, it will probably fail because of this memory corruption. This 
will, of course, lead you to believe that there is a bug in your binary-tree 
code when, in fact, the bug exists in the linked-list code. Because the dif
ferent types of objects are mixed together in a single heap, it becomes 
significantly more difficult to track down and isolate bugs. 

By creating two separate heaps, one for NODEs and the other for 
BRANCHes, you localize your problems. A small bug in your linked-list 
code does not compromise the integrity of your binary tree and vice 
versa. It is still possible to have a bug in your code that causes a wild 
memory write to another heap, but this is far less likely to happen. 



E I G H T: Heaps 

Figure 8-1. 
A single heap that stores NODEs and BRANCHes together. 

Efficient Memory Management 
Heaps can be managed more efficiently by allocating objects of the same 
size within them. For example, let's say that every NODE structure re
quires 24 bytes and every BRANCH structure requires 32 bytes. All of 
these objects are allocated from a single heap. Figure 8-2 on the follow
ing page shows a fully occupied single heap with several NODE and 
BRANCH objects allocated within it. If NODE 2 and NODE 4 are freed, 
memory in the heap becomes fragmented. If you then attempt to allo
cate a BRANCH structure, the allocation will fail even though 48 bytes 
are available and a BRANCH needs only 32 bytes. 

If each heap consisted only of objects that were the same size, free
ing an object would guarantee that another object would fit perfectly 
into the freed object's space. 

Local Access 
The last reason to use separate heaps in your application is to provide 
local access. Giving applications a 4-GB address space when you're using 
a machine containing far less than 4 GB of physical memory requires 
that the operating system and the CPU work together. When the system 

265 



ADVANCED WINDOWS 

266 

FigureS-2. 
A single fragmented heap that contains several NODE and 
BRANCH objects. 

swaps a page of RAM out to its paging file, it takes a performance hit. By 
the same token, another performance hit is taken when the system 
needs to swap a page of data back from the paging file into RAM. If you 
keep accesses to memory localized to a small range of addresses, it is 
less likely that the system will need to swap pages between RAM and the 
paging file. 

So, in designing an application, it's a good idea to allocate things 
that will be accessed together close to each other. Returning to our linked 
list and binary tree example, traversing the linked list is not related in 
any way to traversing the binary tree. By keeping all the NODEs close 
together (in one heap), you can keep the NODEs in adjoining pages; in 
fact, it's likely that several NODEs will fit within a single page of physical 
memory. Traversing the linked list will not require that the CPU refer to 
several different pages of memory for each NODE access. 

If you were to allocate both NODEs and BRANCHes in a single 
heap, the NODEs would not necessarily be close together. In the worst
case situation, you might be able to have one NODE only per page of 
memory, with the remainder of each page occupied by BRANCHes. 
In this case, traversing the linked list could cause page faults for each 
NODE, which would make the process extremely slow. 



E I G H T: Heaps 

Creating Another Win32 Heap 
You can create additional heaps in your process by having a thread call 
HeapCreate: 

HANDLE HeapCreate(DWORD flOptions. DWORD dwlnitialSize. 
DWORD cbMaximumSize); 

The first parameter, jlOptions, modifies how operations are per
formed on the heap. You can specify 0, HEAP_NO_SERIALIZE, HEAP
_GENERATE_EXCEPTIONS, or a combination of the two flags. 

By default, a heap will serialize access to itself so that multiple 
threads can allocate and free blocks from the heap without the danger of 
corrupting the heap. When an attempt is made to allocate a block of 
memory from the heap, the HeapAlloc function (discussed later) must do 
the following: 

1. Traverse the linked list of allocated and freed memory blocks 

2. Find the address of a free block 

3. Allocate the new block by marking the free block as allocated 

4. Add a new entry into the linked list of memory blocks 

To illustrate how you might use the HEAP_NO_SERIALIZE flag, 
let's say that two threads are attempting to allocate blocks of memory 
from the same heap at the same time. The first thread executes steps 1 
and 2 above and gets the address of a free memory block. However, 
before this thread can execute step 3, the thread is preempted and the 
second thread gets a chance to execute steps 1 and 2. Because the first 
thread has not executed step 3 yet, the second thread finds the address 
to the same free memory block. 

With both threads having found what they believe to be a free 
memory block in the heap, Thread 1 updates the linked list, marking the 
new block as allocated. Thread 2 then also updates the linked list, mark
ing the same block as allocated. Neither thread has detected a problem 
so far, but both threads receive an address to the exact same block of 
memory. 

This type of bug can be very difficult to track down because it usu
ally doesn't manifest itself immediately. Instead, the bug waits in the 
background until the most inopportune moment. The potential prob
lems are listed on the following page. 

267 



ADVANCED WINDOWS 

268 

• The linked list of memory blocks has been corrupted. This 
problem will not be discovered until an attempt to allocate or 
free a block is made. 

• Both threads are sharing the same memory block. Thread 1 
and Thread 2 might both write information to the same block. 
When Thread 1 examines the contents of the block, it will not 
recognize the data introduced by Thread 2. 

• One thread might proceed to use the block and free it, causing 
the other thread to overwrite unallocated memory. This will 
corrupt the heap. 

The solution to these problems is to allow a single thread exclusive 
access to the heap and its linked list until the thread has performed all 
the operations it needs to on the heap. The absence of the HEAP
_NO_SERIALIZE flag does exactly this. It is safe to use the HEAP_NO
_SERIALIZE flag only if one or more of the following conditions are 
true for your process: 

• Your process uses only a single thread. 

• Your process uses multiple threads, but the heap is accessed by 
only a single thread. 

• Your process uses multiple threads but manages access to the 
heap itself by using other forms of mutual exclusion, such as 
mutexes and semaphores, as discussed in Chapter 9. 

If you're not sure whether to use the HEAP_NO_SERIALIZE flag, 
don't use it. Not using it will cause your threads to take a slight perfor
mance hit whenever a heap manipulation function is called, but you 
won't risk corrupting your heap and its data. 

The other flag, HEAP_GENERATE_EXCEPTIONS, causes the sys
tem to raise an exception whenever an attempt to allocate or reallocate 
a block of memory in the heap fails. An exception is just another way for 
the system to notify your application that an error has occurred. Some
times it's easier to design your application to look for exceptions rather 
than to check for return values. Exceptions are discussed in Chapter 14. 

The second parameter of HeapCreate, dwlnitialSize, indicates the 
number of bytes initially committed to the heap. HeapCreate rounds this 



E I G H T: Heaps 

value up to an even multiple of the CPU's page size if necessary. The final 
parameter, dwMaximumSize, indicates the maximum size to which the 
heap can expand (the maximum amount of address space the system 
can reserve for the heap). If dwMaximumSize is 0, the system reserves 
a region (size determined by the system) for the heap and expands the 
region as needed until the region has reached its maximum size. If 
the heap is created successfully, HeapCreate returns a handle identifying 
the new heap. This handle is used by the other heap functions. 

Allocating a Block of Memory from a Heap 
Allocating a block of memory from a heap is simply a matter of calling 
HeapAlloc: 

LPVOID HeapAlloc(HANDLE hHeap. DWORD dwFlags. DWORD dwBytes); 

The first parameter, hHeap, identifies the handle ofthe heap from which 
an allocation should be made. This handle must be a handle that was 
returned by an earlier call to HeapCreate or GetProcessHeap. The dwBytes 
parameter specifies the number of bytes that are to be allocated from the 
heap. The middle parameter, dwFlags, allows you to specify flags that 
affect the allocation. Currently only three flags are supported: HEAP
_ZERO_MEMORY, HEAP_GENERATE_EXCEPTIONS, andHEAP_NO
_SERIALIZE. 

The purpose of the HEAP_ZERO_MEMORY flag should be pretty 
obvious. This flag causes the contents ofthe block to be filled with zeros 
before HeapAlloc returns. The second flag, HEAP_GENERATE_EXCEP
TIONS, causes the HeapAlloc function to raise a software exception if 
insufficient memory is available in the heap to satisfy the request. When 
creating a heap with HeapCreate, you can specify the HEAP_GENERATE
_EXCEPTIONS flag, which tells the heap that an exception should be 
raised when a block cannot be allocated. If you specify this flag when call
ing HeapCreate, you don't need to specify it when calling HeapAlloc. On 
the other hand, you might want to create the heap without using this 
flag. In this case, specifying this flag to HeapAlloc affects only the single 
call to HeapAlloc, not every call to this function. 

If HeapAlloc fails and then raises an exception, the exception raised 
will be one of the two shown in the table on the following page. 

269 



ADVANCED WINDOWS 

270 

Identifier 

STATUS_NO_MEMORY 

STATUS_ACCESS_VIOLATION 

Meaning 

The allocation attempt failed because 
of insufficient memory. 

The allocation attempt failed because 
of heap corruption or improper 
function parameters. 

A block allocated with HeapAlloc is fixed and nondiscardable, so it 
is quite possible for the heap to become fragmented as the application 
allocates and frees various memory blocks. If the block has been success
fully allocated, HeapAlloc returns the address of the block. If the memory 
could not be allocated and HEAP_GENERATE_EXCEPTIONS was not 
specified, HeapAlloc returns NULL. 

The last flag, HEAP_NO_SERIALIZE, allows you to force this indi
vidual call t<;> HeapAlloc to not be serialized with other threads that are 
accessing the same heap. You should use this flag with extreme caution 
because it is possible that the heap will become corrupted if other 
threads are manipulating the heap at the same time. 

Changing the Size of a Block 
Often it's necessary to alter the size of a memory block. Some applica
tions initially allocate a larger than necessary block and then, after all 
the data has been placed into the block, resize the block to a smaller size. 
Some applications begin by allocating a small block of memory and then 
attempt to enlarge the block when more data needs to be copied into it. 
Resizing a memory block is accomplished by calling the HeapReAlloc 
function: 

LPVOID HeapReAlloc(HANDLE hHeap, DWORD dwFlags, 
LPVOID lpMem, DWORD dwBytes); 

As always, the hHeap parameter indicates the heap that contains the 
block you want to resize. The dwFlags parameter specifies the flags that 
HeapReAlioc should use when attempting to resize the block. The follow
ing four flags only are available: HEAP_GENERATE_EXCEPTIONS, 
HEAP_NO_SERIALIZE, HEAP_ZERO_MEMORY, and HEAP_REAL
LOC_IN_PLACE_ONLY 

The first two flags have the same meaning as when they are used 
with HeapAlloc. The HEAP_ZERO_MEMORY flag is useful only when you 



E I G H T: Heaps 

are resizing a block to make it larger. In this case, the additional bytes 
in the block will be zeroed. This flag has no effect if the block is being 
reduced. 

The HEAP_REALLOC_IN_PLACE_ONLY flag tells HeapReAlloc 
that it is not allowed to move the memory block within the heap, which 
HeapReAlloc might attempt to do if the memory block were growing. If 
HeapReAlloc is able to enlarge the memory block without moving it, it 
will do so and return the original address of the memory block. On the 
other hand, if HeapReAlloc must move the contents of the block, the 
address of the new, larger block is returned. If the block is made smaller, 
HeapReAlloc returns the original address of the memory block. You would 
want to specify the HEAP_REALLOC_IN_PLACE_ONLY flag if the 
block were part of a linked list or tree. In this case, other nodes in the list 
or tree might have pointers to this node and relocating the node in the 
heap would corrupt the integrity of the linked list. 

The remaining two parameters, lpMem and dwBytes, specify the cur
rent address of the block that you want to resize and the new size-in 
bytes-of the block. HeapReAlloc returns either the address of the new, 
resized block or NULL if the block cannot be resized. 

Obtaining the Size of a Block 
After a memory block has been allocated, the HeapSize function can be 
called to retrieve the actual size of the block: 

DWORD HeapSize(HANDlE hHeap. DWORD dwFlags. lPCVOID lpMem); 

The hHeap parameter (returned from an earlier call to either HeapCreate 
or GetProcessHeap) identifies the heap, and the lpMem parameter (returned 
from an earlier call to HeapAlloc or HeapReAlloc) indicates the address 
of the block. The dwFlags parameter can be either 0 or HEAP_NO
_SERIALIZE. 

Freeing a Block 
When you no longer need the memory block, you can free it by calling 
HeapFree: 

BOOl HeapFree(HANDlE hHeap. DWORD dwFlags. lPVOID lpMem); 

HeapFree frees the memory block and returns TRUE if successful. 
The dwFlags parameter can be either 0 or HEAP_NO_SERIALIZE. Call
ing this function may cause the heap manager to decommit some physi
cal storage, but there are no guarantees. 

271 



ADVANCED WINDOWS 

Destroying a Win32 Heap 
If your application no longer has a need for a heap that it created, you 
can destroy the heap by calling HeapDestroy: 

BOOl HeapDestroy(HANDlE hHeap); 

Calling HeapDestroy causes all the memory blocks contained within 
the heap to be freed and causes the physical storage and reserved address 
space region occupied by the heap to be released back to the system. If 
the function is successful, HeapDestroy returns TRUE. If you don't explic
itly destroy the heap before your process terminates, the system will 
destroy it for you. However, a heap is destroyed only when a process ter
minates. If a thread creates a heap, the heap won't be destroyed when 
the thread terminates. 

The system will not allow the process's default heap to be destroyed 
until the process completely terminates. If you pass the handle to the 
process's default heap to HeapDestroy, the system simply ignores the call. 

Using Heaps with C++ 

272 

One of the best ways to take advantage ofWin32 heaps is to incorporate 
them into your existing C++ programs. In C++, class-object allocation is 
performed by calling the new operator instead of the normal C run-time 
routine maUoe. Then, when we no longer need the class object, the delete 
operator is called instead of the normal C run-time routine free. For 
example, let's say that we have a class called CSomeClass and we want to 
allocate an instance of this class. To do this we would use syntax similar 
to the following: 

CSomeClass* pCSomeClass = new CSomeClass; 

When the C++ compiler examines this line, it first checks whether the 
CSomeClass class contains a member function for the new operator; if it 
does, the compiler generates code to call this function. If the compiler 
doesn't find a function overloading the new operator, the compiler gen
erates code to call the standard C++ new operator function. 

Mter you're done using the allocated object, you can destroy it by 
calling the delete operator: 

delete pCSomeClass; 

By overloading the new and delete operators for our C++ class, we 
can easily take advantage of the Win32 heap functions. To do this, let's 
define our CSomeClass class in a header file like this: 



class CSomeClass 
private: 

} ; 

static HHEAP s_hHeap; 
static UINT s_uNumAllocslnHeap; 

II Other private data and member functions 

public: 
void* operator new Csize_t size); 
void operator delete Cvoid* p); 
II Other public data and member functions 

E I G H T: Heaps 

In the code fragment above, I have declared two member variables, 
s_hHeap and s_uNumAllocslnHeap, as static variables. Because they are 
static, C++ will make all instances of CSomeClass share the same vari
ables. That is, C++ will not allocate separate s_hHeap and s_uNumAllocsln
Heap variables for each instance of the class that is created. This is very 
important to us because we want all of our instances of CSomeClass to be 
allocated within the same heap. 

The LhHeap variable will contain the handle to the heap within 
which CSomeClass objects should be allocated. The LuNumAllocslnHeap 
variable is simply a counter of how many CSomeClass objects have been 
allocated within the heap. Every time a new CSomeClass object is allo
cated in the heap, LuNumAllocslnHeap is incremented. Every time a 
CSomeClass object is destroyed, s_uNumAllocslnHeap is decremented. 
When s_uNumAllocslnHeap reaches 0, the heap is no longer necessary 
and is freed. The code to manipulate the heap should be included in a 
CPP file that looks like this: 

HHEAP CSomeClass::s_hHeap = NULL; 
UINT CSomeClass::s_uNumAllocslnHeap = 0; 

void* CSomeClass::operator new Csize_t size) { 
if Cs_hHeap == NULL) { 

II Heap does not exist; create it. 
s_hHeap = HeapCreateCHEAP_NO_SERIALIZE. 0. 0); 

if Cs_hHeap == NULL) 
returnCNULL) ; 

(continued) 

273 



ADVANCED WINDOWS 

274 

II The heap exists for CSomeClass objects. 
void* p; 
while «p = (void *) HeapAlloc(s_hHeap, 0, size» == NULL) { 

II A CSomeClass object could not be allocated from the heap. 
if (_new_handler != NULL) { 

} 

II Call the application-defined handler. 
(*_new_handler)(); 

} else { 

} 

II No application-defined handler exists; just return. 
break; 

if (p != NULL) { 

} 

II Memory was allocated successfully; increment 
II the count of CSomeClass objects in the heap. 
s_uNumAllocslnHeap++; 

II Return the address of the allocated CSomeClass object. 
return(p) ; 

You'll notice that I first defined the two static member variables, 
LhHeap and s_uNumAllocslnHeap, at the top and initialized them as NULL 
and 0, respectively. 

The C++ new operator receives one parameter-size. This parame
ter indicates the number of bytes required to hold a CSomeClass object. 
The first thing that our new operator function must do is create 
a heap if one hasn't been created already. This is simply a matter of 
checking the s_hHeap variable to see whether it is NULL. If it is, a new 
heap is created by calling HeapCreate, and the handle that HeapCreate 
returns is saved in LhHeap so that the next call to the new operator will 
not create another heap but rather use the heap we have just created. 

When I called the HeapCreate function above, I used the HEAP
_NO_SERIALIZE flag because the remainder of the sample code is not 
multithread safe. In Chapter 9, I discuss features of Win32 that can be 
incorporated into the above code to make it multithread safe. The other 
two parameters in the call to HeapCreate indicate the initial size and the 
maximum size of the heap, respectively. I chose 0 and 0 here. The first 0 
means that the heap has no initial size, whereas the second 0 means that 
the heap starts out small and expands as needed. You might want to 
change either or both of these values depending on your needs. 



E I G H T: Heaps 

You might think it would be worthwhile to pass the size parameter 
to the new operator function as the second parameter to HeapCreate. In 
this way, you could initialize the heap so that it is large enough to contain 
one instance of the class. Then, the first time that HeapAlloc is called, it 
will execute faster because the heap won't have to resize itself to hold the 
class instance. Unfortunately, things don't always work the way you want 
them to. Because each allocated memory block within the heap has an 
overhead associated with it, the call to HeapAlloc will still have to resize 
the heap so that it is large enough to contain the one class instance and 
its associated overhead. 

Once the heap has been created, new CSomeClass objects can be 
allocated from it using HeapAlloc. The first parameter is the handle to the 
heap, and the second parameter is the size of the CSomeClass object. 
HeapAlloc returns the address to the allocated block. 

Once the allocation is performed successfully, I increment the 
s_uNumAllocslnHeap variable so that I know there is one more allocation 
in the heap. The last thing that the new operator does is return the address 
of the newly allocated CSomeClass object. 

Well, that's it for creating a new CSomeClass object. Let's turn our 
attention now to destroying one when our application no longer needs 
it. This is the responsibility of the delete operator function, coded as follows: 

void CSomeClass::operator delete (void* p) { 

} 

if (HeapFree(s_hHeap. 0. p)) { 
II Object was deleted successfully. 
s_uNumAllocsInHeap--; 

if (s_uNumAllocsInHeap == 0) { 

} 

II If there are no more objects in the heap. 
II destroy the heap. 
if (HeapDestroy(s_hHeap)) { 

} 

II Set the heap handle to NULL so that the new operator 
II will know to create a new heap if a new CSomeClass 
II object is created. 
s_hHeap = NULL; 

The delete operator function receives only one parameter: the ad
dress of the object being deleted. The first thing that the function does is 
call HeapFree, passing it the handle of the heap and the address of the 

275 



ADVANCED WINDOWS 

276 

object to be freed. If the object is freed successfully, LuNumAllocslnHeap 
is decremented, indicating that one fewer CSomeClass object is in the 
heap. Next the function checks whether s_uNumAllocslnHeap is 0, and, if 
it is, the function calls HeapDestroy, passing it the heap handle. If the heap 
is destroyed successfully, LhHeap is set to NULL. This is extremely 
important because our program might attempt to allocate another 
CSomeClass object sometime in the future. When it does, the new opera
tor will be called and will examine the s_hHeap variable to determine 
whether it should use an existing heap or create a new one. 

This example demonstrates a very convenient scheme for using 
multiple heaps. It is easy to set up and can be incorporated into several of 
your classes. You will probably want to give some thought to inheritance, 
however. If you derive a new class using CSomeClass as a base class, the 
new class will inherit CSomeClass's new and delete operators. The new 
class will also inherit CSomeClass's heap, which means that when the new 
operator is applied to the derived class, the memory for the derived class 
object will be allocated from the same heap that CSomeClass is using. 
Depending on your situation, this mayor may not be what you want. If 
the objects are very different in size, you might be setting yourself up for 
a situation in which the heap might fragment badly. You might also be 
making it harder to track down bugs in your code, as mentioned in the 
"Component Protection" and "Efficient Memory Management" sections 
earlier in this chapter. 

If you want to use a separate heap for derived classes, all you need 
to do is duplicate what I did in the CSomeClass class. More specifically, 
include another set of s_hHeap and s_uNumAllocslnHeap variables, and 
copy the code over for the new and delete operators. When you compile, 
the compiler will see that you have overloaded the new and delete opera
tors for the derived class and will make calls to those functions instead of 
to the ones in the base class. 

The only advantage to not creating a heap for each class is that you 
won't need to devote overhead and memory to each heap. However, the 
amount of overhead and memory the heaps tie up is not great and is 
probably worth the potential gains. The compromise might be to have 
each class use its own heap and to let derived classes share the base class's 
heap when your application has been well tested and is close to shipping. 
But be aware that fragmentation might still be a problem. 



E I G H T: Heaps 

The 16-Bit Windows Heap Functions 
In this section, I'll discuss how the 16-bit Windows heap functions are 
implemented in the Win32 API. I'll cover all the global and local heap 
memory management functions, but I won't offer techniques for using 
them because I'm assuming that you're already familiar with 16-bit Win
dows programming techniques and because these functions should be 
avoided in new Win32 applications. Win32 supports the 16-bit Windows 
memory management functions solely for easy porting from one envi
ronment to another. If you are developing a new 32-bit application, 
and if you do not intend to compile the application natively for 16-bit 
Windows, I recommend that you don't use the global and local memory 
functions-they're slower and have more overhead than do the new 
Win32 heap functions. 

In order to support the 16-bit Windows local and global heap func
tions, every Win32 process receives its very own default process heap and 
its very own handle table when initialized. The default process heap has 
already been discussed earlier in this chapter. This default heap is where 
the global and local memory allocations will be made. 

The handle table exists so that Win32 can manage the local and 
global allocations. The handle table is an array of structures; each entry 
in the array points to a block of memory allocated from the default heap. 
When you call GlobalAlloc, the Win32 system allocates a block of memory 
from the process's default heap and locates an unused entry in the 
process's handle table. Then the system saves the address of the allo
cated block in the handle table and returns the address of the entry in 
the handle table. This returned value is the handle of the memory block. 
When you call GlobalLock, the system looks at the handle table and simply 
returns the address of the allocated block of memory in the default heap. 

Initially Win32 allocates a small amount of storage to hold only a 
small number of handle table entries. As the application continues to 
make allocations from the handle table, additional handles might 
become necessary. When this happens, Win32 can increase the amount 
of storage used by the handle table, allowing additional handles to be 
allocated. 

Because of this additional work required by the system to manage 
this handle table, it is easy to see why the new Win32 heap functions 
should be used instead ofthe old 16-bit Windows functions. However, if 
you want to continue to use the 16-bit Windows functions so that you can 
write code that can be natively compiled for both 16-bit Windows and 
Win32, or if you want to port your application to Win32 quickly, you 

277 



ADVANCED WINDOWS 

278 

should know that not all of the 16-bit Windows heap functions perform 
exactly as they did in 16-bit Windows. The remaining sections in this chap
ter explain what the 16-bit heap functions do in a Win32 environment. 

16-Bit Windows Functions That Port to Win32 
Figure 8-3 shows what the 16-bit Windows memory management func
tions do in Win32. For each entry, the two functions listed perform 
identical tasks on the heap. (Note that in Win32, both HGLOBAL and 
HLOCAL are typedefed as HANDLE.) 

Of all the functions listed, only a few had semantic changes when 
they were ported to Win32. The following section covers these changes. 

16-Sit Windows Memory Function 

HGLOBAL GlobaWloc(UINT fuAlloc, 
DWORD cbAlloc); 

HLOCAL LocaWloc(UINT fuAlloc, UINT 
cbAlloc); 

HGLOBAL GlobalDiscard (HGLOBAL hglb) ; 
HLOCAL LocalDiscard(HLOCAL hId); 

UINT GlobaIFlags(HGLOBAL hglb); 
UINT LocaIFlags(HLOCAL hId); 

HGLOBAL GlobalFree (HGLOBAL hglb); 
HLOCAL LocaIFree(HLOCAL hId); 

LPVOID GIobaILock(HGLOBAL hglb); 
LPVOID LocaILock(HLOCAL hId); 

BOOL GlobalUnlock(HGLOBAL hglb); 
BOOL LocalUnlock(HLOCAL hId); 

HGLOBAL GlobalReAlloc (HGLOBAL hglb, 
DWORD cbNewSize, UINT fuAlloc); 

HLOCAL LocaIReAlloc(HLOCAL hId, 
UINT cbAlloc, UINT fuAlloc); 

DWORD GlobaISize(HGLOBAL hglb); 
UINT LocaISize(HLOCAL hId); 

HGLOBAL GlobalHandle(LPVOID IpvMem); 
HLOCAL LocalHandle(LPVOID IpvMem); 

Figure 8-3. 

Meaning in Win32 

Allocate a memory block. 

Discard a memory block. 
Macros defined as: 
GlobalReAlloc «hglb), 0, 

GMEM_MOVEABLE) ; 
LocalReAlloc «hglb), 0, 

LMEM_MOVEABLE) ; 

Return flag information 
about a memory block. 

Free a memory block. 

Lock a memory block. 

Unlock a memory block. 

Change the size and/or 
flags of a memory block. 

Return the size of a 
memory block. 

Return the handle of the 
memory block containing 
the passed address. 

Memory functions ported from 16-bit Windows to Win32. 



E I G H T: Heaps 

Functions with Semantic Changes 
Whenever an application calls GlobalAlloc or LocalAlloc to allocate non
fixed memory, the Win32 system must allocate a handle for the data as 
well as memory space for the data. When GlobalAlloc or LocalAlloc returns, 
it returns a handle-the address of an entry in the handle table. For 
example, let's say that these lines of code are executed: 

HGLOBAL hglb = GlobalAlloc(GMEM_MOVEABLE. 10); 
LPVOID lpv = GlobalLock(hglb); 

The variable hglb is an address to a structure in the handle table. When 
GlobalLock is called, the entry in the handle table is examined to deter
mine the address of the memory block. GlobalLock then returns this 
address. 

Both GlobalLock and LocalLock return the address to the memory 
block that was allocated. Immediately preceding this block in memory is 
an internal data structure. This data structure contains some internal 
management information, such as the size of the allocated block and the 
handle of the block. When allocating fixed memory blocks, the system 
does not need to allocate a handle from the handle table. Instead, the 
system simply allocates the memory block and returns the address to this 
block when GlobalAlloc or LocalAlloc returns. 

For GlobalAlloc and LocalAlloc, some of the flags' meanings have 
changed. Figure 8-4 shows all of the possible flags and what they mean 
in Win32. 

Flag 

GHND 

LHND 

GPTR 

LPTR 

GMEM_DDESHARE, 
GMEM_SHARE 

Figure 8-4. 

Meaning in Win32 

Defined as 
(GMEM_MOVEABLE I GMEM_ZEROINIT) 

Defined as 
(LMEM_MOVEABLE I LMEM_ZEROINIT) 

Defined as 
(GMEM_FlXED I GMEM_ZEROINIT) 

Defined as 
(LMEM_FIXED I LMEM_ZEROINIT) 

Win32 does not allow memory to be shared in 
this way. However, this flag may be used as a 
hint to the system about how to share memory 
in the future. 

(continued) 

Memory flags and their meanings in Win32. 

279 



ADVANCED WINDOWS 

280 

Figure 8-4. continued 

Flag 

GMEM_DISCARDABLE, 
LMEM_DISCARDABLE 

GMEM_FIXED, 
LMEM_FIXED 

GMEM_LOWER, 
GMEM_NOLBANKED, 
GMEM_NOCOMPACT, 
LMEM_NOCOMPACT, 
GMEM_NODISCARD, 
LMEM_NODISCARD, 
GMEM_NOTIFY, 
LMEM_NOTIFY 

GMEM_MOVEABLE, 
LMEM_MOVEABLE 

GMEM_ZEROINIT, 
LMEM_ZEROINIT 

NONZEROLHND 

NONZEROLPTR 

Meaning in Win32 

Allocate block as discardable. Win32 ignores 
these flags. 

Allocate block as fixed. 

Ignored. 

Allocate block as movable. 

Zero contents of block after allocation. 

Defined as (LMEM_MOVEABLE) 

Defined as (LMEM_FIXED) 

It is incorrect to call GlobalReAlloc or LocalReAlloc specifying the 
GMEM_DISCARDABLE or LME~DISCARDABLE flag without also 
including the GMEM_MODIFYor LMEM_MODIFY flag. l 

Functions That Should Be Avoided in Win32 
Figure 8-5 shows 16-bit Windows memory allocation functions that have 
been kept in Win32 for easier porting between 16-bit Windows and 
Win32 applications but that are obsolete and should be avoided. Each of 
the functions existed for one or more of the following reasons: 

• To allow applications to manipulate the shared global heap. In 
Win32, each application has its own address space and this type 
offunctionality is no longer possible. 

1. The GMEM_MODIFY flag and the LMEM_MODIFY flag do not appear in Figure 8-4 
because they are used only in conjunction with the GlobalReAlloc and LocalReAlloc functions. 



E I G H T: Heaps 

• To help manage discardable memory. In Win32, memory blocks 
are never discarded by the system. They can be discarded if an 
application explicitly calls GlobalDiscard or LocalDiscard. Both 
functions really resize the blocks to 0 bytes anyway . 

• To help manage movable memory. In Win32, memory blocks 
are never moved or compacted by the system. 

16-Bit Windows Memory Function 

BOOL DefineHandleTable(WORD w) 

DWORD GetFreeSpace(UINT u) 

DWORD GlobalCompact(DWORD); 

void GlobalFix(HGLOBAL); 

HGLOBAL GlobalLRUNewest (HGLOBAL h) 

HGLOBAL GlobalLRUOldest (HGLOBAL h) 

void GlobalUnfix(HGLOBAL); 

BOOL GlobalUnWire(HGLOBAL); 

void *GlobaIWire(HGLOBAL); 

void LimitEmsPages (DWORD) 

UINT LocalCompact(UINT); 

UINT LocalSbrink (HLOCAL, UINT); 

HGLOBAL LockSegment(UINT w) 

LONG SetSwapAreaSize (UINT w) 

void UnlockSegment(UINT w) 

FigureS-5. 

Meaning in Win32 

Macro defined as 
«w), TRUE) 

Macro defined as 
(OxlOOOOOL) 

Always returns OxlOOOOO 

Same as calling 
GlobalLock 

Macro defined as 
(HANDLE) (b) 

Macro defined as 
(HANDLE) (b) 

Same as calling 
GlobalUnlock 

Same as calling 
GlobalUnlock 

Same as calling 
GlobalLock 

Macro defined as nothing 

Always returns OxlOOOOO 

Always returns OxlOOOOO 

Macro defined as 
GlobalFix( (HANDLE) (w» 

Macro defined as (w) 

Macro defined as 
GlobalUnfix( (HANDLE) (w» 

These 16-bit Windows memory functions should be avoided in Win32. 

281 



ADVANCED WINDOWS 

282 

Functions That Have Been Removed from Win32 
The following list shows 16-bit Windows memory functions that have 
been removed from the Win32 API, mainly because they were Intel 
processor-specific functions. Win32 is a portable API designed to offer 
all of its functions on any and all CPU platforms to which Win32 is 
ported. Calling the following functions results in a compiler error be
cause no prototype or macro exists for them: 

AllocDStoCSAlias GlobalNotify 

AllocSelector GlobalPageLock 

ChangeSelector GlobalPageUnlock 

FreeSelector Local/nit 

GetCodeInfo SwitchStackBack 

GlobalDOSAlloc SwitchStackTo 

GlobalDOSFree 



C HAP T E R N I N E 

THREAD SYNCHRONIZATION 

In an environment in which several threads are running concurrently, it 
becomes important to be able to synchronize the activities of various 
threads. The Win32-based operating systems provide several synchroni
zation objects that allow threads to synchronize their actions with one 
another. In this chapter, I'll concentrate on the four main synchroniza
tion objects: critical sections, mutexes, semaphores, and events. Other 
objects also exist for synchronization, and some of these are discussed 
and demonstrated in other chapters in this book. 

This chapter offers numerous techniques for using the four main 
synchronization objects. For the most part, all the synchronization objects 
behave similarly. There are differences, however, which make one type of 
object more suitable for a particular task than another. 

Of these four types of synchronization objects, all are kernel 
objects except critical sections. That is, a critical section is not managed 
by the low-level components of the operating system and is not manipu
lated using handles. A critical section is the easiest synchronization object 
to use and understand, and therefore, we'll discuss it before the other 
synchronization objects. 

However, before we move directly on to critical sections, let's dis
cuss the general concept of thread synchronization. 

Thread Synchronization in a Nutshell 
In general, a thread synchronizes itself with another thread by putting 
itself to sleep. When the thread is sleeping, it is no longer scheduled 
CPU time by the operating system and therefore stops executing. How
ever, just before the thread puts itself to sleep, it tells the operating sys
tem what "special event" has to occur in order for the thread to resume 
execution. 

283 



ADVANCED WINDOWS 

The operating system remains aware of the thread's request and 
watches to see if and when this special event occurs. When it occurs, the 
thread is again eligible to be scheduled to a cpu. Eventually the thread 
will be scheduled and will continue its execution-the thread has now 
synchronized its execution with the occurrence of the special event. 

As we discuss the various synchronization objects throughout this 
chapter, I'll show you how to specify a special event and how to put your 
thread to sleep after notifying the system to watch for the special event 
on your thread's behalf. 

The Worst Thing You Can Do 

284 

Without synchronization objects and the operating system's ability to 
watch for special events, a thread would be forced to synchronize itself 
with special events by using the technique that I am about to demon
strate. However, because the operating system has built-in support for 
thread synchronization, you should never use this technique. 

In this technique, one thread synchronizes itselfwith the comple
tion of a task in another thread by continuously polling the state of a 
variable that is shared by or accessible to multiple threads. The code 
fragment below illustrates: 

BOOl 9_fFinishedCalculation = FALSE; 

int WINAPI WinMain ( ... ) { 
CreateThread( ...• RecalcFunc •... ); 

} 

/1 Wait for the recalculation to complete. 
while (!9_fFinishedCalculation) 

OWORD WINAPI RecalcFunc (lPVOID lpvThreadParm) { 
/1 Perform the recalculation. 

} 

9_fFinishedCalculation = TRUE; 
returnee) ; 

As you can see, the primary thread (executing WinMain) doesn't 
put itself to sleep when it needs to synchronize itself with the completion 



N I N E: Thread Synchronization 

of the RecalrFunc function. Because the primary thread does not sleep, it 
is being scheduled CPU time by the operating system. This takes pre
cious time cycles away from other threads that could be executing code 
that does something more useful. 

Another problem with the polling method as used in the previous 
code fragment is that the Boolean variable f%-fFinishedCalculation might 
never be set to TRUE. This could happen if the primary thread has a 
higher priority than the thread executing the RecalrFunc function. In this 
case, the system never assigns any time slices to the RecalrFunc thread, 
which will never execute the statement that sets f%-jFinishedCalculation to 
TRUE. If the thread executing the WinMain function were put to sleep 
instead of polling, it would not be scheduled time, and the system would 
have an opportunity to schedule time to lower-priority threads, such as 
the RecalrFunc thread, allowing them to execute. 

I can't be any clearer than this: synchronize threads by putting 
them to sleep. Do not synchronize threads by having them continuously 
poll for special events. 

Critical Sections 
A critical section is a small section of code that requires exclusive access 
to some shared data before the code can execute. Of all the synchroniza
tion objects, critical sections are the simplest to use, but they can be used 
to synchronize threads only within a single process. Critical sections allow 
only one thread at a time to gain access to a region of data. Examine the 
following code fragment: 

int 9_nIndex = 0: 
const int MAX_TIMES = 1000: 
OWORO 9_dwTimes[MAX_TIMESJ: 

OWORO WINAPI FirstThread (lPVOIO lpvThreadParm) { 
BOOl fOone = FALSE: 

} 

while (!fOone) { 
if (9_nIndex )= MAX_TIMES) { 

fOone = TRUE: 
} else { 

} 

9_dwTimes[9_nIndexJ = GetTickCount(): 
9_nIndex++: 

} 

return(0) : 

(continued) 

285 



ADVANCED WINDOWS 

286 

OWORO WINAPI SecondThread (lPVOIO lpvThreadParm) { 
BOOl fOone = FALSE; 

} 

while (!fOone) { 
if (9_nIndex >= MAX_TIMES) { 

fOone = TRUE; 
} else { 

9_nIndex++; 
9_dwTimes[9_nIndex - 1] GetTickCount(); 

} 

} 

returnee) ; 

Both of the thread functions here are supposed to produce the 
same result, although each is coded a bit differently. If the FirstThread 
function were running by itself, it would fill the ~dwTimes array with 
ascending values. The same is true if we were to run the Second Thread 
function by itself. Ideally, we would like to have both threads running 
concurrently and still have the ~dwTimes array produce ascending values. 
However, there is a problem with the code above: the ~dwTimes array 
won't be filled properly because the two thread functions are accessing 
the same global variables simultaneously. Here is an example of how this 
could happen. 

Let's say that we have just started executing both threads on a sys
tem with one CPU. The operating system starts running Second Thread 
first (which could very well happen), and right after SecondThread incre
ments ~nlndex to 1, the system preempts the thread and allows First
Thread to run. FirstThread then sets ~dwTimes[1J to the system time, and 
the system preempts the thread and gives time back to Second Thread. 
SecondThread now sets ~dwTimes[ 1 - IJ to the new system time. Because 
this operation occurred later, the new system time is a higher value than 
that of the time placed intoFirstThread's array. Also notice that index 1 of 
~dwTimeswas filled in before index O. The data in the array is corrupted. 

I admit that this example is a bit contrived. It is difficult to come up 
with a real-life example that doesn't require several pages of source 
code. However, you can easily see how this problem could extend itself 
to real-life examples. Consider the case of managing a linked list of objects. If 
access to the linked list was not synchronized, one thread could be add
ing an item to the list while another thread was simultaneously trying to 
search for an item in the list. The situation could become more chaotic if 
the two threads were adding items to the list at the same time. By using 



N I N E: Thread Synchronization 

critical sections, you can ensure that access to the data structures is coor
dinated among threads. 

Creating a Critical Section 
To create a critical section, you must first allocate a CRITICAL_SEC
TION data structure in your own process. The allocation of the critical 
section structure must be global so that different threads can gain access 
to it. Usually, critical sections are simply global variables. Although the 
CRITICAL_SECTION structure and its members appear in WINNT.H: 
you should think of the members of this structure as being off-limits. The 
Win32 functions that manipulate critical sections initialize and maintain 
all the members in the structure for you. You should not access or modify 
any of the members yourself. 

Mter we've added critical sections to our example program, the 
code looks like this: 

int 9_nIndex = 0; 
const int MAX_TIMES = 1000; 
DWORD 9_dwTimes[MAX_TIMES]; 
CRITICAL_SECTION 9_CriticalSection; 

int WINAPI WinMain ( ... ) { 
HANDLE hThreads[2]; 

} 

II Initialize the critical section before the threads so 
II that it is ready when the threads execute. 
InitializeCriticalSection(&9_CriticalSection); 

hThreads[0] 
hThreads[1] 

CreateThread( ...• FirstThread ... ); 
CreateThread( ...• SecondThread ... ); 

II Wait for both threads to terminate. 
II Don't worry about this line; it will be explained shortly. 
WaitForMultipleObjects(2. hThreads. TRUE. INFINITE); 

II Close the thread handles. 
CloseHandle(hThreads[0]); 
CloseHandle(hThreads[I]); 

II Delete the critical section. 
DeleteCriticalSection(&9_CriticalSection); 

(continued) 

1. CRITICAL_SECTION itself is in WINBASE.H as RTLCRITICAL_SECTION. The 
RTL_CRITICAL_SECTION structure is typedefed in WINNT.H. 

287 



ADVANCED WINDOWS 

DWORD WINAPI FirstThread (lPVOID lpvThreadParm) { 
BOOl fDone = FALSE; 

} 

while (!fDone) { 
EnterCriticalSection(&9_CriticalSection); 
if (9_nIndex >= MAX_TIMES) { 

} 

fDone = TRUE; 
} else { 

9_dwTimes[9_nIndex] = GetTickCount(); 
9_nIndex++; 

} 

leaveCriticalSection(&9_CriticalSection); 

return(0) ; 

DWORD WINAPI SecondThread (lPVOID lpvThreadParm) { 
BOOl fDone = FALSE; 

} 

while (!fDone) { 
EnterCriticalSection(&9_CriticalSection); 
if (9_nIndex >= MAX_TIMES) { 

} 

fDone = TRUE; 
} else { 

9_nIndex++; 
9_dwTimes[9_nIndex - 1] = GetTickCount(); 

} 

leaveCriticalSection(&9_CriticalSection); 

return(0); 

Using a Critical Section 

288 

Before you can synchronize threads with a critical section, you must ini
tialize the critical section by calling InitializeCriticalSection, passing the 
address to the CRITICAL_SECTION structure as the IpCriticalSection 
parameter: 

VOID InitializeCriticalSection 
(lPCRITICAl_SECTION lpCriticalSection); 

This initializes the members of the structure and must be done 
beforeEnterCriticalSection is called. The code above shows the critical sec
tion being initialized in WinMain. Both thread functions are expecting 
that the I?-CriticalSection structure variable has been initialized by calling 



N I N E: Thread Synchronization 

InitializeCriticalSection before they begin executing. Let's see what hap
pens next. 

Referring again to our code example on the preceding pages, let's 
say that SecondThread executes first. It calls EnterCriticalSection, passing it 
the address to the g_CriticalSection structure variable: 

VOID EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection): 

EnterCriticalSection sees that this is the first time that EnterCriticalSection 
has been called for the g_CriticalSection variable, changes some members 
in the data structure, and lets the !£-nlndex++; line execute. Mter this line 
executes, the system might preempt Second Thread and assign processor 
time toFirstThread. FirstThread calls EnterCriticalSection, passing the address 
of the same object that Second Thread used. This time, EnterCriticalSection 
sees that the g_CriticalSection structure variable is in use and puts First
Thread to sleep. Because FirstThread is asleep, the system can assign the 
remainder of its time slice to another thread. The system will stop trying 
to assign time slices to FirstThread until FirstThread is awakened. 

Eventually SecondThread will be assigned another time slice. Then it 
will execute the following statement: 

9_dwTimes[9_nIndex - 1] = GetTickCount(): 

This causes g_dwTimes[OJ to be assigned the current system time. This is 
different from our first scenario, in which g_dwTimes[lJ was assigned a 
lesser value thang_dwTimes[OJ. At this point, if the system wants to preempt 
Second Thread it can do so, but it can't assign time to FirstThread because 
FirstThread is still waiting for the critical section to become available. 
Eventually Second Thread will be assigned a time slice again and will exe
cute the following statement: 

LeaveCriticalSection(&9_CriticalSection): 

Mter this line executes, the g_CriticalSection variable indicates that 
the shared data structures are no longer protected and are available to 
any other thread that wants access to them. FirstThread was waiting on 
g_CriticalSection, so it can now be awakened. FirstThread's call to Enter
CriticalSection sets own.ership of g_CriticalSection to FirstThread, and then 
EnterCriticalSection returns so that FirstThread can continue execution. 

As you can see, using critical sections allows access of data to only 
one thread at a time. In some cases, however, it is possible to have more 
than two threads requiring access to the same data at the same time. 

289 



ADVANCED WINDOWS 

290 

When this happens, each thread must call EnterCriticalSection before it 
attempts to manipulate the data. If one of the threads already has owner
ship of the critical section, any thread waiting to gain access is put to 
sleep. When a thread relinquishes ownership by calling LeaveCritical
Section, the system wakes up only one of the waiting threads and gives 
that thread ownership. All the other sleeping threads continue to sleep. 

Note that it is legal-and even useful-for a single thread to own a 
critical section several times. This can happen because calls to Enter
CriticalSection from the thread owning the critical section increment a 
reference count. Before another thread can own the critical section, the 
thread currently owning it must call LeaveCriticalSection enough times so 
that the reference count drops back to O. Let's see how this works using 
the following example: 

int 9_nNums[100]; 
CRITICAL_SECTION 9_CriticalSection; 

DWORD WINAPI Thread (LPVOID lpvParam) { 

} 

int nIndex = (int) lpvParam; 
EnterCriticalSection(&9_CriticalSection); 

if (9_nNums[nIndex] < MIN_VAL) 
IncrementNum(nIndex); 

else 
9_nNums[nIndexJ = MIN_VAL; 

LeaveCriticalSection(&9_CriticalSection); 
return(0); 

void IncrementNum (int nIndex) { 
EnterCriticalSection(&9_CriticalSection); 
9_nNums[nIndex]++; 
LeaveCriticalSection(&9_CriticalSection); 

} 

In this code fragment, the Thread function acquires ownership of 
the critical section when it first begins executing. In this way, it can test 
~nNums[nlndexl, knowing that no other thread can change ~nNums
[nlndexl during the test. Then, if ~nNums[nlndexl contains a value less 
than MIN _VAL, the IncrementNum function is called. 



N I N E: Thread Synchronization 

IncrementNum is an independent function. It is implemented with
out any knowledge of what functions call it. Because the function will 
alter the g....nNums array, it requests access to the array by calling Enter
CriticalSection. Because IncrementNum is executing under the thread that 
already owns the critical section, EnterCriticalSection increments only the 
reference count of the critical section and allows the thread to continue 
execution. If IncrementNum were called from another thread, the call to 
EnterCriticalSection would put that thread to sleep until the thread exe
cuting the Thread function called LeaveCriticalSection. 

If you have several unrelated data structures in your application, 
you would create CRITICAL_SECTION variables for each of the data 
structures. Then your code would first have to call InitializeCriticalSection 
once for each of the CRITICAL_SECTION variables. Your threads would 
also need to call EnterCriticalSection, passing the address of the CRITI
CAL_SECTION variable that applies to the data structure(s) to which 
the thread wants access. Examine this code fragment: 

i nt 9_nNum[100]; 
char 9_cChars[100]; 
CRITICAL_SECTION 9_CriticalSection; 

DWORD WINAPI ThreadFunc (LPVOID lpvParam) { 
int x; 

} 

EnterCriticalSection(&9_CriticalSection); 

for (x = 0; x < 100; x++) { 
9_nNums[x] = 0; 
9_cChars[x] = 'X'; 

} 

LeaveCriticalSection(&9_CriticalSection); 
return(0) ; 

In this case, you enter a single critical section whose job it is to pro
tect both the g....nNums array and the g....cChars array while they are being 
initialized. But the two arrays have nothing to do with one another. 
While this loop executes, no thread can gain access to either array. If the 
ThreadFunc function is implemented as shown on the next page, the two 
arrays are initialized separately. . 

291 



ADVANCED WINDOWS 

292 

DWORD WINAPI ThreadFunc (LPVOID lpvParam) { 
int x; 

} 

EnterCriticalSection(&9_CriticalSection); 

for (x = 0; x < 100; x++) 
9_nNums[x] 0; 

for (x = 0; x < 100; x++) 
9_cChars[x] = 'X'; 

LeaveCriticalSection(&9_CriticalSection); 
return(0) ; 

So, theoretically, after the g....nNums array has been initialized, a differ
ent thread that needs access only to the g....nNums array and not to the 
g....cChars array can begin executing while ThreadF'unc continues to initial
ize the g....cChars array. But alas, this is not possible because both data 
structures are being protected by a single critical section. To fix this, you 
can create two critical sections, as follows: 

int 9_nNums[100]; 
char 9_cChars[100]; 
CRITICAL_SECTION 9_CriticalSectionForNums; 
CRITICAL_SECTION 9_CriticalSectionForChars; 

DWORD WINAPI ThreadFunc (LPVOID lpvParam) { 
int x; 

} 

EnterCriticalSection(&9_CriticalSectionForNums); 

for (x = 0; x < 100; x++) 
9_nNums [x] 0; 

LeaveCriticalSection(&9_CriticalSectionForNums); 

EnterCriticalSection(&9_CriticalSectionForChars); 

for (x = 0; x < 100; x++) 
9_cChars[x] = 'X'; 

LeaveCriticalSection(&9_CriticalSectionForChars); 
return(0); 



N I N E: Thread Synchronization 

Now this function has been implemented so that another thread 
can start using the g..nNums array as soon as ThreadFunc has finished 
initializing it. Sometimes you will need to access two data structures si
multaneously. If this were a requirement of ThreadFunc, it would be 
implemented like this: 

DWORD WINAPI ThreadFunc (LPVOID lpvParam) { 
int x; 

} 

EnterCriticalSection(&9_CriticalSectionForNums); 
EnterCriticalSection(&9_CriticalSectionForChars); 

for (x = 0; x < 100; x++) 
9_nNums[x] = 0; 

for (x = 0: x < 100: x++) 
9_cChars[x] = 'X': 

LeaveCriticalSection(&9_CriticalSectionForChars); 
LeaveCriticalSection(&9_CriticalSectionForNums): 
return(0); 

Suppose another thread in the process, written as follows, also 
requires access to the two arrays: 

DWORD WINAPI OtherThreadFunc (LPVOID lpvParam) { 
int x; 

} 

EnterCriticalSection(&9_CriticalSectionForChars): 
EnterCriticalSection(&9_CriticalSectionForNums): 

for (x = 0; x < 100; x++) 
9_nNums[x] = 0; 

for (x = 0; x < 100; x++) 
9_cChars[x] = 'X'; 

LeaveCriticalSection(&9_CriticalSectionForNums); 
LeaveCriticalSection(&9_CriticalSectionForChars): 
return(0); 

All I did in the function above was switch the order of the calls to 
EntcrCriticalSection and LeaveCriticalSection. But because the two func
tions are written the way they are, there's a chance for deadlock to occur. 
Deadlock occurs when a thread will never execute because the resource 

293 



ADVANCED WINDOWS 

294 

or resources it is waiting for (the critical sections, in this example) will 
never be available. 

Suppose that ThreadF'unc begins executing and gains ownership of 
the ~CriticaLSectionForNums critical section. Then the thread executing 
the OtherThreadFunc function is given some CPU time and gains owner
ship of the ~CriticaLSectionForChars critical section. Now you have a 
deadlock situation. When either ThreadFunc or OtherThreadFunc tries to 
continue executing, neither function will ever be able to gain ownership of 
the other critical section it requires. 

In the example on the previous page, you can easily fIx the problem 
by writing the functions so that they call EnterCriticaLSection in the same 
order. This will keep one thread from locking the other one out of a 
needed resource. 

Here is a technique you can use to minimize the time spent inside a 
critical section. The following code prevents other threads from changing 
the value in g_nNums[3] before the WM_SOMEMSG is sent to a window: 

int g_nNums[100]; 
CRITICAL_SECTION g_CriticalSection; 

DWORD WINAPI SomeThread (LPVOID lpvParam) { 
EnterCriticalSection(&g_CriticalSection); 

} 

II Send a message to a window. 
SendMessage(hwndSomeWnd. WM_SOMEMSG. g_nNums[3]. 0); 

LeaveCriticalSection(&g_CriticalSection); 
return(0); 

It's impossible to tell how much time the window procedure requires 
to process the WM_SOMEMSG message-it could take a few microsec
onds or a fewyears.2 During that time, no other threads can gain access to 
the g_nNums array. It would be much better to write the code as follows: 

int g_nNums[100]; 
CRITICAL_SECTION g_CriticalSection; 

DWORD WINAPI SomeThread (LPVOID lpvParam) { 
int nTemp; 

EnterCriticalSection(&g_CriticalSection); 

2. Ideally, the window procedure is written a bit more efficiently than I suggest here and, at 
most, will not require more than a couple of seconds to run. 



} 

N I N E: Thread Synchronization 

nTemp = g_nNums[3]; 

LeaveCriticalSection(&g_CriticalSection); 

II Send a message to a window. 
SendMessage(hwndSomeWnd. WM_SOMEMSG. nTemp. 0); 
return(0) ; 

This code saves the value in ~nNums[3J in a temporary integer 
variable nTemp. You can probably guess how long the CPU requires to 
execute this line-only a few CPU cycles. Immediately after saving the 
temporary variable, LeaveCriticalSection is called because the array no 
longer needs to be protected. This second implementation is much bet
ter than the first because other threads are stopped from using the 
~nNums array for only a few CPU cycles instead of for an unknown 
amount of time. 

When an application terminates, all the CRITICAL_SECTION 
variables should be cleaned up by calling DeleteCriticalSection: 

VOID DeleteCriticalSection(LPCRITICAL-SECTION lpCriticalSection); 

This function releases all the resources owned by the critical section. 
Naturally, you should not call EnterCriticaLSection or LeaveCriticalSection 
using a deleted CRITICAL_SECTION variable unless it has been initial
ized again with InitializeCriticaLSection. Also, be sure that you don't delete 
a critical section if a thread is waiting on a call to EnterCriticaLSection. 

The Critical Sections Sample Application 
The CritSecs (CRITSECS.EXE) application, listed in Figure 9-1 begin
ning on page 300, demonstrates the importance of using critical sec
tions in a multithreaded application. The source code files, resource 
files, and make file for the application are in the CRITSECS.09 directory 
on the companion disc. 

When the program starts, WinMain invokes a modal dialog box. 
This dialog box serves as the interface to the application. When the dia
log box function receives the WM_INITDIALOG message, the Dl~On
InitDialog function initializes a global CRITICAL_SECTION structure, 
initializes all the child controls in the dialog box, and creates two 
threads-CounterThread and DisplayThread. At this point, three threads 
are running in this process: the primary thread that's handling the input 
to the dialog box and its controls, CounterThread, and DisplayThread. 

295 



ADVANCED WINDOWS 

296 

Toward the top of CRITSECS.C, the following variable appears: 

II The data that needs protecting 
TCHAR g_szNumber[10] = _TEXT( "0"); 

This is a character array that is initialized to a string containing the num
ber O~ CounterThread converts the number in this character array to an 
integer? increments the integer by 1, and converts the integer back to a 
character array so that it can be stored in the ~szNumber array. Display
Thread reads the number in the ~szNumber array and appends the num
ber to a list box control in the dialog box. 

When CritSecs is invoked, its list box starts filling with numbers. 
The Critical Section Test Application dialog box appears as follows: 

You might notice that the numbers in the list box don't appear in 
ascending order because CritSecs, by default, does not synchronize 
access to the ~szNumber array. While CounterThread is converting the 
array to an integer, incrementing it, and copying the number back, 
DisplayThread is reading the ~szNumber array and adding its contents to 
the list box. . 



N I N E: Thread Synchronization 

To see what a big difference the critical sections make, click on the 
Synchronize check box. CritSecs immediately starts making use of the 
g_CriticalSection variable that guards access to the g_szNumber array. As a 
result, the list box now shows numbers that are in ascending order: 

I have added a few other capabilities to CritSecs. The Process Prior
ity Class, Display Thread Priority, and Counter Thread Priority combo 
boxes let you fiddle with the priority class of the whole CritSecs applica
tion as well as the relative priorities of the two threads executing the 
DisplayThread and CounterThread functions. 

The Pause check box demonstrates how to suspend the threads 
executing CounterThread and Display Thread by calling the SuspendThread 
and ResumeThread functions. 

The Show Counter Thread check box causes CounterThread to ap
pend the following line to the list box every time it completes its incre
ment of the number and stores the digits of the number back in the 
g_szNumber array: 

Cntr: Increment 

297 



ADVANCED WINDOWS 

298 

When this check box is on, the list box appears as follows: 

Now you can see that each iteration of Display Thread's loop executes 
faster than each iterati()n of Counter Thread's loop. In some cases,Display
Thread's loop completes two iterations for just one iteration of Counter
Thread's loop. This shows why you should get into the habit of anticipating 
how the system schedules time to threads. By altering the relative priori
ties of the two threads, you can alter the order and frequency of this 
behavior. 

CritSecs might produce different results on your computer system 
depending on certain considerations, such as: 

• The number ofCPUs in your system (if you're running 
Windows NT) 

• The speed of your system 

• The number of threads created by other processes also running 

• The priority class of other processes running 

• The relative priorities of the threads running in these other 
processes 

Two more features of the CritSecs program are worth noting. First, 
CounterThread calls the Win32 Sleep function after it stores the number 



N I N E: Thread Synchronization 

back into the ~szNumber array. The prototype for the Sleep function is 
shown below: 

VOID Sleep(DWORD cMilliseconds); 

When a thread calls Sleep, it tells the system that it doesn't need any 
CPU time for the number of milliseconds specified by the cMilliseconds 
parameter. CounterThread calls Sleep, passing a value of 0 for cMilliseconds. 
This tells the system that the thread doesn't need any CPU time for the 
next 0 milliseconds. This might seem like a useless thing to do, but a side 
effect of the Sleep function exaggerates the results of CritSecs; Sleep also 
tells the system that the thread would like to voluntarily give up the 
remainder of its time slice. I put the call to Sleep(O) in CounterThread to 
dramatize the effect of un synchronized threads in CritSecs. Without the 
call to Sleep(O), CritSecs would still behave improperly and not synchro
nize the threads, but the problems would not be as pronounced. 

The second note of interest in the CritSecs application is how it 
turns synchronization on and off. You'll see the following line at the be
ginning of both CounterThread's and DisplayThread's loop: 

fSyncChecked = IsDlgButtonChecked(g_hwndDlg. ID_SYNCHRONIZE); 

This line retrieves and saves the status of the Synchronize check box at 
the beginning of each loop's iteration. Elsewhere in the loop, I included 
code such as the following: 

if (fSyncChecked) { 
EnterCriticalSection(&g_CriticalSection); 

} 

if (fSyncChecked) { 
LeaveCriticalSection(&g_CriticalSection); 

When I first developed CritSecs, the code above originally looked 
like this: 

if (IsDlgButtonChecked(g_hwndDlg. ID_SYNCHRONIZE)) 
EnterCriticalSection(&g_CriticalSection); 

if (IsDlgButtonChecked(g_hwndDlg. ID_SYNCHRONIZE)) 
LeaveCriticalSection(&g_CriticalSection); 

} 

299 



ADVANCED WINDOWS 

CritSecs.ico 

300 

When CritSecs used the latter code fragment, a subtle bug was intro
duced that made some of the threads hang sometimes-but not every 
time. The CounterThread loop would start and see that the Synchronize 
check box was on. So CounterThread would call EnterCriticalSection. Then 
DisplayThread, seeing that the Synchronize check box was on, would also 
call EnterCriticalSection. But the system would not let DisplayThread's call 
to EnterCriticalSection return because CounterThread currently had owner
ship of the critical section. While CounterThread was reading the number, 
I would turn off the Synchronize check box. When CounterThread made 
its call to IsDlgButtonChecked, it saw that the check box was off and would 
not call LeaveCriticalSection. As long as the check box remained off, 
CounterThread would never release the critical section and Display Thread 
would stay forever hung, waiting for the critical section. 

By saving the state of the check box in a variable and testing the 
variable before calling EnterCriticalSection or LeaveCriticalSection, I removed 
the possibility of executing unmatched EnterCriticalSection and Leave
CriticalSection calls. As you can see, you must be very careful when design
ing and implementing multithreaded applications. 

Figure 9-1. (continued) 

The CntSees application. 



N I N E: Thread Synchronization 

Figure 9-1. continued 

(continued) 

301 



ADVANCED WINDOWS 

Figure 9·1. continued 

(continued) 

302 



N I N E: Thread Synchronization 

Figure 9-1. continued 

(continued) 

303 



ADVANCED WINDOWS 

Figure 9-1. continued 

(continued) 

304 



N I N E: Thread Synchronization 

Figure 9-1. continued 

CompoBox_AddStri ng (hWndCt 1 • _TEXT( "Norma''') ) : 
ComboBox_AddStri ng (hWndCtl. _TEXT( "Above normal"»; 
ComboBox-AddString( hWndCtl. _TEXT("Hi ghest"»: 
ComboBox_AddString(hWndCtl. _TEXT("T1mecritica'''»: 
ComboBox..,.SetCurSel(hWndCtl. 3): /1 Normal 

/ / Fill the Counter Thread Priority 
/ /combo boxa.ndselett Normal. 
hWndCtl.= GetOl gItem(nwnd. IOC..,.C.N.IRTHRDPRlORlTYl; 
CombOStlx-AddStrlng(0'l4ndCt1 • _TEXT ("ldl e"»: 
Comb~~Qx..,Ad~Strillg( hW.ndCtl. ':-TEXl<"lQwestt')}j 
COm8oBol<.;.;AddStrlng (hWndctl. ~TEXT (~Below normaf"); 
ComboBox, .. AddString( l'iWndCtl .i.,....... TEXT ("Norma 1 .. , h. . 

.Comb.oBOx..:.AddStri ng( hWndCtl._ TEXT C" Above cnorma l") h 
. ComboBox~AddString( hWndCt 1;.:.... TEXH"Highest"): 
Col\1b<.H30x_AddString{hWndCt 1. _TEXH"Ti mecriticaP')); 
ComboBox_SetCurSel (hWndCtl. 3): II Normal 

: " ' '~,'~ ':; ; ',';<; .,~,"',.<", '," '".,> ' ,.'C' '/ ',;J 

~'< ' . < c' 

. all JlIID/lltaill/1I f/UllllllllliltlUIIIIIlIII 1111;/11/111 . 

•. if IIllUllIUIl / tUlIlI1 illl//tllfIUllUI!lll allll/HIIIIlI/, . 

(continued) 

305 



ADVANCED WINDOWS 

Figure 9-1. continued 

(continued) 

306 



N I N E: Thread Synchronization 

Figure 9-1. continued 

case 2: 
dw = (DWORD) THREAD_PRIORITY_BELOW_NORMAL; 
break; 

case 3: 
default: 

··ciw:= {OWORO} THREAO .... PI'UOiUTLNORMAl; 
break; . .. 

> ('>cc " >, 

ca s:wlt~(~WORb) THREA(P'R!OR!T~~BOV~_NORMAL:. 
br.eak:· .. .. . ..... ..' .... 

<.case6:/ 
·'41'1 "'(DWO~O).TI+R~AIl ... PRltiRiTY"'TrMLcRfTlCA(; bre.a.k: >.' ... c.·c.'· • • 

c ~:" / 

c> :< ," .; "'. :,'< ,.c, ., .,.,c"" ,', ,! .'.',', 0,,; 

,~.~·e~. :I~·. cnar:~ing,.th\lI'$1:"\tiV€·lifi'pi:lty 
'tlof:C>'ne:.tif tf}e~thre'ads, > ••. ' .......•........ c ....... . 

l1Tttl':aad '-'.:( f d.:"";" .'IUClCN'TR1HR1i)IUUO)el'tY)1· 
:: y.J1Thre'ad~iitr'f .', g~h rtl:ha~DspYr: 

·:.$~tTtlrea~p'r'.f~fj·i.v(·~rhxe~d,.d¥ti: 
br\ll(lk; . . . .. ,. 

< ••• :. • -: ! , ' .~ , 

t~S~:lOC~AUiE; ... . ..• . ........ ' ....... . 
. n;U'Ier lspa.u~fng pI' resu~~ rgboththt'.eadsi 
.. i.f~BUtt(}n_SetChe'Gk( h\il~dCtJ).l. {. 

( continued) 

307 



ADVANCED WINDOWS 

Figure 9-1. continued 

(continued) 

308 



N I N E: Thread Synchronization 

Figure 9-1. continued 

(continued) 

309 



ADVANCED WINDOWS 

Figure 9-1. continued 

310 



N I N E: Thread Synchronization 

Synchronizing Threads with Kernel Objects 
Critical sections are great for serializing access to data within a process 
because they are very fast. However, you might want to synchronize some 
applications with other special events occurring in the machine or with 
operations being performed in other processes. For example, you might 
want to create a child process to help accomplish some work, and as a 
result, the parent process might need to wait until the child process com
pletes before continuing. 

The following kernel objects can be used to synchronize threads: 

• Processes 

• Threads 

• Files 

• Console input 

• File change notifications 

• Mutexes 

• Semaphores 

• Events (auto-reset and manual-reset events) 

Each object can be in one of two states at any time: signaled or 
nonsignaled. Threads can be put to sleep until an object becomes sig
naled. If a thread in a parent process needs to wait for the child process 
to terminate, the parent's thread puts itself to sleep until the kernel object 
identifying the child process becomes signaled. You might recall from 
Chapter 2 that processes become signaled when they terminate. The 
same is true for thread objects. When a thread is created and running, its 
associated thread kernel object is nonsignaled. As soon as the thread ter
minates, its thread kernel object becomes signaled. 

I like to think of the signaled state as a flag being raised. Threads 
sleep while the objects they are waiting for are nonsignaled (the flag is 
lowered). However, as soon as the object becomes signaled (the flag goes 
up), the sleeping thread sees the flag, wakes up, and resumes execu~on. 

Of the kernel objects listed above, some exist for no other purpose 
than to help with the synchronization of threads. For example, if a 
thread has a handle to a process object, the thread can call various 
Win32 functions to change the priority class of the process or to get the 

311 



ADVANCED WINDOWS 

312 

exit code of the process. In addition, a thread can use the handle of a 
process object to synchronize itself with the termination of the process. 

Thread handles also serve the same two purposes. You can use 
a thread handle to manipulate a thread, and you can use a handle of a 
thread object to synchronize a thread with the termination of another 
thread. 

Like process handles and thread handles, file handles can also be 
used for two purposes: you can read from and write to a file using its 
handle, and you can set a thread to synchronize itself with the comple
tion of an asynchronous file I/O operation. Asynchronous file I/O and 
this type of thread synchronization are discussed in Chapter 13. 

The last type of kernel object that serves two purposes is the con
sole input object. This object is very similar to a file, and, in fact, you call 
the CreateFile function to create a console input object. A console-based 
application can use a handle of this object to read input from the 
application's input buffer, and a thread can use this handle to put itself 
to sleep until input is available for processing. 

The other kernel objects-file change notifications, mutexes, 
semaphores, and events-exist for the sole purpose of thread synchroni
zation. Likewise, there are Win32 functions that exist to create these 
objects, open these objects, synchronize threads with these objects, and 
close these objects. No other operations can be performed with these 
kernel objects. This chapter discusses how to use mutexes, semaphores, 
and events; file change notification objects are discussed in Chapter 13. 

Threads use two main functions to put themselves to sleep while 
waiting for kernel objects to become signaled: 

DWORD WaitForSingleObject(HANDLE hObject. DWORD dwTimeout); 

and 

DWORD WaitForMultipleObjects(DWORD cObjects. lPHANDlE lpHandles. 
BOOl bWaitAll. DWORD dwTimeout); 

The WaitForSingleObject function tells the system that the thread is 
waiting for the kernel object identified by the hObject parameter to be sig
naled. The dwTimeout parameter tells the system how long the thread is 
willing to wait in milliseconds. If the specified kernel object does not 
become signaled in the specified time, the system should wake the thread 
up and allow it to continue executing. 

WaitForSingleObject returns one of the following values: 



N I N E: Thread Synchronization 

Return Value Defined As Meaning 

WAIT_OBJECT_O OxOOOOOOOO Object reached the signaled state. 

WAIT_TIMEOUT OxOOOOOlO2 Object did not reach the signaled 
state in dwTimeout milliseconds. 

WAIT_ABANDONED OxOOOOOO80 The object was a mutex that 
reached the signaled state because 
it was abandoned. (See the sec-
tion "Mutexes" later in this 
chapter.) 

WAIT_FAILED OxFFFFFFFF An error occurred. Call GetLast-
Error to get extended error infor-
mation. 

You can pass two special values as the dwTimeout parameter to Wait
ForSingleObject. Passing 0 tells the system that you don't want to wait at 
all and that the system should simply tell you if the object is signaled 
or nonsignaled. A return value of WAIT_OBJECT_O indicates that the 
object is signaled, and a return value of WAIT_TIMEOUT indicates that 
the object is nonsignaled. Passing a value of INFINITE (defined as 
OxFFFFFFFF) causes WaitForSingleObject to wait until the object reaches 
the signaled state. If the object never becomes signaled, the thread is 
never awakened and scheduled CPU time-the thread is forever hung. 

The WaitForMultipleObjects function is similar to the WaitForSingle
Object function except that it waits either for several objects to be sig
naled or for one object from a list of objects to be signaled. When calling 
this function, the cObjects parameter indicates the number of objects you 
want the function to check. This value cannot be larger than 
MAXIMUM_WAIT_OBJECTS, which is defined as 64. The lpHandles 
parameter is a pointer to an array of handles identifying these objects. 
An error occurs if the same object appears more than once in this list, 
even if the object is being identified by two different handle values. 

The bWaitAll parameter indicates whether you want to wait for one 
of the objects in the list to become signaled or if you want all the objects 
in the list to become signaled. If bWaitAll is TRUE, WaitForMultipleObjects 
waits for all the objects to be signaled at the same time. If bWaitAll is 
FALSE, WaitForMultipleObjects waits until one of the objects becomes sig
naled. WaitForMultipleObjects scans the handle array from index 0 on up, 
and the first object that is signaled terminates the wait. The dwTimeout 

313 



ADVANCED WINDOWS 

314 

parameter is identical to the dwTimeout parameter for the WaitForSingle
Olded function. If multiple objects become signaled simultaneously, 
WaitForMultipleObjects returns the index of the first handle in the array 
identifying the object that became signaled. 

WaitForMultipleOldects returns one of the following values: 

Return Value Defined As Meaning 

WAIT_OBJECT_O to Start at When waiting for all objects, 
(WAIT_OBJECT_O + OxOOOOOOOO this value indicates that the 
cObjects - 1) wait was completed success-

fully. 

When waiting for any object, 
this value indicates the index 
of the handle in the 
lpHandles array belonging to 
the object that satisfied 
the wait. 

WAIT_TIMEOUT OxOOOOO102 The object or objects did not 
reach the signaled state in 
dwTimeout milliseconds. 

WAIT_ABANDONED_O to Start at When waiting for all objects, 
(WAIT_ABANDONED_O + OxOOOOOO80 this value indicates that the 
cObjects - 1) wait was completed success-

fully and that at least one 
object was a mutex that 
became signaled because 
it was abandoned. 

When waiting for any 
object, this value indicates 
the index of the handle 
in the lpHandles array 
belonging to the mutex 
object that became signaled 
because it was abandoned. 

WAIT_FAILED OxFFFFFFFF An error occurred. Call 
GetLastError to get extended 
error information. 

The WaitForSingleOldectand WaitForMultipleObjectsfunctions have im
portant side effects on certain kernel objects. For process and thread 



N I N E: Thread Synchronization 

objects, there are no side effects. Mter process and thread objects become 
signaled, they stay signaled. Here's an example: if 10 threads are calling 
WaitForSingleObject and waiting for the same process object to become 
signaled, when the process terminates, the process object becomes sig
naled and all the waiting threads wake up to continue execution. The 
same is true for thread objects; once a thread object becomes signaled, it 
stays signaled. 

For mutex, semaphore, and auto-reset event objects, the WaitFor
SingleObject and WaitForMultipleObjects functions change their states to 
nonsignaled. Once these objects become signaled and another thread is 
awakened, the object is immediately reset to its nonsignaled state. 
Because of this, only one thread waiting for a mutex or an auto-reset 
event will awaken; other waiting threads will continue to sleep. Sema
phores behave a little differently in that they allow several threads to 
awaken simultaneously. These concepts will be made clearer as we go on 
and discuss each of these synchronization objects separately. 

One more point regarding the WaitForMultipleObjects function: when 
WaitForMultipleObjects is called with bWaitAll passed as TRUE, none of 
the objects being waited for will be reset to their nonsignaled state until 
all the objects being waited for are signaled. In other words, the system 
periodically takes a snapshot of all the specified objects, and, if all of 
them are signaled, WaitForMultipleObjects resets any mutexes, semaphores, 
and auto-reset events back to their nonsignaled state. The system will not 
alter the state of any object unless all the specified objects are signaled 
simultaneously. The following discussion about WaitForMultipleObjects as
sumes that you understand the kernel synchronization objects. If you 
are new to thread synchronization, you might want to read the next sec
tion about mutexes and then return to these paragraphs. 

Here is an example that demonstrates what I mean. Let's say that 
Thread 1 is waiting for two mutex objects: Mutex A and Mutex B. And 
let's say that Thread 2 is executing code and is just about to enter a wait 
for the Mutex A object that Thread 1 is also waiting for. If Mutex A now 
becomes signaled, Thread 1 has half of what it needs to stop waiting and 
continue execution-it still needs to wait for Mutex B. If Thread 2 now 
calls WaitForSingleObject, specifying Mutex A, the system will give owner
ship of Mutex A to Thread 2. Thread 1 must still wait for Mutex B to be
come available, but now it must also wait for Thread 2 to release Mutex A. 

WaitForMultipleObjects does not take ownership of an object unless 
it can take ownership of all the specified objects. If WaitForMultipleObjects 

315 



ADVANCED WINDOWS 

Mutexes 

316 

obtained ownership of the synchronization objects as they became avail
able, it is very likely that a deadlock situation would occur. Here is what 
could happen: Let's say Thread 1 and Thread 2 are both suspended on a 
call to WaitForMultipleObjects, waiting for Mutex A and Mutex B to become 
signaled. Now a third thread releases Mutex A. The system detects this 
and gives ownership of MutexA to Thread 1. The same third thread now 
releases Mutex B. The system detects this and gives Mutex B to Thread 2. 
At this point, both Thread 1 and Thread 2 are still suspended, waiting for 
the other mutex object to become signaled. 

Now you see the problem: Thread 1 has ownership of MutexA but 
can't resume itself, so Mutex A can never be released. This means that 
Thread 2 will never gain ownership of Mutex A and is also stuck in its 
suspended state. To avoid this deadlock situation, WaitForMultipleObjects 
doesn't reset any objects to their non signaled state unless all of the speci
fied objects are signaled simultaneously. 

Mutexes are very much like critical sections except that they can be used 
to synchronize data access across multiple processes. To use a mutex, 
one process must first create the mutex with the CreateMutex function: 

HANDLE CreateMutex(lPSECURITY-ATTRIBUTES lpsa. BOOl flnitialOwner. 
lPTSTR lpszMutexName); 

The Ipsa parameter points to a SECURITY_ATTRIBUTES structure. The 
fInitialOwner parameter indicates whether the thread creating the mutex 
should be the initial owner of the mutex. The value TRUE means that 
the thread will own the mutex and therefore the mutex will be in the 
nonsignaled state. Any thread that waits on the mutex will be suspended 
until the thread that created the mutex releases it. Passing FALSE for 
the flnitialOwner parameter of CreateMutex means that the mutex is not 
owned by any thread and is therefore created in the signaled state. The 
first thread to wait for the mutex will immediately gain ownership of the 
mutex and continue execution. 

The IpszMutexName parameter is either NULL or an address of a 
zero-terminated string that identifies the mutex. When an application 
calls CreateMutex, the system allocates a mutex kernel object and assigns 
it the name indicated by IpszMutexName. This name is used to share a 
mutex between processes. (I discuss this later in the chapter.) The 



N I N E: Thread Synchronization 

CreateMutex function returns a process-relative handle that identifies the 
new mutex object. 

One of the big differences between mutexes and critical sections is 
that mutexes can be used to synchronize threads running in multiple 
processes. In order to do this, a thread in each process must have its own 
process-relative handle to a single mutex object. These handles can be 
obtained in several ways. The first and most common way is for one 
thread in each process to call CreateMutex, passing the identical string for 
the IpszMutexName parameter. The first thread to call CreateMutex will 
cause the system to create the mutex kernel object. As additional threads 
call CreateMutex, the system determines that a mutex with the specified 
name already exists; as a result, it does not create a new mutex object but 
returns a process-relative handle identifying the existing mutex object. 

A thread can determine whether CreateMutex actually created a new 
mutex object by calling GetLastError immediately after the call to Create
Mutex. If GetLastError reports ERROR_ALREADY_EXISTS, a new mutex 
object was not created. If you are expecting to share this mutex with other 
processes, you can ignore this last step. 

Another method for obtaining the handle of a mutex involves a call 
to the openMutex function: 

HANDLE OpenMutex(DWORD fdwAccess. BOOl flnherit. lPTSTR lpszName); 

The fdwAccess parameter can be either SYNCHRONIZE or MUTEX
_ALL_ACCESS. The JInherit parameter indicates whether any child pro
cess created by this process should inherit this handle to this mutex 
object. The IpszName parameter is the zero-terminated string name of 
the mutex object. 

When the call to openMutex is made, the system scans all existing 
mutex objects to see if any of them have the name indicated by lpszName. 
If the system finds a mutex object with the specified name, it creates a 
process-relative handle identifying the mutex and returns the handle to 
the calling thread. Any thread in the calling process can now use this 
handle in any function that accepts a mutex handle. If a mutex with the 
specified name cannot be found, NULL is returned. 

Both methods described above require that the mutex be named. 
Two other methods don't require naming the mutex-one involves the 
use of the DuplicateHandle function, and the other involves parent-child 
process inheritance. 

317 



ADVANCED WINDOWS 

318 

Using Mutexes Instead of Critical Sections 
Let's rewrite the critical section example shown on pages 287 and 288 
using mutexes, and you will see how similar the code is: 

int g_nlndex = O; 
const int MAX_TIMES = 1000; 
DWORD g_dwTimes[MAX_TIMES]; 
HANDLE g_hMutex = NULL; 

int WinMain ( ... ) { 
HANDLE hThreads[2]; 

} 

II Create the mutex before the threads so that it 
II exists when the threads execute. 
g_hMutex = CreateMutex(NULL. FALSE. NULL); 

II Save the handles of the threads in an array. 
hThreads[0] CreateThread( ...• FirstThread •... ); 
hThreads[l] = CreateThread( ...• SecondThread •... ); 

II Wait for both threads to terminate. 
WaitForMultipleObjects(2. hThreads. TRUE. INFINITE); 

II Close the thread handles. 
CloseHandle(hThreads[0]); 
CloseHandle(hThreads[I]); 

II Close the mutex. 
CloseHandle(g_hMutex); 

DWORD WINAPI FirstThread (LPVOID lpvThreadParm) { 
BOOL fDone = FALSE; 
DWORD dw; 

whil e (! fDone) 
II Wait forever for the mutex to become signaled. 
dw = WaitForSingleObject(g_hMutex. INFINITE); 

if (dw== WAIT_OBJECT_0) { 
il Mutex became signaled. 
if (g_nlndex >= MAX_TIMES) { 

fDone = TRUE; 



N I N E: Thread Synchronization 

} 

} 

} 

else { 
g_dwTimes[g_nIndex] GetTickCount(); 
g_nIndex++; 

II Release the mutex. 
ReleaseMutex(g_hMutex); 

else { 

II The mutex was abandoned. 
break; II Exit the while loop. 

} 

return(0); 

DWORD WINAPI SecondThread (lPVOID lpvThreadParm) { 
BOOl fDone = FALSE; 

} 

DWORD dw; 

while (!fDone) { 
II Wait forever for the mutex to become signaled. 
dw = WaitForSingleObject(g_hMutex. INFINITE); 

if (dw == WAIT_OBJECT_0) { 
II Mutex became signaled. 
if (g_nIndex >= MAX_TIMES) { 

fDone = TRU E; 
} else { 

g_nIndex++; 
g_dwTimes[g_nIndex - 1] GetTickCount(); 

} 

II Release the mutex. 
ReleaseMutex(g_hMutex); 

} else { 

} 

II The mutex was abandoned. 
break; II Exit the while loop. 

} 

return(0); 

319 



ADVANCED WINDOWS 

320 

Notice that I created the mutex before creating the threads. This is 
important because if it were done the other way around, the threads 
might attempt to call WaitForSingleObject, passing the handle NULL because 
the mutex had not been created yet. You can write the code differently so 
that you create the threads first. That code looks like this: 

II Create both threads. but do not allow them to begin executing. 
hThreads[0] = CreateThread( ...• FirstThread. NULL. 

CREATE_SUSPENDED •... ): 
hThreads[l] = CreateThread( ...• SecondThread. NULL. 

CREATE_SUSPENDED •... ): 

II Create the mutex. 
g_hMutex = CreateMutex(NULL. FALSE. NULL): 

II Allow the threads to run. 
ResumeThread(hThreads[0]): 
ResumeThread(hThreads[l]): 

Here I create both threads, but they are suspended. They won't be 
scheduled any CPU time until they are resumed. Then I create the 
mutex and save its handle in the global ~hMutex variable. Now that I 
know this handle is not NULL, I resume both of the suspended threads 
by calling ResumeThread twice. The order here is very important. In my 
own work, I've forgotten to create objects before referencing them more 
often than I care to remember. 

Back in WinMain in the code on pages 318 and 319, I showed how 
the process's primary thread waits for the two threads to terminate; it 
does this by calling WaitForMultipleObjects. In this call, the value 2 indi
cates that the primary thread is waiting for two objects to be signaled, 
hThreads identifies the array of handles, and TRUE means that the 
thread wants to wait until all the objects are signaled simultaneously
which will tell us that both threads have terminated. The inclusion of the 
INFINITE identifier means that the primary thread will wait forever for 
both threads to terminate. When WaitForMultipleObjects returns, WinMain 
calls CloseHandle so that the mutex object is destroyed. 

Both thread functions have been modified to use mutex objects 
instead of critical sections. The calls to EnterCriticaLSection have been 
replaced by calls to WaitForSingleObject. WaitForSingleObject can return 
WAIT_OBJECT_O, WAIT_ABANDONED, or WAIT_TIMEOUT. WAIT
_TIMEOUT can never occur here because INFINITE was specified in 



N I N E: Thread Synchronization 

the call. A return value of WAIT_OBJECT_O means that the mutex was 
signaled and the thread can continue executing. When WaitForSingle
Object sees that the mutex has reached a signaled state, the thread imme
diately grabs ownership of the mutex, which places the mutex back into 
the nonsignaled state. The thread can then manipulate the data struc
ture; when it no longer needs access to the structure, the thread calls the 
ReleaseMutex function: 

BOOl ReleaseMutex(HANDlE hMutex); 

ReleaseMutex is the function that changes the mutex from the non
signaled state to the signaled state just as the LeaveCriticalSection function 
does for critical sections. One important thing to note is that this func
tion has an effect only if the thread that is calling ReleaseMutex also has 
ownership of the mutex. Immediately after this function is called, any 
thread that is waiting for the mutex can grab hold of it and begin execut
ing. Of course, when the thread grabs the mutex, the mutex again be
comes non signaled. If no threads are waiting on the mutex, the mutex 
remains in the signaled state, indicating that no thread is accessing the 
protected data. If a thread comes along and waits on the mutex, it will 
immediately be able to grab the mutex, locking other threads out if they 
try to wait on the mutex. 

Let me reiterate that when working with any kind of synchroniza
tion object you always want to maintain ownership of that object for as 
short a time as possible. If other threads are waiting for the object, they 
are all sleeping and not doing their work. 

Abandoned Mutexes 
Mutex objects are different from all other synchronization kernel ob
jects because mutex objects are owned by a thread. All other synchroni
zation objects are either signaled or nonsignaled, period. Mutex objects, 
in addition to being signaled or nonsignaled, remember which thread 
owns them. A mutex is abandoned if a thread waits for a mutex object, 
grabs the object (putting it in the nonsignaled state), and then termi
nates. In this scenario, the mutex is nonsignaled and will never be sig
naled because no other thread can release the mutex by calling 
ReleaseMutex. 

When the system sees that this has happened, it automatically sets 
the mutex back to the signaled state. Any threads that are currently wait
ing for the mutex with a call to WaitForSingleObject get awakened, and 
WaitForSingleObject returns WAIT_ABANDONED instead ofWAIT_OB
JECT_O. In this way, a thread knows that the mutex has not been released 

321 



ADVANCED WINDOWS 

gracefully. This is usually an indication that a bug exists in the source 
code. There is no way to know if the thread that previously owned the 
mutex finished what it was doing to the data before it terminated. (Re
member that threads can be forcibly terminated by calling ExitThread or 
TerminateThread. ) 

In the code fragment on pages 318 and 319, I check to see whether 
the mutex has been abandoned, and if it has, I break out of the while 
loop, causing the thread to end. WinMain will eventually see that both 
threads have terminated, causing the mutex to be destroyed and the 
process to terminate. I could ignore the possibility that WAIT_ABAN
DONED can be returned from WaitForSingleObject, but I don't know what 
state the protected data might be in. 

One last point about mutexes: mutexes have an ownership count 
associated with them. So if a thread calls WaitForSingleObject for a mutex 
object that the thread already owns, the call succeeds immediately every 
time because the system knows that this thread already owns the mutex. 
In addition, the reference count for the mutex is incremented each 
time. This means that the thread must call ReleaseMutex the same num
ber of times before the mutex will be in the signaled state again. This is 
identical to the way thatEnterCriticaLSection and LeaveCriticalSection work 
for critical sections. 

The Mutexes Sample Application 

Mutexes.ico 

322 

The Mutexes application (MUTEXES.EXE), listed in Figure 9-2, is sim
ply the CritSecs program modified to use mutexes instead of critical sec
tions. On the outside, the Mutexes program actually behaves identically 
to the CritSecs program. However, by using mutexes instead of critical 
sections, it would now be possible to put the CounterThread function in 
one process and the Display Thread function in another process (although 
the sample does not demonstrate this). The source code files, resource 
files, and make file for the application are in the MUTEXES.09 directory 
on the companion disc. 

Figure 9-2. (continued) 

The Mutexes application. 



Figure 9·2. continued 

'include " .• \AdvWin32.H" 
'include <windows.h> 
'include <w1ndowsx.ll> 

N I N E: Thread Synchronization 

1* See Appendix B for details. */ 

(continued) 

323 



ADVANCED WINDOWS 

Figure 9-2. continued 

(continued) 

324 



N I N E: Thread Synchronization 

Figure 9-2. continued 

1/ Call .;;.strrev1fANSLc:aH ,..::wcsrev 1'f Unicode . 
. _tcs rave g_szNumber); 
.' " ..... " "., .. :." 

(continued) 

325 



ADVANCED WINDOWS 

Figure 9-2. continued 

(continued) 

326 



N I N E: Thread Synchronization 

Figure 9-2. continued 

(continued) 

327 



ADVANCED WINDOWS 

Figure 9-2. continued 

(continued) 

328 



N I N E: Thread Synchronization 

Figure 9-2. continued 

case 2: 
dw = (DWORD) THREAD_PRIORlTLBELOW_NORMAL; 
break: 

case.3: 
default: 

dw '" (DWORDXTHREAD_PRIORlTY ...NORMAL; 

(continued) 

329 



ADVANCED WINDOWS 

Figure 9-2. continued 

(continued) 

330 



N I N E: Thread Synchronization 

Figure 9·2. continued 

1111111/ / 111111 I / // III / // / I / II Ill/Ill II I Illl III /1/ / IIII1I / / II / 
II 
II 

(continued) 

331 



ADVANCED WINDOWS 

Figure 9-2. continued 

332 



N I N E: Thread Synchronization 

Semaphores 
Semaphore kernel objects are used for resource counting. They offer a 
thread the ability to query the number of resources available; if one or 
more resources are available, the count of available resources is decre
mented. Semaphores perform this test-and-set operation atomically. 
That is, when you request a resource from a semaphore, the operating 
system checks whether the resource is available and decrements the 
count of available resources without letting another thread interfere. 
Only after the resource count has been decremented does the system 
allow another thread to request a resource. 

For example, let's say that a computer has three serial ports. No 
more than three threads can use the serial ports at any given time; each 
port can be assigned to one thread. This situation provides a perfect 
opportunity to use a semaphore. To monitor serial port usage, you can 
create a semaphore with a count of 3-one for each port. A semaphore 
is signaled when its resource count is greater than 0 and is nonsignaled 
when the count is equal to O. Every time a thread calls WaitForSingleObject 
and passes the handle of a semaphore, the system checks whether the 
resource count for the semaphore is greater than O. If it is, the system 
decrements the resource count and wakes the thread. If the resource 
count is 0 when the thread calls WaitForSingleObject, the system puts the 
thread to sleep until another thread releases the semaphore (incre
ments the resource count). 

Because several threads can affect a semaphore's resource count, 
a semaphore, unlike a critical section or a mutex, is not considered to be 
owned by a thread. This means that it's possible for one thread to wait for 
the semaphore object (decrement the object's resource count) and an
other thread to release the object (increment the object's resource count). 

You create a semaphore by calling the CreateSemaphore function: 

HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTE lpsa. 
LONG cSemlnitial. LONG cSemMax. LPTSTR lpszSemName); 

This function creates a semaphore that has a maximum resource count 
of cSemMax. So in the previous example, you would pass the value 3 to 
represent the three serial ports. The cSemlnitial parameter lets you specify 
the starting resource count for the semaphore. When the system starts, 
all three serial ports are available, so you would set this value to 3 as well. 
When the operating system initializes, you might want it to indicate that 
there are three serial ports but that none are available. To do this, you 
would pass 0 as the cSemlnitial parameter. 

333 



ADVANCED WINDOWS 

334 

The last parameter of CreateSemaphore, lpszSemName, assigns a string 
name to the semaphore. You can use this string name in other processes 
to get the handle of the semaphore by calling CreateSemaphore or Open
Semaphore: 

HANDLE OpenSemaphore(DWORD fdwAccess. BOOl fInherit. 
lPTSTR lpszName); 

This function's semantics are identical to those of the OpenMutex 
function, discussed previously. 

To release a semaphore (increment its resource count), you call 
the ReleaseSemaphore function: 

BOOl ReleaseSemaphore(HANDlE hSemaphore. lONG cRelease. 
lPlONG lplPrevious); 

This function is similar to the ReleaseMutex function, but there are a 
few differences. First, any thread can call this function at any time because 
semaphore objects are not owned by a single thread. Second, the Release
Semaphore function can be used to increment the resource count of the 
semaphore by more than 1. The cRelease parameter indicates by how 
much the semaphore should be released. For example, let's say that we 
have an application that copies data from one serial port to another. The 
application has to acquire the semaphore twice by calling WaitForSingle
Object twice. However, it can release both resources withjust a single call 
to ReleaseSemaphore. The code fragment below demonstrates: 

II Get two serial ports. 
WaitForSingleObject(g_hSemSerialPort. INFINITE); 
WaitForSingleObject(g_hSemSerialPort. INFINITE); 

II Use the serial ports to do the copy. 

II Release the serial ports so that other applications 
II can use them. 
ReleaseSemaphore(g_hSemSerialPort. 2. NUll); 

It would be nice if you could call WaitForMultipleObjects once instead 
of calling WaitForSingleObject twice. However, WaitForMultipleObjects does 
not allow the same handle to be used more than once in a single call. So 
although we must call WaitForSingleObject twice, it is convenient that we 
can call ReleaseSemaphore once at the end to increment the semaphore's 
count by 2. 



N I N E: Thread Synchronization 

ReleaseSemaphore's last parameter, IplPrevious, is a pointer to a long, 
which ReleaseSemaphore fills with the semaphore's resource count before 
adding cRelease back to it. If you are not interested in this value, you can 
simply pass NULL. 

It would help if there were a Win32 function that determined the 
resource count ofa semaphore without actually altering the semaphore's 
count. At first, I thought that calling ReleaseSemaphore and passing 0 for 
the second parameter might work by returning the actual count in the 
long pointed to by the IplPrevious parameter. But, unfortunately, this 
doesn't work; ReleaseSemaphore fills the long with O. Next I tried passing a 
really big number as the second parameter, but ReleaseSemaphore still 
filled the long with O. There is no way to get the count of a semaphore 
without altering it. 

The Supermarket Sample Application 
The SprMrkt (SPRMRKT.EXE) application, listed in Figure 9-4 begin
ning on page 348, demonstrates the use of mutexes and semaphores to 
control a supermarket simulation. The source code files, resource files, 
and make file for the application are in the SPRMRKT.09 directory on 
the companion disc. When you run SprMrkt, the following dialog box 
appears: 

Using this dialog box, you can set up all the initial parameters 
before executing the simulation. When you have finished configuring 
the simulation parameters, click on the Open For Business button to cre
ate and start executing a thread that represents the supermarket. The 
function that identifies this thread is called ThreadSuperMarket. 

335 



ADVANCED WINDOWS 

336 

The supermarket thread is responsible for: 

1. Opening the supermarket 

2. Creating threads that represent individual shoppers 

3. Closing the front doors when the store closes so that no more 
shoppers can enter 

4. Waiting until all the shoppers in the store have checked out 
their groceries before ending the simulation 

5. Notifying the GUI thread (or primary thread) that the super
market simulation has ended so that the dialog box can re-enable 
the simulation parameter controls and another simulation can 
be executed 

As mentioned in number 2 above, each shopper is represented by 
his or her own thread. Every so often, the supermarket thread creates a 
new shopper thread by calling _beginthreadex: 

hThread = (HANDLE) 
NULL, 

_beginthreadex ( 

0, 
II Security attributes 
II Stack 

ThreadShopper, II Thread function 
(LPV01D) ++nShopperNum, II Shopper number as lpvParam 
0, 
&dwThread1d) ; 

CloseHandle(hThread); 

II Flags 
II Thread 10 

The call to CloseHandle tells the system that the shopper thread isn't 
referenced directly from within the supermarket thread. Mter the super
market thread creates a shopper thread, the shopper thread executes. 
When the shopper thread is finished shopping and exits the super
market, the shopper thread terminates and its associated thread kernel 
object is destroyed with it. 

I'm sure that by now you can guess what would happen if I forgot 
the call to Close Handle: a resource leak would occur. Remember that the 
act of creating a thread causes the new thread object to have an initial 
usage count of 1. Then, because _beginthreadex returns a handle to the 
thread object, the thread object's usage count is incremented to 2. When 



N I N E: Thread Synchronization 

the shopper thread leaves the supermarket (terminates), the thread 
object's usage count decrements to l. If CloseHandle is not called, the 
object's usage count never decrements to 0 and the system won't free the 
thread object from its internal memory until the whole process is 
terminated. Because shoppers are created frequently and because the 
user can run the simulation several times in a row without exiting and 
restarting the program, the number of unfreed thread objects could really 
add up. So, as you can see, the call to CloseHandle is really quite necessary. 

Mter the supermarket has created a shopper, it waits a random 
amount of time before creating another. The maximum duration of this 
wait is specified by the Shopper Create Delay setting in the dialog box. 

By having the supermarket running as its own thread and each 
shopper also executing as his or her own thread, you create the feeling 
that every shopper can move around the supermarket at his or her own 
pace and that the supermarket itself is operating at its own pace. 

Shoppers perform the following actions: 

l. Wait to get into the store 

2. Perform a random amount of shopping 

3. Go to the deli counter to order luncheon meats 

4. Stand in line at the checkout counter to pay for items 

5. Spend a random amount of time at the checkout counter 

6. Leave the checkout counter 

7. Leave the supermarket 

Mter a shopper thread leaves the supermarket, it terminates. 
As the simulation progresses, the Shopper Events list box notifies 

you of the various events that are occurring in the supermarket. Byexam
ining this information, you can see where potential bottlenecks occur 
and how a change to the configuration parameters might alter the sce
nario for the next run. This information might be used by a manager to 
determine the best number of open checkout registers or the best num
ber of workers attending the deli counters. Figure 9-3 beginning on the 
following page shows the results of a sample run using the parameter set
tings shown in the dialog box. 

337 



ADVANCED WINDOWS 

Figure 9-3. (continued) 

Simulation results using the dialog box settings. 

338 



N I N E: Thread Synchronization 

Figure 9-3. continued 

supermarket. 

(continued) 

339 



ADVANCED WINDOWS 

Figure 9-3. continued 

(continued) 

340 



N I N E: Thread Synchronization 

Figure 9-3. continued 

001S:Notgo1ng,to'tbed~11 
" 0020:, Wai ;tjng to ~~t, ", " 

0019: ' 'fora;., 'en\j~'eY' :c:t).c;~~oqj~;; ¢l)u;nl!tf,r.;~' 

(continued) 

341 



ADVANCED WINDOWS 

Figure 9-3. continued 

(continued) 

342 



N I N E: Thread Synchronization 

Figure 9·3. continued 

0029: Leav1~g checkout countJr. 
~ ; ·)5 s hoppe.rs .NOrin store .. 

,0029 :I.eftthes'uper\llarket. 

Now let's imagine that this supermarket is open for business and 
inside several shoppers are going about their business. With so many 
things going on simultaneously, there must be some way to synchronize 
the actions of these executing threads. In this example, several forms of 
synchronization are being used. 

When the supermarket thread starts executing, it immediately cre
ates a semaphore object that is identified by the global ~hSernEntrance 
variable: 

9_hSemEntrance 
NULL. 

CreateSemaphore( 

0. 
9_nMaxOccupancy. 
NULl) ; 

II Security attributes 
II Initial lock count 
II Maximum people allowed in store 
II Do not name the semaphore. 

343 



ADVANCED WINDOWS 

344 

This object monitors the number of shoppers that are allowed into 
the supermarket at anyone time. This maximum number of shoppers is 
identified by the Maximum Occupancy setting specified in the dialog 
box. For a brief moment after opening for business, the supermarket's 
doors are still closed, not allowing any shoppers into the store. This 
closed state is indicated by passing 0 as the initial lock count. When the 
store is ready to allow shoppers in, it calls: 

ReleaseSemaphore(g_hSemEntrance. g_nMaxOccupancy. NULL); 

When a new shopper thread is created, the first thing it does is call: 

dwResult = WaitForSingleObject(g_hSemEntrance. nDuration); 

This causes the shopper thread to suspend its execution if the store is 
already filled with shoppers to maximum occupancy. If the supermarket 
is not filled with shoppers, WaitForSingleObject returns immediately, gran t
ing the shopper admittance to the store. The count of the semaphore is 
also decremented so that one fewer shopper is allowed into the store. 

You'll notice that I specified a duration value in the call in the code 
fragment above using the nDuration parameter. Shoppers will wait only 
so long to get into the supermarket before getting tired and going home. 
The maximum value of this duration can be set by using the Wait To Get 
In Market setting in the dialog box. If the shopper gets tired of waiting to 
enter the market, WaitForSingleObject returns WAIT _ TIMEO UT. The shop
per thread places the notification of this event into the Shopper Events 
list box and returns from the shopper thread, causing the thread to be 
terminated. 

Mter the shopper has entered the store, some shopping must 
occur. The maximum duration of this shopping can be set by the Time 
To Shop setting in the dialog box. In the shopper thread, the action of 
shopping is performed by simply placing a call to the Sleep functio:Q. and 
passing the value of the shopping duration. 

Mter the shopper has picked up a few items (Sleep has returned), the 
shopper heads on over to the deli counter to buy roast beef (yummy
my favorite). Actually, as a friend pointed out to me, most people go to 
the market without stopping at the deli counter at all. So in the shopper 
thread, the shopper has only a one-in-three chance of going to the deli 
counter (which leaves more roast beeffor me). 

If, as luck would have it, the shopper does go to the deli counter, 
the shopper must be waited on. In the simulation, the deli counter is 
attended by only one worker. So the synchronization of shoppers with 



N I N E: Thread Synchronization 

the deli counter is guarded by a mutex object. Only one shopper thread 
can own the mutex at anyone time. If a shopper goes to the deli counter 
while another shopper is being waited on, the newly arriving shopper 
must wait until the first shopper completes his or her business at the 
counter. Completing his or her business means releasing the mutex so 
that another shopper can get waited on. A shopper thread spends time at 
the deli counter by calling Sleep, passing in a random duration whose 
maximum value is specified by the Time At Deli Counter setting in the 
dialog box. 

It is also quite possible that the shopper currently being waited on 
is taking too long and a waiting shopper gets frustrated and leaves the 
deli counter. The maximum duration for waiting for service at the deli 
counter can be specified using the Wait For Deli Counter setting in the 
dialog box. 

There are two problems with this part of the simulation. One, only 
one worker is attending the deli counter. You might want to add a simula
tion parameter in which the user controlling the simulation can specify 
the number of workers attending the deli counter. In this way, several 
shoppers could be served simultaneously. If you decide to do this, you 
could simply change the mutex object controlling the deli counter to a 
semaphore object in which the maximum count of the semaphore repre
sents the number of people working at the deli counter. I chose not to do 
this because I wanted to show you another programming example using 
mutexes. 

The second problem with this scheme is that shoppers are not nec
essarily waited on in the order in which they appear at the deli counter. 
In other words, let's say that Shopper 1 is currently being waited on when 
Shopper 2 appears, followed shortly by Shopper 3. When Shopper 1 
leaves the counter, both Shopper 2 and Shopper 3 are still waiting to 
gain ownership of the mutex. The system makes no guarantee that it will 
give the mutex to Shopper 2 just because Shopper 2 was waiting for the 
mutex first. If you want to add this type of control for synchronizing 
threads, you'll have to add the logic yourself. The system and the Win32 
API don't support any direct means of doing this automatically for you. 

Regardless of how the shopper dealt with the deli counter, the next 
step is for the shopper to stand in line at the checkout counter. You can 
specify the number of checkout counters in the supermarket using the 
Checkout Counters setting in the dialog box. 

Here is another place in which the simulation differs a little bit 
from reality. A standard pattern in all the supermarkets I've ever been in 

345 



ADVANCED WINDOWS 

346 

involves sauntering up to the checkout area and selecting a checkout 
line to stand in. This is usually a matter of examining what everyone else 
is buying to see which lines have the least number of items to be rung up 
before the cashier gets to your stuff. Then you see which lines contain 
people who have their checkbooks out-you know that these are the bad 
lines. And then, after you have used these factors to narrow down your 
decision, you take a quick glance to see which cashier looks friendliest 
and go with that line. 

In the supermarket simulation, things are a little less detailed. Wait
ing for a checkout counter is more like raising your hand in class and 
hoping the teacher will calion you. When the teacher asks a question, all 
the students who think they know the answer raise their hands. But the 
teacher selects only one student (at random) to answer. In the super
market simulation, there are a fixed number of checkout counters. 
These are guarded by a semaphore created by the supermarket thread, 
as shown below: 

g_hSemCheckout = CreateSemaphore( 
NULL. II Security attributes 
g_nCheckoutRegisters. II All registers are free. 
g_nCheckoutRegisters. II The number of registers at the 

II store 
NULL); II No name for the semaphore 

When a shopper is ready to check out, the shopper thread waits for 
this semaphore. If a checkout counter is available, the shopper immedi
ately starts checking out, and the semaphore is decremented. If all the 
checkout counters are in use, the shopper must wait. I designed the simu- . 
lation so that a shopper cannot get tired of waiting for a checkout coun
ter and leave the supermarket. Once a shopper thread begins waiting, it 
must continue waiting until it has checked out: 

WaitForSingleObject(g_hSemCheckout. INFINITE); 

After the shopper has gained access to a checkout counter, it takes 
some time for the cashier to ring up all his or her purchases. This time is 
determined by placing a call to Sleep, again passing it a random duration 
whose maximum value is specified by the Time At Checkout setting in 
the dialog box. 

When all of the shopper's items have been totaled, the shopper 
leaves the checkout counter by releasing the g....hSemCheckout semaphore: 

ReleaseSemaphore(g_hSemCheckout. 1. NULL); 



N I N E: Thread Synchronization 

This release allows another shopper waiting to check out to gain access 
to a checkout counter. The shopper that has checked out must exit the 
supermarket by releasing the ~hSemEntrance semaphore, as shown here: 

ReleaseSemaphore(g_hSemEntrance. 1. NULL): 

This release tells the semaphore controlling the admittance of shoppers 
into the market that one shopper has left and that another shopper 
can enter. 

After the shopper has left the market, the shopper no longer has a 
reason for being and returns from the thread. Perhaps this is where the 
phrase "shop till you drop" comes from. 

We have spent a good bit of time talking about the shopper threads. 
Let's return now to the supermarket thread. As mentioned at the begin
ning of this discussion, the supermarket thread is responsible for ran
domly creating shoppers. However, the supermarket also stays open for 
some amount of time and then closes. The amount of time that the su
permarket stays open is set using the Time Open setting in the dialog box. 

When the supermarket thread sees that the set amount of time has 
been reached, it stops creating shoppers. But the supermarket cannot 
close until all the existing shoppers have been served. The supermarket 
executes the following loop: 

for (nMaxOccupancy = 0: 
nMaxOccupancy < g_nMaxOccupancy: nMaxOccupancy++) { 

WaitForSingleObject(g_hSemEntrance. INFINITE): 
} 

The loop simply calls WaitForSingleObject repeatedly until the super
market has gained control of the entrance semaphore~nMaxOccupancy 
times, which can happen only after every shopper has left the supermar
ket. You could have a problem here if a shopper thread was created just 
before the supermarket closed. In this case, both the supermarket and 
the shopper thread are waiting for the semaphore. The system makes no 
guarantee as to which thread will gain the semaphore when it becomes 
signaled. So it is possible that a waiting shopper can enter the supermar
ket even though the supermarket is closed. 

It is also possible that the supermarket thread can gain all of the 
semaphore. In this case, any created shoppers that hadn't entered the 
store yet would just get tired of waiting and terminate themselves. In a 
real simulation, these areas would need to be cleaned up a bit. 

347 



ADVANCED WINDOWS 

SprMrkt.ico 

348 

It might be nice if the supermarket simply called WaitForMultiple
Objects once instead of calling WaitForSingleObject repeatedly in a loop. 
But this can't be done for two reasons. First, you can't pass a handle iden
tifying a single object to WaitForMultipleObjects more than once. Second, 
WaitForMultipleObjects lets you wait for only MAXIMU~ WAIT_OBJECTS 
number of objects, which is currently defined as 64. Because we could 
set the maximum occupancy to be well over 64-maybe 500-calling 
WaitForMultipleObjects wouldn't work even if we could specify the handle 
to the semaphore more than once. 

Mter the supermarket thread captures the lJ-hSemEntrance sema
phore lJ-nMaxOccupancy number of times, it makes the following calls to 
be sure that all the synchronization objects are destroyed by the system: 

CloseHandle(g_hSemCheckout); 
CloseHandle(g_hMtxDeliCntr); 
CloseHandle(g_hSemEntrance); 

Figure 9-4. 
The sprMrkt application. 

(continued) 



N I N E: Thread Synchronization 

Figure 9-4. continued 

pos. fn) \ 

(continued) 

349 



ADVANCED WINDOWS 

Figure 9-4. continued 

(continued) 

350 



Figure 9-4. continued 

HWNDhwndSB: 

N I N E: Thread Synchronization 

(continued) 

351 



ADVANCED WINDOWS 

Figure 9-4. continued 

(continued) 

352 



N I N E: Thread Synchronization 

Figure 9·4. continued 

(continued) 

353 



ADVANCED WINDOWS 

Figure 9-4. continued 

(continued) 

354 



N I N E: Thread Synchronization 

Figure 9-4. continued 
" . " 

if CNULL=..iGli1tFocusO)·L .' '.,' .. 
5etFocus( GetOl gltemCbwrtd,I OC,::J4~X'ocbuPANCV)); 

, ',' ": 'J' ', .. ," ':.~. ,", . ' ~ ~ .... :\~~:';'.~<:: ,")"'<.' 'e. 

(continued) 

355 



ADVANCED WINDOWS 

Figure 9-4. continued 

(continued) 

356 



Figure 9-4. continued 

HANPtE:hrhre~Hh . 
·OWORO·· . 

'hit,:",· qk ...... " .. "lili~ 

N I N E: Thread Synchronization 

(continued) 

357 



ADVANCED WINDOWS 

Figure 9·4. continued 

(continued) 

358 



N I N E: Thread Synchronization 

Figure 9-4. continued 

II Wait till the Shopper can enter the supermarket. 
nDuration = Random(9_nMaxWaitToGetInMarket); 
AddStr(_TEXT("%04lu: Waiting to get in store (%1u)."). 

nShopperNum. nDuration); 

dwResulf =Wai t·For$10g1 eObject(g_hSemEntrance. nDurat; on) ; 
.. 1·f (llwResl.llt· ==WArLTIMEOUT){ . . 

I t ;T~e shoPlJEfr.{Jotti rMof 
I/wait1 ngt:obe let in and 1 eft. 
Ad4Str(,; .... :rnT:("%0:41ui Ti r~dof waiting.; went, home. to)." 
nSfiOP'P$rffum): . ' ' .. ' 

, re·t~r.rif0 b . ,. .' 

ShOPpe~¢nt·e~edthe'supermark~t. Time togo shopping, 
nDurati oi;l."=Raf;ldOm(g:JlMa~nmeShopping·}l .. . . . ' 
AddS~~{."~.J.IEXT.e%tl4l\i{ln.superm!\rket. shpppingfor %1 u;" )., 
~j'lStJoi>petff4m~.npuraJ.ion) i .. 

5J '$'ecp(n!);U.r!lit1 on); '. ' . 
,.·~o> .. ;,: ;~., " 

''':,,' 
~,':' .<, ".<w.~:. i'('".:-;;'~ 'Co,'l; '~-t\<O ,,",' 

llld~gks:~,lt~"=\~)X •.•.•. . ". ( ... , 
11,fii:it~tte,ntion~td:eli:order !it~ff: .. 

. ,;nll~r,at:j9n. ""Ran(iOlitl~~nM~xTimeSpentAtD~ll.); 
- '.~, ,',. :" c '$,':<: ~~ .• "" "\,,.,'. .~~. "',~.;: 

l'l\~dS"t;(~TEit('i%~41~fB~iri9 s~r\led atiqe.H j%lu 1. ... i., .. 
. ';'l;J\BhQPpe~ffu(lkl' nnui"at~o~); 
Sle~p(.n[juJ"atiOll):< . ." 

~ <,' '.;' " <;. , " .. c; : >'" 

.li}L~~~~~6~.1l e l.i .co.untf!r. ,'. .. 
;ReleaseJ'111t~.x(g.:'nMtX.De,l fCn tr){ .... 
;. ~ , . . .. '. ,,,";0 '. ~:'. < ',Y. . . ; " 

(continued) 

359 



ADVANCED WINDOWS 

Figure 9-4. continued 

(continued) 

360 



N I N E: Thread Synchronization 

Figure 9·4. continued 

(continued) 

361 



ADVANCED WINDOWS 

Figure 9·4. continued 

(continued) 

362 



N I N E: Thread Synchronization 

Figure 9-4. continued 

363 



ADVANCED WINDOWS 

Events 

364 

Event objects are the most primitive form of synchronization object and 
are quite different from mutexes and semaphores. Mutexes and sema
phores are usually used to control access to data, but events are used to 
signal that some operation has completed. There are two different types 
of event objects: manual-reset events and auto-reset events. A manual
reset event is used to signal several threads simultaneously that an opera
tion has completed, and an auto-reset event is used to signal a single 
thread that an operation has completed. 

Events are most commonly used when one thread performs initial
ization work and then, when it completes, signals another thread to per
form the remaining work. The initialization thread sets the event to the 
nonsignaled state and begins to perform the initialization. Then, after 
the initialization has completed, the thread sets the event to the signaled 
state. When the worker thread starts executing, it immediately suspends 
itself, waiting for the event to become signaled. When the initialization 
thread signals the event, the worker thread wakes up and performs the 
rest of the work necessary. 

For example, a process might be running two threads. The first 
thread reads data from a file into a memory buffer. Mter the data has 
been read, the first thread signals the second thread that it can process 
the data. When the second thread finishes processing the data, it might 
need to signal the first thread again so that the first thread can read the 
next block of data from the file. 

Let's start our discussion with how to create an event. The seman
tics for creating, opening, and closing events are identical to those for 
mutexes and semaphores. Events are created using the CreateEvent 
function: 

HANDLE CreateEvent(lPSECURITY-ATTRIBUTES lpsa. 
BOOl fManualReset. BOOl flnitialState. lPTSTR lpszEventName): 

The fManualReset parameter is a Boolean value that tells the system 
whether you want to create a manual-reset event (TRUE) or an auto
reset event (FALSE). The fInitiaLState parameter indicates whether the 
event should be initialized as signaled (TRUE) or nonsignaled (FALSE). 
Mter the system creates the event object, CreateEvent returns the process
relative handle to the event. Threads in other processes can gain access 
to the object by calling CreateEventusing the same value in the lpszEvent
Name parameter; by using inheritance; by using the DuplicateHandle 
function; or by calling OpenEvent (shown on the facing page), specifying 



N I N E: Thread Synchronization 

a name in the lpszName parameter that matches the name specified in 
the call to CreateEvent: 

HANDLE OpenEvent(DWORD fdwAccess. BOOl flnherit. lPTSTR lpszName); 

As always, events are closed by calling the very popular CloseHandle 
function. 

Manual-Reset Events 
Manual-reset events are not automatically reset to the nonsignaled state 
by the WaitForSingleObject and WaitForMultipleObjects functions. In the 
case of mutexes, when a thread calls WaitForSingleObject or WaitForMultiple
Objects, the functions wait for the mutex to be signaled and then auto
matically reset the mutex to nonsignaled. This is important because it 
guarantees that no more than one thread waiting on the mutex will be 
able to wake up and continue executing. If threads were responsible for 
manually resetting the mutex back to the nonsignaled state, it would be 
possible for two or more threads to have their waits satisfied before each 
one reset the mutex to nonsignaled. 

For manual-reset events, the story is quite different. You might have 
several threads, all of them waiting for the same event to occur. When 
the event does occur, each of the waiting threads might be able to per
form its own processing. Let's go back to our file reading and processing 
example. It might be the case that one thread is responsible for reading 
data from a file into a buffer. Mter the data has been read, we might want 
to start nine other threads. Each of these nine threads might process the 
data in a slightly different way. Let's say the file contains a word process
ing document. The first thread could count characters, the second thread 
could count words, the third thread could count pages, the fourth 
thread could perform a spell check, the fifth thread could print the 
document, and so on. The one extremely important thing that all of 
these threads have in common is that none of them write to the data. All 
of them consider the data to be a read-only resource. 

In this example, you most certainly would want to allow all the wait
ing threads to be satisfied when the event occurred. This is the reason for 
manual-reset events. When a manual-reset event is signaled, all threads 
waiting on the event are allowed to run. A thread sets an event object to 
the signaled state by calling: 

BOOl SetEvent(HANDlE hEvent); 

This function takes the handle to an event object and simply sets it to the 
signaled state. SetEvent returns TRUE if the function is successful. Mter 

365 



ADVANCED WINDOWS 

the manual-reset event has been signaled, it remains signaled until one 
thread explicitly (or manually) resets the event by calling: 

BOOl ResetEvent(HANDlE hEvent); 

This function takes the handle to an event object and resets it to the non
signaled state. ResetEvent returns TRUE if the function is successful. See, 
I told you that events were the most primitive synchronization object. 

For the file reading and processing example, the thread that reads 
the file data and puts it into the shared memory buffer would call Reset
Event just before reading the data into the buffer. It would then call 
SetEvent when the reading was completed. 

I've left out one small issue: how does the file-read thread know 
when to read the next block of data? We know that it should read the 
next block of data when all the other threads have finished their work 
with the current block of data. But the other threads need a way to signal 
that they've finished. The best method is for each of the data processing 
threads to create their own event object. If all the handles for these event 
objects were stored in an array, the file-read thread could call WaitFor
MultipleObjects, indicating that it wanted to wait for all the event handles. 

Because calling Set Event, releasing waiting events, and immediately 
calling ResetEvent is quite common, Win32 offers another function that 
performs all three of these steps: 

BOOl PulseEvent(HANDlE hEvent); 

When PulseEvent returns, the event is left in the nonsignaled state. If the 
function is successful, TRUE is returned. 

The Bucket of Balls Sample Application 

366 

A basic synchronization problem, commonly referred to as the classic 
multiple-readers/multiple-writers scenario, exists for many different 
applications. The problem involves an arbitrary number of threads that 
are attempting to access a global resource. Some of these threads (the 
writers) need to modify the contents of the global data, and some of the 
threads (the readers) need only to read the data. Synchronization is nec
essary because of the following rules: 

1. When one thread is writing to the data, no other thread can 
write to the data. 

2. When one thread is writing to the data, no other thread can 
read from the data. 



N I N E: Thread Synchronization 

3. When one thread is reading from the data, no other thread can 
write to the data. 

4. When one thread is reading from the data, other threads can 
also read from the data. 

Let's look at this problem in the context of a database application. 
Let's say we have five end users, all working on the same database: two 
employees are entering records into the database, and three employees 
are retrieving records from the database. 

In this scenario, rule 1 is necessary because we certainly can't have 
both Employee 1 and Employee 2 updating record 3457 at the same 
time. If both employees attempt to modifY the same record, Employee 
1 's changes and Employee 2's changes might be made to the database at 
the same time. We wouldn't want to have a situation in which a record in 
the database contained corrupted information. 

Rule 2 prohibits an employee from accessing a record in the data
base if another employee is updating a record in the database. If this 
situation were not prevented, it would be possible for Employee 4 to read 
the contents of record 2543 while Employee 1 was altering that same 
record. When Employee 4's computer displayed record 2543, the record 
would contain some of the old information and some of the updated 
information-this is certainly unacceptable. Rule 3 is needed in order to 
solve the same problem. The difference in the wording of rules 2 and 3 
prevents the situation regardless of who gains access to the database 
record first-an employee who is trying to write or an employee who is 
attempting to read. 

The last rule, rule 4, exists for performance reasons. It makes sense 
that if no employees are attempting to modify records in the database, 
the content of the database is not changing and, therefore, any and all 
employees who are simply retrieving records from the database should 
be allowed to do so. 

OK, there you have the gist of the problem. Now the question is, 
how do we solve it? 

The Bucket (BUCKET.EXE) application, listed in Figure 9-5 begin
ning on page 379, demonstrates the solution bysynchronizing the access 
of five threads to a small database. In order to accomplish this synchroni
zation, Bucket uses three of the kernel synchronization objects discussed 
in this chapter: manual-reset events, semaphores, and mutexes. Although 
Bucket manages only five threads (two updating the database and three 
reading the database), the groundwork presented easily extends itself to 

367 



ADVANCED WINDOWS 

368 

a situation in which virtually any number of threads (readers and/or 
writers) can be synchronized. The source code files, resource files, and 
make file for the application are in the BUCKET.09 directory on the 
companion disc. 

When you invoke Bucket, the following dialog box appears: 

The database being managed is a bucket that can contain no more 
than 100 balls. Initially the bucket is empty. The Bucket Writers section 
in the upper portion of the dialog box represents the two threads that 
add, remove, or change the different colored balls in the bucket. To the 
right of the thread number is a time value specified in seconds. For 
Writer 1, this value is 1. This means that every second, Writer 1 attempts 
to gain access to the bucket and add another ball. The scroll bar at the 
right of the seconds value allows you to change this delay time, which can 
range from 0 through 60 seconds. Writer 2 operates in the same way except 

. that it starts out with an initial delay time of 3 seconds. 
The bottom portion of the dialog box represents the three reader 

threads. These threads work similarly to the writer threads. Mter every 
specified number of seconds (0 through 60), each of the three reader 
threads erases the contents of its list box, counts the different colored 
balls in the bucket, and updates the list box to display the results. 

The important thing to remember here is that all the threads are 
being synchronized. If a writer currently has permission to add, remove, 
or change a ball in the bucket, neither the other writer nor any of the 
readers will be granted access to the bucket. On the other hand, if a 



1J 
Important 

N I N E: Thread Synchronization 

reader has access to the bucket and is coun ting the balls, any of the other 
readers requesting access to do the same will gain access, but none of the 
writers will be allowed to change any of the balls in the bucket until all 
the readers are finished. 

Now that you see how the program operates, let's turn our atten
tion to the source code listed in Figure 9-5. 

A point that I have been trying to drive home throughout this entire 
chapter is that thread synchronization bugs are extremely difficult to 
locate and fix. As it turns out, I am far from immune to this problem 
myself (as several readers have so kindly pointed out to me). The Bucket 
sample that appears in the first edition of this book has bugs in it. I have 
(well, at least I'm pretty sure this time that I have) corrected the bugs in 
Bucket, and I have also improved the application's code and clarity sig
nificantly. If you used any code from my first edition's Bucket sample, 
you might want to examine this updated version and see whether you 
need to make any enhancements to your own code. 

The SWMRG Compound Synchronization Object 
When I started to fix Bucket for this edition of the book, I realized that 
the code that Bucket was using in the first edition for its thread synchro
nization was too complicated and error prone-a better method was 
definitely called for. Because the single-writer/multiple-reader scenario 
is a classic synchronization problem, I thought it best to create a generic, 
reusable object to solve it. This way, if any of you reading this need to 
solve this classic problem, you can just steal my code and incorporate it 
into your own application with few or no changes whatsoever. The result 
of my labor is something I like to call SWMRG (I pronounce it swimerge); it 
stands for single-writer/multiple-reader guard. 

A SWMRG object is a data structure of my own creation. This 
SWMRG data structure and the functions that manipulate it can be 
found in the SWMRG.H and SWMRG.C files in the BUCKET.09 direc
tory on the companion disc. A SWMRG object is a compound synchroni
zation object designed specifically for handling the classic single-writer/ 
multiple-reader synchronization problem. I call it a compound synchro
nization object because it uses three kernel objects: a mutex, a sema
phore, and a manual-reset event. I discuss how it uses these later. For 
now, I'll simply discuss how an application uses a SWMRG object. 

369 



ADVANCED WINDOWS 

370 

Let me start off by saying that you use a SWMRG object in exactly 
the same way you would use a CRITICAL_SECTION object. First you 
must create an instance of a SWMRG object in your application. As with 
CRITICAL_SECTION objects, you usually create a SWMRG object as a 
global variable so that all threads in the process have access to it: 

#include "SWMRG.h" 
SWMRG g_SWMRG: II The global SWMRG object 

Also, the data members in a SWMRG object should be considered 
opaque to the application-only the functions supplied in SWMRG.C 
reference the members in the structure; the application should never 
need to touch these data members. This is also how CRITICAL_SEC
TION objects are used. 

Before any thread in the process can synchronize itself using the 
SWMRG object, the SWMRG object must be initialized (usually in the 
application's WinMain function). A SWMRG object is initialized by call
ing the SWMRGlnitialize function: 

BOOl SWMRGInitialize (PSWMRG pSWMRG. lPCTSTR lpszName): 

As you can see, the first parameter must be the address of a 
SWMRG object and the second parameter allows you to specify a name 
for the object. Although the SWMRGlnitialize function is similar to the 
InitializeCriticaLSection function, there is one really big difference: I have 
designed the SWMRG object so that it can be accessed by threads run
ning in different processes. In order to do this, however, you must pass a 
string name as the lpszName parameter. This technique is similar to creat
ing a mutex object and specifying a name for it. If you don't want to share 
the SWMRG object across processes, you should pass NULL for the 
lpszName parameter. I'll talk more about using the SWMRG object across 
processes a little later in this chapter. 

When the process is ending and you are sure that no writer or 
reader threads will attempt to access the SWMRG object, the SWMRG 
object should be destroyed by calling the SWMRGDelete function: 

void SWMRGDelete (PSWMRG pSWMRG): 

Now, in between the calls to SWMRGlnitialize and SWMRGDelete, 
any writer or reader thread can use the SWMRG object for synchroniza
tion. The interface is very simple. When a writer thread needs access to 
the shared data resource, it must first call a function that is similar to the 
EnterCriticalSection function: 

DWORD SWMRGWaitToWrite (PSWMRG pSWMRG. DWORD dwTi meout) : 



N I N E: Thread Synchronization 

The writer thread passes the address of the SWMRG object as the 
first parameter and a time-out value for the second parameter. This is 
another area in which SWMRG objects vary from critical sections: with a 
SWMRG object, you can specify a time-out value while waiting. SWMRG
WaitToWrite will return either WAIT_OBJECT_O or WAIT_TIMEOUT. 

If the writer thread was granted exclusive access to the shared data 
resource because SWMRGWaitToWrite returned WAIT_OBJECT_O, it must 
call SWMRGDoneWriting when it no longer needs access to the data. Call
ing SWMRGDoneWriting allows other writer or reader threads the oppor
tunity to access the shared resource: 

void SWMRGDoneWriting (PSWMRG pSWMRG); 

This function is similar to the LeaveCriticalSection function. 
So far we have discussed only the writer thread side of using a 

SWMRG object. Now let's discuss how a reader thread uses the SWMRG 
object. When a reader thread wants to access the shared data resource, 
it calls SWMRGWaitToRead: 

DWORD SWMRGWaitToRead (PSWMRG pSWMRG. DWORD dwTimeout); 

This function is similar to the SWMRGWaitTo Write function in that 
it takes the same parameters and has the same return values. The differ
ence is in what it does internally, which we'll discuss shortly. 

When a reader thread is done accessing the shared data, it must call 
SWMRGDoneReading so that a writer thread has the opportunity to access 
the shared data resource: 

void SWMRGDoneReading (PSWMRG pSWMRG); 

Of course, a writer thread will be gran ted access only if no reader threads 
are currently accessing the resource. 

It's time now to discuss how the SWMRG object is actually imple
mented. We'll begin by examining the data members of the SWMRG 
structure: 

typedef struct SingleWriterMultiReaderGuard { 
II This mutex guards access to the other objects 
II managed by this data structure and also indicates 
II when there are no writer threads writing. 
HANDLE hMutexNoWriter; 

II This manual-reset event is signaled when 
II there are no reader threads reading. 
HANDLE hEventNoReaders; 

(continued) 

371 



ADVANCED WINDOWS 

372 

II This semaphore is used simply as a counter that is 
II accessible between multiple processes. It is NOT 
II used for thread synchronization. 
II The count is the number of reader threads reading. 
HANDLE hSemNumReaders: 

} SWMRG. *PSWMRG: 

This data structure consists of three handles to kernel synchroniza
tion objects. The first handle, hMutexNoWritcr, is used by the SWMRG 
functions to indicate whether a writer thread has access to the shared 
data resource. Remember that a writer thread having access to the re
source locks out all other writer threads as well as all reader threads. So 
a mutex object seems an excellent choice because only one thread at a 
time can own a mutex object. When the mutex is signaled, we know that 
no writer thread is currently accessing the data. 

The second handle, hEventNoReadcrs, indicates whether any reader 
threads are currently accessing the data. If no reader threads are access
ing the data, this manual-reset event object is signaled. 

The third handle, hSemNumReaders, indicates the number of reader 
threads that are currently accessing the shared resource. The SWMRG 
functions do not use this semaphore for synchronization purposes
they use it as a counter. The SWMRG object must maintain a counter that 
indicates the number of reader threads that are simultaneously access
ing the data. This way, when the last reader thread calls SWMRGDone
Reading, the counter goes to 0 and the hEventNoReadcrs event can be 
signaled by calling the SetEvent function. 

When I was developing SWMRG, I originally had a long variable 
declared in the SWMRG structure instead of this handle to a semaphore. 
I used this variable to count the number of reader threads accessing the 
resource. But then, as I continued to develop the SWMRG code, I got to 
the point where I wanted to make it work for threads in other processes. 
This meant that the counter variable needed to be accessible in each 
process's address space. So I thought about creating a memory-mapped 
file and mapping a view of this file into each process's address space 
when SWMRGlnitialize is called. The thing I hated about this method was 
that a memory-mapped file can be no smaller than a page and all I 
needed was a 4-byte value. For a system with a page size of 4096 bytes, this 
meant a 102,400 percent overhead; on a system with a page size of8192 
(such as the DEC Alpha), the overhead would be 202,400 percent! 



N I N E: Thread Synchronization 

After racking my brain for a while, I realized that a semaphore ker
nel object maintains a counter, is accessible across processes, and uses 
much less than 4096 bytes of memory. So I create a semaphore and use 
this as my counter. Whenever I want to decrement the counter, I call 
WaitForSingleObject, passing the handle to the semaphore; and whenever 
I want to increment the counter, I call ReleaseSemaphore. The problem 
with using semaphores as counters is that you can't query the current 
value of the semaphore. The only thing you can do is check to see 
whether the semaphore has a count of 0 by calling WaitForSingleObject 
with a time-out value of O. If WaitForSingleObject returns WAIT_TIME
OUT, the semaphore's count is 0; and if WAIT_OBJECT_O is returned, 
the semaphore's count is greater than O. This is all that we can know 
about the semaphore, and fortunately, this is all that the SWMRG object 
functions need to know. More on this later. 

I've placed a lot of comments in the SWMRG.C file to explain each 
of the functions, but I'll also discuss them briefly here in the text. 

The SWMRGlnitialize function is used to initialize the SWMRG ob
ject. Basically, it creates the mutex, event, and semaphore objects. In 
order for threads in different processes to share the SWMRG object, each 
process must allocate its very own instance of a SWMRG object. Then a 
thread in each process must pass the address of its SWMRG object as well 
as a name for the object when calling SWMRGlnitialize. SWMRGlnitialize 
uses this name when creating the mutex, event, and semaphore. For ex
ample, if you call SWMRGlnitialize, passing 'Jeff" for the lpszName parame
ter, the mutex object is created with the name SWMRGMutexNoWriterJeff, 
the event object is created with the name SWMRGEventNoReadersjeff, and 
the semaphore object is created with the name SWMRGSemNumReaders
Jeff. The static ConstructObjName function is a small helper function that 
SWMRGlnitialize calls in order to append the lpszName parameter to the 
kernel object name's prefix. 

When a thread in another process calls SWMRGlnitialize and passes 
the same name for the lpszName parameter, the calls to create the various 
kernel objects will see that kernel objects with the same names already 
exist and will return handles to the existing objects rather than create 
new objects. The threads in the different processes will be synchronized. 

The SWMRGDelete function is by far the simplest of the functions. It 
calls Close Handle three times, once for each kernel object. 

When a writer thread is ready to modify the shared data resource, it 
must first request permission to do so by calling the SWMRGWaitTo Write 

373 



ADVANCED WINDOWS 

374 

function. This function calls the Win32 WaitForMultipleObjects function, 
telling it to wait for both the hMutexNoWriter mutex and the hEventNo
Readers event. If WaitForMultipleObjects returns WAIT_OBJECT_O, the 
thread knows that there are no other writer threads and no reader 
threads using the shared resource. If the function returns WAIT_TIME
OUT, the writer thread knows that it is not safe to modify the shared 
resource because there is another writer thread or at least one reader 
thread currently accessing the data. 

When a writer thread has completed modifying the shared resource, 
it must call the SWMRGDoneWriting function. This function releases the 
hMutexNo Writer semaphore so that any other writer or reader threads will 
see that there are no writer threads accessing the data. 

When a reader thread is ready to read the shared data resource, it 
must first request permission to do so by calling the SWMRGWaitToRead 
function. This function calls WaitForSingleObject, passing the hMutexNo
Writer mutex handle. This is because a reader thread can always read the 
resource if there is no writer thread currently accessing the resource. If 
the call to WaitForSingleObject times out while waiting for the mutex, 
SWMRGWaitToRead returns WAIT_TIMEOUT. 

However, if the call to WaitForSingleObject successfully obtains own
ership of the mutex, the semaphore that maintains the count of reader 
threads must be incremented. This is done by simply calling Release
Semaphore, passing it the hSemNumReaders handle and a value of 1 for the 
cReleaseCount parameter. The ReleaseSemaphore function returns the previ
ous count of the semaphore in a DWORD whose address is passed as the 
last parameter. SWMRGWaitToRead examines this value, and, if there 
were no reader threads accessing the shared resource prior to calling 
ReleaseSemaphore, SWMRGWaitToRead resets the hEventNoReaders manual
reset event.' Resetting this event object indicates that there are some 
reader threads accessing the shared data. If this reader thread is not the 
first reader thread to access the data, the hEventNoReaders event will already 
be in the nonsignaled state so there is no reason to call ResetEvent again. 

JU!;lt before SWMRGWaitToRead returns, it must call ReleaseMutex, 
passing the hMutexNo Writer handle. This is necessary because when 
SWMRGWaitToRead successfully waits for this mutex, the mutex becomes 
nonsignaled as a side effect. This indicates, of course, that there is a 
writer thread accessing the data. We must correct this side effect by call
ing ReleaseMutex so that the other threads know that a writer thread is not 
actually accessing the shared data. 



N I N E: Thread Synchronization 

The last function to discuss is SWMRGDoneReading. A reader thread 
must call this function when it has completed accessing the shared data. 
SWMRGDoneReading first calls WaitForSingleObject, passing the hMutex
NoWriter handle, because the thread that is calling SWMRGDoneReading 
must have exclusive access to the hEventNoReaders and hSemNumReaders 
objects. This thread needs to alter the states of these objects, and other 
writer and reader threads must not be able to examine the states of these 
objects until the thread that has finished reading has completely updated 
them. Because the SWMRGWaitToWrite, SWMRGDoneWriting, SWMRG
WaitToRead, and SWMRGDoneReading functions all must successfully wait 
on the hMutexNo Writer mutex before continuing, a reader thread calling 
SWMRGDoneReading can block these other threads until it has updated 
the event and semaphore objects. 

Mter SWMRGDoneReading has successfully waited for the hMutex
NoWriter object, it must decrement the number of reader threads by call
ing WaitForSingleObject, passing the hSemNumReaders handle. Remember 
that successfully waiting for a semaphore object means that the system 
automatically decrements the count of the semaphore by 1. Now that the 
semaphore has been decremented, SWMRGDoneReading must check to 
see whether the reader thread is the last reader thread. 

Determining whether this thread is the last reader thread is not as 
straightforward as I would have hoped. It would be easy ifWin32 offered 
a function that returned the current count associated with a semaphore, 
but Win32 does not offer such a function. So the only thing I can do is 
call WaitForSingleObject, passing the hSemNumReaders handle and a time
out value of O. This tells the system to return WAIT_OBJECT_O if the 
semaphore's count is greater than 0, or WAIT_TIMEOUT if the sema
phore's count is O. If WAIT_TIMEOUT is returned, I know that this 
reader thread is the last one and I set the JLastReader variable to TRUE. 
SWMRGDoneReading must also change the hEventNoReaders event to the 
signaled state by calling SetEvent. 

If this thread is not the last reader thread, I have done a very bad 
thing: by successfully waiting on the hSemNumReaders semaphore, I have 
decremented its count one more value than I should have. I must com
pensate for this by incrementing the count back to its original value. I do 
this by calling ReleaseSemaphore. When I was first developing the SWMRG 
code, I forgot to do this, causing a very bad synchronization problem that 
eventually suspended all of my reader and writer threads. Fortunately, 
hung threads are an indication of a bug, and I was able to catch this bug 
and correct it in the code you see in Figure 9-5. 

375 



ADVANCED WINDOWS 

Finally, just before SWMRGDoneReading returns, it must release the 
hMutexNoWriter mutex by calling ReleaseMutex. As with the SWMRGWait
ToRead function, this is necessary so that any other writer and reader 
threads can now wake up and continue their business. 

The Bucket Sample Source Code 

376 

When you invoke Bucket, the first thing it does is initialize a SWMRG syn
chronization object. Because the Bucket sample application is the only 
application that needs access to the mutex, event, and semaphore ob
jects, NULL is passed to SWMRGlnitialize's lpszName parameter. Mter the 
SWMRG object has been initialized, Bucket calls DialogBox in order to 
display its user interface. 

Displaying the dialog box causes the system to send a WM_INIT
DIALOG message. In the processing of the Dlg_OnlnitDialog function, 
the scroll bars are initialized and the two writer and three reader threads 
are created. The handles to these five threads are saved in a global array 
because they'll be needed to cleanly terminate the process. All these 
threads work in exactly the same way. Each thread performs a small 
amount of initialization and then enters a while loop that terminates 
only when the global g_lTerminate variable is set to 1. (When the appli
cation starts, this variable is initialized to 0; we'll come back to this vari
able shortly.) 

Inside the while loop, each thread first calls the Win32 Sleep func
tion, passing it a value that is determined by the thread's associated scroll 
bar value: 

Sleep(1000 * GetDlgltemlnt(g_hwndDlg, nNumID, NULL, FALSE»: 

This call to Sleep simulates the writer or reader thread doing other 
work that does not require access to the shared data resource. When a 
writer thread awakens, it calls the SWMRGWaitToWrite function; when 
a reader thread awakens, it calls the SWMRGWaitToRead function. When 
a writer thread's call to SVVMRGWaitToWrite returns, the writer thread 
knows that no other writer thread or reader thread has access to the 
data. The writer thread then calls the BuckeLAlterContents function to 
change the contents of the bucket. 

When a reader thread's call to SWMRGWaitToRead returns, it knows 
that no writer threads are accessing the bucket, but other reader threads 
might be accessing it. The reader thread calls the BuckeLDumpToLB 
function, which examines the contents of the bucket (without altering 
the contents) and places the results in the thread's respective list box. 



N I N E: Thread Synchronization 

When a writer or reader thread has completed its access to the 
bucket, it calls SWMRGDoneWriting or SWMRGDoneReading, depending 
on the type of thread. This lets another writer or reader thread access 
the bucket. Then the while loop iterates back to the top. 

Now we get to the point of discussing how the writer and reader 
threads know when to terminate. When the user closes the dialog box, 
the process's primary thread, which is responsible for managing the 
application's user interface, returns from the call to DialogBox in the 
program's WinMain function and executes the following line of code: 

Interlockedlncrement«PLONG) &g_lTerminate); 

This call increments the global g....lTerminate variable from 0 to 1. 
Eventually all the writer and reader threads will see that this variable has 
changed, indicating that they should terminate. The Interlockedlncrement 
function atomically changes the value of the long variable whose address 
is passed to it. This means that any threads attempting to examine the 
value of the g....lTerminate values will be momentarily suspended until the 
Interlockedlncrement function has completely updated the long variable's 
value. (The Interlockedlncrement function is discussed in more detail in 
the last section of this chapter.) 

Because the g....lTerminate variable has been incremented, the writer 
and reader threads will eventually stop running. They might not stop 
for quite some time, however-if they are busy performing work their 
while loops might not iterate for a while. In order to clean up nicely, the 
primary thread must wait for all the threads to terminate. It does this by 
calling WaitForMultipleObjects, passing the handles to the five threads. 
Remember that these handles were saved in a global array when the 
Dlg_OnInitDialog function was called. When all the threads have termi
nated, WaitForMultipleObjects returns and the primary thread calls Close
Handle, passing each of the writer and reader thread handles. 

Finally the primary thread calls SWMRGDelete so that the hMutex
NoWriter, hEventNoReaders, and hSemNumReaders objects have their usage 
counts decremented, thereby freeing these objects. 

When I was testing Bucket's process and thread termination, I used 
the PERFMON.EXE application that ships with Windows NT to be sure 
that everything was working correctly. Mter starting BUCKET.EXE, I 
started PERFMON.EXE, selected the Add To Chart option from the Edit 
menu, and got the dialog box shown on the next page. 

377 



ADVANCED WINDOWS 

378 

In the dialog box above, I set the Object field to Process, the Instance 
field to Bucket, and the Counter field to Thread Count. Then I clicked 
on the Add button. This caused PerfMon to monitor the number of 
threads that were running in the Bucket process. The chart produced 
appears below: 

You can see from the chart that the Bucket application went from 
zero threads to six threads almost immediately. But then, around the 
time when the vertical bar was under the toolbar button that looks like a 
camera, I closed the dialog box. Buckees primary thread immediately 
incremented the g....lTerminate variable to 1, and it looks as if three threads 
saw this change right away and terminated. Then, after a little delay, the 
fourth thread iterated back to the top of its while loop, saw the change, 
and terminated. A little later the fifth thread saw the changed variable 
and terminated. When the fifth thread terminated, the primary thread 
awakened immediately and also terminated. This is why the chart shows 
such a steep drop from two threads to zero threads. 



Bucket.ico 

N I N E: Thread Synchronization 

The PERFMON.EXE application is an incredibly useful program 
that many developers ignore. This is an extremely minor example of 
what it can do. I am always finding new uses for PerfMon and encourage 
you to spend time experimenting with it to find out how it can give you 
additional perspectives on your own applications. 

Figure 9-5. (continued) 

The Bucket application. 

379 



ADVANCED WINDOWS 

Figure 9·5. continued 

(continued) 

380 



N I N E: Thread Synchronization 

Figure 9-5. continued 

·/IUllIUJIJI//l/lI/lI/ /llli Hlllllllll1JIUIIllll1 /ll/I/ IJt 
.' 't:·" ' . 

(continued) 

381 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

382 



N I N E: Thread Synchronization 

Figure 9-5. continued 

1/ Inform the other writers/readers that we are done. 
SWMRGDoneWriting(&g_SWMRG). 

(continued) 

383 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

384 



N I N E: Thread Synchronization 

Figure 9-5. continued 

(continued) 

385 



ADVANCED WINDOWS 

Figure 9·5. continued 

(continued) 

386 



N I N E: Thread Synchronization 

Figure 9-5. continued 

filII / /lilll /11/ 1// j f I//U// / 11/1/ 1111 f II f Ii/l// 1I1I1I /II / l/ 

(continued) 

387 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

388 



N I N E: Thread Synchronization 

Figure 9-5. continued 

////////11/1/11//111/11/11/11/11111111111111/1/1/111/1//11/1 

int WINAPIWinMain (HINSTANCE hinstExe, 
HlNSTANC.E hlnstPrev, LPSTR lpszCm<l.L ine, 1nt nCm<lShow){ 

(continued) 

389 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

390 



N I N E: Thread Synchronization 

Figure 9-5. continued 

/1/1/1/1111111/1///////1//////////////////111///1////////1//1 

(continued) 

391 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

392 



N I N E: Thread Synchronization 

Figure 9·5. continued 

(continued) 

393 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

394 



Figure 9-5. continued 

N I N E: Thread Synchronization 

is NOT the·Jast reader thread, we successfully 
on the semaphore. We must r~leasethesemaphore 

accurately .. reflectsthe.number 

(continued) 

395 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

396 



N I N E: Thread Synchronization 

Figure 9·5. continued 

(continued) 

397 



ADVANCED WINDOWS 

Figure 9-5. continued 

(continued) 

398 



N I N E: Thread Synchronization 

Figure 9-5. continued 

#1 fndef APSTUOIO_INVOKEO. .. 
1111l1llHI III II! III illllllllllllllllllll 1111111111111/ 1111111 
Ii.· 

Auto-Reset Events 
Auto-reset events behave more like mutexes and semaphores than 
manual-reset events do. When a thread calls SetEvent to signal an event, 
the event stays signaled until another thread that is waiting for the event 
is awakened. Just before the waiting thread resumes, the system auto
matically resets the event to the nonsignaled state. Using an auto-reset 
event in this way has the effect of allowing only one thread waiting for 
the event to resume execution. Any other threads waiting for the event 
are left suspended, still waiting. You have no control over which of the 
suspended threads will resume execution-the operating system makes 
that decision. This statement is true not only of events but of all syn
chronization objects. If multiple waits are satisfied, the highest-priority 
thread will run. 

You can manipulate an auto-reset event by using the same functions 
that manipulate a manual-reset event: SetEvent, ResetEvent, andPulseEvent. 
Usually, you don't use the ResetEvent function, however, because the sys
tem automatically resets an auto-reset event before WaitForSingleObject 
and WaitForMultipleObjects return. 

The PulseEvent function performs the same operations for manual
reset events as it does for auto-reset events-that is, PulseEvent signals the 
event, releases a thread waiting for the event, and resets the event. How
ever, there is one small difference between calling PulseEvent for an auto
reset event and calling it for a manual-reset event: Pulsing an auto-reset 
event releases only a single thread that is waiting for the event, even if 
several threads are waiting. By contrast, pulsing a manual-reset event 
releases all the threads waiting for the event. 

399 



ADVANCED WINDOWS 

The Document Statistics Sample Application 

400 

The DocStats (DOCSTATS.EXE) application, listed in Figure 9-6 begin
ning on page 403, demonstrates the use of auto-reset events. The source 
code files, resource files, and make file for the application are in the 
DOCSTATS.09 directory on the companion disc. 

To run DocStats, enter the following line from a command shell: 

DOCSTATS PathName 

PathName indicates any ANSI text file available on your system. 
DocStats analyzes the specified file and generates a message box 

that indicates the number of characters, words, and lines in the file. 
What makes DocStats exciting is the way it accomplishes this heroic task. 

First DocStats creates three threads, one for each of the items 
(characters, words, and lines) to be counted. These threads are sus
pended until a global buffer contains data for them to process. Next 
DocStats opens the specified file and loads the first 1024 bytes of the file 
into the global data buffer. Now that the data is ready to be processed, 
DocStats notifies the three suspended threads that they can resume 
execution to process the global data. 

While the three threads are processing the file data, the primary 
thread suspends itself so that it won't immediately loop around and read 
the next 1024 bytes from the data file. The primary thread waits until all 
three counting threads have completed processing the data before it 
reads the next chunk of data from the file. If the primary thread doesn't 
wait and reads the next chunk of data, that data overwrites the previous 
chunk of data in the global buffer while the three secondary threads are 
still processing it-a big no-no. When the primary thread has read the 
last chunk of the file's data, it closes the file, retrieves the results calcu
lated by the three secondary threads, and displays the results. 

The most interesting aspect of DocStats is how it synchronizes the 
execution of the primary thread with the three secondary threads. Ini
tially, when the primary thread starts executing, it creates six auto-reset 
events-two for each secondary thread. One of these events notifies a 
single secondary thread that the primary thread has read the data from 
the file and that this data can now be processed. The handles to these 
events are stored in the ~hEventsDataReady array. When these events are 
created, they are initially set to nonsignaled, which indicates that the 
data buffer is not ready for processing. 



N I N E: Thread Synchronization 

The second of the two events indicates that the secondary thread 
has processed the file's data contained in the global buffer and that it's 
suspending itself, waiting for the primary thread to indicate that the next 
chunk of data has been read and is ready to be processed. The handles to 
these events are stored in the g...hEventsProcIdle array. When these events 
are created, they are initially set to signaled, which indicates that the sec
ondary threads are idle. 

Next the primary thread creates the three secondary threads. None 
of these threads are created in the suspended state-all are allowed to 
begin executing. The handles to these three threads are stored in the 
hThreads array. All three threads operate in the same way. Mter they 
begin executing, they immediately enter a loop that iterates with each 
chunk of file data read by the primary thread. However, before any of the 
secondary threads can start processing the global buffer, they must wait 
until the buffer has been initialized. So the first action in this loop is a 
call to WaitForSingleOhject, passing the handle of an event contained in 
the g...hEventsDataReady array. 

The primary thread then opens the file and waits for all three of the 
secondary threads to indicate that they are not processing the data in the 
global buffer. For the first iteration, all the event handles in the g...h
EventsProcIdle array are signaled, so the primary thread won't need to 
wait at all. The primary thread reads the first 1024 bytes into the global 
buffer and, after reading the data, signals the three waiting threads that 
the data is ready by calling SetEvent three times, once for each event in 
the g...hEventsDataReady array. 

When these events become signaled, the secondary threads wake 
up and begin processing the file's data. Because these are auto-reset 
events, the events are automatically set back to the nonsignaled state, 
indicating that the data is not ready for processing. The result is that the 
secondary threads have indicated that the data is not ready for process
ing-but they have already resumed execution and are no longer check
ing the events. The threads continue to run, thinking that the data is 
ready-and it is. 

When I was first designing this application, I tried to get by with 
using only one event to signal that the data was ready. Mter all, there was 
only one block of data, and it seemed to me that one event should be 
able to indicate to all of the secondary threads that the block of data was 
ready. But I wasn't able to solve this problem using only a single event. 

401 



ADVANCED WINDOWS 

402 

When I tried using a single event, one of the secondary threads would 
see that the data was ready, and because an auto-reset event was used, the 
event would be reset to the nonsignaled state. This would happen before 
the other two secondary threads saw that the event had been signaled. 
As a result, the other two secondary threads would never get a chance to 
process the data. By using three different events to represent the "data
ready" event, each thread can look for its own event without affecting the 
other threads. 

After each of the three secondary threads has scanned the whole 
buffer, each calls SetEvent on its respective event contained in the f5-h
EventsProcIdle array. This call signals back to the primary thread that the 
secondary thread is finished accessing the buffer. Remember, the pri
mary thread calls WaitForMultipleObjects at the top of its loop. This means 
that it will wait until all three of the secondary threads have completed 
processing the buffer and set their respective events to signaled before it 
reads the next chunk of the file's data. 

When the primary thread's call to WaitForMultipleObjects returns, the 
three f5-hEventsProcIdle events are automatically reset to their nonsig
naled state, indicating that the secondary threads are not idle and are 
processing data. In reality, they are still waiting for the data-ready events 
to be signaled. 

Let's consider what would happen if the f5-hEventsProcIdle events 
were not automatically reset to nonsignaled. And imagine that we're 
running the program on a single-CPU system and that threads are allowed 
to execute for a full hour before being preempted. 

In this case, the primary thread could read the file's data, set the 
three data-ready events to signaled, and loop back around to the top of 
its loop. This time, it would be waiting for the three f5-hEventsProcIdle 
events to be signaled, and if they weren't automatically reset to non
signaled, the wait would end and the primary thread would read the next 
chunk of data into the buffer all before the secondary threads had 
a chance to process the contents of the previous chunk-a bug in the 
program! 

I'm sure you see the problem here. I know that having the CPU 
dedicated to a single thread for a full hour before preempting it is a bit 
excessive, but extreme thinking is a good practice when creating 
multithreaded applications. Writing and designing multithreaded appli
cations isn't easy. A number of possible gotchas can occur. I've found it 



~:----
... -

DocStats,ico 

N I N E: Thread Synchronization 

tremendously helpful to imagine that the computer system I'm using to 
implement my application actually preempts threads once an hour. It's 
always easier to consider the potential problem up front rather than let 
the system discover it for you. 

As it turns out, it took me quite a few tries before I got DocStats to 
execute correctly. Even a machine that preempts threads every 20 milli
seconds is enough for the application to fail. 

Now back to DocStats. Mter the primary thread has finished read
ing the file's data, the secondary threads must return the results of their 
calculations. They do this by executing a return statement at the end of 
their thread functions, using the result as the function's return value. 
Once again, the primary thread calls WaitForMultipleObjects, suspending 
itself until all three secondary threads have terminated. The suspending 
is done by waiting for the thread handles contained in the hThreads array 
rather than waiting for any events. 

Mter all three of the secondary threads have terminated, the pri
mary thread calls GetExitCodeThread to get each thread's return value. The 
primary thread then calls Close Handle for all six events and all three 
threads so that the system resources are freed. Finally, DocStats con
structs a string using the three threads' exit codes and displays the results 
in a message box. 

Figure9-S. (continued) 

The DocStats application. 

403 



ADVANCED WINDOWS 

Figure 9-6. continued 

(continued) 

404 



N I N E: Thread Synchronization 

Figure 9-6. continued 

II We found a space after the executable's filename. 
II Now let's ski.pover any white space to get to th~ 
II 1'1 rst argument. ' .. 
w,hiJ~ .... < ~lpszCmdL ineL .... ~,.;.JE~(T( 1 

'. TpszCmdMneT++. . . " . 

(continued) 

405 



ADVANCED WINDOWS 

Figure 9·6. continued 

(continued) 

406 



N I N E: Thread Synchronization 

Figure 9-6. continued 

&dwNumL 1 nes ) ; 

(continued) 

407 



ADVANCED WINDOWS 

Figure 9-6. continued 

(continued) 

408 



N I N E: Thread Synchronization 

Figure 9-6. continued 

DWORD dwNUrnLi,nes= a; dwBytelndefC.; 
BYTEbByte: . 

?' ~, !-, ' 

(continued) 

409 



ADVANCED WINDOWS 

Figure 9-6. continued 

410 



N I N E: Thread Synchronization 

Thread Suspension 

Sleep 

WaitForSingleObject and WaitForMultipleObjects are the functions that a 
thread most commonly calls to suspend itself until certain criteria are 
met. However, there are a few other functions that a thread can call to 
suspend itself. The following sections discuss these functions briefly. 

The simplest of these functions is Sleep: 

VOID Sleep(DWORD cMilliseconds); 

This function causes the thread to suspend itself until cMilliseconds 
have elapsed. Note that Sleep allows a thread to voluntarily give up the 
remainder of its time slice. Even a call to Sleep passing a value of 0 causes 
the CPU to stop executing the current thread and assign itself to the 
next waiting thread. The CritSecs program discussed earlier uses this 
technique. 

Asynchronous File 1/0 
Asynchronous file I/O allows a thread to start a file-read or file-write oper
ation without having to wait for the read or write operation to complete. 
For example, if an application needs to load a large file into memory, the 
application could tell the system to load the file into memory. Then, as 
the system loads the file, the application can be busy performing other 
tasks-creating windows, initializing internal data structures, and so on. 
When the initialization is complete, the application can suspend itself, 
waiting for the system to notify it that the file has been read. 

File objects are synchronizable kernel objects, which means that 
you can call WaitForSingleObject, passing the handle of a file. While the sys
tem is performing the asynchronous I/O, the file object is in the non
signaled state. As soon as the file operation is complete, the system 
changes the state of the file object to signaled so that the thread knows 
that the file operation has completed. At this point, the thread continues 
execution. 

Asynchronous file I/O is discussed in more detail in Chapter 13. 

411 



ADVANCED WINDOWS 

WaitForlnputldle 

412 

A thread can also suspend itself by calling WaitForlnputldle: 

DWORD WaitForlnputldle(HANDLE hProcess. DWORD dwTimeout); 

This function waits until the process identified by hProcess has no 
input pending in the thread that created the application's first window. 
This function is useful for a parent process. The parent process spawns a 
child process to do some work. When the parent process's thread calls 
CreateProcess, the parent's thread continues to execute while the child 
process is initializing. It might be that the parent's thread needs to get 
the handle of a window created by the child. The only way for the 
parent's thread to know when the child process has been fully initialized 
is for the parent's thread to wait until the child is no longer processing 
any input. So after the call to Create Process, the parent's thread would 
place a call to WaitForlnputldle. 

You might also use WaitForlnputldle when you need to force key
strokes into an application. Let's say that you post the following messages 
to the main window of an application: 

WM_KEYDOWN with a virtual key of VK_MENU 

WM_KEYDOWN with a virtual key of VK_F 

WM_KEYUP with a virtual key of VK_F 

WM_KEYUP with a virtual key of VK_MENU 

WM_KEYDOWN with a virtual key of VK_O 

WM_KEYUP with a virtual key of VK_O 

This sequence has the effect of sending AlHF, 0 to an application, 
which, for most English-language applications, will select the applica
tion's File Open menu command. Selecting this command displays a dia
log box; however, before the dialog box can appear, Windows must load 
the dialog box template from the file and cycle through all the controls 
in the template, calling CreateWindow for each one. This can take some 
time. So the application that posted the WM_KEY* messages can now 
call WaitForlnputldle, which causes the application to wait until the dialog 
box has been completely created and is ready for user input. The appli
cation can now force additional keys into the dialog box and its controls 
so that it can continue doing whatever it needs to do. 

This particular problem was faced by many developers writing for 
16-bit Windows. Applications wanted to post messages to a window but 
didn't know exactly when the window was created and ready. The Wait
Forlnputldle function solves this problem. 



N I N E: Thread Synchronization 

MsgWaitForMultipleObjects 
A thread can call the MsgWaitForMultipleObjects function to cause the 
thread to wait for its own messages: 

DWORD MsgWaitForMultipleObjects(DWORD dwCount, lPHANDlE lpHandles, 
BOOl bWaitAll, DWORD dwMilliseconds, DWORD dwWakeMask); 

The MsgWaitForMultipleObjects function is similar to the WaitFor
MultipleObjects function, with the addition of the dw WakeMask parameter. 
This parameter can be used by an application to determine whether it 
should awaken to process certain types of messages. For example, if a 
thread wants to suspend itself until a keyboard or mouse message is in 
the queue, the application can make the following call: 

MsgWaitForMultipleObjects(0, NULL, TRUE, INFINITE, 
as_KEY: as_MOUSE); 

This statement says that we're not passing any handles of synchro
nization objects, as indicated by passing 0 and NULL for the dwCount 
and lpHandles parameters. We're telling the function to wait for all 
objects to be signaled. But because we're specifYing only one object to 
wait on, the jWaitAll parameter could have easily been FALSE without 
altering the effect of this call. We are also telling the system that we want 
to wait however long it takes until either a keyboard message or a mouse 
message is available in the thread's input queue. 

The legal domain of possible values that can be specified in the last 
parameter is the same as the values that can be passed to the GetQueue
Status function, which is discussed in Chapter 10. The MsgWaitFor
MultipleObjects function can be useful if your program is waiting for 
a particular object to become signaled and you want to allow the user to 
interrupt the wait. If your program is waiting for the object to become 
signaled and the user presses a key, the thread is awakened and the Msg
WaitForMultipleObjects function returns. Normally, when the WaitFor
MultipleObjects function returns, it returns the index of the object that 
became signaled to satisfY the call (WAIT_OBJECT_O to WAIT_OBJECT
_0+dwCount-1). Adding the dwWakeMask parameter is like adding an
other handle to the call. If MsgWaitForMultipleObjects is satisfied because 
of the wake mask, the return value will be WAIT_OBJECT_O+dwCount. 
The FileChng application in Chapter 13 demonstrates how to use this 
function. 

413 



ADVANCED WINDOWS 

WaitForDebugEvent 
The Win32-based operating systems offer excellent debugging support. 
When a debugger starts executing, it attaches itself to a debugee. The 
debugger simply sits idle waiting for the operating system to notify it of 
debug events related to the debugee. A debugger waits for these events 
by calling: 

BOOL WaitForDebugEvent(LPDEBUG_EVENT lpde. DWORD dwTimeout); 

When a debugger calls WaitForDebugEvent, the debugger's thread is 
suspended. The system will notify the debugger that a debug event has 
occurred by allowing the call to WaitForDebugEvent to return. The struc
ture pointed to by the lpde parameter is filled by the system before it 
awakens the thread. This structure contains information regarding the 
debug event that has just occurred. 

The Interlocked Family of Functions 

414 

The last three functions we'll discuss are Interlockedlncrement, Interlocked
Decrement, and InterlockedExchange: 

LONG Interlockedlncrement(LPLONG lplValue); 

LONG InterlockedDecrement(LPLONG lplValue); 

LONG InterlockedExchange(LPLONG lplTarget. LONG lValue); 

The sole purpose of these functions is to change the value of a long 
variable. These functions guarantee that the thread changing the long 
variable has exclusive access to this variable-no other thread will be 
able to change this variable at the same time. This is true even if the two 
threads are being executed simultaneously by two different CPUs in the 
same machine. 

It is important to note that all the threads should attempt to modify 
the shared long variable by calling these functions; no thread should 
ever attempt to modify the shared variable by using simple C statements: 

II The long variable shared by many threads 
LONG lValue; 

II Incorrect way to increment the long 
lValue++; 



II Correct way to increment the long 
InterlockedIncrement(&lValue); 

N I N E: Thread Synchronization 

Normally, the way to protect the long variable from being cor
rupted would be to use a form of synchronization, such as mutexes. But 
because the manipulation of a long variable is so common and useful, 
Microsoft added these three functions to the Win32 API. 

The calls to InterlockedIncrernent and InterlockedDecrement add 1 to and 
subtract 1 from the long variable whose address you pass as the lplValue 
parameter to the functions. These functions do not return the new value 
of the long variable. Instead, they return a value that compares the new 
value of the long to O. If the result of incrementing or decrementing the 
long variable causes the long variable to be 0, the functions return O. If 
the value of the long becomes less than 0, the functions return a value 
that is less than O. And you can probably guess that if the long variable 
becomes greater than 0, the functions return a value that is greater than 
O. The return value is almost never the actual value of the long variable. 
I use both of these functions in the MULTINST.C and MODUSE.C 
source files, which are described in Chapter 11. 

The third function, InterlockedExchange, is used to completely re
place the current value of the long whose address is passed in the lplTarget 
parameter with a long value that is passed in the lValue parameter. Again, 
this function protects the long variable from any other thread that is 
attempting to change the variable at the same time. 

Another point about using these functions: no Interlocked function 
is available for one thread to read the value of a long while another 
thread is attempting to change the long because the function isn't neces
sary. If one thread calls InterlockedIncrernent while another thread reads 
the contents of the long, the value read from the long will always be valid. 
The thread might get the value of the long before InterlockedIncrement 
changes the variable, or the thread might get the value after Interlocked
Increment changes the value. The thread has no idea which value it gets, 
but it is guaranteed to get a valid value and not a value that is partially 
incremented. 

415 





C HAP T E R TEN 

WINDOW MESSAGES 
AND ASYNCHRONOUS INPUT 

Microsoft had some pretty big goals in mind when it started designing 
the Win32 environment: virtual memory management, preemptive multi
tasking, and security, to name just a few. The idea behind many of these 
goals was to create a robust environment in which one application could 
not adversely affect other applications. This is an area where the 16-bit 
Windows environment is significantly lacking. 

Unfortunately, in order to offer these improvements Microsoft was 
forced to change many things that 16-bit Windows programmers have 
become accustomed to. For example, the Win32 system processes a user's 
keyboard and mouse input in a completely different manner than the 
16-bit Windows environment. For many applications, these changes to 
the environment will require that pieces of the application be rede
signed rather than simply ported to Win32. These changes are the focus 
of this chapter. 

Multitasking 
I think multitasking is the single most important new feature that sepa
rates 16-bit Windows from Win32. Although 16-bit Windows can run 
multiple applications simultaneously, it runs the applications non
preemptively. That is, one application must tell the operating system that 
it's finished processing before the scheduler can assign another applica
tion execution time, which creates problems for both users and applica
tion developers. 

For users, it means that control of the system is lost for an arbitrary 
time period decided by the application (not the user). If an application 

417 



ADVANCED WINDOWS 

418 

takes a long time to execute a particular task, such as formatting a flop
py disk, the user can't switch away from that task and work with a word 
processor while the formatting continues in the background. This situa
tion is unfortunate because users want to make the most of their time. 

Developers for 16-bit Windows recognize this and try to implement 
their applications so that they execute tasks in spurts. For example, a for
matting program might format a single track on a floppy disk and then 
return control to 16-bit Windows. Once 16-bit Windows has control, it 
can respond to other tasks for the user. When the user is idle, 16-bit Win
dows returns control to the format program so that another track can be 
formatted. 

Well, this method of sharing time between tasks works, but it makes 
implementing a program significantly more difficult. One way the for
matting program can accomplish its tasks is to set a timer for itself using 
the SetTimer function. The program is then notified with WM_TIMER 
messages when it's time to execute another part of the process. This type 
of implementation involves the following problems: 

• 16-bit Windows offers a limited number of timers for application 
use. What should the program do if a timer is not available
not allow the user to format a disk until another application 
using a timer is terminated? 

• The program must keep track of its progress. The formatting 
program must save, either in global variables or in a dynami
cally allocated block of memory, information such as the letter 
of the drive it is formatting, the track that has just been format
ted, and so forth. 

• The program code can't include a function that formats a disk; 
instead, it must include a function that formats a single track 
of a disk. This means that the functions in the program must 
be broken up in a way that is not natural for a programmer to 
implement. You don't usually design an algorithm thinking that 
the processor needs to be able to jump into the middle of it. You 
can imagine how difficult implementation would be if your algo
rithm required a series of nested loops to perform its operations 
and the processor needed to jump into the innermost loop. 

• WM_TIMER messages occur at regular intervals. So if an appli
cation sets a timer to go off every second, WM_TIMER messages 



TEN: Window Messages and Asynchronous Input 

are received 60 times every minute. This is true whether a user is 
running the application on a 25-MHz 386 or a gO-MHz Pentium. 
If a user has a faster machine, the program should take advan
tage of that. 

Another favorite method 16-bit Windows developers use to help 
their applications behave more courteously toward other applications 
involves the PeekMessage function. When an application calls PeekMessage, 
the application tells 16-bit Windows, "I have more work to process, but I'm 
willing to postpone doing it if another application needs to do something." 

This method makes the code easier to implement because the imple
menter can design the algorithms assuming that the computer won't 
jump into the middle of a process. This method also doesn't require any 
timers and doesn't have any special system resource requirements. The 
method does have two problems, however: the implementer must sprinkle 
PeekMessage loops throughout the code, and the application must be 
written to handle all kinds of asynchronous events. For example, a 
spreadsheet might be recalculating cell values when another application 
attempts to initiate a DDE conversation with it. It is incredibly difficult to 
test your application to verify that it performs correctly in all possible 
scenarios. 

As it turns out, even when developers use these methods to help 
their applications behave in a friendlier way, their programs still don't 
multitask smoothly. Sometimes a user might click on another appli
cation's window, and a full second or more might go by before 16-bit 
Windows changes to the active application. More important, though, if 
an application bug causes the application never to call PeekMessage or 
return control to 16-bit Windows, the entire 16-bit Windows system effec
tively hangs. At this point, the user can't switch to another application, 
can't save on disk any work that was in progress, and, more often than 
not, is forced to reboot the computer. This is totally unacceptable! 

The Win32 environment solves these problems (and more that 1 
haven't even mentioned) with preemptive multitasking. By adding a 
preemptive multitasking capability to Windows NT and Windows 95, 
Microsoft has done much more than allow multiple applications to run 
simultaneously. The environment is much more robust because a single 
application can't control all the system resources. 

419 



ADVANCED WINDOWS 

Preemptive Time Scheduling 

420 

In 16-bit Windows, there is only one thread of execution. That is, the 
microprocessor travels in a linear path from functions in one application 
to functions in another application, frequently dipping into the operat
ing system's code. Whenever the user moves from executing one applica
tion, or task, to another, the operating system code performs a task 
switch. A task switch simply means that the operating system saves the 
state of the CPU's registers before deactivating the current task and 
restores the registers for the newly activated task. Notice that I said the 
operating system is responsible for performing the task switch. Because 
the system has only one thread of execution, if any code enters an infi
nite loop the thread can never access the operating system code that per
forms the task switch, and the system hangs. 

In addition, 16-bit Windows uses the concepts of modules and 
tasks. A module identifies an executable file that is loaded into memory. 
Every time an instance ofthe executable file is invoked, 16-bit Windows 
calls this instance a task. With few exceptions, resources (that is, memory 
blocks or windows) created (allocated) when the task is executing become 
owned by the particular task. Some resources, such as icons and cursors, 
are actually owned by the module, which allows these resources to be 
shared by all of the module's tasks. 

Win32 still uses the term module to identify an executable file 
loaded into memory. However, Win32 takes the concept of a task and 
breaks it down into two new concepts-processes and threads. 

As discussed in Chapter 2, a process refers to an instance of a run
ning program. For example, if a single instance of Notepad and two 
instances of Calc are running, three processes are running in the system. 
And, as discussed in Chapter 3, a thread describes a path of execution 
within a process. When an executable file is invoked, the operating 
system creates both a process and a thread. For example, when the user 
invokes a Win32 application, the system locates the program's EXE file, 
creates a process and a thread for the new instance, and tells the CPU to 
start executing the thread beginning with the C run-time startup code, 
which in turn calls your WinMain function. When the thread terminates 
(returns from WinMain), the system destroys the thread and the process. 

Every process has at least one thread; the system schedules CPU 
time among threads of a process, not among processes themselves. Mter 
a thread begins executing, it can create additional threads within the 
process. These threads execute until they are destroyed or until they 



TEN: Window Messages and Asynchronous Input 

terminate on their own. The number of threads that can be created is 
limited only by system resources. 

While a thread is executing, the system can steal the CPU away from 
the thread and give the CPU to another thread. But the CPU cannot be 
interrupted while it is executing a single instruction (a CPU instruction, 
not a line of source code). The operating system's ability to interrupt a 
thread at (almost) any time and assign the CPU to a waiting thread is 
called preemptive multitasking. 

The life span of a process is directly tied to the threads it owns. 
Threads within a process have lives of their own too. New threads are cre
ated, existing threads are paused and restarted, and other threads are 
terminated. When all the threads in a process terminate, the system ter
minates the process, frees any resources owned by the process, and 
removes the process from memory. 

Most objects allocated by a thread are owned by the process that also 
owns the thread. For example, a block of memory allocated by a thread is 
owned by the process, not by the thread. All of the global and static vari
ables in an application are also owned by the process. And all GDI 
objects (pens, brushes, bitmaps) are owned by the process. Most User 
objects (windows, menus, accelerator tables) are owned by the thread 
that created them or loaded them into memory. Only three User 
objects-icons, cursors, and window classes-are owned by a process 
instead of by a thread. 

An understanding of ownership is important so that you know what 
can be shared. If a process has seven threads operating within it and one 
thread makes a call to allocate a block of memory, the block of memory 
can then be accessed from any of the seven threads. This access can 
cause several problems if all the threads attempt to read and write from 
the same block simultaneously. Synchronizing several threads is dis
cussed further in Chapter 9. 

Ownership is also important because the Win32 system is much bet
ter than 16-bit Windows about cleaning up after a thread or a process ter
minates. If a thread terminates and neglects to destroy a window that it 
created, the system ensures that the window is destroyed, not sitting 
around somewhere soaking up precious memory and system resources. 
For example, if a thread creates or loads a cursor into memory and then 
the thread is terminated, the cursor is not destroyed. This is because the 
cursor is owned by the process and not by the thread. When the process 
terminates, the system ensures that the cursor is destroyed. In 16-bit 
Windows, a task has the equivalent of one and only one thread. As a 
result, the concept of ownership is less complicated. 

421 



ADVANCED WINDOWS 

Thread Queues and Message Processing 
Much of the work performed by Win32 applications is initiated by win
dow messages. In the 16-bit Windows environment, there's a single thread 
of execution. If your application sends a message to a window created by 
another task, your task stops running and the code to process the mes
sage starts running. Mter the message is processed, the system returns to 
your task's code so that it can continue executing. In a multithreaded 
environment, things are quite different. 

In Win32, the code in a window procedure must be executed by the 
thread that created the window, which might not be the same thread that 
sent the message. In order to let other threads process messages, some 
sort of cooperation must occur in which the calling thread notifies the 
receiving thread that it needs it to perform an action. Then the calling 
thread suspends itself until the receiving thread has completed the 
request. In this section, we'll take a look at the various methods threads 
can use to send and post window messages. 

Win32 Message Queue Architecture 

422 

As I have already said, one of the main goals ofWin32 is to offer a robust 
environment for all the applications running. In order to meet this goal, 
each thread must run in an environment in which it believes that it is the 
only thread running. More specifically, each thread must have message 
queues that are totally unaffected by other threads. In addition, each 
thread must have a simulated environment that allows the thread to 
maintain its own notion of keyboard focus, window activation, mouse 
capture, and so on. 

Whenever a thread is created, the system also creates a THREAD
INFO structure and associates this data structure with the thread. This 
THREADINFO structure contains a set of member variables that are 
used to make the thread think that it is running in its very own environ
ment. The THREADINFO structure is an internal (undocumented) 
data structure that identifies the thread's message queue, virtualized 
input queue, and wake flags, as well as a number of variables that are 
used for the thread's local input state. Figure 10-1 illustrates how 
THREADINFO structures are associated with three threads. 

The remainder of this chapter is dedicated to discussing the 
THREADINFO structure's data members. 



TEN: Window Messages and Asynchronous Input 

~-------------------PROCESS--------------------~ 

THREAOINFO 

Figure 10-1. 

~M~) 

~~rvt$~) 

Three threads with their respective THREADINFO structures. 

Posting Messages to a Thread's Message Queue 

~Gr~ 

In Win32, every thread has its very own message queue. If a single pro
cess creates 10 threads, there will be 10 message queues. Messages are 
placed in a message queue by calling the PostMessage function: 

BOOl PostMessage(HWND hWnd. UINT Msg. WPARAM wParam. 
lPARAM 1 Param); 

When a thread calls this function, the system determines which 
thread created the window identified by the hWnd parameter and posts 
the specified message to the appropriate thread's message queue. 
PostMessage returns immediately after posting the message-the calling 
thread has no idea whether the posted message was processed by the 
specified window's window procedure. In fact, it is possible that the 

423 



ADVANCED WINDOWS 

18" •• 

424 

specified window will never receive the posted message. This could hap
pen if the thread that created the specified window were to somehow ter
minate before processing all of the messages in its queue. 

In 16-bit Windows, each task has its own message queue so that every ap
plication doesn't have to process the messages destined for other appli
cations. By default, this message queue is large enough to hold up to 
eight messages. An application is able to increase or decrease the queue 
size by calling the SetMessageQueue function. This function exists in the 
Win32 API but is unnecessary because messages are stored in a linked list 
and there is no limit to the number of messages that can be placed in the 
list. In Win32, each thread's message queue is maintained as a doubly 
linked list. As messages are posted to the queue, MSG structures are 
linked onto the end of the linked list. When a message is pulled off the 
message queue, the system returns the first message in the linked list. 
The THREADINFO structure contains the pointer to the first message 
in the linked list rather than the actual message queue. 

PostMessage's return value indicates whether there was enough 
room in the queue to post the specified message. For 16-bit Windows, 
PostMessage returns FALSE if the queue is full. For Win32, it is nearly 
impossible for PostMessage to ever return FALSE. 

A message can also be placed in a thread's message queue by calling 
PostThreadMessage: 

BOOl PostThreadMessage(DWORD idThread. UINT Msg. WPARAM wParam. 
lPARAM 1 Pa ram) ; 

The desired thread is identified by the first parameter, idThread. 
When this message is placed in the queue, the h Wnd member in the MSG 
structure will be set to NULL. This function is usually called when an 
application performs some special processing in its main message loop. 
The main message loop for the thread is written so that, after GetMessage 
or PeekMessage retrieves a message, the code checks for an h Wnd of NULL 
and can examine the msg member of the MSG structure to perform the 
special processing. If the thread determines that this message is not des
tined for a window, DispatchMessage is not called, and the message loop 
iterates to retrieve the next message. (The PMRest application pre
sented in Chapter 16 demonstrates the use of the PostThreadMessage 
function.) 



TEN: Window Messages and Asynchronous Input 

Like the PostMessage function, this function returns immediately 
after posting the message to the thread's queue. The calling thread has 
no idea when or if the message gets processed. 

The PostThreadMessage function replaces the 16-bit Windows function 
PostAppMessage. 

Sending Messages to a Window 
Window messages can be sent directly to a window procedure by using 
the SendMessage function: 

LRESULT SendMessage(HWND hWnd. UINT Msg. WPARAM wParam. 
LPARAM 1 Pa ram) ; 

The window procedure will process the message and, only after 
the message has been processed, SendMessage will return to the caller. Be
cause of its synchronous nature, SendMessage is used more frequently 
than either PostMessage or PostThreadMessage in Windows programming. 
The calling thread knows that the window message has been completely 
processed before the next line of code executes. 

If the thread calling SendMessage is sending a message to a window 
created by the same thread, SendMessage is very simple: it just calls the 
specified window's window procedure as a subroutine. When the win
dow procedure is finished processing the message, it returns a 32-bit 
value back to SendMessage. SendMessage returns this 32-bit value to the 
calling thread. 

If a thread is sending a message to a window created by another 
thread, the internal workings of SendMessage are far more complicated.1 

Win32 requires that a window's message be processed by the thread that 
created the window. So if you call SendMessage to send a message to a win
dow created by another process, and therefore to another thread, your 
thread cannot possibly process the window message because your thread 
is not running in the other process's address space and therefore does 
not have access to the window procedure's code and data. In fact, your 
thread is suspended while the other thread is processing the message. So 
in order to send a window message to a window created by another 
thread, the system must perform the actions discussed on the next page. 

1. This is true even if the two threads are in the same process. 

425 



ADVANCED WINDOWS 

426 

First, the sent message is appended to the receiving thread's mes
sage queue, which has the effect of setting the QS_SENDMESSAGE flag 
(discussed later) for that thread. Second, if the receiving thread is already 
executing code and isn't waiting for messages (on a call to GetMessage, 
PeekMessage, or WaitMessage), the sent message can't be processed-the 
system won't interrupt the thread in order to process the message imme
diately. When the receiving thread is waiting for messages, the system 
first checks to see whether the QS_SENDMESSAGE wake flag is set, and 
if it is, the system scans the list of messages in the message queue to find 
the first sent message. It is possible that several sent messages could pile 
up in this queue. For example, several threads could each send a mes
sage to a single window at the same time. When this happens, the system 
simply appends these messages to the receiving thread's message queue. 

When the receiving thread is waiting for messages, the system sim
ply locates the first sent message in the queue and calls the appropriate 
window procedure to process the message. If there are no more sent 
messages in the message queue, the QS_SENDMESSAGE wake flag is 
turned off. While the receiving thread is processing the message, the 
thread that called SendMessage is sitting idle. Mter the message is pro
cessed, the window procedure's return value is returned and the thread 
that called SendMessage is resumed so that it can continue execution. 

While a thread is waiting for SendMessage to return, it basically sits 
idle. It is allowed to perform one task, however: if another thread in the 
system sends a message to a window created by a thread that is waiting for 
SendMessage to return, the system will process the sent message immedi
ately. The system doesn't have to wait for the thread to call GetMessage, 
PeekMessage, or WaitMessage in this case. 

Because the Win32 subsystem uses this method to handle the send
ing of interthread messages, it's possible that your thread could hang. 
For example, let's say that the thread processing the sent message has a 
bug and enters an infinite loop. What happens to the thread that called 
SendMessage? Will it ever be resumed? Does this mean that a bug in one 
application has the ability to hang another application? The answer is yes! 

Four functions allow you to write code defensively to protect your
self from this situation. 

The first function is SendMessageTimeout: 

LRESULT SendMessageTimeout(HWND hwnd. UINT uMsg. WPARAM wParam. 
LPARAM lParam. UINT fuFlags. UINT uTimeout. LPDWDRD lpdwResult); 



TEN: Window Messages and Asynchronous Input 

It allows you to specii)' the maximum amount of time you are willing to 
wait for another thread to respond to your message. The first four 
parameters are the same parameters that you pass to SendMessage. For 
the fuFlags parameter you can pass SMTO_NORMAL, SMTO_ABORT
IFHUNG, or SMTO_BLOCK, or a combination of SMTO_ABORTIF
HUNG and SMTO_BLOCK. 

The SMTO_ABORTIFHUNG flag tells SendMessageTimeout to check 
whether the receiving thread is in a hung state,2 and if so, to return 
immediately. The SMTO_BLOCK flag causes the calling thread not to 
process any other sent messages until SendMessageTimeout returns. The 
SMTO_NORMAL flag is defined as 0 in WINUSER.H; this is the flag to 
use if you don't specii)' either of the other two. 

Earlier in this section I said that a thread can be interrupted while 
waiting for a sent message to return so that it can process another sent 
message. Using the SMTO_BLOCK flag stops the system from allowing 
this interruption. You should use this flag only if your thread could not 
process a sent message while waiting for its sent message to be processed. 
Using SMTO_BLOCK could create a deadlock situation until the timeout 
expires-for example, if you send a message to another thread and that 
thread needs to send a message to your thread. In this case, neither 
thread can continue processing, and both threads effectively hang. 

The uTimeout parameter specifies the number of milliseconds you 
are willing to wait for a result. If the function is successful, TRUE is re
turned and the result of the message is copied into the buffer whose 
address you specii)' in the lpdwResult parameter. 

By the way, if you call SendMessageTimeout to send a message to a 
window created by the calling thread, the system simply calls the window 
procedure and places the return value in lpdwResult. Because all process
ing must take place with one thread, the code following the call to Send
MessageTimeout cannot start executing until after the message has been 
processed. 

The second function that can help in sending interthread mes
sages is: 

BOOl SendMessageCallback(HWND hwnd. UINT uMsg. WPARAM wParam. 
lPARAM lParam. SENDASYNCPROC lpResultCallBack. DWORD dwDatal; 

2. The operating system considers a thread to be hung if the thread stops processing 
messages for more than 5 seconds. 

427 



ADVANCED WINDOWS 

428 

Again, the first four parameters are the same as those used by the Send
Message function. When a thread calls SendMessageCallback, the function 
sends the message off to the receiving thread and immediately returns so 
that your thread can continue processing. When the receiving thread 
has finished processing the message, the system notifies your thread by 
calling a function that you write using the following prototype: 

VOID CAllBACK ResultCallBack(HWND hwnd. UINT uMsg. DWORD dwData. 
lRESUlT lResult); 

You must pass the address to this function as the IpResultCallBack 
parameter of SendMessageCallback. When this function is called, it is 
passed the handle of the window that finished processing the message 
and the message value in the first two parameters. The third parameter, 
dwData, will always be the value that you passed in the dwData parameter 
to SendMessageCallback. The system simply takes whatever you specify 
here and passes it directly to your ResultCallBack function. The last para
meter passed to your ResultCallBack function is the result from the win
dow procedure that processed the message. 

Your thread is not really notified of the result from the processed 
message as soon as the receiving window procedure returns. Instead, the 
system keeps a queue of returned messages; it can call your ResultCall
Back function only while your thread is calling GetMessage, PeekMessage, 

WaitMessage, or one of the SendMessage* functions. 
The SendMessageCallback function has another use. Win32 offers a 

method by which you can broadcast a message to all the existing over
lapped windows in the system by calling SendMessage and passing HWND
_BROADCAST (defined as -1) as the hwnd parameter. Use this method 
only to broadcast a message whose return value you aren't interested in 
because the function can return only a single LRESULT. But by using the 
SendMessageCallback function, you can broadcast a message to every over
lapped window and see the result of each. Your ResultCallBack function 
will be called with the result of every window processing the message. 

If you call SendMessageCallback to send a message to a window cre
ated by the calling thread, the system immediately calls the window pro
cedure, and then, after the message is processed, the system calls the 
ResultCallBack function. After theResultCallBack function returns, execu
tion begins at the line following the call to SendMessageCallback. 

The third new function that can help in sending interthread mes
sages is: 

BOOl SendNotifyMessage(HWND hwnd. UINT Msg. WPARAM wParam. 
lPARAM 1 Param); 



TEN: Window Messages and Asynchronous Input 

SendNotifyMessage places a message in the receiving thread's queue and 
returns to the calling thread immediately. This should sound familiar 
because this is exactly what the PostMessage function does. However, Send
NotifyMessage differs from PostMessage in two ways. 

First, if SendNotifyMessage sends a message to a window created by 
another thread, the sent message has higher priority than posted mes
sages placed in the receiving thread's queue. In other words, messages 
that the SendNotifyMessage function places in a queue are always retrieved 
before messages that the PostMessage function posts to a queue. 

Second, when you are sending a message to a window created by 
the calling thread, SendNotifyMessage works exactly like the SendMessage 
function: SendNotifyMessage doesn't return until the message has been 
processed. 

As it turns out, most messages sent to a window are used for notifi
cation purposes. That is, the message is sent because the window needs 
to be aware that a state change has occurred so that it can perform some 
processing before you carry on with your work. For example, WM
_ACTIVATE, WM_DESTROY, WM_ENABLE, WM_SIZE, WM_SET
FOCUS, and WM_MOVE,just to name a few, are all notifications that 
are sent to a window by the system instead of being posted. However, 
these messages are notifications to the window; the system doesn't have 
to stop running so that the window procedure can process these mes
sages. In contrast, when the system sends a WM_CREATE message to a 
window, the system must wait until the window has finished processing 
the message. If the return value is -1, the window is not created. 

The fourth new function that can help in sending interthread mes
sages is: 

BOOl ReplyMessage(lRESUlT lResult); 

This function is different from the three previously discussed functions. 
Whereas the three Send* functions are used by the thread sending a mes
sage to protect itself from hanging, ReplyMessage is called by the thread 
receiving the window message. When a thread calls ReplyMessage, it is tell
ing the system that it has completed enough work to know the result of 
the message and that the sending thread can have this result and con
tinue executing. 

The thread calling ReplyMessage specifies the result of processing 
the message in the lResult parameter. Mter ReplyMessage is called, the 
thread that sent the message resumes, and the thread processing the 
message continues to process the message. Neither thread is suspended, 

429 



ADVANCED WINDOWS 

and both can continue executing normally. When the thread processing 
the message returns from its window procedure, any value that it returns 
is simply ignored. 

The problem with ReplyMessage is that it has to be called from within 
the window procedure that is receiving the message and not by the 
thread that called one of the Send* functions. So you are better offwrit
ing defensive code by replacing your calls to SendMessage with one of the 
three new Send* functions instead of relying on the implementer of a 
window procedure to make calls to ReplyMessage. 

Waking a Thread 

430 

When a thread calls GetMessage or WaitMessage and there are no messages 
for the thread or windows created by the thread, the system can suspend 
the thread so that it is not scheduled any CPU time. However, when a 
message is posted or sent to the thread, the system sets a wake flag indi
cating that the thread should now be scheduled CPU time in order to 
process the message. Under normal circumstances, the user is not typing 
or moving the mouse and there are no messages being sent to any of the 
windows. This means that most of the threads in the system are not being 
scheduled any CPU time. 

When a thread is running, it can query the status of its queues by 
calling the GetQueueStatus function, shown below: 

DWORD GetQueueStatus(UINT fuFlagsl; 

The fuFlags parameter is a flag or a series of flags ORed together 
that allows you to test for specific wake bits. The table below shows the 
possible flag values and their meanings: 

Flag 

QS_MOUSEMOVE 

QS_MOUSEBUTTON 

QS_PAINT 

Message in the Queue 

WM_KEYUp, WM_KEYDOWN, 
WM_SYSKEYUp, or WM_SYSKEYDOWN 

Same as QS_MOUSEMOVE : 
QS_MOUSEBUTTON 

WM_MOUSEMOVE 

WM_?BUTTON* 1 

WM_PAINT 

1. Where? is L, M, or R, and * is DOWN, UP, or DBLCLK. 
(continued) 



continued 

Flag 

QS]OSTMESSAGE 

QS_SENDMESSAGE 

QS_TIMER 

QS_HOTKEY 

QS_INPUT 

QS_ALLEVENTS 

TEN: Window Messages and Asynchronous Input 

Message in the Queue 

Posted message (other than from a hardware 
input event) 

Message sent by another thread 

WM_TIMER 

WM_HOTKEY 

Same as QS_MOUSE : QS_KEY 

Same as QS_INPUT : QS_POSTMESSAGE : 
QS_TIMER : QS_PAINT : QS_HOTKEy2 

Same as QS_ALLEVENTS : QS_SENDMESSAGE 

2. The QS_SENDMESSAGE flag is not ORed into the QS_ALLEVENTS flag because it's 
reserved for internal use by the system. 

When you call the GetQueueStatus function, the fuFlags parameter 
tells GetQueueStatus the types of messages to check for in the queues. The 
fewer the number of QS_* identifiers you OR together, the faster the call 
executes. Then, when GetQueueStatus returns, the types of messages cur
rentlyin the thread's queues can be found in the high-word of the return 
value. This returned set offlags will always be a subset of what you asked 
for. For example, if you make the following call: 

BOOl fPaintMsgWaiting = HIWORD(GetOueueStatus(OS_TIMER» & OS_PAINT; 

the value of fPaintMsgWaiting will always be FALSE whether or not a 
WM_PAINT message is waiting in the queue, because QS_PAINT was 
not specified as a flag in the parameter passed to GetQueueStatus. 

The low-word of GetQueueStatus's return value indicates the types of 
messages that have been added to the queue and that haven't been pro
cessed since the last call to GetQueueStatus, GetMessage, or PeekMessage. 

Not all the wake flags are treated equally. For the QS_MOUSE
MOVE flag, as long as an unprocessed WM_MOUSEMOVE message 
exists in the queue, the flag is turned on. When GetMessage or PeekMessage 
(with PM_REMOVE) pulls the last WM_MOUSEMOVE message from the 
queue, the flag is turned off until a new WM_MOUSEMOVE message is 
placed in the input queue. The QS_KEY, QS_MOUSEBUTTON, and 
QS_HOTKEY flags work in the same way for their respective messages. 

The QS_PAINT flag is handled differently. If a window created by 
the thread has an invalid region, the QS_PAINT flag is turned on. When 
the area occupied by all windows created by this thread becomes validated 

431 



ADVANCED WINDOWS 

432 

(usually by a call to ValidateRect, ValidateRegion, or BeginPaint), the QS
_PAINT flag is turned off. This flag is turned off only when all windows 
created by the thread are validated. Calling GetMessage or PeekMessage has 
no effect on this wake flag. 

The QS_POSTMESSAGE flag is set whenever at least one message 
is in the thread's message queue. This doesn't include hardware event 
messages that are in the thread's virtualized input queue. When all the 
messages in the thread's message queue have been processed and the 
queue is empty, this flag is reset. 

The QS_TIMER flag is set whenever a timer (created by the thread) 
goes off. Mter the WM_TIMER event is returned by GetMessage or Peek
Message, the QS_TIMER flag is reset until the timer goes off again. 

The QS_SENDMESSAGE flag indicates that another thread has 
sent a message to a window that was created by your thread. This flag is 
used by the system internally to identify and process messages being sent 
from one thread to another. It's not used for messages that a thread 
sends to itself. Although you can use the QS_SENDMESSAGE flag, it's 
very rare that you'd need to. I've never seen an application use this flag. 

There is another queue status flag that is not documented
QS_QUIT. When a thread calls PostQuitMessage, the QS_QUIT flag is 
turned on. The system does not actually append a WM_QUIT message 
to the thread's message queue. The GetQueueStatus function does not 
return the state of this flag. 

When a thread calls GetMessage or PeekMessage, the system must 
examine the state of the thread's queues and determine which message 
should be processed. Figure 10-2 and the following list illustrate the steps 
that the system performs when determining which message the thread 
should process next. 

1. If the QS_SENDMESSAGE flag is turned on, the system sends 
the message to the proper window procedure. Both the 
GetMessage and PeekMessage functions handle this processing 
internally and do not return to the thread after the window 
procedure has processed the message; instead, these functions 
sit and wait for another message to process. 

2. If there are messages in the thread's message queue, GetMessage 
and PeekMessage fill the MSG structure passed to these functions 
and then the functions return. The thread's message loop usu
ally calls DispatchMessage at this point to have the message pro
cessed by the appropriate window procedure. 

(continued) 



"S 
0.. 
C 

C/l 
::l 
o 
c e 
.c 
u 
c 
>. 
C/l 
<I: 
"0 
C 
CO 
C/l 
Q) 
Ol 
CO 
C/l 
C/l 
Q) 

:2 
~ 
o 

"0 
C 

~ 

z 
UJ 
~ 

YES 

CHECK AGAIN 

Figure 1 0-2. 
How messages are retrieved for a thread. 

gs 
"¢ 

YES YES YES YES YES 



ADVANCED WINDOWS 

434 

3. If the QS_QUIT flag is turned on, GetMessage and PeekMessage 
return a WM_QUIT message and reset the QS_QUIT flag. 

4. If there are messages in the thread's virtualized input queue, 
GetMessage and PeekMessage return the hardware input message. 

5. If the QS_PAINT flag is turned on, GetMessage and PeekMessage 
return a WM_PAINT message for the proper window. 

6. If the QS_TIMER flag is turned on, GetMessage and PeekMessage 
return a WM_TIMER message. 

It might be hard to believe, but there's a reason for this madness. 
The big assumption that Microsoft made when designing this algorithm 
was that applications should be user-driven and that the user drives the 
applications by creating hardware input events (keyboard and mouse 
operations). While using an application, the user might press a mouse 
button, which causes a sequence of events to occur. An application 
makes each of the individual events occur by posting messages to the 
thread's message queue. 

So if you press the mouse button, the window that processes the 
WM_LBUTTONDOWN message might post three messages to different 
windows. Because it's the hardware event that sparks these three soft
ware events, the system processes the software events before sending the 
user's next hardware event. This explains why the message queue is 
checked before the virtualized input queue. 

An excellent example of this is a call to TranslateMessage. The Trans
lateMessage function checks whether a WM_KEYDOWN or a WM_SYS
KEYDOWN message was retrieved from the input queue. If one of these 
messages was retrieved, the system checks whether the virtual key infor
mation can be converted to a character equivalent. If the virtual key 
information can be converted, TranslateMessage callsPostMessage to place a 
WM_CHAR message or a WM_SYSCHAR message in the message queue. 
The next time GetMessage is called, the system first checks the contents of 
the message queue and, if a message exists there, pulls the message from 
the queue and returns it. The returned message will be the WM_CHAR 
message or the WM_SYSCHAR message. The next time GetMessage is 
called, the system checks the message queue and finds it empty. The sys
tem then checks the input queue, where it finds the WM_(SYS)KEYUP 
message. GetMessage returns this message. 



TEN: Window Messages and Asynchronous Input 

Because the system works this way, the following sequence of hard
ware events, 

WM_KEYDDWN 
WM_KEYUP 

generates the following sequence of messages to your window procedure 
(assuming that the virtual key information can be converted to a charac
ter equivalent): 

WM_KEYDOWN 
WM_CHAR 
WM_KEYUP 

Now let's get back to discussing how the system decides what mes
sages to return from GetMessage and PeekMessage. Mter the system checks 
the message queue and before it checks the virtualized input queue, it 
checks the QS_QUIT flag. Remember that the QS_QUIT flag is set when 
the thread calls PostQJ1,itMessage. Calling PostQJ1,itMessage is similar to call
ing Post Message, which places the message at the end of the message 
queue and causes the message to be processed before the input queue is 
checked. So why does PostQJ1,itMessage set a flag instead of placing a 
WM_QUIT message in the message queue? There are two reasons. 

First, in 16-bit Windows a queue can hold up to only eight messages. 
If the queue is full and the application attempts to post a WM_QUIT mes
sage to the queue, the WM_QUIT message gets lost and the application 
never terminates. Because the WM_QUIT message is handled as a special 
flag, the message never gets lost. Of course, in Win32 this reason is no 
longer valid because Win32 queues are linked lists that grow dynamically. 
The second reason for handling the QS_QUIT flag this way is to let the 
application finish processing all the other posted messages before the 
system terminates the application. So if you have the following code 
fragment: 

case WM_ClOSE: 
PostQu;tMessage(0); 
PostMessage(hwnd. WM_USER. 0. 0); 

the WM_USER message will be retrieved from the queue before a WM
_QUIT message, even though the WM_USER message is posted to the 
queue after PostQJ1,itMessage is called. 

Now we come to the last two messages: WM_PAINT and WM
_TIMER. A WM_PAINT message has low priority because painting the 

435 



ADVANCED WINDOWS 

tJ 
Important 

screen is a slow process. If a WM_PAINT message were sent every time a 
window became invalid, the system would be too slow to use. By placing 
WM_PAINT messages after keyboard input, the system runs much faster. 
For example, you can select a menu item that invokes a dialog box, choose 
an item from the box, and press Enter all before the dialog box even 
appears on the screen. If you type fast enough, your keystroke messages 
will always be pulled from the queue before any WM_PAINT messages. 
When you press Enter to accept the dialog box options, the dialog box 
window is destroyed and the system resets the QS_PAINT flag. 

The last message, WM_TIMER, has an even lower priority than a 
WM_PAINT message. To understand why, think about the Clock appli
cation that ships with the system. Clock updates its display every time it 
receives a WM_TIMER message. Imagine that WM_TIMER messages 
are returned before WM_PAINT messages and that Clock sets a timer of 
such short duration that it just goes off continuously, never allowing a 
WM_PAINT message to be returned from GetMessage. In this case, Clock 
would never paint itself-it would just keep updating its internal time 
but would never get a WM_PAINT message. 

Remember that the GetMessage andPeekMessage functions check only the 
wake flags and message queues of the calling thread. This means that 
threads can never retrieve messages from a queue that's attached to 
another thread, including messages for threads that are part of the same 
process. 

Sending Data with Messages 

436 

I have already explained that Win32 does not allow two applications to 
share a memory block by passing the handle of the memory block from 
one process to another. I have also said that you cannot share the block by 
passing the address to the data's location from one process to another. 
Both of these methods for sharing data work in 16-bit Windows but fail 
under Win32 for the same reason: each process has its own address space. 

If you want to share memory between applications, I recommend 
using memory-mapped files as explained in Chapter 7. However, let's 
look at a situation in which one process prepares a block of data for shar
ing with other applications. Mter the data is prepared, the creating pro
cess needs to signal the other applications that the data is ready. The 



TEN: Window Messages and Asynchronous Input 

creating process can accomplish this in several ways. One way is to use 
event objects as discussed in Chapter 9. Another way is to send a window 
message to a window in the other process. In this section, we'll examine 
how the system transfers data between processes using window messages. 

Some window messages specify the address of a block of memory in 
their lParam parameter. For example, the WM_SETTEXT message uses 
the lParam parameter as a pointer to a zero-terminated string that identi
fies the new text for the window. Consider the following call: 

SendMessage(FindWindow(NULL, "Calculator"), WM_SETTEXT, 
0, (LPARAM) "A Test Caption"); 

This call seems harmless enough-it determines the window handle 
of the Calculator application's window and attempts to change its caption 
to A Test Caption. But let's take a closer look at what happens here. 

The string of the new title is contained in your process's address 
space. So the address of this string in your process space will be passed as 
the lParam parameter. When the window procedure for Calculator's win
dow receives this message, it looks at the lParam parameter and attempts 
to manipulate what it thinks is a zero-terminated string in order to make 
it the new title. 

But the address in lParam points to a string in your process's 
address space-not in Calculator's address space. This is a big problem 
because a memory access violation is sure to occur. But if you execute the 
line above, you'll see that it works successfully. How can this be? 

The answer is that the system looks specifically for the WM_SET
TEXT message and handles it differently from the way it handles most 
other messages. When you call SendMessage, the code in the function 
checks whether you are trying to send a WM_SETTEXT message. If you 
are, it packs the zero-terminated string from your address space into 
a block of memory that it is going to share with the other process. Then it 
sends the message to the thread in the other process. When the receiv
ing thread is ready to process the WM_SETTEXT message, it determines 
the location, in its own address space, of the shared block of memory 
that contains a copy of the new window text. The lParam parameter is ini
tialized to point to this address, and the WM_SETTEXT message is dis
patched to the appropriate window procedure. Boy, doesn't this seem 
like a lot of work? 

Fortunately, most messages don't require this type of processing, 
which takes place only when an application sends interprocess messages. 
Special processing like this has to be performed for any message whose 
wParam or lParam parameters represent a pointer to a data structure. 

437 



ADVANCED WINDOWS 

438 

Let's look at another case that requires special handling by the sys
tem-the WM_GETTEXT message. Suppose your application contains 
the following code: 

char szBuf[200]; 
SendMessage(FindWindow(NULL. "Calculator"). WM_GETTEXT. 

sizeof(szBuf), (LPARAM) szBuf); 

The WM_GETTEXT message requests that Calculator's window proce
dure fill the buffer pointed to by szBuJwith the title of its window. When 
you send this message to a window in another process, the system must 
actually send two messages. First the system sends a WM_GETTEXT
LENGTH message to the window. The window procedure responds by 
returning the number of characters required to hold the window's title. 
The system can use this count to allocate a block of memory that will end 
up being shared between the two processes. 

Once the memory block has been allocated, the system can send 
the WM_GETTEXT message to fill the memory block. Then the system 
switches back to the process that called SendMessage in the first place, 
copies the data from the shared memory block into the buffer pointed to 
by szBuf, and returns from the call to SendMessage. 

Well, all this is fine and good if you are sending messages that the sys
tem is aware of, but what if you create your own (WM_USER + x) message 
that you want to send from one process to a window in another? The sys
tem will not know that you want it to allocate a shared block of memory 
and to update pointers when sending. If you want to do this, you can use 
the new WM_COPYDATA message: 

COPYDATASTRUCT cds; 
SendMessage(hwndReceiver. WM_COPYDATA. 

(WPARAM) hwndSender. (LPARAM) &cds); 

COPYDATASTRUCT is a structure defined in WINUSER.H, and it 
looks like this: 

typedef struct tagCOPYDATASTRUCT 
DWORD dwData; 
DWORD cbData; 
PYOID lpData; 

} COPYDATASTRUCT; 

When you're ready to send some data to a window in another pro
cess, you must first initialize the COPYDATASTRUCT structure. The 
dwData member is reserved for your own use. You can place any 32-bit 



TEN: Window Messages and Asynchronous Input 

value in it. For example, you might have occasion to send different 
types or categories of data to the other process. You can use this value to 
indicate the content of the data you are sending. 

The cbData member specifies the number of bytes that you want to 
transfer to the other process, and the lpData member points to the first 
byte of the data. The address pointed to by lpData is, of course, in the 
sender's address space. 

When SendMessage sees that you are sending a WM_COPYDATA 
message, it allocates a block of memory cbData bytes in size and copies 
the data from your address space to this block. It then sends the mes
sage to the destination window. When the receiving window procedure 
processes this message, the lParam parameter points to a COPYDATA
STRUCT that exists in the address space of the receiving process. The 
,lpData member of this structure points to the copied block of memory, 
and the address has been changed to reflect where the memory exists 
in the receiving process's address space. 

There are three important things to note about the WM_COPY
DATA message. First, always send this message; never post it. You can't 
post a WM_COPYDATA message because the system must free the cop
ied memory after the receiving window procedure has processed the 
message. If you post the message, the system doesn't know when the 
WM_COPYDATAmessage is processed and therefore can't free the cop
ied block of memory. 

The second item of note is that it takes some time for the system to 
make a copy of the data in the other process's address space. This 
means that you shouldn't have another thread that modifies the con
tents of the memory block running in the sending application until the 
call to SendMessage returns. 

The third thing to be aware of is that the WM_COPYDATA mes
sage works for sending data from a Win32 process to a 16-bit Windows 
application and vice versa. This is probably the best way to communi
cate across the 16-bit to 32-bit boundary. 

The CopyData Sample Application 
The CopyData application (COPYDATA.EXE), listed in Figure 10-3 
beginning on page 441, demonstrates how to use the WM_COPYDATA 
message to send a block of data from one application to another. The 
source code files, resource files, and make file for the application are in 
the COPYDATA.10 directory on the companion disc. You'll need to 

439 



ADVANCED WINDOWS 

440 

have at least two copies of CopyData running to see it work. Each time 
you start a copy of CopyData, it presents a dialog box that looks like this: 

To see data copied from one application to another, first change 
the text in the Datal and Data2 edit controls. Then click on one of the two 
Send Data* To Other Windows buttons, and the program sends the data 
to all the running instances of CopyData. Each instance updates the con
tents of its own edit box to reflect the new data. 

The list below describes how CopyData works. When a user clicks 
on one of the two buttons, CopyData performs the following: 

1. Initializes the dwData member of COPYDATASTRUCT with 0 
if the user clicked on the Send Datal To Other Windows button 
or 1 if the user clicked on the Send Data2 To Other Windows 
button. 

2. Retrieves the length of the text string (in characters) from the 
appropriate edit box and adds 1 for a zero-terminating charac
ter. This value is converted from a number of characters to a 
number of bytes by multiplying by sizeof(TCHAR), and the 
result is then placed in the cbData member of COPYDATA
STRUCT. 

3. Calls HeapAlloc to allocate a block of memory large enough 
to hold the length of the string in the edit box plus its zero
terminating character. The address of this block is stored in 
the IpData member of COPYDATASTRUCT. 

4. Copies the text from the edit box into this memory block. 

At this point, everything is ready to be sent to the other windows. To 
determine which windows to send the WM_COPYDATA message to, 
CopyData performs the following: 

1. Gets the handle of the first window that is a sibling to the 
instance of CopyData the user is running. 



CopyData.ico 

TEN: Window Messages and Asynchronous Input 

2. Gets the text of CopyData's title bar. 

3. Cycles through all the sibling windows, comparing each win
dow's title bar to CopyData's title bar. If the titles match, the 
WM_COPYDATA message is sent to the sibling window. Be
cause I didn't do any special checks in this loop, the instance 
of CopyData that is calling SendMessage will send itself a WM
_COPYDATA message. This demonstrates that WM_COPy,. 
DATA messages can be sent and received from the same thread. 

4. Mter all the windows have been checked, CopyData calls Heap
Free to free the memory block that it was using to hold the edit 
box text. 

And that's all there is to sending data from one application to 
another using messages. 

Figure 10-3. (continued) 

The CopyData application. 

441 



ADVANCED WINDOWS 

Figure 10-3. continued 

(continued) 

442 



TEN: Window Messages and Asynchronous Input 

Figure 10-3. continued 

(continued) 

443 



ADVANCED WINDOWS 

Figure 10-3. continued 

(continued) 

444 



TEN: Window Messages and Asynchronous Input 

Figure 10-3. continued 

(continued) 

445 



ADVANCED WINDOWS 

Figure 10-3. continued 

446 



TEN: Window Messages and Asynchronous Input 

Deserialized Input 
Serialized input (used by 16-bit Windows) is when the system processes 
the user's input (keyboard and mouse events) in the order in which the 
input was entered by the user. The events are removed from the system 
queue as various applications request them. For example, let's say that 
the user types ABC, Alt+ Tab, XYZ at the keyboard. This means that seven 
keyboard hardware events are added to the system queue.3 The applica
tion with keyboard focus retrieves the ABC messages from the system 
queue and displays the characters in its client area. Let's say a bug in the 
program causes it to enter an infinite loop whenever it receives the letter 
C. At this point, the whole system is hung. Alt+ Tab and XYZ will never be 
read from the system queue. In fact, if the user attempts to activate an
other application using the mouse, the mouse event will be appended to 
the system queue after the last keystroke event. And as you might expect, 
this mouse event will never be retrieved from the system queue either. 
The user has no recourse now but to reboot the computer. 

Microsoft did try to improve this situation. Support was added to 
16-bit Windows so that a user can press Ctrl+Alt+Del if an application is 
no longer responding to the system. When the system detects this input, 
it locates the currently active application and attempts to remove it from 
memory. My experience with this feature has been that 16-bit Windows 
usually cannot recover from the hung application gracefully and I still 
need to reboot. 

The solution to this serialized input problem is deserialized input. 
With deserialized input, one hardware event isn't necessarily processed 
before another event. I know what you're thinking: "Does this mean that 
if you type ABC at the keyboard the thread will receive CAB?" No, of 
course not. However, it does mean that if you type ABC, Alt+ Tab, XYZ, 
the thread that becomes active after Alt+ Tab might process XYZ before 
the first thread finishes processing ABC. 

In Win32, input is applied on a thread-level basis instead of on the 
systemwide basis employed by 16-bit Windows. A thread receives hard
ware events in the order in which the user enters them, which is how the 
system deserializes the hardware input. 

3. Actually, more than seven events are appended to the system queue. For example, each 
keystroke generates a WM_KEYDOWN and a WM_KEYUP event. I am calling it seven 
events just to simplify the discussion. 

447 



ADVANCED WINDOWS 

How Input Is Deserialized 

448 

When the system starts running, the system creates a special thread for 
itself called the raw input thread (RIT). When the user presses and re
leases a key, presses and releases a mouse button, or moves the mouse, 
the device driver for the hardware device appends a hardware event to 
the RIT's queue. This causes the RIT to wake up; examine the event at 
the head of its queue; translate the event into the appropriate WM
_KEY*, WM_?BUTTON*, or WM_MOUSEMOVE message; and post the 
message to the appropriate thread's virtualized input queue. 

As shown in Figure 10-1 on page 423, each thread has its very own 
message queue and virtualized input queue. Every time a thread creates 
a window, the system places all messages posted for this window in the 
creating thread's queue. 

Assume the following scenario: a process creates two threads, 
Thread A and Thread B. Thread A then creates a window-Win A-and 
Thread B creates two windows-Win B and Win C. Figure 10-4 illustrates 
this scenario. If a thread in the system posts a message to Win A, this 
message is placed in ThreadA's message queue. Any messages posted for 
either Win B or Win C are placed in Thread B's message queue . 

.... ".,.. " .... . ....... " . , . , .~ ~, :.' . . 

Figure 10-4. 
Messages for Win A go in Thread A~ queues; messages for Win Band 
Win C go in Thread B ~ queues. 

When the RIT processes a hardware event, it must determine which 
virtualized input queue should receive the event. For a mouse event, the 
RIT first determines which window is under the mouse cursor and then 



TEN: Window Messages and Asynchronous Input 

places the mouse event (WM_?BUTTON* or WM_MOUSEMOVE) in 
the virtualized input queue associated with the thread that created the 
window. For a keystroke event, the RIT determines which thread is the 
foreground thread-that is, the thread with which the user is currently 
working. The appropriate keyboard message is placed in the virtualized 
input queue associated with this foreground thread. 

In order for the system to switch threads, regardless of whether a 
thread is processing input, the RIT must examine each hardware input 
event before posting the event to a thread's virtualized input queue. For 
example, the RIT checks for the following key combinations and per
forms the corresponding action: 

Key 
Combination Windows 95 Windows NT 

Alt+Tab Activates another window Activates another window 
connecting its thread to connecting its thread to 
the RIT the RIT 

Alt+Esc Activates another window Activates another window 
connecting its thread to connecting its thread to 
theRIT the RIT 

Ctrl+Esc Pops open the Taskbar's Displays the system's Task 
Start menu Manager 

Ctrl+Alt+Del Displays the system's Displays the Windows NT 
Close Program dialog box Security dialog box 

Sharing Thread Virtualized Input Queues 
You can force two or more threads to share the same virtualized input 
queue and local input state variables (discussed later) by using the 
AttachThreadlnput function: 

BOOl AttachThreadlnput(DWORD idAttach. DWORD idAttachTo. 
BOOl fAttach); 

This function tells the system to let two threads share the same virtualized 
input queue, as illustrated in Figure 10-5 on the next page. The first 
parameter, idAttach, is the ID of the thread containing the virtualized 
input queue you no longer want. The second parameter, idAttachTo, 
is the ID of the thread containing the virtualized input queue you want 
the threads to share. The last parameter,jAttach, is TRUE if you want the 
sharing to occur or FALSE if you want to separate the two threads' 

449 



ADVANCED WINDOWS 

450 

virtualized input queues again. You can tell several threads to share the 
same virtualized input queue by making successive calls to the Attach
Threadlnput function. 

Returning to the earlier example, let's say that Thread B calls Attach
Threadlnput, passing Thread B's ID as the first parameter, Thread A's ID 
as the second parameter, and TRUE as the last parameter: 

AttachThreadlnput(idThreadB. idThreadA. TRUE); 

Now every hardware input event destined for either Win B or Win C 
will be appended to Thread A's virtualized input queue. Thread B's vir
tualized input queue will no longer receive input events unless the two 
queues are detached by calling AttachThreadlnput a second time, passing 
FALSE as the fAttach parameter. 

Figure 10-5. 
Hardware messages for Win A, Win B, and Win C go in Thread As 
virtualized input queue. 

When you attach two threads to the same virtualized input queue, 
each thread still maintains its own message queue. Every time you attach 
another thread to the same virtualized input queue, you are making the 
system behave more and more like 16-bit Windows. Mter all, in 16-bit 
Windows.all the tasks are attached to a single input queue-the system 
queue. In fact, when you run 16-bit Windows applications under Win
dows 95 or Windows NT, the system makes sure that all the 16-bit Win
dows applications share a single input queue for backward compatibility 
because 16-bit Windows applications expect this behavior. 

If you make all threads share a single queue, you severely curtail the 
robustness of the Win32 system. If one application receives a keystroke 



TEN: Window Messages and Asynchronous Input 

and hangs, another application can't receive any input. So think twice or 
three times before using the AttachThreadlnput function. 

Windows NT 3.5 allows 16-bit Windows applications to run in separate 
address spaces. All the 16-bit applications in a single address space have 
their input queues attached to one another. However, if two 16-bit appli
cations are running in different address spaces, the system does not at
tach their input queues. This makes Windows NT run 16-bit Windows 
applications more robustly than 16-bit Windows did. If a 16-bit Win
dows application hangs, all other 16-bit Windows applications in the 
same address space also hang. However, 16-bit Windows applications 
running in separate address spaces are not affected. 

This feature does not exist in Windows NT 3.1 or Windows 95. 

The system implicitly attaches the virtualized input queues of sev
eral threads if an application installs a journal record hook or a journal 
playback hook. When the hook is un installed, the system automatically 
restores all the threads so that they are using the same input queues they 
were using before the hook was installed. 

When an application installs a journal record hook, it tells the sys
tem that it wants to be notified of all hardware events entered by the user. 
The application usually saves or records this information. In another ses
sion, the application installs a journal playback hook, which causes the 
system to ignore the user's input and to expect the application that 
installed the hook to play back the events it recorded earlier. 

Playing back the recorded events simulates the user repeating his 
or her hardware input. The Recorder application that Microsoft ships 
with 16-bit Windows allows users to record events for later playback by 
installing journal record and journal playback hooks. You'll notice that 
Recorder is not shipped with Windows 95 or Windows NT-this is 
because Recorder compromises the robustness of the system. 

There is one other instance in which the system implicitly calls 
AttachThreadlnput on your behalf. Let's say you have an application that 
creates two threads. The first thread creates a dialog box. After the dia
log box has been created, the second thread calls CreateWindow, using 
the WS_CHILD style, and passes the handle of the dialog box to be the 
child's parent. The system implicitly calls AttachThreadlnput with the child 
window's thread to tell the child's thread that it should use the same 

451 



ADVANCED WINDOWS 

input queue that the dialog box thread is using. This action forces input 
to be synchronized among all the child windows in the dialog box. As 
you'll see later in this chapter, it's possible for windows created by differ
ent threads to look as if they all have the input focus simultaneously, 
which can confuse an end user. When you attach the input queues, only 
one window will appear to have the focus. 

Local Input State 

452 

Back when programmers were developing applications for MS-DOS, it 
could always be presumed that the running application would be the 
only active application. As a result, applications frequently assumed that 
the whole display was theirs for the writing, the memory theirs for the 
allocating, the disk space theirs for the accessing, the keystrokes theirs 
for the taking, the CPU theirs for the computing-you get the idea. 

Well, 16-bitWindows came around and programmers had to learn 
to cooperate with one another. Many programs, all running simulta
neously, had to share the limited system resources. An application had to 
restrict its output to a small rectangular region on the display; allocate 
memory only when needed (as well as try to make it discardable); relin
quish control of itself to other applications on certain keystrokes; and 
purposely put itself to sleep so that other applications could get a little 
CPU time. If an application was not as friendly as it should be, a user had 
no recourse but to terminate the piggish application or run it alone, 
which obviously defeated the idea of a multitasking environment. 

Under Win32, much of this is still true. Developers still design their 
applications to use a small rectangular region on the display for output, 
allocate memory only when needed, and so on. The big difference is that 
Win32 makes applications behave courteously. The system forces limits 
on the amount of memory that an application can hog. It monitors the 
keyboard and allows the user to switch to another application whether 
the currently active application wants to allow this or not. It preempts a 
running application and gives time to another application regardless of 
how hungry for processing time the current application is.4 

Who are the winners now that the system has so much control over 
the applications we write? Both the users and the developers. Because 

4. You can set your process's priority class high; however, doing so might starve processes 
at a lower priority, making the lower-priority processes unresponsive. But even if you set a 
process's priority class high, the system still gives the user the ability to terminate the process. 



TEN: Window Messages and Asynchronous Input 

the system does all this no matter what we as programmers might do to 
stop it, we can relax a little and stop worrying about crowding out other 
applications. A big part of making this work is the concept of the local in
put state. 

Each thread has its very own input state, which is managed inside a 
thread's THREADINFO structure (discussed earlier). This input state 
consists of the thread's virtualized input queue as well as a set of vari
ables. These variables keep track of the following input state manage
ment information: 

Keyboard input and window focus information, such as 

• Which window has keyboard focus 

• Which window is active 

• Which keys that are pressed on the keyboard are stored in the 
synchronous key state array 

• The state of the caret 

Mouse cursor management information, such as 

• Which window has mouse capture 

• The shape of the mouse cursor 

• The visibility of the mouse cursor 

Because each thread gets its very own set of input state variables, 
each thread has a different notion of focus window, mouse capture win
dow, and so on. From a thread's perspective, either one of its windows 
has keyboard focus or no window in the system has keyboard focus, either 
one of its windows has mouse capture or no window has mouse capture, 
and so on. As you might expect, this separatism has several ramifications, 
which we'll discuss in this chapter. 

Keyboard Input and Focus 
Win32 and 16-bit Windows handle keyboard input in very different ways. 
When I was first getting started with Win32, I tried to understand how 
the system handles keyboard input by drawing on my knowledge of 16-
bit Windows. As it turned out, my knowledge of how 16-bit Windows 
handles keyboard input made it more difficult to understand both how 
Win32 handles keyboard input and how it changes the input focus 
between windows. 

453 



ADVANCED WINDOWS 

454 

In Win32, the RIT directs the user's keyboard input to a thread's 
virtualized input queue-not to a window. The RIT places the keyboard 
events into the thread's virtualized input queue without referring to a 
particular window. When the thread calls GetMessage, the keyboard event 
is removed from the queue and assigned to the window (created by the 
thread) that currently has input focus. Figure 10-6 illustrates this process . 

Figure 10-6. 

. 
~ ................. ~ . . 

The RIT directs the user's keyboard input to one thread's virtualized 
input queue at a time. 

To instruct a different window to accept keyboard input, you need 
to specify to which thread's virtualized input queue the RIT should direct 
keyboard input and tell the thread's input state variables which window 

. will have keyboard focus. Calling SetFocus alone does not accomplish 
both tasks. If Thread 1 is currently receiving input from the RIT, a call to 
SetFocus, passing the handle of Win A, Win B, or Win C, causes the focus 
to change. The window losing focus removes its focus rectangle or hides 
its caret, and the window gaining focus draws a focus rectangle or 
shows its caret. 

However, let's say that Thread 1 is still receiving input from the RIT, 
and it calls SetFocus, passing the handle of Win E. In this case, the system 
preven ts the call to SetFocus from doing anything because the window for 
which you are trying to set focus is not using the virtualized input queue 
that is currently "connected" to the RIT. Mter Thread 1 executes this 
call, there is no change in focus, and the appearance of the screen 
doesn't change. 

In another situation, Thread 1 might be connected to the RIT and 
Thread 2 might call SetFocus, passing the handle of Win E. In this case, 
Thread 2's local input state variables are updated to reflect that Win E is 



TEN: Window Messages and Asynchronous Input 

the window to receive keyboard input the next time the RIT directs key
strokes to Thread 2. The call doesn't cause the RIT to direct input to 
Thread 2's virtualized input queue. 

Because Win E now has focus for Thread 2, it receives a WM_SET
FOCUS message. If Win E is a pushbutton, it draws a focus rectangle for 
itself, so two windows with focus rectangles might appear on the screen. 
I found this very disconcerting at first-and now that I've seen it happen 
a few more times, I still find it disconcerting. You should be careful when 
you call SetFocus so that this situation doesn't occur. 

By the way, if you give focus to a window that displays a caret when it 
receives a WM_SETFOCUS message, you can produce several windows 
on the screen that display carets simultaneously. This can be a bit discon
certing to a user. 

When focus is transferred from one window to another using con
ventional methods (such as clicking on a window with the mouse), the 
window losing focus receives a WM_KILLFOCUS message. If the win
dow receiving focus belongs to a thread other than the thread associated 
with the window losing focus, the local input state variables of the thread 
that created the window losing focus are updated to reflect that no win
dow has focus. Calling GetFocus at this time returns NULL, which makes 
the thread think that no window currently has the focus. This can be 
problematic when you're porting a 16-bit Windows application to Win32 
because most 16-bit Windows applications never expect GetFocus to 
return NULL. 

The SetActiveWindow function activates a top-level window in the 
system: 

HWND SetActiveWindow(HWND hwnd); 

In 16-bit Windows, an application typically calls this function to bring 
another application to the foreground. In Win32, this function behaves 
just like the SetFocus function. That is, if a thread calls SetActiveWindow, 
passing the handle of a window owned by a different thread, the system 
does nothing. But if the window was created by the same thread making 
the call, the system changes the active window. 

The complement of SetActiveWindow is the GetActiveWindow function: 

HWND GetActiveWindow(VOID); 

This function works just like the GetFocus function except that it returns 
the handle of the active window indicated by the calling thread's local 
iriput state variables. So if the active window is owned by another thread, 
GetActiveWindow returns NULL. 

455 



ADVANCED WINDOWS 

456 

These functions behave differently under Win32 than they do under 
16-bit Windows for a reason: Microsoft is taking control away from appli
cations and giving it back to the users. The assumption is that users find 
it disconcerting when windows pop up in the foreground under pro
gram control. 

For example, a user might start a lengthy process in Application A 
and switch to Application B. When Application A is finished, it may ac
tivate its main window. You certainly wouldn't want Application Ns main 
window to pop up on top of Application B's window while the user is still 
working with Application B. This could catch the user by surprise. Also, 
the user might not immediately notice that Application Ns window had 
popped up on top of Application B's window, and the user might enter 
text into Application A by mistake. This could have disastrous effects. 

However, sometimes an application really needs to bring a window 
to the foreground. The following functions not only change the window 
focus for a thread but also instruct the RIT to direct keystrokes to a dif
ferent thread. One of these functions, the SetForegroundWindow function, 
is new for Win32: 

BOOl SetForegroundWindow(HWND hwnd); 

This function brings the window identified by the hwnd parameter to the 
foreground. The system also activates the window and gives it the focus. 
This function sets the foreground window regardless of which thread 
created the window. The complementary function is GetForegroundWindow: 

HWND GetForegroundWindow(VOID); 

This function returns the handle of the window that is currently in the 
foreground. 

Other functions that can alter a window's z-order, activation status, 
and focus status include BringWindowToTop and SetWindowPos. The Bring
WindowToTop function, shown below, exists in both 16-bit Windows 
andWin32: 

BOOl BringWindowToTop(HWND hwnd); 

As long as the thread calling BringWindowToTop is in the foreground 
when you call this function, Win32 activates the window you specify 
regardless of which thread created the window. Win32 both redirects the 
RIT to the thread that created the window and sets the focus window for 
the thread's local input state variables. If the thread calling BringWindow
ToTop is not the foreground thread, the window order doesn't change. 



TEN: Window Messages and Asynchronous Input 

The SetWindowPos function, shown below, brings a window to the 
foreground or the background by passing HWND_TOP or HWND_BOT
TOM as the second parameter: 

BOOl SetWindowPos(HWND hwnd, HWND hwndlnsertAfter, 
int x, int y, int ex, int ey, UINT fuFlags); 

Actually, BringWindowToTop is implemented internally as a call to 
SetWindowPos passing HWND_TOP as the second parameter. 

Another aspect of keyboard management and the local input state is 
that of the synchronous key state array. Every thread's local input state 
variables include a synchronous key state array, but all threads share a 
single asynchronous key state array. These arrays reflect the state of all 
keys on a keyboard at any given time. The GetAsyncKeyState function deter
mines whether the user is currently pressing a key on the keyboard: 

SHORT GetAsyneKeyState(int nVirtKey); 

The n VirtKey parameter identifies the virtual key code of the key to 
check. The high-bit of the result indicates whether the key is currently 
pressed (1) or not (0). I have often used this function during the process
ing of a single message to check whether the user has released the pri
mary mouse button. I pass the virtual key value VK_LBUTTON and wait 
for the high-bit of the return value to be O. This function has changed 
slightly for Win32. In Win32, GetAsyncKeyState always returns 0 (not 
pressed) if the thread calling the function did not create the window that 
currently has the input focus. 

The GetKeyState function, shown below, differs from the GetAsync~ 
KeyState function because it returns the keyboard state at the time the 
most recent keyboard message was removed from the thread's queue: 

SHORT GetKeyState(int nVirtKey); 

This function is not affected by which window has input focus and can 
be called at any time. For a more detailed discussion of these two key 
state arrays and these functions, refer to my article about keystroke pro
cessing, "Simulating Keyboard Input Between Programs Requires a 
(Key) Stroke of Genius," in the December 1992 issue of Microsoft Systems 

Journal. 

Mouse Cursor Management 
Mouse cursor management is another component of the local input 
state. Because the mouse, like the keyboard, must be shared among all 
the different threads, Win32 must not allow a single thread to monopo
lize the mouse cursor by altering its shape or confining it to a small area 

457 



ADVANCED WINDOWS 

458 

of the screen. In this section, we'll take a look at how the mouse cursor is 
managed by the system. 

One aspect of mouse cursor management is the cursor's hide/show 
capability. Let's say that a 16-bit Windows application calls ShowCursor
(FALSE), causing the mouse cursor to be hidden, and the application 
never calls ShowCursor(TRUE). The user wouldn't be able to see the mouse 
when using a different application. 

Win32 wouldn't allow this to happen. The system hides the cursor 
whenever the mouse is positioned over a window created by the thread 
that called ShowCursor(FALSE) and shows it whenever the cursor is posi
tioned over a window not created by this thread. 

Another aspect of mouse cursor management is the ability to clip 
the cursor to a rectangular region of the screen. In 16-bit Windows, it is 
possible for an application to clip the mouse cursor by calling the Clip
Cursor function: 

BOOl ClipCursor(CONST RECT *lprc); 

This function causes the mouse to be constrained within the screen 
coordinates specified in the rectangle pointed to by the lprc parameter. 
Again, we have the problem in which one application should not be able 
to limit the movement of the mouse cursor on the screen. But Win32 
must also allow an application to clip a mouse cursor's motion to a speci
fied rectangle. So the system allows the application to set the clipping 
rectangle and confines the mouse to that region of the screen. Then, if 
an asynchronous activation event occurs (when the user clicks on an
other application's window, when a call to SetForegroundWindow is made, 
or when Ctrl+Esc is pressed), the system stops clipping the cursor's 
movement, allowing the cursor to move freely across the entire screen. 

Now we move to the issue of mouse capture. When a window "cap
tures" the mouse (by calling SetCapture), it requests that all mouse mes
sages be directed from the RIT to the thread's virtualized input queue 
and that all mouse messages from the virtualized input queue be directed 
to the window that set capture. This capturing of mouse messages con
tinues until the application later calls ReleaseCapture. 

Under 16-bit Windows, if an application calls SetCapture but never 
calls ReleaseCapture, mouse messages can never be directed to any other 
window in the system. Again, we have a situation that Win32 cannot 
allow, but solving this problem is a bit tricky. When an application calls 
SetCapture, the RIT is directed to place all mouse messages in the thread's 
virtualized input queue. SetCapture also sets the local input state variables 
for the thread that called SetCapture. 



TEN: Window Messages and Asynchronous Input 

As soon as the user releases all mouse buttons, the RIT no longer 
directs mouse messages solely to the thread's virtualized input queue. 
Instead, the RIT directs mouse messages to the input queue associated 
with the window that is directly beneath the mouse cursor. This is normal 
behavior when the mouse is not captured. 

However, the thread that originally called SetCapture still thinks that 
mouse capture is in effect. This means that whenever the mouse is posi
tioned over any window created by the thread that has capture set, the 
mouse messages will be directed to the capture window for that thread. 
In other words, when the user releases all mouse buttons, mouse capture 
is no longer performed on a systemwide level-it is now performed on a 
thread-local level. 

In addition, if the user attempts to activate a window created by 
another thread, the system automatically sends mouse button down and 
mouse button up messages to the thread that set capture. Then the sys
tem updates the thread's local input state variables to indicate that the 
thread no longer has mouse capture. It is clear from this implementa
tion that Microsoft expects mouse clicking-and-dragging to be the most 
common reason for using mouse capture. If you are using mouse cap
ture with techniques other than click-and-drag, you will definitely have 
to experiment to see how things may have changed from 16-bit Win
dows to Win32. 

The final local input state variable pertaining to the mouse is its cur
sor shape. Whenever a thread calls SetCursor to change the shape of the 
mouse cursor, the local input state variables are updated to reflect the 
mouse cursor shape. In other words, the local input state variables always 
remember the most recent shape of the mouse cursor set by the thread. 

Let's say that the user moves the mouse over your window, your 
window receives a WM_SETCURSOR message, and you call SetCursor to 
change the mouse cursor to an hourglass. Mter the call to SetCursor, you 
have code that enters into a lengthy process. (An infinite loop is a good 
example of a lengthy process.) Now the user moves the mouse cursor out 
of your window and over the window belonging to another application. 
In 16-bit Windows, the mouse cursor doesn't change, but in Windows 95 
and Windows NT the mouse cursor can be changed by the other window 
procedure. 

Local input state variables are not required in order for a thread to 
change the mouse cursor's shape when another thread executes a leng
thy procedure. But now let's move the mouse cursor back into your win
dow that is still executing its lengthy procedure. The system wants to 

459 



ADVANCED WINDOWS 

send WM_SETCURSOR messages to the window, but the window is 
unable to retrieve them because it is still looping. So the system looks at 
the most recently set mouse cursor shape (contained in the thread's local 
input state variables) and automatically sets the mouse cursor back to 
this shape (the hourglass, in this example). This gives the user visual 
feedback that the process is still working and that the user must wait. 

The Local Input State Laboratory Sample Application 

460 

The LISLab application (LISLAB.EXE), listed in Figure 10-7 beginning 
on page 467, is a laboratory that allows you to experiment with how 
local input states work. The source code files, resource files, and make 
file for the application are in the LISLAB.10 directory on the compan
ion disc. Before invoking the application, you will want to run the Pro
gram Manager application. If you are running Windows NT, the Program 
Manager will already be running. If you are running Windows 95, how
ever, you must invoke the Program Manager manually by doing the fol
lowing: select the Start button, choose Run, and then type PROGMAN 
and click on the OK button. 

Mter the Program Manager is running, you can start LISLab and 
see the following dialog box appear: 

In the upper left corner is the Windows group box. The five entries 
in this box are updated once a second-that is, once every second the 



TEN: Window Messages and Asynchronous Input 

dialog box receives a WM_TIMER message, and in response, it calls the 
following functions: GetFocus, GetActiveWindow, GetForegroundWindow, Get
Capture, and GetClipCursor. The first four of these functions return win
dow handles. From these window handles, I can determine the window's 
class and caption and display this information. Remember that these 
window handles are being retrieved from my own thread's local input 
state variables. 

If I activate another application (such as the Program Manager), 
the Focus and Active entries change to (No Window) and the Foreground 
entry changes to [Progman] Program Manager. Notice that by activating 
the Program Manager you make LISLab think that no window has focus 
and that no window is active. 

Next you can experiment with changing the window focus. First 
select SetFocus from the Function combo box at the upper right corner 
of the Local Input State Lab dialog box. Then enter the delay time (in sec
onds) that you want LISLab to wait before calling SetFocus. For this ex
periment, you'll probably want to specifY a delay of 0 seconds. I'll explain 
shortly how the Delay field is used. 

N ext select a window that you wan t to pass in the call to SetFocus. You 
select a window using the Program Manager Windows And Self list box 
on the left side of the Local Input State Lab dialog box. For this experi
ment, select [Progman] Program Manager in the list box. Now you are 
ready to call SetFocus. Simply click on the Delay button, and watch what 
happens to the Windows group box-nothing. The system doesn't per
form a focus change. 

If you really want SetFocus to change focus to the Program Manager, 
you can click on the Attach To ProgMan button. Clicking on this button 
causes LISLab to call: 

AttachThreadlnput(GetWindowThreadProcessld(9_hwndPM, NULL), 
GetCurrentThreadld(), TRUE); 

This call tells LISLab's thread to use the same virtualized input 
queue as that of the Program Manager. In addition, LISLab's thread will 
also share the same local input state variables used by the Program 
Manager. 

If after clicking on the Attach To ProgMan button you click on the 
Program Manager window, LISLab's dialog box looks like the figure 
shown on the following page. 

Notice that now, because the input queues are attached, LISLab 
can follow window focus changes made in the Program Manager. The 
dialog box on the next page shows that the Main group currently has the 

461 



ADVANCED WINDOWS 

462 

focus. Ifwe continue to manipulate group windows in the Program Man
ager, LISLab will continue to update its display and show us which Pro
gram Manager window has focus, which window is active, and so on. 

Now we can move back to LISLab, click on the Delay button, and 
have SetFocus attempt to give the Program Manager focus. This time the 
call to SetFocus succeeds because the input queues are attached. 

You can continue to experiment by placing calls to SetActiveWindow, 
SetForegroundWindow, BringWindowToTop, and SetWindowPos by selecting 
the desired function from the Function combo box. Try calling these 
functions both when the input queues are attached and when they are 
detached, and notice the differences. 

Now I'll explain why I include the delay option. The delay option 
causes LISLab to call the specified function after the number of seconds 
indicated. An example will help illustrate why you need it. First make 
sure that LISLab is detached from the Program Manager by clicking on 
the Detach From ProgMan button. Then select -> This Dialog Box <
from the Program Manager Windows And Self list box. Next select 
SetFocus from the Function combo box, and enter a delay of 10 seconds. 
Finally, click on the Delay button, and then quickly click on the Program 
Manager window to make it active. You must make the Program Manager 
active before the 10 seconds elapse. 



TEN: Window Messages and Asynchronous Input 

While LISLab is waiting for the 10 seconds to elapse, it displays the 
word Pending to the right of the seconds value. After the 10 seconds, 
Pending is replaced by Executed, and the result of calling the function is 
displayed. If you watch carefully, LISLab will give focus to the Function 
combo box and show that the combo box now has the focus. But the Pro
gram Manager will still be receiving your keystrokes. LISLab's thread 
thinks that the combo box has the focus, and the Program Manager's 
thread thinks that one of its windows has the focus. However, the RIT 
remains "connected" to the Program Manager's thread. 

One final point about windows and the focus: both the SetFocus and 
SetActiveWindow functions return the handle to the window that origi
nally had the focus or was active. The information for this window is dis
played in the PrevWnd field in the LISLab dialog box. Also, just before 
LISLab calls SetForegroundWindow, it calls GetForegroundWindow to get the 
handle of the window that was originally in the foreground. This infor
mation is also displayed in the PrevWnd field. 

It's time to move on to experiments involving the mouse cursor. 
Whenever you move the mouse over LISLab's dialog box (but not over 
any of its child windows), the mouse is displayed as a vertical arrow. As 
mouse messages are sent to the dialog box, they are also added to the 
Mouse Messages Received list box. In this way, you know when the dialog 
box is receiving mouse messages. If you move the mouse outside the 
dialog box or over one of its child windows, you'll see that messages are 
no longer added to the list box. 

Now move the mouse to the right of the dialog box over the text 
Click Right Mouse Button To Set Capture, and click and hold the right 
mouse button. When you do this, LISLab calls SetCapture and passes the 
handle of LISLab's dialog box. Notice that LISLab reflects that it has 
capture by updating the Windows group box at the top. 

Without releasing the right mouse button, move the mouse over 
LISLab's child windows and watch the mouse messages being added to 
the list box. Notice that if you move the mouse outside of LIS Lab's dialog 
box, LISLab continues to be notified of mouse messages. The mouse 
cursor retains its vertical arrow shape no matter where you move the 
mouse on the screen. This is exactly how mouse capture works in 16-bit 
Windows. 

But now we're ready to see where the system behaves differently. 
Release the right mouse button, and watch what happens. The capture 
window reflected at the top of LISLab continues to show that LISLab 

463 



ADVANCED WINDOWS 

464 

thinks it still has mouse capture. However, if you move the mouse outside 
of LISLab's dialog box, the cursor no longer remains a vertical arrow 
and mouse messages stop going to the Mouse Messages Received list 
box. If you move the mouse over any of LIS Lab's child windows, you'll 
see that capture is still in effect because all the windows are using the 
same set oflocal input state variables. This is very different from the way 
16-bit Windows works. 

When you're done experimenting with mouse capture, you can 
turn it off using one of two techniques: 

• Double-click the right mouse button anywhere in the Local 
Input State Lab dialog box to have LISLab place a call to 
ReleaseCapture . 

• Click on a window created by a thread other than LISLab's 
thread. When you do this, the system automatically sends 
mouse button up and mouse button down messages to LISLab's 
,dialog box. 

Regardless of which method you choose, watch how the Capture 
field in the Windows group box changes to reflect that no window has 
mouse capture. 

There are only two more mouse-related experiments: one experi
ment involves clipping the mouse cursor's movement to a rectangle, and 
one experiment involves cursor visibility. When you click on the Set 
To(O,O)-(200,200) button, LISLab executes the following code: 

RECT rc; 

SetRect(&rc. 0. 0. 200. 200); 
ClipCursor(&rc); 

This causes the mouse cursor to be confined in the upper left corner of 
the screen. If you use Alt+ Tab to select another application's window, 
you'll notice that the clipping rectangle stays in effect. The system auto
matically stops clipping the mouse and allows it to traverse the entire 
screen when you perform any of the following operations: 

Windows 95 

Windows NT 

Windows NT 

Click on another application's title bar and move the 
window. 

Click on another application's title bar. (You don't 
have to move the window.) 

Invoke and dismiss the Task Manager. 



TEN: Window Messages and Asynchronous Input 

You can also click on the Remove button in the Local Input State 
Lab dialog box (assuming that the button is in the clipping rectangle) to 
remove the clipping rectangle. 

Clicking on the Hide Cursor or Show Cursor button causes LISLab 
to execute the following code: 

ShowCursor(FALSE): 

or 

ShowCursor(TRUE): 

When you hide the mouse cursor, it doesn't appear when you move 
the mouse over LISLab's dialog box. But the moment you move the 
mouse outside this dialog box, the cursor appears again. Use the Show 
Cursor button to counteract the effect of the Hide Cursor button. Note 
that the effects of hiding the cursor are cumulative. That is, if you click 
on the Hide Cursor button five times, you must click on the Show Cursor 
button five times to make the cursor visible. 

The last experiment involves using the Infinite Loop button. When 
you click on this button, LISLab executes the following code: 

SetCursor(LoadCursor(NULL, IDC_NO»: 
for (::) 

The first line changes the mouse cursor to a slashed circle, and the sec
ond line executes an infinite loop. Mter you click on the Infinite Loop 
button, LISLab stops responding to any input whatsoever. If you move 
the mouse over LISLab's dialog box, the cursor remains as the slashed 
circle. However, if you move the mouse outside the dialog box, the cur
sor changes to reflect the cursor of the window over which it is located. 
You can use the mouse to manipulate these other windows. 

If you move the mouse back over LISLab's dialog box, the system 
sees that LISLab is not responding and automatically changes the cursor 
back to its most recent shape-the slashed circle. In 16-bit Windows, an 
application executing an infinite loop hangs not only the application 
but the whole system. As you can see, on a Win32-based operating system 
an infinite loop is just a minor inconvenience to the user. 

Notice that if you move a window over the hung Local Input State 
Lab dialog box and then move it away, the system sends LISLab a 
WM_PAINT message. But the system also realizes that the thread is not 
responding. The system helps out here by repainting the window for the 
unresponsive application. Of course, the system cannot repaint the win
dow correctly because it doesn't know what the application is supposed 

465 



ADVANCED WINDOWS 

466 

to be doing, so the system simply erases the window's background and 
redraws the frame. 

Now the problem is that we have a window on the screen that isn't 
responding to anything we do. How do we get rid of it? On Windows 95, 
we must first press Ctrl+Alt+Del to display the Close Program window 
shown below: 

And on Windows NT, we must first press Ctrl+Esc to display the 
Task List window shown below: 

ocalln ut State lab 
Program Manager - RINCEWINO\jiml 
File Manager 

Hew Task: I 

Then we simply select the application we want to terminate-Local 
Input State Lab, in this case-and click on the End Task button. The sys
tem will attempt to terminate LISLab in a nice way but will notice that 
the application isn't responding. This causes the system to display the 
following dialog box: 



L1SLab.ico 

TEN: Window Messages and Asynchronous Input 

This Windows application cannot respond to the End Task 
request. It may be busy. waiting lor a response /rom you. 
or it may have stopped executing. 

o Press Cancel to cancel and return to Windows NT. 

o Press End T ask to close this application immediately. 
You will lose any unsaved inlormation in this application. 

o Press Wait to give the application 5 seconds to linish 
what it is doing and then try to close the application 
again. 

Choosing End Task causes the system to forcibly remove LISLab 
from the system. The Wait button (available only if you are running un
der Windows NT) delays the action; choose it if you think that an appli
cation will respond to input again within 5 seconds. We know that 
LISLab won't respond because its infinite loop will never end. The Can
cel button tells the system that you changed your mind and no longer 
want to terminate the application. Choose End Task to remove LISLab 
from the system. 

The whole point of these experiments is to demonstrate the 
system's robustness. It's almost impossible for one application to place 
the operating system in a state that would render the other applications 
unusable. Also, note that both Windows 95 and Windows NT automati
cally free all resources that were allocated by threads in the terminated 
process-there are no memory leaks! 

LISLAB.C 
t* ** *'11* * '" * * **"'*'11 * "'* **** **'*** '" * ** * *** * * '" **** ** ** ** * * ** **** '" * '" '" '" 
MOQulename: LISLab.C . 
Notices: Copyri ght.( c) 1995 Jeffrey Richter 

'" **.*~ **** ****** **'" * *'II * ,,;*** ** ********** * * "'*** ** *'11* **** M** ** * I 

ffi nelUde· '~ •• \AdvW; 032 .. n" 
"Iti!1<:l ud.~ <wi ndows. 11» 
/F.i n<:.l ude <wi. n dowsx. h> 

#prag~a warningCdisable: 4(01) I*Si ng1 e -11 nr~ comment *1 

Figure 10-7. (continued) 

The LISLab application. 

467 



ADVANCED WINDOWS 

Figure 10-7. continued 

(continued) 

468 



TEN: Window Messages and Asynchronous Input 

Figure 10-7. continued 

/ / I / III / / / / 1I //1 I I / I / l/ / I I // / / I 1/ I /1/ /111/ /Ill/I11 lUI I I II I III 

(continued) 

469 



ADVANCED WINDOWS 

Figure 10-7. continued 

(continued) 
470 



TEN: Window Messages and Asynchronous Input 

Figure 10-7. continued 

(continued) 

471 



ADVANCED WINDOWS 

Figure 10-7. continued 

(continued) 

472 



TEN: Window Messages and Asynchronous Input 

Figure 10-7. continued 

IIIIUIH Ili/ 11/ 111111/1/ I II 1/111/1 UN/! I II 11/ 1111111 / /1/ 1111 

(continued) 

473 



ADVANCED WINDOWS 

Figure 10-7. continued 

(continued) 

474 



TEN: Window Messages and Asynchronous Input 

Figure 10-7. continued 

,_5 tp rt n~ f{ szBuf. 
x=%5d. y"'%5d"). 

(continued) 

475 



ADVANCED WINDOWS 

Figure 10-7. continued 

(continued) 

476 



TEN: Window Messages and Asynchronous Input 

Figure 10-7. continued 

if (9_hwndSubj ect ==( HWNO) 1) { 
SetWi ndowText (GetO 1 9 I tem{ hwnd. I OC_P RE.VWND). 

_TEXHftCan't tell."»; 
}. els.e 

Cal 

(continued) 

477 



ADVANCED WINDOWS 

Figure 10-7. continued 

(continued) 

478 



TEN: Window Messages and Asynchronous Input 

Figure 10-7. continued 

STYLE. WS..MINIMIZEBOX I .WS_POPUP I WS_VISIBLE.I ",S_CAPT~ON 
I WLSYSMENU 

CAPTlO~"L(lca llripu,\;State: Lab'; 
FONT 8, "MS .$.ans 

(continued) 

479 



ADVANCED WINDOWS 

Figure 10-7. continued 

480 



C HAP T E R E LEV E N 

DYNAMIC-LINK LIBRARIES 

Dynamic-link libraries (DLLs) have been the cornerstone of Windows 
since the very first version of the operating system. All the functions in 
the Win32 API are contained in DLLs. The three most important DLLs 
are KERNEL32.DLL, which consists off unctions for managing memory, 
processes, and threads; USER32.DLL, which consists of functions for per
forming user-interface tasks such as window creation and message send
ing; and GDI32.DLL, which consists of functions for drawing graphical 
images and displaying text. 

Windows also comes with several other DLLs that contain functions 
for performing more specialized tasks. For example, ADVAPI32.DLL con
tains functions for object security, registry manipulation, and event log
ging; COMDLG32.DLL contains the common dialogs (such as File Open 
and File Save); and LZ32.DLL supports file decompression. 

In this chapter, I discuss how you can create Win32 DLLs for your 
own applications. In addition, the end of the chapter describes some 
advanced techniques that require the use of DLLs; you'll find other ad
vanced techniques in Chapter 16. 

Creating a Dynamic-Link Library 
It is often easier to create a dynamic-link library than it is to create an ap
plication. This is because a dynamic-link library usually consists of a set 
of autonomous functions that any application can use. There is usually 
no support code for processing message loops or creating windows with
in DLLs. A dynamic-link library is simply a set of source code modules, 
with each module containing a set of functions. These functions are writ
ten with the expectation that an application (EXE file) or another DLL 
will call them. Mter all the source code files have been compiled, they 
are then linked by the linker just as an application's EXE file would be. 

481 



ADVANCED WINDOWS 

482 

However, for a DLL you must specify the /DLL switch to the linker. This 
switch causes the linker to emit slightly different information into the 
resulting DLL file image so that the operating system loader recognizes 
the file image as a dynamic-link library rather than an application. 

In order for an application (or another DLL) to call functions con
tained within a DLL, the DLL's file image must first be mapped into the 
calling process's address space. This can be accomplished using one of 
two methods: implicit load-time linking or explicit run-time linking. 
These methods will be discussed shortly. 

Once a DLL's file image is mapped into the calling process's ad
dress space, the DLL's functions are available to all the threads running 
within the process. In fact, the DLL loses almost all of its identity as a 
DLL: to all the threads in the process, the DLL's code and data simply 
look like additional code and data that just happen to be in the process's 
address space. Whenever a thread calls any DLL function, the DLL func
tion looks at the thread's stack to retrieve its passed parameters and also 
uses the thread's stack for any local variables that the DLL function 
might need. In addition, any objects created by code in the DLL's func
tions are owned by the calling thread or process-a DLL never owns any
thing in Win32. 

For example, if VirtualAlioc is called by a function in a DLL, the re
gion of address space is reserved from the address space of the calling 
thread's process. If the DLL is later unmapped from the process's address 
space, the address space region remains reserved because the system does 
not keep track of the fact that a function in the DLL reserved the region. 
The reserved region is owned by the process and will be freed only if a 
thread somehow calls the VirtualFree function or if the process terminates. 

As you already know, the global and static variables of an EXE file 
are not shared between multiple, running instances of the same EXE. 
Windows 95 ensures this by allocating storage for the EXE's global and 
static variables when the EXE is mapped into the process's address space; 
Windows NT ensures this by using the copy-on-write mechanism dis
cussed in Chapter 4. Global and static variables in a DLL are handled in 
exactly the same way. When one process maps a DLL image file into its 
address space, the system creates instances of the global and static data 
variables as well. Later in this chapter, I discuss a technique that allows a 
DLL to share its global and static variables across multiple mappings of 
the DLL. However, this technique is not the default in Win32-you must 
perform some additional actions in order to get this behavior. 



18···11 

E LEV E N: Dynamic-Link Libraries 

DLLs are managed quite differently in 16-bit Windows than in Win32. In 
16-bit Windows, loading a DLL means that, in a sense, the DLL becomes 
part of the operating system. Mter the DLL is loaded, any and all applica
tions currently running immediately have access to the DLL and the func
tions that the DLL contains. In the Win32 environment, a DLL must be 
mapped into the process's address space before an application can suc
cessfully call functions in the DLL. 

The 16-bit Windows environment and the Win32 environment 
handle a DLL's global and static data quite differently as well. In 16-bit 
Windows, each DLL has its own data segment. This data segment houses 
all the static and global variables needed by the DLL as well as the DLL's 
own private local heap. When a DLL function allocates memory using 
LocalAlloc, the memory that satisfies this request is taken from the DLL's 
data segment. This segment, like all segments, is limited to 64 KB. 

This design allows applications to easily share data among multiple 
processes because the DLL's local heap is available to the DLL regardless 
of which process called the function contained in the DLL. Here is an ex
ample of how aDLL can be used for sharing data between two applications: 

HLOCAL 9_hData = NULL; 

void SetData (LPVOID lpvData, int nSize) { 
LPVOID lpv; 

} 

9_hData = LocalAlloc(LMEM_MOVEABLE, nSize); 
lpv = LocalLock(9_hData); 
memcpy(lpv, lpvData, nSize); 
LocalUnlock(9_hData); 

void GetData (LPVOID lpvData, int nSize) { 
LPVOID lpv = LocalLock(9_hData); 
memcpy(lpvData, lpv, nSize); 
LocalUnlock(9_hData); 

} 

When SetData is called, it allocates a block of memory out of the 
DLL's data segment, copies the data pointed to by the lpvData parameter 
into the block, and saves the handle to the block in a global variable, 
g...hData. A totally different application can now call GetData. GetData uses 
the global variable identifying the local memory handle, locks the block, 
copies the data into the buffer identified by the lpvData parameter, and 
returns. This is an easy way to share data between two processes in 16-bit 
Windows. 

(continued) 

483 



ADVANCED WINDOWS 

continued 

Of course, this method doesn't work at all in Win32 for two reasons. 
First, DLLs in Win32 don't receive their own local heaps. Second, a Win32 
DLL's global and static variables are not shared among multiple map
pings of the DLL-the system creates an instance of the global fJ-hData 
variable for each process, and each instance will not have the same value 
when the DLL is mapped into multiple processes' address spaces. 

Mapping a Dll into a Process's Address Space 

484 

As I mentioned earlier, in order for a thread to call a function in a DLL, 
the DLL's file image must be mapped into the address space of the calling 
thread's process. There are two ways that this can be accomplished: im
plicitly linking to functions in the DLL and explicitly loading the DLL. 

Implicit Linking 
Implicit linking is the most common method for mapping a DLL's file 
image into a process's address space. When you link an application, you 
must specify a set of LIB files to the linker. Each LIB file contains the list 
of functions that a DLL file is allowing an application (or another DLL) 
to call. When the linker sees that the application is calling a function that 
is referenced in a DLL's LIB file, the linker embeds information into the 
resultant EXE file image that indicates the name of the DLL containing 
the functions that the EXE requires. When the operating system loads an 
EXE file, the system examines the contents of the EXE file image to see 
which DLLs must be loaded in order for the application to run. The sys
tem then attempts to map the required DLL file images into the pro
cess's address space. When searching for the DLL, the system looks for 
the file image in the following locations: 

1. The directory containing the EXE image file 

2. The process's current directory 

3. The Windows system directory 

4. The Windows directory 

5. The directories listed in the PATH environment variable 

If the DLL file cannot be found, the operating system displays a mes
sage box that looks something like the one on the facing page and imme
diately terminates the entire process. 



E LEV E N: Dynamic-Link Libraries 

When using this method, any DLL file images mapped into the pro
cess's address space are not unmapped until the process is terminated. 

~~ TLSDYN.exe - Unable To Locate DLL 

The dynamic link library SOMELlB.dll could not be found in the specified path 
C:\advwin32\TLSDYN.12\Dbg_x86;.;D:\NT35RC2\System32;D:\NT35RC2\system; 
D:\NT35RC2;D:\NT35RC2\system32;D:\NT35RC2;d:\batch;c:\windows; 
c:\windows\system;D:\MSVC20\BIN;c:\dos;c:\dos\extra;c:\viewer;c:\windows;c:\. 

Explicit Linking 
A DLL's file image can be explicitly mapped into a process's address 
space when one of the process's threads calls either the LoadLibrary or 
the LoadLibraryEx function: 

HINSTANCE LoadLibrary(LPCTSTR lpszLibFile); 

HINSTANCE LoadLibraryEx(LPCTSTR lpszLibFile. HANDLE hFile. 
DWORD dwFl ags) ; 

Both of these functions locate a file image on the user's system (using the 
same search algorithm discussed in the previous section) and attempt to 
map the DLL's file image into the calling process's address space. The 
HINSTANCE value returned from both of these functions identifies the 
virtual memory address where the file image was mapped. If the DLL 
could not be mapped into the process's address space, the functions 
return NULL. 

Under 16-bit Windows, LoadLibrary indicates that an error has occurred 
by returning a handle value less than 32. The value returned indicates 
the reason for the failure. In Win32, NULL is always returned if an error 
occurs. To determine the reason for the error, the thread must call 
GetLastError. 

You'll notice that the LoadLibraryEx function has two additional 
parameters: hFile and dwFlags. The hFile parameter is reserved for future 
use and must be NULL for now. 

485 



ADVANCED WINDOWS 

486 

For the dwFlags parameter, you must specify either 0 or any com
bination of the following three flags: DONT_RESOLVE_DLL_REFER
ENCES, LOAD_LIBRARY_AS_DATAFILE, and LOAD_ WITH_AL
TERED_ SEARCH_PATH. These flags are discussed briefly below: 

DONT_RESOLVE_DLL_REFERENCES Specifying this flag tells the 
system to map the DLL into the calling process's address space. Nor
mally, when a DLL is mapped into a process's address space the system 
calls a special function in the DLL, usually named DllMain (discussed 
later in this chapter), that is used to initialize the DLL. Specifying the 
DONT_RESOLVE_DLL_REFERENCES flag causes the system to sim
ply map the file image without calling theDllMain function. 

In addition, aOLL might import functions contained in another 
DLL. When the system maps a DLL into a process's address space, the 
system also checks to see whether any additional DLLs are required by 
the DLL and automatically loads these DLLs as well. When the DONT
_RESOLVE_DLL_REFERENCES flag is specified, the system does not 
automatically load any of these additional DLLs into the process's ad
dress space. 

LOAD_LIBRARV_AS_DATAFILE This flag is very similar to the DONT
_RESOLVE_DLL_REFERENCES flag. That is, the system simply maps 
the DLL into the process's address space as though it were a data file. No 
additional time is spent by the system in preparation to execute any code 
in the file. For example, when a DLL is mapped into a process's address 
space, the system examines some information in the DLL in order to 
determine which page protection attributes should be assigned to differ
ent sections of the file. When you don't specify the LOAD_LIBRARY
_AS_DATAFILE flag, the system sets the page protection attributes the 
same way it would ifit were expecting to execute code in the file. 

You might want to use this flag for several reasons. First, if you have 
a DLL that contains only resources and no functions, you might want to 
specify this flag. This way, the DLL's file image gets mapped into the 
process's address space and you can then use the HINSTANCE value 
returned from LoadLiln-aryEx in calls to functions that load resources. 
You might also use the LOAD_LIBRARY_AS_DATAFILE flag if you want 
to use resources that are contained inside an EXE file. Normally, loading 
an EXE file starts a new process, but you can also use the LoadLiln-aryEx 
function to map an EXE file's image into a process's address space. 
Again, once you have the mapped EXE's HINSTANCE value, you can 



E LEV E N: Dynamic-Link Libraries 

access resources contained within it. Because an EXE file does not have 
the DllMain function, you'll have to specify the LOAD_LIBRARY_AS
_DATAFILE flag when calling LoadLibraryEx to load an EXE file. 

LOAD_WITH_ALTERED_SEARCH_PATH Specifying this flag changes 
the search algorithm used by LoadLibraryEx in order to locate the speci
fied DLL file. Normally, LoadLibraryEx searches for files in the order 
shown at the bottom of page 484. However, if the LOAD_ WITH_AL
TERED_SEARCH_PATH flag is specified, LoadLibraryEx searches for the 
file using the following algorithm: 

l. The directory specified in the lpszLibFile parameter 

2. The process's current directory 

3. The Windows system directory 

4. The Windows directory 

5. The directories listed in the PATH environment variable 

When explicitly loading a DLL, you may explicitly unmap the file 
image from the process's address space at any time by calling the Free
Library function: 

BOOl Freelibrary(HINSTANCE hinstDll); 

When calling FreeLibrary, you must pass the HINSTANCE value that iden
tifies the DLL that you want to free. This value was returned by an earlier 
call to LoadLibrary or LoadLibraryEx. 

In reality, the LoadLibrary and LoadLibraryEx functions increment 
a usage count associated with the specified library, and the FreeLibrary 
function decrements the library's usage count. For example, the first time 
you call LoadLibrary to load a DLL, the system maps the DLL's file image 
into the calling process's address space and associates a usage count of 1 
with the D LL. If a thread in the same process later calls LoadLibrary to load 
the same DLL file image, the system does not map the DLL file image into 
the process's address space a second time. Instead, the system simply 
increments the usage count associated with the DLL. In order for the 
DLL file image to be unmapped from the process's address space, threads 
in the process must call FreeLibrary twice-the first call to FreeLibrary 
simply decrements the DLL's usage count to 1, and the second call to 
FreeLibrary decrements the DLL's usage count to O. When the system sees 

487 



ADVANCED WINDOWS 

488 

that a DLL's usage count has reached 0, the system automatically unmaps 
the DLL's file image from the process's address space. After the DLL's 
file image is unmapped, any thread that attempts to call a function in 
the DLL will raise an access violation because the code at the specified 
address is no longer mapped into the process's address space. 

Notice that the system maintains a DLL's usage count on a per
process basis. That is, if a thread in Process A makes the following call: 

HINSTANCE hinstDll = LoadLibrary("MyLib.DLL"); 

and then a thread in Process B makes the exact same call, MYLIB.DLL is 
mapped into both processes' address spaces-the DLL's usage count in 
Process A and the DLL's usage count in Process B are both 1. If a thread 
in Process B later calls: 

FreeLibrary(hinstDll) ; 

the DLL's usage count with respect to Process B becomes 0, and the DLL 
is unmapped from Process B's address space. However, the mapping of 
the DLL in Process A's address space is unaffected, and the DLL's usage 
count with respect to Process A remains l. 

A thread can call the GetModuleHandle function: 

HINSTANCE GetModuleHandle(LPCTSTR lpszModuleName); 

to determine whether a DLL is mapped into its process's address space. 
For example, the following code loads MYLIB.DLL only ifit is not already 
mapped into the process's address space: 

HINSTANCE hinstDll; 
hinstDll = GetModuleHandle("MyLib"); 
if (hinstDll == NULL) { 

hinstDll = LoadLibrary("MyLib"); 
} 

II DLL extension assumed 

II DLL extension assumed 

You can also determine the full pathname of a DLL (or an EXE) if all 
you have is the DLL's HINSTANCE value by using the GetModuleFileName 
function: 

DWORD GetModuleFileName(HINSTANCE hinstModule. 
LPTSTR lpszPath. DWORD cchPath); 

The first parameter is the DLL's (or EXE's) HINSTANCE. The sec
ond parameter, IpszPath, is the address of the buffer where the function 
will put the file image's full pathname. The third and last parameter, 
cchPath, specifies the size of the buffer in characters. 



E LEV E N: Dynamic-Link Libraries 

The 16-bit Windows API has a GetModuleUsage function: 

int GetModuleUsage(HINSTANCE hinstDll); 

When you pass this function the HINSTANCE value of a loaded DLL, the 
system returns the usage count of the DLL. The usage count tells you how 
many times FreeLibrary would have to be called before the DLL would ac
tually be unloaded. Remember that in 16-bit Windows, DLLs become part 
of the operating system and are available to all running tasks. Because 
DLLs in Win32 become part ofthe calling process's address space rather 
than part of the operating system itself, GetModuleUsage is no longer sup
ported in the Win32 API. 

Personally, I think Microsoft should have kept GetModuleUsage in 
the Win32 API because it's useful to know the usage count of a DLL with 
respect to the calling process. The operating system keeps track of this 
information internally already-it would have been easy for Microsoft to 
modifY GetModuleUsage so that it simply returned this information. 

There is another Win32 function that you can use to decrement a 
DLL's usage count: 

VOID FreeLibraryAndExitThread(HINSTANCE hinstDll. 
DWORD dwExitCode); 

This function is implemented in KERNEL32.DLL as follows: 

VOID FreeLibraryAndExitThread(HINSTANCE hinstDll. 
DWORD dwExitCode) { 
FreeLibrary(hinstDll ); 
ExitThread(dwExitCode); 

At first glance this doesn't look like such a big deal, and you might 
ask yourself why Microsoft went to the trouble to create the FreeLibrary
AndExitThread function. The reason has to do with the following sce
nario: Suppose you are writing a DLL that, when it is first mapped into a 
process's address space, creates a thread. When the thread is finished 
performing its work, the thread can unmap the DLL from the process's 
address space. In order for the thread to unmap the DLL, the thread 
must call FreeLibrary and then immediately call ExitThread. 

But if the thread callsFreeLibrary andExitThread individually, a very 
serious problem occurs. The problem, of course, is that the call to 
FreeLibrary unmaps the DLL from the process's address space immedi
ately. By the time the call to FreeLibrary returns, the code that contains 

489 



ADVANCED WINDOWS 

the call toExitThread is no longer available and the thread will attempt to 
execute nothing. This will cause an access violation to be raised, and the 
entire process will be terminated! 

However, if the thread calls FreeLibraryAndExitThread, this function 
callsFreeLibrary, causing the DLL to be immediately unmapped. The next 
instruction executed is in KERNEL32.DLL, not in the DLL that has just 
been unmapped. This means that the thread can continue executing 
and can call ExitThread. ExitThread will cause the thread to terminate and 
will not return. 

Granted, you will probably not have much need for the FreeLibrary
AndExitThread function. I have had a need for it only once myself, and I was 
performing a very specialized task. Also, at the time I was writing my code 
for Windows NT 3.1, which did not offer this function. So I was very glad 
to see that Microsoft had added it to Windows NT 3.5 and Windows 95. 

The Dll's Entry/Exit Function 

490 

A Win32 DLL can, optionally, have a single entry/exit function. The sys
tem calls this DLL entry/exit function at various times that I will discuss 
later. These calls are informational and are usually used by a DLL to per
form any per-process or per-thread initialization and cleanup. If your 
DLL doesn't require these notifications, you do not have to implement 
this function in your DLL source code. For example, if you create a DLL 
that contains only resources, you do not need to implement this func
tion. If you do have this entry/exit function, it must look like this: 

BOOl WINAPI DllMain (HINSTANCE hinstDll, DWORD fdwReason, 
lPVOID lpvReserved) { 

switch (fdwReason) { 
case Dll_PROCESS_ATTACH: 

II The Dll is being mapped into 
II the process's address space. 
break; 

case Dll_THREAD_ATTACH: 
II A thread is being created. 
break; 

case Dll_THREAD_DETACH: 
II A thread is exiting cleanly. 
break; 



18"·" 

E LEV E N: Dynamic-Link Libraries 

case Dll_PROCESS_DETACH: 
II The Dll is being unmapped from 
II the process's address space. 
break; 

return(TRUE) ; 

When producing DLLs for 16-bit Windows, you always need to link a small 
assembly language module into your DLL. This module performs some 
low-level initialization and calls your LibMain function, passing parame
ters that the system has passed to the assembly language module in CPU 
registers. Fortunately, Microsoft includes the source code for this module 
on the SDK disks. The assembled OBJ file is also included on the SDK 
disks, which is helpful to those of us who don't own a macro assembler. 

As mentioned earlier, Win32 is designed as a portable API capable 
of running on different hardware platforms using different CPUs. To ac
complish this, Microsoft needed to remove the necessity for any assem
bly language modules. This means that to create a DLL, you need only to 
write your code and link it as ifitwere an application. Most of your DLLs 
should port directly to Win32 with very little modification. The two areas 
that will require modification are the LibMain and Windows Exit Procedure 
(~P) functions. 

In 16-bit Windows, the system calls the library's LibMain function 
whenever the library is loaded into the system and calls the library's lWi:P 
function whenever the library is being removed from the system. Con
ceptually, the lWi:P function was a nice addition to 16-bit Windows (it 
didn't exist prior to version 3.0), but there were many problems with the 
way that Windows made use of the function. In low-memory situations, 
the lWi:P function could actually be called before the LibMain function, 
and it might be called using the Kernel's very small stack. This meant 
that using local variables in the lWi:P function might cause the entire sys
tem to crash. You'll be happy to know that all these problems have been 
solved in Win32. 

The DllMain function replaces the LibMain and lWi:P functions used 
in 16-bit Windows DLLs. 

491 



ADVANCED WINDOWS 

492 

The operating system calls this en try / exi t function at various times. 
Whenever the function is called, the hinstDll parameter contains the 
instance handle of the DLL. Like the hinstExe parameter to WinMain, 
this value identifies the virtual memory address of where the DLL's file 
image was mapped in the process's address space. Usually, you'll save 
this parameter in a global variable so that you can use it in calls that load 
resources, such as DialogBox and LoadString. The last parameter, IpvRe
served, is reserved and is usually passed to you as NULL. 

The jdwReason parameter indicates why the system is calling the 
function. This parameter can be one of four possible values: DLL_PRO
CESS_ATTACH, DLL_PROCESS_DETACH, DLL_THREAD_ATTACH, 
or DLL_THREAD_DETACH. These values and their meanings are dis
cussed in the following sections. 

When a DLL is first mapped into a process's address space, the system 
calls the DLL's DllMain function, passing it a value of DLL_PROCESS
_ATTACH for the jdwReason parameter. This happens only when the 
DLL's file image is first mapped. If a thread later calls LoadLibrary or 
LoadLibraryEx for a DLL that is already mapped into the process's ad
dress space, the operating system simply increments the DLL's usage 
count; it does not call the DLL's DllMain function again with a value of 
DLL_PROCESS_ATTACH. 

When processing DLL_PROCESS_ATTACH, a DLL should per
form any process-relative initialization required by functions contained 
within the DLL. For example, the DLL might contain functions that need 
to use their own heap (created in the process's address space). The DLL's 
DllMain function could create this heap by calling HeapCreate during its 
processing of the DLL_PROCESS_ATTACH notification. The handle to 
the created heap could be saved in a global variable that the DLL func
tions have access to. 

When DllMain is processing a DLL_PROCESS_ATTACH notifica
tion, DllMain's return value indicates whether the DLL's initialization 
was successful. If, for exam pie, the call to HeapCreate was successful, you 
should return TRUE from DllMain. If the heap could not be created, 
return FALSE. For any of the other jdwReason values-DLL_PRO
CESS_DETACH, DLL_THREAD_ATTACH, and DLL_THREAD_DE
TACH-the system ignores the return value fromDllMain. 



E LEV E N: Dynamic-Link Libraries 

Of course, there must be some thread in the system that is respon
sible for executing the code in the DllMain function. When a new pro
cess is created, the system allocates the process's address space and then 
maps the EXE file image and all of the required DLL file images into the 
process's address space. Then the system creates the process's primary 
thread and uses this thread to call each of the DLL's DllMain functions 
with a value ofDLL_PROCESS_ATTACH. Mter all of the mapped DLLs 
have responded to this notification, the system causes the process's pri
mary thread to begin executing the EXE's C run-time startup code, fol
lowed by the EXE's WinMain function. If any of the DLL's DllMain 
functions return FALSE, indicating unsuccessful initialization, the sys
tem terminates the entire process, removing all the file images from its 
address space and displaying a message box to the user stating that the 
process could not be started. 

Now let's look at what happens when a DLL is loaded explicitly. 
When a thread in a process calls LoadLilffary or LoadLilffaryEx, the system 
locates the specified DLL and maps the DLL into the process's address 
space. Then the system calls the DLL's DllMain function with a value of 
DLL_PROCESS_ATTACH, using the thread that placed the call to 
LoadLilffary or LoadLilffaryEx. Mter the DLL'sDllMain function has pro
cessed the notification, the system allows the call to LoadLilffary or Load
LilffaryEx to return, and the thread continues processing as normal. If 
the DllMain function returned FALSE, indicating that the initialization 
was unsuccessful, the system automatically un maps the DLL's file image 
from the process's address space and NULL is returned from the call to 
LoadLilffary or LoadLilffaryEx. 

In 16-bit Windows, a DLL's LibMain function is called only once, when 
the DLL is loaded. If other applications are loaded and require the same 
DLL, 16-bit Windows doesn't call the DLL's LibMain function again. In 
contrast, a Win32 DLL's DllMain function is called with a value of DLL
_PROCESS_ATTACH every time the DLL is mapped into another pro
cess's address space. If 10 applications require LIBXYZ.DLL, LIBXYZ's 
DllMain is called 10 times with a value of DLL_PROCESS_ATTACH. 

493 



ADVANCED WINDOWS 

11 
Important 

494 

When a DLL is unmapped from a process's address space, the system 
calls the DLL's DllMain function, passing it an fdwReason value of DLL
_PROCESS_DETACH. A DLL should perform any process-relative 
cleanup when processing this value. For example, a DLL might call 
HeapDestroy to destroy a heap that it created during the DLL_PROCESS
_ATTACH notification. 

If a DLL's DllMain function is called with an fdwReason value of DLL
_PROCESS_ATTACH and DllMain returns FALSE, indicating unsuc
cessful initialization, the system will still call the DLL'sDllMain function 
with a value of DLL_PROCESS_DETACH. For this reason, you must 
make sure that you don't try to clean up anything that wasn't successfully 
initialized. 

For example, examine the DllMain function below to see whether 
you can determine where a possible memory access violation might occur: 

BOOL WINAPI OllMain(HINSTANCE hinstDll. DWORD fdwReason. 

} 

LPVOID lpvReserved) { 

static PVOID pvData NULL; 
BOOL fOk = TRUE; II Assume success. 

switch (fdwReason) { 

} 

case DLL_PROCESS_ATTACH: 
pData = HeapAlloc(GetProcessHeap(), 0, 1000); 
if (pData == NULL) 

fOk = FALSE; 
break; 

case DLL_PROCESS_DETACH: 
HeapFree(GetProcessHeap(), 0, pData); 
break; 

return(fOk); II Used only for DLL_PROCESS_ATTACH 

The code looks harmless enough. When the DLL is attached to the 
process's address space, a small memory block is allocated. If the block 
could not be allocated, DllMain returns FALSE, indicating that the DLL 
was unable to initialize properly. When the DLL is unmapped from the 

(continued) 



continued 

tJ 
Important 

E LEV E N: Dynamic-Link Libraries 

process's address space, the allocated memory block is freed. Here's the 
problem: In the fragment on the previous page, you'll see that if a 
library's DIlMain returns FALSE when processing its DLL_PROCESS
_ATTACH notification, the system calls DllMain again with a value of 
DLL_PROCESS_DETACH. This means that HeapFree will be called to 
free a memory block, even though that memory block was never allo
cated successfully. To correct the problem, you must rewrite the 
DLL_PROCESS_DETACH case as follows: 

case DLL_PROCESS_DETACH: 
if (pvData != NULL) 

HeapFree(GetProcessHeap(), 0, pvData); 
break; 

If the DLL is being unmapped because the process is terminating, 
the thread that calls ExitProcess is responsible for executing the DllMain 
function's code. Under normal circumstances, this is the application's 
primary thread. When your WinMain function returns to the C run-time 
library's startup code, the startup code explicitly calls the ExitProcess func
tion to terminate the process. 

If the DLL is being unmapped because a thread in the process 
called FreeLibrary, the DllMain function code is executed by the thread 
that called FreeLibrary. The call to FreeLibrary will not return until after 
the DllMain function has finished executing. 

If a process terminates because some thread in the system calls Terminate
Process, the system does not call the DLL's DllMain function with a value 
of DLL_PROCESS_DETACH. This means that any DLLs mapped into 
the process's address space will not have the chance to perform any 
cleanup before the process terminates. This could result in the loss of 
data. The TerminateProcess function should be used only as a last resort! 

Figure 11-1 on the following page shows the steps that are per
formed when a thread calls LoadLibrary. 

495 



ADVANCED WINDOWS 

Figure 11-1. 
The steps performed by the system when a thread calls LoadLibrary. 

496 



E LEV E N: Dynamic-Link Libraries 

Figure 11-2 shows the steps that are performed when a thread calls 
FreeLibrary. 

Figure 11-2. 
The steps performed by the system when a thread calls FreeLibrary. 

497 



ADVANCED WINDOWS 

498 

When a thread is created in a process, the system examines all of the 
DLL file images currently mapped into the process's address space and 
calls each of these DLL'sDllMain functions with a value ofDLL_THREAD
_ATTACH. This notification tells all the DLLs to perform any per-thread 
initialization. For example, the DLL version of the C run-time library al
locates a block of data so that a multithreaded application can safely use 
functions contained in the C run-time library. 

The newly created thread is responsible for executing the code in 
all of the DLL's DllMain functions. Only after all the DLLs have had a 
chance to process this notification will the system allow the new thread 
to begin executing its thread function. 

If a process already has several threads running in it when a new 
DLL is mapped into its address space, the system does not call the DLL's 
DllMain function with a value of DLL_THREAD_ATTACH for any of the 
already existing threads. The system calls the DLL'sDllMain with a value 
of DLL_THREAD_ATTACH only if the DLL is mapped into the pro
cess's address space at the time that a new thread is created. 

Also note that the system does not call any DllMain functions with a 
value ofDLL_THREAD_ATTACH for the process's primary thread. Any 
DLLs that are mapped into the process's address space when the process 
is first invoked receive the DLL_PROCESS_ATTACH notification but 
do not receive the DLL_THREAD_ATTACH notification. 

When a thread terminates by calling ExitThread, 1 the system examines all 
the DLL file images currently mapped into the process's address space 
and calls each DLL's DllMain function with a value of DLL_THREAD
_DETACH. This notification tells all the DLLs to perform any per-thread 
cleanup. For example, the DLL version of the C run-time library frees the 
data block that it uses to manage multithreaded applications. 

1. If you allow your thread function to return instead of calling ExitThread. the system calls 
the ExitThread function automatically. 



tJ 
Important 

E LEV E N: Dynamic-Link Libraries 

If a thread terminates because a thread in the system calls Terminate
Thread, the system does not call all of the DLL's DllMain functions with a 
value ofDLL_THREAD_DETACH. This means that any DLLs mapped 
into the process's address space will not have the chance to perform any 
cleanup before the thread terminates. This may result in the loss of data. 
Like TerminateProcess, TerminateThread should be used only as a last resort! 

If any threads are still running when the DLL is detached, DllMain 
is not called with DLL_THREAD_DETACH for any of the threads. You 
might want to check for this in your DLL_PROCESS_DETACH process
ing so that you can perform any necessary cleanup. 

Because of the rules stated above, it is possible to have the following 
situation occur: A thread in a process calls LoadLibrary to load a DLL, 
causing the system to call the DLL's DllMain function with a value of 
DLL_PROCESS_ATTACH. Next the thread that loaded the DLL exits, 
causing the DLL's DllMain function to be called again, this time with a 
value of DLL_THREAD_DETACH. Notice that the DLL is being notified 
that the thread is detaching but that it never received a DLL_THREAD
_ATTACH notifying the library that the thread had attached. For this 
reason, you must be extremely careful when performing any thread
relative cleanup. Fortunately, most programs are written so that the 
thread that calls LoadLibrary is the same thread that callsFreeLibrary. 

How the System Serializes Calls to DIIMain 
The system serializes calls to a DLL's DllMain function. To understand 
what I mean, consider the following scenario. A process has two threads, 
Thread A and Thread B. The process also has a DLL, SOMEDLL.DLL, 
mapped into its address space. Both threads are about to call the 
Create Thread function in order to create two more threads: Thread C and 
ThreadD. 

When Thread A calls CreateThread to create Thread C, the system 
calls SOMEDLL's DllMain function with a value of DLL_THREAD_AT
TACH. While Thread C is executing the code in the DllMain function, 
Thread B calls CreateThread in order to create Thread D. The system 
needs to call the DllMain function again with a value of DLL_THREAD
_ATTACH, this time having Thread D execute the code. However, calls 
to DllMain are serialized by the system, and the system will suspend 
Thread D until Thread C has completely processed the code in DllMain 
and returned. 

499 



ADVANCED WINDOWS 

500 

After Thread C has finished processing theDllMain function, it can 
begin executing its thread function. Now the system wakes up Thread D 
and allows it to process the code in DllMain. When it returns, Thread D will 
begin processing its thread function. 

Normally, you don't even think about this DllMain serialization. 
The reason I am making a big deal out of it is that I worked with someone 
who had a bug in his code caused by DllMain serialization. His code 
looked something like this: 

BOOL WINAPI DllMain (HINSTANCE hinstDll, DWORD fdwReason, 
LPVOID lpvReserved) { 

} 

HANDLE hThread: 
DWORD dwThreadId: 

switch (fdwReason) { 
case DLL-PROCESS-ATTACH: 

II The DLL is being mapped into the 
II process's address space. 

II Create a thread to do some stuff. 
hThread = CreateThread(NULL, 0, SomeFunction, NULL, 

0, &dwThreadId): 

II Suspend our thread until the new thread terminates. 
WaitForSingleObject(hThread, INFINITE): 

II We no longer need access to the new thread. 
CloseHandle(hThread): 
break: 

case DLL_THREAD-ATTACH: 
II A thread is being created. 
break: 

case DLL_THREAD_DETACH: 
II A thread is exiting cleanly. 
break: 

case DLL-PROCESS_DETACH: 

} 

II The DLL is being unmapped from the 
II process's address space. 
break: 

return (TRUE) : 



E LEV E N: Dynamic-Link Libraries 

It took us several hours to discover the problem with the code on 
the previous page. Can you see it? When DllMain receives a DLL
_PROCESS_ATTACH notification, a new thread is created. The system 
needs to call thisDllMain function again with a value ofDLL_THREAD
_ATTACH. However, the new thread is suspended because the thread 
that caused the DLL_PROCESS_ATTACH notification to be sent toDll
Main has not finished processing yet. The problem is the call to 
WaitForSingleObject. This function suspends the currently executing 
thread until the new thread terminates. However, the new thread will 
never get a chance to run, let alone terminate, because it is suspended 
waiting for the current thread to exit the DllMain function. What we 
have here is a deadlock situation-both threads are forever suspended! 

When I first started thinking about ways to solve this problem, I dis
covered the DisableThreadLibraryCalls function: 

BOOl DisableThreadLibraryCalls(HINSTANCE hinstDll); 

This function was introduced with Windows NT 3.5 and exists in Win
dows 95 as well. 

When you call DisableThreadLibraryCalls, you are telling the system 
that you do not want DLL_THREAD_ATTACH and DLL_THREAD
_DETACH notifications sent to the specified DLL's DllMain function. It 
seemed reasonable to me that, if we told the system not to send DLL 
notifications to the DLL, the deadlock situation would not occur. How
ever, when I tested my solution (below), I soon discovered that the prob
lem was not solved. 

BOOl WINAPI DllMain (HINSTANCE hinstDll, DWORD fdwReason, 
LPVOID lpvReserved) { 

HANDLE hThread; 
DWORD dwThreadld; 

switch (fdwReason) { 
case DlL_PROCESS-ATTACH: 

II The DLl is being mapped into the process's address space. 

II Prevent the system from calling DllMain 
II when threads are created or destroyed. 
DisableThreadlibraryCalls(hinstDll); 

II Create a thread to do some stuff. 
hThread = CreateThread(NULl, 0, SomeFunction, NULL, 

0, &dwThreadld); 

(continued) 

501 



ADVANCED WINDOWS 

502 

} 

II Suspend our thread until the new thread terminates. 
WaitForSingleObject(hThread. INFINITE); 

II We no longer need access to the new thread. 
CloseHandle(hThread); 
break; 

case DLL_THREAD_ATTACH: 
II A thread is being created. 
break; 

case DLL_THREAD_DETACH: 
II A thread is exiting cleanly. 
break; 

case DLL_PROCESS_DETACH: 
II The DLL is being unmapped from the process's address 
II space. 
break; 

} 

return(TRUE) ; 

Upon further research I discovered why. When a process is created, 
the system also creates a mutex object. Each process has its own mutex 
object-the mutex object is not shared by multiple processes. The pur
pose of this mutex object is to synchronize all of a process's threads when 
the threads call the DlLMain functions of the DLLs mapped into the 
process's address space. 

When the Create Thread function is called, the system first creates the 
thread kernel object and the thread's stack. Then the system internally 
calls the WaitForSingleObj~ct function, passing the handle of the process's 
mutex object. Once the new thread has ownership of the mutex, the sys
tem makes the new thread call each of the DLL'sDlLMain functions with 
a value ofDLL_THREAD_ATTACH. Only after all of the DLL'sDllMain 
functions have been called does the system call ReleaseMutex to relin
quish ownership of the process's mutex object. Because the system works 
this way, adding the call to DisableThreadLibraryCalls does prevent the 
threads from deadlocking. The only way I could think of to prevent 
the threads from being suspended was to redesign this part of the source 
code so that WaitForSingleObject is not called inside any DLL's DllMain 
function. 



E LEV E N: Dynamic-Link Libraries 

OJ/Main and the C Run-Time Library 
In the discussion of the DllMain function on the previous page, I have 
been assuming that you are using Microsoft's Visual C++ compiler to 
build your dynamic-link library. When you write a DLL, it is likely that 
you will need some startup assistance from the C run-time library. For 
example, say that you are building a DLL that contains a global variable 
and that this global variable is an instance of a C++ class. Before the DLL 
can safely use the global variable, the variable must have its constructor 
called-this is ajob for the C run-time library's DLL startup code. 

When you link your DLL, the linker embeds the address of the 
DLL's entry/exit function in the resulting DLL file image. You specify 
the address of this function using the linker's /ENTRY switch. By default, 
when you use Microsoft's linker and specify the /DLL switch, the linker 
assumes that the entry function is called~lLMainCRTStartup. This func
tion is contained inside the C run-time's static-link library and is embed
ded in your DLL file image when you link your DLL. 

Now, when your DLL file image is mapped into a process's address 
space, the system actually calls this _DllMainCRTStartup function instead 
of your DllMain function. The _DlLMainCRTStartup function initializes 
the C run-time library and ensures that any global or static C++ objects 
are constructed when _DlLMainCRTStartup receives the DLL_PROCESS
_ATTACH notification. Mter any C run-time initialization has been 
performed, the ~llMainCRTStartup function calls your DlLMain function. 

When the DLL receives a DLL_PROCESS_DETACH notification, 
the system again calls the ~lLMainCRTStartup function. This time, the 
function calls your DllMain function, and when DllMain returns, ~ll
MainCRTStartup calls any destructors for any global or static C++ ob
jects in the DLL. The ~llMainCRTStartup function is also responsible 
for doing any additional C run-time-related initialization and cleanup 
when DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifi
cations are sent to the DLL. 

I mentioned earlier in this chapter that you do not have to imple
ment a DlLMain function in your DLL's source code. If you don't have 
your own DlLMain function, the C run-time library has its own implemen
tation of a DllMain function that looks like this: 

BOOl WINAPI DllMain(HINSTANCE hinstDll. DWORD fdwReason. 
LPVOID lpReserved) { 

return(TRUE) ; 
} 

503 



ADVANCED WINDOWS 

When the linker links your DLL, it will link the C run-time's imple
mentation of the DlLMain function if the linker cannot find a DlLMain 
function in your DLL's OBJ files. 

Exporting Functions and Variables from a Dll 

504 

When you create a DLL, you are creating a set of functions that you want 
an EXE or other DLLs to be able to call. When a DLL function is made 
available to an EXE or another DLL file, the function is said to be exported. 
Win32 makes it possible to export global data variables as well as func
tions. In this section, we look at the steps you need to perform in order to 
export a DLL's functions and global variables. 

The code below (taken from a DLL's source file) shows how to 
export a function called Add and a global integer variable called 
g..nUsageCount from a DLL: 

__ declspec(dllexport) int Add (int nLeft. int nRight) { 
return(nLeft + nRight); 

} 

__ declspec(dllexport) int g_nUsageCount = 0; 

For the most part, nothing in this code should be new to you except 
for the _declspec(dllexport). Microsoft's C/C++ compiler recognizes this 
as a new keyword. When the compiler compiles the Add function and the 
g..nUsageCount variable, the compiler embeds some additional informa
tion in the resulting OBJ file. This information is intended to be parsed 
and processed by the linker when all of the OBJ files for the DLL are 
linked. 

When the DLL is linked, the linker detects this embedded informa
tion about the exported function and variable. The linker then auto
matically produces a LIB file that contains the list of symbols exported by 
the DLL. This LIB file will, of course, be required to link any EXE that 
calls the exported functions in the DLL. In addition to creating the LIB 
file, the linker also embeds a table of exported symbols in the resulting 
DLL file. Each entry in this table consists of the exported function's or 
variable's name and the address at which the function or variable is lo
cated within the DLL's file image. The linker ensures that the list is 
sorted alphabetically by symbol name. 

You can run the DumpBin utility that comes with Visual C++ to see 
what the export table looks like. The sample output on the opposite page 
shows a fragment of the Windows 95 KERNEL32.DLL's export table: 



E LEV E N: Dynamic-Link Libraries 

DUMPBIN -EXPORTS KERNEL32.DLL 

Microsoft (R) COFF Binary File Dumper Version 2.50 
Copyright (C) Microsoft Corp 1992-94. All rights reserved. 

Dump of file kerne132.dll 

File Type: DLL 

Section contains the following Exports for KERNEL32.dll 

o characteristics 
2EAC6946 time date stamp Mon Oct 24 19:11:18 1994 

0.0 version 
1 base 

320 ft functi ons 
320 ft names 

ordinal hint name 

1 0 AddAtomA (000334b2) 
2 1 AddAtomW (000108a9) 
3 2 AddConsoleAliasA (0001094b) 
4 3 AddConsoleAliasW (0001094b) 
5 4 AllocConsole (0001707e) 
6 5 AllocLSCallback (0002250a) 
7 6 AllocMappedBuffer (00031b4f) 
8 7 AllocSLCallback (0002253d) 
9 8 BackupRead (00010930) 
A 9 BackupSeek (0001091e) 
B A BackupWrite (00010930) 
C B Beep (000108c4) 
D C BeginUpdateResourceA (000108c4) 
E D BeginUpdateResourceW (000108c4) 
F E BuildCommDCBA (00033f45) 

10 F BuildCommDCBAndTimeoutsA (00033f70) 
11 10 BuildCommDCBAndTimeoutsW (000108df) 
12 11 BuildCommDCBW (000108c4) 
13 12 CallNamedPipeA (00033dae) 
14 13 CallNamedPipeW (00010930) 

316 315 
317 316 
318 317 
319 318 

lstrcmpiA (00032c80) 
lstrcmpiW (000108c4) 
lstrcpy (00032cba) 
lstrcpyA (00032cba) 

(continued) 

505 



ADVANCED WINDOWS 

tJ 
Important 

506 

31A 319 lstrcpyW (000108c4) 
31B 31A 1 strcpyn (00032cf4) 
31C 31B lstrcpynA (00032cf4) 
310 31C lstrcpynW (000108df) 
31E 310 lstrlen (00032d6b) 
31F 31E lstrlenA (00032d6b) 
320 31F lstrlenW (000108a9) 

Summary 

4000 .data 
6000 .edata 

120013 . rs rc 
41131313 .text 

3131313 LOCKCOOE 
3131313 LOCKOATA 
2000 _FREQASM 
20013 _INIT 

As you can see, the symbols are in alphabetical order, and the num
ber in parentheses identifies the symbol's address in the DLL file image. 
The hint column simply indicates the entry number in the list; the first 
entry is O. The value in the ordinal column is always 1 greater than the 
value in the hint column. 

Many developers are used to exporting DLL functions by assigning func
tions an ordinal value. This is especially true if you are coming from a 16-
bit Windows background. However, Microsoft does not publish ordinal 
values for the Win32 system DLLs. When your EXE or DLL links to any 
Win32 function, Microsoft wants you to link using the symbol's name. If 
you decide to link by ordinal, you run the risk that your application will 
not run on other Win32 platforms. 

In fact, this has happened to me. I published a sample application 
in the Microsoft Systems Journal that used ordinal numbers. My application 
ran fine on Windows NT 3.1, but when Windows NT 3.5 came out, my 
application did not run correctly. In order to fix the problem, I had to 
replace the ordinal numbers with function names. Now the application 
runs on both Windows NT 3.1 and Windows NT 3.5. 

I asked Microsoft why they are getting away from ordinals and got 
this response: "We [Microsoft] feel that the PE format provides the bene
fit of ordinals (fast lookup) with the flexibility of import by name. We 
can add APls at any time. Ordinals are very hard to manage in a large 
project with multiple implementations?' 

(continued) 



Imp(lI'l~iU 

continued 

E LEV E N: Dynamic-Link Libraries 

You can use ordinals for any DLLs that you create and have your 
EXE files link to these DLLs by ordinal. Microsoft guarantees that this 
method will continue to work even in future versions of the operating 
system. However, I personally am avoiding the use of ordinals in my own 
work and will link by name only from now on. 

In order to produce a 16-bit Windows EXE or DLL file, the 16-bit linker 
requires the use of a module definitions (DEF) file. This DEF file has 
been the source of many problems for Windows programmers, and 
Microsoft is working to make DEF files a thing of the past as far as Win32 
EXEs and DLLs are concerned. For the most part, Microsoft has replaced 
DEF files with new linker switches. 

As of this writing, there are only two situations in which you require 
a DEF file to produce a Win32 EXE or DLL: when you want to use func
tion forwarders and when you want to import a function with a name 
other than its exported name. Both of these uses of DEF files are ex
tremelyobscure and should not be an issue for 99.999 percent of all 
EXEs and DLLs written. 

Importing Functions and Variables from a Dll 
When you want your EXE to call functions or access variables contained 
within a DLL, you must tell the compiler that the functions or variables 
that you want to access are contained inside a DLL. For example, the code 
fragment below shows how to import the Add function and the fJ-nUsage
Count variable exported by the DLL discussed on page 504: 

__ declspec(dllimport) int Add (int nLeft. int nRight); 

__ declspec(dllimport) int g_nUsageCount; 

Like _declspec(dllexport), _declspec(dllimport) is a new keyword rec
ognized by Microsoft's CjC++ compiler. This keyword informs the com
piler that the Add function and the fJ-nUsageCount variable are contained 
in a DLL that the EXE will have access to when it loads. This causes the 
compiler to generate special code when accessing these imported symbols. 

The compiler also embeds special information in the resulting OBJ 
file. This information is used in linking the EXE file. It tells the linker 

507 



ADVANCED WINDOWS 

508 

which functions it needs to look for in the various LIB files in order to suc
cessfully link the EXE file image. When the linker is attempting to link the 
EXE, it looks for the imported functions and variables. As the linker 
discovers which LIB file contains the imported symbols, the linker adds 
entries to an import table. Each entry contains the name of the DLL file 
that contains the symbol, and also contains the name of the symbol itself. 
When the linker finally writes the EXE file image to the hard drive, the 
image contains this import table. 

You can run the DumpBin utility that comes with Visual C++ to see 
what the import table looks like. The sample output below shows the 
Windows 95 CALC.EXE's import table: 

DUMPBIN -IMPORTS CALC.EXE 

Microsoft (R) COFF Binary File Dumper Version 2.50 
Copyright (C) Microsoft Corp 1992-94. All rights reserved. 

Dump of file ca1c.exe 

File Type: EXECUTABLE IMAGE 

Section contains the following Imports 

SHELL32.d11 
2EAC769C time date stamp Mon Oct 24 20:08:12 1994 

7E982F73 32 She11AboutA 

KERNEL32. d11 
2EAC6964 time date stamp Mon Oct 24 19:11:48 1994 

BFFAIF51 184 G1oba1Un1ock 
BFF936B8 16C G1oba1A11oc 
BFFAIEA7 17D G1 oba 1 ReA 11 oc 
BFFAIEC9 17E G1oba1Size 
BFF936EB 16E G1oba1Compact 
BFFAIF73 175 G1oba1Free 
BFFAIF0D 17A G1oba1Lock 
BFFA2D6B 321 1str1enA 
BFFA2D31 312 1strcatA 
BFFA35DE 2F4 WriteProfi1eStringA 
BFFA3186 115 GetModu1eHand1eA 
BFFA3248 13F GetStartupInfoA 
BFF9F4FC F8 GetEnvironmentStrings 
BFF9F4EE C8 GetCommandLineA 



E LEV E N: Dynamic-Link Libraries 

BFF96741 29E Sleep 
BFFA2C46 315 lstrcmpA 
BFFA3581 13A GetProfileStringA 
BFF8C136 2B8 UnhandledExceptionFilter 
BFFA3167 113 GetModuleFileNameA 
BFFAAB12 BE GetACP 
BFFAAB18 11F GetOEMCP 
BFFAAB1E C1 GetCPInfo 
BFF8E3D4 141 GetStdHandle 
BFF8E4DF 104 GetFileType 
BFF94904 2C4 Virtual Free 
BFF9476E 2C3 VirtualAlloc 
BFFA21EE 21F RaiseException 
BFFAAC19 1FB MultiByteToWideChar 
BFFAB259 2DD WideCharToMultiByte 
BFFA1E78 12D GetprocAddress 
BFF9FCFD 10B GetLastError 
BFF936B8 1D8 LocalAlloc 
BFFA1FFC 1DF LocalReAlloc 
BFFA2CBA 31B lstrcpyA 
BFFA354F 136 GetProfileIntA 
BFF8A63D 15B GetTickCount 
BFF937D4 1DC Local Free 
BFF8A150 161 GetVersion 
BFF9F25B 7B ExitProcess 
BFF8BE06 23B RtlUnwind 

USER32.dll 
2EAC7672 time date stamp Mon Oct 24 20:07:30 1994 

BFF610F6 223 WinHelpA 
BFF62386 D6 Get DC 
BFF6446D 122 GetWindowRect 
BFF62D77 45 CreateDialogParamA 
BFF616A8 30 CheckRadioButton 
BFF64950 165 LoadStringA 
BFF63B36 192 RegisterClassA 
BFF642DF 112 GetSysColorBrush 
BFF64DB4 157 LoadCursorA 
BFF64D9E 15B LoadlconA 
BFF61639 1C5 SetDlgItemTextA 
BFF64416 DB GetDlgltem 
BFF62042 B6 FillRect 
BFF64798 IDA SetRect 
BFF62B9E 2E CheckMenuItem 
BFF61A54 110 GetSubMenu 
BFF62302 F1 GetMenu 

(continued) 

509 



ADVANCED WINDOWS 

BFF6147E lEB SetWindowPos 
BFF616C9 16B MapDialogRect 
BFF6203C 138 InvalidateRect 
BFF6236E 1C8 SetFocus 
BFF64597 14A IsIconic 
BFF642BE 111 GetSysColor 
BFF623E4 7F DestroyMenu 
BFF61B41 208 TrackPopupMenuEx 
BFF61251 161 LoadMenuA 
BFF61E22 19F ReleaseCapture 
BFF62376 1B6 SetCapture 
BFF64450 DA GetblgCtrlID 
BFF62BA6 A4 EnableMenuItem 
BFF6470D 144 IsClipboardFormatAvailable 
BFF61F5C 1A0 ReleaseDC 
BFF64527 1A7 ScreenToClient 
BFF623B8 80 DestroyWindow 
BFF623A8 18D PostQuitMessage 
BFF64F9B 77 DefWindowProcA 
BFF623EC 172 MessageBeep 
BFF61720 123 GetWindowTextA 
BFF619F7 98 DrawFrameControl 
BFF644AD CC GetClientRect 
BFF62EF9 1F4 ShowCursor 
BFF62B62 1BE SetCursor 
BFF61798 A9 EndPaint 
BFF619FD 95 DrawEdge 
BFF61747 9 BeginPaint 
BFF62B5e 36 CloseClipboard 
BFF63F9B 29 CharUpperA 
BFF61165 CE GetClipboardData 
BFF62Fel 184 OpenClipboard 
BFF61510 1EC SetWindowTextA 
BFF61F70 A6 EnableWindow 
BFF61689 2D CheckDlgButton 
BFF61F64 1 F7 ShowWindow 
BFF623D4 217 UpdateWindow 
BFF611A1 4F CreateWindowExA 
BFF64BDe lAD SendMessageA 
BFF61255 153 LoadAcceleratorsA 
BFF64AD7 FD GetMessageA 
BFF64B96 146 IsDialogMessageA 
BFF64B3C 20A TranslateAcceleratorA 
BFF64Be3 2eD TranslateMessage 
BFF63DDB 85 DispatchMessageA 
BFF63902 173 MessageBoxA 

510 



E LEV E N: Dynamic-Link Libraries 

GOI32.dll 
2EAC7672 time date stamp Mon Oct 24 20:07:30 1994 

BFF344AO C2 GetStockObject 
BFF3133F 94 GetDeviceCaps 
BFF310E1 03 GetTextMetricsA 
BFF34C28 135 SetTextColor 
BFF34C2F 114 SeFtBkColor 
BFF3219E 145 TextOutA 
BFF31B26 CF GetTextExtentPointA 
BFF324A9 115 SetBkMode 
BFF3214F 10E SelectObject 
BFF32461 46 OeleteObject 

Summary 

1000 . bss 
2000 .data 
1000 . i data 
1000 .rdata 
2000 .reloc 
2000 .rsrc 
A000 .text 

When an EXE file is invoked, the operating system loader examines 
the EXE's import table and attempts to locate and map any required 
DLLs into the process's address space. The loader then obtains the ad
dresses of the symbols referenced by the EXE file and saves these 
addresses in a table. Naturally, this can take some processing time-but 
it is done only when the process is first invoked. Whenever the applica
tion references one of these symbols, the code generated by the com
piler pulls the symbol's address from the table and completes the link. 
The number to the left of the imported symbol is called a hint and is used 
by the loader to speed up the process of resolving the symbol's address. 
The number to the left of the hint is the address of the function if the 
executable file has been bound? 

When you want to import a symbol, you do not have to use the 
_declspec( dllimport) keyword. Instead, you can simply use the standard C 
extern keyword. However, the compiler is able to produce slightly more 
efficient code if it knows ahead of time that the symbol you are referenc
ing is going to be imported from a DLL's LIB file. So I highly recom
mend that you use the _declspec( dllimport) keyword for imported 
function and data symbols. 

2. A DLL is bound using the BIND utility; this utility does not ship with Visual C++ but is 
included in the Win32 SDK. 

511 



ADVANCED WINDOWS 

512 

A thread can obtain the address of a DLL's exported function or 
variable by calling the GetProcAddress function: 

FARPROC GetProcAddress(HINSTANCE hinstDll. LPCSTR lpszProc): 

The hinstDll parameter specifies the handle to the DLL. The return value 
from LoadLibrary or LoadLibraryEx identifies this handle value. The lpsz
Proc parameter can take one of two forms. First, it can be the address to 
a zero-terminated string containing the name of the function whose 
address we want: 

lpfn = GetProcAddress(hinstDll. "SubclassProgManFrame"): 

Notice that the lpszProc parameter is prototyped as an LPCSTR, as op
posed to an LPCTSTR. This means that the GetProcAddress function will 
accept only ANSI strings-you cannot pass a Unicode string to this func
tion. This is because the function and variable symbols are always stored 
as ANSI strings in the DLL's export table. 

The second form the lpszProc parameter can take indicates the ordi
nal number of the function whose address we want: 

lpfn = GetProcAddress(hinstDll. MAKEINTRESOURCE(2»: 

This usage assumes that we know that the SubclassProgManFrame function 
was assigned the ordinal value of 2 by the creator of the DLL.3 

Either method provides the address to the SubclassProgManFrame 
function contained inside the DLL. If the function cannot be found, 
GetProcAddress returns NULL. There are some subtle disadvantages in 
using either method. The first method works more slowly than the sec
ond because the system must perform string comparisons and searches 
on the function name string passed in. In the second method, if you pass 
an ordinal number that hasn't been assigned to any of the exported 
functions, GetProcAddress might return a non-NULL value. (This is true 
for 16-bit Windows as well.) This return value will trick your application 
into thinking that you have a valid address when in fact you don't. 
Attempting to call this address will almost certainly cause the thread to 
raise an access violation. Early iI} my Windows programming career, I 
didn't fully understand this behavior and was burned by it several 
times-watch out. (This behavior is yet another reason to avoid ordinals 
in favor of symbol names.) 

3. See the important note on page 506 pertaining to the use of ordinal values. 



E LEV E N: Dynamic-Link Libraries 

A DLL's Header File 
Usually, when you create a DLL you also create a header file. This header 
file has the prototypes for all the functions and variables that the DLL is 
exporting. When you compile your EXE's source code files, you will in
clude this header file. Often you will want to include this header file 
when you compile the DLL's source code files as well. In order to create a 
single header file that you can include for both the EXE's and the DLL's 
source code files, you should create the header file as follows: 

#if !defined(_MYLIB_} 
#define MYLIBAPI __ declspec(dllimport} 
/felse 
/fdefine MYLIBAPI __ declspec(dllexport} 
/fendif 

MYLIBAPI int Add (int nLeft. int nRight); 
MYLIBAPI int g_nUsageCount; 

Then, at the top of your DLL's source code files, include the above 
header file as follows: 

1fdefine _MYLIB_ 
/finclude "MYLIB.H" 

When you create the header as I've just described, MYLIBAPI 
expands to _declspec(dllexport) , which matches the explicit usage of 
_declspec( dllexport) in the DLL's source code. This usage forces the Add 
function and the g_nUsageCount variable to be exported. The compiler 
would complain if the header file proto typed these symbols as imported 
while the source code defined the same symbols as exported. Because 
MYLIBAPI expands to __ declspec(dllexport) when compiling the DLL's 
code, the compiler does not complain and the code compiles cleanly. 

For the EXE's source code files, include the MYLIB.H header file 
without defining _MYLIB_ first. This will cause MYLIBAPI to expand to 
_declspec(dllimport), and the compiler will know that you are expecting 
these symbols to be imported. If you examine the Windows header files, 
such as WlNUSER.H, you'll see that Microsoft uses the same technique 
that I've just explained here. 

513 



ADVANCED WINDOWS 

Sharing Data Across Mappings of an EXE or a Dll 
As you know by now, the system creates instances of any global or static 
variables contained in an EXE or a DLL file image for multiple map
pings of the file image. In other words, if an EXE has a global variable 
and you invoke two or more instances of the application, each process 
gets its very own copy of the global variable-the multiple instances of 
the EXE do not share a single copy of the global variable. Normally, this 
is exactly what we want. However, there are some occasions when it is use
ful and convenient for multiple mappings of an EXE to share a single 
instance of a variable. 

For example, Win32 offers no easy way to determine whether the 
user is running multiple instances of an application. But if you could get 
all the instances to share a single global variable, this global variable 
could reflect the number of instances running. When the user invoked 
an instance of the application, the new instance's thread could simply . 
check the value of the global variable (which had been updated by an
other instance), and if the count were greater than 1, the second instance 
could notify the user that only one instance of the application is allowed 
to run and the second instance would terminate. 

This section discusses a technique that allows you to share variables 
among all instances of an EXE or a DLL. But before we get heavily into 
the details, you'll need a little background information. 

The Sections of an EXE or a DLL 

514 

Every EXE or DLL file image is composed of a collection of sections. By 
convention, each standard section name begins with a period. For ex
ample, when you compile your program, the compiler places all the code 
in a section called .text. The compiler also places all the uninitialized 
data in a .bss section and all the initialized data in a .data section. 

Each standard section has a combination of the following attributes 
associated with it: 

Attribute 

READ 

WRITE 
SHARED 

EXECUTE 

Meaning 

The bytes in the section can be read from. 

The bytes in the section can be written to. 

The bytes in the section are shared across multiple instances. 

The bytes in the section can be executed. 



E LEV E N: Dynamic-Link Libraries 

By running the DumpBin utility, you can see the list of sections in an 
executable or a DLL. The following listing shows the result of running the 
DumpBin utility on both the PMREST.EXE and PMRSTSUB.DLL files, 
the sample programs presented in Chapter 16: 

DUMPBIN -SUMMARY PMREST.EXE 
Microsoft (R) COFF Binary File Dumper Version 2.50 
Copyright (C) Microsoft Corp 1992-94. All rights reserved. 

Dump of file pmrest.exe 

Fil e Type: EXECUTABLE IMAGE 

Summary 

1000 .bss 
1000 .data 
1000 · i data 
1000 .rdata 
1000 .reloc 
1000 · rsrc 
1000 .text 

DUMPBIN -SUMMARY PMRSTSUB.DLL 
Microsoft (R) COFF Binary File Dumper Version 2.50 
Copyright (C) Microsoft Corp 1992-94. All rights reserved. 

Dump of file pmrstsub.dll 

Fil e Type: DLL 

Summary 

1000 .bss 
1000 .data 
1000 .edata 
1000 · i data 
1000 .rdata 
1000 .reloc 
1000 .rsrc 
1000 .text 
1000 Shared 

In addition to the summary list of sections above, you can get a 
more detailed list of each section by specifying the -HEADERS switch to 
DumpBin. 

515 



ADVANCED WINDOWS 

516 

The table below shows the names of some of the more common 
sections and what each contains: 

Section 
Name Contains 

.text Application's or DLL's code 

.bss Uninitialized data 

.rdata Read-only run-time data 

.rsrc Resources 

.edata Exported names table 

.data Initialized data 

.xdata Exception handling table 

.idata Imported names table 

.CRT Read-only C run-time data 

.reloc Fixup table information 

.debug Debugging information 

. tis Thread-local storage 

Notice how the PMRSTSUB.DLL has an additional section-called 
Shared-that does not exist in the application's file. I created this sec
tion myself. You can easily create sections when compiling an application 
or a DLL by using the following directive when you compile: 

#pragma data_seg("segname") 

So for example, the PMRSTSUB.C file contains these lines: 

#pragma data_seg("Shared") 

DWORD g_dwThreadldPMRestore = 0; 
HWND g_hwndPM = NULL; 

#pragma data_seg() 

When the compiler compiles this code, it creates a new section
Shared-and places all the initialized data variables that it sees after the 
pragma in this new section. In the example above, the two variables
£?-dwThreadldPMRestore and £?-hwndPM-are both placed in the Shared 
section. Following the two variables, the #pragma dataseg() line tells the 
compiler to stop putting variables in the Shared section and to start put
ting them back in the default data section. It is extremely important to 



E lEV E N: Dynamic-link libraries 

note that the compiler will store only initialized variables in the new sec
tion. The compiler always places uninitialized variables in the .bss section. 
For example, if I had removed the initializations from the previous code 
fragment as follows, the compiler would have ended up putting all these 
variables in the .bss section and none ofthem in the Shared section: 

Ipragma data_seg("Shared") 

DWORD g_dwThreadIdPMRestore; 
HWND g_hwndPM; 

Ipragma data_seg() 

Probably the most common reason to put variables in their own 
section is to share them among multiple mappings of an application or a 
DLL. By default, each mapping of an application or a DLL gets its very 
own set of variables. However, you can group into their own section any 
variables that you want to share among all mappings of an application or a 
DLL. When you group variables, the system doesn't create new instances 
of the variables for every mapping of the application or DLL. 

Just telling the compiler to place certain variables in their own sec
tion is not enough to share those variables. You must also tell the linker 
that the variables in a particular section are to be shared. You can do this by 
using the -SECTION switch on the linker's command line: 

-SECTION:name. attributes 

Following the colon, place the name of the section for which you want to 
alter attributes. 

For PMRSTSUB.DLL, we want to change the attributes of the 
Shared section. You must specifY the attributes of the section following 
the comma. Use an R for READ, a W for WRITE, an S for SHARED, and 
an E for EXECUTE. So to make the Shared section readable, writable, 
and shared, the switch must look like this: 

-SECTION:Shared.RWS 

If you want to change the attributes of more than one section, you 
must specify the -SECTION switch multiple times-once for each sec
tion for which you want to change attributes.4 

4. The PMRSTSUB.C file uses the following line to embed this linker directive in the 
OBJ file: 

Ilpragma comment(lib, "msvcrt " "-section:Shared,rws") 

By embedding this directive in the source code file, you don't have to remember to change 
any linker switches in the project's settings. 

517 



ADVANCED WINDOWS 

Although it is possible to create shared sections, sharing sections is 
greatly discouraged for two reasons. First, sharing memory in this way 
violates B-Ievel security policy. Second, sharing variables means that an 
error in one application can affect the operation of another application 
because there is no way to protect a block of data from being randomly 
written to by an application. 

Pretend that you have written two applications, each requiring the 
user to enter a password. However, you decide to add a feature to your 
applications that makes things a little easier on the user: if the user is al
ready running one of the applications when the second is started, the 
second application examines the contents of shared memory in order to 
get the password. This way, the user doesn't need to enter the password a 
second time if one of the programs is already being used. 

This sounds innocent enough. Mter all, no other applications but 
your own load the DLL and know where to find the password contained 
within the shared section. However, hackers lurk about, and if they want 
to get your password, all they need to do is write a small program of their 
own to load your company's DLL and monitor the shared memory blocks. 
When the user enters a password, the hacker's program can learn the 
user's password. 

An industrious program such as the hacker's might also try to re
peatedly guess at passwords and write them to the shared memory. Once 
the program guesses the correct password, it can send all kinds of com
mands to one of the two applications. 

Perhaps this problem could be solved if there were a way to grant 
access to only certain applications for loading a particular DLL. But cur
rently this is not the case-any program can call LoadLibrary to explicitly 
load aDLL. 

The ModUse Sample Application 

518 

Earlier in this chapter, I said that Win32 does not support the GetModule
Usage function offered by 16-bit Windows. However, by using shared 
memory, you can implement the GetModuleUsage function yourself. The 
MODUSE.EXE and MODULE.DLL files demonstrate how to do this. 
Figure 11-3 shows MODULE.DLL, which we'll look at first. The source 
code files, resource files, and make file for the application are in the 
MODUSE.ll directory on the companion disc. 



E LEV E N: Dynamic-Link Libraries 

MODULE.C 
1*******************************************************'**** 
Module name: Module.C 
Notices: Copyright (c) 1995 Jeffrey Richter 
******.************.************~*.*******'***.*.***.*******1 

Figure 11-3. (continued) 

The Module dynamic-link library. 

519 



ADVANCED WINDOWS 

Figure 11-3. continued 

(continued) 

520 



E LEV E N: Dynamic-Link Libraries 

Figure 11-3. continued 

} 

II N.otify all of the top-levelwlndows that this 
II module's usage count has changed. 
PostMessage(HWNO_llROADCAST •. 9-uMsgModCntChange. 0. 0}: 

..• break.:. 

, . ~~~,tApft~4G~t";~;~$."C(}014;f 
. re~.urn(~ ntoutlleUsage); . . 

... ·¥q~~~tf~; .. {...... ......>;: .•.... ...., •.....••....•.. ; .... .....<. ....• . 
.. . . ·;l;f< iI''*c;''~l"~*~**l"'!'1l!*'I;******* ** *1" * **;l<** *'«* * *iI' 1Ii******.** '\;* *",* ** *~** 
'~'l4ddlil~na1ile~:~ l'4odu l~:H '.'.. ..•. .. ... .• 
. . ti~~:fcestCQ;pYf'j~n.t/i~}.iY~9~'Jefn~y·~icht~r 
*~4t**~*.****",~*~**'~***********************¥**,*\);**;,,*~*********1 . ',' ",; .:, ,;' ". '" '.' .", ~:,;:; . . '. ' ., '" ".", ',,'. . ... / /' . "" "", 

'·;// FLfrtctf!)~·ttitettlrrt~~~~dU·1~'sus;~c6unt. 
t-iboUtEAiI· .' LONG ·()etMoiu;letls.ag~" t"v'O'iQ )i> .... c' c ' •• 

\;,;,~, J .. ', ~"'.~ z' ,> ~ . "~,' ::. ., 

lit/1Illljiltf) I (}f Fil.e\~u allII n fUn UOlflJ 
0, ,""",' ',. ' ", •• ', , 

(continued) 

521 



ADVANCED WINDOWS 

Figure 11-3. continued 

(continued) 

522 



E LEV E N: Dynamic-Link Libraries 

Figure 11-3. continued 

#ifndef APSTUDIO_INVOKED 
111111111111111111///1111/11/1111/1//11111/11111/1111111111111 
II 
1/ Generated from the TEXTINCLUDE 3 resource. 
/I 

11/1111/ I Iti It Itl II/lUll II /lUI IlII/ II {/(/II /111111 / lIltl I III 
/fendH.. IInot-AI?STlJOIQ .. JNVDl<E.[) 

The most important thing to note in MODULE.C is that I have cre
ated a global variable, g.... lModule Usage, in its very own section and have 
specified that this section be shared by specifying the -SECTION switch 
to the linker. I have also initializedg_lModuleUsage to be -1. Now, when
ever MODULE.DLL is mapped into a process's address space, DllMain is 
called with a value ofDLL_PROCESS_ATTACH. The DLL processes this 
call by calling: 

InterlockedIncrement(&g_lModuleUsage); 

This call increments the g....lModuleUsage variable. You might wonder why 
I increment this long by calling Interlockedlncrement instead of just using: 

g_lModuleUsage++; 

I admit that the difference between the two statements is subtle, and that 
most of the time you wouldn't even notice a difference and everything 
would work just fine. However, if I use only the C postfix increment 
operator, there is a potential problem. If two processes call LoadLibrary 
to load MODULE.DLL into memory at the same time, the value of 
g....lModuleUmge can become corrupted. Actually, this would probably 
never happen on a single-CPU machine because the CPU can preempt a 
thread only in between machine instructions. But on a multiprocessor 
machine, several CPUs can access the same memory location simulta
neously. By using Interlockedlncrement, the system guarantees that no 
more than one CPU can access the 4 bytes of memory at anyone time. 

The next step in maintaining MODULE.DLL's usage count is to 
decrement the usage count whenever DllMain is called with a value of 
DLL_PROCESS_DETACH. When this happens, g....lUsageCount is decre
mented by making a call to InterlockedDecrement. See Chapter 9 for more 
information on the Interlockedlncrement and InterlockedDecrement functions. 

523 



ADVANCED WINDOWS 

524 

The only other function in this DLL is GetModuleUsage: 

LONG GetModuleUsage(void); 

This function accepts no parameters and simply returns the value in the 
~lUsageCount variable. An application can now call this function to 
determine the number of processes that have mapped MODULE.DLL 
into their own address spaces. 

To make this demonstration a little more exciting, I also created the 
ModUse (MODUSE.EXE) sample application, listed in Figure 11-4. This 
is a very simple program that displays a dialog box. Mter the dialog box is 
displayed, its dialog box procedure simply sits around and waits for the 
registered window message5 "MsgModCntChange". This message is reg
istered by MODULE.DLL when its DllMain function is called with a 
value of DLL_PROCESS_ATTACH. This same message is registered by 
MODUSE.EXE first when its WinMain function is called. The value for 
the message is saved in the global ~uMsgModCntChange variable. 

Whenever the DLL is attached or detached from a process, it calls 

PostMessage(HWND_BROADCAST, g_uMsgCntChange, 0, 0); 

This causes the value of the registered window message to be broadcast to 
all the overlapped windows in the system. The only windows that will rec
ognize this systemwide window message are the dialog boxes created by 
any active instances of the ModUse application. MODUSE.C's dialog box 
procedure contains an explicit check for this registered window message: 

if (uMsg == g_uMsgModCntChange) { 
SetDlgltemlnt(hDlg, I DC_MODCNT , GetModuleUsage(), FALSE); 

When this message is received, the DLL's GetModuleUsage function is 
called to get the current module usage. This value is then placed in a 
static window control that is a child of the dialog box. 

When you run the ModUse program, the MODULE.DLL file is 
implicitly mapped into the process's address space. The attachment of 
this DLL to the process causes the registered message to be posted to all 
the overlapped windows in the system. The windows will ignore this mes
sage except for the dialog box displayed by ModU se. When the dialog box 
receives the message, it calls the GetModuleUsage function in the DLL to 

5. For more information about using registered window messages, see the RegisterWindow
Message function in the Microsoft Win32 Programmer's Reference. 



-~ 
ModUse.ico 

E LEV E N: Dynamic-Link Libraries 

obtain MODULE.DLL's usage count, which is l. This value is then placed 
in the dialog box: 

If you run a second instance of ModUse, the same sequence of 
events will occur. This time, MODULE.DLL's usage count is 2, and two 
dialog boxes that can process the registered window message are dis
played. Both dialog box procedures call GetModuleUsage, see that the 
count is 2, and then update their static controls appropriately: 

This technique for sharing data in a section across multiple file 
mappings is not limited to DLLs alone-applications (EXEs) can also 
use it. For an application, the data is shared among all running instances 
of the application. 

MODUSE.C 
/************************************************************ 
Module name: ModUse.C 
Not i cas: Copyri ght (c) 1995 Jeffrey Ri chter 
******.**************.****i*.*** •• *.** •• ******** •• ***.******1 

IFi ncl ude .... \AdvWi.n32. H" 
/1:1nclude <windows.h> 
'include <wfndowsx.h> 

1* 'See Appendix B for details. *1 

fpragma warning(disable: 4001) 1* Single-line comment *1 

'include "Resource.H
Ifinclude "Module.H" 

111111111111111111111111111111111/111/1111/111/11/1/1/1/1//1/ 

'deftne LIBNAME ~Module~ 

Figure 11-4. (continued) 

The ModUse application. 

525 



ADVANCED WINDOWS 

526 

Figure 11-4. continued 

/'I:ll(fN li)?li{JJltl,'I,)) ii/Nt IJtl#~1I lilll/ lIlJNj /1 I N IN tll 
'!;~ ',;.~: ::o~: ,', 

·t ~Q~(:gl~~Q~I~'ftDtllloj (HWNl) nw.nd ,HW~O h\ilndFot;us, 
".';~ ·~~p:~~~~M~.J~~.~;~~~:'),·.·J::·~./~ ~ 

\~' ·,t," , ~ ... ~'.~ ~ .. ~' ><.:;. \,:6,::'~": ,:Y/~ 
;;, •... ;. /~ 'As$otia,t\!. ilrr'iC(}r:twith. t~edi aJogbox. 
' .. ~~ •.• ~ef(;1I1sil~t\{T{ tiwlld;~ GCL,...IfJ;(:QN.;h.GNGr 
· ..... ··.·, .•• :io~.cii~:Qnt(;lr(~~TAN.~E} .~etwirtdoWlQng(.hwnd •• GW/':, ... tqNSTANCE·), 

'ii "',';2T~}(T;{i:'f1:o.~us~h»); '. . . 
'o"!\c>C ,~,;: ., ~ "'~ /;/" v 

::;';~'} ;tF~or~@t,~e.~J~tf!;.;~oll~i?l· to~e·i. n1 t'ial i;n!d cor re.ct 1 y . 
i.; :.': :~P·$tf'!e·SS:;(ige(h\iln.a;;g:",;tJMsgM~(;.ntt::h ange .0.. 8); 
·:·;j:.:.t~Ct:LtrntJJWE)r '.' .. : .'. " ... ' 

(continued) 



E LEV E N: Dynamic-Link Libraries 

Figure 11-4. continued 

void Dlg_OnCommand (HWND hwnd. int id. HWND hwndCtl. 

} 

UINT codeNotify) { 

switch (id) { 
case IDCANCEL: 

} 

EndDialog(hwnd. 1d); 
break; 

III I I11I I / 1111111 I III j II / 1/111111 I I / / II/ / 1/11//11///1//1/ / II/ 

BOOL CALLBACK Dlg;...Proc (HWNO hOl g. U I NT uMsg. 

} 

WPARAM wParatn, LPARAM 1 Param) { 

BOOLfProcessed = TRUE; 

if (uMsg== g_uHsgModCntChange) { 
SetDT-gItemI ntfhO]g. IDCUSAGECOUNT. 

GetModu1 eUsagf)(). FALSE); 

'swiich (uMsgY { 

} 

HAN:DLE-MSG( hDlg. W:M~INITOIALOG. 01g_0n1n1 tD; a log); 
HANDlE-MSG(hDTg. WtLCOMMANP, Dlg_OnCommand); 

defaul t; . 
f?rocessed '" FALSE; 
break; 

return(fProcessed); 

IlllIlUIIIII! 11 / II/I jill 111111111/1111111111111/ 11/ II II 1111/ 11/ 

int WUIAPI WlnMain (HINSTANCE hinstExe, 
. HINSTANCEhirrstPrev. LPSTR.lpszCmdLine, int nCmdShow) { 

II"Get the numeric value of the systemwide window message 
// us.edby the module to noti fy all top-l evel windows when 

(continued) 

527 



ADVANCED WINDOWS 

Figure 11-4. continued 

(continued) 
528 



Figure 11-4. continued 

. 3tE:xtiNCttltlf ,0 l$CARDAB LE . 
~EGUf' 

E LEV E N: Dynamic-Link Libraries 

529 



ADVANCED WINDOWS 

The Multlnst Sample Application 

~ 
LE 
Multlnst.ico 

530 

In 16-bit Windows, many programmers used the value of hinstPrev, which 
16-bit Windows passed to WinMain to determine whether an instance of 
an application was already running. Applications that allowed only one 
instance of themselves to run at a time would check the value of hinstPrev, 
and, if its value wasn't NULL, they would terminate. Under Win32, the 
value of hinstPrev passed to WinMain is always NULL. Because of this, an 
application cannot easily determine whether another instance of itself is 
running. 

One way for an application to know how many instances of itself are 
running is to use the shared data section technique just discussed. The 
MultInst (MULTINST.EXE) sample application, listed in Figure 11-5, 
demonstrates how to allow only one instance of an application to run. 
The source code files, resource files, and make file for the application 
are in the MULTINST.ll directory on the companion disc. 

Figure 11-5. (continued) 

The Multlnst application. 



E LEV E N: Dynamic-Link Libraries 

Figure 11-5. mntinued 

///////////////////////////////////////////////////////////// 

1/ Instl"uct.the linker to mak~'.the Shared. section 
/i r.e~dab le/wri tab 1 e ,and shar~d'. . 

. fFpragma<i~mment(1 ib •. I'I!!Sv<:rt;,~"sectJon: Sha rediTWS") 

lIN ,:, tJIHIHflIU;:lIflIlIUUIIILIlIIIJII illilaimlll . 
. .. ," .-: ... ' ,.' :: .i' ," ,,~,~ " ',: . 

":-'"",;.; , 

(continued) 

531 



ADVANCED WINDOWS 

Figure.11-5. continued 

(continued) 

532 



E LEV E N: Dynamic-Link Libraries 

Figure 11-5. continued 

//11111/1111/11/111/111111/1/11/1/1111///11//(1///111/1///111/ Ii' .. . . .' . 

II 
II 

533 





C HAP T E R T W E L V E 

THREAD-LOCAL STORAGE 

Sometimes it's convenient to associate data with an instance of an object. 
For example, window extra bytes associate data with a specific window by 
using the Set Window Word and SetWindowLong functions. Thread-local stor
age (TLS) allows you to associate data with a specific thread of execu
tion. For example, you might want to associate the creation time of a 
thread with a thread. Then, when the thread terminates, you can deter
mine the lifetime of the thread. 

The C run-time library uses TLS. Because the library was designed 
years before multithreaded applications, most functions in the library 
are intended for use with single-threaded applications. The strtok func
tion is an excellent example. The first time an application calls strtok, the 
function passes the address to a string and saves the address of the string 
in its own static variable. Then, when you make future calls to strtok, pass
ing NULL, the function refers to the saved string address. 

In a multithreaded environment, it's possible that one thread can 
call strtok, and then, before it can make another call, another thread can 
also call strtok. In this case, the second thread causes strtok to overwrite its 
static variable with a new address, which happens unbeknownst to the 
first thread. And the first thread's future calls to strtok use the second 
thread's string, which can lead to all kinds of difficult-to-find-and-fix bugs. 

To fix this problem, the C run-time uses TLS, which means each 
thread is assigned its very own string pointer that is reserved for use by 
the strtok function. Other C run-time functions that require the same 
treatment include asctime and gmtime. 

TLS can be a lifesaver if your application relies heavily on global or 
static variables. Fortunately, software developers tend to minimize the 
use of such variables and rely much more on automatic (stack-based) 
variables and data passing via function parameters. This is good because 
stack-based variables are always associated with a particular thread. 

535 



ADVANCED WINDOWS 

It is both fortunate and unfortunate that the standard C library has 
existed for so many years. It has been implemented and reimplemented 
by various compiler vendors; no C compiler would be worth buying if it 
didn't include the standard C library. Programmers have used it for years 
and will continue to do so, which means that the prototype and behavior 
of functions such as strtok must remain exactly as the standard C library 
describes them. If the C run-time library were to be redesigned today, it 
would be designed for environments that support multithreaded appli
cations, and extreme measures would be taken to avoid the use of global 
and static variables. 

In my own software projects, I avoid global variables as much as 
possible. If your application uses global and static variables, I strongly 
suggest that you examine each variable and investigate the possibilities 
for changing it to a stack-based variable. This effort can save you an 
enormous amount of time if you decide to add additional threads to 
your application, and even single-threaded applications can benefit. 

Although the two TLS techniques discussed in this chapter can be 
used in both applications and DLLs, you will more frequently find them 
useful when creating DLLs because DLLs often don't know the struc
ture of the application to which they are linked. If you're writing an appli
cation (vs. a DLL), you typically know how many threads will be created 
and how those threads will be used. The application developer can then 
create makeshift methods or, better yet, use stack-based methods (local 
variables) for associating data with each created thread. 

A DLL implementer typically doesn't know how the application to 
which it is linked creates and uses threads. TLS was created with the intent 
of helping the DLL developer. However, the information discussed in 
this chapter can be used just as easily by an application developer. 

Dynamic Thread-Local Storage 

536 

An application takes advantage of dynamic thread-local storage by call
ing a set of four functions. Although these functions can be used by an 
application or a DLL, they are most often used by DLLs. 

Figure 12-1 shows the internal data structures that Windows 95 and 
Windows NT use for managing TLS. 



T W E L V E: Thread-Local Storage 

r------------------------PROCESS------------------------~ 

Thread-Local Storage Bit Flags: 0 - (TLS_MINIMUM_AVAILABLE -1) 

,-------Thread 1 -------, ...------ Thread 2 -------, 

Index 0 

Index 1 

Index 2 

Index 3 

Index 4 

Index TLS_MINIMUM_AVAILABLE-2 

Index TLS_MINIMUM_AVAILABLE-1 

Figure 12-1. 

Index 0 

Index 1 

Index 3 

Index 4 

Index TLS_MINIMUM_AVAILABLE-2 

Index TLS_MINIMUM_AVAILABLE -1 

Internal data structures that manage thread-local storage. 

The figure shows a single set of in-use flags for each process run
ning in the system. Each flag is either FREE or INUSE, indicating 
whether the TLS slot is in use. Microsoft guarantees that at least TLS
_MINIMUM_AVAILABLE bit flags will be available on all Win32 plat
forms. By the way, TLS_MINIMUM_AVAILABLE is defined as 64 in 
WINNT.H. On some platforms, the system might actually expand this 
flag array to accommodate the needs of the application or the DLL. 

To use dynamic TLS, a call must first be made to TlsAlloc: 

DWORD TlsAlloc(VOID): 

This function instructs the system to scan the bit flags in the process and 
locate a FREE flag. The system then changes the flag from FREE to 
INUSE, and TlsAlloc returns the index of the flag in the bit array. A DLL 
(or an application) usually saves the index in a global variable.1 

1. This is one of those times when a global variable is actually the better choice because the 
value is used on a per-process basis rather than a per-thread basis. 

537 



ADVANCED WINDOWS 

538 

If TlsAlloc cannot find a FREE flag in the list, it returns TLS_OUT
_OF_INDEXES (defined as OxFFFFFFFF in WINBASE.H). 

The first time TlsAlloc is called, the system recognizes that the first 
flag is FREE and changes the flag to INUSE, and TlsAlloc returns O. That's 
99 percent of what TlsAlloc does. I'll get to the other 1 percent later. 

When a thread is created, an array ofTLS_MINIMU~AVAILABLE 
32-bit values (LPVOIDs) is allocated, initialized to 0, and associated with 
the thread by the system. As Figure 12-1 shows, each thread gets its own 
array, and each LPVOID in the array can store any 32-bit value. 

Before you can store information in a thread's LPVOID array, you 
must know which index in the array is available for use-this is what the 
earlier call to TlsAlloc is for. Conceptually, TlsAlloc is reserving an index 
for you. If TlsAlloc returns index 3, it is effectively saying that index 3 is 
reserved for you in every thread currently executing in the process as 
well as in any threads that might be created in the future. 

To place a value in a thread's array, you call the TlsSetValue function: 

BOOl TlsSetValue(DWORD dwTlslndex. lPVOID lpvTlsValue); 

This function puts an LPVOID value or any other 32-bit value, identified 
by the lpvTlsValue parameter, into the thread's array at the index identi
fied by the dwTlslndex parameter. The value of lpvTls Value is associated 
with the thread making the call to TlsSetValue. If the call is successful, 
TRUE is returned. 

A thread changes its own array when it calls TlsSetValue. But a thread 
cannot set a thread-local storage value for another thread. Personally, 
I wish there were another Tls function that allowed one thread to store 
data in another thread's array, but no such function exists. Currently the 
only way to pass initialization data from one thread to another is to pass a 
single 32-bit value to CreateThread or _beginthreadex. CreateThread or _begin
threadex then passes this value to the thread function as its only parameter. 

When calling TlsSetValue, be extremely careful that you always pass 
an index returned from an earlier call to TlsAlloc. Microsoft designed 
these functions to be as fast as possible and, in so doing, gave up error 
checking. If you pass an index that was never allocated by a call to Tls

Alloc, the system stores the 32-bit value in the thread's array anyway-no 
error check is performed. 

To retrieve a value from a thread's array, you call TlsGetValue: 

lPVOID TlsGetValue(DWORD dwTlslndex); 



T W E LV E: Thread-Local Storage 

This function returns the value that was associated with the TLS slot at 
index dwTlslndex. Like TlsSetValue, TlsGetValue looks only at the array 
that belongs to the calling thread. And again like TlsSetValue, TlsGetValue 
performs no test to check the validity of the passed index. 

When you come to a point in your process where you no longer 
need to reserve a TLS slot among all threads, you should call TlsFree: 

BOOl TlsFree(DWORD dwTlsIndex); 

This function simply tells the system that this slot no longer needs to be 
reserved. The INUSE flag managed by the process's bit flags array is set 
to FREE again and might be allocated in the future if a thread later calls 
TlsAlloc. TlsFree returns TRUE if the function is successful. Attempting 
to free a slot that was not allocated results in an error. 

Using Dynamic Thread-Local Storage 
Usually, if a DLL uses TLS, it calls TlsAlloc when its DlLMain function is 
called with DLL_PROCESS_ATTACH, and it calls TlsFree when DlLMain 
is called with DLL_PROCESS_DETACH. The calls to TlsSetValue and Tls

GetValue are most likely made during calls to functions contained within 
theDLL. 

One method for adding TLS to an application is to add it when you 
need it. For example, you might have a function in a DLL that works 
similarly to strtok. The first time your function is called, the thread passes 
a pointer to a 40-byte structure. You need to save this structure so that 
future calls can reference it. So you might code your function like this: 

OWORD g_dwTlsIndex; II Assume that this is initialized 
II with the result of a call to TlsAlloc. 

void MyFunction (lPSOMESTRUCT lpSomeStruct) { 
if (lpSomeStruct 1= NUll) { 

II The caller is priming this function. 

II See if we already allocated space to save the data. 
if (TlsGetValue(g_dwTlsIndex) == NUll) { 

II Space was never allocated. This is the first 
II time this function has ever been called by this thread. 

(continued) 

539 



ADVANCED WINDOWS 

540 

} 

TlsSetValue(g_dwTlslndex, 
HeapAlloc(GetProcessHeap(), 0, 

sizeof(*lpSomeStruct»; 

II Memory already exists for the data; save the newly 
II passed values. 
memcpy(TlsGetValue(g_dwTlslndex), lpSomeStruct, 

sizeof(*lpSomeStruct»; 

} else { 

} 

II The caller already primed the function. Now it 
II wants to do something with the saved data. 

II Get the address of the saved data. 
lpSomeStruct = (LPSOMESTRUCT) TlsGetValue(g_dwTlslndex); 

II The saved data is pOinted to by lpSomeStruct; use it. 

If the application's thread never calls MyFunction, a memory block is 
never allocated for the thread. 

It might seem that 64 (at least) TLS locations are more than you 
will ever need. However, keep in mind that an application can dynami
cally link to several DLLs. One DLL can allocate 10 TLS indexes, a sec
ond DLL can allocate 5 indexes, and so on. So it is always best to reduce 
the number of TLS indexes you need. The best way to do this is to use the 
same method that MyFunction uses above. Sure, I can save all 40 bytes 
across 10 TLS indexes, but doing so is not only wasteful, it makes working 
with the data difficult. Instead, allocate a memory block for the data and 
simply save the pointer in a single TLS index just as MyFunction does. 

When I discussed the TlsAlloc function earlier, I described only 99 
percent of what it did. To help you understand the remaining 1 percent, 
look at this code fragment: 

DWORD dwTlslndex; 
LPVOID lpvSomeValue; 

dwTlslndex = TlsAlloc(); 
TlsSetValue(dwTlslndex, (LPVOID) 12345); 
TlsFree(dwTlslndex); 



T W E L V E: Thread-Local Storage 

II Assume that the dwTlslndex value returned from 
II this call to TlsAlloc is identical to the index 
II returned by the earlier call to TlsAlloc. 
dwTlslndex = TlsAlloc(); 

lpvSomeValue = TlsGetValue(dwTlslndex); 

What do you think lpvSomeValue contains after the code above exe
cl,ltes? 12345? The answer is O. TlsAlloc, before returning, cycles through 
every thread existing in the process and places a 0 in each thread's array 
at the newly allocated index. This is very fortunate. 

It's possible that an application will call LoadLibrary to load a DLL. 
And the DLL might call TlsAlloc to allocate an index. Then the thread 
might call FreeLibrary to remove the DLL. The DLL should free its index 
with a call to TlsFree, but who knows which values the DLL code placed in 
any of the thread's arrays? Next a thread callsLoadLibrary to load a differ
ent DLL into memory. This DLL also calls TlsAlloc when it starts and gets 
the same index used by the previous DLL. If TlsAlloc didn't set the re
turned index for all threads in the process, a thread might see an old 
value and the code might not execute correcdy. 

For example, this new DLL might want to check whether memory 
for a thread has ever been allocated by calling TlsGetValue, as in the code 
fragment shown above. If TlsAlloc doesn't clear out the array entry for 
every thread, the old data from the first DLL is still available. If a thread 
calls MyFunction, MyFunction thinks that a memory block has already 
been allocated and calls memcpy to copy the new data into what My
Function thinks is a memory block. This could have disastrous results. 
Fortunately, TlsAlloc initializes the array elements so that the disaster can 
never happen. 

The Dynamic Th.read-Local Storage Sample Application 
The TLSDyn (TLSDYN.EXE) application, listed in Figure 12-2 beginning 
on page 544, demonstrates how to take advantage of dynamic TLS. The 
program implicidy links to a dynamic-link library called SOMELIB.DLL, 
listed in Figure 12-3 beginning on page 550. This dynamic-link library 
allocates a single TLS index when it receives itsDLL_PROCESS_ATTACH 
notification and frees this TLS index when it receives a DLL_PROCESS
_DETACH notification. The source code files, resource files, and make 
files for TLSDyn and SOMELIB.DLL are in the TLSDYN .12 directory on 
the companion disc. 

541 



ADVANCED WINDOWS 

542 

SOMELIB.DLL contains a function called LoadResString. When this 
function is called, it first checks whether the calling thread previously 
called LoadResString. LoadResString determines this by calling TlsGetValue 
and checking whether the return value is NULL. A NULL value indicates 
a first-time call to LoadResString. In this case, LoadResString allocates a 
block of memory from the process's heap and stores the address of the 
block in the calling thread's TLS slot. 

Whether or not this is the first time this thread is calling Load
ResString, we have an address to a block of memory in the heap allocated 
for this thread. LoadResString now calls LoadString to load a string from 
the DLL's string table into this block of memory. This string is now asso
ciated with the calling thread. 

Finally, LoadResString increments an internal counter (stored in the 
static variable nStringld) and returns the address of the loaded string 
resource. Every time a thread calls LoadResString, a different string is 
retrieved from the DLL's string table. 

Now let's look at how the TLSDyn application works. When you 
invoke it, the following message box appears: 

When WinMain begins executing, it makes a call to the LoadRes
String function, which in turn loads String#O from the DLL's string table 
and associates the string with the process's primary thread. The primary 
thread then makes a call to MessageBox in order to show you that it was 
successful. 

After you click on the OK button, the primary thread creates a dia
log box and five threads. Each of these threads makes its own initial call 
to LoadResString so that each will have its own associated string. Then 
each thread iterates through a loop four times. With each iteration, each 
thread creates a string containing the thread number and its associated 
string. The string is then added to the list box. After all five threads have 
completed their loops, a dialog box appears as shown on the facing page. 

The order of the strings might be different on your machine. Sim
ply note that the LoadResString function assigns every thread its own 
string. Also note that if no thread in the program ever makes a call to 



#1: String #1 
"""rI .•.• _ .. #5: String #2 

#4: String #3 
'''''''r ..... _ .. 13: String #4 

12: String #5 
11: String 11 
12: String 15 

d 11: String 11 
d 13: String 14 
d 11: String 11 
d 14: String 13 
d 12: String 15 
d 15: String #2 

' ... 'r ..... _ .. #3: String #4 
#2: String #5 

"".,r .. _ .. _-' il4: String 13 
ad 13: String 14 
ad 15: String 12 
ad 14: String 13 

T W E L V E: Thread-Local Storage 

LoadResString, memory isn't allocated from the heap for this thread. We 
could allocate the memory in the DllMain function whenever the pro
gram received either a DLL_PROCESS_ATfACH or a DLL_PROCESS
_DETACH notification, but that would mean allocating memory from 
the heap for all threads created by the process, even if they never called 
LoadResString. The method used by SOMELIB.DLL is more efficient. 

Mter the program runs, you can terminate it, which causes another 
message box to appear: 

This message box appears as a result of WinMain making another call to 
LoadResString. LoadResString associates a new string with the primary 
thread, overwriting the original string, String #0. 

Notice how the DllMain function in SOMELIB.C cleans up after 
itself when it receives either a DLL_THREAD_DETACH or a DLL
_PROCESS_DETACH. In both cases, the DLL checks whether memory 
from the heap was allocated for the thread and, if so, frees that memory 

543 



ADVANCED WINDOWS 

TLSDyn.ico 

544 

block. Although the memory would be freed automatically when 
TLSDyn terminated, it's best to clean up yourself. Always check that 
memory is in fact allocated before attempting to free it (just as DlLMain 
does). Also, notice how TLSFree is called when DlLMain is notified that 
the library is being detached from the process. 

Now suppose that an application is already running when one of its 
threads calls LoadLibrary to attach to SOMELIB.DLL. SOMELIB's Dll
Main allocates a TLS index that is guaranteed to be unique for all exist
ing threads and all new threads for this process. Let's say that some 
threads call LoadResString, which results in memory allocation, and a 
thread calls FreeLibrary to detach SOMELIB.DLL. DlLMain receives a 
DLL_PROCESS_DETACH message and frees any memory block associ
ated with the calling thread. But what about other threads in the process 
that might have called LoadResString? The memory allocated by these 
threads will never be freed-we have a pretty bad memory leak here. 

Unfortunately, this problem has no good solutions. Your DLL 
needs to track its allocations in an array, and when it receives a DLL
_PROCESS_DETACH notification, it needs to traverse through all the 
pointers in the array and call HeapFree for each one. 

Figure 12-2. (continued) 

The TLSDyn application. 



T W E LV E: Thread-Local Storage 

Figure 12·2. continued 

1111111111/111111111111111111111111111111111111111111111//1/1 

Iid~fil'leLIBNAME "SomeL i b" 

(continued) 

545 



ADVANCED WINDOWS 

Figure 12-2. continued 

(continued) 

546 



T W E L V E: Thread-Local Storage 

Figure 12-2. continued 

.//1//111 /l1/1l/111 i Ill/llll Ill/Ill II/II J 11111I1 11111111111111 

(continued) 

547 



ADVANCED WINDOWS 

Figure 12-2. continued 

(continued) 

548 



Figure 12-2. continued 

3TEXTINCLUDE DISCARDABLE 
BEGIN 

"\r\n" 

T W E LV E: Thread-Local Storage 

549 



ADVANCED WINDOWS 

Figure 12-3. (continued) 

The SomeLib.DUfile. 

550 



T W E L V E: Thread-Local Storage 

Figure 12-3. continued 

(continued) 

551 



ADVANCED WINDOWS 

Figure 12-3. continued 

(continued) 

552 



T W E L V E: Thread-Local Storage 

Figure 12-3. continued 

(continued) 

553 



ADVANCED WINDOWS 

Figure 12-3. continued 

(continued) 

554 



T W E LV E: Thread-Local Storage 

Figure 12-3. continued 

/////////////////I///////////////////!//////!///////////////// 
// 
f I Generated from ·theTEXTINCI,UOElresourCi:). 
// 

Static Thread-Local Storage 
Static thread-local storage uses the same concept as dynamic TLS-it 
associates data with a thread. However, static TLS is much easier to use in 
your code because you don't need to call any functions to take advan
tage of it. 

Let's say that you want to associate a start time with every thread cre
ated by your application. All you need to do is declare the start-time vari
able as follows: 

__ declspec(thread) DWORD gt_dwStartTime = 0; 

The _declspec(thread) prefix in the line above is a new modifier that 
Microsoft added to the Visual C++ compiler. It tells the compiler that the 
corresponding variable should be placed in its own section inside the 
EXE or DLL file. The variable following _declspec(thread) must be de
clared as either a global variable or a static variable inside (or outside) a 
function. You can't declare a local variable to be of type _declspec(thread). 
This shouldn't be a problem because local variables are always associated 
with a specific thread anyway. I use the gL prefix for global TLS variables 
and sL for static TLS variables. 

When the compiler compiles your program, it puts all the TLS vari
ables into their own section named, unsurprisingly enough, .tIs. The 
linker combines all the .tIs sections together from all the object modules 
to produce one big .tIs section in the resulting EXE or DLL file. 

To actually make static TLS work, the operating system needs to get 
involved. When your application is loaded into memory, the system looks 
for the .tIs section in your EXE file and dynamically allocates a block of 
memory large enough to hold all the static TLS variables. Every time the 
code in your application refers to one of these variables, the reference 
resolves to a memory location contained in the allocated block of 

555 



ADVANCED WINDOWS 

memory. As a result, the compiler must generate additional code in 
order to reference the static TLS variables, which makes your applica
tion both larger in size and slower to execute. On an x86 CPU, three 
additional machine instructions are generated for every reference to 
a static TLS variable. 

If another thread is created in your process, the system traps it and 
automatically allocates another block of memory to contain the new 
thread's static TLS variables. The new thread has access only to its own 
static TLS variables and isn't able to access the TLS variables belonging 
to any other thread. 

That's basically how static TLS works. Now let's add DLLs to the 
story. It's likely that your application will use static TLS variables and that 
you will link to a DLL that also wants to use static TLS variables. When 
the system loads your application, it first determines the size of your 
application's. tls section and adds the value to the size of any. tls sections 
contained in any DLLs to which your application links. When threads 
are created in your process, the system automatically allocates a block of 
memory large enough to hold all the TLS variables required by your 
application and all the implicitly linked DLLs. This is pretty cool. 

But let's look at what happens when your application calls Load
Library to link to a DLL that also contains static TLS variables. The sys
tem needs to look at all the threads that already exist in the process 
and enlarge their TLS memory blocks to accommodate the additional 
memory requirements of the new DLL. Also, if FreeLibrary is called to 
free a DLL containing static TLS variables, the memory block associated 
with each thread in the process should be compacted. 

Alas, this is too much for the operating system to manage. The sys
tem allows libraries containing static TLS variables to be explicitly load
ed at run time; however, the TLS data isn't properly initialized, and any 
attempt to access it may result in an access violation. This is the only dis
advantage of using static TLS; this problem doesn't occur when using 
dynamic TLS. Libraries that use dynamic TLS can be loaded at run time 
and freed at run time with no problems at all. 

The Static Thread-Local Storage Sample Application 

556 

The TLSStat (TLSSTAT.EXE) application, listed in Figure 12-4 begin
ning on page 559, demonstrates the use of static TLS. The source code 
files, resource files, and make file for the application are in the 
TLSSTAT.12 directory on the companion disc. When you first invoke 
TLSStat, the following dialog box appears: 



T W E L V E: Thread-Local Storage 

This dialog box allows you to dynamically create new threads and moni
tor their execution. 

The following line is included near the top ofTLSSTAT.C: 

__ declspecCthread) DWORD gt_dwStartTime = 0: 

This line declares a static TLS variable called gLdwStartTime. The system 
creates a new instance of this variable every time a new thread is created 
in the process. Whenever any thread refers to gLdwStartTime, that thread 
is always referring to its own copy of this variable. 

Clicking on the Create Thread button dynamically creates a new 
thread by allocating a data structure from the heap and filling the mem
bers of the structure with information that needs to be passed to the 
newly created thread. This information includes the thread number, the 
number of cycles that the thread should execute, and the duration of 
each cycle. The pointer to this data structure is then passed to _begin
threadex, which passes the pointer to the thread function. The thread 
function is responsible for freeing this memory block when it no longer 
needs it.2 

2. While I was writing this section of code, I thought it would be useful to have a new Win32 
function that offered some way for one thread to alter the thread-local storage variables 
used by another thread. If this function existed, I probably could have avoided using the 
heap altogether by simply assigning values to the new thread. 

557 



ADVANCED WINDOWS 

558 

When each new thread begins, it records the system time in the 
gLdwStartTime variable and starts executing a loop. As each iteration of 
the loop begins, the thread displays the total amount of time that the 
thread has been in existence in the Thread Execution Log list box. 

You should notice that in this example I could have done away with 
the gedwStartTime variable by creating a local (stack-based) variable 
called dwStartTime and placing it inside ThreadFunc. In fact, this would 
have been a better way to write the application because it would have 
avoided the additional size and speed overhead incurred when using 
static TLS. However, if I had done this, the demonstration program 
would no longer have demonstrated static TLS. 

The real point I'm trying to make is that an application "under
stands" the nature of the program, whereas a DLL most likely doesn't. 
This is why TLS was really designed for DLLs, although it can be used in 
applications. 

Before creating a thread, you can set the number of iterations in 
the lpop and the duration of each iteration by adjusting the contents of 
the Num Of Cycles and Cycle Time (Secs) edit boxes. Because a new 
thread can take several seconds to execute, you can create additional 
threads before the first thread finishes executing by adjusting the Num 
Of Cycles and Cycle Time (Seq) edit boxes and clicking on the Create 
Thread button again. The screen shot below was taken while three 
threads were executing simultaneously: 

left=8. time running=3030 
Thread .2 
Thread 2, Cycles left=4, time running= 16 
Thread 1, Cycles left=7, time running=6052 
Thread 2, Cycles left=3, time running=2036 
Thread 1, Cycles left';'6, time running=9059 
Thread 2, Cycles left=2, time running=4055 
Thread 2, Cycles left= 1, time running=6070 
Thread started: 3 
Thread 3, Cycles Ieft=2, time running=23 
Thllied 1, Cycles Ieft=5, time running=12067 
Thread 3, Cycles left= 1, time running= 1055 
Thlead 2, Cycles left=O, time running=8093 
Thread 3, Cycles left=O, time running=2074 



TLSStat. ico 

T W E LV E: Thread-Local Storage 

The three threads were created using the following settings: 

Thread Number 

1 

2 
3 

Num Of Cycles 

10 

5 

3 

Cycle Time (Secs) 

3 

2 
1 

Every time a new thread is created, the Thread Number value is 
incremented_ You can reset the application by clicking on the Clear but
ton, which causes the Thread Number value to reset to 1 and the con
tents of the list box to be cleared. 

One last thing to note. When you terminate TLSStat, it displays the 
following message box: 

The box displays the total amount of time that the application (or pri
mary thread) has been executing by referencing its own gLdwStartTime 
TLS variable. 

Figure 12-4. (continued) 

The TLSStat application. 

559 



ADVANCED WINDOWS 

Figure 12-4. continued 

(continued) 

560 



T W E L V E: Thread-Local Storage 

Figure 12-4. continued 

(continued) 

561 



ADVANCED WINDOWS 

Figure 12-4. continued 

(continued) 

562 



T W E LV E: Thread-Local Storage 

Figure 12-4. continued 

(continued) 

563 



ADVANCED WINDOWS 

Figure 12-4. continued 

(continued) 

564 



T W E L V E: Thread-Local Storage 

Figure 12-4. continued 

lIihe primarythre~daJ$~g~~$it~'()wnl'LS C,Q~' , . 

" lied:, .the::~LdwStart:T1R,ie,.y~'riable',Let·$1n1t1at1ze it .t.o 

';:;i,~i~l'~~ii~~ii~tH:0~~t~i~~i~;r~::;7';I;Z;ff;:: 
.... .":.'\~~' .. .'~: '~ 

(continued) 

565 



ADVANCED WINDOWS 

Figure 12-4. continued 

(continued) 

566 



T W E LV E: Thread-Local Storage 

Figure 12·4. continued 

111/11/1111111111111/1111111111//1/////11//////////1/11/1///// 
/I 
II Icon 
1/ 

567 





C HAP T E R THIRTEEN 

FILE SYSTEMS AND FILE I/O 

One important aspect of any operating system is the way in which it 
manages files. In good old MS-DOS, managing files is about all the oper
ating system did, especially when 16-bit Windows was running on top ofit. 
16-bit Windows pretty much took care of everything except the manipula
tion of files on hard disks and floppy disks, which it left up to MS-DOS. 
(As time went on, though, 16-bit Windows took on more of even this 
responsibility by adding direct 32-bit access support and going right to 
the disk controller to manipulate the system's paging file.) 

Now both Windows 95 and Windows NT have greatly enhanced 
32-bit file support for managing the user's files and drives. In fact, both 
of these operating systems sport an installable file system that is capable 
of supporting multiple file systems-all of them simultaneously. 

The File Allocation Table (FAT) file system is the familiar file sys
tem currently used by all versions of MS-DOS. Windows 95 has extended 
the MS-DOS file system by adding support for long filenames. Microsoft 
expects this feature to be extremely compelling to end users and hopes 
that application developers will update their software to handle long 
filenames appropriately. Windows NT 3.5 also supports long filenames 
on FAT partitions in order to be compatible with Windows 95. Windows 
NT 3.1, however, doesn't offer this support. 

Although Windows NT supports two additional disk drive file sys
tems, the High Performance File System (HPFS) and the NT File System 
(NTFS), the FAT file system will probably be the most common file sys
tem used. For users who need to boot flexibly between MS-DOS, Win
dows 95, and Windows NT, the FAT file system will certainly be the file 
system of choice because all the user's files will be accessible to all the 
operating systems. Note too that the FAT file system is the only file sys
tem that can be used on floppy disks. 

569 



ADVANCED WINDOWS 

570 

HPFS, originally designed for use with the OS/2 operating system, 
was created to overcome many of the limitations of the FAT file system. 
However, it didn't deal with data corruption problems very well at all. In 
the event of a system crash, it was possible that some important file
related information wouldn't be written back to the disk. The next time 
OS/2 was booted, a CHKDSK that could take several hours to reconstruct 
the important file-related data would have to be performed. Windows 
NT supports the HPFS file system for backward compatibility with the 
files of users who are upgrading from OS/2 to Windows NT and don't 
want to reformat their hard disks just yet. 

NTFS is, as its name implies, brand-new for Windows NT. It's the 
next-generation file system after HPFS; the problems associated with 
HPFS have been fixed in NTFS, and NTFS has several new features as 
well. The most important of the new features is a file system recovery 
scheme that allows for quick restoration of disk-based data after a sys
tem failure. 

Other features ofNTFS include the ability to manipulate extremely 
large storage media and to have filenames of up to 255 characters in 
length (just like the new FAT file system in Windows 95 and Windows NT 
3.5). Several security features, such as execute-only files (which make it 
far more difficult for a virus to attach itself to an application), have been 
added. NTFS stores all filenames and directory names by means of the 
international Unicode. This means among other things that files will 
retain their names when they're copied to systems that use different lan
guages. For POSIX compatibility, NTFS supports file system features 
such as hard links, case-sensitive filenames, and the ability to retain infor
mation regarding when a file was last opened. 

NTFS was designed to be extended. Features that will be supported 
include transaction-based operations to support fault tolerant applica
tions, user-controlled version numbers for files, multiple data streams 
per file, flexible options for file naming and file attributes, and support 
for the popular file servers. For security-minded installations, NTFS will 
certainly become the standard, and it should eventually replace the FAT 
file system standard. 

The CD-ROM File System (CDFS) is used specifically for a CD-ROM 
drive, once considered a high-ticket peripheral for a personal computer. 
Today a CD-ROM drive is becoming more a necessity than a luxury. More 
and more software is becoming available on CD-ROM, and Windows 95 
and Windows NT themselves are available on CD-ROM. In the future 



T HI R TEE N: File Systems and File 1/0 

more software programs will use CD-ROMs as their distribution medium 
because CD-ROMs offer several advantages: 

• CD-ROMs are less expensive to mass-produce when compared 
to the sheer number of floppy disks involved in so much of soft
ware distribution. This should lower the cost of retail software 
products. 

• Because the average end user doesn't have CD-ROM duplica
tion equipment, it's much harder for end users to pirate copies 
of software distributed on CD-ROM. People who want to use 
the software will have to buy it. This should also help lower the 
cost of retail software products. 

• CD-ROMs are more reliable than floppies because CD-ROMs 
aren't magnetic and therefore, unlike floppies, aren't subject to 
magnetic disturbances. 

• Data can be accessed directly from a CD-ROM without having 
to be installed on your hard drive. This can save enormous 
amounts of precious hard disk space. 

• Applications are much easier to install from a CD-ROM because 
you don't have to baby-sit the computer, switching floppies on 
demand. 

Microsoft's having built CD-ROM support directly into Windows 95 
and Windows NT will certainly help to promote the use and wide accep
tance of CD-ROMs in the marketplace. 

The best aspect of all these file systems is that they provide simulta
neous operating system support. If you are using Windows NT, you can 
easily have one partition on your hard disk formatted for HPFS and 
another formatted for NTFS. Then you can easily copy files from either 
of these partitions to a floppy disk formatted for the FAT file system. 

Win32's Filename Conventions 
So that Win32 can support several different file systems, all the file sys
tems must observe some ground rules. The most important rule is that 
each file system must organize files into a hierarchical directory tree just 
as the FAT file system does. Directory names and filenames in the path
name must be separated by the backslash (\) character. In addition to 

571 



ADVANCED WINDOWS 

572 

the rules for constructing pathnames, there are rules for constructing 
directory names and filenames. 

• All pathnames must be zero-terminated. 

• Directory names and filenames must not contain the backslash 
separator character (\), a character whose ASCII value is in the 
range 0 through 31, or any character explicitly disallowed by 
any of the file systems. 

• Directory names and filenames can be created in mixed case, 
but users must anticipate that searches for directories and files 
will always be performed by means of case-insensitive compari
sons. If a file called ReadMe.Txt already exists and you try to 
name another file README. TXT, the naming of the second 
file will fail. 

• When used to specity a directory name, the period (.) identifies 
the current directory. For example, the pathname .\READ
ME.TXT indicates that the file is in the current directory. 

• When used to specity a directory name, two periods ( .. ) identity 
the parent directory of the current directory. For example, the 
pathname .. \README.TXT indicates that the file is in the cur
rent directory's parent directory. 

• When used as part of a directory name or filename, a period (.) 
separates individual components of the name. For example, in 
the file READ ME. TXT, the period separates the file's name (in 
the smaller sense) from the file's extension. 

• Directory names and filenames must not contain some special 
characters; these include the less than sign «), the greater than 
sign (», the colon (:), the double quotation marks ("), and the 
pipe ( :). 

All file systems supported by Win32 must follow these ground rules. 
The differences among the file systems have to do with how each file sys
tem interprets the ground rules and with the additional features or infor
mation a file system adds that distinguishes it from others. For example, 
the NTFS file system allows directories and files to be secured, whereas 
the FAT and HPFS file systems do not. 



T H I R TEE N: File Systems and File 1/0 

System and Volume Operations 
Let's look at the file system at the highest level first and work our way 
down to the nitty-gritty stuff. At the highest level, your application might 
need to know what logical drives exist in the user's environment. The 
most primitive call you can make to determine this is: 

DWORD GetlogicalDrives(void); 

This function simply returns a 32-bit value in which each bit represents 
whether a logical drive exists. For example, if the system has a drive A, bit 
o will be set, and if the system has a drive Z, bit 25 will be set. 

You can determine whether a particular drive letter was assigned to 
a logical drive on the system by executing this function: 

BOOl DoesDriveExist (TCHAR cDriveletter) { 
cDriveletter = (TCHAR) CharUpper(cDriveletter); 
return(GetlogicalDrives() & (1 « (cDriveletter - __ TEXT('A'»»; 

} 

The result from GetLogicaIDrives can also be used to count the num
ber of logical drives in the system: 

UINT GetNumDrivesInSys (void) { 
DWORD dw = GetlogicalDrives(); 
UINT uDrivesInSys = 0; 

} 

II Repeat until there are no more drives. 
whil e (dw 1= 0) { 

} 

if (dw & 1) { 

} 

II If low-bit is set, drive exists. 
uDrivesInSys++; 

II Shift all the drive information down 1 bit. 
dw »= 1; 

II Return number of logical drives. 
return(uDrivesInSys); 

The GetLogicaIDrives function is very fast but doesn't return a lot of 
useful information. The GetLogicalDriveStrings function doesn't require 
all the bit manipulations and returns more complete information: 

DWORD GetlogicalDriveStrings(DWORD cchBuffer, lPTSTR lpszBuffer); 

573 



ADVANCED WINDOWS 

574 

This function fills the buffer pointed to by lpszBuffer with the root direc
tory information associated with every logical drive on the system. The 
cchBuffer parameter tells the function the maximum size of the buffer. 
The function returns the number of characters required to .hold all the 
data. When calling this function, you should always compare the return 
value with the value passed in the' cchBuffer parameter. If the return value is 
smaller, the buffer was large enough to hold all of the data. If the return 
value is larger, there was more data than eQuId fit into the buffer. 

The best way to use this function is to call it once, passing in 0 as the 
cchBuffer parameter. Then use the return value to dynamically allocate a 
block of memory of the size returned by the call to GetLogicaLDriveStrings. 
Then call the function again, this time passing in the address of the 
newly allocated buffer: 

DWORD dw = GetLogicalDriveStrings(0, NULL); 
LPTSTR lpDriveStrings = HeapAlloc(GetProcessHeap(), 0, dw * 

sizeof(TCHAR»; 
GetLogicalDriveStrings(dw, lpDriveStrings); 

The contents of the returned buffer have the same format as an 
environment string buffer: that is, items separated by a zero character 
with an extra, terminating zero character at the end. For example, on my 
machine the buffer comes back looking like this: 

A:\<null> 
B:\<null> 
C:\<null> 
D:\<null> 
E:\<null> 
F:\<null> 
G:\<null> 
<null> 

Under Windows 95, the GetLogicaLDriveStrings function has no useful 
implementation and simply returns 0; calling GetLastError returns ERROR
_CALL_NOT_IMPLEMENTED. 

N ow that you have the root directories for every logical drive on the 
system, you might want to determine exactly what type of drive each is 
located on. You can use GetDriveType: 

UINT GetDriveType(LPTSTR lpszRootPathName); 



T H I R TEE N: File Systems and File 1/0 

The GetDriveType function returns the type of drive identified by the 
IpszRootPathName parameter. Here are the possible return values: 

Identifier 

DRIVE_CDROM 

DRIVE_RAMDISK 

Meaning 

Drive type can't be determined. 

Root directory doesn't exist. 

Disk can be removed from the drive. This value 
is returned for floppy drives. 

Disk can't be removed from the drive. This 
value is returned for hard drives. 

Drive is a remote drive. This value is returned 
for network drives. 

Drive is a CD-ROM drive. 

Drive is a RAM disk. 

You might be familiar with the 16-bit Windows version of the 
GetDriveType function: 

UINT GetDriveType(int nDriveNumber); 

You'll want to take note of some differences in the Win32 version. First, 
Win32's version of this function takes a pointer to a zero-terminated 
string as its parameter, whereas the 16-bit Windows version accepts an 
integer identifying the drive to be tested (A = 0, B = 1, and so on). 

Using an integer instead of a string has always been a problem for 
16-bit Windows programmers. Using MS-DOS's JOIN command, you 
can logically connect a drive to another drive as a subdirectory of the 
second drive's root directory. For example, if you execute: 

JOIN A: C:\DRIVE-A 

MS-DOS creates a new logical directory called DRIVE-A as a subdirectory 
of drive C's root directory. If you were to issue the following command: 

DIR C:\DRIVE-A 

the contents of the floppy disk in drive A would be displayed. Using the 
16-bit Windows GetDriveType function, you can pass only a drive letter to 
the function. In this case, we would have to pass the value 2 (for drive C) 

575 



ADVANCED WINDOWS 

and GetDriveType would return DRIVE_FIXED. Using the Win32 version 
of GetDriveType, you can pass C:\DRIVE-A as the parameter. In this case, 
the Win32 version will return DRIVE_REMOVEABLE, which is the cor
rectvalue. 

As it turns out, Microsoft made so many improvements to the file 
systems in Windows 95 and Windows NT that the JOIN command is no 
longer necessary and is not supported. In MS-DOS, the SUBST command 
is the complement of the JOIN command. Whereas the JOIN command 
attaches the root directory of a drive as a subdirectory to another drive, 
the SUBST command creates a new drive letter for a subdirectory on 
another drive. The SUBST command is not as useful under Windows 95 
and Windows NT as it was under MS-DOS, and Microsoft discouraged its 
use for 16-bit Windows, but unlike JOIN, SUBST is still supported in 
Win32, and there are no problems with using it. 

Another big limitation of the 16-bit Windows version of GetDriveType 
is that it doesn't always return as much information as you'd like. If you 
query the type of a CD-ROM drive, DRIVE_REMOVEABLE is returned, 
and if you query the type of a RAM disk, DRIVE_FIXED is returned. 
Frequently, applications that really need to make use of this information 
are required to make additional tests to determine whether a drive is re
ally a CD-ROM or a RAM disk. 

Getting Volume-Specific Information 

576 

When developing a Win32 application, you should always keep in mind 
that the user might be using any combination of the present four file 
systems (FAT, HPFS, NTFS, and CDFS) and that new file systems will 
emerge in the future. l Any new file systems will need to follow the ground 
rules, and with a little extra work you can write an application so that it 
runs correctly regardless of which file system or systems the user is using. 
If your application needs some specific information about a particular 
file system, it can call GetVolumelnformation: 

BOOl GetVolumelnformation(lPTSTR lpRootPathName. 
lPTSTR lpVolumeNameBuffer. DWORD nVolumeNameSize. 
lPDWORD lpVolumeSerialNumber. lPDWORD lpMaximumComponentlength. 
lPDWORD lpFileSystemFlags. lPTSTR lpFileSystemNameBuffer. 
DWORD nFileSystemNameSize); 

1. Even as you read this, Microsoft is hard at work on a new file system called OFS (Object 
File System), which will help realize Bill Gates's vision of "Information at Your Fingertips." 



T H I R TEE N: File Systems and File 1/0 

The GetVolumelnformation function returns file system-specific infor
mation associated with the directory path specified in the lpRootPath
Name parameter. Most of the remaining parameters are pointers to 
buffers or DWORDs that the function will fill. 

GetVolumelnformation returns the name of the volume in lp Volume
NameBuffer. For the FAT file system, this is the label of the floppy disk 
drive or the hard drive. The n VolumeNameSize parameter indicates the 
maximum size of the buffer in characters. The DWORD pointed to by 
the lpVolumeSerialNumber parameter gets filled with the serial number of 
the volume. If you are not interested in this information, NULL can be 
passed as the lp VolumeSeriaLNumber parameter. 

The serial number is most useful when another disk has been 
inserted in the drive. Starting with MS-DOS 4.0, the FORMAT command 
puts serial number information on a disk. This way, even if two disks have 
the same volume label, each has its own unique serial number. If the user 
removes one disk and inserts the other, the volume labels could be the 
same but the serial numbers would be different. An application can 
check to determine whether the user has swapped disks. 

The DWORD pointed to by the lpMaximumComponentLength parame
ter gets filled with the maximum number of characters supported for 
directory names and filenames. For the FAT, HPFS, NTFS, and CDFS file 
systems, the value is 255. Many applications hard-code lengths in their 
source code for pathname and filename buffers. This is a big no-no! For 
many applications, everything might seem OK at first, as the application 
manipulates files and paths with short filenames; but when the applica
tion manipulates files with long filenames, you'll get stack overwrites, 
invalid memory accesses, and other assorted problems. 

When you are developing an application, create some lo-o-ong 
filenames and some hu-u-uge pathnames, and bury some of your 
application's data files deep down in the bowels of the directory hierar
chy to see how your application performs. It's much better for you 
to catch file system problems during development rather than after 
you ship. 

Another easy-to-forget consideration is Unicode. If you are using 
Unicode in your application, your buffers need to be twice as big. Only 
the FAT and the NTFS file systems store filenames as Unicode strings, 
and the system knows whether your application manipulates Unicode 
filenames. When you request paths and filenames, the system will per
form any and all conversions for you, but you must ensure that your 
buffers will be big enough to hold the results of these conversions. 

577 



ADVANCED WINDOWS 

578 

The DWORD pointed to by the lpFileSysternFlags parameter is filled 
with flags about the file system. Here are the possible values: 

Flag Identifier Meaning 

The case of a filename is preserved 
when the name is put on disk. 

The file system supports case
sensitive filename lookup. 

The file system supports Unicode 
in filenames as they appear on disk. 

The file system preserves and 
enforces access control lists 
(NTFS only). 

The lpFileSystemNameBuffer parameter points to a buffer that Get
VolumeInformation will fill with the name of the file system (FAT, HPFS, 
NTFS, or CDFS). The last parameter, nFileSystemNameSize, is the maxi
mum size of the lpFileSystemNameBuffer buffer in characters. 

Most of the information returned by GetVolumelnformation is deter
mined when the user's disk i~ formatted, and it can't be changed unless 
the user's disk is reformatted. The one piece of information that you can 
change without reformatting is the disk's volume label. You can change 
it by calling: 

BOOl SetVolumelabel(lPTSTR lpRootPathName. lPTSTR lpVolumeName); 

The first parameter of SetVolumeLabel is the root directory of the file 
system whose volume label you want to change. If you specify NULL 
here, the system changes the volume label for the process's current disk. 
The lpVolumeName parameter indicates the new name you want the vol
ume to have. Specifying NULL here causes SetVolumeLabel to remove any 
volume label from the disk. 

Another function you can call to get disk volume information is the 
GetDiskFreeSpace function: 

BOOl GetDiskFreeSpace(lPTSTR lpszRootPathName. 
lPDWORD lpSectorsPerCluster. lPDWORD lpBytesPerSector. 
lPDWORD lpFreeClusters. lPDWORD lpClusters); 

The GetDiskFreeSpace function returns space availability statistics 
about the volume identified by the IpszRootPathName parameter. All the 



T H I R TEE N: File Systems and File 1/0 

bytes available on floppy disks and hard drives are packaged together 
into sectors, usually with 512 bytes per sector. Sectors are then grouped 
together to form clusters. In the FAT file system, the number of sectors 
per cluster can vary dramatically, as this table indicates: 

Disk Type 

360-KB floppy disk 
1.2-MB floppy disk 
200-MB hard disk 
400-MB hard disk 

Sectors per Cluster 

2 
4 

8 

32 

When parts of a disk are allocated to a file, the minimum amount of 
memory that can be allocated to a file is a single cluster. For example, a 
lO-byte file would occupy 2 sectors, or 1 KB (2 x 512 bytes), on a 360-KB 
floppy; but the same file would occupy 8 sectors, or 4 KB (8 x 512 bytes), 
on a 200-MB hard disk. 

Let's say that we have two l-KB files on a floppy disk and try to copy 
both files to a 200-MB hard drive that has only 4 KB of free space. The 
first file will be copied successfully, but there will be insufficient disk 
space on the hard drive for the second file. We've tried to copy 2 KB of 
data into a 4-KB space and failed. On very large media, this cluster over
head can become a serious problem. 

While I was writing the first edition of this book, I upgraded my 
250-MB hard drive to a I-GB hard drive. I also decided to partition the 
new drive into two 512-MB partitions. Each partition used 32 sectors per 
cluster. This meant that a I-byte file required a minimum of 16 KB. Mter 
I'd finished installing about 200 MB of file data, the amount of wasted 
space was about 100 MB. That 100 MB of wasted space was almost half my 
original hard drive's total capacity. I was impressed by the extent of the 
clustering overhead. I quickly repartitioned my new hard drive into sev
eral partitions, each about 250 MB because clusters for a 250-MB drive 
contain only 8 sectors each. 

From the values returned by the GetDiskFreeSpace function, you can 
calculate the total disk space, the amount of free disk space, and the 
amount of used disk space: 

DWORD dwSectorsPerCluster. dwBytesPerSector; 
DWORD dwFreeClusters. dwClusters; 

(continued) 

579 



ADVANCED WINDOWS 

580 

DWORD dwTotalDiskSpace, dwFreeDiskSpace, dwUsedDiskSpace; 

GetDiskFreeSpace("C:\\", &dwSectorsPerCluster, 
&dwBytesPerSector, &dwFreeClusters, &dwClusters); 

dwTotalDiskSpace = 
dwSectorsPerCluster * dwBytesPerSector * dwClusters; 

dwFreeD1skSpace = 
dwSectorsPerCluster * dwBytesPerSector * dwFreeClusters; 

dwUsedDiskSpace = 
dwSectorsPerCluster * dwBytesPerSector * 

(dwClusters - dwFreeClusters); 

One other function you can use to manipulate a disk's volume is 
the DeviceIoControl function: 

BOOL DeviceIoControl(HANDLE hDevice, DWORD dwIoControlCode, 
LPVOID lpvInBuffer, DWORD cbInBuffer, 
LPVOID lpvOutBuffer, DWORD cbOutBuffer, 
LPDWORD lpcbBytesReturned, LPOVERLAPPED lpOverlapped); 

TheDeviceloControl function is used to send commands to or request 
information directly from a disk's device driver. The hDevice parameter 
specifies a handle to a disk device. This handle is obtained by placing a 
call to the CreateFile function. If you want to get a device handle to a 
floppy drive or to a single partition on a hard drive, call CreateFile as 
shown here. 

hDevice = CreateFile("\\\\.\\X:", 
0, FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); 

The X in the first parameter represents the drive letter for the device. 
To obtain a device handle to drive C, for example, make this call: 

hDevice = CreateFile("\\\\.\\C:", 
0, FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); 

You can get a device handle to a physical hard disk by calling 
CreateFile like this: 

hDevice = CreateFile("\\\\.\\PhysicalDriveN", 
0, FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); 

The N in the first parameter represents a hard drive on the user's 
system. The first hard drive on the system would be drive O. You can get 



T H I R TEE N: File Systems and File 110 

the device handle to a physical disk only if you have administrative privi
leges; otherwise, the call will fail. 

Once you have a valid device handle, you can pass the handle as the 
first parameter of the DeviceloControl function. The second parameter of 
DeviceIoControl specifies the command you want to send to the device. 
Here is a list of the possible values: 

Command Identifier 

FSCTL_DISMOUNT_VOLUME 

FSCTL_LOCK_VOLUME 

FSCTL_UNLOCK_VOLUME 

IOCTL_DISK_CHECK_VERIFY 

IOCTL_DISK_LOAD_MEDIA 

IOCTL_DISK_MEDIA_REMOVAL 

IOCTL_DISK_REASSIGN_BLOCKS 

IOCTL_DISK_SET_DRIVE_LAYOUT 

IOCTL_DISK_SET_PARTITION_INFO 

IOCTL_DISK_VERIFY 

Meaning 

Dismounts a volume 

Locks a volume 

Unlocks a volume 

Checks for a change in a 
removable media device 

EJects medium from a SCSI 
device 

Formats a contiguous set of 
disk tracks 

Obtains information on the 
physical disk's geometry 

Provides information about 
each partition on a disk 

Obtains information about 
media support 

Obtains disk partition 
information 

Loads medium into a device 

Enables or disables the 
media eject mechanism 

Provides disk performance 
information 

Maps disk blocks to the 
spare-block pool 

Partitions a disk 

Sets the disk partition type 

Performs a logical format of 
a disk extent 

Enables or disables the place
ment of line and modem sta
tus data into the data stream 

581 



ADVANCED WINDOWS 

582 

The meanings of the remainingDeviceIoControl parameters depend 
on the operation you passed in the dwloControlCode parameter. For ex
ample, if you want to format tracks, you must allocate and initialize a 
FORMAT_PARAMETERS structure: 

typedef struct _FORMAT_PARAMETERS { 
MEDIA_TYPE MediaType; 
DWORD StartCylinderNumber; 
DWORD EndCylinderNumber; 
DWORD StartHeadNumber; 
DWORD EndHeadNumber; 

} FORMAT_PARAMETERS; 

and pass the address to this structure in DeviceIoControl's lpvlnBujjer 
parameter. You must also pass the length of this structure, in bytes, in the 
cblnBujjer parameter. When you're formatting tracks, the DeviceIoControl 
function doesn't return any special information to you-only the news 
that the function succeeded (TRUE) or failed (FALSE). 

If you are requesting a disk's geometry information, you must allo
cate a DISK_GEOMETRY structure: 

typedef struct _DISK_GEOMETRY { 
MEDIA-TYPE MediaType; 
LARGE_INTEGER Cylinders; 
DWORD TracksPerCylinder; 
DWORD SectorsPerTrack; 
DWORD BytesPerSector; 

} DISK_GEOMETRY; 

and pass the address and the length of this structure (in bytes) as the 
lpvOutBujjer and cbOutBujjer parameters, respectively. You'll also want to 
pass the address of a DWORD variable as the lpcbBytesReturned parame
ter. Just before DeviceIoControl returns, it fills this structure with the disk 
device's geometry and fills the DWORD pointed to by lpcbBytesReturned 
with the number of bytes copied into the buffer. 

Because requesting a disk's geometry doesn't require that you pass 
any information into DeviceIoControl, you can pass NULL and 0 as the lpv
InBuffer and cblnBuffer parameters. Similarly, because formatting tracks 
doesn't cause DeviceIoControl to return information, you can pass NULL 
and 0 for the lpvOutBujjer and cbOutBuffer parameters. 

For some operations, such as disk formatting, DeviceIoControl can 
format the disk asynchronously. If DeviceIoControl is to perform an opera
tion asynchronously, the device must be opened by a specification of the 



T HI R TEE N: File Systems and File 1/0 

FILE_FLAG_OVERlAPPED flag when CreateFile is called, and you must 
pass in the address of an OVERlAPPED structure as the lpOverlapped 
parameter of DeviceloControl. The hEvent member of this structure must 
also contain the handle of a manual-reset event. The other members of 
the OVERlAPPED structure are ignored by the DeviceIoControl function. 

If DeviceIoControl completes the operation before returning, Device
IoControl returns TRUE. If the operation hasn't been completed by the 
time DeviceIoControl returns, FALSE is returned. When the operation is 
complete, the manual-reset event gets signaled. You should call Get Over
lappedResult (discussed later, in the asynchronous file I/O section of this 
chapter) when the thread needs to sleep until the operation has been 
completed. 

When you have finished calling DeviceIoControl, you must close the 
device handle by calling CloseHandle. More information on using the 
DeviceIoControl function can be found in the Microsoft Win32 Programmer's 
Reference. 

The Disk Information Viewer Sample Application 
The DiskInfo (DISKINFo.EXE) application, listed in Figure 13-1 begin
ning on page 586, demonstrates the use of most of the functions we've 
just surveyed. The source code files, resource files, and make file for the 
application are in the DISKINFO.13 directory on the companion disc. 
When you execute Disklnfo, the Disk Volume Information Viewer dia
log box appears. On the next two pages, this dialog box shows the results 
when I select various logical drives on my computer. 

The combo box at the top of the dialog box shows all the logical 
drives connected to the system. This information is obtained by a call to 
GetLogicalDriveStrings. When you select a logical drive, the remaining 
fields in the dialog box change to show information about the newly 
selected drive. The Drive Type field is updated by a call to Get Drive Type, 
the fields in the Volume Information group box are updated by a call to 
GetVolumeInformation, and the fields in the Disk Free Space group box 
are updated by a call to GetDiskFreeSpace. 

When DISKINFo.EXE is run on Windows 95, it cannot obtain the logical 
drive string information because the GetLogicaLDriveStrings function is 
not implemented. So Disklnfo constructs the set of drive strings by using 
the drive information returned from a call to GetLogicalDrives instead. 

583 



ADVANCED WINDOWS 

584 



T H I R TEE N: File Systems and File I/O 

585 



ADVANCED WINDOWS 

Disklnfo.ico 

Figure 13-1. (continued) 

The DiskInjo application. 

586 



T H I R TEE N: File Systems and File I/O 

Figure 13-1. continued 

does ~ot exist.-): 

(continued) 

587 



ADVANCED WINDOWS 

Figure 13-1. continued 

(continued) 

588 



T H I R TEE N: File Systems and File I/O 

Figure 13-1. continued 

(continued) 

589 



ADVANCED WINDOWS 

Figure 13 -1. continued 

• 

(continued) 

590 



T H I R TEE N: File Systems and File 1/0 

Figure 13-1. continued 

ComboBox_GetText(hwndCtl, szLogDrive. 
ARRALSIZECszLogDri'ie» ; 

.D1 g_Jill{)ri velnfo(hwnd. szLogOr1've); 
bre~ k; 

',' " 

(continued) 

591 



ADVANCED WINDOWS 

Figure 13-1. continued 

(continued) 

592 



T H I R TEE N: File Systems and File 1/0 

Figure 13-1. continued 

1IIIIIIIIIIIIIUI//lIIIIIl/ /1/11 1I111111111NllII1(11I/(II1III, 
II 
I{Dialog· 
II 

(continued) 

593 



ADVANCED WINDOWS 

Figure 13-1. continued 

Directory Operations 
Every process has a directory associated with it called the current direc
tory. By default, file operations are performed inside the process's cur
rent directory. When a process is first created, it inherits the current 
directory used by its parent process. 

Getting the Current Directory 

594 

A process determines its current directory by calling: 

DWORD GetCurrentDirectory(DWORD cchCurDir. LPTSTR lpszCurDir); 

The GetCurrentDirectory function fills the buffer pointed to by lpszCurDir 
with, the process's current path. The cchCurDir parameter indicates the 
maximum size of the buffer in characters. If the function fails, 0 is re
turned; otherwise, the function returns the number of characters copied 
to the buffer, not including the terminating zero. If the buffer isn't large 
enough to hold the current path, the return value indicates the number 
of characters required' to hold the path. To ensure that GetCurrentDi
rectory succeeds, you need to write code similar to this: 

TCHAR szCurDir[MAX_PATH]; 

DWORD dwResult = GetCurrentDirectory( 
sizeof(szCurDir) I sizeof(TCHAR). szCurDir); 

if (dwResult == 0) { 
II Total function failure 

} else { 

} 

if (dwResult < (sizeof(szCurDir) I sizeof(TCHAR») { 
II Buffer was big enough for the full path 

} else { 
II Buffer was too small 

} 



T H I R TEE N: File Systems and File 1/0 

Notice the use of MAX_PATH in this routine. The MAX_PATH 
value is defined in WINDEF.H as 260. For MS-DOS development, some C 
compilers define a macro called _MAX_PATH as only 80. The big differ
ence in this value is attributable to the long filenames now supported by 
Windows 95 and Windows NT. It's difficult to stress enough the signifi
cance oflong filename support. I've seen too many programs that create 
buffers for filenames along these lines: 

char szFileName[13]; II "Filename" + '.' + "ext" + zero byte 

These buffers will be far too small to hold long filenames. It's likely that a 
function in the application will overwrite a buffer because the applica
tion will make the assumption that filenames will never be more than 13 
characters long. 

One way to handle the longer filenames is to make your buffers 
much larger. Using MAX_PATH as we've just seen is an example of this 
approach. Unfortunately, the Win32 header files don't define a macro 
called MAX_FILE, but you could define MAX_FILE as 260 as well. 

This approach would work for today's long filenames, but a new file 
system in the future might allow filenames as long as 512 characters. So 
the best way to allocate buffers for file system components is dynamically, 
by first calling GetVolumelnformation and checking the value returned in 
the buffer pointed to by the lpMaximumComponentLength parameter. 

Changing the Current Directory 
A process can change its current directory by calling: 

BOOl SetCurrentDirectory(lPTSTR lpszCurDir); 

Changing the current directory alters the current directory of only the 
process making the call; the change of directory doesn't affect any other 
running processes. However, if the process making the call spawns a new 
process after changing its current directory, the new process will inherit 
the current directory of the parent, which will now be the directory that 
was specified in the last call to SetCurrentDirectory. 

Getting the System Directory 
In addition to getting its own current directory, an application can deter
mine the system directory by calling: 

UINT GetSystemDirectory(lPTSTR lpszSysPath. UINT cchSysPath); 

595 



ADVANCED WINDOWS 

The GetSystemDirectory function fills the buffer pointed to by IpszSys
Path with the system directory name. Usually, this directory will be some
thing like this: 

C:\WINDOWS\SYSTEM 
C:\WINNT\SYSTEM32 

(Windows 95) 
(Windows NT) 

The return values for GetSystemDirectory should be interpreted just 
as they were for the GetCurrentDirectory function. Applications typically 
don't use the system directory for anything. In fact, on shared versions of 
Windows, the system directory is protected so that files can't be created 
in the directory; nor can files already in the system directory be modi
fied. A benefit of this protection is that viruses won't be able to attach 
themselves to any of the files contained in the system directory. 

Getting the Windows Directory 
If a process wants to create or write to a file that is to be shared by mul
tiple processes, the process can use the Windows directory. The path of 
the Windows directory can be obtained by calling: 

UINT GetWindowsDirectory(lPTSTR lpszWinPath. UINT cchWinPath); 

The GetWindowsDirectory function fills the buffer pointed to by 
IpszWinPath with the Windows directory. Usually, this directory will be 
something like this: 

C:\WINDOWS 
C:\WINNT 

(Windows 95) 
(Wi ndows NT) 

When running a shared version of Windows, the system creates a 
Windows directory private to each user. This is the only directory guaran
teed to be private for an individual user. If a user wants to keep certain 
files hidden from all other users, the files must be created either in the 
Windows directory or in a subdirectory of the Windows directory. 

Creating and Removing Directories 

596 

Finally, there are two additional functions for manipulating directories: 

BOOl CreateDirectory(lPTSTR lpszPath. lPSECURITY_ATTRIBUTES lpsa); 

and 

BOOl RemoveDirectory(lPTSTR lpszDir); 



T HI R TEE N: File Systems and File I/O 

As their names imply, these functions allow a process to create and 
remove a directory, respectively. When creating a directory, a process can 
specifY a SECURITY_ATTRIBUTES structure in order to assign special 
privileges to the directory. For example, an application could create the 
directory so that another user couldn't go into or remove the directory. 

Both these functions return TRUE when they're successful and 
FALSE when they fail. RemoveDirectory will fail if the directory contains 
files or other subdirectories or if the process doesn't have delete access 
for removing the directory. 

Copying, Deleting, Moving, and Renaming Files 
Both 16-bit Windows and MS-DOS have always lacked a function for 
copying files from one place to another. Applications have typically 
implemented this important functionality by opening a source file for 
reading and creating a destination file for writing. Then, using a buffer, 
the application would read part of the source file into memory and write 
the buffer back out to the destination file. After the source file had been 
read and written, the application would close both files. And the time 
stamp of the destination file would reflect the time of the copy-not the 
time of the source file's last update. This problem would usually have to 
be fixed by the addition of a few more function calls. 

Copying a File 
With Win32, we finally have an operating system call available to us for 
copying files: 

BOOl CopyFile(lPTSTR lpszExistingFile, lPTSTR lpszNewFile, 
BOOl fFailIfExists); 

CopyFile is a simple function that copies the file identified by the 
lpszExistingFile parameter to a new file whose pathname is specified by 
the IpszNewFile parameter. The last parameter, fFailIfExists, specifies 
whether you want the function to fail if a file already exists that matches 
the name pointed to by the lpszNewFile parameter. If a file with the same 
name does exist and fFailIfExists is TRUE, the function fails; otherwise, 
the function destroys the existing file and creates the new file. CopyFile 
returns TRUE if it is successful. Only closed files or files that are open 
with read-access only can be copied. The function fails if any process has 
the existing file open with write-access. 

597 



ADVANCED WINDOWS 

Deleting a File 
Deleting a file by means of the DeleteFile function is even easier than 
copying a file: 

BOOl DeleteFile(lPTSTR lpszFileName); 

This function deletes the file identified by the IpszFileName parameter 
and returns TRUE if successful. The function fails if the specified file 
doesn't exist or if the file is open. If any process has the file open, the file 
can't be deleted. 

Under Windows 95, the DeleteFile function will actually delete an open 
file, whereas Windows NT guards against this possibility. Deleting an 
open file, of course, means that the file may lose data. It is up to you to 
ensure that files are closed prior to deleting them with DeleteFile. 

Moving a File 

598 

Two functions allow you to move a file from one directory to another 
directory: 

BOOl MoveFile(lPTSTR lpszExisting. lPTSTR lpszNew); 

and 

BOOl MoveFileEx(lPTSTR lpszExisting. lPTSTR lpszNew, 
DWORD fdwFlags); 

Both functions move the existing file, which is identified by the lpszExisting 
parameter, to the new location identified by the lpszNew parameter. The 
IpszNew parameter must include the name of the file. For example, this 
instruction won't move the CLOCK.EXE file from the WINNT directory 
on drive C to the root directory of drive C: 

MoveFile("C:\\WINNT\\ClOCK.EXE". "C:\\"); 

This instruction will: 

MoveFile("C:\\WINNT\\ClOCK.EXE", "C;\\ClOCK.EXE"); 

Moving a file is not always identical to copying the file to another 
location and then deleting the original file. If you are moving a file from 
one directory to another directory on the same drive, MoveFile and 



T H I R TEE N: File Systems and File 1/0 

MoveFileEx don't move any of the data in the file at all. Both functions sim
ply remove the file's entry in the first directory and add a new entry to the 
second directory the file is supposedly copied to. Simply adjusting the 
directory entries "copies" a file significantly faster because no data is 
moved around. Less disk space is needed during the move too. When a 
file is moved from one drive to another, the system must actually create a 
duplicate file before it deletes the original. At the moment after the 
copy and before the deletion of the original, there are two whole cop
ies of the file in existence. If the file is huge, this can take up a serious 
amount of disk space. 

If the system had to copy and delete a file it was moving from one 
directory to another on the same drive, the function might fail because 
of insufficient disk space. If the file were 1 MB long and only 512 KB of 
disk space were available, the system wouldn't be able to copy the file 
before deleting the original. But since only directory entries are altered, 
no additional disk space is required and the move is much more likely to 
succeed. 

If the move does succeed, both MoveFile and MoveFileEx return 
TRUE. The move can fail if insufficient disk space is available for inter
drive moves or if a filename matching the name specified in IpszNew 
already exists. 

You wouldn't be able to guess it from their names, but both MoveFile 
and MoveFileEx can also be used to change the name of a subdirectory. 
For example, to change the name of the subdirectory UTILITY to 
TOOLS, use this statement: 

MoveFile("C:\\UTILITY". "C:\\TOOLS"); 

It would certainly be useful if MoveFile and MoveFileEx could move 
an entire subdirectory tree elsewhere in the drive's directory hierarchy, 
but these functions are not capable of this sweeping kind of operation. 
To move a subdirectory tree to another location on the same drive, you 
would have to use the FindFirstFile, FindNextFile, and FindClose functions 
discussed later in this chapter to walk down the directory hierarchy three 
different times. The first time you'd need to call Create Directory to create a 
similar directory structure in the new location. The second time you'd 
need to call MoveFile to move each individual file in the directory struc
ture. The last time you'd need to call RemoveDirectory to remove the old 
directory hierarchy. 

599 



ADVANCED WINDOWS 

600 

The Differences Between MoveFile and MoveFileEx 
By offering one more parameter, fdwFlags, MoveFileEx gives you more 
control over moving a file or renaming a subdirectory than the MoveFile 
function does. 

Under Windows 95, the MoveFileEx function has no useful implementa
tion and simply returns FALSE; calling GetLastError returns ERROR
_CALL_NOT_IMPLEMENTED. 

MoveFileEx comes into its own when moving a file fails because a 
filename matching the name specified in lpszNew already exists. To de
stroy the existing file and give the moved file the same name anyway, you 
can specifY the MOVEFILE_REPLACE_EXISTING flag when you call 
MoveFileEx. This flag has no effect when you're renaming a subdirectory. 

By default, MoveFileEx will not move a file from one drive to another 
drive. If you want to allow this behavior, you must specifY the MOVE
FILE_COPY_ALLOWED flag. On Windows NT, the MoveFile function 
calls the MoveFileEx function internally, specifYing the MOVEFILE
_COPY_ALLOWED flag, so you don't have to worry about this if you use 
the MoveFile function instead of the MoveFileEx function. Like the MOVE
FILE_REPLACE_EXISTING flag, this flag has no effect when you're 
renaming a subdirectory. 

The last flag, MOVEFILE_DELAY_UNTIL_REBOOT, provokes 
some interesting behavior. If this flag is specified, the system doesn't 
move the file or rename the directory at the time the call is placed. 
Instead, it keeps a list in the registry of all the files that have been moved 
with this flag specified. Then, the next time the operating system is 
booted, the system examines the registry and moves or renames all the 
files in the list. The files are moved or renamed just after the drives are 
checked and before any paging files are created. 

The MOVEFILE_DELAY_UNTIL_REBOOT flag is customarily 
used by installation programs. Let's say that you recently received a new 
device driver for your video card. When you try to install the new driver, 
the system can't delete or overwrite the old video driver because the file 
is still in use by the system. In this case, the Setup program will copy the 
new driver into another directory, leaving the original driver file. Setup 
will then issue a call to MoveFileEx, specifYing the current path of the new 
file in the lpszExisting parameter and the location where the file should 



T H I R TEE N: File Systems and File I/O 

be in the IpszNew parameter. Setup will also pass the MOVEFILE_DELAY
_UNTIL_REBOOT flag to MoveFileEx. The system will add the new path 
to its list in the registry and simply return to Setup. When the system is 
rebooted, it will replace the old video driver with the new driver before 
the system is fully started. Once the system is up, the new device driver 
will be used instead of the old one. 

One other way in which MoveFileEx differs from MoveFile is that it 
provides a novel way of deleting a file. You can delete a file with 
MoveFileEx by passing NULL as the IpszNew parameter. In a sense, you 
are telling the system you want to move the existing file (lpsiExisting) to 
nowhere, which has the effect of deleting the file. 

Renaming a File 
There is no RenameFile function. Renaming a file is accomplished by call
ing MoveFile or MoveFileEx. To rename a file, all you do is move the file 
from its directory to the same directory. To rename CLOCK.EXE to 
WATCH.EXE, for example, you'd use this statement: 

MoveFile("C:\\WINNT\\CLOCK.EXE". "C:\\WINNT\\WATCH.EXE"); 

Because we are not moving the file from one drive to another drive or 
from one directory to another directory, the system simply removes 
WINNT's directory entry for CLOCK.EXE and adds a new directory 
entry for WATCH.EXE-the file is effectively renamed. 

The Setup program could have copied the new video device driver 
file to the system directory, giving it a different name. Then the Setup 
program would issue a call to MoveFileEx, still specifying the MOVE
FILE_DELAY_UNTIL_REBOOT flag. This time, since the file would 
already be in the correct directory, rebooting the system would have the 
effect of renaming the file instead of actually copying it. 

1'd like to see Microsoft enhance these file functions by adding 
wildcard support. Wouldn't it be nice to be able to issue a command like 
this one: 

DeleteFile("*.BAK"); 

and have the system delete all of the BAK files in the current directory? 
Currently, if you want to do a mass deletion you must create a list of all the 
BAK files in the current directory first and then call DeleteFile for each file. 
To create a list of the BAK files, you would use FindFirstFile, FindNextFile, 
and FindClose-functions we'll discuss in detail later in this chapter. 

601 



ADVANCED WINDOWS 

Creating, Opening, and Closing Files 

602 

In 16-bit Windows, files are created and opened by means of the OpenFile, 
_lcreat, and_lopen functions. For backward compatibility, these functions 
were carried over into Win32, but they're considered obsolete, and you 
should avoid using them. For Win32 applications, files should be created 
or opened by means of the much more powerful CreateFile function: 

HANDLE CreateFile(LPCTSTR lpszName. DWORD fdwAccess. 
DWORD fdwShareMode. LPSECURITY_ATTRIBUTES lpsa. 
DWORD fdwCreate. DWORD fdwAttrsAndFlags. HANDLE hTemplateFile); 

When you call this function, the lpszName parameter identifies the 
name of the file you want to create or open. The fdwAccess parameter 
specifies how you want to access the data in the file. You can specify 
GENERIC_READ if you are going to read from the file, GENERIC_WRITE 
if you are going to write to the file, or GENERIC_READ : GENERIC
_WRITE if you are going to both read from and write to the file. 

The fdwShareMode parameter specifies file sharing privileges. In 
Windows 95 and Windows NT more so than in 16-bit Windows, it's likely 
that a single file can and will be accessed by several computers at the 
same time (in a networking environment) or by several processes at 
the same time (in a multithreaded environment). The potential for file 
sharing means that you must give some thought to whether you should 
and how you will restrict other computers or processes from accessing 
the data in the file. The fdwShareMode flag can be set to 0, FILE_SHARE
_READ, and FILE_SHARE_WRITE. Specifying 0 means that, after you 
open the file, the file cannot be opened again until you've closed it. 

Probably the most common flag to use here is FILE_SHARE
_READ. This flag tells the system that the same file may be opened again 
as long as the opener intends only to read from the file. Any attempts to 
open the file for writing will fail as long as you have the file open. The last 
flag, FILE_SHARE_WRITE, is rarely used. It tells the system that the 
same file may be opened again as long as the opener intends only to 
write to the file. If you specify FILE_SHARE_READ : FILE_SHARE
_WRITE, you tell the system that the file may be opened by others, allow
ing them to both read from and write to the file at will. 

Of course, a strange situation can come up. Let's say that a process 
has opened a file for reading and has specified the FILE_SHARE_READ 
flag. Now another process comes along and tries to open the file, passing 



T H I R TEE N: File Systems and File 1/0 

o for the JdwShareMode parameter. This means that the second process 
wants to open the file but doesn't want to allow anybody else to open the 
file for reading or writing. But another process already has the file open 
for reading. In such a case, the system won't allow the second open to 
succeed since it can't guarantee that the first process will stop accessing 
the file while the second process has the file open. 

The fourth parameter of CreateFile is ipsa. As always, this parameter 
points to a SECURITY_ATTRIBUTES structure that allows you to specify 
security information with the file's associated kernel object. The parame
ter can be NULL if you don't want any special security for the file object. 

The JdwCreate parameter specifies flags that allow you to fine-tune 
the behavior of CreateFile. You must specify only one of these flags: 

Identifier 

OPEN_ALWAYS 

TRUNCATE_EXISTING 

Meaning 

Tells CreateFile to create a new file and to fail if 
a file with the same name already exists. 

Tells CreateFile to create a file regardless of 
whether a file with the same name already 
exists. If the file already exists, CreateFile over
writes the existing file. 

Tells CreateFile to open an existing file and to 
fail if the file doesn't already exist. 

Tells CreateFile to open a file if it exists and to 
create the file if it doesn't exist. 

Tells CreateFile to open an existing file and 
truncate its size to 0 bytes and to fail if the file 
doesn't already exist. The GENERIC_WRITE 
flag must be used with this flag. 

CreateFile's JdwAttrsAndFlags parameter has two purposes: it assigns 
special attributes to the file if the file is being created, and it alters the 
method that the system uses to read from and write to a file. If CreateFile 
is opening an existing file, the attribute information inJdwAttrsAndFlags 
is ignored but the flag information is used. 

Let's look at the file attributes listed on the next page first, and 
then we'll look at the file flags. Most of the attributes will already be fa
miliar to you because they originated with the MS-DOS FAT file system. 

603 



ADVANCED WINDOWS 

604 

Identifier 

FILE_ATTRIBUTE_ARCHIVE 

FILE_ATTRIBUTE_NORMAL 

FILE_ATTRIBUTE_SYSTEM 

Meaning 

The file is an archive file. Applications 
use this flag to mark files for backup 
or removal. When CreateFile creates a 
new file, this flag is automatically set. 

The file is hidden. It won't be included 
in an ordinary directory listing. 

The file has no other attributes set. 
This attribute is valid only if it's used 
alone. 

The file is read-only. Applications can 
read the file but can't write to it or 
delete it. 

The file is part of the operating system 
or is used exclusively by the operating 
system. 

In addition to those familiar attributes, Win32 offers one more file 
attribute: FILE_ATTRIBUTE_TEMPORARY Use FILE_ATTRIBUTE
_TEMPORARY if you are creating a temporary file. When CreateFile cre
ates a file with the temporary attribute, it tries to keep the file's data in 
memory instead of on the disk. This makes accessing the file's contents 
much faster. If you keep writing to the file and the system can no longer 
keep the data in RAM, the operating system will be forced to start writing 
the data to the hard disk. You can improve the system's performance by 
combining the FILE_ATTRIBUTE_TEMPORARY flag with the FILE
_FLAG_DELETE_ON_CLOSE flag (discussed on the next page). Nor
mally, the system purges a file's cache when the file is closed. However, if 
the system sees that the file is to be deleted when it is closed, the system 
doesn't need to purge its cache. 

Now let's turn our attention to the file flags. Most of these flags are 
signals that tell the system how you intend to use a file. The system can 
then optimize its caching algorithms to help your application work more 
efficiently with the file. 

Let's start with the case in which you don't want the system to help 
you at all with file buffering. If you don't want the system to perform any 
buffering on a file, use the FILE_FLAG_NO_BUFFERING flag. This flag 
tells the device driver that you are supplying the disk buffers used for file 
I/O and that the system should perform no read-ahead or disk caching 



T H I R TEE N: File Systems and File lID 

of the file at all. Because the device driver is using your buffers, you must 
read from and write to the file on sector boundaries, and the buffer 
addresses must be aligned on disk sector boundaries in memory. You can 
use the GetDiskFreeSpace function to determine the sector size the file 
system is using. 

The next two flags, FILE_FLAG_RANDOM_ACCESS and FILE
_FLAG_SEQUENTIAL_SCAN, are used to tell the system whether you 
intend to access a file randomly or sequentially. Setting one or the other 
of these flags is simply a hint to the system so that it can optimize its cach
ing. You can access the file any way you want to after using one of these 
flags, but access may not be as fast as possible if you access the ,file differ
ently from the way you told the system you would. 

When you've set the FILE_FLAG_SEQUENTIAL_SCAN flag, the 
system expects the file to be accessed from the beginning through to the 
end. If you perform any direct seeks on the file, you are violating the sys
tem's expectation and it won't be able to use the optimum caching it has 
set for sequential access. 

The last cache-related flag is FILE_FLAG_WRITE_THROUGH. 
The FILE_FLAG_WRITE_THROUGH flag disables intermediate cach
ing of file-write operations in order to reduce the potential for data loss. 
When you specify this flag, the system writes all file modifications directly 
to the disk. However, the system still maintains an internal cache of the 
file's data, and file-read operations use the cached data (if available) 
instead of reading data directly from the disk. When this flag is used to 
open a file on a network server, the Win32 file-write functions do not 
return to the calling thread until the data is actually written to the 
server's disk drive. 

That's it for the buffer-related flags. The remaining CreateFile fdw
AttrsAndFlags flags don't seem to fall into anyone category. 

Use the FILE_FLAG_DELETE_ON_CLOSE flag to have the system 
delete the file after the file is closed. This flag is most frequently used 
with the FILE_ATTRlBUTE_TEMPORARYattribute. When these two 
flags are used together, your application can create a temporary file, 
write to it, read from it, and close it. When the file is closed, the system 
automatically deletes the file-what a convenience! If your process 
closes its handle to the file and the same file is opened by somebody else, 
the system won't immediately close the file. The system will wait until all 
open handles to the file are closed before deleting it. 

605 



ADVANCED WINDOWS 

606 

Use the FILE_FLAG_BACKUP_SEMANTICS flag in backup and 
restore software. Before opening or creating any files, the system nor
mally performs security checks to be sure that the process trying to open 
or create a file has the requisite access privileges. However, backup and 
restore software is special in that it can override certain file security 
checks. When you specify the FILE_FLAG_BACKUP_SEMANTICS flag, 
the system checks to be sure that a process has the access rights and, if it 
does, allows the file to be opened for backup or restore purposes only. 

Use the FILE_FLAG_POSIX_SEMANTICS flag to tell the system 
to use POSIX rules for accessing a file. File systems used by POSIX allow 
case-sensitive filenames. This means that the files named JEFFREYDOC, 
Jeffrey.Doc, and jeffrey.doc are all different files. MS-DOS, 16-bit Win
dows, Win32, and OS/2 were designed to expect that filenames would be 
case-insensitive. Use the FILE_FLAG_POSIX_SEMANTICS flag with 
extreme caution. If you use this flag when you create a file, that file 
might not be accessible to MS-DOS, 16-bit Windows, Win32, or OS/2 
applications. 

The last flag, FILE_FLAG_OVERLAPPED, tells the system that you 
want to access a file asynchronously. In MS-DOS and 16-bit Windows, 
files must be accessed synchronously; that is, when you make a call to 
read from a file, your program is suspended, waiting for the information 
to be read. Once the information has been read, your program regains 
control and continues executing. 

File I/O is slow when compared with most other operations. If a 
user wants to save a document and print it, the user must wait for the file 
to be saved before starting to print the document. Wouldn't it be nice if, 
when the user told the application to save the document, the application 
told the system to write the data without the application's having to wait 
until the file-write operation was complete? The system could use another 
thread to write the file data while the application's main thread contin
ued to respond to requests, such as a request to print, from the user. 

The Win32 API allows you to perform asynchronous file I/O. You 
can tell the system to write or read the file in the background while you 
continue processing. When the system has finished the background pro
cess, it will notify you. If you can't continue processing until all the data 
has been read or written, you can suspend your thread until the file I/O 
is complete. This method of working with files is discussed in detail later 
in this chapter. 



11 
Important 

T H I R TEE N: File Systems and File I/O 

Under Windows 95, the asynchronous file I/O functions have no useful 
implementation and simply return FALSE; calling GetLastError returns 
ERROR_CALL_NOT_IMPLEMENTED. 

CreateFile's last parameter, hTemplateFile, either identifies the handle 
of an open file or is NULL. If hTemplateFile identifies a file handle, Create
File ignores the fdwAttrsAndFlags parameter completely and uses the attri
butes and flags associated with the file identified by hTemplateFile. The file 
identified by hTemplateFile must have been opened with the GENERIC
_READ flag for this to work. If CreateFile is opening an existing file (as 
opposed to creating a new file), the hTemplateFile parameter is ignored. 

If CreateFile succeeds in creating or opening a file, the handle of the 
file is returned. If CreateFile fails, INVALID_RANDLE_VALUE is returned. 

Most Win32 functions that return a handle return NULL if the function 
fails. However, CreateFile returns INVALID_HANDLE_VALUE (defined 
as OxFFFFFFFF) instead. I have often seen code like this: 

HANDLE hFile = CreateFile( ... ); 
if (hFile == NULl) { 

II File not created 
} else { 

II File created OK 
} 

The code is incorrect. Here's the correct way to check for an invalid 
file handle: 

HANDLE hFile = CreateFile( ... ); 
if (hFile == INVALID_HANDLE_VALUE) { 

II File not created 
} else { 

II File created OK 
} 

607 



ADVANCED WINDOWS 

Now you know all the possibilities available to you for creating and 
opening a file. The next two sections discuss how to read from and write 
to an open file synchronously and asynchronously. For now, just imagine 
that we've finished using the file. We tell the system that we no longer 
need to access the file by closing it using the ever-popular: 

BOOl CloseHandle(HANDlE hObject): 

where hObject identifies the handle of the file that was returned by the 
earlier call to CreateFile. 

Reading and Writing Files Synchronously 

608 

This section discusses the Win32 functions for reading and writing files. 
These functions and methods are based on procedures that should be 
familiar to anyone who has ever performed file I/O on any operating 
system. Win32 offers these familiar functions, but I recommend that 
anyone interested in doing 32-bit file I/O consider using Win32's 
memory-mapped files. Memory-mapped files offer more convenient file 
access. More information about memory-mapped files and how to use 
them appears in Chapter 7. 

Without a doubt, the easiest and most commonly used method for 
reading from and writing to files uses the following two functions: 

BOOl ReadFile(HANDlE hFile. lPVOID lpBuffer. 
DWORD nNumberOfBytesToRead. lPDWORD lpNumberOfBytesRead. 
lPOVERlAPPED lpOverlapped): 

and 

BOOl WriteFile(HANDlE hFile. CONST VOID *lpBuffer. 
DWORD nNumberOfBytesToWrite. lPDWORD lpNumberOfBytesWritten. 
lPOVERlAPPED lpOverlapped): 

The ReadFile and WriteFile functions are similar to the 16-bit Win
dows _lread and _lwrite functions, which are included in the Win32 API 
for backward compatibility only. The hFile parameter identifies the handle 
of the file you want to access. The lpBuffer parameter points to the buffer 
to which the file's data should be read or to the buffer containing the 
data that should be written out to the file. The nNumberOfBytesToRead 
and nNumberOfBytesToWrite parameters tell ReadFile and WriteFile how 
many bytes to read from the file and how many bytes to write to the file, 
respectively. 



T H I R TEE N: File Systems and File I/O 

The 16-bit Windows functions _lread and _lwrite return the number 
of bytes actually read from or written to the file. For ReadFile and WriteFile, 
you need to pass the address of a DWORD, lpNumberOfBytesRead or lpNum
berOfBytesWritten, that the functions will fill with this information. 

Use the last parameter, lpOoerlapped, if you want to read from or 
write to the file asynchronously. If you're doing synchronous file I/O, 
simply pass NULL for the lpOoerlapped parameter. We'll look into this 
parameter in more detail in the section on asynchronous file I/O. 

Windows 95 does not support any form of asynchronous file I/O except 
on serial devices. Therefore, you must pass NULL to ReadFile and 
WriteFile's lpOoerlapped parameter unless the hFile parameter identifies a 
serial device. 

Both ReadFile and WriteFile return TRUE if successful. By the way, 
ReadFile can be called only for files that were created or opened with the 
GENERIC_READ flag. Likewise, WriteFile can be called only if the file 
was created or opened with the GENERIC_WRITE flag. 

When CreateFile returns a handle to a file, the system associates a file 
pointer with the handle. Initially, this file pointer is set to 0; so if you call 
ReadFile immediately after a call to CreateFile you will start reading from 
offset 0 in the file. If you read 100 bytes into memory, the system updates 
the pointer associated with the file handle so that the next call to ReadFile 
starts reading at the WIst byte in the file. Remember that a file pointer is 
associated with a file handle and not with file operations or the file kernel 
object itself. For example, look at this code: 

HFILE hFile = CreateFile( ... ): 
ReadFile(hFile. lpBuffer. 100. &dwBytesRead. NULL): 
WriteFile(hFile. lpBuffer. 100. &dwBytesWritten. NULL): 

In the code fragment above, the first 100 bytes from the file are 
read into the buffer and these same 100 bytes are written to the file. The 
bytes are written from offset 100 in the file to offset 199. If there is 
another file operation after the call to WriteFile, it will start at offset 200 in 
the file. 

It's also possible to open the same file two or more times. Every 
time the file is opened, a new file handle is returned. Because a file 
pointer is associated with each file handle, file manipulations using one 

609 



ADVANCED WINDOWS 

file handle don't affect the pointer associated with other file handles, 
even if all handles refer to the same file. Look at the code below: 

HFILE hFile1 = CreateFile("MYFILE.DAT", ... ); 
HFILE hFile2 = CreateFile("MYFILE.DAT" •... ); 
ReadFile(hFilel lpBuffer, 100, &dwBytesRead, NULL); 
WriteFile(hFile2. lpBuffer, 100. &dwBytesWritten. NULL); 

In this code, the first 100 bytes from MYFILE.DAT are read into a 
buffer. Mter this read, the pointer associated with hFilel points to the 
101st byte in the file. Now the code writes 100 bytes back to the same file. 
In this case, the pointer associated with hFile2 is still initialized to 0, caus
ing the first 100 bytes in MYFILE.DAT to be overwritten with the same 
data that was originally read from the file. The net result is that there is 
no change to the contents of the file. But after the calls to ReadFile and 
WriteFile have been completed, both handles' file pointers point to the 
101st byte in the file. 

Positioning a File Pointer 

610 

If you need to access a file randomly, you will need to alter the file pointer 
associated with the file's handle. You do this by calling SetFilePointer: 

DWORD SetFilePointer(HANDLE hFile. LONG lDistanceToMove. 
PLONG lpDistanceToMoveHigh. DWORD dwMoveMethod); 

The hFile parameter identifies the file handle the pointer is associ
ated with. The LDistanceToMove parameter tells the system by how many 
bytes you want to move the pointer. The number you specify is added to 
the current value of the file's pointer, so a negative number has the effect 
of stepping backward in the file. For most files, being able to move the 
pointer forward or backward by a 32-bit value is good enough. But for 
those really big files, you might need a 64-bit value. 

This is exactly what the lpDistanceToMoveHigh parameter is for. If 
you are moving the pointer within plus or minus 2 GB of its current posi
tion, pass NULL in the lpDistanceToMoveHigh parameter. If you want to 
move the pointer somewhere within 18 billion GB of its current position, 
you need to pass the high 32-bit part of this value in the lpDistance
ToMoveHigh parameter. Actually, you can't pass the high 32-bit part of the 
value directly; you must store the value in a variable and pass the address 
of this variable as the parameter. 

The reason for this indirection is that SetFilePointer returns the pre
vious location of the file pointer. If all you are interested in is the low 32 
bits of this pointer, the function returns that value directly. If you are also 



T H I R TEE N: File Systems and File I/O 

interested in the high 32 bits of the pointer, the SetFilePointer function 
fills the variable pointed to by lpDistanceToMoveHigh before it returns. 

The last parameter, dwMoveMethod, tells SetFilePointer how to inter
pret the two parameters lDistanceToMove and lpDistanceToMoveHigh. Here 
are the three possible values you can pass via dwMoveMethod to specify 
the starting point for the move: 

Identifier Meaning 

The file's pointer becomes the unsigned value specified 
by the two DistanceToMove parameters. 

The file's pointer is added to the signed value specified 
by the two DistanceToMove parameters. 

The file's pointer becomes the number of bytes in the 
file added to the signed value specified by the two 
DistanceToMove parameters. The DistanceToMove parame
ters should identify a negative number in this case. 

If SetFilePointer fails to alter the file's pointer, it returns OxFFFFFFFF 
and the contents of the lpDistanceToMoveHigh buffer will contain NULL. 
Since it is possible for a large file to be positioned successfully to location 
OxFFF'F'F'FFF, it is better to verify that SetFilePointer is successful by calling 
GetLastError and checking to see whether it returns NO_ERROR. 

Setting the End of a File 
Usually, the system takes care of setting the end of a file when the file is 
closed. However, you might sometimes want to make a file smaller or 
larger. On those occasions, call: 

BOOl SetEndOfFile(HANDlE hFile); 

This SetEndOfFile function changes the length of a file so that the 
value indicated by the file pointer becomes the length of the file. For 
example, if you wanted to force a file to be 1024 bytes long, you'd use 
SetEndOfFile this way: 

HFIlE hFile = CreateFile( ... ); 
SetFilePointer(hFile, 1024, NUll, FILE_BEGIN); 
SetEndOfFil e( hFi 1 e) ; 
CloseHandle(hFile); 

If you use the Explorer or the File Manager to examine the direc
tory containing this file, you'll see that the file is exactly 1024 bytes long. 

611 



A D V A NeE D WIN DOW S 

Forcing Cached Data to Be Written to Disk 
You'll remember from our look at the CreateFile function that there were 
quite a few flags you could pass to alter the way in which the system 
cached file data. Win32 also offers a function you can use to force all 
unwritten file data to be flushed to disk: 

BOOl FlushFileBuffers(HANDlE hFile); 

TheFlushFileBuffers function forces all the buffered data that is associ
ated with a file identified by the hFile parameter to be flushed to disk. 
The file must have been created or opened with the GENERIC_WRITE 
flag. If the function is successful, TRUE is returned. Usually, you won't 
need to call this function. The system will guarantee that all of the buf
fered data will be flushed to disk when the file is closed. 

Locking and Unlocking Regions of a File 

612 

The FILE~SHARE:_READand FILE_SHARE_WRITE flags let you tell 
the system whether and how a file can be opened by others. But think of 
a company that has a large customer database that contains 1 million 
records. Such a database is probably opened by almost everyone in the 
company. If everybody is performing searches only, that's fine-the file 
can always be opened with just the FILE_SHARE....:READ flag specified. 

But what jf a group in the company needs. to enter additional 
names and addresses in the customer database? These employees will 
need to open the database for writing. And somehow write access will need 
to be coordinated so that when one employee is appending a, record to the 
database, another employee won't be able to append a record at the same 
time. If both employees were able to write to tlie database simulta
neously, th~ integrity of the database would be compro~ised. File lock
ing is a solution to this problem. 

File locking is similar to using the FILE~SHARE_ * flags, but the 
FILE_SHARE_ * flags affect an entire file, whereas file locking affects 
small sections of a file. For example, if a customer moves to a new address, 
you'll need to update the customer'.s record .. Before you write out the 
new information, you'll want to be sure that no one else. can access the 
customer's data record while you're updating it. You'll want to lock that 
part of the database by calling: 

BOOl lockFile(HANDlE hFile. DWORD dwFileOffsetlow. 
DWORD dwFileOffsetHigh. DWORD cblocklow. DWORD cblockHigh); 



T H I R TEE N: File Systems and File 1/0 

The first parameter, hEile, identifies the handle to the file you want to 
lock a subsection of. The next two parameters, dwFileOffsetLow and dwFile
OffsetHigh, specify the 64-bit offset into the file where you want to begin 
the file lock. The last two parameters, cbLockLow and cbLockHigh, specify 
the number of bytes you want to lock. If you were going to update the 
lOOth customer in the database, you would use LockFile this way: 

lockFile(hFile, sizeof(CUSTOMER-RECORD) * (100 - 1), 0, 
sizeof(CUSTOMER-RECORD), 0); 

If LockFile is successful, TRUE is returned. While a region of a file is 
locked, all other processes that try to read from or write to the locked 
region will fail. This is why it's crucial to check the number of bytes read 
or written when ReadFile and WriteFile return-in case some other pro
cess has already locked regions of the file. You must design your program 
to handle such a case gracefully, perhaps by allowing the user to close 
other applications and try to read or write the data again. 

It's perfectly legal to lock a region that falls beyond the current end 
of the file. You'd want to do that when you were adding customer records 
to the end of the file. You'd lock the region of the file just beyond the end 
of the file and write the new customer record to this region. 

Note that you can't lock a region that includes an already locked 
region. The second call to LockFile below, for example, will fail: 

lockFile(hFile, sizeof(CUSTOMER-RECORD) * (100 - 1), 0, 
sizeof(CUSTOMER-RECORD), 0); 

lockFile(hFile, sizeof(CUSTOMER-RECORD) * (100 - 2), 0, 
2 * sizeof(CUSTOMER-RECORD), 0); 

In the first call to LockFile, we locked the lOOth customer record. In 
the second call, we're trying to lock the 99th through lOOth customer 
records. Since the lOOth record has already been locked, this second 
call fails. 

Naturally, when you have finished with a locked region of a file, 
you'll need to unlock it: 

BOOl UnlockFile(HANDlE hFile, DWORD dwFileOffsetlow, 
DWORD dwFileOffsetHigh, DWORD cbUnlocklow, DWORD cbUnlockHigh); 

The UnlockFile parameters correspond to the LockFile parameters, 
and the return value is the same. When you unlock a region, you must 
unlock it in the same way that it was locked. For example, the calls on the 
following page won't work together correctly. 

613 



ADVANCED WINDOWS 

11 
Important 

614 

LockFile(hFile, sizeof(CUSTOMER-RECORD) * (100 - I), 0. 
sizeof(CUSTOMER-RECORD), 0); 

LockFile(hFile. sizeof(CUSTOMER-RECORD) * (100 - 2), 0. 
sizeof(CUSTOMER-RECORD), 0); 

UnlockFile(hFile. sizeof(CUSTOMER-RECORD) * (100 - 2), 0. 
2 * sizeof(CUSTOMER-RECORD), 0); 

The first two calls to LockFile lock the lOOth and 99th records of the 
database, respectively. Then the call to UnlockFile tries to unlock both 
records with one call. This call to UnlockFile will fail. If two separate calls 
are made to LockFile, two separate and similar calls must be made to 
UnlockFile. 

Remember to unlock all locked regions of a file before you close the file 
or terminate the process. 

There are two other functions you can call to lock and unlock a 
region of a file: 

BOOL LockFileEx(HANDLE hFile. DWORD dwFlags, DWORD dwReserved. 
DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh. 
LPOVERLAPPED lpOverlapped); 

and 

BOOL UnlockFileEx(HANDLE hFile. DWORD dwReserved, 
DWORD nNumberOfBytesToUnlockLow. 
DWORD nNumberOfBytesToUnlockHigh. 
LPOVERLAPPED lpOverlapped); 

The LockFileEx and UnlockFileEx functions offer a superset of the LockFile 
and UnlockFile file capabilities. 

Under Windows 95, the LockFileEx and UnlockFileEx functions have no 
useful implementations and simply return FALSE; calling GetLastError 
returns ERROR_CALL_NOT_IMPLEMENTED. 

LockFileEx adds two capabilities to LockFile. You can use LockFileEx 
to lock a region of a file so that no other process can write to the locked 
region, as with LockFile, but with LockFileEx you can allow other processes 



T H I R TEE N: File Systems and File lID 

to continue reading from the locked region. By default, the LockFileEx 
function requests such a shared lock; you can request an exclusive lock 
by ORing with the LOCKFILE_EXCLUSIVE_LOCK flag in the dwFlags 
parameter. (LockFile uses the LOCKFILE_EXCLUSIVE_LOCK flag when 
it calls LockFileEx.) 

The other capability LockFileEx adds to LockFile is that you can tell 
LockFileEx to wait until a lock is granted if a thread in your process asks to 
lock a region of a file that is already locked by another process. In such a 
case, the LockFile function would return immediately, indicating that the 
call had failed. If your thread couldn't continue processing unless it 
could lock the region of the file, you would have to call LockFile repeat
edly until it was able to lock the region and return TRUE. To simplify 
your program, you can call LockFileEx, which by default won't return until 
it has been able to lock the region of the file you've asked it to. If you 
want the function to return immediately, regardless of whether it can 
lock the region, OR the LOCKFILE_FAIL_IMMEDIATELY flag into the 
dwFlags parameter. 

Most of the other LockFileEx parameters-hFile, nNumberOfBytesTo
LockLow, and nNumberOfBytesToLockHigh-are self-explanatory. The dw
Reserved parameter is reserved for Microsoft's future use, so it should 
always be O.The last parameter, lpOverlapped, must point to an OVER
LAPPED structure: 

typedef struct _OVERLAPPED 
DWORD Internal; 
DWORD InternalHigh; 
DWORD Offset; 
DWORD OffsetHigh; 
HANDLE hEvent; 

} OVERLAPPED; 
typedef OVERLAPPED *LPOVERLAPPED; 

The only members of the OVERLAPPED structure that LockFileEx 
uses are the Offset and OffsetHigh members; LockFileEx ignores all the 
other members. Before calling LockFileEx, you must initialize the Offset 
and OffsetHigh members so that they indicate the starting byte of the 
region of the file you want to lock. 

When you're ready to unlock the locked region of the file, you can 
call either UnlockFile or UnlockFileEx. The UnlockFileEx function will some
day offer enhancements of UnlockFile. It currently offers no capabilities 
in addition to those offered by UnlockFile. 

615 



ADVANCED WINDOWS 

Reading and Writing Files Asynchronously 

616 

Compared to most other operations carried out by a computer, file I/O 
is one of the slowest. The CPU is much faster at performing arithmetic 
operations and even painting the screen than it is at reading data from 
or writing data to a file. And depending on the type of medium involved
CD-ROM, hard disk, or floppy disk-file I/O can take an excruciatingly 
long time. Under MS-DOS and 16-bit Windows, the time it took an appli
cation to read data from or write data out to a file was precious time wasted 
during which the user couldn't continue working with the application. 

By taking advantage of Win32's multithreaded architecture, you 
can perform asynchronous file I/O. That is, you can tell the system to 
read from or write to the disk file while the rest of the code in your appli
cation continues to execute in parallel. Suppose you were developing a 
simple database application. When the user opened a database, you'd 
have to have your application read the contents of the database into 
memory as well as into an index file. Mter the user selected the OK button 
in the File Open dialog box, your application would display an hourglass 
cursor while the database file was opened and read. Mter reading the 
database records into memory, the application would have to open the 
index file and read the index as well. While all this work went on, the 
hourglass cursor would be displayed and the user wouldn't be able to start 
manipulating the records in the database until all the files had been read. 

By taking advantage of asynchronous file I/O, you can cut this file 
opening time down substantially. If the user will run the database appli
cation on a machine with several CPUs, one CPU could be assigned 
responsibility for opening and reading the database records and another 
CPU could be assigned responsibility for opening and reading the index 
file. Since each of these tasks would be assigned to its very own CPU, the 
two tasks could execute at the same time. This would reduce the time it 
would take to open the database, and the user would be able to start 
manipulating records much sooner. 

Of course, the file containing the index for the database would 
probably be much smaller than the file containing the records them
selves. The index file would probably be loaded into memory before the 
database records were loaded. The application couldn't allow the user 
access until both files had been completely read into memory, though. 
So that the application would know when both files had been completely 
read, you'd have to use some form ofthread synchronization. 



T H I R TEE N: File Systems and File 110 

As I said earlier, Windows 95 does not perform any file I/O asynchro
nously. When calling the ReadFile and WriteFile functions, you must pass 
NULL for the IpOverlapped structure unless you are manipulating serial 
devices. If you are not using serial devices and are targeting only Win
dows 95 and not Windows NT, you might want to skip ahead to the sec
tion "Manipulating File Attributes" beginning on page 642. 

To access a data file asynchronously, you must first create or open 
the file by calling CreateFile, specifying the FILE_FLAG_OVERLAPPED 
flag in the fdwAttrsAndFlags parameter. This flag notifies the system that 
you intend to access the file asynchronously. 

Once the file is open, you can read from and write to it by using the 
ReadFile and WriteFile functions we've already seen in the discussion of 
synchronous file I/O: 

BOOL ReadFile(HANDLE hFile. LPVOID lpBuffer. 
DWORD nNumberOfBytesToRead. LPDWORD lpNumberOfBytesRead. 
LPOVERLAPPED lpOverlapped); 

and 

BOOL WriteFile(HANDLE hFile. CONST VOID *lpBuffer. 
DWORD nNumberOfBytesToWrite. LPDWORD lpNumberOfBytesWritten. 
LPOVERLAPPED lpOverlapped); 

However, when you use the ReadFile and WriteFile functions to per
form asynchronous file I/O, you must pass the address to an initialized 
OVERLAPPED structure as the IpOverlapped parameter. Win32 uses the 
word overlapped in this context to indicate that the time spent perform
ing the file operation overlaps the time your thread spends doing other 
things. Here's the form of an OVERLAPPED structure again: 

typedef struct _OVERLAPPED { 
DWORD Internal; 
DWORD InternalHigh; 
DWORpOffset; 
DWORD OffsetHigh; 
RANDLE hEvent; 

} OVERLAPPED; 
typedef OVERLAPPED *LPOVERLAPPED; 

When you call either ReadFile or WriteFile, you must allocate an OVER
. LAPPED structure (usually on your fUJlction's stack as a local variable) and 

617 



ADVANCED WINDOWS 

618 

initialize the Offset, OffsetHigh, and hEvent members of the structure. The 
Offset and OffsetHigh members indicate the byte position within the file at 
which you want the file operation to begin. For example, if you want to 
read 100 bytes from the file starting at byte position 345, write: 

II Open file for asynchronous file 1/0. 
HANDLE hFile = CreateFile( ...• FILE_FLAG_OVERLAPPED •... ); 

II Create a buffer to hold the data. 
BYTE bBuffer[100]; 

II Boolean value to indicate whether read started successfully 
BOOL fReadStarted; 

II DWORD used for the number of bytes read 
DWORD dwNumBytesRead; 

II Initialize an OVERLAPPED structure to tell 
II the system where to start reading the data. 
OVERLAPPED Overlapped; 
Overlapped.Offset = 345; 
Overlapped.OffsetHigh = 0; 

Overlapped.hEvent = NULL; II Explained later 

II Start reading the data asynchronously. 
fReadStarted = ReadFile(hFile. bBuffer. sizeof(bBuffer). 

&dwNumBytesRead. &Overlapped); 

II Code below ReadFile executes while the system 
II reads the file's data into the buffer. 

Note several things as you perform asynchronous file I/O. In syn
chronous file I/O, each file handle has a file pointer associated with it. 
When another request to read from or write to the· file is made, the 
system knows to start accessing the file at the location identified by the 
file pointer. After the operation is complete, the system updates the file 
pointer automatically so that the next operation can pick up where the 
last operation left off. 

Things work quite differently in asynchronous file I/O. Imagine 
what would happen if you didn't have to use an OVERlAPPED structure. 
If your code placed a call to ReadFile immediately followed by another 
call to ReadFile (for the same file handle), the system wouldn't know 



T H I R TEE N: File Systems and File I/O 

where to start reading the file for the second call to ReadFile. You probably 
wouldn't want to start reading the file at the same location used by the 
first call to ReadFile. You might want to start the second read at the byte in 
the file following the last byte read by the first call to ReadFile. To avoid 
confusion, Microsoft designed ReadFile and WriteFile so that for every 
asynchronous I/O operation the starting byte in the file must be speci
fied in the OVERLAPPED structure. 

The next thing to notice is that in the code on the previous page the 
call to ReadFile has NULL passed in the lpNumberofBytesRead parameter. 
Since you are performing asynchronous file I/O, it's likely that the call to 
ReadFile will actually return before all the data has been read into the 
buffer. Because all the data won't have been read from the file when 
ReadFile returns, ReadFile can't possibly fill the buffer pointed to by the 
lpNumberOfBytesRead parameter with a meaningful value. However, 
you'll notice that I still must pass a valid address to ReadFile, or an access 
violation is raised. This concept extends to asynchronous file writes. 
When you call WriteFile to initiate an asynchronous file write, you must pass 
a valid address for the lpNumberOfBytes Written parameter. 

The last thing to notice is the return value from ReadFile. For syn
chronous file I/O, ReadFile returns regardless of whether the data was 
read successfully. For asynchronous file I/O, ReadFile returns before all 
the data has been read and can therefore return only a value that indi
cates whether the data has begun to be read. Similarly, for asynchronous 
file I/O, WriteFile's return value indicates only whether the write operation 
has begun. ReadFile and WriteFile both return FALSE if an error occurred 
in the call. For example, both functions return FALSE if the hFile parame
ter is an invalid file handle. 

Once the asynchronous file operation has begun, your thread can 
continue initializing or do any other processing it sees fit to do. Eventu
ally, you will need to synchronize your thread with the file I/O operation. 
In other words, you'll hit a point in your thread's code at which the 
thread can't continue to execute unless the data from the file is fully 
loaded into the buffer. 

Win32 considers a file handle to be a synchronization object-that 
is, it can be in either a signaled or a nonsignaled state. When you call 
ReadFile or WriteFile, one of the first things these functions do is reset the 
file handle to its nonsignaled state. Then, when all the data has been read 
from or written to the file, the system sets the file handle to the signaled 
state. By calling the WaitForSingleObject or WaitForMultipleObjects function, 
your thread can determine when the asynchronous file operation has 

619 



ADVANCED WINDOWS 

620 

completed-that is, when the file handle has been set to the signaled 
state. Here is an extension of the code we've been looking at: 

II Open file for asynchronous file 1/0. 
HANDLE hFile = CreateFile( ...• FILE_FLAG_OVERLAPPED •... ): 

II Create a buffer to hold the data. 
BYTE bBuffer[100]: 

II Boolean value to indicate whether read started successfully 
BOOl fReadStarted: 

II DWORD used for the number of bytes read 
DWORD dwNumBytesRead: 

II Initialize an OVERLAPPED structure to tell 
II the system where to start reading the data. 
OVERLAPPED Overlapped: 
Overlapped.Offset = 345: 
Overlapped.OffsetHigh = 0: 

Overlapped.hEvent = NUll: II Explained later 

II Start reading the data asynchronously. 
fReadStarted = ReadFile(hFile. bBuffer. sizeof(bBuffer). 

&dwNumBytesRead. &Overlapped): 

II Code below ReadFile executes while the system 
II reads the file's data into the buffer. 

II The thread can't continue until we know that all 
II the requested data has been read into our buffer. 
WaitForSingleObject(hFile. INFINITE): 

II Initialization complete and file data read: 
II the thread can continue. 

Something important is missing from this code. We should be checking 
to be sure that the file operation has completed successfully before we 
allow the thread to continue running. We can get the result of an asyn
chronous file operation by calling: 

BOOl GetOverlappedResult(HANDlE hFile. lPOVERlAPPED lpOverlapped. 
lPDWORD lpcbTransfer. BOOl fWait): 



T H I R TEE N: File Systems and File I/O 

When we call the GetOverlappedResult function, the hFile and IpOver
lapped parameters must indicate the same file handle and OVERLAPPED 
structure that were used in the call to ReadFile or WriteFile. The IpcbTransfer 
parameter points to a DWORD that will be filled with the number of 
bytes that were successfully transferred to or from the buffer during the 
write or read operation. If you aren't interested in this information, you 
must still pass a valid address here to avoid an access violation. 

The last parameter,fWait, is a Boolean value that tells GetOverlapped
Result whether it should wait until the overlapped file operation is com
plete before returning. If fWait is FALSE, GetOverlappedResult doesn't wait 
and returns immediately to the application. An application can call Get
OverlappedResult, passing TRUE for the fWait parameter, to suspend the 
thread while an operation continues execution, instead of calling WaitFor
SingleObject as in the code we just looked at. 

GetOverlappedResult returns TRUE if the function is successful. If you 
pass FALSE for the fWait parameter and the file operation has not yet 
been completed, GetOverlappedResult will return FALSE. You can deter
mine whether the call failed or whether the file operation is still proceed
ing by following the call to GetOverlappedResult with a call to GetLastError. 
If GetLastErrorreturns ERROR_IO_INCOMPLETE, the call was good but 
the file operation is still in progress. 

Under Windows 95, the GetOverlappedResult function works only on serial 
devices or on files opened by using the DeviceloControl function. 

Note that you can't reuse the OVERLAPPED structure in your appli
cation until the file operation has been completed. The example shown 
below is totally incorrect: 

void Funcl (void) { 

II Open file for asynchronous file 1/0. 
HANDLE hFile = CreateFile( ...• FILE_FLAG_OVERLAPPED .... ); 

} 

II Create a buffer to hold the data. 
BYTE bBuffer[100]; 

Func2(hFile. bBuffer. sizeof(bBuffer»; 

(continued) 

621 



ADVANCED WINDOWS 

622 

void Func2 (HANDLE hFile. LPVOID bBuffer. DWORD dwBufSize) { 

DWORD dwNumBytesRead; 

II Initialize an OVERLAPPED structure to tell 
II the system where to start reading the data. 
OVERLAPPED Overlapped; 
memset(&Overlapped. 0. sizeof(Overlapped)); 

II Start reading the data asynchronously. 
fReadStarted = ReadFile(hFile. bBuffer. 

dwBufSize. &dwNumBytesRead. &Overlapped); 

This code fragment is incorrect because the locally defined OVERlAPPED 
structure in Func2 will go out of scope when Func2 returns. The system 
remembers the address of the OVERLAPPED structure when you call 
ReadFile or WriteFile. When the file operation is complete, the system 
needs to reference the Internal, InternalHigh, and hEvent members of the 
structure. If the structure goes out of scope, the system will manipulate 
whatever garbage happens to be on the stack-and this could introduce 
difficult-to-find bugs into your application! 

The Internal and InternalHigh members of the OVERlAPPED struc
ture, which the system must update when the file operation is complete, 
were reserved for internal use during very early betas of Windows NT. As 
time went on, it became clear to Microsoft that the information con
tained in these members would be useful to all of us. They left the names 
of the members Internal and InternalHigh so that any code already rely
ing on these names wouldn't have to be changed. If the file operation is 
completed because of an error, the Internal member contains a system
dependent status. The InternalHigh member is updated with the number 
of bytes that have been transferred. This is the same value that is put into 
the buffer pointed to by the lpcbTransjer parameter of GetOverlappedResult. 

There is one more thing to watch out for when you try to perform 
asynchronous file I/O. Suppose you were trying to carry out multiple 
asynchronous operations on the same file at the same time. Say that you 
wanted to read a sequence of bytes from the beginning of the file and 
simultaneously write another sequence of bytes to the end of the file. In 
this situation, you can't synchronize your thread by waiting for the file 
handle to become signaled. 

The handle becomes signaled as soon as either of the file opera
tions completes, so if you call WaitForSingleObject, passing it the file 



T H I R TEE N: File Systems and File I/O 

handle, you will be unsure when WaitForSingleObject returns, and whether 
it returned because the read operation was completed or because the 
write operation was completed. Clearly, there needs to be a better way to 
perform asynchronous file I/O so that we don't run into this predica
ment-fortunately, there is. 

The last member of the OVERLAPPED structure, hEvent, identifies 
an event synchronization kernel object you must create by calling 
CreateEvent. When the system completes an asynchronous file I/O opera
tion, it checks to see whether the hEvent member of the OVERLAPPED 
structure is NULL. If hEvent is not NULL, the system signals the event by 
calling SetEvent using hEvent as the event handle. The system also sets the 
file handle to the signaled state just as it did before. However, if you are 
using events to determine when a file operation has been completed, 
you shouldn't wait for the file handle object to become signaled-wait 
for the event instead. 

Performing Multiple Asynchronous 
File I/O Operations Simultaneously 

If you want to perform multiple asynchronous file I/O operations simul
taneously, you should create an event for each of the operations, initial
ize the hEvent member in each of the file operations' OVERLAPPED 
structure, and then call ReadFile or WriteFile. When you reach the point in 
your code at which you need to synchronize with the completion of the 
file operation, simply call WaitForSingleObject. But instead of passing the 
file's handle, pass the handle to the event that you stored in the OVER
LAPPED structure. With this scheme, you can easily and reliably perform 
multiple asynchronous file I/O operations simultaneously using the 
same file handle. 

You can use the GetOverlappedResult function to synchronize your 
application with its impending file I/O. If you pass TRUE in as the fWait 
parameter for GetOverlappedResult, the function internally calls WaitFor
SingleObject and passes the hEvent member of the OVERLAPPED structure. 

The potential problem here is that, if you are using an auto-reset 
event instead of a manual-reset event to signal the end of a file opera
tion, you might permanently suspend your thread. If you use an auto-reset 
event and call WaitForSingleObject from your own code to wait for the file 
operation to be completed, the event will be reset automatically to the 
nonsignaled state when WaitForSingleObject returns. If you then call Get
OverlappedResult to determine the number of bytes that were successfully 
transferred and pass TRUE for fWait, you will cause GetOverlappedResult 

623 



ADVANCED WINDOWS 

to make its own call to WaitForSingleObject. When GetOverlappedResult does 
this, the call to WaitForSingleObject will never return because the file opera
tion already completed will have caused the event to become signaled. 
The event won't be signaled again. GetOverlappedResult will never return 
to your thread's code, and the thread will be hung! 

Alertable Asynchronous File 1/0 

624 

Win32 offers another set of file I/O functions that allow you to perform 
asynchronous file I/O: 

BOOL ReadFileEx(HANDLE hFile. LPVOID lpBuffer. 
DWORD nNumberOfBytesToRead. LPOVERLAPPED lpOverlapped. 
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine); 

and 

BOOL WriteFileEx(HANDLE hFile. CONST VOID *lpBuffer. 
DWORD nNumberOfBytesToWrite. LPOVERLAPPED lpOverlapped. 
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine); 

Under Windows 95, the ReadFileEx and WriteFileEx functions have no use
ful implementation and simply return FALSE; calling GetLastErrorreturns 
ERROR_CALL_NOT_IMPLEMENTED. 

The ReadFileEx and WriteFileEx functions allow you to start a file I/O 
operation just as the asynchronous functions ReadFile and WriteFile do. 
The difference is that, with the ReadFileEx and WriteFileEx alertable func
tions, you must also pass the address to a callback function, called a 
completion routine. This routine must have the following prototype: 

VOID FileIOCompletionRoutine(DWORD fdwError. DWORD cbTransferred. 
LPOVERLAPPED lpo); 

I'll get back to this completion routine function shortly. First let's look at 
how the system handles the asynchronous file I/O operation. 

When you call ReadFileEx or WriteFileEx, the system queues your file 
request into a system buffer. The system periodically (and asynchro
nously) examines the buffer of queued requests and performs the speci
fied operations. As the file operations are completed, the system creates 
a list of the completed events and associates this list with the thread that 
originally called ReadFileEx or WriteFileEx. For example, the following 
code queues three different asynchronous file operations: 



T H I R TEE N: File Systems and File 1/0 

hFile = CreateFile( ... ); 

II Perform first ReadFileEx. 
ReadFileEx(hFile •... ); 

II Perform first WriteFileEx. 
WriteFileEx(hFile •... ); 

II Perform second ReadFileEx. 
ReadFileEx(hFile •... ); 

SomeFunc(); 

If the call to SomeFunc takes some time to execute, the system will 
complete the three file operations before SomeFunc returns. While the 
thread is executing the SomeFunc function, the system is creating a list of 
file I/O completion records for the thread. The list might look some
thing like this: 

1st WriteFileEx completed 
2nd ReadFileEx completed 
1st ReadFileEx completed 

This list of events is maintained in internal data structures-you have no 
access to the list. You'll also notice from the list that the system can execute 
your queued file operations in any order and that file operations you 
invoke last may be completed first and vice versa. 

The completed file operations are just queued-the system doesn't 
call theFileIOCompletionRoutine function as soon as each file operation is 
completed. If you want to suspend your thread and allow the system to 
call the FileIOCompletionRoutine function for each of the file operations 
as it's completed, you must call one of three alertable functions: 

DWORD SleepEx(DWORD dwTimeout. BOOl fAlertable); 

or 

DWORD WaitForSingleObjectEx(HANDlE hObject. DWORD dwTimeout. 
BOOl fAlertable); 

or 

DWORD WaitForMultipleObjectsEx(DWORD cObjects. 
lPHANDlE lphObjects. BOOl fWaitAll. DWORD dwTimeout. 
BOOl fAlertable); 

All three extended functions work exactly as their nonalertable 
counterparts (Sleep, WaitForSingleObject, and WaitForMultipleObjects) do, ex
cept that the alertable functions have that additional parameter, 

625 



ADVANCED WINDOWS 

11 
Important 

626 

JAlertable. If you pass FALSE for the JAlertable value, you are saying that 
the function is not alertable, which makes the function operate just as 
the nonalertable versions described in Chapter 9, the thread synchroni
zation chapter. In fact, the Sleep, WaitForSingleObject, and WaitForMultiple
Objects functions are implemented internally as calls to the alertable 
versions of the functions, with FALSE passed for theJAlertable parameter. 

If you pass TRUE for JAlertable, the system puts your thread to sleep 
while it waits for file I/O operations to be completed. While your thread 
is asleep, the system checks the list of completed file I/O operations. If the 
system finds a completed I/O operation, it wakes up your thread and 
calls the FileIOCompletionRoutine function. When the FileIOCompletion
Routine function returns, the system removes the entry from the list and 
checks again to see whether there are any more. If there are, the system 
again wakes your thread and calls the FileIOCompletionRoutine function. 

The thread that calls an extended wait function must be the same thread 
that called the file I/O function. 

When the list of completed file operations is empty, the system 
wakes up your thread again and returns from the call to Sleep Ex, WaitFor
SingleObjectEx, or WaitForMultipleObjectsEx. The return value from any 
of these three functions will be WAIT_la_COMPLETION if the func
tion returned because the FileIOCompletionRoutine was executed one or 
more times. 

If you call one of the extended wait functions and there are no com
pleted file operations to be processed, the functions work just as though 
you had called them and passed FALSE for the JAlertable parameter. If, 
while the system waits, a single file operation or several file operations 
are completed, your thread wakes, the system callsFileIOCompletionRoutine 
using your thread for all the finished operations, and then these func
tions return WAIT_la_COMPLETION. 

These alertable functions in their extended form are most useful 
in a client/server situation. You might have a server application that 
guards a database of information. You might also have a client applica
tion that periodically needs to request data from the server application. 
The server and client applications would communicate with each other 
using named pipes. 



T H I R TEE N: File Systems and File I/O 

The server application would start by calling ReadFileEx and then 
pass to the server the handle to a named pipe instead of the handle to a 
file. When a client application sent information to the server through 
the named pipe, the asynchronous call would read the client's request 
and call the FileIOCompletionRoutine function. The FileIOCompletionRou
tine function would interpret the client's request and locate the requested 
information in the database. The server would do this by initiating its 
own call to ReadFileEx. When the database information had been read, 
another FileIOCompletionRoutine call would be executed and the retrieved 
data would be transferred back through the named pipe to the client 
application. 

The Alertable 1/0 Sample Application 
The AlertiO (ALERTIO.EXE) application, listed in Figure 13-2 begin
ning on page 630, demonstrates the use of alertable file I/o. The source 
code files, resource files, and make file for the application are in the 
ALERTIo.13 directory on the companion disc. The program simply cop
ies a file the user specifies to a new file called ALERTIo.CPY. When the 
user executes AlertIO, the Alertable I/O File Copy dialog box appears: 

- Alertable 1/0 File Copy ~ 

1-*1 File size: 0 

Source file: (use Browse to select 8 file) 

Execution log: -

The user clicks on the Browse button to select the file to be copied. 
To best see the effects of using the alertable I/O functions, it's a good 
idea to select a large file (the Win32 API help file, API32.HLP, for 
instance). Mter you've selected a file to be copied, the Source File and 
File Size fields are updated. 

627 



ADVANCED WINDOWS 

628 

When the user clicks on the Copy button, the program opens the 
source file, creates the destination file (saving both file handles in the 
global g_hFileSrc and g_hFileDst variables), and begins copying the file. 
Mter the file has been copied, the file handles are closed. 

The file is copied by means of four internal buffers. Each buffer is a 
different size, as shown below: 

Buffer Number Size in Bytes 

0 32768 
1 16384 
2 10922 
3 8192 

The entire file will be copied, piece by piece, using these buffers. First, 
four chunks of the file, one chunk per buffer, will be read. These file-read 
operations are initiated by calls to the ReadFileEx function. The address of 
the InputCompletion function is specified in the call to ReadFileEx, causing 
InputCompletion to be called automatically when the file-read operation 
for an individual buffer has been completed. Because the buffers are 
different sizes, the reads might not be finished in the order they were 
requested. . 

Mter the four initial reads have been initiated, the program enters 
a loop that executes until the destination file has been written or until a 
file copy error occurs. 

while «g_CopyStatus != csError) && 
(g_CopyStatus != csDoneWriting» { 

} 

II Put this thread to sleep until it is awakened by 
II an alertable file lID completion. 
SleepEx(INFINITE. TRUE); 

Inside the loop, the thread calls Sleep Ex, the alertable version of the 
Sleep function. If the system is still performing the asynchronous file
read operations, the call to Sleep Ex causes the thread to be suspended. 
However, as soon as the asynchronous buffer reads have been completed, 
the thread is in an alertable state and executes the InputCompletion func
tion once for each of the completed buffer reads. 

-------. 



T H I R TEE N: File Systems and File 1/0 

The code inside the InputCompletion function first verifies that the 
part of the file has been read into the buffer successfully. Then it calls 
WriteFileEx so that the contents of the buffer are written to the destina
tion file. The call to WriteFileEx writes the contents of the buffer to the 
same byte offset in the destination as the offset that was used when the 
source data was read from the source file. The call to WriteFileEx also 
specifies the address of the OutputCompletion function so that the system 
will automatically call the OutputCompletion function after all file-write 
operations have been completed and the thread is in an alertable state. 

During the file copy, the Alertable I/O File Copy dialog box, shown 
below, indicates whether information is being read from the source file 
into a buffer or whether data is being written from a buffer to the desti
nation file. 

'-: Alertable 1/0 File Copy a 
_ File size: il162107 

Source file: D:\msvc20\HELP\API32.HLP 

Execution log: 

0: Write, Offset=il095960, Len=32768. 
1: Write, Offset=il128728, Len=1638i1. 
2: Write, Offset=il1 il5112, Len=10922. 
3: Write, Offset=il15603i1, Len=6073. 
0: Read, Offset=il16i1226, Len=32768. 
0: Read past end-of-file. 
3: Done writing destination file. 
File copied successfully. 
Max reads in progress=iI. 
Completed reads=2i1i1. 
Max writes in proJiress=iI. 

From left to right, each line shows a buffer number, whether the data 
is being read into or written out from the buffer, the location in the 
source or destination file at which the data is being read from or written 
to, and the number of bytes in the buffer that will be read or written. 

Most of the time, the number of bytes written will be the number of 
bytes that were read. However, when the last part of the source file is read 
into a buffer, it often doesn't completely fill the buffer. Therefore, when 
the information in this buffer is written to the destination file, only the 
actual number of bytes that were read is written, not the size in bytes of 
the whole buffer. If the whole buffer were written, the destination file 
would end up larger than the source file. 

629 



ADVANCED WINDOWS 

AlertlO.ico 

Figure 13-2. (continued) 

The AlertIO application. 

630 



T HI R TEE N: File Systems and File 1/0 

Figure 13-2. continued 

1 IhEi~nt .~Oritaiili .t:lfe 1'1'111'1'·10·1":· 

· .• OVERLAP PEt}; g ... o~:~il:a .... './.<"",: '",;..,'{t'·:":"' :"~,, J.;' ,':"«',: ~ .. ::~;",:~. '.:. 

(continued) 

631 



ADVANCED WINDOWS 

Figure 13-2. continued 

(continued) 

632 



T H I R TEE N: File Systems and File 1/0 

Figure 13-2. continued 

, 11Set1:htf global f11e off.set varfable 
Ilwher~ .1 t's~O'uld begin .. 
··g~dwtfex:tReadOn$et·· . 

knows 

(continued) 

633 



ADVANCED WINDOWS 

Figure 13-2. continued 

(continued) 

634 



T H I R TEE N: File Systems and File I/O 

Figure 13-2. continued 

(continued) 

635 



ADVANCED WINDOWS 

Figure 13-2. continued 

(continued) 

636 



T H I R TEE N: File Systems and File I/O 

Figure 13-2. continued 

until the 

(continued) 

637 



ADVANCED WINDOWS 

Figure 13-2. continued 

(continued) 

638 



T H I R TEE N: File Systems and File I/O 

Figure 13-2. continued 

if (fOk) { 
HANDLE hFile; 
Static_SetText(GetDlgltem(hwnd. lDCSRCFILE). 

szPathname): 
hFile= Greatefile(szPathname • 

o ,NUL L..O PEN-,EXLS T ING.. 0., 

(continued) 

639 



ADVANCED WINDOWS 

Figure 13-2. continued 

(continued) 

640 



T H I R TEE N: File Systems and File I/O 

Figure 13-2. continued 

11//1/11/11//////11////1/////////////11////////////////1////1/ 
1/ 
// Dialog 
// 

rOILALt:~rIODJ~J::dGOIS~R:[)ABLE n,18.,)58. 158 
$TY.,kEW.s':"MIfUt1lZE50X .IWS;..POP,~p iWS;.:.CAPTiONI WS~SVSMENtJ 

. (}kPTloN'~Alel";t~bj~!lO)Tle<:of>Y" . 
. fONi ."~ (~S'Ystem~; . . .' , , . 
eElmr.: l, .• ,'; , 

, ··puS~BlJtfbli;:~;&Br;pwiSe.,·.":rllC~B·R:{)WSE. 4.4 ~5~.12 
'. L TExt' ',' .;.~sour.6e·ine:~'.IPC,",HA1':re .!i,)?0 .. 40.,8 
't1:txl'i(~e;BrO\'lseto ,select;af11 e lU, 

i t'D~";'sRCfI:Li;~6'20.~108 .8~SS_NOPR~FI X 
:dEXt"Fil.e;'$ite.:"~lQC~STArtC;·68AI.3t>.8 ".'; 
L1:EXT. ,"0", rflc2.$R:CFlt.ESlZEj104.:S.~6;8 
DEfPV$:HRVTTOff ;';P.Col}¥'7:i 1o(}«.l00A0;5~.1~: ,,'. ..... 

, ,~Tl.~!t~V'~· . "" ,;u~x~ut{on&log~~ •. !rdC":S:rAfl G,4,45.48.8, 
, ,,'." <J:l~\lAV; .;;;:IQ(Li·L~~.:; ~ ~ 5'6/14,S:.:Jt011 :*01; L85_N01;[ FV} 

.. 1J~~~<¥:INT.E~RAilij~JGltr . !,WS':"VSCROLL, . 
. ' ,;' ...•. ;:t,\'l~~!AeS!{lll < 

:·SJlP:;. i.:<." i ;[,'~:;!i!;, .. · 
,~".{, 'c;J; ~'<L"~.::':':':.~.\,.~:,<> .\; ':'>;?,~ c"', ' <'" ," <I/~' " . .. '" .... ""';'/';;:~) .. r;,:':L:\';;' ...... "J 

." 'IIWd~f··m~~kf,($b~Q:;:i~~h~ri;.::.,:;~:··:~ i . . '.. • 

.··i:./i/flil~;if)/)JJl1'l·n;ff:iio"l Ji;Ol'uTNI?i}!/:lll 'Ii j}/l 1ftl/(111I ;'lC:"F",:i,.:/: ;:c. (\.;y;'·:><i X,:·":'< .... .... . ', ..... ' ...•.•...... 
'. 'IIJtx,rr'tlCllJot;; ,.:.,: .. ' .. 

/,/:' . 

(continued) 

641 



ADVANCED WINDOWS 

Figure 13-2. continued 

Manipulating File Attributes 

File Flags 

642 

A set of attributes is associated with every file. Many of the file attributes are 
initialized when the file is created, some are altered when a file is accessed, 
and some can be altered specifically under program control. Often you 
might not have any interest in altering the values but just want to see 
what the current attributes are for a file. Most file attributes have to do 
with flag settings, file size, and file time stamps. 

A file's attributes are initially set when the file is created with the Create
File function. When CreateFile is called, the fdwAttrsAndFlags parameter 
specifies the attributes the file should have when it is created. To see 
what these attributes are later, an application can call: 

DWORD GetFileAttributes(LPTSTR lpszFileName); 

The GetFileAttributes function retrieves the attributes associated with 
the file identified by the lpszFileName parameter. When the function re
turns, you can AND the return value with any of the identifiers we saw in 
the discussion of CreateFile's fdwAttrsAndFlags parameter earlier in this 
chapter: 

FILE_ATTRIBUTE_ARCHIVE 

FILE_ATTRIBUTE_DIRECTORY 

FILE_ATTRIBUTE_HIDDEN 



File Size 

FILE_ATTRIBUTE_NORMAL 

FILE_ATTRIBUTE_READONLY 

FILE_ATTRIBUTE_SYSTEM 

T H I R TEE N: File Systems and File I/O 

Although it's not frequently done, you can alter any of these file 
attributes by calling SetFileAttributes: 

BOOL SetFileAttributes(LPTSTR lpFileName, DWORD dwFileAttributes); 

SetFileAttributes returns TRUE if it successfully alters the file's attributes. 
The code below, for example, turns off the archive flag for CALC.EXE: 

DWORD dwFileAttributes = GetFileAttributes("CALC.EXE"); 
dwFileAttributes &= ~FILE_ATTRIBUTE_ARCHIVE; 
SetFileAttributes("CALC.EXE", dwFileAttributes); 

You might also want to query a file's size by calling GetFileSize: 

DWORD GetFileSize(HANDLE hFile, LPDWORD lpdwFileSizeHigh); 

You'll immediately notice that the GetFileSize function requires that 
the file be open and that the handle to the file be passed as the hFile 
parameter. GetFileSize returns the low 32-bit value representing the file's 
size directly. If you are interested in the high 32-bit part of the file's size, 
you need to pass an address to a DWORD that GetFileSize will fill with this 
information. A file's size can be altered only by writing to the file or by 
calling SetEndOfFile. 

File Time Stamps 
In MS-DOS, and more specifically in FAT file systems prior to Windows 
95 and Windows NT 3.5, a file has only one time stamp associated with 
it-the stamp indicating the last time the file was written to. But in the 
new FAT file systems, as well as in HPFS and NTFS, a file can have three 
time stamps associated with it: the date and time the file was created, the 
date and time the file was last accessed, and the date and time the file was 
last written to. To retrieve the time stamp information for a file, call: 

BOOL GetFileTime(HANDLE hFile, LPFILETIME lpftCreation, 
LPFILETIME lpftLastAccess, LPFILETIME lpftLastWrite); 

643 



ADVANCED WINDOWS 

644 

For files stored on early FAT file systems, the creation time and the 
last access time will be O. As with GetFileSize, the file must be opened be
fore the call to GetFileTime is made so that we can pass its file handle as 
the hFile parameter. The next three parameters are all pointers to FILE
TIME structures: 

typedef struct _FILETIME { 
DWORD dwLowDateTime; 
DWORD dwHighDateTime; 

} FILETIME. *PFILETIME. *LPFILETIME; 

If you aren't interested in when the file was created, you can pass 
NULL in as the lpjtCreation parameter. The same is true for either of the 
other two time stamp parameters. 

The 64-bit value composed of the dwLowDateTime and dwHighDate
Time members in the FILETIME structure represents the number of 
100-nanosecond intervals since January 1, 1601. I'll grant you that this 
isn't very useful, but the date does, after all, mark the start of a new 
quadricentury. Still not too impressed? I guess Microsoft didn't think 
you'd be too impressed either, so they wrote some additional functions 
to help you realize the usefulness of file times. 

Perhaps all you need to do is check to see which of two files is older. 
That's easy: 

LONG CompareFileTime(LPFILETIME lpftl. LPFILETIME lpft2); 

CompariFileTime returns one of these long values: 

Result of 
CompareFile Time 

-1 

o 
+1 

Meaning 

lpjtl is less than (older than) Ipjt2 

lpjtl is same (age) as Ipft2 

lPitl is greater than (younger than) lpjt2 

Using CompariFileTime, you can also check to see whether a file was 
written to the last time it was accessed: 

lResult = CompareFileTime(&ftLastAccess. &ftLastWrite); 
if (lResult == 0) { 

II Last access was a write 
} else { 

II Last access was not a write 
} 



T H I R TEE N: File Systems and File 1/0 

You might want to show the user one of the file's time stamps. In 
this case, you will need to convert FILETIME structures to SYSTEM
TIME structures or vice versa using: 

BOOl FileTimeToSystemTime(lPFIlETIME lpft. lPSYSTEMTIME lpst); 

and 

BOOl SystemTimeToFileTime(lPSYSTEMTIME lpst. lPFIlETIME lpft); 

These functions convert the time stamp easily between the FILE
TIME and SYSTEMTIME structures. A SYSTEMTIME structure looks 
like this: 

typedef struct _SYSTEMTIME { 
WORD wYear; 
WORD wMonth; 
WORD wDayOfWeek; 
WORD wDay; 
WORD wHour; 
WORD wMinute; 
WORD wSecond; 
WORD wMilliseconds; 

} SYSTEMTIME; 
typedef SYSTEMTIME *PSYSTEMTIME. *lPSYSTEMTIME; 

With this information, it's easy to construct a string that will be meaning
ful to an end user. Note that when you convert from SYSTEMTIME to 
FILETIME, the wDayOJWeek member in the SYSTEMTIME structure is 
ignored. 

You can convert a file's time to local time and back again by using 
these functions: 

BOOl FileTimeTolocalFileTime(lPFIlETIME lpft. 
lPFIlETIME lpftlocal); 

and 

BOOl localFileTimeToFileTime(lPFIlETIME lpftlocal. 
lPFIlETIME lpft); 

Both these functions take two pointers to FILETIME structures. When 
you use these functions, be careful not to pass the same address as both 
parameters-the functions won't work correctly. 

And if you're an MS-DOS and FAT diehard who doesn't want to port 
the existing file time stamp code in your applications over to the new way 

645 



ADVANCED WINDOWS 

t1 
Important 

646 

of doing things just yet, you can use these two functions to convert a 
FILETIME structure to the time format used by MS-DOS and vice versa: 

BOOl FileTimeToDosDateTime(lPFIlETIME lpft. 
lPWORD lpwDOSDate. lPWORD lpwDOSTime); 

and 

BOOl DosDateTimeToFileTime(WORD wDOSDate. WORD wDOSTime. 
lPFIlETIME lpft); 

The FileTimeToDosDateTime function takes the address of the FILE
TIME structure containing the file's time and converts it to two WORD 
values that MS-DOS uses-one WORD for the date and the other WORD 
for the time. 

Under Windows 95, theFileTimeToDosDateTime and DosDateTimeToFileTime 
functions allow dates up to 12/31/2099. Under Windows NT, these func
tions allow dates up to 12/31/2107. 

Mter you have manipulated and converted the time values all you 
want, you can change the time associated with a file by calling GetFileTime's 
complementary function: 

BOOl SetFileTime(HANDlE hFile. lPFIlETIME lpftCreation. 
lPFIlETIME lpftlastAccess. lPFIlETIME lpftlastWrite); 

If you don't want to change the creation time stamp of the file, you can 
pass NULL in for the IpftCreation parameter. 

The other way to get the attribute information associated with a file 
is to call the GetFileInformationByHandle function: 

BOOl GetFilelnformationByHandle(HANDlE hFile. 
lPBY_HANDlE_FIlE_INFORMATION lpFilelnformation); 

This function requires the handle of an open file identified by the 
hFile parameter and the address of a BY_HANDLE_FILE_INFORMA
TION structure, which the function fills with information about the file: 

typedef struct _BY_HANDlE_FIlE_INFORMATION 
DWORD dwFileAttributes; 
FIlETIME ftCreationTime; 
FIlETIME ftlastAccessTime; 
FIlETIME ftlastWriteTime; 
DWORD dwVolumeSerialNumber; 
DWORD nFileSizeHigh; 
DWORD nFileSizelow; 



T H I R TEE N: File Systems and File 1/0 

DWORD nNumberOfLinks; 
DWORD nFilelndexHigh; 
DWORD nFilelndexLow; 

} BY_HANDLE_FILE_INFORMATION. 
*PBY_HANDLE_FILE_INFORMATION. *LPBY_HANDLE_FILE_INFORMATION; 

The GetFileInformationByHandle function gathers all of the attribute 
information available for the file. In addition to the file attributes con
tained in the dwFileAttributes member and the three time stamps contained 
in the ftCreationTime, jtLastAccessTime, and ftLastWriteTime members, the 
function gets the serial number of the disk volume on which the file 
resides in the dwVolumeSerialNumber member, and the file's size in the 
nFileSizeHigh and nFileSizeLow members. It finds the number of links 
(used by the PO SIX subsystem in Windows NT) in the nNumberOJLinks 
member. 

The system assigns every file, each time it's opened, a unique ID con
tained in the nFilelndexHigh and nFileIndexLow members. The ID might 
not be constant across openings of the file and will almost definitely be 
different if the file is opened during a different session. However, if one 
application opens a file and another application opens the same file, the 
ID will be the same. An application can use the ID in conjunction with 
the volume's serial number to determine whether two (or more) differ
ent file handles actually reference the same file. 

Searching for Files 
Almost all applications use files. Because an application can create many 
files and because applications are often designed to read files created by 
other applications (Microsoft Excel can read Lotus 1-2-3 files, for 
example), file searching has become a common task-so common, in 
fact, that Microsoft has created a set of common dialog boxes that help 
users search their drives for particular files. For some applications, 
though, the File Open and File Save As dialog boxes aren't enough. 
Some applications might need to search for files or allow access to files 
using methods not accommodated by the standard file dialog boxes. 

One common operation is to convert a simple filename or a file 
with a relative path to its full pathname. In 16-bit Windows, a call to 
OpenFile using the OLPARSE flag accomplishes the conversion. In 
Win32, the call is to: 

DWORD GetFullPathName(LPCTSTR lpszFile. DWORD cchPath. 
LPTSTR lpszPath. LPTSTR *ppszFilePart); 

647 



ADVANCED WINDOWS 

648 

The GetFullPathName function accepts a filename (and optional 
path information) in the IpszFile parameter. The function then uses the 
current drive and current directory information associated with the pro
cess, calculates the full pathname for the file, and fills the buffer pointed 
to by IpszPath. The cchPath parameter indicates the maximum size of the 
buffer for the drive and path in characters. In the ppszFilePart parameter, 
you must pass the address of an LPTSTR variable. GetFullPathName will 
fill the variable with the address within IpszPath at which the filename 
resides. Applications can use this information when they construct their 
caption text. 

For example, if I am using Windows 95 Wordpad and open a file 
called HIMOM.TXT, Wordpad's caption becomes 

HIMOM.TXT - Wordpad 

This last parameter, ppszFilePart, is simply a convenience. You could get 
the address of the filename by calling: 

szFilePart = strrchr(szPath, '\\') + I; 

GetFullPathName doesn't really search for a file on the system. It just 
converts a filename to its full pathname. In fact, GetFullPathName doesn't 
examine anything on the disk at all. If you want to actually scan the user's 
disks for a file, you can use: 

DWORD SearchPath(LPCTSTR lpszPath, LPCTSTR lpszFile, 
LPCSTR lpszExtension, DWORD cchReturnBuffer, 
LPTSTR lpszRetur~Buffer, LPTSTR *plpszFilePart); 

The SearchPath function looks for a file in a list of directories you 
specify. You pass the list of paths to be scanned in the IpszPath parameter. 
Ifthis parameter is NULL, the file is searched for in the paths in the fol
lowing order: 

1. The directory from which the application was loaded 

2. The current directory 

3. The Windows system directory 

4. The Windows directory 

5. The directories listed in the PATH environment variable 



1J 
Important 

T H I R TEE N: File Systems and File I/O 

You specify the file you want to search for in the lpszFile parameter. 
If the lpszFile parameter includes an extension, you should pass NULL in 
for the lpszExtension parameter; otherwise, you can pass an extension in the 
lpszExtension parameter that must begin with a period. The extension is 
appended to the filename only if the filename doesn't have an extension 
already. The last three parameters have the same meanings as the last 
three parameters of the GetFullPathName function. 

Another method of looking for files allows you to find a file by tra
versing the user's entire hard disk, looking at every directory and file in 
existence if you want. You tell the system what directory to start in and 
the filename to search for by calling FindFirstFile: 

HANDLE FindFirstFile(LPTSTR lpszSearchFile. 
LPWIN32_FIND_DATA lpffd); 

The FindFirstFile function tells the system you want to search for a 
file. The first parameter, lpszSearchFile, points to a zero-terminated string 
containing a filename. The filename can include wildcard characters (* 
and ?), and you can preface the filename with a starting path. The lPffd 
parameter is the address to a WIN32_FIND_DATA structure: 

typedef struct _WIN32_FIND_DATA { 
DWDRD dwFileAttributes; 
FILETIME ftCreationTime; 
FILETIME ftLastAccessTime; 
FILETIME ftLastWriteTime; 
DWORD nFileSizeHigh; 
DWORD nFileSizeLow; 
DWORD dwReserved0; 
DWORD dwReservedl; 
CHAR cFileName[ MAX_PATH J; 
CHAR cAlternateFileName[ 14 J; 

} WIN32_FIND_DATA. *PWI32_FIND_DATA. *LPWIN32_FIND_DATA; 

If FindFirstFile succeeds in locating a file matching the filespec in 
the specified directory, it fills in the members of the WIN32_FIND_DATA 
structure and returns a handle. If FindFirstFile fails to find a file that 
matches the filespec, it returhs INVALID_HANDLE_VALUE, and the 
structure isn't changed. 

Like the CreateFile function, the FindFirstFile function returns INVALID
_HANDLE_VALUE when it fails rather than NULL. 

649 



ADVANCED WINDOWS 

11 
Important 

650 

The WIN32_FIND_DATA structure contains information about 
the matching file-its attributes, its time stamps, and its size. At the end 
of the structure are two names for the file. The cFileName member is the 
real name of the file. This is the member you should use most often. The 
cAlternateFileName is a synthesized name for the file. 

Let's say you are using a program designed for 16-bit Windows. 
When you select the application's File Open dialog box, you see a list of 
the files in the current directory. If the current directory is on an NTFS 
file system and the names of the files in that directory average 50 charac
ters, what gets displayed? 

Under OS/2, a program that wasn't designed to recognize HPFS 
filenames couldn't see HPFS files at all. For Win32, Microsoft decided 
(correctly) that such files should be made accessible to the user. Well, 
since the 16-bit Windows application isn't prepared to work with long 
filenames, the system must convert the long filenames to fit an 8.3 sys
tem. This converted, or alternate, filename is what you'll find in the 
cAlternateFileName member of the WIN32 _FIND_ DATA structure. 

For short filenames, of course, the contents of the cFileName and 
cAlternateFileName members will be identical, and for long filenames, the 
cFileName member will contain the real name and the cAlternateFileName 
member will contain the synthesized name. For example, the filename 
"Hello Mom and Dad" can have a truncated, or alternate, name 
"HELLOM-I." 

There is a GetShortPathName function: 

DWORD GetShortPathName (LPCTSTR lpszLongPath. LPTSTR lpszShortPath. 
DWORD cchBuffer); 

You pass the address to a buffer containing a file's long name in the 
lpszLongPath parameter, and the function fills the buffer pointed to by 
the lpszShortPath parameter with the file's corresponding short name. 
You must pass the size, in characters, of the lpszShortPath buffer in the 
cchBuffer parameter. The function returns the number of characters cop
ied to the lpszShortPath buffer. 



11 
Important 

T HI R TEE N: File Systems and File I/O 

If FindFirstFile has successfully found a matching file, you can call 
FindNextFile to search for the next file matching the file specification 
originally passed to FindFirstFile: 

Baal FindNextFile(HANDlE hFindFile. lPWIN32_FIND_DATA lpffd); 

The hFindFile parameter is the handle that was returned by the earlier 
call to FindFirstFile, and the lPffd parameter is, again, the address to a 
WIN32_FIND_DATA structure-not necessarily the same structure you 
used in the earlier call to FindFirstFile, although it can be if you'd like. 

If FindNextFile is successful, it returns TRUE and fills the WIN32-
_FIND_DATA structure. If the function can't find a match, it returns 
FALSE. 

When you have finished finding files, you must close the handle 
returned by FindFirstFile by calling FindClose: 

Baal FindClose(HANDlE hFindFile); 

This is one of the very few times in Win32 that you don't call CloseHandle 
to close a handle. You must callFindClose instead so that some additional 
bookkeeping information maintained by the system will also be freed. 

The FindFirstFile and FindNextFile functions just cycle through all 
the files (and subdirectories) within a single directory you've specified. 
If you want to walk up and down the entire directory hierarchy, you will 
need to write a recursive function. 

The Directory Walker Sample Application 
The DirWalk (DIRWALK.EXE) application, listed in Figure 13-3 begin
ning on page 654, demonstrates use of the FindFirstFile, FindNextFile, 
FindClose, GetCurrentDirectory, and SetCurrentDirectory functions to walk the 
entire directory tree of a disk volume. The source code files, resource 
files, and make file for the application are in the DIRWALK.13 directory 
on the companion disc. When the user executes DIRWALK.EXE, it starts 
at the root directory of the current drive, walks the whole tree, and 
displays a dialog box containing a list box that shows the entire drive's 
directory tree. On the next page, you'll see how the Directory Walker 
dialog box appears when DirWalk is run on my machine. 

651 



ADVANCED WINDOWS 

652 

BIN 
NERALlDF 

OMMAND.COM 
IO.SYS 

C:\WINDOWS 
SETUP.TXT 
WINHELP.EXE 
WINSETUP.EXE 

When the dialog box receives its WM_INITDIALOG message, it 
performs some simple initialization and calls theDirWalk function located 
in DIRWALK.C: 

void DirWalk (HWND hwndTreeLB. LPCTSTR pszRootPath); 

The hwndTreeLB parameter is the handle of the list box window that 
the function should fill, and the pszRootPath is the starting directory. The 
call to DirWalk passes "\\" in the pszRootPath parameter so that the direc
tory walk starts at the root of the current drive. It would certainly be pos
sible to specify a different directory here so that the tree would be walked 
from the specified directory downward. 

When theDirWalk function is called, it performs some initialization 
before calling the DirWalkRecurse function. This recursive function will 
be called by itself over and over as different levels of the drive's directory 
tree are walked. Before the directory tree can be walked, DirWalk per
forms some initialization by saving the current directory in a temporary 
variable and then setting the current directory to the path specified in 
the pszRootPath parameter. 

Then the thread is ready to start walking by calling DirWalkRecurse. 
This function first adds the current directory to the list box. Then it calls 
FindFirstFile to get the name of the first file in the current directory. If a 



T H I R TEE N: File Systems and File I/O 

file is found, its name is displayed and FindNextFile is called in order to 
get the next file in the directory. 

Mter all the files have been displayed, DirWalkR.ecurse tests the 
fR.ecurse member of the DIRWALKDATA structure to see if it should 
recurse into subdirectories. In the DirWalk sample application, this 
member will always be TRUE. I added the fR.ecurse member because 
these functions are used in the FILECHNG.EXE application, presented 
later in this chapter. 

When DirWalkR.ecurse needs to go into a subdirectory, it calls 
FindFirstChildDir. This little function, which appears in DIRWALK.C, is a 
simple wrapper around the FindFirstFile function. FindFirstChildDir filters 
out all the filenames in a directory and returns only subdirectory names. 
The helper function FindNextChildDir is just a wrapper around the Find
NextFile function that also filters out filenames. 

As each subdirectory is found, DirWalkR.ecurse moves into the new 
subdirectory and calls itself so that the new subtree can be walked. Mter 
the subtree is walked, DirWalkR.ecurse calls: 

SetCurrentDi rectory<_TEXT(" .. ")); 

so that the current directory is restored to what it was before making the 
recursive call to DirWalkR.ecurse. 

Before any tree walking can start, the DirWalk function creates a 
local DIRWALKDATA structure, called DW, on the stack. This structure 
contains information used by DirWalkR.ecurse. 

When I first wrote this program, I had all the members inside the 
DIRWALKDATA structure as local variables declared inside DirWalkRe
curse. Then, each time DirWalkR.ecurse called itself, another set of these 
variables was created on the stack. As I soon discovered, this can eat up 
quite a bit of stack space if a directory tree goes down pretty deep, so I 
looked for a more efficient method of storing these variables. 

The next method I tried was to create the DIRWALKDATA mem
bers as static variables. That way, I thought, there would be only one set 
of them and they wouldn't be allocated on the stack at all. This sounded 
pretty good to me except that it meant that the DirWalk andDirWalkR.ecurse 
functions were no longer multithread safe. If two threads wanted to walk 
the tree simultaneously, they would be sharing the same static local vari
ables-with undesirable effects. This realization led me to modify the 
program again. 

I made all of the variables static thread-local storage variables by 
putting _declspec(thread) in front of each one. This, I thought, would 

653 



ADVANCED WINDOWS 

DirWalk,ico 

654 

force a new set of the static variables for every thread created in the pro
cess. The only thing I didn't like about this approach was that a set of 
these variables would be created for every thread, even for those threads 
that never called DirWalk or DirWalkRecurse. 

This problem could be fixed by using dynamic thread-local storage. 
This way, I reasoned, I'd be allocating only a TLS index, which isn't a 
memory allocation anyway. Then, when DirWalk was called, it would call 
HeapAlloc to allocate a DIRWALKDATA structure and store the address 
of this structure using TlsSetValue. This dynamic approach solved the 
problem of allocating additional memory for threads that never called 
DirWalk, and as a bonus, the memory containing the data structure 
would be around only while the DirWalk function was being called. Just 
before DirWalk returned, it would free the buffer. 

Mter I got to this point, the best solution finally hit me: create a 
data structure on the stack for the thread, and provide just the pointer to 
the structure with each recursive call. This solution is what you see in the 
sample program's code. This method creates the variables on the stack, 
memory is allocated for them only when it is needed, and only a 4-byte 
pointer is passed on the stack with each recursive call. This seems to me 
to be the best compromise among all of the possibilities. 

In spite of all this effort, it turns out thatDirWalk andDirWalkRecurse 
are still not multithread safe. Can you guess why? Because of the calls to 
SetCurrentDirectory. You should think of the current directory as being 
stored in a global variable for a process. If you change the current direc
tory in one thread, you are changing it for all threads in the process. To 
make DirWalk and DirWalkRecurse multithread safe, you would have to 
get rid of the calls to SetCurrentDirectory. You could get rid of the calls to 
SetCurrentDirectory by managing the walked path in a string variable and 
by calling FindFirstDir using a full path instead of using paths relative to 
the current directory. Since I also wanted to demonstrate the use of the 
GetCurrentDirectory and SetCurrentDirectory functions, I leave this last modi
fication of the program as an exercise for you. 

>DlBWALK.O: 
'1** **** *i~**~* >i<'I<*1l( 'I!********.**~** *~* **** '" *,. *** **"'****,;. ~"',.***~~,. 
1<l0d~len~l1le;f}irWalk.C ..•• •.. . . .... • ....... :.. ... .. 

.. 'Wj!tt1j:~ri~Y : Jllll··l;farkinl\.andJliiffrfiy Richter· 
N~t~ce·~~.C{)pyrigh~.(c.:.)19.g5J€ffrey Richter 

*#** *** ***~ ** ** **'* **.* 01< 01<*'1<.* *** ** * * **;1<* ** *** * ",:* * *.* ** *'I< * *'1< .. ** **./' 

Figure 13-3. (continued) 

The DirWalk application. 



Figure 13·3. continued 

Iti ncl ude" •. \AdvW1 032 .H" 
#include <windows.h> 
#iocl. ude<windowsx .h> 

T H I R TEE N: File Systems and File 1/0 

1* See Appendix B for details. *1 

(continued) 

655 



ADVANCED WINDOWS 

Figure 13-3. continued 

(continued) 

656 



T H I R TEE N: File Systems and File I/O 

Figure 13-3. continued 

(continued) 

657 



ADVANCED WINDOWS 

Figure 13-3. continued 

(continued) 

658 



T H I R TEE N: File Systems and File 1/0 

Figure 13-3. continued 

while (pDW->fOkl { 
pDW~ >1'1s01 r =pDW~>F1ndData. dwFl1 eAttri !lutes & 

(continued) 

659 



ADVANCED WINDOWS 

Figure 13-3. continued 

(continued) 

660 



T H I R TEE N: File Systems and File liD 

Figure 13-3. continued 

111111111111111111111111/111111111111111111111111/1/111/11111 

(continued) 

661 



ADVANCED WINDOWS 

Figure 13-3. continued 

(continued) 

662 



Figure 13-3. continued 

2 TEXTI~CLUOE OISCARDABLE 
BEGIN 

"4lincl ude .... afxres. h· .. ·\r\n .. 

T HI R TEE N: File Systems and File lID 

File System Change Notifications 
There are so many applications that would like to be notified when some
thing in the file system has been altered. You probably haven't noticed it, 
but the Windows 95 File Open common dialog box updates its window 
automatically to reflect any changes made to the file system. To see this 
in action, perform the following experiment. Select the File Open menu 
option in any application that displays the File Open common dialog 
box. Now, from the command prompt, copy a file from a floppy disk to 
the directory that is currently viewed in the dialog box. Mter the file is 
copied, the dialog box will automatically update its contents to show that 
the new file is now present in the viewed directory. 

This has been a feature long wished for in 16-bit Windows-and 
actually, 16-bit Windows does have a function, FileCDR, that an applica
tion can call in order to be notified of changes in the file system. There 
are two problems with FileCDR, though: it's an undocumented function, 

663 



ADVANCED WINDOWS 

664 

and it allows only one application at a time to get file system notifica
tions. If another application calls the FileCDR function, the first applica
tion will stop getting notifications. 

So many people requested that applications be notified dynami
cally of file system changes that Microsoft built direct support for this 
capability into Windows 95 and Windows NT. Here is how it works. First 
your application must tell the system that it's interested in being notified 
of file system changes by calling FindFirstChangeNotijication: 

HANDLE FindFirstChangeNotification(lPTSTR lpszPath, 
BOOl fWatchSubTree, DWORD fdwFilter); 

The IpszPath parameter specifies the root of the directory tree that 
you want to monitor. You can specify the root directory of a drive or any 
subdirectory. If you specify a subdirectory, you won't be notified of events 
occurring in directories above the specified subdirectory. If you want to 
monitor directory trees on different drives, you must make multiple calls 
toFindFirstChangeNotijication-one for each drive that you want to monitor. 

The second parameter fWatchSubTree, tells the system whether you 
want to watch events that occur in directories beneath the IpszPath direc
tory. If you pass FALSE, you will be notified only of events that occur in 
the single directory you've specified. 

In the fdwFilter parameter, you tell the system what type of file 
changes you're interested in. You can combine the fdwFilter flags by ORing 
them. Here's the list of valid flags and their meanings: 

Flag 

FILE_NOTIFLCHANGE_FILE_NAME 

FILE_NOTIFY_CHANGE_ATTRIBUTES 

FILE_NOTIFY_CHANGE_SIZE 

FILE_NOTIFY_CHANGE_LAST_WRITE 

FILE_NOTIFY_CHANGE_SECURITY 

Meaning 

A file has been created, 
renamed, or deleted. 

A directory has been created, 
renamed, or deleted. 

A file's attribute has changed. 

A file's size has changed. 

A file's last write time has 
changed. 

A security descriptor for a direc
tory or file has been changed. 



11 
Important 

T H I R TEE N: File Systems and File 1/0 

Note that the system frequently buffers file changes. A file's size 
doesn't change, for example, until buffered information is flushed to the 
disk. You will be notified of the change in the file size only when the sys
tem flushes the data to disk, not when an application actually changes 
the data. 

If FindFirstChangeNotification is successful, it returns a handle your 
thread can use with the various synchronization functions such as WaitFor
SingleObject and WaitForMultipleObjects. If you pass an invalid parameter, 
such as a nonexistent path, INVALID_HANDLE_VALUE is returned. 

Like the CreateFile andFindFirstFile functions, theFindFirstChangeNotifica
tion function returns INVALID_HANDLE_VALUE when it fails rather 
than NULL. 

Personally, I think it would have made more sense to name the 
FindFirstChangeNotification function something like CreateFileChangeNoti
fication because the function doesn't really find a file change at all; it sim
ply creates a file change notification object and returns its handle. 

Once you have the notification object's handle, you can use it in 
calls to the WaitForSingleObject and WaitForMultipleObjects functions. When
ever a change occurs in the file system that meets the criteria you speci
fied in the call to FindFirstChangeNotification, the object will become 
signaled. You can think of a file change notification object as a manual
reset event with some additional logic built into it-when a change occurs 
in the file system, the event is signaled. When your call to WaitForSingle
Object or WaitForMultipleObjects returns, you know that you need to walk 
the drive's directory tree (starting from IpszPath) so that you can refresh 
the directory and file information in your application. 

Note that the system accumulates many file changes and notifies 
you of them all at once. For example, if the user entered this command 
on the command line: 

del tree . (Windows 95) 
rmdir . /s (Windows NT) 

to erase all of the files in the current directory and all its subdirectories, 
the command shell's thread might delete several files before the system 
signaled the file change notification object, allowing your thread to 
resume execution. The handle won't be signaled separately for every 
single file change. This greatly improves performance. 

665 



ADVANCED WINDOWS 

11 
Important 

When the file change notification object is signaled, your thread 
wakes up and you can perform whatever operations you want to. When 
you have finished, you must call FindNextChangeNotification: 

BOOl FindNextChangeNotification(HANDlE hChange); 

TheFindNextChangeNotification function resets the file change noti
fication object to its nonsignaled state, similar to calling ResetEvent. How
ever, this is where file change notification objects differ from manual
reset events. While your thread was walking the drive's directory tree, the 
command shell's thread might have preempted your thread and been 
able to continue deleting more files and directories. The call toFindNext
Change Notification checks to see whether this has happened, and if more 
file change events have occurred since the object became signaled, the 
object is not reset to the nonsignaled state and remains signaled. 

That way, if your thread waits for the object again, the wait will be 
satisfied immediately and you will again walk the drive's directory tree. 
You should always wait for a file change notification object after every 
call to FindNextChangeNotification. Without this wait, your thread might 
miss a file change event. 

As usual, when you no longer want file change notifications, you must 
close the object. You close the file change notification object by calling: 

BOOl FindCloseChangeNotification(HANDlE hChange); 

This is one of the very few times in Win32 that you don't call CloseHandle 
to close a handle. You must call FindCloseChangeNotification instead so 
that the system deletes any record of file changes that have been made 
since the file change notification object was last signaled. 

The File Change Sample Application 

666 

The FileChng (FILECHNG.EXE) application, listed in Figure 13-4 begin
ning on page 669, uses the three change notification functions to moni
tor changes made to a drive's directory tree. The source code files, 
resource files, and make file for the application are in the FILECHNG.13 
directory on the companion disc. When the user executes FileChng, the 
File Change Notifications dialog box appears: 



T HI R TEE N: File Systems and File I/O 

Before the program starts monitoring file changes, you must tell it 
what you are interested in monitoring by setting some or all of the 
parameters in the Filters group box. When you click on the Start button, 
the program retrieves all of the parameters from the dialog box controls 
and calls FindFirstChangeNotification so that the system will start to notify 
the program of any file system changes. The program also resets the 
Notification Count value to 0 and performs an initial directory tree walk 
starting at the path you've specified, filling the list box with a list of the 
directories and files in the tree. 

The program then sits idle waiting for the system to signal the file 
change notification object. When a change occurs in the file system that 
matches your filter criteria, the system signals the notification object, 
causing FileChng's thread to wake up, increment the Notification Count 
value, and rewalk the directory tree. Mter each walk, the thread calls 
FindNextChangeNotification and waits for the object again. You can stop 
monitoring changes to the file system by clicking on the Stop button or 
by changing some of the notification criteria values. 

The program code is pretty self-explanatory, but I do want to draw 
your attention to the WinMain function, which I've structured differ
ently from WinMain in the other sample programs in this book. I wanted 
to write the FileChng program so that it had only a single thread of execu
tion. To do this, I needed a method whereby my thread could suspend 
itself until either a window message entered the thread's queues or the file 
change notification object became signaled. I racked my brain for a 
while and then remembered the MsgWaitForMultipleObjects function. 

667 



ADVANCED WINDOWS 

668 

This function was just what the doctor ordered. It's just like WaitFor
MultipleObjects except that it also checks for window messages. Using 
MsgWaitForMultipleObjects meant that I couldn't create a modal dialog 
box for this program, though, because modal dialog boxes call GetMessage 
for their message processing and there would be no way for me to wait 
for the file change notification object. Since I had to get more involved 
with the message loop for the program, I had to use CreateDialog instead 
of DialogBox in order to create a modeless dialog box. Then I had to code 
the message loop myself. 

Here's a little more detail on what the program does. First it calls 
CreateDialog to create a modeless dialog box that will be the user inter
face for the program. Next the thread starts executing the message loop, 
which repeatedly checks the fQuit variable to find out when it should ter
minate. The fQuit variable is initialized to FALSE when the program 
starts and is set to TRUE when a WM_QUIT message is pulled from the 
thread's queue. 

Once in the message loop, the thread checks whether the handle to 
the file change notification object is valid and stores the result in the 
fWait4FileChanges variable. The handle won't be valid if the user hasn't 
clicked on the Start button yet. Then the program makes this call: 

dwResult = MsgWaitForMultipleObjects( 
(fWait4FileChanges) ? 1 : 0. 
&s_hChange. FALSE. INFINITE. OS_ALLEVENTS); 

If there is a valid handle to a file change notification object, the call to 
MsgWaitForMultipleObjects tells the system to wait either for this object to 
become signaled or for a message to enter one of the thread's message 
queues. If the handle is invalid, the thread will just wait until a message is 
available. 

When the system awakens the thread, the thread checks to see what 
the reason is. If it has been awakened because of a file change, the 
Notification Count value is incremented, the directory tree is rewalked, 
and FindNextChangeNotification is called. The thread then loops around 
to the top of the message loop and makes another call to MsgWaitFor
MultipleObjects. 

If the thread has been awakened because of a window message, the 
message must now be retrieved from the queue by a call to PeekMessage 
specifying the PM_REMOVE flag. Next IsDialogMessage is called, passing 
the retrieved message. This call allows the user to navigate through the 
controls in the modeless dialog box using the keyboard. If the message 



FileChng,ico 

T H I R TEE N: File Systems and File 1/0 

isn't a navigational keyboard message, the thread checks to see whether 
it is a WM_QUIT message. If it is, the/Quit variable is set to TRUE, caus
ing the message loop to terminate before it begins its next iteration. 

If the message isn't a navigational keyboard message and is also not 
a WM_QUIT message, TranslateMessage is called, followed by Dispatch
Message, just as they would be called in any normal message loop. 

You'll notice that I call PeekMessage in a loop here-I do this in order 
to give the user interface a higher priority than the processing for file 
change notifications. 

Figure 13-4. (continued) 

The FileChng application. 

669 



ADVANCED WINDOWS 

Figure 13-4. continued 

(continued) 

670 



T H I R TEE N: File Systems and File I/O 

Figure 13-4. continued 

(continued) 

671 



ADVANCED WINDOWS 

Figure 13-4. continued 

(continued) 

672 



T H I R TEE N: File Systems and File 1/0 

Figure 13-4. continued 

II Associate an teon with the dialog box. 
Se:tCl~ssLong(hwnd. GCLHICON. (LONG) 
. Loadicon«HINSTANCEJ aetWindowLongChwnd. GWLHINSTANCE). 

)'H: 

(continued) 

673 



ADVANCED WINDOWS 

Figure 13·4. continued 

(continued) 

674 



T H I R TEE N: File Systems and File I/O 

Figure 13·4. continued 

1/ C9ntinu.e .. to loop until. aWM",:"OUIT 
II message cqmeS out ·of the queue .•. 
wh11 et! fQiJi t ){,. 

(continued) 

675 



ADVANCED WINDOWS 

676 

Figure 13-4. continued 

·BO~L<findNe~tth1f~Dfr: .. 
. , ~IH32JIMi:J~nArA 

(continued) 



T H I R TEE N: File Systems and File I/O 

Figure 13-4. continued 

BOOL fFound .. FALSE, 

(continued) 

677 



ADVANCED WINDOWS 

Figure 13·4. continued 

(continued) 

678 



T H I R TEE N: File Systems and File I/O 

Figure 13-4. continued 

(continued) 

679 



ADVANCED WINDOWS 

Figure 13-4. continued 

(continued) 

680 



T H I R TEE N: File Systems and File 1/0 

Figure 13-4. continued 

//////////////////////////////////////////////////////1//////1 
// 
// Icon 
/I 

Fi leChng ICON DISCARDABLE "Fi 1 eChng. leo" 

II/llIII//IIl/l 1/1 II/ / 11/11/ I /I I /Ill/II 111f111/111l// I III I 1//1 
/I 
Irotalog 
II 

IDD ... FILECHNGDIALOGDISCARDABLE 6,18, .195,237 
STYLEWSiM~NIMrZEBOXfWS_VISIBLE l WS_CAPTlON :WS_SYSMENU 
CAPno.N "Y11e ChahgeNot.i fica tions" 
FONTS. "Helv" 
BEGIN 

. LTEXT 
EDIT1EXt 
CONTROL 

DE FPUSHBUTTON 
PU.SHBUnON 

.LTEXt 

n&Path:" .1DC,-ST AnC.4 .4.19. 8 
I DC3ATH. 24 ,4,166.12. ES_AUTOHSCRO LL 
"&Includesubdirectori es·~.lOCINCSUBDIRS. 
"Sutton", BS"-AUIOCHECKBOX :WS_ TABSTOP, 
4.!)4,83 ,10' 
"Not i ficati·on count:", I DC-STATI C. 
104.84.62,9,SS ... NOPREfIX .... .. 
"0" .1DCNCOUNT.168 .84; 24 .S.SS_NOPREFlX 
"Filters",l DLSTATl C, 4, .20 ~ 18S. 40 
"File&name",lDC_FItENAME, "Button", 
BLAUTOCHECKBOX ; WS_3ABSTOP .8, 32 ,42,10 
"&Dirname". IDC_OIRNAME. "Button", 
BS~AUTOCH EC KBOX·, WS_ lABSIO P ,8,44.40 ,10 
·'&Attributes",10t-ATTRISS. "Button". 
BS_AUTOCHECKBOX :WLTABSTOP.64 .32,42 ,10 
"S1 &ze'" IDt-SlZEFLTR, "Button", 
BS __ AUTOCHECKBOX : WS_ TABSTOP ,64.44,25,10 

·"&Lastwr1 te.time" .r DC-,LASTWRITE. 
"Button",BSJUTOCHECKBOX : WS_TABSIOP, 
120,32,58.10 
"Securi t&y", I Dt-SECURITY ,"Button", 
B.LAUTOCHECKBOX ; WS_TABSTOP, 
120.44,3S,10 
··&Start .... lOLSTART,124. 64 ,32,14 
"SHop" ,lOt-STOP, 160,64,32.14 
"&File l1st:",IDLSTATIC.4.84,27,8 

(continued) 

681 



ADVANCED WINDOWS 

Figure 13-4. continued 

682 



C HAP T E R F 0 U R TEE N 

STRUCTURED 
EXCEPTION HANDLING 

Close your eyes for a moment and imagine writing your application as 
though your code could never fail. That's right-there's always enough 
memory, no one ever passes you an invalid pointer, and files you count 
on always exist. Wouldn't it be a pleasure to write your code if you could 
make these assumptions? Your code would be so much easier to write, to 
read, and to understand. No more fussing with if statements here and 
gotos there-in each function, you'd just write your code top to bottom. 

If this kind of straightforward programming environment seems 
like a dream to you, you'll love structured exception handling (SEH). 
The virtue of structured exception handling is that as you write your 
code, you can focus on getting your task done. If something goes wrong 
at run time, the system catches it and notifies you of the problem. 

With SEH you can't totally ignore the possibility of an error in your 
code, but SEH does allow you to separate the main job from the error 
handling chores. This division makes it easy to concentrate on the prob
lem at hand and focus on the possible errors later. 

One of Microsoft's main motivations for adding structured excep
tion handling to Win32 was to ease the development of Windows 95 and 
Windows NT and make the operating systems more robust. The devel
opers of the Windows NT operating system and its various subsystems 
used SEH to make the system more robust. And we can use SEH to make 
our own applications more robust. 

The burden of making SEH work falls more on the compiler than 
on the operating system. Your compiler must generate special code 
when exception blocks are entered into and exited from. The compiler 
must produce tables of support data structures to handle SEH and also 
must supply callback functions that the operating system can call so that 

683 



ADVANCED WINDOWS 

11 
Important 

exception blocks can be traversed. The compiler is also responsible for 
preparing stack frames and other internal information that is used and 
referenced by the operating system. Adding SEH support to a compiler 
is not an easy task, and you shouldn't be surprised if your favorite com
piler vendor delays shipment of its Win32-capable compiler because of 
SEH implementation problems. 

Nor should it surprise you that different compiler vendors imple
ment structured exception handling in different ways. Fortunately, we 
can ignore compiler implementation details and just use the compiler's 
SEH capabilities. 

Differences among compiler implementations of SEH could make 
it difficult to discuss in specific ways with specific code examples how 
you can take advantage of SEH. However, most compiler vendors fol
low Microsoft's suggested syntax. The syntax and keywords I use in my 
examples may differ from those of another company's compiler, but the 
main SEH concepts are the same. I'll use the Microsoft Visual c++ 2.0 
compiler's syntax throughout this chapter. 

Don't confuse structured exception handling with C++ exception han
dling. C++ exception handling is a different form of exception handling, 
one that makes use of the new C++ keywords catch and throw. Microsoft 
has added C++ exception handling in Visual C++ version 2.0. Microsoft's 
implementation of C++ exception handling is implemented by taking 
advantage of the structured exception handling capabilities already 
present in the compiler and Windows operating systems. 

Structured exception handling really consists of two main capabili
ties: termination handling and exception handling. We'll turn our atten
tion to termination handlers first. 

Termination Handlers 

684 

A termination handler guaran tees that a block of code (the termination 
handler) will be called and executed regardless of how another section 
of code (the guarded body) is exited. The syntax (using the Microsoft 
Visual C++ 2.0 compiler) for a termination handler is as follows: 



F 0 U R TEE N: Structured Exception Handling 

_try 
II Guarded body 

_finally { 
II Termination handler 

} 

The new _ try and _finally keywords delineate the two sections of 
the termination handler. In the code fragment above, the operating sys
tem and the compiler work together to guarantee that the _finally block 
code in the termination handler will be executed no matter how the 
guarded body is exited. Regardless of whether you put a return, a goto, or 
even a call to longjump in the guarded body, the termination handler will 
be called. Here's the flow of code execution: 

II 1. Code before the try block executes 

_try { 
II 2. Code inside the try block executes 

_finally { 
II 3. Code inside the finally block executes 

} 

II 4. Code after the finally block executes 

Understanding Termination Handlers by Example 
Because the compiler and the operating system are intimately involved 
with the execution of your code when you use SEH, I believe that the 
best way to demonstrate how SEH works is by examining source code 
samples and discussing the order in which the statements execute in 
each example. 

Therefore, the next few sections show different source code frag
ments, and the text associated with each fragment explains how the 
compiler and operating system alter the execution order of your code. 

Funcenstein1 
To appreciate the ramifications of using termination handlers, let's exam
ine a more concrete coding example on the next page. 

685 



ADVANCED WINDOWS 

686 

DWORD Funcenstein1 (void) { 
DWORD dwTemp; 

} 

II 1. Do any processing here. 

_try 
II 2. Request permission to access 
II protected data. and then use it. 
WaitForSingleObject(g_hSem. INFINITE); 

g_dwProtectedData = 5; 
dwTemp g_dwProtectedData; 

_finally 
II 3. Allow others to use protected data. 
ReleaseSemaphore(g_hSem. 1. NULL); 

II 4. Continue processing. 
return(dwTemp); 

In Funcensteinl, using the try-finally blocks really isn't doing very 
much for you. The code will wait for a semaphore, alter the contents 
of the protected data, save the new value in the local variable dwTemp, 
release the semaphore, and return the new value to the caller. 

Funcenstein2 
Now let's modify the function a little and see what happens: 

DWORD Funcenstein2 (void) { 
DWORD dwTemp; 

II 1. Do any processing here. 

_try { 
II 2. Request permission to access 
II protected data. and then use it. 
WaitForSingleObject(g_hSem. INFINITE); 

g_dwProtectedData = 5; 
dwTemp = g_dwProtectedData; 

II Return the new value. 



} 

F 0 U R TEE N: Structured Exception Handling 

return{dwTemp): 
} 

_finally { 
II 3. Allow others to use protected data. 
ReleaseSemaphore{g_hSem. 1. NULL): 

II Continue processing--this code 
II will never execute in this version. 
dwTemp = 9: 
return{dwTemp): 

InFuncenstein2, a return statement has been added to the end of the 
try block. This return statement tells the compiler that you want to exit 
the function and return the contents of the dwTemp variable, which now 
contains the value 5. However, if this return statement had been exe
cuted, the semaphore would not have been released by the thread-and 
no other thread would ever be able to gain control of the semaphore. As 
you can imagine, this kind of sequence can become a really big problem 
because threads waiting for the semaphore might never be able to resume 
execution. 

However, !Jy using the termination handler, you have avoided the 
premature execution of the return statement. When the return stateIllent 
tries to exit the try block, the compiler makes sure that the code in the 
finally block executes first. The code inside the finally block is guaran
teed to execute before the return statement in the try block is allowed to 
exit. In Funcenstein2, putting the call to ReleaseSemaphore into a termina
tion handler block ensures that the semaphore will always be released
there is no chance for a 'thread to accidentally retain ownership of the 
semaphore, which wOlfld mean that all other threads waiting for the 
semaphore wou~d never ~~ scheduled CPU time. 

After the code in thefinally block executes, the function does, in 
fact, return~ Any code appearing below the finally block doesn't execute 
because the function returns in the try block. Therefore, this function 
returns the value 5 and not the value 9. 

You might be asking yourself how the compiler guarantees that the 
finally block executes before the try block can be exited. When the com
piler examines your source code, it sees that you have coded a return 
statement inside a try block. Having seen this, the compiler generates 
code to save the return value (5 in our example) in a temporary variable 
created by the compiler. The compiler then generates code to execute 
the instructions contained inside the finally block; this is called a local 

687 



ADVANCED WINDOWS 

688 

unwind. More specifically, a local unwind occurs when the system exe
cutes the contents of afinally block because of the premature exit of 
code in a try block. Mter the instructions inside the finally block execute, 
the value in the compiler's temporary variable is retrieved and returned 
from the function. 

As you can see, the compiler must generate additional code and 
the system must perform additional work to pull this whole thing off. On 
different CPUs, the steps necessary to make termination handling work 
vary. The MIPS and Alpha processors, for example, must execute several 
hundred or even several thousand instructions in order to capture the 
try block's premature return and call the finally block. You should avoid 
writing code that causes premature exits from the try block of a termina
tion handler because the performance of your application could be ad
versely impacted. Later in this chapter, I'll discuss the _leave keyword, 
which can help you avoid writing code that forces local unwinds. 

Exception handling is designed to capture exceptions (in our exam
ple, the premature return)-the exceptions to the rule that you expectto 
happen infrequently. If a situation is the norm, it's much more efficient 
to check for the situation explicitly rather than to rely on the structured 
exception handling capabilities of the operating system and your com
piler to trap common occurrences. 

Note that when the flow of control naturally leaves the try block and 
enters thefinally block (as shown inFuncensteinl), the overhead of enter
ing the finally block is minimal. On the x86 CPUs using the Microsoft 
compiler, a single machine instruction is executed as execution leaves 
the try block to enter the finally block....,....I doubt that you will even notice 
this overhead at all in your application. When the compiler has to gener
ate additional code and the system has to perform additional work, as in 
Funcenstein2, the overhead is much more noticeable. 

Funcensteln3 
Now let's modify the function again and take a look at what happens: 

DWORD Funcenste1n3 (void) { 
DWORD dwTemp; 

/I 1. Do any pr'ocessing here. 



F 0 U R TEE N: Structured Exception Handling 

} 

} 

II 2. Request permission to access 
II protected data. and then use it. 
WaitForSingleObject(g_hSem. INFINITE); 

g_dwProtectedData = 5; 
dwTemp = g_dwProtectedData; 

II Try to jump over the finally block. 
goto ReturnValue; 

_finally { 

} 

II 3. Allow others to use protected data. 
ReleaseSemaphore(g_hSem. 1. NULL); 

dwTemp = 9; 
II 4. Continue processing. 
ReturnValue: 
return(dwTemp); 

In Funcenstein3, when the compiler sees the goto statement in the try 
block, it generates a local unwind to execute the contents of the finally 
block first. However, this time, after the code in the finally block exe
cutes, the code after the ReturnValue label is executed because no return 
occurs in either the try or the finally block. This code causes the function to 
return a 5. Again, because you have interrupted the natural flow of con
trol from the try block into the finally block, you may incur a high perfor
mance penalty depending on the CPU your application is running on. 

Funcfurter1 
Now let's look at another scenario in which termination handling really 
proves its value. Look at this function: 

DWORD Funcfurter1 (void) { 
DWORD dwTemp; 

II 1. Do any processing here. 

_try { 
II 2. Request permission to access 
II protected data. and then use it. 
WaitForSingleObject(g_hSem. INFINITE); 

(continued) 

689 



ADVANCED WINDOWS 

690 

} 

dwTemp = Funcinator(g_dwProtectedData); 
} 

_finally { 

} 

II 3. Allow others to use protected data. 
ReleaseSemaphore(g_hSem. 1. NULL); 

II 4. Continue processing. 
return(dwTemp); 

Now imagine that the Funcinator function called in the try block 
contains a bug that causes an invalid memory access. In a 16-bit Windows 
application, this would present the user with the ever-popular Applica
tion Error dialog box. When the user dismissed the error dialog box, the 
application would be terminated. If the code were running in a Win32 
application with no try-finally block, and the application were termi
nated because Funcinator generated an invalid memory access, the sema
phore would still be owned and would never be released-any threads in 
other processes that were waiting for this semaphore would never be 
scheduled CPU time. But placing the call to ReleaseSemaphore in afinally 
block guarantees that the semaphore gets released even if some other 
function causes a memory access violation. 

If termination handlers are powerful enough to capture an applica
tion terminating because of an invalid memory access, we should have 
no trouble believing that they will also capture setjump/longjump combi
nations and, of course, simple statements such as !freak and continue. 

Pop Quiz Time: FuncaDoodleDoo 
Now for a test. Can you guess what the function below returns? 

DWORD FuncaDoodleDoo (void) { 
DWORD dwTemp = 0; 

while (dwTemp < 10) { 

_try { 

} 

if (dwTemp == 2) 
continue; 

if (dwTemp == 3) 
break; 



_finally { 
dwTemp++; 

dwTemp++; 

dwTemp += 10; 
return(dwTemp); 

F 0 U R TEE N: Structured Exception Handling 

Let's analyze what the function does step by step. First dwTemp is set 
to o. The code in the try block executes, but neither of the iJ statements 
evaluates to TRUE. Execution moves naturally to the code in the finally 
block, which increments dwTemp to 1. Then the instruction after the 
finally block increments dwTemp again, making it 2. 

When the loop iterates, dwTemp is 2 and the continue statement in 
the try block will execute. Without a termination handler to force execu
tion of the finally block before exit from the try block, execution would 
immediately jump back up to the while loop, dwTemp would not be 
changed, and we would have started an infinite loop. With a termination 
handler, the system notes that the continue statement causes the flow of 
control to exit the try block prematurely and moves execution to the 
finally block. In the finally block, dwTemp is incremented to 3. However, 
the code after the finally block doesn't execute because the flow of con
trol moves back to continue and thus to the top of the loop. 

Now we are processing the loop's third iteration. This time, the first 
iJstatement evaluates to FALSE, but the second iJstatement evaluates to 
TRUE. The system again catches our attempt to break out of the try block 
and executes the code in the finally block first. Now dwTemp is 
incremented to 4. Because a break statement was executed, control re
sumes after the loop. Thus, the code after the finally block and still 
inside the loop doesn't execute. The code below the loop adds 10 to 
dwTemp for a grand total of 14-the result of calling this function. It 
should go without saying that you should never actually write code like 
FuncaDoodleDoo. I placed the continue and break statements in the middle 
of the code only to demonstrate the operation of the termination handler. 

Although a termination handler will catch most situations in which 
the try block would otherwise be exited prematurely, it can't cause the 
code in a finally block to be executed if the thread or process is termi
nated. A call to ExitThread or ExitProcess will immediately terminate the 

691 



ADVANCED WINDOWS 

692 

thread or process without executing any of the code in a finally block. 
Also, if your thread or process should die because some application 
called TerminateThread or TerminateProcess, the code in a finally block 
again won't execute. Some C run-time functions, such as abort, which in 
turn call ExitProcess, again preclude the execution of finally blocks. You 
can't do anything to prevent another application from terminating one 
of your threads or processes, but you can prevent your own premature 
calls to ExitThread andExitProcess. 

Funcenstein4 
Let's take a look at one more termination handling scenario. 

DWORD Funcenstein4 (void) { 
DWORD dwTemp; 
II 1. Do any processing here. 

_try { 

} 

II 2. Request permission to access 
II protected data, and then use it. 
WaitForSingleObject(g_hSem, INFINITE); 

g_dwProtectedData = 5; 
dwTemp = g_dwProtectedData; 

II Return the new value. 
return(dwTemp); 

_finally { 
II 3. Allow others to use protected data. 
ReleaseSemaphore(9_hSem, I, NULL); 
return(103) ; 

II Continue processing--this code will never execute. 
dwTemp = 9; 
return(dwTemp); 

InFuncenstein4, the try block will execute and try to return the value 
of dwTemp (5) back toFuncenstein4's caller. As we noted in the discussion 
of Funcenstein2, trying to return prematurely from a try block causes the 
generation of code that puts the return value into a temporary variable 
created by the compiler. Then the code inside the finally block is exe
cuted. Notice that in this variation on Funcenstein2 I have added a return 



F 0 U R TEE N: Structured Exception Handling 

statement to the finally block. Will Funcenstein4 return 5 to the caller, or 
lO3? The answer is that 103 will be returned because the return statement 
in the finally block causes the value 103 to be stored in the same tempo
rary variable in which the value 5 has been stored, overwriting the 5. 
When the finally block completes execution, the value now in the tempo
rary variable (103) is returned from Funcenstein4 to its caller. 

We've seen termination handlers do an effective job of rescuing 
execution from a premature exit of the try block, and we've also seen ter
mination handlers produce an unwanted result because they prevented 
a premature exit of the try block. A good rule of thumb is to avoid any 
statements that would cause a premature exit of the try block part of a 
termination handler. In fact, it is always best to remove all returns, contin
ues, breaks, gotos, and so on from inside both the try and the finally blocks 
of a termination handler and to put these statements outside the han
dler. Such a practice will cause the compiler to generate both a smaller 
amount of code because it won't have to catch premature exits from the 
try block and faster code because it will have fewer instructions to exe
cute in order to perform the local unwind. In addition, your code will be 
much easier to read and maintain. 

Funcarama1 
We have pretty much covered the basic syntax and semantics of termina
tion handlers. Now let's look at how a termination handler could be used 
to simplifY a more complicated programming problem. Let's look at a 
function that doesn't take advantage of termination handlers at all. 

BOOL Funcarama1 (void) { 
HANDLE hFile = INVALID_HANDLE_VALUE; 
LPVOID lpBuf = NULL; 
DWORD dwNumBytesRead; 
BOOL fOk; 

hFile = CreateFile("SOMEDATA.DAT", GENERIC_READ, 
FILE_SHARE_READ, NULL, OPEN_EXISTING, 
0. NULl); 

if (hFile == INVALID_HANDLE_VALUE) { 
return( FALSE); 

} 

lpBuf = VirtualAlloc(NULL. 1024. MEM_COMMIT. 
PAGE_READWRITE); 

if (lpBuf == NULL) { 
CloseHandle(hFile); 

(continued) 

693 



ADVANCED WINDOWS 

694 

} 

return( FALSE); 

fOk = ReadFile(hFile. lpBuf. 1024. 
&dwNumBytesRead. NULL); 

if (!fOk II (dwNumBytesRead == 0» 
VirtualFree(lpBuf. MEM_RELEASE I MEM_DECOMMIT); 
CloseHandle{hFile); 
return(FALSE); 

II Do some calculation on the data. 

II Clean up all the resources. 
VirtualFree(lpBuf. MEM_RELEASE MEM_DECOMMIT); 
CloseHandle(hFile); 
return(TRUE) ; 

All the error checking in Funcaramal makes the function difficult 
to read, which also makes the function difficult to understand, maintain, 
and modify. 

Funcarama2 
Of course, it's possible to rewrite Funcaramal so that it is a little cleaner 
and easier to understand: 

BOOL Funcarama2 (void) { 
HANDLE hFile = INVALID_HANDLE_VALUE; 
LPVOID lpBuf = NULL; 
DWORD dwNumBytesRead; 
BOOL fOk. fSuccess = FALSE; 

hFile = CreateFile("SOMEDATA.DAT". GENERIC_READ. 
FILE_SHARE_READ. NULL. OPEN_EXISTING. 
0. NULl); 

if (hFile != INVALID_HANDLE_VALUE) { 

lpBuf = VirtualAlloc(NULL. 1024. MEM_COMMIT. 
PAGE_READWRITE); 

if (lpBuf != NULL) { 

fOk = ReadFile(hFile. lpBuf. 1024. 
&dwNumBytesRead. NULL); 



F 0 U R TEE N: Structured Exception Handling 

} 

if (fOk && (dwNumBytesRead 1= 0» { 
II Do some calculation on the data. 

fSuccess = TRUE; 

} 

VirtualFree(lpBuf. MEM_RELEASE MEM_DECOMMIT); 

} 

CloseHandle(hFile); 
return(fSuccess); 

Funcarama2 is easier to understand, but it is still difficult to modify 
and maintain. Also, the indentation level gets to be pretty extreme as 
more conditiona1 statements are added; with such a rewrite you soon 
end up writing code on the far right of your screen and wrapping state
ments after every five characters! 

Funcarama3 
Let's rewrite the first version, Funcaramal, to take advantage of an SEH 
termination handler: 

DWORD Funcarama3 (void) { 
HANDLE hFile = INVALID_HANDLE_VALUE; 
LPVOID lpSuf = NULL; 

_try { 
DWORD dwNumBytesRead; 
BOOL fOk; 

hFile = CreateFile("SOMEDATA.DAT". GENERIC_READ. 
FILE_SHARE_READ. NULL. OPEN_EXISTING. 
0. NULL); 

if (hFile == INVALID_HANDLE_VALUE) { 
return (FALSE) ; 

} 

lpBuf = VirtualAlloc(NULL. 1024. MEM_COMMIT. 
PAGE_READWRITE); 

if (lpBuf == NULL) { 
return(FALSE); 

} 

(continued) 

695 



ADVANCED WINDOWS 

696 

} 

} 

fOk = ReadFile(hFile, lpBuf, 1024, 
&dwNumBytesRead, NUll); 

if (!fOk II (dwNumBytesRead != 1024» { 
return (FALSE) ; 

} 

II Do some calculation on the data. 

_finally { 

} 

II Clean up all the resources. 
if (lpBuf != NULL) 

VirtualFree(lpBuf, MEM_RElEASE MEM_DECOMMIT); 
if (hFile != INVALID_HANDLE_VALUE) 

CloseHandl~(hFile); 

II Continue processing. 
return(TRUE) ; 

The real virtue of the Funcarama3 version is that all of the func
tion's clean-up code is localized in one place and one place only: the 
finally block. If we ever need to add some additional code to this func
tion, we can simply add a single clean-up line in the finally block-we 
won't have to go back to every possible location of failure and add our 
clean-up line to each failure location .. 

Funcarama4: The Final Frontier 
The real problem with the Funcarama3 version is the overhead. As we 
noted after the discussion ofFuncenstein4, we really should avoid putting 
return statements into try blocks as much as possible. 

To help make such avoidance easier, Microsoft added another key
word, _leave, to its C++ compiler. Here is theFuncarama4 version, which 
takes advantage of the new _leave keyword: 

DWORD Funcarama4 (void) { 
HANDLE hFile = INVALID_HANDLE_VALUE; 
lPVOID lpBuf = NUll; 

II Assume that the function wiil not execute successfully. 
BOOl fFunctionOk = FALSE; 



} 

F 0 U R TEE N: Structured Exception Handling 

_try { 

} 

DWORD dwNumBytesRead: 
BOOl fOk: 

hFile = CreateFile("SOMEDATA.DAT". GENERIC_READ. 
FIlE_SHARE_READ. NUll. OPEN_EXISTING. 
0. NULL): 

if (hFile == INVALID_HANDLE_VALUE) { 
_leave: 

} 

lpBuf = VirtualAlloc(NUll. 1024. MEM_COMMIT. 
PAGE_READWRITE): 

if (lpBuf == NUll) { 
_leave: 

} 

fOk = ReadFile(hFile. lpBuf. 1024. 
&dwNumBytesRead. NUll): 

if (!fOk II (dwNumBytesRead == 0» { 
_leave: 

} 

II Do some calculation on the data. 

II Indicate that the entire function executed successfully. 
fFunctionOk = TRUE: 

_finally { 

} 

II Clean up all the resources. 
if (lpBuf != NUll) 

VirtualFree(lpBuf. MEM_RElEASE MEM_DECOMMIT): 
if (hFile != INVALID_HANDLE_VALUE) 

CloseHandle(hFile): 

II Continue processing. 
return(fFunctionOk): 

The use of the _leave keyword in the try blo.ck causes a jump to the 
end of the try block. You can think ofit asjumping to the try block's clos
ing brace. Because the flow of control will exit naturally from the try 
block and enter the finally block, no overhead is incurred. However, it 
was necessary to introduce a new Boolean variable,jFunctionOk, to indi
cate the success or failure of the function-a relatively small price to pay. 

697 



ADVANCED WINDOWS 

When designing your functions to take advantage of termination 
handlers in this way, remember to initialize all of your resource handles 
to invalid values before entering your try block. Then, in the finally 
block, you can check to see which resources have been allocated success
fully so that you'll know which ones to free. Another popular method for 
tracking which resources will need to be freed is to set a flag when a resource 
allocation is successful. Then the code in the finally block can examine 
the state of the flag to determine whether the resource needs freeing. 

Notes About the finally Block 

698 

So far we have explicidy identified two scenarios that force the finally 
block to be executed: 

• Normal flow of control from the try block into the finally block 

• Local unwind: premature exit from the try block (goto, 
longjump, continue, break, return, and so on) forcing control to 
the finally block 

A third scenario, a global unwind, occurred without explicit identifi
cation as such in theFunifurter 1 function we saw earlier on pages 689 and 
690. Inside the try block of this function was a call to the Funcinator func
tion. If the Funcinator function caused a memory access violation, a glob
al unwind caused Funcjurterl's finally block to execute. We'll look at 
glo bal unwinding in greater detail when we get to the exception filters 
and exception handlers section of this chapter. 

Code in afinally block always starts executing as a result of one of 
these three situations. To determine which of the three possibilities 
caused thefinally block to execute, you can call the intrinsic function l 

AbnormalTermination: 

BOOl AbnormalTermination(VOID); 

1. An intrinsic function is a special function recognized by the compiler. The compiler gen
erates the code for the function in-line rather than generating code to call the function. For 
example, memcpy is an intrinsic function (if the IOi compiler switch is specified). When the 
compiler sees a call to memcpy, it puts the memcpy code directly into the function that called 
memcpy instead of generating a call to the memcpy function. This usually has the effect of 
making your code run faster at the expense of code size. 

The intrinsic AbnormalTermination function is different from the intrinsic memcpy function 
in that it exists only in an intrinsic form. No C run-time library contains the Abnonnal
Termination function. 



F 0 U R TEE N: Structured Exception Handling 

This intrinsic function can be called only from inside a finally block 
and returns a Boolean value indicating whether the try block associated 
with the finally block was exited prematurely. In other words, if the flow 
of control leaves the try block and naturally enters the finally block, 
AbnormalTe:rmination will return FALSE. If the flow of con trol exits the try 
block abnormally-usually because a local unwind has been caused by a 
goto, return, break, or continue statement or because a global unwind has 
been caused by a memory access violation-a call to AbnormalTe:rmination 
will return TRUE. If AbnormalTe:rmination returns TRUE, it is not possible 
to distinguish whether a local unwind or a global unwind caused the 
finally block to execute. It is impossible to determine whether a finally 
block is executing because of a global or a local unwind. 

Funcfurter2 
Here is Funcfurter2, which demonstrates use of the AbnormalTe:rmination 
intrinsic function: 

DWORD Funcfurter2 (void) { 
DWORD dwTemp; 

/1 1. Do any processing here. 

_try { 

} 

// 2. Request permission to access 
// protected data, and then use it. 
WaitForSingleObject(g_hSem, INFINITE); 

dwTemp = Funcinator(g_dwProtectedData); 

_finally { 
/1 3. Allow others to use protected data. 
ReleaseSemaphore(g_hSem, I, NULL); 

if (!AbnormalTermination(» { 
// No errors occurred in the try block, and 
// control flowed naturally from try into finally. 

} else { 

1/ Something caused an exception, and 
1/ because there is no code in the try block 
1/ that would cause a premature exit, we must 

(continued) 

699 



ADVANCED WINDOWS 

} 

} 

} 

II be executing in the finally block 
II because of a global unwind. 

II If there were a goto in the try block, 
II we wouldn't know how we got here. 

II 4. Continue processing. 
return{dwTemp) : 

Now that you know how to write termination handlers, you'll see 
that termination handlers can be even more useful and important when 
we look at exception filters and exception handlers later in the chapter. 
Before we move on, let's review the reasons for using termination han
dlers. Termination handlers: 

• Simplify error processing because all cleanup is in one location 
and is guaranteed to execute 

• Improve program readability 

• Make code easier to maintain 

• Have minimal speed and size overhead if used appropriately 

The SEH Termination Sample Application 

700 

The SEHTerm (SEHTERM.EXE) application, listed in Figure 14-1 
beginning on page 704, demonstrates the use of termination handlers 
by simulating the execution of a function that counts the number of 
words in a file. The source code files, resource files, and make file for the 
application are in the SEHTERM.14 directory on the companion disc. 
Here are the steps that the program's Dlg_CountWordslnFile function 
performs: 

1. Opens the file. 

2. Gets the size of the file. 

3. Allocates a memory block using the result of step 2. 



F 0 U R TEE N: Structured Exception Handling 

4. Reads the contents of the file into the allocated memory block. 

5. Calculates the number of words in the file in the memory 
block. 

After the calculation, the function cleans up everything it has done and 
returns the number of words counted: 

6. Frees the memory block. 

7. Closes the file. 

8. Returns the number of words in the file. If an error occurred, 
returns -1. 

During the initialization for this function, any of steps 1 through 4 
could fail. If this happens, the function needs to clean up any allocations 
it's already made before returning -1 to the caller. Termination han
dlers ensure that everything is cleaned up properly. 

When you first invoke SEHTerm, this dialog box appears: 

In the Results Of Execution group box at the top of the dialog box, 
you get to specify which of the four initialization operations will succeed 
and which will fail. Remember, this program only simulates the work to 
be done; it doesn't actually open a file, read the file's contents, or count 

701 



ADVANCED WINDOWS 

702 

the number of words in the file. In a sense, you get to play operating sys
tem here-you can tell the simulation which operations you want to suc
ceed and which operations you want to fail. 

After you have set the four check boxes the way you want them, 
click on the Execute button. The simulation will now try to perform 
steps 1 through 4 in the list of steps that the Dlg_CountWordslnFile func
tion performs. All four steps are performed from within a single try 
block. If any of the steps fails, a ....,-leave statement in the try block is exe
cuted and processing moves immediately into the finaUy block, skipping 
the remainder of the code in the try block. 

The code in thefinally block examines the state of the initialization 
by checking the hFile and IpvFileData variables, and then it executes the 
appropriate clean-up routines. The Execution Log list box at the bot
tom of the SEH Termination Handler Test dialog box shows the result of 
each step ofDlg_CountWordslnFile's execution. 

In our first experiment, we'll allow all four operations to succeed. 
To simulate this success, we must be sure that all four check boxes are 
checked before we click on the Execute button. After the code executes, 
we can see the results in the Execution Log: 



F 0 U R TEE N: Structured Exception Handling 

The Execution Log tells us that everything was successfully initialized, 
the number of words was calculated, and everything was cleaned up OK. 

Now let's pretend that the memory allocation failed when the Dlg
_CountWordslnFile function attempted it. Here is the result: 

i 
File open: 0 K 
File size: 0 K 
Memory allocation: Fail 
Cleaning up 
Closing file 

Error occurred in function. 

The function opened the file, obtained its size, and tried to allocate a 
block of memory. When we forced this allocation to fail, execution 
jumped over the remainder of the try block code to all immediate exe
cution of the finally block code. The code in the finally block can see that 
the file was opened successfully by checking the hFile variable. It calls 
Close Handle to close the file. 

The finally block code also checks the lpvFileData variable to see 
whether the memory allocation was successful. Since lpvFileData is NULL, 
the code doesn't try to free the memory block. That's why Freeing memory 
doesn't appear in the Execution Log this time. 

The function will also return -1, indicating that an error has oc
curred. This causes the line Error occurred in junction to appear in the Exe
cution Log. 

Let's do just one more experiment. You can try others on your own 
machine. On the next page is another simulation. 

703 



ADVANCED WINDOWS 

SEHTerm.ico 

704 

File open: Fail 
Cleaning up 

Error occurred in function. 

In this experiment, we force the opening of the file to fail and everything 
else to succeed. However, the code in the try block stops executing as 
soon as it can't open the file. In this case, the remainder of the initializa
tion doesn't execute and the code in the finally block starts executing. 
The clean-up code sees that the file was never opened and that the 
memory block was never allocated and therefore does nothing. 

You can experiment yourself by checking and unchecking the vari
ous options and clicking on the Execute button. Notice how the Execu
tion Log changes with each test. As you experiment, it's a good idea to 
have the SEHTerm source code (which begins below) beside you to help 
you understand how termination handlers work. 

Figure 14-1. (continued) 

The SEHTerm application. 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-1. continued 

#pragma warning(disable: 4001) 

#1 riel ude<tehar'~h> 
#lnclude <std10.h> 
#1':'C1 ude,'" Res our,ee. H" 
. , .,: :.",' .,':,.'. '. '," '" 

,,,:"""/':':':""": ': . ,', .':"'::':'.::' 

1* Single-line comment *1 

"·;'··':'I"I"r;~~;:~lMU·'·ii:;~~:..;;ii·d·'e·f1 n.' sJ,;~Uld ,";l",i>Ii~'b;',d';fll1';ed " , .. ' ., 
, ',1·" .. 1I.~.; .. "..'~\L"., ~t~.J:.,!\,~,~",.""" .''''.' , ''''~':'' ,~ .• V ''''''::''~·.'hh~'''~;:9;,::". ~~.\' .. " ,~,.' .,' ." ·,·,'L·"".' .. ·. 

Ci;.~il~~;:~~~:~rtt~~~i~f~~~~;;~:";i!I:~~< 
,<';~j,~~i~:~?{il!~f~~ii)~111!I!t;J~~l~Ci~€(jlliiYi;ttjJi;!{(i·· .. 

::y}:~.,:.:~.,:, .. ~ . .'p .. ,i,.,:.~, .. '.r,p",u,:, :,,'.',.~ .. , n,.l',:,i.:,.~I,:.Z"".t.'.,.:"i., ... ,p.".',',.",:.i)i' .. '~,:",.,:!. r,'. :,9 .• ,·.·,·:,,(:fj!4"Dh,~~tC;i :H~P:~W~~F:O,<=U,iS, f< 
~ f.\:'J:\'f.\n. ,.:ru.:$.·W!~u 1. ·::i~·. ~,'<":':~>·:·:'i.':'.";:'·:''>.':''<:L'.'·'·' ',' ': "':.:' .:'. ·~>.'·,>1 ,:,',~ .. : 

.••• [,;:,i;;· ••. ;;,ji}:ci~¥'~,~~f~f~~,;,,~,ib'i:~:ti~,,~,~~'idi;:l:(){}.·~P~.'.:":· c; .•. , .•• ',,:, .• ' .••.... : ••.. ' 

,it + ~«f .. ~if~~i~~j~~~~.i~iflil!~~ii~~~I;!C? 
",:' ,,,. . ... ; .,~ ~(:" ... ';".' '~:,". ':.' : : ... " ,:',"":. ' ,.'::-:-:::.">;. :,: 

':<'::,j:.,,>, ': 'i; ... :., . '. "i' ' .. '. .' .~.:: ::' ->:' '. 
,':;:,'" 

(continued) 

705 



ADVANCED WINDOWS 

Figure 14-1. continued 

(continued) 

706 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-1. continued 

"', "..', . 

. . . PAlllSe'(GetP~OC~'s:sH'~~P(), 
. '.':., ~'''~!.' ;."; .. 0." :,,' .',', " ~ ",', :,' ',' •• 

(continued) 

707 



ADVANCED WINDOWS 

Figure 14-1. continued 

(continued) 

708 



F 0 U R TEE N: Structured Exception Handling 

Figure 14·1. continued 

if (lNumWords == -1) { 
Li stSox_AddStri ng(~etDl gItem(hwnd. IDCLOG). 

_TEXT('!Error occurred in function. U»; 
e1s~ 

(continued) 

709 



ADVANCED WINDOWS 

Figure 14-1. continued 

(continued) 

710 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-1. continued 

2 TEXTINCLUDE DISCARDABLE 
BEGIN 

"line1 ude ''''afXres .hff"\r\n"· 

(continued) 

711 



ADVANCED WINDOWS 

Figure 14-1. continued 

Exception Filters and Exception Handlers 

712 

An exception is an event you don't expect. In a well-written application, 
you don't expect attempts to access an invalid memory address or divide 
a value by O. Nevertheless, such errors do occur. The CPU is responsible 
for catching invalid memory accesses and divides by 0, and it will raise an 
exception In response to these errors. When the CPU raises an excep
tion, it's known as a hardware exception. We'll see later that the operating 
system and your applications can raise their own exceptions, known as 
software exceptions. 

When a hardware or software exception is raised, the operating sys
tem offers your application the opportunity to see what type of excep
tion was raised and allows the application to handle the exception itself. 
Here is the syntax for an exception handler: 

_try { 
II Guarded body 

} 



F 0 U R TEE N: Structured Exception Handling 

__ except (exception filter) 
II Exception handler 

The new keyword is _except. Whenever you create a try block, it must be 
followed by either a finally block or an except block. A try block can't have 
both afinally block and an except block, and a try block can't have mul
tiple finally or except blocks. However, it is possible to nest try-finally 
blocks inside try-except blocks and vice versa. 

Understanding Exception Filters 
and Exception Handlers by Example 

Unlike termination handlers, exception filters and exception handlers 
are executed directly by the operating system-the compiler has little to 
do with evaluating exception filters or executing exception handlers. 
The next six sections demonstrate the normal execution of try-except 
blocks, explain how and why the operating system evaluates exception 
filters, and show the circumstances under which the operating system 
executes the code inside of an exception handler. 

Funcmeister1 
Here's a more concrete coding example of a try-except block: 

DWORD Funcmeister1 (void) { 
DWORD dwTemp; 

II 1. Do any processing here. 

__ try { 

} 

II 2. Perform some operation. 
dwTemp = 0; 

__ except (EXCEPTION_EXECUTE_HANDLER) { 
II Handle an exception; this never executes. 

} 

II 3. Continue processing. 
return(dwTemp); 

713 



ADVANCED WINDOWS 

714 

In the Funcmeisterl try block, we simply move a 0 into the dwTemp vari
able. This operation will never cause an exception to be raised, so the 
code inside the except block will never execute. Note this difference from 
try-finally behavior. Mter dwTemp is set to 0, the next instruction to exe
cute is the return statement. 

Although return, goto, continue, and break statements are strongly dis
couraged in the try block of a termination handler, no speed or code
size penalty is associated with using these statements inside the try block 
of an exception handler. Such a statement in the try block associated 
with an except block won't incur the overhead of a local unwind. 

Funcmeister2 
Let's modify the function and see what happens: 

DWORD Funcmeister2 (void) 
DWORD dwTemp = 0; 

} 

II 1. Do any processing here. 

_try 
II 2. Perform some operation(s). 
dwTemp = 5 I dwTemp; II Generates an exception 
dwTemp += 10; II Never executes 

} 

_except ( 1* 3. Evaluate filter. *1 EXCEPTION_EXECUTE_HANDLER) 
II 4. Handle an exception. 

MessageBeep(0); 

} 

II 5. Continue processing. 
return(dwTemp); 

InFuncmeister2, an instruction inside the try block calls for the attempt to 
divide 5 by o. The CPU will catch this event and raise a hardware excep
tion. When this exception is raised, the system will locate the beginning 
of the except block and evaluate the exception filter expression, an expres
sion that must evaluate to one of the following three identifiers as de
fined in the Win32 EXCPT.H file: 



F 0 U R TEE N: Structured Exception Handling 

Identifier 

EXCEPTION_EXECUTE_HANDLER 

EXCEPTION_CONTINUE_SEARCH 

EXCEPTION_CONTINUE_EXECUTION 

EXCEPTION_ EXECUTE_HANDLER 

Defined As 

1 

o 
-1 

In Funcmeister2, the exception filter expression evaluates to EXCEP
TION _EXECUTE_HANDLER. This value basically says to the system: "I 
recognize the exception; that is, I had a feeling that this exception might 
occur sometime, and I've written some code to deal with it that I'd like to 
execute now." Execution immediately jumps to the code inside the except 

block (the exception handler code). Mter the code in the except block 
has executed, the system considers the exception to be handled and 
allows your application to continue executing. 

This is pretty different from 16-bit Windows applications, where a 
divide by 0 causes a System Error box to appear that allows the user one 
option only: to close the application right then and there. In Win32 appli
cations, you can trap the error, handle it in your own way, and allow your 
application to continue running without the user ever knowing that the 
error happened. 

But where in the code does execution resume? With a little bit of 
thought, it's easy to imagine several possibilities. 

The first possibility would be for execution to resume after the 
CPU instruction that generates the exception. In Funcmeister2, execu
tion would resume with the instruction that adds 10 to dwTemp. This may 
seem like a reasonable thing to do, but in reality, most programs are writ
ten so that they cannot continue executing successfully if one of the ear
lier instructions fails to execute. 

In Funcmeister2, the code can continue to execute normally; how
ever, Funcmeister2 is not the normal situation. Most likely, your code will 
be structured so that the CPU instructions following the instruction that 
generates the exception will expect a valid return value. For example, 
you might have a function that allocates memory, in which case a whole 
series of instructions will be executed to manipulate that memory. If the 
memory cannot be allocated, all the lines will fail, making the program 
generate exceptions repeatedly. 

715 



ADVANCED WINDOWS 

Here is another example of why execution cannot continue after 
the failed CPU instruction. Let's replace the C statement that generated 
the exception in Funcmeister2 with the following line: 

malloc(5 / dwTemp); 

For the line above, the compiler generates CPU instructions to perform 
the division, pushes the result on the stack, and calls the malloc function. 
If the division fails, the code can't continue executing properly. The sys
tem has to push something on the stack; if it doesn't, the stack gets 
corrupted. 

Fortunately, Microsoft has not made it possible for us to have the 
system resume execution on the instruction following the instruction 
that generates the exception. This decision saves us from potential prob
lems like these. 

The second possibility would be for execution to resume with the 
instruction that generated the exception. This is an interesting possibil
ity. What if inside the except block you had this statement: 

dwTemp = 2; 

With this assignment in the except block, you could resume execution 
with the instruction that generated the exception. This time, you would 
be dividing 5 by 2, and execution would continue just fine without rais
ing another exception. You can alter something and have the system re
try the instruction that generated the exception. However, you should 
be aware that this technique can result in some subtle behaviors. We'll 
discuss this technique in the following section. 

The third and last possibility would be for execution to pick up 
with the first instruction following the except block. This is actually what 
happens when the exception filter expression evaluates to EXCEPTION
_EXECUTE_HANDLER. Mter the code inside the except block finishes 
executing, control resumes at the first instruction after the except block. 

EXCEPTION_CONTINUE_EXECUTION 

716 

Let's take a closer look at the exception filter to see how it evaluates to 
one of the three exception identifiers defined in EXCPT.H. InFuncmei
ster2, the EXCEPTION_EXECUTE_HANDLER identifier is hard-coded 
directly into the filter for simplicity's sake, but you can make the filter 
call a function that will determine which of the three identifiers should 
be returned. Let's look at another code example: 



F 0 U R TEE N: Structured Exception Handling 

char g_szBuffer[100]; 

void FunclinRooseveltl (void) 
int x = 0; 
char *lpBuffer = NULL; 

_try { 
*lpBuffer 'J'; 
x = 5 / x; 

_except (OilFilterl(&lpBuffer)) 
MessageBox(NULL, "An exception occurred", NULL, MB_OK); 

} 

MessageBox(NULL, "Function completed", NULL, MB_OK); 

LONG OilFilterl (char **lplpBuffer) { 

} 

if (*lplpBuffer == NULL) { 
*lplpBuffer = g_szBuffer; 
return(EXCEPTION_CONTINUE_EXECUTION); 

return(EXCEPTION_EXECUTE_HANDLER); 

We first run into a problem when we try to put a T into the buffer 
pointed to by lpBujjer. Unfortunately, we didn't initialize lpBujjer to point 
to our global buffer g_szBujjer, and lpBujjer points to NULL instead. The 
CPU will generate an exception and evaluate the exception filter in 
the except block associated with the try block in which the exception oc
curred. In the except block, the OilFilter 1 function is passed the address of 
the lpBujjer variable. 

When OilFilterl gets control, it checks to see whether *lplpBujjer is 
NULL and, if it is, sets it to point to the global buffer g_szBujjer. The fil
ter then returns EXCEPTION_CONTINUE_EXECUTION. When the 
system sees that the filter evaluated to EXCEPTION_CONTINUE_EXE
CUTION, it jumps back to the instruction that generated the exception 
and tries to execute it again. This time, the instruction will succeed, and 
T will be put into the first byte of the g_szBujjer buffer. 

As the code continues to execute, we run up against the divide by 0 
problem in the try block. Again the system evaluates the exception filter. 
This time, OilFilter 1 sees that *lplpBujjer is not NULL and returns EXCEP
TION_EXECUTE_HANDLER, which tells the system to execute the 
except block code. This causes a message box to appear displaying the 
text An exception occurred. 

717 



ADVANCED WINDOWS 

As you can see, you can do an awful lot of work inside an exception 
filter. Of course, the filter must return one of the three exception identi
fiers, but the filter can also perform any other tasks you want it to. 

Use EXCEPTION_CONTINUE_EXECUTION with Caution 
As it turns out, trying to correct the situation shown In the function just 
discussed and having the system continue execution might or might 
not work-it depends on the target CPU for your application, on how 
your compiler generates instructions for, C statements, and on your 
compiler options. 

A compiler might generate two machine instructions to perform 
the statement: 

*lpBuffer = 'J'; 

The first instruction would load the contents of lpBuffer into a register, 
and the second instruction would try to copy a T into the address to 
which the register points. It is this second instruction that would gener
ate the exception. The exception filter would catch the exception, cor
rect the value in lpBuffer, and tell the system to reexecute the second 
instruction. The problem is that the contents of the register wouldn't be 
changed to reflect the new value loaded into lpBuffer, and reexecuting 
the instruction would therefore generate another exception. We'd have 
an infinite loop! 

Continuing execution might be fine if the compiler optimizes the 
coqe but might fail if the compiler doesn't optimize the code. This can 
be an incredibly difficult bug to fix, and you will have to examine the 
assembly language generated for your source code in order to deter
mine what has gone wrong in your application. The moral of this story is 
to be very, very careful when returning EXCEPTION_CONTINUE
_EXECUTION from an exception filter. 

EXCEPTION_CONTINUE_SEARCH 

718 

The examples have been pretty tame so far. Let's shake things up a bit by 
adding a function call: 

void FunclinRoosevelt2 (void) { 
char *lpBuffer = NULL; 

_try { 
FuncSinatra2(lpBuffer); 

} 

_except (OilFilter2(&lpBuffer» { 



F 0 U R TEE N: Structured Exception Handling 

MessageBox(NULL •... ); 

void FuncSinatra2 (char *sz) { 
*sz = 0; 

LONG OilFilter2 (char **lplpBuffer) { 
if (*lplpBuffer == NULL) { 

*lplpBuffer = g_szBuffer; 
return(EXCEPTION_CONTINUE_EXECUTION); 

} 

return(EXCEPTION_EXECUTE_HANDLER); 

When FunclinRoosevelt2 executes, it calls FuncSinatra2, passing it 
NULL. When FuncSinatra2 executes, an exception is generated. Just as 
before, the system evaluates the exception filter associated with the most 
recently executing try block. In this example, the try block inside Func
linRoosevelt2 is the most recently executing try block, so the system calls 
the OilFilter2 function to evaluate the exception filter-even though the 
exception was generated inside the FuncSinatra2 function. 

Now let's shake things up a little more'py adding another try-except 
block. \ 

void FunclinRoosevelt3 (void) 

} 

char *lpBuffer = NULL; 

_try { 
FuncSinatra3(lpBuffer); 

} 

_except (OilFilter3(&lpBuffer» 
MessageBox(NULL, ... ); 

} 

void FuncSinatra3 (char *sz) { 
_try { 

*sz = 0; 
} 

_except (EXCEPTION_CONTINUE_SEARCH) 
II This never executes. 

} 

\ 
\ 

(continued) 

719 



ADVANCED WINDOWS 

720 

LONG OilFilter3 (char **lplpBuffer) { 

} 

if (*lplpBuffer == NULL) { 
*lplpBuffer = 9_szBuffer; 
return(EXCEPTION_CONTINUE_EXECUTION); 

} 

return(EXCEPTION_EXECUTE_HANDLER); 

Now, when FuncSinatra3 tries to fill address NULL with 0, an exception 
is still generated but FuncSinatra3's exception filter will get executed. 
FuncSinatra3's exception filter is very simple and evaluates to EXCEP
TION _CONTINUE_SEARCH. This identifier tells the system to walk up 
to the previous try block that's matched with an except block and call this 
previous try block's exception filter. 

Because FuncSinatra3's filter evaluates to EXCEPTION_CONTINUE
_SEARCH, the system will walk up to the previous try block (inFunclin
Rnosevelt3) and evaluate its exception filter, OilFilter3. OilFilter3 will see 
that lpBuffer is NULL, will set lpBuffer to point to the global buffer, and 
will then tell the system to resume execution on the instruction that gen
erated the exception. This will allow the code inside FuncSinatra3's try 
block to execute, but unfortunately, FuncSinatra3's local sz variable will 
not have been changed, and resuming execution on the failed instruc
tion will simply cause another exception to be generated. What we have 
here is another infinite loop! 

You'll notice I said that the system walks up to the most recently ex
ecuting try block that's matched with an except block and evaluates its 
filters. This means that any try blocks that are matched with finally blocks 
instead of except blocks are skipped by the system while it walks up the 
chain. The reason for this should be pretty obvious: finally blocks don't 
have exception filters and therefore give the system nothing to evaluate. 
IfFuncSinatra3 in the last example contained afinally block instead of its 
except block, the system would have started evaluating exception filters 
beginning with FunclinRoosevelt3's OilFilter3. 

Figure 14-2 shows a flowchart describing the actions taken by the 
system when an exception is generated. 



F 0 U R TEE N: Structured Exception Handling 

YES 

... 't 

EXCEPTlON_CONTlNUE_SEARCH 

EXCEPTION_EXEC UTE_HANDLER 
't 

Figure 14-2. 
How the system processes an exception. 

721 



ADVANCED WINDOWS 

Global Unwinds 

722 

Exception handling involves a global unwind. When an exception filter 
evaluates to EXCEPTION_EXECUTE_HANDLER, the system must per
form a global unwind. The global unwind causes all of the outstanding 
try-finally blocks that started executing below the try-except block that is 
handling the exception to resume execution. These two functions are an 
example: 

void FuncOStimpyl (void) { 

II 1. Do any processing here. 

_try 

} 

II 2. Call another function. 
FuncORen1(); 

II Code here never executes. 

_except ( 1* 6. Evaluate filter. *1 EXCEPTION_EXECUTE_HANDLER) 
II 8. After the unwind, the exception handler executes. 
MessageBox(NULL, ... ); 

} 

II 9. Exception handled--continue execution. 

void FuncORenl (void) 
DWORD dwTemp = 0; 

II 3. Do any processing here. 

_try 

} 

II 4. Request permission to access protected data. 
WaitForSingleObject(g_hSem, INFINITE); 

II 5. Modify the data. 
II An exception is generated here. 
g_dwProtectedData = 5 I dwTemp; 

_finally { 
II 7. Global unwind occurs because filter evaluated 
II to EXCEPTION_EXECUTE_HANDLER. 



F 0 U R TEE N: Structured Exception Handling 

II Allow others to use protected data. 
ReleaseSemaphore(g_hSem. 1. NULL); 

II Continue processing--never executes. 

FuncOStimpyl and FuncORenl together illustrate the most confus
ing aspects of structured exception handling. The numbers at the begin
nings of the comments show the order of execution, but let's hold hands 
and go through it together. 

FuncOStimpyl begins execution by entering its try block and calling 
FuncORenl. FuncORenl starts by entering its own try block and waits to 
obtain a semaphore. Once it has the semaphore, FuncORenl tries to alter 
the global data variable, g_dwProtectedData. However, the division by 0 
causes an exception to be generated. The system grabs control now and 
searches for a try block matched with an except block. Since the try block 
in FuncORenl is matched by a finally block, the system searches upward 
for another try block. This time, it finds the try block in FuncOStimpyl, 
and it sees that FuncOStimpyl 's try block is matched by an except block. 

The system now evaluates the exception filter that's associated with 
FuncOStimpyl's except block and waits for the return value. When the system 
sees that the return value is EXCEPTION_EXECUTE_HANDLER, the 
system begins a global unwind in FuncORenl'sfinally block. Note that the 
unwind takes place before the system begins execution of the code in 
FuncOStimpyl's except block. For a global unwind, the system starts back 
at the bottom of all outstanding try blocks and searches this time for try 
blocks matched by finally blocks. The finally block that the system finds 
here is the one contained inside Fun cORen 1. 

When the system executes the code in FuncORenl 's finally block, 
you can really see the power of structured exception handling. Because 
FuncORenl'sfinally block is executed, the semaphore is released, allow
ing other threads to resume execution. If the call to ReleaseSemaphore 
were not contained inside the finally block, the semaphore would never 
be released. 

Mter the code contained in the finally block has executed, the sys
tem continues to walk upward looking for outstandingfinally blocks that 
need to be executed. In this example there are none. The system stops 
walking upward when it reaches the try-except block that decided to 

723 



ADVANCED WINDOWS 

handle the exception. At this point, the global unwind is complete, and 
the system can execute the code contained inside the except block. 

Figure 14-3 shows a flowchart that describes how the system per
forms a global unwind. 

That's how structured exception handling works. SEH can be diffi
cult to understand because the system really gets involved with the exe
cution of your code. No longer does the code flow from top to bottom; 
the system gets involved and makes sections of code execute according 
to its notions of order. This order of execution is complex but predict
able, and by following the flowcharts in Figure 14-2 and Figure 14-3, you 
should be able to use SEH with confidence. 

Halting Global Unwinds 

724 

It's possible to stop the system from completing a global unwind by put
ting a return statement inside a finally block. Let's look at the code below: 

void FuncMonkey (void) { 
_try { 

FuncFish(): 
} 

_except (EXCEPTION_EXECUTE_HANDLER) 
MessageBeep(0): 

} 

MessageBox( ... ): 

void FuncFish (void) { 
FuncPheasant(): 
MessageBox( ... ): 

} 

void FuncPheasant (void) { 

_try { 
strcpy(NULL. NULL): 

} 

_finally { 
return: 

} 



F 0 U R TEE N: Structured Exception Handling 

. , ...... . 

. ;~x 

NO 

+ 

YES 

Figure 14-3. 
How the system performs a global unwind. 

725 



ADVANCED WINDOWS 

When the strcpy function is called in FuncPheasant's try block, a memory 
access violation exception will be generated. When this happens, the sys
tem will start scanning to see whether any exception filters exist that can 
handle the exception. The system will find that the exception filter in 
FuncMonkey wants to handle the exception, and the system will start a 
global unwind. 

The global unwind starts by executing the code inside Func
Pheasant's finally block. However, this block of code contains a return state
ment. The return statement causes the system to stop unwinding, and 
FuncPheasant will actually end up returning to FuncFish. FuncFish will 
continue executing and will display a message box on the screen. 
FuncFish will then return toFuncMonkey. The code inFuncMonkey contin
ues executing by calling MessageBox. 

Notice that the code inside FuncMonkey's exception block never 
executes the call to MessageBeep. The return statement in FuncPheasant's 
finally block causes the system to stop unwinding altogether, and execu
tion continues as though nothing ever happened. 

Microsoft has designed SEH to work this way on purpose. You 
might occasionally want to stop unwinding and allow execution to con
tinue, and this method allows you to do this. Usually, though, this isn't 
the sort of thing you want to do. As a rule, be careful to avoid putting 
return statements inside finally blocks. 

More About Exception Filters 

726 

Often an exception filter must analyze the situation before it can deter
mine what value to return. For example, your handler might know what 
to do if a divide by 0 exception occurs, but it might not know how to 
handle a memory access exception. The exception filter has the respon
sibility for examining the situation and returning the appropriate value. 

This code demonstrates a method for identifying the kind of excep
tion that has occurred: 

_try { 
x = 0; 
y = 4 I x; 

} 

_except «GetExceptionCode() == EXCEPTION_INT_DIVIDE_BY_ZERO) ? 

} 

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) { 
II Handle divide by zero exception. 



F 0 U R TEE N: Structured Exception Handling 

The GetExceptionCode intrinsic function returns a value identifying the 
kind of exception that has occurred: 

DWORD GetExceptionCode(VOID); 

The following list of all predefined exceptions and their meanings is 
adapted from the Win32 documentation. The exception identifiers can 
be found in the Win32 WINBASE.H header file. 

EXCEPTION_ACCESS_ VIOLATION The thread tried to read from or 
write to a virtual address for which it doesn't have the appropriate access. 

EXCEPTION_ARRAY_BOUNDS_EXCEEDED The thread tried to 
access an array element that is out of bounds, and the underlying hard
ware supports bounds checking. 

EXCEPTION_BREAKPOINT A breakpoint was encountered. 

EXCEPTION_DATATYPE_MISALIGNMENT The thread tried to read 
or write data that is misaligned on hardware that doesn't provide align
ment. For example, 16-bit values must be aligned on 2-byte boundaries, 
32-bit values on 4-byte boundaries, and so on. 

EXCEPTION_FLT_DENORMAL_OPERAND One of the operands 
in a floating-point operation is denormal. A denormal value is one that is 
too small to represent a standard floating-point value. 

EXCEPTION_FLT_DIVIDE_BY_ZERO The thread tried to divide a 
floating-point value by a floating-point divisor ofO. 

EXCEPTION_FLT_INEXACT_RESULT The result of a floating-point 
operation can't be represented exactly as a decimal fraction. 

EXCEPTION_FLT_INVALlD_OPERATION Represents any floating
point exception not included in this list. 

EXCEPTION_FLT_OVERFLOW The exponent of a floating-point 
operation is greater than the magnitude allowed by the correspond
ing type. 

EXCEPTION_FLT_STACK_CHECK The stack overflowed or under
flowed as the result of a floating-point operation. 

727 



ADVANCED WINDOWS 

728 

EXCEPTION_FLT_UNDERFLOW The exponent of a floating-point 
operation is less than the magnitude allowed by the type. 

EXCEPTION_GUARD_PAGE A thread attempted to access a page of 
memory that has the PAGE_GUARD protection attribute. The page is 
made accessible and an EXCEPTION_GUARD_PAGE exception is raised. 

EXCEPTION_ILLEGAL_INSTRUCTION A thread executed an 
invalid instruction. This exception is defined by the specific CPU 
architecture; executing an invalid instruction may cause a trap error on 
different CPUs. 

EXCEPTION_IN_PAGE_ERROR A page fault couldn't be satisfied 
because the file system or a device driver returned a read error. 

EXCEPTION_INT _DIVIDE_BY _ZERO The thread tried to divide an 
integer value by an integer divisor of O. 

EXCEPTION_INT _OVERFLOW The result of an integer operation 
caused a carry out of the most significant bit of the result. 

EXCEPTION_INVALID_DISPOSITION An exception handler re
turned a value other than EXCEPTION_EXECUTE_HANDLER, 
EXCEPTION_CONTINUE_SEARCH, or EXCEPTION_CONTINUE
_EXECUTION. 

EXCEPTION_NONCONTINUABLE_EXCEPTION The thread tried 
to continue execution after a noncontinuable exception occurred. 

EXCEPTION_PRIV_INSTRUCTION The thread tried to execute an 
instruction whose operation is not allowed in the current machine mode. 

EXCEPTION_SINGLE_STEP A trace trap or other single-instruction 
mechanism signaled that one instruction has been executed. 

EXCEPTION_STACK_OVERFLOW The user stack is exhausted and 
cannot be expanded. 

The GetExceptionCode intrinsic function can be called only in an 
exception filter (between the parentheses following _except) or inside 
an exception handler. The following code is legal: 

_try { 
y = 0; 
x = 4 / y; 

} 



F 0 U R TEE N: Structured Exception Handling 

_except ( 

} 

«GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION) I I 
(GetExceptionCode() == EXCEPTION_INT_DIVIDE_BY_ZERO» ? 

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) 

switch (GetExceptionCode(» { 
case EXCEPTION-ACCESS_VIOLATION: 

II Handle the access violation. 

break; 

case EXCEPTION_INT_DIVIDE_BY_ZERO: 
II Handle the integer divide by 0. 

break; 
} 

However, you cannot call GetExceptionCode from inside an excep
tion filter function. To help you catch such errors, the compiler will pro
duce a compilation error if you try to compile the following code: 

_try { 
y = 0; 
x = 4 I y; 

} 

_except (CoffeeFilter(» { 

II Handle the exception. 

} 

LONG CoffeeFilter (void) { 

} 

II Compilation error: illegal call to GetExceptionCode. 
return«GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION) ? 

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH); 

You can get this effect by rewriting the code this way: 

_try { 
y = 0; 
x = 4 I y; 

} 

(continued) 

729 



ADVANCED WINDOWS 

730 

__ except (CoffeeFilter(GetExceptionCode(») { 

II Handle the exception. 

} 

LONG CoffeeFilter (DWORD dwExceptionCode) { 
return«dwExceptionCode == EXCEPTION_ACCESS_VIOLATION) ? 

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH); 
} 

Exception codes follow the rules for error codes in Win32 as de
fined inside the WINERROR.H file. Each DWORD is divided as shown in 
this table: 

Bits: 31-30 29-28 27-16 15-0 

Contents: Severity Flags Facility code Exception code 
Meaning: 0= Success Bit 29 Programmer- Programmer-

defined defined 

1 = Informational o = Microsoft 

2 = Warning 1 = Customer 

3 = Error Bit 28 is 
reserved 
(must be 0) 

The table below shows the meaning of all the system-defined 
exception codes: 

Exception Code 

EXCEPTION_ACCESS3IOLATION 
EXCEPTION_ARRALBOUNDS_EXCEEDED 

EXCEPTION_BREAKPOINT 

EXCEPTION_DATA TYPE_MISALIGNMENT 

EXCEPTION_FLT_DENORMAL_OPERAND 

Code 

OxCOOOOO05 

OxCOOOO08C 

Ox80000003 

Ox80000002 

OxCOOOO08D 

Severity 

Error 

Error 

Warning 

Warning 

Error 

(continued) 



F 0 U R TEE N: Structured Exception Handling 

continued 

Exception Code Code Severity 

EXCEPTION_FLT_DIVIDE_BLZERO OxCOOOOO8E Error 

EXCEPTION_FLT_INEXACT_RESULT OxCOOOOO8F Error 

EXCEPTION_FLT_INVALID_OPERATION OxCOOOOO30 Error 

EXCEPTION_FLT_OVERFLOW OxCOOOOO91 Error 

EXCEPTION_FLT_STACK_CHECK OxCOOOOO32 Error 

EXCEPTION_FLT_UNDERFLOW OxCOOOOO33 Error 

EXCEPTION_GUARD_PAGE Ox80000001 Warning 

EXCEPTION_ILLEGAL_INSTRUCTION OxCOOOOOlD Error 

EXCEPTION_IN _PAGE_ERROR OxCOOOOOO6 Error 

EXCEPTION_INT_DMDE_BY_ZERO OxCOOOOO94 Error 

EXCEPTION_INT_OVERFLOW OxCOOOOO35 Error 

EXCEPTION_INVALID_DISPOSITION OxCOOOOO26 Error 

EXCEPTION_NONCONTINUABLE_EXCEPTION OxCOOOOO25 Error 

EXCEPTION_PRIV_INSTRUCTION OxCOOOOO96 Error 

EXCEPTION_SINGLE_STEP Ox80000004 Warning 

EXCEPTION_STACK_OVERFLOW OxCOOOOOFD Error 

GetExceptionlnformation 
When an exception occurs, the operating system pushes an EXCEP
TION_RECORD structure, a CONTEXT structure, and an EXCEPTION
_POINTERS structure on the stack of the thread that raised the 
exception. 

The EXCEPTION_RECORD structure contains CPU-independent 
information about the raised exception, while the CONTEXT structure 
contains CPU-dependent information about the raised exception. The 
EXCEPTION_POINTERS structure has only two data members that are 
pointers to the pushed EXCEPTION_RECORD and CONTEXT data 
structures: 

typedef struct _EXCEPTION_POINTERS { 
PEXCEPTION_RECORD ExceptionRecord: 
PCONTEXT ContextRecord: 

} EXCEPTION_POINTERS: 

731 



ADVANCED WINDOWS 

732 

In order to retrieve this information and use it in your own applica
tion, you will need to call the GetExceptionInformation function: 

LPEXCEPTION_POINTERS GetExceptionInformation(VOID); 

This intrinsic function returns a pointer to an EXCEPTION_POINTERS 
structure. 

The most important thing to remember about the GetException
Information function is that it can be called only in an exception filter
never inside an exception handler and never inside an exception filter 
function because the CONTEXT, EXCEPTION_RECORD, and EXCEP
TION_POINTERS data structures are valid only during the exception 
filter processing. Once control has been transferred to the exception 
handler, the data on the stack is destroyed, which is why the function can 
be called only during evaluation of the exception filter. 

If you have a need to access the exception information from in
side your exception handler block, you must save the EXCEPTION
_RECORD data structure and/or CONTEXT data structure pointed to 
by the EXCEPTION _POINTERS structure in one or more variables that 
you create. The code below demonstrates how to save both the EXCEP
TION_RECORD and CONTEXT data structures: 

void FuncSkunk (void) { 
II Declare variables that we can use to save the exception 
II record and the context if an exception should occur. 
EXCEPTION_RECORD SavedExceptRec; 
CONTEXT SavedContext; 

} 

_except 
SavedExceptRec 

*(GetExceptionlnformation())->ExceptionRecord. 
SavedContext = 

*(GetExceptionInformation())->ContextRecord. 
EXCEPTION_EXECUTE_HANDLER) { 

II We can use the SavedExceptRec and SavedContext 
II variables inside the handler code block. 



F 0 U R TEE N: Structured Exception Handling 

switch (SavedExceptRec.ExceptionCode) { 

} 

} 

Notice the use of the C language's comma (,) operator in the exception 
filter. Many programmers aren't used to seeing this operator. It tells 
the compiler to execute the comma-separated expressions from left 
to right. When all of the expressions have been evaluated, the result of 
the last (or rightmost) expression is returned. 

In FuncSkunk, the left expression will execute, which causes the 
EXCEPTION _RECORD structure on the stack to be stored in the 
SavedExceptRec local variable. The result of this expression is the value of 
SavedExceptRec. However, this result is discarded and the next expression 
to the right is evaluated. This second expression causes the CONTEXT 
structure on the stack to be stored in the SavedContext local variable. 
The result of the second expression is Saved Context, and again, this ex
pression is discarded as the third expression is evaluated. This is a 
very simple expression that evaluates to EXCEPTION_EXECUTE
_HANDLER. The result of this rightmost expression is the result of the 
entire comma-separated expression. 

Because the exception filter evaluated to EXCEPTION_EXE
CUTE_HANDLER, the code inside the except block executes. At this 
point, the SavedExceptRec and SavedContext variables have been initialized 
and can be used inside the except block. Note that it is important that 
the SavedExceptRec and Saved Context variables be declared outside the 
try block. 

As you've probably guessed, the ExceptionRecord member of the 
EXCEPTION_POINTERS structure points to an EXCEPTION_RECORD 
structure: 

typedef struct _EXCEPTION_RECORD { 
DWORD ExceptionCode; 
DWORD ExceptionFlags; 
struct _EXCEPTION_RECORD *ExceptionRecord; 
PVOID ExceptionAddress; 
DWORD NumberParameters; 
DWORD Exceptionlnformation[EXCEPTION_MAXIMUM_PARAMETERS];, 

} EXCEPTION_RECORD; 

733 



ADVANCED WINDOWS 

734 

The EXCEPTION_RECORD structure contains detailed, CPU
independent information about the exception that has most recently 
occurred: 

• ExceptionCode contains the code of the exception. This is the 
same information that is returned from the GetExceptionCode 
intrinsic function. 

• ExceptionFlags contains flags about the exception. Currently the 
only two values are 0 (which indicates a continuable exception) 
and EXCEPTION_NONCONTINUABLE (which inaicates a 
noncontinuable exception). Any attempt to continue execu
tion after a noncontinuable exception causes ail EXCEPTION
_NONCONTINUABLE_EXCEPTION exception to be raised. 

• ExceptionRecord points to an EXCEPTION _RECORD structure 
for another unhandled exception. While handling one excep
tion, it is possible to raise another exception. For example, the 
code in your exception filter tould attempt to divide a number 
by O. Exception records can be chained to provide additional 
information when nested exceptions occur. A nested exception 
occurs if an exception is generated during the processing of an 
exception filter. If there are no unhandled exceptions, this 
member will contain NULL. 

• ExceptionAddress specifies the address of the instruction in your 
code at which the exception occurred. 

• NumberParameters specifies the number of parameters associ
ated with the exception. This is the number of defined ele
ments in the Exceptionlnformation array. 

• Exceptionlnformation specifies an array of additional 32-bit argu
ments that describe the exception. For most exception codes, 
the array elements are undefined. 

The last two members of the EXCEPTION _RECORD structure, 
NumberParameters and Exceptionlnformation, offer the exception filter 
some additional information about the exception. Currently only one 
type of exception involves additional information: EXCEPTION
_ACCESS_VIOLATION. All other possible exceptions will have the 
NumberParameters member set to O. When you look at the additional 
information about a generated. exception, you can examine the 
NumberParameters member to see how many DWORDs of information 
are available. 



F 0 U R TEE N: Structured Exception Handling 

For an EXCEPTION_ACCESS_VIOLATION exception, Exception
Injormation[O} contains a read-write flag that indicates the type of opera
tion that caused the access violation. If this value is 0, the thread tried to 
read the inaccessible data. If this value is 1, the thread tried to write to an 
inaccessible address. Exceptionlnjormation[ 1} specifies the virtual address 
of the inaccessible data. 

By using these members, you can produce exception filters that 
offer you a significant amount of information about your application. 
For example, you might write an exception filter like this one: 

_try 

_except (ExpFltr(GetExceptionlnformation()->ExceptionRecord» { 

LONG ExpFltr (LPEXCEPTION_RECORD lpER) { 
char szBuf[300]. *p; 

} 

DWORD dwExceptionCode = lpER->ExceptionCode; 

sprintf(szBuf. "Code = Ix. Address = Ix". 
dwExceptionCode. lpER->ExceptionAddress); 

II Find the end of the string. 
p = strchr(szBuf. 0); 

II I used a switch statement in case Microsoft adds 
II information for other exception codes in the future. 
switch (dwExceptionCode) { 

} 

case EXCEPTION_ACCESS_VIOLATION: 
sprintf(p. "Attempt to %s data at address Ix". 

lpER->Exceptionlnformation[0] ? "read" : "write". 
lpER->Exceptionlnformation[l]); 

break; 

default : 
break; 

MessageBox(NULL. szBuf. "Exception". 
MB_OK i MB_ICONEXCLAMATION); 

return(EXCEPTION_CONTINUE_SEARCH); 

735 



ADVANCED WINDOWS 

736 

The ContextRecord member of the EXCEPTION_POINTERS structure 
points to a CONTEXT structure. This structure is platform-dependent; that 
is, the contents of this structure will differ from one CPU platform to 
another. Here is the CONTEXT structure for an x86 CPU: 

typedef struct _CONTEXT { 

II Flags describing contents of CONTEXT record 
DWORD ContextFlags; 

II Debug registers 
DWORD Dr0; 
DWORD Drl; 
DWORD Dr2; 
DWORD Dr3; 
DWORD Dr6; 
DWORD Dr? ; 

II Floating-point registers 
FLOATING_SAVE_AREA FloatSave; 

II Segment registers 
DWORD SegGs; 
DWORD SegFs; 
DWORD SegEs; 
DWORD SegDs; 

II Integer registers 
DWORD Ed;; 
DWORD Es i ; 
DWORD Ebx; 
DWORD Edx; 
DWORD Ecx; 
DWORD Eax; 

II Control registers 
DWORD Ebp; 
DWORD Eip; 
DWORD SegCs; 
DWORD EFlags; 
DWORD Esp; 
DWORD SegSs; 

} CONTEXT; 



F 0 U R TEE N: Structured Exception Handling 

Basically, this structure contains one member for each of the registers 
available on the CPU. When an exception is raised, you can find out even 
more information by examining the members of this structure. U nfortu
nately, realizing the benefit of such a possibility requires you to write 
platform-dependent code that recognizes the machine it's running on 
and uses the appropriate CONTEXT structure. The best way to handle 
this is to put #ifdefs into your code. The CONTEXT structures for the 
x86, MIPS, and Alpha CPUs are in the WINNT.H header file. 

The SEH Exceptions Sample Application 
The SEHExcpt (SEHEXCPT.EXE) sample application, listed in Figure 
14-4 beginning on page 741, demonstrates the use of exception filters 
and handlers. The source code files, resource files, and make file for the 
application are in the SEHEXCPT.14 directory on the companion disc. 
When you invoke SEHExcpt, this dialog box appears: 

When you click on the Execute button, the program calls VirtualAlloc to 
reserve a region of memory in the process's address space big enough to 
contain an array of 50 elements, each 4 KB in size. Notice that I said the 
region is reserved-not committed. 

Mter reserving the region, the program tries to write to randomly 
selected elements in the array. You get to specify the number of accesses 

737 



ADVANCED WINDOWS 

738 

the program will try by entering a number in the Number Of Writes To 
Perform field. 

For the first randomly selected element, an access violation excep
tion will occur because memory has only been reserved, not committed. 
At this point, the exception filter, identified by the ExpFilter function in 
SEHEXCPT.C, gets called by the operating system. 

This filter is responsible for calling VirtualAlloc again, but this time 
it passes MEM_COMMIT to VirtualAlloc in order to actually commit 
memory to the reserved region. But before the filter can do this, it must 
determine that the exception that it is filtering occurred because of an 
invalid memory access in the reserved region. 

It's important that the program not accidentally absorb excep
tions. When you implement an exception filter, be sure to perform what
ever tests are necessary to ensure that you are actually handling the 
exception for which you designed the filter. If any other exception 
occurs that the filter can't handle, the filter must return EXCEPTION
_CONTINUE_SEARCH. 

The ExpFilter function determines whether the occurring excep
tion comes from an invalid array access by performing the following tests: 

1. Is the exception code EXCEPTION_ACCESS_VlOLATION? 

2. Had memory for the array been reserved when the exception 
occurred? An exception might have occurred before memory 
for the array was even reserved. 

3. Is the address of the invalid memory access within the memory 
region reserved for the array? 

If any of the three tests fails, the filter was not written to handle the 
occurring exception and the filter returns EXCEPTION_CONTINUE
_SEARCH. If all three tests succeed, the filter assumes that the invalid 
access was in the array and calls CommitMemory. CommitMemory deter
mines whether the invalid memory access was an attempt to read from 
or to write to the array and creates a string to be displayed in the Execu
tion Log list box. For this sample program, the memory access will always 
be an attempt to write to the memory. Finally, CommitMemory calls 
VirtualAlloc to commit memory to the region of the array memory occu
pied by the individual array element that was accessed. 



F 0 U R TEE N: Structured Exception Handling 

When CommitMemory returns to the exception filter, the filter returns 
EXCEPTION_CONTINUE_EXECUTION. This causes the machine 
instruction that raised the exception to execute again. This time, the 
memory access will succeed because memory will have been committed. 

Earlier in this chapter, I said that you must be careful when return
ing EXCEPTION_CONTINUE_EXECUTION from a filter. I said that 
there could be a problem if your compiler generates multiple machine 
instructions for a single C/C++ statement. In the case I've just discussed, 
there would never be a problem. This example is guaranteed to work on 
any CPU platform using any programming language or compiler be
cause we are not trying to change any variables that the compiler might 
decide to load into registers. 

OK, let's look at a sample run of the program: 

The log shows the results of performing 100 randomly selected write ac
cesses to the array. At first the array had no memory committed to it, 
causing the exception filter to be invoked for array indexes 4, 11, 41, 25, 
and 9. But then index 25 was written to again. This time, no access viola
tion occurred, and the exception filter didn't get called. 

739 



ADVANCED WINDOWS 

740 

Now let's scroll to the bottom of the Execution Log: 

i . 
Writing inde~: 8 
Writing inde~: 44 
Writing inde~: 39 
---> Committing memory (write attempted) 
Writing inde~: 26 
Writing inde~: 23 
Writing inde~: 37 
Writing inde~: 38 
Writing inde~: 18 
Writing inde~: 32 
Writing indeK 29 

i i inde~: 41 

At the end of the 100 accesses, very few exceptions occur because 
most of the array indexes have already been selected and memory for 
these indexes has been committed. 

You'll notice that I put a try-jinally block inside the ExpFilter func
tion. I did this to demonstrate that it's perfectly legal and useful to use 
structured exception handling inside an exception filter. It's also pos
sible to put try-jinally or try-except blocks inside finally blocks or except 
blocks, and it's even possible to nest try-jinally and try-except blocks inside 
one another. Nesting of exception handlers inside an exception filter 
will be demonstrated in the SEHSoft sample application, coming up a 
little later. 

As with the SEHTerm program we looked at earlier, you can experi
ment with SEHExcpt yourself by changing the number of array accesses 
and seeing how this change affects the number of times that the excep
tion filter is called. 



SEHExcpt,;cO 

F 0 U R TEE N: Structured Exception Handling 

SEHEXCPT.C 
1************************************************************ 
Module name: SEHExcpt.C 
Notices: Copyright (c) 1995 Jeffrey Richter 
************************************************************1 

'include " .. \AdvWin32.H" 
'include <windows.h> 
'include <windowsx.h> 

1* See Appendix B for details. *1 

'pragma warning(disable: 4001) 

linclude <tchar.h> 
'incl ude <stdio.h> 
'include <stdlib.h> 
'include "Resource.Hrt 

1* Single-line comment *1 

II For sprintf 
II For rand 

111111111/1/1/1//111111/111/111111111111111111/11111111111I11 

'defi ne NUMELEMENTS (50) 

// Declare each array element ,to be 4 KB. 
typedef struct { 

BYTE bReserved[4 * 1024}; 
} ELEMENT. *LPELEMENT; 

1/111111/111111111/111111111111111//111/11111/111/1111////1// 

void CommitMemory (HWND hwndLog. LPEXCEPTION_POINTERS lpEP. 
LPBYTE lpbAttemptedAddr) { 

BOOL fAttemptedWrite: 
TCHAR szBuf[100]; 

/1 Find out whether a memory access was tried. 
fAttemptedWrite = (BOOL) 

lpEP->ExceptionRecord->Exceptionlnformation[B]; 

Figure 14-4. (continued) 

The SEHExcpt application. 

741 



ADVANCED WINDOWS 

Figure 14-4. continued 

(continued) 

742 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-4. continued 

NULl) { 

(continued) 

743 



ADVANCED WINDOWS 

Figure 14-4. continued 

(continued) 

744 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-4. continued 

} 

_except ( 
ExpFilter(GetExceptionlnformation(). (lPBYTE) lpArray. 

lNumByteslnArray. hwndlog» { 

II Because the filter never returns 
/1 EXCEPTION_EXECUTE_HANDLER. there is nothing 
/1 to do in the except block. 

1/1111111111/111111/11/111//1/11111/11111111/1111111111/11111 

BOOl Dlg_OnlnftOialog (HWNO hwnd. HWND hwndFocus, 
LPA~AM IPar~m) { 

} 

II A$soc1ate an icon with the dialog box. 
SetCl assLong (hwnd ~GCLHICON. (LONG) 

LoadI con « H !.NST ANC.£.) GetWindowlong (hwnd. 
GWLHINSTANCEl. _TEXT("SEHExcpt"j)}: 

/1 Default the ,number of acct;lssesto 100. 
SetDlgltemlnt{hwnd. IDC_NUMACCESSfS. 100. FALSE): 
return (TRUE); 

11111111111111111111111111/11/////11111111/1/11//11///1//111/ 

void Dlg_0nC()mmand (HWND hwnd. intid, 
HWND hwndctl. UINT codeNottfy) { 

tnt nNumAccesses; 
BOOL fTranslated: 

swUch (id) { 
case lDQK: 

nNumAccesses = GetDlgltemlnt(hwnd. IDCNUMACCESSES. 
&fTransl.ated. FALSE): 

(continued) 

745 



ADVANCED WINDOWS 

Figure 14-4. continued 

(continued) 

746 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-4. continued 

int WINAPI WinMain (HINSTANCE hinstExe, 

} 

HINSTANCE hinstPrev, LPSTR lps~CmdLine. int nCmdShow) { 
D1 ill ogBox( hi nstExe, MAKEINTRESOURCE (I DD..::SEHEXCPT). 

NULL, Dlg_Proc.): 

returnHn; 

III /IJ'llllll.tlllll Ilrit·tndOfh'le {ll/uliu 1I11 it jlllll If 

SEHEKCPT;RC. 
I it+i cr6soft~i SUltl 
/1 .. 

",. : ~ ';v, . , 

(continued) 

747 



ADVANCED WINDOWS 

748 

Figure 14-4. continued 

";'/llllliltfl fillllif I/fl llf/tfiltlhlltll lilill J In; II/IUni III .. 
ifendif Fr.AP~TUDIO_nlVOK~O 

.•. r·riD __ sEHE1CPT.'olALOG~ISCAROABLE18~.18.l14. 200 
STYLEWSjU:MTMIZEBOjCl :WS __ VISHi~E. ·1.WS~CA~nONl WS~SYSMENU 
CAPTION ~SEH;Exceptio:nfn ter/Handl erTes}:" 
.FONT8."Hl'!lV'·· '. . . 
BEGIN .. 

. "LTElT '.. ...··clicking:Exetutereserve.$ an artIlYPf50\ 
4':'KB;'str'tlctures al1dr.andomly,write,s to' elements in the array.". 

. ". ·!DC.:..STAnC~4,a.UJ8;24 '. 

. E1HTTEXT 
.. POSH BUTTON 

.' .. IT'EXT . 
. LtSTBOX. 

EftD 

':'&NwribElr;(jTwrites to'perform: ", 
roc"';STAHG~4.30.93,8 . 
I DC_NUMACCESSES. H18~30 .. ~4 ;12 
"&t:xecutel ' • r 0I1...,.SEHEXCPT.160; 86.44. 

. 14. \>lS..;GRDtlP. . .... . 
'''Exe¢ut.icin 10&g:" ,lOC":STATTC.4,50.48.8 

f ~D~t~.~C~6~~·~4.128.NOT. LBS,..NOTIry 

·WS...:GROUPIWS_TABSTOP 

liil/ll/ll III lIltflllllllll IllllfJl JlllIl JI JIll IlllIl! JlIIJlII 
II 
1/ Icon 
II 

SEHEXCPT . ICONOISCAROABU2 . "SEHExcpt.lco" 

f/ifndef APSTUDIO .... JNVOKEO 

(continued) 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-4. continued 

/////////////////////////////////////////////////1////1/////// 
1/ 
1/ Generated from the TEXTlNCLUDE 3 resource. 
1/ 

II III Ill/I Ill/jIffY/IIIll/ I.tlll/lUlll/lllllll/llill III U lill 
/~endi.f l/notAPSTUDlO':"'H'lVOKEO 

The SEH Sum Sample Application 
The SEHSum (SEHSUM.EXE) sample application, listed in Figure 14-5 
beginning on page 752, demonstrates how to use exception filters and 
exception handlers to recover gracefully from a stack overflow. The 
source code files, resource files, and make file for the application are in 
the SEHSUM.14 directory on the companion disc. You may want to re
view the section ''A Thread's Stack" in Chapter 6 in order to fully under
stand how this application works. 

The SEHSum application sums all of the numbers from 0 through 
x, where x is a number entered by the user. Of course, the simplest way to 
do this would be to create a function called Sum that simply performs the 
following calculation: 

Sum = (x * (x + 1» / 2; 

For this sample, I have written the Sum function to be recursive. 
When the program starts, it displays the dialog box shown below: 

In this dialog box, you can enter a number in the edit control and 
then click on the Calculate button. This causes the program to create a 
new thread whose sole responsibility is to total all of the numbers 
between 0 and x. While the new thread is running, the program's pri
mary thread tells the system not to schedule it any CPU time by calling 
WaitForSingleObject. When the new thread terminates, the system resched
ules CPU time to the primary thread. The primary thread retrieves the 

749 



ADVANCED WINDOWS 

750 

sum by getting the new thread's exit code through a call to GetExitCode
Thread. Finally-and this is extremely important-the primary thread 
closes its handle to the new thread so that the system can completely 
destroy the thread object and so that our application does not have a 
resource leak. 

Now the primary thread examines the summation thread's exit 
code. If the exit code is UINT_MAX, it indicates that an error oc
curred-the summation thread overflowed the stack while totaling the 
numbers-and the primary thread will display a message box to this 
effect. If the exit code is not UINT_MAX, the summation thread com
pleted successfully and the exit code is the summation. In this case, the 
primary thread will simply put the summation answer in the dialog box. 

Now let's turn to the summation thread. The thread function for 
this thread is called SumThreadFunc. When this thread is created by the 
primary thread, it is passed the number of integers that it should total 
as its only parameter, p. The function then initializes the uSum variable to 
UINT_MAX, which means that the function is assuming that it will not 
complete successfully. Next SumThreadFunc sets up SEH so that it can 
catch any exception that might be raised while the thread executes. The 
recursive Sum function is then called in order to calculate the sum. 

If the sum is calculated successfully, SumThreadFunc simply returns 
the value of the uSum variable; this is the thread's exit code. However, if 
an exception is raised while the Sum function is executing, the system 
will immediately evaluate the SEH filter expression. In other words, the 
system will call the FilterFunc function and pass it the code that identifies 
the raised exception. For a stack overflow exception, this code is 
EXCEPTlON_STACK_OVERFLOW If you want to see the program 
gracefully handle a stack overflow exception, tell the program to sum 
the first 44,000 numbers. 

My FilterFunc function is very simple. It begins by assuming that it is 
not prepared to handle the type of exception that has been raised. 
When a filter does not know how to handle an exception, it should 
return EXCEPTION_CONTINUE_SEARCH. Then the filter should 
check to see whether the raised exception is EXCEPTlON_STACK
_OVERFLOW If this is true, the filter should return EXCEPTlON
_EXECUTE_HANDLER. This indicates to the system that the filter was 
expecting this exception and that the code contained in the except block 
should execute. For this sample application, EXCEPTlON_EXECUTE
_HANDLER indicates that an error occurred while the thread was 
executing the Sum function and that the thread should simply exit 



F 0 U R TEE N: Structured Exception Handling 

returning UINT _MAX (the value in uSumNum) because I'm pretending 
that the Sum function was never called. 

The last thing that I want to discuss is why I execute the Sum func
tion in its own thread instead of just setting up an SEH block in the pri
mary thread and calling the Sum function from within the try block. 
There are three reasons why I create this additional thread. 

First, each time a thread is created, it gets its very own l-MB stack 
region. If I called the Sum function from within the primary thread, 
some of the stack space would already be in use and the Sum function 
would not be able to use its fulll MB of stack space. Granted, my sample 
is a very simple program and is probably not using all that much stack, 
but other programs will probably be more complicated. I can easily 
imagine a situation in which Sum might successfully total the integers 
from 0 through 1000; then, when Sum is called again later, the stack 
might be deeper, causing a stack overflow to occur when Sum is trying 
only to total the integers from 0 through 750. So to make the Sum func
tion behave more consistently, I ensure that it has a full stack that has not 
been used by any other code. 

The second reason for using a separate thread is that a thread is 
notified only once of a stack overflow exception. If I called the Sum func
tion in the primary thread and a stack overflow occurred, the exception 
could be trapped and handled gracefully. However, at this point, all of 
the stack's reserved address space is committed with physical storage, 
and there are no more pages with the guard protection flag turned on. If 
the user performs another sum, the Sum function could overflow the 
stack and a stack overflow exception would not be raised. Instead, an ac
cess violation exception would be raised, and it would be too late to 
handle this situation gracefully. 

The final reason for using a separate stack is so that the physical 
storage for the stack can be freed. Take this scenario as an example: The 
user asks the Sum function to calculate the sum of the integers from 0 
through 30,000. This will require quite a bit of physical storage to be 
committed to the stack region. Then the user might do several summa
tions in which the highest number is only 5000. In this case, there is a 
large amount of storage that is committed to the stack region but is no 
longer being used. This physical storage is allocated from the paging 
file. It's better to free this storage and give it back to the system and other 
processes. By having the SumThreadFunc thread terminate, the system 
automatically reclaims the physical storage that was committed to the 
stack's region. 

751 



ADVANCED WINDOWS 

SEHSum.ico 

Figure 14-5. (continued) 

The SEHSum application. 

752 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-5. continued 

if (dwExceptionCode == STATUS_STACK-OVERFLOW) { 

} 

II If the exception raised is a stack overflow. 
II we do, know how to handl e 1 t. 
1 Ret = EXCEPTION_EXECUTE-HANDLER; 

, ,'II./IIt 1{IlU/';lt it iillj/llliilliillt.J:ltl.t'llIZI dii'lilZhlli(j", 

~;~:YI:::~t;:!!~~;~;r::j~~~?!):~~I;~;:~!:~itt~ 
, II. Z:.Athread,c~nbe ,Jlot;fied,ofastackoverHowonly ,o,lice. 

:~~dlD':~~:A;i~;~:;thi;:d'~~~~i,~~:~~~~;~~?it~~""threa&~xit,s~i, •• ," ,', 

(continued) 

753 



ADVANCED WINDOWS 

Figure 14-5. continued 

(continued) 

754 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-5. continued 

II We must first wait for the thread to terminate. 
WaitForSingleObject(hThread. INFINITE);· 

(continued) 

755 



ADVANCED WINDOWS 

Figure 14·5. continued 

(continued) 

756 



F 0 U R TEE N: Structured Exception Handling 

Figure 14·5. continued 

11111111111111111111/1/////1/11111/1//1/11/1//11/11//1/11111/1 
/1 
1/ Icon 
II 

SUMMATION 'ICON" DISCAROABLE 
.. ', ", . ." ," ",. ".' ",.. . ".' . .. 

JI/XIlllUllliN/fI/Z)/n'tliiiillllfliullli)iiFii/!:lilllll/lI .. 
If.' ..... .' ..... 

. 'Ii .· . .Dialog.; .. · 
.. )1 .• '. 

··>lci6ji~~~~+rri~;biAi0(2!)I·sdA~·PA~·~·~··.··.'·18··~·ia'.~' 
··STYfE.··wS~Mp[Jp:.:· .. ·WS_GA~ttONi·I.W:S1$ySM£t4b:·'~·i" 

. ·cAl)TiQ~tsu_·~!on;;.> .'... , 
FONT.8.S.Y5~em ... '. 

"~~.~i:£r·~)~l< ,.... .. 

"; ,';' 

.~E;~~yijC~Vp·EDI.~eARPABtf': .. 
.... ·Eitln'R~.e$O~C~Al\ ij'~' 

·<2fElt::TINCUlDEDISCARDABLE·· .. " 
.,.,ali:~I'N" ·.··.'·,·i·.,::.·..'<.. ............... . 

. ' '.. .~"Id.eftil.e·· APST.uD10~HI01)t'N:.;;SVMBQ-U\r.\fl:u • 

.... :~~:~1;~~~~!~;1~~~:~~\"~···· 
; .'::···:::··:<,~·\,8~~:'·': ".,' ... ::.,"', 

"': .. 

(continued) 

757 



ADVANCED WINDOWS 

Figure 14-5. continued 

Software Exceptions 

758 

So far we have been looking at handling hardware exceptions in which 
the CPU catches an event and raises an exception. Often it's useful to 
raise software exceptions in which the operating system or your applica
tion raises its own exceptions. The HeapAlioc function provides a good 
occasion for software exception use. When you call the HeapAlloc func
tion, you can specify the HEAP_GENERATE_EXCEPTIONS flag. Then, 
if HeapAlioc is unable to satisfy the memory request, HeapAlioc generates 
a STATUS_NO_MEMORY software exception. 

If you want to take advantage of this exception, you can code your 
try block as though the memory allocation will always succeed and then, 
if the allocation fails, you can either handle the exception by using an 
except block or have your function clean up by matching the try block 
with a finally block. 

Your application doesn't need to know whether it is processing a 
hardware exception or a software exception, and you implement your 
try-finally and try-except blocks identically. However, you can have por
tions of your code raise software exceptions themselves, just as HeapAlloc 
does. To raise a software exception in your code, call the RaiseException 
function: 



F 0 U R TEE N: Structured Exception Handling 

VOID RaiseException(DWORD dwExceptionCode. DWORD dwExceptionFlags. 
DWORD cArguments. LPDWORD lpArguments); 

The first parameter, dwExceptionCode, must be a value that identifies the 
raised exception. The HeapAlloc function passes STATUS_NO_MEM
ORY for this parameter. If you raise your own exception identifiers, you 
should follow the same format as the standard Win32 error codes as 
defined in the WINERROR.H file. You'll recall that each DWORD is 
divided as shown in this table: 

Bits: 31-30 29-28 27-16 15-0 

Contents: Severity Flags Facility code Exception code 

Meaning: 0= Success Bit 29 Programmer- Programmer-
defined defined 

1 = Informational o = Microsoft 

2 = Warning 1 = Customer 

3 = Error Bit 28 is 
reserved 
(must be 0) 

If you create your own exception code, fill out all four fields of the 
DWORD: bits 31 and 30 should contain the severity, bit 29 should be 1 
(0 is reserved for Microsoft-created exceptions, such as HeapAlloc's 
STATUS_NO_MEMORY), bit 28 should be 0, and bits 27 through 16 
and bits 15 through 0 should be arbitrary values that you choose to iden
tify the section of your application that raised the exception. 

RaiseException's second parameter, dwExceptionFlags, must be either 
o or EXCEPTION _NONCONTINUABLE. Specifying the EXCEPTION
_NONCONTINUABLE flag tells the system that the type of exception 
you are raising can't be continued. The EXCEPTION _NONCONTlNU
ABLE flag is used internally in the operating system to signal fatal 
(nonrecoverable) errors. 

When HeapAlloc raises the STATUS_NO_MEMORYexception, it 
uses the EXCEPTION_NONCONTINUABLE flag to tell the system that 
this exception cannot be continued and that it is illegal for an exception 
filter to evaluate to EXCEPTION_CONTINUE_EXECUTION. If this 
type of exception is raised and an exception filter does evaluate to 

759 



ADVANCED WINDOWS 

760 

EXCEPTION_CONTINUE_EXECUTION, the system raises a new 
exception: EXCEPTION_NONCONTINUABLE_EXCEPTION. 

That's right-it is possible for an exception to be raised while the 
application is trying to process another exception. This of course makes 
sense. While we're at it, let's note that it's also possible for an invalid 
memory access to occur inside a finally block, an exception filter, or an 
exception handler. When this happens, the system stacks exceptions. 
Remember the GetExceptionlnformation function? This function returns 
the address of an EXCEPTION_POINTERS structure. The Exception
Record member of the EXCEPTION_POINTERS structure points to an 
EXCEPTION_RECORD structure that contains another ExceptionRecord 
member. This member is a pointer to another EXCEPTION_RECORD, 
which contains information about the previously raised exception. 

Usually the system is processing only one exception at a time and 
the ExceptionRecord member is NULL. However, if during the processing 
of one exception another exception is raised, the first EXCEPTION
_RECORD structure contains information about the most recently 
raised exception and the ExceptionRecord member of this first EXCEP
TION_RECORD structure points to the EXCEPTION_RECORD struc
ture for the previously raised exception. If additional exceptions have 
not been completely processed, you can continue to walk this linked list 
of EXCEPTION_RECORD structures to determine how to handle the 
exception. 

RaiseException's third and fourth parameters, cArguments and lpArgu
ments, are used to pass additional information about the generated 
exception. If you don't need additional arguments, you can pass NULL 
to lpArguments, in which case RaiseException ignores the cArguments pa
rameter. If you do want to pass additional arguments, the cArguments 
parameter must indicate the number of elements in the DWORD array 
pointed to by the lpArguments parameter. This parameter cannot 
exceed EXCEPTION_MAXIMUM_PARAMETERS, which is defined in 
WlNNT.H as 15. 

During the processing of this exception, you can have an exception 
filter refer to the NumberParameters andExceptionlnformation members of 
the EXCEPTION _RECORD structure to examine the information in 
the cArguments and lpArguments parameters. 

You might want to generate your own software exceptions in your 
application for any of several reasons. For example, you might want to 
send informational messages to the system's event log. Whenever a func
tion in your application sensed some sort of problem, you could call 
RaiseException and have some exception handler further up the call tree 



F 0 U R TEE N: Structured Exception Handling 

look for certain exceptions and either add them to the event log or pop 
up a message box. You might also want to create software exceptions to 
signal internal fatal errors in your application. This would be much 
easier than trying to return error values all the way up the call tree. 

The SEH Software Exceptions Sample Application 
The SEHSoft (SEHSOFf.EXE) application, listed in Figure 14-6 begin
ning on page 764, demonstrates how to create and use your own soft
ware exceptions. The source code files, resource files, and make file for 
the application are in the SEHSOFf.14 directory on the companion 
disc. The program is based on the earlier SEHExcpt sample program. 
When you invoke SEHSoft, this dialog box appears: 

This box is similar to SEHExcpt's dialog box, but this program will try to 
read from as well as write to the array of elements. 

In the Dlg_RescrveArrayAndAccesslt function, the access loop gets 
the index of a random element to access; it has been modified to then 
select another random number. This second number is used to deter
mine whether the program should try to write the element to the array 
or read the element from the array. 

You might be asking yourself what it means to read an element 
from the array if the array has never been initialized. You'd be quite cor
rect to ask this. I have enhanced the program to automatically zero the 
contents of an array element when memory is committed because the 

761 



ADVANCED WINDOWS 

762 

program has tried to read an array element. I did this by raising a soft
ware exception. 

Inside the ExpFilter function, instead of just calling CommitMemory 
as I did in SEHEXCPT.C, I put the call to CommitMemory into a try block. 
The filter expression for the except block associated with this try block 
checks whether the call to CommitMemory has generated an exception 
and whether that exception code is SE_ZERO_ELEM. 

SE_ ZERO_ELEM is a #de.fine that identifies a software exception 
code I have created at the top ofSEHSOIT.C: 

II Useful macro for creating our own software exception codes 
#define MAKESOFTWAREEXCEPTION(Severity, Facility, Exception) \ 

(( DWORD) ( \ 
1* Severity code *1 (Severity « 30) \ 
1* MS(0) or Cust(l) *1 (1 « 29) \ 
1* Reserved(0) *1 (0 « 28) \ 
1* Facility code *1 (Facil ity « 16) \ 
1* Exception code *1 (Exception « 0» ) 

II Our very own software exception. This exception is raised 
II when an element of the array needs to be i niti al i zed 
II to a 11 zeros. 
#define SE_ZERO_ELEM MAKESOFTWAREEXCEPTION(3, 0, 1) 

The exception filter expression looks like this: 

__ except ((GetExceptionCode() == SE_ZERO_ELEM) ? 
(SavedExceptRec = 

*((GetExceptionInformation(»->ExceptionRecord), 
EXCEPTION_EXECUTE_HANDLER) 
EXCEPTION_CONTINUE_SEARCH) 

} 

The exception handler is prepared to handle only SE_ZERO_ELEM 
exceptions. If GetExceptionCode returns any other exception, EXCEP
TION _CONTINUE_SEARCH is returned. If the exception code is 
SE_ZERO_ELEM, EXCEPTION_EXECUTE_HANDLER should be 
returned so that the code inside the except block will be executed. But the 
code inside the except block will need access to the exception informa
tion, so a call to GetExceptionlnformation is made before the return. 
EXCEPTION_EXECUTE_HANDLER and the information inside the 
EXCEPTION_RECORD structure are stored in the local SavedExcept
Rec variable. 



F 0 U R TEE N: Structured Exception Handling 

Now that the code inside the except block is executing, it gets the 
address of the array element that needs to be zeroed by looking into the 
SavedExceptRec structure and calls memset to zero this one array element. 

The only thing that I've left out is how the exception is generated. 
The code appears at the bottom of the CommitMemory function: 

if (!fAttemptedWrite) { 

} 

II The program is trying to read an array element 
II that has never been created. We'll raise our very own 
II software exception so that this array element will be 
II zeroed before it is accessed. 
RaiseException(SE_ZERO_ELEM. e. 1. (LPDWORD) &lpAttemptedAddr); 

If the attempted access is a read, the program calls RaiseException, 
passing it a SE_ZERO_ELEM software exception code and a 0 flag. 
We can also pass, using the third and fourth arguments, a maximum of 
EXCEPTION_MAXIMUM_PARAMETERS (15) parameters to the excep
tion filter. In this example, I want to pass just one parameter to the filter: 
the address to the array element that needs to be zeroed. To do this, I 
send 1 as the third argument to RaiseException and the address to that 
parameter as the fourth argument. 

Here is an example of what SEHSoft looks like when it's executed: 

Writing inde~: 41 
••. ) Committing memory (write attempted) 
Reading inde~: 34 
... ) Committing memory [read attempted) 
... ) Zeroed array element 
R eading inde~: 19 
... } Committing memory [read attempted) 
... ) Zeroed array element 
R eading inde~: 2B 
... ) Committing memory [read attempted) 
... ) Zeroed array element 
Reading inde~: 12 

Every time the software exception is raised, the exception handler adds 
an entry to the Execution Log showing that it zeroed the array element. 

763 



ADVANCED WINDOWS 

SEHSofUco 

Figure 14-6. (continued) 

The SEHSoft application. 

764 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-6. continued 

1111111111111111111111111111111111111111111111111111111111111 

void CommitMemory(HWND hwndLC>\i. LPEXCEPTIOLPOINTERS lpEP. 
LPBYTt, lpbAttelllptedAddr) ( 
' ... ,,' 

86otfAtt~mptedWdte; 
T¢HAR:Sz~u'ftlB~h, . 

. ·~~~}~~ti~;~;~~:t;:~·:::;':::':::.:::.'l.)' ........•.... 
, .fAtt;'eDlptedW;rite t..JTEXl(."write;·)':~TEXn"read~·j);. ,. 

'Li'$t'~Qi::AddS::t rir{g Ctiwnd009·.,si~ilfj~ .. " .... .. 

;:!'i/Jr.li~l~ii!l1~~i:~ir~~f~~k~.w 
'" .. "::,;"-: '." .",.' ': .'«.:":"'::" ·;~·l":·,· '.';',:': -.',:,<:,," .. ,.,:" ,': :: .. >. 
'tf:;(ffAtiemTi~edWrJt~)( .... ,'" ,'. .'" '.'. ,; ........... " 

'/l:tfiepro:!lram.i~>trYIng; to read an array elem~nt 
it.:.t'h'athasneverl>eencreated~·W'e·'11,ra1$ti·oiIr'verY 

, 1Iown'srift:w~re;e~¢eptidtls() that this array element' 
'U'wllT<be'zeroed'beforeit tsaccessed; .... ". 
~~.1seE~ceptJ .. ontSE_2ER(LE J..J;:M. '0.. 1. '. 

'. ,'(UtiWP'RD) .~lpbA~:t::empted,Addr): ... ' ' .. 

..... j,I! II';)j/iu;}}/Ullill t(llll} j 1/ (II j f 11:/1III1IIU/ 1//~lj'll/ .... 
.... : .... ,i.":'" ..... 

. j i~ t'E~PFilter" (L pd:C~'~T fOrLPQIftT(R$ '; i'P'EP, L~:BYTE'l~~Arr'ay;· .' 
, . . '"0;'6 IN umbtes liJ;Ar ra;Y;: iilitND,hwod COg). 

, , ;" ", .... .' ' .. ,': . '~~" ::;, 

" .... · • .Lp~~TI!:lJJ,bAfi~:IIIP:t~didqr:~ N'O LL; ..... .. . 

(continued) 

765 



ADVANCED WINDOWS 

Figure 14-6. continued 

(continued) 

766 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-6. continued 

1/ array's re.served sp.ace.~eill 1etsomeother 
filter ha.ndletMsexception; . 

~ ••.. ", ··~XCEPTlON.;.CP~TtN..l).~..;,$ ~~Clh·. 

(continued) 

767 



ADVANCED WINDOWS 

Figure 14-6. continued 

(continued) 

768 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-6. continued 

Li stBox..,AddString( hwndLog ~szBuf) : 

II Theexceptron wtlloccul'on this line.· 
.. E] ament ... lpArray(nEleinentNurn]; 

(continued) 

769 



ADVANCED WINDOWS 

Figure 14-6. continued 

(continued) 

770 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-6. continued 

(continued) 



ADVANCED WINDOWS 

Figure 14-6. continued 

(continued) 

772 



F 0 U R TEE N: Structured Exception Handling 

Figure 14-6. continued 

LTEXT 
LISTBOX 

Unhandled Exceptions 

"Execution lo&g:",IOC_STATIC.4.56.48.8 
IOCLOG .4. 68.204 ,128. NOT· LBS_NOn FY 

WLVSCR() ~t, WS...,GIWU PI 1'15"", T ABSTO P 

All through this chapter, I've been pointing out that, when an exception 
is raised, the system tries to locate an exception filter that is willing to 
handle the exception. This is true, but it's actually not the first thing the 
system does when an exception occurs. When an exception is raised, the 
system first checks to see whether the process is attached to a debugger. 
If the process isn't attached to a debugger, the system then scans for 
exception filters. 

If the process is being debugged, the system sends a debugging 
event to the debugger and fills out this EXCEPTION_DEBUG_INFO 
structure: 

typedef struct _EXCEPTION_DEBUG_INFO { 
EXCEPTION_RECORD ExceptionRecord; 
DWORD dwFirstChance; 

} EXCEPTION_DEBUG_INFO; 

The EXCEPTION_DEBUG_INFO structure tells the debugger that an 
exception has occurred. The ExceptionRecord member contains the same 

773 



ADVANCED WINDOWS 

information you would get by calling the GetExceptionlnformation func
tion. The debugger can use this information to determine how it wants 
to handle the exception. The dwFirstChance member will be set to non
zero. Typically, a debugger will be written to process breakpoint and 
single-step exceptions and can thus stop these exceptions from percolat
ing up through your thread. 

If a debugger is monitoring the process and handles the excep
tion, the process is allowed to continue processing. The debugger can 
also decide to freeze the threads in the process and allow you to inspect 
the reason for the generated exception. 

If the debugger doesn't handle the exception, the system scans 
your thread in search of an exception filter that returns either 
EXCEPTION_EXECUTE_HANDLER or EXCEPTION _CONTINUE
_EXECUTION. As soon as an exception filter returns one of these iden
tifiers, execution continues as described for each identifier earlier in this 
chapter. 

If the system reaches the top of the thread without locating an 
exception filter to handle the exception, the system notifies the debug
ger again. This time, the dwFirstChance member in the EXCEPTION
_DEBUG_INFO structure will be O. The debugger can tell from this 
value that an unhandled exception occurred in one of the process's 
threads; the debugger will display a message box notifying you of this 
unhandled exception and will allow you to start debugging the process. 

Unhand led Exceptions Without a Debugger Attached 

774 

But let's look at what happens if every exception filter returns EX
CEPTION_CONTINUE_SEARCH when your process is not being de
bugged. In this case, the system traverses all the way to the top of the 
thread without finding an exception filter willing to handle the excep
tion. When this happens, the system uses the SEH frame that was initial
ized in the system's StartOfThread function (see page 56 in Chapter 3) to 
call a built-in exception filter function called UnhandledExceptionFilter: 

LONG UnhandledExceptionFilter( 
LPEXCEPTION_POINTERS lpexpExceptionlnfo); 

The first thing that this function does is check whether the process 
is being debugged; if so, UnhandledExceptionFilter returns EXCEPTION
_CONTINUE_SEARCH, which causes the debugger to be notified of 
the exception. 



F 0 U R TEE N: Structured Exception Handling 

If the process is not being debugged, the function displays a mes
sage box notifying the user that an exception occurred in the process. 
This message box looks similar to the following on Windows 95: 

On Windows NT, it looks like this: 

; ~ SEA' ferminalion Handler Test GEHTERM.EXE . APplication ["0' 

• 
The instruction at "Ox00401144" referenced memory at "OxOOOOOOOO". The memory 
could not be "read" . 

Click on OK to terminate the application 
Click on CANCEL to debug the application 

In the Windows NT message box, the first paragraph of text indi
cates which exception occurred and the address of the instruction in the 
process's address space thllt generated the exception. It just so happens 
that a memory access violation caused this message box to appear, so the 
system can report the invalid memory address that was accessed and 
specify that the attempted access was for reading. The UnhandledExcep
tionFilter function gets this additional information by referencing the 
Exceptionlnformation member of the EXCEPTION_RECORD structure 
generated for this exception. 

Following the description of the exception, the message box indi
cates the user's two choices. The first is to click on the OK button, which 

775 



ADVANCED WINDOWS 

776 

causes UnhandledExceptionFilterto return EXCEPTION_EXECUTE_HAN
DLER. This causes the system to execute a built-in exception handler 
that terminates the process by calling: 

ExitProcess(GetExceptionCode(»; 

The second choice, clicking on the Cancel button, is a developer's 
dream come true. When you click on the Cancel button, Unhandled
ExceptionFilter attempts to load a debugger and attach the debugger to 
the process. With the debugger attached to the process, you can exam
ine the state of variables, set breakpoints, restart the process, and do any
thing else you would normally do when you debug a process. 

The real boon is that you can handle the failure of your application 
when it occurs. Under most other operating systems, you must invoke 
your application through the debugger in order to debug it. If an excep
tion occurs in a process on one of these other operating systems, you 
have to terminate the process, start a debugger, and invoke the applica
tion again using the debugger. The problem is that you would have to 
try to reproduce the bug before you could fix it. And who knows what 
the values of the different variables were when the problem originally 
occurred? It's much harder to resolve a bug this way. The ability to 
dynamically attach a debugger to a process as it's running is one of 
Win32's best features. 

UnhandledExceptionFilter invokes the debugger by looking into the 
Registry. Specifically, the key contains the command line that Unhandl§.d
ExceptionFilter executes: 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ 
Windows NT\CurrentVersion\AeDebug\Debugger 

When you install Visual C++ 2.0, the value of this key is set to: 

F:\MSVC\BIN\MSVC.EXE -p %ld -e %ld 

This line tells the system which program to run (MSVC.EXE) and where 
to find it (in F:\MSVC\BIN on my machine). UnhandledExceptionFilter 
also passes two parameters on the command line to MSVC.EXE. The 
first parameter is the ID of the process that is to be debugged. The sec
ond parameter identifies an inheritable manual-reset event that was cre
ated in the nonsignaled state by the UnhandledExceptionFilter function. 
MSVC recognizes the -p and -e switches as identifying the process ID and 
the event handle. 

Mter the process ID and event handle are parsed into the string, 
UnhandledExceptionFilter executes the debugger by calling CreateProcess 



F 0 U R TEE N: Structured Exception Handling 

and waits for the manual-reset event to become signaled. The debugger 
can then attach itself to the process by calling DebugActiveProcess and 
passing it the ID of the process to be debugged: 

BOOl DebugActiveProcess(DWORD idProcess); 

When the debugger attaches to the process, the system sends 
debug events back to the debugger so that the debugger is aware of the 
process's state. For example, the system sends information about active 
threads in the process and about dynamic-link libraries mapped into the 
process's address space. 

While the system is bringing the debugger up-to-date, all the 
threads in the debuggee are suspended, still waiting for the manual
reset event to become signaled. When the debugger is ready to let you 
debug the process, it calls the SetEvent function, passing the handle of 
the manual-reset event. The debugger can use the event's handle value 
directly because the event was created so that it could be inherited 
by any child processes of the debuggee. And because the Unhandled
ExceptionFilter function in the process called CreateProcess to invoke the 
debugger, the debugger is a child of the process. 

When the debuggee sees that the manual-reset event has become 
signaled, it wakes up, and UnhandledExceptionFilter returns EXCEP
TION_CONTINUE_SEARCH. Returning EXCEPTlON_CONTINUE
_SEARCH causes the unhandled exception to be filtered up again. This 
time, the process is being debugged, and the debugger will be notified of 
the exception. 

Turning Off the Exception Message Box 
There may be times when you don't want the exception message box to 
be displayed if an exception occurs. For example, you might not want 
the message box to appear in the shipping version of your product. If it 
did appear, it could easily lead an end user to accidentally start debug
ging your application. An end user needs only to click on the Cancel 
button in the message box to enter unfamiliar, scary territory-the 
debugger. There are several methods you can use to prevent this mes
sage box from appearing. 

To prevent UnhandledExceptionFilter from displaying the exception 
message box, you can call the SetErrorMode function, 

UINT SetErrorMode(UINT fuErrorMode); 

777 



ADVANCED WINDOWS 

778 

passing it the SEM_NOGPFAULTERRORBOX identifier. Then, when 
UnhandledExceptioriFiltcr is called to handle the exception, it simply ter
minates your application. The user is given no warning; the application 
just goes away. 

Another method you can use to disable the message box is to place 
a try-except block around the entire contents of your WinMain function. 
Make sure that the exception filter always evaluates to EXCEPTION
_EXECUTE_HANDLER so that the exception is handled, preventing 
the system from calling the UnhandledExceptioriFilter function. In WinMain's 
exception handler, you can display a dialog box with some diagnostic 
information. The user can copy the information and report it to your 
customer service lines to help you track the sources of problems in your 
application. You should create the dialog box so that the user can only 
terminate the application and not invoke the debugger. 

The problem with this method is that it catches only exceptions 
that occur in your process's primary thread. If any other threads are run
ning, and an unhandled exception occurs in one of these threads, the 
system calls the built-in UnhandledExceptioriFiltcr function. To fix this, you 
would need to include try-except blocks before all the thread functions in 
your code and in the WinMain function. 

Because it is so easy to forget this when writing new code, Microsoft 
added another Win32 function, SetUnhandledExceptioriFilter, to help you: 

LPTOP_LEVEL_EXCEPTION_FILTER SetUnhandledExceptionFilter( 
LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter); 

Mter your process calls this function, an unhandled exception 
occurring in any of your process's threads causes your own exception 
filter to be called. You need to pass the address of this filter as the only 
parameter to SetUnhandledExceptioriFiltcr. The prototype of this function 
looks like this: 

LONG UnhandledExceptionFilter( 
LPEXCEPTION_POINTERS lpexpExceptionlnfo); 

You'll notice that this function is identical in form to the Unhandled
ExceptioriFilter function. You can perform any processing you desire in 
your exception filter as long as you return one of the three EXCEP
TION_ * identifiers. The following table shows what happens when each 
identifier is returned: 



F 0 U R TEE N: Structured Exception Handling 

Identifier 

EXCEPTION_EXECUTE_HANDLER 

EXCEPTION_CONTINUE_EXECUTION 

EXCEPTION _CONTINUE_SEARCH 

What Happens 

The process simply termi
nates because the system 
doesn't perform any action 
in its exception handler 
block. 

Execution continues at 
the instruction that raised 
the exception. You can 
modify the exception infor
mation referenced by the 
LPEXCEPTlON_POINTERS 
parameter. 

The normal Win32 
UnhandledExceptionFiltcr 
function is called. 

To make the UnhandledExceptionFilter function the default filter 
again, you can simply call SetUnhandledExceptionFilter and pass it NULL. 
Also, whenever you set a new unhandled exception filter, SetUnhan
dledExceptionFilter returns the address of the previously installed excep
tion filter. This address will be NULL if UnhandledExceptionFilter was the 
currently installed filter. 

The last method for turning off UnhandledExceptionFilter's message 
box is really designed for the software developer and not for the end 
user. Another subkey in the Registry affects the UnhandledExceptionFilter 
function: 

HKEY_LOCAL-MACHINE\SOFTWARE\Microsoft\ 
Windows NT\CurrentVersion\AeDebug\Auto 

This Auto subkey can be set to either 0 or 1. If the Auto subkey is set to 1, 
UnhandledExceptionFilter does not display a message box showing the 
user the exception and immediately invokes the debugger. If the Auto 
subkey is set to 0, UnhandledExceptionFilter displays the exception mes
sage box first and operates as described in the previous section. 

779 



ADVANCED WINDOWS 

Calli n9 UnhandledExceptionFilter Yourself 

780 

The UnhandledExceptionFilter function is a Win32 function that you can 
call directly from within your own code. Here is an example of how you 
can use it: 

void Funcadelic (void) { 
_try { 

} 

_except (ExpFltr(GetExceptionInformation())) { 

LONG ExpFltr (LPEXCEPTION_POINTERS lpEP) { 
DWORD dwExceptionCode = lpEP->ExceptionRecord.ExceptionCode; 

if (dwExceptionCode == EXCEPTION_ACCESS_VIOLATION) 
II Do some work here .... 
return(EXCEPTION_CONTINUE_EXECUTION); 

} 

return(UnhandledExceptionFilter(lpEP)); 

In the Funcadelic function, an exception in the try block causes the 
ExpFltr function to be called. The ExpFilter function is passed the return 
value from GetExceptionlnformation. Inside the exception filter, the excep
tion code is determined and compared with EXCEPTION_ACCESS
_VIOLATION. If an access violation has occurred, the exception filter 
corrects the situation and returns EXCEPTION_CONTINUE_EXE
CUTION from the filter. The return value causes the system to continue 
execution at the instruction that originally caused the exception in the 
first place. 

If any other exception has occurred, ExpFltr calls Unhandled
ExceptionFilter, passing it the address of the EXCEPTION_POINTERS 
structure. UnhandledExceptionFilter then displays a message box that 
allows you to terminate the process or to begin debugging the process. 
The return value from UnhandledExceptionFilter is returned from ExpFltr. 



F 0 U R TEE N: Structured Exception Handling 

Windows NT-Specific: Unhandled Kernel-Mode Exceptions 
So far in this chapter, we have looked at what happens when a user-mode 
thread generates an exception-but a kernel-mode thread might also 
generate an exception. Exceptions in kernel mode are handled exactly 
the same as exceptions in user mode. If a low-level virtual memory func
tion generates an exception, the system checks whether any kernel
mode exception filters are prepared to handle the exception. If the 
system can't find an exception filter to handle the exception, the excep
tion is unhandled. In the case of a kernel-mode exception, the un
handled exception is in the operating system and not in an application. 
Such an exception would be a serious bug in the operating system! 

It isn't safe for the system to continue running if an unhandled 
exception occurs in kernel mode, so Windows NT doesn't caIl the 
UnhandledExceptionFilter function in such a case; instead, Windows NT 
switches the video mode back to text mode, displays some debugging 
information on the screen, and halts the system. You should jot down the 
debugging information and send it to Microsoft so that they can use it to 
correct the code in future versions of the operating system. You'Il need 
to reboot your machine before you can do anything else; any unsaved 
work is lost. 

781 





C HAP T E R FIFTEEN 

UNICODE 

With Microsoft Windows becoming more and more popular around 
the world, it is increasingly important that we, as developers, target the 
various international markets. Previously, it was common for U.S. ver
sions of software to ship as much as six months prior to the shipping of 
international versions. But increasing international support in the oper
ating system is making it easier to produce applications for international 
markets and therefort; reducing the time lag between distribution ofthe 
U.S. and international versions of our software. 

Windows has always offered support to help developers localize 
their applications. An application can get country-specific information 
from various functions and can examine Control Panel settings to deter
mine the user's preferences. Windows even supports different fonts for 
our applications. 

Character Sets 
The real problem with localization has always been manipulating differ
ent character sets. For years, most of us have been coding text strings as a 
series of single-byte characters with a zero at the end. This is second 
nature to us. When we call strlen, it returns the number of characters in a 
zero-terminated array of single-byte characters. 

The problem is that some languages and writing systems (kanji 
being the classic example) have so many symbols in their character sets 
that a single byte, which offers no more than 256 different symbols at 
best, is just not enough. So double-byte character sets (DBCSs) were cre
ated to support these languages and writing systems. 

783 



ADVANCED WINDOWS 

Single-Byte and Double-Byte Character Sets 

784 

In a double-byte character set, each character in a string consists of either 
1 or 2 bytes. For Japanese kanji, if the first character is between Ox81 and 
Ox9F or between Ox EO and OxFC, you must look at the next byte to deter
mine the full character in the string. Working with double-byte character 
sets is a programmer's nightmare because some characters are 1 byte 
wide and some are 2 bytes wide. 

Simply placing a call to strlen doesn't really tell you how many char
acters are in the string-it tells you the number of bytes before you hit a 
terminating zero. The ANSI C run-time library has no functions that al
low you to manipulate double-byte character sets. However, Visual C++ 
2.0's run-time library does include a number of functions such as 
_mbstrcat that allow you to manipulate multibyte (that is, both single-byte 
and double-byte) character strings. 

To help manipulate these DBCS strings, Win32 offers a set of 
helper functions, listed below: 

Function 

LPTSTR CharNext(LPCTSTR IpszCurrentChar); 

LPTSTR CharPrev(LPCTSTR IpszStart, 
LPCTSTR IpszCurrentChar); 

BOOL IsDBCSLeadByte(BYTE bTestChar); 

Description 

Returns the address of 
the next character in a 
string 

Returns the address of 
the previous character 
in a string 

Returns TRUE if the 
byte is the first byte of 
a DBCS character 

The two functions CharNext and CharPrev allow you to traverse for
ward or backward through a DBCS string one character at a time. The 
third function, IsDBCSLeadByte, returns TRUE if the byte passed to it is 
the first byte of a 2-byte character. 

Although these functions make manipulating DBCS strings a little 
easier, a better approach is definitely needed. Enter Unicode. 



FIFTEEN: Unicode 

When Microsoft was porting the AnsiNext and AnsiPrev functions to the 
Win32 API, someone realized that the functions are really used by DBCS 
strings instead of ANSI strings and that the functions should undergo 
name change surgery. So the AnsiNext and AnsiPrev functions have been 
renamed and added to the Win32 API as CharNext and CharPrev: The 
Win32 header files define the following macros so that 16-bit Windows 
code ports easily to Win32: 

#define AnsiNext CharNextA 
#define AnsiPrev CharPrevA 

Unicode: The Wide-Byte Character Set 
Unicode is a standard founded by Apple and Xerox in 1988. In 1991, a 
consortium was created to develop and promote Unicode. The consor
tium consists of Adobe, Aldus, Apple, Borland, Digital, Go, IBM, Lotus, 
Metaphor, Microsoft, NeXT, Novell, the Research Libraries Group, Sun, 
Taligent, Unisys, WordPerfect, and Xerox. This group of companies is 
responsible for maintaining the Unicode standard. The full description 
of Unicode can be found in The Unicode Standard: Worldwide Character 
Encoding, Version 1.0, from Addison-Wesley. 

Unicode offers a simple and consistent way of representing strings. 
All characters in a Unicode string are 16-bit values (2 bytes). There are 
no special bytes that indicate whether the next byte is part of the same 
character or is a new character. This means that you can traverse the 
characters in a string by simply incrementing or decrementing a pointer. 
Calls to functions such as Char Next, CharPrev, and IsDBCSLeadByte are no 
longer necessary. 

Because Unicode represents each character with a 16-bit value, 
more than 65,000 characters are available, making it possible to encode 
all the characters that make up written languages throughout the world. 
This is a far cry from the 256 characters available with a single-byte char
acter set. 

Currently, Unicode code points! are defined for the Arabic, Chi
nese bopomofo, Cyrillic (Russian), Greek, Hebrew,Japanese kana, Kore
an hangul, and Latin (English) alphabets, as well as for others. A large 
number of punctuation marks, mathematical symbols, technical sym
bols, arrows, dingbats, diacritics, and other characters are also included 

1. A code point is the position of a symbol in a character set. 

785 



ADVANCED WINDOWS 

in the character sets. When you add all these alphabets and symbols 
together, they total about 34,000 different code points, which leaves 
about half of the 65,000 total code points available for future expansion. 

These 65,536 characters are divided into regions. The table below 
shows some of the regions and the characters that are assigned to them: 

16-Bit Code Characters 

0OOO-OO7F ASCII 

OOSO-OOFF LatinI characters 

OIOO-OI7F European Latin 

OISO-OIFF Extended Latin 

0250-02AF Standard phonetic 

02BO-02FF Modified letters 

0300-036F Generic diacritical marks 

0370-03FF Greek 

0400-04FF Cyrillic 

0530-05SF Armenian 

0590-05FF Hebrew 

0600-06FF Arabic 

0900-097F Devanagari 

Approximately 29,000 code points are currently unassigned but are 
reserved for future use. And approximately 6000 code points are reserved 
for your own personal use. 

WhyVou Should Use Unicode 

786 

When developing an application, you should definitely consider taking 
advantage of Unicode. Even if you're not planning to localize your appli
cation today, developing with Unicode in mind will certainly simplify 
conversion in the future. In addition, Unicode: 

• Enables easy data exchange between languages 

• Allows you to distribute a single binary EXE or DLL file that 
supports all languages 

• Improves the efficiency of your application (discussed in more 
detail later ) 



F 1FT E E N: Unicode 

How to Write Unicode Source Code 
Microsoft designed the Win32 API for Unicode so that it would have as 
little impact on your code as possible. In fact, it is possible to write a 
single source code file so that it can be compiled with or without using 
Unicode-you need only define two macros to make the change and 
then recompile. 

Windows NT and Unicode 
Windows NT is the first operating system to be built from the ground up 
using Unicode. All the core functions for creating windows, displaying 
text, performing string manipulations, and so forth expect Unicode 
strings. If you call anyWin32 function and pass it an ANSI string, the sys
tem first converts the string to Unicode and then passes the Unicode 
string to the operating system. If you are expecting ANSI strings back 
from a function, the system converts the Unicode string to an ANSI 
string before returning to your application. All these conversions occur 
invisibly to you. Of course, there is a slight time overhead involved in 
order for the system to carry out all these string conversions. 

For example, if you call CreateWindowEx and pass non-Unicode strings 
for the class name and window caption text, CreateWindowEx must allo
cate blocks of memory (in your process's default heap), convert the non
Unicode strings to Unicode strings and store the result in the allocated 
memory blocks, and make a function call to the Unicode version of 
Create WindowEx. 

For functions that fill buffers with strings, the system must convert 
from Unicode to non-Unicode equivalents before your application can 
process the string. Because the system must perform all these conver
sions, your application requires more memory and runs slower. You can 
make your application perform more efficiently by developing your 
application using Unicode from the start. 

Windows 95 and Unicode 
Windows 95 is not a completely new operating system. It has a 16-bit Win
dows heritage that was not designed to handle Unicode. Adding Unicode 
support would have been too large a task and was dropped from the 
product's feature list. For this reason, Windows 95, like its predecessors, 
does everything internally using ANSI strings. 

787 



ADVANCED WINDOWS 

It is still possible to write a Win32 application that processes 
Unicode characters and strings, but it is much harder to call the Win32 
functions. For example, if you want to call CreateWindowEx and pass it 
ANSI strings, the call is very fast; no buffers need to be allocated from 
your process's default heap, and no string conversions need to be done. 
However, if you want to call CreateWindowEx and pass it Unicode strings, 
you must explicitly allocate buffers yourself and call Win32 functions to 
perform the conversion from Unicode to ANSI. You can then call Create
WindowEx, passing the ANSI strings. When CreateWindowEx returns, you 
can free the temporary buffers. This is far less convenient than using Uni
code on Windows NT. 

I will describe how you can perform these conversions under Win
dows 95 later in this chapter. 

Unicode Support in the C Run-Time Library 

788 

To take advantage of Unicode character strings, some new data types 
have been defined. The standard C header file, STRING.H, has been 
modified to define a new data type named wchar_t, which is the data type 
of a Unicode character: 

typedef unsigned short wchar_t: 

For example, if you want to create a buffer to hold a Unicode string of up 
to 99 characters and a terminating zero character, you can use the follow
ing statement: 

wchar_t szBuffer[100]: 

This statement creates an array of 100 16-bit values. Of course, the 
standard C run-time string functions, such as strcpy, strchr, and strcat, oper
ate on ANSI strings only; they don't process Unicode strings correctly. So 
a new, complementary set of functions was created. Figure 15-1 shows 
the standard C ANSI string functions followed by their equivalent Uni
code functions. 

Figure 15-1. (continued) 

Standard C ANSI stringjunctions and their Unicode equivalents. 



F 1FT E E N: Unicode 

Figure 15-1. continued 

1nt strcmp(cor\stchar*.const char~): . 
int wcscmp(const. wchar_t *.constwehar;.;;t *J; 

(continued) 

789 



ADVANCED WINDOWS 

790 

Figure 15-1. continued 

Notice that all the new functions begin with wcs, which stands for 
wide character set. You simply replace the str prefIx of any ANSI string 
function with the new wcs prefIx in order to call the Unicode function. 

Code that includes explicit calls to either the str functions or the 
wcs functions cannot be compiled easily for both ANSI and Unicode. 
Earlier in this chapter, I said it's possible to make a single source code 
fIle that can be compiled for both. To set up the dual capability, you in
clude the new TCHAR.H fIle instead of including STRING.H. 

TCHAR.H exists for the sole purpose of helping you create ANSI! 
Unicode generic source code fIles. It consists of a set of macros that you 
should use in your source code instead of making direct calls to either 
the str or the wcs function. If you defIne _UNICODE when you compile 
your source code, the macros reference the wcs set of functions. If you 
don't defIne _UNICODE, the macros reference the str set of functions. 
Figure 1&-2 lists the macros in TCHAR.H and what they reference, de
pending on whether _UNICODE is defIned: 



F I FT E E N: Unicode 

TCHAR.H Macro _UNICODE Defined _UNICODE Not Defined 

_tprintf wprintf printf 

_ftprintf fwprintf fprintf 

_stprintf swprintf sprintf 

_sntprintf _snwprintf _snprintf 

_vtprintf vwprintf vprintf 

_vftprintf vfwprintf vfprintf 

_vstprintf vswprintf vsprintf 

_wsntprintf _vsnwprintf _vsnprintf 

_tseanf wseanf seanf 

_ftseanf fwseanf fseanf 

_stseanf swseanf sseanf 

_fgette fgetwe fgete 

_fgettehar fgetwehar fgetehar 

3getts fgetws fgets 

_fputte fputwe fpute 

_fputtehar fputwehar fputehar 

_fputts fputws fputs 

_gette getwe gete 

_getts getws gets 

_putte putwe pute 

_putts putws puts 

_ungette ungetwe ungete 

_testod westod strtod 

_testol westol strtol 

_testoul westoul strtoul 

_teseat weseat streat 

_tesehr wesehr strehr 

_tesemp wesemp stremp 

_tesepy wesepy strepy 

_tesespn wespn strespn 

_teslen weslen strlen 

tesneat wesneat strneat -

Figure 15·2. (continued) 

Macros in TCHARH and their references. 

791 



ADVANCED WINDOWS 

Figure 15-2. continued 

TCHAR.H Macro _UNICODE Defined _UNICODE Not Defined 

_tcsncmp wcsncmp strncmp 

_tcsncpy wcsncpy strncpy 

_tcspbrk wcspbrk strpbrk 

_tcsrchr wcsrchr strrchr 

_tcsspn wcsspn strspn 

_tcsstr wcsstr strstr 

_tcstok wcstok strtok 

_tcsdup _wcsdup strdup 

_tcsicmp _wcsicmp stricmp 

_tcsnicmp _wcsnicmp _strnicmp 

_tcsnset _wcsnset _strnset 

_tcsrev _wcsrev _strrev 

_tcsset _wcsset _strset 

_tcslwr _wcslwr _strlwr 

_tcsupr _wcsupr _strupr 

_tcsxfrm wcsxfrm strxfrm 

_tcscoll wcscoll strcoll 

_tcsicoll _wcsicoll _stricoll 

_istalpha iswalpha isalpha 

_istupper iswupper isupper 

_istlower iswlower islower 

_istdigit iswdigit isdigit 

_istxdigit iswxdigit isxdigit 

_istspace iswspace isspace 

_istpunct iswpunct ispunct 

_istalnum iswalnum isalnum 

_istprint iswprint isprint 

_istgraph iswgraph isgraph 

_istcntrl iswcntrl iscntrl 

_istascii iswascii isascii 

_totupper towupper toupper 

_totlower towlower tolower 

792 



F 1FT E E N: Unicode 

By using the identifiers listed in the left column, you can write your 
source code so that it can be compiled using either Unicode or ANSI. 
This isn't quite the whole story, however. TCHAR.H includes some addi
tional macros. 

To define an array of string characters that is ANSI/Unicode 
generic, use the following new TCHAR data type. If _UNICODE is de
fined, TCHAR is declared as follows: 

typedef wchar_t TCHAR: 

If _UNICODE is not defined, TCHAR is declared as: 

typedef char TCHAR; 

Using this data type, you can allocate a string of characters as follows: 

TCHAR szString[100]; 

You can also create pointers to strings: 

TCHAR *szError = "Error"; 

However, there is a problem with the previous line. By default, Micro
soft's C++ compiler compiles all strings as though they were ANSI 
strings, not Unicode strings. As a result, the compiler will compile this 
line correctly if _UNICODE is not defined but will generate an error if 
_UNICODE is defined. To generate a Unicode string instead of an ANSI 
string, you would have to rewrite the line as follows: 

TCHAR *szError = L"Error"; 

An uppercase L before a literal string informs the compiler that the 
string should be compiled as a Unicode string. When the compiler 
places the string in the program's data section, it intersperses zero bytes 
between every character. The problem with this change is that now the 
program will compile successfully only if _UNICODE is defined. We 
need another macro that selectively adds the uppercase L before a literal 
string. This is the job of the _TEXT macro, also defined in TCHAR.H. If 
_UNICODE is defined, _TEXT is defined as: 

#define _TEXT(x) L INf x 

and if _UNICODE is not defined, _TEXT is defined as: 

#define _TEXT(x) x 

Using this macro, we can rewrite the line above so that it compiles 
correctly whether or not the _UNICODE macro is defined, as shown on 
the following page. 

793 



ADVANCED WINDOWS 

TCHAR *szError = _TEXT("Error"); 

The _TEXT macro can also be used for literal characters. For 
example, to check whether the first character of a string is an uppercase 
J, execute the following: 

if (szError[0] == _TEXT('J'» { 
/J First character is a 'J' 

} else { 
II First character is not a 'J' 

} 

Unicode Data Types Defined by Win32 
The Win32 header files define the data types listed below: 

Data Type 

WCHAR 

LPWSTR 

LPCWSTR 

Description 

Unicode character 

Pointer to a Unicode string 

Pointer to a constant Unicode string 

These data types always refer to Unicode characters and strings. 
The Win32 header files also define the ANSI/Unicode generic data 
types LPTSTR and LPCTSTR. These data types point to either an ANSI 
string or a Unicode string, depending on whether the UNICODE macro 
is defined when you compile the module. 

Notice that this time the UNICODE macro is not preceded by an 
underscore. The _UNICODE macro is used for the C run-time header 
files, and the UNICODE macro is used for the Win32 header files. You 
usually need to define both macros when compiling a source code module. 

Unicode and ANSI Functions in Win32 

794 

Earlier I implied that there are two functions called CreateWindowEx: a 
CreateWindowEx that accepts Unicode strings and a second CreateWin
dowEx that accepts ANSI strings. This is true, but the two functions are 
actually prototyped as follows: 



F I FT E E N: Unicode 

HWND WINAPI CreateWindowExW(DWORD dwExStyle. LPCWSTR lpClassName. 
LPCWSTR lpWindowName. DWORD dwStyle. int X. int Y. 
int nWidth. int nHeight. HWND hWndParent. HMENU hMenu. 
HINSTANCE hInstance. LPVOID lpParam); 

and 

HWND WINAPI CreateWindowExA(DWORD dwExStyle. LPCSTR lpClassName. 
LPCSTR lpWindowName. DWORD dwStyle. int X. int Y. 
int nWidth. int nHeight. HWND hWndParent. HMENU hMenu. 
HINSTANCE hInstance. LPVOID lpParam); 

CreateWindowExW is the version that accepts Unicode strings. The 
uppercase Wat the end of the function name stands for wide. Unicode 
characters are 16 bits each, so they are frequently referred to as wide 
characters. CreateWindowExA has an uppercase A at the end, which indi
cates that it accepts ANSI character strings. 

But we usually just include a call to CreateWindowEx in our code 
and don't directly call either CreateWindowExW or CreateWindowExA. In 
WINUSER.H, CreateWindowEx is actually a macro defined as: 

lIifdef UNICODE 
IIdefine CreateWindowEx CreateWindowExW 
lie 1 se 
IIdefine CreateWindowEx CreateWindowExA 
lIendif II !UNICODE 

Whether UNICODE is defined when you compile your source code 
module determines which version of CreateWindowEx is called. When you 
port a 16-bit Windows application to Win32, you probably won't define 
UNICODE when you compile. Any calls you make to CreateWindowEx 
evaluate to calls to CreateWindowExA-the ANSI version of CreateWin
dowEx. Because 16-bit Windows offers only an ANSI version of Create
WindowEx, your porting will go much easier. 

Under Windows NT, Microsoft's source code for CreateWindowExA 
is simply a thunking, or translation, layer that allocates memory to con
vert ANSI strings to Unicode strings; the code then calls CreateWindow
ExW, passing the converted strings. When CreateWindowExW returns, 
CreateWindowExA frees its memory buffers and returns the window 
handle to you. 

If you're creating dynamic-link libraries that other software devel
opers will use, consider using this technique: Supply two entry points in 
the DLL-an ANSI version and a Unicode version. In the ANSI version, 

795 



ADVANCED WINDOWS 

796 

simply allocate memory, perform the necessary string conversions, and 
call the Unicode version of the function. (This process is demonstrated 
later in this chapter.) 

Under Windows 95, Microsoft's source code for CreateWindowExA is 
the actual function that does the work. Windows 95 offers all the entry 
points to all the Win32 functions that accept a Unicode parameter, but 
these functions do not translate Unicode strings to ANSI strings-they 
just return failure. A call to GetLastError returns ERROR_CALL_NOT
_IMPLEMENTED. Only ANSI versions of these functions work properly. 
If your compiled code makes calls to any of the wide-character Win32 
functions, your application will not run under Windows 95. 

Certain functions in the Win32 API, such as WinExec and OpenFile, 
exist solely for backward compatibility with 16-bit Windows programs 
and should be avoided. You should replace any calls to WinExec and 
OpenFile with calls to the new CreateProcess and Create File functions. Inter
nally, the old functions call the new functions anyway. 

The big problem with the old functions is that they don't accept 
Unicode strings. When you call these functions, you must pass ANSI 
strings. All the new and nonobsolete functions, on the other hand, do 
have both ANSI and Unicode versions on Windows NT. 

WinMain is a special, nonobsolete function that exists only in an 
ANSI version: 

int WinMain(HINSTANCE hinstExe. HINSTANCE hinstPrev. 
LPSTR lpszCmdLine. int nCmdShow); 

The string pointed to by the lpszCmdLine parameter is always an ANSI 
string, which is indicated by its type-LPSTR. If the type were LPTSTR, 
we might have guessed that the function existed in both ANSI and 
Unicode forms. But this function cannot exist in both forms because it's 
called by the C run-time library's startup code. Because you didn't com
pile the startup code yourself, Microsoft had to choose either ANSI or 
Unicode. For backward compatibility reasons, the string had to be ANSI. 

This leads us to a new question: What do we do if we need to parse 
the command line as a Unicode string? The answer lies in the Get
CommandLine function. This function returns a pointer to the appli
cation's command line. As with most Win32 functions, it exists in both 
ANSI and Unicode versions. (The Unicode version is not fully imple
mented on Windows 95.) 



F 1FT E E N: Unicode 

lIifdef UNICODE 
lIdefine GetCommandL1ne GetCommandLineW 
lIelse 
lIdefine GetCommandLine GetCommandLineA 
lIendif II !UNICODE 

The difference between the buffer pointed to by the IpszCmdLine 
parameter and the buffer pointed to by GetCommandLine is that lpsz
CmdLine's buffer doesn't contain the program's pathname, only the 
program's command-line arguments. The buffer returned by GetCom
mandLine includes the name of the executable program as well, which 
means that you'll need to skip this token in the buffer in order to retrieve 
the actual arguments. 

Making Your Application ANSI- and Unicode-Aware 
It's a good idea to start converting your application to make it Unicode
aware even if you don't plan to use Unicode right away. Here are the basic 
steps you should follow: 

• Start thinking of text strings as arrays of characters, not as arrays 
of chars or arrays of bytes. 

• Use generic data types (such as TCHAR and LPTSTR) for text 
characters and strings. 

• Use explicit data types (such as BYTE and LPBYTE) for bytes, 
byte pointers, and data buffers. 

• Use the _TEXT macro for literal characters and strings. 

• Perform global replaces. (For example, replace LPSTR with 
LPTSTR.) 

• Modify string arithmetic problems. (For example, convert 
sizeoj(szBufJer) to (sizeoj(szBujjer) / sizeoj(TCHAR)).) This is the 
most difficult step to remember-I have forgotten to do this 
more times than I care to remember. 

When I was developing the sample programs for the first edition of 
this book, I originally wrote them so that they compiled natively as ANSI 
only. Then, when I began to write this chapter, I knew that I wanted to 

797 



ADVANCED WINDOWS 

encourage the use of Unicode and was going to create sample programs 
to demonstrate how easy it is to create programs that can be compiled in 
both Unicode and ANSI. I decided that the best course of action was to 
convert all the sample programs in the book so that they could be com
piled in both Unicode and ANSI. 

I converted all the programs in about four hours, which isn't bad, 
considering that I didn't have any prior conversion experience. 

String Functions in Win32 

798 

The Win32 API also offers a set of functions for manipulating Unicode 
strings, as described below: 

Function 

lstrcat 

lstrcmp 

lstrcmpi 

lstrcpy 

lstrlen 

Description 

Concatenates one string onto the end of another 

Performs case-sensitive comparison of two strings 

Performs case-insensitive comparison of two strings 

Copies one string to another location in memory 

Returns the length of a string in characters 

These functions are implemented as macros that call either the 
Unicode version of the function or the ANSI version of the function, 
depending on whether UNICODE is defined when the source module is 
compiled. For example, if UNICODE is not defined, lstrcat will expand 
to lstreatA, and if UNICODE is defined, lstreat will expand to lstreatW. 

Two Win32 string functions, lstrcmp and lstrempi, behave differently 
from their equivalent C run-time functions. The C run-time functions 
strcmp, strempi, wesemp, and wcsempi simply compare the values of the 
code points in the strings. That is, the functions ignore the meaning of 
the actual characters and simply theck the numeric value of each charac
ter in the first string with the numeric value of the character in the sec
ond string. The Win32 functions lstrcmp and lstrcmpi, on the other hand, 
are implemented as calls to the new Win32 function CompareString: 

int CompareString(LCID lcid. DWORD fdwStyle. 
LPCWSTR lpStringl. int cchl. LPCTSTR lpString2. int cch2); 

This function compares two Unicode strings. The first parameter 
to CompareString specifies a locale ID (LCID), a 32-bit value that identi
fies a particular language. CompareString uses this LCID to compare the 



FIFTEEN: Unicode 

two strings by checking the meaning of the characters as they apply to a 
particular language. This action is much more meaningful than the 
simple number comparison performed by the C run-time functions. 

When any of the lstrcmp family of functions calls CompareString, the 
function passes the result of calling the Win32 GetThreadLocale function 
as the first parameter: 

LCID GetThreadLocale(VOID); 

Every time a thread is created, it is assigned a locale. This function 
returns the current locale setting for the thread. 

The second parameter of CompareString identifies flags that modify 
the method used by the function to compare the two strings. The table 
below shows the possible flags: 

Flag 

NORM_IGNORECASE 

NORM_IGNOREKANATYPE 

NORM_IGNORENONSPACE 

NORM_IGNORESYMBOLS 

NORM_IGNOREWIDTH 

SORLSTRINGSORT 

Meaning 

Ignore case differences 

Do not differentiate between hiragana 
and katakana characters 

Ignore nonspacing characters 

Ignore symbols 

Do not differentiate between a single-byte 
character and the same character as a 
double-byte character 

Treat punctuation the same as symbols 

When lstrcmp calls CompareString, it passes 0 for the fdwStyle param
eter. But when lstrcmpi calls CompareString, it passes NORM_IGNORE
CASE. The remaining four parameters of CompareString specify the two 
strings and their respective lengths. If you pass -1 for the cchi parame
ter, the function assumes that the IpStringi string is zero-terminated and 
calculates the length of the string. This also is true for the cch2 parame
ter with respect to the IpString2 string. 

Other C run-time functions don't offer good support for manipu
lating Unicode strings. For example, the tolower and toupper functions 
don't properly convert characters with accent marks. To compensate for 
these deficiencies in the C run-time library, you'll need to call the Win32 
functions described on the following page to convert the case of a Uni
code string. These functions also work correctly for ANSI strings. 

799 



ADVANCED WINDOWS 

800 

The first two functions, 

lPTSTR Charlower(lPTSTR lpszString); 

and 

lPTSTR CharUpper(lPTSTR lpszString); 

convert either a single character or an entire zero-terminated string. To 
convert an entire string, simply pass the address of the string. To convert 
a single character, you must pass the individual character as follows: 

TCHAR clowerCaseChar = Charlower«lPTSTR) szString[0]); 

Casting the single character to an LPTSTR causes the high 16 bits 
of the pointer to be set to 0 and the low 16 bits to contain the character. 
When the function sees that the high 16 bits are 0, the function knows 
that you want to convert a single character rather than a whole string. 
The value returned will be a 32-bit value with the converted character in 
the low 16 bits. 

The next two functions are similar to the previous two except that 
they convert the characters contained inside a buffer (which does not 
need to be zero-terminated): 

DWORD CharlowerBuff(lPTSTR lpszString. DWORD cchString); 

and 

DWORD CharUpperBuff(lPTSTR lpszString. DWORD cchString); 

Other C run-time functions, such as isalpha, islower, and isupper, 
return a value that indicates whether a given character is alphabetic, low
ercase, or uppercase. The Win32 API offers functions that return this 
information as well, but the Win32 functions also consider the language 
indicated by the user in the Control Panel: 

BOOl IsCharAlpha(TCHAR ch); 

BOOl IsCharAlphaNumeric(TCHAR ch); 

BOOl IsCharlower(TCHAR ch); 

BOOl IsCharUpper(TCHAR ch); 

The printJ family of functions is the last group of C run-time nmc
tions we'll discuss. If you compile your source module with _UNICODE 
defined, the printJ family of functions expects that all the character and 
string parameters represent Unicode characters and strings. However, if 



F I FT E E N: Unicode 

you compile without defining _UNICODE, the printJ family expects 
that all the characters and strings passed to it are ANSI. 

The Win32 function wsprintJis an enhanced version of the C run
time's sprintJ function. It offers some additional field types that allow you 
to state explicitly whether a character or string isANSI or Unicode. Using 
these extended field types, you can mix ANSI and Unicode characters 
and strings in a single call to wsprintJ. 

Resources 

Text Files 

When the resource compiler compiles all your resources, the output file 
is a binary representation of the resources. String values in your re
sources (string tables, dialog box templates, menus, and so on) are 
always written as Unicode strings. Under both Windows 95 and Windows 
NT, the system performs internal conversions if your application doesn't 
define the UNICODE macro. For example, if UNICODE is not defined 
when you compile your source module, a call to LoadString will actually 
call the LoadStringA function. LoadStringA will then read the string from 
your resources and convert the string to ANSI. The ANSI representation 
of the string will be returned from the function to your application. 

To date, there have been very few Unicode text files. None of the text 
files that ship with any Microsoft operating system or product have been 
in Unicode. However, I expect that this trend may change in the future 
(albeit a long ways into the future). Certainly, the Windows NT Notepad 
application allows you to open both Unicode and ANSI files as well as to 
create them. 

For many applications that open text files and process them, such 
as compilers, it would be convenient if, after opening a file, the applica
tion could determine whether the text file contained ANSI characters or 
Unicode characters. Windows NT 3.5 introduced the IsTextUnicode func
tion, which can help make this distinction: 

DWORD IsTextUnicode(CONST LPVOID lpvBuffer. int cb. LPINT lpResult); 

The problem with text files is that there are no hard and fast rules 
as to their content. This makes it extremely difficult to determine 
whether the file contains ANSI or Unicode characters. IsTextUnicode 
uses a series of statistical and deterministic methods in order to guess at 

801 



ADVANCED WINDOWS 

the content of the buffer. Since this is not an exact science, it is possible 
that 1sT ext Unicode will return an incorrect result. 

The first parameter, lpvBuffer, identifies the address of a buffer that 
you want to test. The data is a void pointer because you don't know 
whether you have an array of ANSI characters or an array of Unicode 
characters. 

The second parameter, cb, specifies the number of bytes that lpv
Buffer points to. Again, because you don't know what's in the buffer, cb is 
a count of bytes rather than a count of characters. Note that you do not 
have to specify the en tire length of the buffer. Of course, the more bytes 
IsTextUnicode can test, the more accurate a response you're likely to get. 

The third parameter, lpResult, is the address of an integer that you 
must initialize before calling IsTextUnicode. You initialize this integer to 
indicate which tests you want 1sT ext Unicode to perform. (See the Microsoft 
Win32 Programmer's Reference for details.) You can also pass NULL for this 
parameter, in which case IsTextUnicode will perform every test it can. 

If Is TextUnicode thinks that the buffer contains Unicode text, TRUE 
is returned; otherwise, FALSE is returned. If specific tests were requested 
in the integer pointed to by the lpResult parameter, the function sets the 
bits in the integer before returning to reflect the results of each test. 

Under Windows 95, the IsTextUnicode function has no useful implemen
tation and simply returns FALSE; calling GetLastError returns ERROR
_CALL_NOT_IMPLEMENTED. 

The FileRev sample application presented in Chapter 7 demon
strates the use of the IsTextUnicode function. 

Translating Strings Between Unicode and ANSI 

802 

The Win32 function MultiByteToWideChar converts multibyte-character 
strings to wide-character strings: 

int MultiByteToWideChar(UINT uCodePage. DWORD dwFlags. 
LPCSTR lpMultiByteStr. int cchMultiByte. 
LPWSTR lpWideCharStr. int cchWideChar); 

The uCodePage parameter identifies a code page number that is 
associated with the multibyte string. The dwFlags parameter allows you to 
specify additional control that affects characters with diacritical marks, 
such as accents. Usually the flags aren't used, and 0 is passed in the 



F 1FT E E N: Unicode 

dwFlags parameter. The lpMultiByteStr parameter specifies the string to 
be converted, and the cchMultiByte parameter indicates the length (in 
bytes) of the string. The function determines the length of the source 
string if you pass -1 for the cchMultiByte parameter. 

The Unicode version ofthe string resulting from the conversion is 
written to the buffer located in memory at the address specified by the 
IpWideCharStr parameter. You must specify the maximum size of this 
buffer (in characters) in the cch WideChar parameter. If you call MultiByte
To WideChar, passing 0 for the cch WideChar parameter, the function doesn't 
perform the conversion and instead returns the size of the buffer re
quired for the conversion to succeed. Typically, you will convert a 
multibyte character string to its Unicode equivalent by performing the 
following steps: 

1. Call MultiByteTo WideChar, passing NULL for the lp WideCharStr 
parameter and 0 for the cch WideChar parameter. 

2. Allocate a block of memory large enough to hold the converted 
Unicode string. This size is returned by the previous call to 
MultiByteTo WideChar. 

3. Call MultiByteTo WideChar again, this time passing the address 
of the buffer as the lp WideCharStr parameter and the size 
returned by the first call to MultiByteTo WideChar as the 
cch WideChar parameter. 

4. Use the converted string. 

5. Free the memory block occupying the Unicode string. 

The Win32 function WideCharToMultiByte converts a wide-character 
string to its multibyte string equivalent, as shown below. 

int WideCharToMultiByte(UINT uCodePage. DWORD dwFlags. 
LPCWSTR lpWideCharStr. int cchWideChar. 
LPSTR lpMultiByteStr. int cchMultiByte. 
LPCSTR lpDefaultChar. LPBOOL lpfUsedDefaultChar); 

This function is very similar to the MultiByteTo WideChar function. 
Again, the uCodePage parameter identifies the code page to be associated 
with the newly converted string. The dwFlags parameter allows you to 
specify additional control over the conversion. The flags affect charac
ters with diacritical marks and characters that the system is unable to 
convert. Most often, you won't need this degree of control over the con
version, and you'll pass 0 for the dwFlags parameter. 

803 



ADVANCED WINDOWS 

804 

The lp WideCharStr parameter specifies the address in memory of 
the string to be converted, and the cch WideChar parameter indicates the 
length (in characters) of this string. The function determines the length 
of the source string if you pass -1 for the cch WideChar parameter. 

The multibyte version of the string resulting from the conversion is 
written to the buffer indicated by the lpMultiByteStr parameter. You must 
specify the maximum size of this buffer (in bytes) in the cchMultiByte 
parameter. Passing 0 as the cchMultiByte parameter of the WideChar
ToMultiByte function causes the function to return the size required by 
the destination buffer. You'll typically convert a wide-byte character string 
to a multibyte character string using a sequence of events similar to those 
discussed when converting a multibyte string to a wide-byte string. 

You'll notice that the WideCharToMultiByte function accepts two 
parameters more than the MultiByteTo WideChar function: TpDeJaultChar 
and lpJUsedDeJaultChar. These parameters are used by the WideCharTo
MultiByte function only if it comes across a wide character that doesn't 
have a representation in the code page identified by the uCodePage pa
rameter. If the wide character cannot be converted, the function uses 
the character pointed to by the lpDeJaultChar parameter. If this parame
ter is NULL, which is most common, the function uses a system default 
character. This default character is usually a question mark. This is dan
gerous for filenames because the question mark is a wildcard character. 

The lpJUsedDeJaultChar parameter points to a Boolean variable that 
the function sets to TRUE if at least one character in the wide-character 
string could not be converted to its multibyte equivalent. The function 
sets the variable to FALSE if all the characters convert successfully. You 
can test this variable after the function returns to check whether the 
wide-character string was converted successfully. Again, you usually pass 
NULL for this parameter. 

For a more complete description of how to use these functions, 
please refer to the Microsoft Win32 Programmer's Reference. 

You could use these two functions to easily create both Unicode 
and ANSI versions of functions. For example, you might have a dynamic
link library that contains a function that reverses all the characters in a 
string. You could write the Unicode version ofthe function as follows: 

BOOl StringReverseW (lPWSTR lpWideCharStr) { 

II Get a pointer to the last character in the string. 
lPWSTR lpEndOfStr = lpWideCharStr + wcslen(lpWideCharStr) - 1; 
wchar_t cCharT; 



F 1FT E E N: Unicode 

} 

II Repeat until we reach the center character in the string. 
while (lpWideCharStr < lpEndOfStr) { 

} 

II Save a character in a temporary variable. 
cCharT = *lpWideCharStr; 

II Put the last character in the first character. 
*lpWideCharStr = *lpEndOfStr; 

II Put the temporary character in the last character. 
*lpEndOfStr = cCharT; 

II Move in one character from the left. 
lpWideCharStr++; 

II Move in one character from the right. 
lpEndOfStr--; 

II The string is reversed; return success. 
return(TRUE) ; 

And you could write the ANSI version of the function so that it 
doesn't perform the actual work of reversing the string at all. Instead, 
you could write the ANSI version so that it converts the ANSI string to 
Unicode, passes the Unicode string to the StringReverseW function, and 
then converts the reversed string back toANSI. The function would look 
like this: 

BOOl StringReverseA (lPSTR lpMultiByteStr) { 
lPWSTR lpWideCharStr; 
int nlenOfWideCharStr; 
BOOl fOk = FALSE; 

II Calculate the number of characters needed to hold 
II the wide character version of the string. 
nlenOfWideCharStr = MultiByteToWideChar(CP-ACP, 0, 

lpMulti~yteStr, -I, NUll, 0); 

II Allocate memory from the process's default heap to 
II accommodate the size of the wide-character string. 
II Don't forget that MultiByteToWideChar returns the 
II number of characters, not the number of bytes, so 
II you must multiply by the size of a wide character. 
lpWideCharStr = HeapAlloc(GetProcessHeap(), 0, 

nlenOfWideCharStr * sizeof(WCHAR»; 

(continued) 

805 



ADVANCED WINDOWS 

} 

if (lpWideCharStr NULL) 
return(fOk); 

II Convert the multibyte string to a wide-character string. 
MultiByteToWideChar(CP-ACP. 0. lpMultiByteStr. -1. 

lpWideCharStr. nLenOfWideCharStr); 

II Call the wide-character version of this 
II function to do the actual work. 
fOk = StringReverseW(lpWideCharStr); 

if (fOk) { 

} 

II Convert the wide-character string back 
II to a multibyte string. 
WideCharToMultiByte(CP_ACP. 0. lpWideCharStr. -1. 

lpMultiByteStr. strlen(lpMultiByteStr). NULL. NULL); 

II Free the memory containing the wide-character string. 
HeapFree(GetProcessHeap(). 0. lpWideCharStr); 

return(fOk); 

Finally, in the header file that you distribute with the dynamic-link 
library, you would prototype the two functions as follows: 

BOOL StringReverseW (LPWSTR lpWideCharStr); 
BOOL StringReverseA (LPSTR lpMultiByteStr); 

1/ifdef UNICODE 
#define StringReverse StringReverseW 
11el se 
#define StringReverse StringReverseA 
#endif II !UNICODE 

Windows NT: Window Classes and Procedures 

806 

When you register a new window class, you must tell the system the 
address of the window procedure responsible for processing messages 
for this class. For certain messages (such as WM_SETTEXT), the TParam 
parameter for the message is a pointer to a string. The system needs to 
know whether the window procedure requires that the string be in ANSI 
or Unicode before dispatching the message so that the message will be 
processed correctly. 



F 1FT E E N: Unicode 

You tell the system whether a window procedure expects ANSI 
strings or Unicode strings depending on which function you use to regis
ter the window class. If you construct the WNDCLASS structure and call 
RegisterClassA, the system thinks that the window procedure expects all 
strings and characters to be ANSI. Registering the window class with 
RegisterClassW causes the system to dispatch only Unicode strings and 
characters to the window procedure. Of course, the macro RegisterClass 
expands to either RegisterClassA or RegisterClassW, depending on whether 
UNICODE is defined when you compile the source module. 

If you have a handle to a window, you can determine what type of 
characters and strings the window procedure expects by calling: 

BOOl IsWindowUnicode(HWND hwnd); 

If the window procedure for the specified window expects Unicode, the 
function returns TRUE; otherwise, FALSE is returned. 

If you create an ANSI string and send a WM_SETTEXT message to 
a window whose window procedure expects Unicode strings, the system 
will automatically convert the string for you before sending the message. 
It is very rare that you'll ever need to call the IsWindowUnicode function. 

The system will also perform automatic translations if you subclass 
a window procedure. Let's say that the window procedure for an edit 
control expects its characters and strings to be in Unicode. Then some
where in your program you create an edit control and subclass the win
dow's procedure by calling 

lONG SetWindowlongA(HWND hwnd, int nIndex, lONG lNewlong); 

or 

lONG SetWindowlongW(HWND hwnd, int nIndex, lONG lNewlong); 

and passing GWL_WNDPROC as the nlndex parameter and the address 
to your subclass procedure as the TNewLong parameter. But what happens 
if your subclass procedure expects ANSI characters and strings? This 
could potentially create a big problem. The system determines how to 
convert the strings and characters depending on which of the two nmc
tions above you use to perform the subclassing. If you call SetWindow
LongA, you're telling the system that the new window procedure (your 
subclass procedure) is to receive ANSI characters and strings. In fact, 
if you were to call IsWindowUnicode after calling SetWindowLongA, you 
would see that it would return FALSE, indicating that the subclassed edit 
window procedure no longer expects Unicode characters and strings. 

807 



ADVANCED WINDOWS 

808 

But now we have a new problem: how do we ensure that the origi
nal window procedure gets the correct type of characters and strings? 
The system needs to have two pieces of information to correctly convert 
the characters and strings. The first is the form that the characters and 
strings are currently in. We inform the system by calling either Call
WindowProcA. or CallWindowProcW: 

LRESULT CallWindowProcA(WNDPROC wndprcPrev, HWND hwnd, 
UINT uMsg, WPARAM wParam, LPARAM lParam); 

or 

LRESULT CallWindowProcW(WNDPROC wndprcPrev, HWND hwnd, 
UINT uMsg, WPARAM wParam, LPARAM lParam); 

If the subclass procedure has ANSI strings that it wants to pass to 
the original window procedure, the subclass procedure must call Call
WindowProcA. If the subclass procedure has Unicode strings that it wants 
to pass to the original window procedure, the subclass procedure must 
call CallWindowProcW. 

The second piece of information that the system needs is the type 
of characters and strings that the original window procedure expects. 
The system gets this information from the address of the original win
dow procedure. When you call the SetWindowLongA or the SetWindow
LongW function, the system checks to see whether you are subclassing a 
Unicode window procedure with an ANSI subclass procedure or vice 
versa. If you're not changing the type of strings expected, SetWindowLong 
simply returns the address of the original window procedure. If you're 
changing the type of characters and strings that the window procedure 
expects, SetWindowLong doesn't return the actual address of the original 
window procedure; instead, it returns a handle to an internal Win32 sub
system data structure. 

This structure contains the actual address of the original window 
procedure and a value that indicates whether that procedure expects 
Unicode or ANSI strings. When you call CallWindowProc, the system checks 
whether you are passing a handle of one of the internal data structures 
or the actual address of a window procedure. If you're passing the ad
dress of a window procedure, the original window procedure is called 
and no character and string conversions need to be performed. 

If, on the other hand, you're passing the handle of an internal data 
structure, the system converts the characters and strings to the appropri
ate type (Unicode or ANSI) and then calls the original window procedure. 



C HAP T E R SIXTEEN 

BREAKING THROUGH 
PROCESS BOUNDARY WALLS 

In the Win32 environment, each process gets its own 4-GB address space 
that can be accessed using 32-bit addresses ranging from OxOOOOOOOO 
through OxFFFFFFFF. When you use pointers to reference memory, the 
value of the pointer refers to a memory address in your own process's 
address space. It is not possible for your process to create a pointer that 
references memory belonging to another process. This way, if your pro
cess has a bug that overwrites memory at a random address, the bug can't 
affect the memory used by another process. 

One of the biggest problems with the 16-bit Windows operating sys
tem is that all processes run in the same address space. If one process 
writes to memory, it is possible that the memory belongs to another pro
cess or, even worse, the operating system itself. With the individual 
address spaces used by Win32 it is very difficult for one process to affect 
another process. 

Win32 processes running under Windows 95 actually share the 2-GB 
address space from Ox80000000 through OxFFFFFFFF. Only memory
mapped files and system components are mapped into this region. For 
more information see Chapter 4 and Chapter 7. 

Win32's separate address spaces are a great advantage for both 
developers and users. For developers, the Win32 environment is more 
likely to catch wild memory reads and writes. For users, the operating sys
tem is more robust because one application cannot bring down another 
process or the operating system. However, many 16-bit Windows-based 
programs take advantage of the fact that all programs share a single 

809 



ADVANCED WINDOWS 

address space. These programs are now much more difficult for develop
ers to port to Win32. 

Here are some examples of situations that require breaking through 
process boundary walls to access another process's address space: 

• Sub classing a window created by another process 

• Debugging aids (for example, determining which DLLs 
another process is using) 

• Hooking other processes 

In this chapter, I'll show you three mechanisms by which a Win32 
process can break through the process boundary walls. All three are based 
on the concept of injecting a DLL into another process's address space. 

Why Process Boundary Walls 
Need to Be Broken: An Example 

810 

Say that you want to subclass an instance of a window created by another 
process. You may recall that subclassing allows you to alter the behavior 
of a window. In 16-bit Windows, you simply call SetWindowLong to change 
the window procedure address in the window's memory block to point to 
a new (your own) WndProc. The entry for the SetWindowLong function in 
the Win32 documentation states that an application cannot subclass a 
window created by another process. This statement is not exactly true. 
The problem with subclassing another process's window really has to do 
with process address space boundaries. When you call SetWindowLong in 
both 16-bit Windows and Win32 to subclass a window, 

SetWindowLong(hwnd. GWL-WNDPROC. MySubclassProc); 

you are telling the system that all messages sent or posted to the window 
specified by hwnd should now be directed to MySubclassProc instead of 
the window's normal window procedure. In other words, whenever the 
system needs to dispatch a message to the specified window's WndProc, 
the system looks up its address and then makes a direct call to the 
WndProc. In this example, the system will see that the address of the 
MySubclassProc function is associated with the window and make a direct 
call to MySubclassProc instead. 

The problem with subclassing a window created by another process 
in Win32 is that the subclass procedure is in another address space. 
Figure 16-1 shows a simplified view of how a window procedure receives 



S I X TEE N: Breaking Through Process Boundary Walls 

messages. Process A is running and has created a window. The USER32 
.DLL file is mapped into the address space ofProcessA. This mapping of 
USER32.DLL is responsible for receiving and dispatching all sent and 
posted messages destined for any window created by any thread running 
in Process A. When this mapping of USER32.DLL detects a message, it 
first determines the address of the window's WndProc and then calls it, 
passing the window handle, the message, and the wParam and IParam val
ues. Mter the WndProc processes the message, USER32 loops back around 
and waits for another window message to be processed. 

Process A Process B 

$;dM' MII1 tltl 

EXE file exe file 
yj)id SomeFunc(voidH 

HfI~[):hWlld : FindWindowC'Class-A", NULL); 
S:etWtlidoWljJ119 (hWIJd, GWL ... WND.f'1WC. , 

lRESIJLT WndProc (HWND nwnd. UlNT u/>tSg. ".) { 

MySu!)c1<1ssProc) : ' , 

Ji 

USER32.DLl.file 
LONG [):iSfiJltc~Messa~e(CONST MSG.msg) 

LON€' ll\esult:" :'" .' 
WNOPROC IpfnWndProc '" (WHQPROq" , ',,': , 

, GetWindowlOng(msg,hWn.!l.' tlWL\'!HOPROCY: 
'lResult - ljlfnWnd~roc(msq"hwn.d.msg,ml!sSi!ge. 
, wPHam,:lParam'); ',', • " 
return(1Resolt}; '. ' ' , 

.USEA3Z.Dl.lfile 

IX 'ttt J tz 1&1 

Figure 16-1. 
A thread in Process B attempts to subclass a window created by a thread 
in Process A. 

Now let's suppose that your process is Process B and you want to 
subclass a window created by a thread in ProcessA. Your code in Process 
B must first determine the handle to the window you want to subclass. 
This can be done easily in a variety of ways. The example shown in Figure 
16-1 simply calls FindWindow to obtain the desired window. Next the 
thread in Process B calls SetWindowLong in an attempt to change the 
address of the window's WndProc. Notice that I wrote "attempt." In 
Win32, this call does nothing and simply returns NULL. The code in 
SetWindowLong checks to see whether one process is attempting to 

811 



ADVANCED WINDOWS 

812 

change the WndProc address for a window created by another process 
and simply ignores the call. 

What ifWin32's SetWindowLongfunction could change the window's 
WndProc? The system would associate the address of MySubclassProc with 
the specified window. Then when this window was sent a message, the 
USER32 cocle in Process A would retrieve the message, get the address of 
MySubclassProc, and attempt to call this address. But then there would be 
a big problem. MySubclassProc would be in Process B's address space, but 
Process A would be the active process. Obviously, ifUSER32 were to call 
this address, USER32 would be calling an address in Process A's address 
space, most likely resulting in a memory access violation. 

To avoid this problem, you'd like the system to know that MySub
classProc is in Process B's address space and then have the system per
form a context switch before calling the subclass procedure. There are 
several reasons why this additional functionality wasn\implemented: 

• Subclassing windows created by threads in other processes is 
done fairly infrequently. Most applications subclass windows 
that they create, and the memory architecture ofWin32 does 
not hinder this. 

• Switching active processes is very expensive in terms of 
CPU time. 

• A thread in Process B would have to execute the code in 
MySubclassProc. Which thread should the system try to use? 
An existing thread or a new thread? 

• How could USER32 tell whether the address associated with 
the window was for a procedure in another process or in the 
same process? 

Because there are no great solutions to these problems, Microsoft 
decided not to allow SetWindowLong to change the window procedure of 
a window created by another process. 

But it is possible to subclass a window created by another process; 
you just have to go about it a different way. The problem isn't really a 
question of subclassing but more a question of process address space 
boundaries. If you could somehow get the code for your subclass proce
dure into Process Ns address space, you could easily call SetWindowLong 
and pass ProcessNs address to MySubclassProc. I call this technique inject
ing a DLL into a process's address space. I know three ways to do this. 
Let's discuss each of these in turn, going from easiest to most difficult. 



5 I X TEE N: Breaking Through Process Boundary Walls 

Injecting a DLL Using the Registry 
If you have been using Windows 95 or Windows NT for any period of 
time, you should be familiar with the registry. If you're not, get familiar 
with it! The configuration for the entire system is maintained in the reg
istry, and you can alter the behavior of the system by tweaking various 
settings. The entry that I'm going to discuss is in the following key: 

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows 
NT\CurrentVersion\Windows\Applnit_DLLs. 

Windows 95 ignores this registry key. Therefore this technique cannot 
be used to inject a DLL under Windows 95. 

The window below shows what the entries in this key look like when 
viewed from the Windows NT Registry Editor. The value for this key 
might contain a single DLL pathname or a set ofDLL pathnames (sepa
rated by spaces). In the window, I have set the value to a single DLL 
pathname, C:\MYLIB.DLL. 

813 



ADVANCED WINDOWS 

814 

When you restart your machine and Windows NT initializes, the 
Win32 subsystem saves the value of this key. Then, whenever the USER32 
.DLL library is mapped into a process, USER32 retrieves the saved value 
of this key from the Win32 subsystem and calls LoadLibrary for each of 
the DLLs specified in the string. As each library is loaded, the library's 
associated DllMain is called with an fdwReason value of DLL_PROCESS
_ATTACH so that each library can initialize itself. USER32 does not 
check whether each library has been successfully loaded or initialized. 

Of all the methods for injecting a DLL, this is by far the easiest. All 
you need to do is add a value to an already existing registry key. But there 
are some disadvantages to this technique. 

First, because the Win32 subsystem reads the value of this key dur
ing initialization, you must restart your computer after changing this 
value. Even logging off and logging back on won't work-you must restart. 
Of course, the opposite is also true; if you remove a DLL from this key's 
value, the system won't stop mapping the library until the computer is 
restarted. 

Second, your DLL is mapped only into processes that also map 
USER32.DLL. While all GUI-based applications will map USER32, most 
console-based applications will not. So if you need to inject your DLL 
into a compiler or linker, this method will not work at all. 

Third, your DLL is mapped into every GUI-based application. Most 
likely, you need only to inject your library into one or a few processes. 
The more processes your DLL is mapped into, the greater the chance of 
crashing the "container" processes. Mter all, your code is now being 
executed by threads running in these processes. If your code causes an 
infinite loop or accesses memory incorrectly, you are affecting the behav
ior and robustness of the processes in which your code is running. 
Therefore it is best to inject your library into as few processes as possible. 

Finally, your DLL is mapped into every GUI-based application for 
its entire lifetime. This is similar to the previous problem. Since it is bet
ter to be mapped into just the processes that you need, it follows that it is 
best for the DLL to be mapped into those processes for the minimum 
amount of time. Suppose that when the user invokes your application, 
you want to subclass the Program Manager's main willdow. Your DLL 
doesn't have to be mapped into the Program Manager's address space 
until the user invokes your application. If the user later decides to termi
nate your application, you'll want to un subclass the Program Manager's 



5 I X TEE N: Breaking Through Process Boundary Walls 

main window. In this case, your DLL no longer needs to be injected into 
the Program Manager's address space. It's best to keep your DLL injected 
only when necessary. 

Injecting a DLL Using Windows Hooks 
It is possible to inject a DLL into a process's address space using hooks. 
To get hooks to work in Win32 as they do in 16-bit Windows, Microsoft 
was forced to devise a mechanism that allows a DLL to be injected into 
the address space of another process. Let's look at an example. 

Process A (a Spy++-like utility) installs a WH_GETMESSAGE hook 
to see messages processed by windows in the system. The hook is installed 
by calling SetWindowsHookEx as follows: 

HHOOK hHook = SetWindowsHookEx(WH_GETMESSAGE. GetMsgProc. 
hinstDll. NULL); 

The first parameter, WH_GETMESSAGE, indicates the type of hook 
to install. The second parameter, GetMsgProc, identifies the address (in 
your address space) of the function that the system should call whenever 
a window is about to process a message. The third parameter, hinstDll, 
identifies the DLL that contains the GetMsgProc function. In Win32, a 
DLL's hinstDll value actually identifies the 32-bit virtual memory address 
where the DLL is mapped into the process's address space. Finally, the 
last parameter, NULL, identifies the thread to hook. It is possible for one 
thread to call SetWindowsHookEx and to pass the ID of another thread in 
the system. By passing a value of NULL for this parameter, we are telling 
the system that we want to hook all threads in the system. 

Now let's take a look at what happens: 

l. A thread in Process B is about to dispatch a message to a 
window. 

2. The system checks to see whether a WH_GETMESSAGE hook 
is installed on this thread. 

3. The system checks to see whether the DLL containing the 
GetMsgProc function is mapped into Process B's address space. 

4. If the DLL has not been mapped, the system forces the DLL to 
be mapped into Process B's address space and increments a 
lock count on the DLL's mapping in Process B. 

815 



ADVANCED WINDOWS 

816 

5. The system looks at the DLL's hinstDll as it applies to Process B 
and checks to see whether the DLL's hinstDll is at the same loca
tion as it applies to Process A. If the hinstDlls are the same, the 
memory address of the GetMsgProc function is also the same in 
the two process address spaces. In this case, the system can sim
ply call the GetMsgProc function in Process A's address space. 

6. If the hinstDlls are different, the system must determine the vir
tual memory address of the GetMsgProc function in Process B' s 
address space. This is determined with the following formula: 

GetMsgProc B = hinstDll B + (GetMsgProc A - hinstDll A) 

By subtracting hinstDll A from GetMsgProc A you get the off
set in bytes for the GetMsgProc function. Adding this offset to 
hinstDll B gives the location of the GetMsgProc function as it 
applies to the DLL's mapping in Process B's address space. 

7. !he system increments a lock count on the DLL's mapping in 
Process B. 

8. The system calls the GetMsgProc function in Process B's address 
space. 

9. When GetMsgProc returns, the system decrements a lock count 
on the DLL's mapping in Process B. 

That's it. This is how hooks had to be implemented in the Win32 
environment. You should note that when the system injects or maps the 
DLL containing the hook filter function the whole DLL is mapped-not 
just the hook filter function. This means that any and all functions con
tained in the DLL now exist and can be called from threads running in 
Process B's context. 

So, to subclass a window created by a thread in another process, you 
can first set a WILGETMESSAGE hook on the thread that created the 
window, and then, when the GetMsgProc function is called, call SetWin
dowLong to subclass the window. Of course, the subclass procedure must 
be in the same DLL as the GetMsgProc function. 

Unlike the Registry method of injecting a DLL, this method allows 
you to unmap the DLL when it is no longer needed in the other process's 
address space by simply calling the following: 

BOOl UnhookWindowsHookEx(HHOOK hhook); 



S I X TEE N: Breaking Through Process Boundary Walls 

When a thread calls the UnhookWindowsHookEx function, the sys
tem cycles through its internal list of processes into which it had to inject 
the DLL and decrements the DLL's lock count. When this lock count 
reaches 0, the DLL is automatically unmapped from the process's ad
dress space. You'll recall that just before the system calls the GetMsgProc 
function, the system increments the DLL's lock count. (See step 7 on the 
preceding page.) This prevents a memory access violation. Without 
incrementing this lock count, another thread running in the system 
could call UnhookWindowsHookEx while Process B's thread attempts to 
execute the code in the GetMsgProc function. 

All this means that you can't subclass the window and immediately 
unhook the hook. The hook must stay in effect for the lifetime of the 
subclass. 

The Program Manager Restore Sample Application 
When I first got 16-bit Windows 3.0, I liked it right away. Even the new 
Program Manager shell was much better than the old MS-DOS Executive 
used with Windows 2.0. But there was one "feature" of the Program Man
ager I just didn't like: if the Program Manager was minimized and I 
closed my last running application, the Program Manager stayed mini
mized. At this point, there was nothing I could do except move the 
mouse all the way down to the bottom of my screen and double-click on 
the Program Manager so that I could execute another program. 

Well, laziness being the mother of invention, I created (fanfare, 
please) PMRest. The source code files, resource files, and make file for 
the application are in the PMREST.16 directory on the companion disc. 
PMRest consists of a small executable program and a small DLL. The 
program (in conjunction with the DLL) subclasses the Program Man
ager. Whenever the Program Manager is running minimized and the 
user closes the last running application, the subclass procedure detects 
this and forces the Program Manager to automatically restore itself. This 
saves wear and tear on the mouse ball by not forcing the user to move the 
mouse over to the Program Manager to double-click on its icon. 

When you run PMRest (PMREST.EXE), listed in Figure 16-2 begin
ning on page 821, it subclasses the Program Manager's main window. It 
calls the SubclassProgManFrame function contained in the PMRSTSUB 
.DLL, passing it the thread ID of PMRest's primary thread. You'll see why 
this is needed later. 

817 



ADVANCED WINDOWS 

818 

If SubclassProgManFrame can subclass the Program Manager's main 
window successfully, SubclassProgManFrame returns TRUE. At this point, 
PMRest enters into a GetMessage loop: 

while (GetMessage(&msg, NULL, 0, 0)) 

This loop simply causes PMRest to wait for a WM_QUIT message. 
PMRest doesn't create any windows itself, so there is no call to Translate

Message or DispatchMessage. When a WM_QUIT message is finally received, 
PMRest unhooks the hook that was set by the previous call to Subclass
ProgManFrame and terminates. Unhooking the hook causes the system to 
unmap PMRSTSUB.DLL from the Program Manager's address space. 

So, as you can see, all the hard work is actually performed by the 
PMRSTSUB.DLL, listed in Figure 16-3 beginning on page 824. Let's take 
a look at what it does now. 

SubclassProgManFrame first obtains the window handle of the Pro
gram Manager's main window by calling FindWindow: 

g_hwndPM = FindWindow(_TEXT("PROGMAN"), NULl); 

This window handle is then saved in a global variable, g_hwndPM. 
This variable is also shared between all views of this PMRSTSUB.DLL. If 
the Program Manager's window can't be found for some reason, Subclass
ProgManFrame returns FALSE to PMRest so that it can exit cleanly. 

Now we're ready to subclass the Program Manager's window. 
PMRSTSUB.DLL does this by installing a WH_GETMESSAGE hook: 

g_hHook = SetWindowsHookEx(WH_GETMESSAGE, GetMsgProc, 
g_hinstDll, GetWindowThreadProcessId(g_hwndPM, NULL)); 

The address of the hook filter function is identified by GetMsgProc, 
the handle of the module containing the function is identified by 
g_hinstDll, and the ID of the thread that we wan t to watch for even ts is the 
ID for the thread that created the Program Manager's main window. 
This thread ID is obtained by calling GetWindowThreadProcessld. SetWin
dowsHookEx returns the hook handle that identifies the installed hook. 
This handle is saved in the global g_hHook variable. 

If the hook was installed successfully, we now force a benign win
dow message to be posted to the Program Manager's main window: 

PostMessage(g_hwndPM, WM_NULL, 0, 0); 



S I X TEE N: Breaking Through Process Boundary Walls 

When the thread that handles messages for the Program Manager 
calls GetMessage to retrieve the WM_NULL message, the system auto
matically maps PMRSTSUB.DLL into the address space of the Program 
Manager and calls the GetMsgProc filter function. The filter function 
checks that the message being processed is, in fact, a WM_NULL mes
sage that was destined for the Program Manager's main window. If not, 
GetMsgProc does nothing interesting and simply passes the hook notifica
tion on to the next installed WH_GETMESSAGE filter function. 

If, on the other hand, a WM_NULL message is pulled from the 
thread's message queue and is destined for the Program Manager's main 
window, GetMsgProc calls the SubclassWindow macro (which is defined 
in WINDOWSX.H) to subclass the window. At this point, the PMRSTSUB 
.DLL is mapped into the Program Manager's address space, and the Pro
gram Manager's window is subclassed. From now on, any messages des
tined for the Program Manager's main window will be rerouted to our 
own subclass window procedure, PMSubclass. 

We'll get to what the subclass procedure does in a minute. For now, 
let's get back to discussing PMRest's own thread. Assuming that the hook 
was installed successfully and that the WM_NULL message was posted to 
the Program Manager's main window, PMRSTSUB.DLL next adds two 
new top-level menu items to the Program Manager's menu bar: 

hmenu = GetMenu(g_hwndPM); 

AppendMenu(hmenu. MF_ENABLED MF_STRING. 
IDM_PMRESTOREABOUT. "A&bout PM Restore ... "); 

AppendMenu(hmenu. MF_ENABLED ; MF_STRING. 
I DM_PMRESTOREREMOVE. "&Remove PM Restore"); 

DrawMenuBar(g_hwndPM); II Update the new menu bar. 

Finally, just before SubclassProgManFrame returns, it saves the ID of 
PMRest's primary thread into a global shared variable, g_dwThreadld
PMRestore. 

Here's a summary of what has happened so far: the WH_GET
MESSAGE hook is still installed, any messages destined for the Program 
Manager's main window are being routed to the PMSubclass function, 
and the PMRest program is waiting for a WM_QUIT message at its Get
Message loop. 

The PMSubclass function is designed to process only two different 
window messages-WM_ACTIVATEAPP and WM_COMMAND. For any 

819 



ADVANCED WINDOWS 

820 

other window message, PMSubclass simply calls CallWindowProc so that 
the message gets processed in its normal fashion. 

If PMSubclass receives a WM_ACTIVATEAPP message, it calls the 
PM_OnActivateApp function to determine whether other windows be
longing to other applications are running. If other applications are 
displaying windows, PMSubclass does nothing and passes the WM_AC
TIVATEAPP message on to the original window procedure. However, if 
PM_OnActivateApp determines that other processes aren't displaying 
windows, PM_OnActivateApp calls ShowWindow, forcing the Program 
Manager to be restored from its minimized state. 

PMSubclass processes the WM_COMMAND message so that it can 
perform the necessary actions when one of the two new menu options 
has been selected by the user. When the user selects the About PM 
Restore option, the subclassing procedure displays PMRest's About dia
log box. If the user selects the Remove PM Restore menu option, 
PMRSTSUB.DLL performs the following: 

1. Restores the original window procedure of the Program 
Manager's main window. 

2. Removes the two menu items that it added to the Program 
Manager's menu bar. 

3. Posts a WM_QUIT message to PMRest's thread by calling 
PostThreadMessage and passing the ID of PM Rest's thread. 
PMRest's thread ID was saved earlier in the global shared 
variable g_dwThreadldPMRestore. This variable must be shared 
so that the Program Manager's mapping ofPMRSTSUB.DLL 
can access this variable, which was initialized by PMREST.EXE's 
mapping ofPMRSTSUB.DLL. 

When I first wrote PMRest, I attempted to use a WI-LCALLWND
PROC hook instead of a WH_ GETMESSAGE hook and sent a WM
_NULL message instead of posting it. My method didn't work because, as 
it turns out, the system calls WH_CALLWNDPROC hook filter functions 
in the context of the process sending the message, not receiving the mes
sage. This meant that the hook filter function was called when PMRest 
called SendMessage, not when the Program Manager's window received 
the message. Because WH_CALLWNDPROC hooks work in this way, 
a view of the PMRSTSUB.DLL never got mapped into the Program 
Manager's address space. 



PMRest.ico 

S I X TEE N: Breaking Through Process Boundary Walls 

PMREST.C 
1************************************************************ 
Module name: PMRest.C 
Not ices:. Copyri ght (c) 1995 Jeffrey Ri chter 
************************************************************/ 

#include ".; \AdvWin32.H" 
#inc1ude <windows.h> 

1* See AppendtxB for details . • , 

'~ragma warnt~l(disabTe: 40Bl) 1* S1 ng] e-l i necomment*/ 

ftinclude <stdio.h> 

'include "Resource.H" 
'include »PMRstSub.H" 

/ / / //111/// ! 11/1/ //1/11 J 111111 I III // J //1 I I //11/ J III I IJJ I //111 

4Fde:fi·ne UBNAMt: "PMRstSub" 

IHi defi.ned(~)(86',.,..) 
. tfoil'defineliLDEBU.G) 

. 'pragmacommentn 10, "Db9..x86\ \., LIBNAME) 
'else 

4}pragma cOm1llerrt<1ib. i'ReLx86\ \" UBNAME) 
{/:er)dif 

/lielifdefinedLMIPL) 
/liifdef f ned COEBUG) 

ffpragma comment(1ib, "Obg~MIPS\ \" LIBNAME) 
flel sa 

. fjpragma comment(lib. "ReLMIPS\\" LIBMAME) 
{lEwd; f 

/Fel if defined eJLPHA.-) 
#ifdefinedL."DESUG) 

/lipragma comment (1 ib, "Dirg,-Alph\ \" UBNAMO 
{fe 1 se 

/lipragmll comment(lib, "ReLAlph\\" LIBNAME) 
iiendjf 

'else . 
Ikerror Modificatjon required for this CPU platform. 

#.eodif 

Figure 16-2. (continued) 

The PMRest application. 

821 



ADVANCED WINDOWS 

822 

Figure 16-2. continued 

Ilil I Illl fill Illl/lflll I ill / 11IIU II I 1I/llIIIUI/illll 1I I I Ifi 

int WINAPI WinMail! CHINSTANCE hinstExe,. 
HINSTANCE hinstPrev, LP:STRlp~2Cllld1.:1ne, int nCmdShow){ 

MSG msg; 

I I Fi nd the Program.l'1anagerandmodifyits me.nu •. 
if (! SiJ~cl ass ProgManFrame{ GetCur.rentThreadld())) 

return (1.) ; 

II Begin messqge loop so that our appli cation 
. II doesn'ttermiO<lte. I.t w~ did termirtate. oursu~class 
II function would be· removed from memory. < 1M s. means that· 
/I when the system tried tQcall tbesubc.1 g$sfunc.ticm, . 
II the system w.oul\l jump to garbage and cause an access ' 
Ilvi 01 at] on. 

} 

Il1hHe CGetMessage(&msg, NULL,e, 0)) 

I I Un1nsta 11 theWH...;.GETMESSAGEhook. 
II Th is ca uses the D LL to ~e unmapped 
Il from the Prqgram Manager.. . . 
if (!,UnhookWindowsHocik~x(g~hH90k») { 

Me.$sageBox( NULL -,-"TEXTC'Error unhooking"). 
~TEXTC'PM Restor.e"). MB_OJO; . 

} 

return(0) ; 

II1II1III IlII 1l1111111l lEnd of File II I 1lllllllfl/lli III I Iii 

PMREST.RC 
IlMicrosoft Visual e++ generated resource script. 
1I. 

'incl~de "Resource.~· 

itdefine APSIUDIO_READONLY~SYMBOLS 

(continued) 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-2. continued 

/////////////////////////////////////////////////1///////////1 
// 
// Generated from the TEXTINCLUDE 2 resource. 
// 
'include "afxres.h" 

/1//1///11/11//////111111//////1111////11/////1111/111//11/11/ 
'undef APSTUDIO_READONLY_SYMBOLS 

1f; fdef APSTUDIO_INVOKED 
111111/////////111111111/1111111/1//1//1/1///11111111/I/IJII/I 
/1 
1/ TEXTI NCLUDE 
/1 

1 TEXTINCLUDE DISCARDABLE 
BEGIN 

"Resource.h\e" 
END 

2 TEXTINCLUDE DISCARDABLE 
BEGIN 

"'ihclude ""afxreS.h""\r\n" 
"\0" 

END 

3 TEXTINGLUDE DISCARDABLE 
BEGIN 

"'r\n" 
",e" 

END 

111//1111111///1111111/1111111111111111/1111111//1111111/1/111 
trend; f /1 APSTUDIO_INVOKED 

1111111111///1///1111111/111111111//1111/1/1/1///1/1/1/lllllll 
// 
// Icon 
/I 

PMRest ICON DISCARDABLE "PMRest.lco" 

(continued) 

823 



ADVANCED WINDOWS 

824 

Figure 16-2, continued 

ififn~efAPSTODlb .. JNl}()t<ED '. , '.. .' '. . . . 
IIII.!l /I.! I IIl1ll1llIlt III I II II lIiil / llllli Jli/ I llll / III 11//11 i '. '1/ .. ' .' . ..... '. ...... .. " 

II Gen.el'ltedfrojJj the lEXUNClUDE3 reliource, 
.. 11 

</ill ifill! JIIfIIJIII /llIlllll / II//ilf/Ill IlIlfft 111l111l1l11l i 
:f/:e.ndi.flInotAPSTUDIO_INVOKED 

. PMRSTSUB~C' 

ModuleT)ame: ·PMRs1;Sub.C '. ,... .' .. ' .' J 

Not ices :Co(}yri ght (c) 1995 Jeffrey: .Ri ohter • 
**~***********'i'**************,!,:,j,******'*******'****'1:*** ********1 

. . 
lFiriclude'~, . \Ad,vWiri32,. H" 

. #1 nclud~<wi ndows;h> 
ifi,nclude <Wi ndowsx, 1'1> 

I*See.Append1xB fordetai:,S', */ .... 

ifpra~maWarning(diSable:' 4001) 

"'include. "P.MRstSub. RW' 

ffdefi ne _PMRSTSUB UB~ 
. ifi nclude "PMRstS.tib ;H" 

I / I / /1 111/ 1I III I I I I I If I I I I I 1I I I I III I II /1 111/1 I 1/11 // / 1111/ III 

II Forward references 
LRESULT WINAPI GetMsgPro.c tint nCodei WPARAM wParatn, . 

LPARAMl Parain)·; 

LRESULT WINAPI PMSubclas.s(HWNDhwnd, UUnuM~g, 
WPARAM wParam .• LPARAM 1 Pa,ram); 

aoOLWINAPIAnyAppsRun'n; ng (HWNDl1wnd • LPARAM 1 Pa ram): 

Figure 16-3, 
The PMRSTSUB.DLLfile. 

(continued) 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-3. continued 

////////////////////////1/////////////////////////////////1// 

/ / Instruct the compiler to put theg~dwThreadldPMRestore and 
/ / the ~L_hwndPMdata vari ableinthei r.?Wndatasecti on caned 
/ I Shared. We ... then.instruct.J,he .. ltl1kerthat we ",ant to 
Il share.th~data. inthissecti onw1th alltnstanceso·f this. 
II application; 
IFp r a gma data_seg C" ?hilre9") 

DWDII~ •.• ~_dwf hheadldeM~e~to rei;=i.·· ••. 9, 
HWNO.· .. ·..g:..,.hwn.~PM·=NlJLL: . 

(continued) 

825 



ADVANCED WINDOWS 

Figure 16-3. continued 

(continued) 

826 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-3. continued 

II First we must install a systemwide WH_GETMESSAGE hook. 
9_hHook = SetWfndowsHookEx(WH_GETMESSAGE. GetMsgProc. 

g_hi nstDll ,GetWi ndowTh readProcess IdCg_hwndPM. NUlL); 

there is greater 

(continued) 

827 



ADVANCED WINDOWS 

Figure 16-3. continued 

(continued) 

828 



5 I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-3. continued 

1/ No other apps running. restore PROGMAN to "open" state. 
ShowWindow(hwnd. SW_RESTORE); 
return(0): 

11/l1111I1/l111I/l1Il/11I1 I! 111/11111111 [lllllIllllIiflll/1I1 . 

lIfunctHlnt;o process A.1Xlut. box . '. . .. ..' 
BOOLWINAP~Atxl~tProc(tn4~O hQl~. tUNT u~sg. 

WPARAM wf\:a ram: . LPAAAM } P'aralllY{ .. 
. . . . 

• 13001:: fProce'$~ed .~ ... TRUE:: 

(continued) 

829 



ADVANCED WINDOWS 

830 

Figure 16-3. continued 

.1 IItf.I1l/tlllIIIIlIl// / II I Illt/;'II/IlJl!/I71/ nIl/Nl/II Illli 

\loid PM...:oriCommand . (HW/ilD.· hwnd • 

} 

UINT cpdeNotifY){ 

. HMEtiUhmenu; 

switch (i<l) { 

} 

case lDtLpMRESTOREABOUT t . 

II The AboutPM~estore menu .. 000tio1'l< 
II that we added was .chosen. 
DialogBox{g_hi nstD11. MAKEINlRESDURCE( tOD...J(aOVT).· 

hwnd, AboutProc}; 
breaK; 

case IOM~PMREST()REREMOVE: . '. . .. ' .... '. 
II Stop wiodowsubcl:ass:1ng hyputting ba'cK tlte 
II address of the. original window procedure. 
(vo1 d )Su.bcl assWindbw( hwnd. g..'.wpbrigPMPr:oc): 

II Get the menuhandl e. to the Program Manager' ~ 
1/ Opctl011S menu •... ' 
hmenu '" GetMenu(hwnd·); . 
RemoVe:Menu(hmenu, IDM_PMRESTOREABOUT, . MfC":;BYCOMMAN:D) r 
RemoveMenu( hmenu. !DILPMRESTOREREMOJlr; t<rUrrCOMMANO):: 
DrawMenuBa r (hwnd): 1/ Update the new menu bar • ' . 

/1 Post Wt-LOU IT to our task to. remove Hfrom memory~ 
PostThreadMessa:ge( g~dwThreadrdPMRestore. \lSM~QUrr. . 

0. 0); 
break; 

default: II Pass otherWM_COMM.i\NDs to original WndProc. 
breaK: 

I I I 1// 1/1/ Il/ / I J I ill III I / II II / 111/ /// Il / / 11/ II J 1/ III II II/ /1// 

(continued) 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-3. continued 

II Subclass function for the Program Manager. Any 'message for 
I I the Program Manager window comes here before reaching the 
II original w1nd~w function. " 
LRESUI. T WINAPI PMSubcl ass, (HWND hWn(\,;, 
, , 'WPARAMwj>ara!ll"LPARAM lPa,HmL,( 

(continued) 

831 



ADVANCED WINDOWS 

Figure 16-3. continued 

(continued) 

832 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-3. continued 

PMRSTSUB.AC 
IIMi ~rqsoft V.i sua 1.G:++ generated resource script. 
II 
/lillctude 

(continued) 

833 



ADVANCED WINDOWS 

Figure 16-3. continued 

Injecting a DLL Using Remote Threads 

834 

This method of injecting a DLL was the most difficult to develop, but it 
offers the greatest amount of flexibility. It uses many of the new features 
in Win32: processes, threads, thread synchronization, structured excep
tion handling, virtual memory management, and Unicode. (If you're 
unclear about any of these features, please refer to their respective chap
ters in this book.) To inject DLLs using this method, you need to create 



S I X TEE N: Breaking Through Process Boundary Walls 

and execute threads in the target process's address space and access the 
physical storage committed to a thread's stack. But first you must under
stand how the system creates threads and how a thread uses its stack. 
You might want to refresh your memory on these details by referring to 
the section "The CreateThread Function" in Chapter 3 and the section 
'~Thread's Stack" in Chapter 6. 

How a DLL Is Loaded 
As we all know, the function LoadLibrary causes the system to load the 
specified library into the calling thread's process's address space: 

HINSTANCE LoadLibrary(LPCTSTR lpszLibFile); 

If you look up LoadLibrary in the WINBASE.H header file, you find the 
following: 

HINSTANCE WINAPI LoadLibraryA(LPCSTR lpLibFileName); 
HINSTANCE WINAPI LoadLibraryW(LPCWSTR lpLibFileName); 
IIi fdef UNICODE 
#define LoadLibrary LoadLibraryW 
11el se 
#define LoadLibrary LoadLibraryA 
#endif II !UNICODE 

There are actually two LoadLibrary functions: LoadLibraryA and Load
Library W. The only difference between them is the type of parameter 
that you pass to the function. If you have the library's filename stored as 
an ANSI string, you must call LoadLibraryA (the A stands for ANSI); if the 
filename is stored as a Unicode string, you must call LoadLibrary W (the W 
stands for wide characters). No single LoadLibrary function exists-only 
LoadLibraryA and LoadLibrary W. For most applications, the LoadLibrary 
macro expands to LoadLibraryA. 

Win32 Functions That Affect Other Processes 
By this point in the book you should have a pretty good understanding of 
threads and their stacks. But before I dive into further discussions about 
injecting a DLL into another process's address space, I want to briefly 
discuss the Win32 functions that allow one process to alter another. Very 
few functions allow one process to alter another process because it usu
ally compromises the robustness of an application. Many of the func
tions that do allow a process to alter another process were created by 
Microsoft for use by debuggers. Most Win32-based applications should 

835 



ADVANCED WINDOWS 

836 

have very little or no need to call any of these functions. The two tables 
below show all of the Win32 functions that accept handles to processes 
and threads as parameters. 

Win32 Process Function 

CreateProcess 

FlushlnstructionCache 

VirtualProtectEx 

VirtualQueryEx 

GetProcessAffinityMask 

GetProcessTimes 

GetProcess WorkingSetSize 

SetProcess WorkingSetSize 

TerminateProcess 

GetExitCodeProcess 

CreateRemoteThread 

ReadProcessMemory 

WriteProcessMemory 

GetPriorityClass 

SetPriorityClass 

WaitForlnputIdle 

Win32 Thread Function 

SetThreadAffinityMask 

GetThreadPriority 

SetThreadPriority 

Description 

Creates another process 

Flushes another process's instruction cache 

Changes access protection on another 
process's committed pages 

Provides information about a range of pages 
in another process 

Indicates the processors on which a process is 
allowed to run 

Obtains another process's timing information 

Gets the minimum and maximum working set 
sizes for a specified process 

Sets the minimum and maximum working set 
sizes for a specified process 

Terminates another process 

Gets another process's exit code 

Creates a thread in another process 

Reads memory from another process's 
address space 

Writes memory to another process's address 
space 

Gets another process's priority class 

Sets another process's priority class 

Waits until another process has no input 
pending in its thread's input queue 

Description 

Sets the processors on which a thread is 
allowed to run 

Gets another thread's scheduling priority 

Sets another thread's scheduling priority 

(continued) 



Win32 Thread Function 

Get ThreadTimes 

TerminateThread 

GetExitCodeThread 

GetThreadSelectorEntry 

Get Thread Context 

Set Thread Context 

ResumeThread 

Suspend Thread 

S I X TEE N: Breaking Through Process Boundary Walls 

Description 

Gets another thread's timing information 

Terminates another thread 

Gets another thread's exit code 

Gets another thread's descriptor table entry 
(for x86 systems only) 

Gets a thread's CPU registers 

Changes a thread's CPU registers 

Increments another thread's suspend count 

Decrements another thread's suspend count 

Of all these functions, we need to use only seven in order to inject 
a DLL into another process's address space. Let's take a brief look at 
these seven functions. 

CreateRemoteThread 
CreateRemoteThread allows one process to create a thread that runs in the 
context of another process. 

~ __ HANDLE CreateRemoteThread (HANDLE hProcess. LPSECURITY_ATTRIBUTES 
lpsa. DWORD cbStack. LPTHREAD_START_ROUTINE lpStartAddr. 
LPVOID lpvThreadParm. DWORD fdwCreate. LPDWORD lpIDThread); 

CreateRemoteThread is identical to Create Thread except that it has one 
additional parameter, hProcess. The hProcess parameter identifies the pro
cess that is to own the newly created thread. The IpStartAddr parameter 
identifies the memory address of the thread function. This memory ad
dress is, of course, relative to the remote process-the thread function's 
code cannot be in your own process's address space. 

In Windows NT, the more commonly used CreateThread function is im
plemented by calling CreateRemoteThread. CreateThread is implemented as 
follows: 

HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpsa. DWORD cbStack. 

} 

LPTHREAD_START_ROUTINE lpStartAddr. LPVOID lpvThreadParm. 
DWORD fdwCreate. LPDWORD lpIDThread) { 

return(CreateRemoteThread(GetCurrentProcess(). lpsa. cbStack. 
lpStartAddr. lpvThreadParm. fdwCreate. lpIDThread»; 

837 



ADVANCED WINDOWS 

Under Windows 95, the CreateRemoteThread function has no useful imple
mentation and simply returns FALSE; calling GetLastError returns 
ERROR_CALL_NOT_IMPLEMENTED. (The CreateThreadfunction con
tains the complete implementation of the code that creates a thread in 
the calling process.) Because CreateRemoteThread is not implemented, 
this technique cannot be used to inject a DLL under Windows 95. 

GetThreadContext and SetThreadContext 

838 

The Win32 API contains just one data structure, called CONTEXT, that 
is CPU-specific. The code fragment below shows the CONTEXT struc
ture for an x86 CPU. A CONTEXT structure is divided into five sections. 
CONTEXT_CONTROL contains the control registers of the CPU such 
as the instruction pointer, stack pointer, flags, and function return ad
dress. (Unlike the x86 processor, which pushes a function's return 
address on the stack when making a call, both MIPS and Alpha CPU s 
place a function's return address in a register when making a call.) 
CONTEXT_INTEGER identifies the CPU's integer registers; CON
TEXT_FLOATING_POINT identifies the CPU's floating-point regis
ters; CONTEXT_SEGMENTS identifies the CPU's segment registers 
(x86 only); and CONTEXT_DEBUG_REGISTERS identifies the CPU's 
debug registers (x86 only). 

typedef struct _CONTEXT { 

II 
II The flags values within this flag control the contents of 
II a CONTEXT record. 
II 
II If the context record is used as an input parameter, then 
II for each portion of the context record controlled by a flag 
II whose value is set, it is assumed that that portion of the 
II context record contains valid context. If the context record 
II is being used to modify a thread's context, then only that 
II portion of the thread's context will be modified. 
II 
II If the context record is used as an IN OUT parameter to 
II capture the context of a thread, then only those portions 
II of the thread's context corresponding to set flags will be 
II returned. 
II The context record is never used as an OUT only parameter. 
II 



5 I X TEE N: Breaking Through Process Boundary Walls 

DWORD ContextFlags; 

II 
II This section is specifiedlreturned if CONTEXT_DEBUG_REGISTERS 
II is set in ContextFlags. Note that CONTEXT_DEBUG_REGISTERS is 
II NOT included in CONTEXT_FULL. 
II 

DWORD Dr0; 
DWORD Drl; 
DWORD Dr2; 
DWORD Dr3; 
DWORD Dr6; 
DWORD Dr? ; 

II 
II This section is specifiedlreturned if the 
II ContextFlags word contains the flag CONTEXT_FLOATING_POINT. 
/! 

FLOATING_SAVE_AREA FloatSave; 

II 
II This section is specifiedlreturned if the 
II ContextFlags word contains the flag CONTEXT_SEGMENTS. 
II 

DWORD 
DWORD 
DWORD 
DWORD 

/! 

SegGs; 
SegFs; 
SegEs; 
SegDs; 

II This section is specifiedlreturned if the 
II ContextFlags word contains the flag CONTEXT_INTEGER. 
II 

DWORD Edi; 
DWORD Es i ; 
DWORD Ebx; 
DWORD Edx; 
DWORD Ecx; 
DWORD Eax; 

II 
II This section is specifiedlreturned if the 
II ContextFlags word contains the flag CONTEXT_CONTROL. 
II 

(continued) 

839 



ADVANCED WINDOWS 

840 

DWORD Ebp; 
DWORD Eip; 
DWORD SegCs; II MUST BE SANITIZED 
DWORD EFlags; II MUST BE SANITIZED 
DWORD Esp; 
DWORD SegSs; 

} CONTEXT; 

One member of a CONTEXT structure that does not correspond 
to any CPU registers is ContextFlags. This member exists in all CONTEXT 
structure definitions regardless of the CPU architecture. The Context
Flags member indicates to the GetThreadContext function which registers 
you are interested in retrieving. For example, if you wanted to get the 
control registers for a thread, you would write something like this: 

II Create a CONTEXT structure. 
CONTEXT Context; 

II Tell the system that we are interested in only the 
II control registers. 
Context.ContextFlags = CONTEXT_CONTROL; 

II Tell the system to get the registers associated with a thread. 
GetThreadContext(hThread. &Context); 

II The control register members in the CONTEXT structure 
II reflect the thread's control registers. The other members 
II are undefined. 

Notice that you must first initialize the ContextFlags member in the 
CONTEXT structure prior to calling GetThreadContext. If you want to get 
a thread's control and integer registers, you should initialize ContextFlags 
as follows: 

II Tell the system that we are interested 
II in the control and integer registers. 
Context.ContextFlags = CONTEXT_CONTROL: CONTEXT_INTEGER; 

There is also an identifier that you can use to get all of the thread's 
important registers (that is, the ones Microsoft deems to be most com
monly used): 

II Tell the system we are interested 
II in the important registers. 
Context.ContextFlags = CONTEXT_FULL; 



5 I X TEE N: Breaking Through Process Boundary Walls 

CONTEXT_FULL is defined in WINNT.H as shown in the table below: 

CPU Type Definition of CONTEXT_FULL 

x86 CONTEXT_CONTROL: CONTEXT_INTEGER: 
CONTEXT_SEGMENTS 

MIPS CONTEXT_CONTROL: CONTEXT_FLOATING_POINT : 
CONTEXT_INTEGER 

Alpha CONTEXT_CONTROL: CONTEXT_FLOATING_POINT : 
CONTEXT_INTEGER 

When GetThreadContext returns, you can easily examine any of the 
thread's register values, but remember this means writing code that is 
CPU-dependent. The table below lists the instruction pointer and stack 
pointer members of a CONTEXT structure according to the CPU type: 

CPU Type 

x86 

MIPS 

Alpha 

Instruction Pointer 

CONTEXTEip 

CONTEXT Fir 

CONTEXT Fir 

Stack Pointer 

CONTEXT Esp 

CONTEXT.IntSp 

CONTEXT.IntSp 

You'll notice that the MIPS and Alpha member names are the same 
for the instruction and stack pointers. The developers who ported Win
dows NT to the Alpha decided to use the same naming convention as the 
MIPS developers to make it easier for people writing CPU-dependent 
code for both the MIPS and the Alpha. If Windows NT is ported to other 
RISC architectures in the future, the member names mayor may not be 
the same. 

It's also possible for you to modifY any of the members in the CON
TEXT structure. Of course, changing any member in the CONTEXT 
structure does not change the registers associated with the thread. Mter 
you do change some of the members in the CONTEXT structure, you 
could call SetThreadContext to set the register values of the specified 
thread to reflect the values of CONTEXT's members. 

BOOl SetThreadContext(HANDlE hThread. CONST CONTEXT *lpContext); 

841 



ADVANCED WINDOWS 

Before calling SetThreadContext, you must initialize the ContextFlags 
member of CONTEXT again, as shown below: 

CONTEXT Context; 

II Stop the thread from running. 
SuspendThread(hThread); 

II Get the thread's context registers. 
Context.ContextFlags = CONTEXT_CONTROL; 
GetThreadContext(hThread, &Context); 

II Make the instruction pointer point to the address of your choice. 
II Here I've arbitrarily set the address instruction pointer to 
II 0x00010000. 
#if defined(_ALPHA_) 
Context.Fir = 0x00010000; 
#elif defined(_MIPS_) 
Context. Fir = 0x00010000; 
#elif defined(_X86_) 
Context.Eip = 0x00010000; 
Ifoe 1 se 
#error Module contains CPU-specific code; modify and recompile. 
#endif 

II Set the thread's registers to reflect the changed values. 
II It's not really necessary to reset the Control Flags member 
II because it was set earlier. 
Context.ControlFlags = CONTEXT_CONTROL; 
SetThreadContext(hThread, &Context); 

II Resuming the thread will cause it to begin execution 
II at address 0x00010000. 
ResumeThread(hThread); 

Virtua/QueryEx and Virtua/ProtectEx 

842 

The VirtualQueryEx function returns information about a process's ad
dress space: 

DWORD VirtualQueryEx(HANDLE hProcess, LPCVOID lpvAddress, 
PMEMORY_BASIC_INFORMATION pmbiBuffer, DWORD cbLength); 

This function is very similar to the VirtualQuery function discussed 
in Chapter 6 except that VirtualQueryEx has one additional parameter, 
hProcess. This parameter allows you to select a process whose address 
space you wish to query. 



S I X TEE N: Breaking Through Process Boundary Walls 

The VirtualProtectEx function allows a thread in one process to alter 
the protection attributes on pages of physical storage that are used by 
another process: 

BOOl VirtualProtectEx(HANDlE hProcess, lPVOID lpvAddress, 
DWORD cbSize, DWORD fdwNewProtect, lPDWORD pfdwOldProtect); 

This function is very similar to the VirtualProtect function discussed 
in Chapter 6. Again, the only difference is that the VirtualProtectEx func
tion has one additional parameter, hProcess. 

ReadProcessMemory and WriteProcessMemory 
The ReadProcessMemory and WriteProcessMemory functions allow a thread 
to copy data from its process's address space to another process's address 
space and vice versa. 

BOOl ReadProcessMemory (HANDLE hProcess, lPVOID lpBaseAddress, 
lPVOID lpBuffer, DWORD cbRead, lPDWORD lpNumberOfBytesRead); 

BOOl WriteProcessMemory (HANDLE hProcess, lPVOID lpBaseAddress, 
lPVOID lpBuffer, DWORD cbWrite, lPDWORD lpNumberOfBytesWritten); 

The remote process is identified by the hProcess parameter. The 
IpBaseAddress parameter is the base address of memory in the remote 
process, IpBuffer is the base address of memory in the local process, 
cbRead and cbWrite are the requested number of bytes to transfer, and 
IpNumberOfBytesRead and IpNumberOfBytesWritten are filled on return 
with the number of bytes actually transferred. 

Creating a Function to Inject 
a DLL into Any Process's Address Space 

Now I'm ready (finally) to discuss the third method of injecting a DLL 
into another process. Up to this point, one problem has remained un
solved: a call to the LoadLibrary function causes the system to map the 
specified DLL into the address space of the process that owns the calling 
thread, when what you need to do is to force a thread in another process 
to call LoadLibrary for you. 

Solving this problem was certainly a learning experience for me. I 
would say that my code went through a series of major revisions before 
I got to the final result, which you see in Figure 16-6 later in this chapter. 
I will not show the results of all the attempts, but I will try to explain how I 
was led to the final result, a function I named InjectLib. 

843 



ADVANCED WINDOWS 

Version 0: Why the Obvious Method Just Doesn't Work 

844 

On the surface, the simple solution to this problem seems to be the 
following: 

HANDLE hProcessRemote; 
DWORD dwThreadld; 
HINSTANCE hinstKrnl = GetModuleHandle(_TEXT("Kerne132"»; 

CreateRemoteThread(hProcessRemote, NULL, 0, 
(LPTHREAD_START_ROUTINE) 

GetProcAddress(hinstKrnl, "LoadLibraryA"), 
"C:\\MYLIB.DLL", 0, &dwThreadld); 

This call to CreateRemoteThread doesn't work the way you'd think, 
but let's first reexamine what I am trying to do here. I am trying to create 
a thread in the remote process. This thread should begin execution 
by calling LoadLibraryA. Fortunately, LoadLibraryA takes a single 32-bit 
parameter that is an address to an ANSI string identifying the DLL to be 
loaded. When LoadLibraryA is called to map a DLL into a process's ad
dress space, the DLL is mapped into the process that owns the thread 
that is calling LoadLibraryA. Mter LoadLibraryA loads the DLL, it should 
return to the StartOrrhread function, and the thread then exits. Of 
course, MYLIB.DLL would forever be mapped into the remote process's 
address space because its lock count would never be decremented, but 
let's just take this problem one step at a time. 

Can you see why the call above doesn't work? It's because the string 
"C:\\MYLIB.DLL" is in the calling process's address space. You are pass
ing this string's address (in the local address space) to the remote thread. 
When LoadLibraryA is called by the remote thread, LoadLibraryA is going 
to think that the address identifies a string in its own address space and 
will try to process whatever's at that address. Most likely this will cause an 
access violation in the remote thread; the unhandled exception message 
box will be presented to the user, and the remote process will be termi
nated. That's right, the remote process will be terminated-not your 
process. You will have successfully crashed another process while yours 
continues to execute just fine! 

What you really need to do now is somehow copy the string identify
ing the DLL into the address space of the remote process. So where do 
you copy this string to? This question will be answered as I progress. 

You may be wondering why I bothered to get the address of Load
LibraryA by calling GetProcAddress instead of calling CreateRemoteThread 
like this: 



S I X TEE N: Breaking Through Process Boundary Walls 

CreateRemoteThread(hProcessRemote. NULL. 0. LoadLibraryA. 
"C:\\MYLIB.DLL". 0. &dwThreadld); 

The reason is quite subtle. When you compile and link a Win32-based 
program, the resulting binary contains ajump table. This table consists 
of a series of thunks to called functions. So when your code calls a func
tion such as LoadLilJraryA, the linker actually generates a call to a thunk 
in your EXE's or your DLL'sjump table. Thejump table in turn makes a 
jump to the actual function. The linker does this to reduce the load time 
of your EXE or DLL and to save on memory. 

If you used a direct reference to LoadLilJraryA in the call to Create
RemoteThread, this would resolve to the address of the LoadLilJraryA 
thunk in your jump table. Passing the address of the thunk as the starting 
address of the remote thread would cause the remote thread to begin 
executing who-knows-what. Again, the result most likely would be an 
access violation. To force a direct call to the LoadLilJraryA function, by
passing the jump table, you need to get the exact location of LoadLilJraryA 
by calling GetProcAddress. 

The call to CreateRemoteThread assumes that KERNEL32.DLL is map
ped to the same memory location in both the local and the remote pro
cesses' address spaces. Every application requires KERNEL32.DLL, and 
in my experience the system maps KERNEL32.DLL to the same address 
in every process. I can't think of a situation in which this isn't true. In 
fact, if you compile, link, and run the following program: 

void __ cdecl main (void) { 
} 

and then run PVIEW.EXE, you'll see that even this teeny-tiny program 
requires that NTDLL.DLL and KERNEL32.DLL be mapped into the 
process's address space. 

Version 1: Hand-Coded Machine Language 
The very first version of the InjectLib function that I actually imple
mented went like this. First I created a thread in the remote process by 
calling CreateRemoteThread: 

hThread = CreateRemoteThread(hProcess. NULL. 1024. 0x00000000. 
NULL. CREATE_SUSPENDED. &dwThreadld); 

This is a pretty bizarre way to create a thread because the address of 
the thread function is OxOOOOOOOO. This is sure to guarantee an access 

845 



ADVANCED WINDOWS 

846 

violation as soon as the thread starts running. However, note that I also 
specified the CREATE_SUSPENDED flag. This means that the thread 
will have an initial suspend count of 1 and will therefore not be sched
uled any CPU time. 

Next I had to locate the new thread's stack. I did this by calling 
GetThreadContext and examining the address contained in the stack 
pointer register. 

From this address, I used WriteProcessMemory to copy the name of 
the DLL to the remote thread's stack. I then created a buffer in my own 
process's address space in which I placed hand-coded Intel x86 machine 
language to do the following: 

mov eax, <address of DLL pathname on stack> 
push eax Push address of DLL's pathname 

on the stack. 
call 
push 

push 
call 

call 

LoadLibraryA 
eax 

eax 
FreeLi brary 

ExitThread 

Call LoadLibraryA function. 
Save the DLL's hinstDll 
(returned in EAX) on the stack. 
Save the DLL's hinstDll again. 
The DLL's hinstDll is on the stack 
for thi s call. 
Force the thread to terminate. 
(DLL's hinstDll is the exit code.) 

That's right, I looked up the machine language instructions for 
each of the assembly-language instructions above and filled this buffer 
with these instructions. Then I again called WriteProcessMemory to write 
this code to the remote thread's stack. I wrote this code just below the 
DLL's pathname. 

Next I changed the remote thread's context structure so that the 
stack pointer pointed to the memory below the hand-coded machine 
language, and I changed the instruction pointer so that it pointed to the 
first byte of the hand-coded machine language. (See Figure 16-4.) I then 
called SetThreadContext to put the new values in the remote thread's 
registers. 

Now I was all ready to go. All I had to do was call ResumeThread, and 
the remote thread would start executing my hand-coded machine lan
guage instructions, load the DLL, free the DLL, and exit the thread. 

There are a number of points to discuss about this method. First, I 
needed to call ExitThread myself because I changed the instruction pointer. 
Remember that a thread's instruction pointer is initialized to point to 



Remote Thread's 
Stack 

Pathname of DLL to load 

Thread function 
(hand-coded machine 

language) 

Figure 16-4. 

5 I X TEE N: Breaking Through Process Boundary Walls 

Remote Thread's Context 
(CPU Registers) 

Stack pOinter = address of path name of 
DLLto load 

Instruction pointer" address of thread function 
to execute 

The CPU registers of a remote thread pointing to the contents of another 
remote thread's stack. 

the StartOfThread function. (See page 56 in Chapter 3 for a discussion 
of the StartOJThread function.) A side effect of my changing the instruc
tion pointer was that the StartOfThread function would never execute. 
Normally, StartOJThread calls the thread function, but because I changed 
the instruction pointer register, StartOJThread did not call my thread 
function. Therefore, I couldn't put an Intel x86 RET instruction at the 
end of my code-the CPU would not know where to return. So, to make 
the remote thread terminate cleanly, I had to call E-xitThread explicitly. 

Second, if the library does not initialize properly, LoadLibraryA 
returns NULL to me. At this point, my code would push NULL on the 
stack and call FreeLibrary. This is probably not the best thing it could do. 
It would be better to compare the EAX register with zero, and call 
FreeLibrary only if EAX is nonzero. I didn't put this check in the code 
because I didn't want to figure out what the hand-coded machine lan
guage for these additional instructions would be. Instead, I thought that 
the FreeLibrary function would figure out that I was passing an invalid 
hinstDll value and would just return FALSE, indicating that the call 
was bad. 

847 



ADVANCED WINDOWS 

Third, skipping the execution of the StartOphread function means 
that a default structured exception handling (SEH) frame is not set up 
properly for this thread. This is a problem only if the thread's code 
causes an exception to be raised. At first, you might not think that this is 
too bad a problem. Mter all, what could possibly go wrong with a call to 
LoadLibraryA, a call to FreeLibrary, and a call to ExitThread? Well, as you 
may remember from Chapter 11, this thread is also responsible for 
executing the library's DllMain function with an fdwReason value of 
DLL_PROCESS_ATTACH and an fdwReason value of DLL_PROCESS
_DETACH. If any of this code raises an unhandled exception, the system 
terminates the process on the spot without a message box or any notifica
tion to the end user whatsoever. Again, I could have written additional 
hand-coded machine language instructions to create an SEH frame, but 
this would have been very difficult. The implementation of SEH varies 
dramatically among given CPU architectures and is extremely com
plicated. 

Finally, as you can see, the biggest problem with this whole ap
proach is the hand-coded assembly language. As it is, I have already 
copped out on adding features or correcting potential problems be
cause I didn't feel like figuring out the additional instructions. But I 
needed to redo all this work for each CPU platform. I did, in fact, go 
ahead and do this for the MIPS platform and was starting to do it for the 
Alpha when a friend suggested that there might be a way to write this 
code so that it was CPU-independent. 

I have to admit that my friend and I were both skeptical at first, but 
we started tossing ideas around, and then we started typing up some of 
our ideas in Notepad. When it actually started to seem like there might 
be a way to do it, I started modifYing my code (after making a backup of 
the original, of course). Several hours later (around 2:00 A.M.), we actually 
had something working on the Intel and MIPS platforms-which takes 
us to version 2. 

Version 2: AllocProcessMemory and CreateRemoteThread 
Eventually I wound up with a method that works something like this: 

848 

1. Allocate memory space in the remote process's address space. 

2. Copy the code of a function from your process's address space 
to the remote process's address space. I will discuss this in detail 
later in this chapter. 



S I X TEE N: Breaking Through Process Boundary Walls 

3. Copy an INJLIBINFO data structure containing the DLL's 
pathname and other important data to the remote process's 
address space. 

4. Call CreateRemoteThread, passing the remote address of the 
copied function as the lpStartAddr parameter and the remote 
address of the INJLIBINFO structure as the lpvThreadParm 
parameter. 

5. Wait for the remote thread to exit. 

6. Free the memory allocated in step 1. 

Now let's look into each of these steps in more detail. Let's begin 
with how to allocate and free memory in another process's address space. 

When I first started to look for a way to allocate memory in a remote 
process I looked feverishly for the two Win32 functions VirtualAllocEx and 
VirtualFreeEx. I knew that the Win32 API has a VirtualQJteryEx function 
that allows a thread in one process to examine the state of memory 
owned by another process and a VirtualProtectEx function that allows a 
thread in one process to actually change the page protection of memory 
owned by another process. Given these two functions, I was sure that 
there must be VirtualAllocEx and VirtualFreeEx functions as well. But I was 
wrong! It seemed awfully strange to me that VirtualAllocEx and Virtual
FreeEx functions didn't exist. There just had to be another way to allocate 
memory in another process's address space! Then I remembered that 
when I create a thread, the system allocates memory for the thread's 
stack-eureka! If I create a remote thread, the stack is allocated in the 
remote process's address space. 

After I came to this realization, the implementation off unctions to 
allocate and free memory in a remote process's address space was pretty 
straightforward. The result is shown in the PROCMEM.C file. (See Fig
ure 16-5 beginning on page 854.) This file contains two functions, Alloc
ProcessMemory and FreeProcessMemory, which mimic the ReadProcessMemory 
and WriteProcessMemory functions. 

Let's look at AllocProcessMemory first. 

PVOID AllocProcessMemory (HANDLE hProcess. DWORD dwNumBytes); 

As its name implies, this function allocates memory in another 
process's address space. The hProcess parameter identifies the process in 
whose address space memory should be allocated, and the dwNumBytes 
parameter indicates the number of bytes to allocate. The function 

849 



ADVANCED WINDOWS 

850 

returns the address where the memory was allocated in the remote pro
cess; if the memory could not be allocated, the function returns NULL. 

Here is how the function works. First I call CreateRemoteThread as 
follows: 

HINSTANCE hinstKrnl = GetModuleHandle(_TEXn"Kerne132"»; 

hThread = CreateRemoteThread(hProcess, NULL. 
dwNumBytes + sizeof(HANDLE). 
(LPTHREAD_STARLROUTI NE )GetProcAddress (hi nstKrn 1. "ExitThread"), 
0. CREATE_SUSPENDED. &dwThreadld); 

You know that creating a thread causes the system to allocate a stack 
for the thread. So for the third parameter to CreateRemoteThread I pass the 
number of bytes to commit for the thread's stack. This value is the num
ber of bytes passed to AllocProcessMemory plus the size ofa HANDLE. For 
reasons you'll see later, I need a place to save the thread handle; I chose 
to save it at the beginning of the allocated memory block. 

I tell the system that the thread should start executing at the ad
dress where the ExitThread function resides. As soon as the thread starts 
executing, it immediately invokes ExitThread, passing it a parameter value 
of O. This, of course, causes the thread to terminate immediately and the 
system to free the thread's stack. But I need the thread's stack to hang 
around for awhile, so I pass the CREATE_SUSPENDED flag to Create
RemoteThread. This flag tells the system not to let the thread execute-the 
CPU registers and the stack for the thread are initialized, but the thread 
is not scheduled any CPU time. Mter the system creates the remote 
thread, the thread's ID is placed in the dwThreadld variable and the handle 
to the thread is returned. 

But why do I need to callExitThread at all? It would be nice to create 
the remote thread as follows: 

hThread = CreateRemoteThread(hProcess, NULL. 
dwNumBytes + sizeof(HANDLE). 
0x00000000. 0. CREATE_SUSPENDED. &dwThreadld); 

This specifies that the remote thread should start executing at address 
OxOOOOOOOO, which would certainly cause a memory access violation if 
the thread resumed execution. However, I don't ever need to resume the 
thread. When the time comes to free the memory block, I could just 
make the following call: 

TerminateThread(hThread. 0); 



S I X TEE N: Breaking Through Process Boundary Walls 

TerminateThread forces the system to terminate the thread. U nfortu
nately, under Windows NT TerminateThread does not cause the thread's 
stack to be freed. (See the discussion of the TerminateThread function on 
page 65 in Chapter 3.) ExitThread, however, does free a thread's stack. So, 
to ensure that the memory allocated in the remote process is freed, the 
remote thread calls ExitThread when it is resumed. 

Now, after creating the remote thread, I need to determine where 
in the remote process's address space the stack is located. This is done as 
shown below: 

CONTEXT Context: 

Context.ContextFlags = CONTEXT_CONTROL: 
GetThreadContext(hThread. &Context): 

II Address of top of stack is in stack pointer register 

GetThreadContext retrieves the CPU registers for the specified 
thread-in this case, the remote thread. The CONTEXT structure con
tains a stack pointer register that's initialized by the system when the 
thread is created and that contains the 32-bit memory address at the top 
of the stack. Actually, this address is 4 bytes above the top of the stack. 
When a function pushes something onto the stack, the CPU first decre
ments the stack pointer by 4 bytes and then puts the new data on the 
stack. You have to subtract 4 bytes (or the size of a 32-bit value) off the 
stack pointer address to get the address of the last 32-bit value on the stack. 

The stack pointer'S register name varies among CPUs, so I created a 
macro, STACKPTR, that abstracts the stack pointer's register name based 
on the CPU type. This is the only CPU-dependent portion of my code: 

#if defined(_X86_) 
#define STACKPTR(Context) (Context.Esp) 
#endif 

#if defined(_MIPS_) 
#define STACKPTR(Context) (Context.lntSp) 
flendi f 

#if defined(_ALPHA-) 
#define STACKPTR(Context) (Context.lntSp) 
#endif 

(continued) 

851 



ADVANCED WINDOWS 

852 

#if !defined(STACKPTR) 
#error Module contains CPU specific code; modify and recompile. 
Itend1f 

Notice that at the end I check to see if STACKPTR is defined. Ifnot, 
I force the compilation to halt by taking advantage of the preprocessor's 
#errordirective. If, in the future, this code is compiled for another CPU 
architecture, it'll have to be modified to abstract the new architecture's 
stack pointer register. 

Mter I have the address of the top of the stack, I call VirtualQueryEx: 

MEMORY_BASIC_INFORMATION mbi; 
LPVOID pvMem; 

VirtualQueryEx(hProcess. (PDWORD) STACKPTR(Context) - 1. 
&mbi. sizeof(mbi»; 

pvMem = (PVOID) mbi.BaseAddress: 

As mentioned earlier, this function looks into the address space of 
another process and fills a MEMORY_BASIC_INFORMATION structure 
with data describing the nature of the memory. I am interested in the 
BaseAddress member of this structure. This member gives the memory 
address at the bottom of the stack's committed memory-this is the 
address of my allocated memory block. 

At this point, I have the remote memory address to return to the 
caller. However, if I want to free the allocated memory later by calling 
ResumeThread, I must save the handle of the remote thread somewhere. I 
could have forced the caller to pass AllocProcessMemory the address of a 
HANDLE variable that I could fill before returning, but I didn't like this 
method for two reasons. One, the caller would need to know too much 
of my internal implementation of this function. Two, the caller would be 
responsible for maintaining this handle and passing the correct handle 
back to me when calling FreeProcessMemory. 

Instead, I decided to save the thread's handle at the bottom of the 
newly allocated memory block in the remote process's address space. To 
do this, I write the thread's handle there by calling WriteProcessMemory. 

fOk = WriteProcessMemory(hProcess. pvMem. &hThread. 
sizeof(hThread). &dwNumBytesXferred); 



5 I X TEE N: Breaking Through Process Boundary Walls 

Next, I increment the pointer to the block by the size of a thread 
handle and return this address to the caller: 

pvMem = (PVOID) ((PHANDlE) pvMem + 1): 
return(pvMem): 

Freeing the memory is much simpler. When the local thread wants 
to free the remote memory, it calls FreeProcessMemory: 

BOOl FreeProcessMemory (HANDLE hProcess. PVOID pvMem): 

and passes the remote process's handle and the memory address that 
was returned by the previous call to AllocProcessMemory. The first thing 
that FreeProcessMemory must do is get the handle to the remote thread. 
AllocProcessMemory stored this handle in the first 4 bytes of the allocated 
memory. So, to get it back, you must subtract the size of a thread handle 
from the memory address and call ReadProcessMemory: 

pvMem = (PVOID) ((PHANDlE) pvMem - 1): 
fOk = ReadProcessMemory(hProcess. pvMem. &hThread. 

sizeof(hThread). &dwNumBytesXferred): 

Now all you have to do is allow the thread to begin executing. This 
is done by calling ResumeThread. 

ResumeThread(hThread): 
CloseHandle(hThread): 

When the thread starts executing, it will immediately call ExitThread; the 
thread will stop running and the system will destroy the thread's stack. 
Also, the local thread must call Close Handle so that you don't accidentally 
accumulate another thread handle in your process whenever a call to 
AllocProcessMemory is made. 

The ProcMem Utility Functions 
The AllocProcessMemory and FreeProcessMemory functions allocate and free 
memory in another process's address space. The code for these func
tions is contained in PROCMEM.C, listed in Figure 16-5 beginning on 
the next page. Any code that uses the functions should, of course, in
clude the PROCMEM.H header file, also listed in Figure 16-5. These 
source code files are in the TINJLIB.16 directory on the companion disc. 

853 



ADVANCED WINDOWS 

Figure 16-5. (continued) 

The ProcMem utility functions. 

854 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-5. continued 

PYOID AllocProcessMemory (HANDLE hProcess. DWORD dwNumBytes) { 
CONTEXT Context: 
DWORD dwTh~eadId. dwNumBytesXferred. dWError; 
HANDLE hThread; 
HINSTANC~ hin$tkrnl ::;.GetModuleHandle(_l"EXrc n Kerne13Z"»: 

... PVQIPpvMem :;;NUL;L: . .' .. 
MEMOItV:;:,BA$IC .... INfORMAfiON.mb1: .' 

,BOOL.fOI( ;,.;FALSE:~.. JL Assullie ,fa ilu.rei: .. ' 
:', .:::. "." . 

.... '~~'ry.('.i . . '.' ' '. c' .... , ..... 

...... h.J/tf,eact::i,<C:reateRli!mot:eThread{·· 

..... ······$~:::ft"~~n~m~t:.~:M.aJl.<at ... 1.n.. . .. 

. . 'II the remote process • f)'hAs 4by1:es 

"'''<,' "{LPT~R~A?_S#Rii,'b~~i N~:)tteadh,an~l,~", .'~. ". ...... ....'. ' . 
. ' ··.Get~.rocAddress(hi nstKrnl:.'~~U;Thtead"r. '.' ", .•.... 

: ... ,"0" 

.,.11 t;he"allocated,~einory~' .• '" 
it .rhei Pof tti~:new.\ljre~cd" 

'rf ,~:~~~:~d==~~t~~~it;~r(:l}' 

(continued) 

855 



ADVANCED WINDOWS 

Figure 16-5. continued 

(continued) 

856 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-5. continued 

fOk = ReadProcessMemory( hProcess. pvMem. &hThread .• 
s 1zeof( hThread). &dwNumBytesXferred):. 

The InjectLib Function 
The InjectLib function, listed in Figure 16-6 beginning on page 864, shows 
how I injected a DLL into another process's address space. The source 
code files are in the TINJLIB.16 directory on the companion disc. First 
I'll discuss how I determine the amount of memory I need to allocate in 
the remote process's address space. Mter I allocate the memory, I 
"squirt" the ThreadF'unc function and INJLIBINFO structure into this 
memory block and start the function executing. 

857 



ADVANCED WINDOWS 

858 

When ThreadFunc runs in the remote process, it calls LoadLibrary to 
inject the function. The secret to creating a CPU-independent version of 
ThreadFunc is to write the function using a high-level language (C in this 
case) and let the compiler generate the machine-language code for the 
whole function. You can then copy the function from your address space 
to the remote process's address space and let the function execute. 
Regardless of the CPU type, the compiler will generate the proper ma
chine language for this function. 

When I was designing the ThreadFunc function, I had to keep in 
mind that in the local process's address space the function is located 
at one memory address, but that, when the function is copied to the re
mote process's address space, it almost definitely is not copied to the 
same address. This means that I had to design the function to contain no 
references to anything outside of itself! This is very difficult. 

More specifically, the function could not contain any references to 
global or static variables because the references would be to exact mem
ory locations, and the data variables would not exist in the remote 
process's address space. ThreadFunc also couldn't contain any direct ref
erences or calls to other functions. The compiler and linker optimize 
these calls to call thunks in the jump table, which would not be in the 
remote process. 

The function also could not use more than a page's worth of local 
variables. Whenever the compiler sees that the amount of memory 
required by a single function's local variables is more than a page, the 
compiler generates a hidden call to the C run-time library's stack check
ing function. This call to the stack checking function is a direct refer
ence to another function that would cause the remote thread to raise 
an exception when it was allowed to execute. 

Even with all these prohibitions, you can still access the stack. So I 
put a pointer on the stack that points to an INJLIBINFO data structure 
containing all the information needed by ThreadFunc. The data structure 
contains three members: 

typedef HINSTANCE (WINAPI *PROCLOADLIBRARY)(LPBYTE); 
typedef BOOL (WINAPI *PROCFREELIBRARY)(HINSTANCE); 

typedef struct { 
PROCLOADLIBRARY fnLoadLibrary; 
PROCFREELIBRARY fnFreeLibrary; 
BYTE pbLibFile[MAX_PATH * sizeof(WCHAR)]; 

} INJLIBINFO. *PINJLIBINFO; 



S I X TEE N: Breaking Through Process Boundary Walls 

The first member, fnLoadLilYrary, holds the absolute address of 
either the LoadLilYraryA or LoadLilYrary W function, depending on whether 
the pbLibFile member contains an ANSI or a Unicode string. The second 
member, fnFreeLilYrary, contains the absolute address of the FreeLilYrary 
function. The last member, pbLibFile, contains either the ANSI or the 
Unicode version of the pathname for the DLL to be loaded. 

When the remote thread executes ThreadFunc, ThreadFunc is passed 
the address to this data structure; the address was copied into the mem
ory allocated by the earlier call to AllocProcessMemory. ThreadFunc simply 
calls one of the LoadLilYrary functions: 

HINSTANCE hinstDll; 
hinstDll = plnjLiblnfo->fnLoadLibrary(plnjLiblnfo->pbLibFile); 

Remember, this call will not return until the library's DllMain function 
has processed its DLL_PROCESS_ATTACH notification. When the call 
does return, the HINSTANCE of the DLL is saved in the local variable, 
hinstDll. Then, after the library has loaded and successfully initialized, 
ThreadFunc calls FreeLilYrary: 

if (hinstDll 1= NULl) { 
plnjLiblnfo->fnFreeLibrary(hinstDll); 

} 

The call to FreeLilYrary will not return until after the library'sDllMain func
tion has finished processing its DLL_PROCESS_DETACH notification. 

Finally, ThreadFunc returns the HINSTANCE of the loaded DLL. 
(NULL is returned if the DLL failed to load successfully.) This return 
value becomes the exit code for this thread. As long as another thread in 
the system has a handle to this remote thread, the remote thread's 
thread kernel object remains in the system, and GetExitCodeThread can be 
called to retrieve the thread's exit code. This way, the thread running in 
the local process can determine whether the DLL loaded successfully. 

You should notice two advantages of ThreadFunc over version 1 's 
thread function. As mentioned earlier, the biggest advantage is that 
there is no hand-coded machine language at all. The second is that the 
remote ThreadFunc function is called by the StartOfFhread function. This 
means that ThreadFunc can simply return when it is finished, rather than 
having to call ExitThread, and that the default structured exception han
dling frame is set up and ready to capture unhandled exceptions. 

859 



ADVANCED WINDOWS 

860 

InjectLib, InjectLibA, InjectLibW, and InjectLibWorA 
Now let's look at the function responsible for injecting the ThreadFunc 
function into the remote process's address space. Because I wanted to 
supply a complete library function, I created this function to have full 
ANSI and Unicode entry points. This means that there are two func
tions-one for ANSI (InjectLibA) and one for Unicode (InjectLibW)-as 
well as a macro, InjectLib, that expands to one of these two functions de
pending on whether UNICODE is defined during compilation. 

BOOl InjectlibA (HANDLE hProcess. lPCSTR lpszlibFile); 
BOOl InjectlibW (HANDLE hProcess. lPCWSTR lpszlibFile); 

Ififdef UNICODE 
#define Injectlib InjectlibW 
#else 
#define Injectlib InjectlibA 
#endif II !UNICODE 

The two function prototypes and the macro are defined in the INJLIB.H 
file. (See Figure 16-6.) 

Both InjectLibA and InjectLib Ware one-line stub functions that sim
ply call the real workhorse function,InjectLibWorA. InjectLibWorA is a static 
function that cannot be called from any code outside the INJUB.C file. 
(See Figure 16-6.) When the stub functions call InjectLibWorA, they pass 
the following: 

• The handle of the process in which the library is to be injected. 

• The address to the DLL's pathname. This may be either an 
ANSI string or a Unicode string. 

• A Boolean value that indicates what type of string lpszLibFile is. 
TRUE indicates Unicode and FALSE indicates ANSI. 

The value returned by InjectLibWorA indicates whether the DLL was 
successfully loaded in the remote process. InjectLibA and InjectLibW sim
ply return InjectLibWorA's return value back to their callers. 

BOOl InjectlibA (HANDLE hProcess. lPCSTR lpszlibFile) { 
return(InjectlibWorA(hProcess. (lPBYTE) lpszlibFile. FALSE»; 

} 

BOOl InjectlibW (HANDLE hProcess. lPCWSTR lpszlibFile) { 
return(InjectlibWorA(hProcess. (lPBYTE) lpszlibFile. TRUE»; 

} 



S I X TEE N: Breaking Through Process Boundary Walls 

So how does InjectLibWorA actually inject a DLL into another pro
cess's address space? The first step is to create and initialize an INJLIB
INFO data structure: 

HINSTANCE hinstKrnl = GetModuleHandle(_TEXn"Kerne132"»; 

INJLIBINFO InjLibInfo; 

InjLibInfo.fnLoadLibrary = (PROCLOADLIBRARY) 
GetProcAddress(hinstKrnl, 

(fUnicode ? "LoadLibraryW" : "LoadLibraryA"»; 
InjLibInfo.fnFreeLibrary = (PROCFREELIBRARY) 

GetProcAddress(hinstKrnl, "FreeLibrary"); 
InjLibInfo.pbLibFile[0] = 0; II Initialized later 

if (fUnicode) 
wcscpy«LPWSTR) InjLibInfo.pbLibFile, (LPCWSTR) pbLibFile); 

else 
strcpy«LPSTR) InjLibInfo.pbLibFile, (LPCSTR) pbLibFile); 

This structure is eventually copied into the memory allocated within the 
remote process. The structure is initialized by obtaining the absolute 
address of the LoadLibraryA or LoadLibrary W function as well as the Free
Library function. Then the DLL's pathname is copied from the pbLibFile 
parameter to the pbLibFile member of the INJLIBINFO structure. 

The code assumes that both the local process and the remote pro
cess have KERNEL32.DLL mapped into their respective address spaces 
and that KERNEL32.DLL is mapped to the same address in both pro
cesses. As mentioned earlier, this is actually a very safe bet-I have never 
seen a situation where this failed to be the case. 

Now I need to determine the size of the memory block to allocate 
in the remote process's address space. This memory block is going to 
hold a copy of ThreadFunc and a copy ofINJLIBINFO. The size of Thread
Func is determined by taking its address in memory and subtracting the 
memory address of the function after it, AfterThreadFunc: 

const int cbCodeSize = «LPBYTE) (DWORD) 
AfterThreadFunc - (LPBYTE) (DWORD) ThreadFunc); 

This assumes that the compiler and linker will place the AfterThread
Func function immediately after the ThreadFunc function in the resulting 
object code. For the Intel, MIPS, and Alpha compilers that ship with Vi
sual C++, this is true. However, I've been told that an Alpha compiler 
(for operating systems other than Windows NT) compiles functions and 
places them backwards in the resulting object file. It's possible that other 

861 



ADVANCED WINDOWS 

862 

compilers for Windows NT might come up with a different result when 
subtracting ThreadFunc fromAjterThreadFunc, which would break this code. 

Even if a Windows NT-based compiler did reverse the functions, 
this problem would be easy to correct. You would simply need to add a 
function before ThreadFunc and call the new function BeJoreThreadFunc. 
Then you could compare the address ofBeJoreThreadFuncwith the address 
of AjterThreadFunc and subtract the memory address of ThreadFunc from 
the larger function. Of course, it's always possible that some future com
piler will reorganize functions in a way I haven't anticipated, although I 
think this is unlikely. 

So now you have the size of the ThreadFunc function, but you also 
need enough memory in the remote process to hold an INjLIBINFO 
structure: 

const DWORD cbMemSize = cbCodeSize + sizeof(InjLibInfo) + 3; 

You'll notice that I added 3 to the memory size above. This is because 
all structures must start on an even 32-bit boundary. The same is true for 
code. For example, if the ThreadFunc function required 65 bytes, and I 
put the INjLIBINFO structure immediately after the code, the structure 
would start at byte 65. As soon as the ThreadFunc function attempted to 
access the structure, the CPU would raise a datatype misalignment ex
ception. For x86 architectures, this is not a problem because they auto
matically correct for misaligned data, but on RISC architectures, this is a 
really big problem. It wouldn't help to put the INjLIBINFO structure 
before ThreadFunc's code. In calculating the size of the required memory 
block, I just assumed that in a worst case situation I'd need to leave at 
most a 3-byte gap after the code and before the structure. 

The memory space is now allocated in the remote process using my 
AllocProcessMemory function. 

pdwCodeRemote = (PDWORD) AllocProcessMemory(hProcess. cbMemSize); 

When the system reserves stack space for a new thread, the system 
gives the memory pages of that space a protection of PAGE_READ
WRITE. This means that any attempt to read or write to the memory is 
OK, but if an attempt is made to execute code on these pages, the CPU 
raises an exception. This causes a small problem because I'm purposely 
putting code on the stack so that it can be executed. This problem is 
solved with a simple call to VirtualProtectEx: 



S I X TEE N: Breaking Through Process Boundary Walls 

fOk = VirtualProtectEx(hProcess. pdwCodeRemote. cbMemSize. 
PAGE_EXECUTE_READWRITE. &dwOldProtect): 

This is the kind of problem tha~ can go unnoticed for a long time. 
In fact, I figured it out only while writing this text-long after I had fin
ished writing and testing the code on x86, MIPS, and Alpha platforms. 
How'd I manage that? While I was working on the code I must have 
tested it occasionally, and I should have immediately seen that the remote 
thread was raising exceptions, right? Well, Win32 supports these differ
ent page protections, but the CPU might not. In fact, the x86, MIPS, and 
Alpha CPUs all ignore the execute page protection. With these CPUs, if 
a page is readable, it's executable. I decided to add this call to Virtual
ProtectEx anyway for aesthetic reasons and because this code is more 
likely to work on future CPU architectures. 

Now it's time to copy the ThreadFunc function and the INJLIBINFO 
structure over to the memory that was allocated in the remote process's 
address space: 

fOk = WriteProcessMemory(hProcess. pdwCodeRemote. 
(LPVOID) (DWORD) ThreadFunc. cbCodeSize. &dwNumBytesXferred): 

II Force the structure to begin on an even 32-bit boundary. 
PINJLIBINFO plnjLibInfoRemote = (PINJLIBINFO) 

(pdwCodeRemote + «cbCodeSize + 4) & -3»: 

fOk = WriteProcessMemory(hProcess. pInjLibInfoRemote. 
&InjLibInfo. sizeof(InjLibInfo). &dwNumBytesXferred): 

At this point, everything is initialized in the remote process. The 
next step is to create a remote thread that will execute the ThreadFunc 
function using the data in the I~LIBINFO structure. Since this thread 
will execute asynchronously with your local thread, you must put the 
local thread to sleep until you know that the remote thread has finished 
loading the DLL and exited: 

HANDLE hThread = CreateRemoteThread(hProcess. NULL. 0. 
(LPTHREAD_START_ROUTINE) (DWORD) pdwCodeRemote. 
pInjLibInfoRemote. 0. &dwThreadId): 

WaitForSingleObject(hThread. INFINITE): 

Mter the remote thread has finished executing, you want to get the 
remote thread's exit code. This exit code is the HINSTANCE of the re
motely loaded DLL. If the HINSTANCE is NULL, you know that the 

863 



ADVANCED WINDOWS 

864 

DLL did not initialize successfully. InjectLibWorA returns FALSE if the 
HINSTANCE value is NULL, otherwise it returns TRUE. Mter you have 
the remote thread's exit code, you no longer need to maintain your 
handle to the remote thread and you can free the memory allocated in 
the remote process's address space: 

GetExitCodeThread(hThread. (PDWORD) &hinstDllRemote); 
CloseHandle(hThread); 
FreeProcessMemory(hProcess. pdwCodeRemote); 

return(hinstDllRemote 1= NULL); 

Figure 16·6. 
Implementation of the InjectLib junction. 

(continued) 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-6. continued 

1111111111111111111/1/1111111//1111111/1//111//1/111111/11111/ 

II Calls to the .stack check! og routine must be di sabl ed. 
/1pragma.ctH~(fLstack (off)····· . 

. "ct'1!~rh"::~~t~~i~}!~:~~~"0~j:!:~:i;~~~~t~;fO' 
'.' .: .... llyartati li$.<,4s,e,(tl)' .thtsfJ,l,n c:ti ()~... .' 

. . ...... HI NS1'~Ntth11'\~nrJr·. ..• ...'. :.: ... ,. 
,. ,."' ... , . '''''',' ,,~", ."'" .: ".i~':" ".:"':.: . :·:::i ·,>.:>:,i:> ," ·;::'::~·ii.",.'::, .:'.' .... 

(continued) 

865 



ADVANCED WINDOWS 

Figure 16-6. continued 

(continued) 

866 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-6. continued 

. TheflandJe.and(0 ,of.the.thread .. 
'Pf:Ttlr,t8'(ffune:· . 

(continued) 

867 



ADVANCED WINDOWS 

Figure 16-6. continued 

(continued) 

868 



S I X TEE N: Breaking Through Process Boundary Walls 

Figure 16-6. continued 

///////////////////////////////////////////1///////1//11//1/// 

B.OOLWINAPI InjectLibA (HANDLE hProcen •. LPCSTR lpSZLibHle){ 

return (Inject J..J.pWo i'A( h Process, . {b:PB~Tt )JP~:~SbFfl~f .. 
. FALSE»);·; . .. .... ... 

869 



ADVANCED WINDOWS 

Testing the InjectLib Function 
Having written the InjectLib function, I needed to devise a way to test it. I 
describe how I did so in this section. There are two parts to testing Inject
Lib. First, I wrote an application, which I call TInjLib, to call the InjectLib 
function. Second, I wrote a DLL to be injected into a remote process. 
This DLL retrieves information that is specific to the application that 
contains the injected DLL. If I get back information that seems correct 
based on the process that I inject into, I know that the InjectLib function 
is working successfully. 

The Inject Library Test Sample Application 

870 

The TINJLIB.EXE application, listed in Figure 16-7, shows how to call 
InjectLib. The source code files, resource files, and make file for the 
application are in the TI1'{JLIB.16 directory on the companion disc. The 
program simply accepts a single command-line parameter that is the 
process ID of a running process. You can obtain a process's ID by using 
the PVIEW.EXE or PSTAT.EXE tool that ships with Visual C++ 2.0. With 
the ID, the program attempts to open a handle to this running process 
by calling openProcess and requesting the appropriate access rights: 

hProcess = OpenProcess( 
PROCESS_CREATE_THREAD : 
PROCESS_QUERY_INFORMATION 
PROCESS_VM_OPERATION 
PROCESS_VM_READ : 
PROCESS_VM_WRITE. 
FALSE. dwProcessld): 

II 
II 
II 
II 
II 

For Create Remote Thread 
For VirtualQueryEx 
For VirtualProtectEx 
For ReadProcessMemory 
For WriteProcessMemory 

If openProcess returns NULL, TInjLib cannot open a handle to the 
process. This will happen in a highly secure system or if you attempt to 
open a handle to a secure process. The Win32 subsystem and some other 
processes (such as WinLogon, ClipSrv, and EventLog) are so secure that 
an application cannot obtain a handle to any of them when requesting 
the above access flags. 

If openProcess is successful, TInjLib creates a buffer with the full 
pathname of the DLL that you want to inject and calls InjectLib. When 
InjectLib returns, the program displays a message box indicating whether 
the DLL successfully loaded in the remote process; it then closes the 
handle to the process. That's all there is to it. 



TlnjLib,ico 

S I X TEE N: Breaking Through Process Boundary Walls 

You may notice when examining the code that I make a special 
check to see whether the process ID passed on the command line is O. If 
so, I set the process ID to TINJLIB.EXE's own process ID by calling Get
CurrentProcessld. This way, when TlnjLib calls InjectLib, TInjLib is inject
ing the DLL into its own address space. I do this to make debugging 
easier. As you can imagine, when bugs popped up it was sometimes diffi
cult to determine whether the bugs were in the local process or in the 
remote process. Originally, I started debugging my code with two de
buggers, one watching TInjLib and the other watching the remote pro
cess. This turned out to be terribly inconvenient. And then it dawned on 
me that TInjLib can also inject a DLL into itself-that is, into the same 
address space as the caller. This made it much easier to debug my code. 

Figure 16-7. (continued) 

The TInjLib application. 

871 



ADVANCED WINDOWS 

Figure 16-7. continued 

872 



S I X TEE N: Breaking Through Process Boundary Walls 

The Image Walk Dynamic-Link Library 
IMGWALK.DLL, listed in Figure 16-8 beginning on page 875, is a DLL 
that, once injected into a process's address space, can report on all the 
DLLs that the process is using. The source code files, resource files, and 
make file for the DLL are in the TINJLIB.16 directory on the companion 
disc. For example, if! first run Notepad and then run TInjLib, passing it 
Notepad's process ID, TInjLib injects the IMGWALK.DLL into Note
pad's address space. Once there, ImgWalk determines which file images 
(EXEs and DLLs) are being used by Notepad and displays the following 
message box showing the results. 

01720000-D:\NT35RC2\system32\NOTEPAD.EXE 
10100000-D:\NT35RC2\system32\MSVCRT20.dll 
77D30000-D:\NT35RC2\system32\WINSPOOL.DRV 
77D70000-D:\NT35RC2\system32\CRTDLL.dll 
77DAOOOO-D:\NT35RC2\system32\SHELL32.dll 
77DCOOOO-D:\NT35RC2\system32\comdlg32.dll 
77DFOOOO-D:\NT35RC2\system32\ADVAPI32.dll 
77E 40 000-D:\NT35RC2\syste m32\RPCRT 4. d II 
77E80000-D:\NT35RC2\system32\USER32.dll 
77ECOOOO-D:\NT35RC2\system32\GDI32.dll 
77FOOOOO-D:\NT35RC2\system32\KERNEL32.dll 
77F70000-D:\NT35RC2\System32\ntdll.dll 

At first glance, it seems that there is practically no way to accom
plish what ImgWalk does without using undocumented functions. A pro
cess's image information can be obtained by debugging the desired 
process. However, there are problems associated with creating a debug
ger-the biggest being that a debugger attached to a debuggee can 
never detach itself without terminating the debuggee. This is clearly vis
ible in the way that terminating a debugger also terminates its debuggee. 
The InjectLib function does not have this problem-it attaches the DLL 
to a process and then InjectLib detaches the DLL from that process. 

ImgWalk walks through a process's address space looking for map
ped file images by repeatedly calling VirtualQuery to fill a MEMORY
_BASIC_INFORMATION structure. With each iteration of the loop, 

873 



ADVANCED WINDOWS 

874 

ImgWalk checks to see whether there's a file pathname to concatenate 
with a string. This string appears in the message box. 

while (VirtualQuery(lp. &mbi. sizeof(mbi)) == sizeof(mbi)) { 
if (mbi .State == MEM_FREE) 

} 

mbi.AllocationBase = mbi .BaseAddress; 

if «mbi.AllocationBase hinstDll):: 

} 

(mbi .AllocationBase != mbi .BaseAddress) :: 
(mbi.AllocationBase NULL)) { 

II Do not add the module name to the list 
II if any of the following is true: 
II 1. If this region contains this DLL 
II 2. If this block is NOT the beginning of a region 
I I 3. If the address is NULL 
nLen = 0; 

else { 
nLen = GetModuleFileName«HINSTANCE) mbi .AllocationBase. 

szModName. ARRAY_SIZE(szModName)); 

if (nLen > 0) { 

} 

_stprintfCtcschr(szBuf. 0). _TEXT<"\n%08X-%s"). 
mbi .AllocationBase. szModName); 

lp += mbi .RegionSize; 

First I check to see whether the region's base address matches the 
base address of the injected DLL. If we have a match, I set nLen to 0 so 
that I do not show the injected library in the message box. If we don't 
have a match, I attempt to get the filename for the module loaded at the 
region's base address. If the nLen variable is greater than 0, the system 
recognizes that the address identifies a loaded module and the system 
fills the szModName buffer with the full pathname of the module. I then 
concatenate the module's HINSTANCE (base address) and its pathname 
with the szBuj string that will eventually be displayed in the message box. 
When the loop is finished, the DLL presents a message box with the final 
string as its contents. 



S I X TEE N: Breaking Through Process Boundary Walls 

IMGWALK.C 

Figure 16-8. (continued) 

Source code for IMGWALK.DLL. 

875 



ADVANCED WINDOWS 

Figure 16-8. continued 

A Summary 

876 

The table on the facing page summarizes the pros and cons of the three 
library injection methods discussed in this chapter. 

Whenever I discuss with other programmers these methods of inject
ing a library into another process's address space, I always get the follow
ing question: "Doesn't Windows NT prevent you from injecting a DLL 
into another process's address space because it's supposed to be a secure 
environment?" The answer is that of course Windows NT is a secure envi
ronment, but certain security features such as the ability to disable the 
installation of systemwide hooks are disabled by default. Also, as it turns 
out, certain processes by default do not allow the CreateRemoteThread 



S I X TEE N: Breaking Through Process Boundary Walls 

Remote 
AppiniLDLLs Hooks Threads 

Method works under Windows 95? No Yes No 

Method works under Windows NT? Yes Yes Yes 

Requires restarting the computer? Yes No No 

Requires the target process map Yes Yes No 
USER32.DLL? 

Requires the target process map Yes Yes Yes 
KERNEL32.DLL? 

Can the injected library be unloaded No Yes Yes 
from the target process? 

Is the library injected into every Yes No No 
process that maps USER32.DLL? 

Is the source code CPU platform Yes Yes 99% Yes 
independent? 

function to create a thread in their address spaces. For example, the 
Win32 subsystem (CSRSS.EXE) and the Logon process (WINLOGON 
.EXE) have an access mask specified that prohibits another process from 
creating a thread in their address spaces by using the CreateRemoteThread 
function. 

However, Win32 under Windows NT is much more robust than 16-
bit Windows even with these defaults. Also, for backward compatibility, 
turning on many of the security features would mean breaking existing 
16-bit Windows-based and ported Win32-based applications. Plus, many 
really cool programs such as Spy++ require the ability to set hooks and 
subclass windows created by other processes' threads. 

877 





APPENDIX A 

MESSAGE CRACKERS 

When Windows was introduced, there were only two programming lan
guages that could be used for developing Windows-based applications: C 
and assembly language. And the only C compiler that could produce 
executable files for Windows was Microsoft's; no other compiler on the 
market supported the development of applications for Windows. Well, 
things have changed significantly over the past few years. Now you can 
develop Windows-based applications using Ada, assembly language, C, 
C++, COBOL, dBASE, FORTRAN, LISP, Modula-2, Pascal, REXX, and 
Small talk/V. And let's not forget Basic. 

But even with all these languages that support Windows coming 
out of the woodwork, C is still the language used most often, with C++ 
slowly gaining popularity. When it came time to choose a language for 
presenting the sample code in this book, I narrowed down the choices to 
these four: 

1. Straight C 

2. C with message crackers 

3. Straight C++ 

4. C++ using the Microsoft Foundation Classes 

It was a tough decision. 
Because I wanted the book to appeal to the broadest possible audi

ence, I decided to rule out option 4. Since several companies produce 
C++ class libraries for Windows development, I didn't want to require 
one particular class library. Also, some class libraries do more for you 
than just put a wrapper around the Windows APls, and I didn't want to 
introduce extraneous code or procedures into the code samples. I will 
say, however, that I personally love the Microsoft Foundation Classes and 
use them when I develop large applications of my own. 

879 



ADVANCED WINDOWS 

880 

Option 3 didn't seem to offer much either. Even without a class 
library, developing Windows-based applications in C++ can be easier 
than using straight C, but because the programs in this book are rela
tively small, using C++ wouldn't have offered many advantages. Another 
big reason for not choosing option 3 or 4 is that most people are still 
doing development for Windows in C and haven't yet switched to C++. 

Option 1 would have been a good choice because there would have 
been almost no learning curve for people trying to understand my pro
grams, but I chose to go with option 2. When I go to conferences, I fre
quently ask people if they are using message crackers, and I usually get a 
"no" response. When I probe further, I discover that they don't even 
know what message crackers are or what they do. By using C with mes
sage crackers to present the sample code in this book, I get to introduce 
these little-known but useful macros to many people who might not 
know about them. 

Message crackers are contained in the WINDOWSX.H file sup
plied with Visual C++ 2.0. You usually include this file immediately after 
the WINDOWS.H file. The WINDOWSX.H file is nothing more than a 
bunch of #define statements that create a set of macros for you to use. 
Microsoft designed the macros to provide the following advantages: 

• They reduce the amount of casting necessary in an application 
and make the casting that is required error free. One of the big 
problems with programming for Windows in C has been the 
amount of casting required. You hardly ever see a call to a 
Win32 API function that doesn't require some sort of cast. Casts 
should be avoided because they prevent the compiler from 
catching potential errors in your code. A cast tells the compiler, 
"I know I'm passing the wrong type here, but that's OK; I know 
what I'm doing." When you do so much casting, it's easy to 
make a mistake. The compiler should be doing as much work to 
help us as it possibly can. If you use these macros, you'll have 
much less casting to perform. 

• They make your code more readable. 

• They simplify porting between the 16-bit Windows API and the 
Win32API. 

• They're easy to understand-they're just macros, after all. 

• They're easy to incorporate into existing code. You can leave 
old code alone and immediately start using the macros in new 
code. You don't have to retrofit an entire application. 



A P PEN D I X A: Message Crackers 

• They can be used in C and c++ code, although they're not nec
essary if you're using a class library. 

• If you need a feature that the macros don't support, you can 
easily write your own macros by following the model used in 
the header file. 

• If you use the macros, you don't need to reference or remem
ber obscure Windows constructs. For example, many func
tions in Windows expect a long parameter where the value in 
the long's high-word means one thing and the value in its low
word means something else. Before calling these functions, 
you must construct a long value out of the two individual val
ues. This is usually done by using the MAKELONG macro from 
WINDEF.H. But I can't tell you how many times I've acciden
tally reversed the two values, causing an incorrect value to be 
passed to a function. The macros in WINDOWSX.H come to 
the rescue. 

The macros contained in WINDOWSX.H are actually divided into 
three groups: message crackers, child control macros, and API macros. 

Message Crackers 
Message crackers make it easier to write window procedures. Typically, 
window procedures are implemented as one huge switch statement. In 
my travels, I have seen window procedure switch statements that con
tained well over 500 lines of code. We all know that implementing win
dow procedures this way is a bad practice, but we do it anyway. I have 
been known to do it myself on occasion. Message crackers force you to 
break up your switch statements into smaller functions-one function 
per window message. This makes your code much more manageable. 

Another problem with window procedures is that every message 
has wParam and LParam parameters, and depending on the message, 
these parameters have different meanings. In some cases, such as for a 
WM_COMMAND message, wParam contains two different values. The 
high-word of the wParam parameter is the notification code, and the 
low-word is the ID of the control. Or is it the other way around? I always 
forget. Even worse, in 16-bit Windows, the LParam parameter for a 
WM_COMMAND message contains the window handle and the notifi
cation code. If you use message crackers, you don't have to remember or 
look up any of this. These macros are called message crackers because 

881 



ADVANCED WINDOWS 

882 

they crack apart the parameters for any given message. If you want to 
process the WM_COMMAND message, you simply write a function that 
looks like this: 

void Cls_OnCommand(HWND hwnd. int id. HWND hwndCtl. 

} 

UINT codeNotify) { 

switch (id) { 

} 

case ID_SOMELISTBOX: 
if (codeNotify != LBN_SELCHANGE) 

break; 

/1 Do LBN_SELCHANGE processing. 
break; 

case ID_SOMEBUTTON: 
break; 

Look how easy it is! The crackers look at the message's wParam and 
lParam parameters, break the parameters apart, and call your function. 
There is a WINDOWSX.H file for Win32 and a WINDOWSX.H file for 
16-bit Windows. The WM_COMMAND cracker for 16-bit Windows cracks 
wParam and lParam differently from the Win32 version. No matter how 
the parameters are cracked, you still write just the one function. You 
instantly have code that will compile and work correctly for both 16-bit 
Windows and Win32! 

To use message crackers, you need to make some changes to your 
window procedure's switch statement. Take a look at the window proce
durebelow: 

LRESULT WndProc (HWND hwnd. UINT uMsg. 

} 

WPARAM wParam. LPARAM lParam) { 

switch (uMsg) { 

} 

HANDLE_MSG(hwnd. WM_COMMAND. Cls_OnCommand); 
HANDLE_MSG(hwnd. WM_PAINT. Cls_OnPaint); 
HANDLE_MSG(hwnd. WM_DESTROY. Cls_OnDestroy); 
default: 

return(DefWindowProc(hwnd. uMsg. wParam. lParam»; 



A P PEN D I X A: Message Crackers 

In both the 16-bit Windows and the Win32 version of WINDOWSX.H, 
the HANDLE_MSG macro is defined as follows: 

#define HANDlE_MSG(hwnd. message. fn) \ 
case (message): \ 

return HANDlE_lIIImessage«hwnd). (wParam). (1 Paraml. (fn»; 

For a WM_COMMAND message, the preprocessor expands this line to 
read as follows: 

case (WM_COMMAND): 
return HANDlE_WM_COMMAND«hwnd). (wParam). (lParam). 

(C1s_OnCommand»; 

The HANDLE_WM_ * macros are also defined in WINDOWSX.H. 
These macros are actually message crackers. They crack the contents of 
the wParam and lParam parameters, perform all the necessary casting, 
and call the appropriate message function, such as the Cls_OnCommand 
function shown earlier. The macro for the 16-bit Windows version of 
HANDLE_WM_COMMAND is: 

#define HANDlE_WM_COMMAND(hwnd. wParam. 1Param. fn) \ 
«fn) «hwnd). (int)(wParam). (HWND)lOWORD(l Param). 
(UINT) HIWORD(lParam». el) 

The macro for the Win32 version is: 

#define HANDlE_WM_COMMAND(hwnd. wParam. 1Param. fn) \ 
( (fn) «hwnd). (int) (lOWORD(wParam». (HWND)(lParam). 
(UINT) HIWORD(wParam». el) 

When the preprocessor expands either of these macros, the result 
is a call to the Cls_OnCommand function with the contents of the wParam 
and lParam parameters broken down into their respective parts and cast 
appropriately. 

When you are going to use message cracker macros to process a 
message, you should open the WINDOWSX.H file and search for the 
message you want to process. For example, if you search for WM
_COMMAND, you see the part of the file that contains these lines: 

/* void C1s_OnCommand(HWND hwnd. int id. HWND hwndCtl. 
UINT codeNotify); */ 

#define HANDlE_WM_COMMAND(hwnd. wParam. 1Param. fn) \ 
«fn)«hwnd). (int)(lOWORD(wParam». (HWND)(lParam). 
(UINT)HIWORD(wParam». el) 

#define FORWARD_WM_COMMAND(hwnd. id. hwndCt1. codeNotify. fn) \ 
(void)(fn)«hwnd). WM_COMMAND. 
MAKEWPARAM«UINT)(id).(UINT)(codeNotify». 
(lPARAM)(HWND)(hwndCtl» 

883 



ADVANCED WINDOWS 

The first line is a comment that shows you the prototype of the function 
you have to write. This prototype is the same whether you are looking at 
the 16-bit Windows version or the Win32 version of the WINDOWSX.H 
file. The next line is the HANDLE_ WM_ * macro, which we have already 
discussed. The last line is a message forwarder. Let's say that during your 
processing of the WM_COMMAND message you want to call the default 
window procedure to have it do some work for you. This function would 
look like this: 

void Cls_OnCommand (HWND hwnd, int id, HWND hwndCtl, 
UINT codeNotify) { 

} 

II Do some normal processing. 

II Do default processing. 
FORWARD_WM_COMMAND(hwnd, id, hwndCtl, codeNotify, 

DefWindowProc); 

The FORWARD_WM_ * macro takes the cracked message parame
ters and reconstructs them to their wParam and lParam equivalents. 
The macro then calls a function that you supply. In the example above, 
the macro calls the DejWindowProc function, but you could just as easily 
have used SendMessage or PostMessage. In fact, if you want to send (or 
post) a message to any window in the system, you can use a FORWARD
_WM_ * macro to help combine the individual parameters. Like the 
HANDLE_WM_* macros, the FORWARD_WM_* macros are defined 
differently depending on whether you are compiling for 16-bit Windows 
or for Win32. 

Child Control Macros 

884 

The child control macros make it easier to send messages to child con
trols. They are very similar to the FORWARD_WM_ * macros. Each of the 
macros starts with the type of control you are sending the message to, 
followed by an underscore and the name of the message. For example, to 
send an LB_GETCOUNT message to a list box, you would use the follow
ing macro from WINDOWSX.H: 

#define listBox-GetCount(hwndCtl) 
«int)(DWORD)SendMessage«hwndCtl), lB_GETCOUNT, 0, 0l» 



A P PEN 0 I X A: Message Crackers 

Let me point out a couple of things about this macro. First, it takes 
only one parameter, hwndCtl, which is the window handle of the list box. 
Since the LB_GETCOUNT message ignores the wParam and lParam 
parameters, you don't need to be bothered with them at all. The macro 
will pass zeros in, as you can see on the preceding page. 

Second, when SendMessage returns, the result is cast to an int to 
remove the necessity for you to supply your own cast. Normally you 
would write code like this: 

int n = (int) SendMessage(hwndCtl, LB_GETCOUNT, 0, 0); 

When this line is compiled for 16-bit Windows, the compiler warns you 
that you might lose significant digits. The reason for this is that you are 
attempting to put a DWORD value (returned from SendMessage) into an 
integer. It's much simpler to write: 

int n = ListBox_GetCount(hwndCtl); 

Also, I'm sure you'll agree that the line above is a little easier to read 
than the SendMessage line. 

The one thing I don't like about the child control macros is that 
they all take the handle of the control window. Most of the time, the con
trols you need to send messages to are children of a dialog box. So you 
end up having to call GetDlgltem all the time, producing code like this: 

int n = ListBox_GetCount(GetDlgltem(hDlg, ID_LISTBOX»; 

This code doesn't run any slower than it would if you had used 
SendDlgltemMessage, but your application does contain some extra code 
because of the additional call to GetDlgltem. If you need to send several 
messages to the same control, you may want to call GetDlgltem once, save 
the child window's handle, and then call all the macros you need, as 
shown in the following code: 

HWND hwndCtl = GetDlgltem(hDlg, ID_LISTBOX); 
int n = ListBox-GetCount(hwndCtl); 
ListBox_AddString(hwndCtl, "Another string"); 

If you design your code in this way, your application runs faster because 
it doesn't repeatedly call GetDlgltem. GetDlgltem can be a slow function if 
your dialog box has many controls and the control you are looking for is 
toward the end of the z-order. 

885 



ADVANCED WINDOWS 

API Macros 

886 

The API macros exist to make some common operations a little simpler. 
For example, one common operation is to create a new font, select the 
font into a device context, and save the handle of the original font. This 
code looks something like this: 

HFONT hfontOrig = (HFONT) SelectObject(hdc. (HGDIOBJ) hfontNew); 

This statement requires two casts in order to get a warning-free compila
tion. One of the macros in WINDOWSX.H was designed for exactly this 
purpose: 

#define SelectFont(hdc. hfont) \ 
«HFONT) SelectObject( (hdc). (HGDIOBJ) (HFONT) (hfont») 

If you use this macro, the line of code in your program becomes: 

HFONT hfontOrig = SelectFont(hdc. hfontNew); 

This code is easier to read and is far less subject to error. 
Several more API macros are defined in WINDOWSX.H to help 

with commonly performed Windows tasks. I urge you to examine them 
and to use them. 



APPENDIX B 

THE BUILD ENVIRONMENT 

In order to build the sample applications in this book, you must be con
cerned with compiler and linker switch settings. I have tried to isolate 
these details from the sample applications by putting almost all of these 
settings in a single header file, called ADVWIN32.H, that is included in 
all of the sample application source code files. Unfortunately, there are 
some settings I wasn't able to put in this header file; I was therefore 
forced to make some changes to each sample application's project make 
file. This appendix discusses why I chose the compiler and linker switch
es I did and how I went about setting them for the sample applications. 

The ADVWIN32.H Header File 
All the sample programs in this book include the ADVWIN32.H header 
file before including any other header file. I wrote the ADVWIN32.H 
header file, listed in Figure B-1 beginning on page 892, in order to make 
life a little easier for me. The file contains macros, linker directives, and 
other code that I wanted to be common across all the applications. 
Sometimes when I want to try different things out, all I need to do is 
modifY the ADVWIN32.H file and rebuild all the sample applications. 
The ADVWIN32.H file is in the root directory on the companion disc. 

The remainder ofthis appendix discusses each of the sections con
tained within the ADVWIN32.H header file. I explain the rationale for 
each section and also describe how and why you might want to change 
the section before rebuilding all the sample applications. 

887 



ADVANCED WINDOWS 

Warning Level 4 
When I develop software, I always do my best to ensure that the code 
compiles both error and warning free. I also like to compile at the high
est warning level possible. This way, the compiler is doing the most work 
for me and is examining even the most minute details of my code. For 
the Microsoft C/C++ compilers, this means that I built all the sample 
applications on the companion disc using warning level 4. 

Unfortunately, Microsoft's Operating Systems group doesn't share 
my sentiments about compiling using warning level 4, and as a result, 
when I set the sample applications to compile at warning level 4 there 
are many lines in the Windows header files that cause the compiler to 
generate warnings. Fortunately, these warnings do not represent prob
lems in the code-most are generated by unconventional uses of the 
C language. These uses rely on compiler extensions that almost all 
vendors of PC-compatible compilers implement. 

The first part of the ADVWIN32.H header file explicitly tells the 
compiler to ignore some common warnings using the #pragma warning 
directive. 

The STRICT Macro 

Unicode 

888 

All my sample applications are compiled taking advantage of the strict 
type-checking support available in the Windows header files. This sup
port makes sure that I assign HWNDs to HWNDs and HDCs to HDCs 
and so forth. With STRICT defined, the compiler will issue a warning if, 
for example, I attempt to assign an HWND to an HDC. 

In order to turn strict type-checking on, the compiler must have 
the STRICT macro defined prior to including the Windows header files. 

I have written all the sample applications so that they can be compiled as 
either ANSI or Unicode. By default, the applications compile using ANSI 
strings and characters, but by defining the UNICODE and _UNICODE 
macros, the applications compile using Unicode strings and characters. 
By defining the UNICODE macro in ADVWIN32.H, it is easy for me to 
control how I want the sample applications to build. For more informa
tion on Unicode, see Chapter 15. 



A P PEN D I X B: The Build Environment 

The ARRAY_SIZE Macro 
The ARRAY_SIZE macro is a useful macro that I tend to use in many 
programs I write. It simply returns the number of elements in an array. It 
does this by using the sizeo! operator to first calculate the size of the 
entire array in bytes. It then divides this number by the number of bytes 
required for a single entry in the array. Here is the macro: 

#define ARRAY_SIZE(Array) \ 
(sizeof(Array) / sizeof«Array)[0]» 

The BEGINTHREADEX Macro 
All the multithreaded samples in this book use the new _ beginthreadex 
function, supplied in Microsoft's C run-time library, instead of Win 32's 
CreateThread function. This is because the _beginthreadex function pre
pares the new thread so that it can use the C run-time library functions 
and also ensures that the per-thread C run-time library information is 
destroyed when the thread returns. (See Chapter 3 for more details.) 
Unfortunately, the _beginthreadex function is prototyped as follows: 

unsigned long _cdecl _beginthreadex(void *lpsa. unsigned cbStack. 
unsigned (_stdcall *) (void *lpStartAddr). void *lpvThreadParm. 
unsigned fdwCreate. unsigned *lpIDThread); 

Although the parameter values for _beginthreadex are identical to the 
parameter values for the Win32 CreateThread function, the data types of 
the parameters do not match. Here is the prototype for the CreateThread 
function: 

HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpsa. DWORD cbStack. 
LPTHREAD_START_ROUTINE lpStartAddr. LPVOID lpvThreadParm. 
DWORD fdwCreate. LPDWORD lpIDThread); 

Microsoft did not use the Win32 data types when creating the 
_beginthreadex function's prototype because Microsoft's C run-time 
group does not want to have any dependencies on the Operating System 
group. I commend this decision; however, this makes using the _ begin
threadex function more difficult in your code, especially if you define 
the STRICT macro when you compile. 

There are really two problems with the way Microsoft pro to typed 
the _beginthreadex function. First, some of the data types they used for the 

889 



ADVANCED WINDOWS 

function do not match the primitive types used by the CreateThread func
tion. For example, the Win32 data type LPDWORD is defined as follows: 

typedef unsigned long DWORD; 

This data type is used for CreateThread's cbStack parameter as well as 
for its fdwCreate parameter. The problem is that _ beginthreadex prototypes 
these two parameters as unsigned, which really means unsigned int. The 
compiler considers an unsigned int to be different from an unsigned 
long and generates a warning. Since the _ beginthreadex function is not a 
part of the standard C run-time library and exists only as an alternative 
to calling the Win32 Create Thread function, I believe that Microsoft should 
have proto typed _ beginthreadex this way so that warnings are not generated: 

unsigned long __ cdecl _beginthreadex(void *lpsa. 
unsigned long cbStack. 
unsigned ( __ stdcall *) (void *lpStartAddr). void *lpvThreadParm. 
unsigned long fdwCreate. unsigned long *lpIDThread); 

The second problem is just a small variation of the first. The _begin
threadex function returns an unsigned long representing the handle of 
the newly created thread. An application will typically want to store this 
return value in a data variable of type HANDLE as follows: 

HANDLE hThread = _beginthreadex( ... ); 

The line of code above causes the compiler to generate another warning 
if you define STRICT when you compile your code. In order to avoid the 
compiler warning, you must rewrite the line above introducing a cast as 
follows: 

HANDLE hThread = (HANDLE) _beginthreadex( ... ); 

Again, this is very inconvenient. In order to make my life a little 
easier, I define a BEGINTHREADEX macro inADVWIN32.H to perform 
all of this casting for me. 

Linker Directives 

890 

One of my goals when creating the sample applications in the book was 
to avoid putting a lot of dependencies in the applications' project make 
files. For example, I could have used Visual C++'s Project Settings dia
log box to add the STRICT, UNICODE, and_UNICODE macros to the 
project's settings, but that would have created a dependency on the proj
ect's make file. If you ever wanted to create the project's make file from 
scratch, you might forget to select certain options and some of the pro
grams might not work properly. 



A P PEN 0 I X B: The Build Environment 

In fact, this is what happened to me while I was developing some of 
the sample applications. Some of the sample DLLs require that certain 
linker switches be set in order for them to function correctly. Whenever 
I would create a new project make file for these DLLs, I always forgot to 
set one of the linker switches, the DLL functioned improperly, and I 
would have to start debugging the application and the DLL in order to 
find out why. As soon as I realized that the code was fine but that I had 
forgotten to set a linker switch, I would kick myself. 

I knew that this was going to continue to be a problem for me as 
well as for readers of this book, so I set out on a mission to remove spe
cific project settings from all the make files for the samples. 

The real problem comes in with linker switches. Most of the com
piler switches can be set using the #pragma directives in the source files. 
Setting linker switches in the source files is a little more difficult, but 
there is a way to do it. 

When you run the linker, the linker looks in the OBJ files for a 
section called .drectve. The linker thinks that the strings in this section 
are command-line arguments to the linker. For example, if! want to tell 
the linker to link the application or the DLL as a Windows version 4.0 
file, I can put the following lines of code in one of my application's 
source files: 

fpragma data_seg(".drectve") 
static char szLinkDirectiveSubSystem[] = "-subsystem:Windows.4.0"; 

fpragma data_segel 

This tells the compiler that the OBJ file for this source file should have 
a .drectve section and that the string It-subsystem:Windows,4.0 lt should 
be in this section. When the linker links this OBJ file, it sees the 
It-subsystem:Windows,4.0 lt string in the .drectve section and treats this 
string as though it were a command-line option passed to the linker. 

If you want to have multiple directives in the .drectve section, you 
would like to do something like this: 

fpragma data_seg(".drectve") 
static char szLinkDirectiveSubSystem[] = "-subsystem:Windows.4.0"; 
static char szLinkDirectiveShared[] = "-section:Shared,rws"; 

fpragma data_segel 

Unfortunately, there is a bug in the linker that causes it to read only the 
first string that appears in the .drectve section. In the example above, 
the linker will set the EXE or the DLL as a Windows version 4.0 image file 
but will not make the Shared section readable, writable, and shared. 
Microsoft says that they will fix this bug in the next release of the linker. 

891 



ADVANCED WINDOWS 

892 

I trick the compiler into emitting the linker directives I want by 
using the following statement: 

II Instruct the linker to make the Shared section 
II readable, writable, and shared. 
#pragma comment(lib, "msvcrt " "-section:Shared,rws") 

When the comment #pragma is used this way, the system embeds library 
file information into the resultant OBJ file. Naturally, this library file 
information is embedded as linker directives that are inserted into the 
OBJ file's .drectve section. Unfortunately, the compiler takes whatever 
string I pass and prep ends "-defaultlib:" to it. This means that I cannot 
simply use a line like this: 

#pragma cqmment(lib, "-section:Shared,rws") 

because the compiler would create a linker switch that looks like 
"-defaultlib:-section:Shared,rws". The linker will vomit when it sees this! 
So, to make this hack work, I need to use the first #pragma line above, 
which causes the compiler to emit two linker switches as a single string: 
"-defaultlib:msvcrt -section:Shared,rws". The biggest problem with this 
hack is that I am assuming that all my EXEs and DLLs link with the 
dynamic library version of the C run-time library instead of the static-link 
library version. 

Figure 8-1. (continued) 

The ADVWlN32.H header file. 



A P PEN 0 I X B: The Build Environment 

Figure 8-1. continued 

II nonstandard extension used: bit field types other than int 
#pragma warning(disable: 4214) 

(continued) 

893 



ADVANCED WINDOWS 

894 

Figure 8-1. continued 

! II I 1/ II Ill! 1IIIIIlM 1111I11I1 f !fIlii/I III l!fll 

, I I.' CreateaB~Gr"tHREAOEX macro that cans the Cr\.ln,'~·ti,me·,$ .' 
H _beginthreadexfunctioh.· The C·l'un·-timelipl'ary d()e~n i t 
II want to have any rel iai1ce on' wi n32 data tY'Pess.ueh~s 
// HANOU.Thismellns iha.t .aWin32prpgralnmel'neeastQ~tast' .. 
II .the return value to,aHAN.OLE. Th.isiS 1;erri blylMonvantevt. 
I/so rlla va created thi s;inaGroto perform thetasUng. 
typedef unsigned' C ........ stdcall * PTHREArLSTARt) .(void*); 

·I/clef., neBEGIIHHREAOEX( 1 psa:cIiStack,lpStartAddr~ 
1 pvThr~adP:a I'm. fdwCreate. TpI{JThread) 

.' UHANOl,J ):;JJeginthre.adex( '. . 
(.vo1d.*)(1 pSIl). ... 
(unsi.gned) {cbStaeR),' 

" (PTHR£Ao:..START)< lpStartAd~r). 
(void*) (lpvThr.eadParm) " 
(un';;lgned)( fdwCr~ate >, .... . 
(unsigned *J. (JpIOThread».) 

'; IllllllllU IllllIt /1 t 1I1/1 tllllllllllil 1)1 / 111111(/) llU!I /X 
, > • ~ <, " .' > -' , > ' '. '-, "', 

.llcom~i le .a 11 CONTE.XT structures to use s2 cbit mellll)~rs:< 
II instead of lFbi t melfi\:lers. Currently "theortlysampie . 
II appJ i011tionthat requires this is;TInj~jb;t61 riorder .. 
/1 for it.to: work. cor;eC(ly (lothe {JE;CAlpha AXf1 •.. ' .. ; 
I/(Iefi ne _PORTAS LE..,.32 BU;"CO.NTEXT 

II I I /I /I /l1l/lll//lJIJ Ill/ J /llill III III fllllIN ItllliIU/JIll" .• 

II Forcl;} all EX~sandOLlStobeb~nt foT' Window~ 4.IL 
1/ Comment out the (meH ne below to c rea tesamp lies 
1/ that run under Window.s .Nl3.1 orWinsZs.· . 
II NOH; Windows NT 3.5 runs Wi n32progi'amSll1ark,edas IL0;: 

. /J'pragmac.ommEmt( lib. "msvcrt" "-subs'ystem:Windows ~4.0"j .' . 

. . 1/ I /I//11I1 llillll I III! II tEnd Of f'11eIl IIIIII Illti I /1/ lI/1l 



A P PEN 0 I X B: The Build Environment 

Project Settings I Couldn't Set in the Source Files 
There are a couple of project settings that I couldn't set in the source 
files. If you need to create new make files for any of my sample applica
tions, you'll need to set these manually. 

First, for the project's General settings, you must make sure that the 
Microsoft Foundation Classes combo box is set to Not Using MFC, as 
shown below. By default, every new project has this option set to Use 
MFC In A Shared DLL (mfc30(d).dll). If you fail to change this setting, 
the application will not link. 

The only other change you might have to make is in the Output 
Directories group box. You have to make this change only if the project 
is a DLL or an EXE that uses one of my DLLs. (There are three sample 
applications in my book that do this: ModUse, PMRest, and TLSDyn.) 
You'll need to change the entries in the Output Directories group box 
because I have, hard-coded in these EXEs, a linker directive that tells the 
linker which directory it should look in when trying to locate the associ
ated DLL's LIB file. I tell the linker where to look by embedding the fol
lowing code in the EXE's source code file: 

#defi ne LI BNAME "PMRstSub" 

#if definedC_X86_) 
#if defined(_DEBUG) 

f/pragma comment(lib. "Dbg_x86\\" LIBNAME) 
fie 1 se 

f/pragma comment(lib. "ReLx86\\" LIBNAME) 

(continued) 

895 



ADVANCED WINDOWS 

896 

fiend if 
#elif defined(_MIPS_) 

#if defined(_DEBUG) 
#pragma comment(lib. "Dbg_MIPS\\" LIBNAME) 

fie 1 se 
#pragma comment(lib. "ReLMIPS\\" LIBNAME) 

#endif 
#elif defined(_ALPHA_) 

#if defined(_DEBUG) 
#pragma comment(lib. "Dbg_Alph\\" LIBNAME) 

#else 
fipragma comment(l i b. "ReLAl ph\\" LIBNAME) 

#endif 
#else 

#error Modification required for this CPU platform. 
fiendif 

The code fragment above is from the PMRest sample, but the code 
for the other two samples is identical except for the first line, where I 
define the LIBNAME macro. 

When you create a new project file for a DLL, you must set both 
fields in the Output Directories group box to the appropriate sub
directory as indicated by the code above. The DLL will build correctly if 
you do not do this, but the EXE file will not be able to locate the DLL's 
LIB file unless the linker is told to put it in the appropriate directory. 

When you create a new project file for an EXE, you must also set 
both of these fields so that the linker can find the DLL's LIB file and so 
that the linker puts the EXE file in the same directory as the DLL. This 
way, when you run the EXE the system can locate the DLL file it needs. 



INDEX 
Italic page-number references indicate a figure, a listing, or a table. 

Numbers 
16-bit Windows 

address space, 96, 451 
DLL management, 483-84 
GetDriveType function, 575-76, 583 
heap functions 

introduced,277-78 
with semantic changes, 279, 279-80, 280 
that have been removed from Win32, 282, 

282 
that port to Win32, 278, 278 
that should be avoided in Win32, 280-81, 

281 
module definition (DEF) files, 507 
non-preemptive multitasking, 417-19 
page swapping, 95-96 
porting to Win32 from (see porting from 16-bit 

Windows to Win32) 
sharing data between processes, 245 
swap files, 105 
Win32 implementation, 2-3, 5-7 

8086 CPU, 94, 95 
8088 CPU, 94 
80x86 CPUs. See x86 CPU family 
80286 CPU, 94-95 
80386 CPU, 95, 96 
80486 CPU, 96 

A 
AbnormalTermination function, 698-700 
Add function, 504, 507, 513 
address space. See also physical storage; random 

access memory (RAM); virtual memory 
management 

16-bit Windows, 96, 451 
DLL, 98, 99, 101 
free 

defined, 102 

address space, free, continued 
described, 113 
in Windows 95, 120-25, 125-26 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
granularity of, 102, 103, 113, 126, 128, 129 
heap (see heaps) 
image 

described, 114 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
mapped 

described, 114 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
MS-DOS, 96 
multiple instances ofDLL or EXE files, 209-12, 

210,211 
private 

described, 113 
in Windows 95, 120-25, 125-26 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
process 

accessing another process's address space, 
809-10 (see also process boundary walls) 

Alpha CPU, 103, 104 
committing storage in reserved regions, 

172-77 
introduced, 9-10, 18,57,95,96-97 
mapping DLLs into, 484-90 
mapping file data into, 220-23 
maximum memory address, 128, 129 
minimum memory address, 128, 129 
MIPS CPU, 103, 104 
PowerPC CPU, 103, 104 
releasing regions in, 102, 177-79 
reserving regions in, 102, 169-72, 173-77 

897 



ADVANCED WINDOWS 

address space, process, continued 
total free regions, 138, 139 
total private bytes, 138, 139 
unmapping file data from, 224-25 
in Windows 95, 97-99, 98, 170, 809 
in Windows NT, 100, 100-102, 170 
x86 CPU family, 103, 104 

regions in, 102-3 
releasing, 102 
reserve, in Windows 95, 120-25,125-26 
reserving, 102 
state of (seeVMQuery listings for information 

about process virtual address space) 
thread,96 
thread stacks, 126 
virtual, 96-97 
VxD, 98, 99 
Windows 95 maps, 120-25, 125-26 
WINDOWS NT Executive, 101 
WINDOWS NT Kernel, 101 
Windows NT maps, 112-13, 113-15, 115-19, 

119-20 
ADVAPI32.DLL, 99, 101,481 
ADVWIN32.H header file, 887-94 
AJterThreadFuncfunction, 861-62 
alertable asynchronous file I/O, 624-27. See also 

ALERTIO.EXE application to demon
strate alertable file I/O 

ALERTIO.EXE application to demonstrate 
alertable file I/O 

ALERTIO.C listing, 630-40 
ALERTIO.RC listing, 640-42 
overview, 627, 627-29, 629 

allocation granularity, 102, 103, 113, 126, 128, 129 
AllocDStoCSAlias function, 282 
AllocProcessMemoryfunction, 848-57, 859, 862 
AllocSelectorfunction, 282 
Alpha CPU 

allocation granularity, 102 
CONTEXT structure, 737, 841, 841-42 
execute page protection, 863 
function return addresses, 838 
page size, 102, 103, 104, 128, 129 
process address space, 103, 104 

898 

Alpha CPU, continued 
protection attributes, 109 
stack pointer's register, 851 
stack space and, 205 

ANSI. See also FILEREV.EXE application to reverse 
contents of Unicode or ANSI text files 

converting applications to be ANSI- and 
Unicode-aware 

introduced, 797-98 
resources, 801 
string functions in Win32, 798-801 
text files, 801-2 
translating strings between Unicode and 

ANSI,802-6 
Windows NT: window classes and proce

dures, 806-8 
functions in Win32, 794-97 
standard C ANSI string functions and their 

Unicode equivalents, 788-90, 788, 790 
Win32 processing of strings, 263 

AnsiNext function, 785 
AnsiPrev function, 785 
API macros, 886 
applications 

base addresses, 16 
console-based,13-14 
GUI-based,13-15 
multiple instances of (see MULTINST.EXE 

application to prohibit multiple instances 
of applications from running) 

screen-saver 
Create Process function and, 42-43 
idle priority for, 74 
STARTF _SCREENSA VER flag and, 43 

Arabic Unicode character set, 786 
_argcrun-time global variable, 15 
_argv run-time global variable, 15 
Armenian Unicode character set, 786 
ARRAY_SIZE macro, 889 
ASCII Unicode character set, 786 
asctime function, 535 
asynchronous file I/O 

alertable, 624-27 (see alsoALERTIO.EXE 
application to demonstrate alertable file 
I/O) 



asynchronous file I/O, continued 
introduced, 411, 616-23 
performing multiple operations simultaneously, 

623-24 
AttachThreadlnputfunction, 449-52, 461 
attributes 

offiles (see file attributes) 
protection, 108-11, 194-95 

AUTOEXEC.BAT file, 22 
auto-reset events, 364, 399. See also 

DOCSTATS.EXE application for docu-
ment statistics; manual-reset events 

B 
background processes, 73 
backing random access memory (RAM), 108 
base addresses 

application, 16 
DLL file, 208-9 
EXE file, 208 
memory-mapped file, 240-41 

base priority, 77-79 
BeforeThreadFunc function, 862 
BeginPaint function, 432 
_beginthreadexfunction, 87-92, 197,336,538,557, 

889-90 
BEGINTHREADEX macro, 889-90 
_begin thread function, 91-92 
boundary walls for processes. See process boundary 

walls 
BRANCH structure of heaps 

application protection and, 264-65, 265 
efficient memory management and, 265, 266 
local access and, 265-66 

BringWindowToTop function, 456, 457, 462 
.bss section in DLL or EXE files, 516 
BuckeCAlterContents function, 376 
BuckeCDumpToLB function, 376 
BUCKET.EXE (bucket of balls) application 

BUCKET.C listing, 379-89 
BUCKET.RC listing, 397-99 
overview, 366-69, 368, 376-79, 378 
SWMRG.C listing, 390-95 
SWMRG compound synchronization object and, 

369-76 

BUCKET.EXE (bucket of balls) application, 
continued 

SWMRG.H listing, 395-96 
build environment 

ADVWIN32.H header file, 887-94 
introduced, 887 

Index 

project settings, 895, 895-96 
BY_HANDLE_FILE_INFORMATION structure, 

646-47 
BYTE data type, 797 

c 
C 

run-time library 
DllMain function and, 503-4 
processes and, 86-92 
thread stack checking function, 204-6 
TLS and, 535-36 
Unicode support, 788-94 
Visual C++, 86-92 

standard C ANSI string functions and their 
Unicode equivalents, 788, 790, 788-90 

C++. See Microsoft Visual C++ 
cached data, forcing writes to disk, 612 
CALC.EXE import table, 508-11 
calloc function, 14 
CallWindowProcA function, 808 
CallWindowProc function, 808 
CallWindowProcW function, 808 
casting in applications, 880 
catch keyword, 684 
CD-ROM File System (CDFS), 570-71 
CD-ROMs, 570-71 
CellData matrix, 257-58 
CELLDATA structure, 174-76, 178, 257 
change notifications for file systems, 663-66. See 

also FILECHNG.EXE application to 
demonstrate change notifications 

ChangeSelectorfunction, 282 
changing protection attributes, 194-95 
changing the current directory, 595 
changing the size of blocks of memory with heaps, 

270-71 

899 



ADVANCED WINDOWS 

character sets 
double-byte character sets (DBCSs), 783-85 
single-byte, 783, 784 
Unicode and, 783-86 
wide-byte, 785-86 

CharLowerBufffunction,800 
CharLowerfunction, 800 
CharNext function, 784, 784, 785 
CharPrev function, 784, 784, 785 
CharUpperBuff function, 800 
CharUpperfunction,800 
_chdirfunction, 27 
child control macros, 884-85 
child processes, 27-30, 48-50 
Clip Cursor function, 458 
CloseH andle function 

file systems and, 583, 608, 651, 666 
memory-mapped files and, 225-26, 247, 249 
process boundary walls and, 853 
processes and, 12, 44-45, 48, 50 
SEH and, 703 
threads and, 67, 70,91,92 
thread synchronization and, 320, 336-37, 348, 

365,373,377,403 
closing file-mapping objects and file objects, 

225-26 
closing files, 602-8 
closing handles, 44-45 
coherence of files, 229-30 
COMDLG32.DLL,481 
command line, process, 20-21 
CommandLineToArgvW function, 21 
CommitMemory function, 738-39, 762-63 
committing physical storage, 103-4, 172-77 
CompareFileTime function, 644 
CompareString function, 798-99 
compilers 

_leave keyword, 696-97, 702 
#pragma compiler directive, 212, 516-17, 888, 

891-96 
SEH and, 683-84 
warning level 4, 888 

component protection of heaps, 264-65, 265 
console-based applications, 13-14 
console input objects, 312 

900 

ConstructObjName function, 373 
context, thread, 57 
CONTEXT structure, 57, 60, 61, 62-63, 79, 

731-33,736-37,836-42,851 
COPYDATA.EXE application for copying data 

COPYDATA.C listing, 441-45 
COPYDATA.RC listing, 445-46 
overview, 439-41,440 

COPYDATASTRUCT structure, 438-39, 440 
CopyFile function, 597 
copying files, 597 
copy-on-write protection, 1l0-1l, 211-12, 225 
CounterThread function, 295-300, 322 
CREATLALWAYS flag, 603 
CREATLDEFAULT_ERROR_MODE flag, 38 
CreateDialogfunction, 668 
CreateDirectory function, 596-97, 599 
CreateEventfunction, 364-65, 623 
CreateFile function 

file systems and, 580-81, 583, 602-8, 609, 612, 
642-43,649,665 

memory-mapped files and, 215-17, 220, 224, 
229,231,245,249 

processes and, 26-27 
thread synchronization and, 312 
Unicode and, 796 

CreateFileMappingfunction, 217-20, 220, 221, 226, 
231,245,246-47,248,249,250,258 

Create/con function, 11-12 
CreateMDIWindowfunction,55 
CreateMutexfunction, 11, 12,316-17 
CREATE_NEW_CONSOLE flag, 37 
CREATLNEW flag, 603 
CREATLNEW_PROCESS_GROUP flag, 37-38 
CreateProcess function 

Create Thread function and, 60, 61 
cursor control, 42-43 
fdwCreateparameter, 32, 37-38, 72 
JInheritHandles parameter, 32, 35 
IppiProcInfo parameter, 32, 35, 44-45, 79 
IpsaProcess parameter, 32, 34-35 
IpsaThread parameter, 32, 34-35 
IpsiStartlnfo parameter, 32, 39-44 
IpszCommandLineparameter, 32, 33-34 
IpszCurDirparameter, 32, 39 



CreateProcess function, continued 
lpszImageNameparameter, 32, 34 
lpvEnvironment parameter, 32, 39 
memory-mapped files and, 208, 209, 248 
overview, 20, 32-33 
process boundary walls and, 836 
screen-saver applications and, 42-43 
SEH and, 776-77 
Unicode and, 796 
WaitForlnputldlefunction and, 412 

CreateRemoteThreadfunction, 5, 836, 837-38, 
844-46,849,850,876-77 

CreateSemaphorefunction, 333-34, 343, 346 
CREATE_SEPARATE_WOW_VDM flag, 38 
CREATLSUSPENDED flag, 37, 62-63, 79, 80, 

846,850 
CreateThread function 

16-bit Windows and, 3 
_beginthreadexfunction and, 87, 90-91,197,538, 

889-90 
cbStack parameter, 60, 61-62 
CreateRemoteThread function and, 837 
DlLMain function and, 499, 502 
jdwCreateparameter, 60, 62-64 
GetCurrentThread function and, 67 
lpIDThread parameter, 60, 64 
lpsa parameter, 60, 61 
lpStartAddrparameter, 60, 62 
lpvThreadParm parameter, 56, 60, 62, 70 
overview, 60-61 
ResumeThread function and, 79 

CREATLUNICODLENVIRONMENT flag, 38 
CreateWindowExA function, 795, 796 
CreateWindowExfunction, 787, 788, 794-95 
CreateWindowExWfunction, 795 
CreateWindow function, 412, 451 
creating critical sections, 287-88 
creating directories, 596-97 
creating dynamic-link libraries (DLLs), 481-90 
creating file kernel objects, 215-17 
creating file-mapping kernel objects, 217-20 
creating files, 602-8 
creating heaps, 264-71 
creating processes. See Create Process function 
creating sections in DLL or EXE files, 516-18 

creating threads, 51-53. See also CreateThread 
function 

when not to create a thread, 53-55 
CRITICAL_SECTION objects, 370 
critical sections 

creating, 287-88 
introduced, 285-87 
using, 288-95 

Index 

using mutexes instead of, 318-19, 320-21 
CRITICAL_SECTION structure, 287-95 
CRITSECS.EXE application to test critical sections 

CRITSECS.C listing, 300-308 
CRITSECS.RC listing, 308-10 
overview, 295-300, 296, 297, 298 

.CRT section in DLL or EXE files, 516 
current directory 

changing, 595 
getting, 594-95 
introduced,26-27 

current drive, 26-27 
cursors 

mouse cursor management, 457-60 
start glass, 42-43 

Cyrillic (Russian) Unicode character set, 786 

D 
data, sending data with messages, 436-39. See also 

COPYDATA.EXE application for copying 
data 

data access, 106, 106-7 
data files, 212-14 
.data section in DLL or EXE files, 516 
DBCSs (double-byte character sets), 783-85 
deadlock,293-94,316 
DebugActiveProcess function, 777 
debuggers, unhandled exceptions without a 

debugger attached, 774-77, 775 
DEBUG_ONLY_THIS_PROCESS flag, 37 
DEBUGYROCESS flag, 37 
.debug section in DLL or EXE files, 516 
DEC Alpha processor. See Alpha CPU 
_declspec(thread) prefix, 555, 557, 653-54 
de committing physical storage, 104, 177-79 
default heaps, 262-64 

901 



ADVANCED WINDOWS 

DEF (module definition) files, 507 
DejineHandleTablefunction, 281 
DejWindowProc function, 884 
DeleteCriticalSection function, 295 
DeleteFilefunction, 598, 601 
delete operator, 272-76 
deleting files, 598 
denormal values, 727 
deserialized input, 447-52 
destroying heaps, 272 
detached processes, 50 
DETACHED_PROCESS flag, 37 
Devanagari Unicode character set, 786 
DeviceloControl function, 580-83, 621 
Diacritical Marks Unicode character set, Generic, 786 
DialogBoxfunction, 18,376,377,492,668 
directories 

creating, 596-97 
current 

changing, 595 
getting, 594-95 
introduced, 26-27 

naming conventions for, 571-72 
removing, 596-97 
searching for files, 647-51 (see also 

DIRWALK.EXE application for demon
strating directory walking) 

system, 595-96 
Windows, 596 

DIRWALKDATA structure, 653-54 
DIRWALK.EXE application for demonstrating 

directory walking 
DIRWALK.C listing, 654-61 
DIRWALK.RC listing, 661-63 
overview,651-54,652 

DirWalk function, 652-54 
DirWalkRecurse function, 652-54 
DisableThreadLibraryCalls function, 501, 502 
DISK_GEOMETRY structure, 582 
DISKlNFO.EXE application for viewing disk 

information 
dialog box examples, 584-85 
DISKINFO.C listing, 586-91 
DISKINFO.RC listing, 592-94 
overview, 583-85,584-85 

902 

disks. See also DISKINFO.EXE application for 
viewing disk information; drives 

free space on, 578-80 
sectors per cluster, 578-79, 579 
serial numbers on, 577 

DispatchMessagefunction, 424-25, 432, 669, 818 
Display Thread function, 295-300, 322 
Dlg_CountWordslnFilefunction, 700-701, 702, 703 
Dlg_OnlnitDialogfunction, 295, 376, 377 
Dlg_ReserveArrayAndAccesslt function, 761 
DLL files, 108, 208-12 
/DLL linker switch, 482 
_DllMainCRTStartup function, 503 
DlLMain function 

calls serialized, 499-502 
C run-time library and, 503-4 
DLL_PROCESS-ATTACH parameter value, 

490,492-93,49~814,848,859 

DLL_PROCESSj)ETACH parameter value, 
491,494-95, 496, 497,848,859 

DLL_THREAD_ATTACH parameter value, 490, 
498 

DLL_ THREAD_DETACH parameter value, 490, 
498 

introduced, 490-92 
porting from 16-bit Windows to Win32 and, 491, 

493 
TLSDYN.EXE application and, 543-44 

DLLs. See dynamic-link libraries (DLLs) 
DOCSTATS.EXE application for document 

statistics 
DOCSTATS.C listing, 403-9 
DOCSTATS.RC listing, 409-10 
overview, 400-403 

DONLRESOLVLDLL_REFERENCES flag, 486 
DosDateTimeToFileTime function, 646 
double-byte character sets (DBCSs), 783-85 
drives. See also DISKlNFO.EXE application for 

viewing disk information; disks 
current, 26-27 
directory operations 

changing the current directory, 595 
creating directories, 596-97 
getting the current directory, 594-95 
getting the system directory, 595-96 



drives, directory operations, rontinued 
getting the Windows directory, 596 
removing directories, 596-97 

getting volume-specific information, 576-86 (see 
also DISKINFO.EXE application for 
viewing disk information) 

logical,573-76 
searching for files, 647-51 (see also 

DIRWALK.EXE application for demon
strating directory walking) 

system operations, 573-76 
type, 574-76 

DuplicateHandlefunction, 68-70, 317, 364 
dynamic boosting of thread priority levels, 78-79 
dynamic-link libraries (DLLs) 

addressspace,98,99,101 
ADVAPI32.DLL, 99,101,481 
COMDLG32.DLL,481 
creating, 481-90 
DLL files and physical storage, 108 
entry/exit (DllMain) function 

DLL_PROCESS_DETACH parameter value, 
491,494-95, 49~ 497 

introduced, 490-92 
porting from 16-bit Windows to Win32 and, 

491,493 
explicit linking of, 485-90 
exporting functions and variables from, 504-7 
GDI32.DLL, 99,101,481 
GetModuleHandle function and, 16-17, 488 
header file, 513 
heapsand,261,262-63 
IMGWALK.DLL, 873,873-76 
implicit linking of, 484-85 
importing functions and variables from, 507-13 
injecting DLLs 

using a function (see injecting DLLs, using a 
function) 

using remote threads, 834-35, 876-77 
using the registry, 813, 813-15 
using Windows hooks, 815-17, 876-77 (see 

also PMREST.EXE application to subclass 
the Program Manager) 

introduced, 481 
KERNEL32.DLL, 55, 99, 101,481,504-6,845, 

861 

Index 

dynamic-link libraries (DLLs), continued 
LZ32.DLL,481 
management in 16-bit Windows and Win32, 

483-84 
mapping into a process's address space, 484-90 
module definition (DEF) files and, 507 
MODUSE.EXE application to simulate the 

GetModuleUsage function 
MODULE.C listing, 519-21 
MODULE.H listing, 521 
MODULE.RC listing, 522-23 
MODUSE.C listing, 525-28 
MODUSE.RC listing, 528-29 
overview, 518, 523-25,525 

MSVCRT20.DLL library, 86, 90 
MULTINST.EXE application to prohibit 

multiple instances of applications from 
running 

MULTINST.C listing, 530-31 
MULTINST.RC listing, 532-33 
overview, 530 

NTDLL.DLL, 845 
PMRSTSUB.DLL, 515, 516, 817-20 
sections of, 514-18 
sharing data across mappings of, 514-18 (see also 

MODUSE.EXE application to simulate 
the GetModuleUsagefunction) 

TerminateThread function and, 65 
terminating processes and, 47 
USER32.DLL, 99,101,481,811,811,812,814 

dynamic priority, 79 
dynamic thread-local storage (TLS) , 536-41. See 

also TLSDYN .EXE application for 
dynamic thread-local storage (TLS) 

E 
EB (exabyte), 219 
.edata section in DLL or EXE files, 516 
EMS (Expanded Memory Specification), 94 
end of file 

file size and, 643 
setting, 611 

_endthreadex function, 88-92 
_endthread function, 91-92 

903 



ADVANCED WINDOWS 

EnterCriticalSection function, 288-95, 300, 320, 322, 
370 

en try/exit function for DLLs. See dynamic-link 
libraries (DLLs) 

environment variables, process, 21-24, 26-27 
_environ run-time global variable, 15 
_errno function, 89 
errno global variable, 86-87, 89 
ERROR_ALREADY_EXISTS error code, 246, 317 
ERROR_CALL_NOT_IMPLEMENTED error 

code,60,231 
error codes in Win32, 759 
#errordirective, 852 
ERROR_INVALID_PARAMETER error code, 110 
error mode, process, 25 
ERROR_USER_MAPPED_FILE error code, 233 
European Latin Unicode character set, 786 
events. See also BUCKET.EXE (bucket of balls) 

application 
auto-reset, 364, 399 (see also DOCSTATS.EXE 

application for document statistics) 
introduced, 364-65 
manual-reset, 364, 365-66 (see also 

BUCKET.EXE (bucket of balls) 
application) 

exabyte (EB), 219 
except blocks 

in exception filters and exception handlers, 
712-26, 721, 725, 728-30, 732-33, 735, 
740 

software exceptions and, 758, 762, 763 
unhandled exceptions and, 778, 780 

EXCEPTION_ACCESS_VIOLATlON, 727,730, 
734-35, 738, 780 

EXCEPTION_ARRAY_BOUNDS_EXCEEDED, 
727,730 

EXCEPTION_BREAKPOINT, 727, 730 
EXCEPTION_CONTINULEXECUTION,715, 

716-18, 721, 739, 759-60, 774, 779, 780 
EXCEPTION_CONTINUE_SEARCH, 715, 

718-21, 721, 738, 750, 762, 774, 777, 779 
EXCEPTION_DATATYPLMISALIGNMENT, 

727,730 
EXCEPTION_DEBUG_INFO structure, 773-74 
EXCEPTION_EXECUTLHANDLER, 715, 

715-16,717, 721,722-26, 725,733, 
750-51, 762, 774, 775-76, 778, 779 

904 

exception filters and exception handlers. See also 
SEHEXCPT.EXE application to demon
strate exception filters and exception 
handlers; SEHSUM.EXE application to 
recover gracefully from stack overflow 

EXCEPTION_CONTINUE_EXECUTION, 715, 
716-18, 721, 739, 759-60, 774, 779, 780 

EXCEPTlON_CONTlNULSEARCH, 715, 
718-21, 721, 738, 750, 762, 774, 777, 779 

EXCEPTlON_EXECUTLHANDLER, 715, 
715-16,717, 721,722-26, 725,733, 
750-51,762,774,775-76,778,779 

GetException1nformation function, 731-37, 760, 
773-74,780 

global unwinds, 698, 722-26, 725 
introduced,712-15 
more about exception filters, 726-31 

EXCEPTION_FL LDENORMAL_OPERAND, 
727,730 

EXCEPTION_FLLDIVIDLBY_ZERO, 727, 731 
EXCEPTION_FLLINEXACLRESULT, 727, 731 
EXCEPTlON_FLLINVALID_OPERATION,727, 

731 
EXCEPTION_FLLOVERFLOW, 727, 731 
EXCEPTlON_FLLSTACILCHECK, 727, 731 
EXCEPTION_FLLUNDERFLOW, 728, 731 
EXCEPTlON_GUARD_PAGE, 728,731 
EXCEPTION_ILLEGAL_INSTRUCTION, 728, 

731 
EXCEPTlON_IN_PAGE_ERROR, 728, 731 
EXCEPTION_INLDIVIDE_BY_ZERO, 728, 731 
EXCEPTION_INLOVERFLOW, 728, 731 
EXCEPTION_INVALID_DISPOSITION, 728, 731 
EXCEPTION_MAXIMUM_PARAMETERS,760, 

763 
EXCEPTION_NONCONTINUABLE_EXCEPTION, 

728, 731, 734, 760 
EXCEPTION_NONCONTINUABLE flag, 734, 

759-60 
EXCEPTION_POINTERS structure, 731-32, 733, 

736, 760, 780 
EXCEPTION_PRIV_INSTRUCTlON, 728, 731 
EXCEPTION_RECORD structure, 731-35, 760, 

762, 775 
exceptions. See structured exception handling 

(SEH) 



EXCEPTION_SINGLLSTEP,728, 731 
EXCEPTION_STACK_OVERFLOW, 200-1, 728, 

731,750 
executing threads, 9-10, 55-56 
execution times 

process, 59-60 
thread, 57-60 

EXE files 
memory-mapped, 208-12 
module definition (DEF) files and, 507 
physical storage and, 107-8 
sections of, 514-18 
sharing data across mappings of, 514-18 (see also 

MODUSE.EXE application to simulate 
the GetModuleUsagefunction) 

exit function, 14 
ExitProcessfunction, 14,46,47,51,56,66,495, 

691-92, 776 
ExitThread function 

DLLs and, 489-90, 498 
introduced, 46, 56, 64, 65, 66, 88, 91 
process boundary walls and, 846, 847, 848, 850, 

851,853,859 
SEH and, 691-92 
thread synchronization and, 322 

Expanded Memory Specification (EMS), 94 
ExpFilUrfunction, 738, 740, 762, 780 
explicit linking of DLLs, 485-90 
exporting functions and variables from DLLs, 

504-7 
Extended Latin Unicode character set, 786 
Extended Memory Specification (XMS), 94 

F 
File Allocation Table (FAT), 569-71 
FILLATTRIBUTLARCHIVE flag, 604~ 
FILLATTRIBUTLHIDDEN flag, 604 
FILLATTRIBUTLNORMAL flag, 604 
FILE_ATTRIBUTLREADONLYflag,604 
file attributes 

file flags, 642 
file size, 643 
file time stamps, 643-47 
introduced, 642 

Index 

FILLATTRIBUTLSYSTEM flag, 604 
FILE_ATTRIBUTLTEMPORARYflag, 604, 605 
FileCDRfunction,663-64 
file change notifications, 312 
FILECHNG.EXE application to demonstrate 

change notifications 
FILECHNG.C listing, 669-80 
FILECHNG.RC listing, 680-82 
overview, 666-69,667 

FILL FLAG_BACKUP _SEMANTICS flag, 606 
FILLFLAG_DELETE_ON_CLOSE flag, 604, 605 
FILE_FLAG-NO_BUFFERING flag, 604-5 
FILL FLAG_OVERLAPPED flag, 606, 617 
FILL FLAG_PO SIX_SEMANTICS flag, 606 
FILLFLAG_RANDOM_ACCESS flag, 605 
file flags, 642 
FILE_FLAG_SEQUENTIAL_SCAN flag, 605 
FILLFLAG_WRITLTHROUGH flag, 224, 605 
FileIOCompletionRoutinefunction, 624-27 
file kernel objects, 215-17 
FILE_MAP _COPY flag, 225 
file-mapping kernel objects, creating, 217-20 
file-mapping objects, closing, 225-26 
FILL MAP _WRITE flag, 225 
filenames 

conventions for, 571-72 
long, 569, 595 

FILLNOTIFY_CHANGE_ATTRIBUTES flag, 664 
FILE_NOTIFY_CHANGE_DIR_NAME flag, 664 
FILE_NOTIFY_CHANGLFILLNAME flag, 664 
FILLNOTIFY_CHANGLLASLWRITE flag, 664 
FILLNOTIFY_CHANGE_SECURITY flag, 664 
FILE-NOTIFY_CHANGLSIZE flag, 664 
file objects, closing, 225-26 
FILEREV.EXE application to reverse contents of 

Unicode or ANSI text files 
FILEREV.C listing, 233-38 
FILEREV.RC listing, 238-39 
overview, 231-33 

files 
ALERTIO.EXE application to demonstrate 

alertable file 1/ 0 
ALERTIO.C listing, 630-40 
ALERTIO.RC listing, 640-42 
overview, 627, 627-29, 629 

905 



ADVANCED WINDOWS 

files, continued 

asynchronous I/O with (see asynchronous file 
I/O) 

AUTO EXEC. BAT 
environment variables in, 22 
SET lines in, 22 

big, processing with memory-mapped files, 
212-14,227-28 

change notifications, 663-66 (see also 
FILECHNG.EXE application to demon
strate change notifications) 

closing, 602-8 
coherence of, 229-30 
copying, 597 
creating, 602-8 
data, 212-14 
deleting, 598 
directory naming conventions, 571-72 
directory operations 

changing the current directory, 595 
creating directories, 596-97 
getting the current directory, 594-95 
getting the system directory, 595-96 
getting the Windows directory, 596 
removing directories, 596-97 

DIRWALKEXE application for demonstrating 
directory walking 

DIRWALKC listing, 654-61 
DIRWALKRC listing, 661-63 
overview, 651-54, 652 

DISKINFO.EXE application for viewing disk 
information 

dialog box examples, 584-85 
DISKINFO.C listing, 586-91 
DISKINFO.RC listing, 592-94 
overview, 583-85,584-85 

DLL, 108, 208-12 
EXE 

memory-mapped, 208-12 
module definition (DEF) files and, 507 
physical storage and, 107-8 
sections of, 514-18 
sharing data across mappings of, 514-18 (see 

also MODUSE.EXE application to 
simulate the GetModuleUsagefunction) 

906 

files, continued 

file attributes 
file flags, 642 
file size, 643 
file time stamps, 643-47 
introduced, 642 

FILECHNG.EXE application to demonstrate 
change notifications 

FILECHNG.C listing, 669-80 
FILECHNG.RC listing, 680-82 
overview, 666-69, 667 

filename conventions, 571-72 
forcing cached data to be written to disk, 612 
handles for, 312 
header (see header files) 
introduced, 569-71 
locking regions of, 612-15 
memory-mapped (see memory-mapped files) 
module definition (DEF), 507 
moving, 598-601 
objects for, 411 
opening, 602-8 
paging, 105-8, 13~ 138-39,212,223,248-49 
positioning file pointers, 610-11 
POSIX rules for accessing, 606 
reading (see asynchronous file I/ 0; synchronous 

file I/O) 
renaming, 601 
searching for, 647-51 (see also DIRWALKEXE 

application for demonstrating directory 
walking) 

setting the end of file, 611 
size of, 643 
swap, 105 
synchronous I/ 0 with (see synchronous file 

I/O) 
system operations, 573-76 
text, reversing contents of (see FILEREV.EXE 

application to reverse contents of 
Unicode or ANSI text files) 

unlocking regions of, 612-15 
views of, 220-23 
volume-specific information, 576-86 (see also 

DISKINFO.EXE application for viewing 
disk information) 



files, continued 
WINNT.H, 57, 80 
writing (see asynchronous file I/O; synchronous 

file I/O) 
FILLSHARLREAD flag, 602-3, 612 
FILE-BHARE_WRITE flag, 602, 612 
file systems 

CD-ROM File System (CDFS), 570-71 
change notifications, 663-66 (see also 

FILECHNG.EXE application to demon
strate change notifications) 

File Allocation Table (FAT), 569-71 
High Performance File System (HPFS), 569, 570 
NT File System (NTFS), 569, 570 
Object File System (OFS), 576 

file time stamps, 643-47 
FILETIME structure, 644, 645-46 
FileTimeToDosDateTime function, 646 
FileTimeToLocalFileTime function, 645 
FileTimeToSystemTime function, 645 
FilterFunc function, 750 
finally blocks 

in exception filters and exception handlers, 
713,722-26,725,740 

software exceptions and, 758, 760 
in termination handlers, 685-93, 695-700, 702, 

703, 704 
FindCloseChangeNotification function, 666 
FindClosefunction, 599, 601, 651 
FindFirstChangeNotification function, 664-65, 667 
FindFirstChildDirfunction, 653 
FindFirstDirfunction, 654 
FindFirstFile function, 599, 601, 649-51, 652-53, 

665 
FindNextChangeNotification function, 666, 667, 668 
FindNextChildDir function, 653 
FindNextFilefunction, 599, 601, 651, 652-53 
FindWindowfunction, 19,811,818 
/FIXED switch, 209 
FlushFileBuffers function, 612 
FlushlnstructionCachefunction, 836 
Flush ViewOjFile function, 224 
forcing cached data to be written to disk, 612 
foreground processes, 73 
FORMAT command, 577 
FORMAT_PARAMETERS structure, 582 

FORWARD_WM_* macro, 884 
free address space 

defined, 102 
described,113 
in Windows 95, 120-25, 125-26 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
free function, 272 
FreeLibraryA ndExitThread function, 489 - 90 
FreeLibrary function 

introduced,47,487,489-90,495,497 

Index 

process boundary walls and, 847, 848, 859, 861 
TLS and, 541, 544, 556 

FreeProcessMemory function, 848-57 
FreeSelectorfunction, 282 
functions. See names of individual functions 

G 
garbage collection, 179, 181, 182 
GDI32.DLL, 99, 101,481 
GDI (Graphics Device Interface) objects, 11, 12 
Generic Diacritical Marks Unicode character set, 

786 
GENERIC~AD flag, 609 
GENERIC_WRITE flag, 609, 612 
GetActiveWindow function, 455, 46] 
GetAsyncKeyState function, 457 
GetCapture function, 461 
GetClipCursor function, 461 
GetCodeInfo function, 282 
GetCommandLineA function, 797 
GetCommandLinefunction, 20-21, 796-97 
GetCommandLineW function, 797 
GetCurrentDirectory function, 26,594-95,596,651, 

654 
GetCurrentProcess function, 67 
GetCurrentProcessld function, 67, 871 
GetCurrentThread function, 67 
GetData function, 483 
lnitDiskFreeSpace function, 578-80, 605 
GetDlgltem function, 885 
GetDriveTypefunction, 574-76, 583 
GetEnvironmentVariablefunction, 24 
Get Exception Code function, 726-31 
GetExceptionlnformationfunction, 731-37, 760, 

773-74, 780 

907 



ADVANCED WINDOWS 

GetExitCodeProcess function, 48, 50, 836 
GetExitCodeThreadfunction, 66, 91-92, 403, 

749-50,837,859 
GetFileAttributes function, 642-43 
GetFilelnformationByHandle function, 646-47 
GetFileSizefunction, 231, 643, 644 
GetFileTime function, 643-44, 646 
GetFocusfunction,455,461 
GetForegroundWindowfunction, 456, 461, 463 
GetFreeDiskSpace function, 583 
GetFreeSpacefunction,281 
GetFullPathNamefunction, 27, 647-48, 649 
GetKeyState function, 457 
GetLastErrorfunction 

CreateFileMappingfunction and, 246 
CreateMutex function and, 317 
GetOverlappedResult function and, 621 
LoadLibrary function and, 485 
memory-mapped files and, 209 
Unicode and, 796, 802 
Windows 95 and, 60, 231, 574, 600, 607, 614, 

624,802,838 
GetLogicalDrives function, 573, 583 
GetLogicalDriveStrings function, 573-74, 583 
GetMessage function 

keyboard input and, 454 
process boundary walls and, 818, 819 
processes and, 43 
system change notifications and, 668 
threads and, 54, 71, 424-25, 426, 428,430, 431, 

432,433,434,436 
GetModuleFileNamefunction, 15-16, 115, 488 
GetModuleHandlefunction, 16-17,488 
GetModuleUsage function, 489. See also 

MODUSE.EXE application to simulate 
the GetModuleUsage function 

GetMsgProcfunction, 815-17, 818, 819 
GetOverlappedResult function, 583, 620-24 
GetPriorityClass function, 76, 836 
GetProcAddress function, 512, 844, 845 
GetProcessAffinityMask function, 836 
GetProcessHeap function, 115, 264, 269, 271 
GetProcessTimesfunction, 59-60, 836 
GetProcessWorkingSetSize function, 836 
GetQueueStatusfunction, 413, 430-32 

908 

GetShortPathName function, 650 
GetStartuplnfo function, 14 
GetSystemDirectory function, 595-96 
GetSystemInfofunction, 127-28, 210 
GetThreadContextfunction, 837,838-41,846,851 
GetThreadPriority function, 836 
GetThreadSelectorEntry function, 837 
GetThreadTimesfunction, 58-59, 60,837 
getting the current directory, 594-95 
getting the system directory, 595-96 
getting the Windows directory, 596 
GetVersionExfunction,31 
GetVersion function, 30-31 
GetVolumelnformation function, 576-78, 583, 595 
GetWindowsDirectory function, 596 
GetWindowThreadProcessld function, 818 
GHND flag, 279 
GlobaLAllocfunction, 137, 277, 278, 279 
GlobalCompactfunction,281 
GlobalDiscard function, 278, 281 
GlobalDOSAlloc function, 282 
GlobalDOSFree function, 282 
GlobalFix function, 281 
GlobalFlagsfunction,278 
GlobalFreefunction,278 
GlobalHandlefunction,278 
global heaps, 261 
GlobaLLock function, 245, 277, 278, 279 
GlobaLMemoryStatus function, 137-39 
GlobalNotify function, 282 
GlobalPageLock function, 282 
GlobalPageUnlock function, 282 
GlobalReAlloc function, 278, 280 
GlobalLRUNewestfunction,281 
GlobalLRUOldest function, 281 
GlobalSize function, 278 
GlobalUnjix function, 281 
GlobalUnlockfunction,278 
global unwinds, 698, 722-26, 725 
GlobalUnWirefunction,281 
global variables 

ermo, 86-87, 89 
run-time, 14, 15 

GlobalWirefunction,281 
GMEM_DDESHARE flag, 279 



GMEM_DISCARDABLE flag, 280, 280 
GMEM_FIXED flag, 279, 280 
GMEM_LOWER flag, 280 
GMEM_MODIFYflag, 280 
GMEM_MOVEABLE flag, 279, 280 
GMEM_NOCOMPACT flag, 280 
GMEM_NODISCARD flag, 280 
GMEM_NOLBANKED flag, 280 
GMEM_NOTIFY flag, 280 
GMEM_SHARE flag, 279 
GMEM_ZEROINIT flag, 279, 280 
gmtime function, 535 
GPTR flag, 279 
granularity of address space, 102, 103, 113, 126, 

128, 129 
graphical user interface (GUI) , GUI-based 

applications, 13-15 
Graphics Device Interface (GDI) objects, 11, 12 
Greek Unicode character set, 786 
GUI (graphical user interface), GUI-based 

applications, 13-15 

H 
HAL (Hardware Abstraction Layer), porting, 4 
HANDLE_MESSAGE macro, 883 
handles 

closing, 44-45 
file, 312 
instance, 15-19 
process, 67-70 
process-relative, 12,317 
thread,67-70,311-12 

HANDLE_ WM_ * macros, 883-84 
Hardware Abstraction Layer (HAL), porting, 4 
hardware exceptions, 712 
header files 

ADVWIN32.H, 887-94 
DLL,513 
INJLIB.H, 860, 869, 869 
MODULE.H,521 
PMRSTSUB.H, 832 
PROCMEM.H,857 
SOMELIB.H,552-53 
STRING.H, 788, 790 
SWMRG.H,395-96 

Index 

header files, continued 
TCHAR.H, 790, 791-92,793 
VMQUERY.H, 157-59 
WINBASE.H, 727, 835 
WINDEF.H,881 
WINDOWSX.H, 880-86 
WINERROR.H, 730, 759 
WINNT.H, 57, 80, 737, 841 
WINUSER.H, 795 

HeapAllocfunction, 267, 269-70, 271, 275, 440, 
654, 758, 759 

HeapCreatefunction, 267-69, 271, 274-75, 492 
HeapDestroy function, 272, 276, 494 
HeapFreefunction, 271, 275-76, 441, 495, 544 
HEAP _GENERATLEXCEPTIONS flag, 267, 268, 

269-70,758 
HEAP _NO_SERIALIZE flag, 267, 268, 269, 270, 

271,274 
HeapReAllocfunction, 270-71, 271 
HEAP _REALLOC_IN_PLACLONLY flag, 

270,271 
heaps 

16-bit Windows functions 
introduced,277-78 
with semantic changes, 279, 280, 279-80 
that have been removed from Win32, 

282,282 
that port to Win32, 278, 278 
that should be avoided in Win32, 280-81, 

281 
blocks of memory for 

allocating, 269-70 
freeing, 271 
obtaining the size of, 271 

BRANCH structure 
application protection and, 264-65, 265 
efficient memory management and, 265, 266 
local access and, 265-66 

C++ use, 272-76 
changing the size of blocks of memory with, 

270-71 
component protection, 264-65, 265 
creating, 264-71 
default,262-64 
defined, 262 

909 



ADVANCED WINDOWS 

heaps, continued 
destroying, 272 
DLLs and, 261, 262-63 
global, 261 
introduced, 261-62 
local, 261 
NODE structure 

application protection and, 264-65, 265 
efficient memory management and, 265, 266 
local access and, 265-66 

physical storage and, 262 
HeapSizefunction,271 
/HEAP switch, 262-63 
HEAP _ZERO_MEMORY flag, 269, 270-71 
Hebrew Unicode character set, 786 
High Performance File System (HPFS), 569, 570 
high priority, 38, 72, 74, 76, 77, 78,85 
HIGH_PRIORlTY_CLASS flag, 38, 67, 72,75,76 
/HIGH priority switch, 76 
HIMEM.SYS device driver, 95 
HKEY_CURRENLUSER key, 23 
HKEY_LOCAL_MACHINE key, 22, 813,813 
HPFS (High Performance File System), 569, 570 

I 
IBM PC computer, 93-94 
IBM PowerPC processor. See PowerPC CPU 
.idata section in DLL or EXE files, 516 
idle priority, 38, 72, 74, 77, 78,85 
IDLE_PRIORITY_CLASS flag, 38, 72, 74, 75 
image address space 

described, 114 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
image ofEXE files, 108 
image walk DLL (IMGWALK.DLL), 873, 873-76 
implicit linking of DLLs, 484-85 
importing functions and variables from DLLs, 

507-13 
IncrementNum function, 290-91 
inheritance 

example, INHERlT.C listing, 35-36 
sharing data between processes with, 247-48 

inherited kernel objects, 27-30 

910 

InitializeCriticalSection function, 288-89, 291, 370 
injecting DLLs 

using a function 
AllocProcessMemory function, 848-57, 859, 862 
FreeProcessMemory function, 848-57 
hand-coded machine language, 845-48 
InjectLib function for (see InjectLib function) 
introduced, 843-45 
summarized,876-77 

using remote threads, 834-35, 876-77 
using the registry, 813, 813-15 
using Windows hooks, 815-17, 876-77 (see also 

PMREST.EXE application to subclass the 
Program Manager) 

InjectLibA function, 860-64 
InjectLib function 

InjectLibA function, 860-64 
InjectLibWfunction,860-64 
InjectLibWorA function, 860-64 
INjLIB.C listing, 864-69 
INjLIB.H listing, 869 
introduced, 857-59 
macro, 860, 869 
testing 

image walk DLL (IMGWALK.DLL), 873, 
873-76 

introduced, 870 
TINjLIB.EXE application to test the InjectLib 

function, 870-72 
InjectLibWfunction, 860-64 
InjectLibWorA function, 860-64 
INjLIB.H header file, 860, 869 
INjLIBlNFO structure, 849, 857, 858-59, 861, 862, 

863 
InputCompletion function, 628-29 
input/output (I/O). See also local input state 

deserialized input, 447-52 
file (see asynchronous file 1/ 0; synchronous file 

I/O) 
serialized input, 447 

instance handles, 15-19 
InterlockedDecrement function, 414-15, 523 
InterlockedExchangefunction, 414-15 
Interlockedlncrementfunction, 377, 414-15, 523 



isalpha function, 800 
IsCharAlpha function, 800 
IsCharAlphaNumeric function, 800 
IsCharLowerfunction, 800 
IsCharUpperfunction,800 
IsDBCSLeadByte function, 784, 784, 785 
IsDialogMessage function, 668-69 
IsDlgButtonChecked function, 300 
islowerfunction, 800 
IsTextUnicodefunction, 231, 801-2 
isupper function, 800 
Is WindowUnicode function, 807 

J, K 
JOIN command, 575, 576 
Kernel. See Windows NT Kernel 
KERNEL32.DLL, 55, 99, 101, 481, 504-6, 845, 861 
kernel objects, 10-12 

inherited, 27-30 
keyboard input and focus, 453-57 

L 
Latin Unicode character set, 786 
LB_GETCOUNT message, 884-85 
_lcreat function, 602 
_leave compiler keyword, 696-97, 702 
LeaveCriticalSection function, 290, 291, 293, 295, 

300,321,322,371 
LHND flag, 279 
LIBC.LIB library for single-threaded applications, 

86 
LIBCMT.LIB library for multithreaded applica-

tions,86 
LibMain function, 491, 493 
LIBNAME macro, 895-96 
LimitEmsPages function, 281 
linker directives, 890-94 
linker switches 

/DLL,482 
/FIXED,209 
/HEAP,262-63 
/SECTION, 212, 517 
/STACK,197 

linking DLLs 
explicitly, 485-90 
implicitly, 484-85 

Index 

LISLAB.EXE application laboratory for local input 
states 

LISLAB.C listing, 467-78 
LISLAB.RC listing, 478-80 
overview, 460,460-67,462,466, 467 

LMEM_DISCARDABLE flag, 280, 280 
LMEM_FIXED flag, 279, 280 
LMEM_MODIFY flag, 280 
LMEM_MOVEABLE flag, 279, 280 
LMEM_NOCOMPACT flag, 280 
LMEM_NODISCARD flag, 280 
LMEM_NOTIFY flag, 280 
LMEM_ZEROINIT flag, 279, 280 
LoadIcon function, 15 
LoadLibraryA function, 835, 844, 847, 848, 859, 861 
LOAD_LIBRARY_AS_DATAFILE flag, 486-87 
LoadLibraryExfunction, 485-87, 492, 493, 512 
LoadLibrary function 

DLLs and, 485, 487, 488, 492, 493, 496, 499, 
512,518,523 

memory-mapped files and, 208 
process boundary walls and, 814, 835, 843, 859 
TLS and, 541, 544, 556 

LoadLibraryWfunction, 835, 859, 861 
LoadModulefunction, 33 
LoadResStringfunction, 542 
LoadStringA function, 801 
LoadStringfunction, 492, 542, 801 
LOAD_WITH_ALTERED_SEARCH_PATH flag, 

487 
local access and heaps, 265-66 
LocaLAllocfunction, 278, 279,483 
LocalCompactfunction, 281 
LocalDiscard function, 278, 281 
LocalFileTimeToFileTime function, 645 
LocalFlags function, 278 
LocalFreefunction, 278 
LocaUIandlefunction, 278 
local heaps, 261 
Local/nit function, 282 
local input state 

introduced, 452-53 
keyboard input and focus, 453-57 

911 



ADVANCED WINDOWS 

local input state, continued 
LISLAB.EXE application laboratory for local 

input states 
LISLAB.C listing, 467-78 
LISLAB.RC listing, 478-80 
overview, 460,460-67,462, 466, 467 

mouse cursor management, 457-60 
LocalLock function, 278, 279 
LocalReAlloc function, 278, 280 
LocalShrink function, 281 
LocalSize function, 278 
LocalUnlock function, 278 
local unwinds, 687-88 
LOCKFILLEXCLUSlVE_LOCKflag, 615 
LockFileExfunction, 614-15 
LOCKFILLF AIL_IMMEDIATELY flag, 615 
LockFilefunction, 612-15 
locking physical storage in RAM, 195-97 
locking regions of files, 612-15 
LockSegment function, 281 
logical drives, 573-76 
long filenames, 569, 595 
_lopen function, 602 
low priority, 76 
/LOW priority switch, 76 
LPBYfE data type, 797 
LPCTSTR data type, 794 
LPCWSTR data type, 794 
LPSTR data type, 796, 797 
LPTR flag, 279 
LPTSTR data type, 794, 796, 797, 800 
LPWSTR data type, 794 
_lread function, 608, 609 
IstrcatA function, 798 
lstrcat function, 798, 798 
lstrcatWfunction, 798 
lstrcmp function, 798, 798, 799 
lstrcmpi function, 798, 798, 799 
lstrcpy function, 798 
lstrlen function, 798 
_lwrite function, 608, 609 
LZ32.DLL, 481 

M 
macros 

API,886 

912 

macros, continued 
ARRAY_SIZE, 889 
BEGINTHREADEX, 889-90 
child control, 884-85 
FORWARD_WM_*, 884 
HANDLLMESSAGE, 883 
HANDLLWM_*, 883-84 
InjectLib function, 860, 869 
LIBNAME, 895-96 
MAKELONG, 881 
STRICT,888,889,890 
_TEXT, 793-94, 797 
UNICODE, 794, 795, 801, 888, 890 
_UNICODE, 790, 793, 794, 800-801, 888, 890 

main function, 13, 32 
MAKELONGmacro, 881 
mallocfunction, 14,90,98,99,272,716 
manual-reset events, 364, 365-66. See also auto-

reset events; BUCKET.EXE (bucket of 
balls) application 

mapped address space 
described, 114 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
mapping DLLs into process address space, 484-90 
mapping file data into process address space, 

220-23 
MapViewOJFileExfunction, 240-41, 245, 247, 258 
MapViewOjFilefunction, 220-23, 224, 226, 228, 

231,240-44,245,247,258 
maximum memory address, 128, 129 
MAXIMUM_SUSPEND_COUNT value, 80 
MDI (multiple document interface), child threads 

and,55 
memcpy function, 541, 698 
memory. See address space; heaps; physical storage; 

random access memory (RAM); virtual 
memory management 

MEMORY_BASIC_INFORMATION structure, 
145-47,852,873 

memory files. See memory-mapped files 
memory management. See also virtual memory 

management 
efficient, with heaps, 265, 266 
system activity, 138, 138 



memory management, continued 
system copy-on-write feature, 211-12 

memory-mapped files 
base address, 240-41 
coherence and, 229-30 
data, 212-14 
DLL,208-12 
EXE,208-12 
FILEREV.EXE application to reverse contents of 

Unicode or ANSI text files 
FILEREV.C listing, 233-38 
FILEREV.RC listing, 238-39 
overview, 231-33,233 

introduced, 108, 207 
MMFSHARE.EXE application to transfer data 

among processes 
MMFSHARE.C listing, 251-55 
MMFSHARE.RC listing, 255-57 
overview, 250, 250-51 

paging files and, 248-49 
sharing data among processes with, 244-48 
sparsely committed, 257-59 
using 

closing file-mapping objects and file objects, 
225-26 

creating file kernel objects, 215-17 
creating file-mapping kernel objects, 217-20 
introduced, 215 
mapping file data into process address space, 

220-23 
opening file kernel objects, 215-17 
processing big files using, 212-14, 227-28 
unmapping file data from process address 

space, 224-25 
Windows 95 implementation, 241-44 
Windows NT implementation, 242-44 

MEMORYSTATUS structure, 137-39 
MEMJU:SERVE flag, 171, 258 
memset function, 763 
MEM_TOP _DOWN flag, 170, 171 
MessageBeep function, 726 
MessageBox function, 542 
message crackers, 879-84 

Index 

messages 
posting messages to thread message queues, 

423-25 
sending data with, 436-39 (see also 

COPYDATA.EXE application for copying 
data) 

sending messages to windows, 425-30 
Win32 message queue architecture, 422-23, 423 

Microsoft Foundation Classes, 879 
Microsoft Overlay Virtual Environment (MOVE), 

94 
Microsoft Visual C++ 

_declspec(thread) prefix, 555, 557, 653-54 
exception handling, 684 
heap use, 272-76 
PSTAT.EXE utility for process and thread 

information, 80, 80-84 
PVIEW.EXE utility for process and thread 

information, 80, 84-85, 85 
run-time libraries, 86-92 
stack checking with, 206 
WINDOWSX.H file in, 880-86 

Microsoft Win32 application programming 
interface (API) 

areas covered by, 2 
CreateFile function and, 217 
error codes, 759 
file coherence and, 229 
implementation, 5-7 
introduced,I-2 
message queue architecture, 422-23,423 
porting from 16-bit Windows to (see porting 

from 16-bit Windows to Win32) 
sharing data among processes, 244-48 
Windows Kernel objects and, 10-12 

Microsoft Win32s platform, Win32 implementa
tion on, 2-3, 5-7 

Microsoft Windows 
getting the Windows directory, 596 
sharing data among processes, 244-48 
version information, 30-32 

Microsoft Windows 3.x. See 16-bit Windows 
Microsoft Windows 95 

address space maps, 120-25, 125-26 
application address spaces, 451 

913 



ADVANCED WINDOWS 

Microsoft Windows 95, continued 
application base addresses, 16 
asynchronous file I/O, 607, 609, 617 
background processes, 73 
CALC.EXE import table, 508-11 
copy-on-write protection, 111, 225 
CreateFileMappingfunction, 218 
CreateRemoteThread function, 838 
CreateThread function lpIDThread parameter 

NULL value, 64 
DeleteFile function and, 598 
DeviceIoControl function, 621 
DLL files, 108 
DosDateTimeToFileTime function, 646 
environment variables, 22 
EXE files, 108 
file coherence, 230 
FileTimeToDosDateTimefunction, 646 
foreground processes, 73 
GetLastErrorfunction, 60, 231, 574, 600, 607, 

614,624,802,838 
GetLogicalIJrives function, 583 
GetLogicalIJriveStrings function, 574, 583 
GetOverlappedResultfunction, 621 
implementation detail icon, 7 
injecting DLLs, 813 
IsTextUnicodefunction, 231, 802 
LockFileEx function, 614 
locking and unlocking storage, 197 
long filenames, 569, 595 
Map ViewOfFileEx function, 241 
Map ViewOfFile function, 222 
memory management, 105 
memory-mapped file implementation, 241-44 
MEM_TOP _DOWN flag, 171 
MoveFileEx function, 600 
multiple instances ofDLL or EXE files, 212 
operating system memory, 97 
PAGE_READWRITE protection attribute, 225 
page swapping, 95-96 
PAGE_WRITECOPYprotection attribute, 218 
paging files, 212, 223 
preemptive multitasking, 419-21 
process address space, 97-99, 98, 170,809 
process CPU times, 60 

914 

Microsoft Windows 95, continued 
protection attributes, 109, Ill, 172, 195 
PVIEW.EXE utility, 85 
raw input thread (RIT) , 449 
ReadFileEx function, 624 
ReadFile function, 609, 617 
SEC_IMAGE flag, 219 
SE~NOCACHE flag, 218 
SEC_RESERVE flag, 259 
START command, 76 
switching threads, 449 
TerminateThread function, 65 
thread CPU times, 60 
thread stacks, 201-4, 202, 204 
TLS internal data structures, 537 
Unicode, 787-88 
UnlockFileExfunction, 614 
VirtualAlloc function, 259 
Win32 implementation, 4-5 
Windows NT vs., 5, 6 
WriteFileEx function, 624 
WriteFile function, 609, 617 

Microsoft Windows NT 
address space maps, 112-13, 113-15, 115-19, 

119-20 
application address spaces, 451 
application base addresses, 16 
background processes, 73 
complementary threads, 54 
CreateRemoteThread function, 837 
CreateThread function, 837 
Create Thread function lpIDThread parameter 

NULL value, 64 
DLL files, 108 
DLL function exporting, 506-7 
DosDateTimeToFileTime function, 646 
environment variables, 22-23 
Executive address space, 101 
EXE files, 108 
ExitThread function, 65 
file coherence, 230 
FileTimeToDosDateTime function, 646 
foreground processes, 73 
implementation detail icon, 7 
introduced, 3-4 



Microsoft Windows NT, continued 
Kernel address space, 101 
long filenames, 569, 595 
MapViewOjFileExfunction, 241 
Map ViewOjFile function, 222 
memory management, 105 
memory-mapped file implementation, 242-44 
multiple instances ofDLL or EXE files, 212 
multiprocessing systems, 10 
operating system memory, 96 
page swapping, 95-96 
paging files, 107, 212 
PERFMON.EXE application, 377-79 
preemptive multitasking, 419-21 
process address space, 100, 100-102, 170 
raw input thread (RIT) , 449 
realtime priority, 75 
SEC_RESERVE flag, 259 
sharing data among processes, 245-46 
switching threads, 449 
Task Manager, high priority for, 74 
TerminateThread function, 65 
thread stacks, 65 
TLS internal data structures, 537 
unhandled kernel-mode exceptions, 781 
Unicode, 263, 787 
VirtuafFreefunction, 259 
Win32 implementation, 3-4, 5-7 
window classes and procedures, 806-8 
Windows 95 vs., 5, 6 

minimum memory address, 128, 129 
MIPS CPU 

allocation granularity, 102 
CONTEXT structure, 737, 841,841-42 
execute page protection, 863 
function's return address, 838 
page size, 102, 103, 104, 128, 129 
process address space, 103, 104 
protection attributes, 109 
reserved address space, 101 
stack pointer's register, 851 
stack space and, 205 

MMFSHARE.EXE application to transfer data 
among processes 

MMFSHARE.C listing, 251-55 
MMFSHARE.RC listing, 255-57 
overview, 250, 250-51 

Modified Letters Unicode character set, 786 
module definition (DEF) files, 507 
MODUSE.EXE application to simulate the 

GetModuleUsage function 
MODULE.C listing, 519-21 
MODULE.H listing, 521 
MODULE.RC listing, 522-23 
MODUSE.C listing, 525-28 
MODUSE.RC listing, 528-29 
overview, 518, 523-25, 525 

mouse cursor management, 457-60 

Index 

MOVE (Microsoft Overlay Virtual Environment), 
94 

MOVEFILE_COPY_ALLOWED flag, 600 
MOVEFILLDELALUNTILREBOOT flag, 

600-601 
MoveFileEx function, 598-601 
MoveFilefunction, 598-601 
MOVEFILLREPLACLEXISTING flag, 600 
MoveMemory function, 225 
moving files, 598-601 
MS-DOS 

address space, 96 
File Allocation Table (FAT), 569-71 
FORMAT command, 577 
JOIN command, 575, 576 
SUBST command, 576 

MSG structure, 432, 433 
MsgWaitForMultipleObjects function, 413, 667-68 
MSVCRT20.DLL library, 86, 90 
MSVCRT.LIB library for dynamically linking the 

MSVCRT20.DLL library, 86, 90 
MultiByteToWzdeCharfunction, 802-3, 804 
MULTINST.EXE application to prohibit multiple 

instances of applications from running 
MULTINST.C listing, 530-31 
MULTINST.RC listing, 532-33 
overview, 530 

multiple document interface (MDI) , child threads 
and,55 

multiple instances of applications. See 
MULTINST.EXE application to prohibit 
multiple instances of applications from 
running 

multiple instances ofDLL or EXE files, 209-12, 
210,211 

915 



ADVANCED WINDOWS 

multiple threads, 267-68. See also BUCKET.EXE 
(bucket ofbaUs) application; thread 
synchronization 

multiprocessing systems and Windows NT, 10 
multitasking 

non-preemptive, in 16-bit Windows, 417-19 
preemptive, in Windows 95 and Windows NT, 

419-21 
mutexes. See also BUCKET.EXE (bucket of balls) 

application; SPRMRKT.EXE (supermarket 
simulation) application 

abandoned,321-22 
introduced,316-17 
using, instead of critical sections, 318-19, 

320-21 
MUTEXES.EXE application to test mutexes 

MUTEXES.C listing, 322-30 
MUTEXES.RC listing, 330-32 
overview, 322 

mutex objects, 12, 28 

N 
naming conventions for directories and files, 

571-72 
new operator, 272-76 
NODE structure of heaps 

application protection and, 264-65, 265 
efficient memory management and, 265, 266 
local access and, 265-66 

non-preemptive multitasking, in 16-bit Windows, 
417-19 

non signaled objects, 311-15 
NONZEROLHND flag, 280 
NONZEROLPTR flag, 280 
normal priority, 38, 72,72-73,76,77, 78,85 
NORMAL_PRIORITY...ClASS flag, 38, 43-44, 72,75 
/NORMAL priority switch, 76 
NORM_IGNORECASE flag, 799 
NORM_IGNOREKANATYPE flag, 799 
NORM_IGNORENONSPACE flag, 799 
NORM_IGNORESYMBOLS flag, 799 
NORM_IGNOREWlDTH flag, 799 
NTDLL.DLL, 845 
NT File System (NTFS), 569, 570 
NULL-pointer assignments, 98, 100, 101 

916 

o 
Object File System (OFS), 576 
objects 

console input, 312 
CRITICAL_SECTION, 370 
file, 411 
GDI, 11, 12 
inherited kernel, 27-30 
kernel, 10-12, 27-30 
mutex, 12, 28 
nonsignaled,311-15 
signaled,311-15 
SWMRG.C listing, 390-95 
SWMRG compound synchronization, 369-76 
SWMRG.H listing, 395-96 
thread synchronization, 283, 311-16 (see also 

critical sections; events; mutexes; sema
phores) 

User, 11, 12 
OLPARSE flag, 647 
OFS (Object File System), 576 
OPEN_ALWAYS flag, 603 
openEventfunction, 364-65 
OPEN_EXISTING flag, 603 
op~ikfunction,215,602,647,796 

op~ikAfappingfunction,220,247,248,249,250 

opening file kernel objects, 215-17 
opening files, 602-8 
openAfutexfunction, 29, 317, 334 
openProcess function, 870 
open~aPhorefunction,334 

operating system version, 30-32 
_osverrun-time global variable, 15 
OSVERSIONINFO structure, 31-32 
OutputCompktion function, 629 
overflow, stack, 204-6. See also SEHSOFT.EXE 

application to demonstrate software 
exceptions 

OVERLAPPED structure, 583, 615, 617-23 
overlay technology, 94 

P 
PAGE_EXECUTE protection attribute, 109, 172, 

195 
PAGE_EXECUTE_READ protection attribute, 

109,172,195,219 



PAGE_EXECUTE_READWRITE protection 
attribute, 109, 172, 195 

PAGE_EXEC UTE_ WRlTECOPY protection 
attribute, 109, 110, 119-20, 172, 194 

PAGE_GUARD protection attribute, 111, 120, 172, 
203, 728 

PAGE_NOACCESS protection attribute, 109, Ill, 
171,172,194,195,196,203 

PAGE_NOCACHE protection attribute, Ill, 120, 
172,218 

PAGE_READONLYprotection attribute, 109, 172, 
173,195,218,220 

PAGE_READWRlTE protection attribute, 109, 
172,173,194,195, 197,203, 21~220, 
222,225 

page size, 102, 103, 104, 128, 129 
page swapping, 95-96 
PAGE_WRlTECOPYprotection attribute, 109, 

110,119-20, 172, 194,21~220,222 
paging files, 105-8, 138, 138-39,212,223,248-49 
parent processes, 27-28, 29-30 
PEB (process environment block), 103 
PeekMessagefunction, 43, 52, 419, 424-25, 426, 

428,431,432,434,436,668,669 
Pentium CPU, 96 
PERFMON.EXE application, 377-79 
Phonetic Unicode character set, standard, 786 
physical storage. See also address space; random 

access memory (RAM); virtual memory 
management 

committing, 103-4, 172-77 
data access and, 106, 106-7 
decommitting, 104, 177-79 
DLL files and, 108 
EXE files and, 107-8 
heaps and, 262 
locking, in RAM, 195-97 
paging files and, 105-8 
protection attributes, 108-11 
RAM and, 105-8 
swap files and, 105 
unlocking, in RAM, 196-97 

PM_OnActiveApp function, 820 
PM_REMOVE flag, 668 

Index 

PMREST.EXE application to subclass the Program 
Manager 

overview, 817-20 
PMREST.C listing, 821-22 
PMREST.RC listing, 822-24 
PMRSTSUB.C listing, 824-32 
PMRSTSUB.H listing, 832 
PMRSTSUB.RC listing, 833-34 

PMREST.EXE sections, 515 
PMRSTSUB.DLL, 515, 516, 817-20 
PMSubclass function, 819-20 
polling and thread synchronization, 284-85 
porting 

HAL,4 
Kernel,4 

porting from 16-bit Windows to Win32 
AnsiNext function, 785 
AnsiPrev function, 785 
CharNext function, 785 
CharPrev function, 785 
CreateFilefunction, 215-17 
creating processes, 33 
DLL assembly modules, 491 
DllMainfunction, 491, 493 
DLL management, 483-84 
GetModuleUsage function, 489 
heap functions 

introduced,277-78 
with semantic changes, 279, 280, 279-80 
that have been removed from Win32, 

282,282 
that port to Win32, 278, 278 
that should be avoided in Win32, 280-81, 

281 
heaps for sharing data, 261 
icon for important information, 7 
instance handles, 17-18 
LibMain function, 491, 493 
LoadLibrary function, 485 
module definition (DEF) files, 507 
DpenFilefunction, 215 
PostAppMessage function, 425 
PostMessagefunction, 424 
PostThreadMessagefunction, 425 
SetMessageQueue function, 424 

917 



ADVANCED WINDOWS 

porting from 16-bit Windows to Win32, continued 
THREAD INFO structure, 424 
thread message queues, 424 
Windows Exit Procedure (WEP) function, 491 

positioning file pointers, 610-11 
POSIX compatibility, 570, 606 
PostAppMessage function, 425 
posting messages to thread message queues, 

423-25 
PostMessagefunction, 245, 423-24, 425, 429, 434, 

524,818 
PostQuitMessagefunction, 432, 435 
PostThreadMessage function, 424-25 
PowerPCCPU 

allocation granularity, 102 
page size, 102, 103, 104, 128, 129 
process address space, 103, 104 
protection attributes, 109 
stack space and, 205 

#pragma compiler directive, 212, 516-17, 888, 
891-96 

preemptive multitasking, in Windows 95 and 
Windows NT, 419-21 

preemptive time scheduling of threads, 419-21 
primary thread, 10, 13 
printffamily of functions, 800-801 
priority 

base, 77-79 
dynamic,79 
dynamic boosting of thread priority levels, 

78-79 
high,38, 72,74,76,77, 78,85 
idle, 38, 72, 74, 77, 78, 85 
low, 76 
normal, 38, 72, 72-73, 76, 77, 78,85 
process priority classes, 38, 72-76 
PVIEW.EXE utility and, 85 
realtime, 38, 72,74-75,76,77, 78,79,85 
relative, 76-79 
scheduling threads and, 72-76 
screen-saver applications, 43-44, 74 
time-critical, 77, 78, 85 

private address space 
described, 113 
in Windows 95, 120-25, 125-26 

918 

private address space, continued 
in Windows NT, 112-13, 113-15, 115-19, 

119-20 
process boundary walls 

injecting DLLs 
using a function (see injecting DLLs, using a 

function) 
using remote threads, 834-35, 876-77 
using the registry, 813, 813-15 
using Windows hooks, 815-17, 876-77 (see 

also PMREST.EXE application to subclass 
the Program Manager) 

introduced,809-1O 
PMREST.EXE application to subclass the 

Program Manager 
overview, 817-20 
PMREST.C listing, 821-22 
PMREST.RC listing, 822-24 
PMRSTSUB.C listing, 824-32 
PMRSTSUB.H listing, 832 
PMRSTSUB.RC listing, 833-34 

subclassing windows created by other processes, 
810-12,811 

Win32 functions that affect other processes 
CreateRemoteThread function, 5, 836, 837-38, 

844-46,849,850,876-77 
GetThreadContextfunction, 837, 838-41, 846, 

851 
introduced, 835-37 
ReadProcessMemory function, 99, 836, 843, 849, 

853 
SetThreadContextfunction, 837, 841-42, 846 
VirtualProtectExfunction, 836,843,849, 

862-63 
VirtualQueryEx function, 836, 842, 852 
WriteProcessMemory function, 99, 836, 843, 

846,849,852 
process environment block (PEB), 103 
processes. See also threads 

address space 
accessing another process's address space, 

809-10 (see also process boundary walls) 
Alpha CPU, 103, 104 
committing storage in reserved regions, 

172-77 



processes, address space, continued 
introduced, 9-10, 18,57,95,96-97 
mapping DLLs into, 484-90 
mapping file data into, 220-23 
maximum memory address, 128,129 
minimum memory address, 128, 129 
MIPS CPU, 103, 104 
PowerPC CPU, 103, 104 
releasing regions in, 177-79 
reserving regions in, 169-72, 173-77 
total free regions, 138, 139 
total private bytes, 138, 139 
un mapping file data from, 224-25 
in Windows 95, 97-99, 98, 170, 809 
in Windows NT, 100, 100-102, 170 
x86 CPU family, 103, 104 

background, 73 
boundary walls for (see process boundary walls) 
child,27-30, 48-50 
command line, 20-21 
creating (see CreateProcess function) 
C run-time libraries and, 86-92 
current directory, 26-27 
current drive, 26-27 
defined,9 
detached, 50 
environment variables, 21-24, 26-27 
error mode, 25 
execution times, 59-60 
foreground, 73 
handles, 67-70 
heaps for (see heaps) 
inherited kernel objects, 27-30 
injecting DLLs into (see injecting DLLs) 
instance handles, 15-19 
introduced,9-10 
parent,27-28,29-30 
priority classes, 38, 72-76 
process-relative handles, 317 
PSTAT.EXE utility for process and thread 

information, 80, 80-84 
PVIEW.EXE utility for process and thread 

information,80,84-85,85 
sharing data among 

inheritance and, 247-48 

Index 

processes, sharing data among, continued 
memory-mapped files for, 244-48 (see also 

MMFSHARE.EXE application to transfer 
data among processes) 

subclassing windows created by other processes, 
810-12,811 

terminating, 46-48 
timing, 59-60 
Win32 functions that affect other processes 

CreateRemoteThread function, 5, 836, 837-38, 
844-46,849,850,876-77 

GetThreadContextfunction, 837,838-41,846, 
851 

introduced,835-37 
ReadProcessMemory function, 99, 836, 843, 849, 

853 
SetThreadContextfunction, 837, 841-42, 846 
VirtualProtectEx function, 836, 843, 849, 

862-63 
VirtualQJteryEx function, 836, 842, 852 
WriteProcessMemory function, 99, 836, 843, 

846,849,852 
Win32 process functions, 836 

PROCESS_INFORMATION structure, 44-45 
process-relative handles, 12,317 
PROCMEM.C listing for process memory func

tions, 854-57 
PROCMEM.H listing for process memory func

tions, 857 
Program Manager. See PMREST.EXE application 

to subclass the Program Manager 
project settings, 895, 895-96 
protected mode, 94, 95 
protection attributes, 108-11, 194-95 
PSTAT.EXE utility for process and thread 

information, 80, 80-84 
PulseEventfunction, 366, 399 
PVIEW.EXE utility for process and thread 

information, 80, 84-85, 85 

Q 
QS-ALLEVENTSflag, 431 
QS_ALLINPUTflag, 431 
QS_HOTKEYflag, 431,431 
QS_INPUT flag, 431, 433 

919 



ADVANCED WINDOWS 

QS_KEYflag, 430, 431,431,433 
QS_MOUSEBUTTON flag, 430, 431, 433 
QS_MOUSE flag, 430, 431 
QS_MOUSEMOVE flag, 431, 433 
QS_PAINT flag, 430, 431,431-32,433,434,436 
QS_POSTMESSAGE flag, 431,432, 433 
QS_QUIT flag, 432, 433, 434, 435 
QS_SENDMESSAGE flag, 426, 431, 432, 433 
QS_TIMER flag, 431, 432, 433,434 
quantums (time slices) for threads, 10, 11 

R 
RaiseException function, 758-61, 763 
random access memory (RAM). See also address 

space; physical storage; virtual memory 
management 

backing, 108 
copy-on-write protection, 110 
locking physical storage, 195-97 
page swapping, 95-96 
physical storage, 105-8 
protection attributes, 108-11 
setup programs, 108 
total bytes available, 138, 138 
unlocking physical storage, 196-97 

raw input thread (RIT) , 448-49, 449, 454, 454-55 
.rdata section in DLL or EXE files, 516 
ReadFikExfunction, 624-25,627,628 
ReadFilefunction, 229, 608-10, 613, 617-23, 624 
reading files. See asynchronous file 1/0; synchro-

nous file I/O 
read mode, 94, 95 
ReadProcessMemory function, 99, 836, 843, 849, 853 
realtime priority, 38, 72,74-75,76,77, 78,79,85 
REALTIME_PRIORITY_CLASS flag, 38, 72,74-75 
lREALTIME priority switch, 76 
RecalcFunc function, 284-85 
regions in address space, 102-3 
RegisterClassA function, 807 
RegisterClassfunction, 19 
RegisterClassWfunction, 807 
RegisterWindowMessage function, 524 
registry 

environment strings in, 22-23 
injecting DLLs using, 813,813-15 

920 

relative priority, 76-79 
ReleaseCapturefunction, 458-59,464 
ReleaseMutexfunction, 321, 322, 334, 374, 376, 502 
ReleaseSemaphorefunction, 334-35, 344, 346-47, 

373,374,375,690,723 
releasing regions in address space, 102, 177-79 
.reloc section in DLL or EXE files, 516 
remote threads, 834-35, 847, 876-77 
RemoveDirectory function, 596-97, 599 
removing directories, 596-97 
renaming files, 601 
ReplyMessagefunction, 429-30 
reserve address space, in Windows 95,120-25, 

125-26 
reserving regions in address space, 102, 169-72, 

173-77 
ResetEventfunction, 366, 374, 399, 666 
ResultCallBack function, 428 
ResumeThreadfunction, 79, 297, 320,837,846,852, 

853 
resuming threads, 79-80 
RIT (raw input thread), 448-49, 449, 454, 454-55 
round-robin scheduling of threads, 10, 11 
.rsrc section in DLL or EXE files, 516 
RTL_CRITICAL_SECTION structure, 287 
run-time global variables, 14, 15 
run-time library 

DlLMain function and, 503-4 
processes and, 86-92 
thread stack checking function, 204-6 
TLS and, 535-36 
Unicode support, 788-94 
Visual C++, 86-92 

Russian (Cyrillic) Unicode character set, 786 

S 
scheduling threads 

dynamic boosting of thread priority levels, 
78-79 

overview, 10,11,38,71-72 
priority,72-76 
relative priority, 76-79 
resuming threads, 79-80 
round-robin scheduling, 10, 11 
suspending threads, 79-80, 411-15 



screen-saver applications 
CreateProcess function and, 42-43 
priority of, 43-44, 74 
STARTLSCREENSAVER flag and, 43 

searching for files, 647-51. See also DIRW ALKEXE 
application for demonstrating directory 
walking 

SearchPath function, 648-49 
SEC_COMMIT flag, 219, 258 
SEC_IMAGE flag, 218-19 
SEC_NOCACHE flag, 218 
SEC_RESERVE flag, 219, 258, 259 
sections ofDLL or EXE files, 514-18 
/SECTION switch, 212, 517 
sectors per cluster on disks, 578-79, 579 
SECURITY_ATTRIBUTES structure, 11,28-29, 

34-35,61,217,248,316,597,603 
SEH. See structured exception handling (SEH) 
SEHEXCPT.EXE application to demonstrate 

exception filters and exception handlers 
overview, 737, 737-40, 739, 740 
SEHEXCPT.C listing, 741-47 
SEHEXCPT.RC listing, 747-49 

SEHSOFf.EXE application to demonstrate 
software exceptions 

overview, 761,761-63, 763 
SEHSOFf.C listing, 764-71 
SEHSOFf.RC listing, 771-73 

SEHSUM.EXE application to recover gracefully 
from stack overflow 

overview, 749, 749-51 
SEHSUM.C listing, 752-56 
SEHSUM.RC listing, 756-58 

SEHTERM.EXE application to demonstrate 
termination handlers 

overview, 700-704, 701, 702, 703, 704 
SEHTERM.C listing, 704-10 
SEHTERM.RC listing, 710-12 

SelectObject function, 886 
semaphores, 333-35, 366-69. See also 

BUCKET.EXE (bucket of balls) applica
tion; SPRMRKT.EXE (supermarket 
simulation) application 

SEM_FAILCRITICALERRORS flag, 25 
SEM_NOALIGNMENTFAULTEXCEPT flag, 25 

SEM_NOGPFAULTERRORBOX flag, 25 
SEM_NOOPENFILEERRORBOX flag, 25 
SendDlgltemMessage function, 885 

Index 

sending data with messages, 436-39. See also 
COPYDATA.EXE application for copying 
data 

sending messages to windows, 425-30 
SendMessageCallback function, 427-28 
SendMessagefunction, 245, 425-30, 437, 438-39, 

441,820,884-85 
SendMessageTimeout function, 426-27 
SendNoti.fJMessagefunction, 428-29 
serialized input, 447 
serial numbers on disks, 577 
SetActiveWindow function, 455, 462, 463 
SetCapturefunction, 458-59, 463 
SetCurrentDirectoryfunction, 26, 27, 595, 651, 653, 

654 
SetCursorfunction, 459 
SetData function, 483 
SetEndOJFilefunction, 232-33, 611, 643 
SetEnvironmentVariablefunction, 24 
SetErrorModefunction, 25, 777-78 
SetEventfunction, 365-66, 375, 399, 402, 623, 777 
SetFileAttributes function, 643 
SetFilePointerfunction,610-11 
SetFileTimefunction,646 
SetFocusfunction, 454-55, 461, 462, 463 
SetForegroundWindowfunction, 456, 458, 462, 463 
SET lines in AUTOEXEC.BAT, 22 
SetMessageQueue function, 424 
SetPriorityClassfunction, 67, 75,836 
SetProcess WorkingSetSize function, 836 
SetSwapAreaSizefunction, 281 
SetThreadAfftnityMask function, 836 
SetThreadContextfunction, 837,841-42,846 
SetThreadPriorityfunction, 68, 70, 76-77, 78, 836 
SetTimerfunction, 418 
setting the end of file, 611 
SetUnhandledExceptionFilterfunction, 778-79 
setup programs, 108 
SetVolumeLabel function, 578 
SetWindowLongA function, 807, 808 
SetWindowLongfunction, 535, 808, 810-12, 816 
SetWindowLongWfunction,807,808 

921 



ADVANCED WINDOWS 

SetWindowPosfunction, 457, 462 
SetWindowsHookExfunction, 815-16, 818 
SetWindowWord function, 535 
Shared section, 516-17. See alsoPMREST.EXE 

application to subclass the Program 
Manager 

sharing data across mappings of DLL or EXE files, 
514-18. See also MODUSE.EXE applica
tion to simulate the GetModuleUsage 
function 

sharing data among processes 
inheritance and, 247-48 
memory-mapped files for, 244-48 (see also 

MMFSHARE.EXE application to transfer 
data among processes) 

sharing thread virtualized input queues, 449-52, 
450 

ShowCursorfunction, 458 
ShowWindowfunction, 44, 820 
signaled objects, 311-15 
signal function, 87,90,91 
single-byte characters, 783, 784 
sizeojfunction, 797, 889 
Sleep Ex function, 625-26, 628 
Sleep function, 298-99, 344, 345, 346, 376, 411, 

625-26,628 
software exceptions, 712, 758-61. See also 

SEHSOFT.EXE application to demon
strate software exceptions 

SORLSTRINGSORT flag, 799 
sparsely committed memory-mapped files, 257-59 
sprintffunction, 801 
SPRMRKT.EXE (supermarket simulation) 

application 
dialog box, 335 
ovennew,335,335-37,343-48 
results using dialog box settings, 338-43 
SPRMRKT.C listing, 348-60 
SPRMRKT.RC listing, 361-63 

Stack Check function, 206 
stacks 

overflow of (see SEHSUM.EXE application to 
recover gracefully from stack overflow) 

thread 
introduced,57,61-62,65,66, 126, 197-201 

922 

stacks, thread, continued 
region on machines with 4-KB pages, 198 
region with an expanded call tree, 199 
reserved memory region, 200 
run-time checking function, 204-6 
in Windows 95,201-4, 202, 204 

jSTACK switch, 197 
Standard Phonetic Unicode character set, 786 
START command, 76 
STARTF _FORCEOFFFEEDBACK flag, 42, 43 
STARTF _FORCEONFEEDBACK flag, 42, 43 
STARTLSCREENSAVERflag, 43 
STARTF_USECOUNTCHARS flag, 42 
STARTLUSEFILLATTRIBUTE flag, 42 
STARTLUSEPOSITION flag, 42 
STARTLUSESHOWWINDOW flag, 42 
STARTLUSESIZE flag, 42 
STARTF_USESTDHANDLES flag, 42 
start glass cursor, 42-43 
StartOjThreadfunction, 55-56, 61, 774, 844, 

846-48,859 
STARTUPINFO structure, 39-44 
starvation and thread priority, 71 
state of address spaces. See VMQuery listings for 

information about process virtual address 
space 

static thread-local storage (TLS) , 555-56. See also 
TLSSTAT.EXE application for static 
thread-local storage (TLS) 

STATUS_NO_MEMORYexception, 758 
strcat function, 788 
strchrfunction, 788 
strcmp function, 798 
strcmpi function, 798 
strcpy function, 726, 784, 788 
STRICT macro, 888, 889, 890 
STRING.H header file, 788, 790 
StringReverseA function, 805-6 
String Reverse function, 806 
StringReverseWfunction, 804-6 
strings 

standard C ANSI string functions and their 
Unicode equivalents, 788, 790, 788-90 

string functions in Win32, 798-801 
translating strings between Unicode and ANSI, 

802-6 



strlen function, 783, 784 
_strrevfunction, 214, 231 
strtok function, 535, 536, 539 
structured exception handling (SEH) 

C++ exception handling vs., 684 
exception filters and exception handlers (see also 

SEHEXCPT.EXE application to demon
strate exception filters and exception 
handlers; SEHSUM.EXE application to 
recover gracefully from stack overflow) 

EXCEPTION _CONTlNULEXECUTlON, 
715, 716-18, 721, 739, 759-60, 774, 779, 
780 

EXCEPTlON_CONTlNUE_SEARCH,715, 
718-21,721,738,750,762,774,777,779 

EXCEPTlON_EXECUTLHANDLER, 715, 
715-16,717, 721, 722-26, 725,733, 
750-51,762,774,775-76,778,779 

GetExceptionlnformationfunction, 731-37, 760, 
773-74,780 

global unwinds, 698, 722-26, 725 
introduced,712-15 
more about exception filters, 726-31 

global unwinds, 698, 722-26, 725 
hardware exceptions, 712 
introduced, 176-77,683-84 
local unwinds, 687-88 
SEHEXCPT.EXE application to demonstrate 

exception filters and exception handlers 
overview, 737,737-40, 739, 740 
SEHEXCPT.C listing, 741-47 
SEHEXCPT.RC listing, 747-49 

SEHSOFT.EXE application to demonstrate 
software exceptions 

overview, 761,761-63, 763 
SEHSOFT.C listing, 764-71 
SEHSOFT.RC listing, 771-73 

SEHSUM.EXE application to recover gracefully 
from stack overflow 

overview, 749, 749-51 
SEHSUM.C listing, 752-56 
SEHSUM.RC listing, 756-58 

SEHTERM.EXE application to demonstrate 
termination handlers 

overview, 700-704, 701, 702, 703, 704 

Index 

structured exception handling (SEH), 
SEHTERM.EXE application to demon
strate termination handlers, continued 

SEHTERM.C listing, 704-10 
SEHTERM.RC listing, 710-12 

software exceptions, 712, 758-61 (see also 
SEHSOFT.EXE application to demon
strate software exceptions) 

StartOfThread function and, 56 
system exception processing, 721 
termination handlers, 684-700 (see also 

SEHTERM.EXE application to demon
strate termination handlers) 

unhandled exceptions 
calling UnhandledExceptionFilteryourself, 780 
without a debugger attached, 774-77, 775 
introduced,773-74 
turning off the exception message box, 

777-79 
UnhandledExceptionFilterfunction, 774-81 
Windows NT unhandled kernel-mode 

exceptions, 781 
subdassing windows created by other processes, 

810-12,811 
SubclassProgManFramefunction, 512, 817-19 
SUBST command, 576 
Sum function, 749-51 
SumThreadFuncfunction, 750, 751 
supermarket simulation (SPRMRKT.EXE 

application) 
dialog box, 335 
overview,335,335-37,343-48 
results using dialog box settings, 338-43 
SPRMRKT.C listing, 348-60 
SPRMRKT.RC listing, 361-63 

suspending threads, 79-80, 411-15 
Suspend Thread function, 80, 297, 837 
swap files, 105 
SwitchStackBack function, 282 
SwitchStackTo function, 282 
switch statements, 881-84 
SWMRG.C listing, 390-95 
SWMRG compound synchronization object, 

369-76 
SWMRGDeletefunction, 370, 373, 377 
SWMRGDoneReadingfunction, 371, 372, 375, 376, 

377 

923 



ADVANCED WINDOWS 

SWMRGDoneWritingfunction, 371, 374, 375, 377 
SWMRG.H listing, 395-96 
SWMRGlnitializefunction, 370, 372, 373, 376 
SWMRG structure, 369-76 
SWMRGWaitToReadfunction, 371, 374, 375, 376 
SWMRGWaitToWritefunction, 370-71, 373-74, 

375,376 
synchronization. See thread synchronization 
synchronous file I/O 

forcing cached data to be written to disk, 612 
introduced,608-10 
locking regions of files, 612-15 
positioning file pointers, 610-11 
setting the end of file, 611 
unlocking regions of files, 612-15 

SYSINFO.EXE application for system information 
GetSysteminjofunction and, 127-28 
ovennew,128-29,129 
SYSINFO.C listing, 130-34 
SYSINFO.RC listing, 134-37 

system directory, 595-96 
system exception processing, 721 
SYSTEM_INFO structure, 127-28 
system operations for drives, 573-76 
SYSTEMTIME structure, 645 
SystemTimeToFikTime function, 645 
system version, 30-32 

T 
TCHAR data type, 793, 797 
TCHAR.H header file, 790, 791-92, 793 
TEBs (thread environment blocks), 103 
TerminateProcessfunction, 46-47, 66, 495, 499, 692, 

836 
TerminateThread function, 64, 65-66, 322, 499, 692, 

837,850-51 
terminating processes, 46-48 
terminating threads, 64-66 
termination handlers, 684-700. See also 

text files 

SEHTERM.EXE application to demon
strate termination handlers 

reversing contents of (see FILEREV.EXE 
application to reverse contents of 
Unicode or ANSI text files) 

924 

text files, continued 
Unicode, 801-2 

_TEXT macro, 793-94, 797 
.text section in DLL or EXE files, 516 
thrashing, 107 
thread environment blocks (TEBs), 103 
ThreadFuncfunction, 291-94,857-59 
Thread function, 290, 291 
THREADINFO structure, 422, 423, 424, 453 
thread-local storage (TLS) 

dynamic, 536-41 (see also TLSDYN .EXE 
application for dynamic thread-local 
storage (TLS)) 

introduced, 535-36 
static, 555-56 (see alsoTLSSTAT.EXE applica

tion for static thread-local storage (TLS)) 
TLSDYN.EXE application for dynamic thread-

local storage (TLS) 
ovennew,541-44,54~543 

SOMELIB.C listing, 550-52 
SOMELIB.H listing, 552-53 
SOMELIB.RC listing, 553-55 
TLSDYN.C listing, 544-48 
TLSDYN.RC listing, 548-49 

.tIs section in DLL or EXE files, 516 
TLSSTAT.EXE application for static thread-

local storage (TLS) 
ovennew, 556-59,557, 558, 559 
TLSSTAT.C listing, 559-65 
TLSSTAT.RC listing, 565-67 

thread message queues 
introduced, 422 
posting messages to, 423-25 
sending messages to windows, 425-30 
waking threads, 430-36, 433 
Win32 message queue architecture, 422-23,423 

THREAD_PRIORITY_ABOVLNORMAL flag, 77 
THREAD_PRIORITY_BELOW_NORMAL flag, 77 
THREAD_PRIORITY_ERROR_RETURN flag, 78 
THREAD_PRIORITY_HIGHEST flag, 77 
THREAD_PRIORITY_IDLE flag, 77 
THREAD_PRIORITY_LOWEST flag, 77 
THREAD_PRIORITY_NORMAL flag, 77 
THREAD_PRIORITY_TIME_CRITICAL flag, 77 
threads. See also processes 

address space, 96 



threads, continued 
base priority, 77-79 
context of, 57 
creating, 51-53 (see also CreateThread function) 

when not to create a thread, 53-55 
dynamic priority, 79 
executing, 9-10, 55-56 
execution times, 57-60 
extended wait functions and, 626 
handles, 67-70 
handles for, 311-12 
message queue (see thread message queues) 
multiple, 267-68 (see also BUCKET.EXE 

(bucket of balls) application; thread 
synchronization) 

preemptive time scheduling, 419-21 
primary, 10, 13 
process-relative handles, 317 
PSTAT.EXE utility for process and thread 

information,80,80-84 
PVIEW.EXE utility for process and thread 

information, 80, 84-85, 85 
raw input thread (RIT) , 448-49, 449, 454, 

454-55 
remote, 834-35, 847, 876-77 
resuming, 79-80 
run-time libraries and, 86-92 
scheduling 

dynamic boosting of thread priority levels, 
78-79 

overview, 10, 11,38, 71-72 
priority,72-76 
relative priority, 76-79 
resuming threads, 79-80 
round-robin scheduling, 10, 11 
suspending threads, 79-80, 411-15 

sharing virtualized input queues, 449-52, 450 
stacks 

introduced, 57, 61-62, 65, 66, 126, 197-201 
region on machines with 4-KB pages, 198 
region with an expanded call tree, 199 
reserved memory region, 200 
run-time checking function, 204-6 
in Windows 95,201-4,202,204 

starvation and priority, 71 

threads, continued 
suspending, 79-80, 411-15 
synchronizing (see thread synchronization) 
terminating, 64-66 
time slices (quantums) for, 10, 11 
timing, 57-60 
waking, 430-36,433 
Win32 thread functions, 836-37 
zero page, 71 

_threadstart function, 88 
ThreadSuperMarket function, 335 
thread synchronization 

BUCKET.EXE (bucket of balls) application 
BUCKET.C listing, 379-89 
BUCKET.RC listing, 397-99 
overview, 366-69, 368, 376-79, 378 
SWMRG.C listing, 390-95 

Index 

SWMRG compound synchronization object 
and,369-76 

SWMRG.H listing, 395-96 
critical sections 

creating, 287-88 
introduced, 285-87 
using, 288-95 
using mutexes instead of, 318-19, 320-21 

CRITSECS.EXE application to test critical 
sections 

CRITSECS.C listing, 300-308 
CRITSECS.RC listing, 308-10 
overview, 295-300, 296, 297, 298 

deadlock and, 293-94, 316 
DOCSTATS.EXE application for document 

statistics 
DOCSTATS.C listing, 403-9 
DOCSTATS.RC listing, 409-10 
overview, 400-403 

events (see also BUCKET.EXE (bucket of balls) 
application) 

auto-reset, 364, 399 (see also DOCSTATS.EXE 
application for document statistics) 

introduced,364-65 
manual-reset, 364, 365-66 (see also 

BUCKET.EXE (bucket of balls) applica
tion) 

introduced, 283 

925 



ADVANCED WINDOWS 

thread synchronization, continued 
mutexes (see also BUCKET.EXE (bucket of balls) 

application; SPRMRKT.EXE (supermarket 
simulation) application) 

abandoned, 321-22 
introduced, 316-17 
using, instead of critical sections, 318-19, 

320-21 
MUTEXES.EXE application to test mutexes 

MUTEXES.C listing, 322-30 
MUTEXES.RC listing, 330-32 
overview, 322 

objects for, 283, 311-16 (see also critical sections; 
events; mutexes; semaphores) 

overview, 283-85 
polling and, 284-85 
semaphores, 333-35, 366-69 (see also 

BUCKET.EXE (bucket of balls) applica
tion; SPRMRKT.EXE (supermarket 
simulation) application) 

SPRMRKT.EXE (supermarket simulation) 
application 

dialog box, 335 
overview, 335, 335-37,343-48 
results using dialog box settings, 338-43 
SPRMRKT.C listing, 348-60 
SPRMRKT.RC listing, 361-63 

suspending threads, 79-80,411-15 
throw keyword, 684 
time-critical priority, 77, 78,85 
time slices (quantums) for threads, 10, 11 
timing processes, 59-60 
timing threads, 57-60 
TINJLIB.EXE application to test the InjectLib 

function, 870-72 
TLS. See thread-local storage (TLS) 
TlsAlwcfunction,537-38,539,540-41 
TLSDYN.EXE application for dynamic thread-

local storage (TLS) 
overview,541-44,54~543 

SOMELIB.C listing, 550-52 
SOMELIB.H listing, 552-53 
SOMELIB.RC listing, 553-55 
TLSDYN.C listing, 544-48 
TLSDYN.RC listing, 548-49 

926 

T~reefunction,539,541,544 

TlsGetValuefunction, 538-39, 541, 542 
TLS_MINIMUM_AVAILABLE flag, 537, 538 
.tis section in DLL or EXE files, 516 
TlsSetValuefunction, 538, 539, 654 
TLSSTAT.EXE application for static thread-local 

storage (TLS) 
overview, 556-59, 557, 558, 559 
TLSSTAT.C listing, 559-65 
TLSSTAT.RC listing, 565-67 

tolower function, 799 
toupperfunction, 799 
TranslateMessagefunction, 434, 669, 818 
translating strings between Unicode and ANSI, 

802-6 
TRS-80 Model I computer, 93 
TRUNCATE_EXISTING flag, 603 
try blocks 

in exception filters and exception handlers, 
712-17,718-26, 721, 725,728-30, 
732-33,735,740 

software exceptions and, 758, 762 
in termination handlers, 685-93, 695-700, 702, 

703,704 
unhandled exceptions and, 778, 780 

U 
UnhandledExceptionFilterfunction, 774-81 
unhandled exceptions 

calling UnhandledExceptionFilteryourself, 780 
without a debugger attached, 774-77, 775 
introduced, 773-74 
turning off the exception message box, 777-79 
UnhandledExceptionFilterfunction, 774-81 
Windows NT unhandled kernel-mode excep-

tions, 781 
UnhookWindowsHookExfunction,816-17 
Unicode. See also FILEREV.EXE application to 

reverse contents of Unicode or ANSI text 
files 

buffers for filenames and pathnames, 577 
character sets and, 783-86 
converting applications to be ANSI- and 

Unicode-aware 
introduced, 797-98 



Unicode, converting applications to be ANSI- and 
Unicode-aware, continued 

resources, 801 
string functions in Win32, 798-801 
text files, 801-2 
translating strings between Unicode and 

ANSI, 802-6 
Windows NT: window classes and proce-

dures, 806-8 
introduced, 783 
reasons for using, 786 
standard, 785 
standard C ANSI string functions and their 

Unicode equivalents, 788, 788-90,790 
Windows 95 and, 787-88 
Windows NT and, 263, 787 
writing course code 

ANSI functions in Win32, 794-97 
data type defined by Win32, 794 

writing source code 
C run-time library support, 788-94 
introduced, 787 
Windows 95 and Unicode, 787-88 
Windows NT and Unicode, 263, 787 

UNICODE macro, 794, 795, 801, 888, 890 
_UNICODE macro, 790, 793, 794, 800-801, 888, 

890 
UnlockFileExfunction, 614-15 
UnlockFilefunction, 613-15 
unlocking physical storage in RAM, 196-97 
unlocking regions offiles, 612-15 
UnlockSegmentfunction,281 
unmapping file data from process address space, 

224-25 
UnmapViewOjFilefunction, 224-25, 242 
unwinds 

global, 698, 722-26, 725 
local, 687-88 

USER32.DLL, 99,101,481,811,811,812,814 
User objects, 11, 12 

V 
ValidateRect function, 432 
ValidateRegion function, 432 
VDMs (Virtual DOS Machines), 38 

version information for Windows, 30-32 
views of files, 220-23 
virtual 8086 mode, 95 
virtual address space, 96-97 
VirtualAllocEx function, 849 
VirtualAlloc function 

DLLs and, 482 
heaps and, 262 
memory-mapped files and, 240, 258, 259 
SEH and, 737, 738 

Index 

virtual memory and, 102, 105, 110, 169-77, 180 
virtual device drivers (VxDs), 98, 99 
Virtual DOS Machines (VDMs), 38 
VirtualFreeEx function, 849 
VirtualFreefunction, 102, 104, 177-78, 179,257-58, 

262,482 
VirtualLock function, 195-97 
virtual machines, 95 
virtual memory management. See also address 

space; physical storage; random access 
memory (RAM) 

SYSINFO.EXE application for system 
information 

GetSystem1nfo function and, 127-28 
overview, 128-29, 129 
SYSINFO.C listing, 130-34 
SYSINFO.RC listing, 134-37 

VMALLOC.EXE application for manipulating 
arrays of structures 

overview, 180, 180-82, 181 
VMALLOC.C listing, 182-91 
VMALLOC.RC listing, 191-93 

VMMAP.EXE application for virtual memory 
maps 

overview, 111, 158-59, 159 
VMMAP.C listing, 160-66 
VMMAP.RC listing, 167-68 
VMQuery function and, 158-59 
Windows 95 address space maps, 120-25, 

125-26 
Windows NT address space maps, 112-13, 

113-15,115-19,119-20 
VMQuery listings for information about process 

virtual address space 
VirtualQuery function and, 145-49 

927 



ADVANCED WINDOWS 

virtual memory management, VMQuery listings 
for information about process virtual 
address space, continued 

VMQUERY.C listing, 149-57 
VMQuery function and, 146-49 
VMQUERY.H listing, 157-59 

VMSTAT.EXE application for virtual memory 
status 

GlobalMemoryStatusfunction and, 137-39 
overview, 13~ 138-39 
VMSTAT.C listing, 139-42 
VMSTAT.RC listing, 143-44 

VirtualProtectExfunction, 836,843,849,862-63 
VirtualProtect function, 194, 195, 843 
VirtualQueryEx function, 836, 842, 852 
VirtualQuery function, 145-49, 176, 182, 842, 

873-74 
Virtual Runtime Object-Oriented Memory 

Manager (VROOMM), 94 
VirtualUnlock function, 196-97 
Visual C++. See Microsoft Visual c++ 
VK-F virtual-key code, 412 
VK_LBUTTON virtual-key code, 457 
VK_MENU virtual-key code, 412 
VK_O virtual-key code, 412 
VMALLOC.EXE application for manipulating 

arrays of structures 
overview, 180, 180-82, 181 
VMALLOC.C listing, 182-91 
VMALLOC.RC listing, 191-93 

VMMAP.EXE application for virtual memory maps 
overview, Ill, 158-59, 159 
VMMAP.C listing, 160-66 
VMMAP.RC listing, 167-68 
VMQuery function and, 158-59 
Windows 95 address space maps, 120-25,125-26 
Windows NT address space maps, 112-13, 

113-15,115-19,119-20 
VMQuery listings for information about process 

virtual address space 
VirtualQuery function and, 145-49 
VMQUERY.C listing, 149-57 
VMQuery function and, 146-49 
VMQUERY.H listing, 157-59 

VMQuery function, 146-49, 158-59 
VMQUERYstructure, 147-49 

928 

VMSTAT.EXE application for virtual memory 
status 

GlobalMemoryStatus function and, 137-39 
overview, 13~ 138-39 
VMSTAT.C listing, 139-42 
VMSTAT.RC listing, 143-44 

volume-specific information, 576-86. See also 
DISKINFO.EXE application for viewing 
disk information 

VROOMM (Virtual Runtime Object-Oriented 
Memory Manager), 94 

VxDs (virtual device drivers), 98,99 

W 
WaitForDebugEvent function, 414 
WaitForlnputIdlefunction, 29, 412, 836 
WaitForMultipleObjectsEx function, 625-26 
WaitForMultipleObjects function 

file systems and, 619-20, 625-26, 665, 668 
thread synchronization and, 313-16, 320, 334, 

348,365,366,374,377,399,402,403, 
411,413 

WaitForSingleObjectExfunction, 625-26 
WaitForSingleObjectfunction 

DLLs and, 501, 502 
file systems and, 619-20,621,622-24,625-26, 

665 
SEH and, 749 
thread synchronization and, 49-50, 312-15, 

320,321,322,333,334,344,346,347, 
348,365,373,374,375,399,401,411 

WaitMessage function, 426, 428, 430 
waking threads, 430-36,433 
warning level 4, 888 
WCHAR data type, 794 
wchar_t data type, 788 
wcscmp function, 798 
wcscmpi function, 798 
MEP (Windows Exit Procedure) function, 491 
WH_CALLWNDPROC hook, 820 
WH_GETMESSAGE hook, 815, 816, 818, 819, 820 
wide-byte character sets, 785-86 
WideCharToMultiByte function, 803-4 



Win32. See Microsoft Win32 application program
ming interface (API) 

WIN3LFIND_DATA structure, 649-51 
Win32s platform, Win32 implementation on, 2-3, 

5-7 
WINBASE.H header file, 727, 835 
WINDEF.H header file, 881 
window classes, 806-8 
window procedures, 806-8 
windows 

sending messages to, 425-30 
subclassing windows created by other processes, 

810-12,811 
Windows. See Microsoft Windows entries 
Windows Exit Procedure (lWP) function, 491 
Windows hooks, injecting DLLs using, 815-17, 

876-77. See also PMREST.EXE application 
to subclass the Program Manager 

Windows NT Kernel, 10 
porting, 4 

WINDOWSX.H header file, 880-86 
WINERROR.H header file, 730, 759 
WinExecfunction,33,796 
_ WinMainCRTStartup function, 14 
WinMain function 

ANSI form of, 20, 796 
CreateProcess function and, 32 
in CRITSECS.EXE application, 295 
C run-time library and, 90 
DLLs and, 493 
ExitProcess function and, 46, 51 
in FILECHNG.EXE application, 667 
in FILEREV.EXE application, 231 
hinstExeparameter, 15-16, 17-18 
hinstPrevparameter, 18-19 
hmodExeparameter, 17-18 
hModuleparameter, 17 
introduced,13-14 
lpszCmdLine parameter, 20, 34, 796 
in MODUSE.EXE application, 524 
in MULTINST.EXE application, 530 
mutexes and, 320, 322 
nCmdShowparameter, 44 
polling and, 284-85 

WinMain function, continued 
preemptive time scheduling and, 420 
thread stacks and, 202-3 
Unicode and, 20, 796 

_winmajorrun-time global variable, 15 
_winminorrun-time global variable, 15 
WINNT.H header file, 57, 80, 737, 841 
WINUSER.H header file, 795 
_winverrun-time global variable, 15 
WM_?BUTTON* message, 430, 448, 449 
WM_ACTIVATEAPP message, 819-20 
WM_ACTIVATE message, 429 

Index 

WM_CHAR message, 434, 435 
WM_COMMAND message, 819-20, 881-84 
WM_COPYDATA message, 245, 438-39, 440-41 
WM_CREATE message, 429 
WM_DESTROY message, 429 
WM_ENABLE message, 429 
WM_GETTEXT message, 438 
WM_GETTEXTLENGTH message, 438 
WM_HOTKEY message, 431 
WM_INITDIALOG message, 295, 376, 652 
WM_KEY* message, 448 
WM_KEYDOWN message, 79, 412, 430, 434, 435, 

447 
WM_KEYUP message, 412, 430, 434, 435, 447 
WM_KILLFOCUS message, 455 
WM_LBUTTONDOWN message, 434 
WM_MDICREATE message, 55 
WM_MOUSEMOVE message, 430, 431, 448, 449 
WM_MOVE message, 429 
WM_NULL message, 819 
WM_PAINT message, 430,431,434,435-36 
WM_QUIT message, 432, 434, 435, 668, 818, 819, 

820 
WM_SETCURSOR message, 459-60 
WM_SETFOCUS message, 429, 455 
WM_SETTEXT message, 437, 806 
WM_SIZE message, 429 
WM_SYSCHAR message, 434 
WM_SYSKEYDOWN message, 430, 434 
WM_SYSKEYUP message, 430, 434 
WM_TIMER message, 418, 431, 434, 436, 460-61 
WM_USER message, 435 
WM_WININICHANGE message, 23 

929 



ADVANCED WINDOWS 

WNDCLASS structure, 807 
WndProcfunction, 810-12 
WriteFileEx function, 624-25, 629 
WriteFilefunction, 229, 608-10, 613, 617-23, 624 
WriteProcessMemory function, 99, 836, 843, 846, 849, 

852 
writing files. See asynchronous file I/O; synchro

nous file I/O 
WS_CHILD style, 451 
wsprintjfunction, 801 

x-z 
x86 CPU family 

allocation granularity, 102 
committing memory on, 173 
CONTEXT structure, 736-37, 836-42 
execute page protection and, 863 
function return addresses, 838 
history, 94-96 
page size, 102, 103, 104, 128, 129 
process address space, 103, 104 
protection attributes, 109 
stack pointer's register, 851 
stack space and, 205 
static TLS variables and, 556 

.xdata section in DLL or EXE files, 516 
XMS (Extended Memory Specification), 94 
Z80 CPU, 93 
zero page thread, 71 

930 







1 
+ 

About the author ... 

Jeffrey Richter was born 
in Philadelphia, Pa., and 
graduated in 1987 from 
Drexel University with a 
bachelor's degree in 
computer science. In 
1990, Jeff wrote Win
dows 3.0: A Developer's 
Guide (M & T Books); 
and in 1992, he wrote 
the revised edition, 
Windows 3.1: A Devel
oper's Guide. A third 
edition is due out in 
mid-1995.Jeffis also 
a contributing edi
tor to Microsoft Sys
tems Journal, for 
which he authors 
the Win32 Q & A 
column and has 
written a number 
of articles. 

Jeff speaks regu-

... 
__ ---------------~:: lady at industry conferences, including 

Software Development and 
COMDEX. In addition, he frequently conducts 

Windows NT and Windows 95 training seminars at many companies, 
including AT&T, DEC, Intel, Microsoft, and Pitney Bowes. He can be reached at 
v-jeffrr@microsoft·com. 

Jeff now lives in Bellevue, Wash., where he is a frequent consultant to Microsoft. His code 
appears in Visual C++ and other applications produced by Microsoft's Personal Operating 
Systems group. He likes to eat teriyaki chicken bowls from Costco and top them off with 
Ben and Jerry's ice cream while watching The Simpsons. He has a passion for classic rock 
and jazz fusion bands. 





T he manuscript for this book 
was prepared and submitted 

to Microsoft Press in electronic 
form. Text files were prepared using 
Microsoft Word 2.0 for Windows. 
Pages were composed by Microsoft 
Press using Aldus PageMaker 5.0 
for Windows, with text in New 
Baskerville and display type in 
Helvetica Bold. Composed pages 
were delivered to the printer as elec
tronic prepress files. 

Cover Graphic Designers 
HomaH Anderson Design/ 

Rebecca Geisler 

Interior Graphic Designer 
Kim Eggleston 

Interior Graphic Artists 
David Holter & Michael Victor 

Principal Typographer 
John Sugg 

Principal Proofreader/Copy Editor 
Shawn Peck 

Indexer 
F oxon-Maddocks Associates 













"No Win 
.', programmer. 
• n afford... 

nt 

~", ~~ 

"I I 

This book provides all the infor
mation you need to create 32-bit 
sprite-based animation. 
Thompson's approach is object 
oriented: he streamlines the pro
cess of creating a graphics engine 
by using the Microsoft® 
Foundation Classes (MFC) to take 
care of the tasks all Windows®
based applications have in com
mon' and he derives from MFC 
classes a set of C++ classes that 
implement an animation engine. 
As the book progresses from 
chapter to chapter, you'll develop 
a set of C++ classes to deal with 
device-independent bitmaps, 
palettes, sprites, and sounds. The 
sample code includes a static
link library built from the C++ 
classes developed in the book. 
You can use this library to create 
your own applications. 

If you want to learn how to create 
sprite-based animation in 
Windows 95 and Windows NT™, 
from bitmaps to full animation 
scenes that even include sound, 
there's no better source of in for
mation and inspiration than 
ANIMATION TECHNIQUES INWIN32. 

Microsoft Press@ books are available wherever quality books are 
sold aud through CompuServe's Electronic Mall-GO MSP. 

Call1-800-MSfRESS for more information or to place a credit card order. * 
Please refer to BBK when placing your order. Prices subject to change. 

'In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept, 164 Commander 
Blvd., Agincourt, Ontario, Canada MIS 3C7, orcalll-800-667-1115. 

Outside the U.S. and Canada, write to International Coordinator, Microsoft Press, 
One Microsoft Way, Redmond, WA 98052-6399 or fax +(206) 936-7329. 

MiclosoflPress 



IMPORTANT-READ CAREFULLY BEFORE OPENING SOFTWARE PACKET(S). By opening the sealed packet(s) containing the 

software. you indicate your acceptance of the following Microsoft License Agreement. 

MICROSOFT LICENSE AGREEMENT 
(Book Companion Disks) 

This is a legal agreement between you (either an individual or an entity) and Microsoft Corporation. By opening the sealed software packet(s) you 
are agreeing to be bound by the terms of this agreement. If you do not agree to the terms of this agreement, promptly return the unopeued software 
packet(s) and any accompanying written materials to the place you obtained them for a full refund. 

MICROSOFT SOFTWARE LICENSE 
1. GRANT OF LICENSE. Microsoft grants to you the right to use one copy of the Microsoft software program included with this book (the 
"SOFTWARE") on a single terminal connected to a single computer. The SOFTWARE is in "use" on a computer when it is loaded into the temporary 
memory (i.e., RAM) or installed into the permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer. You may not 
network the SOFTWARE or otherwise use it on more than one computer or computer terminal at the same time. 
2. COPYRIGHT. The SOFTWARE is owned by Microsoft or its suppliers and is protected by United States copyright laws and international treaty 
provisions. Therefore. you must treat the SOFTWARE like any other copyrighted material (e.g., a book or musical recording) except that you may 
either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE to a single hard disk provided 
you keep the original solely for backup or archival purposes. You may not copy the written materials accompanying the SOFTWARE. 
3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written 
materials on a permanent basis provided you retain no copies and the recipient agrees to the terms of this Agreement. You may not reverse engineer, 
decompile, or disassemble the SOFTWARE. If the SOFTWARE is an update or has been updated, any transfer must include the most recent update 
and all prior versions. 
4. DUAL MEDIA SOFTWARE. If the SOFTWARE package contains both 3.5" and 5.25" disks, then you may use only the disks appropriate for 
your single-user computer. You may not use the other disks on another computer or loan, rent, lease, or transfer them to another user except as part 
of the permanent transfer (as provided above) of all SOFTWARE and written materials. 
5. SAMPLE CODE. If the SOFTWARE includes Sample Code, then Microsoft grants you a royalty-free right to reproduce and distribute the sample 
code of the SOFTWARE provided that you: (a) distribute the sample code only in conjunction with and as a part of your software product; (b) do 
not use Microsoft's or its authors' names, logos, or trademarks to market your software product; (c) include the copyright notice that appears on the 
SOFTWARE on your product label and as a part of the sign-on message for your software product; and (d) agree to indemnify, hold harmless, and 
defend Microsoft and its authors from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution 
of your software product. 

DISCLAIMER OF WARRANTY 
The SOFTWARE (including instructions for its use) is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT 
FURTHER DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF 
MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF THE USE OR 
PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU. 

IN NO EVENT SHALL MICROSOFT, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION, OR 
DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, 
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER 
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION, EVEN IF 
MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/COUNTRIES DO NOT 
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL ORIN CIDENTALDAMAGES, THE ABOVE 
LIMITATION MAY NOT APPLY TO YOU. 

U.S. GOVERNMENT RESTRICTED RIGHTS 
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject 
to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or 
subparagraphs (c)( I) and (2) of the Commercial Computer Software - Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is 
Microsoft Corporation, Oue Microsoft Way, Redmond, W A 98052-6399. 
If you acquired this product in the United States, this Agreement is governed by the laws of the State of Washington. 
Should you have any questions concerniug this Agreement, or if you desire to contact Microsoft Press for any reason, please write: Microsoft 
Press, One Microsoft Way, Redmoud, WA 98052-6399. 

097 -000-680 



Register Today! 
Return this 

Advanced Windowi" 
registration card for: 

tI' a Microsoft Press@ catalog 

tI' exclusive offers on specially 
priced books 

u.s. and Canada addresses only. Fill in information below and mail postage-free. Please mail only the bottom half of this page. 

1-55615-677-4A Advanced Windows-Owner Registration Card 

NAME 

INSTITUTION OR COMPANY NAME 

ADDRESS 

CITY STATE ZIP 



AficmsoffPress® 
Quality Computer Books 

For a free catalog of 
Microsoft Press® products, call 

1-800-MSPRESS 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 53 BOTHELL, WA 

POSTAGE WILL BE PAID BY ADDRESSEE 

MICROSOFT PRESS REGISTRATION 
ADVANCED WINDOWS 
PO BOX 3019 
BOTHELL W A 98041-9946 

11,1"1"1,11""1,,1,,,111,1,,1,1,,,1,,1,11,,11,,,1 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



18···11 

Jlemen-
5 specific 

l _ JWS 95 
platform 

Flags an implemen
tation detail specific 
to the Windows NT 
platform 

Points out important 
information for 
porting from 16-bit 
Windows to Win32 

ProgramminglWindowslWindows NT 

ISBN 1-55615-677-4 

90000 

9 781556 156779 


